Science.gov

Sample records for rabbit corneal equivalent

  1. Construction of a Corneal Stromal Equivalent with SMILE-Derived Lenticules and Fibrin Glue.

    PubMed

    Yin, Houfa; Qiu, Peijin; Wu, Fang; Zhang, Wei; Teng, Wenqi; Qin, Zhenwei; Li, Chao; Zhou, Jiaojie; Fang, Zhi; Tang, Qiaomei; Fu, Qiuli; Ma, Jian; Yang, Yabo

    2016-01-01

    The scarcity of corneal tissue to treat deep corneal defects and corneal perforations remains a challenge. Currently, small incision lenticule extraction (SMILE)-derived lenticules appear to be a promising alternative for the treatment of these conditions. However, the thickness and toughness of a single piece of lenticule are limited. To overcome these limitations, we constructed a corneal stromal equivalent with SMILE-derived lenticules and fibrin glue. In vitro cell culture revealed that the corneal stromal equivalent could provide a suitable scaffold for the survival and proliferation of corneal epithelial cells, which formed a continuous pluristratified epithelium with the expression of characteristic markers. Finally, anterior lamellar keratoplasty in rabbits demonstrated that the corneal stromal equivalent with decellularized lenticules and fibrin glue could repair the anterior region of the stroma, leading to re-epithelialization and recovery of both transparency and ultrastructural organization. Corneal neovascularization, graft degradation, and corneal rejection were not observed within 3 months. Taken together, the corneal stromal equivalent with SMILE-derived lenticules and fibrin glue appears to be a safe and effective alternative for the repair of damage to the anterior cornea, which may provide new avenues in the treatment of deep corneal defects or corneal perforations. PMID:27651001

  2. Construction of a Corneal Stromal Equivalent with SMILE-Derived Lenticules and Fibrin Glue

    PubMed Central

    Yin, Houfa; Qiu, Peijin; Wu, Fang; Zhang, Wei; Teng, Wenqi; Qin, Zhenwei; Li, Chao; Zhou, Jiaojie; Fang, Zhi; Tang, Qiaomei; Fu, Qiuli; Ma, Jian; Yang, Yabo

    2016-01-01

    The scarcity of corneal tissue to treat deep corneal defects and corneal perforations remains a challenge. Currently, small incision lenticule extraction (SMILE)-derived lenticules appear to be a promising alternative for the treatment of these conditions. However, the thickness and toughness of a single piece of lenticule are limited. To overcome these limitations, we constructed a corneal stromal equivalent with SMILE-derived lenticules and fibrin glue. In vitro cell culture revealed that the corneal stromal equivalent could provide a suitable scaffold for the survival and proliferation of corneal epithelial cells, which formed a continuous pluristratified epithelium with the expression of characteristic markers. Finally, anterior lamellar keratoplasty in rabbits demonstrated that the corneal stromal equivalent with decellularized lenticules and fibrin glue could repair the anterior region of the stroma, leading to re-epithelialization and recovery of both transparency and ultrastructural organization. Corneal neovascularization, graft degradation, and corneal rejection were not observed within 3 months. Taken together, the corneal stromal equivalent with SMILE-derived lenticules and fibrin glue appears to be a safe and effective alternative for the repair of damage to the anterior cornea, which may provide new avenues in the treatment of deep corneal defects or corneal perforations. PMID:27651001

  3. Scanning electron microscopy of rabbit corneal scars.

    PubMed

    Cintron, C; Szamier, R B; Hassinger, L C; Kublin, C L

    1982-07-01

    Central full-thickness perforating excision wounds were made in rabbit corneas and were examined by light and scanning electron microscopy at various times after wounding to study the three-dimensional morphologic changes in the tissue during healing and remodeling. Formation of a fibrin clot soon after wounding seals the hole and functions as a substrate for the healing epithelium. Changes in the histologic appearance of the fibrin lot immediately below the new epithelium are followed by migration of adjacent stromal cells under the epithelium, parallel to the basal surface of this tissue. Further healing is characterized by the organization of stromal fibroblasts into several layers parallel to the corneal surface and the deposition of collagen as a matted meshwork of fibrils tangential to the cell surface. Although remodeling of the collagenous matrix of corneal scar is evident and the scar eventually appears less opaque, the lamellae of the scar are narrower and shorter than normal. Evidence from this and other studies suggests that the orientation of the fibroblasts in healing tissues is determined by the organization of the newly formed epithelium. Furthermore, our observations are consistent with the hypothesis that collagen fibrils are deposited parallel to the flat surface of the fibroblasts during scar formation. Subsequent reorganization of this collagenous matrix approaches the normal lamellar appearance, but the matrix fails to regenerate even after 2 years.

  4. Angiotensin I converting enzyme activity in rabbit corneal endothelial cells.

    PubMed

    Neels, H M; Vanden Berghe, D A; Neetens, A J; Delgadillo, R A; Scharpe, S L

    1983-01-01

    Angiotensin I converting enzyme (ACE) was studied in Vero cells, rabbit corneal fibroblasts, and rabbit corneal endothelial cells. The enzyme activity was determined by means of an assay employing hippuryl-glycyl-glycine as a substrate. The hippuric acid end product was separated from the substrate by reversed phase liquid chromatography and measured spectrophotometrically at 228 nm. The enzyme was further characterized by a captopril inhibition study. Significant ACE activity was found in rabbit corneal endothelial cells but not in other types of cells tested. This is the first report of the presence of this enzyme in a specific ocular cell type and suggests that angiotensin II may play a role in normal ocular physiology.

  5. The lectin KM+ induces corneal epithelial wound healing in rabbits.

    PubMed

    Chahud, Fernando; Ramalho, Leandra N Z; Ramalho, Fernando S; Haddad, Antonio; Roque-Barreira, Maria C

    2009-04-01

    Neutrophil influx is essential for corneal regeneration (Gan et al. 1999). KM+, a lectin from Artocarpus integrifolia, induces neutrophil migration (Santos-de-Oliveira et al. 1994). This study aims at investigating a possible effect of KM+ on corneal regeneration in rabbits. A 6.0-mm diameter area of debridement was created on the cornea of both eyes by mechanical scraping. The experimental eyes received drops of KM+ (2.5 microg/ml) every 2 h. The control eyes received buffer. The epithelial wounded areas of the lectin-treated and untreated eyes were stained with fluorescein, photographed and measured. The animals were killed 12 h (group 1, n = 5), 24 h (group 2, n = 10) and 48 h (group 3, n = 5) after the scraping. The corneas were analysed histologically (haematoxylin and eosin and immunostaining for proliferation cell nuclear antigen, p63, vascular endothelial growth factor, c-Met and laminin). No significant differences were found at the epithelial gap between treated and control eyes in the group 1. However, the number of neutrophils in the wounded area was significantly higher in treated eyes in this group. Three control and seven treated eyes were healed completely and only rare neutrophils persisted in the corneal stroma in group 2. No morphological distinction was observed between treated and control eyes in group 3. In treated corneas of group 2, there was an increase in immunostaining of factors involved in corneal healing compared to controls. Thus, topical application of KM+ may facilitate corneal epithelial wound healing in rabbits by means of a mechanism that involves increased influx of neutrophils into the wounded area induced by the lectin.

  6. In Vivo Confocal Microscopic Observation of Lamellar Corneal Transplantation in the Rabbit Using Xenogenic Acellular Corneal Scaffolds as a Substitute

    PubMed Central

    Feng, Yun; Wang, Wei

    2015-01-01

    Background: The limiting factor to corneal transplantation is the availability of donors. Research has suggested that xenogenic acellular corneal scaffolds (XACS) may be a possible alternative to transplantation. This study aimed to investigate the viability of performing lamellar corneal transplantation (LCT) in rabbits using canine XACS. Methods: Fresh dog corneas were decellularized by serial digestion, and LCT was performed on rabbit eyes using xenogeneic decellularized corneal matrix. Cellular and morphological changes were observed by slit-lamp, light, and scanning electron microscopy at 7, 30 and 90 days postoperatively. Immunocytochemical staining for specific markers such as keratin 3, vimentin and MUC5AC, was used to identify cells in the graft. Results: Decellularized xenogenic corneal matrix remained transparent for about 1-month after LCT. The recipient cells were able to survive and proliferate into the grafts. Three months after transplantation, grafts had merged with host tissue, and graft epithelialization and vascularization had occurred. Corneal nerve fibers were able to grow into the graft in rabbits transplanted with XACS. Conclusions: Xenogenic acellular corneal scaffolds can maintain the transparency of corneal grafts about 1-month and permit growth of cells and nerve fibers, and is, therefore, a potential substitute or carrier for a replacement cornea. PMID:25836615

  7. Refractive change in the adult rabbit eye after corneal relaxation with the femtosecond laser

    PubMed Central

    2014-01-01

    Background A new procedure to correct myopia that does not disturb the cornea in the optical zone and avoids injuring the corneal epithelium could be a key advance in corneal refractive surgery. The aim of this study is to observe the refractive change in the adult rabbits undergoing femtosecond laser-assisted multilayer intrastromal ablation in the mid-periphery of the cornea without injury of epithelium. Method The right eyes of 8 New Zealand White adult rabbits were used for the experiments. A 60-kHz femtosecond laser delivery system was used, and three lamellar layers of laser pulses were focused starting at a corneal depth of 180 μm and ending at 90 μm from the surface, with each successive layer placed 45 μm anterior to the previous layer. In the interface of the applanation contact lens cone, a 6-mm diameter aluminum circle was placed at the center to block the laser, limiting ablation to the mid-periphery of the cornea. The laser settings were as follows: spot/line separation, 10 μm; diameter, 8.0 mm; energy for ablating the stroma, 1.3 μJ. An authorefractor was used to assess the manifest refraction. Results Mean spherical equivalent (SE) (mean ± SD, SD: standard deviation) was significantly increased at postoperative week 1 (1.67 ± 0.26 D, p < 0.0001), month 1 (1.65 ± 0.23 D, p < 0.0001), and month 3 (1.60 ± 0.22 D, p < 0.0001) compared to baseline (0.68 ± 0.27 D). Mean spherical equivalent showed no significant change between postoperative week 1 and month 3 (p = 0.1168). Conclusion Femtosecond laser-assisted multilayer corneal intrastromal ablation in the mid-periphery may cause a consequent hyperopic shift with no refractive regression. PMID:24447397

  8. Inhibitory effect of polysulfated heparin endostatin on alkali burn induced corneal neovascularization in rabbits

    PubMed Central

    Li, Zhao-Na; Yuan, Zhong-Fang; Mu, Guo-Ying; Hu, Ming; Cao, Li-Jun; Zhang, Ya-Li; Liu, Lei; Ge, Ming-Xu

    2015-01-01

    AIM To investigate anti-angiogenic effects of polysulfated heparin endostatin (PSH-ES) on alkali burn induced corneal neovascularization (NV) in rabbits. METHODS An alkali burn was made on rabbit corneas to induce corneal NV in the right eye of 24 rabbits. One day after burn creation, a 0.2 mL subconjunctival injection of 50 µg/mL PSH-ES, 50 µg/mL recombinant endostatin (ES), or normal saline was administered every other day for a total of 14d (7 injections). Histology and immunohistochemisty were used to examine corneas. Corneal NV growth was evaluated as microvessel quantity and corneal vascular endothelial growth factor (VEGF) expression was measured by immunohistochemical assay. RESULTS Subconjunctival injection of ES and PSH-ES resulted in significant corneal NV suppression, but PSH-ES had a more powerful anti-angiogenic effect than ES. Mean VEGF concentration in PSH-ES treated corneas was significantly lower than in ES treated and saline treated corneas. Histological examination showed that corneas treated with either PSH-ES or ES had significantly fewer microvessels than eyes treated with saline. Additionally corneas treated with PSH-ES had significantly fewer microvessels than corneas treated with ES. CONCLUSION Both PSH-ES and recombinant ES effectively inhibit corneal NV induced by alkali burn. However, PSH-ES is a more powerful anti-angiogenic agent than ES. This research has the potential to provide a new treatment option for preventing and treating corneal NV. PMID:25938033

  9. Norfloxacin and silver norfloxacin in the treatment of Pseudomonas corneal ulcer in the rabbit.

    PubMed Central

    Darrell, R W; Modak, S M; Fox, C L

    1984-01-01

    Norfloxacin is a new synthetic antibiotic with a broad spectrum of activity against gram-positive and gram-negative bacteria, and is more effective than the aminoglycosides against P aeruginosa. In this study norfloxacin was particularly effective in treatment of P aeruginosa infection of the rabbit cornea, and caused no toxicity in normal rabbit eyes after prolonged administration. The addition of silver to norfloxacin enhances its antipseudomonal activity, and broadens its spectrum to include antifungal activity. In this study, silver norfloxacin appears to be the most effective antibiotic against P aeruginosa corneal ulcer in the rabbit. Because of its broad antibacterial spectrum, silver norfloxacin may be useful in the initial treatment of bacterial corneal ulcer before the identity of the bacteria is known. Because of its low toxicity in topical administration, and its antifungal and antibacterial activity, silver norfloxacin may be helpful in prophylaxis against infection in chronic corneal ulcers. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:6242083

  10. Effects of blood transfusion and cyclosporin on rabbit corneal graft survival.

    PubMed

    Liu, E Y; Raizman, M B; Rosner, B; Ihley, T M; Foster, C S

    1989-05-01

    Blood transfusion prolongs renal, cardiac, and skin allograft survival, but promotes rejection of bone marrow allografts. At present, it is unclear whether transfusion induces allograft tolerance or sensitization in corneal transplants. We performed eccentric penetrating keratoplasty on New Zealand albino rabbits, using Dutch rabbits as donors. Twenty-four recipient rabbits were randomly allocated into four groups. The control group received no pretreatment. The other three groups received a donor-specific whole-blood transfusion and/or cyclosporin seven days before the corneal transplants. A single blood transfusion accelerated allograft rejection by an average of 8.8 days (p = 0.0005). In contrast, a single cyclosporin pretreatment prolonged graft survival by an average of 5.3 days (p = 0.02). There was no evidence of interaction effects between transfusion and cyclosporin (p = NS). Therefore, unlike renal, cardiac, and skin allografts and similar to bone marrow allografts, prior blood transfusion accelerates corneal allograft rejection in our rabbit model. Although our data can not be extrapolated to human corneal transplants, our results raise the question whether blood transfusion can sensitize humans to corneal allografts. PMID:2661153

  11. The effects of sub-solar levels of UV-A and UV-B on rabbit corneal and lens epithelial cells.

    PubMed

    Rogers, Christian S; Chan, Lai-Man; Sims, Yolanda S; Byrd, Krashod D; Hinton, Danielle L; Twining, Sally S

    2004-05-01

    The purpose of this work was to establish whether exposing cultured rabbit corneal and lens epithelial cells to ultraviolet radiation equivalent to several hours under the sun would damage the cells. Confluent rabbit corneal epithelial cells were irradiated with broadband UV-A or UV-B, and confluent lens epithelial cells were irradiated with broadband UV-A. The maximum dose of UV-A was 6.3 J cm(-2) and that of UV-B was 0.60 J cm(-2). Damage to corneal epithelial cell was studied using the terminal deoxynucleotidyl transferase mediated dUTP-X nick end labeling (TUNEL) assay and damage to lens epithelial cell was studied using the single cell gel electrophoresis (comet) assay and trypan blue exclusion assay. Lipid peroxidation was assayed using the thiobarbituric acid reaction. Both UV-B and UV-A induced cell death in corneal epithelial cells with different latent periods. UV-A damage included cell death, decreased viability and increased lipid peroxidation of lens epithelial cell. In addition, UV irradiation of the corneal and lens epithelial cells decreased the activity of catalase to thirty to fifty percent of its original value, while the activities of glutathione peroxidase and superoxide dismutase did not decrease within experimental error. Thus, even sub-solar UV radiation can cause irreversible damage to corneal and lens epithelial cells. PMID:15051481

  12. Corneal alterations induced by topical application of commercial latanoprost, travoprost and bimatoprost in rabbit.

    PubMed

    Chen, Wensheng; Dong, Nuo; Huang, Caihong; Zhang, Zhenhao; Hu, Jiaoyue; Xie, Hui; Pan, Juxin; Liu, Zuguo

    2014-01-01

    Prostaglandin (PG) analogs, including latanoprost, travoprost, and bimatoprost, are currently the most commonly used topical ocular hypotensive medications. The purpose of this study was to investigate the corneal alterations in rabbits following exposure to commercial solution of latanoprost, travoprost and bimatoprost. A total of 64 New Zealand albino rabbits were used and four groups of treatments were constituted. Commercial latanoprost, travoprost, bimatoprost or 0.02% benzalkonium chloride (BAK) was applied once daily to one eye each of rabbits for 30 days. The contralateral untreated eyes used as controls. Schirmer test, tear break-up time (BUT), rose Bengal and fluorescein staining were performed on days 5, 10, 20, and 30. Central corneal changes were analyzed by in vivo confocal microscopy, and the corneal barrier function was evaluated by measurement of corneal transepithelial electrical resistance on day 5. Whole mount corneas were analyzed by using fluorescence confocal microscopy for the presence of tight-junction (ZO-1, occludin) and adherens-junction (E-cadherin, β-catenin) proteins, actin cytoskeleton, proliferative marker Ki67 and cell apoptosis in the epithelium. Topical application of commercial PG analogs resulted in significant corneal epithelial and stromal defects while no significant changes in aqueous tear production, BUT, rose bengal and fluorescein staining scores on day 5. Commercial PG analogs induced dislocation of ZO-1 and occludin from their normal locus, disorganization of cortical actin cytoskeleton at the superficial layer, and disruption of epithelial barrier function. The eyes treated with 0.02% BAK and latanoprost exhibited significantly reduced Schirmer scores, BUT, and increased fluorescein staining scores on days 10 and 30, respectively. Topical application of commercial PG analogs can quickly impair the corneal epithelium and stroma without tear deficiency. Commercial PG analogs break down the barrier integrity of corneal

  13. Adherens junction proteins are expressed in collagen corneal equivalents produced in vitro with human cells

    PubMed Central

    Deschambeault, Alexandre; Carrier, Patrick; Germain, Lucie

    2014-01-01

    Purpose To test whether adherens junction proteins are present in the epithelium and the endothelium of corneal equivalents. Methods Corneal cell types were harvested from human eyes and grown separately. Stromal equivalents were constructed by seeding fibroblasts into a collagen gel on which epithelial and endothelial cells were added on each side. Alternatively, bovine endothelial cells were used. At maturity, sections of stromal equivalents were processed for Masson's trichrome or indirect immunofluorescence using antibodies against pan-, N-, or E-cadherins or α- or β-catenins. Alternatively, stromal equivalents were dissected, to separate the proteins from the epithelium, endothelium, and stroma with sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Western blots of the transferred proteins exposed to these primary antibodies were detected with chemiluminescence. Native corneas were processed similarly. Results Three or four layers of epithelial cells reminiscent of the native cornea (basal cuboidal and superficial flatter cells) lay over a stromal construct containing fibroblastic cells under which an endothelium is present. Western blots and indirect immunofluorescence revealed that, similarly to the native cornea, the epithelium reacted positively to antibodies against catenins (α and β) and E-cadherin. The endothelium of corneal constructs, whether of human or bovine origin, reacted mildly to catenins and N-cadherin. Conclusions This collagen-based corneal equivalent simulated the native cornea. Cells from the epithelial and endothelial layers expressed adherens junction proteins, indicating the presence of cell–cell contacts and the existence of polarized morphology of these layers over corneal equivalents. PMID:24715756

  14. Multipurpose Care Solution–Induced Corneal Surface Disruption and Pseudomonas aeruginosa Internalization in the Rabbit Corneal Epithelium

    PubMed Central

    Posch, Leila C.; Zhu, Meifang; Robertson, Danielle M.

    2014-01-01

    Purpose. To evaluate the effects of a chemically preserved multipurpose contact lens care solution (MPS) on the corneal epithelial surface and Pseudomonas aeruginosa (PA) internalization in the rabbit corneal epithelium. Methods. Rabbits were fit in one eye with a silicone hydrogel lens (balafilcon A) soaked overnight in a borate-buffered MPS (BioTrue). The contralateral eye was fit with a lens removed directly from the blister pack containing borate-buffered saline (control). Lenses were worn for 2 hours. Upon lens removal, corneas were challenged ex vivo with invasive PA strain 6487 and assessed for PA internalization. Ultrastructural changes were assessed using scanning electron (SEM) and transmission electron microscopy (TEM). Results. Scanning electron microscopy showed frank loss of surface epithelium in MPS-exposed eyes, while control eyes exhibited occasional loss of surface membranes but retention of intact junctional borders. Transmission electron microscopy data supported and extended SEM findings, demonstrating the presence of epithelial edema in MPS-treated eyes. There was a 12-fold increase in PA uptake into the corneal epithelium following wear of the MPS-treated lens compared to control (P = 0.008). Conclusions. These data demonstrate that corneal exposure to MPS during lens wear damages the surface epithelium and are consistent with our previous clinical data showing an increase in bacterial binding to exfoliated epithelial cells following MPS use with resultant increased risk for lens-mediated infection. These findings also demonstrate that the PA invasion assay may provide a highly sensitive quantitative metric for assessing the physiological impact of lens-solution biocompatibility on the corneal epithelium. PMID:24876286

  15. Effects of edible bird's nest (EBN) on cultured rabbit corneal keratocytes

    PubMed Central

    2011-01-01

    Background There has been no effective treatment or agent that is available for corneal injury in promoting corneal wound healing. Previous studies on edible bird's nest extract (EBN) had reported the presence of hormone-like substance; avian epidermal growth factor that could stimulate cell division and enhance regeneration. This study aimed to investigate the effects of EBN on corneal keratocytes proliferative capacity and phenotypical changes. Methods Corneal keratocytes from six New Zealand White Rabbits were isolated and cultured until Passage 1. The proliferative effects of EBN on corneal keratocytes were determined by MTT assay in serum-containing medium (FDS) and serum-free medium (FD). Keratocytes phenotypical changes were morphologically assessed and gene expression of aldehyde dehydrogenase (ALDH), collagen type 1 and lumican were determined through RT-PCR. Results The highest cell proliferation was observed when both media were supplemented with 0.05% and 0.1% EBN. Cell proliferation was also consistently higher in FDS compared to FD. Both phase contrast micrographs and gene expression analysis confirmed the corneal keratocytes retained their phenotypes with the addition of EBN. Conclusions These results suggested that low concentration of EBN could synergistically induce cell proliferation, especially in serum-containing medium. This could be a novel breakthrough as both cell proliferation and functional maintenance are important during corneal wound healing. The in vitro test is considered as a crucial first step for nutri-pharmaceutical formation of EBN-based eye drops before in vivo application. PMID:21992551

  16. Lack of association between VAP-1/SSAO activity and corneal neovascularization in a rabbit model.

    PubMed

    Énzsöly, Anna; Markó, Katalin; Tábi, Tamás; Szökő, Éva; Zelkó, Romána; Tóth, Miklós; Petrash, J Mark; Mátyus, Péter; Németh, János

    2013-06-01

    The aim of this study is to determine the efficacy of a potent and specific vascular adhesive protein-1/semicarbazide-sensitive amine oxidase (VAP-1/SSAO) inhibitor, LJP 1207, as a potential antiangiogenic and anti-inflammatory agent in the therapy of corneal neovascularization. Corneal neovascularization was induced with intrastromal suturing in rabbits (n = 20). Topical treatment with VAP-1/SSAO inhibitor LJP 1207 (n = 5, 4 times a day), bevacizumab (n = 5, daily), their combination (n = 5) and vehicle only (n = 5, 4 times a day) were applied postoperatively for 2 weeks. The development and extent of corneal neovascularization were evaluated by digital image analysis. At the end of the observation period, the level of corneal and serum VAP-1/SSAO activity was measured fluorometrically and radiochemically. The corneal VAP-1/SSAO activity was significantly elevated in the suture-challenged vehicle-treated group (3,075 ± 1,009 pmol/mg/h) as compared to unoperated controls (464.2 ± 135 pmol/mg/h, p < 0.001). Treatment with LJP 1207 resulted in slower early phase neovascularization compared to vehicle-treated animals (not significant). At days 7-14, there was no significant difference in the extent of corneal neovascularization between inhibitor- and vehicle-treated corneas, even though inhibitor treatment caused a normalization of corneal VAP-1/SSAO activity (885 ± 452 pmol/mg/h). Our results demonstrate that the significant elevation of VAP-1/SSAO activity due to corneal injury can be prevented with VAP-1/SSAO inhibitor LJP 1207 treatment. However, normalization of VAP-1/SSAO activity in this model does not prevent the development of corneal neovascularization.

  17. Corneal Alternations Induced by Topical Application of Benzalkonium Chloride in Rabbit

    PubMed Central

    Chen, Wensheng; Li, Zhiyuan; Hu, Jiaoyue; Zhang, Zhenhao; Chen, Lelei; Chen, Yongxiong; Liu, Zuguo

    2011-01-01

    Benzalkonium chloride (BAC) is the most common preservative in ophthalmic preparations. Here, we investigated the corneal alternations in rabbits following exposure to BAC. Twenty-four adult male New Zealand albino rabbits were randomly divided into three groups. BAC at 0.01%, 0.05%, or 0.1% was applied twice daily to one eye each of rabbits for 4 days. The contralateral untreated eyes were used as control. Aqueous tear production and fluorescein staining scores of BAC-treated eyes were compared with those of controls. The structure of the central cornea was examined by in vivo confocal microscopy. Expression of mucin-5 subtype AC (MUC5AC) in conjunctiva was detected by immunostainig on cryosections. Corneal barrier function was assessed in terms of permeability to carboxy fluorescein (CF). The distribution and expression of ZO-1, a known marker of tight junction, and reorganization of the perijunctional actomyosin ring (PAMR) were examined by immunofluorescence analysis. Although there were no significant differences between control and BAC-treated eyes in Schirmer scores, corneal fluorescein scores and the number of conjunctival MUC5AC staining cells, in vivo confocal microscopy revealed significant epithelial and stromal defects in all BAC-treated corneas. Moreover, BAC at 0.1% resulted in significant increases in central corneal thickness and endothelial CF permeability, compared with those in control eyes, and endothelial cell damage with dislocation of ZO-1 and disruption of PAMR. Topical application of BAC can quickly impair the whole cornea without occurrence of dry eye. A high concentration of BAC breaks down the barrier integrity of corneal endothelium, concomitant with the disruption of PAMR and remodeling of apical junctional complex in vivo. PMID:22022526

  18. Modulation of tight junction properties relevant to fluid transport across rabbit corneal endothelium

    PubMed Central

    Ma, Li; Kuang, Kunyan; Smith, Randall W.; Rittenband, David; Iserovich, Pavel; Diecke, F.P.J.; Fischbarg, Jorge

    2007-01-01

    Paracellular junctions could play an important role in corneal endothelial fluid transport. In this study we explored the effects of different reagents on the tight junctional barrier by assessing the translayer specific electrical resistance (TER) across rabbit corneal endothelial preparations and cultured rabbit corneal endothelial cells (CRCEC) monolayers, the paracellular permeability (Papp) for fluorescein isothiocyanate (FITC) dextrans across CRCEC, and fluid transport across deepithelialized rabbit corneal endothelial preparations. Palmitoyl carnitine (PC), poly-L-lysine (PLL), adenosine triphosphate (ATP), and dibutyryl adenosine 3’:5’–cyclic monophosphate (dB-cAMP), were used to modulate corneal endothelial fluid transport and tight junctions (TJs). After seeding, the TER across CRCEC reached maximal values (29.2 ± 1.0 Ω·cm2) only after the 10th day. PC (0.1 mM) caused decreases both in TER (by 40%) and fluid transport (swelling rate: 18.5 ± 0.3 μm/h), and an increase in Papp. PLL resulted in increased TER rose and Papp but decreased fluid transport (swelling rate: 10 ± 0.3 μm/h). dB-cAMP (0.1 mM) and ATP (0.1 mM) decreased TER by 16% and 6%, increased Papp slightly, and stimulated fluid transport; the rates of de-swelling (in μm/h) were −5.4 ± 0.3 and −12.1 ± 0.4, respectively. PC might cause the junctions to open up unspecifically and thus increase passive leak. PLL is a known junctional charge modifier that may be adding steric hindrance to the tight junctions. The results with dB-cAMP and ATP are consistent with fluid transport via the paracellular route. PMID:17320078

  19. Gamma-Irradiated Sterile Cornea for Use in Corneal Transplants in a Rabbit Model

    PubMed Central

    Yoshida, Junko; Heflin, Thomas; Zambrano, Andrea; Pan, Qing; Meng, Huan; Wang, Jiangxia; Stark, Walter J.; Daoud, Yassine J.

    2015-01-01

    Purpose: Gamma irradiated corneas in which the donor keratocytes and endothelial cells are eliminated are effective as corneal lamellar and glaucoma patch grafts. In addition, gamma irradiation causes collagen cross inking, which stiffens collagen fibrils. This study evaluated gamma irradiated corneas for use in corneal transplantations in a rabbit model comparing graft clarity, corneal neovascularization, and edema. Methods: Penetrating keratoplasty was performed on rabbits using four types of corneal grafts: Fresh cornea with endothelium, gamma irradiated cornea, cryopreserved cornea, and fresh cornea without endothelium. Slit lamp examination was performed at postoperative week (POW) one, two, and four. Corneal clarity, edema, and vascularization were graded. Confocal microscopy and histopathological evaluation were performed. A P < 0.05 was statistically significant. Results: For all postoperative examinations, the corneal clarity and edema were statistically significantly better in eyes that received fresh cornea with endothelium compared to the other three groups (P < 0.05). At POW 1, gamma irradiated cornea scored better than the cryopreserved and fresh cornea without endothelium groups in clarity (0.9 vs. 1.5 and 2.6, respectively), and edema (0.6 vs. 0.8 and 2.0, respectively). The gamma irradiated corneas, cryopreserved corneas and the fresh corneas without endothelium, developed haze and edema after POW 2. Gamma irradiated cornea remained statistically significantly clearer than cryopreserved and fresh cornea without endothelium during the observation period (P < 0.05). Histopathology indicated an absence of keratocytes in gamma irradiated cornea. Conclusion: Gamma irradiated corneas remained clearer and thinner than the cryopreserved cornea and fresh cornea without endothelium. However, this outcome is transient. Gamma irradiated corneas are useful for lamellar and patch grafts, but cannot be used for penetrating keratoplasty. PMID:26180475

  20. Purification of Pseudomonas aeruginosa proteases and microscopic characterization of pseudomonal protease-induced rabbit corneal damage.

    PubMed Central

    Kreger, A S; Gray, L D

    1978-01-01

    Extracellular proteases of three cornea-virulent strains of Pseudomonas aeruginosa were isolated by sequential ammonium sulfate precipitation, Ultrogel AcA 54 gel filtration, and flat-bed isoelectric focusing. The purity of the preparations was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis , thin-layer isoelectric focusing in polyacrylamide gel, immunodiffusion and immunoelectrophoretic procedures, and tests for the presence of other known pseudomonal products. Light and electron microscopic examination of rabbit corneal lesions observed 4 to 6 h after the intracorneal injection of submicrogram amounts of the proteases revealed: (i) degeneration and necrosis of epithelium, endothelium, and keratocytes, (ii) infiltration, degeneration, and necrosis of polymorphonuclear leukocytes, (iii) loss of the characteristic weblike pattern, colloidal iron staining, and ruthenium red staining of the stromal proteoglycan ground substance, (iv) dispersal of strucutrally normal appearing collagen fibrils, ground substance, (iv) dispersal of structurally normal appearing collagen fibrils, and (v) accumulation of plasma proteins and fibrin in the necrotic corneas. These structural alterations are very similar to those observed previously during experimental P. aeruginosa keratitis, and this similarity supports the idea that pseudomonal proteases are responsible, at least in part, for the rapid and extensive liquefaction necrosis characteristic of pseudomonal-induced keratitis. In addition, the results support the idea that pseudomonal proteases elicit severe corneal damage by causing the loss of the corneal proteoglycan ground substance, thus resulting in dispersal of undamaged collagen fibrils, weakening of the corneal stroma, and subsequent descemetocele formation and corneal perforation by the anterior chamber pressure. Images PMID:415981

  1. Localization and Expression of Zonula Occludins-1 in the Rabbit Corneal Epithelium following Exposure to Benzalkonium Chloride

    PubMed Central

    Zhang, Zhenhao; Chen, Lelei; Xie, Hui; Dong, Nuo; Chen, Yongxiong; Liu, Zuguo

    2012-01-01

    Preservatives are a major component of the ophthalmic preparations in multi-dose bottles. The purpose of this study was to investigate the acute effect of benzalkonium chloride (BAC), a common preservative used in ophthalmic preparations, on the localization and expression of zonula occludens (ZO)-1 in the rabbit corneal epithelium in vivo. BAC at 0.005%, 0.01%, or 0.02% was topically applied to one eye each of albino rabbits at 5 min intervals for a total of 3 times. The contralateral untreated eyes served as controls. The following clinical indications were evaluated: Schirmer test, tear break-up time (BUT), fluorescein and rose Bengal staining. The structure of central cornea was examined by in vivo confocal microscopy, and the corneal barrier function was evaluated by measurement of corneal transepithelial electrical resistance and permeability to carboxy fluorescein. Whole mount corneas were analyzed by using fluorescence confocal microscopy for the presence of ZO-1, 2, occludin, claudin-1, Ki67 and cell apoptosis in the epithelium. The expression of ZO-1 in the corneal epithelium was also examined by western blot and reverse transcription-polymerase chain reaction analyses. Exposure to BAC resulted in higher rose Bengal staining scores while no significant changes in BUT, Schirmer and corneal florescein scores. It also induced corneal epithelial cell damage, dispersion of ZO-1 and ZO-2 from their normal locus at the superficial layer and disruption of epithelial barrier function. However, the amounts of ZO-1 mRNA and protein in the corneal epithelium were not affected by BAC treatment. Exposure to BAC can quickly impair the corneal epithelium without tear deficiency. BAC disrupts the tight junctions of corneal epithelium between superficial cells in the rabbit corneal epithelium in vivo. PMID:22815857

  2. Effects of acetylcysteine on rabbit conjunctival and corneal surfaces. A scanning electron microscopy study.

    PubMed

    Thermes, F; Molon-Noblot, S; Grove, J

    1991-10-01

    Conjunctival and corneal epithelial surfaces of normal rabbit eyes with their associated mucus were studied by scanning electron microscopy before and after treatment with the mucolytic agent N-acetylcysteine (AC). Four groups received topically one 50-microliters drop of either (Group A) 0.1 MAC, (Group B) 0.1 M AC every 5 min for 1 hr, (Group C) 0.1 M AC every 5 min for 2 hr, or (Group D) three drops of 20% AC over 15 min. The effects of the instillation of AC on mucus removal and cellular lesions increased in the order (A) less than (B) less than (C) less than (D). Treatment A had no effect on cornea and conjunctiva. Treatment B cleaned away mucosal debris without alteration of either conjunctival or corneal epithelium. Treatment C had a similar effect on the mucus but was associated with focal necrosis, and treatment D produced widespread necrosis, desquamation of epithelial cells, and inflammation.

  3. Histomorphometric and proteomic analysis of the acute rabbit corneal tissue response following in vitro exposure to 1540-nm laser light

    NASA Astrophysics Data System (ADS)

    Eurell, Thomas E.; Johnson, Thomas E.; Roach, William P.

    2003-06-01

    In vitro exposures of explant rabbit corneas to single pulse 1540 nm infrared laser light operating at a pulse width of 0.8 milliseconds resulted in coagulative necrosis of both the corneal epithelium and stroma. Histomorphometric data correlated with increasing tissue radiant exposures. Histologic alterations in the corneal stroma were typical of matrix remodeling within the beam path and reactive to antibodies against matrix metalloproteinase-2. A two-dimensional electrophoretic analysis, using a mini-gel format, was developed to determine if specific corneal protein changes within tissue sections could be detected. Frozen sections taken through the center of the laser lesion were evaluated for proteomic data using tissue isoelectric focusing in the first dimension and polyacrylamide gel electrophoresis in the second dimension. Histomorphometric data describing the extent of the laser lesions were compared to the isoelectric points, molecular weights and relative densities of individual corneal proteins. Increasing radiant exposures of corneal tissues were associated with characteristic histomorphometric and proteomic changes.

  4. Corneal and conjunctival/scleral penetration of p-aminoclonidine, AGN 190342, and clonidine in rabbit eyes.

    PubMed

    Chien, D S; Homsy, J J; Gluchowski, C; Tang-Liu, D D

    1990-11-01

    The ocular penetration pathways of three alpha 2-adrenergic agents (p-aminoclonidine, AGN 190342, and clonidine) were investigated in rabbits both in vitro and in vivo. The corneal permeabilities of the compounds correlated positively with their octanol/water distribution coefficients. The ocular drug absorption via corneal and conjunctival/scleral penetration routes was evaluated separately after drug perfusion in vivo. In most cases, the corneal route was the major pathway for the intraocular drug absorption. However, the conjunctival/scleral penetration pathway was the predominant pathway for the delivery of p-aminoclonidine, the least lipophilic compound among the three drugs, to the ciliary body. The drug concentration in the iris was contributed mainly by the corneal route and correlated well with drug lipophilicity.

  5. Effect of platelet-derived growth factor on rabbit corneal wound healing.

    PubMed

    Stern, M E; Waltz, K M; Beurerman, R W; Ghosn, C R; Mantras, C E; Nicolson, M; Assouline, M; Stern, K L; Wheeler, L A

    1995-01-01

    Human recombinant platelet-derived growth factor was evaluated with the use of wound healing models in New Zealand albino rabbits. The efficacy of the platelet-derived growth factor dimers, AA, AB, and BB, was determined in corneal reepithelialization and anterior keratectomy models which examined the healing response in the presence or absence of the basement membrane. All dimers increased the rate of wound healing in both models at 100 microg/ml when compared with control; however, the platelet-derived growth factor-BB isoform showed the most dramatic increase in both studies. The strength of the healing stroma after incision was evaluated by means of a tensile strength model. Histologic evaluation of the stromal wound area after 9 days of healing showed a marked increase in the number of keratocytes within the wound bed of the corneas treated with platelet-derived growth factor-BB when compared with control corneas. In addition, at 9 days, the epithelial plug was still present in the control corneas but had been extruded to the surface by the granulation tissue in the platelet-derived growth factor-BB-treated corneas. These results are indicative of a more advanced stage of healing in treated versus control wounds at 9 days after the operation. A 30% increase in corneal tensile strength versus control was noted after 21 days of healing. Finally, in an in vitro gel contraction assay, platelet-derived growth factor exhibited a dose-dependent effect on the contraction of fibroblasts for doses ranging from 0.01 to 10 ng/ml. These results indicate that platelet-derived growth factor is active in the corneal wound healing process.

  6. Effect of PO2 and metabolic inhibitors on ionic fluxes across the isolated rabbit corneal endothelium.

    PubMed

    Green, K; Cheeks, L; Armstrong, E; Berdecia, R; Kramer, K; Hull, D S

    1990-01-01

    Bicarbonate and sodium fluxes were measured across the isolated rabbit corneal endothelium under the influence of several inhibitors. Depression of PO2 in the bathing medium decreased net sodium movement but increased bicarbonate movement. Furosemide did not alter bicarbonate fluxes at either 10(-4) or 10(-5) M, but increased passive sodium flux leading to a decrease in net flux. Thiocyanate, at 5 x 10(-3) or 5 x 10(-2) M, decreased active bicarbonate flux and hence net flux, but had no effect on sodium fluxes. Dinitrophenol increased only the passive bicarbonate flux while decreasing both active and passive sodium fluxes, albeit unequally, leading to a decreased net flux. Ethacrynic acid affected only passive bicarbonate flux, while decreasing net sodium flux. The stilbene derivatives, SITS and DIDS caused opposite effects on both sodium and bicarbonate fluxes. SITS decreased net bicarbonate flux by decreasing active and increasing passive flux, yet increased net sodium flux. DIDS, however, increased net bicarbonate flux but decreased net sodium flux. The results may be explained by current models for endothelial ion transport that include a Na+/H+ antiport and a HCO3-/Na+ symport system in parallel with an independent pathway for HCO3- exit from the endothelial cells. When compared with prior corneal swelling data using these same inhibitors, the maintenance of corneal thickness appears to be dependent on the variation of ion fluxes from normal values, and the dissociation of the two active ion fluxes. In addition, there appears to be a significant ability of ion transport systems to compensate for disturbances to other ion exchange or transport mechanisms. PMID:2275927

  7. Corneal haze induced by excimer laser photoablation in rabbits is reduced by preserved human amniotic membrane graft

    NASA Astrophysics Data System (ADS)

    Wang, Ming X.; Gray, Trevor; Prabhasawat, Pinnita; Ma, Xiong; Culbertson, William; Forster, Richard; Hanna, Khalil; Tseng, Scheffer C. G.

    1998-06-01

    We conducted a study to determine if preserved human amniotic membrane can reduce corneal haze induced by excimer laser photoablation. Excimer photoablation was performed bilaterally on 40 New Zealand white rabbits with a 6 mm ablation zone and 120 micrometer depth (PTK) using the VISX Star. One eye was randomly covered with a preserved human amniotic membrane and secured using four interrupted 10 - 0 nylon sutures; the other eye served as control. The amniotic membranes were removed at one week, and the corneal haze was graded with a slit-lamp biomicroscopy by three masked corneal specialists (WC, KH and RF) biweekly for the ensuing 12 weeks. Histology and in situ TUNEL staining (for fragmented DNA as an index for apoptosis) was performed at days 1, 3 and 7 and at 12 weeks. One week after excimer photoablation, the amniotic membrane-covered corneas showed more anterior stromal edema, which resolved at the second week. A consistent grading of organized reticular corneal haze was noted among the three masked observers. Such corneal haze peaked at the seventh week in both groups. The amniotic membrane-covered group showed statistically significant less corneal haze (0.50 plus or minus 0.15) than the control groups (1.25 plus or minus 0.35) (p less than 0.001). The amniotic membrane-covered corneas had less inflammatory response at days 1 and 3, showing nearly nil DNA fragmentation on keratocytes on the ablated anterior stromal and less stromal fibroblast activation. There is less altered epithelial cell morphology and less epithelial hyperplasia at 1 week in these amniotic membrane-treated eyes. We concluded from this study that amniotic membrane matrix is effective in reducing corneal haze induced by excimer photoablation in rabbits and may have clinical applications.

  8. Resolvin E1 analog RX-10045 0.1% reduces corneal stromal haze in rabbits when applied topically after PRK

    PubMed Central

    Torricelli, Andre A. M.; Santhanam, Abirami; Agrawal, Vandana

    2014-01-01

    Purpose To perform a masked study to determine whether resolvin E1 (RvE1), a lipid-derived immunomodulator, could regulate the development of corneal haze and opacity-related myofibroblasts after opacity-generating high correction photorefractive keratectomy (PRK) in rabbits. Methods Three groups of eight rabbits each were included in the study. Nine diopter (D) PRK for myopia was performed in each test cornea, and the eyes were treated with 30 µl of topical solution every 4 h (six times a day) for 5 days starting immediately after PRK. Group 1 was treated with 0.1% RX-10045, a prodrug of an RvE1 analog; group 2 was treated with 0.01% RX-10045; and group 3 was treated with vehicle control solution. At 1 month after PRK, haze was graded at the slit-lamp by a masked observer. Immunohistochemistry for α-smooth muscle actin (SMA) was performed on the central cornea of each test eye to determine the anterior stromal myofibroblast density. Results Corneal opacity was significantly lower in the 0.1% RX-10045 group, but not the 0.01% RX-10045 group, compared to the vehicle control group (p=0.029), at 1 month after −9.0D PRK. At 1 month after −9.0D PRK, SMA+ myofibroblast densities in the anterior stroma were not statistically significantly different among the three groups, although a trend toward lower myofibroblast generation was noted in the 0.1% RX-10045 group. Conclusions Topical 0.1% RX-10045, a prodrug of an RvE1 analog, reduces corneal opacity after haze-generating PRK in rabbits. Further studies are needed to determine the precise points at which RvE1 decreases corneal opacity after injury. PMID:25558174

  9. Effect of non-steroidal anti-inflammatory drugs (NSAID) on the rabbit corneal epithelium studied by scanning electron microscopy.

    PubMed

    Stroobants, A; Fabre, K; Maudgal, P C

    2000-01-01

    We investigated the effect of 6 commercially available non-steroidal anti-inflammatory drug (NSAID) eye drops on the normal corneal epithelium of rabbits. Each drug was instilled into both eyes of 2 rabbits, 5 times a day, for 5 consecutive days. Two additional corneas of one rabbit, without any treatment, served as control. After treatment, the corneas were excised and processed for scanning electron microscopic evaluation. The epithelial changes induced by the drugs were graded by an empirical score system. All test compounds caused alterations in the cell membranes and surface microvilli, or even exfoliation and necrosis of surface cells. The extent of cell damage appeared to be related to the active ingredient in the eye drops, the pH of the solution, and the constituents of the vehicle, especially the type of preservative used.

  10. Theoretical basis for an anomalous temperature coefficient in swelling pressure of rabbit corneal stroma.

    PubMed Central

    Kwok, L S; Klyce, S D

    1990-01-01

    In the rabbit corneal stroma, the swelling pressure, P, has been reported to have an anomalous (negative) temperature coefficient, alpha P, contradicting traditional Donnan swelling theory. A parallel-plate, diffuse double layer Gouy-Chapman model was used to resolve this discrepancy. The present model incorporates the possibility that surface charge, sigma, is temperature dependent. It is shown that negative, zero, or positive coefficients of swelling pressure change with temperature are not mutually exclusive conditions, but can be attributed to the same underlying mechanism. For likely values of alpha P(range -7 x 10(-3) K-1 to +3.2 x 10(-3)K-1), the effective stromal charge has a negative temperature dependency, or dln sigma/dT less than 0. The present formalism is robust against variation in assumed alpha P, and is able to simultaneously satisfy the known values of swelling pressure, its thermal dependency, and stromal charge. These results implicate significant coulombic forces behind P. Predicted stromal surface charge is approximately 0.01 Cm-2. The predictions were confirmed with macrocontinuum Donnan swelling theory, suggesting that Donnan osmotic swelling is the principal macroscopic component of P. PMID:2306510

  11. Effect of sertraline on Ca²⁺ fluxes in rabbit corneal epithelial cells.

    PubMed

    Yeh, Jeng-Hsien; Sun, Te-Kung; Chou, Chiang-Ting; Chen, Wei-Chuan; Lee, Jenn-Kuen; Yeh, Hsiao-Chun; Liang, Wei-Zhe; Kuo, Chun-Chi; Shieh, Pochuen; Kuo, Daih-Huang; Jan, Chung-Ren

    2015-04-30

    The effect of sertraline, a selective serotonin reuptake inhibitor (SSRI), on cytosolic free Ca²⁺ concentrations ([Ca²⁺](i)) in a rabbit corneal epithelial cell line (SIRC) is unclear. This study explored whether sertraline changed basal [Ca²⁺](i) levels in suspended SIRC cells by using fura-2 as a Ca²⁺-sensitive fluorescent dye. Sertraline at concentrations between 10-100 μM increased [Ca²⁺](i) in a concentration-dependent manner. The Ca²⁺ signal was reduced by 23% by removing extracellular Ca²⁺. Sertraline induced Mn²⁺ influx, leading to quench of fura-2 fluorescence, suggesting Ca²⁺ influx. This Ca²⁺ influx was inhibited by phospholipase A₂ inhibitor aristolochic acid, but not by store-operated Ca²⁺ channel blockers and protein kinase C/A modulators. In Ca²⁺-free medium, pretreatment with the endoplasmic reticulum Ca²⁺ pump inhibitor thapsigargin, cyclopiazonic acid or 2,5-di-tert-butylhydroquinone greatly inhibited sertraline-induced Ca²⁺ release. Inhibition of phospholipase C with U73122 abolished sertraline-induced [Ca²⁺](i) rise. At concentrations of 5-50 μM, sertraline killed cells in a concentration-dependent manner. The cytotoxic effect of 25 μM sertraline was not reversed by prechelating cytosolic Ca²⁺ with BAPTA/AM. Collectively, in SIRC cells, sertraline induced [Ca²⁺](i) rises by causing phospholipase C-dependent Ca²⁺ release from the endoplasmic reticulum and Ca²⁺ influx via phospholipase A₂-sensitive Ca²⁺ channels. Sertraline-caused cytotoxicity was mediated by Ca²⁺-independent pathways. PMID:25858469

  12. Ex vivo cultivation of corneal limbal epithelial cells in a thermoreversible polymer (Mebiol Gel) and their transplantation in rabbits: an animal model.

    PubMed

    Sitalakshmi, G; Sudha, B; Madhavan, H N; Vinay, S; Krishnakumar, S; Mori, Yuichi; Yoshioka, Hiroshi; Abraham, Samuel

    2009-02-01

    We evaluated the efficacy of autologous expanded corneal epithelial cell transplants derived from harvested limbal biopsy cultured on a thermoreversible polymer (Mebiol Gel) for the management of unilateral limbal stem cell deficiency (LSCD). Corneal limbal biopsies from 12 rabbits were cultured on a thermoreversible polymer Mebiol Gel at 37 degrees C. Cells were harvested from the dishes after 3 weeks by reducing temperature to 4 degrees C. Autologous transplantation was undertaken to reconstruct the experimentally induced limbal stem cell deficiency in the rabbit eyes. The corneas of both eyes of all rabbits were harvested later for molecular studies. Reparative surgery was a total success in seven rabbits, partial success in two, and failure in three eyes. Histology of the seven successful eyes showed the successful growth of the corneal epithelium. Immunohistochemistry and reverse transcriptase polymerase chain reaction showed the cornea phenotype and stem cell-associated markers in the limbus of the seven successful eyes, indicating the homing of these cells into limbus. In the three failure cases and in the two control rabbit eyes, used in the study, histology showed presence of goblet cells and vascularization in the stroma with abortive formation of corneal epithelium. Our results suggest that transplantation of autologous limbal epithelial cells grown in thermoreversible polymer Mebiol Gel may restore a nearly normal ocular epithelial surface in eyes with unilateral LSCD.

  13. Mesenchymal–epithelial cell interactions and proteoglycan matrix composition in the presumptive stem cell niche of the rabbit corneal limbus

    PubMed Central

    Yamada, Keiko; Young, Robert D.; Lewis, Philip N.; Shinomiya, Katsuhiko; Meek, Keith M.; Kinoshita, Shigeru; Caterson, Bruce

    2015-01-01

    Purpose To investigate whether mesenchymal–epithelial cell interactions, similar to those described in the limbal stem cell niche in transplant-expired human eye bank corneas, exist in freshly enucleated rabbit eyes and to identify matrix molecules in the anterior limbal stroma that might have the potential to help maintain the stem cell niche. Methods Fresh limbal corneal tissue from adult Japanese white rabbits was obtained and examined in semithin resin sections with light microscopy, in ultrathin sections with transmission electron microscopy, and in three-dimensional (3D) reconstructions from data sets of up to 1,000 serial images from serial block face scanning electron microscopy. Immunofluorescence microscopy with five monoclonal antibodies was used to detect specific sulfation motifs on chondroitin sulfate glycosaminoglycans, previously identified in association with progenitor cells and their matrix in cartilage tissue. Results In the rabbit limbal cornea, while no palisades of Vogt were present, the basal epithelial cells stained differentially with Toluidine blue, and extended lobed protrusions proximally into the stoma, which were associated with interruptions of the basal lamina. Elongate processes of the mesenchymal cells in the superficial vascularized stroma formed direct contact with the basal lamina and basal epithelial cells. From a panel of antibodies that recognize native, sulfated chondroitin sulfate structures, one (6-C-3) gave a positive signal restricted to the region of the mesenchymal–epithelial cell associations. Conclusions This study showed interactions between basal epithelial cells and subjacent mesenchymal cells in the rabbit corneal limbus, similar to those that have been observed in the human stem cell niche. A native sulfation epitope in chondroitin sulfate glycosaminoglycans exhibits a distribution specific to the connective tissue matrix of this putative stem/progenitor cell niche. PMID:26788025

  14. Role of cations, anions and carbonic anhydrase in fluid transport across rabbit corneal endothelium

    PubMed Central

    Fischbarg, J.; Lim, J. J.

    1974-01-01

    1. A small electrical potential difference (541 ± 48 μV, aqueous side negative) across rabbit corneal endothelium has been recently found. Its dependence on ambient [Na+], [K+], [H+] and metabolic and specific inhibitors was examined. 2. Changes in concentration of the ions above either were known or were presently shown to affect the rate of fluid transport across this preparation (normal value: 5·2 ± 0·4 μl./hr.cm2). Ionic concentration changes were also found here to influence potential difference in the same way as fluid transport. In the cases tested, the effects on both fluid transport and potential difference were reversible. 3. Fluid transport and potential difference were both decreased or abolished in absence of Na+, K+ and HCO3-, and when [H+] was decreased. Fluid transport and potential difference were saturable functions of [HCO3-] and half-saturation occurred in both cases at about 13 mM-HCO3-. The potential difference was also a saturable function of [Na+] (half-saturation around 15 mM). There was a pH optimum for potential difference in the range 7·4-7·6. Lower pH values decreases the potential difference and the fluid transport, and a small (-100 μV) reversed potential was observed in the range of 5·3-5·5. 4. Total replacement of Cl- by HCO3- or SO42- produced no impairment on either fluid transport or potential difference. 5. Carbonic anhydrase inhibitors (ethoxyzolamide 10-5 or 10-4 M and benzolamide 10-3 M) produced a 40-60% decrease in the rate of fluid pumping. In contrast, ethoxyzolamide 10-4 M or acetazolamide 10-3 M did not produce any change in the potential difference. NaCN and Na iodoacetate (both 2 mM) eliminated the potential difference in 1-1·5 hr while in controls it lasted for 5-6 hr. 6. Ouabain (10-5 M) abolished the potential difference in less than 10 sec when added to the aqueous side, which suggests the existence of an electrogenic pump. This extremely fast time transient can be accounted for by the accessibility

  15. Morphometric comparison of the acute rabbit corneal response to 1540-nm laser light following in-vitro exposure to millisecond or nanosecond pulse widths

    NASA Astrophysics Data System (ADS)

    Eurell, Thomas E.; Johnson, Thomas E.; Roach, William P.

    2002-06-01

    Significant damage to rabbit corneal tissue was produced by a single pulse, in vitro exposure of 1540 m infrared laser light operating in either millisecond or nanosecond pulse widths. Millisecond pulse widths of infrared laser light produced a marked coagulative necrosis of both the corneal epithelium and stroma. We also noted histologic alterations in the stromal matrix within the beam path that we interpreted as matrix remodeling. To test this interpretation, we used an indirect immunohistochemical procedure to detect Matrix Metalloproteinase-2 (MMP-2) activity. Immunohistochemistry revealed that the MMP-2 reaction was mostly limited to the margins of the beam path. In addition, the MMP-2 reaction was less intense than expected given the significant tissue changes observed in the histologic sections. Exposure of rabbit corneal tissue to the nanosecond pulse widths produced a less severe coagulative necrosis of the tissue when compared to the millisecond exposures. However, a markedly stronger immunohistochemical pattern than would have been predicted from the histologic sections was observed, with approximately half of the beam path filled with MMP-2 reaction product. These data suggest an association between infrared laser pulse width and the degree of extracellular matrix remodeling in rabbit corneal tissue.

  16. A histological study of rabbit corneas after transepithelial corneal crosslinking using partial epithelial photoablation or ethanol treatment

    PubMed Central

    Ozmen, Mehmet Cuneyt; Hondur, Ahmet; Yilmaz, Guldal; Bilgihan, Kamil; Hasanreisoglu, Berati

    2014-01-01

    AIM To evaluate the histological changes after transepithelial corneal crosslinking (CXL) using partial thickness excimer laser ablation or epithelial ethanol application in an experimental rabbit study. METHODS Right eyes of twenty-four rabbits were studied. Four eyes received total epithelial debridement (group I). Four eyes received partial thickness epithelial ablation with excimer laser (group II). Twelve eyes were treated with different durations (30s and 60s) and concentrations (18% to 48%) of ethanol (group III). Riboflavin was applied for 30min intervals along with topical proparacaine drops with benzalkonium chloride, and 370 nm irradiation was performed for 30min, while riboflavin was instilled every 3min. Four eyes (group IV) received 48% ethanol for 30s without riboflavin and irradiation. Eyes were collected after 24h and examined histologically. RESULTS All eyes in group I showed keratocyte loss in the superficial 300 µ of corneal storma. In group II, 1-4 layers of epithelium were preserved and no keratocyte loss occurred. In group III, CXL after treatment with ethanol up to 24% concentration and up to 60s revealed no keratocyte loss. CXL after treatment with 48% and higher ethanol concentrations yielded keratocyte loss in the superficial 200 µ to 300 µ of cornea. CONCLUSION Incomplete excimer laser ablation of the epithelium or treatment with ethanol up to 24% concentration and up to 60s duration yielded no stromal keratocyte loss. To get the same histological appearance seen in epithelial debridement group, partial thickness excimer laser epithelial ablation or ethanol application is not adequate for transepithelial CXL. PMID:25540746

  17. Corneal recovery in a rabbit limbal stem cell deficiency model by autologous grafts of tertiary outgrowths from cultivated limbal biopsy explants

    PubMed Central

    Durak, Ismet; Gürdal, Mehmet; Baysal, Kemal; Ates, Halil; Ozbek, Zeynep; Wang, Zheng; Wu, Albert; Wolosin, J. Mario

    2016-01-01

    Purpose To determine the corneal regenerative capacity of sequentially generated primary, secondary, and tertiary limbal explant outgrowths in a limbal stem cell deficiency (LSCD) surgical model. Methods Two-millimeter-long limbal shallow biopsies were surgically excised from the upper quadrant of the right eye of rabbits and set on preserved amniotic membrane for explant culture. After the generation of primary outgrowth, the biopsies were sequentially transferred to new amniotic membrane to generate secondary and then tertiary outgrowths. Eighteen rabbits were subjected to a 360° limbal peritomy extending into the scleral zone and combined with superficial keratectomy of the corneal periphery and thorough mechanical debridement of the central cornea in their left eye. Right eye outgrowths, six of each generation, were engrafted on the ocular surface. Clinical outcomes (neovascularization, corneal clarity, and corneal fluorescein staining) were graded after 6 months. Post-mortem corneas were compared with histology, immunochemistry for p63 and Krt3, ABCG2-dependent dye exclusion, and capacity for outgrowths in explant culture. Results Immunohistology and western blot of the outgrowths for p63 and Krt3 indicated no differences in expression between the primary and tertiary outgrowths for these two markers of growth and differentiation. Clinically, all rabbits treated with amniotic membrane alone developed severe LSCD. Most rabbits grafted with cell outgrowths from all three outgrowth generations achieved stable (>6 months) recovery of the ocular surface. There were partial failures of grafts performed with two secondary and tertiary outgrowths. However, Kruskal–Wallis statistical analysis of the clinical scores yielded no significant difference between the three groups (p=0.524). Histology showed full anatomic recovery of grafts made with primary and tertiary outgrowths. Krt3 and p63 expression throughout the whole limbal corneal epithelium with primary or

  18. Transfer of mesenchymal stem cells and cyclosporine A on alkali-injured rabbit cornea using nanofiber scaffolds strongly reduces corneal neovascularization and scar formation.

    PubMed

    Cejka, Cestmir; Cejkova, Jitka; Trosan, Peter; Zajicova, Alena; Sykova, Eva; Holan, Vladimir

    2016-09-01

    The aim of this study was to examine whether nanofiber scaffolds seeded with rabbit bone marrow mesenchymal stem cells (MSCs nanofibers) transferred onto the damaged corneal surface and covered with cyclosporine A (CsA)-loaded nanofiber scaffolds (CsA nanofibers) enable healing of the rabbit cornea injured with 1N NaOH. The healing of damaged corneas was examined morphologically, immunohistochemically and biochemically on day 24 after the injury. Compared to untreated injured corneas, where corneal ulceration or large corneal thinning or even perforation were developed, injured corneas treated with drug free nanofibers healed without profound disturbances in a majority of cases, although with fibrosis and scar formation. In injured corneas treated with CsA nanofibers or MSCs nanofibers, the development of scar formation was reduced. Best healing results were obtained with a combination of MSCs and CsA nanofibers (MSCs-CsA nanofibers). Corneas healed with highly restored transparency. Neovascularization highly expressed in untreated injured corneas and reduced in corneas treated with CsA nanofibers or MSCs nanofibers, was suppressed in corneas treated with MSCs-CsA nanofibers. The levels of matrix metalloproteinase 9, inducible nitric oxide synthase, interleukin 6, α-smooth muscle actin, tumor growth factor β and vascular endothelial growth factor were significantly decreased in these corneas as compared to untreated corneas, where the levels of the above mentioned markers were high. In conclusion, MSCs-CsA nanofibers were effective in the treatment of severe alkali-induced corneal injury. PMID:26797822

  19. Effect of Reactive Oxygen Species Generation in Rabbit Corneal Epithelial Cells on Inflammatory and Apoptotic Signaling Pathways in the Presence of High Osmotic Pressure

    PubMed Central

    Li, Bing; Wang, Weifang; Lin, Anjuan; Sheng, Minjie

    2013-01-01

    It is generally accepted that high osmotic pressure (HOP) of lacrimal fluid is the core mechanism causing ocular inflammation and injury. However, the association between HOP and the regulation of cell inflammatory response and apoptotic pathways remains unclear. In the present study, we used HOP to interfere with in vitro cultured rabbit corneal epithelial cells, and found that HOP increased the generation of reactive oxygen species (ROS) in rabbit corneal epithelial cells, and increased ROS in turn induced the activation of JNK inflammatory signaling pathway, which further promoted the expression of pro-inflammatory factor NF-κβ and induced the generation of inflammatory factor IL-1β and TNF-α. In addition, HOP-induced ROS in rabbit corneal epithelial cells regulated the CD95/CD95L-mediated cell apoptotic signaling pathway by activating JNK inflammatory signaling pathway. These findings may serve as new theoretical basis and a new way of thinking about the treatment of ocular diseases, especially dry eye. PMID:23977369

  20. Molecular Evidence and Functional Expression of a Novel Drug Efflux pump (ABCC2) in Human Corneal Epithelium and Rabbit Cornea and its role in Ocular drug efflux

    PubMed Central

    Karla, Pradeep K.; Pal, Dhananjay; Quinn, Tim; Mitra, Ashim K.

    2007-01-01

    Cornea is considered as a major barrier for ocular drug delivery. Low ocular bioavailability of drugs has been attributed primarily to low permeability across corneal epithelium thus leading to sub-therapeutic concentrations of drug in the eye and treatment failure. The role of drug efflux proteins, particularly the Pglycoprotein in ocular drug bioavailability has been reported. The objective of this research was to determine whether human corneal epithelium expresses multi drug resistance associated proteins contributing to drug efflux by employing both cultured corneal cells and freshly excised rabbit cornea. SV40 HCEC and rPCEC were selected for in-vitro testing. SV40-HCEC and freshly excised rabbit corneas were utilized for transport studies. [3H]-cyclosporine-A and [14C]-erythromycin which are known substrates for ABCC2 and MK-571, a specific inhibitor for MRP were applied in this study. RT-PCR indicated a unique and distinct band at ∼272 bp corresponding to ABCC2 in HCEC, SV40-HCEC, rabbit cornea, rPCEC and MDCKII-MRP2 cells. Also RT-PCR indicated a unique band ∼181 bp for HCEC and SV40-HCEC. Immunoprecipitation followed by Western Blot analysis revealed a specific band at ∼190-kDa in membrane fraction of SV40-HCEC, MDCKII-MRP2 and no band with isotype control. Uptake of [3H]-cyclosporine-A and [14C]-erythromycin in the presence of MK-571 was significantly enhanced than control in both SV40 HCEC and rPCEC. Similarly a significant elevation in (A→B) permeability of [3H]-cyclosporine-A and [14C]-erythromycin was observed in the presence of MK-571 in SV40-HCEC. A→B transport of [3H]-cyclosporine-A was elevated in the presence of MK-571 in freshly excised rabbit cornea indicating potential role of this efflux transporter and high clinical significance of this finding. PMID:17156953

  1. Conjunctival and corneal reactions in rabbits following short- and repeated exposure to preservative-free tafluprost, commercially available latanoprost and 0.02% benzalkonium chloride

    PubMed Central

    Liang, H; Baudouin, C; Pauly, A; Brignole-Baudouin, F

    2008-01-01

    Aim: To compare the conjunctival and corneal reactions of commercially available solution of latanoprost (Xalatan) and preservative-free (PF) tafluprost in rabbits. Methods: The rabbits received 50 μl of phosphate-buffered saline (PBS), PF-tafluprost 0.0015%, latanoprost 0.005% or benzalkonium chloride (BAK) 0.02%; all solutions were applied at 5 min intervals for a total of 15 times. The ocular surface toxicity was investigated using slit-lamp biomicroscopy examination, flow cytometry (FCM) and on imprints for CD45 and tumour necrosis factor-receptor 1 (TNFR1) conjunctival impression cytology (CIC) and corneal in vivo confocal microscopy (IVCM). Standard immunohistology also assessed inflammatory/apoptotic cells. Results: Clinical observation and IVCM images showed the highest ocular surface toxicity with latanoprost and BAK, while PF-tafluprost and PBS eyes presented almost normal corneoconjunctival aspects. FCM showed a higher expression of CD45+ and TNFR1+ in latanoprost- or BAK-instilled groups, compared with PF-tafluprost and PBS groups. Latanoprost induced fewer positive cells for inflammatory marker expressions in CIC specimens compared with BAK-alone, both of which were higher than with PF-tafluprost or PBS. Immunohistology showed the same tendency of toxic ranking. Conclusion: The authors confirm that rabbit corneoconjunctival surfaces presented a better tolerance when treated with PF-tafluprost compared with commercially available latanoprost or BAK solution. PMID:18723745

  2. Analysis of gene regulation in rabbit corneal epithelial cells induced by ultraviolet radiation.

    PubMed

    Stevens, Jacqueline J; Rogers, Christian; Howard, Carolyn B; Moore, Caronda; Chan, Lai-Man

    2005-04-01

    Ultraviolet (UV)-induced cataracts are becoming a major environmental health concern because of the possible decrease in the stratospheric ozone layer. Experiments were designed to isolate gene(s) affected by UV irradiation in rabbit cornea tissues using fluorescent differential display-reverse transcription-polymerase chain reaction (FDDRT-PCR). The epithelial cells were grown in standard medium for 2 or 4 hours post treatment. Cornea epithelial cells were irradiated with UVB for 20 minutes. RNA was extracted and amplified by reverse transcriptase-polymerase chain reaction using poly A+ specific anchoring primers and random arbitrary primers. Polyacrylamide gel electrophoresis revealed several differentially expressed genes in untreated versus UV irradiated cells. Complimentary DNA (cDNA) fragments resulting from fluorescent differentially expressed mRNAs were eluted from the gel and re-amplified. The re-amplified PCR products were cloned directly into the PCR-TRAP cloning system. These data showed that FDDRT-PCR is a useful technique to elucidate UV-regulated gene expressions. Future experiments will involve sequence analysis of cloned inserts. The identification of these genes through sequence analysis could lead to a better understanding of cataract formation via DNA damage and mechanisms of prevention.

  3. The graft of autologous adipose-derived stem cells in the corneal stromal after mechanic damage.

    PubMed

    Ma, Xiao-Yun; Bao, Hui-Jing; Cui, Lei; Zou, Jun

    2013-01-01

    This study was designed to explore the feasibility of using autologous rabbit adipose derived stem cells (rASCs) as seed cells and polylactic-co-glycolic acid (PLGA) as a scaffold for repairing corneal stromal defects. rASCs isolated from rabbit nape adipose tissue were expanded and seeded on a PLGA scaffold to fabricate cell-scaffold constructs. After 1 week of cultivation in vitro, the cell-scaffold complexes were transplanted into corneal stromal defects in rabbits. In vivo, the autologous rASCs-PLGA constructed corneal stroma gradually became transparent without corneal neovascularization after 12 weeks. Hematoxylin and eosin staining and transmission electron microscopy examination revealed that their histological structure and collagen fibril distribution at 24 weeks after implantation were similar to native counterparts. As to the defect treated with PLGA alone, the stromal defects remained. And scar tissue was observed in the untreated-group. The implanted autologous ASCs survived up to 24 weeks post-transplantation and differentiated into functional keratocytes, as assessed by the expression of aldehyde-3-dehydrogenase1A1 (ALDH1A1) and cornea-specific proteoglycan keratocan. Our results revealed that autologous rASCs could be one of the cell sources for corneal stromal restoration in diseased corneas or for tissue engineering of a corneal equivalent.

  4. Ultraviolet-visible light spectral transmittance of rabbit corneas after riboflavin/ultraviolet-A (365 nm) corneal collagen cross-linking

    PubMed Central

    Hwang, Ho Sik

    2013-01-01

    Purpose To determine the effect of riboflavin/ultraviolet-A (365 nm) corneal collagen cross-linking on the transmission of the ultraviolet-visible (UV-VIS) light spectrum through the cornea. Methods Twelve New Zealand white male rabbits were used in this research. Cross-linking was performed unilaterally on the right eyes of the animals while only the epithelium was removed on the left eyes as the control. Seven weeks after cross-linking, the animals were euthanized, and the enucleated eyes were processed for transmission spectroscopy. To confirm that the cross-linking procedures was done successfully on the right corneas, the tensile force-extension relationship was measured using six corneas from three of the rabbits after the transmission spectrum was determined. Results Seven weeks after cross-linking, ten of the 12 rabbits had clear corneas in the cross-linked and control eyes. The two rabbits with neovascularization and granular opacities in the right corneas were not included in subsequent measurements. In the cross-linked corneas, transmittance was 87.57% at 650 nm, and decreased continuously as the wavelength shortened. From 315 nm, the transmittance rapidly decreased and was 35.52% at 300 nm. In the control corneas, transmittance was 95.95% at 650 nm and decreased continuously as the wavelength shortened. Below 315 nm, the transmittance rapidly decreased, to 40.29% at 300 nm. The transmittance of the cross-linking corneas was 10%–20% lower than that of the control corneas. The difference was 8.38% at 650 nm and increased as the wavelength shortened, reaching a maximum of 20.59% at 320 nm, and decreased rapidly to 4.77% at 300 nm. The tensile force-extension relationship showed that a greater force was necessary to extend the cross-linking corneas over 500 µm than that of the control corneas. Conclusions The transmittance of the cross-linked corneas was 10%–20% lower than that of the control corneas. The difference increased as the wavelength decrease

  5. Augmented anti-angiogenesis activity of polysulfated heparin-endostatin and polyethylene glycol-endostatin in alkali burn-induced corneal ulcers in rabbits

    PubMed Central

    LI, ZHAO-NA; YUAN, ZHONG-FANG; MU, GUO-YING; HU, MING; CAO, LI-JUN; ZHANG, YA-LI; GE, MING-XU

    2015-01-01

    Endostatin (ES) is an endogenous angiogenesis inhibitor that has the ability to inhibit tumor growth and metastasis. However, its clinical application is limited by a number of disadvantages, such as poor stability, short half-life and the requirement of high doses to maintain its efficacy. The chemical modification on ES may offer a solution to these disadvantages. The aim of the present study was to evaluate the effects of ES, polysulfated heparin-endostatin (PSH-ES) and polyethylene glycol-endostatin (PEG-ES) on the endothelial cell proliferation and angiogenesis associated with corneal neovascularization (CNV) and to determine their mechanisms of action. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) was used to study the effects of ES and its derivatives on endothelial cell proliferation in vitro, and rabbits were used to evaluate the effects of ES and its derivatives on CNV in vivo. In the evaluation of CNV, the expression of vascular endothelial growth factor in the cornea was measured via immunohistochemistry and microvessels were counted. ES and its derivatives significantly inhibited endothelial cell proliferation in vitro (P<0.05) and suppressed CNV in vivo. Among the compounds examined, ES most effectively inhibited endothelial cell proliferation in vitro (P<0.05); however, PSH-ES and PEG-ES most effectively inhibited CNV in vivo (P<0.05). These results indicate that PSH-ES and PEG-ES are candidate anti-angiogenesis drugs. PMID:26622410

  6. A corneal scarring model.

    PubMed

    Gibson, Daniel J; Schultz, Gregory S

    2013-01-01

    Corneal opacification (i.e., haze) following a non-denaturing acute injury to the cornea is a process which takes about 5 days to manifest itself, indicating that it is the consequence of cellular and molecular biological processes. In order to obtain a better understanding of the haze development process, and to test candidate anti-haze therapies, we use a corneal scarring model whereby we create an excimer laser wound in the center of rabbit corneas. The primary data generated by this model are (1) changes in corneal thickness with time; (2) wound closure rates, or re-epithelialization; (3) changes in the location and density of corneal sub-epithelial haze; and (4) molecular and histological changes leading up to, during, and following the formation of haze. While the use of excimer lasers to generate consistent wounds in rabbit corneas is not a novel protocol for the study of corneal haze, the photographic technique presented here for the more objective recording and quantification of corneal haze is. At present, a qualitative, semiquantitative, grading system is employed whereby the amount of iris detail discernible through the scar is assigned a value between 0 and 4. Such a system makes direct comparisons amongst reported anti-haze trials nearly impossible. Furthermore, the additional "geographic" detail provided by the image provides a new layer of information about the formation of haze and the ability to troubleshoot dosing regimens. Altogether, with the information present herein, we believe that the study of corneal haze formation and the ability to compare and contrast candidate therapies are both greatly improved.

  7. Connective tissue growth factor differentially binds to members of the cystine knot superfamily and potentiates platelet-derived growth factor-B signaling in rabbit corneal fibroblast cells

    PubMed Central

    Pi, Liya; Chung, Pei-Yu; Sriram, Sriniwas; Rahman, Masmudur M; Song, Wen-Yuan; Scott, Edward W; Petersen, Bryon E; Schultz, Gregory S

    2015-01-01

    AIM: To study the binding of connective tissue growth factor (CTGF) to cystine knot-containing ligands and how this impacts platelet-derived growth factor (PDGF)-B signaling. METHODS: The binding strengths of CTGF to cystine knot-containing growth factors including vascular endothelial growth factor (VEGF)-A, PDGF-B, bone morphogenetic protein (BMP)-4, and transforming growth factor (TGF)-β1 were compared using the LexA-based yeast two-hybrid system. EYG48 reporter strain that carried a wild-type LEU2 gene under the control of LexA operators and a lacZ reporter plasmid (p80p-lacZ) containing eight high affinity LexA binding sites were used in the yeast two-hybrid analysis. Interactions between CTGF and the tested growth factors were evaluated based on growth of transformed yeast cells on selective media and colorimetric detection in a liquid β-galactosidase activity assay. Dissociation constants of CTGF to VEGF-A isoform 165 or PDGF-BB homo-dimer were measured in surface plasma resonance (SPR) analysis. CTGF regulation in PDGF-B presentation to the PDGF receptor β (PDGFRβ) was also quantitatively assessed by the SPR analysis. Combinational effects of CTGF protein and PDGF-BB on activation of PDGFRβ and downstream signaling molecules ERK1/2 and AKT were assessed in rabbit corneal fibroblast cells by Western analysis. RESULTS: In the LexA-based yeast two-hybrid system, cystine knot motifs of tested growth factors were fused to the activation domain of the transcriptional factor GAL4 while CTGF was fused to the DNA binding domain of the bacterial repressor protein LexA. Yeast co-transformants containing corresponding fusion proteins for CTGF and all four tested cystine knot motifs survived on selective medium containing galactose and raffinose but lacking histidine, tryptophan, and uracil. In liquid β-galactosidase assays, CTGF expressing cells that were co-transformed with the cystine knot of VEGF-A had the highest activity, at 29.88 ± 0.91 fold above controls

  8. Corneal dystrophies

    PubMed Central

    Klintworth, Gordon K

    2009-01-01

    The term corneal dystrophy embraces a heterogenous group of bilateral genetically determined non-inflammatory corneal diseases that are restricted to the cornea. The designation is imprecise but remains in vogue because of its clinical value. Clinically, the corneal dystrophies can be divided into three groups based on the sole or predominant anatomical location of the abnormalities. Some affect primarily the corneal epithelium and its basement membrane or Bowman layer and the superficial corneal stroma (anterior corneal dystrophies), the corneal stroma (stromal corneal dystrophies), or Descemet membrane and the corneal endothelium (posterior corneal dystrophies). Most corneal dystrophies have no systemic manifestations and present with variable shaped corneal opacities in a clear or cloudy cornea and they affect visual acuity to different degrees. Corneal dystrophies may have a simple autosomal dominant, autosomal recessive or X-linked recessive Mendelian mode of inheritance. Different corneal dystrophies are caused by mutations in the CHST6, KRT3, KRT12, PIP5K3, SLC4A11, TACSTD2, TGFBI, and UBIAD1 genes. Knowledge about the responsible genetic mutations responsible for these disorders has led to a better understanding of their basic defect and to molecular tests for their precise diagnosis. Genes for other corneal dystrophies have been mapped to specific chromosomal loci, but have not yet been identified. As clinical manifestations widely vary with the different entities, corneal dystrophies should be suspected when corneal transparency is lost or corneal opacities occur spontaneously, particularly in both corneas, and especially in the presence of a positive family history or in the offspring of consanguineous parents. Main differential diagnoses include various causes of monoclonal gammopathy, lecithin-cholesterol-acyltransferase deficiency, Fabry disease, cystinosis, tyrosine transaminase deficiency, systemic lysosomal storage diseases (mucopolysaccharidoses

  9. Corneal Laceration

    MedlinePlus

    ... 30, 2016 Toddlers Most at Risk of Chemical Burns to Eyes Aug 26, 2016 Corneal Collagen Cross-linking Approved to Treat Keratoconus in ... Public & Patients: Contact Us About the Academy Jobs at the ...

  10. Corneal injury

    MedlinePlus

    ... as sand or dust Ultraviolet injuries: Caused by sunlight, sun lamps, snow or water reflections, or arc- ... a corneal injury if you: Are exposed to sunlight or artificial ultraviolet light for long periods of ...

  11. Corneal Regeneration by Deep Anterior Lamellar Keratoplasty (DALK) Using Decellularized Corneal Matrix

    PubMed Central

    Hashimoto, Yoshihide; Funamoto, Seiichi; Sasaki, Shuji; Negishi, Jun; Honda, Takako; Hattori, Shinya; Nam, Kwangwoo; Kimura, Tsuyoshi; Mochizuki, Manabu; Kobayashi, Hisatoshi; Kishida, Akio

    2015-01-01

    The purpose of this study is to demonstrate the feasibility of DALK using a decellularized corneal matrix obtained by HHP methodology. Porcine corneas were hydrostatically pressurized at 980 MPa at 10°C for 10 minutes to destroy the cells, followed by washing with EGM-2 medium to remove the cell debris. The HHP-treated corneas were stained with H-E to assess the efficacy of decellularization. The decellularized corneal matrix of 300 μm thickness and 6.0 mm diameter was transplanted onto a 6.0 mm diameter keratectomy wound. The time course of regeneration on the decellularized corneal matrix was evaluated by haze grading score, fluorescein staining, and immunohistochemistry. H-E staining revealed that no cell nuclei were observed in the decellularized corneal matrix. The decellularized corneal matrices were opaque immediately after transplantation, but became completely transparent after 4 months. Fluorescein staining revealed that initial migration of epithelial cells over the grafts was slow, taking 3 months to completely cover the implant. Histological sections revealed that the implanted decellularized corneal matrix was completely integrated with the receptive rabbit cornea, and keratocytes infiltrated into the decellularized corneal matrix 6 months after transplantation. No inflammatory cells such as macrophages, or neovascularization, were observed during the implantation period. The decellularized corneal matrix improved corneal transparency, and remodelled the graft after being transplanted, demonstrating that the matrix obtained by HHP was a useful graft for corneal tissue regeneration. PMID:26161854

  12. [Animal experiment studies on the problem of treating corneal lesions].

    PubMed

    Niedermeier, S

    1987-01-01

    From the clinical point of view an ointment containing retinol, thiamine hydrochloride and calcium pantothenate (Regepithel) seems to be of benefit in the treatment of various corneal diseases. The influence of Regepithel on healing time after superficial corneal injuries in rabbits is demonstrated on the basis of comparative histological findings. PMID:3573651

  13. Enhanced regeneration of corneal tissue via a bioengineered collagen construct implanted by a nondisruptive surgical technique.

    PubMed

    Koulikovska, Marina; Rafat, Mehrdad; Petrovski, Goran; Veréb, Zoltán; Akhtar, Saeed; Fagerholm, Per; Lagali, Neil

    2015-03-01

    Severe shortage of donor corneas for transplantation, particularly in developing countries, has prompted the advancement of bioengineered tissue alternatives. Bioengineered corneas that can withstand transplantation while maintaining transparency and compatibility with host cells, and that are additionally amenable to standardized low-cost mass production are sought. In this study, a bioengineered porcine construct (BPC) was developed to function as a biodegradable scaffold to promote corneal stromal regeneration by host cells. Using high-purity medical-grade type I collagen, high 18% collagen content and optimized EDC-NHS cross-linker ratio, BPCs were fabricated into hydrogel corneal implants with over 90% transparency and four-fold increase in strength and stiffness compared with previous versions. Remarkably, optical transparency was achieved despite the absence of collagen fibril organization at the nanoscale. In vitro testing indicated that BPC supported confluent human epithelial and stromal-derived mesenchymal stem cell populations. With a novel femtosecond laser-assisted corneal surgical model in rabbits, cell-free BPCs were implanted in vivo in the corneal stroma of 10 rabbits over an 8-week period. In vivo, transparency of implanted corneas was maintained throughout the postoperative period, while healing occurred rapidly without inflammation and without the use of postoperative steroids. BPC implants had a 100% retention rate at 8 weeks, when host stromal cells began to migrate into implants. Direct histochemical evidence of stromal tissue regeneration was observed by means of migrated host cells producing new collagen from within the implants. This study indicates that a cost-effective BPC extracellular matrix equivalent can incorporate cells passively to initiate regenerative healing of the corneal stroma, and is compatible with human stem or organ-specific cells for future therapeutic applications as a stromal replacement for treating blinding

  14. Corneal holder.

    PubMed

    Slappey, T E

    1975-09-01

    As a result of the widespread use of M-K (McCarey-Kaufman) medium preserved corneas, as well as other methods of preserving corneas in a viable state, I developed a corneal holder to facilitate the lamellar dissection of previously excised whole human corneas. Consisting of a moderately heavy base, cutting pedestal, scleral rim-sealing sleeve, and retaining ring, the corneal holder is economically manufactured, simple to use, and easily sterilized. Its weight and construction allow unassisted dissection of a lamellar graft of any size.

  15. Influence of corneal hydration on optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Twa, Michael D.; Vantipalli, Srilatha; Singh, Manmohan; Li, Jiasong; Larin, Kirill V.

    2016-03-01

    Corneal biomechanical properties are influenced by several factors, including intraocular pressure, corneal thickness, and viscoelastic responses. Corneal thickness is directly proportional to tissue hydration and can influence corneal stiffness, but there is no consensus on the magnitude or direction of this effect. We evaluated the influence of corneal hydration on dynamic surface deformation responses using optical coherence elastography (OCE). Fresh rabbit eyes (n=10) were prepared by removing the corneal epithelium and dropping with 0.9% saline every 5 minutes for 1 hour, followed by 20% dextran solution every 5 minutes for one hour. Corneal thickness was determined from structural OCT imaging and OCE measurements were performed at baseline and every 20 minutes thereafter. Micron-scale deformations were induced at the apex of the corneal tissue using a spatially-focused (150μm) short-duration (<1ms) air-pulse delivery system. These dynamic tissue responses were measured non-invasively with a phase-stabilized swept source OCT system. The tissue surface deformation response (Relaxation Rate: RR) was quantified as the time constant, over which stimulated tissue recovered from the maximum deformation amplitude. Elastic wave group velocity (GV) was also quantified and correlated with change in corneal thickness due to hydration process. Corneal thickness rapidly increased and remained constant following epithelium removal and changed little thereafter. Likewise, corneal stiffness changed little over the first hour and then decreased sharply after Dextran application (thickness: -46% [-315/682 μm] RR: - 24% [-0.7/2.88 ms-1]; GV: -19% [-0.6/3.2 m/s]). Corneal thickness and corneal stiffness (RR) were well correlated (R2 = .66). Corneal biomechanical properties are highly correlated with tissue hydration over a wide range of corneal thickness and these changes in corneal stiffness are quantifiable using OCE.

  16. Cultured corneal epithelia for ocular surface disease.

    PubMed Central

    Schwab, I R

    1999-01-01

    PURPOSE: To evaluate the potential efficacy for autologous and allogeneic expanded corneal epithelial cell transplants derived from harvested limbal corneal epithelial stem cells cultured in vitro for the management of ocular surface disease. METHODS: Human Subjects. Of the 19 human subjects included, 18 (20 procedures) underwent in vitro cultured corneal epithelial cell transplants using various carriers for the epithelial cells to determine the most efficacious approach. Sixteen patients (18 procedures on 17 eyes) received autologous transplants, and 2 patients (1 procedure each) received allogeneic sibling grafts. The presumed corneal epithelial stem cells from 1 patient did not grow in vitro. The carriers for the expanded corneal epithelial cells included corneal stroma, type 1 collagen (Vitrogen), soft contact lenses, collagen shields, and amniotic membrane for the autologous grafts and only amniotic membrane for the allogeneic sibling grafts. Histologic confirmation was reviewed on selected donor grafts. Amniotic membrane as carrier. Further studies were made to determine whether amniotic membrane might be the best carrier for the expanding corneal epithelial cells. Seventeen different combinations of tryspinization, sonication, scraping, and washing were studied to find the simplest, most effective method for removing the amniotic epithelium while still preserving the histologic appearance of the basement membrane of the amnion. Presumed corneal epithelial stem cells were harvested and expanded in vitro and applied to the amniotic membrane to create a composite graft. Thus, the composite graft consisted of the amniotic membrane from which the original epithelium had been removed without significant histologic damage to the basement membrane, and the expanded corneal epithelial stem cells, which had been applied to and had successfully adhered to the denuded amniotic membrane. Animal model. Twelve rabbits had the ocular surface of 1 eye damaged in a standard

  17. Lipopolysaccharide induced acute red eye and corneal ulcers.

    PubMed

    Schultz, C L; Morck, D W; McKay, S G; Olson, M E; Buret, A

    1997-01-01

    Using a new animal model, the aims of this study were to assess the role played by purified lipopolysaccharide (LPS) and neutrophils in the pathogenesis of acute red-eye reactions (ARE) and corneal ulcers. In addition, IL-1 alpha was assessed for its implications in the formation of corneal ulcers. Following corneal abrasion, eyes of rabbits underwent single or double exposures to various doses of LPS from Pseudomonas aeruginosa or Serratia marcescens. This protocol induced ARE symptoms, and their severity depended on the dosage, number of LPS exposures, and type of LPS used (LPS from S. marcescens showing highest virulence). Corneal ulcers were induced by delivering a high dose of Serratia LPS (100 micrograms) followed by a low dose (10 micrograms). Histopathological examination revealed that both ARE and corneal ulceration were associated with prominent neutrophil infiltration. In addition, many lymphocytes and other monocytic cells infiltrated ulcerated ocular tissue. Tear fluids obtained from ulcerated eyes contained high concentrations of a protein recognized by anti-rabbit IL-1 alpha antibodies as demonstrated by immunoblotting studies. The results indicate that LPS can induce ARE and corneal ulceration in the absence of any live bacteria. Moreover, the findings implicate the accumulation of neutrophils and IL-1 alpha-related proteins in the pathogenesis of ARE and corneal ulcers.

  18. [Pediatric corneal surgery and corneal transplantation].

    PubMed

    Bachmann, B; Avgitidou, G; Siebelmann, S; Cursiefen, C

    2015-02-01

    The surgical treatment of congenital corneal diseases or corneal diseases occurring during infancy is demanding even for experienced corneal surgeons. Besides the need for frequent examinations under anesthesia during the postoperative follow-up in young children and infants (e.g. after corneal transplantation), the surgeon frequently encounters intraoperative and postoperative problems, such as low scleral rigidity, positive vitreous pressure and a narrow anterior chamber. Other problems include increased fibrin reaction, an increased risk of rejection in cases of allogenic corneal transplantation and frequent loosening of sutures necessitating replacement or early removal. Lamellar corneal transplantation reduces the risk of graft rejection and the risk of wound leakage. Moreover, posterior lamellar keratoplasty in children offers a faster visual recovery compared to penetrating keratoplasty and thus reduces the risk of amblyopia.

  19. Riboflavin concentration in corneal stroma after intracameral injection

    PubMed Central

    Li, Na; Peng, Xiu-Jun; Fan, Zheng-Jun; Pang, Xu; Xia, Yu; Wu, Teng-Fei

    2015-01-01

    AIM To evaluate the enrichment of riboflavin in the corneal stroma after intracameral injection to research the barrier ability of the corneal endothelium to riboflavin in vivo. METHODS The right eyes of 30 New Zealand white rabbits were divided into three groups. Different concentrations riboflavin-balanced salt solutions (BSS) were injected into the anterior chamber (10 with 0.5%, 10 with 1%, and 10 with 2%). Eight corneal buttons of 8.5 mm in diameter from each group were dissected at 30min after injection and the riboflavin concentrations in the corneal stroma were determined using high-performance liquid chromatography (HPLC) after removing the epithelium and endothelium. The other two rabbits in every group were observed for 24h and sacrificed. As a comparison, the riboflavin concentrations from 16 corneal stromal samples were determined using HPLC after instillation of 0.1% riboflavin-BSS solution for 30min on the corneal surface (8 without epithelium and 8 with intact epithelium). RESULTS The mean riboflavin concentrations were 11.19, 18.97, 25.08, 20.18, and 1.13 µg/g for 0.5%, 1%, 2%, de-epithelialzed samples, and the transepithelial groups, respectively. The color change of the corneal stroma and the HPLC results showed that enrichment with riboflavin similar to classical de-epithelialized corneal collagen crosslinking (CXL) could be achieved by intracameral 1% riboflavin-BSS solution after 30min; the effect appeared to be continuous for at least 30min. CONCLUSION Riboflavin can effectively penetrate the corneal stroma through the endothelium after an intracameral injection in vivo, so it could be an enhancing method that could improve the corneal riboflavin concentration in transepithelial CXL. PMID:26085993

  20. Corneal proteoglycan changes under vitamin A deficiency

    SciTech Connect

    Twining, S.S.; Wilson, P.M.

    1986-05-01

    The vitamin A-deficient keratinized cornea is very susceptible to ulceration possibly due to altered stromal components. In this study the proteoglycans present in the corneal stroma of vitamin A-deficient, pair-fed and normal rabbits were compared. Rabbits after weaning were placed on a vitamin A deficient diet, the same diet with retinyl palmitate added (pair-fed) or normal rabbit chow. After 5 months, the corneas of the vitamin A-deficient animals became keratinized. The corneal components were then labeled by injection of /sup 3/H-leucine and Na/sup 35/SO/sub 4/ into the anterior chamber of the eyes on 3 successive days. On the 4th day the animals were sacrificed the corneas removed and dissected. The labeled corneal stromas were extracted with 4 M GuHCl and the components separated on a DEAE-Sepharose column. The proteoglycans were eluted with 0.5 M and 1.0 M NaCl. The 1.0 M NaCl fraction (mainly keratin sulfate proteoglycans) was increased 25% in the vitamin A-deficient corneas over that for the pair-fed and normal corneas. These proteoglycans from the deficient corneas gave a different elution pattern on Octyl-Sepharose eluted with a Triton X-100 gradient than those from the pair-fed corneas. The total labeled proteoglycans were similar in the stromas from the 3 types of rabbits. These results indicate the various corneal proteoglycan ratios differ under vitamin A deficiency conditions.

  1. Corneal Foreign Body

    MedlinePlus

    ... Care Guidelines As with corneal abrasions and recurrent erosion of the cornea, self-care includes: Never rubbing ... can be found about corneal abrasions and recurrent erosion of the cornea in their respective diagnoses. When ...

  2. Corneal transplant - series (image)

    MedlinePlus

    Corneal transplantation is recommended for: severe corneal infection, injury, damage, or scarring corneas that no longer allow light to pass through (opaque), often secondary to lens surgery (see cataract surgery), infections, and inherited diseases ...

  3. Novel Therapy to Treat Corneal Epithelial Defects: A Hypothesis with Growth Hormone

    PubMed Central

    Wirostko, Barbara; Rafii, MaryJane; Sullivan, David A.; Morelli, Julia; Ding, Juan

    2015-01-01

    Impaired corneal wound healing that occurs with ocular surface disease, trauma, systemic disease, or surgical intervention can lead to persistent corneal epithelial defects (PCED), which result in corneal scarring, ulceration, opacification, corneal neovascularization, and, ultimately, visual compromise and vision loss. The current standard of care can include lubricants, ointments, bandage lenses, amniotic membranes, autologous serum eye drops, and corneal transplants. Various inherent problems exist with application and administration of these treatments, which often may not result in a completely healed surface. A topically applicable compound capable of promoting corneal epithelial cell proliferation and/or migration would be ideal to accelerate healing. We hypothesize that human growth hormone (HGH) is such a compound. In a recent study, HGH was shown to activate signal transducer and activators of transcription-5 (STAT5) signaling and promote corneal wound healing by enhancing corneal epithelial migration in a co-culture system of corneal epithelial cells and fibroblasts. These effects require an intact communication between corneal epithelia and fibroblasts. Further, HGH promotes corneal wound healing in a rabbit debridement model, thus demonstrating the effectiveness of HGH in vivo as well. In conclusion, HGH may represent an exciting and effective topical therapeutic to promote corneal wound healing. PMID:26045234

  4. Novel Therapy to Treat Corneal Epithelial Defects: A Hypothesis with Growth Hormone.

    PubMed

    Wirostko, Barbara; Rafii, MaryJane; Sullivan, David A; Morelli, Julia; Ding, Juan

    2015-07-01

    Impaired corneal wound healing that occurs with ocular surface disease, trauma, systemic disease, or surgical intervention can lead to persistent corneal epithelial defects (PCED), which result in corneal scarring, ulceration, opacification, corneal neovascularization, and, ultimately, visual compromise and vision loss. The current standard of care can include lubricants, ointments, bandage lenses, amniotic membranes, autologous serum eye drops, and corneal transplants. Various inherent problems exist with application and administration of these treatments, which often may not result in a completely healed surface. A topically applicable compound capable of promoting corneal epithelial cell proliferation and/or migration would be ideal to accelerate healing. We hypothesize that human growth hormone (HGH) is such a compound. In a recent study, HGH was shown to activate signal transducer and activators of transcription-5 (STAT5) signaling and promote corneal wound healing by enhancing corneal epithelial migration in a co-culture system of corneal epithelial cells and fibroblasts. These effects require an intact communication between corneal epithelia and fibroblasts. Further, HGH promotes corneal wound healing in a rabbit debridement model, thus demonstrating the effectiveness of HGH in vivo as well. In conclusion, HGH may represent an exciting and effective topical therapeutic to promote corneal wound healing.

  5. Effects of topical travoprost 0.004% on intraocular pressure and corneal biomechanical properties in an animal model

    PubMed Central

    Lazcano-Gomez, Gabriel; Ancona-Lezama, David; Gil-Carrasco, Felix; Jimenez-Roman, Jesus

    2016-01-01

    Purpose To determine whether topical application of travoprost 0.004% induces changes in corneal biomechanical properties affecting intraocular pressure (IOP) values in rabbits. Methods Both eyes of 10 New Zealand rabbits were measured 3 times with the Ocular Response Analyzer (ORA) before treatment. Each measurement included corneal hysteresis (CH), corneal resistance factor (CRF), corneal-corrected IOP (IOPcc), and Goldmann equivalent IOP (IOPg). A drop of travoprost 0.004% was applied once daily in right eyes for 3 months; left eyes received no treatments. After 3 months of treatment both eyes of all rabbits were again measured 3 times. After complete keratectomy of both eyes, tissues prepared with hematoxylin-eosin stain were analyzed by means of light microscopy. Results The mean pre- and post-treatment IOPg, respectively, for right eyes was 9.92 ± 5.64 mm Hg and 7.62 ± 2.99 mm Hg (P = 0.027); IOPcc, 19.81 ± 5.25 mm Hg and 17.79 ± 4.09 mm Hg (P = 0.063); CRF, 1.65 ± 1.63 mm Hg and 2.18 ± 2.50 mm Hg (P = 0.266); and CH, 2.79 ± 1.74 mm Hg and 2.64 ± 2.08 mm Hg (P = 0.72). Mean post-treatment right and left eye IOPg values were, respectively, 7.62 ± 2.99 and 10.30 ± 4.40 (P = 0.002); IOPcc, 17.79 ± 4.09 mm Hg and 20.37 ± 4.32 mm Hg (P = 0.009); CRF, 1.65 ± 1.63 mm Hg and 2.17 ± 2.47 mm Hg (P = 0.274); and CH, 2.79 ± 1.74 mm Hg and 2.54 ± 2.08 mm Hg (P = 0.575). No difference in CH and CRF was observed between treated and untreated eyes. Conclusions Post-treatment reduction of IOP in treated eyes was a direct hypotensive effect of travoprost 0.004% and was not affected by changes in corneal biomechanical properties (CH and CRF), resulting in real lower IOP values. PMID:27330476

  6. Analysis of correlation between corneal topographical data and visual performance

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanqing; Yu, Lei; Ren, Qiushi

    2007-02-01

    Purpose: To study correlation among corneal asphericity, higher-order aberrations and visual performance for eyes of virgin myopia and postoperative laser in situ keratomileusis (LASIK). Methods: There were 320 candidates 590 eyes for LASIK treatment included in this study. The mean preoperative spherical equivalence was -4.35+/-1.51D (-1.25 to -9.75), with astigmatism less than 2.5 D. Corneal topography maps and contrast sensitivity were measured and analyzed for every eye before and one year after LASIK for the analysis of corneal asphericity and wavefront aberrations. Results: Preoperatively, only 4th and 6th order aberration had significant correlation with corneal asphericity and apical radius of curvature (p<0.001). Postoperatively, all 3th to 6th order aberrations had statistically significant correlation with corneal asphericity (p<0.01), but only 4th and 6th order aberration had significant correlation with apical radius of curvature (p<0.05). The asymmetrical aberration like coma had significant correlation with vertical offset of pupil center (p<0.01). Preoperatively, corneal aberrations had no significant correlation with visual acuity and area under the log contrast sensitivity (AULCSF) (P>0.05). Postoperatively, corneal aberrations still didn't have significant correlation with visual acuity (P>0.05), but had significantly negative correlation with AULCSF (P<0.01). Corneal asphericity had no significant correlation with AULCSF before and after the treatment (P>0.05). Conclusions: Corneal aberrations had different correlation with corneal profile and visual performance for eyes of virgin myopia and postoperative LASIK, which may be due to changed corneal profile and limitation of metrics of corneal aberrations.

  7. Stromal vascularization prevents corneal ulceration.

    PubMed

    Conn, H; Berman, M; Kenyon, K; Langer, R; Gage, J

    1980-04-01

    Experiments were performed with a model of focal, thermal-induced ulceration to test the clinical impression that vascularization prevents ulceration of the corneal stroma. Slow-release polymers containing a vasoproliferase agent (tumor angiogenesis factor) were placed in corneal pockets 2 mm central to the limbus of albino rabbits. These polymers elicited blood vessel ingrowth up to the implant. Control eyes received empty polymers which caused minimal to no vessel growth. Polymers were removed, and each cornea received a focal, thermal burn placed just central to the polymer site. All control corneas ulcerated: most (79%) developed deep stromal or perforating ulcers. Only 25% of prevascularized corneas developed stromal ulcers, and none was deep or perforating. After thermal burns, vessels in both groups grew at the same linear rate toward the burned area. There was a direct relationship between the distance separating the nearest blood vessel and the burned area at the time of burning and the maximum depth of stromal ulceration. Thus prevention of or less severe stromal ulceration is correlated with the earlier presence of vessels in the burned area.

  8. Growing Three-Dimensional Corneal Tissue in a Bioreactor

    NASA Technical Reports Server (NTRS)

    Spaulding, Glen F.; Goodwin, Thomas J.; Aten, Laurie; Prewett, Tacey; Fitzgerald, Wendy S.; OConnor, Kim; Caldwell, Delmar; Francis, Karen M.

    2003-01-01

    Spheroids of corneal tissue about 5 mm in diameter have been grown in a bioreactor from an in vitro culture of primary rabbit corneal cells to illustrate the production of optic cells from aggregates and tissue. In comparison with corneal tissues previously grown in vitro by other techniques, this tissue approximates intact corneal tissue more closely in both size and structure. This novel three-dimensional tissue can be used to model cell structures and functions in normal and abnormal corneas. Efforts continue to refine the present in vitro method into one for producing human corneal tissue to overcome the chronic shortage of donors for corneal transplants: The method would be used to prepare corneal tissues, either from in vitro cultures of a patient s own cells or from a well-defined culture from another human donor known to be healthy. As explained in several articles in prior issues of NASA Tech Briefs, generally cylindrical horizontal rotating bioreactors have been developed to provide nutrient-solution environments conducive to the 30 NASA Tech Briefs, October 2003 growth of delicate animal cells, with gentle, low-shear flow conditions that keep the cells in suspension without damaging them. The horizontal rotating bioreactor used in this method, denoted by the acronym "HARV," was described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662), NASA Tech Briefs, Vol. 16, No. 5 (May, 1992), page 150.

  9. Corneal mucus plaques.

    PubMed

    Fraunfelder, F T; Wright, P; Tripathi, R C

    1977-02-01

    Corneal mucus plaques adhered to the anterior corneal surface in 17 of 67 advanced cases of keratoconjunctivitis sicca. The plaques were translucent to opaque and varied in size and shape, from multiple isolated islands to bizarre patterns involving more than half the corneal surface. Ultrastructurally, they consisted of mucus mixed with desquamated degenerating epithelial cells and proteinaceous and lipoidal material. The condition may be symptomatic but can be controlled and prevented in most cases by topical ocular application of 10% acetylcysteine.

  10. Thermosensitive chitosan-based hydrogels for sustained release of ferulic acid on corneal wound healing.

    PubMed

    Tsai, Ching-Yao; Woung, Lin-Chung; Yen, Jiin-Cherng; Tseng, Po-Chen; Chiou, Shih-Hwa; Sung, Yen-Jen; Liu, Kuan-Ting; Cheng, Yung-Hsin

    2016-01-01

    Oxidative damage to cornea can be induced by alkaline chemical burn which may cause vision loss or blindness. Recent studies showed that exogenous application of natural antioxidants may be a potential treatment for corneal wound healing. However, low ocular bioavailability and short residence time are the limiting factors of topically administered antioxidants. Ferulic acid (FA) is a natural phenolic compound and an excellent antioxidant. The study was aimed to investigate the effects of FA in corneal epithelial cells (CECs) under oxidative stress and evaluate the feasibility of use the thermosensitive chitosan-based hydrogel containing FA for corneal wound healing. The results demonstrated that post-treatment of FA on CECs could decrease the inflammation-level and apoptosis. In the rabbit corneal alkali burn model, post-treatment FA-loaded hydrogel may promote the corneal wound healing. The results of study suggest that FA-loaded hydrogel may have the potential applications in treating corneal alkali burn. PMID:26453882

  11. Thermosensitive chitosan-based hydrogels for sustained release of ferulic acid on corneal wound healing.

    PubMed

    Tsai, Ching-Yao; Woung, Lin-Chung; Yen, Jiin-Cherng; Tseng, Po-Chen; Chiou, Shih-Hwa; Sung, Yen-Jen; Liu, Kuan-Ting; Cheng, Yung-Hsin

    2016-01-01

    Oxidative damage to cornea can be induced by alkaline chemical burn which may cause vision loss or blindness. Recent studies showed that exogenous application of natural antioxidants may be a potential treatment for corneal wound healing. However, low ocular bioavailability and short residence time are the limiting factors of topically administered antioxidants. Ferulic acid (FA) is a natural phenolic compound and an excellent antioxidant. The study was aimed to investigate the effects of FA in corneal epithelial cells (CECs) under oxidative stress and evaluate the feasibility of use the thermosensitive chitosan-based hydrogel containing FA for corneal wound healing. The results demonstrated that post-treatment of FA on CECs could decrease the inflammation-level and apoptosis. In the rabbit corneal alkali burn model, post-treatment FA-loaded hydrogel may promote the corneal wound healing. The results of study suggest that FA-loaded hydrogel may have the potential applications in treating corneal alkali burn.

  12. Flow cytometric DNA analysis of corneal epithelium.

    PubMed

    Burns, E R; Roberson, M C; Brown, M F; Shock, J P; Pipkin, J L; Hinson, W G; Anson, J F

    1990-03-01

    We have modified an existing technique in order to perform DNA analysis by flow cytometry (FCM) of corneal epithelium from the mouse, rat, chicken, rabbit, and human. This protocol permitted an investigation of human corneal scrapings from several categories: normal, aphakic bullous keratopathy (ABK), keratoconus (KC), Fuch's dystrophy, edema, epithelial dysplasia, and lipid degeneration. No abnormal characteristic cell-kinetic profile was detected when averaged DNA histograms were compared statistically between the normal and either ABK, KC, edema, or Fuch's dystrophy groups. Abnormal DNA histograms were recorded for cell samples that were taken 1) from three individuals who had epithelial dysplasia and 2) from one individual diagnosed with lipid degeneration. The former condition was characterized by histograms that had a subpopulation of cells with an aneuploid amount of DNA or had higher than normal percentages of cells in the S and G2 + M phases of the cell cycle. Corneal cells from the patient who had lipid degeneration had an abnormally high percentage of cells in the G2 + M phases of the cell cycle. The availability of accurate DNA flow cytometric analysis of corneal epithelium allows further studies on this issue from both experimental and clinical situations.

  13. Characterization of Corneal Indentation Hysteresis.

    PubMed

    Ko, Match W L; Dongming Wei; Leung, Christopher K S

    2015-01-01

    Corneal indentation is adapted for the design and development of a characterization method for corneal hysteresis behavior - Corneal Indentation Hysteresis (CIH). Fourteen porcine eyes were tested using the corneal indentation method. The CIH measured in enucleated porcine eyes showed indentation rate and intraocular pressure (IOP) dependences. The CIH increased with indentation rate at lower IOP (<; 25 mmHg) and decreased with indentation rate at higher IOP (> 25 mmHg). The CIH was linear proportional to the IOP within an individual eye. The CIH was positively correlated with the IOP, corneal in-plane tensile stress and corneal tangent modulus (E). A new method based on corneal indentation for the measurement of Corneal Indentation Hysteresis in vivo is developed. To our knowledge, this is the first study to introduce the corneal indentation hysteresis and correlate the corneal indentation hysteresis and corneal tangent modulus.

  14. Trefoil peptides promote restitution of wounded corneal epithelial cells.

    PubMed

    Göke, M N; Cook, J R; Kunert, K S; Fini, M E; Gipson, I K; Podolsky, D K

    2001-04-01

    The ocular surface shares many characteristics with mucosal surfaces. In both, healing is regulated by peptide growth factors, cytokines, and extracellular matrix proteins. However, these factors are not sufficient to ensure most rapid healing. Trefoil peptides are abundantly expressed epithelial cell products which exert protective effects and are key regulators of gastrointestinal epithelial restitution, the critical early phase of cell migration after mucosal injury. To assess the role of trefoil peptides in corneal epithelial wound healing, the effects of intestinal trefoil factor (ITF/TFF3) and spasmolytic polypeptide (SP/TFF2) on migration and proliferation of corneal epithelial cells were analyzed. Both ITF and SP enhanced restitution of primary rabbit corneal epithelial cells in vitro. While the restitution-enhancing effects of TGF-alpha and TGF-beta were both inhibited by neutralizing anti-TGF-beta-antibodies, trefoil peptide stimulation of restitution was not. Neither trefoil peptide significantly affected proliferation of primary corneal epithelial cells. ITF but not SP or pS2 mRNA was present in rabbit corneal and conjunctival tissues. In summary, the data indicate an unanticipated role of trefoil peptides in healing of ocular surface and demand rating their functional actions beyond the gastrointestinal tract.

  15. Corneal cells for regeneration.

    PubMed

    Kinoshita, S; Nakamura, T

    2005-01-01

    In cases of corneal epithelial stem cell deficiency where ocular surface reconstruction is required, corneal epithelial replacement using a tissue engineering technique shows great potential. Autologous cultivated corneal epithelial stem cell sheets are the safest and most reliable forms of sheet we can use for such treatment; however, they are not useful for treating bilaterally affected ocular surface disorders. In order to treat such cases, we must choose either an allogeneic cultivated corneal epithelial sheet or an autologous cultivated oral mucosal epithelial sheet. If we use the former, the threat of immunological reaction must be dealt with. Therefore, it is imperative that we have a basic understanding of the immunological aspects of ocular surface reconstruction using allogeneic tissues. When using an autologous cultivated oral mucosal epithelial sheet, a basic understanding of ocular surface epithelial biology is required as the sheet is not exactly the same as corneal epithelium. PMID:16080287

  16. Corneal-shaping electrode

    DOEpatents

    Doss, James D.; Hutson, Richard L.

    1982-01-01

    The disclosure relates to a circulating saline electrode for changing corneal shape in eyes. The electrode comprises a tubular nonconductive electrode housing having an annular expanded base which has a surface substantially matched to a subject corneal surface. A tubular conductive electrode connected to a radiofrequency generating source is disposed within the electrode housing and longitudinally aligned therewith. The electrode has a generally hemispherical head having at least one orifice. Saline solution is circulated through the apparatus and over the cornea to cool the corneal surface while radiofrequency electric current emitted from the electrode flows therefrom through the cornea to a second electrode, on the rear of the head. This current heats the deep corneal stroma and thereby effects corneal reshaping as a biological response to the heat.

  17. Current status of corneal xenotransplantation.

    PubMed

    Kim, Mee Kum; Hara, Hidetaka

    2015-11-01

    Corneal allo-transplantation is a well-established technique to treat corneal blindness. However, the limited availability of human donors demands the exploration of alternative treatments such as corneal xenotransplantation (e.g., pigs as donors) and bioengineered corneas. Since the first attempt of corneal xenotransplantation using a donor pig cornea in 1844, great advances have been made in the development of genetically-engineered pigs, effective immunosuppressive protocols and the establishment of guidelines for the conduction of clinical trials. We highlight immunological and physio-anatomical barriers of corneal xenotransplantation, recent progress of corneal xenotransplantation in non-human-primates studies, and regulatory guidelines to conduct clinical trials for corneal xenotransplantation.

  18. Corneal toxicity induced by vesicating agents and effective treatment options.

    PubMed

    Goswami, Dinesh G; Tewari-Singh, Neera; Agarwal, Rajesh

    2016-06-01

    The vesicating agents sulfur mustard (SM) and lewisite (LEW) are potent chemical warfare agents that primarily cause damage to the ocular, skin, and respiratory systems. However, ocular tissue is the most sensitive organ, and vesicant exposure results in a biphasic injury response, including photophobia, corneal lesions, corneal edema, ulceration, and neovascularization, and may cause loss of vision. There are several reports on ocular injury from exposure to SM, which has been frequently used in warfare. However, there are very few reports on ocular injury by LEW, which indicate that injury symptoms appear instantly after exposure and faster than SM. In spite of extensive research efforts, effective therapies for vesicant-induced ocular injuries, mainly to the most affected corneal tissue, are not available. Hence, we have established primary human corneal epithelial cells and rabbit corneal organ culture models with the SM analog nitrogen mustard, which have helped to test the efficacy of potential therapeutic agents. These agents will then be further evaluated against in vivo SM- and LEW-induced corneal injury models, which will assist in the development of potential broad-spectrum therapies against vesicant-induced ocular injuries. PMID:27327041

  19. [Glaucoma and corneal transplantation].

    PubMed

    Geerling, G; Müller, M; Zierhut, M; Klink, T

    2010-05-01

    Glaucoma and corneal disorders are often associated and are of diagnostic, therapeutic and prognostic relevance for each other. Glaucoma is already present in approximately 15% of eyes prior to keratoplasty, whereas in addition approximately 15% of cases are diagnosed following corneal transplantation. Corneal opacities, surface irregularities and pachymetric deviations from the norm can have a negative impact on tonometry, perimetry and morphological glaucoma diagnosis. Digital and intracameral tonometry as well as flash VEP to determine the visual potential can be helpful in this setting. Increased intraocular pressure (IOP), long-term application of antiglaucomatous medication or the use of antimetabolites in glaucoma surgery can all induce keratopathy. Therefore, intraocular pressure should be regulated prior to corneal transplantation. Risk factors for the evolution of glaucoma following corneal transplantation are the specific indication and surgical technique (e. g. combined corneal and cataract/vitreoretinal surgery), as well as postoperative steroid application and chamber angle synechiae. Unpreserved glaucoma medication without pro-inflammatory effects should be preferred following keratoplasty. In the long term surgery to control IOP is required in approximately 25% of eyes. The wider use of lamellar techniques for corneal transplantation is likely to reduce the incidence of secondary glaucoma.

  20. Corneal blindness and xenotransplantation.

    PubMed

    Lamm, Vladimir; Hara, Hidetaka; Mammen, Alex; Dhaliwal, Deepinder; Cooper, David K C

    2014-01-01

    Approximately 39 million people are blind worldwide, with an estimated 285 million visually impaired. The developing world shoulders 90% of the world's blindness, with 80% of causative diseases being preventable or treatable. Blindness has a major detrimental impact on the patient, community, and healthcare spending. Corneal diseases are significant causes of blindness, affecting at least 4 million people worldwide. The prevalence of corneal disease varies between parts of the world. Trachoma, for instance, is the second leading cause of blindness in Africa, after cataracts, but is rarely found today in developed nations. When preventive strategies have failed, corneal transplantation is the most effective treatment for advanced corneal disease. The major surgical techniques for corneal transplantation include penetrating keratoplasty (PK), anterior lamellar keratoplasty, and endothelial keratoplasty (EK). Indications for corneal transplantation vary between countries, with Fuchs' dystrophy being the leading indication in the USA and keratoconus in Australia. With the exception of the USA, where EK will soon overtake PK as the most common surgical procedure, PK is the overwhelming procedure of choice. Success using corneal grafts in developing nations, such as Nepal, demonstrates the feasibility of corneal transplantation on a global scale. The number of suitable corneas from deceased human donors that becomes available will never be sufficient, and so research into various alternatives, for example stem cells, amniotic membrane transplantation, synthetic and biosynthetic corneas, and xenotransplantation, is progressing. While each of these has potential, we suggest that xenotransplantation holds the greatest potential for a corneal replacement. With the increasing availability of genetically engineered pigs, pig corneas may alleviate the global shortage of corneas in the near future.

  1. Corneal blindness and xenotransplantation.

    PubMed

    Lamm, Vladimir; Hara, Hidetaka; Mammen, Alex; Dhaliwal, Deepinder; Cooper, David K C

    2014-01-01

    Approximately 39 million people are blind worldwide, with an estimated 285 million visually impaired. The developing world shoulders 90% of the world's blindness, with 80% of causative diseases being preventable or treatable. Blindness has a major detrimental impact on the patient, community, and healthcare spending. Corneal diseases are significant causes of blindness, affecting at least 4 million people worldwide. The prevalence of corneal disease varies between parts of the world. Trachoma, for instance, is the second leading cause of blindness in Africa, after cataracts, but is rarely found today in developed nations. When preventive strategies have failed, corneal transplantation is the most effective treatment for advanced corneal disease. The major surgical techniques for corneal transplantation include penetrating keratoplasty (PK), anterior lamellar keratoplasty, and endothelial keratoplasty (EK). Indications for corneal transplantation vary between countries, with Fuchs' dystrophy being the leading indication in the USA and keratoconus in Australia. With the exception of the USA, where EK will soon overtake PK as the most common surgical procedure, PK is the overwhelming procedure of choice. Success using corneal grafts in developing nations, such as Nepal, demonstrates the feasibility of corneal transplantation on a global scale. The number of suitable corneas from deceased human donors that becomes available will never be sufficient, and so research into various alternatives, for example stem cells, amniotic membrane transplantation, synthetic and biosynthetic corneas, and xenotransplantation, is progressing. While each of these has potential, we suggest that xenotransplantation holds the greatest potential for a corneal replacement. With the increasing availability of genetically engineered pigs, pig corneas may alleviate the global shortage of corneas in the near future. PMID:25268248

  2. [Updates in corneal transplantation].

    PubMed

    Rémont, L; Duchesne, B; La, C; Rakic, J M; Hick, S

    2014-09-01

    Corneal transplantation or keratoplasty has rapidly developed over the last 10 years. Penetrating keratoplasty, a well-known operation consisting of full thickness replacement of the cornea, has remained the dominant procedure for a long time. It allows appropriate therapy of most causes of corneal blindness. However, this technique is currently evolving toward slamellar keratoplasties which selectively treat the specific affected layers: deep anterior lamellar keratoplasty replaces the diseased corneal stromal layers; endothelial keratoplasty replace the affected endothelium. This article will present these techniques, and briefly discuss their advantages.

  3. Adipose-Derived Mesenchymal Stem Cell Administration Does Not Improve Corneal Graft Survival Outcome

    PubMed Central

    Fuentes-Julián, Sherezade; Arnalich-Montiel, Francisco; Jaumandreu, Laia; Leal, Marina; Casado, Alfonso; García-Tuñon, Ignacio; Hernández-Jiménez, Enrique; López-Collazo, Eduardo; De Miguel, Maria P.

    2015-01-01

    The effect of local and systemic injections of mesenchymal stem cells derived from adipose tissue (AD-MSC) into rabbit models of corneal allograft rejection with either normal-risk or high-risk vascularized corneal beds was investigated. The models we present in this study are more similar to human corneal transplants than previously reported murine models. Our aim was to prevent transplant rejection and increase the length of graft survival. In the normal-risk transplant model, in contrast to our expectations, the injection of AD-MSC into the graft junction during surgery resulted in the induction of increased signs of inflammation such as corneal edema with increased thickness, and a higher level of infiltration of leukocytes. This process led to a lower survival of the graft compared with the sham-treated corneal transplants. In the high-risk transplant model, in which immune ocular privilege was undermined by the induction of neovascularization prior to graft surgery, we found the use of systemic rabbit AD-MSCs prior to surgery, during surgery, and at various time points after surgery resulted in a shorter survival of the graft compared with the non-treated corneal grafts. Based on our results, local or systemic treatment with AD-MSCs to prevent corneal rejection in rabbit corneal models at normal or high risk of rejection does not increase survival but rather can increase inflammation and neovascularization and break the innate ocular immune privilege. This result can be partially explained by the immunomarkers, lack of immunosuppressive ability and immunophenotypical secretion molecules characterization of AD-MSC used in this study. Parameters including the risk of rejection, the inflammatory/vascularization environment, the cell source, the time of injection, the immunosuppression, the number of cells, and the mode of delivery must be established before translating the possible benefits of the use of MSCs in corneal transplants to clinical practice. PMID

  4. Importance of Corneal Thickness

    MedlinePlus

    ... News About Us Donate In This Section The Importance of Corneal Thickness email Send this article to ... is important because it can mask an accurate reading of eye pressure, causing doctors to treat you ...

  5. Effects of diabetic keratopathy on corneal optical density, central corneal thickness, and corneal endothelial cell counts

    PubMed Central

    Gao, Feng; Lin, Tao; Pan, Yingzhe

    2016-01-01

    Diabetic keratopathy is an ocular complication that occurs with diabetes. In the present study, the effect of diabetic keratopathy on corneal optical density, central corneal thickness, and corneal endothelial cell count was investigated. One hundred and eighty diabetic patients (360 eyes) were enrolled in the study during the period from March, 2012 to March, 2013. The patients were divided into three age groups: <5, 5–10 and >10 years, with 60 patients per group (120 eyes). During the same period, 60 healthy cases (120 eyes) were selected and labeled as the normal control group. The Pentacam was used to measure the corneal optical density, and central corneal thickness. Specular microscopy was used to examine the corneal endothelial cell density. The coefficient of partial correlation was used to control age and correlate the analysis between the corneal optical density, corneal endothelial cell density, and central corneal thickness. The stage of the disease, the medial and intimal corneal optical density and central corneal thickness was analyzed in the diabetes group. The corneal optical density in the diabetes group increased compared with that of the normal control group. The medial and intimal corneal optical density and central corneal thickness were positively correlated with the course of the disease. However, the corneal endothelial cell density was not associated with the course of diabetes. There was a positive association between the medial and intimal corneal optical density and central corneal thickness of the diabetic patients. In conclusion, the results of the present study show that medial and intimal corneal optical density and central corneal thickness were sensitive indicators for early diabetic keratopathy. PMID:27588090

  6. A new model of corneal transplantation in the miniature pig: efficacy of immunosuppressive treatment.

    PubMed

    Tavandzi, Urania; Procházka, Radek; Usvald, Dusan; Hlucílová, Jana; Vitásková, Martina; Motlík, Jan; Vítová, Andrea; Filipec, Martin; Forrester, John V; Holán, Vladimír

    2007-05-27

    Corneal allograft rejection is frequently studied in small rodent or rabbit models. To study mechanisms of rejection in a model that more closely mimics transplantation in humans, we performed orthotopic corneal transplantation in the miniature pig using a 7-mm diameter donor graft. Four groups of recipients were studied: 1) untreated naive, 2) untreated vascularized (high risk), 3) high-risk grafts treated by topical application of prednisolone, or 4) high-risk grafts treated with a combined systemic immunosuppression regime of oral prednisone, cyclosporine A, and mycophenolate mofetil. Both the clinical features and histological assessment of corneal graft rejection showed close similarities to graft rejection in humans. Interestingly, preliminary results indicated that topical steroid treatment was superior to systemic immunosuppression in significantly promoting graft survival. Thus, corneal transplantation in the pig represents an animal model most closely resembling corneal grafting in humans, and offers possibilities for testing various clinically applicable immunosuppressive treatments.

  7. Investigation of Overrun-Processed Porous Hyaluronic Acid Carriers in Corneal Endothelial Tissue Engineering

    PubMed Central

    Lai, Jui-Yang; Cheng, Hsiao-Yun; Ma, David Hui-Kang

    2015-01-01

    Hyaluronic acid (HA) is a linear polysaccharide naturally found in the eye and therefore is one of the most promising biomaterials for corneal endothelial regenerative medicine. This study reports, for the first time, the development of overrun-processed porous HA hydrogels for corneal endothelial cell (CEC) sheet transplantation and tissue engineering applications. The hydrogel carriers were characterized to examine their structures and functions. Evaluations of carbodiimide cross-linked air-dried and freeze-dried HA samples were conducted simultaneously for comparison. The results indicated that during the fabrication of freeze-dried HA discs, a technique of introducing gas bubbles in the aqueous biopolymer solutions can be used to enlarge pore structure and prevent dense surface skin formation. Among all the groups studied, the overrun-processed porous HA carriers show the greatest biological stability, the highest freezable water content and glucose permeability, and the minimized adverse effects on ionic pump function of rabbit CECs. After transfer and attachment of bioengineered CEC sheets to the overrun-processed HA hydrogel carriers, the therapeutic efficacy of cell/biopolymer constructs was tested using a rabbit model with corneal endothelial dysfunction. Clinical observations including slit-lamp biomicroscopy, specular microscopy, and corneal thickness measurements showed that the construct implants can regenerate corneal endothelium and restore corneal transparency at 4 weeks postoperatively. Our findings suggest that cell sheet transplantation using overrun-processed porous HA hydrogels offers a new way to reconstruct the posterior corneal surface and improve endothelial tissue function. PMID:26296087

  8. Sensitive and real-time method for evaluating corneal barrier considering tear flow.

    PubMed

    Nakamura, Tadahiro; Teshima, Mugen; Kitahara, Takashi; Sasaki, Hitoshi; Uematsu, Masafumi; Kitaoka, Takashi; Nakashima, Mikiro; Nishida, Koyo; Nakamura, Junzo; Higuchi, Shun

    2010-01-01

    We developed a new electrophysiological method mimicking tear flow to evaluate the epithelial tight junction of rabbit cornea quantitatively. We investigated the effect of tear flow on the corneal damage induced by ophthalmic preservatives using this method. An Ussing chamber system with Ag/AgCl electrodes was used in the electrophysiological experiment. The excised rabbit cornea was mounted in the Ussing chamber and the precorneal solution in the chamber was perfused with a peristaltic pump at the rate of human tear flow. Corneal transepithelial electrical resistance (TEER) was monitored as corneal barrier ability. In the electrophysiological method mimicking tear flow, we observed stable TEER, which rapidly decreased with benzalkonium chloride (BAC), an eye drop preservative. Using this system, we first found that 0.004% BAC decreased corneal TEER reversibly. A high concentration of BAC showed strong irreversible damage to the tight junction. The influence of BAC on corneal TEER was not only concentration-dependent but also tear flow rate-dependent. The electrophysiological method mimicking tear flow was useful to evaluate the corneal barrier quantitatively. Using this method, we clarified that the tear flow was important to protect the corneal damage induced by preservatives.

  9. Fluorescent labeling of Acanthamoeba assessed in situ from corneal sectioned microscopy

    PubMed Central

    Marcos, Susana; Requejo-Isidro, Jose; Merayo-Lloves, Jesus; Acuña, A. Ulises; Hornillos, Valentin; Carrillo, Eugenia; Pérez-Merino, Pablo; del Olmo-Aguado, Susana; del Aguila, Carmen; Amat-Guerri, Francisco; Rivas, Luis

    2012-01-01

    Acanthamoeba keratitis is a serious pathogenic corneal disease, with challenging diagnosis. Standard diagnostic methods include corneal biopsy (involving cell culture) and in vivo reflection corneal microscopy (in which the visualization of the pathogen is challenged by the presence of multiple reflectance corneal structures). We present a new imaging method based on fluorescence sectioned microscopy for visualization of Acanthamoeba. A fluorescent marker (MT-11-BDP), composed by a fluorescent group (BODIPY) inserted in miltefosine (a therapeutic agent against Acanthamoeba), was developed. A custom-developed fluorescent structured illumination sectioned corneal microscope (excitation wavelength: 488 nm; axial/lateral resolution: 2.6 μm/0.4-0.6 μm) was used to image intact enucleated rabbit eyes, injected with a solution of stained Acanthamoeba in the stroma. Fluorescent sectioned microscopic images of intact enucleated rabbit eyes revealed stained Acanthamoeba trophozoites within the stroma, easily identified by the contrasted fluorescent emission, size and shape. Control experiments show that the fluorescent maker is not internalized by corneal cells, making the developed marker specific to the pathogen. Fluorescent sectioned microscopy shows potential for specific diagnosis of Acanthamoeba keratitis. Corneal confocal microscopy, provided with a fluorescent channel, could be largely improved in specificity and sensitivity in combination with specific fluorescent marking. PMID:23082290

  10. Disposal rabbit

    DOEpatents

    Lewis, L.C.; Trammell, D.R.

    1983-10-12

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  11. Disposable rabbit

    DOEpatents

    Lewis, Leroy C.; Trammell, David R.

    1986-01-01

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  12. A nanoparticle formulation reduces the corneal toxicity of indomethacin eye drops and enhances its corneal permeability.

    PubMed

    Nagai, Noriaki; Ito, Yoshimasa; Okamoto, Norio; Shimomura, Yoshikazu

    2014-05-01

    Indomethacin (IMC) has been shown to reduce post-operative inflammation and to decrease intraocular irritation after cataract extraction and in cystoid macular edema; however, the clinical use of its most commonly used eye drops is limited due to topical side-effects that include burning sensation, irritation and epithelial keratitis. It is known that decreasing direct cell stimulation and reducing the amount applied via increasing bioavailability are useful for improving these issues. In this study, we designed ophthalmic formulations containing 0.5% IMC nanoparticles using zirconia beads and Bead Smash 12 (IMCnano eye drops; particle size 76 ± 59 nm, mean ± S.D.), and investigated the corneal toxicity of these IMCnano eye drops. IMCnano eye drops are tolerated better by a human cornea epithelial cell line (HCE-T) than commercially available NDSAIDs preparations (IMC, pranoprofen, diclofenac, bromfenac and nepafenac eye drops), and corneal wound healing in rat eyes with debrided corneal epithelium instilled with IMCnano eye drops is significantly better than that of eyes instilled with commercially available IMC eye drops. In addition, the accumulation of IMC in HCE-T cells treated with the IMCnano eye drops for 30 min was 19.9% that of the accumulation from commercially available IMC eye drops. On the other hand, the corneal penetration of IMC from IMCnano eye drops was significantly greater than in the case of the commercially available IMC eye drops in both in vivo and in vitro studies using rabbit corneas. Taken together, we hypothesize that a nanoparticle formulation reduces the corneal toxicity of IMC eye drops, probably because the accumulation of IMC from IMCnano eye drops in the eye is lower than that from commercially available IMC eye drops. In addition, the nanoparticle formulation may allow a decrease in the amount of IMC used due to the increase in bioavailability, resulting in reduced drug toxicity. These findings provide significant information

  13. Long-term outcomes of wedge resection at the limbus for high irregular corneal astigmatism after repaired corneal laceration

    PubMed Central

    Du, Jun; Zheng, Guang-Ying; Wen, Cheng-Lin; Zhang, Xiao-Fang; Zhu, Yu

    2016-01-01

    AIM To evaluate the clinical value of wedge resection at corneal limbus in patients with traumatic corneal scarring and high irregular astigmatism. METHODS Patients with traumatic corneal astigmatism received wedge resection at least 6mo after suture removal from corneal wound. The uncorrected distance visual acuities (UCVA) and best corrected distance visual acuities (BCVA), pre- and post-operation astigmatism, spherical equivalent (SE), safety and complications were evaluated. RESULTS Ten eyes (10 patients) were enrolled in this study. Mean follow-up time after wedge resection was 37.8±15.4mo (range, 20-61mo). The mean UCVA improved from +1.07±0.55 logMAR to +0.43±0.22 logMAR (P=0.000) and the mean BCVA from +0.50±0.30 logMAR to +0.15±0.17 logMAR (P=0.000). The mean astigmatism power measured by retinoscopy was -2.03±2.27 D postoperatively and -2.83±4.52 D preoperatively (P=0.310). The mean SE was -0.74±1.61 D postoperatively and -0.64±1.89 D preoperatively (P=0.601). Two cases developed mild pannus near the sutures. No corneal perforation, infectious keratitis or wound gape occurred. CONCLUSION Corneal-scleral limbal wedge resection with compression suture is a safe, effective treatment for poor patients with high irregular corneal astigmatism after corneal-scleral penetrating injury. Retinoscopy can prove particularly useful for high irregular corneal astigmatism when other measurements are not amenable. PMID:27366685

  14. Hydrogen prevents corneal endothelial damage in phacoemulsification cataract surgery.

    PubMed

    Igarashi, Tsutomu; Ohsawa, Ikuroh; Kobayashi, Maika; Igarashi, Toru; Suzuki, Hisaharu; Iketani, Masumi; Takahashi, Hiroshi

    2016-01-01

    In phacoemulsification, ultrasound induces hydroxyl radical (·OH) formation, damaging corneal endothelium. Whether H2 can prevent such oxidative damage in phacoemulsification was examined by in vitro and in vivo studies. H2 was dissolved in a commercial irrigating solution. The effects of H2 against ·OH generation were first confirmed in vitro by electron-spin resonance (ESR) and hydroxyphenyl fluorescein (HPF). ESR showed a significantly decreased signal magnitude, and fluorescence intensity by oxidized HPF was significantly less in the H2-dissolved solution. The effects of H2 in phacoemulsification were evaluated in rabbits, comparing H2-dissolved and control solutions. Five hours after the procedure, the whole cornea was excised and subjected to image analysis for corneal edema, real-time semiquantitative PCR (qPCR) for heme oxygenase (HO)-1, catalase (CAT), superoxide dismutase 1 (SOD1), and SOD2 mRNA, and immunohistochemistry. Corneal edema was significantly less and the increases in anti-oxidative HO-1, CAT and SOD2 mRNA expressions were significantly suppressed in the H2 group. In addition, corneal endothelial cell expressions of two oxidative stress markers, 4-HNE and 8-OHdG, were significantly lower in the H2 group. In conclusion, H2 dissolved in the ocular irrigating solution protected corneal endothelial cells from phacoemulsification-induced oxidative stress and damage. PMID:27498755

  15. Hydrogen prevents corneal endothelial damage in phacoemulsification cataract surgery

    PubMed Central

    Igarashi, Tsutomu; Ohsawa, Ikuroh; Kobayashi, Maika; Igarashi, Toru; Suzuki, Hisaharu; Iketani, Masumi; Takahashi, Hiroshi

    2016-01-01

    In phacoemulsification, ultrasound induces hydroxyl radical (·OH) formation, damaging corneal endothelium. Whether H2 can prevent such oxidative damage in phacoemulsification was examined by in vitro and in vivo studies. H2 was dissolved in a commercial irrigating solution. The effects of H2 against ·OH generation were first confirmed in vitro by electron-spin resonance (ESR) and hydroxyphenyl fluorescein (HPF). ESR showed a significantly decreased signal magnitude, and fluorescence intensity by oxidized HPF was significantly less in the H2-dissolved solution. The effects of H2 in phacoemulsification were evaluated in rabbits, comparing H2-dissolved and control solutions. Five hours after the procedure, the whole cornea was excised and subjected to image analysis for corneal edema, real-time semiquantitative PCR (qPCR) for heme oxygenase (HO)-1, catalase (CAT), superoxide dismutase 1 (SOD1), and SOD2 mRNA, and immunohistochemistry. Corneal edema was significantly less and the increases in anti-oxidative HO-1, CAT and SOD2 mRNA expressions were significantly suppressed in the H2 group. In addition, corneal endothelial cell expressions of two oxidative stress markers, 4-HNE and 8-OHdG, were significantly lower in the H2 group. In conclusion, H2 dissolved in the ocular irrigating solution protected corneal endothelial cells from phacoemulsification-induced oxidative stress and damage. PMID:27498755

  16. Corneal steepening after epikeratoplasty.

    PubMed

    Nirankari, V S

    1989-12-01

    Four patients had removal of their epikeratoplasty lenticules for unsatisfactory visual results. This was out of a consecutive series of 36 eyes. Three eyes were myopic and one was aphakic. In all four eyes, there was significant corneal steepening with an average increase in myopia of 2.4 diopters and an average increase in keratometry reading of 4.8 diopters. Corneoscopy was done in three cases and showed central corneal steepening. In addition, one patient (Case 1) had significant scarring of the recipient cornea and a decrease in visual acuity to 20/100. The reasons for corneal steepening may be related to midperipheral partial trephination, annular keratectomy, and spreading of the peripheral cornea.

  17. Corneal tissue water content mapping with THz imaging: preliminary clinical results (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sung, Shijun; Bajwa, Neha; Deng, Sophie X.; Taylor, Zachary; Grundfest, Warren

    2016-03-01

    Well-regulated corneal water content is critical for ocular health and function and can be adversely affected by a number of diseases and injuries. Current clinical practice limits detection of unhealthy corneal water content levels to central corneal thickness measurements performed by ultrasound or optical coherence tomography. Trends revealing increasing or decreasing corneal thickness are fair indicators of corneal water content by individual measurements are highly inaccurate due to the poorly understood relationship between corneal thickness and natural physiologic variation. Recently the utility of THz imaging to accuarately measure corneal water content has been explored on with rabbit models. Preliminary experiments revealed that contact with dielectric windows confounded imaging data and made it nearly impossible to deconvolve thickness variations due to contact from thickness variations due to water content variation. A follow up study with a new optical design allowed the acquisition of rabbit data and the results suggest that the observed, time varying contrast was due entirely to the water dynamics of the cornea. This paper presents the first ever in vivo images of human cornea. Five volunteers with healthy cornea were recruited and their eyes were imaged three times over the course of a few minutes with our novel imaging system. Noticeable changes in corneal reflectivity were observed and attributed to the drying of the tear film. The results suggest that clinically compatible, non-contact corneal imaging is feasible and indicate that signal acquired from non-contact imaging of the cornea is a complicated coupling of stromal water content and tear film.

  18. Elastic modulus and collagen organization of the rabbit cornea: epithelium to endothelium

    PubMed Central

    Thomasy, Sara M.; Krishna Raghunathan, Vijay; Winkler, Moritz; Reilly, Christopher M.; Sadeli, Adeline R.; Russell, Paul; Jester, James V.; Murphy, Christopher J.

    2013-01-01

    The rabbit is commonly used to evaluate new corneal prosthetics and study corneal wound healing. Knowledge of the stiffness of the rabbit cornea would better inform design and fabrication of keratoprosthetics and substrates with relevant mechanical properties for in vitro investigations of corneal cellular behavior. This study determined the elastic modulus of the rabbit corneal epithelium, anterior basement membrane (ABM), anterior and posterior stroma, Descemet’s membrane (DM) and endothelium using atomic force microscopy (AFM). In addition, three-dimensional collagen fiber organization of the rabbit cornea was determined using nonlinear optical high-resolution macroscopy. Elastic modulus as determined by AFM for each corneal layer was: epithelium 0.57 ± 0.29 kPa (mean ± SD), ABM 4.5 ± 1.2 kPa, anterior stroma 1.1 ± 0.6 kPa, posterior stroma 0.38 ± 0.22 kPa, DM 11.7 ± 7.4 kPa, and endothelium 4.1 ± 1.7 kPa. Biophysical properties, including elastic modulus, are unique for each layer of the rabbit cornea and are dramatically softer in comparison to the corresponding regions of the human cornea. Collagen fiber organization is also dramatically different between the two species with markedly less intertwining observed in the rabbit versus human cornea. Given that substratum stiffness considerably alters corneal cell behavior, keratoprosthetics that incorporate mechanical properties simulating the native human cornea may not elicit optimal cellular performance in rabbit corneas that have dramatically different elastic moduli. These data will allow for the design of substrates that better mimic the biomechanical properties of the corneal cellular environment. PMID:24084333

  19. Diabetic corneal neuropathy.

    PubMed Central

    Schultz, R O; Peters, M A; Sobocinski, K; Nassif, K; Schultz, K J

    1983-01-01

    Corneal epithelial lesions can be found in approximately one-half of asymptomatic patients with diabetes mellitus. These lesions are transient and clinically resemble the keratopathy seen in staphylococcal keratoconjunctivitis. Staphylococcal organisms, however, can be isolated in equal percentages from diabetic patients without keratopathy. Diabetic peripheral neuropathy was found to be related to the presence of diabetic keratopathy after adjusting for age with analysis of covariance. The strongest predictor of both keratopathy and corneal fluorescein staining was vibration perception threshold in the toes (P less than 0.01); and the severity of keratopathy was directly related to the degree of diminution of peripheral sensation. Other predictors of keratopathy were: reduced tear breakup time (P less than 0.03), type of diabetes (P less than 0.01), and metabolic status as indicated by c-peptide fasting (P less than 0.01). No significant relationships were found between the presence of keratopathy and tear glucose levels, endothelial cell densities, corneal thickness measurements, the presence of S epidermidis, or with duration of disease. It is our conclusion that asymptomatic epithelial lesions in the nontraumatized diabetic cornea can occur as a manifestation of generalized polyneuropathy and probably represent a specific form of corneal neuropathy. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:6676964

  20. Fibrinogen, Riboflavin, and UVA to Immobilize a Corneal Flap—Conditions for Tissue Adhesion

    PubMed Central

    Littlechild, Stacy L.; Brummer, Gage; Zhang, Yuntao; Conrad, Gary W.

    2012-01-01

    Purpose. Laser-assisted in situ keratomileus (LASIK) creates a permanent flap that remains non-attached to the underlying laser-modified stroma. This lack of permanent adhesion is a liability. To immobilize a corneal flap, a protocol using fibrinogen (FIB), riboflavin (RF), and ultraviolet (UVA) light (FIB+RF+UVA) was devised to re-adhere the flap to the stroma. Methods. A model flap was created using rabbit (Oryctolagus cuniculus) and shark (Squalus acanthias) corneas. Solutions containing FIB and RF were applied between corneal strips as glue. Experimental corneas were irradiated with long wavelength (365 nm) UVA. To quantify adhesive strength between corneal strips, the glue-tissue interface was subjected to a constant force while a digital force gauge recorded peak tension. Results. In the presence of FIB, substantive non-covalent interactions occurred between rabbit corneal strips. Adhesiveness was augmented if RF and UVA also were applied, suggesting formation of covalent bonds. Additionally, exposing both sides of rabbit corneas to UVA generated more adhesion than exposure from one side, suggesting that RF in the FIB solution catalyzes formation of covalent bonds at only the interface between stromal molecules and FIB closest to the UVA. In contrast, in the presence of FIB, shark corneal strips interacted non-covalently more substantively than those of rabbits, and adhesion was not augmented by applying RF+UVA, from either or both sides. Residual RF could be rinsed away within 1 hour. Conclusions. Glue solution containing FIB and RF, together with UVA treatment, may aid immobilization of a corneal flap, potentially reducing risk of flap dislodgement. PMID:22589434

  1. Topical and subcutaneous alpha-interferon fails to suppress corneal neovascularization.

    PubMed

    Nguyen, N; Goldberg, M; Pico, J; Kim, W; Abbott, R L; Levy, B

    1995-03-01

    Corneal neovascularization is a potentially blinding complication of a variety of corneal disorders. alpha-Interferon has been shown to inhibit endothelial cell migration and proliferation. It has been used successfully in the treatment of pediatric pulmonary hemangioma and hairy cell leukemia. This study was undertaken to evaluate the effect of topical and subcutaneous (s.c.) alpha-interferon on corneal neovascularization. Corneal neovascularization was induced in 40 male New Zealand white rabbits by placing silk sutures (7.0) bilaterally in each rabbit eye at the 3 and 9 o'clock positions of the cornea, 3 mm from the limbus. Animals were randomized into two main treatment groups for topical (group 1) and s.c. (group 2) administration of interferon. Group 1 (n = 24) was then randomized into four subgroups and treated daily with topical doses of (a) rabbit specific alpha-interferon; (b) alpha-interferon plus 1% prednisolone acetate; (c) 1% prednisolone acetate; and (d) buffered phosphate control. Group 2 (n = 16) was randomized into two subgroups that received s.c. injections every other day of (a) alpha-interferon and (b) phosphate buffer. Rate of corneal neovascularization was documented photographically, with the end-point being the arrival of vessels at the suture for each group. The results of this study indicated that at the concentration and dosing regimens we used, neither topical nor s.c. alpha-interferon inhibits the rate of corneal vascular growth significantly when compared with our phosphate buffered solution control group (p = 0.88 and p = 0.84, respectively). Prednisolone acetate appeared to be the most effective in inhibiting corneal neovascularization (p = 0.003).(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Modeling of Corneal and Retinal Pharmacokinetics after Periocular Drug Administration

    PubMed Central

    Amrite, Aniruddha C.; Edelhauser, Henry F.; Kompella, Uday B.

    2012-01-01

    Purpose To develop pharmacokinetics models to describe the disposition of small lipophilic molecules in the cornea and retina after periocular (subconjunctival or posterior subconjunctival) administration. Methods Compartmental pharmacokinetics analysis was performed on the corneal and retinal data obtained after periocular administration of 3 mg of celecoxib (a selective COX-2 inhibitor) to Brown Norway (BN) rats. Berkeley Madonna, a differential and difference equation–based modeling software, was used for the pharmacokinetics modeling. The data were fit to different compartment models with first-order input and disposition, and the best fit was selected on the basis of coefficient of regression and Akaike information criteria (AIC). The models were validated by using the celecoxib data from a prior study in Sprague-Dawley (SD) rats. The corneal model was also fit to the corneal data for prednisolone at a dose of 2.61 mg in albino rabbits, and the model was validated at two other doses of prednisolone (0.261 and 26.1 mg) in these rabbits. Model simulations were performed with the finalized model to understand the effect of formulation on corneal and retinal pharmacokinetics after periocular administration. Results Celecoxib kinetics in the BN rat cornea can be described by a two-compartment (periocular space and cornea, with a dissolution step for periocular formulation) model, with parallel elimination from the cornea and the periocular space. The inclusion of a distribution compartment or a dissolution step for celecoxib suspension did not lead to an overall improvement in the corneal data fit compared with the two-compartment model. The more important parameter for enhanced fit and explaining the apparent lack of an increase phase in the corneal levels is the inclusion of the initial leak-back of the dose from the periocular space into the precorneal area. The predicted celecoxib concentrations from this model also showed very good correlation (r = 0

  3. Corneal Hydration Control in Fuchs' Endothelial Corneal Dystrophy

    PubMed Central

    Wacker, Katrin; McLaren, Jay W.; Kane, Katrina M.; Baratz, Keith H.; Patel, Sanjay V.

    2016-01-01

    Purpose To assess corneal hydration control across a range of severity of Fuchs' endothelial corneal dystrophy (FECD) by measuring the percent recovery per hour (PRPH) of central corneal thickness after swelling the cornea and to determine its association with corneal morphologic parameters. Methods Twenty-three corneas of 23 phakic FECD patients and 8 corneas of 8 healthy control participants devoid of guttae were graded (modified Krachmer scale). Effective endothelial cell density (ECDe) was determined from the area of guttae and local cell density in confocal microscopy images. Steady-state corneal thickness (CTss) and standardized central corneal backscatter were derived from Scheimpflug images. Corneal swelling was induced by wearing a low-oxygen transmissible contact lens for 2 hours in the morning. De-swelling was measured over 5 hours after lens removal or until corneal thickness returned to CTss. Percent recovery per hour was 100 × (1 – e−k), where k was determined from CT(t) = (de−kt) + CTss, and where d was the initial change from CTss. Results After contact lens wear, corneas swelled by 9% (95% CI 9–10). Percent recovery per hour was 49%/h (95% CI 41–57) in controls and 37%/h in advanced FECD (95% CI 29–43, P = 0.028). Low PRPH was associated with disease severity, low ECDe, and increased anterior and posterior corneal backscatter. Anterior backscatter was associated with PRPH in a multivariable model (R2 = 0.44). Conclusions Corneal hydration control is impaired in advanced FECD and is inversely related to anterior corneal backscatter. Anterior corneal backscatter might serve as an indicator of impaired endothelium in FECD. PMID:27661858

  4. WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis.

    PubMed

    Ouyang, Hong; Xue, Yuanchao; Lin, Ying; Zhang, Xiaohui; Xi, Lei; Patel, Sherrina; Cai, Huimin; Luo, Jing; Zhang, Meixia; Zhang, Ming; Yang, Yang; Li, Gen; Li, Hairi; Jiang, Wei; Yeh, Emily; Lin, Jonathan; Pei, Michelle; Zhu, Jin; Cao, Guiqun; Zhang, Liangfang; Yu, Benjamin; Chen, Shaochen; Fu, Xiang-Dong; Liu, Yizhi; Zhang, Kang

    2014-07-17

    The surface of the cornea consists of a unique type of non-keratinized epithelial cells arranged in an orderly fashion, and this is essential for vision by maintaining transparency for light transmission. Cornea epithelial cells (CECs) undergo continuous renewal from limbal stem or progenitor cells (LSCs), and deficiency in LSCs or corneal epithelium--which turns cornea into a non-transparent, keratinized skin-like epithelium--causes corneal surface disease that leads to blindness in millions of people worldwide. How LSCs are maintained and differentiated into corneal epithelium in healthy individuals and which key molecular events are defective in patients have been largely unknown. Here we report establishment of an in vitro feeder-cell-free LSC expansion and three-dimensional corneal differentiation protocol in which we found that the transcription factors p63 (tumour protein 63) and PAX6 (paired box protein PAX6) act together to specify LSCs, and WNT7A controls corneal epithelium differentiation through PAX6. Loss of WNT7A or PAX6 induces LSCs into skin-like epithelium, a critical defect tightly linked to common human corneal diseases. Notably, transduction of PAX6 in skin epithelial stem cells is sufficient to convert them to LSC-like cells, and upon transplantation onto eyes in a rabbit corneal injury model, these reprogrammed cells are able to replenish CECs and repair damaged corneal surface. These findings suggest a central role of the WNT7A-PAX6 axis in corneal epithelial cell fate determination, and point to a new strategy for treating corneal surface diseases.

  5. Noncontact depth-resolved micro-scale corneal elastography

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Larin, Kirill V.

    2015-03-01

    Noninvasive high-resolution depth-resolved measurement of corneal biomechanics is of great clinical significance for improving the diagnosis and optimizing the treatment of various degenerated ocular diseases. Here, we report a micro-scale optical coherence elastography (OCE) method that enables noncontact assessment of the depthwise elasticity distribution in the cornea. The OCE system combines a focused air-puff device with phase-sensitive optical coherence tomography (OCT). Low-pressure short-duration air stream is used to load the cornea with the localized displacement at micron level. The phase-resolved OCT detection with nano-scale sensitivity probes the induced corneal deformation at various locations within a scanning line, providing the ultra-fast imaging of the corneal lamb wave propagation. With spectral analysis, the amplitude spectra and the phase spectra are available for the estimation of the frequency range of the lamb wave and the quantification of the wave propagation, respectively. Curved propagation paths following the top and bottom corneal boundaries are selected inside the cornea for measuring the phase velocity of the lamb wave at the major frequency components over the whole depths. Our pilot experiments on ex vivo rabbit eyes indicate the distinct stiffness of different layers in the cornea, including the epithelium, the anterior stroma, the posterior stroma, and the innermost region, which demonstrates the feasibility of this micro-scale OCE method for noncontact depth-resolved corneal elastography. Also, the quantification of the lamb wave dispersion in the cornea could lead to the measurement of the elastic modulus, suggesting the potential of this method for quantitative monitoring of the corneal biomechanics.

  6. Transparent, resilient human amniotic membrane laminates for corneal transplantation.

    PubMed

    Hariya, Takehiro; Tanaka, Yuji; Yokokura, Shunji; Nakazawa, Toru

    2016-09-01

    This study evaluated a new technique to toughen and optically clarify human amniotic membrane (AM) tissue, which is naturally thin and clouded, and determined the suitability of the altered tissue for corneal transplantation. The technique created a tissue laminate by repeatedly depositing wet layers of AM and dehydrating them, followed by chemical cross-linking to tighten integration at the layer interfaces and within the layers, thereby improving the physical properties of the laminates by increasing light transmittance and mechanical strength. Interestingly, this improvement only occurred in laminates with at least 4 layers. Cross-linking also improved the resistance of the laminates to collagenase degradation, such as occurs in corneal melting. This study also confirmed that the AM tissue was biocompatible by inserting AM monolayers into the corneal stroma of rabbits, and by performing lamellar keratoplasty in rabbits with cross-linked AM laminates. The laminates were sufficiently thick and resilient to need only one set of sutures, whereas in previously described multi-layer AM transplantation technique, each layer required separate sutures. The current findings are a promising advance in the engineering of novel biomaterials and the alteration of existing tissues for medical use. PMID:27267629

  7. Nanomedicine Approaches for Corneal Diseases

    PubMed Central

    Chaurasia, Shyam S.; Lim, Rayne R.; Lakshminarayanan, Rajamani; Mohan, Rajiv R.

    2015-01-01

    Corneal diseases are the third leading cause of blindness globally. Topical nonsteroidal anti-inflammatory drugs (NSAIDs), steroids, antibiotics and tissue transplantation are currently used to treat corneal pathological conditions. However, barrier properties of the ocular surface necessitate high concentration of the drugs applied in the eye repeatedly. This often results in poor efficacy and several side-effects. Nanoparticle-based molecular medicine seeks to overcome these limitations by enhancing the permeability and pharmacological properties of the drugs. The promise of nanomedicine approaches for treating corneal defects and restoring vision without side effects in preclinical animal studies has been demonstrated. Numerous polymeric, metallic and hybrid nanoparticles capable of transporting genes into desired corneal cells to intercept pathologic pathways and processes leading to blindness have been identified. This review provides an overview of corneal diseases, nanovector properties and their applications in drug-delivery and corneal disease management. PMID:25941990

  8. Computational Model for Corneal Transplantation

    NASA Astrophysics Data System (ADS)

    Cabrera, Delia

    2003-10-01

    We evaluated the refractive consequences of corneal transplants using a biomechanical model with homogeneous and inhomogeneous Young's modulus distributions within the cornea, taking into account ablation of some stromal tissue. A FEM model was used to simulate corneal transplants in diseased cornea. The diseased cornea was modeled as an axisymmetric structure taking into account a nonlinearly elastic, isotropic formulation. The model simulating the penetrating keratoplasty procedure gives more change in the postoperative corneal curvature when compared to the models simulating the anterior and posterior lamellar graft procedures. When a lenticle shaped tissue was ablated in the graft during the anterior and posterior keratoplasty, the models provided an additional correction of about -3.85 and -4.45 diopters, respectively. Despite the controversy around the corneal thinning disorders treatment with volume removal procedures, results indicate that significant changes in corneal refractive power could be introduced by a corneal transplantation combined with myopic laser ablation.

  9. Comparison of treatments for bullous keratopathy in rabbits

    PubMed Central

    ZHAO, HAIXIA; LUO, YUNNA; NIU, CHUNMEI; GUAN, WENYING

    2013-01-01

    The aim of the present study was to compare deep lamellar endothelial keratoplasty (DLEK) and penetrating keratoplasty (PK) treatments for bullous keratopathy (BK). In total, 36 healthy New Zealand white rabbits were randomly divided into 3 groups termed the experimental, DLEK and PK groups. The experimental control group received no treatment. The DLEK and PK groups were observed for corneal astigmatism at 1, 2, or 3 months post-surgery using a corneal topography instrument and a slit lamp microscope. The incidence of immune rejection after 3 months of recovery was determined using hematoxylin and eosin (H&E) staining. The corneal specimens from the surgery groups were compared with those from the control group. In the 12 rabbit eyes that underwent the DLEK surgery, the central cornea became clear after 1 week. After 3 months, these corneas were almost transparent and no eye infections or other complications were observed in 10 of the eyes, while surgical perforations in 2 eyes led to surgical lamellar failure. In the PK surgery group, in which 12 rabbit eyes were also treated, nine were almost transparent after 3 months of recovery, while three eyes were immunologically rejected due to the corneal grafts. The occur-rences of corneal astigmatism that were observed following DLEK and PK treatment were significantly different after 1, 2 and 3 months of recovery (P<0.05). Normal corneal staining was observed in the DLEK and PK rabbits subjected to H&E staining after 3 months of recovery. A BK animal model was established by curetting the Descemet’s membrane (DM film). In comparison with PK, DLEK is a superior surgical treatment for BK. PMID:23737903

  10. Generation and Feasibility Assessment of a New Vehicle for Cell-Based Therapy for Treating Corneal Endothelial Dysfunction.

    PubMed

    Okumura, Naoki; Kakutani, Kazuya; Inoue, Ryota; Matsumoto, Daiki; Shimada, Tomoki; Nakahara, Makiko; Kiyanagi, Yumiko; Itoh, Takehiro; Koizumi, Noriko

    2016-01-01

    The corneal endothelium maintains corneal transparency by its pump and barrier functions; consequently, its decompensation due to any pathological reason causes severe vision loss due to corneal haziness. Corneal transplantation is the only therapeutic choice for treating corneal endothelial dysfunction, but associated problems, such as a shortages of donor corneas, the difficulty of the surgical procedure, and graft failure, still need to be resolved. Regenerative medicine is attractive to researchers as a means of providing innovative therapies for corneal endothelial dysfunction, as it now does for other diseases. We previously demonstrated the successful regeneration of corneal endothelium in animal models by injecting cultured corneal endothelial cells (CECs) in combination with a Rho kinase (ROCK) inhibitor. The purpose of the present study was to optimize the vehicle for clinical use in cell-based therapy. Our screening of cell culture media revealed that RELAR medium promoted CEC adhesion. We then modified RELAR medium by removing hormones, growth factors, and potentially toxic materials to generate a cell therapy vehicle (CTV) composed of amino acid, salts, glucose, and vitamins. Injection of CECs in CTV enabled efficient engraftment and regeneration of the corneal endothelium in the rabbit corneal endothelial dysfunction model, with restoration of a transparent cornea. The CECs retained >85% viability after a 24 hour preservation as a cell suspension in CTV at 4°C and maintained their potency to regenerate the corneal endothelium in vivo. The vehicle developed here is clinically applicable for cell-based therapy aimed at treating the corneal endothelium. Our strategy involves the generation of vehicle from a culture medium appropriate for a given cell type by removing materials that are not favorable for clinical use. PMID:27355373

  11. Generation and Feasibility Assessment of a New Vehicle for Cell-Based Therapy for Treating Corneal Endothelial Dysfunction

    PubMed Central

    Okumura, Naoki; Kakutani, Kazuya; Inoue, Ryota; Matsumoto, Daiki; Shimada, Tomoki; Nakahara, Makiko; Kiyanagi, Yumiko; Itoh, Takehiro; Koizumi, Noriko

    2016-01-01

    The corneal endothelium maintains corneal transparency by its pump and barrier functions; consequently, its decompensation due to any pathological reason causes severe vision loss due to corneal haziness. Corneal transplantation is the only therapeutic choice for treating corneal endothelial dysfunction, but associated problems, such as a shortages of donor corneas, the difficulty of the surgical procedure, and graft failure, still need to be resolved. Regenerative medicine is attractive to researchers as a means of providing innovative therapies for corneal endothelial dysfunction, as it now does for other diseases. We previously demonstrated the successful regeneration of corneal endothelium in animal models by injecting cultured corneal endothelial cells (CECs) in combination with a Rho kinase (ROCK) inhibitor. The purpose of the present study was to optimize the vehicle for clinical use in cell-based therapy. Our screening of cell culture media revealed that RELAR medium promoted CEC adhesion. We then modified RELAR medium by removing hormones, growth factors, and potentially toxic materials to generate a cell therapy vehicle (CTV) composed of amino acid, salts, glucose, and vitamins. Injection of CECs in CTV enabled efficient engraftment and regeneration of the corneal endothelium in the rabbit corneal endothelial dysfunction model, with restoration of a transparent cornea. The CECs retained >85% viability after a 24 hour preservation as a cell suspension in CTV at 4°C and maintained their potency to regenerate the corneal endothelium in vivo. The vehicle developed here is clinically applicable for cell-based therapy aimed at treating the corneal endothelium. Our strategy involves the generation of vehicle from a culture medium appropriate for a given cell type by removing materials that are not favorable for clinical use. PMID:27355373

  12. Fuchs’ corneal dystrophy

    PubMed Central

    Eghrari, Allen O; Gottsch, John D

    2010-01-01

    Fuchs’ corneal dystrophy (FCD) is a progressive, hereditary disease of the cornea first described a century ago by the Austrian ophthalmologist Ernst Fuchs. Patients often present in the fifth to sixth decade of life with blurry morning vision that increases in duration as the disease progresses. Primarily a condition of the posterior cornea, characteristic features include the formation of focal excrescences of Descemet membrane termed ‘guttae’, loss of endothelial cell density and end-stage disease manifested by corneal edema and the formation of epithelial bullae. Recent advances in our understanding of the genetic and pathophysiological mechanisms of the disease, as well as the application of new imaging modalities and less invasive surgical procedures, present new opportunities for improved outcomes among patients with FCD. PMID:20625449

  13. Lamellar corneal transplantation.

    PubMed

    Arenas, Eduardo; Esquenazi, Salomon; Anwar, Mohammad; Terry, Mark

    2012-11-01

    Penetrating keratoplasty (PK) has been the gold standard for the surgical treatment of most corneal pathologies; lamellar keratoplasty that only replaces the diseased corneal layers has recently evolved as an alternative, however. Innovations in surgical technique and instrumentation provide visual outcomes comparable to PK. We review the indications and outcomes of various techniques of anterior lamellar surgery developed to treat stromal disorders. Similarly, we discuss posterior lamellar keratoplasty techniques such as Descemet stripping automated endothelial keratoplasty and Descemet membrane endothelial keratoplasty. Posterior lamellar keratoplasty provides faster visual rehabilitation than PK in cases of Fuchs endothelial dystrophy and pseudophakic bullous keratopathy. In addition, for medically unresponsive infectious keratitis, therapeutic anterior lamellar keratoplasty yields similar graft survival to PK without an increased risk of disease recurrence.

  14. Corneal thickness in glaucoma.

    PubMed

    De Cevallos, E; Dohlman, C H; Reinhart, W J

    1976-02-01

    The central corneal stromal thickness of patients with open angle glaucoma, secondary glaucoma (the majority aphakic), or a history of unilateral acute angle closure glaucoma were measured and compared with the stromal thickness of a group of normal patients. In open angle glaucoma, there was a small but significant increase in the average stromal thickness. This thickness increase was, in all likelihood, due to an abnormal function of the endothelium in this disease since the level of the intraocular pressure did not seem to be a factor. There was no correlation between stromal thickness and duration of the glaucoma or type of anti-glaucomatous medication. Most cases of secondary glaucome, controlled medically or not, had markedly increased corneal thickness, again, most likely, due to endothelial damage rather than to level of intraocular pressure. After an angle closure attack, permanent damage to the cornea was found to be rare. PMID:1247273

  15. Non-mulberry Silk Fibroin Biomaterial for Corneal Regeneration

    PubMed Central

    Hazra, Sarbani; Nandi, Sudip; Naskar, Deboki; Guha, Rajdeep; Chowdhury, Sushovan; Pradhan, Nirparaj; Kundu, Subhas C.; Konar, Aditya

    2016-01-01

    Purpose: Successful repair of a damaged corneal surface is a great challenge and may require the use of a scaffold that supports cell growth and differentiation. Amniotic membrane is currently used for this purpose, in spite of its limitations. A thin transparent silk fibroin film from non-mulberry Antheraea mylitta (Am) has been developed which offers to be a promising alternative. The silk scaffolds provide sufficient rigidity for easy handling, the scaffolds support the sprouting, migration, attachment and growth of epithelial cells and keratocytes from rat corneal explants; the cells form a cell sheet, preserve their phenotypes, express cytokeratin3 and vimentin respectively. The films also support growth of limbal stem cell evidenced by expression of ABCG2. The cell growth on the silk film and the amniotic membrane is comparable. The implanted film within the rabbit cornea remains transparent, stable. The clinical examination as well as histology shows absence of any inflammatory response or neovascularization. The corneal surface integrity is maintained; tear formation, intraocular pressure and electroretinography of implanted eyes show no adverse changes. The silk fibroin film from non-mulberry silk worms may be a worthy candidate for use as a corneal scaffold. PMID:26908015

  16. The immunobiology of corneal transplantation.

    PubMed

    Williams, Keryn A; Coster, Douglas J

    2007-10-15

    Corneal allotransplantation is highly successful in the short term, but much less successful in the longer term. Many corneal grafts in recipients with corneal neovascularization or the sequelae of ocular inflammation undergo irreversible rejection, despite topical immunosuppression with glucocorticosteroids. Sensitization to cornea-derived alloantigen proceeds by both direct and indirect routes, but the anatomic location of sensitization remains unclear. Multiple and redundant mechanisms operate in the effector phase of corneal graft rejection, which is largely cell-mediated rather than antibody-mediated. Human leukocyte antigen matching may improve outcomes in high-risk patients but systemic immunosuppression is frequently ineffective and is seldom used.

  17. Corneal Cross-Linking (with a Partial Deepithelization) in Keratoconus with Five Years of Follow-Up

    PubMed Central

    Galvis, Virgilio; Tello, Alejandro; Carreño, Néstor I.; Ortiz, Alvaro I.; Barrera, Rodrigo; Rodriguez, Carlos Julián; Ochoa, Miguel E.

    2016-01-01

    We performed a retrospective interventional case series including 80 eyes of 48 patients with keratoconus (KC) who were treated with modified corneal cross-linking (CXL) for KC (with a partial deepithelization in a pattern of stripes). The average follow-up was 5.8 years (with a minimum of 5 years). At the last follow-up visit, compared with preoperative values, there were no significant changes in spherical equivalent, average keratometry, corneal thickness, corneal hysteresis, or corneal resistance factor. The distance-corrected visual acuity was 20/39 preoperatively and 20/36 postoperatively (P = 0.3). The endothelial cell count decreased by 4.7% (P < 0.005). These findings suggest that this modified corneal CXL technique is a safe and effective alternative to halt the progression of KC up to five years after the procedure. However, some concerns remain as to whether this technique can affect in some degree the corneal endothelial cells. PMID:27199574

  18. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea

    PubMed Central

    Zheng, Luo Luo; Vanchinathan, Vijay; Dalal, Roopa; Noolandi, Jaan; Waters, Dale J.; Hartmann, Laura; Cochran, Jennifer R.; Frank, Curtis W.; Yu, Charles Q.; Ta, Christopher N.

    2015-01-01

    We evaluated the biocompatibility of a poly(ethylene glycol) and poly(acrylic acid) (PEG/PAA) interpenetrating network hydrogel designed for artificial cornea in a rabbit model. PEG/PAA hydrogel measuring 6 mm in diameter was implanted in the corneal stroma of twelve rabbits. Stromal flaps were created with a microkeratome. Randomly, six rabbits were assigned to bear the implant for 2 months, two rabbits for 6 months, two rabbits for 9 months, one rabbit for 12 months, and one rabbit for 16 months. Rabbits were evaluated monthly. After the assigned period, eyes were enucleated, and corneas were processed for histology and immunohistochemistry. There were clear corneas in three of six rabbits that had implantation of hydrogel for 2 months. In the six rabbits with implant for 6 months or longer, the corneas remained clear in four. There was a high rate of epithelial defect and corneal thinning in these six rabbits. One planned 9-month rabbit developed extrusion of implant at 4 months. The cornea remained clear in the 16-month rabbit but histology revealed epithelial in-growth. Intrastromal implantation of PEG/PAA resulted in a high rate of long-term complications. PMID:25778285

  19. Assessment of corneal hydration sensing in the terahertz band: in vivo results at 100 GHz

    NASA Astrophysics Data System (ADS)

    Bennett, David; Taylor, Zachary; Tewari, Pria; Sung, Sijun; Maccabi, Ashkan; Singh, Rahul; Culjat, Martin; Grundfest, Warren; Hubschman, Jean-Pierre; Brown, Elliott

    2012-09-01

    Terahertz corneal hydration sensing has shown promise in ophthalmology applications and was recently shown to be capable of detecting water concentration changes of about two parts in a thousand in ex vivo corneal tissues. This technology may be effective in patient monitoring during refractive surgery and for early diagnosis and treatment monitoring in diseases of the cornea. In this work, Fuchs dystrophy, cornea transplant rejection, and keratoconus are discussed, and a hydration sensitivity of about one part in a hundred is predicted to be needed to successfully distinguish between diseased and healthy tissues in these applications. Stratified models of corneal tissue reflectivity are developed and validated using ex vivo spectroscopy of harvested porcine corneas that are hydrated using polyethylene glycol solutions. Simulation of the cornea's depth-dependent hydration profile, from 0.01 to 100 THz, identifies a peak in intrinsic reflectivity contrast for sensing at 100 GHz. A 100 GHz hydration sensing system is evaluated alongside the current standard ultrasound pachymetry technique to measure corneal hydration in vivo in four rabbits. A hydration sensitivity, of three parts per thousand or better, was measured in all four rabbits under study. This work presents the first in vivo demonstration of remote corneal hydration sensing.

  20. Corneal Biomechanical Properties in Myopic Eyes Measured by a Dynamic Scheimpflug Analyzer

    PubMed Central

    Wang, Jingyi; Li, Ying; Jin, Yumei; Yang, Xue; Zhao, Chan; Long, Qin

    2015-01-01

    Purpose. To evaluate the corneal biomechanical parameters in myopic and emmetropic eyes using Corneal Visualization Scheimpflug Technology (CorVis ST). Methods. 103 myopic and emmetropic eyes of 103 patients were examined. Corneal biomechanical parameters, axial length, and mean keratometry were measured using CorVis ST, IOL Master, and topography, respectively. Corneal biomechanical properties were compared within four groups. Bivariate correlation analysis was used to assess the relationship between corneal biomechanical parameters and ocular characteristics. Results. Four of ten corneal biomechanical parameters, namely, deformation amplitude (DA), first- and second-applanation time (A1-time, A2-time), and radius at highest concavity (HC radius), were significantly different within the four groups (P < 0.05). In correlation analysis, DA was positively correlated with axial length (r = 0.20, P = 0.04); A2-time was positively correlated with spherical equivalent (SE) (r = 0.24, P = 0.02); HC radius was positively correlated with SE (r = 0.24, P = 0.02) and was negatively correlated with mean keratometry (r = −0.20, P = 0.046) and axial length (r = −0.21, P = 0.03). Conclusions. The corneal refraction-related biomechanical alterations were associated with ocular characteristics. Highly myopic eyes exhibited longer DA and smaller HC radius than do moderately myopic eyes; the eyes with longer axial length tend to have less corneal stiffness and are easier to deform under stress. PMID:26576291

  1. Corneal amyloidosis associated with keratoconus.

    PubMed

    Stern, G A; Knapp, A; Hood, C I

    1988-01-01

    Nodular, gray-white, central corneal opacities which extended from the subepithelial zone through the anterior four fifths of the stroma developed in a 50-year-old man with a longstanding history of hard contact lens wear for keratoconus. Results of histopathologic analysis of the corneal button obtained at the time of penetrating keratoplasty disclosed that the opacities were composed of amyloid. Corneal amyloidosis is rarely found in association with keratoconus. Although there were some similarities in the pattern of amyloid deposition to that seen in primary familial amyloidosis of the cornea, the authors believe that their patient is more likely to have had a secondary amyloidosis. Corneal amyloidosis should be considered in keratoconus patients with development of unusual forms of central corneal opacification. PMID:3278260

  2. Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking

    PubMed Central

    Twa, Michael D.; Li, Jiasong; Vantipalli, Srilatha; Singh, Manmohan; Aglyamov, Salavat; Emelianov, Stanislav; Larin, Kirill V.

    2014-01-01

    Corneal collagen cross-linking (CXL) is a clinical treatment for keratoconus that structurally reinforces degenerating ocular tissue, thereby limiting disease progression. Clinical outcomes would benefit from noninvasive methods to assess tissue material properties in affected individuals. Regional variations in tissue properties were quantified before and after CXL in rabbit eyes using optical coherence elastography (OCE) imaging. Low-amplitude (<1µm) elastic waves were generated using micro air-pulse stimulation and the resulting wave amplitude and speed were measured using phase-stabilized swept-source OCE. OCE imaging following CXL treatment demonstrates increased corneal stiffness through faster elastic wave propagation speeds and lower wave amplitudes. PMID:24877005

  3. Corneal seal device

    NASA Technical Reports Server (NTRS)

    Baehr, E. F. (Inventor)

    1977-01-01

    A corneal seal device is provided which, when placed in an incision in the eye, permits the insertion of a surgical tool or instrument through the device into the eye. The device includes a seal chamber which opens into a tube which is adapted to be sutured to the eye and serves as an entry passage for a tool. A sealable aperture in the chamber permits passage of the tool through the chamber into the tube and hence into the eye. The chamber includes inlet ports adapted to be connected to a regulated source of irrigation fluid which provides a safe intraocular pressure.

  4. Experimental study on the mechanical strain of corneal collagen.

    PubMed

    Avetisov, S E; Bubnova, I A; Novikov, I A; Antonov, A A; Siplivyi, V I

    2013-06-21

    Currently, investigations of biomechanical properties of the fibrous tunic are becoming even more topical, especially for diagnosis of corneal ectatic disease, as well as correct interpretation of intraocular pressure (IOP) parameters, particularly in patients with prior surgery on cornea. The study principle is based on the ability of substances to change optical anisotropy depending on mechanical strain applied to them. An experimental set-up was constructed which allows assessment of polarization degree of light which is emitted during luminescence of strained collagen. The study was performed on 18 corneoscleral discs of chinchilla rabbit eyes at 15 and 50mm Hg pressure, among them in 6 cases before and after making radial incisions, and in 6 cases before and after conducting the mechanical cornea abrasions that were asymmetrical by depth until reaching the local zone of iatrogenic keratectasia. Corneal collagen mechanical strain mappings were formed on 3 experimental models (intact cornea, cornea post radial keratotomy and keratectasia) under intra-chamber pressure of 15 and 50mm Hg. Corneal collagen mechanical strain is evenly allocated in the intact cornea. After radial keratotomy the main mechanical loading was concentrated over the middle part of corneal periphery, particularly in the bottom of keratotomic incisions. The increased intra-chamber pressure made the strain rise in those models. Upon cornea abrasion the main straining is distributed within the thinning zone, and the increase of intra-chamber pressure only increases the load over residual stroma. A new principle of corneal biomechanical properties investigation based on assessment of degree of light polarization emitted during luminescence of strained collagen, has been proposed and experimentally tested. PMID:23680349

  5. Intrastromal Delivery of Bevacizumab Using Microneedles to Treat Corneal Neovascularization

    PubMed Central

    Kim, Yoo C.; Grossniklaus, Hans E.; Edelhauser, Henry F.; Prausnitz, Mark R.

    2014-01-01

    Purpose. This study tested the hypothesis that highly targeted intrastromal delivery of bevacizumab using coated microneedles allows dramatic dose sparing compared with subconjunctival and topical delivery for treatment of corneal neovascularization. Methods. Stainless steel microneedles 400 μm in length were coated with bevacizumab. A silk suture was placed in the cornea approximately 1 mm from the limbus to induce corneal neovascularization in the eyes of New Zealand white rabbits that were divided into different groups: untreated, microneedle delivery, topical eye drop, and subconjunctival injection of bevacizumab. All drug treatments were initiated 4 days after suture placement and area of neovascularization was measured daily by digital photography for 18 days. Results. Eyes treated once with 4.4 μg bevacizumab using microneedles reduced neovascularization compared with untreated eyes by 44% (day 18). Eyes treated once with 2500 μg bevacizumab using subconjunctival injection gave similar results to microneedle-treated eyes. Eyes treated once with 4.4 μg subconjunctival bevacizumab showed no significant effect compared with untreated eyes. Eyes treated with 52,500 μg bevacizumab by eye drops three times per day for 14 days reduced the neovascularization area compared with untreated eyes by 6% (day 18), which was significantly less effective than the single microneedle treatment. Visual exam and histological analysis showed no observable effect of microneedle treatment on corneal transparency or microanatomical structure. Conclusions. This study shows that microneedles can target drug delivery to corneal stroma in a minimally invasive way and demonstrates effective suppression of corneal neovascularization after suture-induced injury using a much lower dose compared with conventional methods. PMID:25212779

  6. Topographic corneal changes after collagen cross-linking in patients with corneal keratoconus

    PubMed Central

    Razmjoo, Hasan; Nasrollahi, Alireza Peyman Kobra; Salam, Hasan; Karbasi, Najmeh; Najarzadegan, Mohammad Reza

    2013-01-01

    Background: Corneal collagen cross-linking with riboflavin, also known as collagen cross-linking (CXL), involves the application of riboflavin solution to the eye that is activated by illumination with ultraviolet A (UVA) light. We survey here the topographic corneal changes one year after CXL in patients with corneal keratoconus. Materials and Methods: This prospective randomized clinical trial study comprised 66 patients with progression of keratoconus during one year who were enrolled at Feiz University Referral Eye Center in Isfahan. Before and after the operation, patients were examined with slit lamp and funduscopic examinations and measurement of uncorrected visual acuity (UCVA), and best spectacle-corrected visual acuity (BSCVA) was done with a logarithm of minimal angle of resolution (logMAR) scale. Corneal topographic and pachymetry values were derived from Orbscan II. The paired t-test test was used for statistical analyses with SPSS software version 20 (SPSS Inc., Chicago, IL, USA). Results: All 66 patients completed postoperative follow-up at 12 months. The mean age of the patients was 22.4 ± 5.4 years (range: 18-29 years). Thirty-six (54.55%) subjects were men and 30 (45.45%) were women. The mean preoperative sphere was −2.66 ± 2.14 diopter (D), the mean cylinder was −3.97 ± 2.29, and the mean spherical equivalent (SE) was −4.64 ± 2.56. Postoperatively, the mean sphere was −2.22 ± 2.57 D, the mean cylinder was −3.60 ± 2.40 D, and SE was −4.02 ± 2.93 D (P = 0.037). SE also demonstrated a mean difference of 0.62 ± 0.37 D significantly (P = 0.006). The mean diameter of preoperative posterior best-fit sphere (BFS) was 6.33 ± 0.35mm (range: 5.51-7.73 mm) before operation, and it improved to 6.28 ± 0.34mm (range: 4.36-6.13 mm) after operation; the difference was significant (P = 0.039). Conclusion: Our study showed a significant improvement in topographic corneal changes and refractive results in patients with corneal ectasia after CXL

  7. Ribonuclease 5 facilitates corneal endothelial wound healing via activation of PI3-kinase/Akt pathway

    PubMed Central

    Kim, Kyoung Woo; Park, Soo Hyun; Lee, Soo Jin; Kim, Jae Chan

    2016-01-01

    To maintain corneal transparency, corneal endothelial cells (CECs) exert a pump function against aqueous inflow. However, human CECs are arrested in the G1-phase and non-proliferative in vivo. Thus, treatment of corneal endothelial decompensation is limited to corneal transplantation, and grafts are vulnerable to immune rejection. Here, we show that ribonuclease (RNase) 5 is more highly expressed in normal human CECs compared to decompensated tissues. Furthermore, RNase 5 up-regulated survival of CECs and accelerated corneal endothelial wound healing in an in vitro wound of human CECs and an in vivo cryo-damaged rabbit model. RNase 5 treatment rapidly induced accumulation of cytoplasmic RNase 5 into the nucleus, and activated PI3-kinase/Akt pathway in human CECs. Moreover, inhibition of nuclear translocation of RNase 5 using neomycin reversed RNase 5-induced Akt activation. As a potential strategy for proliferation enhancement, RNase 5 increased the population of 5-bromo-2′-deoxyuridine (BrdU)-incorporated proliferating CECs with concomitant PI3-kinase/Akt activation, especially in CECs deprived of contact-inhibition. Specifically, RNase 5 suppressed p27 and up-regulated cyclin D1, D3, and E by activating PI3-kinase/Akt in CECs to initiate cell cycle progression. Together, our data indicate that RNase 5 facilitates corneal endothelial wound healing, and identify RNase 5 as a novel target for therapeutic exploitation. PMID:27526633

  8. Silk Fibroin as a Biomaterial Substrate for Corneal Epithelial Cell Sheet Generation

    PubMed Central

    Liu, Jingbo; Lawrence, Brian D.; Liu, Aihong; Schwab, Ivan R.; Oliveira, Lauro A.; Rosenblatt, Mark I.

    2012-01-01

    Purpose. To evaluate a silk fibroin (SF) biomaterial as a substrate for corneal epithelial cell proliferation, differentiation, and stratification in vitro compared with denuded human amniotic membrane (AM). Methods. Primary human and rabbit corneal epithelial cells and immortalized human corneal limbal epithelial cells were cultured on the SF and denuded AM, respectively. The biological cell behavior, including the morphology, proliferation, differentiation, and stratification, on the two substrates was compared and analyzed. Results. Corneal epithelial cells can adhere and proliferate on the SF and denuded AM with a cobblestone appearance, abundant microvilli on the surface, and wide connection with the adjacent cells. MTT assay showed that cell proliferation on denuded AM was statistically higher than that on SF at 24 and 72 hours after plating (P = 0.001 and 0.0005, respectively). Expression of ΔNp63a and keratin 3/12 was detected in primary cell cultures on the two substrates with no statistical difference. When cultured at the air-liquid interface for 7 days, cells on SF could form a comparable stratified graft with a 2- to 3-cell layering, which compared similarly to AM cultures. Conclusions. SF, a novel biomaterial, could support corneal epithelial cells to proliferate, differentiate, and stratify, retaining the normal characteristic epithelium phenotype. Compared with AM, its unique features, including the transparency, ease of handling, and transfer, and inherent freedom from disease transmission, make it a promising substrate for corneal wound repair and tissue-engineering purposes. PMID:22661480

  9. Corneal structure and transparency

    PubMed Central

    Meek, Keith M.; Knupp, Carlo

    2015-01-01

    The corneal stroma plays several pivotal roles within the eye. Optically, it is the main refracting lens and thus has to combine almost perfect transmission of visible light with precise shape, in order to focus incoming light. Furthermore, mechanically it has to be extremely tough to protect the inner contents of the eye. These functions are governed by its structure at all hierarchical levels. The basic principles of corneal structure and transparency have been known for some time, but in recent years X-ray scattering and other methods have revealed that the details of this structure are far more complex than previously thought and that the intricacy of the arrangement of the collagenous lamellae provides the shape and the mechanical properties of the tissue. At the molecular level, modern technologies and theoretical modelling have started to explain exactly how the collagen fibrils are arranged within the stromal lamellae and how proteoglycans maintain this ultrastructure. In this review we describe the current state of knowledge about the three-dimensional stromal architecture at the microscopic level, and about the control mechanisms at the nanoscopic level that lead to optical transparency. PMID:26145225

  10. Corneal structure and transparency.

    PubMed

    Meek, Keith M; Knupp, Carlo

    2015-11-01

    The corneal stroma plays several pivotal roles within the eye. Optically, it is the main refracting lens and thus has to combine almost perfect transmission of visible light with precise shape, in order to focus incoming light. Furthermore, mechanically it has to be extremely tough to protect the inner contents of the eye. These functions are governed by its structure at all hierarchical levels. The basic principles of corneal structure and transparency have been known for some time, but in recent years X-ray scattering and other methods have revealed that the details of this structure are far more complex than previously thought and that the intricacy of the arrangement of the collagenous lamellae provides the shape and the mechanical properties of the tissue. At the molecular level, modern technologies and theoretical modelling have started to explain exactly how the collagen fibrils are arranged within the stromal lamellae and how proteoglycans maintain this ultrastructure. In this review we describe the current state of knowledge about the three-dimensional stromal architecture at the microscopic level, and about the control mechanisms at the nanoscopic level that lead to optical transparency. PMID:26145225

  11. Mononuclear cells in the corneal response to endotoxin

    SciTech Connect

    Howes, E.L.; Cruse, V.K.; Kwok, M.T.

    1982-04-01

    A severe keratitis can be produced after the direct injection of bacterial endotoxin, or lipopolysaccharide (LPS), in rabbits. Corneal inflammation can progress to scarring and vascularization within a 2 to 3 week period. Pretreatment with systemic adrenal corticosteroids (triamcinolone) prevents this response. Limbal cellular and vascular events were studied during the first 20 hr after injection of LPS in treated and nontreated rabbits. Perivascular limbal inflammatory cells were counted and limbal vascular permeability was assessed by extravasation of 131I-albumin and 125I-fibrinogen in the cornea. Corticosteroids decreased but did not prevent the early protein extravasation and profoundly altered the inflammatory cell population around blood vessels at the limbus. Mononuclear cells, particularly mononuclear phagocytes, were sharply reduced. It is proposed that these cell types play an important role in the perpetuation and amplification of the inflammatory response in this reaction.

  12. Corneal blindness: a global perspective.

    PubMed Central

    Whitcher, J. P.; Srinivasan, M.; Upadhyay, M. P.

    2001-01-01

    Diseases affecting the cornea are a major cause of blindness worldwide, second only to cataract in overall importance. The epidemiology of corneal blindness is complicated and encompasses a wide variety of infectious and inflammatory eye diseses that cause corneal scarring, which ultimately leads to functional blindness. In addition, the prevalence of corneal disease varies from country to country and even from one population to another. While cataract is responsible for nearly 20 million of the 45 million blind people in the world, the next major cause is trachoma which blinds 4.9 million individuals, mainly as a result of corneal scarring and vascularization. Ocular trauma and corneal ulceration are significant causes of corneal blindness that are often underreported but may be responsible for 1.5-2.0 million new cases of monocular blindness every year. Causes of childhood blindness (about 1.5 million worldwide with 5 million visually disabled) include xerophthalmia (350,000 cases annually), ophthalmia neonatorum, and less frequently seen ocular diseases such as herpes simplex virus infections and vernal keratoconjunctivitis. Even though the control of onchocerciasis and leprosy are public health success stories, these diseases are still significant causes of blindness--affecting a quarter of a million individuals each. Traditional eye medicines have also been implicated as a major risk factor in the current epidemic of corneal ulceration in developing countries. Because of the difficulty of treating corneal blindness once it has occurred, public health prevention programmes are the most cost-effective means of decreasing the global burden of corneal blindness. PMID:11285665

  13. Clinical and experimental mycotic corneal ulcer caused by Aspergillus fumigatus and the effect of oral ketoconazole in the treatment.

    PubMed

    Singh, S M; Khan, R; Sharma, S; Chatterjee, P K

    1989-06-01

    Aspergillus fumigatus was isolated from a case of keratomycosis. The patient, a 12-year-old boy presented with large corneal ulcer with hypopyon. The direct microscopic examination of scrapings revealed hyaline, septate mycelium. In vitro some antimycotics (amphotericin B,5-fluorocytosine, oxiconazole, amorolfine and ketoconazole) were tested against A. fumigatus by agar dilution method. Ketoconazole with minimum inhibitory concentration of 30 micrograms/ml after 11 days of incubation was most effective against A. fumigatus. Experimental corneal ulcer was produced by injecting intralamellary spore suspension (2.5 x 10(6) c.f.u.) into the right eyes of previously immunosuppressed albino and black wild types of rabbits. The extent of ocular infection was graded up to 32 days. Histopathologic examination showed infiltration and large destruction of corneal stroma. Oral ketoconazole therapy exhibited partial response followed by relapse. The black type of rabbit appeared more suitable as an animal model for mycotic keratitis. PMID:2682246

  14. The corneal fibrosis response to epithelial-stromal injury.

    PubMed

    Torricelli, Andre A M; Santhanam, Abirami; Wu, Jiahui; Singh, Vivek; Wilson, Steven E

    2016-01-01

    The corneal wound healing response, including the development of stromal opacity in some eyes, is a process that often leads to scarring that occurs after injury, surgery or infection to the cornea. Immediately after epithelial and stromal injury, a complex sequence of processes contributes to wound repair and regeneration of normal corneal structure and function. In some corneas, however, often depending on the type and extent of injury, the response may also lead to the development of mature vimentin+ α-smooth muscle actin+ desmin+ myofibroblasts. Myofibroblasts are specialized fibroblastic cells generated in the cornea from keratocyte-derived or bone marrow-derived precursor cells. The disorganized extracellular matrix components secreted by myofibroblasts, in addition to decreased expression of corneal crystallins in these cells, are central biological processes that result in corneal stromal fibrosis associated with opacity or "haze". Several factors are associated with myofibroblast generation and haze development after PRK surgery in rabbits, a reproducible model of scarring, including the amount of tissue ablated, which may relate to the extent of keratocyte apoptosis in the early response to injury, irregularity of stromal surface after surgery, and changes in corneal stromal proteoglycans, but normal regeneration of the epithelial basement membrane (EBM) appears to be a critical factor determining whether a cornea heals with relative transparency or vision-limiting stromal opacity. Structural and functional abnormalities of the regenerated EBM facilitate prolonged entry of epithelium-derived growth factors such as transforming growth factor β (TGF-β) and platelet-derived growth factor (PDGF) into the stroma that both drive development of mature myofibroblasts from precursor cells and lead to persistence of the cells in the anterior stroma. A major discovery that has contributed to our understanding of haze development is that keratocytes and corneal

  15. Management of advanced corneal ectasias.

    PubMed

    Maharana, Prafulla K; Dubey, Aditi; Jhanji, Vishal; Sharma, Namrata; Das, Sujata; Vajpayee, Rasik B

    2016-01-01

    Corneal ectasias include a group of disorders characterised by progressive thinning, bulging and distortion of the cornea. Keratoconus is the most common disease in this group. Other manifestations include pellucid marginal degeneration, Terrien's marginal degeneration, keratoglobus and ectasias following surgery. Advanced ectasias usually present with loss of vision due to high irregular astigmatism. Management of these disorders is difficult due to the peripheral location of ectasia and associated severe corneal thinning. Newer contact lenses such as scleral lenses are helpful in a selected group of patients. A majority of these cases requires surgical intervention. This review provides an update on the current treatment modalities available for management of advanced corneal ectasias. PMID:26294106

  16. [Methods for sealing of corneal perforations].

    PubMed

    Samoilă, O; Totu, Lăcrămioara; Călugăru, M

    2012-01-01

    A variety of corneal pathology can lead to corneal ulcers and perforations. A deep corneal ulcer may need surgical treatment to allow good volume restoration and reepithelisation. Corneal perforation must be sealed and when the perforation is large, the task of repairing the defect can be underwhelming. The elegant solution is the corneal transplant, but this is not always readily available, especially in undeveloped countries. We present here two cases with different solutions to seal the perforated cornea: the first one has a large peripheral defect and it is successfully sealed with scleral patch and the second one is central with small perforation and is successfully sealed with multilayered amniotic membrane. Both cases are followed for over 12 months and demonstrate good corneal restoration (both on clinical examination and corneal topography). Sclera and amniotic membrane can be used to seal corneal defects when corneal transplant is not readily available.

  17. Mechanisms Controlling the Effects of Bevacizumab (Avastin) on the Inhibition of Early but Not Late Formed Corneal Neovascularization

    PubMed Central

    Chu, Hsiao-Sang; Lin, Chung-Tien; Chow, Lu-Ping; Chen, Chih-Ta; Hu, Fung-Rong

    2014-01-01

    Purpose To evaluate the effects and underlying mechanisms of early and late subconjunctival injection of bevacizumab on the inhibition of corneal neovascularization (NV). Methods Corneal NV was induced by closed eye contact lens wear followed by a silk suture tarsorrhaphy in rabbits. Weekly subconjunctival injections of bevacizumab (5.0 mg) for 1 month were started immediately (early treatment group) or 1 month after induction of corneal NV with continuous induction (late treatment group). The severity of corneal NV was evaluated. Immunostaining was used to evaluate the intracorneal diffusion of bevacizumab, and the existence of pericytes and smooth muscle cells around the NV. The expression of AM-3K, an anti-macrophage antibody, vascular endothelial growth factor (VEGF) with its receptors (VEGFR1 and VEGFR2), and vascular endothelial apoptosis were also evaluated. Western blot analysis was performed to quantify the expression level of VEGF, VEGFR1 and VEGFR2 on corneal epithelium and stroma in different groups. Results Early treatment with bevacizumab inhibited corneal NV more significantly than late treatment. Intracorneal diffusion of bevacizumab was not different among different groups. Immunostaining showed pericytes and smooth muscle cells around newly formed vessels as early as 2 weeks after induction. Immunostaining and Western blot analysis showed that VEGF, VEGFR1, and VEGFR2 on corneal stroma increased significantly in no treatment groups and late treatment groups, but not in early treatment group. Bevacizumab significantly inhibited macrophage infiltration in the early but not late treatment group. Sporadic vascular endothelial apoptosis was found at 4 weeks in the late but not early treatment group. Conclusions Early but not late injection of bevacizumab inhibited corneal NV. Late injection of bevacizumab did not alter macrophage infiltration, and can't inhibit the expression of VEGF, VEGFR1, and VEGFR2 on corneal vessels. The inhibition of corneal NV

  18. Corneal transplantation and glaucoma.

    PubMed

    Haddadin, Ramez I; Chodosh, James

    2014-01-01

    Glaucoma is the leading cause of irreversible vision loss post-keratoplasty and an important cause of graft failure. With newer techniques, such as lamellar, endothelial, and laser-assisted keratoplasty as well as keratoprosthesis gaining popularity, clinicians will need to consider the incidence, risks, evaluation, and management of glaucoma for each type of keratoplasty when determining which type of transplant may be most appropriate. A comprehensive literature search of glaucoma in the setting of corneal transplantation was performed and serves as the basis for this review. Preexisting glaucoma and aphakia are notable risk factors. Patients that are candidates for deep anterior lamellar keratoplasty may benefit from reduced rates of post-keratoplasty glaucoma. Although glaucoma also complicates eyes with Descemet stripping endothelial keratoplasty, the severity is less and the intraocular pressure is more easily controlled when compared to penetrating keratoplasty. Endothelial keratoplasty creates unique perioperative issues mostly related to management of anterior chamber air bubbles.

  19. Suppression of chemotaxis to corneal inflammation by nitrous oxide.

    PubMed

    Kripke, B J; Kupferman, A; Luu, K C

    1987-11-01

    Immune competency is depressed in the perioperative period. The role of anesthetic agents in immune reactivity remains unclear. The chemotactic migration of polymorphonuclear leukocytes (PMNs) to the cornea of rabbits injured by clove oil was studied. PMNs were previously radiolabeled with tritiated (3H) thymidine. Immediately following injury, the rabbits entered isolation chambers and breathed either air or air containing 10%, 20% or 40% nitrous oxide (N2O) for 24 hours. After sacrifice, the radioactivity of a 10 mm corneal button, removed by trephination, was determined by scintillation counting technique. Peripheral blood was obtained for hemoglobin, white cell and platelet count. The N2O dosage affected on the migration of PMNs to the cornea. 3H was decreased 15.4% by 20% N2O and 38.8% for 40% N2O-exposed rabbits. Peripheral blood values did not differ. N2O can suppress chemotaxis of PMNs in the rabbit, thereby adversely affecting the inflammatory component of immune defense. PMID:3130236

  20. Contributions of tissue-specific pathologies to corneal injuries following exposure to SM vapor.

    PubMed

    McNutt, Patrick M; Tuznik, Kaylie M; Glotfelty, Elliot J; Nelson, Marian R; Lyman, Megan E; Hamilton, Tracey A

    2016-06-01

    Corneal injuries resulting from ocular exposure to sulfur mustard (SM) vapor are the most prevalent chemical warfare injury. Ocular exposures exhibit three distinct, dose-dependent clinical trajectories: complete injury resolution, immediate transition to a chronic injury, or apparent recovery followed by the subsequent development of persistent ocular manifestations. These latter two trajectories include a constellation of corneal symptoms that are collectively known as mustard gas keratopathy (MGK). The etiology of MGK is not understood. Here, we synthesize recent findings from in vivo rabbit SM vapor studies, suggesting that tissue-specific damage during the acute injury can decrement the regenerative capacities of corneal endothelium and limbal stem cells, thereby predisposing the cornea to the chronic or delayed forms of MGK. This hypothesis not only provides a mechanism to explain the acute and MGK injuries but also identifies novel therapeutic modalities to mitigate or eliminate the acute and long-term consequences of ocular exposure to SM vapor.

  1. Contributions of tissue-specific pathologies to corneal injuries following exposure to SM vapor.

    PubMed

    McNutt, Patrick M; Tuznik, Kaylie M; Glotfelty, Elliot J; Nelson, Marian R; Lyman, Megan E; Hamilton, Tracey A

    2016-06-01

    Corneal injuries resulting from ocular exposure to sulfur mustard (SM) vapor are the most prevalent chemical warfare injury. Ocular exposures exhibit three distinct, dose-dependent clinical trajectories: complete injury resolution, immediate transition to a chronic injury, or apparent recovery followed by the subsequent development of persistent ocular manifestations. These latter two trajectories include a constellation of corneal symptoms that are collectively known as mustard gas keratopathy (MGK). The etiology of MGK is not understood. Here, we synthesize recent findings from in vivo rabbit SM vapor studies, suggesting that tissue-specific damage during the acute injury can decrement the regenerative capacities of corneal endothelium and limbal stem cells, thereby predisposing the cornea to the chronic or delayed forms of MGK. This hypothesis not only provides a mechanism to explain the acute and MGK injuries but also identifies novel therapeutic modalities to mitigate or eliminate the acute and long-term consequences of ocular exposure to SM vapor. PMID:27310673

  2. Corneal Collagen Cross-Linking

    PubMed Central

    Jankov II, Mirko R.; Jovanovic, Vesna; Nikolic, Ljubisa; Lake, Jonathan C.; Kymionis, Georgos; Coskunseven, Efekan

    2010-01-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet-A (UVA) is a new technique of corneal tissue strengthening by using riboflavin as a photosensitizer and UVA to increase the formation of intra and interfibrillar covalent bonds by photosensitized oxidation. Keratocyte apoptosis in the anterior segment of the corneal stroma all the way down to a depth of about 300 microns has been described and a demarcation line between the treated and untreated cornea has been clearly shown. It is important to ensure that the cytotoxic threshold for the endothelium has not been exceeded by strictly respecting the minimal corneal thickness. Confocal microscopy studies show that repopulation of keratocytes is already visible 1 month after the treatment, reaching its pre-operative quantity and quality in terms of functional morphology within 6 months after the treatment. The major indication for the use of CXL is to inhibit the progression of corneal ectasias, such as keratoconus and pellucid marginal degeneration. CXL may also be effective in the treatment and prophylaxis of iatrogenic keratectasia, resulting from excessively aggressive photoablation. This treatment has also been used to treat infectious corneal ulcers with apparent favorable results. Combination with other treatments, such as intracorneal ring segment implantation, limited topography-guided photoablation and conductive keratoplasty have been used with different levels of success. PMID:20543933

  3. Drug-induced corneal damage.

    PubMed

    2014-04-01

    Corneal damage can have a variety of causes, including infections, chemical splashes, environmental factors (radiation, trauma, contact lenses, etc.), and systemic diseases (genetic, autoimmune, inflammatory, metabolic, etc.). A wide range of drugs can also damage the cornea. The severity of drug-induced corneal changes can range from simple asymptomatic deposits to irreversible, sight-threatening damage. Several factors can influence the onset of corneal lesions. Some factors, such as the dose, are treatment-related, while others such as contact lenses, are patient-related. A variety of mechanisms may be involved, including corneal dryness, changes in the corneal epithelium, impaired wound healing and deposits. Many drugs can damage the cornea through direct contact, after intraocular injection or instillation, including VEGF inhibitors, anti-inflammatory drugs, local anaesthetics, glaucoma drugs, fluoroquinolones, and preservatives. Some systemically administered drugs can also damage the cornea, notably cancer drugs, amiodarone and isotretinoin. Vulnerable patients should be informed of this risk if they are prescribed a drug with the potential to damage the cornea so that they can identify problems in a timely manner. It may be necessary to discontinue the suspect drug when signs and symptoms of corneal damage occur.

  4. Intrastromal Corneal Ring Implants for Corneal Thinning Disorders

    PubMed Central

    2009-01-01

    Executive Summary Objective The purpose of this project was to determine the role of corneal implants in the management of corneal thinning disease conditions. An evidence-based review was conducted to determine the safety, effectiveness and durability of corneal implants for the management of corneal thinning disorders. The evolving directions of research in this area were also reviewed. Subject of the Evidence-Based Analysis The primary treatment objectives for corneal implants are to normalize corneal surface topography, improve contact lens tolerability, and restore visual acuity in order to delay or defer the need for corneal transplant. Implant placement is a minimally invasive procedure that is purported to be safe and effective. The procedure is also claimed to be adjustable, reversible, and both eyes can be treated at the same time. Further, implants do not limit the performance of subsequent surgical approaches or interfere with corneal transplant. The evidence for these claims is the focus of this review. The specific research questions for the evidence review were as follows: Safety Corneal Surface Topographic Effects: Effects on corneal surface remodelling Impact of these changes on subsequent interventions, particularly corneal transplantation (penetrating keratoplasty [PKP]) Visual Acuity Refractive Outcomes Visual Quality (Symptoms): such as contrast vision or decreased visual symptoms (halos, fluctuating vision) Contact lens tolerance Functional visual rehabilitation and quality of life Patient satisfaction: Disease Process: Impact on corneal thinning process Effect on delaying or deferring the need for corneal transplantation Clinical Need: Target Population and Condition Corneal ectasia (thinning) comprises a range of disorders involving either primary disease conditions such as keratoconus and pellucid marginal corneal degeneration or secondary iatrogenic conditions such as corneal thinning occurring after LASIK refractive surgery. The condition

  5. Acellular ostrich corneal stroma used as scaffold for construction of tissue-engineered cornea

    PubMed Central

    Liu, Xian-Ning; Zhu, Xiu-Ping; Wu, Jie; Wu, Zheng-Jie; Yin, Yong; Xiao, Xiang-Hua; Su, Xin; Kong, Bin; Pan, Shi-Yin; Yang, Hua; Cheng, Yan; An, Na; Mi, Sheng-Li

    2016-01-01

    AIM To assess acellular ostrich corneal matrix used as a scaffold to reconstruct a damaged cornea. METHODS A hypertonic saline solution combined with a digestion method was used to decellularize the ostrich cornea. The microstructure of the acellular corneal matrix was observed by transmission electron microscopy (TEM) and hematoxylin and eosin (H&E) staining. The mechanical properties were detected by a rheometer and a tension machine. The acellular corneal matrix was also transplanted into a rabbit cornea and cytokeratin 3 was used to check the immune phenotype. RESULTS The microstructure and mechanical properties of the ostrich cornea were well preserved after the decellularization process. In vitro, the methyl thiazolyl tetrazolium results revealed that extracts of the acellular ostrich corneas (AOCs) had no inhibitory effects on the proliferation of the corneal epithelial or endothelial cells or on the keratocytes. The rabbit lamellar keratoplasty showed that the transplanted AOCs were transparent and completely incorporated into the host cornea while corneal turbidity and graft dissolution occurred in the acellular porcine cornea (APC) transplantation. The phenotype of the reconstructed cornea was similar to a normal rabbit cornea with a high expression of cytokeratin 3 in the superficial epithelial cell layer. CONCLUSION We first used AOCs as scaffolds to reconstruct damaged corneas. Compared with porcine corneas, the anatomical structures of ostrich corneas are closer to those of human corneas. In accordance with the principle that structure determines function, a xenograft lamellar keratoplasty also confirmed that the AOC transplantation generated a superior outcome compared to that of the APC graft. PMID:27158598

  6. Corneal Pachymetry Mapping with High-speed Optical Coherence Tomography

    PubMed Central

    Li, Yan; Shekhar, Raj; Huang, David

    2006-01-01

    significant, but no more than the CCT measurement differences between ultrasound pachymeters. The reproducibility of the OCT zonal pachymetry averages was roughly 2 μm. Conclusions High-speed OCT provided noncontact, rapid, reproducible pachymetric mapping over a wide area of the cornea. It is equivalent to ultrasound for CCT measurement before and after LASIK. This technology could be valuable for planning keratorefractive procedures and diagnosis of corneal diseases. PMID:16650675

  7. Multidrug resistance-associated protein (MRP1, 2, 4 and 5) expression in human corneal cell culture models and animal corneal tissue.

    PubMed

    Verstraelen, Jessica; Reichl, Stephan

    2014-07-01

    Preclinical studies addressing the transcorneal absorption of ophthalmic drugs are mainly performed using ex vivo animal corneas and in vitro corneal cell culture models, leaving open the question of transferability to humans in an in vivo situation. While passive drug absorption through corneal tissue is well understood, little is known about the expression of transporter proteins and active drug transport in human and animal corneas as well as corneal cell culture models. Therefore, the aim of this study was to conduct an expression analysis of four multidrug resistance-associated proteins (MRP1, 2, 4 and 5) in various in vitro and ex vivo corneal models, leading to a better understanding of the comparability of different corneal models regarding drug absorption and transferability to humans. Two well-established in vitro human corneal models, the HCE-T epithelial model and the more organotypic Hemicornea construct, both of which are based on the SV40 immortalized human corneal epithelial cell line HCE-T, were analyzed, as were excised rabbit and porcine cornea. Specimens of abraded epithelia from human donor corneas were also tested. MRP mRNA expression was determined via reverse transcriptase polymerase chain reaction. Protein expression was examined using Western blot experiments and immunohistochemistry. The functional activity of the MRP efflux transporter was detected in transport assays using specific marker and inhibitor substances. The functional expression of all of the tested MRP transporters was detected in the HCE-T epithelial model. Hemicornea constructs displayed a similar expression pattern for MRP1, 4 and 5, whereas no MRP2 protein expression or activity was detected. However, excised animal corneas exhibited different expression profiles. In porcine cornea, no functional expression of MRP1, 2, or 5 was observed, and we failed to detect MRP4 expression in rabbit cornea. The results suggest that MRP1, 2, 4, and 5 are expressed in the human corneal

  8. Noninvasive corneal stromal collagen imaging using two-photon-generated second-harmonic signals

    PubMed Central

    Morishige, Naoyuki; Petroll, W. Matthew; Nishida, Teruo; Kenney, M. Cristina; Jester, James V.

    2007-01-01

    PURPOSE To investigate the feasibility of using femtosecond-pulse lasers to produce second-harmonic generated (SHG) signals to noninvasively assess corneal stromal collagen organization. SETTING The Eye Institute, University of California, Irvine, California, USA. METHODS Mouse, rabbit, and human corneas were examined by two-photon confocal microscopy using a variable-wavelength femtosecond lasers to produce SHG signals. Two types were detected: forward scattered and backward scattered. Wavelength dependence of the SHG signal was confirmed by spectral separation using the 510 Meta (Zeiss). To verify the spatial relation between SHG signals and corneal cells, staining of cytoskeletons and nuclei was performed. RESULTS Second-harmonic-generated signal intensity was strongest with an excitation wavelength of 800 nm for all 3 species. Second-harmonic-generated forward signals showed a distinct fibrillar pattern organized into bands suggesting lamellae, while backscattered SHG signals appeared more diffuse and indistinct. Reconstruction of SHG signals showed two patterns of lamellar organization: highly interwoven in the anterior stroma and orthogonally arranged in the posterior stroma. Unique to the human cornea was the presence of transverse, sutural lamellae that inserted into Bowman’s layer, suggesting an anchoring function. CONCLUSIONS Using two-photon confocal microscopy to generate SHG signals from the corneal collagen provides a powerful new approach to noninvasively study corneal structure. Human corneas had a unique organizational pattern with sutural lamellae to provide important biomechanical support that was not present in mouse or rabbit corneas. PMID:17081858

  9. Substrates for Expansion of Corneal Endothelial Cells towards Bioengineering of Human Corneal Endothelium

    PubMed Central

    Navaratnam, Jesintha; Utheim, Tor P.; Rajasekhar, Vinagolu K.; Shahdadfar, Aboulghassem

    2015-01-01

    Corneal endothelium is a single layer of specialized cells that lines the posterior surface of cornea and maintains corneal hydration and corneal transparency essential for vision. Currently, transplantation is the only therapeutic option for diseases affecting the corneal endothelium. Transplantation of corneal endothelium, called endothelial keratoplasty, is widely used for corneal endothelial diseases. However, corneal transplantation is limited by global donor shortage. Therefore, there is a need to overcome the deficiency of sufficient donor corneal tissue. New approaches are being explored to engineer corneal tissues such that sufficient amount of corneal endothelium becomes available to offset the present shortage of functional cornea. Although human corneal endothelial cells have limited proliferative capacity in vivo, several laboratories have been successful in in vitro expansion of human corneal endothelial cells. Here we provide a comprehensive analysis of different substrates employed for in vitro cultivation of human corneal endothelial cells. Advances and emerging challenges with ex vivo cultured corneal endothelial layer for the ultimate goal of therapeutic replacement of dysfunctional corneal endothelium in humans with functional corneal endothelium are also presented. PMID:26378588

  10. Corneal Biomechanical Findings in Contact Lens Induced Corneal Warpage.

    PubMed

    Alipour, Fateme; Letafatnejad, Mojgan; Beheshtnejad, Amir Hooshang; Mohammadi, Seyed-Farzad; Ghaffary, Seyed Reza; Hassanpoor, Narges; Yaseri, Mehdi

    2016-01-01

    Purpose. To evaluate the difference in biomechanical properties between contact lens induced corneal warpage and normal and keratoconic eyes. Method. Prospective observational case control study, where 94 eyes of 47 warpage suspicious and 46 eyes of 23 keratoconic patients were included. Warpage suspected cases were followed until a definite diagnosis was made (warpage, normal, or keratoconus). Results. 44 eyes of 22 patients had contact lens related corneal warpage. 46 eyes of 23 people were diagnosed as nonwarpage normal eyes. 46 eyes of 23 known keratoconus patients were included for comparison. The mean age of the participants was 23.8 ± 3.8 years, and 66.2% of the subjects were female. The demographic and refractive data were not different between warpage and normal groups but were different in the keratoconus group. The biomechanical properties (corneal hysteresis or CH and corneal resistance factor or CRF) were different with the highest value in the warpage group followed by normal and keratoconus groups. CRF was 10.08 ± 1.75, 9.23 ± 1.22, and 7.38 ± 2.14 and CH was 10.21 ± 1.57, 9.59 ± 1.21, and 8.69 ± 2.34 in the warpage, normal, and keratoconus groups, respectively. Conclusion. Corneal biomechanics may be different in people who develop contact lens induced warpage. PMID:27688908

  11. Corneal Biomechanical Findings in Contact Lens Induced Corneal Warpage

    PubMed Central

    Letafatnejad, Mojgan; Beheshtnejad, Amir Hooshang; Ghaffary, Seyed Reza; Hassanpoor, Narges; Yaseri, Mehdi

    2016-01-01

    Purpose. To evaluate the difference in biomechanical properties between contact lens induced corneal warpage and normal and keratoconic eyes. Method. Prospective observational case control study, where 94 eyes of 47 warpage suspicious and 46 eyes of 23 keratoconic patients were included. Warpage suspected cases were followed until a definite diagnosis was made (warpage, normal, or keratoconus). Results. 44 eyes of 22 patients had contact lens related corneal warpage. 46 eyes of 23 people were diagnosed as nonwarpage normal eyes. 46 eyes of 23 known keratoconus patients were included for comparison. The mean age of the participants was 23.8 ± 3.8 years, and 66.2% of the subjects were female. The demographic and refractive data were not different between warpage and normal groups but were different in the keratoconus group. The biomechanical properties (corneal hysteresis or CH and corneal resistance factor or CRF) were different with the highest value in the warpage group followed by normal and keratoconus groups. CRF was 10.08 ± 1.75, 9.23 ± 1.22, and 7.38 ± 2.14 and CH was 10.21 ± 1.57, 9.59 ± 1.21, and 8.69 ± 2.34 in the warpage, normal, and keratoconus groups, respectively. Conclusion. Corneal biomechanics may be different in people who develop contact lens induced warpage. PMID:27688908

  12. Stromal corneal scar following YAG capsulotomy.

    PubMed

    Bailey, L; Donzis, P B; Kastl, P R

    1988-05-01

    The case of a 70-year-old patient who suffered inadvertant YAG laser burns to the central corneal stroma is presented. Although focal stromal scarring resulted, no endothelial damage or corneal decompensation was noted, and the patient was asymptomatic.

  13. Corneal plaque containing levofloxacin in a dog.

    PubMed

    Park, Young-Woo; Kang, Byung-Jae; Lim, Jae Hyun; Ahn, Jung-Mo; Lim, Hyun Sook

    2015-11-01

    A 13-year-old castrated male Yorkshire terrier developed a corneal ulcer 2 weeks after intracapsular lens extraction (ICLE) in the right eye. The corneal ulcer was treated with levofloxacin eye drops. A plaque with a white luster developed in the central cornea 2 weeks after treatment with levofloxacin eye drops. The corneal plaque was surgically removed under inhalant anesthesia. The corneal plaque displayed antimicrobial activity against Escherichia coli. Furthermore, levofloxacin content in the plaque was confirmed by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) mass spectrometry (MS). The corneal ulcer completely resolved 2 weeks after the surgical removal of the corneal lesion and replacement of levofloxacin eye drops with tobramycin eye drops. Although the topical use of levofloxacin is unlikely to lead to corneal chemical deposits due to the high water solubility of the drug compared to other topical fluoroquinolones, this patient developed corneal plaque of the antibiotic drop.

  14. Corneal biomechanics: a review.

    PubMed

    Piñero, David P; Alcón, Natividad

    2015-03-01

    Biomechanics is often defined as 'mechanics applied to biology'. Due to the variety and complexity of the behaviour of biological structures and materials, biomechanics is better defined as the development, extension and application of mechanics for a better understanding of physiology and physiopathology and consequently for a better diagnosis and treatment of disease and injury. Different methods for the characterisation of corneal biomechanics are reviewed in detail, including those that are currently commercially available (Ocular Response Analyzer and CorVis ST). The clinical applicability of the parameters provided by these devices are discussed, especially in the fields of glaucoma, detection of ectatic disorders and orthokeratology. Likewise, other methods are also reviewed, such as Brillouin microscopy or dynamic optical coherence tomography and others with potential application to clinical practice but not validated for in vivo measurements, such as ultrasonic elastography. Advantages and disadvantages of all these techniques are described. Finally, the concept of biomechanical modelling is revised as well as the requirements for developing biomechanical models, with special emphasis on finite element modelling. PMID:25470213

  15. Development of Novel In Silico Model to Predict Corneal Permeability for Congeneric Drugs: A QSPR Approach

    PubMed Central

    Sharma, Charu; Velpandian, Thirumurthy; Biswas, Nihar Ranjan; Nayak, Niranjan; Vajpayee, Rasik Bihari; Ghose, Supriyo

    2011-01-01

    This study was undertaken to determine in vivo permeability coefficients for fluoroquinolones and to assess its correlation with the permeability derived using reported models in the literature. Further, the aim was to develop novel QSPR model to predict corneal permeability for fluoroquinolones and test its suitability on other training sets. The in vivo permeability coefficient was determined using cassette dosing (N-in-One) approach for nine fluoroquinolones (norfloxacin, ciprofloxacin, lomefloxacin, ofloxacin, levofloxacin, sparfloxacin, pefloxacin, gatifloxacin, and moxifloxacin) in rabbits. The correlation between corneal permeability derived using in vivo studies with that derived from reported models was determined. Novel QSPR-based model was developed using in vivo corneal permeability along with other molecular descriptors. The suitability of developed model was tested on β-blockers (n = 15). The model showed better prediction of corneal permeability for fluoroquinolones (r2 > 0.9) as well as β-blockers (r2 > 0.6). The newly developed QSPR model based upon in vivo generated data was found suitable to predict corneal permeability for fluoroquinolones as well as other sets of compounds. PMID:21403901

  16. Xenogeneic acellular conjunctiva matrix as a scaffold of tissue-engineered corneal epithelium.

    PubMed

    Zhao, Haifeng; Qu, Mingli; Wang, Yao; Wang, Zhenyu; Shi, Weiyun

    2014-01-01

    Amniotic membrane-based tissue-engineered corneal epithelium has been widely used in the reconstruction of the ocular surface. However, it often degrades too early to ensure the success of the transplanted corneal epithelium when treating patients with severe ocular surface disorders. In the present study, we investigated the preparation of xenogeneic acellular conjunctiva matrix (aCM) and evaluated its efficacy and safety as a scaffold of tissue-engineered corneal epithelium. Native porcine conjunctiva was decellularized with 0.1% sodium dodecyl sulfate (SDS) for 12 h at 37°C and sterilized via γ-irradiation. Compared with native conjunctiva, more than 92% of the DNA was removed, and more than 90% of the extracellular matrix components (glycosaminoglycan and collagen) remained after the decellularization treatment. Compared with denuded amniotic membrane (dAM), the aCM possessed favorable optical transmittance, tensile strength, stability and biocompatibility as well as stronger resistance to degradation both in vitro and in vivo. The corneal epithelial cells seeded on aCM formed a multilayered epithelial structure and endured longer than did those on dAM. The aCM-based tissue-engineered corneal epithelium was more effective in the reconstruction of the ocular surface in rabbits with limbal stem cell deficiency. These findings support the application of xenogeneic acellular conjunctiva matrix as a scaffold for reconstructing the ocular surface.

  17. Corneal angiogenesis modulation by cysteine cathepsins: In vitro and in vivo studies.

    PubMed

    Coppini, Larissa P; Visniauskas, Bruna; Costa, Elaine F; Filho, Milton N; Rodrigues, Eduardo B; Chagas, Jair R; Farah, Michel E; Barros, Nilana M T; Carmona, Adriana K

    2015-05-01

    Corneal avascularization is essential for normal vision. Several antiangiogenic factors were identified in cornea such as endostatin and angiostatin. Cathepsin V, which is highly expressed in the cornea, can hydrolyze human plasminogen to release angiostatin fragments. Herein, we describe a detailed investigation of the expression profile of cathepsins B, L, S and V in the human cornea and the role of cysteine peptidases in modulating angiogenesis both in vitro and in vivo. We used various methodological tools for this purpose, including real-time PCR, SDS-PAGE, western blotting, catalytic activity assays, cellular assays and induction of corneal neovascularity in rabbit eyes. Human corneal enzymatic activity assays revealed the presence of cysteine proteases that were capable of processing endogenous corneal plasminogen to produce angiostatin-like fragments. Comparative real-time analysis of cathepsin B, L, S and V expression revealed that cathepsin V was the most highly expressed, followed by cathepsins L, B and S. However, cathepsin V depletion revealed that this enzyme is not the major cysteine protease responsible for plasminogen degradation under non-pathological conditions. Furthermore, western blotting analysis indicated that only cathepsins B and S were present in their enzymatically active forms. In vivo analysis of angiogenesis demonstrated that treatment with the cysteine peptidase inhibitor E64 caused a reduction in neovascularization. Taken together, our results show that human corneal cysteine proteases are critically involved in angiogenesis.

  18. Effect of Glyceraldehyde Cross-Linking on a Rabbit Bullous Keratopathy Model

    PubMed Central

    Wang, Mengmeng

    2015-01-01

    Background. To evaluate the effects of corneal glyceraldehyde CXL on the rabbit bullous keratopathy models established by descemetorhexis. Methods. Fifteen rabbits were randomly divided into five groups. Group A (n = 3) is the control group. The right eyes of animals in Groups B,C, D, and E (n = 3, resp.) were suffered with descemetorhexis procedures. From the 8th day to the 14th day postoperatively, the right eyes in Groups C and D were instilled with hyperosmolar drops and glyceraldehyde drops, respectively; the right eyes in Group E were instilled with both hyperosmolar drops and glyceraldehyde drops. Central corneal thickness (CCT), corneal transparency score, and histopathological analysis were applied on the eyes in each group. Results. Compared with Group A, statistically significant increase in CCT and corneal transparency score was found in Groups B, C, D, and E at 7 d postoperatively (P < 0.05) and in Groups C, D, and E at 14 d postoperatively (P < 0.05). Conclusion. Chemical CXL technique using glyceraldehyde improved the CCT and corneal transparency of the rabbit bullous keratopathy models. Topical instillation with glyceraldehyde and hyperosmolar solutions seems to be a good choice for the bullous keratopathy treatment. PMID:26509077

  19. 21 CFR 886.1220 - Corneal electrode.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Corneal electrode. 886.1220 Section 886.1220 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1220 Corneal electrode. (a) Identification. A corneal electrode is an AC-powered device, usually part of a special contact lens, intended to be applied...

  20. 21 CFR 886.1220 - Corneal electrode.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Corneal electrode. 886.1220 Section 886.1220 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1220 Corneal electrode. (a) Identification. A corneal electrode is an AC-powered device, usually part of a special contact lens, intended to be applied...

  1. 21 CFR 886.1220 - Corneal electrode.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Corneal electrode. 886.1220 Section 886.1220 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1220 Corneal electrode. (a) Identification. A corneal electrode is an AC-powered device, usually part of a special contact lens, intended to be applied...

  2. 21 CFR 886.1220 - Corneal electrode.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Corneal electrode. 886.1220 Section 886.1220 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1220 Corneal electrode. (a) Identification. A corneal electrode is an AC-powered device, usually part of a special contact lens, intended to be applied...

  3. 21 CFR 886.1220 - Corneal electrode.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Corneal electrode. 886.1220 Section 886.1220 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1220 Corneal electrode. (a) Identification. A corneal electrode is an AC-powered device, usually part of a special contact lens, intended to be applied...

  4. Corneal collagen crosslinking in keratoconus and other eye disease

    PubMed Central

    Alhayek, Adel; Lu, Pei-Rong

    2015-01-01

    Keratoconus is a condition characterized by biomechanical instability of the cornea, presenting in a progressive, asymmetric and bilateral way. Corneal collagen crosslinking (CXL) with riboflavin and Ultraviolet-A (UVA) is a new technique of corneal tissue strengthening that combines the use of riboflavin as a photo sensitizer and UVA irradiation. Studies showed that CXL was effective in halting the progression of keratoconus over a period of up to four years. The published studies also revealed a reduction of max K readings by more than 2 D, while the postoperative spherical equivalent (SEQ) was reduced by an average of more than 1 D and refractive cylinder decreased by about 1 D. The major indication for the use of CXL is to inhibit the progression of corneal ecstasies, such as keratoconus and pellucid marginal degeneration. CXL may also be effective in the treatment and prophylaxis of iatrogenic keratectasia, resulting from excessively aggressive photo ablation. This treatment has been used to treat infectious corneal ulcers with apparent favorable results. Most recent studies demonstrate the beneficial impact of CXL for iatrogenic ecstasies, pellucid marginal degeneration, infectious keratitis, bullous keratopathy and ulcerative keratitis. Several long-term and short-term complications of CXL have been studied and documented. The possibility of a secondary infection after the procedure exists because the patient is subject to epithelial debridement and the application of a soft contact lens. Formation of temporary corneal haze, permanent scars, endothelial damage, treatment failure, sterile infiltrates, bullous keratopathy and herpes reactivation are the other reported complications of this procedure. PMID:25938065

  5. Quantitative Assessment of UVA-Riboflavin Corneal Cross-Linking Using Nonlinear Optical Microscopy

    PubMed Central

    Chai, Dongyul; Gaster, Ronald N.; Roizenblatt, Roberto; Juhasz, Tibor; Brown, Donald J.

    2011-01-01

    Purpose. Corneal collagen cross-linking (CXL) by the use of riboflavin and ultraviolet-A light (UVA) is a promising and novel treatment for keratoconus and other ectatic disorders. Since CXL results in enhanced corneal stiffness, this study tested the hypothesis that CXL-induced stiffening would be proportional to the collagen autofluorescence intensity measured with nonlinear optical (NLO) microscopy. Methods. Rabbit eyes (n = 50) were separated into five groups including: (1) epithelium intact; (2) epithelium removed; (3) epithelium removed and soaked in riboflavin, (4) epithelium removed and soaked in riboflavin, with 15 minutes of UVA exposure; and (5) epithelium removed and soaked in riboflavin, with 30 minutes of UVA exposure. Corneal stiffness was quantified by measuring the force required to displace the cornea 500 μm. Corneas were then fixed in paraformaldehyde and sectioned, and the collagen autofluorescence over the 400- to 450-nm spectrum was recorded. Results. There was no significant difference in corneal stiffness among the three control groups. Corneal stiffness was significantly and dose dependently increased after UVA (P < 0.0005). Autofluorescence was detected only within the anterior stroma of the UVA-treated groups, with no significant difference in the depth of autofluorescence between different UVA exposure levels. The signal intensity was also significantly increased with longer UVA exposure (P < 0.001). Comparing corneal stiffness with autofluorescence intensity revealed a significant correlation between these values (R2 = 0.654; P < 0.0001). Conclusions. The results of this study indicate a significant correlation between corneal stiffening and the intensity of collagen autofluorescence after CXL. This finding suggests that the efficacy of CXL in patients could be monitored by assessing collagen autofluorescence. PMID:21508101

  6. Obtaining corneal tissue for keratoplasty.

    PubMed

    Navarro Martínez-Cantullera, A; Calatayud Pinuaga, M

    2016-10-01

    Cornea transplant is the most common tissue transplant in the world. In Spain, tissue donation activities depend upon transplant coordinator activities and the well-known Spanish model for organ and tissue donation. Tissue donor detection system and tissue donor evaluation is performed mainly by transplant coordinators using the Spanish model on donation. The evaluation of a potential tissue donor from detection until recovery is based on an exhaustive review of the medical and social history, physical examination, family interview to determine will of the deceased, and a laboratory screening test. Corneal acceptance criteria for transplantation have a wider spectrum than other tissues, as donors with active malignancies and infections are accepted for kearatoplasty in most tissue banks. Corneal evaluation during the whole process is performed to ensure the safety of the donor and the recipient, as well as an effective transplant. Last step before processing, corneal recovery, must be performed under standard operating procedures and in a correct environment.

  7. Gene therapy in corneal transplantation.

    PubMed

    Qazi, Yureeda; Hamrah, Pedram

    2013-01-01

    Corneal transplantation is the most commonly performed organ transplantation. Immune privilege of the cornea is widely recognized, partly because of the relatively favorable outcome of corneal grafts. The first-time recipient of corneal allografts in an avascular, low-risk setting can expect a 90% success rate without systemic immunosuppressive agents and histocompatibility matching. However, immunologic rejection remains the major cause of graft failure, particularly in patients with a high risk for rejection. Corticosteroids remain the first-line therapy for the prevention and treatment of immune rejection. However, current pharmacological measures are limited in their side-effect profiles, repeated application, lack of targeted response, and short duration of action. Experimental ocular gene therapy may thus present new horizons in immunomodulation. From efficient viral vectors to sustainable alternative splicing, we discuss the progress of gene therapy in promoting graft survival and postulate further avenues for gene-mediated prevention of allogeneic graft rejection.

  8. [Pay attention to the donor material supply for corneal transplantation].

    PubMed

    Pan, Z Q; Liang, Q F

    2016-09-11

    Corneal transplantation is an important method in the treatment of corneal blindness. It is imperative to improve the treatment effectiveness of corneal disease and reduce the possibility of corneal blindness with the progress of corneal transplantation surgery, the construction and development of eye banks and the rational use of donor materials. This article reviews the component corneal transplantation technology promotion, eye bank construction and preparation of donor slices for component corneal transplantation surgery. (Chin J Ophthalmol, 2016, 52: 641-643). PMID:27647243

  9. Progress in corneal wound healing.

    PubMed

    Ljubimov, Alexander V; Saghizadeh, Mehrnoosh

    2015-11-01

    Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β (TGF-β) system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal

  10. Animal Models of Corneal Injury

    PubMed Central

    Chan, Matilda F.; Werb, Zena

    2015-01-01

    The cornea is an excellent model system to use for the analysis of wound repair because of its accessibility, lack of vascularization, and simple anatomy. Corneal injuries may involve only the superficial epithelial layer or may penetrate deeper to involve both the epithelial and stromal layers. Here we describe two well-established in vivo corneal wound models: a mechanical wound model that allows for the study of re-epithelialization and a chemical wound model that may be used to study stromal activation in response to injury (Stepp et al., 2014; Carlson et al., 2003). PMID:26191536

  11. Glaucoma risks in advanced corneal surgery.

    PubMed

    Maurino, Vincenzo; Aiello, Francesco

    2015-01-01

    Penetrating corneal transplant (PKP) surgery has been performed for centuries as the procedure of choice to restore vision in cases of advanced corneal disease. However, the last two decades have seen the introduction of lamellar corneal surgery (deep anterior lamellar keratoplasty, DALK; Descemet stripping-automated endothelial keratoplasty, DSAEK; and Descemet membrane endothelial keratoplasty, DMEK) which has shown several advantages over PKP and has rapidly gained popularity, given its benefits. Glaucoma after corneal graft surgery is an important cause of visual loss and graft failure. The main risk factors for developing glaucoma after any type of corneal graft are steroid-related intraocular hypertension and pre-existing glaucoma. The incidence of glaucoma after corneal graft surgery varies according to the specific risk factors and the type of corneal graft performed. One major advantage of modern layer selective lamellar keratoplasty is the reduced risk of glaucoma compared with PKP. This reduced glaucoma risk after corneal lamellar graft surgery is mainly due to the less destructive surgical nature of the lamellar procedures and also the reduced use of postoperative steroid treatment. Glaucoma can complicate not only corneal transplantation but has also been observed following other anterior segment procedures from laser refractive surgery to keratoprosthesis. The aim of this chapter is to describe the incidence, etiology, and management of glaucoma after corneal transplant and some common corneal surgical procedures.

  12. Corneal Regeneration After Photorefractive Keratectomy: A Review.

    PubMed

    Tomás-Juan, Javier; Murueta-Goyena Larrañaga, Ane; Hanneken, Ludger

    2015-01-01

    Photorefractive keratectomy (PRK) remodels corneal stroma to compensate refractive errors. The removal of epithelium and the ablation of stroma provoke the disruption of corneal nerves and a release of several peptides from tears, epithelium, stroma and nerves. A myriad of cytokines, growth factors, and matrix metalloproteases participate in the process of corneal wound healing. Their balance will determine if reepithelization and stromal remodeling are appropriate. The final aim is to achieve corneal transparency for restoring corneal function, and a proper visual quality. Therefore, wound-healing response is critical for a successful refractive surgery. Our goal is to provide an overview into how corneal wounding develops following PRK. We will also review the influence of intraoperative application of mitomycin C, bandage contact lenses, anti-inflammatory and other drugs in preventing corneal haze and post-PRK pain.

  13. Corneal Regeneration After Photorefractive Keratectomy: A Review☆

    PubMed Central

    Tomás-Juan, Javier; Murueta-Goyena Larrañaga, Ane; Hanneken, Ludger

    2014-01-01

    Photorefractive keratectomy (PRK) remodels corneal stroma to compensate refractive errors. The removal of epithelium and the ablation of stroma provoke the disruption of corneal nerves and a release of several peptides from tears, epithelium, stroma and nerves. A myriad of cytokines, growth factors, and matrix metalloproteases participate in the process of corneal wound healing. Their balance will determine if reepithelization and stromal remodeling are appropriate. The final aim is to achieve corneal transparency for restoring corneal function, and a proper visual quality. Therefore, wound-healing response is critical for a successful refractive surgery. Our goal is to provide an overview into how corneal wounding develops following PRK. We will also review the influence of intraoperative application of mitomycin C, bandage contact lenses, anti-inflammatory and other drugs in preventing corneal haze and post-PRK pain. PMID:25444646

  14. Quantitation of corneal inflammation by chemiluminescense.

    PubMed

    Chusid, M J; Shea, M L

    1986-10-01

    Various inflammatory agents, including Pseudomonas aeruginosa, bacterial filtrates, endotoxin, and phorbol myristate acetate were found to induce significant increases in corneal chemiluminescense (CLM). Disruption of polymorphonuclear leukocytes within corneas by sonication, freeze-thawing or cryotherapy, or reduction of corneal infiltration by induction of neutropenia resulted in marked decreases of CLM. Increased corneal CLM was associated with significant increases in corneal thickness and water content. Oxygen-free radical scavengers significantly inhibited CLM of experimentally infected corneas in vitro, as did the anti-inflammatory agents prednisolone acetate, indomethacin, and salicylic acid. In vivo therapy of infected corneas with prednisolone resulted in significant reductions in corneal CLM, thickness, and water content compared with saline-treated eyes. The CLM assay is a simple technique that allows quantitation of corneal inflammation and evaluation of the effect of therapeutic agents on corneal inflammation. PMID:3094481

  15. Histopathological Studies on Rabbits Infected by Bacteria Causing Infectious Keratitis in Human through Eye Inoculation

    PubMed Central

    Aldebasi, Yousef H.; Mohamed, Hala A.; Aly, Salah M.

    2014-01-01

    Aim This study aimed to investigate the pathogenic effect of bacteria causing infectious keratitis among patients through experimental study conducted on rabbits’ eyes with the aid of histopathology as eye infection is a common disease in developing countries that may complicate to loss of vision. Methodology 100 swab samples were collected from human infected eyes, at Qassim region during 2012, for the isolation of Pseudomonas aeruginosa and Staphylococcus aureus. The isolated pathogenic bacteria were tested to various antibiotics using some selected antibiotics discs through agar-well diffusion method. Then, experimental study conducted on 27 rabbits. The rabbits were divided randomly into three equal groups, each containing 9 rabbits. Rabbits of group (1) served as control group (Negative Control) and their eyes were inoculated with the buffer only. Rabbits of group (2) were inoculated through eyes with the isolated Pseudomonas aeruginosa. Rabbits of group (3) were inoculated through eyes with the isolated Staphylococcus aureus. Results Out of 100 collected swab samples from human infected eyes, Pseudomonas aeruginosa and Staphylococcus aureus were isolated with a total percentage of 25.21% and 15.65%; respectively and used in this study. Both bacterial isolates were sensitive to Gentamicin and Cefuroxime. Clinically, experimentally infected rabbits by Pseudomonas aeruginosa, revealed varying degree corneal abrasions, corneal abscess and dense corneal opacity. Histopathologically, at 3rd day post-infection (PI), the cornea revealed polymorpho-nuclear cells infiltration with loss of the outer epithelial lining. At 7th day PI, neutrophils were seen in the stroma. At 15th day PI, proliferation of fibroblasts and new vascularisation were seen in the stroma. Clinically, rabbits experimentally infected with Staphylococcus aureus, revealed corneal ulcers and focal abscesses. Histopathologically, at 3rd and 7th day PI, the cornea revealed edema and infiltration of

  16. Observation on ultrastructure and histopathology of cornea following femtosecond laser-assisted deep lamellar keratoplasty for acute corneal alkaline burns

    PubMed Central

    Li, Wen-Jing; Hu, Yu-Kun; Song, Hui; Gao, Xiao-Wei; Zhao, Xu-Dong; Dong, Jing; Guo, Yun-Lin; Cai, Yan

    2016-01-01

    AIM To demonstrate the changes in ultrastructure and histopathology of the cornea in acute corneal alkaline burns after femtosecond laser-assisted deep lamellar keratoplasty. METHODS The New Zealand white rabbits treated with alkaline corneal burn were randomized into two groups, Group A (16 eyes) with femtosecond laser-assisted deep lamellar keratoplasty 24h after burn and Group B (16 eyes) without keratoplasty as controls. All eyes were evaluated with transmission electron microscopy (TEM) at 1, 2, 3, and 4wk follow-up, then all corneas were tested by hematoxylin and eosin staining histology. RESULTS The corneal grafts in Group A were transparent, while those in Group B showed corneal stromal edema and loosely arranged collagen fibers. One week after treatment, TEM revealed the intercellular desmosomes in the epithelial layers and intact non-dissolving nuclei in Group A. At week 4, the center of the corneas in Group A was transparent with regularly arranged collagen fibers and fibroblasts in the stroma. In Group B, squamous cells were observed on the corneal surface and some epithelial cells were detached. CONCLUSION Femtosecond laser-assisted deep lamellar keratoplasty can suppress inflammatory responses, prevent toxic substance-induced injury to the corneal endothelium and inner tissues with quicker recovery and better visual outcomes. PMID:27162716

  17. Decrease in Corneal Damage due to Benzalkonium Chloride by the Addition of Mannitol into Timolol Maleate Eye Drops.

    PubMed

    Nagai, Noriaki; Yoshioka, Chiaki; Tanino, Tadatoshi; Ito, Yoshimasa; Okamoto, Norio; Shimomura, Yoshikazu

    2015-01-01

    We investigated the protective effects of mannitol on corneal damage caused by benzalkonium chloride (BAC), which is used as a preservative in commercially available timolol maleate eye drops, using rat debrided corneal epithelium and a human cornea epithelial cell line (HCE-T). Corneal wounds were monitored using a fundus camera TRC-50X equipped with a digital camera; eye drops were instilled into rat eyes five times a day after corneal epithelial abrasion. The viability of HCE-T cells was calculated by TetraColor One; and Escherichia coli (ATCC 8739) were used to measure antimicrobial activity. The reducing effects on transcorneal penetration and intraocular pressure (IOP) of the eye drops were determined using rabbits. The corneal wound healing rate and rate constant (kH), as well as cell viability, were higher following treatment with 0.005% BAC solution containing 0.5% mannitol than in the case BAC solution alone; the antimicrobial activity was approximately the same for BAC solutions with and without mannitol. In addition, the kH for rat eyes instilled with commercially available timolol maleate eye drops containing 0.5% mannitol was significantly higher than that for eyes instilled with timolol maleate eye drops without mannitol, and the addition of mannitol did not affect the corneal penetration or IOP reducing effect of the timolol maleate eye drops. A preservative system comprising BAC and mannitol may provide effective therapy for glaucoma patients requiring long-term treatment with anti-glaucoma agents.

  18. Practical aspects of a corneal topography system.

    PubMed

    McCarey, B E; Zurawski, C A; O'Shea, D S

    1992-10-01

    We used the EyeSys Corneal Topography System to examine several issues relating to corneal topography systems and the interpretation of their results. Interferometry measurements of EyeSys calibration spheres indicated that they deviated from suggested values by 0.05 +/- 0.13 D (mean +/- 1 standard deviation). The EyeSys unit reliably determined the calibration spheres to be spherical with differences between the flat and steep axis of 0.10 +/- 0.09 D. The data for the 3 mm chord circle was the least reliable. The spherical equivalent values for the calibration spheres were constantly greater than the 0.25 D reproducibility suggested by the manufacturer. Furthermore, the precision of the outputted values (0.01 D) is beyond the capability of the instrument. This gives the impression that the topography unit cannot consistently reproduce measurements of the calibration objects or chrome plated steel spheres. Image centralization and focus were found to be critical in obtaining accurate results. A target off center by more than 0.25 mm resulted in unreliable data; increasing the focal distance by greater than 1 mm beyond the focal point resulted in a sharp decrease in accuracy (a decrease in the focal distance was even more critical). When measuring aspheric contact lenses, it was found that the keratometer and EyeSys unit provided a close approximation of the surface characteristics of the lenses. A realistic view of the limitations of the topography system being used is critical for proper interpretation of the data.

  19. Intraocular lens power calculations using a Scheimpflug camera to measure corneal power.

    PubMed

    Xu, K; Hao, Y; Qi, H

    2014-07-01

    We measured corneal power using an Oculus Pentacam(®) to assess its accuracy for calculating intraocular lens (IOL) power after myopic refractive surgery. A series of corneal power measurements were performed on 22 patients (43 eyes) who had undergone myopic refractive surgery. In 37 of the 43 eyes, phacoemulsification and IOL implantation subsequently were performed. Conventional keratometry and three corneal measurements (mean true net power, central true net power, and 4.5 mm equivalent K reading) obtained using a Pentacam were analyzed and compared to values derived from the clinical history method. Prediction errors of three Pentacam corneal power measurements inserted in third generation IOL formulas also were compared. Analysis of the variance showed that only two Pentacam corneal measurements, mean true net power and central true net power, were not significantly different from those of the clinical history method. Mean true net power was correlated more closely with the clinical history method corneal power than other corneal power values. The one-sample t-test showed that of three Pentacam corneal measurements combined with third-generation formulas, only the mean true net power inserted in the SRK/T implant power calculation formula was not significantly different from zero. The percentages of eyes within ± 0.50 D and ± 1.00 D of the refractive prediction error of this method were 67.6% and 86.5%, respectively. Mean true net power inserted in the SRK/T formula can be used to calculate directly IOL power after myopic refractive surgery.

  20. Systemic cyclosporine and corneal transplantation.

    PubMed

    Ziaei, Mohammed; Ziaei, Fatemeh; Manzouri, Bita

    2016-02-01

    Corneal transplantation is the most commonly performed tissue transplant boasting over a century of history, science, and tradition. While favorable outcomes have been reported after penetrating keratoplasty, rejection remains a major cause of graft failure. The long-term survival rates of this relatively immunologically privileged tissue are only just comparable to those of vascularized organs. While corticosteroids treatment remains the gold standard for postoperative immunomodulation, other agents have been utilized in an ongoing effort to improve graft survival and patient outcomes. One of the most promising immunomodulatory substances whose immunosuppressive effect has revolutionized solid organ transplantation is cyclosporine (CsA). A calcineurin inhibitor, cyclosporine has been used as an immunosuppressive agent in corneal transplantation since the 1980's. Although some studies have shown beneficial effects of cyclosporine in both low- and high-risk corneal transplant patients the use of cyclosporine in rejection prophylaxis and treatment remain controversial and disputable. We herein present a literature review on the role of systemic cyclosporine in corneal transplantation.

  1. Biomechanics of Corneal Ring Implants

    PubMed Central

    2015-01-01

    Purpose: To evaluate the biomechanics of corneal ring implants by providing a related mathematical theory and biomechanical model for the treatment of myopia and keratoconus. Methods: The spherical dome model considers the inhomogeneity of the tunica of the eye, dimensions of the cornea, lamellar structure of the corneal stroma, and asphericity of the cornea. It is used in this study for calculating a strengthening factor sf for the characterization of different ring-shaped corneal implant designs. The strengthening factor is a measure of the amount of strengthening of the cornea induced by the implant. Results: For ring segments and incomplete rings, sf = 1.0, which indicates that these implants are not able to strengthen the cornea. The intracorneal continuous complete ring (MyoRing) has a strengthening factor of up to sf = 3.2. The MyoRing is, therefore, able to strengthen the cornea significantly. Conclusions: The result of the presented biomechanical analysis of different ring-shaped corneal implant designs can explain the different postoperative clinical results of different implant types in myopia and keratoconus. PMID:26312619

  2. Corneal microprojections in coleoid cephalopods.

    PubMed

    Talbot, Christopher; Jordan, Thomas M; Roberts, Nicholas W; Collin, Shaun P; Marshall, N Justin; Temple, Shelby E

    2012-12-01

    The cornea is the first optical element in the path of light entering the eye, playing a role in image formation and protection. Corneas of vertebrate simple camera-type eyes possess microprojections on the outer surface in the form of microridges, microvilli, and microplicae. Corneas of invertebrates, which have simple or compound eyes, or both, may be featureless or may possess microprojections in the form of nipples. It was previously unknown whether cephalopods (invertebrates with camera-type eyes like vertebrates) possess corneal microprojections and, if so, of what form. Using scanning electron microscopy, we examined corneas of a range of cephalopods and discovered nipple-like microprojections in all species. In some species, nipples were like those described on arthropod compound eyes, with a regular hexagonal arrangement and sizes ranging from 75 to 103 nm in diameter. In others, nipples were nodule shaped and irregularly distributed. Although terrestrial invertebrate nipples create an antireflective surface that may play a role in camouflage, no such optical function can be assigned to cephalopod nipples due to refractive index similarities of corneas and water. Their function may be to increase surface-area-to-volume ratio of corneal epithelial cells to increase nutrient, gas, and metabolite exchange, and/or stabilize the corneal mucous layer, as proposed for corneal microprojections of vertebrates.

  3. Intrastromal Injection of China Painting Ink in Corneas of Male Rabbits: Clinical and Histological Study

    PubMed Central

    Alsmman Hassan, Alahmady Hamad; Abd Elhaliem Soliman, Nesreen Gamal-Eldeen

    2016-01-01

    Background. Many patients with corneal opacity or complicated cataract in blind eye ask for cosmoses. In this study we tried to investigate the staining of corneas of male rabbits by Rotring China painting ink and to study the histological changes. Method. 10 eyes of 10 male Baladi Egyptian rabbits were injected (0.1 mL) intrastromally in the cornea by the use of China painting ink (Rotring Tinta China) through insulin syringe (27-gauge needle) by single injection; clinical follow-up is for 6 months and lastly the rabbits were scarified and the stained eyes were enucleated for histological analysis. Results. Clinically the stain was stable in color and distribution in corneas with no major complications. Histological results of the stained rabbit corneas showed blackish pigmentation in the corneal stroma without any inflammatory cellular infiltration. Some fibroblast cells had pigment granules in their cytoplasm in the adjacent layers. Conclusion. Corneal staining by China painting ink is effective and safe in staining of male rabbits cornea; however further study in human corneas with longer follow-up period is advisable. PMID:27195146

  4. Intrastromal Injection of China Painting Ink in Corneas of Male Rabbits: Clinical and Histological Study.

    PubMed

    Alsmman Hassan, Alahmady Hamad; Abd Elhaliem Soliman, Nesreen Gamal-Eldeen

    2016-01-01

    Background. Many patients with corneal opacity or complicated cataract in blind eye ask for cosmoses. In this study we tried to investigate the staining of corneas of male rabbits by Rotring China painting ink and to study the histological changes. Method. 10 eyes of 10 male Baladi Egyptian rabbits were injected (0.1 mL) intrastromally in the cornea by the use of China painting ink (Rotring Tinta China) through insulin syringe (27-gauge needle) by single injection; clinical follow-up is for 6 months and lastly the rabbits were scarified and the stained eyes were enucleated for histological analysis. Results. Clinically the stain was stable in color and distribution in corneas with no major complications. Histological results of the stained rabbit corneas showed blackish pigmentation in the corneal stroma without any inflammatory cellular infiltration. Some fibroblast cells had pigment granules in their cytoplasm in the adjacent layers. Conclusion. Corneal staining by China painting ink is effective and safe in staining of male rabbits cornea; however further study in human corneas with longer follow-up period is advisable. PMID:27195146

  5. Turning the tide of corneal blindness.

    PubMed

    Oliva, Matthew S; Schottman, Tim; Gulati, Manoj

    2012-01-01

    Corneal diseases represent the second leading cause of blindness in most developing world countries. Worldwide, major investments in public health infrastructure and primary eye care services have built a strong foundation for preventing future corneal blindness. However, there are an estimated 4.9 million bilaterally corneal blind persons worldwide who could potentially have their sight restored through corneal transplantation. Traditionally, barriers to increased corneal transplantation have been daunting, with limited tissue availability and lack of trained corneal surgeons making widespread keratoplasty services cost prohibitive and logistically unfeasible. The ascendancy of cataract surgical rates and more robust eye care infrastructure of several Asian and African countries now provide a solid base from which to dramatically expand corneal transplantation rates. India emerges as a clear global priority as it has the world's largest corneal blind population and strong infrastructural readiness to rapidly scale its keratoplasty numbers. Technological modernization of the eye bank infrastructure must follow suit. Two key factors are the development of professional eye bank managers and the establishment of Hospital Cornea Recovery Programs. Recent adaptation of these modern eye banking models in India have led to corresponding high growth rates in the procurement of transplantable tissues, improved utilization rates, operating efficiency realization, and increased financial sustainability. The widespread adaptation of lamellar keratoplasty techniques also holds promise to improve corneal transplant success rates. The global ophthalmic community is now poised to scale up widespread access to corneal transplantation to meet the needs of the millions who are currently blind. PMID:22944753

  6. Turning the tide of corneal blindness.

    PubMed

    Oliva, Matthew S; Schottman, Tim; Gulati, Manoj

    2012-01-01

    Corneal diseases represent the second leading cause of blindness in most developing world countries. Worldwide, major investments in public health infrastructure and primary eye care services have built a strong foundation for preventing future corneal blindness. However, there are an estimated 4.9 million bilaterally corneal blind persons worldwide who could potentially have their sight restored through corneal transplantation. Traditionally, barriers to increased corneal transplantation have been daunting, with limited tissue availability and lack of trained corneal surgeons making widespread keratoplasty services cost prohibitive and logistically unfeasible. The ascendancy of cataract surgical rates and more robust eye care infrastructure of several Asian and African countries now provide a solid base from which to dramatically expand corneal transplantation rates. India emerges as a clear global priority as it has the world's largest corneal blind population and strong infrastructural readiness to rapidly scale its keratoplasty numbers. Technological modernization of the eye bank infrastructure must follow suit. Two key factors are the development of professional eye bank managers and the establishment of Hospital Cornea Recovery Programs. Recent adaptation of these modern eye banking models in India have led to corresponding high growth rates in the procurement of transplantable tissues, improved utilization rates, operating efficiency realization, and increased financial sustainability. The widespread adaptation of lamellar keratoplasty techniques also holds promise to improve corneal transplant success rates. The global ophthalmic community is now poised to scale up widespread access to corneal transplantation to meet the needs of the millions who are currently blind.

  7. Tyrosinemia produced by 2-(2-nitro-4-trifluoromethylbenzoyl)-cyclohexane-1,3-dione (NTBC) in experimental animals and its relationship to corneal injury

    SciTech Connect

    Lock, Edward A. . E-mail: e.lock@ljmu.ac.uk; Gaskin, Peter; Ellis, Martin; Provan, William M.; Smith, Lewis L.

    2006-08-15

    2-(2-Nitro-4-trifluoromethylbenzoyl)-cyclohexane-1,3-dione (NTBC) is a potent inhibitor of rat liver 4-hydroxyphenylpyruvate dioxygenase (HPPD) leading to tyrosinemia and corneal opacity. We examined the effect of NTBC on the extent of tyrosinemia and production of corneal lesions in the beagle dog, rabbit and rhesus monkey, as part of safety evaluation on this drug. A single oral dose of 10 mg NTBC/kg to beagle dogs or rabbits increased the concentration of tyrosine in plasma and aqueous humour of the eye, the tyrosinemia being both time- and dose-dependent. Hepatic HPPD was markedly inhibited with little effect on the activity of tyrosine aminotransferase (TAT) and homogentisic acid oxidase at the time of peak plasma tyrosine. Daily oral administration of NTBC to beagle dogs at 0.1, 0.5, 1.5 and 5 mg/kg/day produced corneal opacities with an incidence of 34% following 11 weeks of dosing, which reversed upon withdrawal of the drug. Tyrosine in plasma and aqueous humour was increased at all dose levels, 18 weeks after dosing. In contrast, daily oral administration of NTBC to rabbits for 6 weeks and rhesus monkeys for 12 weeks at 10 mg/kg/day produced no evidence of corneal opacities although tyrosine values were markedly increased. Our studies have shown that NTBC is a potent inhibitor of rabbit, beagle dog and by inference rhesus monkey liver HPPD producing a marked tyrosinemia in all species studied, while only beagle dogs show corneal lesions. The production of corneal lesions in experimental animals exposed to NTBC does not appear to be simply related to the concentration of tyrosine in ocular fluid, other as yet unidentified factors appear to be necessary to trigger tissue injury.

  8. EGF and PGE2: effects on corneal endothelial cell migration and monolayer spreading during wound repair in vitro.

    PubMed

    Joyce, N C; Joyce, S J; Powell, S M; Meklir, B

    1995-07-01

    In vivo repair of the adult human corneal endothelium occurs mainly by movement of cells into the wound defect rather than by cell division. Two forms of cell movement contribute to endothelial wound repair: migration of individual cells into the defect and spreading of the confluent monolayer into the wound area. This laboratory has developed a tissue culture model using rabbit corneal endothelial cells pretreated with the mitotic inhibitor 5-fluorouracil to mimic the relatively amitotic state of human corneal endothelium in vivo. This model permits study of the effects of growth factors and other agents on individual cell migration and monolayer spreading in response to wounding. mRNA for epidermal growth factor (EGF) and its receptor has been detected in cultured corneal endothelial cells and EGF receptors have been detected on human corneal endothelial cells in situ, suggesting that this growth factor may act in an autocrine manner. Prostaglandin E2 (PGE2) is synthesized by cultured corneal endothelial cells and is present in relatively high quantity in aqueous humor in response to corneal wounding and to inflammation in the anterior chamber. Although corneal endothelial cells may be exposed to both EGF and PGE2, little is known about their effects on monolayer repair. The current study compared the effects of PGE2 alone, EGF alone, and both agents in combination on individual cell migration and monolayer spreading using the wound model system and also determined the effect of EGF on PGE2 secretion using a commercial immunoassay. A 15 min exposure of wounded cultures to exogenous PGE2 stimulated individual cell migration and suppressed monolayer spreading.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7587307

  9. Mitigating Scarring and Inflammation during Corneal Wound Healing using Nanofiber-Hydrogel Scaffolds

    NASA Astrophysics Data System (ADS)

    Fu, Amy

    heparin-based treatment, prompting us to further examine the efficacy of the aECM-based treatment in vivo using a rabbit model for stromal wounds. Results show that treated corneas have fewer myofibroblasts and immune cells than untreated ones, indicating that our corneal scaffold shows promise in promoting a calmer wound response and preventing corneal haze formation.

  10. Long-Term Observation of Coexistence of Posterior Polymorphous Corneal Dystrophy, Resultant High Myopia and Nonkeratoconic Developing Corneal Astigmatism: A Case Report of 7-Year Tracking in a Chinese Boy.

    PubMed

    Shen, Jianqin; Chixin, Du; Gu, Yangshun

    2015-06-01

    Posterior polymorphous corneal dystrophy (PPCD) is an extremely rare, bilateral, and inherited disorder, which affects the corneal endothelium and Descemet's membrane. Few PPCD cases in Chinese patients have been published so far. As far as we know, there are few studies which focused on the associations between PPCD and high myopia either. Here we report a rare case of coexistence of posterior polymorphous corneal dystrophy, resultant high myopia and with-the-rule developing corneal astigmatism in a young Chinese boy. A 6-year-old boy was first referred to our department 7 years ago, complaining of bilateral poor vision. Examinations of both eyes including ophthalmologic examination, cycloplegic refraction examination, confocal microscopy findings, and corneal topography were performed. Bilateral small aggregates of vesicular lesions and patchy hyperreflectivity were observed at the level of the Descemet's membrane on confocal microscopy, which is consistent with typical PPCD. Optometry and corneal topography examinations showed a resultant high myopia. Ocular examinations were performed annually to follow up with the patient in the past 7 years. The corneal lesions remained stable whereas an axial elongation and a sharp increase in both spherical and cylindrical equivalent power were observed. Close follow-ups including thorough scrutiny of the endothelium and systematic ocular ancillary examinations are essential for patients with PPCD. The pathological coexistence of PPCD and high myopia in our case is possibly due to a shared etiological pathway or genetic background. Advanced genetic analysis on similar cases is expected if more samples can be provided.

  11. Infectious keratitis with corneal perforation associated with corneal hydrops and contact lens wear in keratoconus.

    PubMed Central

    Donnenfeld, E D; Schrier, A; Perry, H D; Ingraham, H J; Lasonde, R; Epstein, A; Farber, B

    1996-01-01

    BACKGROUND: Corneal perforation is an uncommon complication associated with keratoconus. The first cases of infectious keratitis and corneal perforation associated with corneal hydrops and contact lens wear are reported in two keratoconus patients. METHODS: A retrospective chart review and histopathological examination were carried out. RESULTS: Both patients progressed to corneal perforation and emergency penetrating keratoplasty. One patient cultured Fusarium and the second patient Serratia marcesens. Both patients wore contact lenses against medical advice. CONCLUSIONS: The tear in Descement's membrane, stromal oedema, and epithelial bedewing associated with corneal hydrops results in loss of the epithelial-endothelial barrier of the cornea, creating a conduit for infectious organisms through the cornea. Acute hydrops associated with epithelial keratitis, stromal swelling, and a Descement's membrane tear may be a significant risk factor for infectious keratitis and corneal perforation. Contact lenses should not be worn during an active corneal hydrops owing to the increased risk for severe infectious keratitis and corneal perforation. Images PMID:8695560

  12. Maintenance of normal corneal thickness in the cold in vivo (hibernation) as opposed to in vitro

    PubMed Central

    Bito, L. Z.; Roberts, Jane C.; Saraf, S.

    1973-01-01

    1. Corneal thickness was measured in vivo in normothermic and hibernating (body temperature = 7-10° C) woodchucks and the [Na+], [K+], [Mg2+] and water content of woodchuck and rabbit corneas were determined on freshly isolated tissues. 2. Woodchuck eyes from both normothermic and hibernating animals were incubated in moist chambers at 5 or 11° C and the corneal thickness was measured periodically. 3. Woodchuck corneas undergo continuous swelling when kept in vitro in a moist chamber at either 5 or 11° C. The rate of this swelling was the same for eyes from active and hibernating animals; it was almost completely reversible upon rewarming at 35° C. 4. In the hibernating woodchuck the corneal thickness did not increase measurably, even after several days of hibernation, although the mean corneal temperature was 9·4° C. 5. At 7° C, the lactate production of corneas from both hibernating and normothermic woodchucks was reduced to about one fifth its levels measured at 37° C. Oxygen consumption was also greatly reduced in the cold although the endothelial O2 consumption of corneas from hibernating woodchucks appears to be relatively insensitive to cold. 6. It is concluded that removal of the eye and/or the in vitro conditions per se render the cornea more vulnerable to the effects of cold, possibly as a result of the elimination of the influences of orbital tissues and/or secretions or as a result of changes in some intrinsic properties of the cornea due to the elimination of neurohumoural factors or the release of autocoids. 7. The finding that normal corneal thickness can be maintained under conditions where the environment is maintained essentially constant for days strongly argues against the validity of the recently proposed nonsteady-state theory of corneal thickness control. PMID:4715370

  13. A novel closed cell culture device for fabrication of corneal epithelial cell sheets.

    PubMed

    Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-11-01

    Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25 µm-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300 µm-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets.

  14. Surface modification of intraocular lenses to reduce corneal endothelial damage.

    PubMed

    Knight, P M; Link, W J

    1979-04-01

    Two methods of surface modification of PMMA, permanent and temporary, were investigated for use on intraocular lenses to reduce corneal endothelial damage due to corneal-IOL touch. Monomer grafting using gamma irradiation was found to produce permanently hydrophilic surfaces. Temporary surface modifications developed and tested were peelable and dissolvable coatings. Test samples were touched to freshly excised rabbit corneas to evaluate the effectiveness of the various surface modifications in reducing endothelial cell damage. This touch testing was performed using static testing in which the test sample was touched to the cornea without movement and dynamic testing in which there was relative movement between the cornea and the test sample. While unmodified PMMA did significant cell damage in both static and dynamic tests perpamently modified (hydrophilic grafted) surfaces were found to perform well in the static, but not in the dynamic tests. Dissolvable coatings performed well in both tests, even with very thin coatings. There was little differentiation between the various water-soluble coatings tested. Due to its characteristics and rate of dissolution, polyvinyl alcohol appears to be an optimum material for coating IOLs. A series of in vitro and in vivo tests performed to assess its safety indicate that PVA is nontoxic and safe in animal eyes. PMID:479004

  15. Decellularization of human stromal refractive lenticules for corneal tissue engineering

    PubMed Central

    Yam, Gary Hin-Fai; Yusoff, Nur Zahirah Binte M.; Goh, Tze-Wei; Setiawan, Melina; Lee, Xiao-Wen; Liu, Yu-Chi; Mehta, Jodhbir S.

    2016-01-01

    Small incision lenticule extraction (SMILE) becomes a procedure to correct myopia. The extracted lenticule can be used for other clinical scenarios. To prepare for allogeneic implantation, lenticule decellularization with preserved optical property, stromal architecture and chemistry would be necessary. We evaluated different methods to decellularize thin human corneal stromal lenticules created by femtosecond laser. Treatment with 0.1% sodium dodecylsulfate (SDS) followed by extensive washes was the most efficient protocol to remove cellular and nuclear materials. Empty cell space was found inside the stroma, which displayed aligned collagen fibril architecture similar to native stroma. The SDS-based method was superior to other treatments with hyperosmotic 1.5 M sodium chloride, 0.1% Triton X-100 and nucleases (from 2 to 10 U/ml DNase and RNase) in preserving extracellular matrix content (collagens, glycoproteins and glycosaminoglycans). The stromal transparency and light transmittance was indifferent to untreated lenticules. In vitro recellularization showed that the SDS-treated lenticules supported corneal stromal fibroblast growth. In vivo re-implantation into a rabbit stromal pocket further revealed the safety and biocompatibility of SDS-decellularized lenticules without short- and long-term rejection risk. Our results concluded that femtosecond laser-derived human stromal lenticules decellularized by 0.1% SDS could generate a transplantable bioscaffold with native-like stromal architecture and chemistry. PMID:27210519

  16. Essential ions for maintenance of the corneal epithelial surface.

    PubMed

    Bachman, W G; Wilson, G

    1985-11-01

    It is generally believed that tears are required to furnish only oxygen to the corneal epithelium. However, as tears are a very complicated solution, it is likely that other factors are essential to the cells of the corneal surface. The amount of light scattered from the epithelial surface of the excised rabbit cornea was examined with the in vitro specular microscope while the epithelium was bathed in different solutions. It was shown that the epithelial surface was maintained best with a buffered solution containing potassium, calcium, magnesium, phosphate and bicarbonate, in addition to sodium chloride. The solution was named Basic Tear Solution (BTS). The effect was not due to osmolarity. Potassium was particularly important, as corneas bathed with sodium chloride and potassium chloride were maintained better than corneas bathed with sodium chloride only. The appearance of the epithelial surface was different in these bathing solutions. In sodium chloride the surface scattered more light and more cells were sloughed. Least light was scattered in BTS, and cell-sloughing was at a minimum. Thus, the rate at which cells were sloughed from the epithelial surface and the quality of the surface were dependent on the bathing solution. PMID:2414247

  17. [Regeneration and fibrosis of corneal tissues].

    PubMed

    Simirskiĭ, V N

    2014-01-01

    In this review, the features of the regeneration of corneal tissue and its disorders leading to the development of fibrosis are considered. The data on the presence of stem (clonogenic) cell pool in the corneal tissues (epithelium, endothelium, stroma) are given; these cells can serve as a source for regeneration of the tissues at injury or various diseases. The main steps of regeneration of corneal tissues and their disorders that lead to outstripping proliferation of myofibroblasts and secretion of extracellular matrix in the wound area and eventually cause the formation of connective tissue scar and corneal opacity are considered. Particular attention is given to the successes of translational medicine in the treatment of corneal tissue fibrosis. The methods of cell therapy aimed at the restoration of stem cell pool of corneal tissues are the most promising. Gene therapy provides more opportunities; one of its main objectives is the suppression of the myofibroblast proliferation responsible for the development of fibrosis.

  18. Regenerative Cell Therapy for Corneal Endothelium.

    PubMed

    Bartakova, Alena; Kunzevitzky, Noelia J; Goldberg, Jeffrey L

    2014-09-01

    Endothelial cell dysfunction as in Fuchs dystrophy or pseudophakic bullous keratopathy, and the limited regenerative capacity of human corneal endothelial cells (HCECs), drive the need for corneal transplant. In response to limited donor corneal availability, significant effort has been directed towards cell therapy as an alternative to surgery. Stimulation of endogenous progenitors, or transplant of stem cell-derived HCECs or in vitro-expanded, donor-derived HCECs could replace traditional surgery with regenerative therapy. Ex vivo expansion of HCECs is technically challenging, and the basis for molecular identification of functional HCECs is not established. Delivery of cells to the inner layer of the human cornea is another challenge: different techniques, from simple injection to artificial corneal scaffolds, are being investigated. Despite remaining questions, corneal endothelial cell therapies, translated to the clinic, represent the future for the treatment of corneal endotheliopathies. PMID:25328857

  19. [Recent studies on corneal epithelial barrier function].

    PubMed

    Liu, F F; Li, W; Liu, Z G; Chen, W S

    2016-08-01

    Corneal epithelium, the outermost layer of eyeball, is the main route for foreign materials to enter the eye. Under physiological conditions, the corneal epithelial superficial cells form a functionally selective permeability barrier. Integral corneal epithelial barrier function not only ensures the enrolling of nutrients which is required for regular metabolism, but also prevents foreign bodies, or disease-causing microorganism invasion. Recently, a large number of clinical and experimental studies have shown that abnormal corneal epithelial barrier function is the pathological basis for many ocular diseases. In addition, some study found that corneal epithelial barrier constitutes a variety of proteins involved in cell proliferation, differentiation, apoptosis, and a series of physiological and pathological processes. This paper reviewed recent studies specifically on the corneal epithelial barrier, highlights of its structure, function and influence factors. (Chin J Ophthalmol, 2016, 52: 631-635). PMID:27562284

  20. Peripheral Optics with Bifocal Soft and Corneal Reshaping Contact Lenses

    PubMed Central

    Ticak, Anita; Walline, Jeffrey J.

    2012-01-01

    Purpose To determine whether bifocal soft contact lenses with a distance center design provide myopic defocus to the peripheral retina similar to corneal reshaping contact lenses. Methods Myopic subjects underwent five cycloplegic autorefraction readings centrally and at 10, 20, and 30 degrees temporally, nasally, superiorly, inferiorly while wearing a Proclear Multifocal “D” contact lens with a +2.00 D add (CooperVision, Fairport, NY) and after wearing a Corneal Refractive Therapy (Paragon Vision Sciences, Mesa, AZ) contact lens for two weeks Results Fourteen subjects completed the study. Nine (64%) were female, and 12 (86%) were Caucasian. The average (± standard deviation) spherical equivalent non-cycloplegic manifest refraction for the right eye was −2.84 ± 1.29 D. The average logMAR best-corrected, binocular high contrast visual acuity was −0.17 ± 0.15 while wearing the bifocal soft contact lens, and −0.09 ± 0.16 following corneal reshaping contact lens wear (ANOVA, p = 0.27). The orthokeratology contact lens yielded a more myopic peripheral optical profile than the soft bifocal contact lens at 20 and 30 degrees eccentricity (except inferior at 20 degrees); the two modalities were similar at 10 degrees eccentricity. Conclusions Our data suggest that the two modalities are dissimilar despite the statistical similarities. The corneal reshaping contact lens shows an increase in relative peripheral myopic refraction, a pattern achieved by other studies, but the bifocal lens does not exhibit such a pattern. The low statistical power of the study could be a reason for a lack of providing statistical difference in other positions of gaze, but the graphical representation of the data shows a marked difference in peripheral optical profile between the two modalities. More sophisticated methods of measuring the peripheral optical profile may be necessary to accurately compare the two modalities and to determine the true optical effect of the bifocal soft

  1. Primary corneal melanocytoma in a Collie.

    PubMed

    Bauer, Bianca; Leis, Marina L; Sayi, Soraya

    2015-09-01

    A 6-year-old female, spayed Collie was referred to the Western College of Veterinary Medicine for a 12-month history of a progressive right corneal mass. A superficial keratectomy was performed and histopathology revealed a corneal melanocytoma with complete excision. There has been no recurrence of the neoplasm to date (12 months). This is the first known report of an isolated corneal melanocytoma in a canine. PMID:25296627

  2. Keratorefractive Effect of High Intensity Focused Ultrasound Keratoplasty on Rabbit Eyes

    PubMed Central

    Du, Zhiyu; Zhang, Dan; Zhang, Yu

    2016-01-01

    Purpose. To evaluate high intensity focused ultrasound (HIFU) as an innovation and noninvasive technique to correct presbyopia by altering corneal curvature in the rabbit eye. Methods. Eighteen enucleated rabbit eyes were treated with a prototype HIFU keratoplasty. According to the therapy power, these eyes were divided three groups: group 1 (1 W), group 2 (2 W), and group 3 (3 W). The change in corneal power was quantified by a Sirius Scheimpflug camera. Light microscopy (LM) and transmission electron microscopy (TEM) were performed to determine the effect on the corneal stroma. Results. In the treated eyes, the corneal curvature increases from 49.42 ± 0.30 diopters (D) and 48.00 ± 1.95 D before procedure to 51.37 ± 1.11 D and 57.00 ± 1.84 D after HIFU keratoplasty application in groups 1 and 3, respectively. The major axis and minor axis of the focal region got longer when the powers of the HIFU got increased; the difference was statistically significant (p < 0.05). LM and TEM showed HIFU-induced shrinkage of corneal stromal collagen with little disturbance to the underlying epithelium. Conclusions. We have preliminarily exploited HIFU to establish a new technique for correcting presbyopia. HIFU keratoplasty will be a good application prospect for treating presbyopia. PMID:27382486

  3. System for tracking transplanted limbal epithelial stem cells in the treatment of corneal stem cell deficiency

    NASA Astrophysics Data System (ADS)

    Boadi, J.; Sangwal, V.; MacNeil, S.; Matcher, S. J.

    2015-03-01

    The prevailing hypothesis for the existence and healing of the avascular corneal epithelium is that this layer of cells is continually produced by stem cells in the limbus and transported onto the cornea to mature into corneal epithelium. Limbal Stem Cell Deficiency (LSCD), in which the stem cell population is depleted, can lead to blindness. LSCD can be caused by chemical and thermal burns to the eye. A popular treatment, especially in emerging economies such as India, is the transplantation of limbal stem cells onto damaged limbus with hope of repopulating the region. Hence regenerating the corneal epithelium. In order to gain insights into the success rates of this treatment, new imaging technologies are needed in order to track the transplanted cells. Optical Coherence Tomography (OCT) is well known for its high resolution in vivo images of the retina. A custom OCT system has been built to image the corneal surface, to investigate the fate of transplanted limbal stem cells. We evaluate two methods to label and track transplanted cells: melanin labelling and magneto-labelling. To evaluate melanin labelling, stem cells are loaded with melanin and then transplanted onto a rabbit cornea denuded of its epithelium. The melanin displays strongly enhanced backscatter relative to normal cells. To evaluate magneto-labelling the stem cells are loaded with magnetic nanoparticles (20-30nm in size) and then imaged with a custom-built, magneto-motive OCT system.

  4. Wound-healing effect of micronized sacchachitin (mSC) nanogel on corneal epithelium

    PubMed Central

    Chen, Ray-Neng; Lee, Lin-Wen; Chen, Ling-Chun; Ho, Hsiu-O; Lui, Shiao-Chuan; Sheu, Ming-Thau; Su, Ching-Hua

    2012-01-01

    The extraction residue of the Ganoderma fruiting body, named sacchachitin, has been demonstrated to have the potential to enhance cutaneous wound healing by inducing cell proliferation. In this study, a nanogel formed from micronized sacchachitin (mSC) was investigated for the potential treatment of superficial chemical corneal burns. Reportedly, mSC has been produced successfully and its chemical properties confirmed, and physical and rheological properties characterized. An in vitro cell proliferation study has revealed that at the concentrations of 200, 300, and 400 μg/mL, mSC nanogel significantly increased Statens Seruminstitut rabbit corneal (SIRC) cell proliferation after 24 hours of incubation. In cell migration assay, migration of SIRC cell to wound closure was observed after 24 hours of incubation with the addition of 200 μg/mL mSC of nanogel. In an animal study, acceleration of corneal wound healing was probably due to the inhibition of proteolysis. In conclusion, the findings of this study substantiate the potential application of sacchachitin in the form of mSC nanogel for the treatment of superficial corneal injuries. PMID:22956870

  5. Improving the mechanical properties of collagen-based membranes using silk fibroin for corneal tissue engineering.

    PubMed

    Long, Kai; Liu, Yang; Li, Weichang; Wang, Lin; Liu, Sa; Wang, Yingjun; Wang, Zhichong; Ren, Li

    2015-03-01

    Although collagen with outstanding biocompatibility has promising application in corneal tissue engineering, the mechanical properties of collagen-based scaffolds, especially suture retention strength, must be further improved to satisfy the requirements of clinical applications. This article describes a toughness reinforced collagen-based membrane using silk fibroin. The collagen-silk fibroin membranes based on collagen [silk fibroin (w/w) ratios of 100:5, 100:10, and 100:20] were prepared by using silk fibroin and cross-linking by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. These membranes were analyzed by scanning electron microscopy and their optical property, and NaCl and tryptophan diffusivity had been tested. The water content was found to be dependent on the content of silk fibroin, and CS10 membrane (loading 10 wt % of silk fibroin) performed the optimal mechanical properties. Also the suture experiments have proved CS10 has high suture retention strength, which can be sutured in rabbit eyes integrally. Moreover, the composite membrane proved good biocompatibility for the proliferation of human corneal epithelial cells in vitro. Lamellar keratoplasty shows that CS10 membrane promoted complete epithelialization in 35 ± 5 days, and their transparency is restored quickly in the first month. Corneal rejection reaction, neovascularization, and keratoconus are not observed. The composite films show potential for use in the field of corneal tissue engineering.

  6. Recurrent corneal erosion: clinical features.

    PubMed

    Hope-Ross, M W; Chell, P B; Kervick, G N; McDonnell, P J

    1994-01-01

    The clinical features of a group of 30 patients with recalcitrant recurrent corneal erosions (i.e. those who failed to respond to conventional therapy) were evaluated. Associated ocular and facial abnormalities were documented. Meibomian gland dysfunction was present in all patients as manifest by dropout and inspissation of the meibomian glands, reduced tear film break-up time and debris in the tear film. Dropout of meibomian glands was present in 25 (83%) patients and was maximum in the medial half of the lid in 21 (84%) of these 25 patients. Tear film break-up time was reduced in all patients, being instant in 7 (23%), between 1 and 5 seconds in 22 (74%) and between 10 and 15 seconds in 1 (3%) patient. Superficial corneal abnormalities were present in 28 (93%) patients as manifest by maps, dots and fingerprints. Facial abnormalities such as telangiectasia, rhinophyma and acne rosacea were present in 22 (73%) patients. The findings of our study suggest an association between recalcitrant recurrent corneal erosions and meibomian gland dysfunction.

  7. A simple and non-contact optical imaging probe for evaluation of corneal diseases.

    PubMed

    Hong, Xun Jie Jeesmond; Shinoj, V K; Murukeshan, V M; Baskaran, M; Aung, T

    2015-09-01

    Non-contact imaging techniques are preferred in ophthalmology. Corneal disease is one of the leading causes of blindness worldwide, and a possible way of detection is by analyzing the shape and optical quality of the cornea. Here, a simple and cost-effective, non-contact optical probe system is proposed and illustrated. The probe possesses high spatial resolutions and is non-dependent on coupling medium, which are significant for a clinician and patient friendly investigation. These parameters are crucial, when considering an imaging system for the objective diagnosis and management of corneal diseases. The imaging of the cornea is performed on ex vivo porcine samples and subsequently on small laboratory animals, in vivo. The clinical significance of the proposed study is validated by performing imaging of the New Zealand white rabbit's cornea infected with Pseudomonas.

  8. Effects of subconjunctivally injected antineoplastic agents on three models of corneal inflammation.

    PubMed

    Rootman, J; Bussanich, N; Gudauskas, G; Kumi, C

    1985-06-01

    Three models of corneal inflammation--acute toxic keratitis, phlyctenular keratitis and corneal graft rejection--were induced in rabbits and treated with subconjunctival injections of antineoplastic agents (methotrexate, cytosine arabinoside, 5-fluorouracil and 6-mercaptopurine) and Solu-Medrol (methylprednisolone sodium succinate). The inflammations responded to the drugs to various degrees when compared with the response in control animals treated with saline. Cytosine arabinoside effected a slight decrease in the clinical features of acute toxic keratitis, methotrexate was superior in decreasing inflammation and neovascularization in phlyctenular keratitis, and Solu-Medrol appeared to be the most useful in the treatment of graft rejection. When injected repeatedly, 5-fluorouracil tended to have significant toxicity in the presence of inflammation.

  9. A simple and non-contact optical imaging probe for evaluation of corneal diseases

    NASA Astrophysics Data System (ADS)

    Hong, Xun Jie Jeesmond; Shinoj, V. K.; Murukeshan, V. M.; Baskaran, M.; Aung, T.

    2015-09-01

    Non-contact imaging techniques are preferred in ophthalmology. Corneal disease is one of the leading causes of blindness worldwide, and a possible way of detection is by analyzing the shape and optical quality of the cornea. Here, a simple and cost-effective, non-contact optical probe system is proposed and illustrated. The probe possesses high spatial resolutions and is non-dependent on coupling medium, which are significant for a clinician and patient friendly investigation. These parameters are crucial, when considering an imaging system for the objective diagnosis and management of corneal diseases. The imaging of the cornea is performed on ex vivo porcine samples and subsequently on small laboratory animals, in vivo. The clinical significance of the proposed study is validated by performing imaging of the New Zealand white rabbit's cornea infected with Pseudomonas.

  10. Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas

    PubMed Central

    Dorronsoro, Carlos; de la Hoz, Andrés; Marcos, Susana

    2016-01-01

    Objective To validate a new method for reconstructing corneal biomechanical properties from air puff corneal deformation images using hydrogel polymer model corneas and porcine corneas. Methods Air puff deformation imaging was performed on model eyes with artificial corneas made out of three different hydrogel materials with three different thicknesses and on porcine eyes, at constant intraocular pressure of 15 mmHg. The cornea air puff deformation was modeled using finite elements, and hyperelastic material parameters were determined through inverse modeling, minimizing the difference between the simulated and the measured central deformation amplitude and central-peripheral deformation ratio parameters. Uniaxial tensile tests were performed on the model cornea materials as well as on corneal strips, and the results were compared to stress-strain simulations assuming the reconstructed material parameters. Results The measured and simulated spatial and temporal profiles of the air puff deformation tests were in good agreement (< 7% average discrepancy). The simulated stress-strain curves of the studied hydrogel corneal materials fitted well the experimental stress-strain curves from uniaxial extensiometry, particularly in the 0–0.4 range. Equivalent Young´s moduli of the reconstructed material properties from air-puff were 0.31, 0.58 and 0.48 MPa for the three polymer materials respectively which differed < 1% from those obtained from extensiometry. The simulations of the same material but different thickness resulted in similar reconstructed material properties. The air-puff reconstructed average equivalent Young´s modulus of the porcine corneas was 1.3 MPa, within 18% of that obtained from extensiometry. Conclusions Air puff corneal deformation imaging with inverse finite element modeling can retrieve material properties of model hydrogel polymer corneas and real corneas, which are in good correspondence with those obtained from uniaxial extensiometry

  11. Piezo2 expression in corneal afferent neurons.

    PubMed

    Bron, Romke; Wood, Rhiannon J; Brock, James A; Ivanusic, Jason J

    2014-09-01

    Recently, a novel class of mechanically sensitive channels has been identified and have been called Piezo channels. In this study, we explored Piezo channel expression in sensory neurons supplying the guinea pig corneal epithelium, which have well-defined modalities in this species. We hypothesized that a proportion of corneal afferent neurons express Piezo2, and that these neurons are neurochemically distinct from corneal polymodal nociceptors or cold-sensing neurons. We used a combination of retrograde tracing to identify corneal afferent neurons and double label in situ hybridization and/or immunohistochemistry to determine their molecular and/or neurochemical profile. We found that Piezo2 expression occurs in ∼26% of trigeminal ganglion neurons and 30% of corneal afferent neurons. Piezo2 corneal afferent neurons are almost exclusively non-calcitonin gene-related peptide (CGRP)-immunoreactive (-IR), medium- to large-sized neurons that are NF200-IR, suggesting they are not corneal polymodal nociceptors. There was no coexpression of Piezo2 and transient receptor potential cation channel subfamily M member 8 (TRPM8) transcripts in any corneal afferent neurons, further suggesting that Piezo2 is not expressed in corneal cold-sensing neurons. We also noted that TRPM8-IR or CGRP-IR corneal afferent neurons are almost entirely small and lack NF200-IR. Piezo2 expression occurs in a neurochemically distinct subpopulation of corneal afferent neurons that are not polymodal nociceptors or cold-sensing neurons, and is likely confined to a subpopulation of pure mechano-nociceptors in the cornea. This provides the first evidence in an in vivo system that Piezo2 is a strong candidate for a channel that transduces noxious mechanical stimuli.

  12. Modeling the rabbit's eye with the Mueller matrix for birefringent properties

    NASA Astrophysics Data System (ADS)

    Baba, Justin S.; Cooper, Califf T.; Cote, Gerard L.

    2003-07-01

    The effect of changing corneal birefringence, due to motion artifact, remains a major obstacle to the development of an accurate non-invasive polarimetric glucose sensor for patients with diabetes mellitus. Consequently, there is still a need to characterize fully, and to quantify the relative changes in corneal birefringence to facilitate the optimization of detection algorithms, enabling in vivo accuracy within 10mg/dl. In this paper, we present preliminary results, utilizing a Mueller matrix imaging technique, that demonstrates notable relative changes in the apparent retardance and in the apparent fast axis location of rabbit cornea.

  13. [A comparison of corneal sensitivity between healthy cats and cats with corneal sequestra].

    PubMed

    Wagner, Frank; Meyer-Lindenberg, Andrea; Heider, Hans-Josef; Görig, Christiane; Nolte, Ingo

    2003-01-01

    In order to establish reference values for corneal sensitivity in ophthalmologically healthy persians (n = 40) and domestic short hair cats (n = 60) a prospective study was conducted. Furthermore corneal sensitivity in 48 cats with a corneal sequestrum was measured. Corneal sensitivity was recorded with the help of the aesthesiometer according to Cochet and Bonnet in five different corneal locations (central, nasal, dorsal, temporal, and ventral). The sensitivity for the central corneal region was recorded as amounting to 3.58 +/- 0.56 cm in ophthalmologically healthy domestic short hair cats and to 2.97 +/- 0.58 cm in healthy persian cats. The sensitivity of the central corneal area of a cat with a corneal sequester only amounts to 2.03 +/- 0.53 cm. Between the diseased and the healthy eyes no statistical difference could be demonstrated for any of the measured corneal locations. The sensitivity of the peripheral corneal locations is significantly lower than that of the central corneal region in all three groups examined. PMID:14526473

  14. The role of free radicals in paraquat-induced corneal lesions.

    PubMed

    Nordquist, R E; Nguyen, H; Poyer, J L; Carubelli, R

    1995-07-01

    Paraquat is a synthetic bipyridylium salt widely used as herbicide and defoliant. Enzyme-catalyzed redoxcycling of paraquat generates oxygen radicals. The toxic, even lethal, effects of paraquat are due to free radical-mediated tissue injury. Ocular lesions, sometimes quite severe, have been observed following accidental splashing of paraquat solutions onto the eyes. These studies were designed to document the generation of paraquat free radicals in corneal tissue, and to describe the histological nature of the corneal injuries in experimental animals (rabbits and monkeys). The EPR spectrum of rabbit corneas, 30 min. after intrastromal injection of paraquat, showed the signal of the free radical of paraquat. Ultrastructural studies of corneas 8 days after intrastromal injections (100 microliters) of paraquat solutions showed that the initial lesions occur at the epithelium/basement membrane interface. In rabbit cornea, dose dependent lesions were observed, i.e. whereas 50 mM paraquat caused only minimal damage to the epithelial basement membrane, 75 mM caused complete dissolution to the basement membrane with some damage to stromal collagen, and loss of epithelium with stromal ulceration and severe inflammatory response were observed with 150 mM paraquat. Monkey corneas were less susceptible than those of rabbits to the effects of paraquat. No lesions were observed following intrastromal injections of 50 mM or 75 mM paraquat. With higher concentrations of paraquat (100 mM and 150 mM) the primary injuries were to the proximal and lateral plasma membranes of basal epithelial cells; basement membrane alterations were detected only adjacent to areas of significant plasma membrane damage. The underlying Bowman's membrane and stroma were not affected. Anatomical differences between the corneas of rabbit and monkeys as well as possible biochemical differences may account for the species differences observed. PMID:7647920

  15. The role of free radicals in paraquat-induced corneal lesions.

    PubMed

    Nordquist, R E; Nguyen, H; Poyer, J L; Carubelli, R

    1995-07-01

    Paraquat is a synthetic bipyridylium salt widely used as herbicide and defoliant. Enzyme-catalyzed redoxcycling of paraquat generates oxygen radicals. The toxic, even lethal, effects of paraquat are due to free radical-mediated tissue injury. Ocular lesions, sometimes quite severe, have been observed following accidental splashing of paraquat solutions onto the eyes. These studies were designed to document the generation of paraquat free radicals in corneal tissue, and to describe the histological nature of the corneal injuries in experimental animals (rabbits and monkeys). The EPR spectrum of rabbit corneas, 30 min. after intrastromal injection of paraquat, showed the signal of the free radical of paraquat. Ultrastructural studies of corneas 8 days after intrastromal injections (100 microliters) of paraquat solutions showed that the initial lesions occur at the epithelium/basement membrane interface. In rabbit cornea, dose dependent lesions were observed, i.e. whereas 50 mM paraquat caused only minimal damage to the epithelial basement membrane, 75 mM caused complete dissolution to the basement membrane with some damage to stromal collagen, and loss of epithelium with stromal ulceration and severe inflammatory response were observed with 150 mM paraquat. Monkey corneas were less susceptible than those of rabbits to the effects of paraquat. No lesions were observed following intrastromal injections of 50 mM or 75 mM paraquat. With higher concentrations of paraquat (100 mM and 150 mM) the primary injuries were to the proximal and lateral plasma membranes of basal epithelial cells; basement membrane alterations were detected only adjacent to areas of significant plasma membrane damage. The underlying Bowman's membrane and stroma were not affected. Anatomical differences between the corneas of rabbit and monkeys as well as possible biochemical differences may account for the species differences observed.

  16. Novel Technique of Transepithelial Corneal Cross-Linking Using Iontophoresis in Progressive Keratoconus

    PubMed Central

    Raffa, Paolo; Rosati, Marianna

    2016-01-01

    In this work, the authors presented the techniques and the preliminary results at 6 months of a randomized controlled trial (NCT02117999) comparing a novel transepithelial corneal cross-linking protocol using iontophoresis with the Dresden protocol for the treatment of progressive keratoconus. At 6 months, there was a significant average improvement with an average flattening of the maximum simulated keratometry reading of 0.72 ± 1.20 D (P = 0.01); in addition, corrected distance visual acuity improved significantly (P = 0.08) and spherical equivalent refraction was significantly less myopic (P = 0.02) 6 months after transepithelial corneal cross-linking with iontophoresis. The novel protocol using iontophoresis showed comparable results with standard corneal cross-linking to halt progression of keratoconus during 6-month follow-up. Investigation of the long-term RCT outcomes are ongoing to verify the efficacy of this transepithelial corneal cross-linking protocol and to determine if it may be comparable with standard corneal cross-linking in the management of progressive keratoconus. PMID:27597895

  17. Novel Technique of Transepithelial Corneal Cross-Linking Using Iontophoresis in Progressive Keratoconus.

    PubMed

    Lombardo, Marco; Serrao, Sebastiano; Raffa, Paolo; Rosati, Marianna; Lombardo, Giuseppe

    2016-01-01

    In this work, the authors presented the techniques and the preliminary results at 6 months of a randomized controlled trial (NCT02117999) comparing a novel transepithelial corneal cross-linking protocol using iontophoresis with the Dresden protocol for the treatment of progressive keratoconus. At 6 months, there was a significant average improvement with an average flattening of the maximum simulated keratometry reading of 0.72 ± 1.20 D (P = 0.01); in addition, corrected distance visual acuity improved significantly (P = 0.08) and spherical equivalent refraction was significantly less myopic (P = 0.02) 6 months after transepithelial corneal cross-linking with iontophoresis. The novel protocol using iontophoresis showed comparable results with standard corneal cross-linking to halt progression of keratoconus during 6-month follow-up. Investigation of the long-term RCT outcomes are ongoing to verify the efficacy of this transepithelial corneal cross-linking protocol and to determine if it may be comparable with standard corneal cross-linking in the management of progressive keratoconus. PMID:27597895

  18. Therapeutic efficacy of fibroblast growth factor 10 in a rabbit model of dry eye

    PubMed Central

    ZHENG, WENJING; MA, MINGMING; DU, ERGANG; ZHANG, ZHENGWEI; JIANG, KELIMU; GU, QING; KE, BILIAN

    2015-01-01

    The aim of the present study was to investigate the therapeutic efficacy of fibroblast growth factor 10 (FGF10) in the promotion of healing, survival and expression of mucin in corneal epithelial cells in a rabbit dry eye model. A total of 12 healthy female New Zealand white rabbits were divided randomly into three groups. The lacrimal glands were injected with saline either alone (normal control group) or with concanavalin A (Con A), with either topical phosphate-buffered saline (PBS; PBS control group) or 25 µg/ml FGF10 (FGF10 treatment group). Lacrimal gland inflammation, tear function, corneal epithelial cell integrity, cell apoptosis and mucin expression were subsequently assessed. Lacrimal gland tissue biopsies were performed in conjunction with histology and electron microscopy observations. Tear meniscus height (TMH) and tear meniscus area (TMA) were measured using Fourier domain-optical coherence tomography. Tear membrane break-up time (TBUT) was also assessed and corneal fluorescein staining was performed. The percentages of apoptotic corneal and conjunctival (Cj) epithelial cells (ECs) were counted using a terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling method. The mRNA expression levels of Muc1 were determined using reverse transcription-quantitative polymerase chain reaction analyses. The TMH and TMA values of the PBS and treatment groups were found to be significantly reduced, compared with those of the normal control group 3 days after Con A injection. However, the TMH and TMA of the FGF10 treatment group were higher, compared with those of the PBS group 3 and 7 days after treatment, respectively. Furthermore, the FGF10 treatment group exhibited prolonged TBUT, reduced corneal fluorescein staining and repaired epithelial cell ultra-structure7 days after treatment. The percentages of apoptotic corneal- and Cj-ECs in the FGF10 treatment group were significantly reduced, compared with those in the PBS group. FGF10 significantly

  19. Transplantation with cultured stem cells derived from the human amniotic membrane for corneal alkali burns: an experimental study.

    PubMed

    Zeng, Wei; Li, Yanwei; Zeng, Guangwei; Yang, Bo; Zhu, Yu

    2014-01-01

    Amniotic membranes (AM) have been used in a wide range of clinical applications. We successfully extracted mesenchymal stem cells (MSCs) from human AM, but little is known about the use and efficacy of human amniotic membrane-derived mesenchymal stem cells (hAM-dMSCs) for the treatment of alkali burns. We utilized hAM-dMSCs transplantation, AM grafting, and their combined use in the treatment of alkali burns. An experimental model in rabbits was devised to analyze the use of these techniques with immunocytochemistry and ELISA. The survival and migration of hAM-dMSCs labeled by SPION in the host were assessed with Prussian blue staining. Compared with the control group, the treated groups demonstrated faster reconstruction of the corneal epithelium, and lower levels of corneal opacification and neovascularization within corneal alkali burns. Furthermore, dark blue-stained particles were detected in the limbus corneae at day 28. These results demonstrated the ability of hAM-dMSCs to enhance epithelial healing and reduce corneal opacification and neovascularization in corneal alkali wounds.

  20. Corneal thermal damage threshold dependence on the exposure duration for near-infrared laser radiation at 1319 nm

    NASA Astrophysics Data System (ADS)

    Wang, Jiarui; Jiao, Luguang; Chen, Hongxia; Yang, Zaifu; Hu, Xiangjun

    2016-01-01

    The corneal damage effects induced by 1319-nm transitional near-infrared laser have been investigated for years. However, the damage threshold dependence on exposure duration has not been revealed. The in vivo corneal damage thresholds (ED50s) were determined in New Zealand rabbits for 1319-nm laser radiation for exposure durations from 75 ms to 10 s. An additional corneal ED50 was determined at 1338 nm for a 5-ms exposure. The incident corneal irradiance diameter was fixed at 2 mm for all exposure conditions to avoid the influence of spot size on threshold. The ED50s given in terms of the corneal radiant exposure for exposure durations of 5 ms, 75 ms, 0.35 s, 2 s, and 10 s were 39.4, 51.5, 87.2, 156.3, and 311.1 J/cm2, respectively. The 39.4 J/cm2 was derived from the ED50 for 1338 nm (27.0 J/cm2). The ED50s for exposure durations of 75 ms to 10 s were correlated by a power law equation, ED50=128.9t0.36 in J/cm2, where t was the input in the unit of second, with correlation coefficient (R) of 0.997. Enough safe margins existed between the ED50s and the maximum permitted exposures from current laser safety standard.

  1. Laser-induced corneal cross-linking upon photorefractive ablation with riboflavin

    PubMed Central

    Kornilovskiy, Igor M; Kasimov, Elmar M; Sultanova, Ayten I; Burtsev, Alexander A

    2016-01-01

    Aim To estimate the biomechanical effect of the laser-induced cross-linking resulting from photorefractive ablation of the cornea with riboflavin. Methods Excimer laser ablation studies were performed ex vivo (32 eyes of 16 rabbits) by phototherapeutic keratectomy (PTK) and in vivo (24 eyes of 12 rabbits) by transepithelial photorefractive keratectomy (TransPRK), with and without riboflavin saturation of the stroma. Then, we performed corneal optical coherence tomography on 36 eyes of 18 patients with varying degrees of myopia at different times after the TransPRK was performed with riboflavin saturation of the stroma. Results Biomechanical testing of corneal samples saturated with riboflavin revealed cross-linking effect accompanied by the increase in tensile strength and maximum strength. PTK showed increase in tensile strength from 5.1±1.4 to 7.2±1.6 MPa (P=0.001), while Trans-PRK showed increase in tensile strength from 8.8±0.9 to 12.8±1.3 MPa (P=0.0004). Maximum strength increased from 8.7±2.5 to 12.0±2.8 N (P=0.005) in PTK and from 12.8±1.6 to 18.3±1.2 N (P=0.0004) in TransPRK. Clinical optical coherence tomography studies of the biomicroscopic transparent cornea at different times after TransPRK showed increased density in the surface layers of the stroma and membrane-like structure beneath the epithelium. Conclusion Photorefractive ablation of the preliminary corneal stroma saturation with riboflavin causes the effect of laser-induced cross-linking, which is attended with an increase in corneal tensile strength, maximum strength, increased density in the surface layers of the stroma, and formation of a membrane-like structure beneath the epithelium after TransPRK. PMID:27099467

  2. Corneal injury from 1318-nm single laser pulses

    NASA Astrophysics Data System (ADS)

    Roach, William P.; Ketzenberger, Bryan K.; Burton, Margaret B.; Johnson, Thomas E.

    2002-06-01

    Threshold, median effective dose, and the mechanism of laser-tissue interaction are not well defined at the 1318-nm wavelength for human corneal exposures. The goals of this research effort are to identify at-risk groups, characterize the lesions imposed, and establish the ED50 for single pulse 1318-nm laser exposures on the cornea. A Neodymium: Yttrium Aluminum Garnet (Nd:YAG) laser was used to deliver 1318-nm wavelength pulses to the corneas of ten female Dutch Belted rabbits (Oryctolagus cuniculus). Single pulses of 0.5-ms duration and radiant beam energy ranging from 116 to 2250 joules/per square centimeter (J/cm2) were used. Exposure sites were clinically evaluated acutely, one hour and twenty-four hours post-exposure for the presence of a lesion. Results from the twenty-four hour evaluation were used to determine the ED50. Grossly, the lesions appeared as small, circular, well-demarcated, white, opaque lesions. Histologically, the lesions appeared as conical shaped coagulative necrosis with the base of the lesion at the epithelial surface of the cornea and extending to the apex at the endothelial border of the cornea. The ED50 for 1318-nm exposures to the rabbit cornea was determined to be 383 J/cm2 for a 0.1-mm spot size as measured at 1/e2.

  3. Influence of Pre-Freezing Temperature on the Corneal Endothelial Cytocompatibility and Cell Delivery Performance of Porous Hyaluronic Acid Hydrogel Carriers

    PubMed Central

    Lai, Jui-Yang

    2015-01-01

    The development of porous hyaluronic acid (HA) hydrogels for corneal endothelial tissue engineering is attractive because they can be used as functional cell delivery carriers to help in the reconstruction of damaged areas. The purpose of this study was to investigate the corneal endothelial cytocompatibility and cell delivery performance of porous HA hydrogel biomaterials fabricated at different pre-freezing temperatures. As compared to their counterparts prepared at −80 °C, the HA samples fabricated at higher pre-freezing temperature (i.e., 0 °C) exhibited a larger pore size and higher porosity, thereby leading to lower resistance to glucose permeation. Live/dead assays and gene expression analyses showed that the restricted porous structure of HA carriers decreases the viability and ionic pump function of cultured corneal endothelial cells (CECs). The results also indicated that the porous hydrogel biomaterials fabricated at high pre-freezing temperature seem to be more compatible with rabbit CECs. In an animal model of corneal endothelial dysfunction, the wounded rabbit corneas receiving bioengineered CEC sheets and restricted porous-structured HA carriers demonstrated poor tissue reconstruction. The therapeutic efficacy of cell sheet transplants can be improved by using carrier materials prepared at high pre-freezing temperature. Our findings suggest that the cryogenic operation temperature-mediated pore microstructure of HA carriers plays an important role in corneal endothelial cytocompatibility and cell delivery performance. PMID:26270663

  4. A Rabbit Model of Acanthamoeba Keratitis That Better Reflects the Natural Human Infection.

    PubMed

    Feng, Xianmin; Zheng, Wenyu; Wang, Yuehua; Zhao, Donghai; Jiang, Xiaoming; Lv, Shijie

    2015-08-01

    Acanthamoeba species are ubiquitous, free-living protozoa that can invade the cornea and result in Acanthamoeba keratitis (AK), a painful progressive sight-threatening corneal disease. Disease progression in current animal models is too rapid to mimic AK in humans accurately. This study provides a novel method for establishing AK in rabbits and compared it with the conventional method with regard to pathogenesis and immune response in humans. The New Zealand white rabbits were randomly divided into two experimental groups (Groups A and B). Rabbits in the Group A (n = 14) received intrastromal injections of 1 × 10(4) /100 µL Acanthamoeba healyi trophozoites (conventional AK model). The Group B animals (n = 14) received microinjections of 1 × 10(4) /10 µL A. healyi trophozoites between the corneal epithelium and Bowman's layer, anterior to the corneal stroma (novel AK model). In addition, two rabbits were left untreated as normal controls. AK in the treated rabbits was evaluated clinically, histopathologically, and immunologically for 35 days. AK was successfully established in both the conventional and novel model groups. Compared with the Group A, AK in the Group B displayed an efficient immune response with less severe pathology. Moreover, the self-limiting but chronic nature of the infection in the Group B was strikingly similar to that of AK in humans. The novel animal model for AK described here more closely simulates the pathogenesis and immune response of Acanthamoeba corneal infection in humans than the animal models currently in use.

  5. Matrix metalloproteinase 14 overexpression reduces corneal scarring.

    PubMed

    Galiacy, S D; Fournié, P; Massoudi, D; Ancèle, E; Quintyn, J-C; Erraud, A; Raymond-Letron, I; Rolling, F; Malecaze, F

    2011-05-01

    Once a corneal scar develops, surgical management remains the only option for visual rehabilitation. Corneal transplantation is the definitive treatment for a corneal scar. In addition to the challenges posed by graft rejections and other postoperative complications, the lack of high-quality donor corneas can limit the benefits possible with keratoplasty. The purpose of our study was to evaluate a new therapeutic strategy for treating corneal scarring by targeting collagen deposition. We overexpressed a fibril collagenase (matrix metalloproteinase 14 (MMP14)) to prevent collagen deposition in the scar tissue. We demonstrated that a single and simple direct injection of recombinant adeno-associated virus-based vector expressing murine MMP14 can modulate gene expression of murine stromal keratocytes. This tool opens new possibilities with regard to treatment. In a mouse model of corneal full-thickness incision, we observed that MMP14 overexpression reduced corneal opacity and expression of the major genes involved in corneal scarring, especially type III collagen and α-smooth muscle actin. These results represent proof of concept that gene transfer of MMP14 can reduce scar formation, which could have therapeutic applications after corneal trauma.

  6. Corneal hysteresis and its relevance to glaucoma

    PubMed Central

    Deol, Madhvi; Taylor, David A.; Radcliffe, Nathan M.

    2015-01-01

    Purpose of review Glaucoma is a leading cause of irreversible blindness worldwide. It is estimated that roughly 60.5 million people had glaucoma in 2010 and that this number is increasing. Many patients continue to lose vision despite apparent disease control according to traditional risk factors. The purpose of this review is to discuss the recent findings with regard to corneal hysteresis, a variable that is thought to be associated with the risk and progression of glaucoma. Recent findings Low corneal hysteresis is associated with optic nerve and visual field damage in glaucoma and the risk of structural and functional glaucoma progression. In addition, hysteresis may enhance intraocular pressure (IOP) interpretation: low corneal hysteresis is associated with a larger magnitude of IOP reduction following various glaucoma therapies. Corneal hysteresis is dynamic and may increase in eyes after IOP-lowering interventions are implemented. Summary It is widely accepted that central corneal thickness is a predictive factor for the risk of glaucoma progression. Recent evidence shows that corneal hysteresis also provides valuable information for several aspects of glaucoma management. In fact, corneal hysteresis may be more strongly associated with glaucoma presence, risk of progression, and effectiveness of glaucoma treatments than central corneal thickness. PMID:25611166

  7. Remodeling of epithelial cells and basement membranes in a corneal deficiency model with long-term follow-up.

    PubMed

    Kameishi, Sumako; Sugiyama, Hiroaki; Yamato, Masayuki; Sado, Yoshikazu; Namiki, Hideo; Kato, Takashi; Okano, Teruo

    2015-02-01

    The ocular surface consists of the cornea, conjunctiva, and the limbus that is located in the transitional zone between the cornea and conjunctiva. The corneal epithelial cells are generated through the mitosis of corneal epithelial stem cells in the limbus. This study investigated a rabbit corneal deficiency model prepared by the surgical removal of the corneal and limbal epithelia, which express cytokeratin 12 (K12). After the surgery, K13-expressing conjunctival epithelium migrated onto the corneal surface and completely covered the surface, leading to neovascularization and corneal opacification. However, at 24 and 48 weeks after the surgery, K12-expressing cornea-like cells reappeared on the model ocular surface. These cells formed an island surrounded by invaded conjunctiva and were isolated from the limbus. Interestingly, in the 24-week model surface, α1(IV) and α2(IV) collagen chains, which are normally found in the basement membrane of the native limbus and conjunctiva, and not in the cornea, were continuously deposited throughout the entire basement membrane, including the basement membrane under cornea-like cells. By contrast, in the 48-week model surface, α1(IV) and α2(IV) collagen chains were absent from the basement membrane beneath the central part of cornea-like cells and were localized below the invaded conjunctiva and the transitional zone between cornea-like cells and the invaded conjunctiva, which had similar distribution to the native ocular basement membrane. Moreover, K12, K14, p63, vimentin, and α1(IV) and α2(IV) collagen chains, which are colocalized in the native limbus, were all present at the transitional zone of the 48-week model surface. Therefore, a limbus-like structure appeared to be reconstructed on the surface of the 48-week model as a stem cell niche. This study should aid in the understanding of human corneal deficiency, the correlation between the epithelial cell phenotype and the composition of the basement membrane, and

  8. Development of a Zealand white rabbit deposition model to study inhalation anthrax.

    PubMed

    Asgharian, Bahman; Price, Owen; Kabilan, Senthil; Jacob, Richard E; Einstein, Daniel R; Kuprat, Andrew P; Corley, Richard A

    2016-01-01

    Despite using rabbits in several inhalation exposure experiments to study diseases such as anthrax, there is a lack of understanding regarding deposition characteristics and fate of inhaled particles (bio-aerosols and viruses) in the respiratory tracts of rabbits. Such information allows dosimetric extrapolation to humans to inform human outcomes. The lung geometry of the New Zealand white rabbit (referred to simply as rabbits throughout the article) was constructed using recently acquired scanned images of the conducting airways of rabbits and available information on its acinar region. In addition, functional relationships were developed for the lung and breathing parameters of rabbits as a function of body weight. The lung geometry and breathing parameters were used to extend the existing deposition model for humans and several other species to rabbits. Evaluation of the deposition model for rabbits was made by comparing predictions with available measurements in the literature. Deposition predictions in the lungs of rabbits indicated smaller deposition fractions compared to those found in humans across various particle diameter ranges. The application of the deposition model for rabbits was demonstrated by extrapolating deposition predictions in rabbits to find equivalent human exposure concentrations assuming the same dose-response relationship between the two species. Human equivalent exposure concentration levels were found to be much smaller than those for rabbits.

  9. [To Protect Corneal Transparency against Diseases].

    PubMed

    Usui, Tomohiko

    2016-03-01

    To protect corneal transparency, we tried to develop a new therapeutic strategy for corneal neovascularization, corneal scar, and TGFBI-related corneal dystrophy using nucleic acid drug. 1. The expression of angiopietin-like protein 2 (Angptl2) markedly increased in the neovascularized corneas compared to the normal cornea, and Angtpl2 was(a potent inducer of inflammatory corneal neovascularization. We have produced a single-stranded proline-modified short hairpin anti-Angptl2 ribonucleric acid interference (RNAi) molecule that is carried in a lipid nanoparticle for topical application. We have found this agent can penetrate all layers of the cornea. Angptl2 mRNA expression and corneal neovascularization were inhibited in a mouse alkari injury model by topical application of this agent. Thus, this modified RNAi agent is a new topical formulation for use against corneal neovascularization and scar. 2. Human umbilical vein endothelial cells (HUVECs) were cultured with human corneal keratocytes under serum-free conditions. We performed microarray gene-expression analysis in the coculture system and selected angiopoietin-like protein 7 (Angptl7). In vivo, intrastromal injections of an anti-Angptl7 RNAi agent into the avascular corneal stroma of mice resulted in the growth of blood vessels. Further, we examined the effects of Angptl7 on corneal nerves using culture rat trigeminal cells and this molecule had neurotrophic property on the cornea. Thus, Angpt17 is a unique molecule, which contain its bilateral character (anti-angiogenic and neurotrophic) in the cornea; an agonistic nucleic acid drug for Angptl7 may be a new therapeutic tool for protecting corneal transparency. 3. We examined local gene editing for TGFBI-related corneal dystrophy using CRISPR-Cas9 mediated homology directed repair (HDR). Cultured corneal keratocytes were obtained from a patient of R124H granular dystrophy. The R124H gene arrangement was corrected by a tranfection of guide RNA and HDR repair

  10. Corneal neovascularization and contemporary antiangiogenic therapeutics.

    PubMed

    Hsu, Chih-Chien; Chang, Hua-Ming; Lin, Tai-Chi; Hung, Kuo-Hsuan; Chien, Ke-Hung; Chen, Szu-Yu; Chen, San-Ni; Chen, Yan-Ting

    2015-06-01

    Corneal neovascularization (NV), the excessive ingrowth of blood vessels from conjunctiva into the cornea, is a common sequela of disease insult that can lead to visual impairment. Clinically, topical steroid, argon laser photocoagulation, and subconjunctival injection of bevacizumab have been used to treat corneal NV. Sometimes, the therapies are ineffective, especially when the vessels are large. Large vessels are difficult to occlude and easily recanalized. Scientists and physicians are now dedicated to overcoming this problem. In this article, we briefly introduce the pathogenesis of corneal NV, and then highlight the existing animal models used in corneal NV research-the alkali-induced model and the suture-induced model. Most of all, we review the potential therapeutic targets (i.e., vascular endothelial growth factor and platelet-derived growth factor) and their corresponding inhibitors, as well as the immunosuppressants that have been discovered in recent years by corneal NV studies.

  11. Interferometric measurements of fine corneal topography

    NASA Astrophysics Data System (ADS)

    Kasprzak, Henryk T.; Kowalik, Waldemar; Jaronski, Jaroslaw W.

    1995-02-01

    The cornea is the most refractive element in the eye. Its refractive power is about 70% of the power of the whole eye. The shape of the cornea is aspheric, and almost always has no rotational symmetry. Even small surface irregularities can cause a perceptible reduction in visual acuity. Standard methods for evaluation of the corneal topography used in clinical practice include keratometry, photokeratoscopy, and computer assisted videokeratography. All of these methods used the principles of geometrical optics, and their accuracy is about 0.25 D. An application of interference phenomenon's to examine the corneal contour map significantly increase the accuracy. Using the interferometric inspection of the corneal shape one can easily observe the fine corneal topography, the fast, dynamic changes of the corneal surface, and the topology of the tear film and its irregularities. The paper presents the Twyman Green interferometer, used in experiments, an example of sequence of interferograms and their 3D presentations.

  12. Corneal autofluorescence in presence of diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Rovati, Luigi; Docchio, Franco; Azzolini, Claudio; Van Best, Jaap A.

    1998-06-01

    Recently corneal autofluorescence has been proposed as an ocular diagnostic tool for diabetic retinopathy. The method is based on the sensible increase of the natural fluorescence of corneal tissue within specific wavelength in presence of early stage of diabetic retinopathy. The main advantages of this method are that the corneal autofluorescence has been demonstrated to be not age-related and that the cornea is readily accessible to be investigated. In this study 47 insulin-dependent diabetes mellitus and 51 non-insulin- dependent diabetes mellitus patients aged 20 - 90 years have been considered. Patients were selected from the Eye Clinic of S. Raffaele Hospital. The modified Airlie House classification was used to grade the diabetic retinopathy. Corneal autofluorescence has been measured by using both a specifically designed instrument and the Fluorotron Master. Corneal autofluorescence mean value for each diabetic retinopathy measured by using both the instruments correlated with the retinopathy grade.

  13. Riboflavin for corneal cross-linking.

    PubMed

    O'Brart, D P S

    2016-06-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet A (UVA) radiation is the first therapeutic modality that appears to arrest the progression of keratoconus and other corneal ectasias. Riboflavin is central to the process, acting as a photosensitizer for the production of oxygen singlets and riboflavin triplets. These free radicals drive the CXL process within the proteins of the corneal stroma, altering its biomechanical properties. Riboflavin also absorbs the majority of the UVA radiation, which is potentially cytotoxic and mutagenic, within the anterior stroma, preventing damage to internal ocular structures, such as the corneal endothelium, lens and retina. Clinical studies report cessation of ectatic progression in over 90% of cases and the majority document significant improvements in visual, keratometric and topographic parameters. Clinical follow-up is limited to 5-10 years, but suggests sustained stability and enhancement in corneal shape. Sight-threatening complications are rare. The optimal stromal riboflavin dosage for CXL is as yet undetermined. PMID:27458610

  14. Imaging Mass Spectrometry by Matrix-Assisted Laser Desorption/Ionization and Stress-Strain Measurements in Iontophoresis Transepithelial Corneal Collagen Cross-Linking

    PubMed Central

    Mencucci, Rita; Camesasca, Fabrizio I.; Favuzza, Eleonora

    2014-01-01

    Purpose. To compare biomechanical effect, riboflavin penetration and distribution in transepithelial corneal collagen cross-linking with iontophoresis (I-CXL), with standard cross linking (S-CXL) and current transepithelial protocol (TE-CXL). Materials and Methods. The study was divided into two different sections, considering, respectively, rabbit and human cadaver corneas. In both sections corneas were divided according to imbibition protocols and irradiation power. Imaging mass spectrometry by matrix-assisted laser desorption/ionization (MALDI-IMS) and stress-strain measurements were used. Forty-eight rabbit and twelve human cadaver corneas were evaluated. Results. MALDI-IMS showed a deep riboflavin penetration throughout the corneal layers with I-CXL, with a roughly lower concentration in the deepest layers when compared to S-CXL, whereas with TE-CXL penetration was considerably less. In rabbits, there was a significant increase (by 71.9% and P = 0.05) in corneal rigidity after I-CXL, when compared to controls. In humans, corneal rigidity increase was not significantly different among the subgroups. Conclusions. In rabbits, I-CXL induced a significant increase in corneal stiffness as well as better riboflavin penetration when compared to controls and TE-CXL but not to S-CXL. Stress-strain in human corneas did not show significant differences among techniques, possibly because of the small sample size of groups. In conclusion, I-CXL could be a valid alternative to S-CXL for riboflavin delivery in CXL, preserving the epithelium. PMID:25276786

  15. Implantable collamer lens for residual refractive error after corneal refractive surgery

    PubMed Central

    Chen, Xun; Wang, Xiao-Ying; Zhang, Xi; Chen, Zhi; Zhou, Xing-Tao

    2016-01-01

    AIM To assess the safety, efficacy, predictability and stability of implantable collamer lens (ICL) for residual refractive error after corneal refractive surgery. METHODS This study evaluated 19 eyes of 12 patients who underwent ICL implantation after corneal refractive surgeries. They were followed up for 1y to 5y of uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), manifest refractive error, flat and steep K value, axial length, intraocular pressure, corneal endothelial cell density, adverse events after ICL surgery. RESULTS The mean follow-up period was 39.05±19.22 mo (range, 1-5y). Spherical equivalent refractive error changed from -7.45±3.02 D preoperatively to -0.85±1.10 D 1wk to 1mo after ICL implantation, with the safety and efficacy indices being 1.12 and 1.15, respectively. A total of 52.63% of eyes were within ±0.5 D of the predicted spherical equivalents, 73.68% were within ±1.0 D. A trend of mild regression towards myopia with axial elongation after 5y was observed. One eye with mild anterior capsule opacity and retinal detachment 1y after surgery were observed. CONCLUSION ICL implantation is safe and effective for the correction of residual refractive error after corneal refractive surgeries, especially in moderate to high residual myopia. PMID:27803858

  16. Differential diagnosis of Schnyder corneal dystrophy.

    PubMed

    Weiss, Jayne S; Khemichian, Arbi J

    2011-01-01

    Schnyder corneal dystrophy (SCD) is a rare corneal dystrophy characterized by abnormally increased deposition of cholesterol and phospholipids in the cornea leading to progressive vision loss. SCD is inherited as an autosomal dominant trait with high penetrance and has been mapped to the UBIAD1 gene on chromosome 1p36.3. Although 2/3 of SCD patients also have systemic hypercholesterolemia, the incidence of hypercholesterolemia is also increased in unaffected members of SCD pedigrees. Consequently, SCD is thought to result from a local metabolic defect in the cornea. The corneal findings in SCD are very predictable depending on the age of the individual, with initial central corneal haze and/or crystals, subsequent appearance of arcus lipoides in the third decade and formation of midperipheral haze in the late fourth decade. Because only 50% of affected patients have corneal crystals, the International Committee for Classification of Corneal Dystrophies recently changed the original name of this dystrophy from Schnyder crystalline corneal dystrophy to Schnyder corneal dystrophy. Diagnosis of affected individuals without crystalline deposits is often delayed and these individuals are frequently misdiagnosed. The differential diagnosis of the SCD patient includes other diseases with crystalline deposits such as cystinosis, tyrosinemia, Bietti crystalline dystrophy, hyperuricemia/gout, multiple myeloma, monoclonal gammopathy, infectious crystalline keratopathy, and Dieffenbachia keratitis. Depositions from drugs such as gold in chrysiasis, chlorpromazine, chloroquine, and clofazamine can also result in corneal deposits and are different from SCD. Diseases of systemic lipid metabolism that cause corneal opacification, such as lecithin-cholesterol acyltransferase deficiency, fish eye disease and Tangier disease, should also be considered although these are autosomal recessive disorders. PMID:21540632

  17. Corneal biomechanical properties in thyroid eye disease.

    PubMed

    Karabulut, Gamze Ozturk; Kaynak, Pelin; Altan, Cıgdem; Ozturker, Can; Aksoy, Ebru Funda; Demirok, Ahmet; Yılmaz, Omer Faruk

    2014-06-01

    The purpose of this study is to investigate the effect of thyroid eye disease (TED) on the measurement of corneal biomechanical properties and the relationship between these parameters and disease manifestations. A total of 54 eyes of 27 individuals with TED and 52 eyes of 30 healthy control participants were enrolled. Thyroid ophthalmopathy activity was defined using the VISA (vision, inflammation, strabismus, and appearance/exposure) classification for TED. The intraocular pressure (IOP) measurement with Goldmann applanation tonometer (GAT), axial length (AL), keratometry, and central corneal thickness (CCT) measurements were taken from each patient. Corneal biomechanical properties, including corneal hysteresis (CH) and corneal resistance factor (CRF) and noncontact IOP measurements, Goldmann-correlated IOP (IOPg) and corneal-compensated IOP (IOPcc) were measured with the Ocular Response Analyzer (ORA) using the standard technique. Parameters such as best corrected visual acuity, axial length, central corneal thickness, and corneal curvature were not statistically significant between the two groups (p > 0.05). IOP measured with GAT was higher in participants with TED (p < 0.001). The CH of TED patients was significantly lower than that of the control group. There was no significant difference in the corneal resistance factor between groups. However, IOPg and IOPcc were significantly higher in TED patients. CH and VISA grading of TED patients showed a negative correlation (p = 0.007). In conclusion, TED affects the corneal biomechanical properties by decreasing CH. IOP with GAT and IOPg is found to be increased in these patients. As the severity of TED increases, CH decreases in these patients.

  18. Corneal endothelium: developmental strategies for regeneration

    PubMed Central

    Zavala, J; López Jaime, G R; Rodríguez Barrientos, C A; Valdez-Garcia, J

    2013-01-01

    The main treatment available for restoration of the corneal endothelium is keratoplasty. This procedure is faced with several difficulties, including the shortage of donor tissue, post-surgical complications associated with the use of drugs to prevent immune rejection, and a significant increase in the occurrence of glaucoma. Recently, surgical procedures such as Descemet's stripping endothelial keratoplasty have focused on the transplant of corneal endothelium, yielding better visual results but still facing the need for donor tissue. The emergent strategies in the field of cell biology and tissue cultivation of corneal endothelial cells aim at the production of transplantable endothelial cell sheets. Cell therapy focuses on the culture of corneal endothelial cells retrieved from the donor, in the donor's cornea, followed by transplantation into the recipient. Recently, research has focused on overcoming the challenge of harvesting human corneal endothelial cells and the generation of new biomembranes to be used as cell scaffolds in surgical procedures. The use of corneal endothelial precursors from the peripheral cornea has also demonstrated to be effective and represents a valuable tool for reducing the risk of rejection in allogeneic transplants. Several animal model reports also support the use of adult stem cells as therapy for corneal diseases. Current results represent important progresses in the development of new strategies based on alternative sources of tissue for the treatment of corneal endotheliopathies. Different databases were used to search literature: PubMed, Google Books, MD Consult, Google Scholar, Gene Cards, and NCBI Books. The main search terms used were: ‘cornea AND embryology AND transcription factors', ‘human endothelial keratoplasty AND risk factors', ‘(cornea OR corneal) AND (endothelium OR endothelial) AND cell culture', ‘mesenchymal stem cells AND cell therapy', ‘mesenchymal stem cells AND cornea', and ‘stem cells AND

  19. "Christmas eye". Acute corneal erosion.

    PubMed

    Colvin, C S

    1979-12-15

    The term "Christmas eye" is one I have coined to describe a type of acute corneal erosion which seems to occur only between late November and mid January, in country areas of New South Wales. Since 1970, I have seen 20 cases, all monocular, in people from an area bounded by Wellington, Mudgee, Grenfell, Cowra and Young. Twelve patients were adult males, three were adult females, and there were five children (one female, four male). The incidence varies; six cases presented in 1976, and none in 1978.

  20. Corneal Fibroblast Migration Patterns During Intrastromal Wound Healing Correlate With ECM Structure and Alignment

    PubMed Central

    Petroll, W. Matthew; Kivanany, Pouriska B.; Hagenasr, Daniela; Graham, Eric K.

    2015-01-01

    Purpose To assess keratocyte backscattering, alignment, morphology, and connectivity in vivo following a full-thickness corneal injury using the Heidelberg Retina Tomograph Rostock Cornea Module (HRT-RCM), and to correlate these findings with en bloc three-dimensional (3-D) confocal fluorescence and second harmonic generation (SHG) imaging. Methods Rabbit corneas were scanned in vivo both before and 3, 7, 14, and 28 days after transcorneal freeze injury (FI), which damages all corneal cell layers. Corneal tissue was also fixed and labeled for f-actin and nuclei en bloc, and imaged using 3-D confocal fluorescence microscopy and SHG imaging. Results Using the modified HRT-RCM, full-thickness scans of all cell layers were consistently obtained. Following FI, stromal cells repopulating the damaged tissue assumed an elongated fibroblastic morphology, and a significant increase in cellular light scattering was measured. This stromal haze gradually decreased as wound healing progressed. Parallel, interconnected streams of aligned corneal fibroblasts were observed both in vivo (from HRT-RCM reflection images) and ex vivo (from f-actin and nuclear labeling) during wound healing, particularly in the posterior cornea. Second harmonic generation imaging demonstrated that these cells were aligned parallel to the collagen lamellae. Conclusions The modified HRT-RCM allows in vivo measurements of sublayer thickness, assessment of cell morphology, alignment and connectivity, and estimation of stromal backscatter during wound healing. In this study, these in vivo observations led to the novel finding that the pattern of corneal fibroblast alignment is highly correlated with lamellar organization, suggesting contact guidance of intrastromal migration that may facilitate more rapid wound repopulation. PMID:26562169

  1. Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering.

    PubMed

    Lai, Jui-Yang; Li, Ya-Ting; Cho, Ching-Hsien; Yu, Ting-Chun

    2012-01-01

    Recent studies reflect the importance of using naturally occurring biopolymers as three-dimensional corneal keratocyte scaffolds and suggest that the porous structure of gelatin materials may play an important role in controlling nutrient uptake. In the current study, the authors further consider the application of carbodiimide cross-linked porous gelatin as an alternative to collagen for corneal stromal tissue engineering. The authors developed corneal keratocyte scaffolds by nanoscale modification of porous gelatin materials with chondroitin sulfate (CS) using carbodiimide chemistry. Scanning electron microscopy/energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy showed that the amount of covalently incorporated polysaccharide was significantly increased when the CS concentration was increased from 0% to 1.25% (w/v). In addition, as demonstrated by dimethylmethylene blue assays, the CS content in these samples was in the range of 0.078-0.149 nmol per 10 mg scaffold. When compared with their counterparts without CS treatment, various CS-modified porous gelatin membranes exhibited higher levels of water content, light transmittance, and amount of permeated nutrients but possessed lower Young's modulus and resistance against protease digestion. The hydrophilic and mechanical properties of scaffolds modified with 0.25% CS were comparable with those of native corneas. The samples from this group were biocompatible with the rabbit corneal keratocytes and showed enhanced proliferative and biosynthetic capacity of cultured cells. In summary, the authors found that the nanoscale-level modification has influence on the characteristics and cell-material interactions of CS-containing gelatin hydrogels. Porous membranes with a CS content of 0.112 ± 0.003 nmol per 10 mg scaffold may hold potential for use in corneal stromal tissue engineering. PMID:22403490

  2. ADAM17 Inhibitors Attenuate Corneal Epithelial Detachment Induced by Mustard Exposure

    PubMed Central

    DeSantis-Rodrigues, Andrea; Chang, Yoke-Chen; A. Hahn, Rita; P. Po, Iris; Zhou, Peihong; Lacey, C. Jeffrey; Pillai, Abhilash; C. Young, Sherri; A. Flowers II, Robert; A. Gallo, Michael; D. Laskin, Jeffrey; R. Gerecke, Donald; K. H. Svoboda, Kathy; D. Heindel, Ned; Gordon, Marion K.

    2016-01-01

    Purpose Sulfur mustard, nitrogen mustard (NM), and 2-chloroethyl ethyl sulfide all cause corneal injury with epithelial–stromal separation, differing only by degree. Injury can resolve in a few weeks or develop into chronic corneal problems. These vesicants induce microbullae at the epithelial–stromal junction, which is partially caused by cleavage of transmembranous hemidesmosomal collagen XVII, a component anchoring the epithelium to the stroma. ADAM17 is an enzyme involved in wound healing and is able to cleave collagen XVII. The activity of ADAM17 was inhibited in vesicant-exposed corneas by four different hydroxamates, to evaluate their therapeutic potential when applied 2 hours after exposure, thereby allowing ADAM17 to perform its early steps in wound healing. Methods Rabbit corneal organ cultures exposed to NM for 2 hours were washed, then incubated at 37°C for 22 hours, with or without one of the four hydroxamates (dose range, 0.3–100 nmol in 20 μL, applied four times). Corneas were analyzed by light and immunofluorescence microscopy, and ADAM17 activity assays. Results Nitrogen mustard–induced corneal injury showed significant activation of ADAM17 levels accompanying epithelial–stromal detachment. Corneas treated with hydroxamates starting 2 hours post exposure showed a dose-dependent ADAM17 activity inhibition up to concentrations of 3 nmol. Of the four hydroxamates, NDH4417 (N-octyl-N-hydroxy-2-[4-hydroxy-3-methoxyphenyl] acetamide) was most effective for inhibiting ADAM17 and retaining epithelial–stromal attachment. Conclusions Mustard exposure leads to corneal epithelial sloughing caused, in part, by the activation of ADAM17 at the epithelial–stromal junction. Select hydroxamate compounds applied 2 hours after NM exposure mitigated epithelial–stromal separation. PMID:27058125

  3. Corneal modeling for analysis of photorefractive keratectomy

    NASA Astrophysics Data System (ADS)

    Della Vecchia, Michael A.; Lamkin-Kennard, Kathleen

    1997-05-01

    Procedurally, excimer photorefractive keratectomy is based on the refractive correction of composite spherical and cylindrical ophthalmic errors of the entire eye. These refractive errors are inputted for correction at the corneal plane and for the properly controlled duration and location of laser energy. Topography is usually taken to correspondingly monitor spherical and cylindrical corneorefractive errors. While a corneal topographer provides surface morphologic information, the keratorefractive photoablation is based on the patient's spherical and cylindrical spectacle correction. Topography is at present not directly part of the procedural deterministic parameters. Examination of how corneal curvature at each of the keratometric reference loci affect the shape of the resultant corneal photoablated surface may enhance the accuracy of the desired correction. The objective of this study was to develop a methodology to utilize corneal topography for construction of models depicting pre- and post-operative keratomorphology for analysis of photorefractive keratectomy. Multiple types of models were developed then recreated in optical design software for examination of focal lengths and other optical characteristics. The corneal models were developed using data extracted from the TMS I corneal modeling system (Computed Anatomy, New York, NY). The TMS I does not allow for manipulation of data or differentiation of pre- and post-operative surfaces within its platform, thus models needed to be created for analysis. The data were imported into Matlab where 3D models, surface meshes, and contour plots were created. The data used to generate the models were pre- and post-operative curvatures, heights from the corneal apes, and x-y positions at 6400 locations on the corneal surface. Outlying non-contributory points were eliminated through statistical operations. Pre- and post- operative models were analyzed to obtain the resultant changes in the corneal surfaces during PRK

  4. Tissue welding for corneal wound suture with a CW 1.9-um diode laser: an in-vivo preliminary study

    NASA Astrophysics Data System (ADS)

    Desmettre, Thomas; Mordon, Serge R.; Mitchell, Valerie A.

    1996-01-01

    This study aimed to evaluate the interest of a 1.9 micrometer diode laser for corneal wound suture. Six adult albino rabbits were anesthetized. A 7 mm corneal incision was practiced on the right eye. For 3 animals (laser plus stitch) the incision was surgically sutured with 2 stitches of a nylon monofilament and laser impacts were performed between the stitches. For 3 animals (laser only) juxtaposed lasers impacts were realized to suture the wound. After the procedure the animals were examined daily for signs of inflammation, infection and for healing of the corneal wound. Material was obtained for histological examination 1 month after the procedure. Approximation of the edges of the would was successfully obtained in the (laser plus stitch) group. In the (laser only) group this approximation remained troublesome. After the procedure, one cornea of the (laser only) group disclosed a little leakage during 2 days. Histological examination assessed the welding of the corneal wound in the two groups provided structural modifications and some inflammatory signs. Corneal welding using a 1.9 micrometer diode laser is possible either with laser and stitch or with laser only. The approximation of the edges of the wound with additional stitches is an evident drawback. The use of additional stitches should be avoided to keep the theoretical advantages of corneal would suture using laser welding.

  5. Corneal Nerves in Health and Disease

    PubMed Central

    Shaheen, Brittany; Bakir, May; Jain, Sandeep

    2013-01-01

    Corneal nerves are responsible for the sensations of touch, pain, and temperature and play an important role in the blink reflex, wound healing, and tear production and secretion. Corneal nerve dysfunction is a frequent feature of diseases that cause opacities and result in corneal blindness. Corneal opacities rank as the second most frequent cause of blindness. Technological advances in in vivo corneal nerve imaging, such as optical coherence tomography and confocal scanning, have generated new knowledge regarding the phenomenological events that occur during reinnervation of the cornea following disease, injury, or surgery. The recent availability of transgenic neurofluorescent murine models has stimulated the search for molecular modulators of corneal nerve regeneration. New evidence suggests that neuro-regenerative and inflammatory pathways in the cornea are intertwined. Evidence-based treatment of neurotrophic corneal diseases includes using neuro-regenerative (blood component-based and neurotrophic factors), neuroprotective, and ensconcing (bandage contact lens and amniotic membrane) strategies and avoiding anti-inflammatory therapies, such as cyclosporine and corticosteroids. PMID:24461367

  6. Corneal laceration caused by river crab

    PubMed Central

    Vinuthinee, Naidu; Azreen-Redzal, Anuar; Juanarita, Jaafar; Zunaina, Embong

    2015-01-01

    A 5-year-old boy presented with right eye pain associated with tearing and photophobia of 1-day duration. He gave a history of playing with a river crab when suddenly the crab clamped his fingers. He attempted to fling the crab off, but the crab flew and hit his right eye. Ocular examination revealed a right eye corneal ulcer with clumps of fibrin located beneath the corneal ulcer and 1.6 mm level of hypopyon. At presentation, the Seidel test was negative, with a deep anterior chamber. Culture from the corneal scrapping specimen grew Citrobacter diversus and Proteus vulgaris, and the boy was treated with topical gentamicin and ceftazidime eyedrops. Fibrin clumps beneath the corneal ulcer subsequently dislodged, and revealed a full-thickness corneal laceration wound with a positive Seidel test and shallow anterior chamber. The patient underwent emergency corneal toileting and suturing. Postoperatively, he was treated with oral ciprofloxacin 250 mg 12-hourly for 1 week, topical gentamicin, ceftazidime, and dexamethasone eyedrops for 4 weeks. Right eye vision improved to 6/9 and 6/6 with pinhole at the 2-week follow-up following corneal suture removal. PMID:25678769

  7. Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface.

    PubMed

    Cejkova, Jitka; Trosan, Peter; Cejka, Cestmir; Lencova, Anna; Zajicova, Alena; Javorkova, Eliska; Kubinova, Sarka; Sykova, Eva; Holan, Vladimir

    2013-11-01

    The purpose of this study was to investigate whether rabbit bone marrow-derived mesenchymal stem cells (MSCs) effectively decrease alkali-induced oxidative stress in the rabbit cornea. The alkali (0.15 N NaOH) was applied on the corneas of the right eyes and then rinsed with tap water. In the first group of rabbits the injured corneas remained untreated. In the second group MSCs were applied on the injured corneal surface immediately after the injury and eyelids sutured for two days. Then the sutures were removed. In the third group nanofiber scaffolds seeded with MSCs (and in the fourth group nanofibers alone) were transferred onto the corneas immediately after the injury and the eyelids sutured. Two days later the eyelid sutures were removed together with the nanofiber scaffolds. The rabbits were sacrificed on days four, ten or fifteen after the injury, and the corneas were examined immunohistochemically, morphologically, for the central corneal thickness (taken as an index of corneal hydration) using an ultrasonic pachymeter and by real-time PCR. Results show that in untreated injured corneas the expression of malondialdehyde (MDA) and nitrotyrosine (NT) (important markers of lipid peroxidation and oxidative stress) appeared in the epithelium. The antioxidant aldehyde dehydrogenase 3A1 (ALDH3A1) decreased in the corneal epithelium, particularly in superficial parts, where apoptotic cell death (detected by active caspase-3) was high. (In control corneal epithelium MDA and NT are absent and ALDH3A1 highly present in all layers of the epithelium. Cell apoptosis are sporadic). In injured untreated cornea further corneal disturbances developed: The expressions of matrix metalloproteinase 9 (MMP9) and proinflammatory cytokines, were high. At the end of experiment (on day 15) the injured untreated corneas were vascularized and numerous inflammatory cells were present in the corneal stroma. Vascular endothelial growth factor (VEGF) expression and number of macrophages

  8. Comparison of systemic absorption between ofloxacin ophthalmic in situ gels and ofloxacin conventional ophthalmic solutions administration to rabbit eyes by HPLC-MS/MS.

    PubMed

    Li, Jiawei; Zhao, Hainan; Okeke, Chukwunweike Ikechukwu; Li, Lin; Liu, Zhidong; Yin, Zhongpeng; Zhuang, Pengwei; Sun, Jingtong; Wu, Tao; Wang, Meng; Li, Nan; Pi, Jiaxin; Zhang, Qian; Zhang, Rui; Ma, Li; Pang, Xiaochen; Liu, Zhanbiao; Zhang, Li; Fan, Lili

    2013-06-25

    In recent years, many pharmaceutical scientists have focused on developing the in situ gel-forming systems to overcome the poor bioavailability and therapeutic response exhibited by conventional ophthalmic solutions due to rapid pre-corneal elimination of the drug. The present work was to compare the systemic absorptions of ophthalmic ofloxacin in situ gel with the conventional ofloxacin eye drop after topical instillation to rabbit eyes by HPLC-MS/MS method and also determine the relative contribution of the nasal and the conjunctival mucosae to systemic ofloxacin absorption following topical instillation. The systemic AUC, Cmax, Tmax and Ke for ophthalmic in situ gel and ophthalmic solution after ocular instillation were 202.63±118.85 and 202.25±57.74 ng mL(-1) h, 54.22±28.31 and 48.4±25.97 ng mL(-1), 1.08±0.20 and 1.25±0.88 h, 0.0576±0.0207 and 0.0388±0.0248, respectively. And the values for the ratios of the AUC of anterior chamber of rabbit eye to blood plasma, AUCac/AUCpl, for ofloxacin conventional eye drop and in situ gel were 0.25 and 0.52, respectively. Statistic results showed that there was no significant difference in systemic absorption between the test groups and the reference groups (P>0.05) as both formulations have an AUCsa/AUCpl of 0.35. Therefore, the ophthalmic in situ gel may not decrease the drugs systemic absorption when administered in an equivalent dose as ophthalmic solutions into the rabbit eyes.

  9. [Corneal neovascularization: epidemiological, physiopathological, and clinical features].

    PubMed

    Benayoun, Y; Casse, G; Forte, R; Dallaudière, B; Adenis, J-P; Robert, P-Y

    2013-09-01

    Corneal neovascularization is defined as the presence of vessels within the normally avascular corneal stroma. This physiopathological process is the consequence of local hyper-expression of pro-angiogenic factors in response to tissue damage. These new vessels (neovessels), initially immature and poorly developed, predispose the cornea to lipid exudation, inflammation, and scarring. Additionally, the influx of vascular cells into the stroma induces a loss of the cornea's immune privilege, resulting in a higher rate of graft rejection. In this literature review, we touch on epidemiological, physiopathological, and clinical aspects of corneal neovascularization, as well as secondary complications.

  10. Technology needs for corneal transplant surgery

    NASA Astrophysics Data System (ADS)

    Vaddavalli, Pravin K.; Yoo, Sonia H.

    2011-03-01

    Corneal transplant surgery has undergone numerous modifications over the years with improvements in technique, instrumentation and eye banking. The main goals of corneal transplantation are achieving excellent optical clarity with long-term graft survival. Penetrating, anterior and posterior lamellar surgery along with femtosecond laser technology have partially met these goals, but outcomes are often unpredictable and surgeon dependent. Technology to predictably separate stroma from Descemet's membrane, techniques to minimize endothelial cell loss, improvements in imaging technology and emerging techniques like laser welding that might replace suturing, eventually making corneal transplantation a refractively predictable procedure are on the wish list of the cornea surgeon.

  11. Inhibition of Corneal Neovascularization by Subconjunctival Injection of Fc-Endostatin, a Novel Inhibitor of Angiogenesis

    PubMed Central

    Yoshida, Junko; Wicks, Robert T.; Zambrano, Andrea I.; Tyler, Betty M.; Javaherian, Kashi; Grossman, Rachel; Daoud, Yassine J.; Gehlbach, Peter; Brem, Henry; Stark, Walter J.

    2015-01-01

    We assessed the antiangiogenic effects of subconjunctival injection of Fc-endostatin (FcE) using a human vascular endothelial growth factor-induced rabbit corneal neovascularization model. Angiogenesis was induced in rabbit corneas through intrastromal implantations of VEGF polymer implanted 2 mm from the limbus. NZW rabbits were separated into groups receiving twice weekly subconjunctival injections of either saline; 25 mg/mL bevacizumab; 2 mg/mL FcE; or 20 mg/mL FcE. Corneas were digitally imaged at 5 time points. An angiogenesis index (AI) was calculated (vessel length (mm) × vessel number score) for each observation. All treatment groups showed a significant decrease in the vessel length and AI compared to saline on all observation days (P < 0.001). By day 15, FcE 2 inhibited angiogenesis significantly better than FcE 20 (P < 0.01). There was no significant difference between FcE 2 and BV, although the values trended towards significantly increased inhibition by BV. BV was a significantly better inhibitor than FcE 20 by day 8 (P < 0.01). FcE was safe and significantly inhibited new vessel growth in a rabbit corneal neovascularization model. Lower concentration FcE 2 exhibited better inhibition than FcE 20, consistent with previous FcE studies referencing a biphasic dose-response curve. Additional studies are necessary to further elucidate the efficacy and clinical potential of this novel angiogenesis inhibitor. PMID:26491546

  12. Polar Value Analysis of Corneal Astigmatism in Intrastromal Corneal Ring Segment Implantation

    PubMed Central

    Rho, Chang Rae; Kim, Min-Ji

    2016-01-01

    Purpose. To evaluate surgically induced astigmatism (SIA) and the average corneal power change in symmetric intrastromal corneal ring segment (ICRS) implantation. Methods. The study included 34 eyes of 34 keratoconus patients who underwent symmetric Intacs SK ICRS implantation. The corneal pocket incision meridian was the preoperative steep meridian. Corneal power data were obtained before and 3 months after Intacs SK ICRS implantation using scanning-slit topography. Polar value analysis was used to evaluate the SIA. Hotelling's trace test was used to compare intraindividual changes. Results. Three months postoperatively, the combined mean polar value for SIA changed significantly (Hotelling's T2 = 0.375; P = 0.006). The SIA was 1.54 D at 99° and the average corneal power decreased significantly by 3.8 D. Conclusion. Intacs SK ICRS placement decreased the average corneal power and corneal astigmatism compared to the preoperative corneal power and astigmatism when the corneal pocket incision was made at the preoperative steep meridian. PMID:27795856

  13. The Relationship between Corvis ST Tonometry Measured Corneal Parameters and Intraocular Pressure, Corneal Thickness and Corneal Curvature

    PubMed Central

    Asaoka, Ryo; Nakakura, Shunsuke; Tabuchi, Hitoshi; Murata, Hiroshi; Nakao, Yoshitaka; Ihara, Noriko; Rimayanti, Ulfah; Aihara, Makoto; Kiuchi, Yoshiaki

    2015-01-01

    The purpose of the study was to investigate the correlation between Corneal Visualization Scheimpflug Technology (Corvis ST tonometry: CST) parameters and various other ocular parameters, including intraocular pressure (IOP) with Goldmann applanation tonometry. IOP with Goldmann applanation tonometry (IOP-G), central corneal thickness (CCT), axial length (AL), corneal curvature, and CST parameters were measured in 94 eyes of 94 normal subjects. The relationship between ten CST parameters against age, gender, IOP-G, AL, CST-determined CCT and average corneal curvature was investigated using linear modeling. In addition, the relationship between IOP-G versus CST-determined CCT, AL, and other CST parameters was also investigated using linear modeling. Linear modeling showed that the CST measurement ‘A time-1’ is dependent on IOP-G, age, AL, and average corneal curvature; ‘A length-1’ depends on age and average corneal curvature; ‘A velocity-1’ depends on IOP-G and AL; ‘A time-2’ depends on IOP-G, age, and AL; ‘A length-2’ depends on CCT; ‘A velocity-2’ depends on IOP-G, age, AL, CCT, and average corneal curvature; ‘peak distance’ depends on gender; ‘maximum deformation amplitude’ depends on IOP-G, age, and AL. In the optimal model for IOP-G, A time-1, A velocity-1, and highest concavity curvature, but not CCT, were selected as the most important explanatory variables. In conclusion, many CST parameters were not significantly related to CCT, but IOP usually was a significant predictor, suggesting that an adjustment should be made to improve their usefulness for clinical investigations. It was also suggested CST parameters were more influential for IOP-G than CCT and average corneal curvature. PMID:26485129

  14. Prescription diets for rabbits.

    PubMed

    Proença, Laila Maftoum; Mayer, Jörg

    2014-09-01

    Dietary management can be used with drug therapy for the successful treatment of many diseases. Therapeutic nutrition is well-recognized in dogs and cats and is beginning to increase among other pet species, including rabbits. The nutritional component of some rabbit diseases (eg, urolithiasis) is not completely understood, and the clinician should evaluate the use of prescription diets based on the scientific literature and individual needs. Long-term feeding trials are needed to further evaluate the efficacy of prescription diets in rabbits. Prescription diets are available for selected diseases in rabbits, including diets for immediate-term, short-term, and long-term management. PMID:25155667

  15. Surgical compensation of presbyopia with corneal inlays.

    PubMed

    Konstantopoulos, Aris; Mehta, Jodhbir S

    2015-05-01

    Presbyopia, the physiological change in near vision that develops with ageing, gradually affects individuals older than 40 years and is a growing cause of visual disability due to ageing demographics of the global population. The routine use of computers and 'smartphones', combined with the affluence of the 'baby boomers' generation has set high standards for near vision correction. Corneal inlays are a relatively new treatment modality that is effective at compensating for presbyopia. The dimensions of these devices vary from 2 to 3.8 mm in diameter and 5 to 32 μm in thickness. They are implanted in the anterior corneal stroma of the non-dominant eye, most commonly, in a femtosecond laser created corneal pocket. They improve near vision by increasing the depth of focus, creating a hyper-prolate region of increased central cornea power or providing a refractive add power. This article reviews the literature on the efficacy and safety of corneal inlays.

  16. Surgical compensation of presbyopia with corneal inlays.

    PubMed

    Konstantopoulos, Aris; Mehta, Jodhbir S

    2015-05-01

    Presbyopia, the physiological change in near vision that develops with ageing, gradually affects individuals older than 40 years and is a growing cause of visual disability due to ageing demographics of the global population. The routine use of computers and 'smartphones', combined with the affluence of the 'baby boomers' generation has set high standards for near vision correction. Corneal inlays are a relatively new treatment modality that is effective at compensating for presbyopia. The dimensions of these devices vary from 2 to 3.8 mm in diameter and 5 to 32 μm in thickness. They are implanted in the anterior corneal stroma of the non-dominant eye, most commonly, in a femtosecond laser created corneal pocket. They improve near vision by increasing the depth of focus, creating a hyper-prolate region of increased central cornea power or providing a refractive add power. This article reviews the literature on the efficacy and safety of corneal inlays. PMID:25652889

  17. Clear Corneal Incision in Cataract Surgery

    PubMed Central

    Al Mahmood, Ammar M.; Al-Swailem, Samar A.; Behrens, Ashley

    2014-01-01

    Since the introduction of sutureless clear corneal cataract incisions, the procedure has gained increasing popularity worldwide because it offers several advantages over the traditional sutured scleral tunnels and limbal incisions. Some of these benefits include lack of conjunctival trauma, less discomfort and bleeding, absence of suture-induced astigmatism, and faster visual rehabilitation. However, an increasing incidence of postoperative endophthalmitis after clear corneal cataract surgery has been reported. Different authors have shown a significant increase up to 15-fold in the incidence of endophthalmitis following clear corneal incision compared to scleral tunnels. The aim of this report is to review the advantages and disadvantages of clear corneal incisions in cataract surgery, emphasizing on wound construction recommendations based on published literature. PMID:24669142

  18. Genetics Home Reference: congenital stromal corneal dystrophy

    MedlinePlus

    ... of decorin. This abnormal protein interferes with the organization of collagen fibrils in the cornea. As poorly arranged collagen fibrils accumulate, the cornea becomes cloudy. These corneal changes lead to reduced visual acuity and related eye ...

  19. Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells.

    PubMed

    Zhang, Kai; Pang, Kunpeng; Wu, Xinyi

    2014-06-15

    The maintenance of corneal dehydration and transparency depends on barrier and pump functions of corneal endothelial cells (CECs). The human CECs have no proliferation capacity in vivo and the ability to divide in vitro under culture conditions is dramatically limited. Thus, the acquisition of massive cells analogous to normal human CECs is extremely necessary whether from the perspective of cellular basic research or from clinical applications. Here we report the derivation of CEC-like cells from human embryonic stem cells (hESCs) through the periocular mesenchymal precursor (POMP) phase. Using the transwell coculture system of hESCs with differentiated human corneal stromal cells, we induced hESCs to differentiate into POMPs. Then, CEC-like cells were derived from POMPs with lens epithelial cell-conditioned medium. Within 1 week, CEC-like cells that expressed the corneal endothelium (CE) differentiation marker N-cadherin and transcription factors FoxC1 and Pitx2 were detectable. Fluorescence-activated cell sorting (FACS)-based isolation of the N-cadherin/vimentin dual-positive population enriches for CEC-like cells. The isolated CEC-like cells were labeled with carboxyfluorescein diacetate, succinimidyl ester (CFDA SE) and seeded onto posterior acellular porcine corneal matrix lamellae to construct the CEC-like cell sheets. Pump function parameters of the CEC-like cell sheets approximated those of human donor corneas. Importantly, when the CEC-like cell sheets were transplanted into the eyes of rabbit CE dysfunction models, the corneal transparency was restored gradually. In conclusion, CEC-like cells derived from hESCs displayed characteristics of native human CECs. This renewable source of human CECs offers massive cells for further studies of human CEC biological characteristics and potential applications of replacement therapies as substitution for donor CECs in the future. PMID:24499373

  20. Diffusion and Monod kinetics to determine in vivo human corneal oxygen-consumption rate during soft contact-lens wear.

    PubMed

    Chhabra, Mahendra; Prausnitz, John M; Radke, C J

    2009-07-01

    The rate of oxygen consumption is an important parameter to assess the physiology of the human cornea. Metabolism of oxygen in the cornea is influenced by contact-lens-induced hypoxia, diseases such as diabetes, surgery, and drug treatment. Therefore, estimation of in vivo corneal oxygen-consumption rate is essential for gauging adequate oxygen supply to the cornea. Phosphorescence quenching of a dye coated on the posterior of a soft contact lens provides a powerful technique to measure tear-film oxygen tension (Harvitt and Bonanno, Invest Ophthalmol Vis Sci 1996;37:1026-1036; Bonanno et al., Invest Ophthalmol Vis Sci 2002;43:371-376). Unfortunately, previous work in establishing oxygen-consumption kinetics from transient postlens tear-film oxygen tensions relies on the simplistic assumption of a constant corneal-consumption rate. A more realistic model of corneal metabolism is needed to obtain reliable oxygen-consumption kinetics. Here, physiologically relevant nonlinear Monod kinetics is adopted for describing the local oxygen-consumption rate, thus avoiding aphysical negative oxygen tensions in the cornea. We incorporate Monod kinetics in an unsteady-state reactive-diffusion model for the cornea contact-lens system to determine tear-film oxygen tension as a function of time when changing from closed-eye to open-eye condition. The model was fit to available experimental data of in vivo human postlens tear-film oxygen tension to determine the corneal oxygen-consumption rate. Reliance on corneal oxygen diffusivity and solubility data obtained from rabbits is no longer requisite. Excellent agreement is obtained between the proposed model and experiment. We calculate the spatial-averaged in vivo human maximum corneal oxygen-consumption rate as Q(c)(max) = 1.05 x 10(-4) mL/(cm(3) s). The calculated Monod constant is K(m) = 2.2 mmHg.

  1. Intraocular lens calculations status after corneal refractive surgery.

    PubMed

    Seitz, B; Langenbucher, A

    2000-02-01

    With the increasing number of keratorefractive surgical procedures, an increasing number of cataract surgeries in eyes after keratorefractive surgery is anticipated within a few decades. Although cataract extraction seems to be feasible without major technical obstacles, intraocular lens (IOL) power calculation turned out to be problematic. Insertion of the measured average K-readings (= "central corneal power" = keratometric diopters) after myopic radial keratotomy (RK), photorefractive keratectomy (PRK), or laser in situ keratomileusis (LASIK) into standard IOL power-predictive formulas commonly results in substantial undercorrection and postoperative hyperopic refraction or anisometropia. In this article, the major reasons for IOL power miscalculations (which are different for RK versus RRK/LASIK) are discussed based on model calculations and based on case series of cataract surgeries, methods for improved assessment of keratometric diopters as the major underlying problem are exemplary illustrated, and finally a clinical step-by-step approach to minimize IOL power miscalculations status after corneal refractive surgery is suggested. The "clinical history method" (i.e., subtraction of the spherical equivalent [SEQ] change after refractive surgery from the original K-reading) should be applied whenever refraction and K-reading before the keratorefractive procedure are available to cataract surgeons. In addition, more than one modern third-generation formula (e.g., Haigis, Hoffer Q, Holladay 2, or SRK/T) but not a regression formula (e.g., SRK I or SRK II) should be applied and the highest resulting IOL power should be used for the implant.

  2. Corneal ulcer caused by Bipolaris hawaiiensis.

    PubMed

    Anandi, V; Suryawanshi, N B; Koshi, G; Padhye, A A; Ajello, L

    1988-01-01

    Following an injury to the right eye, a corneal ulcer with hypopyon developed in a leprosy patient. Direct examination of the corneal scrapings on three occasions showed septate, branched, dematiaceous hyphal elements. When scrapings were cultured on Sabouraud's glucose and brain heart infusion agars. Bipolaris hawaiiensis was isolated repeatedly. The patient responded successfully to treatment with nystatin ointment, although the central opacity of the cornea remained and visual acuity did not improve.

  3. Corneal Biomechanics Determination in Healthy Myopic Subjects.

    PubMed

    Qiu, Kunliang; Lu, Xuehui; Zhang, Riping; Wang, Geng; Zhang, Mingzhi

    2016-01-01

    Purpose. To determine the corneal biomechanical properties by using the Ocular Response Analyzer™ and to investigate potential factors associated with the corneal biomechanics in healthy myopic subjects. Methods. 135 eyes from 135 healthy myopic subjects were included in this cross-sectional observational study. Cornea hysteresis (CH), corneal resistance factor (CRF), cornea-compensated intraocular pressure (IOPcc), and Goldmann-correlated intraocular pressure (IOPg) were determined with the Reichert Ocular Response Analyzer (ORA). Univariate and multivariate regression analyses were performed to investigate factors associated with corneal biomechanics. Results. The mean CH and CRF were 9.82 ± 1.34 mmHg and 9.64 ± 1.57 mmHg, respectively. In univariate regression analysis, CH was significantly correlated with axial length, refraction, central corneal thickness (CCT), and IOPg (r = -0.27, 0.23, 0.45, and 0.21, resp.; all with p ≤ 0.015), but not with corneal curvature or age; CRF was significantly correlated with CCT and IOPg (r = 0.52 and 0.70, resp.; all with p < 0.001), but not with axial length/refraction, corneal curvature, or age. In multivariate regression analysis, axial length, IOPcc, and CCT were found to be independently associated with CH, while CCT and IOPg were associated with CRF. Conclusions. Both CH and CRF were positively correlated with CCT. Lower CH but not CRF was associated with increasing degree of myopia. Evaluation of corneal biomechanical properties should take CCT and myopic status into consideration. PMID:27525109

  4. Corneal ulcer caused by Bipolaris hawaiiensis.

    PubMed

    Anandi, V; Suryawanshi, N B; Koshi, G; Padhye, A A; Ajello, L

    1988-01-01

    Following an injury to the right eye, a corneal ulcer with hypopyon developed in a leprosy patient. Direct examination of the corneal scrapings on three occasions showed septate, branched, dematiaceous hyphal elements. When scrapings were cultured on Sabouraud's glucose and brain heart infusion agars. Bipolaris hawaiiensis was isolated repeatedly. The patient responded successfully to treatment with nystatin ointment, although the central opacity of the cornea remained and visual acuity did not improve. PMID:3236148

  5. Corneal Biomechanics Determination in Healthy Myopic Subjects

    PubMed Central

    Qiu, Kunliang; Lu, Xuehui; Zhang, Riping; Wang, Geng

    2016-01-01

    Purpose. To determine the corneal biomechanical properties by using the Ocular Response Analyzer™ and to investigate potential factors associated with the corneal biomechanics in healthy myopic subjects. Methods. 135 eyes from 135 healthy myopic subjects were included in this cross-sectional observational study. Cornea hysteresis (CH), corneal resistance factor (CRF), cornea-compensated intraocular pressure (IOPcc), and Goldmann-correlated intraocular pressure (IOPg) were determined with the Reichert Ocular Response Analyzer (ORA). Univariate and multivariate regression analyses were performed to investigate factors associated with corneal biomechanics. Results. The mean CH and CRF were 9.82 ± 1.34 mmHg and 9.64 ± 1.57 mmHg, respectively. In univariate regression analysis, CH was significantly correlated with axial length, refraction, central corneal thickness (CCT), and IOPg (r = −0.27, 0.23, 0.45, and 0.21, resp.; all with p ≤ 0.015), but not with corneal curvature or age; CRF was significantly correlated with CCT and IOPg (r = 0.52 and 0.70, resp.; all with p < 0.001), but not with axial length/refraction, corneal curvature, or age. In multivariate regression analysis, axial length, IOPcc, and CCT were found to be independently associated with CH, while CCT and IOPg were associated with CRF. Conclusions. Both CH and CRF were positively correlated with CCT. Lower CH but not CRF was associated with increasing degree of myopia. Evaluation of corneal biomechanical properties should take CCT and myopic status into consideration. PMID:27525109

  6. Asphericity analysis using corneal wavefront and topographic meridional fits

    NASA Astrophysics Data System (ADS)

    Arba-Mosquera, Samuel; Merayo-Lloves, Jesús; de Ortueta, Diego

    2010-03-01

    The calculation of corneal asphericity as a 3-D fit renders more accurate results when it is based on the corneal wavefront aberrations rather than on the corneal topography of the principal meridians. A more accurate prediction could be obtained for hyperopic treatments compared to myopic treatments. We evaluate a method to calculate corneal asphericity and asphericity changes after refractive surgery. Sixty eyes of 15 consecutive myopic patients and 15 consecutive hyperopic patients (n=30 each) are retrospectively evaluated. Preoperative and 3-month-postoperative topographic and corneal wavefront analyses are performed using corneal topography. Ablations are performed using a laser with an aberration-free profile. Topographic changes in asphericity and corneal aberrations are evaluated for a 6-mm corneal diameter. The induction of corneal spherical aberrations and asphericity changes correlates with the achieved defocus correction. Preoperatively as well as postoperatively, asphericity calculated from the topography meridians correlates with asphericity calculated from the corneal wavefront in myopic and hyperopic treatments. A stronger correlation between postoperative asphericity and the ideally expected/predicted asphericity is obtained based on aberration-free assumptions calculated from corneal wavefront values rather than from the meridians. In hyperopic treatments, a better correlation can be obtained compared to the correlation in myopic treatments. Corneal asphericity calculated from corneal wavefront aberrations represents a 3-D fit of the corneal surface; asphericity calculated from the main topographic meridians represents a 2-D fit of the principal corneal meridians. Postoperative corneal asphericity can be calculated from corneal wavefront aberrations with higher fidelity than from corneal topography of the principal meridians. Hyperopic treatments show a greater accuracy than myopic treatments.

  7. Metabolic changes in the corneal epithelium resulting from hard contact lens wear.

    PubMed

    Tsubota, K; Laing, R A

    1992-03-01

    The metabolic state of rabbit corneas was monitored in vivo using the noninvasive method of corneal redox fluorometry. The autofluorescence signals of reduced pyridine nucleotides (PN) and oxidized flavoproteins (Fp) were measured in the corneal epithelium with and without contact lens wear. The PN/Fp ratio, which is related to the metabolic status of the tissue, was then calculated for each of these conditions. After application of polymethylmethacrylate (PMMA) contact lenses having an oxygen transmissibility (Dk) of less than 0.1, the PN signal increased and the Fp signal decreased. The PN/Fp ratio, generally a more precise indicator of metabolic state than either of these two quantities alone, was 1.93 +/- 0.78 without contact lenses, and increased to 2.78 +/- 0.86 (p less than 0.0001) with contact lenses. When oxygen-permeable silicon contact lenses (Dk = 12.5) were placed on the corneas, the PN/Fp ratio was found to increase slightly, but not as much as with the PMMA lenses. Newly developed highly oxygen-permeable contact lenses (Dk = 58.8) did not increase this ratio. Our findings indicate that redox fluorometry can be valuable in determining the effects of contact lens wear on corneal metabolism. PMID:1582214

  8. Effectiveness of corneal neovascularization photothrombosis using phthalocyanine and a diode laser (675 nm).

    PubMed

    Pallikaris, I G; Tslimbaris, M K; Iliaki, O E; Naoumidi, I I; Georgiades, A; Panagopoulos, I A

    1993-01-01

    We used chloroaluminum sulfonated phthalocyanine as a photo-sensitizer and a diode laser as a light source for induction of photothrombosis of corneal neovascularization. Corneal neovascularization was induced in 1 eye of each of 10 New Zealand white rabbits using intrastromal 6.0 silk sutures. After the intravenous injection of phthalocyanine in a dose of 4 mg per kg of body weight, photothrombosis was carried out using a diode laser emitting at 675 nm. The animals were followed up by both fluorescein angiography and slit-lamp photography for up to three months. At the end of the follow-up period the eyes were prepared for histology. After photothrombosis, thrombus formation was induced within new vessels demonstrating histological characteristics of both arterioles and venules. Most of the vessels disappeared or remained closed during the follow-up period. Recanalization of some of the thrombosed vessels occurred within the first 20 days after the operation. The combination of phthalocyanine and a 675 nm diode laser is effective for the induction of photothrombosis of corneal neovascularization.

  9. CORNEAL REACTIONS TO BACTERIUM GRANULOSIS AND OTHER MICROORGANISMS

    PubMed Central

    Olitsky, Peter K.; Knutti, Ralph E.; Tyler, Joseph R.

    1932-01-01

    The conclusions which may be drawn from the results of the experiments here presented are: 1. The cornea of the rabbit is highly sensitive to the action of various injected bacteria. The lesions vary from insignificant, transient changes to severe, destructive panophthalmitis, with fine gradations from the mildest to the violent form of inflammation. Moreover, animals that receive the same organisms show like changes. 2. The varying degree of inflammatory reaction is related to the pathogenicity of the special culture employed; as, for example, is shown by the reactions to Type I pneumococci and to Bacterium granulosis. It is evident that when a microorganism having a certain degree of virulence is used, a lesion of localized vasculonebulous keratitis resembling pannus tenuis or vasculosus of human trachoma can be induced. Thus Bacterium granulosis, Bacillus xerosis, Hemophilus influenzae, Pneumococcus Type II, Streptococcus viridans, and gonococcus can cause the pannus-like corneal changes in the rabbit. Of these organisms, however, only Bacterium granulosis induces early, uncomplicated and enduring keratitic lesions; the others cause first, diffuse keratitis with suppurative lesions; then, as a residual effect, transient, localized, vasculonebulous changes in the cornea. These changes, in contradistinction to the granulosis lesions, are, therefore delayed, complicated, and transient. When, on the other hand, the invasiveness and infecting power of the organisms are low, as is the case with the filtrable, Gram-negative bacillus and the small, Gram-negative bacilli ultimately derived from cases of folliculosis, no marked effect is produced by their intracorneal inoculation. If the pathogenicity of bacteria is high (as shown by Pneumococcus Type I, hemolytic streptococcus, and the remaining bacteria), intracorneal inoculation of the microorganisms leads to serious suppurative or destructive changes. 3. The results of experiments with monkeys indicate that while

  10. Corneal dystrophy in the dog and cat.

    PubMed

    Cooley, P L; Dice, P F

    1990-05-01

    Two types of epithelial dystrophy have been described in dogs, one each in the Boxer and Shetland Sheepdog breeds, both of which can be associated with corneal erosions. Medical therapy is recommended when erosions or tear film abnormalities are present. Stromal dystrophies documented in dogs appear to be a primary lipid deposition in various layers of the stroma, depending on the breed. Stromal dystrophies seldom lead to loss of vision, but vision loss has been observed in middle aged Airedale Terriers and aged Siberian Huskies. Treatment is usually unnecessary. The dog demonstrates two types of endothelial dystrophy, one of which (posterior polymorphous dystrophy in the American Cocker Spaniel) does not lead to corneal edema. Endothelial dystrophy observed in the Boston Terrier, Chihuahua, and other breeds is associated with progressive corneal edema, which can lead to bullous keratopathy and corneal erosions. Stromal and endothelial dystrophies, both of which are associated with rapid progression of corneal edema, occur rarely in the cat. Treatment of dystrophies with progressive corneal edema is symptomatic and palliative.

  11. Controlled-release of epidermal growth factor from cationized gelatin hydrogel enhances corneal epithelial wound healing.

    PubMed

    Hori, Kuniko; Sotozono, Chie; Hamuro, Junji; Yamasaki, Kenta; Kimura, Yu; Ozeki, Makoto; Tabata, Yasuhiko; Kinoshita, Shigeru

    2007-04-01

    We designed a new ophthalmic drug-delivery system for epidermal growth factor (EGF) from the biodegradable hydrogel of cationized gelatin. We placed a cationized gelatin hydrogel (CGH) with incorporated (125)I-labelled EGF in the conjunctival sac of mice and measured the residual radioactivity at different times to evaluate the in vivo profile of EGF release. Approximately 60-67% and 10-12% of EGF applied initially remained 1 and 7 days after application, respectively; whereas EGF delivered in topically applied solution or via EGF impregnation of soft contact lenses disappeared within the first day. We also placed CGH films with 5.0 mug of incorporated EGF on round corneal defects in rabbits to evaluate the healing process using image analysis software and to assess epithelial proliferation immunohistochemically by counting the number of Ki67-positive cells. The application of a CGH film with incorporated EGF resulted in a reduction in the epithelial defect in rabbit corneas accompanied by significantly enhanced epithelial proliferation compared with the reduction seen after the topical application of EGF solution or the placement of an EGF-free CGH film. The controlled release of EGF from a CGH placed over a corneal epithelial defect accelerated ocular surface wound healing. PMID:17289206

  12. [Research progress of corneal epithelial basal cells and basement membrane].

    PubMed

    Qu, J H; Sun, X G

    2016-09-11

    The cylinder cells at the bottom of corneal epithelial cells are basal cells. Their cytoplasm contains keratin intermediate filament which is important in secretion of basement membrane. Corneal epithelial dysfunction due to diabetes or ocular surgery is intimately related with basal cell abnormality. Corneal epithelial basement membrane is a highly specific extracellular matrix which is made up of lamina lucida and lamina densa. It plays an extremely important role in renewal and restoration. Many ocular abnormalities and diseases have been described to relate to the corneal epithelial basement membrane, such as traumatic recurrent corneal erosion, corneal dystrophy and keratoconus. (Chin J Ophthalmol, 2016, 52: 703-707). PMID:27647251

  13. Development of a corneal tissue phantom for anterior chamber optical coherence tomography (AC-OCT)

    NASA Astrophysics Data System (ADS)

    Rowe, T. Scott; Zawadzki, Robert J.

    2013-02-01

    We document our latest work in developing a new eye model with a solid-state cornea and liquid filled anterior chamber designed for demonstrating, validating and comparing anterior chamber ophthalmic Optical Coherence Tomography (OCT) instruments, corneal topographers, and Scheimpflug cameras. Anterior chamber eye model (ACEM) phantoms can serve a variety of purposes, including demonstrating instrument functionality and performance in both the clinic and exhibit hall, validating corneal layer thickness measurements from different commercial instruments and as an aide for the R and D engineer and field service technician in the development and repair of instruments, respectively. The ideal eye model for OCT, the optical cross-sectional imaging modality, would have a volumetric morphology and scattering and absorption properties similar to that of normal human cornea. These include a multi-layered structure of equivalent thickness to nominal human corneal layers, including an epithelium layer, a stroma with appropriate backscattering properties, and an endothelium. A filled and sealed tissue phantom relieves the user of constant cleaning and maintenance associated with the more common water bath model eyes. Novel processes have been developed to create corneal layers that closely mimic the reflectance and scattering coefficients of the real layers of the cornea, as imaged by spectral bandwidth of OCT.

  14. Collagen Cross-Linking Using Rose Bengal and Green Light to Increase Corneal Stiffness

    PubMed Central

    Cherfan, Daniel; Verter, E. Eri; Melki, Samir; Gisel, Thomas E.; Doyle, Francis J.; Scarcelli, Giuliano; Yun, Seok Hyun; Redmond, Robert W.; Kochevar, Irene E.

    2013-01-01

    Purpose. Photochemical cross-linking of corneal collagen is an evolving treatment for keratoconus and other ectatic disorders. We evaluated collagen cross-linking by rose bengal plus green light (RGX) in rabbit eyes and investigated factors important for clinical application. Methods. Rose bengal (RB, 0.1%) was applied to deepithelialized corneas of enucleated rabbit eyes for 2 minutes. The diffusion distance of RB into the stroma was measured by fluorescence microscopy on frozen sections. RB-stained corneas were exposed to green (532-nm) light for 3.3 to 9.9 minutes (50–150 J/cm2). Changes in the absorption spectrum during the irradiation were recorded. Corneal stiffness was measured by uniaxial tensiometry. The spatial distribution of the stromal elastic modulus was assessed by Brillouin microscopy. Viable keratocytes were counted on H&E-stained sections 24 hours posttreatment. Results. RB penetrated approximately 100 μm into the corneal stroma and absorbed >90% of the incident green light. RGX (150 J/cm2) increased stromal stiffness by 3.8-fold. The elastic modulus increased in the anterior approximately 120 μm of stroma. RB was partially photobleached during the 2-minute irradiation, but reapplication of RB blocked light transmission by >70%. Spectral measurements suggested that RGX initiated cross-linking by an oxygen-dependent mechanism. RGX did not decrease keratocyte viability. Conclusions. RGX significantly increases cornea stiffness in a rapid treatment (≅12 minutes total time), does not cause toxicity to keratocytes and may be used to stiffen corneas thinner than 400 μm. Thus, RGX may provide an attractive approach to inhibit progression of keratoconus and other ectatic disorders. PMID:23599326

  15. Protective Effects of Soluble Collagen during Ultraviolet-A Crosslinking on Enzyme-Mediated Corneal Ectatic Models

    PubMed Central

    Wang, Xiaokun; Huang, Yong; Jastaneiah, Sabah; Majumdar, Shoumyo; Kang, Jin U.; Yiu, Samuel C.; Stark, Walter; Elisseeff, Jennifer H.

    2015-01-01

    Collagen crosslinking is a relatively new treatment for structural disorders of corneal ectasia, such as keratoconus. However, there is a lack of animal models of keratoconus, which has been an obstacle for carefully analyzing the mechanisms of crosslinking and evaluating new therapies. In this study, we treated rabbit eyes with collagenase and chondroitinase enzymes to generate ex vivo corneal ectatic models that simulate the structural disorder of keratoconus. The models were then used to evaluate the protective effect of soluble collagen in the UVA crosslinking system. After enzyme treatment, the eyes were exposed to riboflavin/UVA crosslinking with and without soluble type I collagen. Corneal morphology, collagen ultrastructure, and thermal stability were evaluated before and after crosslinking. Enzyme treatments resulted in corneal curvature changes, collagen ultrastructural damage, decreased swelling resistance and thermal stability, which are similar to what is observed in keratoconus eyes. UVA crosslinking restored swelling resistance and thermal stability, but ultrastructural damage were found in the crosslinked ectatic corneas. Adding soluble collagen during crosslinking provided ultrastructural protection and further enhanced the swelling resistance. Therefore, UVA crosslinking on the ectatic model mimicked typical clinical treatment for keratoconus, suggesting that this model replicates aspects of human keratoconus and could be used for investigating experimental therapies and treatments prior to translation. PMID:26325407

  16. Comparative trial of different anti-bacterial combinations with propolis and ciprofloxacin on Pseudomonas keratitis in rabbits.

    PubMed

    Onlen, Yusuf; Tamer, Cengaver; Oksuz, Hüseyin; Duran, Nizami; Altug, Mehmet Enes; Yakan, Selvinaz

    2007-01-01

    The aim of the current study was to evaluate the effects of five different treatment combinations to find out whether propolis could be an alternative or an adjunctive treatment, in experimental Pseudomonas aeruginosa keratitis. Intrastromal P. aeruginosa strains were given to both eyes of 20 young New Zealand white rabbits. The rabbits were randomly divided equally into five treatment groups; ciprofloxacin and dexamethasone drops (C+D), ciprofloxacin drop (C), ciprofloxacin and propolis drops (C+P), propolis drop (P), 3% ethanol drop (control), respectively. Directly before the first treatment and 108 h after inoculation, the eyes were examined by slit lamp to assess the corneal opacity and rabbits were sacrificed for bacterial count. The mean corneal opacity scores and the mean bacterial counts log cfu/ml were significantly different in the treatment groups (P=0.001; ANOVA). According to post hoc tests for both the mean bacterial counts and corneal opacity scores, C+D, C, C+P groups were found to be statistically the same (P>0.05), and although the P group had significantly better scores than the control group it did not reach the scores of the rest of the treatment groups (P<0.01). We conclude that propolis may be a useful adjunctive agent but should not be regarded as a replacement for traditional antibiotic therapy for P. aeruginosa keratitis in rabbits.

  17. Equivalence principles and electromagnetism

    NASA Technical Reports Server (NTRS)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  18. Using Femtosecond Laser to Create Customized Corneal Flaps for Patients with Low and Moderate Refractive Error Differing in Corneal Thickness

    PubMed Central

    Yu, Jianhong; Yu, Linli; Yu, Dan; Zhao, Gangping

    2015-01-01

    This study is designed to evaluate the visual outcomes, accuracy, and predictability of corneal flaps with different thicknesses created by 60-kHz femtosecond laser according to different corneal thicknesses in the patients with low and moderate refractive error. A total of 182 eyes were divided according to the central corneal thickness (470μm–499 μm in Group A, 500μm–549 μm in Group B, and 550μm–599 μm in Group C) and underwent femtosecond laser-assisted LASIK for a target corneal flap thickness (100 μm for Group A, 110 μm for Group B, and 120 μm for Group C). Uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), and refractive status were examined. The flap thickness of each eye was measured by anterior segment optical coherence tomography (AS-OCT) on 30 points at 1-month follow-up to assess the accuracy and predictability. Postoperatively, at least 75% of eyes had a UDVA of 20/16 or better, less than 2% of eyes lost one line, over 30% of eyes gained one or more lines in CDVA, at least 95% of eyes had astigmatism of less than 0.25 D, all eyes achieved a correction within ±1.00 D from the target spherical equivalent refraction. The visual and refractive outcomes did not differ significantly in all groups (P >0.05). The mean flap thickness was 100.36± 4.32 μm (range: 95–113 μm) in Group A, 111.64 ± 3.62 μm (range: 108–125 μm) in Group B, and 122.32 ± 2.88 μm (range: 112–128 μm) in Group C. The difference at each measured point among the three groups was significant (P < 0.05). The accuracy and predictability were satisfactory in all three groups. In conclusion, this customized treatment yielded satisfactory clinical outcomes with accurate and predictable flap thickness for patients with low and moderate refractive error. PMID:25807232

  19. Evaluating the Functionality of Conjunctiva Using a Rabbit Dry Eye Model.

    PubMed

    Ning, Yuan; Bhattacharya, Dhruva; Jones, Richard E; Zhao, Fangkun; Chen, Rongji; Zhang, Jinsong; Wang, Mingwu

    2016-01-01

    Purpose. To assess the conjunctival functionality in a rabbit dry eye (DE) model. Methods. Nictitating membrane, lacrimal and Harderian glands were surgically excised from male New Zealand white rabbits using minimally invasive surgery. Fluorescein/rose Bengal staining of ocular surface (OS) and Schirmer test were done before (BE) and after excision (AE). The expression of interleukin- (IL-) 1β, tumor necrosis factor- (TNF-) α, and MUC5AC proteins were estimated by immunoblotting from conjunctival impression cytology specimens. MUC5AC mRNA was quantified as well. The effect of epithelial sodium channel (ENaC) blockers on tear production and potential differences (PD) of OS were assessed under anesthesia in rabbits with and without surgery. Results. Increase in corneal and conjunctival staining was observed 1 month AE compared to BE. Schirmer tests failed to show decrease in tear production. Elevated IL-1β, and TNF-α, 1 month AE indicated inflammation. MUC5AC expression was elevated 1 month AE. ENaC blockers did not improve tear production in rabbit eyes AE but characteristic changes in PD were observed in rabbits with surgery. Conclusions. DE biomarkers are important tools for OS assessment and MUC5AC expression is elevated in rabbit DE. PD measurement revealed significant electrophysiological changes in rabbits with surgery. PMID:27088007

  20. Hydrogel iontophoresis for gentamicin administration to the rabbit eye

    NASA Astrophysics Data System (ADS)

    Eljarrat-Binstock, Esther; Raiskup, Frederik; Frucht-Pery, Joseph; Domb, Abraham J.

    2005-04-01

    Iontophoresis (IONT) is a non-invasive technique in which a low electric current is used to enhance the penetration of charged molecules into tissue. This technique has been used in various fields of medicine, mostly in transdermal drug delivery. This study was aimed to evaluate the efficacy and the distribution profile of gentamicin using corneal IONT on infected and healthy rabbit eyes. Corneal iontophoresis of gentamicin sulfate was studied using drug-loaded disposable hydrogel probes mounted on a portable iontophoretic device, applying a low current for 60 seconds. This study confirmed that a triple iontophoretic treatment of gentamicin for only 60 seconds (0.5mA) significantly reduces the count of pseudomonas in the infected cornea to a non-infectious level. Peak gentamicin concentrations at the healthy corneas (363.1 +/- 127.3 μg/g) and at the aqueous humor (29.4 +/- 17.4 μg/ml) were reached immediately and two hours after a single iontophoretic treatment, respectively. The concentration versus time profile of gentamicin following iontophoresis revealed a gentamicin half life of 2.07 h in the anterior chamber, and a clearance of 1.73 μl/min from the anterior chamber to the posterior segments of the eye. This study indicates that a short iontophoretic treatment using gentamicin-loaded hydrogels has a potential clinical value in treating corneal infections, by increasing drug penetration to the eye and maintaining therapeutic levels for more than eight hours.

  1. Predatory bacteria are nontoxic to the rabbit ocular surface

    PubMed Central

    Romanowski, Eric G.; Stella, Nicholas A.; Brothers, Kimberly M.; Yates, Kathleen A.; Funderburgh, Martha L.; Funderburgh, James L.; Gupta, Shilpi; Dharani, Sonal; Kadouri, Daniel E.; Shanks, Robert M. Q.

    2016-01-01

    Given the increasing emergence of antimicrobial resistant microbes and the near absent development of new antibiotic classes, innovative new therapeutic approaches to address this global problem are necessary. The use of predatory bacteria, bacteria that prey upon other bacteria, is gaining interest as an “out of the box” therapeutic treatment for multidrug resistant pathogenic bacterial infections. Before a new antimicrobial agent is used to treat infections, it must be tested for safety. The goal of this study was to test the tolerability of bacteria on the ocular surface using in vitro and in vivo models. Predatory bacteria Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus were found to be non-toxic to human corneal stromal keratocytes in vitro; however, they did induce production of the proinflammatory chemokine IL-8 but not IL-1β. Predatory bacteria did not induce inflammation on the ocular surface of rabbit eyes, with and without corneal epithelial abrasions. Unlike a standard of care antibiotic vancomycin, predatory bacteria did not inhibit corneal epithelial wound healing or increase clinical inflammatory signs in vivo. Together these data support the safety of predatory bacteria on the ocular surface, but future studies are warranted regarding the use predatory bacteria in deeper tissues of the eye. PMID:27527833

  2. Predatory bacteria are nontoxic to the rabbit ocular surface.

    PubMed

    Romanowski, Eric G; Stella, Nicholas A; Brothers, Kimberly M; Yates, Kathleen A; Funderburgh, Martha L; Funderburgh, James L; Gupta, Shilpi; Dharani, Sonal; Kadouri, Daniel E; Shanks, Robert M Q

    2016-01-01

    Given the increasing emergence of antimicrobial resistant microbes and the near absent development of new antibiotic classes, innovative new therapeutic approaches to address this global problem are necessary. The use of predatory bacteria, bacteria that prey upon other bacteria, is gaining interest as an "out of the box" therapeutic treatment for multidrug resistant pathogenic bacterial infections. Before a new antimicrobial agent is used to treat infections, it must be tested for safety. The goal of this study was to test the tolerability of bacteria on the ocular surface using in vitro and in vivo models. Predatory bacteria Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus were found to be non-toxic to human corneal stromal keratocytes in vitro; however, they did induce production of the proinflammatory chemokine IL-8 but not IL-1β. Predatory bacteria did not induce inflammation on the ocular surface of rabbit eyes, with and without corneal epithelial abrasions. Unlike a standard of care antibiotic vancomycin, predatory bacteria did not inhibit corneal epithelial wound healing or increase clinical inflammatory signs in vivo. Together these data support the safety of predatory bacteria on the ocular surface, but future studies are warranted regarding the use predatory bacteria in deeper tissues of the eye. PMID:27527833

  3. Relative strength of scleral corneal and clear corneal incisions constructed in cadaver eyes.

    PubMed

    Ernest, P H; Lavery, K T; Kiessling, L A

    1994-11-01

    Square scleral corneal, square clear corneal, and rectangular clear corneal incisions were constructed in six cadaver eyes that had no previous intraocular surgery. The 3.2 mm or smaller wounds had sutureless closures. To determine their relative abilities to resist leakage and iris prolapse, eyes were tested at external pressures of up to 525 pounds per square inch (psi) at one of two intraocular pressure (IOP) ranges: 10 to 15 mm Hg or 20 to 25 mm Hg. The square scleral corneal (3.2 mm x 3.2 mm) and square clear corneal wounds (3.2 mm x 3.2 mm, 2.0 mm x 2.0 mm, 1.0 mm x 1.0 mm) withstood external pressure without effect at both IOP ranges, up to the maximum 525 psi. This level of external pressure was far greater than pressures withstood by rectangular clear corneal wounds, especially the wound usually constructed in clinical practice (3.2 mm x 2.0 mm), which leaked and demonstrated iris prolapse at 13 psi at the lower IOP. The square clear corneal wounds that were stable at 525 psi, however, are either clinically impractical (visual axis encroachment from 3.2 mm x 3.2 mm wound) or not technologically feasible until the size of phacoemulsification tips and intraocular lenses can be further reduced. Thus, of the procedures for small incision cataract surgery presently in use, the square scleral corneal incision with 1.5 mm internal corneal lip appears to offer greater stability and safety than the conventional rectangular clear corneal incision (3.2 mm x 2.0 mm).

  4. Passive asymmetric transport of hesperetin across isolated rabbit cornea.

    PubMed

    Srirangam, Ramesh; Majumdar, Soumyajit

    2010-07-15

    Hesperetin, an aglycone of the flavanone hesperidin, is a potential candidate for the treatment of diabetic retinopathy and macular edema. The purpose of this investigation was to determine solubility, stability and in vitro permeability characteristics of hesperetin across excised rabbit corneas. Aqueous and pH dependent solubility was determined using standard shake flask method. Solution stability was evaluated as a function of pH (1.2-9) and temperature (25 and 40 degrees C). Permeability of hesperetin was determined across the isolated rabbit cornea utilizing a side-bi-side diffusion apparatus, in the apical to basolateral (A-B) and basolateral to apical (B-A) directions. Hesperetin displayed asymmetrical transcorneal transport with a 2.3-fold higher apparent permeability in the B-A direction compared to the A-B direction. The transport process was observed to be pH dependent. Surprisingly, however, the involvement of efflux transporters or proton-coupled carrier-systems was not evident in this asymmetric transcorneal diffusion process. The passive and pH dependent corneal transport of hesperetin could probably be attributable to corneal ultrastructure, physicochemical characteristics of hesperetin and the role of transport buffer components.

  5. Release of platelet activating factor (PAF) and eicosanoids in UVC-irradiated corneal stromal cells.

    PubMed

    Sheng, Y; Birkle, D L

    1995-05-01

    Ultraviolet (UV) irradiation provokes acute inflammation of the eye, and can be used to model processes that occur in response to damage to the anterior segment. This study characterized ultraviolet-C (UVC, 254 nm) irradiation-induced PAF synthesis, and arachidonic acid (20:4) and eicosanoid release in rabbit corneal stromal cells maintained in vitro. PAF was measured by radioimmunoassay (RIA) after exposing cultured corneal stromal cells to UVC irradiation (20 min, 2, 5, 10 mW/cm2). 14C-20:4-labeled stromal cells were also stimulated with UVC and radiolabeled phospholipids, neutral lipids and eicosanoids were measured. Synthesis of cell-associated and secreted PAF from corneal stromal cells was increased by UV irradiation. UV irradiation (254 nm, 5mW/cm2) enhanced 20:4 release from triacylglycerols, phosphatidylinositol, phosphatidylserine and phosphatidylethanolamine, and increased levels of 20:4-diacylglycerol and unesterified 20:4. The released 20:4 entered both the cyclooxygenase and lipoxygenase pathways after UVC irradiation. The PAF antagonist, BN52021 (10 microM) reduced UVC irradiation-induced stimulation of prostaglandin production, but failed to inhibit UVC-induced 20:4 release and synthesis of lipoxygenase products. Furthermore, exogenous PAF (1 microM) stimulated prostaglandin production, but did not increase the synthesis of lipoxygenase products from radiolabeled 20:4. The effects of PAF on prostaglandin synthesis were inhibited by BN52021. These findings indicate that responses to injury in cultured corneal stromal cells include PAF synthesis, release of 20:4 from glycerolipids, accumulation of diacylglycerol and synthesis of eicosanoids. The data further suggest that during UVC irradiation in vitro, PAF is not a primary or initial mediator of 20:4 release and synthesis of lipoxygenase products, but may mediate UVC-induced prostaglandin synthesis. PMID:7648859

  6. Ciliary neurotrophic factor promotes the activation of corneal epithelial stem/progenitor cells and accelerates corneal epithelial wound healing.

    PubMed

    Zhou, Qingjun; Chen, Peng; Di, Guohu; Zhang, Yangyang; Wang, Yao; Qi, Xia; Duan, Haoyun; Xie, Lixin

    2015-05-01

    Ciliary neurotrophic factor (CNTF), a well-known neuroprotective cytokine, has been found to play an important role in neurogenesis and functional regulations of neural stem cells. As one of the most innervated tissue, however, the role of CNTF in cornea epithelium remains unclear. This study was to explore the roles and mechanisms of CNTF in the activation of corneal epithelial stem/progenitor cells and wound healing of both normal and diabetic mouse corneal epithelium. In mice subjecting to mechanical removal of corneal epithelium, the corneal epithelial stem/progenitor cell activation and wound healing were promoted by exogenous CNTF application, while delayed by CNTF neutralizing antibody. In cultured corneal epithelial stem/progenitor cells, CNTF enhanced the colony-forming efficiency, stimulated the mitogenic proliferation, and upregulated the expression levels of corneal epithelial stem/progenitor cell-associated transcription factors. Furthermore, the promotion of CNTF on the corneal epithelial stem/progenitor cell activation and wound healing was mediated by the activation of STAT3. Moreover, in diabetic mice, the content of CNTF in corneal epithelium decreased significantly when compared with that of normal mice, and the supplement of CNTF promoted the diabetic corneal epithelial wound healing, accompanied with the advanced activation of corneal epithelial stem/progenitor cells and the regeneration of corneal nerve fibers. Thus, the capability of expanding corneal epithelial stem/progenitor cells and promoting corneal epithelial wound healing and nerve regeneration indicates the potential application of CNTF in ameliorating limbal stem cell deficiency and treating diabetic keratopathy.

  7. Genetics Home Reference: lattice corneal dystrophy type I

    MedlinePlus

    ... lattice pattern. Affected individuals often have recurrent corneal erosions, which are caused by separation of particular layers of the cornea from one another. Corneal erosions are very painful and can cause sensitivity to ...

  8. Genetics Home Reference: lattice corneal dystrophy type II

    MedlinePlus

    ... In addition, affected individuals can have recurrent corneal erosions, which are caused by separation of particular layers of the cornea from one another. Corneal erosions are very painful and can cause sensitivity to ...

  9. 21 CFR 886.4070 - Powered corneal burr.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4070 Powered corneal burr. (a) Identification. A powered corneal burr is an AC-powered or battery-powered device that is a motor and drilling tool...

  10. 21 CFR 886.4070 - Powered corneal burr.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4070 Powered corneal burr. (a) Identification. A powered corneal burr is an AC-powered or battery-powered device that is a motor and drilling tool...

  11. 21 CFR 886.4070 - Powered corneal burr.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4070 Powered corneal burr. (a) Identification. A powered corneal burr is an AC-powered or battery-powered device that is a motor and drilling tool...

  12. 21 CFR 886.4070 - Powered corneal burr.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4070 Powered corneal burr. (a) Identification. A powered corneal burr is an AC-powered or battery-powered device that is a motor and drilling tool...

  13. 21 CFR 886.4070 - Powered corneal burr.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4070 Powered corneal burr. (a) Identification. A powered corneal burr is an AC-powered or battery-powered device that is a motor and drilling tool...

  14. Changes on the corneal thickness and curvature after orthokeratology

    NASA Astrophysics Data System (ADS)

    Mitsui, Iwane; Yamada, Yoshiya

    2004-07-01

    To evaluate the corneal thickness and curvature changes after Orthokeratology contact lens wear, using the ORBSCAN II corneal topography system, corneal thickness and corneal curvature were measured on one hundred and twenty eyes of sixty patients before and after wearing the custom rigid gas permeable contact lenses for Orthokeratology. The contact lenses were specially designed for each eye. The subjects wore the orthokeratology lenses for approximately Four hours with their eyes closed. The corneal thickness of the subjects was increased on fifty-five eyes at not only the peripheral zone but also the center of the cornea. The average increase of central and peripheral corneal thickness was 18 micrometer and 22micrometer, respectively. The mean anterior curvature of corneal surface changed 1.25D. The mean posterior curvature of corneal endothelium side changed 0.75D.

  15. [Corneal ulcer with hypopion in a patient with perforant keratoplasty].

    PubMed

    Nicula, Cristina; Bran, L

    2010-01-01

    After corneal transplantation, the patients' problems are far from being definitively resolved. The transplant pathology requires an attentive follow-up, as there is always a danger of corneal graft failure. We present here the case of young patient who had a corneal transplantation after an eye injury and who has developed a corneal ulcer on the grafted cornea, with subsequent risk of graft failure and consequent loss of the eye.

  16. Review of past and present techniques of measuring corneal topography.

    PubMed

    Fowler, C W; Dave, T N

    1994-01-01

    Various methods of measuring corneal topography are described. The advantages and disadvantages of the principles used in the measurement of corneal shape by the various techniques are discussed. The corneal surface may be described in a number of ways; some researchers have used conic sections while others have used more complex polynomial expressions. Computer algorithms have also been developed to calculate quantitative measures of corneal topography to augment the information obtained from topographical maps. These descriptors are discussed in this article.

  17. The molecular genetics of the corneal dystrophies--current status.

    PubMed

    Klintworth, Gordon K

    2003-05-01

    The pertinent literature on inherited corneal diseases is reviewed in terms of the chromosomal localization and identification of the responsible genes. Disorders affecting the cornea have been mapped to human chromosome 1 (central crystalline corneal dystrophy, familial subepithelial corneal amyloidosis, early onset Fuchs dystrophy, posterior polymorphous corneal dystrophy), chromosome 4 (Bietti marginal crystalline dystrophy), chromosome 5 (lattice dystrophy types 1 and IIIA, granular corneal dystrophy types 1, 2 and 3, Thiel-Behnke corneal dystrophy), chromosome 9 (lattice dystrophy type II), chromosome 10 (Thiel-Behnke corneal dystrophy), chromosome 12 (Meesmann dystrophy), chromosome 16 (macular corneal dystrophy, fish eye disease, LCAT disease, tyrosinemia type II), chromosome 17 (Meesmann dystrophy, Stocker-Holt dystrophy), chromosome 20 (congenital hereditary endothelial corneal dystrophy types I and II, posterior polymorphous corneal dystrophy), chromosome 21 (autosomal dominant keratoconus) and the X chromosome (cornea verticillata, cornea farinata, deep filiform corneal dystrophy, keratosis follicularis spinulosa decalvans, Lisch corneal dystrophy). Mutations in nine genes (ARSC1, CHST6, COL8A2, GLA, GSN, KRT3, KRT12, M1S1and TGFBI [BIGH3]) account for some of the corneal diseases and three of them are associated with amyloid deposition in the cornea (GSN, M1S1, TGFBI) including most of the lattice corneal dystrophies (LCDs) [LCD types I, IA, II, IIIA, IIIB, IV, V, VI and VII] recognized by their lattice pattern of linear opacities. Genetic studies on inherited diseases affecting the cornea have provided insight into some of these disorders at a basic molecular level and it has become recognized that distinct clinicopathologic phenotypes can result from specific mutations in a particular gene, as well as some different mutations in the same gene. A molecular genetic understanding of inherited corneal diseases is leading to a better appreciation of the

  18. [Representation and mathematical analysis of human corneal surface].

    PubMed

    Tălu, Stefan; Tălu, Mihai; Giovanzana, Stefano

    2011-01-01

    In the description and analysis of human corneal surface are used various mathematical models based on parametric representations, used in biomechanical studies and 3D solid modeling of the cornea. Mathematical models are important into the biomechanics of the cornea to model the corneal behavior. Corneal biomechanics also has the potential to improve outcomes in refractive surgery. The objective of this paper is to present the most representative mathematical models currently used for modeling of human corneal in optics and biomechanics fields.

  19. Acute Corneal Hydrops 3 Years after Intra-corneal Ring Segments and Corneal Collagen Cross-linking

    PubMed Central

    Antonios, Rafic; Dirani, Ali; Fadlallah, Ali; Chelala, Elias; Hamadeh, Adib; Jarade, Elias

    2016-01-01

    This case report describes a 15-year-old male with allergic conjunctivitis and keratoconus, who underwent uneventful intra-corneal ring segment (ICRS) implantation and corneal collagen cross-linking (CXL) in the right eye. During the follow-up periods, the patient was noted to have several episodes of allergic conjunctivitis that were treated accordingly. At the 2 years postoperatively, he presented with another episode of allergic conjunctivitis and progression of keratoconus was suspected on topography. However, the patient was lost to follow-up, until he presented with acute hydrops at 3 years postoperatively. There are no reported cases of acute corneal hydrops in cross-linked corneas. We suspect the young age, allergic conjunctivitis and eye rubbing may be a risk factors associated with possible progression of keratoconus after CXL. Prolonged follow-up and aggressive control of the allergy might be necessary in similar cases. PMID:26957859

  20. Corneal Phaeohyphomycosis Caused by Bipolaris hawaiiensis

    PubMed Central

    Chaidaroon, Winai; Supalaset, Sumet; Tananuvat, Napaporn; Vanittanakom, Nongnuch

    2016-01-01

    Purpose To report a rare case of keratitis infected by Bipolaris hawaiiensis. Methods A patient who was diagnosed as fungal keratitis caused by B. hawaiiensis was retrospectively reviewed for history, clinical characteristics, risk factors, laboratory findings, treatments, and outcomes. Results A 63-year-old man with a history of trauma and saw dust in the left eye presented with a corneal ulcer. Eye examination revealed whitish infiltration with a feathery edge and small brownish deposits in the anterior stroma of the left cornea. Numerous septate hyphal fragments were detected in a corneal specimen, and nucleotide sequence analysis identified B. hawaiiensis. Treatment was started with 5% natamycin eyedrops and oral itraconazole. Subsequently, a corneal plaque developed which did not respond to medication and debridement. The patient underwent therapeutic penetrating keratoplasty. Conclusions B. hawaiiensis is a rare cause of corneal phaeohyphomycosis. A brownish pigmented infiltration is an important diagnostic clue, however microbiologic studies are required to obtain a definite diagnosis. Although antifungal medication and debridement are the mainstay of most corneal fungal infection, therapeutic penetrating keratoplasty can prevent morbidity related to this fungal infection. PMID:27721785

  1. Corneal ulceration following measles in Nigerian children.

    PubMed Central

    Sandford-Smith, J H; Whittle, H C

    1979-01-01

    Acute corneal ulceration in malnourished children is the commonest cause of childhood blindness in Northern Nigeria and usually develops after measles. Other severe diseases in malnourished children rarely precipitate corneal ulceration. A survey in a school for blind children showed that 69% of the children were blind from corneal disease, and a survey of children with corneal scars showed that at least 42% were caused by ulceration after measles. The clinical appearance of the active ulcers was very varied. The serum retinol-binding protein and prealbumin levels in children with corneal ulcers following measles were below normal, but a group of malnourished children without eye complaints following measles were found to have even lower levels. Thus a specific deficiency of vitamin A does not appear to be the primary cause of these ulcers, though it may be a contributory one. A specific measles keratitis and secondary herpes simplex infectious may be local factors contributing to this ulceration, and there is nearly always a background of protein calorie malnutrition. Racial factors may also be of some significance. PMID:508686

  2. Mechanisms for acute corneal hydrops and perforation.

    PubMed

    McMonnies, Charles W

    2014-07-01

    Acute corneal hydrops (ACH) and perforation in corneal thinning diseases are the consequences of exposure to distending intraocular pressure (IOP) forces that are in excess of corneal resistance to them. Apart from thinning, resistance to these forces may be reduced by disease-related tissue changes, such as corneal scarring, which could lower resistance to IOP. Eye rubbing trauma has sometimes been found to be associated with ACH and perforation. This association is not surprising given that the combination of rubbing-related mechanical tissue trauma and the associated increased distending stress of higher IOP seem likely to increase the risk of complications. Many cases of ACH and perforation are described as spontaneous, but this classification may be the consequence of not considering the multiple potential mechanisms for IOP elevation such as coughing, sneezing, nose blowing, and sneeze suppression in addition to those related to eye rubbing/wiping/massaging/touching as well as changes in body orientation, strenuous exercise, and wearing swimming goggles for example. Classification of ACH or perforation as spontaneous may lead patients to assume that nothing can be done to avoid these complications. Patients with corneal thinning diseases who are counseled regarding the potential precipitating mechanisms for IOP elevation will have the opportunity of reducing exposure to them and the risk of the associated complications. In addition, when ACH or perforation occur, faster resolution of edema and wound healing may depend on reducing potentially exacerbating exposures to mechanisms for IOP elevation. PMID:25390550

  3. Corneal Cross-Linking and Safety Issues

    PubMed Central

    Spoerl, Eberhard; Hoyer, Anne; Pillunat, Lutz E; Raiskup, Frederik

    2011-01-01

    Purpose: To compile the safety aspects of the corneal collagen cross-linking (CXL) by means of the riboflavin/UVA (370 nm) approach. Materials and Methodology: Analysis of the current treatment protocol with respect to safety during CXL. Results: The currently used UVA dose density of 5.4 J/cm2 and the corresponding irradiance of 3 mW/cm2 are below the known damage thresholds of UVA for the corneal endothelium, lens, and retina. Regarding the photochemical damages due to the free radicals the damage threshold for endothelial cells is 0.35 mW/cm2. In a 400μm thick corneal stroma saturated with riboflavin, the irradiance at the endothelial level is about 0.18 mW/cm2, which is a factor of 2 smaller than the damage threshold. Conclusion: As long as the corneal stroma treated has a minimal thickness of 400 microns (as recommended), neither corneal endothelium nor deeper structures such as lens and retina will suffer any damages. The light source should provide a homogenous irradiance avoiding hot spots. PMID:21399770

  4. Corneal and conjunctival sensitivity in rosacea patients

    PubMed Central

    Örnek, Nurgül; Karabulut, Ayşe Anıl; Örnek, Kemal; Onaran, Zafer; Usta, Gülşah

    2015-01-01

    Purpose To assess corneal and conjunctival sensitivity in rosacea patients. Methods A total of 55 patients with rosacea and 37 control subjects participated in the study. Corneal and conjunctival sensitivity was determined by Cochet-Bonnet esthesiometer. Subjective symptoms of ocular dryness were evaluated using Ocular Surface Disease Index (OSDI). Schirmer’s I test (ST), tear breakup time (tBUT) and ocular surface staining with fluorescein were carried out to measure objective signs. Results The mean corneal and conjunctival sensitivity did not differ significantly between rosacea patients and controls (all p > 0.05). Schirmer’s I test and tBUT were significantly reduced (p = 0.004 for OD and p < 0.001 for OS) and grade of ocular surface staining was significantly high (p = 0.018 for OD and p = 0.038 for OS) in rosacea patients. Corneal and conjunctival sensitivity did not show significant correlation with ST, tBUT, ocular surface staining (Oxford Schema), duration of rosacea and OSDI score. Conclusions Corneal and conjunctival sensitivity did not change significantly in rosacea. PMID:26949355

  5. Corneal fungal disease in small animals.

    PubMed

    Andrew, Stacy E

    2003-08-01

    Corneal fungal diseases, including fungal keratitis and stromal abscess, are uncommon in small animals. Ocular infection secondary to systemic mycosis is reported far more frequently. Suspicion of a fungal corneal ulcer should be raised based on a history of underlying trauma, especially with plant material, geographic location, chronic use of topical antibiotics or corticosteroids, or an extremely prolonged course of disease despite appropriate treatment. Clinical signs observed with fungal keratitis may include blepharospasm, epiphora, miosis, corneal opacity, and vascularization. Unfortunately, none of these signs is specific to fungal infection. If fungal keratitis is suspected or confirmed, then aggressive medical therapy should be instituted. Medications used include topical antifungals, parasympatholytics, anticollagenases, and antibacterials as well as systemic anti-inflammatory drugs. Because there are very few fungicidal medications, the course of medical treatment for fungal corneal disease requires a prolonged duration with frequent re-examination and assessment. Surgical treatment is sometimes required to save the eye and vision. Surgeries to be considered include debridement, conjunctival graft placement, and corneal transplantation. PMID:14604093

  6. Maintenance of the corneal epithelium is carried out by germinative cells of its basal stratum and not by presumed stem cells of the limbus.

    PubMed

    Haddad, A; Faria-e-Sousa, S J

    2014-06-01

    The purpose of this investigation was to analyze the proliferative behavior of rabbit corneal epithelium and establish if any particular region was preferentially involved in epithelial maintenance. [3H]-thymidine was injected intravitreally into both normal eyes and eyes with partially scraped corneal epithelium. Semithin sections of the anterior segment were evaluated by quantitative autoradiography. Segments with active replication (on) and those with no cell division (off) were intermingled in all regions of the tissue, suggesting that the renewal of the epithelial surface of the cornea followed an on/off alternating pattern. In the limbus, heavy labeling of the outermost layers was observed, coupled with a few or no labeled nuclei in the basal stratum. This suggests that this region is a site of rapid cell differentiation and does not contain many slow-cycling cells. The conspicuous and protracted labeling of the basal layer of the corneal epithelium suggests that its cells undergo repeated cycles of replication before being sent to the suprabasal strata. This replication model is prone to generate label-retaining cells. Thus, if these are adult stem cells, one must conclude that they reside in the corneal basal layer and not the limbal basal layer. One may also infer that the basal cells of the cornea and not of the limbus are the ones with the main burden of renewing the corneal epithelium. No particular role in this process could be assigned to the cells of the basal layer of the limbal epithelium. PMID:24820068

  7. Maintenance of the corneal epithelium is carried out by germinative cells of its basal stratum and not by presumed stem cells of the limbus.

    PubMed

    Haddad, A; Faria-e-Sousa, S J

    2014-06-01

    The purpose of this investigation was to analyze the proliferative behavior of rabbit corneal epithelium and establish if any particular region was preferentially involved in epithelial maintenance. [3H]-thymidine was injected intravitreally into both normal eyes and eyes with partially scraped corneal epithelium. Semithin sections of the anterior segment were evaluated by quantitative autoradiography. Segments with active replication (on) and those with no cell division (off) were intermingled in all regions of the tissue, suggesting that the renewal of the epithelial surface of the cornea followed an on/off alternating pattern. In the limbus, heavy labeling of the outermost layers was observed, coupled with a few or no labeled nuclei in the basal stratum. This suggests that this region is a site of rapid cell differentiation and does not contain many slow-cycling cells. The conspicuous and protracted labeling of the basal layer of the corneal epithelium suggests that its cells undergo repeated cycles of replication before being sent to the suprabasal strata. This replication model is prone to generate label-retaining cells. Thus, if these are adult stem cells, one must conclude that they reside in the corneal basal layer and not the limbal basal layer. One may also infer that the basal cells of the cornea and not of the limbus are the ones with the main burden of renewing the corneal epithelium. No particular role in this process could be assigned to the cells of the basal layer of the limbal epithelium.

  8. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Corneal radius measuring device. 886.1450 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring device. (a) Identification. A corneal radius measuring device is an AC-powered device intended to...

  9. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Corneal radius measuring device. 886.1450 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring device. (a) Identification. A corneal radius measuring device is an AC-powered device intended to...

  10. 21 CFR 886.1450 - Corneal radius measuring device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Corneal radius measuring device. 886.1450 Section 886.1450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1450 Corneal radius measuring device. (a) Identification. A corneal radius...

  11. PATHOGEN EQUIVALENCY COMMITTEE UPDATE: PFRP EQUIVALENCY DETERMINATIONS

    EPA Science Inventory

    This presentation will:

    Review the mandate of the Pathogen Equivalency Committee
    Review the PEC's current membership of 10
    Discuss how a typical application is evaluated
    Note where information can be found
    List present deliberations/applications and describe t...

  12. The rod circuit in the rabbit retina.

    PubMed

    Vaney, D I; Young, H M; Gynther, I C

    1991-01-01

    Mammalian retinae have a well-defined neuronal pathway that serves rod vision. In rabbit retina, the different populations of interneurons in the rod pathway can be selectively labeled, either separately or in combination. The rod bipolar cells show protein kinase C immunoreactivity; the rod (AII) amacrine cells can be distinguished in nuclear-yellow labeled retina; the rod reciprocal (S1 & S2) amacrine cells accumulate serotonin; and the dopaminergic amacrine cells show tyrosine-hydroxylase immunoreactivity. Furthermore, intracellular dye injection of the microscopically identified interneurons enables whole-population and single-cell studies to be combined in the same tissue. Using this approach, we have been able to analyze systematically the neuronal architecture of the rod circuit across the rabbit retina and compare its organization with that of the rod circuit in central cat retina. In rabbit retina, the rod interneurons are not organized in a uniform neuronal module that is simply scaled up from central to peripheral retina. Moreover, peripheral fields in superior and inferior retina that have equivalent densities of each neuronal type show markedly different rod bipolar to AII amacrine convergence ratios, with the result that many more rod photoreceptors converge on an AII amacrine cell in superior retina. In rabbit retina, much of the convergence in the rod circuit occurs in the outer retina whereas, in central cat retina, it is more evenly distributed between the inner and outer retina.

  13. Plasma polymer-coated contact lenses for the culture and transfer of corneal epithelial cells in the treatment of limbal stem cell deficiency.

    PubMed

    Brown, Karl David; Low, Suet; Mariappan, Indumathi; Abberton, Keren Maree; Short, Robert; Zhang, Hong; Maddileti, Savitri; Sangwan, Virender; Steele, David; Daniell, Mark

    2014-02-01

    Extensive damage to the limbal region of the cornea leads to a severe form of corneal blindness termed as limbal stem cell deficiency (LSCD). Whereas most cases of corneal opacity can be treated with full thickness corneal transplants, LSCD requires stem cell transplantation for successful ocular surface reconstruction. Current treatments for LSCD using limbal stem cell transplantation involve the use of murine NIH 3T3 cells and human amniotic membranes as culture substrates, which pose the threat of transmission of animal-derived pathogens and donor tissue-derived cryptic infections. In this study, we aimed to produce surface modified therapeutic contact lenses for the culture and delivery of corneal epithelial cells for the treatment of LSCD. This approach avoids the possibility of suture-related complications and is completely synthetic. We used plasma polymerization to deposit acid functional groups onto the lenses at various concentrations. Each surface was tested for its suitability to promote corneal epithelial cell adhesion, proliferation, retention of stem cells, and differentiation and found that acid-based chemistries promoted better cell adhesion and proliferation. We also found that the lenses coated with a higher percentage of acid functional groups resulted in a higher number of cells transferred onto the corneal wound bed in rabbit models of LSCD. Immunohistochemistry of the recipient cornea confirmed the presence of autologous, transplanted 5-bromo-2'-deoxyuridine (BrdU)-labeled cells. Hematoxylin staining has also revealed the presence of a stratified epithelium at 26 days post-transplantation. This study provides the first evidence for in vivo transfer and survival of cells transplanted from a contact lens to the wounded corneal surface. It also proposes the possibility of using plasma polymer-coated contact lenses with high acid functional groups as substrates for the culture and transfer of limbal cells in the treatment of LSCD.

  14. Histopathological evaluation of the ocular-irritation potential of shampoos, make-up removers and cleansing foams in the bovine corneal opacity and permeability assay

    PubMed Central

    Furukawa, Masatoshi; Sakakibara, Takashi; Itoh, Kouta; Kawamura, Kohtaro; Sasaki, Satoshi; Matsuura, Masao

    2015-01-01

    The bovine corneal opacity and permeability (BCOP) assay is an alternative method to the in vivo Draize eye test in rabbits for evaluating eye irritation in vitro. Here, we compared the numerical results of the BCOP assay with the corresponding histopathology for three different corneas for each test substance, including commercially available shampoos, make-up removers and cleansing foams that contained surfactants and other ingredients. The histopathological score was defined based on the severity of lesions in the corneal epithelium. The histopathological findings and scores of the three sections for each test substance were comparable. The in vitro irritancy score (IVIS) generally corresponds to the corneal irritant potential of the test substances assigned on the basis of the histopathological findings in this study. In the present study, we characterized the histopathology of the corneal epithelium and stroma and especially showed that the corneal epithelial injury caused by test substances might be important in assessment of test substances that are mild eye irritants (category 2B) as classified by the United Nations (UN) Globally Harmonized System of Classification and Labelling of Chemicals (GHS), as corneal lesions suggestive of classification into category 2B were localized on the border between the corneal epithelium and stroma, which contained cell elements related to assessment of prognosis of an in vivo eye injury. Histopathological assessment might be useful in predicting in vivo ocular irritation, particularly for test substances with an IVIS >3.1 but ≤25 that are classified as mild irritants (category 2B) according to the UN GHS. PMID:26538816

  15. Histopathological evaluation of the ocular-irritation potential of shampoos, make-up removers and cleansing foams in the bovine corneal opacity and permeability assay.

    PubMed

    Furukawa, Masatoshi; Sakakibara, Takashi; Itoh, Kouta; Kawamura, Kohtaro; Sasaki, Satoshi; Matsuura, Masao

    2015-10-01

    The bovine corneal opacity and permeability (BCOP) assay is an alternative method to the in vivo Draize eye test in rabbits for evaluating eye irritation in vitro. Here, we compared the numerical results of the BCOP assay with the corresponding histopathology for three different corneas for each test substance, including commercially available shampoos, make-up removers and cleansing foams that contained surfactants and other ingredients. The histopathological score was defined based on the severity of lesions in the corneal epithelium. The histopathological findings and scores of the three sections for each test substance were comparable. The in vitro irritancy score (IVIS) generally corresponds to the corneal irritant potential of the test substances assigned on the basis of the histopathological findings in this study. In the present study, we characterized the histopathology of the corneal epithelium and stroma and especially showed that the corneal epithelial injury caused by test substances might be important in assessment of test substances that are mild eye irritants (category 2B) as classified by the United Nations (UN) Globally Harmonized System of Classification and Labelling of Chemicals (GHS), as corneal lesions suggestive of classification into category 2B were localized on the border between the corneal epithelium and stroma, which contained cell elements related to assessment of prognosis of an in vivo eye injury. Histopathological assessment might be useful in predicting in vivo ocular irritation, particularly for test substances with an IVIS >3.1 but ≤25 that are classified as mild irritants (category 2B) according to the UN GHS.

  16. Microscopic changes with acetic acid and sodium hydroxide in the rabbit low-volume eye test.

    PubMed

    Maurer, J K; Parker, R D

    2000-01-01

    Differences in ocular irritancy have been hypothesized to reflect differences in the extent of initial injury. Although differences in the processes leading to tissue damage may exist, extent of injury is believed to be the principal factor determining final outcome of ocular irritation. Previous studies characterizing the pathology of surfactant-induced ocular irritation support this premise. The purpose of this study was to begin to determine the applicability of this premise in terms of nonsurfactants; we planned to accomplish this by assessing the ocular irritancy of different concentrations of an acid and an alkali. Ten microliters of 3 or 10% acetic acid (C2H4O2) or 2 or 8% sodium hydroxide (NaOH) were directly applied to the cornea of the right eye of each test rabbit. Untreated left eyes served as the controls. Eyes and eyelids were macroscopically examined for signs of irritation beginning 3 hours after dosing and periodically until recovery or day 35. Eyes and eyelids from animals in each group were collected for microscopic examination after 3 hours and on days 1, 3, and 35. The macroscopic and microscopic changes were consistent with slight (3% C2H4O2), mild (2% NaOH, 10% C2H4O2), and severe (8% NaOH) irritancy. The spectra of changes were similar to those previously reported for surfactants of differing types and irritancies. As with surfactants, as the extent of initial injury increased, the intensity and duration of the subsequent responses increased. These results indicate that our hypothesis also applies to nonsurfactants. The results also support our belief that the initial extent of injury associated with ocular irritation may be used to predict the subsequent responses and final outcome. Finally, our results further indicate that such an approach may be applicable to the development of alternative assays that are based on either injury to ex vivo eyes or injury to an in vitro corneal equivalent system.

  17. Sparfloxacin-associated corneal epithelial toxicity

    PubMed Central

    Agarwal, Aniruddha Kishandutt; Ram, Jagat; Singh, Ramandeep

    2014-01-01

    Sparfloxacin is a broad-spectrum fluoroquinolone antibiotic commonly used for various bacterial corneal infections. Topical use of fluoroquinolones is considered to be safe leading to their widespread use. Common indications include blepharitis, conjunctivitis and corneal ulcers. However, unsupervised prolonged use is associated with deposition of crystalline material in the epithelial and anterior stromal layers of the cornea. These may be associated with significant visual symptoms including diminution of vision and glare/photophobia. We present a case of a 40-year-old man who was treated with topical 0.3% sparfloxacin unsupervised for a long time. The patient developed significant visual impairment due to diffuse epitheliopathy. Cessation of the drug was slowly followed by reversal of manifestations and normalisation of corneal morphology. PMID:25239984

  18. [Metabolic disorders and corneal changes (author's transl)].

    PubMed

    François, J

    1981-06-01

    The following inborn errors of metabolism may show corneal changes: A. Inborn errors of metabolism affecting the corneal epithelium: (1) familial dysautonomia, (2) tyrosinaemia type II, (3) Fabry's glycolipidosis. B. Inborn errors of metabolism affecting the corneal stroma: I. Localized amyloidosis (lattice dystrophy of the cornea), II. Defects in carbohydrate metabolism: (1) localized mucopolysaccharidosis (macular dystrophy of the cornea), (2) systemic mucopolysaccharides, (3) glycogen storage disease. III. Defects in lipid metabolism: (1) localized from (Schnyder's crystalline dystrophy), (2) systemic forms (hyperlipoproteinaemia, hypolipoproteinaemia, Lecithin-cholesterol acyl transferase deficiency, Wolman's disease, Gaucher's disease). IV. Combined defects in lipid and carbohydrate metabolism (mucolipidoses). V. Other inherited metabolic disorders: (1) aminoacidopathies (cystinosis, Wilson's disease, ochronosis, Chediak-Higashi syndrome), (2) hemochromatosis.

  19. XENOTRANSPLANTATION – THE FUTURE OF CORNEAL TRANSPLANTATION?

    PubMed Central

    Hara, Hidetaka; Cooper, David K.C.

    2010-01-01

    Although corneal transplantation is readily available in the USA and certain other regions of the developed world, the need for human donor corneas worldwide far exceeds supply. There is currently renewed interest in the possibility of using corneas from other species, especially pigs, for transplantation into humans (xenotransplantation). The biomechanical properties of human and pig corneas are similar. Studies in animal models of corneal xenotransplantation have documented both humoral and cellular immune responses that play roles in xenograft rejection. The results obtained from the Tx of corneas from wild-type (i.e., genetically-unmodified) pigs into nonhuman primates have been surprisingly good and encouraging. Recent progress in the genetic manipulation of pigs has led to the prospect that the remaining immunological barriers will be overcome. There is every reason for optimism that corneal xenoTx will become a clinical reality within the next few years. PMID:21099407

  20. Sparfloxacin-associated corneal epithelial toxicity.

    PubMed

    Agarwal, Aniruddha Kishandutt; Ram, Jagat; Singh, Ramandeep

    2014-01-01

    Sparfloxacin is a broad-spectrum fluoroquinolone antibiotic commonly used for various bacterial corneal infections. Topical use of fluoroquinolones is considered to be safe leading to their widespread use. Common indications include blepharitis, conjunctivitis and corneal ulcers. However, unsupervised prolonged use is associated with deposition of crystalline material in the epithelial and anterior stromal layers of the cornea. These may be associated with significant visual symptoms including diminution of vision and glare/photophobia. We present a case of a 40-year-old man who was treated with topical 0.3% sparfloxacin unsupervised for a long time. The patient developed significant visual impairment due to diffuse epitheliopathy. Cessation of the drug was slowly followed by reversal of manifestations and normalisation of corneal morphology. PMID:25239984

  1. Corneal storage at room temperature.

    PubMed

    Sachs, U; Goldman, K; Valenti, J; Kaufman, H E

    1978-06-01

    Short-term eye banking is based mainly on moist chamber and McCarey-Kaufman medium (M-K medium) preservation. Both involve a controlled 4 C temperature for storage. Warming the cornea to room temperature, however, drastically affects the endothelial viability. On enzymatic staining and histological study, the M-K medium-stored rabbit corneas had more normal endothelium than did "moist chamber" eyes when storage was prolonged for seven days at room temperature. In human corneas that were kept at 4 C for 24 hours and then exposed to a temperature of 25 C, destruction of organelles had occurred by six hours and was increased by 12 hours. Corneas that were kept in M-K medium had relatively intact endothelium after four days, but cell disruption and vacuolation was present by the seventh day. The M-K medium, therefore, affords protection to tissue warmed to room temperature, where metabolic activity is resumed. PMID:350203

  2. Transcriptome Analysis of the Human Corneal Endothelium

    PubMed Central

    Frausto, Ricardo F.; Wang, Cynthia; Aldave, Anthony J.

    2014-01-01

    Purpose. To comprehensively characterize human corneal endothelial cell (HCEnC) gene expression and age-dependent differential gene expression and to identify expressed genes mapped to chromosomal loci associated with the corneal endothelial dystrophies posterior polymorphous corneal dystrophy (PPCD)1, Fuchs endothelial corneal dystrophy (FECD)4, and X-linked endothelial dystrophy (XECD). Methods. Total RNA was isolated from ex vivo corneal endothelium obtained from six pediatric and five adult donor corneas. Complementary DNA was hybridized to the Affymetrix GeneChip 1.1ST array. Data analysis was performed using Partek Genomics Suite software, and differentially expressed genes were validated by digital molecular barcoding technology. Results. Transcripts corresponding to 12,596 genes were identified in HCEnC. Nine genes displayed the most significant differential expression between pediatric and adult HCEnC: CAPN6, HIST1H3A, HIST1H4E, and HSPA2 were expressed at higher levels in pediatric HCEnC, while ITGBL1, NALCN, PREX2, TAC1, and TMOD1 were expressed at higher levels in adult HCEnC. Analysis of the PPCD1, FECD4 and XECD loci demonstrated transcription of 53/95 protein-coding genes in the PPCD1 locus, 27/40 in the FECD4 locus, and 35/68 in the XECD locus. Conclusions. An analysis of the HCEnC transcriptome reveals the expression of almost 13,000 genes, with less than 1% mapped to chromosomal loci associated with PPCD1, FECD4, and XECD. At least nine genes demonstrated significant differential expression between pediatric and adult HCEnC, defining specific functional properties distinct to each age group. These data will serve as a resource for vision scientists investigating HCEnC gene expression and can be used to focus the search for the genetic basis of the corneal endothelial dystrophies for which the genetic basis remains unknown. PMID:25377225

  3. Regulation of Corneal Stroma Extracellular Matrix Assembly

    PubMed Central

    Chen, Shoujun; Mienaltowski, Michael J.; Birk, David E.

    2014-01-01

    The transparent cornea is the major refractive element of the eye. A finely controlled assembly of the stromal extracellular matrix is critical to corneal function, as well as in establishing the appropriate mechanical stability required to maintain corneal shape and curvature. In the stroma, homogeneous, small diameter collagen fibrils, regularly packed with a highly ordered hierarchical organization, are essential for function. This review focuses on corneal stroma assembly and the regulation of collagen fibrillogenesis. Corneal collagen fibrillogenesis involves multiple molecules interacting in sequential steps, as well as interactions between keratocytes and stroma matrix components. The stroma has the highest collagen V:I ratio in the body. Collagen V regulates the nucleation of protofibril assembly, thus controlling the number of fibrils and assembly of smaller diameter fibrils in the stroma. The corneal stroma is also enriched in small leucine-rich proteoglycans (SLRPs) that cooperate in a temporal and spatial manner to regulate linear and lateral collagen fibril growth. In addition, the fibril-associated collagens (FACITs) such as collagen XII and collagen XIV have roles in the regulation of fibril packing and inter-lamellar interactions. A communicating keratocyte network contributes to the overall and long-range regulation of stromal extracellular matrix assembly, by creating micro-domains where the sequential steps in stromal matrix assembly are controlled. Keratocytes control the synthesis of extracellular matrix components, which interact with the keratocytes dynamically to coordinate the regulatory steps into a cohesive process. Mutations or deficiencies in stromal regulatory molecules result in altered interactions and deficiencies in both transparency and refraction, leading to corneal stroma pathobiology such as stromal dystrophies, cornea plana and keratoconus. PMID:25819456

  4. Low-Level Primary Blast Causes Acute Ocular Trauma in Rabbits.

    PubMed

    Jones, Kirstin; Choi, Jae-Hyek; Sponsel, William E; Gray, Walt; Groth, Sylvia L; Glickman, Randolph D; Lund, Brian J; Reilly, Matthew A

    2016-07-01

    The objective of this study was to determine whether clinically significant ocular trauma can be induced by a survivable isolated primary blast using a live animal model. Both eyes of 18 Dutch Belted rabbits were exposed to various survivable low-level blast overpressures in a large-scale shock tube simulating a primary blast similar to an improvised explosive device. Eyes of the blast-exposed rabbits (as well as five control rabbits) were thoroughly examined before and after blast to detect changes. Clinically significant changes in corneal thickness arose immediately after blast and were sustained through 48 h, suggesting possible disruption of endothelial function. Retinal thickness (RT) increased with increasing specific impulse immediately after exposure. Intraocular pressure (IOP) was inversely correlated with the specific impulse of the blast wave. These findings clearly indicate that survivable primary blast causes ocular injuries with likely visual functional sequelae of clinical and military relevance.

  5. Host immune cellular reactions in corneal neovascularization

    PubMed Central

    Abdelfattah, Nizar S.; Amgad, Mohamed; Zayed, Amira A

    2016-01-01

    Corneal neovascularization (CNV) is a global important cause of visual impairment. The immune mechanisms leading to corneal heme- and lymphangiogenesis have been extensively studied over the past years as more attempts were made to develop better prophylactic and therapeutic measures. This article aims to discuss immune cells of particular relevance to CNV, with a focus on macrophages, Th17 cells, dendritic cells and the underlying immunology of common pathologies involving neovascularization of the cornea. Hopefully, a thorough understanding of these topics would propel the efforts to halt the detrimental effects of CNV. PMID:27162740

  6. Economical LED based, real-time, in vivo imaging of murine corneal wound healing.

    PubMed

    Ghoghawala, S Y; Mannis, M J; Murphy, C J; Rosenblatt, M I; Isseroff, R R

    2007-06-01

    An optimal system for monitoring in vivo corneal wound healing is inexpensive, has utility for wounding and imaging, and is able to provide previews before photography. We outline such an imaging system that takes advantage of a consumer digital camera and an LED-based light source for fluorescein excitation. Using FVB/NJ mice, 2mm diameter, circular, axial corneal epithelial defects were created using a crescent blade. The corneal wounds were imaged every four hours until healed using a Nikon Coolpix 5400 camera attached to a Nikon SMZ-10A stereomicroscope, using the illumination from a 16 LED 464nm flashlight. The wound area was calculated, and the linear regressions of the linear phase of wound healing were compared using the F-test. The slopes of the linear regressions for the 6 trials of 4 mice/trial had an average of -52.95microm/h (SEM=0.55microm/h) and were statistically equivalent (p>0.05). The mean of the R(2) values for the linear regressions was 0.9546 (SEM=0.0121). The equivalent linear regressions and R(2)>0.90 suggest that the imaging system could precisely monitor the wound healing of multiple trials and of animals within each trial, respectively. Using a consumer digital camera and LED-based illumination, we have established a system that is economical, is used in both wounding and imaging, is operated by a single person, and is able to provide real-time previews to monitor corneal wound healing precisely.

  7. Reversible Corneal Toxicity of Retained Intracameral Perfluoro-n-octane.

    PubMed

    Alharbi, Saad S; Asiri, Mohammed S

    2016-01-01

    A 58-year-old female presented with intracameral retained perfluoro-n-octane (PFO) following previous retinal reattachment surgery. After 4 years of follow-up without related sequelae, the patient complained of a gradual decrease in vision secondary to corneal edema with whitish corneal precipitate inferiorly corresponding to the area of retained PFO. Three weeks after anterior chamber washout, corneal edema resolved and the patient obtained 20/40 visual acuity. Even though PFO considered to have a relatively good safety profile, early anterior chamber washout may prevent corneal toxicity and avoid later persistent corneal decompensation.

  8. Reversible Corneal Toxicity of Retained Intracameral Perfluoro-n-octane

    PubMed Central

    Alharbi, Saad S.; Asiri, Mohammed S.

    2016-01-01

    A 58-year-old female presented with intracameral retained perfluoro-n-octane (PFO) following previous retinal reattachment surgery. After 4 years of follow-up without related sequelae, the patient complained of a gradual decrease in vision secondary to corneal edema with whitish corneal precipitate inferiorly corresponding to the area of retained PFO. Three weeks after anterior chamber washout, corneal edema resolved and the patient obtained 20/40 visual acuity. Even though PFO considered to have a relatively good safety profile, early anterior chamber washout may prevent corneal toxicity and avoid later persistent corneal decompensation. PMID:27555718

  9. Posterior Corneal Characteristics of Cataract Patients with High Myopia

    PubMed Central

    Jing, Qinghe; Tang, Yating; Qian, Dongjin; Lu, Yi; Jiang, Yongxiang

    2016-01-01

    Purpose To evaluate the characteristics of the posterior corneal surface in patients with high myopia before cataract surgery. Methods We performed a cross-sectional study at the Eye and ENT Hospital of Fudan University, Shanghai, China. Corneal astigmatism and axial length were measured with a rotating Scheimpflug camera (Pentacam) and partial coherence interferometry (IOLMaster) in a high-myopia study group of 167 eyes (axial length ≥ 26 mm) and a control group of 150 eyes (axial length > 20 mm and < 25 mm). Results Total corneal astigmatism and anterior corneal astigmatism values were higher in the high-myopia group than in the control group. There was no significant difference in posterior corneal astigmatism between the high-myopia study group and the control group. In the study group, the mean posterior corneal astigmatism (range 0 – −0.9 diopters) was –0.29 diopters (D) ± 0.17 standard deviations (SD). The steep corneal meridian was aligned vertically (60°–120°) in 87.43% of eyes for the posterior corneal surface, and did not change with increasing age. There was a significant correlation (r = 0.235, p = 0.002) between posterior corneal astigmatism and anterior corneal astigmatism, especially when the anterior corneal surface showed with-the-rule (WTR) astigmatism (r = 0.452, p = 0.000). There was a weak negative correlation between posterior corneal astigmatism and age (r = –0.15, p = 0.053) in the high-myopia group. Compared with total corneal astigmatism values, the anterior corneal measurements alone overestimated WTR astigmatism by a mean of 0.27 ± 0.18 D in 68.75% of eyes, underestimated against-the-rule (ATR) astigmatism by a mean of 0.41 ± 0.28 D in 88.89% of eyes, and underestimated oblique astigmatism by a mean of 0.24 ± 0.13 D in 63.64% of eyes. Conclusions Posterior corneal astigmatism decreased with age and remained as ATR astigmatism in most cases of high myopia. There was a significant correlation between posterior corneal

  10. Effect of chemical composition on corneal cellular response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid.

    PubMed

    Lai, Jui-Yang

    2013-10-01

    Characterization of corneal cellular response to hydrogel materials is an important issue in ophthalmic applications. In this study, we aimed to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and material compatibility towards corneal stromal and endothelial cells. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Results of electrokinetic measurements showed that an increase in absolute zeta potential of photopolymerized membranes is observed with increasing the volume ratios of AAc/HEMA. Following 4 days of incubation with various hydrogels, the primary rabbit corneal stromal and endothelial cell cultures were examined for viability, proliferation, and pro-inflammatory gene expression. The samples prepared from the solution mixture containing 0-10 vol.% AAc displayed good cytocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the decreased viability, inhibited proliferation, and stimulated inflammation were noted in both cell types, probably due to the stronger charge-charge interactions. On the other hand, the ionic pump function of corneal endothelial cells exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of material samples having higher anionic charge density (i.e., zeta potential of -38 to -56 mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal stromal and endothelial cell responses to polymeric biomaterials. PMID:23910267

  11. Air assisted lamellar keratectomy for the corneal haze model.

    PubMed

    Kim, Soohyun; Park, Young Woo; Lee, Euiri; Park, Sang Wan; Park, Sungwon; Kim, Jong Whi; Seong, Je Kyung; Seo, Kangmoon

    2015-01-01

    To standardize the corneal haze model in the resection depth and size for efficient corneal haze development, air assisted lamellar keratectomy was performed. The ex vivo porcine corneas were categorized into four groups depending on the trephined depth: 250 µm (G1), 375 µm (G2), 500 µm(G3) and 750 µm (G4). The stroma was equally ablated at the five measurement sites in all groups. Significant differences were observed between the trephined corneal depths for resection and ablated corneal thickness in G1 (p < 0.001). No significant differences were observed between the trephined corneal depth for resection and the ablated corneal thickness in G2, G3, and G4. The resection percentage was similar in all groups after microscopic imaging of corneal sections. Air assisted lamellar keratectomy (AK) and conventional keratectomy (CK) method were applied to six beagles, after which development of corneal haze was evaluated weekly until postoperative day 28. The occurrence of corneal haze in the AK group was significantly higher than that in the CK group beginning 14 days after surgery. Alpha-smooth muscle actin expression was significantly higher in the AK group (p < 0.001) than the CK group. Air assisted lamellar keratectomy was used to achieve the desired corneal thickness after resection and produce sufficient corneal haze.

  12. Air assisted lamellar keratectomy for the corneal haze model

    PubMed Central

    Kim, Soohyun; Park, Young Woo; Lee, Euiri; Park, Sang Wan; Park, Sungwon; Kim, Jong Whi; Seong, Je Kyung

    2015-01-01

    To standardize the corneal haze model in the resection depth and size for efficient corneal haze development, air assisted lamellar keratectomy was performed. The ex vivo porcine corneas were categorized into four groups depending on the trephined depth: 250 µm (G1), 375 µm (G2), 500 µm (G3) and 750 µm (G4). The stroma was equally ablated at the five measurement sites in all groups. Significant differences were observed between the trephined corneal depths for resection and ablated corneal thickness in G1 (p < 0.001). No significant differences were observed between the trephined corneal depth for resection and the ablated corneal thickness in G2, G3, and G4. The resection percentage was similar in all groups after microscopic imaging of corneal sections. Air assisted lamellar keratectomy (AK) and conventional keratectomy (CK) method were applied to six beagles, after which development of corneal haze was evaluated weekly until postoperative day 28. The occurrence of corneal haze in the AK group was significantly higher than that in the CK group beginning 14 days after surgery. Alpha-smooth muscle actin expression was significantly higher in the AK group (p < 0.001) than the CK group. Air assisted lamellar keratectomy was used to achieve the desired corneal thickness after resection and produce sufficient corneal haze. PMID:25797296

  13. Corneal heat scar caused by photodynamic therapy performed through an implanted corneal inlay.

    PubMed

    Mita, Mariko; Kanamori, Tomomi; Tomita, Minoru

    2013-11-01

    A 60-year-old man had a combination of laser in situ keratomileusis and Kamra corneal inlay implantation to correct presbyopia. Although the outcome was favorable postoperatively, central serous chorioretinopathy was observed in the left eye along with a decrease in the uncorrected (UDVA) and corrected (CDVA) distance visual acuities and the corrected near visual acuity (CNVA). Photodynamic therapy (PDT) was later performed in a university hospital. After PDT, the patient experienced a decline in the visual acuity and came to our clinic a month after the PDT. Degeneration and a scar were observed at the location of the inlay due to the heat and burning. Flattening of the corneal topography was also observed where the corneal scar was located, along with a significant decrease in CDVA in the left eye. Prior to any surgery in which the corneal inlay is an impediment, surgeons should take advantage of the reversibility of the Kamra inlay by explanting the inlay.

  14. [Cross-linking and intrastromal corneal ring segment].

    PubMed

    Renesto, Adimara da Candelaria; Sartori, Marta; Campos, Mauro

    2011-01-01

    Corneal cross-linking is a procedure used for stabilizing the cornea in patients with progressive keratoconus by increasing corneal rigidity, and it is also used in corneal inflammatory melting process. The intrastromal corneal ring segments act by flattening the center of the cornea. Originally designed for the correction of mild myopia, the segments are now being used for reduction of keratoconus in order to improve the uncorrected visual acuity, the best spectacle corrected visual acuity, to allow good tolerance to the use of contact lenses and delay the need for corneal grafting procedures. The present text presents a review of corneal cross-linking and insertion of intrastromal corneal ring segments, emphasizing their indications, results and complications related until now. PMID:21670914

  15. Novel aspects of corneal angiogenic and lymphangiogenic privilege

    PubMed Central

    Ellenberg, David; Azar, Dimitri T.; Hallak, Joelle A.; Tobaigy, Faisal; Han, Kyu Yeon; Jain, Sandeep; Zhou, Zhongjun; Chang, Jin-Hong

    2013-01-01

    In this article, we provide the results of experimental studies demonstrating that corneal avascularity is an active process involving the production of anti-angiogenic factors, which counterbalance the proangiogenic/lymphangiogenic factors that are upregulated during wound healing. We also summarize pertinent published reports regarding corneal neovascularization (NV), corneal lymphangiogenesis and corneal angiogenic/lymphangiogenic privilege. We outline the clinical causes of corneal NV, and discuss the angiogenic proteins (VEGF and bFGF) and angiogenesis regulatory proteins. We also describe the role of matrix metalloproteinases MMP-2, -7, and MT1-MMP, anti-angiogenic factors, and lymphangiogenic regulatory proteins during corneal wound healing. Established and potential new therapies for the treatment of corneal neovascularization are also discussed. PMID:20100589

  16. Normative Values for Corneal Nerve Morphology Assessed Using Corneal Confocal Microscopy: A Multinational Normative Data Set

    PubMed Central

    Tavakoli, Mitra; Ferdousi, Maryam; Petropoulos, Ioannis N.; Morris, Julie; Pritchard, Nicola; Zhivov, Andrey; Ziegler, Dan; Pacaud, Danièle; Romanchuk, Kenneth; Perkins, Bruce A.; Lovblom, Leif E.; Bril, Vera; Singleton, J. Robinson; Smith, Gordon; Boulton, Andrew J.M.; Efron, Nathan

    2015-01-01

    OBJECTIVE Corneal confocal microscopy is a novel diagnostic technique for the detection of nerve damage and repair in a range of peripheral neuropathies, in particular diabetic neuropathy. Normative reference values are required to enable clinical translation and wider use of this technique. We have therefore undertaken a multicenter collaboration to provide worldwide age-adjusted normative values of corneal nerve fiber parameters. RESEARCH DESIGN AND METHODS A total of 1,965 corneal nerve images from 343 healthy volunteers were pooled from six clinical academic centers. All subjects underwent examination with the Heidelberg Retina Tomograph corneal confocal microscope. Images of the central corneal subbasal nerve plexus were acquired by each center using a standard protocol and analyzed by three trained examiners using manual tracing and semiautomated software (CCMetrics). Age trends were established using simple linear regression, and normative corneal nerve fiber density (CNFD), corneal nerve fiber branch density (CNBD), corneal nerve fiber length (CNFL), and corneal nerve fiber tortuosity (CNFT) reference values were calculated using quantile regression analysis. RESULTS There was a significant linear age-dependent decrease in CNFD (−0.164 no./mm2 per year for men, P < 0.01, and −0.161 no./mm2 per year for women, P < 0.01). There was no change with age in CNBD (0.192 no./mm2 per year for men, P = 0.26, and −0.050 no./mm2 per year for women, P = 0.78). CNFL decreased in men (−0.045 mm/mm2 per year, P = 0.07) and women (−0.060 mm/mm2 per year, P = 0.02). CNFT increased with age in men (0.044 per year, P < 0.01) and women (0.046 per year, P < 0.01). Height, weight, and BMI did not influence the 5th percentile normative values for any corneal nerve parameter. CONCLUSIONS This study provides robust worldwide normative reference values for corneal nerve parameters to be used in research and clinical practice in the study of diabetic and other peripheral

  17. Fibrin glue-assisted for the treatment of corneal perforations using glycerin-cryopreserved corneal tissue

    PubMed Central

    Dong, Nuo; Li, Cheng; Chen, Wen-Sheng; Qin, Wen-Juan; Xue, Yu-Hua; Wu, Hu-Ping

    2014-01-01

    AIM To evaluate the outcomes and safety of lamellar keratoplasty (LK) assisted by fibrin glue in corneal perforations. METHODS Six eyes of 6 patients affected by different corneal pathologies (2 posttraumatic corneal scar and 3 bacterial keratitis) underwent LK procedures by using fibrin glue. The mean corneal perforation diameter was 1.35±0.64mm (range, 0.7-2.5mm), and the greatest diameter of the ulcerative stromal defect was 2.47±0.77mm in average (range, 1.5-3.5mm). The donor corneal lamella diameters were 0.20-mm larger and thicker than the recipient to restore a physiologic corneal thickness and shape: mean donor diameter was 8.34±0.28mm (range, 8.2-8.7mm) and mean thickness was 352±40.27mm (range, 220-400mm). Mean follow-up was 7.33±1.97 months (range, 6-11 months). Postoperatively, the graft status, graft clarity, anterior chamber response, the visual prognosis, intraocular pressures, and postoperative complications were recorded. RESULTS All the corneal perforations were successfully healed after the procedure. The best-corrected visual acuity (BCVA) ranged from 20/1 000 to 20/50 in their initial presentation, and from 20/100 to 20/20 in their last visit, showed increase in all the patients. No major complications such as graft dislocation and graft failure were noted. Neovascularization developed in the superficial stroma of donor graft in 1 case. High intraocular pressure developed on day 2 after surgery, while was remained in normal range after application of anti-glaucomatous eyedrops for 1 week in 1 case. CONCLUSION Fibrin glue-assisted sutureless LK is valuable for maintaining the ocular integrity in the treatment of corneal perforations. PMID:24634865

  18. Corneal Higher Order Aberrations in Granular, Lattice and Macular Corneal Dystrophies

    PubMed Central

    Yagi-Yaguchi, Yukari; Yamaguchi, Takefumi; Okuyama, Yumi; Satake, Yoshiyuki; Tsubota, Kazuo; Shimazaki, Jun

    2016-01-01

    Purpose To evaluate the corneal higher-order aberrations (HOAs) in granular, lattice and macular corneal dystrophies. Methods This retrospective study includes consecutive patients who were diagnosed as granular corneal dystrophy type2 (GCD2; 121 eyes), lattice corneal dystrophies type 1, type 3A (LCDI; 20 eyes, LCDIIIA; 32 eyes) and macular corneal dystrophies (MCD; 13 eyes), and 18 healthy control eyes. Corneal HOAs were calculated using anterior segment optical coherence tomography, and the correlations between HOAs and visual acuity were analyzed. Results HOAs of the total cornea within 4 mm diameter were significantly larger in GCD2 (0.17 ± 0.35 μm), in LCDI (0.33 ± 0.27), LCDIIIA (0.61 ± 1.56) and in MCD (0.23 ± 0.18), compared with healthy controls (0.09 ± 0.02μm, all P < 0.01). HOAs of the total cornea within 6 mm diameter were significantly larger in GCD2 (0.32 ± 0.48), in LCDI (0.60 ± 0.46), LCDIIIA (0.83 ± 2.29) and in MCD (0.44 ± 0.24), compared with healthy controls (0.19 ± 0.06, all P < 0.001). In GCD2, there was no significant correlation between logMAR and HOAs (r = 0.113, P = 0.227). In MCD, LCDI and LCDIIIA, logMAR was positively significantly correlated with HOAs (r = 0.620 and P = 0.028, r = 0.587 and P = 0.007, r = 0.614 and P < 0.001, respectively). Conclusions Increased HOAs occur in eyes with corneal dystrophies, especially in eye with LCD and MCD. Larger amount corneal HOAs are associated with poorer visual acuity in patients with LCD and MCD. PMID:27536778

  19. A brief history of corneal transplantation: From ancient to modern.

    PubMed

    Crawford, Alexandra Z; Patel, Dipika V; McGhee, Charles Nj

    2013-09-01

    This review highlights many of the fundamental concepts and events in the development of corneal transplantation - from ancient times to modern. Tales of eye, limb, and even heart transplantation appear in ancient and medieval texts; however, in the scientific sense, the original concepts of corneal surgery date back to the Greek physician Galen (130-200 AD). Although proposals to provide improved corneal clarity by surgical interventions, including keratoprostheses, were better developed by the 17(th) and 18(th) centuries, true scientific and surgical experimentation in this field did not begin until the 19(th) century. Indeed, the success of contemporary corneal transplantation is largely the result of a culmination of pivotal ideas, experimentation, and perseverance by inspired individuals over the last 200 years. Franz Reisinger initiated experimental animal corneal transplantation in 1818, coining the term "keratoplasty". Subsequently, Wilhelmus Thorne created the term corneal transplant and 3 years later Samuel Bigger, 1837, reported successful corneal transplantation in a gazelle. The first recorded therapeutic corneal xenograft on a human was reported shortly thereafter in 1838-unsurprisingly this was unsuccessful. Further progress in corneal transplantation was significantly hindered by limited understanding of antiseptic principles, anesthesiology, surgical technique, and immunology. There ensued an extremely prolonged period of debate and experimentation upon the utility of animal compared to human tissue, and lamellar versus penetrating keratoplasty. Indeed, the first successful human corneal transplant was not performed by Eduard Zirm until 1905. Since that first successful corneal transplant, innumerable ophthalmologists have contributed to the development and refinement of corneal transplantation aided by the development of surgical microscopes, refined suture materials, the development of eye banks, and the introduction of corticosteroids. Recent

  20. A brief history of corneal transplantation: From ancient to modern

    PubMed Central

    Crawford, Alexandra Z; Patel, Dipika V; McGhee, Charles NJ

    2013-01-01

    This review highlights many of the fundamental concepts and events in the development of corneal transplantation – from ancient times to modern. Tales of eye, limb, and even heart transplantation appear in ancient and medieval texts; however, in the scientific sense, the original concepts of corneal surgery date back to the Greek physician Galen (130-200 AD). Although proposals to provide improved corneal clarity by surgical interventions, including keratoprostheses, were better developed by the 17th and 18th centuries, true scientific and surgical experimentation in this field did not begin until the 19th century. Indeed, the success of contemporary corneal transplantation is largely the result of a culmination of pivotal ideas, experimentation, and perseverance by inspired individuals over the last 200 years. Franz Reisinger initiated experimental animal corneal transplantation in 1818, coining the term “keratoplasty”. Subsequently, Wilhelmus Thorne created the term corneal transplant and 3 years later Samuel Bigger, 1837, reported successful corneal transplantation in a gazelle. The first recorded therapeutic corneal xenograft on a human was reported shortly thereafter in 1838—unsurprisingly this was unsuccessful. Further progress in corneal transplantation was significantly hindered by limited understanding of antiseptic principles, anesthesiology, surgical technique, and immunology. There ensued an extremely prolonged period of debate and experimentation upon the utility of animal compared to human tissue, and lamellar versus penetrating keratoplasty. Indeed, the first successful human corneal transplant was not performed by Eduard Zirm until 1905. Since that first successful corneal transplant, innumerable ophthalmologists have contributed to the development and refinement of corneal transplantation aided by the development of surgical microscopes, refined suture materials, the development of eye banks, and the introduction of corticosteroids. Recent

  1. A brief history of corneal transplantation: From ancient to modern.

    PubMed

    Crawford, Alexandra Z; Patel, Dipika V; McGhee, Charles Nj

    2013-09-01

    This review highlights many of the fundamental concepts and events in the development of corneal transplantation - from ancient times to modern. Tales of eye, limb, and even heart transplantation appear in ancient and medieval texts; however, in the scientific sense, the original concepts of corneal surgery date back to the Greek physician Galen (130-200 AD). Although proposals to provide improved corneal clarity by surgical interventions, including keratoprostheses, were better developed by the 17(th) and 18(th) centuries, true scientific and surgical experimentation in this field did not begin until the 19(th) century. Indeed, the success of contemporary corneal transplantation is largely the result of a culmination of pivotal ideas, experimentation, and perseverance by inspired individuals over the last 200 years. Franz Reisinger initiated experimental animal corneal transplantation in 1818, coining the term "keratoplasty". Subsequently, Wilhelmus Thorne created the term corneal transplant and 3 years later Samuel Bigger, 1837, reported successful corneal transplantation in a gazelle. The first recorded therapeutic corneal xenograft on a human was reported shortly thereafter in 1838-unsurprisingly this was unsuccessful. Further progress in corneal transplantation was significantly hindered by limited understanding of antiseptic principles, anesthesiology, surgical technique, and immunology. There ensued an extremely prolonged period of debate and experimentation upon the utility of animal compared to human tissue, and lamellar versus penetrating keratoplasty. Indeed, the first successful human corneal transplant was not performed by Eduard Zirm until 1905. Since that first successful corneal transplant, innumerable ophthalmologists have contributed to the development and refinement of corneal transplantation aided by the development of surgical microscopes, refined suture materials, the development of eye banks, and the introduction of corticosteroids. Recent

  2. Quantitative proteomic analysis of mice corneal tissues reveals angiogenesis-related proteins involved in corneal neovascularization.

    PubMed

    Shen, Minqian; Tao, Yimin; Feng, Yifan; Liu, Xing; Yuan, Fei; Zhou, Hu

    2016-07-01

    Corneal neovascularization (CNV) was induced in Balb/c mice by alkali burns in the central area of the cornea with a diameter of 2.5mm. After fourteen days, the cornea from one eye was collected for histological staining for CNV examination, while the cornea from the other eye of the same mouse was harvested for proteomic analysis. The label-free quantitative proteomic approach was applied to analyze five normal corneal tissues (normal group mice n=5) and five corresponding neovascularized corneal tissues (model group mice n=5). A total of 2124 proteins were identified, and 1682 proteins were quantified from these corneal tissues. Among these quantified proteins, 290 proteins were significantly changed between normal and alkali burned corneal tissues. Of these significantly changed proteins, 35 were reported or predicted as angiogenesis-related proteins. Then, these 35 proteins were analyzed using Ingenuity Pathway Analysis Software, resulting in 26 proteins enriched and connected to each other in the protein-protein interaction network, such as Lcn-2, αB-crystallin and Serpinf1 (PEDF). These three significantly changed proteins were selected for further Western blotting validation. Consistent with the quantitative proteomic results, Western blotting showed that Lcn-2 and αB-crystallin were significantly up-regulated in CNV model, while PEDF was down-regulated. This study provided increased understanding of angiogenesis-related proteins involved in corneal vascular development, which will be useful in the ophthalmic clinic of specifically target angiogenesis.

  3. High-frequency ultrasound corneal pachymetry in the assessment of corneal scars for therapeutic planning.

    PubMed

    Reinstein, D Z; Aslanides, I M; Silverman, R H; Asbell, P A; Coleman, D J

    1994-07-01

    We used high-frequency ultrasound B-scanning with digital signal processing for pachymetric analysis of corneal scars to help determine the optimal management strategy. Four patients were selected for this report. By an automated motor system, 12 consecutive, parallel ultrasound B-scans, each 2.5 to 3 mm wide at 0.25 mm intervals, were obtained from the central corneal area of three patients with anterior corneal scarring. In a fourth patient with near complete corneal scarring obscuring the view of the anterior chamber, a set of 15 mm wide B-scans was obtained. Digitized ultrasound signals were used to produce high-resolution images and I-scans enabling a pachymetric precision of +/- 2 microns (SD). Epithelial, scar, and corneal thickness measurements were made along each scan to determine the most significant zone of pathology. Pachymetry of the cornea and the individual layers was used to assess the suitability for either photorefractive or penetrating keratectomy. B-scan imaging of the full anterior segment provided useful information for the preoperative planning of anterior segment reconstruction and the prognostic evaluation of penetrating keratoplasty. This method provides a powerful tool for the corneal surgeon in management planning.

  4. Corneal injuries from liquid detergent pods.

    PubMed

    Gray, Michael E; West, Constance E

    2014-10-01

    Laundry and dishwasher detergent "pods" were introduced to the United States market in 2010 and are sold by several manufacturers. They represent a high percentage of household cleaning product exposure in the United Kingdom. We present a consecutive case series of 10 children seen in a 9-month period with corneal injuries from exposure to liquid detergent pods.

  5. Corneal topography measurements for biometric applications

    NASA Astrophysics Data System (ADS)

    Lewis, Nathan D.

    The term biometrics is used to describe the process of analyzing biological and behavioral traits that are unique to an individual in order to confirm or determine his or her identity. Many biometric modalities are currently being researched and implemented including, fingerprints, hand and facial geometry, iris recognition, vein structure recognition, gait, voice recognition, etc... This project explores the possibility of using corneal topography measurements as a trait for biometric identification. Two new corneal topographers were developed for this study. The first was designed to function as an operator-free device that will allow a user to approach the device and have his or her corneal topography measured. Human subject topography data were collected with this device and compared to measurements made with the commercially available Keratron Piccolo topographer (Optikon, Rome, Italy). A third topographer that departs from the standard Placido disk technology allows for arbitrary pattern illumination through the use of LCD monitors. This topographer was built and tested to be used in future research studies. Topography data was collected from 59 subjects and modeled using Zernike polynomials, which provide for a simple method of compressing topography data and comparing one topographical measurement with a database for biometric identification. The data were analyzed to determine the biometric error rates associated with corneal topography measurements. Reasonably accurate results, between three to eight percent simultaneous false match and false non-match rates, were achieved.

  6. Corneal changes in Tay-Sachs disease.

    PubMed

    Ghosh, M; Hunter, W S; Wedge, C

    1990-06-01

    Tay-Sachs disease is a well-known inherited disease leading to an accumulation of gangliosides in the brain and retina. Our report is based on a case of Tay-Sachs disease in a non-Jewish infant where pathologic changes were noted in corneal endothelium as well as in the retina.

  7. Aspergillus terreus recovered from a corneal scraping.

    PubMed

    Campbell, Suzanne

    2014-01-01

    A 52 year old, healthy male presented to his optometrist complaining of redness and irritation in the right eye. A foreign body was removed from the eye. The patient was started on ophthalmic solutions of vigamox and systane. At 48 hours, the patient reported increased redness, limited vision, and yellow discharge from the eye. The patient was referred to an ophthalmologist for further evaluation. Physical assessment revealed a superlative central infiltrate (extreme, centrally located injury that had permeated the cornea), diffuse corneal haze, and edema with a 3- to 4+ conjunctival injection and a 1 millimeter hypopyon (an effusion of pus into the anterior chamber of the eye). Corneal scrapings were collected for aerobic and anaerobic bacterial and fungal cultures. The patient was then prescribed. vancomycin, tobramycin, and natamycin ophthalmic eyedrops. On day three, fungal culture results indicated possible fungal forms seen. On day 12, results from the fungal culture of the corneal scraping revealed the causative agent to be Aspergillus terreus. Voriconazole eyedrops were added to the treatment regimen and continued for 10 weeks. The physician order for a fungal culture as well as laboratory data providing the final identification of Aspergillus terreus and laboratory comments indicating an elevated minimum inhibitory concentration (MIC) (> 2 microg/mL) to amphotericin B is associated with treatment failure positively impacted the patient outcome. After completion of the treatment regimen, a photo-therapeutic keratectomy (PTK) was performed in an attempt to remove the dense corneal scarring caused by the fungal infection.

  8. Corneal collagen cross-linking: A review

    PubMed Central

    O’Brart, David P.S.

    2014-01-01

    The aim was to review the published literature on corneal collagen cross-linking. The emphasis was on the seminal publications, systemic reviews, meta-analyses and randomized controlled trials. Where such an evidence did not exist, selective large series cohort studies, case controlled studies and case series with follow-up preferably greater than 12 months were included. Riboflavin/Ultraviolet A (UVA) corneal collagen cross-linking appears to be the first treatment modality to halt the progression of keratoconus and other corneal ectatic disorders with improvement in visual, keratometric and topographic parameters documented by most investigators. Its precise mechanism of action at a molecular level is as yet not fully determined. Follow-up is limited to 4–6 years at present but suggests continued stability and improvement in corneal shape with time. Most published data are with epithelium-off techniques. Epithelium-on studies suggest some efficacy but less than with the epithelium-off procedures and long-term data are not currently available. The use of Riboflavin/UVA CXL for the management of infectious and non-infectious keratitis appears very promising. Its use in the management of bullous keratopathy is equivocal. Investigation of other methodologies for CXL are under investigation. PMID:25000866

  9. Autophagy in granular corneal dystrophy type 2.

    PubMed

    Choi, Seung-Il; Kim, Eung Kweon

    2016-03-01

    Autophagy is a lysosomal degradative process that is essential for cellular homeostasis and metabolic stress adaptation. Defective autophagy is involved in the pathogenesis of many diseases including granular corneal dystrophy type 2 (GCD2). GCD2 is an autosomal dominant disorder caused by substitution of histidine for arginine at codon 124 (R124H) in the transforming growth factor β-induced gene (TGFBI) on chromosome 5q31. Transforming growth factor β-induced protein (TGFBIp) is degraded by autophagy, but mutant-TGFBIp accumulates in autophagosomes and/or lysosomes, despite significant activation of basal autophagy, in GCD2 corneal fibroblasts. Furthermore, inhibition of autophagy induces cell death of GCD2 corneal fibroblasts through active caspase-3. As there is currently no pharmacological treatment for GCD2, development of novel therapies is required. A potential strategy for preventing cytoplasmic accumulation of mutant-TGFBIp in GCD2 corneal fibroblasts is to enhance mutant-TGFBIp degradation. This could be achieved by activation of the autophagic pathway. Here, we will consider the role and the potential therapeutic benefits of autophagy in GCD2, with focus on TGFBIp degradation, in light of the recently established role of autophagy in protein degradation.

  10. Peptide Amphiphiles in Corneal Tissue Engineering

    PubMed Central

    Miotto, Martina; Gouveia, Ricardo M.; Connon, Che J.

    2015-01-01

    The increasing interest in effort towards creating alternative therapies have led to exciting breakthroughs in the attempt to bio-fabricate and engineer live tissues. This has been particularly evident in the development of new approaches applied to reconstruct corneal tissue. The need for tissue-engineered corneas is largely a response to the shortage of donor tissue and the lack of suitable alternative biological scaffolds preventing the treatment of millions of blind people worldwide. This review is focused on recent developments in corneal tissue engineering, specifically on the use of self-assembling peptide amphiphiles for this purpose. Recently, peptide amphiphiles have generated great interest as therapeutic molecules, both in vitro and in vivo. Here we introduce this rapidly developing field, and examine innovative applications of peptide amphiphiles to create natural bio-prosthetic corneal tissue in vitro. The advantages of peptide amphiphiles over other biomaterials, namely their wide range of functions and applications, versatility, and transferability are also discussed to better understand how these fascinating molecules can help solve current challenges in corneal regeneration. PMID:26258796

  11. A cornea substitute derived from fish scale: 6-month followup on rabbit model.

    PubMed

    Yuan, Fei; Wang, Liyan; Lin, Chien-Chen; Chou, Cheng-Hung; Li, Lei

    2014-01-01

    A fish scale-derived cornea substitute (Biocornea) is proposed as an alternative for human donor corneal tissue. We adopt a regenerative medicine approach to design a primary alternative to the use of fish scale for restoring sight by corneal replacement. Biocornea with corneal multilayer arrangement collagen was implanted to rabbits by pocket implantation. Our study demonstrated the safety and detailed morphologic and physiologic results from the 6 months of followup of rabbit model. In the peripheral Biocornea, the collagen fibrils were arranged in reticular fashion. Slit lamp examination showed that haze and an ulcer were not observed in all groups at 3 months postoperatively while all corneas with Biocornea were clear at both 3 months and 6 months postoperatively. The interface of Biocornea and stromal tissue were filled successfully and without observable immune cells at postoperative day 180. Moreover, the Biocornea was not dissolved and degenerated but remained transparent and showed no apparent fragmentation. Our study demonstrated that the Biocornea derived from fish scale as a good substitute had high biocompatibility and support function after a long-term evaluation. This revealed that the new approach of using Biocornea may yield an ideal artificial cornea substitute for long-term inlay placement. PMID:25089206

  12. A Cornea Substitute Derived from Fish Scale: 6-Month Followup on Rabbit Model

    PubMed Central

    Yuan, Fei; Wang, Liyan; Lin, Chien-Chen; Chou, Cheng-Hung; Li, Lei

    2014-01-01

    A fish scale-derived cornea substitute (Biocornea) is proposed as an alternative for human donor corneal tissue. We adopt a regenerative medicine approach to design a primary alternative to the use of fish scale for restoring sight by corneal replacement. Biocornea with corneal multilayer arrangement collagen was implanted to rabbits by pocket implantation. Our study demonstrated the safety and detailed morphologic and physiologic results from the 6 months of followup of rabbit model. In the peripheral Biocornea, the collagen fibrils were arranged in reticular fashion. Slit lamp examination showed that haze and an ulcer were not observed in all groups at 3 months postoperatively while all corneas with Biocornea were clear at both 3 months and 6 months postoperatively. The interface of Biocornea and stromal tissue were filled successfully and without observable immune cells at postoperative day 180. Moreover, the Biocornea was not dissolved and degenerated but remained transparent and showed no apparent fragmentation. Our study demonstrated that the Biocornea derived from fish scale as a good substitute had high biocompatibility and support function after a long-term evaluation. This revealed that the new approach of using Biocornea may yield an ideal artificial cornea substitute for long-term inlay placement. PMID:25089206

  13. Effect of HDAC Inhibitors on Corneal Keratocyte Mechanical Phenotypes in 3-D Collagen Matrices

    PubMed Central

    Koppaka, Vindhya; Lakshman, Neema

    2015-01-01

    Purpose: Histone deacetylase inhibitors (HDAC) have been shown to inhibit the TGFβ-induced myofibroblast transformation of corneal fibroblasts in 2-D culture. However, the effect of HDAC inhibitors on keratocyte spreading, contraction, and matrix remodeling in 3-D culture has not been directly assessed. The goal of this study was to investigate the effects of the HDAC inhibitors Trichostatin A (TSA) and Vorinostat (SAHA) on corneal keratocyte mechanical phenotypes in 3-D culture using defined serum-free culture conditions. Methods: Rabbit corneal keratocytes were plated within standard rat tail type I collagen matrices (2.5 mg/ml) or compressed collagen matrices (~100 mg/ml) and cultured for up to 4 days in serum-free media, PDGF BB, TGFβ1, and either 50 nM TSA, 10 μM SAHA, or vehicle (DMSO). F-actin, α-SM-actin, and collagen fibrils were imaged using confocal microscopy. Cell morphology and global matrix contraction were quantified digitally. The expression of α-SM-actin was assessed using western blotting. Results: Corneal keratocytes in 3-D matrices had a quiescent mechanical phenotype, as indicated by a dendritic morphology, a lack of stress fibers, and minimal cell-induced matrix remodeling. This phenotype was generally maintained following the addition of TSA or SAHA. TGFβ1 induced a contractile phenotype, as indicated by a loss of dendritic cell processes, the development of stress fibers, and significant matrix compaction. In contrast, cells cultured in TGFβ1 plus TSA or SAHA remained dendritic and did not form stress fibers or induce ECM compaction. Western blotting showed that the expression of α-SM actin after treatment with TGFβ1 was inhibited by TSA and SAHA. PDGF BB stimulated the elongation of keratocytes and the extension of dendritic processes within 3-D matrices without inducing stress fiber formation or collagen reorganization. This spreading response was maintained in the presence of TSA or SAHA. Conclusions: Overall, HDAC inhibitors

  14. [Future Innovative Medicine for Corneal Diseases].

    PubMed

    Nishida, Kohji

    2016-03-01

    Japan faces an aging population and a declining birth rate, so medical professionals and the public are seeking next-generation ophthalmological treatments to preserve and restore visual function. Two fields lie at the heart of this future concept of ophthalmological treatments. The first is predictive medicine and early intervention and treatment. This field is based on precision medicine to treat chronic conditions such as keratoconus, glaucoma, and macular degeneration while the condition is latent or soon after it has developed. The second field is regenerative therapy. This field includes cell therapy, regenerative medicine, artificial corneas and retinal implants. Precision medicine is the concept of examining the effects of genomic information and environmental factors on the onset or progression of a condition. Precision medicine involves dividing patients with a given condition into subgroups and then developing an appropriate method of preventing or treating that condition for each group. This may prove useful in treating corneal conditions such as keratoconus and dry eye. To accomplish that goal, however, overarching genomic, imaging, and biomarker studies must be conducted. Markers related to the onset or progression of a condition must also be identified. This paper describes results of preliminary study of 2 types of markers: biomarkers, and genetic markers. These markers have been used in efforts to predict the onset or progression of keratoconus. The development of regenerative medicine requires basic studies of stem cells and microenvironments (niches) in which to sustain those cells. N-cadherin is a cell adhesion molecule, and the current authors are the first to contend that this molecule plays an important role in the corneal epithelial stem cell niche. In addition, the current authors are the first to report that corneal endothelial cells expressing p75 may potentially be corneal endothelial precursor cells. Capitalizing on the results of that

  15. [Future Innovative Medicine for Corneal Diseases].

    PubMed

    Nishida, Kohji

    2016-03-01

    Japan faces an aging population and a declining birth rate, so medical professionals and the public are seeking next-generation ophthalmological treatments to preserve and restore visual function. Two fields lie at the heart of this future concept of ophthalmological treatments. The first is predictive medicine and early intervention and treatment. This field is based on precision medicine to treat chronic conditions such as keratoconus, glaucoma, and macular degeneration while the condition is latent or soon after it has developed. The second field is regenerative therapy. This field includes cell therapy, regenerative medicine, artificial corneas and retinal implants. Precision medicine is the concept of examining the effects of genomic information and environmental factors on the onset or progression of a condition. Precision medicine involves dividing patients with a given condition into subgroups and then developing an appropriate method of preventing or treating that condition for each group. This may prove useful in treating corneal conditions such as keratoconus and dry eye. To accomplish that goal, however, overarching genomic, imaging, and biomarker studies must be conducted. Markers related to the onset or progression of a condition must also be identified. This paper describes results of preliminary study of 2 types of markers: biomarkers, and genetic markers. These markers have been used in efforts to predict the onset or progression of keratoconus. The development of regenerative medicine requires basic studies of stem cells and microenvironments (niches) in which to sustain those cells. N-cadherin is a cell adhesion molecule, and the current authors are the first to contend that this molecule plays an important role in the corneal epithelial stem cell niche. In addition, the current authors are the first to report that corneal endothelial cells expressing p75 may potentially be corneal endothelial precursor cells. Capitalizing on the results of that

  16. NaCl osmotic perturbation can modulate hydration control in rabbit cornea.

    PubMed

    Ruberti, Jeffrey W; Klyce, Stephen D

    2003-03-01

    The corneal endothelium transports solute from the stroma to the aqueous humor, maintaining corneal hydration. Currently, little is known about how this active transport system is controlled. The purpose of this study is to investigate in greater detail the corneal response to small NaCl osmotic perturbations using a more refined automatic thickness measurement system in a search for response signatures of transport control. Adult New Zealand White rabbit corneas were debrided of their epithelium, excised and mounted in perfusion chambers. The endothelium, thus isolated, was bathed in isotonic Glutathione Bicarbonate Ringer's (GBR) solution and the bare anterior stroma was covered with silicone oil. Following stabilization in isotonic GBR, the endothelial perfusate was altered by +/-15 mOsm or+/-45 mOsm for 1 hr and 45 min by addition or removal of NaCl and returned (reversal) to GBR for 1 hr and 45 min. An enhanced, automatic scanning specular microscope monitored stromal thickness. The effective membrane transport coefficients were determined from the stromal thickness vs. time curves using an established numerical model of corneal hydration dynamics. It was found that the small (+/-15 mOsm) NaCl perturbations of the rabbit corneal endothelium resulted in a rapid trans-endothelial stromal volume control response that was not reversible after return to GBR. Long after the expected dissipation of the induced transients, this thickness 'controlling' response ultimately resulted in a sustained net thinning of 14 microm following the hypotonic perturbation and reversal, and a net swelling of 16 microm following the hypertonic perturbation and reversal. Model calculations indicated that the change induced by the perturbation could be explained by an immediate and persistent reduction of the passive endothelial NaCl permeability by 26% for the -15 mOsm perturbation compared to the +15 mOsm perturbation. This change persisted even after return to GBR. In contrast, the

  17. Anaylsis of birefringence during wound healing and remodeling following alkali burns in rabbit cornea.

    PubMed

    Huang, Y; Meek, K M; Ho, M W; Paterson, C A

    2001-10-01

    The use of synthetic inhibitors of metalloproteinases (SIMP) or medroxyprogesterone (MP) can prevent or significantly delay the ulceration of alkali-injured corneas by influencing collagen degradation. We have examined the remodeling of rabbit corneal stroma following alkali injury and have assessed the effect of SIMP and MP treatment. Following a defined alkali injury to the rabbit cornea, animals were divided into three subgroups, one group treated with topical beta-mercaptomethyl tripeptide (SIMP), one treated by subconjunctival injection of MP and one treated with a control solution. The corneal tissue was taken at 3 days, 1, 2, 3, 4, 9 and 26 weeks after alkali injury and prepared for light microscopy and transmission electron microscopy (TEM). A quantitative measurement of birefringence, in terms of the optical path difference (OPD), was made using a modified polarized microscopy technique based on the analysis of interference colours. The results showed that SIMP effectively prevented deep corneal ulceration. MP could delay the ulceration and the corneas treated with MP appeared to have better transparency than the other groups. There was a significant difference of the OPD between the anterior (5.8 +/-0.3 nm) and posterior (7.8 +/-0.4 nm) stroma of the normal cornea (P<0.001). The OPD values from the central corneas from alkali-injured eyes were generally lower than normal during the first 4 weeks and then gradually recovered to the normal level or above, except for the posterior stroma of the MP-treated eyes. We found that the OPD changes were very dependent on the presence of corneal lesions. The stroma near corneal ulceration, scar tissue, calcified stroma and the retro-corneal collagen layer showed a significant reduction of birefringence (lower OPD values). These OPD values remained much lower than normal up to the end of the experiment. TEM showed disrupted corneal stroma in all three groups, with thinner scar tissue in the MP group. The fibril

  18. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  19. Review: corneal epithelial stem cells, their niche and wound healing.

    PubMed

    Castro-Muñozledo, Federico

    2013-01-01

    Stem cells emerged as a concept during the second half of 19(th) century, first as a theoretical entity, but then became one of the most promising research fields in cell biology. This work describes the most important characteristics of adult stem cells, including the experimental criteria used to identify them, and discusses current knowledge that led to the proposal that stem cells existed in different parts of the eye, such as the retina, lens, conjunctiva, corneal stroma, Descemet's membrane, and the subject of this review: the corneal epithelium. Evidence includes results that support the presence of corneal epithelial stem cells at the limbus, as well as the major obstacles to isolating them as pure cell populations. Part of this review describes the variation in the basement membrane composition between the limbus and the central cornea, to show the importance of the corneal stem cell niche, its structure, and the participation of extracellular matrix (ECM) components in regulating corneal stem cell compartment. Results obtained by various laboratories suggest that the extracellular matrix plays a central role in regulating stem cell commitment, corneal differentiation, and participation in corneal wound healing, in addition to other environmental signals such as cytokines and growth factors. The niche could define cell division patterns in corneal stem cell populations, establishing whether stem cells divide asymmetrically or symmetrically. Characterization and understanding of the factors that regulate corneal epithelial stem cells should open up new paths for developing new therapies and strategies for accelerating and improving corneal wound healing. PMID:23901244

  20. Review: Corneal epithelial stem cells, their niche and wound healing

    PubMed Central

    2013-01-01

    Stem cells emerged as a concept during the second half of 19th century, first as a theoretical entity, but then became one of the most promising research fields in cell biology. This work describes the most important characteristics of adult stem cells, including the experimental criteria used to identify them, and discusses current knowledge that led to the proposal that stem cells existed in different parts of the eye, such as the retina, lens, conjunctiva, corneal stroma, Descemet’s membrane, and the subject of this review: the corneal epithelium. Evidence includes results that support the presence of corneal epithelial stem cells at the limbus, as well as the major obstacles to isolating them as pure cell populations. Part of this review describes the variation in the basement membrane composition between the limbus and the central cornea, to show the importance of the corneal stem cell niche, its structure, and the participation of extracellular matrix (ECM) components in regulating corneal stem cell compartment. Results obtained by various laboratories suggest that the extracellular matrix plays a central role in regulating stem cell commitment, corneal differentiation, and participation in corneal wound healing, in addition to other environmental signals such as cytokines and growth factors. The niche could define cell division patterns in corneal stem cell populations, establishing whether stem cells divide asymmetrically or symmetrically. Characterization and understanding of the factors that regulate corneal epithelial stem cells should open up new paths for developing new therapies and strategies for accelerating and improving corneal wound healing. PMID:23901244

  1. Identification of prostamides, fatty acyl ethanolamines, and their biosynthetic precursors in rabbit cornea[S

    PubMed Central

    Urquhart, Paula; Wang, Jenny; Woodward, David F.; Nicolaou, Anna

    2015-01-01

    Arachidonoyl ethanolamine (anandamide) and pros­taglandin ethanolamines (prostamides) are biologically active derivatives of arachidonic acid. Although available through different precursor phospholipids, there is considerable overlap between the biosynthetic pathways of arachidonic acid-derived eicosanoids and anandamide-derived prostamides. Prostamides exhibit physiological actions and are involved in ocular hypotension, smooth muscle contraction, and inflammatory pain. Although topical application of bimatoprost, a structural analog of prostaglandin F2α ethanolamide (PGF2α-EA), is currently a first-line treatment for ocular hypertension, the endogenous production of prostamides and their biochemical precursors in corneal tissue has not yet been reported. In this study, we report the presence of anandamide, palmitoyl-, stearoyl-, α-linolenoyl docosahexaenoyl-, linoleoyl-, and oleoyl-ethanolamines in rabbit cornea, and following treatment with anandamide, the formation of PGF2α-EA, PGE2-EA, PGD2-EA by corneal extracts (all analyzed by LC/ESI-MS/MS). A number of N-acyl phosphatidylethanolamines, precursors of anandamide and other fatty acyl ethanolamines, were also identified in corneal lipid extracts using ESI-MS/MS. These findings suggest that the prostamide and fatty acid ethanolamine pathways are operational in the cornea and may provide valuable insight into corneal physiology and their potential influence on adjacent tissues and the aqueous humor. PMID:26031663

  2. Identification of prostamides, fatty acyl ethanolamines, and their biosynthetic precursors in rabbit cornea.

    PubMed

    Urquhart, Paula; Wang, Jenny; Woodward, David F; Nicolaou, Anna

    2015-08-01

    Arachidonoyl ethanolamine (anandamide) and pros-taglandin ethanolamines (prostamides) are biologically active derivatives of arachidonic acid. Although available through different precursor phospholipids, there is considerable overlap between the biosynthetic pathways of arachidonic acid-derived eicosanoids and anandamide-derived prostamides. Prostamides exhibit physiological actions and are involved in ocular hypotension, smooth muscle contraction, and inflammatory pain. Although topical application of bimatoprost, a structural analog of prostaglandin F2α ethanolamide (PGF2α-EA), is currently a first-line treatment for ocular hypertension, the endogenous production of prostamides and their biochemical precursors in corneal tissue has not yet been reported. In this study, we report the presence of anandamide, palmitoyl-, stearoyl-, α-linolenoyl docosahexaenoyl-, linoleoyl-, and oleoyl-ethanolamines in rabbit cornea, and following treatment with anandamide, the formation of PGF2α-EA, PGE2-EA, PGD2-EA by corneal extracts (all analyzed by LC/ESI-MS/MS). A number of N-acyl phosphatidylethanolamines, precursors of anandamide and other fatty acyl ethanolamines, were also identified in corneal lipid extracts using ESI-MS/MS. These findings suggest that the prostamide and fatty acid ethanolamine pathways are operational in the cornea and may provide valuable insight into corneal physiology and their potential influence on adjacent tissues and the aqueous humor. PMID:26031663

  3. Anatomical characterization of central, apical and minimal corneal thickness

    PubMed Central

    Saenz-Frances, Federico; Bermúdez-Vallecilla, Martha Cecilia; Borrego-Sanz, Lara; Jañez, Luis; Martinez-de-la-Casa, José María; Morales-Fernandez, Laura; Santos-Bueso, Enrique; Garcia-Sanchez, Julián; Garcia-Feijoo, Julián

    2014-01-01

    AIM To anatomically locate the points of minimum corneal thickness and central corneal thickness (pupil center) in relation to the corneal apex. METHODS Observational, cross-sectional study, 299 healthy volunteers. Thickness at the corneal apex (AT), minimum corneal thickness (MT) and corneal thickness at the pupil center (PT) were determined using the pentacam. Distances from the corneal apex to MT (MD) and PT (PD) were calculated and their quadrant position (taking the corneal apex as the reference) determined: point of minimum thickness (MC) and point of central thickness (PC) depending on the quadrant position. Two multivariate linear regression models were constructed to examine the influence of age, gender, power of the flattest and steepest corneal axes, position of the flattest axis, corneal volume (determined using the Pentacam) and PT on MD and PD. The effects of these variables on MC and PC were also determined in two multinomial regression models. RESULTS MT was located at a mean distance of 0.909 mm from the apex (79.4% in the inferior-temporal quadrant). PT was located at a mean distance of 0.156 mm from the apex. The linear regression model for MD indicated it was significantly influenced by corneal volume (B=-0.024; 95%CI: -0.043 to -0.004). No significant relations were identified in the linear regression model for PD or the multinomial logistic regressions for MC and PC. CONCLUSION MT was typically located at the inferior-temporal quadrant of the cornea and its distance to the corneal apex tended to decrease with the increment of corneal volume. PMID:25161940

  4. In vitro evaluation of the permeation enhancing effect of polycarbophil-cysteine conjugates on the cornea of rabbits.

    PubMed

    Hornof, Margit D; Bernkop-Schnürch, Andreas

    2002-12-01

    It was the aim of this study to investigate the permeation enhancing effect of thiolated polycarbophil on the cornea of rabbits in vitro. The proposed reaction mechanism involves the opening of the tight junctions in the corneal epithelium. The modification of polycarbophil was achieved via covalent attachment of L-cysteine mediated by a carbodiimide. Transcorneal permeation studies were performed in Ussing-type diffusion chambers. As model compounds, sodium fluorescein, as a marker for paracellular transport, and dexamethasone phosphate were used. To evaluate potential corneal damage the corneal hydration level of each cornea was determined. Polycarbophil-cysteine was found to increase the permeation of sodium fluorescein 2.2-fold and that of dexamethasone phosphate 2.4-fold in comparison to the unmodified polymer. The concentration of dexamethasone in the acceptor medium was 1.5-fold increased. As evidenced by the corneal hydration level, polycarbophil-cysteine did not damage the corneal tissues. Therefore, polycarbophil-cysteine conjugates seem to be promising excipients for ocular drug delivery systems where they might be used as safe permeation enhancers.

  5. Modulation of corneal wound healing after excimer laser keratomileusis using topical mitomycin C and steroids

    SciTech Connect

    Talamo, J.H.; Gollamudi, S.; Green, W.R.; De La Cruz, Z.; Filatov, V.; Stark, W.J. )

    1991-08-01

    A 193-nm excimer laser system was used to create deep stromal ablations in seven New Zealand white rabbits and shallow ablations in three. Eyes were randomized for treatment with topical mitomycin C, steroids, and erythromycin; topical steroids and erythromycin; or topical erythromycin only. All treatment regimens were instituted twice daily for 14 days. All eyes reepithelialized normally within 3 to 5 days. During 10 weeks of follow-up, all eyes developed moderate reticular subepithelial haze without significant differences among treatment groups. Results of light, fluorescence, and electron microscopic examination showed anterior stromal scarring and markedly reduced new subepithelial collagen formation in the group treated with mitomycin C, corticosteroids, and erythromycin. Focal abnormalities of Descemet's membrane and endothelial abnormalities were present in all treatment groups. Combination therapy with topical steroids, mitomycin C, and erythromycin to control the corneal wound healing response after refractive laser surgery appears promising and warrants further study.

  6. Use of magnetically oriented orthogonal collagen scaffolds for hemi-corneal reconstruction and regeneration.

    PubMed

    Builles, Nicolas; Janin-Manificat, Hélène; Malbouyres, Marilyne; Justin, Virginie; Rovère, Marie-Rose; Pellegrini, Graziella; Torbet, Jim; Hulmes, David J S; Burillon, Carole; Damour, Odile; Ruggiero, Florence

    2010-11-01

    We recently showed that the highly organized architecture of the corneal stroma could be reproduced using scaffolds consisting of orthogonally aligned multilayers of collagen fibrils prepared using a high magnetic field. Here we show that such scaffolds permit the reconstruction in vitro of human hemi-corneas (stroma + epithelium), using primary human keratocytes and limbal stem cell derived human keratinocytes. On the surface of these hemi-corneas, a well-differentiated epithelium was formed, as determined both histologically and ultrastructurally and by the expression of characteristic markers. Within the stroma, the keratocytes aligned with the directions of the fibrils in the scaffold and synthesized a new extracellular matrix with typical collagen markers and small, uniform diameter fibrils. Finally, in vivo experiments using a rabbit model showed that these orthogonally oriented multi-layer scaffolds could be used to repair the anterior region of the stroma, leading to re-epithelialization and recovery of both transparency and ultrastructural organization. PMID:20708260

  7. Transplantation of tissue-engineered human corneal endothelium in cat models

    PubMed Central

    Ma, Xiya; Zhao, Jun; Wen, Qian; Hu, Xiuzhong; Yu, Haoze; Shi, Weiyun

    2013-01-01

    Purpose To evaluate the performance of reconstructed tissue-engineered human corneal endothelium (TE-HCE) by corneal transplantation in cat models. Methods TE-HCE reconstruction was performed by culturing 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled monoclonal HCE cells on denuded amniotic membranes (dAMs) in 20% fetal bovine serum-containing Dulbecco’s Modified Eagle’s Medium/Ham’s Nutrient Mixture F12 (1:1) medium and 5% CO2 at 37 °C on a 24-well culture plate. The reconstructed TE-HCE was transplanted into cat corneas via lamellar keratoplasty with all of the endothelium and part of Descemet’s membrane stripped. Postsurgical corneas were monitored daily with their histological properties examined during a period of 104 days after transplantation. Results The reconstructed TE-HCE at a density of 3,413.33±111.23 cells/mm2 in average established intense cell-cell and cell-dAM junctions. After lamellar keratoplasty surgery, no obvious edema was found in TE-HCE-transplanted cat corneas, which were transparent throughout the monitoring period. In contrast, intense corneal edema developed in dAM-transplanted cat corneas, which were turbid. The corneal thickness gradually decreased to 751.33±11.37 μm on day 104 after TE-HCE transplantation, while that of dAM eye was over 1,000 μm in thickness during the monitoring period. A monolayer of endothelium consisting of TE-HCE-originated cells at a density of 2,573.33±0.59 cells/mm2 attached tightly to the surface of remnant Descemet’s membrane over 104 days; this was similar to the normal eye control in cell density. Conclusions The reconstructed TE-HCE was able to function as a corneal endothelium equivalent and restore corneal function in cat models. PMID:23441111

  8. Acellular porcine corneal matrix as a carrier scaffold for cultivating human corneal epithelial cells and fibroblasts in vitro

    PubMed Central

    Zhang, Ju; Zhang, Can-Wei; Du, Li-Qun; Wu, Xin-Yi

    2016-01-01

    AIM To investigate the feasibility of corneal anterior lamellar reconstruction with human corneal epithelial cells and fibroblasts, and an acellular porcine cornea matrix (APCM) in vitro. METHODS The scaffold was prepared from fresh porcine corneas which were treated with 0.5% sodium dodecyl sulfate (SDS) solution and the complete removal of corneal cells was confirmed by hematoxylin-eosin (HE) staining and 4′, 6-diamidino-2-phenylindole (DAPI) staining. Human corneal fibroblasts and epithelial cells were cultured with leaching liquid extracted from APCM, and then cell proliferative ability was evaluated by MTT assay. To construct a human corneal anterior lamellar replacement, corneal fibroblasts were injected into the APCM and cultured for 3d, followed by culturing corneal epithelial cells on the stroma construction surface for another 10d. The corneal replacement was analyzed by HE staining, and immunofluorescence staining. RESULTS Histological examination indicated that there were no cells in the APCM by HE staining, and DAPI staining did not detect any residual DNA. The leaching liquid from APCM had little influence on the proliferation ability of human corneal fibroblasts and epithelial cells. At 10d, a continuous 3 to 5 layers of human corneal epithelial cells covering the surface of the APCM was observed, and the injected corneal fibroblasts distributed within the scaffold. The phenotype of the construction was similar to normal human corneas, with high expression of cytokeratin 12 in the epithelial cell layer and high expression of vimentin in the stroma. CONCLUSION Corneal anterior lamellar replacement can be reconstructed in vitro by cultivating human corneal epithelial cells and fibroblasts with an acellular porcine cornea matrix. This laid the foundation for the further transplantation in vivo. PMID:26949602

  9. Platelet-activating factor induces collagenase expression in corneal epithelial cells.

    PubMed Central

    Bazan, H E; Tao, Y; Bazan, N G

    1993-01-01

    Platelet-activating factor (PAF), a potent lipid mediator involved in inflammatory and immune responses, accumulates rapidly in response to injury in a variety of tissues, including the corneal epithelium. However, the precise role of this compound in the cascade of events following insult has not been defined. Here we examined the effect of PAF on gene expression in the epithelial cells of rabbit corneas in organ culture. We found that incubation with 100 nM methylcarbamoyl PAF, a nonhydrolyzable analog of PAF, produced rapid transient 2.8- and 3.5-fold increases in the expression of c-fos and c-jun, respectively, at 1 hr, followed by increased expression of the collagenase type I gene beginning at 3 hr and peaking at 14-fold by 8 hr. Addition of the protein-synthesis-inhibitor cycloheximide superinduced c-fos and c-jun, strongly potentiating the PAF effect, but inhibited the induction of collagenase type I expression, suggesting the existence of a transcriptional factor linking the two events. BN-50730, a selective antagonist of intracellular PAF-binding sites, blocked the expression of the immediate-early genes as well as the increase in collagenase type I mRNA. Our results suggest that one of the functions of PAF may be to enhance the breakdown of the extracellular matrix as a part of the remodeling process during corneal wound healing after injury. Pathologically, a PAF-induced overproduction of collagenase may be a factor in the development of corneal ulcers, as well as other pathophysiological conditions such as cartilage destruction in arthritis. If so, inhibitors of this signal-transduction pathway may be useful as tools for further investigation and, eventually, as therapeutic agents to treat such disorders. Images Fig. 1 Fig. 2 PMID:8378347

  10. Ultrasound-Enhanced Penetration of Topical Riboflavin Into the Corneal Stroma

    PubMed Central

    Lamy, Ricardo; Chan, Elliot; Zhang, Hui; Salgaonkar, Vasant A.; Good, Sam D.; Porco, Travis C.; Diederich, Chris J.; Stewart, Jay M.

    2013-01-01

    Purpose. To determine whether ultrasound treatment can promote the permeation of topical riboflavin into the corneal stroma. Methods. Fresh cadaveric rabbit eyes with intact epithelium were left for 45 minutes in riboflavin 0.1% solution and divided in the following groups: A – untreated, epithelium-on; B – ultrasound-treated (1 W/cm2 at 880 kHz for 6 minutes) with epithelium-on; and C – epithelium-off (no ultrasound). Eyes were removed from the riboflavin solution, corneas were excised, and group B was divided into B1 (with epithelium maintained) and B2 (epithelium removed for the fluorescence analysis). Confocal microscopy was performed to quantify the fluorescence intensity in the cornea according to the distance from the surface (with epithelium in groups A and B1; without epithelium in groups B2 and C). Results. The average fluorescence intensity of riboflavin at a depth of 100, 150, 200, and 250 μm was 69.97, 58.83, 49.23, and 41.72 arbitrary units (A.U.) in group A, respectively; 255.26, 206.01, 159.81, 124.20 A.U. in group B1; 218.90, 177.90, 141.43, 110.45 A.U. in group B2; and 677.64, 420.10, 250.72 and 145.07 A.U. in group C. The difference in fluorescence was statistically significant between groups A and B1 (P = 0.001) and groups B2 and C (P < 0.0001). Conclusions. Ultrasound treatment increased the entry of topical riboflavin into the corneal stroma despite the presence of a previously intact epithelial barrier. This approach may offer a means of achieving clinically useful concentrations of riboflavin within the cornea with minimum epithelial damage, thereby improving the risk profile of corneal cross-linking procedures. PMID:23920369

  11. Interferometer for measuring dynamic corneal topography

    NASA Astrophysics Data System (ADS)

    Micali, Jason Daniel

    The cornea is the anterior most surface of the eye and plays a critical role in vision. A thin fluid layer, the tear film, coats the outer surface of the cornea and serves to protect, nourish, and lubricate the cornea. At the same time, the tear film is responsible for creating a smooth continuous surface where the majority of refraction takes place in the eye. A significant component of vision quality is determined by the shape of the cornea and stability of the tear film. It is desirable to possess an instrument that can measure the corneal shape and tear film surface with the same accuracy and resolution that is currently performed on common optical elements. A dual interferometer system for measuring the dynamic corneal topography is designed, built, and verified. The completed system is validated by testing on human subjects. The system consists of two co-aligned polarization splitting Twyman-Green interferometers designed to measure phase instantaneously. The primary interferometer measures the surface of the tear film while the secondary interferometer simultaneously tracks the absolute position of the cornea. Eye motion, ocular variation, and a dynamic tear film surface will result in a non-null configuration of the surface with respect to the interferometer system. A non-null test results in significant interferometer induced errors that add to the measured phase. New algorithms are developed to recover the absolute surface topography of the tear film and corneal surface from the simultaneous interferometer measurements. The results are high-resolution and high-accuracy surface topography measurements of the in vivo cornea that are captured at standard camera frame rates. This dissertation will cover the development and construction of an interferometer system for measuring the dynamic corneal topography of the human eye. The discussion starts with the completion of an interferometer for measuring the tear film. The tear film interferometer is part of an

  12. [Corneal wound healing after perforating and non-perforating excimer laser keratectomy. An experimental study].

    PubMed

    Koch, J W; Lang, G K; Kolkmeier, J; Naumann, G O

    1990-01-01

    For clinical use of the excimer laser more detailed knowledge of corneal wound healing is necessary. With an ArF excimer laser (193 nm, 750 mJ/cm2, 20 Hz) and a special slit mask system perforating and non-perforating keratectomies were performed in a series of 55 rabbits with a follow-up from one hour to six months post-op. After enucleation the corneas were immediately processed for light microscopy, scanning and transmission electron microscopy and vital staining of the endothelium (trypan blue/alizarin red S). In perforating cuts the endothelial reaction consists of polymegathism, migration, formation of multi-nucleated giant cells, metaplasia-like proliferation and ultimately stable reformation of the cell pattern (1h to 42d). Epithelium fills the anterior wound gap within three days with subsequent regression of the plug. Fibroblastic activity in the adjacent stroma leads to cellular immigration, production of new collageneous lamellae and complete reorganization of the wound cleft (1d to 6m). Nonperforating excisions showed similar healing tendency of stroma and epithelium, but no severe endothelial damage could be detected. Compared with former studies using knife incisions our results do not reveal significant difference regarding epithelial and stromal wound healing events. The encouraging healing tendency of the endothelium--similar to regeneration after ultrasound and Nd:YAG-laser damage--also confirms the applicability of excimer lasers in corneal surgery.

  13. Fibroblastic Transformation of Corneal Keratocytes by Rac Inhibition is Modulated by Extracellular Matrix Structure and Stiffness

    PubMed Central

    Petroll, W. Matthew; Lakshman, Neema

    2015-01-01

    The goal of this study was to investigate how alterations in extracellular matrix (ECM) biophysical properties modulate corneal keratocyte phenotypes in response to specific wound healing cytokines and Rho GTPases. Rabbit corneal keratocytes were plated within standard collagen matrices (2.5 mg/mL) or compressed collagen matrices (~100 mg/mL) and cultured in serum-free media, PDGF BB, IGF, FGF2 or TGFβ1, with or without the Rac1 inhibitor NSC23766 and/or the Rho kinase inhibitor Y-27632. After 1 to 4 days, cells were labeled for F-actin and imaged using confocal microscopy. Keratocytes within standard collagen matrices (which are highly compliant) maintained a dendritic phenotype following culture in serum-free media, PDGF, IGF and FGF, but developed stress fibers in TGFβ1. Keratocytes within compressed collagen (which has high stiffness and low porosity) maintained a dendritic phenotype following culture in serum-free media, PDGF and IGF, but developed stress fibers in both FGF and TGFβ1. The Rac inhibitor had no significant impact on growth factor responses in compliant matrices. Within compressed collagen matrices however, the Rac inhibitor induced fibroblastic transformation in serum-free media, PDGF and IGF. Fibroblast and myofibroblast transformation was blocked by Rho kinase inhibition. Overall, keratocyte growth factor responses appear to be regulated by both the interplay between Rho and Rac signaling, and the structural and mechanical properties of the ECM. PMID:25874856

  14. Fibroblastic Transformation of Corneal Keratocytes by Rac Inhibition is Modulated by Extracellular Matrix Structure and Stiffness.

    PubMed

    Petroll, W Matthew; Lakshman, Neema

    2015-04-14

    The goal of this study was to investigate how alterations in extracellular matrix (ECM) biophysical properties modulate corneal keratocyte phenotypes in response to specific wound healing cytokines and Rho GTPases. Rabbit corneal keratocytes were plated within standard collagen matrices (2.5 mg/mL) or compressed collagen matrices (~100 mg/mL) and cultured in serum-free media, PDGF BB, IGF, FGF2 or TGFβ1, with or without the Rac1 inhibitor NSC23766 and/or the Rho kinase inhibitor Y-27632. After 1 to 4 days, cells were labeled for F-actin and imaged using confocal microscopy. Keratocytes within standard collagen matrices (which are highly compliant) maintained a dendritic phenotype following culture in serum-free media, PDGF, IGF and FGF, but developed stress fibers in TGFβ1. Keratocytes within compressed collagen (which has high stiffness and low porosity) maintained a dendritic phenotype following culture in serum-free media, PDGF and IGF, but developed stress fibers in both FGF and TGFβ1. The Rac inhibitor had no significant impact on growth factor responses in compliant matrices. Within compressed collagen matrices however, the Rac inhibitor induced fibroblastic transformation in serum-free media, PDGF and IGF. Fibroblast and myofibroblast transformation was blocked by Rho kinase inhibition. Overall, keratocyte growth factor responses appear to be regulated by both the interplay between Rho and Rac signaling, and the structural and mechanical properties of the ECM.

  15. In-vivo high resolution corneal imaging and analysis on animal models for clinical applications

    NASA Astrophysics Data System (ADS)

    Hong, Jesmond; Shinoj, V. K.; Murukeshan, V. M.; Baskaran, M.; Aung, Tin

    2015-07-01

    A simple and low cost optical probe system for the high resolution imaging of the cornea is proposed, based on a Gaussian beam epi-illumination configuration. Corneal topography is obtained by moving the scanning spot across the eye in a raster fashion whereas pachymetry data is achieved by reconstructing the images obtained at different depths. The proposed prototype has been successfully tested on porcine eye samples ex vivo and subsequently on laboratory animals, such as the New Zealand White Rabbit, in vivo. This proposed system and methodology pave the way for realizing a simple and inexpensive optical configuration for pachymetry and keratometry readings, with achievable resolution up to the cellular level. This novel and non-contact high resolution imaging modality demonstrates high intraobserver reproducibility and repeatability. Together with its sophisticated data analysis strategies and safety profile, it is believed to complement existing imaging modalities in the assessment and evaluation of corneal diseases, which enable a decrease in morbidity and improvement in the effectiveness of subsequent treatment.

  16. THE IN VITRO PRODUCTION OF ANTIBODY BY DELAYED PHASE CORNEAL LIMBAL LYMPHOID FOCI

    PubMed Central

    Leibowitz, Howard M. I.; Parks, James J.

    1963-01-01

    The intracorneal inoculation of a sufficient quantity of a soluble protein antigen into the eye of a rabbit produces a biphasic allergic reaction in that cornea. The earlier stage, characterized by a diffuse corneal clouding, is a manifestation of delayed hypersensitivity and is accompanied by a limbal infiltrate composed predominantly of lymphocytic-mononuclear elements. The later response, known as the Wessely Phenomenon, is a ring of opacification in the cornea which is visible in the gross. This reaction is dependent upon the presence of specific circulating antibodies and is therefore classified among the immediate types of hypersensitivity. It is accompanied by a dense limbal infiltration of plasma cells. Intervening between the two reactions is a period of several days during which the eye appears relatively normal. Explants containing large numbers of infiltrating lymphocytic-mononuclear elements were removed from the corneal-scleral junction of experimental eyes during the height of the delayed type hypersensitivity reaction and maintained in vitro in tissue culture. At a later date the overlay fluid in which the explants were maintained was shown to contain specific humoral antibodies, demonstrating the capability of cells present at a delayed reaction for the later production of antibodies. The possible linkage of the two modes of immune phenomena is discussed. PMID:13929408

  17. [Peripheral corneal melting syndrome in psoriatic arthritis treated with adalimumab].

    PubMed

    Restrepo, Juan Pablo; Medina, Luis Fernando; Molina, María del Pilar

    2015-01-01

    Peripheral corneal melting syndrome is a rare immune condition characterized by marginal corneal thinning and sometimes perforation. It is associated with rheumatic and non-rheumatic diseases. Few cases of peripheral corneal melting have been reported in patients with psoriasis. The pathogenesis is not fully understood but metalloproteinases may play a pathogenic role. Anti-TNF therapy has shown to decrease skin and serum metalloproteinases levels in psoriasis. We report a 61-year-old man with peripheral corneal melting syndrome associated with psoriatic arthritis who received Adalimumab to control skin and ocular inflammation. To our knowledge, this is the first case report of peripheral corneal melting syndrome in psoriatic arthritis treated with Adalimumab showing resolution of skin lesions and complete healing of corneal perforation in three months.

  18. Corneal topography in the study of astigmatic excimer laser ablation

    NASA Astrophysics Data System (ADS)

    McDonnell, Peter J.

    1992-08-01

    Corneal astigmatism, both naturally occurring and iatrogenically induced, is a commonly encountered problem. Examination of corneal topography with instruments that digitize reflected ring images and calculate corneal geometry suggests that corneal astigmatism often deviates from spherocylindrical optics; the observed topography may be highly asymmetrical about the center of the pupil. Currently used incisional procedures are limited in terms of predictability of surgical outcome. The 193 nm excimer laser can be used to alter anterior corneal curvature and flatten the cornea to correct myopia. For correction of astigmatism, a slit-opening in the laser delivery system can be used to selectively flatten the steep meridian. Early results using this procedure for correction of iatrogenically induced high corneal astigmatism are promising. A nationwide multicenter clinical trial is now underway in the United States to evaluate this technique for the correction of naturally occurring astigmatism and compound myopic astigmatism.

  19. THz and mm-Wave Sensing of Corneal Tissue Water Content: In Vivo Sensing and Imaging Results

    PubMed Central

    Taylor, Zachary D.; Garritano, James; Sung, Shijun; Bajwa, Neha; Bennett, David B.; Nowroozi, Bryan; Tewari, Priyamvada; Sayre, James W.; Hubschman, Jean-Pierre; Deng, Sophie X.; Brown, Elliott R.; Grundfest, Warren S.

    2015-01-01

    A pulsed terahertz (THz) imaging system and millimeter-wave reflectometer were used to acquire images and point measurements, respectively, of five rabbit cornea in vivo. These imaging results are the first ever produced of in vivo cornea. A modified version of a standard protocol using a gentle stream of air and a Mylar window was employed to slightly dehydrate healthy cornea. The sensor data and companion central corneal thickness (CCT) measurements were acquired every 10–15 min over the course of two hours using ultrasound pachymmetry.. Statistically significant positive correlations were established between CCT measurements and millimeter wave reflectivity. Local shifts in reflectivity contrast were observed in the THz imagery; however, the THz reflectivity did not display a significant correlation with thickness in the region probed by the 100 GHz and CCT measurements. This is explained in part by a thickness sensitivity at least 10× higher in the mm-wave than the THz systems. Stratified media and effective media modeling suggest that the protocol perturbed the thickness and not the corneal tissue water content (CTWC). To further explore possible etalon effects, an additional rabbit was euthanized and millimeter wave measurements were obtained during death induced edema. These observations represent the first time that the uncoupled sensing of CTWC and CCT have been achieved in vivo. PMID:26161292

  20. Destruction of neurons in the VPM thalamus prevents rabbit heart rate conditioning.

    PubMed

    McCabe, P M; McEchron, M D; Green, E J; Schneiderman, N

    1995-01-01

    The present study examined the role of the ventral posterior medial nucleus of the thalamus (VPM) in classical heart rate (HR) conditioning using an acoustic conditioned stimulus (CS) and a corneal air puff unconditioned stimulus (US). Previous research suggests that VPM neurons are activated during the presentation of a corneal air puff US. Rabbits were given ibotenic acid lesions in the VPM and subjected to one Pavlovian HR conditioning session. The results of the present study demonstrate that destruction of cell bodies in the VPM reduces HR conditioning to the level of a pseudoconditioning control without affecting HR baseline, or orienting responses to the CS. Lesions of the VPM also significantly augment the tachycardiac unconditioned response, suggesting that VPM lesions alter the somatosensory processing of the US.

  1. Using genipin-crosslinked acellular porcine corneal stroma for cosmetic corneal lens implants.

    PubMed

    Liu, Zhao; Zhou, Qiang; Zhu, Jixiang; Xiao, Jianhui; Wan, Pengxia; Zhou, Chenjing; Huang, Zheqian; Qiang, Na; Zhang, Wei; Wu, Zheng; Quan, Daping; Wang, Zhichong

    2012-10-01

    Acellular porcine corneal stroma (APCS) has been proven to maintain the matrix microenvironment and is therefore an ideal biomaterial for the repair and reconstruction of corneal stroma. This study aims to develop a method to prepare cosmetic corneal lens implants for leukoma using genipin-crosslinked APCS (Gc-APCS). The Gc-APCS was prepared from APCS immersed in 1.0% genipin aqueous solution (pH 5.5) for 4 h at 37 °C, followed by lyophilization at -10 °C. The color of the Gc-APCS gradually deepened to dark-blue. The degree of crosslinking was 45.7 ± 4.6%, measured by the decrease of basic and hydroxy amino acids. The porous structure and ultrastructure of collagenous lamellae were maintained, and the porosity and BET SSA were 72.7 ± 4.6% and 23.01 ± 3.45 m(2)/g, respectively. The Gc-APCS rehydrated to the physiological water content within 5 min and was highly resistant to collagenase digestion. There were no significant differences in the areal modulus and curvature variation between Gc-APCS and nature porcine cornea. The dark-blue pigments were stable to pH, light and implantation in vivo. Gc-APCS extracts had no inhibitory effects on the proliferation of keratocytes. Corneal neovascularization, graft degradation and corneal rejection were not observed within 6 months.

  2. Corneal Biomechanical Assessment Using Corneal Visualization Scheimpflug Technology in Keratoconic and Normal Eyes

    PubMed Central

    Huang, Yi-Fei; Wang, Li-Qiang; Bai, Hua; Wang, Qun; Jiang, Jing-Jing; Wu, Ying; Gao, Min

    2014-01-01

    Purpose. To compare the corneal biomechanical properties of keratoconic patients and age-matched controls using corneal visualization Scheimpflug technology (Corvis ST). Methods. Sixty keratoconic eyes from 47 keratoconus patients and 60 normal eyes from 60 controls were enrolled in this prospective study. Tomography and biomechanical parameters of all eyes were obtained with the Pentacam and Corvis ST, respectively. Intraocular pressure was measured using a Goldmann applanation tonometer. Results. The tomography and biomechanical parameters of the keratoconic corneas were significantly different from those of the normal corneas except for the anterior chamber angle, first applanation length, the highest concavity time, and peak distance. The deformation amplitude was the best predictive parameter (area under the curve: 0.882), with a sensitivity of 81.7%, although there was a significant overlap between keratoconic and normal corneas that ranged from 1.0 to 1.4 mm. In both the keratoconus and control groups, the deformation amplitude was negatively correlated with intraocular pressure, central corneal thickness, and corneal volume at 3 and 5 mm. Conclusions. Corvis ST offers an alternative method for measuring corneal biomechanical properties. The possibility of classifying keratoconus based on deformation amplitude deserves clinical attention. PMID:24800059

  3. A cost-minimization analysis of tissue-engineered constructs for corneal endothelial transplantation.

    PubMed

    Tan, Tien-En; Peh, Gary S L; George, Benjamin L; Cajucom-Uy, Howard Y; Dong, Di; Finkelstein, Eric A; Mehta, Jodhbir S

    2014-01-01

    Corneal endothelial transplantation or endothelial keratoplasty has become the preferred choice of transplantation for patients with corneal blindness due to endothelial dysfunction. Currently, there is a worldwide shortage of transplantable tissue, and demand is expected to increase further with aging populations. Tissue-engineered alternatives are being developed, and are likely to be available soon. However, the cost of these constructs may impair their widespread use. A cost-minimization analysis comparing tissue-engineered constructs to donor tissue procured from eye banks for endothelial keratoplasty was performed. Both initial investment costs and recurring costs were considered in the analysis to arrive at a final tissue cost per transplant. The clinical outcomes of endothelial keratoplasty with tissue-engineered constructs and with donor tissue procured from eye banks were assumed to be equivalent. One-way and probabilistic sensitivity analyses were performed to simulate various possible scenarios, and to determine the robustness of the results. A tissue engineering strategy was cheaper in both investment cost and recurring cost. Tissue-engineered constructs for endothelial keratoplasty could be produced at a cost of US$880 per transplant. In contrast, utilizing donor tissue procured from eye banks for endothelial keratoplasty required US$3,710 per transplant. Sensitivity analyses performed further support the results of this cost-minimization analysis across a wide range of possible scenarios. The use of tissue-engineered constructs for endothelial keratoplasty could potentially increase the supply of transplantable tissue and bring the costs of corneal endothelial transplantation down, making this intervention accessible to a larger group of patients. Tissue-engineering strategies for corneal epithelial constructs or other tissue types, such as pancreatic islet cells, should also be subject to similar pharmacoeconomic analyses.

  4. Establishing Substantial Equivalence: Transcriptomics

    NASA Astrophysics Data System (ADS)

    Baudo, María Marcela; Powers, Stephen J.; Mitchell, Rowan A. C.; Shewry, Peter R.

    Regulatory authorities in Western Europe require transgenic crops to be substantially equivalent to conventionally bred forms if they are to be approved for commercial production. One way to establish substantial equivalence is to compare the transcript profiles of developing grain and other tissues of transgenic and conventionally bred lines, in order to identify any unintended effects of the transformation process. We present detailed protocols for transcriptomic comparisons of developing wheat grain and leaf material, and illustrate their use by reference to our own studies of lines transformed to express additional gluten protein genes controlled by their own endosperm-specific promoters. The results show that the transgenes present in these lines (which included those encoding marker genes) did not have any significant unpredicted effects on the expression of endogenous genes and that the transgenic plants were therefore substantially equivalent to the corresponding parental lines.

  5. Giant papillary conjunctivitis associated with elevated corneal deposits.

    PubMed

    Dunn, J P; Weissman, B A; Mondino, B J; Arnold, A C

    1990-10-01

    A patient presented with central corneal scarring and neovascularization associated with elevated deposits that were shown to be keratin and calcium. Giant papillary conjunctivitis (GPC) was noted at a corresponding location in the palpebral conjunctiva. The lid reaction resolved after the elevated corneal deposits were debrided. A rigid gas-permeable contact lens was then fitted for visual rehabilitation. Either foreign bodies or elevated corneal deposits may cause GPC.

  6. The Cutaneous Rabbit Revisited

    ERIC Educational Resources Information Center

    Flach, Rudiger; Haggard, Patrick

    2006-01-01

    In the cutaneous rabbit effect (CRE), a tactile event (so-called attractee tap) is mislocalized toward an adjacent attractor tap. The effect depends on the time interval between the taps. The authors delivered sequences of taps to the forearm and asked participants to report the location of one of the taps. The authors replicated the original CRE…

  7. Pseudomonas aeruginosa Infectious Keratitis in a High Oxygen Transmissible Rigid Contact Lens Rabbit Model

    PubMed Central

    Wei, Cynthia; Zhu, Meifang; Petroll, W. Matthew; Robertson, Danielle M.

    2014-01-01

    Purpose. To establish a rabbit model of infectious Pseudomonas aeruginosa keratitis using ultrahigh oxygen transmissible rigid lenses and characterize the frequency and severity of infection when compared to a non–oxygen transmissible lens material. Methods. Rabbits were fit with rigid lenses composed of ultrahigh and non–oxygen transmissible materials. Prior to wear, lenses were inoculated with an invasive corneal isolate of P. aeruginosa stably conjugated to green fluorescent protein (GFP). Corneas were examined before and after lens wear using a modified Heidelberg Rostock Tomograph in vivo confocal microscope. Viable bacteria adherent to unworn and worn lenses were assessed by standard plate counts. The presence of P. aeruginosa-GFP and myeloperoxidase-labeled neutrophils in infected corneal tissue was evaluated using laser scanning confocal microscopy. Results. The frequency and severity of infectious keratitis was significantly greater with inoculated ultrahigh oxygen transmissible lenses. Infection severity was associated with increasing neutrophil infiltration and in severe cases, corneal melting. In vivo confocal microscopic analysis of control corneas following lens wear confirmed that hypoxic lens wear was associated with mechanical surface damage, whereas no ocular surface damage was evident in the high-oxygen lens group. Conclusions. These data indicate that in the absence of adequate tear clearance, the presence of P. aeruginosa trapped under the lens overrides the protective effects of oxygen on surface epithelial cells. These findings also suggest that alternative pathophysiological mechanisms exist whereby changes under the lens in the absence of frank hypoxic damage result in P. aeruginosa infection in the otherwise healthy corneal epithelium. PMID:25125601

  8. Corneal Chromoblastomycosis Caused by Fonsecaea pedrosoi

    PubMed Central

    Chaidaroon, Winai; Tananuvat, Napaporn; Chavengsaksongkram, Pimploy; Vanittanakom, Nongnuch

    2015-01-01

    Purpose To report 2 unusual cases of fungal keratitis due to Fonsecaea pedrosoi. Methods Two patients were diagnosed with Fonsecaea pedrosoi keratitis. Their files were reviewed for predisposing factors, clinical characteristics, microbiological study, treatment, and outcome. Results Two consecutive patients presented with brownish pigmented corneal ulcers in their eyes after sustaining eye trauma from vegetative matter. In both cases, corneal scrapings were collected for microscopic examination and culture. Dematiaceous hyphae were seen on the smears, and dark pigmented colonies grew on the culture media, identified as F. pedrosoi. Both patients were treated and cured with combined topical antifungal agents and oral itraconazole. The first patient required an amniotic membrane patch, while the second received an intracameral amphotericin B injection. Conclusions Pigmented infiltrates can be an important diagnostic clue, but a microscopic evaluation and culture are required to obtain an accurate diagnosis of Fonsecaea keratitis. The prompt diagnosis and combined antifungal treatment can prevent morbidity associated with this fungal infection. PMID:25873892

  9. Corneal cross-linking treatment of keratoconus

    PubMed Central

    Farjadnia, Mahgol; Naderan, Mohammad

    2015-01-01

    Keratoconus as the most common cause of ectasia is one of the leading cause of corneal transplants worldwide. The current available therapies do not modify the underlying pathogenesis of the disease, and none of the available approaches but corneal transplant hinder the ongoing ectasia. Several studies document Crosslink defect between collagen fibrils in the pathogenesis of keratoconus. Collagen cross link is a relatively new approach that with the application of the riboflavin and ultraviolet A, new covalent bands reform. Subjective and objective results following this method seem to be promising. Endothelial damage besides other deep structural injury, which is the major concern of this technique have not yet been reported, when applying the standard method. PMID:26622134

  10. Complications of Corneal Collagen Cross-Linking

    PubMed Central

    Dhawan, Shikha; Rao, Kavita; Natrajan, Sundaram

    2011-01-01

    Cross-linking of corneal collagen (CXL) is a promising approach for the treatment of keratoconus and secondary ectasia. Several long-term and short-term complications of CXL have been studied and documented. The possibility of a secondary infection after the procedure exists because the patient is subjected to epithelial debridement and the application of a soft contact lens. Formation of temporary corneal haze, permanent scars, endothelial damage, treatment failure, sterile infiltrates, and herpes reactivation are the other reported complications of this procedure. Cross-linking is a low-invasive procedure with low complication and failure rate but it may have direct or primary complications due to incorrect technique application or incorrect patient's inclusion and indirect or secondary complications related to therapeutic soft contact lens, patient's poor hygiene, and undiagnosed concomitant ocular surface diseases. PMID:22254130

  11. Corneal epithelial and neuronal interactions: role in wound healing.

    PubMed

    Kowtharapu, Bhavani S; Stahnke, Thomas; Wree, Andreas; Guthoff, Rudolf F; Stachs, Oliver

    2014-08-01

    Impaired corneal innervation and sensitivity are the main causes of corneal neurotrophic keratopathy which simultaneously also leads to poor epithelial wound healing. Restoration of the diminished communication between the corneal epithelium and trigeminal nerve is indispensable for the proper functioning of the epithelium. The present study aims to investigate corneal epithelial and trigeminal neuron interactions to shed light on corneal wound healing during neurotrophic keratopathy. Mouse trigeminal neurons and corneal epithelial cells were cultured according to standard methods. To study the effect of corneal epithelial cells on trigeminal neurons as well as the effect of trigeminal neurons on corneal epithelial cells during wound healing, conditioned media from the cultures of pure trigeminal neurons (CNM) and corneal epithelial cells (CEM) were collected freshly and applied on the other cell type. Neurite outgrowth assay and RT-PCR analysis using primers specific for substance P (SP), Map1a, Map1b were performed on trigeminal neurons in the presence of CEM. We observed an increase in the neurite outgrowth in the presence of CEM and also in co-culture with corneal epithelial cells. Increase in the expression of SP mRNA and a decrease in the expression of Map1b mRNA was observed in the presence of CEM. We also observed the presence of epithelial-to-mesenchymal transition (EMT)-like phenomenon during wound healing using a scratch assay in primary corneal epithelial cultures. This system was further employed to study the effect of CNM on corneal epithelial cells in the context of wound healing to find the effect of trigeminal neurons on epithelial cells. RT-PCR analysis of Pax6 expression in corneal epithelial cell cultures with scratch served as a positive control. Further, we also show the expression of bone morphogenetic protein 7 (BMP7) mRNA in corneal epithelial cells which is decreased gradually along with Pax6 mRNA when cultured together in the presence of

  12. Clinical correlates of common corneal neovascular diseases: a literature review

    PubMed Central

    Abdelfattah, Nizar Saleh; Amgad, Mohamed; Zayed, Amira A; Salem, Hamdy; Elkhanany, Ahmed E; Hussein, Heba; Abd El-Baky, Nawal

    2015-01-01

    A large subset of corneal pathologies involves the formation of new blood and lymph vessels (neovascularization), leading to compromised visual acuity. This article aims to review the clinical causes and presentations of corneal neovascularization (CNV) by examining the mechanisms behind common CNV-related corneal pathologies, with a particular focus on herpes simplex stromal keratitis, contact lenses-induced keratitis and CNV secondary to keratoplasty. Moreover, we reviewed CNV in the context of different types of corneal transplantation and keratoprosthesis, and summarized the most relevant treatments available so far. PMID:25709930

  13. Phototherapeutic keratectomy in the treatment of corneal scarring from trachoma.

    PubMed

    Goldstein, M; Loewenstein, A; Rosner, M; Lipshitz, I; Lazar, M

    1994-01-01

    Trachoma is still one of the world's major blinding diseases. Characteristically, trachoma causes deep scarring of the conjunctiva and tarsus that can result in tear deficiency, trichiasis, and entropion. Another common finding is a diffused corneal opacity that is the end stage of peripheral and central corneal infiltrates. The conventional treatment of the corneal opacities is keratoplasty, which has a guarded prognosis because of severe dryness and trichiasis. We report on our experience in treating patients with corneal trachoma with phototherapeutic keratectomy (PTK) with the excimer laser.

  14. Pseudomonas corneal ulcer. The causative role of contaminated eye cosmetics.

    PubMed

    Reid, F R; Wood, T O

    1979-09-01

    The clinical significance of contaminated ocular cosmetics is illustrated by the case of a 47-year-old woman in whom a Pseudomonas corneal ulcer developed immediately after she sustained minor corneal trauma with a mascara applicator. Pseudomonas aeruginosa was cultured from the corneal ulcer and the mascara. In addition to the causative role in acute corneal ulcers, contaminated eye cosmetics contribute to chronic external eye infections. Retail eye cosmetics are typically free of contamination when purchased. The inoculation of the cosmetic occurs during normal use. PMID:112953

  15. Corneal stromal demarcation line after collagen cross-linking in corneal ectatic diseases: a review of the literature

    PubMed Central

    Spadea, Leopoldo; Tonti, Emanuele; Vingolo, Enzo Maria

    2016-01-01

    Collagen cross-linking (CXL) is a relatively new conservative approach for progressive corneal ectasia, which is able to strengthen corneal tissue reforming new covalent bonds. Subjective and objective results following this method seem to be promising. In recent years, newer CXL protocols have been developed to perform more effective and less invasive procedures. The increasing diffusion of CXL in the corneal ectatic disease has increased the need to have actual indices regarding the efficacy of the treatment. Evaluation of demarcation line (DL), a transition zone between the cross-linked anterior corneal stroma and the untreated posterior corneal stroma, is considered a measurement of the depth of CXL treatment into the stroma. Some evidence in the literature emphasize that DL could be a measure of effectiveness of the CXL. On the contrary, some authors believe that the “the deeper, the better” principle is rather a simplistic approach for interpreting the clinical importance of the corneal stromal DL.

  16. Corneal stromal demarcation line after collagen cross-linking in corneal ectatic diseases: a review of the literature

    PubMed Central

    Spadea, Leopoldo; Tonti, Emanuele; Vingolo, Enzo Maria

    2016-01-01

    Collagen cross-linking (CXL) is a relatively new conservative approach for progressive corneal ectasia, which is able to strengthen corneal tissue reforming new covalent bonds. Subjective and objective results following this method seem to be promising. In recent years, newer CXL protocols have been developed to perform more effective and less invasive procedures. The increasing diffusion of CXL in the corneal ectatic disease has increased the need to have actual indices regarding the efficacy of the treatment. Evaluation of demarcation line (DL), a transition zone between the cross-linked anterior corneal stroma and the untreated posterior corneal stroma, is considered a measurement of the depth of CXL treatment into the stroma. Some evidence in the literature emphasize that DL could be a measure of effectiveness of the CXL. On the contrary, some authors believe that the “the deeper, the better” principle is rather a simplistic approach for interpreting the clinical importance of the corneal stromal DL. PMID:27695286

  17. Human excimer laser corneal surgery: preliminary report.

    PubMed Central

    L'Esperance, F A; Taylor, D M; Del Pero, R A; Roberts, A; Gigstad, J; Stokes, M T; Warner, J W; Telfair, W B; Martin, C A; Yoder, P R

    1988-01-01

    The first human trial utilizing the argon fluoride excimer laser at 193 nm to produce a superficial keratectomy in ten human eyes has been described with the histopathological evaluation of four eyes and the longer gross appearance of six eyes at intervals extending to 10 months post-excimer laser treatment. The process of laser superficial keratectomy has proved to be one of the promising areas of surgical intervention for reconstructive or refractive keratoplasty in the future. Intensive investigations need to be undertaken on the corneal wound healing process following laser ablation as well as the nature, and long-term stability of the corneal excisions or induced refractive corrections. It is essential that the optimal laser parameters be established for the various refractive corrections and other corneal surgical techniques, and that pathophysiologic and histopathologic changes that have been induced by the excimer laser-corneal tissue interaction in animals and humans be critically and extensively analyzed. Images FIGURE 1 FIGURE 19 A FIGURE 19 B FIGURE 20 A FIGURE 20 B FIGURE 21 A FIGURE 21 B FIGURE 22 A FIGURE 22 B FIGURE 23 FIGURE 24 FIGURE 25 FIGURE 26 FIGURE 27 FIGURE 28 FIGURE 29 A FIGURE 29 B FIGURE 29 C FIGURE 29 D FIGURE 30 A FIGURE 30 B FIGURE 31 A FIGURE 31 B FIGURE 32 FIGURE 33 FIGURE 34 FIGURE 35 FIGURE 36 FIGURE 37 A FIGURE 37 B FIGURE 37 C FIGURE 38 A FIGURE 38 B FIGURE 39 A FIGURE 39 B FIGURE 39 C FIGURE 40 A FIGURE 40 B PMID:2979049

  18. Corneal Neurotoxicity Due to Topical Benzalkonium Chloride

    PubMed Central

    Sarkar, Joy; Chaudhary, Shweta; Namavari, Abed; Ozturk, Okan; Chang, Jin-Hong; Yco, Lisette; Sonawane, Snehal; Khanolkar, Vishakha; Hallak, Joelle; Jain, Sandeep

    2012-01-01

    Purpose. The aim of this study was to determine and characterize the effect of topical application of benzalkonium chloride (BAK) on corneal nerves in vivo and in vitro. Methods. Thy1-YFP+ neurofluorescent mouse eyes were treated topically with vehicle or BAK (0.01% or 0.1%). Wide-field stereofluorescence microscopy was performed to sequentially image the treated corneas in vivo every week for 4 weeks, and changes in stromal nerve fiber density (NFD) and aqueous tear production were determined. Whole-mount immunofluorescence staining of corneas was performed with antibodies to axonopathy marker SMI-32. Western immunoblot analyses were performed on trigeminal ganglion and corneal lysates to determine abundance of proteins associated with neurotoxicity and regeneration. Compartmental culture of trigeminal ganglion neurons was performed in Campenot devices to determine whether BAK affects neurite outgrowth. Results. BAK-treated corneas exhibited significantly reduced NFD and aqueous tear production, and increased inflammatory cell infiltration and fluorescein staining at 1 week (P < 0.05). These changes were most significant after 0.1% BAK treatment. The extent of inflammatory cell infiltration in the cornea showed a significant negative correlation with NFD. Sequential in vivo imaging of corneas showed two forms of BAK-induced neurotoxicity: reversible neurotoxicity characterized by axonopathy and recovery, and irreversible neurotoxicity characterized by nerve degeneration and regeneration. Increased abundance of beta III tubulin in corneal lysates confirmed regeneration. A dose-related significant reduction in neurites occurred after BAK addition to compartmental cultures of dissociated trigeminal ganglion cells. Although both BAK doses (0.0001% and 0.001%) reduced nerve fiber length, the reduction was significantly more with the higher dose (P < 0.001). Conclusion. Topical application of BAK to the eye causes corneal neurotoxicity, inflammation, and reduced aqueous

  19. Corneal Infection Therapy with Topical Bacteriophage Administration

    PubMed Central

    Fadlallah, Ali; Chelala, Elias; Legeais, Jean-Marc

    2015-01-01

    Staphylococcus aureus is a major pathogen in bacterial keratitis, a vision-threatening disease. Although the incidence of S. aureus keratitis varies worldwide, the increasing trend of resistance to certain antibiotics makes this condition an important, global, healthcare concern. We report the case of a 65-year-old woman with nosocomial left-eye corneal abscess and interstitial keratitis.The patient then undergo topical Phage therapy with successful results. PMID:26862360

  20. Tono-Pen XL tonometry during application of a suction ring in rabbits

    PubMed Central

    Charisis, Spyridon K; Ginis, Harilaos S; Kounis, Georgios A; Tsilimbaris, Miltiadis K

    2008-01-01

    Background The purpose of this study is to evaluate the use of Tono-Pen XL in measuring IOP during the application of a suction ring in rabbit eyes with manometrically controlled IOP. Methods Tono-Pen XL was calibrated against direct manometry in 10 rabbit eyes. A suction ring was then applied in 4 rabbit eyes and the IOP was determined manometrically during suction ring application at 350 mmHg vacuum pressure. Finally, in 6 catheterized rabbit eyes the IOP was measured with Tono-Pen XL during suction ring application at suction vacuum from 350 to 650 mmHg, while keeping actual IOP stable at 30 mmHg and 60 mmHg. Results Linear regression analysis revealed that the Tono-pen XL was reliable for IOPs between 10 and 70 mmHg (R2 = 0.9855). Direct manometry during suction ring application showed no statistically significant variation of Tono-Pen XL readings when the incanulation manometry intraocular pressure changed from 30 mmHg to 60 mmHg and no statistically significant correlation between suction vacuum and IOP measurements. Conclusion Tono-Pen XL measurements are unreliable during the application of a suction ring on living rabbit eyes even when the actual IOP is forced to be within the validated range of Tono-Pen XL measurements. This inaccuracy is probably related to altered corneal and scleral geometry and stress. PMID:18667058

  1. Decreased central corneal thickness in ankylosing spondylitis.

    PubMed

    Ortak, Huseyin; Inanır, Ahmet; Demir, Selim; Uysal, Alper; Şahin, Şafak; Sağcan, Mustafa; Önder, Yalçın; Alim, Sait; Demir, Ayşe Kevser

    2014-04-01

    Central corneal thickness and dry eye tests were evaluated in a study population consisting of 68 ankylosing spondylitis patients diagnosed according to the modified New York criteria, and 61 age-matched controls without ankylosing spondylitis. A full ophthalmological evaluation was performed on each subject. All subjects were screened for age, gender, HLA-B27, tear break-up time test, Schirmer test, and duration of disease. Central corneal thickness was measured under topical anesthesia with an ultrasonic pachymeter. The mean central corneal thickness was 537.3 ± 30.6 μm, range 462-600 μm, in ankylosing spondylitis patients, whereas it was 551.7 ± 25.2 μm, range 510-620 μm, in controls (p = 0.005). The Schirmer test result was 7.3 ± 5.9 mm for the ankylosing spondylitis patients and 11.7 ± 5.8 mm for the control group (p = 0.002). Tear break-up time was 7.3 ± 3.2 s for the ankylosing spondylitis patients and 14.0 ± 4.5 s for the control group (p < 0.001). The possibility of a thinner cornea should be taken into consideration in ankylosing spondylitis. In addition, attention must be given to lower dry eye tests in surgical interventions such as photorefractive keratectomy and laser in situ keratomileusis in ankylosing spondylitis patients.

  2. Lymphatic endothelial lineage assemblage during corneal lymphangiogenesis

    PubMed Central

    Connor, Alicia L.; Kelley, Philip M.; Tempero, Richard M.

    2015-01-01

    Post natal inflammatory lymphangiogenesis presumably requires precise regulatory processes to properly assemble proliferating lymphatic endothelial cells (LECs). The specific mechanisms that regulate the assembly of LECs during new lymphatic vessel synthesis are unclear. Dynamic endothelial shuffling and rearrangement has been proposed as a mechanism of blood vessel growth. We developed genetic lineage tracing strategies using an inductive transgenic technology to track the fate of entire tandem dimer tomato positive (tdT) lymphatic vessels or small, in some cases clonal, populations of LECs. We coupled this platform with a suture induced mouse model of corneal lymphangiogenesis and used different analytic microscopy techniques including serial live imaging to study the spatial properties of proliferating tdT+ LEC progenies. LEC precursors and their progeny expanded from the corneal limbal lymphatic vessel and were assembled contiguously to comprise a subunit within a new lymphatic vessel. VE-cadherin blockade induced morphologic abnormalities in newly synthesized lymphatic vessels, but did not disrupt the tdT+ lymphatic endothelial lineage assembly. Analysis of this static and dynamic data based largely on direct in vivo observations supports a model of lymphatic endothelial lineage assemblage during corneal inflammatory lymphangiogenesis. PMID:26658452

  3. Lymphatic endothelial lineage assemblage during corneal lymphangiogenesis.

    PubMed

    Connor, Alicia L; Kelley, Philip M; Tempero, Richard M

    2016-03-01

    Postnatal inflammatory lymphangiogenesis presumably requires precise regulatory processes to properly assemble proliferating lymphatic endothelial cells (LECs). The specific mechanisms that regulate the assembly of LECs during new lymphatic vessel synthesis are unclear. Dynamic endothelial shuffling and rearrangement has been proposed as a mechanism of blood vessel growth. We developed genetic lineage-tracing strategies using an inductive transgenic technology to track the fate of entire tandem dimer tomato-positive (tdT) lymphatic vessels or small, in some cases clonal, populations of LECs. We coupled this platform with a suture-induced mouse model of corneal lymphangiogenesis and used different analytic microscopy techniques including serial live imaging to study the spatial properties of proliferating tdT(+) LEC progenies. LEC precursors and their progeny expanded from the corneal limbal lymphatic vessel and were assembled contiguously to comprise a subunit within a new lymphatic vessel. VE-cadherin blockade induced morphologic abnormalities in newly synthesized lymphatic vessels, but did not disrupt the tdT(+) lymphatic endothelial lineage assembly. Analysis of this static and dynamic data based largely on direct in vivo observations supports a model of lymphatic endothelial lineage assemblage during corneal inflammatory lymphangiogenesis. PMID:26658452

  4. The Interaction Equivalency Theorem

    ERIC Educational Resources Information Center

    Miyazoe, Terumi; Anderson, Terry

    2010-01-01

    This paper examines the key issues regarding The Interaction Equivalency Theorem posited by Anderson (2003a), which consists of the three interaction elements found in formal education courses among teacher, student, and content. It first examines the core concepts of the theorem and argues that two theses of different dimensions can be…

  5. Improved equivalent source theory.

    PubMed

    Umul, Yusuf Z

    2009-08-01

    The equivalent source theorem, which is an important technique in the study of radiation and scattering by apertures, is improved by using the two axioms of the modified theory of physical optics. The method is applied to the problem of radiation of electromagnetic waves by a parallel plate waveguide. The results are investigated numerically.

  6. Five Equivalent d Orbitals

    ERIC Educational Resources Information Center

    Pauling, Linus; McClure, Vance

    1970-01-01

    Amplifies and clarifies a previous paper on pyramidal d orbitals. Discusses two sets of pyramid d orbitals with respect to their maximum bond strength and their symmetry. Authors described the oblate and prolate pentagonal antiprisms arising from the two sets of five equivalent d orbitals. (RR)

  7. PATHOGEN EQUIVALENCY COMMITTEE (PEC)

    EPA Science Inventory

    The U.S. Environmental Protection Agency created the PEC in 1985 to make recommendations to EPA and State managers on the equivalency of unproven sewage sludge disinfection technologies/processes to either a Process to Significantly Reduce Pathogens (PSRP) or a Process to Further...

  8. Equivalent Colorings with "Maple"

    ERIC Educational Resources Information Center

    Cecil, David R.; Wang, Rongdong

    2005-01-01

    Many counting problems can be modeled as "colorings" and solved by considering symmetries and Polya's cycle index polynomial. This paper presents a "Maple 7" program link http://users.tamuk.edu/kfdrc00/ that, given Polya's cycle index polynomial, determines all possible associated colorings and their partitioning into equivalence classes. These…

  9. Enhancement of Corneal Visibility in Optical Coherence Tomography Images with Corneal Opacification

    PubMed Central

    Chung, Cheuk Wang; Ang, Marcus; Farook, Mohamed; Strouthidis, Nicholas G.; Mehta, Joddhbir S.; Mari, Jean Martial; Girard, Michaël J. A.

    2016-01-01

    Purpose To establish and to rank the performance of a corneal adaptive compensation (CAC) algorithm in enhancing corneal images with scars acquired from three commercially available anterior segment optical coherence tomography (ASOCT) devices. Methods Horizontal B-scans of the cornea were acquired from 10 patients using three ASOCT devices (Spectralis, RTVue, and Cirrus). We compared ASOCT image quality (with and without CAC) by computing the intralayer contrast (a measure of shadow removal), the interlayer contrast (a measure of tissue boundary visibility), and the tissue/background contrast (a measure of overall corneal visibility). All six groups (Spectralis, RTVue, Cirrus, Spectralis+CAC, RTVue+CAC, and Cirrus+CAC) were ranked according to a global performance index that averaged all contrast quantities. Results CAC provided mean intralayer contrasts improvement for all devices (all P < 0.05). Mean tissue/boundary contrasts were also improved for Spectralis and Cirrus (both P < 0.001). Mean interlayer contrasts were increased for Spectralis (P = 0.011) only. When comparing global performance indices, all CAC groups outperformed their corresponding baseline groups significantly. RTVue performed best without CAC, but Spectralis+CAC was ranked first. Conclusions ASOCT images of corneal scars may be enhanced by CAC through shadow removal, improved tissue boundary visibility, and enhanced corneal visibility against the image background. RTVue produces the finest baseline images but the best image quality can be achieved by applying CAC to Spectralis images. Translational Relevance CAC could enhance visibility of corneal images with scars acquired from commercially available ASOCT devices and could aid preoperative planning of patients for ophthalmic procedures.

  10. Enhancement of Corneal Visibility in Optical Coherence Tomography Images with Corneal Opacification

    PubMed Central

    Chung, Cheuk Wang; Ang, Marcus; Farook, Mohamed; Strouthidis, Nicholas G.; Mehta, Joddhbir S.; Mari, Jean Martial; Girard, Michaël J. A.

    2016-01-01

    Purpose To establish and to rank the performance of a corneal adaptive compensation (CAC) algorithm in enhancing corneal images with scars acquired from three commercially available anterior segment optical coherence tomography (ASOCT) devices. Methods Horizontal B-scans of the cornea were acquired from 10 patients using three ASOCT devices (Spectralis, RTVue, and Cirrus). We compared ASOCT image quality (with and without CAC) by computing the intralayer contrast (a measure of shadow removal), the interlayer contrast (a measure of tissue boundary visibility), and the tissue/background contrast (a measure of overall corneal visibility). All six groups (Spectralis, RTVue, Cirrus, Spectralis+CAC, RTVue+CAC, and Cirrus+CAC) were ranked according to a global performance index that averaged all contrast quantities. Results CAC provided mean intralayer contrasts improvement for all devices (all P < 0.05). Mean tissue/boundary contrasts were also improved for Spectralis and Cirrus (both P < 0.001). Mean interlayer contrasts were increased for Spectralis (P = 0.011) only. When comparing global performance indices, all CAC groups outperformed their corresponding baseline groups significantly. RTVue performed best without CAC, but Spectralis+CAC was ranked first. Conclusions ASOCT images of corneal scars may be enhanced by CAC through shadow removal, improved tissue boundary visibility, and enhanced corneal visibility against the image background. RTVue produces the finest baseline images but the best image quality can be achieved by applying CAC to Spectralis images. Translational Relevance CAC could enhance visibility of corneal images with scars acquired from commercially available ASOCT devices and could aid preoperative planning of patients for ophthalmic procedures. PMID:27642539

  11. Analysis of glycosaminoglycans in rabbit cornea after excimer laser keratectomy

    PubMed Central

    Kato, T.; Nakayasu, K.; Ikegami, K.; Obara, T.; Kanayama, T.; Kanai, A.

    1999-01-01

    BACKGROUND/AIMS—The biochemical basis for the development of subepithelial opacity of the cornea after excimer laser keratectomy has yet to be fully defined. The aim of this study was to evaluate the alterations of glycosaminoglycans (GAGs) after excimer laser keratectomy.
METHODS—Rabbit corneas were harvested on days 5, 10, 20, and 30 after excimer laser photoablation. The amount of main disaccharide units was determined by high performance liquid chromatography (HPLC). In addition, immunohistochemical studies were performed on corneal sections 20 days after the ablation.
RESULTS—The concentrations of ΔDi-0S at 5 and 10 days were significantly lower than before the ablation. ΔDi-6S showed a significant increase 5 days after the ablation but ΔDi-4S did not show any significant change. There was a significant increase in ΔDi-HA at 20 and 30 days after ablation. In immunohistochemistry, the positive staining for ΔDi-6S and hyaluronic acid was observed in the subepithelial region. These immunohistochemical results were well correlated with the HPLC findings.
CONCLUSIONS—The increase in chondroitin-6 sulphate and hyaluronic acid may be related to corneal subepithelial opacity after excimer laser keratectomy.

 PMID:10216064

  12. Ultraviolet light-induced cyclobutane pyrimidine dimers in rabbit eyes.

    PubMed

    Mallet, Justin D; Rochette, Patrick J

    2011-01-01

    Sunlight exposure of the eye leads to pathologies including photokeratitis, cortical cataracts, pterygium, actinic conjunctivitis and age-related macular degeneration. It is well established that exposure to ultraviolet (UV) radiations leads to DNA damage, mainly cyclobutane pyrimidine dimers (CPDs). CPD formation is the principal factor involved in skin cancer. However, the exact mechanism by which sunlight induces ocular pathologies is not well understood. To shed light on this issue, we quantified the CPD formation onto DNA of rabbit ocular cells following UVB exposure. We found that CPDs were induced only in the structures of the ocular anterior chamber (cornea, iris and lens) and were more concentrated in the corneal epithelium. Residual UVB that pass through the cornea are completely absorbed by the anterior layers of the iris. CPDs were also detected in the central portion of the lens that is not protected by the iris (pupil). By determining the UV-induced DNA damage formation in eyes, we showed that anterior ocular structures are a reliable physical barrier that protects the subjacent structures from the toxic effects of UV. Although the corneal epithelium is the structure where most of the CPDs were detected, no cancer is related to solar exposure.

  13. Clinical results of implantation of the Chirila keratoprosthesis in rabbits

    PubMed Central

    Hicks, C.; Chirila, T.; Clayton, A.; Fitton, J; Vijayasekaran, S.; Dalton, P.; Lou, X.; Platten, S.; Ziegelaar, B.; Hong, Y.; Crawford, G.; Constable, I.

    1998-01-01

    AIMS/BACKGROUND—An ideal keratoprosthesis (KPro) would closely resemble a donor corneal button in terms of its surgical handling, optics, and capacity to heal with host tissue in order to avoid many of the complications associated with the KPros which are currently in clinical use. This study was carried out to assess the long term clinical outcomes on implantation of the core and skirt poly(2-hydroxyethyl methacrylate) KPro in animals.
METHODS—20 KPros were made and implanted as full thickness corneal replacements into rabbits and followed for up to 21 months to date.
RESULTS—80% of the prostheses have been retained, with a low incidence of complications such as cataract, glaucoma, and retroprosthetic membrane formation which are frequently associated with KPro surgery.
CONCLUSIONS—KPros of this type may offer promise in the treatment of patients for whom penetrating keratoplasty with donor material carries a poor prognosis. Refinement of the KPro and further animal trials, including implantation into abnormal corneas, are however mandatory before human implantation could be planned.

 Keywords: complications; keratoprosthesis; optics; PHEMA PMID:9536874

  14. Assessment of anti-scarring therapies in ex vivo organ cultured rabbit corneas.

    PubMed

    Sriram, Sriniwas; Gibson, Daniel J; Robinson, Paulette; Pi, Liya; Tuli, Sonal; Lewin, Alfred S; Schultz, Gregory

    2014-08-01

    The effects of a triple combination of siRNAs targeting key scarring genes were assessed using an ex vivo organ culture model of excimer ablated rabbit corneas. The central 6 mm diameter region of fresh rabbit globes was ablated to a depth of 155 microns with an excimer laser. Corneas were excised, cultured at the air-liquid interface in defined culture medium supplemented with transforming growth factor beta 1 (TGFB1), and treated with either 1% prednisolone acetate or with 22.5 μM cationic nanoparticles complexed with a triple combination of siRNAs (NP-siRNA) targeting TGFB1, TGFB Receptor (TGFBR2) and connective tissue growth factor (CTGF). Scar formation was measured using image analysis of digital images and levels of smooth muscle actin (SMA) were assessed in ablated region of corneas using qRT-PCR and immunostaining. Ex vivo cultured corneas developed intense haze-like scar in the wounded areas and levels of mRNAs for pro-fibrotic genes were significantly elevated 3-8 fold in wounded tissue compared to unablated corneas. Treatment with NP-siRNA or steroid significantly reduced quantitative haze levels by 55% and 68%, respectively, and reduced SMA mRNA and immunohistostaining. This ex vivo corneal culture system reproduced key molecular patterns of corneal scarring and haze formation generated in rabbits. Treatment with NP-siRNAs targeting key scarring genes or an anti-inflammatory steroid reduced corneal haze and SMA mRNA and protein.

  15. NADPH oxidase 2 plays a role in experimental corneal neovascularization.

    PubMed

    Chan, Elsa C; van Wijngaarden, Peter; Chan, Elsie; Ngo, Darleen; Wang, Jiang-Hui; Peshavariya, Hitesh M; Dusting, Gregory J; Liu, Guei-Sheung

    2016-05-01

    Corneal neovascularization, the growth of new blood vessels in the cornea, is a leading cause of vision impairment after corneal injury. Neovascularization typically occurs in response to corneal injury such as that caused by infection, physical trauma, chemical burns or in the setting of corneal transplant rejection. The NADPH oxidase enzyme complex is involved in cell signalling for wound-healing angiogenesis, but its role in corneal neovascularization has not been studied. We have now analysed the role of the Nox2 isoform of NADPH oxidase in corneal neovascularization in mice following chemical injury. C57BL/6 mice aged 8-14 weeks were cauterized with an applicator coated with 75% silver nitrate and 25% potassium nitrate for 8 s. Neovascularization extending radially from limbal vessels was observed in corneal whole-mounts from cauterized wild type mice and CD31+ vessels were identified in cauterized corneal sections at day 7. In contrast, in Nox2 knockout (Nox2 KO) mice vascular endothelial growth factor-A (Vegf-A), Flt1 mRNA expression, and the extent of corneal neovascularization were all markedly reduced compared with their wild type controls. The accumulation of Iba-1+ microglia and macrophages in the cornea was significantly less in Nox2 KO than in wild type mice. In conclusion, we have demonstrated that Nox2 is implicated in the inflammatory and neovascular response to corneal chemical injury in mice and clearly VEGF is a mediator of this effect. This work raises the possibility that therapies targeting Nox2 may have potential for suppressing corneal neovascularization and inflammation in humans. PMID:26814205

  16. Tear film and ocular surface changes after closure of the meibomian gland orifices in the rabbit.

    PubMed

    Gilbard, J P; Rossi, S R; Heyda, K G

    1989-08-01

    To determine whether meibomian gland dysfunction can increase tear film osmolarity and produce ocular surface changes analogous to those seen with lacrimal gland disease (keratoconjunctivitis sicca [KCS]), the authors closed the meibomian gland orifices in the right eyes of 11 rabbits by light cautery and studied the changes for 20 weeks. Tear film osmolarity was increased throughout the observation period. Conjunctival goblet cell density and corneal epithelial glycogen levels declined progressively. Closure of the meibomian gland orifices thus increased tear film osmolarity in the presence of normal lacrimal gland function and caused ocular surface abnormalities similar to KCS.

  17. MMP Regulation of Corneal Keratocyte Motility and Mechanics in 3-D Collagen Matrices

    PubMed Central

    Zhou, Chengxin; Petroll, W. Matthew

    2014-01-01

    Previous studies have shown that platelet derived growth factor (PDGF) can stimulate corneal keratocyte spreading and migration within 3-D collagen matrices, without inducing transformation to a contractile, fibroblastic phenotype. The goal of this study was to investigate the role of matrix metalloproteinases (MMPs) in regulating PDGF-induced changes in keratocyte motility and mechanical differentiation. Rabbit corneal keratocytes were isolated and cultured in serum-free media (S-) to maintain their quiescent phenotype. A nested collagen matrix construct was used to assess 3-D cell migration, and a standard collagen matrix model was used to assess cell morphology and cell-mediated matrix contraction. In both cases constructs were cultured in S- supplemented with PDGF, with or without the broad spectrum MMP inhibitors GM6001 or BB-94. After 4 days, f-actin, nuclei and collagen fibrils were imaged using confocal microscopy. To assess sub-cellular mechanical activity (extension and retraction of cell processes), time-lapse DIC imaging was also performed. MT1-MMP expression and MMP-mediated collagen degradation by were also examined. Results demonstrated that neither GM6001 nor BB-94 affected corneal keratocyte viability or proliferation in 3-D culture. PDGF stimulated elongation and migration of corneal keratocytes within type I collagen matrices, without causing a loss of their dendritic morphology or inducing formation of intracellular stress fibers. Treatment with GM6001 and BB-94 inhibited PDGF-induced keratocyte spreading and migration. Relatively low levels of keratocyte-induced matrix contraction were also maintained in PDGF, and the amount of PDGF-induced collagen degradation was similar to that observed in S- controls. The collagen degradation pattern was consistent with membrane-associated MMP activity, and keratocytes showed positive staining for MT1-MMP, albeit weak. Both matrix contraction and collagen degradation were reduced by MMP inhibition. For most

  18. Plasma membrane calcium-ATPase isoform four distribution changes during corneal epithelial wound healing

    PubMed Central

    2010-01-01

    Purpose Plasma Membrane Calcium-ATPases (PMCAs) are integral membrane proteins essential to the control of intracellular Ca2+ concentration. In humans, four genes encode PMCA proteins termed PMCA1-PMCA4. PMCA4 is the major PMCA isoform expressed in human corneal epithelium (hCE); however, little is known about its role. The present study documented expression of PMCA4 in rabbit CE (rbCE) and followed the distribution of PMCA4 during CE wound healing in a rabbit (rb) model. Methods Reverse transcriptase PCR using PMCA4 isoform gene-specific primers that flanked alternative splice site A was used to examine the presence of PMCA4 mRNA in rbCE. Protein expression was assessed by immunoblotting using panPMCA- and PMCA4-specific antibodies. Immunocytochemistry was employed to examine PMCA immunolocalization in frozen, formaldehyde-fixed sections of control and wounded rb corneas. In wound healing studies, circular, 6-mm diameter corneal wounds were produced in the central CE using the n-heptanol technique. The distribution of PMCA4 in CE was examined by immunohistochemical staining of frozen sections using PMCA4 isoform-specific antibody at 6-, 24-, 36-, and 48 h post-injury. siRNAPMCA4 was used to transfect telomerase-immortalized human corneal epithelial (hTCEpi) cells. Cell cultures were wounded 48 h after transfection, and the wound area was measured at 0 h and at 3 h intervals post-wounding. Results Direct sequencing of PCR DNAs documented the presence of PMCA4 transcripts in rbCE and showed that the splice variant at site A was PMCA4x. Immunoblot analysis for PMCA4 detected an intense band at approximately 160 kDa and a faint band at approximately 142 kDa. Immunohistochemistry with the panPMCA antibody demonstrated strong immunoreactivity (IR) in all layers of uninjured rbCE. Immunohistochemistry with a PMCA4-specific antibody demonstrated a similar pattern of intense IR along the plasma membrane of cells in all layers of CE, except for the notable absence of

  19. Establishing Substantial Equivalence: Metabolomics

    NASA Astrophysics Data System (ADS)

    Beale, Michael H.; Ward, Jane L.; Baker, John M.

    Modern ‘metabolomic’ methods allow us to compare levels of many structurally diverse compounds in an automated fashion across a large number of samples. This technology is ideally suited to screening of populations of plants, including trials where the aim is the determination of unintended effects introduced by GM. A number of metabolomic methods have been devised for the determination of substantial equivalence. We have developed a methodology, using [1H]-NMR fingerprinting, for metabolomic screening of plants and have applied it to the study of substantial equivalence of field-grown GM wheat. We describe here the principles and detail of that protocol as applied to the analysis of flour generated from field plots of wheat. Particular emphasis is given to the downstream data processing and comparison of spectra by multivariate analysis, from which conclusions regarding metabolome changes due to the GM can be assessed against the background of natural variation due to environment.

  20. Plutonium 239 Equivalency Calculations

    SciTech Connect

    Wen, J

    2011-05-31

    This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

  1. Obtaining an equivalent beam

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1990-01-01

    In modeling a complex structure the researcher was faced with a component that would have logical appeal if it were modeled as a beam. The structure was a mast of a robot controlled gantry crane. The structure up to this point already had a large number of degrees of freedom, so the idea of conserving grid points by modeling the mast as a beam was attractive. The researcher decided to make a separate problem of of the mast and model it in three dimensions with plates, then extract the equivalent beam properties by setting up the loading to simulate beam-like deformation and constraints. The results could then be used to represent the mast as a beam in the full model. A comparison was made of properties derived from models of different constraints versus manual calculations. The researcher shows that the three-dimensional model is ineffective in trying to conform to the requirements of an equivalent beam representation. If a full 3-D plate model were used in the complete representation of the crane structure, good results would be obtained. Since the attempt is to economize on the size of the model, a better way to achieve the same results is to use substructuring and condense the mast to equivalent end boundary and intermediate mass points.

  2. In Vivo Corneal Biomechanical Properties with Corneal Visualization Scheimpflug Technology in Chinese Population.

    PubMed

    Wu, Ying; Tian, Lei; Huang, Yi-Fei

    2016-01-01

    Purpose. To determine the repeatability of recalculated corneal visualization Scheimpflug technology (CorVis ST) parameters and to study the variation of biomechanical properties and their association with demographic and ocular characteristics. Methods. A total of 783 healthy subjects were included in this study. Comprehensive ophthalmological examinations were conducted. The repeatability of the recalculated biomechanical parameters with 90 subjects was assessed by the coefficient of variation (CV) and intraclass correlation coefficient (ICC). Univariate and multivariate linear regression models were used to identify demographic and ocular factors. Results. The repeatability of the central corneal thickness (CCT), deformation amplitude (DA), and first/second applanation time (A1/A2-time) exhibited excellent repeatability (CV% ≤ 3.312% and ICC ≥ 0.929 for all measurements). The velocity in/out (V in/out), highest concavity- (HC-) radius, peak distance (PD), and DA showed a normal distribution. Univariate linear regression showed a statistically significant correlation between V in, V out, DA, PD, and HC-radius and IOP, CCT, and corneal volume, respectively. Multivariate analysis showed that IOP and CCT were negatively correlated with V in, DA, and PD, while there was a positive correlation between V out and HC-radius. Conclusion. The ICCs of the recalculated parameters, CCT, DA, A1-time, and A2-time, exhibited excellent repeatability. IOP, CCT, and corneal volume significantly influenced the biomechanical properties of the eye. PMID:27493965

  3. In Vivo Corneal Biomechanical Properties with Corneal Visualization Scheimpflug Technology in Chinese Population

    PubMed Central

    Wu, Ying

    2016-01-01

    Purpose. To determine the repeatability of recalculated corneal visualization Scheimpflug technology (CorVis ST) parameters and to study the variation of biomechanical properties and their association with demographic and ocular characteristics. Methods. A total of 783 healthy subjects were included in this study. Comprehensive ophthalmological examinations were conducted. The repeatability of the recalculated biomechanical parameters with 90 subjects was assessed by the coefficient of variation (CV) and intraclass correlation coefficient (ICC). Univariate and multivariate linear regression models were used to identify demographic and ocular factors. Results. The repeatability of the central corneal thickness (CCT), deformation amplitude (DA), and first/second applanation time (A1/A2-time) exhibited excellent repeatability (CV% ≤ 3.312% and ICC ≥ 0.929 for all measurements). The velocity in/out (Vin/out), highest concavity- (HC-) radius, peak distance (PD), and DA showed a normal distribution. Univariate linear regression showed a statistically significant correlation between Vin, Vout, DA, PD, and HC-radius and IOP, CCT, and corneal volume, respectively. Multivariate analysis showed that IOP and CCT were negatively correlated with Vin, DA, and PD, while there was a positive correlation between Vout and HC-radius. Conclusion. The ICCs of the recalculated parameters, CCT, DA, A1-time, and A2-time, exhibited excellent repeatability. IOP, CCT, and corneal volume significantly influenced the biomechanical properties of the eye. PMID:27493965

  4. Alterations of Tear Mediators in Patients with Keratoconus after Corneal Crosslinking Associate with Corneal Changes

    PubMed Central

    Kolozsvári, Bence Lajos; Berta, András; Petrovski, Goran; Miháltz, Kata; Gogolák, Péter; Rajnavölgyi, Éva; Hassan, Ziad; Széles, Péter; Fodor, Mariann

    2013-01-01

    Keratoconus (KC) is the most common primary corneal ectatic disease which has considerable importance in public health. Corneal collagen crosslinking (CXL) is a procedure to mitigate progression of KC and reduce demand for corneal transplantation. Although studies have proven the efficacy of CXL regarding corneal shape, none have investigated the effects of CXL on tear biomarkers which are useful tools to understand molecular mechanisms behind CXL. Our purpose was to determine the effect of CXL on tear mediators in patients with KC and analyze associations with corneal changes. Tear samples were collected pre-CXL from 26 eyes of 23 patients and during a 12-month follow-up. The mediators’ concentration was measured by Cytometric Bead Array technology. Corneal topography parameters measured by Scheimpflug Camera included: Thinnest-corneal-thickness (ThCT), keratometry values (K1, K2), Radii-Minimum (Rmin), Keratoconus-Index (KI), Center-KI (CKI), Index-of-Height Asymmetry (IHA) and Index-of-Surface Variance (ISV). At baseline, KI was correlated negatively with chemokine (C-C motif) ligand 5 (CCL5) (p=0.015) and matrix metalloproteinase (MMP)-13 (p=0.007). At day 4, interleukin (IL)-6 and IL-8 increased, while IL-13, IL-17A, interferon (IFN)-γ, CCL5, MMP-13, epidermal growth factor (EGF), nerve growth factor (NGF) and plasminogen activator inhibitor (PAI-1) decreased significantly compared to pre-CXL concentrations (p≤0.02). At 6 months tissue plasminogen activator (t-PA) increased (p=0.02), while at 12 months Rmin increased (p≤0.004), and IL-6 and CXCL8 (p=0.005 and p=0.047) as well as K1, ISV and KI decreased. After 6 months CKI and ISV showed significant associations with IL-17A; CKI with IL-13 and ThCT with IL-13 (p≤0.02), while at 12 months there were reverse associations between ThCT and IL-6, IL-13, INFγ, CCL5 and PAI-1 (p≤0.02). Alterations of mediators in tear fluid after CXL associate with topographic changes highlight the fact that many

  5. [Corneal higher order aberrations and their changes with aging].

    PubMed

    Cermáková, S; Skorkovská, S

    2010-12-01

    Cornea is the most important refractive medium of the eye and affects its total aberration state. This paper deals with corneal higher order aberrations in healthy humans and evaluates their changes with aging and corneal curvature. The influence of the corneal anterior and posterior surfaces on aberrations of the whole cornea was also investigated. The examination was performed with a Scheimpflug camera which enables to examine the anterior and posterior corneal surface separately. The results show that higher order aberrations of the whole cornea are influenced mainly by the anterior surface aberrations. The main corneal higher order aberration is the Z (4,0) spherical aberration which has a positive value and increases with age. Also, 3rd order aberration values are of importance, especially coma which also increases with age. As a consequence, the root-mean-square of the 3rd and 4th order aberrations in elderly people has a higher value.

  6. Distributed scanning volumetric SDOCT for motion corrected corneal biometry

    PubMed Central

    McNabb, Ryan P.; LaRocca, Francesco; Farsiu, Sina; Kuo, Anthony N.; Izatt, Joseph A.

    2012-01-01

    We present a method, termed distributed scanning OCT (DSOCT), which reduces the effects of patient motion on corneal biometry utilizing current-generation clinically available spectral domain optical coherence tomography (SDOCT) systems. We first performed a pilot study of the power spectrum of normal patient axial eye motion based on repeated (M-mode) SDOCT. Using DSOCT to reduce the effects of patient motion, we conducted a preliminary patient study comparing the measured anterior and posterior corneal curvatures and the calculated corneal power to both corneal topography and Scheimpflug photography in normal subjects. The repeatability for the measured radius of curvature of both anterior and posterior surfaces as well as calculated corneal refractive power using DSOCT was comparable to those of both topography and Scheimpflug photography. PMID:23024900

  7. [Clinical picture of pure corneal ulcers of different localizations].

    PubMed

    Tarasova, L N; Kudriashova, Iu I

    1999-01-01

    Pure corneal ulcers can be localized at the periphery and in the center. Peripheral ulcers are bilateral in 66% and multifocal in 48% cases. They are combined with local vasculitis of perilimbic vessels of the conjunctiva. In 84% cases the disease occurred in patients with connective tissue and articular diseases. Clinical picture of the peripheral corneal ulcer differs from Mourene's phagodenic ulcer. Central corneal ulcers are bilateral in 40% patients, are associated with primary and secondary "dry eye" syndrome in Sjogren's disease, rheumatoid arthritis, systemic vasculitis, Behçet's disease, and in 18% patients with cicatricial deformation of the conjunctiva after Stevens-Johnson's syndrome, trachoma, and chemical burns of the eyes. Pure corneal ulcers run a chronic relapsing course, complicated in one-fourth of patients by corneal perforation and secondary infections.

  8. Understanding Neuropathic Corneal Pain--Gaps and Current Therapeutic Approaches.

    PubMed

    Goyal, Sunali; Hamrah, Pedram

    2016-01-01

    The richly innervated corneal tissue is one of the most powerful pain generators in the body. Corneal neuropathic pain results from dysfunctional nerves causing perceptions such as burning, stinging, eye-ache, and pain. Various inflammatory diseases, neurological diseases, and surgical interventions can be the underlying cause of corneal neuropathic pain. Recent efforts have been made by the scientific community to elucidate the pathophysiology and neurobiology of pain resulting from initially protective physiological reflexes, to a more persistent chronic state. The goal of this clinical review is to briefly summarize the pathophysiology of neuropathic corneal pain, describe how to systematically approach the diagnosis of these patients, and finally summarizing our experience with current therapeutic approaches for the treatment of corneal neuropathic pain.

  9. Visual, Keratometric and Corneal Biomechanical Changes after Intacs SK Implantation for Moderate to Severe Keratoconus

    PubMed Central

    Zare, Mohammad Ali; Mehrjardi, Hadi Z.; Afarideh, Mohsen; Bahrmandy, Hooman; Mohammadi, Seyed-Farzad

    2016-01-01

    Purpose: To report visual outcomes and corneal biomechanical changes after femtosecond-assisted Intacs SK implantation in keratoconic eyes. Methods: This prospective interventional case series is comprised of 32 keratoconic eyes of 25 patients with mean age of 23.8 ± 5.4 years. Uncorrected (UDVA) and corrected (CDVA) distance visual acuity, refraction, manifest refraction spherical equivalent (MRSE), keratometry, central corneal thickness (CCT), corneal hysteresis (CH) and corneal resistance factor (CRF) were measured preoperatively, and 1, 3 and 6 months postoperatively. Results: Mean UDVA improved from 0.81 ± 0.3 LogMAR preoperatively to 0.53 ± 0.2 LogMAR six months postoperatively (P < 0.001). At 6 months, MRSE was significantly reduced only in eyes with moderate KCN (mean change, +2.61 ± 0.54 diopter [D]; P< 0.001). A significant improvement in sphere (mean change, +1.92 ± 0.37 D; P< 0.001) and mean keratometry (mean change, -3.34 ± 0.47D; P< 0.001) were observed. CCT increased from 446.1 ± 38 μm preoperatively to 462.2 ± 50 μm at six months (P < .001). CRF decreased from 6.5 ± 1.6 mmHg to 5.9 ± 1.1 mmHg six months after surgery (P = 0.02). CDVA, refractive cylinder and CH did not change significantly (P = 0.48, 0.203 and 0.55, respectively). Linear regression analysis disclosed that a decrease in CCT and moderate KCN are associated with higher CRF (standardized B,-0.513 and 0.314;P= 0.004 and 0.024, respectively; Adjusted R square = 0.353). Conclusion: Visual, refractive and keratometric indices remarkably improved in a parallel fashion. CRF was inversely associated with CCT. Changes in CRF represent the trend of changes in corneal biomechanics and thickness during the early postoperative months. PMID:27195080

  10. Relationships between central and peripheral corneal thickness in different degrees of myopia

    PubMed Central

    Ortiz, Sara; Mena, Laura; Rio-San Cristobal, Ana; Martin, Raul

    2013-01-01

    Purpose To analyze the relationship between the central corneal thickness (CCT) and mid-peripheral corneal thickness (PCT) with the degree of myopia [axial length (AL) and spherical equivalent refractive error (SE)]. Methods 175 right myopic eyes from 175 patients were divided according to the degree of SE: group #1 (n = 76, <6.00 D), group #2 (n = 72, between 6.00 and 12.00 D) and group #3 (n = 27, >12.00 D). The CCT and PCT (3 mm from the apex to the superior, inferior, nasal and temporal locations) were measured with the Orbscan-II. Relative peripheral index (RPI) was calculated by dividing the PCT by the CCT. The AL was measured with the IOL Master, and the SE was obtained with subjective refraction. Results AL was 25.18 ± 1.16 mm, 26.59 ± 1.26 mm and 29.45 ± 2.58 mm and SE was −3.31 ± 1.40 D, −8.32 ± 1.64 D and −16.44 ± 4.48 D for groups #1, #2 and #3, respectively. Non-statistically significant differences in central and peripheral corneal thickness were found between groups (P > 0.05 ANOVA). Non-significant relationship was found between central and peripheral corneal thickness with the AL and SE in the three study groups and in the total sample (r < 0.24; P > 0.05). The RPI values were similar between groups without significant difference between groups (P > 0.05 ANOVA). Linear relationship was found between RPI superior location in group #2 (r = −0.23; P = 0.04) and RPI nasal location in group #3 with the EE (r = 0.41; P = 0.03). Conclusion There are no significant differences among low, moderate and extremely myopic eyes related to the CCT and PCT. Corneal thickness is very similar in myopic eyes with small differences that are not clinically relevant to myopic patient management. PMID:24646900

  11. Corneal collagen crosslinking for corneal ectasia of post-LASIK: one-year results

    PubMed Central

    Li, Gang; Fan, Zheng-Jun; Peng, Xiu-Jun

    2012-01-01

    AIM To evaluate the efficacy and safety of corneal collagen crosslinking (CXL) to prevent the progression of post-laser in situ keratomileusis (LASIK) corneal ectasia. METHODS In a prospective, nonrandomized, single-centre study, CXL was performed in 20 eyes of 11 patients who had LASIK for myopic astigmatism and subsequently developed keratectasia.The procedure included instillation of 0.1% riboflavin-20% dextrane solution 30 minutes before UVA irradiation and every 5 minutes for an additional 30 minutes during irradiation. The eyes were evaluated preoperatively and at 1-, 3-, 6-, and 12-month intervals. The complete ophthalmologic examination comprised uncorrected visual acuity, best spectacle-corrected visual acuity, endothelial cell count, ultrasound pachymetry, corneal topography, and in vivo confocal microscopy. RESULTS CXL appeared to stabilise or partially reverse the progression of post-LASIK corneal ectasia without apparent complication in our cohort. UCVA and BCVA improvements were statistically significant(P<0.05) beyond 12 months after surgery (improvement of 0.07 and 0.13 logMAR at 1 year, respectively). Mean baseline flattest meridian keratometry and mean steepest meridian keratometry reduction (improvement of 2.00 and 1.50 diopters(D), respectively) were statistically significant (P<0.05) at 12 months postoperatively. At 1 year after CXL, mean endothelial cell count did not deteriorate. Mean thinnest cornea pachymetry increased significantly. CONCLUSION The results of the study showed a long-term stability of post-LASIK corneal ectasia after crosslinking without relevant side effects. It seems to be a safe and promising procedure to stop the progression of post-LASIK keratectasia, thereby avoiding or delaying keratoplasty. PMID:22762048

  12. Tear Film Interferometry and Corneal Surface Roughness

    PubMed Central

    King-Smith, P. Ewen; Kimball, Samuel H.; Nichols, Jason J.

    2014-01-01

    Purpose. Previous studies of optical interference from the whole thickness of the precorneal tear film showed much lower contrast than from the pre–contact lens tear film. It is hypothesized that the recorded low contrast is related to roughness of the corneal surface compared with the smooth contact lens surface. This hypothesis is tested, and characteristics of this roughness are studied. Methods. Reflectance spectra were recorded from 20 healthy individuals using a silicon-based sensor used in previous studies (wavelength range, 562–1030 nm) and an indium-gallium-arsenide (InGaAs) sensor responding at longer wavelengths (912–1712 nm). Interference from the whole thickness of the precorneal tear film caused oscillations in the reflectance spectra. Results. Spectral oscillations recorded with the InGaAs sensor were found to decay as a Gaussian function of wave number (1/wavelength). This is consistent with a rough corneal surface, whose distribution of surface height is also a Gaussian function. Contrast of spectral oscillations for the InGaAs sensor was, on average, approximately four times greater than that for the silicon sensor. Conclusions. For the Gaussian roughness model based on InGaAs spectra, the corneal surface was characterized by a surface height SD of 0.129 μm. Spectral oscillations recorded with a silicon-based camera can have higher contrast than expected from this Gaussian roughness model, indicating some reflectance from a smoother or more compact surface. The results also indicate that InGaAs cameras could provide whole-thickness interference images of higher contrast than silicon-based cameras. PMID:24692127

  13. Fractal dimension based corneal fungal infection diagnosis

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Madhusudhanan; Perkins, A. Louise; Beuerman, Roger W.; Iyengar, S. Sitharama

    2006-08-01

    We present a fractal measure based pattern classification algorithm for automatic feature extraction and identification of fungus associated with an infection of the cornea of the eye. A white-light confocal microscope image of suspected fungus exhibited locally linear and branching structures. The pixel intensity variation across the width of a fungal element was gaussian. Linear features were extracted using a set of 2D directional matched gaussian-filters. Portions of fungus profiles that were not in the same focal plane appeared relatively blurred. We use gaussian filters of standard deviation slightly larger than the width of a fungus to reduce discontinuities. Cell nuclei of cornea and nerves also exhibited locally linear structure. Cell nuclei were excluded by their relatively shorter lengths. Nerves in the cornea exhibited less branching compared with the fungus. Fractal dimensions of the locally linear features were computed using a box-counting method. A set of corneal images with fungal infection was used to generate class-conditional fractal measure distributions of fungus and nerves. The a priori class-conditional densities were built using an adaptive-mixtures method to reflect the true nature of the feature distributions and improve the classification accuracy. A maximum-likelihood classifier was used to classify the linear features extracted from test corneal images as 'normal' or 'with fungal infiltrates', using the a priori fractal measure distributions. We demonstrate the algorithm on the corneal images with culture-positive fungal infiltrates. The algorithm is fully automatic and will help diagnose fungal keratitis by generating a diagnostic mask of locations of the fungal infiltrates.

  14. Equivalence Principle in Cosmology

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei

    2014-01-01

    We analyse the Einstein equivalence principle (EEP) for a Hubble observer in Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime. We show that the affine structure of the light cone in the FLRW spacetime should be treated locally in terms of the optical metric gαβ which is not reduced to the Minkowski metric fαβ due to the nonuniform parametrization of the local equations of light propagation with the proper time of the observer's clock. The physical consequence of this difference is that the Doppler shift of radio waves measured locally is affected by the Hubble expansion.

  15. Gradient equivalent crystal theory.

    PubMed

    Zypman, F R; Ferrante, J

    2006-07-01

    This paper presents an extension of the formalism of equivalent crystal theory (ECT) by introducing an electron density gradient term so that the total model density becomes a more accurate representation of the real local density. Specifically, we allow for the electron density around a lattice site to have directionality, in addition to an average value, as assumed in ECT. We propose that an atom senses its neighbouring density as a weighted sum-the weights given by the its own electronic probability. As a benchmark, the method is used to compute vacancy migration energy curves of iron. These energies are in good agreement with previously published results. PMID:21690822

  16. Harmaline-induced impairment of Pavlovian conditioning in the rabbit.

    PubMed

    Harvey, J A; Romano, A G

    1993-04-01

    In this study we examined the effects of harmaline on Pavlovian conditioning of the rabbit's nictitating membrane response. The acquisition of conditioned responses was determined during a single session consisting of 120 pairings of a tone-conditioned stimulus with a corneal air puff unconditioned stimulus. Harmaline severely retarded (5 mg/kg) or completely blocked (10 and 20 mg/kg) acquisition of conditioned responses. The blocked or retarded acquisition of conditioned responses could still be detected when the rabbits were tested 2 d after cessation of drug injections, suggesting that harmaline was affecting acquisition and not the motoric expression of conditioned responses. Control experiments established that harmaline (5 mg/kg) did not affect (1) baseline levels of responding, (2) the level of non-associative responding to the conditioned stimulus, (3) the amplitude or any of the temporal characteristics of the unconditioned response, (4) the development of habituation to the unconditioned stimulus, and (5) the threshold of the unconditioned stimulus for eliciting the unconditioned response. However, harmaline did produce a 12 dB increase in the intensity threshold of the conditioned stimulus for eliciting conditioned responses. We concluded that the primary effect of harmaline was to impair stimulus processing within brainstem circuits such as to reduce the excitatory properties of the conditioned stimulus, thus retarding its entry into associative learning. The results were discussed with respect to the possible role of the inferior olive in associative learning.

  17. Heterogeneity of collagens in rabbit cornea: type III collagen

    SciTech Connect

    Cintron, C.; Hong, B.S.; Covington, H.I.; Macarak, E.J.

    1988-05-01

    Whole neonate rabbit corneas and adult corneas containing 2-week-old scars were incubated in the presence of (/sup 14/C) glycine. Radiolabeled collagen extracted from the corneas and scar tissue were analyzed by sodium dodecylsulfate/polyacrylamide gel electrophoresis and fluorography to determine the types and relative quantity of collagen polypeptides present and synthesized by these tissues. In addition to other collagen types, type III was found in both neonate cornea and scar tissue from adult cornea, albeit in relatively small quantities. Type III collagen in normal cornea was associated with the residue after pepsin digestion and formic acid extraction of the tissue, and the same type of collagen was extracted from scar tissue after similar treatment. Type III collagen-specific monoclonal antibody bound to developing normal corneas and healing adult tissue sections, as determined by immunofluorescence. Antibody binding was localized to the endothelium and growing Descemet's membrane in fetal and neonate corneas, and restricted to the most posterior region of the corneal scar tissue. Although monoclonal antibody to keratan sulfate, used as a marker for stromal fibroblasts, bound to most of the scar tissue, the antibody failed to bind to the posterior scar tissue positive for type III collagen. We conclude that endothelial cells from fetal and neonate rabbit cornea and endothelium-derived fibroblasts from healing wounds of adult cornea synthesize and deposit type III collagen. Moreover, this collagen appears to be incorporated into the growing Descemet's membrane of normal corneas and narrow posterior portion of the scar tissue.

  18. Changes of Ocular Surface and the Inflammatory Response in a Rabbit Model of Short-Term Exposure Keratopathy

    PubMed Central

    Lin, Szu-Yuan; Liu, Hsin-Yu; Chang, Huai-Wen; Hu, Fung-Rong; Chen, Wei-Li

    2015-01-01

    Purpose To evaluate the ocular surface change and the inflammatory response in a rabbit model of short-term exposure keratopathy. Methods Short term exposure keratopathy by continuous eyelid opening was induced in New Zealand white rabbits for up to 4 hours. Ultrasound pachymetry was used to detect central total corneal thickness. In vivo confocal microscopy and impression cytology were performed to evaluate the morphology of ocular surface epithelium and the infiltration of inflammatory cells. Immunohistochemistry for macrophage,neutrophil, CD4(+) T cells, and CD8(+) T cells were performed to classify the inflammatory cells. Scanning electron microscopy(SEM) was performed to detect ocular surface change.The concentrations of IL-8, IL-17, Line and TNF-αwere analyzed by multiplex immunobead assay. TUNEL staining was performed to detect cellular apoptosis. Results Significant decrease ofcentral total cornealthickness were found within the first 5 minutes and remained stable thereafter, while there were no changes of corneal epithelial thickness.No significant change of corneal, limbal and conjunctival epithelial morphology was found by in vivo confocal microscopy except the time dependent increase of superficial cellular defects in the central cornea. Impression cytology also demonstrated time dependent increase of sloughing superficial cells of the central cornea. Aggregations ofinflammatory cells were found at 1 hour in the limbal epithelium, 2 hours in the perilimbal conjunctival epithelium, and 3 hours in the peripheral corneal epithelium.In eyes receiving exposure for 4 hours, the infiltration of the inflammatory cells can still be detected at 8 hours after closing eyes.Immunohistochemical study demonstrated the cells to be macrophages, neutrophils, CD4-T cells and CD-8 T cells.SEM demonstrated time-depending increase of intercellular border and sloughing of superficial epithelial cells in corneal surface. Time dependent increase of IL-8, IL-17 and TNF-α in

  19. [First experience of intrastromal ring segments insertion for correction of posttraumatic cicatricial corneal astigmatism].

    PubMed

    Neroev, V V; Gundorova, R A; Beliaev, D S; Petukhova, A B; Oganesian, O G; Penkina, A V

    2013-01-01

    The potential of MAGELLAN MAPPER corneal topographer in evaluation of corneal refraction in the early postoperative period after surgical debrigement of scleral and corneal penetrating wounds is shown. The accuracy of corneal topography is satisfactory and its results reproducible what makes the method suitable for evaluation of corneal refraction and follow-up in patients with penetrating wounds and scarring of sclera and cornea. The possibility of posttraumatic cicatricial astigmatism correction by insertion of Keraring intrastromal corneal ring segments (ICRS) using femtosecond surgical laser FEMTO LDV were studied. Results of cicatricial corneal astigmatism correction in early posttraumatic period are encouraging.

  20. In vivo behavior of detergent-solubilized purified rabbit thrombomodulin on intravenous injection into rabbits

    SciTech Connect

    Ehrlich, H.J.; Esmon, N.L.; Bang, N.U. )

    1990-02-01

    Thrombomodulin is a thrombin endothelial cell membrane receptor. The thrombomodulin-thrombin complex rapidly activates protein C resulting in anticoagulant activity. We investigated the anticoagulant effects and pharmacokinetic behavior of detergent-solubilized purified rabbit thrombomodulin labeled with iodine 125 when intravenously injected into rabbits. Thrombomodulin half-life (t1/2) was determined by tracking the 125I-radiolabeled protein and the biologic activity as determined by the prolongation of the activated partial thromboplastin time (APTT) and thrombin clotting time (TCT). When 200 micrograms/kg 125I-thrombomodulin was injected into rabbits, the APTT and TCT were immediately prolonged, whereas no effect on the prothrombin time was seen. In vitro calibration curves enabled us to convert the prolongations of the clotting times into micrograms per milliliter thrombomodulin equivalents. The best fit (r greater than 0.99) for the disappearance curves was provided by a two-compartment model with mean t1/2 alpha (distribution phase) of 18 minutes for 125I, 12 minutes for APTT, and 20 minutes for TCT, and mean t1/2 beta (elimination phase) of 385 minutes for 125I, 460 for APTT, and 179 for TCT. The administration of two doses of endotoxin (50 micrograms/kg) 24 hours apart did not accelerate the turnover rate of 125I-thrombomodulin as measured by the disappearance of 125I from the circulation. Thus, detergent-solubilized purified thrombomodulin administered intravenously circulates in a biologically active form for appreciable time periods.

  1. Topical levofloxacin 1.5% overcomes in vitro resistance in rabbit keratitis models

    PubMed Central

    Kowalski, Regis P.; Romanowski, Eric G.; Mah, Francis S.; Shanks, Robert M. Q.; Gordon, Y. J.

    2016-01-01

    Purpose To determine whether topical levofloxacin 1.5% will successfully treat both levofloxacin-resistant and susceptible Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) in rabbit keratitis models. Methods For levofloxacin-resistant and susceptible SA, respectively, 32 New Zealand White (NZW) rabbits were intrastromally injected with 1000 colony-forming units (CFU). After 4 hr, the corneas of eight rabbits were homogenized to determine onset CFU/ml. Twenty-four rabbits were divided into three treatments: levofloxacin, vancomycin (cefazolin for levofloxacin-susceptible SA) and saline. Twenty-one drops were administered over 5 hr. One hour post-treatment, the corneas were homogenized for CFU/ml. For levofloxacin-resistant and susceptible PA, respectively, 32 NZW rabbits were intrastromally injected with 1000 CFU. After 16 hr, the corneas of eight rabbits were homogenized for CFU/ml. Twenty-four rabbits were divided into three treatments: levofloxacin, tobramycin (ciprofloxacin for levofloxacin-susceptible PA) and saline. Nineteen drops were administered over 8 hr. One hour post-treatment, the corneas were homogenized for CFU/ml. The CFU/ml data were analysed for sterilization and non-parametrically for reduction. Results Levofloxacin 1.5% significantly reduced more (p < 0.05) levofloxacin-resistant SA than vancomycin; was equivalent to cefazolin (p > 0.05) for levofloxacin-susceptible SA; was equivalent to tobramycin for levofloxacin-resistant PA; was equivalent to ciprofloxacin for levofloxacin-susceptible PA; and significantly reduced more SA and PA than saline and onset. Levofloxacin 1.5% sterilized the corneas in the levofloxacin-resistant and susceptible PA groups (32/32) and levofloxacin-susceptible SA group (16/16), but not the levofloxacin-resistant SA group (0/16). Conclusion Levofloxacin 1.5% was effective for reducing SA and PA in the rabbit keratitis models regardless of in vitro resistance. PMID:20456251

  2. Local unitary equivalence of quantum states and simultaneous orthogonal equivalence

    NASA Astrophysics Data System (ADS)

    Jing, Naihuan; Yang, Min; Zhao, Hui

    2016-06-01

    The correspondence between local unitary equivalence of bipartite quantum states and simultaneous orthogonal equivalence is thoroughly investigated and strengthened. It is proved that local unitary equivalence can be studied through simultaneous similarity under projective orthogonal transformations, and four parametrization independent algorithms are proposed to judge when two density matrices on ℂd1 ⊗ ℂd2 are locally unitary equivalent in connection with trace identities, Kronecker pencils, Albert determinants and Smith normal forms.

  3. Clinical utility of the KAMRA corneal inlay.

    PubMed

    Naroo, Shehzad Anjam; Bilkhu, Paramdeep Singh

    2016-01-01

    The treatment of presbyopia has been the focus of much scientific and clinical research over recent years, not least due to an increasingly aging population but also the desire for spectacle independence. Many lens and nonlens-based approaches have been investigated, and with advances in biomaterials and improved surgical methods, removable corneal inlays have been developed. One such development is the KAMRA™ inlay where a small entrance pupil is exploited to create a pinhole-type effect that increases the depth of focus and enables improvement in near visual acuity. Short- and long-term clinical studies have all reported significant improvement in near and intermediate vision compared to preoperative measures following monocular implantation (nondominant eye), with a large proportion of patients achieving Jaeger (J) 2 to J1 (~0.00 logMAR to ~0.10 logMAR) at the final follow-up. Although distance acuity is reduced slightly in the treated eye, binocular visual acuity and function remain very good (mean 0.10 logMAR or better). The safety of the inlay is well established and easily removable, and although some patients have developed corneal changes, these are clinically insignificant and the incidence appears to reduce markedly with advancements in KAMRA design, implantation technique, and femtosecond laser technology. This review aims to summarize the currently published peer-reviewed studies on the safety and efficacy of the KAMRA inlay and discusses the surgical and clinical outcomes with respect to the patient's visual function.

  4. Clinical utility of the KAMRA corneal inlay

    PubMed Central

    Naroo, Shehzad Anjam; Bilkhu, Paramdeep Singh

    2016-01-01

    The treatment of presbyopia has been the focus of much scientific and clinical research over recent years, not least due to an increasingly aging population but also the desire for spectacle independence. Many lens and nonlens-based approaches have been investigated, and with advances in biomaterials and improved surgical methods, removable corneal inlays have been developed. One such development is the KAMRA™ inlay where a small entrance pupil is exploited to create a pinhole-type effect that increases the depth of focus and enables improvement in near visual acuity. Short- and long-term clinical studies have all reported significant improvement in near and intermediate vision compared to preoperative measures following monocular implantation (nondominant eye), with a large proportion of patients achieving Jaeger (J) 2 to J1 (~0.00 logMAR to ~0.10 logMAR) at the final follow-up. Although distance acuity is reduced slightly in the treated eye, binocular visual acuity and function remain very good (mean 0.10 logMAR or better). The safety of the inlay is well established and easily removable, and although some patients have developed corneal changes, these are clinically insignificant and the incidence appears to reduce markedly with advancements in KAMRA design, implantation technique, and femtosecond laser technology. This review aims to summarize the currently published peer-reviewed studies on the safety and efficacy of the KAMRA inlay and discusses the surgical and clinical outcomes with respect to the patient’s visual function. PMID:27274194

  5. Iatrogenic corneal perforation in Terrien Marginal Degeneration.

    PubMed

    M R, Kursiah

    2013-04-01

    This case report is about a rare disease with unusual presentation. Failure to recognise atypical presentation may lead to error in managing the patient and cause disastrous complications. Here we highlight a case of Terrien Marginal Degeneration in both eyes with atypical presentation; namely pseudopterygium. A 22 year old man was referred to our centre for iatrogenic right eye corneal perforation after having an atypical pterygium removed at another hospital. On arrival, his vision was 1/60 in both eyes with bilateral cornea Terrien Marginal Degeneration. His right eye anterior chamber was deep with a conjunctival flap covering the perforation site which was located from the 2.30 - 3.30 clock position nasally with no aqueous leak. However after a day his right eye anterior chamber became flat and there was fast aqueous leak from the perforation site. An emergency C shaped peripheral corneal lamellar keratoplasty was performed to seal the perforation. Post operatively his right eye improved to 6/24.

  6. Clinical utility of the KAMRA corneal inlay.

    PubMed

    Naroo, Shehzad Anjam; Bilkhu, Paramdeep Singh

    2016-01-01

    The treatment of presbyopia has been the focus of much scientific and clinical research over recent years, not least due to an increasingly aging population but also the desire for spectacle independence. Many lens and nonlens-based approaches have been investigated, and with advances in biomaterials and improved surgical methods, removable corneal inlays have been developed. One such development is the KAMRA™ inlay where a small entrance pupil is exploited to create a pinhole-type effect that increases the depth of focus and enables improvement in near visual acuity. Short- and long-term clinical studies have all reported significant improvement in near and intermediate vision compared to preoperative measures following monocular implantation (nondominant eye), with a large proportion of patients achieving Jaeger (J) 2 to J1 (~0.00 logMAR to ~0.10 logMAR) at the final follow-up. Although distance acuity is reduced slightly in the treated eye, binocular visual acuity and function remain very good (mean 0.10 logMAR or better). The safety of the inlay is well established and easily removable, and although some patients have developed corneal changes, these are clinically insignificant and the incidence appears to reduce markedly with advancements in KAMRA design, implantation technique, and femtosecond laser technology. This review aims to summarize the currently published peer-reviewed studies on the safety and efficacy of the KAMRA inlay and discusses the surgical and clinical outcomes with respect to the patient's visual function. PMID:27274194

  7. Corneal astigmatism measuring module for slit lamps

    NASA Astrophysics Data System (ADS)

    Ventura, L.; Riul, C.; Sousa, S. J. F.; DeGroote, J. G. S.; Rosa Filho, A. B.; Oliveira, G. C. D.

    2006-06-01

    We have developed an automatic keratometer module for slit lamps that provides automatic measurements of the radii of the corneal curvature. The system projects 72 light spots displayed in a precise circle at the examined cornea. The displacement and deformation of the reflected image of these light spots are analysed providing the keratometry. Measurements in the range of 26.8-75 D can be obtained and a self-calibration system has been specially designed in order to keep the system calibrated. Infrared LEDs indicate automatically which eye is being examined. Volunteer patients (492) have been submitted to the system and the results show that our system has a high correlation factor with the commercially available manual keratometers and the keratometry measurements from a topographer. Our developed system is 95% in agreement with the corneal topographer (Humphrey—Atlas 995 CZM) and the manual keratometer (Topcon OM-4). The system's nominal precision is 0.05 mm for the radii of curvature and 1° for the associated axis. This research has been supported by Fundação de Apoio à Pesquisa do Estado de São Paulo (FAPESP).

  8. Waste Determination Equivalency - 12172

    SciTech Connect

    Freeman, Rebecca D.

    2012-07-01

    Secretary of Energy in January of 2006 based on proposed processing techniques with the expectation that it could be revised as new processing capabilities became viable. Once signed, however, it became evident that any changes would require lengthy review and another determination signed by the Secretary of Energy. With the maturation of additional salt removal technologies and the extension of the SWPF start-up date, it becomes necessary to define 'equivalency' to the processes laid out in the original determination. For the purposes of SRS, any waste not processed through Interim Salt Processing must be processed through SWPF or an equivalent process, and therefore a clear statement of the requirements for a process to be equivalent to SWPF becomes necessary. (authors)

  9. Hypercalcemia Leads to Delayed Corneal Wound Healing in Ovariectomized Rats.

    PubMed

    Nagai, Noriaki; Ogata, Fumihiko; Kawasaki, Naohito; Ito, Yoshimasa; Funakami, Yoshinori; Okamoto, Norio; Shimomura, Yoshikazu

    2015-01-01

    Hypercalcemia is often observed in postmenopausal women as well as in patients with primary hyperparathyroidism or malignant tumors. In this study, we investigated the relationship between calcium ion (Ca(2+)) levels in lacrimal fluid and the rate of corneal wound healing in hypercalcemia using ovariectomized (OVX) rat debrided corneal epithelium. We also determined the effects of Ca(2+) levels on cell adhesion, proliferation and viability in a human cornea epithelial cell line (HCE-T). The calcium content in bones of OVX rats decreased after ovariectomy. Moreover, the Ca(2+) content in the blood of OVX rats was increased 1 month after ovariectomy, and decreased. The Ca(2+) content in the lacrimal fluid of OVX rats was also increased after ovariectomy, and then decreased similarly as in blood. Corneal wound healing in OVX rats was delayed in comparison with Sham rats (control rats), and a close relationship was observed between the Ca(2+) levels in lacrimal fluid and the rate of corneal wound healing in Sham and OVX rats (y=-0.7863x+8.785, R=0.78, n=25). In addition, an enhancement in Ca(2+) levels caused a decrease in the viability in HCE-T cells. It is possible that enhanced Ca(2+) levels in lacrimal fluid may cause a decrease in the viability of corneal epithelial cells, resulting in a delay in corneal wound healing. These findings provide significant information that can be used to design further studies aimed at reducing corneal damage of patients with hypercalcemia.

  10. Impact of Hydration Media on Ex Vivo Corneal Elasticity Measurements

    PubMed Central

    Dias, Janice; Ziebarth, Noël M.

    2014-01-01

    Objectives To determine the effect of hydration media on ex vivo corneal elasticity. Methods Experiments were conducted on forty porcine eyes retrieved from an abattoir (10 eyes each for PBS, BSS, Optisol, 15% Dextran). The epithelium was removed and the cornea was excised with an intact scleral rim and placed in 20% Dextran overnight to restore its physiological thickness. For each hydration media, corneas were evenly divided into two groups: one with an intact scleral rim and the other without. Corneas were mounted onto a custom chamber and immersed in a hydration medium for elasticity testing. While in each medium, corneal elasticity measurements were performed for 2 hours: at 5-minute intervals for the first 30 minutes and then 15-minute intervals for the remaining 90 minutes. Elasticity testing was performed using nanoindentation with spherical indenters and Young’s modulus was calculated using the Hertz model. Thickness measurements were taken before and after elasticity testing. Results The percentage change in corneal thickness and elasticity was calculated for each hydration media group. BSS, PBS, and Optisol showed an increase in thickness and Young’s moduli for corneas with and without an intact scleral rim. 15% Dextran exhibited a dehydrating effect on corneal thickness and provided stable maintenance of corneal elasticity for both groups. Conclusions Hydration media affects the stability of corneal thickness and elasticity measurements over time. 15% Dextran was most effective in maintaining corneal hydration and elasticity, followed by Optisol. PMID:25603443

  11. Cell-based approach for treatment of corneal endothelial dysfunction.

    PubMed

    Okumura, Naoki; Kinoshita, Shigeru; Koizumi, Noriko

    2014-11-01

    Decompensation of the corneal endothelium causes severe visual impairments that lead to blindness. Although corneal transplantation is a well-known effective therapy for corneal endothelial dysfunction, many patients are not afforded that therapeutic opportunity owing to the worldwide shortage of donor corneas. Thus, a tissue engineering-based therapy for treating corneal endothelial dysfunction is highly anticipated. Obstacles associated with the development of tissue engineering therapy include in vitro culture of corneal endothelial cells (CECs) and the techniques used to transplant those cells. Limited proliferation ability, cellular senescence, and fibroblastic transformation during culture are all problems associated with the cultivation of CECs. In addition, transplantation of cultured CECs is technically difficult because the corneal endothelium is composed of a fragile monolayer sheet of cells located at the posterior cornea. In this review article, we present our recent findings using a novel cell culture protocol and show that modulation of CEC adhesion properties through a Rho-kinase inhibitor enables transplantation of CECs in the form of a cell suspension without the use of a carrier. Finally, we provide an update on the clinical application status of a cell-based therapy for treating corneal endothelial dysfunction.

  12. Classical conditioning of the rabbit eyelid response increases glutamate receptor binding in hippocampal synaptic membranes.

    PubMed Central

    Mamounas, L A; Thompson, R F; Lynch, G; Baudry, M

    1984-01-01

    Hippocampal pyramidal neurons exhibit a rapid within-trial increase in firing frequency during classical conditioning of the rabbit eyelid response. It has been proposed that the cellular mechanisms responsible for hippocampal long-term potentiation (LTP) may also mediate this learning-dependent increase in neuronal activity. The induction of LTP in rat hippocampal slices results in an increase in the number of [3H]glutamate-binding sites in the potentiated region. The present study investigates the kinetics of [3H]glutamate binding to hippocampal synaptic membranes after eyelid conditioning in the rabbit. We report that the regional distribution of [3H]glutamate binding across the layers of rabbit hippocampus is compatible with a dendritic localization. The pharmacological and ionic properties of the binding suggest that it is associated with an excitatory amino acid receptor. After eyelid conditioning, the maximal number of hippocampal [3H]glutamate-binding sites is increased in animals receiving paired presentations of the tone conditioned stimulus and corneal air-puff unconditioned stimulus relative to that found in naive or unpaired control animals. These results strengthen the hypothesis that an LTP-like mechanism underlies the increase in hippocampal firing frequency during rabbit eyelid conditioning. PMID:6144101

  13. Strong Pasteur effect in rabbit corneal endothelium preserves fluid transport under anaerobic conditions.

    PubMed

    Riley, M V; Winkler, B S

    1990-07-01

    1. The hydration and transparency of the mammalian cornea are maintained by a metabolically dependent fluid transport system located in the endothelial cell layer. The purpose of the study was to determine whether this pump activity is dependent upon aerobic or anaerobic metabolism. 2. The ability of the cornea, superfused in vitro with a bicarbonate-Ringer solution containing glucose and adenosine, to maintain normal hydration (thickness) when respiration is inhibited has been examined in intact and de-epithelialized preparations and correlated with glycolytic activity and cellular concentrations of ATP. 3. In respiring intact and de-epithelialized corneas thickness was maintained for periods up to 5 h during superfusion with the control Ringer solution. 4. KCN (10(-3) M) or antimycin A (10(-6) M) caused the intact cornea to swell at 15 +/- 3 microns h-1, whereas the de-epithelialized tissue maintained normal thickness under these conditions. This swelling of the intact tissue appears to be due to the osmotic effect of increased epithelial lactate production under anaerobic conditions. 5. Pre-swollen de-epithelialized corneas deturgesced fully to original thickness at a rate of 43 +/- 7 microns h-1 under aerobic conditions, but with KCN or antimycin they deturgesced at only 65% of that rate and generally failed to return to their original thickness. 6. Ouabain (10(-4) M) caused de-epithelialized corneas to swell in the presence of KCN or antimycin, as it did under aerobic conditions, showing that maintenance of hydration or deturgescence are pump-dependent processes under both conditions. 7. Lactate production was markedly stimulated by KCN or antimycin in intact and de-epithelialized preparations, but not in the stroma alone. The magnitude of the Pasteur effect was calculated to be 5-fold in the endothelium and 2.5-fold in the epithelium. Ouabain inhibited anaerobic lactate production in the endothelium by 50%. 8. ATP content of the epithelium following 5 h superfusion was 22.0 nmol cm-2 in control (aerobic) corneas, but fell to 1.9 nmol cm-2 in the presence of 10(-3) M-KCN, whereas the endothelial value fell only from 1.1 to 0.7 nmol cm-2 under these conditions. 9. Omission of glucose from the medium containing KCN or antimycin caused immediate swelling of tissues and a rapid decline of ATP content to less than 1% of that in control conditions.(ABSTRACT TRUNCATED AT 400 WORDS)

  14. Establishing Substantial Equivalence: Proteomics

    NASA Astrophysics Data System (ADS)

    Lovegrove, Alison; Salt, Louise; Shewry, Peter R.

    Wheat is a major crop in world agriculture and is consumed after processing into a range of food products. It is therefore of great importance to determine the consequences (intended and unintended) of transgenesis in wheat and whether genetically modified lines are substantially equivalent to those produced by conventional plant breeding. Proteomic analysis is one of several approaches which can be used to address these questions. Two-dimensional PAGE (2D PAGE) remains the most widely available method for proteomic analysis, but is notoriously difficult to reproduce between laboratories. We therefore describe methods which have been developed as standard operating procedures in our laboratory to ensure the reproducibility of proteomic analyses of wheat using 2D PAGE analysis of grain proteins.

  15. Impact of facial conformation on canine health: corneal ulceration.

    PubMed

    Packer, Rowena M A; Hendricks, Anke; Burn, Charlotte C

    2015-01-01

    Concern has arisen in recent years that selection for extreme facial morphology in the domestic dog may be leading to an increased frequency of eye disorders. Corneal ulcers are a common and painful eye problem in domestic dogs that can lead to scarring and/or perforation of the cornea, potentially causing blindness. Exaggerated juvenile-like craniofacial conformations and wide eyes have been suspected as risk factors for corneal ulceration. This study aimed to quantify the relationship between corneal ulceration risk and conformational factors including relative eyelid aperture width, brachycephalic (short-muzzled) skull shape, the presence of a nasal fold (wrinkle), and exposed eye-white. A 14 month cross-sectional study of dogs entering a large UK based small animal referral hospital for both corneal ulcers and unrelated disorders was carried out. Dogs were classed as affected if they were diagnosed with a corneal ulcer using fluorescein dye while at the hospital (whether referred for this disorder or not), or if a previous diagnosis of corneal ulcer(s) was documented in the dogs' histories. Of 700 dogs recruited, measured and clinically examined, 31 were affected by corneal ulcers. Most cases were male (71%), small breed dogs (mean± SE weight: 11.4±1.1 kg), with the most commonly diagnosed breed being the Pug. Dogs with nasal folds were nearly five times more likely to be affected by corneal ulcers than those without, and brachycephalic dogs (craniofacial ratio <0.5) were twenty times more likely to be affected than non-brachycephalic dogs. A 10% increase in relative eyelid aperture width more than tripled the ulcer risk. Exposed eye-white was associated with a nearly three times increased risk. The results demonstrate that artificially selecting for these facial characteristics greatly heightens the risk of corneal ulcers, and such selection should thus be discouraged to improve canine welfare.

  16. Impact of Facial Conformation on Canine Health: Corneal Ulceration

    PubMed Central

    Packer, Rowena M. A.; Hendricks, Anke; Burn, Charlotte C.

    2015-01-01

    Concern has arisen in recent years that selection for extreme facial morphology in the domestic dog may be leading to an increased frequency of eye disorders. Corneal ulcers are a common and painful eye problem in domestic dogs that can lead to scarring and/or perforation of the cornea, potentially causing blindness. Exaggerated juvenile-like craniofacial conformations and wide eyes have been suspected as risk factors for corneal ulceration. This study aimed to quantify the relationship between corneal ulceration risk and conformational factors including relative eyelid aperture width, brachycephalic (short-muzzled) skull shape, the presence of a nasal fold (wrinkle), and exposed eye-white. A 14 month cross-sectional study of dogs entering a large UK based small animal referral hospital for both corneal ulcers and unrelated disorders was carried out. Dogs were classed as affected if they were diagnosed with a corneal ulcer using fluorescein dye while at the hospital (whether referred for this disorder or not), or if a previous diagnosis of corneal ulcer(s) was documented in the dogs’ histories. Of 700 dogs recruited, measured and clinically examined, 31 were affected by corneal ulcers. Most cases were male (71%), small breed dogs (mean± SE weight: 11.4±1.1 kg), with the most commonly diagnosed breed being the Pug. Dogs with nasal folds were nearly five times more likely to be affected by corneal ulcers than those without, and brachycephalic dogs (craniofacial ratio <0.5) were twenty times more likely to be affected than non-brachycephalic dogs. A 10% increase in relative eyelid aperture width more than tripled the ulcer risk. Exposed eye-white was associated with a nearly three times increased risk. The results demonstrate that artificially selecting for these facial characteristics greatly heightens the risk of corneal ulcers, and such selection should thus be discouraged to improve canine welfare. PMID:25969983

  17. Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance

    PubMed Central

    West, John D; Dorà, Natalie J; Collinson, J Martin

    2015-01-01

    In this review we evaluate evidence for three different hypotheses that explain how the corneal epithelium is maintained. The limbal epithelial stem cell (LESC) hypothesis is most widely accepted. This proposes that stem cells in the basal layer of the limbal epithelium, at the periphery of the cornea, maintain themselves and also produce transient (or transit) amplifying cells (TACs). TACs then move centripetally to the centre of the cornea in the basal layer of the corneal epithelium and also replenish cells in the overlying suprabasal layers. The LESCs maintain the corneal epithelium during normal homeostasis and become more active to repair significant wounds. Second, the corneal epithelial stem cell (CESC) hypothesis postulates that, during normal homeostasis, stem cells distributed throughout the basal corneal epithelium, maintain the tissue. According to this hypothesis, LESCs are present in the limbus but are only active during wound healing. We also consider a third possibility, that the corneal epithelium is maintained during normal homeostasis by proliferation of basal corneal epithelial cells without any input from stem cells. After reviewing the published evidence, we conclude that the LESC and CESC hypotheses are consistent with more of the evidence than the third hypothesis, so we do not consider this further. The LESC and CESC hypotheses each have difficulty accounting for one main type of evidence so we evaluate the two key lines of evidence that discriminate between them. Finally, we discuss how lineage-tracing experiments have begun to resolve the debate in favour of the LESC hypothesis. Nevertheless, it also seems likely that some basal corneal epithelial cells can act as long-term progenitors if limbal stem cell function is compromised. Thus, this aspect of the CESC hypothesis may have a lasting impact on our understanding of corneal epithelial maintenance, even if it is eventually shown that stem cells are restricted to the limbus as proposed

  18. Effects of irrigation solutions on corneal endothelial function.

    PubMed

    Yagoubi, M I; Armitage, W J; Diamond, J; Easty, D L

    1994-04-01

    Rabbit corneas were perfused in vitro with an irrigation solution for 90 minutes. This was followed by 6 hours of perfusion with tissue culture medium TC199 during which endothelial function was assessed by monitoring rates of swelling during a period of perfusion in the absence of bicarbonate ions, and subsequent rates of thinning when bicarbonate ions were restored to the perfusate. Corneal thickness (measured with an ultrasonic pachymeter) immediately following excision was 401 microns (SD 19, n = 23). During the 90 minute perfusion at 35 degrees C, corneas exposed to balanced salt solution (BSS), Hartmann's solution or 0.9% NaCl (all initially at room temperature) swelled, respectively, at 14 (SD 2.3, n = 4), 11 (SD 2.6, n = 4), and 70 (SD 4.3, n = 4) microns/h. Cold Hartmann's solution (initially at 4 degrees C) caused corneas to swell at 9 (SD 2.3, n = 4) microns/h. On the other hand, corneas perfused with BSS Plus thinned at 9 (SD 3.4, n = 4) microns/h and TC199 with Earle's salts had little effect on thickness. Rates of swelling and thinning during the following assessment perfusion showed no apparent effects of prior exposure to any of the irrigation solutions on the barrier properties or pump function of the endothelium. Despite this, the increased thickness of corneas exposed initially to BSS, cold Hartmann's solution, or 0.9% NaCl was not fully reversed, even by the end of the 6 hour assessment perfusion. In contrast, the swelling observed in corneas exposed to Hartmann's solution at room temperature was reversed and these corneas had returned to their normal thickness by the end of the assessment period. All corneas, even those exposed to 0.9% NaCl, had an intact endothelial mosaic with no evidence of damage or cell loss, although morphological differences in cell shape and the appearance of cell borders were evident compared with freshly isolated cornea. PMID:8199119

  19. Pseudomonas-induced corneal ulcers associated with contaminated eye mascaras.

    PubMed

    Wilson, L A; Ahearn, D G

    1977-07-01

    Seven Pseudomonas-induced corneal ulcers were associated with the use of four brands of mascara contaminated with P. aeruginosa. In laboratory studies, preservative systems of three of the four brands were inadequate in comparison with a control mascara of known antimicrobial activity. If the corneal epithelium is scratched during the application of mascara, particularly if the applicator is old, the cornea should be treated immediately and the mascara cultured to detect Pseudomonas. The high incidence of recurrent corneal ulceration in cases of Pseudomonas-induced keratitis indicates that initial chemotherapy should be intensive and maintained until the lesion stabilizes.

  20. Corneal hydrops induced by diabetic ketoacidosis: A case report

    PubMed Central

    Feng, Meiyan; Wang, Chao

    2016-01-01

    To the best of our knowledge, there have been no reports of corneal hydrops associated with diabetic ketoacidosis. The present study first reports a case of a 20-year-old male patient with diabetic ketoacidosis-induced corneal hydrops. The patient exhibited mild hydrops in their left eyelid, which was accompanied by mixed hyperemia, and hazy turbid in a white color was observed in the cornea. To alleviate the corneal hydrops, 5% glucose was administered dropwise to the left eye for 2 h to alleviate the inflammation. Finally, the patient was discharged from the hospital with a satisfactory outcome. PMID:27602094

  1. Eye observation and corneal protection during endonasal surgery.

    PubMed

    Cuddihy, P J; Whittet, H

    2005-07-01

    Traumatic orbital complications of endonasal surgery, although rare, are a cause of significant morbidity. Although a variety of methods of monitoring eye function during surgery have been described, the best method remains direct perioperative observation of the eye. However, the eye must also be protected during surgery otherwise corneal drying will occur and corneal abrasion may result. This article describes and illustrates the use of Geliperm, a sterile, transparent, pliant hydrogel dressing, as a corneal protector allowing continuous observation of the eye during endonasal surgery.

  2. Pseudomonas-induced corneal ulcers associated with contaminated eye mascaras.

    PubMed

    Wilson, L A; Ahearn, D G

    1977-07-01

    Seven Pseudomonas-induced corneal ulcers were associated with the use of four brands of mascara contaminated with P. aeruginosa. In laboratory studies, preservative systems of three of the four brands were inadequate in comparison with a control mascara of known antimicrobial activity. If the corneal epithelium is scratched during the application of mascara, particularly if the applicator is old, the cornea should be treated immediately and the mascara cultured to detect Pseudomonas. The high incidence of recurrent corneal ulceration in cases of Pseudomonas-induced keratitis indicates that initial chemotherapy should be intensive and maintained until the lesion stabilizes. PMID:409295

  3. Development and clinical application of excimer laser corneal shaping

    NASA Astrophysics Data System (ADS)

    Homolka, Peter; Biowski, R.; Husinsky, Wolfgang; Blaas, C.; Simader, Ch.; Baumgartner, I. Gosch; Kaminski, Stefan; Grabner, G.

    1998-06-01

    Excimer Laser Corneal Shaping using an 193 nm Excimer Laser (ArF) provides a possibility for the fabrication of corneal transplants of various forms for various clinical applications such as (epi-)keratoplasty. Another area of application envisioned is the production of 'living contact lenses' for epikeratophakia. A device for lathing and perforating corneal donor tissue with a scanning laser beam is presented. A new ablation algorithm (Optimized Scanning Laser Ablation) was recently developed and increased the quality of lenticules and donor buttons considerably.

  4. Corneal epithelial adhesion strength to tethered-protein/peptide modified hydrogel surfaces.

    PubMed

    Wallace, Christopher; Jacob, Jean T; Stoltz, Albert; Bi, Jingjing; Bundy, Kirk

    2005-01-01

    In this study, we investigated the suitability of microjet impingement for use on hydrogel materials to determine the cellular adhesion strength of corneal epithelial cells grown on novel hydrogels with extracellular matrix proteins (laminin and/or fibronectin) or a peptide sequence (fibronectin adhesion promoting peptide, FAP) tethered to their surface with poly(ethylene glycol) chains. The deformation of the hydrogel surface in response to the force of the microjet was analyzed both visually and mathematically. After the results of these experiments and calculations determined that no deformation occurred and that the pressure required for indentation (1.25 x 10(6) Pa) was three factors of 10 greater than the maximum pressure of the microjet, the relative mean adhesion strength of primary rabbit corneal epithelial cells grown on the novel poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogels was determined and compared with that of the same type of cells grown on control glass surfaces. Only confluent cell layers were tested. Cells grown on control glass surfaces adhered with a mean relative adhesion strength of 488 +/- 28 dynes/cm2. Under identical conditions, cells grown on laminin- and FAP-tethered hydrogel surfaces were unable to be removed, indicating an adhesion strength greater than 516 dynes/cm2. Cells grown on fibronectin- and fibronectin/laminin (1:1)-tethered surfaces showed significantly lower relative adhesion strengths (201 +/- 50 and 189 +/- 11 dynes/cm2, respectively), compared with laminin- and FAP-tethered surfaces (p = 0.001). Our results demonstrate that the microjet impingement method of cell adhesion analysis is applicable to hydrogel substrates. Additionally, analysis of our test surfaces indicates that fibronectin tethered to this hydrogel in the quantity and by the method used here does not induce stable ligand/receptor bonding to the epithelial cell membrane to the same degree as does laminin or FAP. PMID:15534866

  5. The generation of 4-hydroxynonenal, an electrophilic lipid peroxidation end product, in rabbit cornea organ cultures treated with UVB light and nitrogen mustard

    SciTech Connect

    Zheng, Ruijin; Po, Iris; Mishin, Vladimir; Black, Adrienne T.; Heck, Diane E.; Laskin, Debra L.; Sinko, Patrick J.; Gerecke, Donald R.; Gordon, Marion K.; Laskin, Jeffrey D.

    2013-10-15

    The cornea is highly sensitive to oxidative stress, a process that can lead to lipid peroxidation. Ultraviolet light B (UVB) and nitrogen mustard (mechlorethamine) are corneal toxicants known to induce oxidative stress. Using a rabbit air-lifted corneal organ culture model, the oxidative stress responses to these toxicants in the corneal epithelium was characterized. Treatment of the cornea with UVB (0.5 J/cm{sup 2}) or nitrogen mustard (100 nmol) resulted in the generation of 4-hydroxynonenal (4-HNE), a reactive lipid peroxidation end product. This was associated with increased expression of the antioxidant, heme oxygenase-1 (HO-1). In human corneal epithelial cells in culture, addition of 4-HNE or 9-nitrooleic acid, a reactive nitrolipid formed during nitrosative stress, caused a time-dependent induction of HO-1 mRNA and protein; maximal responses were evident after 10 h with 30 μM 4-HNE or 6 h with 10 μM 9-nitrooleic acid. 4-HNE and 9-nitrooleic acid were also found to activate Erk1/2, JNK and p38 MAP kinases, as well as phosphoinositide-3-kinase (PI3)/Akt. Inhibition of p38 blocked 4-HNE- and 9-nitrooleic acid-induced HO-1 expression. Inhibition of Erk1/2, and to a lesser extent, JNK and PI3K/Akt, suppressed only 4-HNE-induced HO-1, while inhibition of JNK and PI3K/Akt, but not Erk1/2, partly reduced 9-nitrooleic acid-induced HO-1. These data indicate that the actions of 4-HNE and 9-nitrooleic acid on corneal epithelial cells are distinct. The sensitivity of corneal epithelial cells to oxidative stress may be an important mechanism mediating tissue injury induced by UVB or nitrogen mustard. - Highlights: • UVB or nitrogen mustard causes rabbit corneal epithelial injury. • 4-Hydroxynonenal (4-HNE) was formed and heme oxygenase-1 (HO-1) was increased. • 4-HNE induced HO-1 mRNA and protein expression in human corneal epithelial cells. • The induction of HO-1 by 4-HNE was through MAP kinase activation.

  6. Combined femtosecond laser-assisted intracorneal ring segment implantation and corneal collagen cross-linking for correction of keratoconus

    PubMed Central

    Ibrahim, Osama; Elmassry, Ahmed; Said, Amr; Abdalla, Moones; El Hennawi, Hazem; Osman, Ihab

    2016-01-01

    Purpose To assess the safety, predictability, and effectiveness of Keraring intrastromal corneal ring segments (ICRS) insertion assisted by femtosecond laser and corneal collagen cross-linking (CXL) for keratoconus correction. Patients and methods In this prospective, noncomparative, and interventional case series, 160 eyes of 100 adult keratoconus patients with poor best-corrected visual acuity (BCVA) (less than 0.7) and intolerance to contact lens wear were included. Patients underwent femtosecond laser-assisted placement of ICRS and CXL. All patients were examined for a complete ophthalmological test: uncorrected visual acuity (UCVA), BCVA, spherical equivalent, keratometry (K1-flat and K2-steep), pachymetry, and Scheimpflug imaging with the Pentacam at 1 week and at 1, 3, and 6 months postoperatively. Results At 6 months, a significant difference was observed (P<0.001) in mean UCVA and BCVA from 0.92±0.677 and 0.42±0.600 logMAR preoperatively to 0.20±0.568 and 0.119±0.619 logMAR, respectively. Mean spherical equivalent refractions were significantly lower (P<0.001) at 6 months. Mean keratometry (K) also significantly reduced (P<0.001) from 50.93±5.53 D (K1-flat) and 55.37±5.76 D (K2-steep) to 47.32±4.61 and 51.08±5.38 D, respectively. In terms of pachymetry, no significant difference was observed preoperatively versus postoperatively (P=1.000). Conclusion Keraring ICRS insertion assisted by femtosecond laser and corneal CXL provided significant improvement in visual acuity, spherical equivalent, and keratometry, which suggests that it may be effective, safe, and predictable for keratoconus correction. PMID:27041991

  7. Corneal Transplant Improves Vision and Daily Life for Some Children

    MedlinePlus

    ... 01, 2011 Rare, but Effective: Corneal Transplant Improves Vision, Life for Some Children SAN FRANCISCO— Teens, children, ... Transplants were considered successful if they significantly improved vision and the new corneas remained healthy over 10 ...

  8. The management of lens damage in perforating corneal lacerations.

    PubMed Central

    Muga, R.; Maul, E.

    1978-01-01

    Lens damage is present in 30% of perforating injuries of the anterior segment of the eye. There is no consensus on whether the cataractous lens should be removed at the initial repair of the corneal laceration or later, when the eye has recovered from injury. Twenty-seven consecutive cases with a perforating corneal injury and lens damage were alternatively treated either with simultaneous corneal suturing and cataract removal or with corneal suturing and delayed cataract removal several weeks later. The difference in the frequency of complications between the 2 groups was significant. The 1-step procedure was technically easier to perform, the period of postoperative irritation was shorter, complications due to the presence of an injured lens were prevented, and visual rehabilitation occurred earlier. PMID:568933

  9. Keratoprostheses for corneal blindness: a review of contemporary devices

    PubMed Central

    Avadhanam, Venkata S; Smith, Helen E; Liu, Christopher

    2015-01-01

    According to the World Health Organization, globally 4.9 million are blind due to corneal pathology. Corneal transplantation is successful and curative of the blindness for a majority of these cases. However, it is less successful in a number of diseases that produce corneal neovascularization, dry ocular surface and recurrent inflammation, or infections. A keratoprosthesis or KPro is the only alternative to restore vision when corneal graft is a doomed failure. Although a number of KPros have been proposed, only two devices, Boston type-1 KPro and osteo-odonto-KPro, have came to the fore. The former is totally synthetic and the latter is semi-biological in constitution. These two KPros have different surgical techniques and indications. Keratoprosthetic surgery is complex and should only be undertaken in specialized centers, where expertise, multidisciplinary teams, and resources are available. In this article, we briefly discuss some of the prominent historical KPros and contemporary devices. PMID:25945031

  10. Severe unilateral corneal melting after uneventful phacoemulsification cataract surgery.

    PubMed

    Praidou, Anna; Brazitikos, Periklis; Dastiridou, Anna; Androudi, Sofia

    2013-01-01

    We present a rare case of severe unilateral corneal melt after uneventful phacoemulsification. A 38-year-old woman presented one week after uneventful phacoemulsification cataract surgery complaining of pain and blurred vision in her operated eye. Our differential diagnosis included peripheral ulcerative keratitis, Mooren's ulcer and herpetic keratitis. The patient was started on oral acyclovir and topical steroids. An extensive blood work-up was done to rule out autoimmune diseases. Purified protein derivative test demonstrated 15 mm of erythema. Because the clinical picture was progressing, the patient was started on triple anti-tuberculosis therapy. Despite treatment, the patient was complaining of excruciating eye pain that was relieved only with intramuscular prednisone injections. The corneal melt healed after approximately three months without any other intervention, leaving a 90 per cent thickness loss in its central area. Idiopathic corneal melt after uneventful phacoemulsification is a rare complication, which must be managed in a multidirectional treatment approach to prevent devastating corneal perforation.

  11. Corneal Neovascularization: An Anti-VEGF Therapy Review

    PubMed Central

    Chang, Jin-Hong; Garg, Nitin K.; Lunde, Elisa; Han, Kyu-Yeon; Jain, Sandeep; Azar, Dimitri T.

    2013-01-01

    Corneal neovascularization is a serious condition that can lead to a profound decline in vision. The abnormal vessels block light, cause corneal scarring, compromise visual acuity, and may lead to inflammation and edema. Corneal neovascularization occurs when the balance between angiogenic and antiangiogenic factors is tipped toward angiogenic molecules. Vascular endothelial growth factor (VEGF), one of the most important mediators of angiogenesis, is upregulated during neovascularization. In fact, anti-VEGF agents have efficacy in the treatment of neovascular age-related macular degeneration, diabetic retinopathy, macular edema, neovascular glaucoma, and other neovascular diseases. These same agents have great potential for the treatment of corneal neovascularization. We review some of the most promising anti-VEGF therapies, including bevacizumab, VEGF trap, siRNA, and tyrosine kinase inhibitors. PMID:22898649

  12. Corneal Gene Therapy: Basic Science and Translational Perspective

    PubMed Central

    Mohan, Rajiv R.; Rodier, Jason T.; Sharma, Ajay

    2013-01-01

    Corneal blindness is the third leading cause of blindness worldwide. Gene therapy is an emerging technology for corneal blindness due to the accessibility and immune-privileged nature of the cornea, ease of vector administration and visual monitoring, and ability to perform frequent noninvasive corneal assessment. Vision restoration by gene therapy is contingent upon vector and mode of therapeutic gene introduction into targeted cells/tissues. Numerous efficacious vectors, delivery techniques, and approaches have evolved in last decade for developing gene-based interventions for corneal diseases. Maximizing the potential benefits of gene therapy requires efficient and sustained therapeutic gene expression in target cells, low toxicity, and a high safety profile. This review describes the basic science associated with many gene therapy vectors and the present progress of gene therapy carried out for various ocular surface disorders and diseases. PMID:23838017

  13. Corneal depositions in tyrosinaemia type I during treatment with Nitisinone.

    PubMed

    Wisse, Robert P L; Wittebol-Post, Dienke; Visser, Gepke; van der Lelij, Allegonda

    2012-11-30

    We present a 17-year-old boy, diagnosed with tyrosinaemia type I at an age of 7 months, with new complaints of severe intermittent photophobia and burning eyes. His tyrosinaemia type I is treated with nitisinone and a protein-restricted diet. Dietary compliance is low since he entered puberty. His ocular complaints are attributable to subepithelial corneal deposits, resembling the common corneal phenotype of tyrosinaemia type II. Serum tyrosine levels were markedly elevated. Tyrosinaemia is a metabolic disease of tyrosine metabolism, subdivided into two types. Corneal deposits and photophobia are cardinal features of untreated tyrosinaemia type II, but not of type I. Novel treatment strategies (with nitisinone) for type I tyrosinaemia lead to a phenotype comparable with type II, including these corneal deposits. At follow-up visits his ocular complaints unfortunately remained unchanged, though he states his dietary compliance improved through the years.

  14. Transverse chromatic aberration after corneal refractive surgery

    NASA Astrophysics Data System (ADS)

    Anera, R. G.; Jiménez, J. R.; Jiménez del Barco, L.; Hita, E.

    2005-05-01

    An expression has been deduced theoretically from a schematic-eye model, for the transverse or lateral chromatic aberration (TCA) after refractive surgery. The aim was to investigate analytically how chromatic aberration varies after the emmetropization process. These changes in the TCA have been characterized from changes in corneal asphericity. The results indicate that TCA after refractive surgery diminishes as the degree of myopia increases, a trend contrary to that occurring with monochromatic aberrations, such as spherical or coma. These results can explain the fact that the real deterioration of the visual function under photopic conditions detected in those operated on for myopia is less than expected when only monochromatic aberrations are taken into account.

  15. Corneal toxic changes after cataract extraction.

    PubMed

    Zabel, R W; Mintsioulis, G; MacDonald, I M; Valberg, J; Tuft, S J

    1989-12-01

    Over an 18-month period 10 patients (12 eyes) presented with severe corneal toxic changes after cataract extraction. Defined stages in the keratopathy included punctate epithelial keratopathy, pseudodendrite, central epithelial ulcer and central stromal ulcer. Periods of up to 13 months were required for resolution of the defects. Axial scarring and nonhealing epithelial defects resulted in a final visual acuity of counting fingers and hand movement in two patients. We believe that exposure during the postoperative period to benzalkonium chloride contained in ophthalmic medications represents the most likely cause of the toxic changes and that no single ophthalmic medication can be held responsible. The past ocular histories of the patients included chronic open-angle glaucoma, dry eye syndrome and anterior membrane dystrophy. Prior exposure to benzalkonium-containing antiglaucoma medications, tear film deficiencies or abnormalities of epithelial adhesion may have predisposed the corneas in these patients to the development of benzalkonium-related toxic changes.

  16. Crystalline corneal opacities in the Siberian Husky.

    PubMed

    MacMillan, A D; Waring, G O; Spangler, W L; Roth, A M

    1979-10-15

    Bilaterally symmetric opacities were detected in the corneal stroma of 78 (14%) of 560 Siberian Huskies, aged 7 months to 12 years, examined in ophthalmology screening clinics. The opacities were round or horizontally oval and consisted of a diffuse gray homogeneous haze in the anterior stroma or an array of fine polychromatic crystals in the posterior stroma, or both. The corneas were not inflamed. The frequency of occurrence and density of the opacities increased with age. Several affected dogs were closely related, but a specific inheritance pattern could not be established. Light and electron microscopy disclosed clusters of extracellular, thin, needle-shaped, crystalline clefts. Histochemical stains on frozen sections identified neutral fats, phospholipids, and cholesterol as components of the crystals.

  17. Transplantation of corneal endothelium with Descemet’s membrane using a hyroxyethyl methacrylate polymer as a carrier

    PubMed Central

    Shimmura, S; Miyashita, H; Konomi, K; Shinozaki, N; Taguchi, T; Kobayashi, H; Shimazaki, J; Tanaka, J; Tsubota, K

    2005-01-01

    Aims: To evaluate the histology and function of Descemet’s membrane transplanted with intact endothelium. Methods: Japanese white rabbits and human eyebank eyes were used as donors and recipients of Descemet’s membrane transplantation. Donor endothelium was hydrodissected by injecting indocyanine green from a limbal incision, and then processed as a corneal scleral button. A 6 mm diameter donor sheet was trephined, and folded in half using a 6 mm diameter polymer as a carrier. Recipient endothelium was also hydrodissected from the limbus using trypan blue to stain the Descemet’s membrane. Continuous curvilinear descemetorhexis (CCD) was performed to remove a circular section of the Descemet’s membrane using a 27 gauge cystotome. Donor tissue was inserted into the anterior chamber through a 5 mm limbal incision and apposed to the host stroma. Polymers were removed following transplantation. Similar surgical procedures were performed in both rabbits and eyebank eyes. Haematoxylin eosin stains were performed after 28 days in rabbits, and eyebank eyes were fixed immediately following surgery for endothelial cell counts. Results: Rabbit control eyes demonstrated stromal oedema caused by loss of Descemet’s membrane, whereas transplanted eyes had clear corneas. The mean (standard deviation) pachymetry of operated eyes was 376.6 (SD 32.5) μm compared with 389.6 (SD 25.1) μm in the unoperated eye. Mean endothelial density immediately following surgery in eyebank eyes was 2749 (SD 288) cells/mm2. Conclusions: Transplantation of Descemet’s membrane by CCD produces a functional graft with an optically clear interface similar to control cornea. PMID:15665339

  18. Advances in the technology of corneal cross-linking for keratoconus.

    PubMed

    Lytle, Grace

    2014-11-01

    Corneal cross-linking (CXL) with ultraviolet-A (UVA) and riboflavin was introduced over 15 years ago and has been widely adopted as a treatment for keratoconus. Several studies have demonstrated the safety and efficacy of the procedure performed according to a standard protocol. Recent scientific and technological advances have highlighted the opportunity for optimization of the CXL procedure through modifications to this protocol. Advances in the technology of CXL include new riboflavin formulations, higher irradiance UVA sources, and programmable UVA illumination patterns. Several laboratory and clinical studies demonstrate that these modifications may provide equivalent treatment effect in shorter total treatment times. Additionally, although the original purpose of CXL was to stabilize the cornea and prevent further visual loss in keratoconus, patient-specific computational modeling and customized CXL with programmable UVA treatment patterns demonstrate the potential for CXL to be used as a means of improving corneal topography to maximize visual rehabilitation in patients with keratoconus. This review aims to provide an overview of these advances in CXL technology designed to optimize the efficiency or efficacy of the clinical CXL procedure.

  19. Brillouin Optical Microscopy for Corneal Biomechanics

    PubMed Central

    Scarcelli, Giuliano; Pineda, Roberto

    2012-01-01

    Purpose. The mechanical properties of corneal tissue are linked to prevalent ocular diseases and therapeutic procedures. Brillouin microscopy is a novel optical technology that enables three-dimensional mechanical imaging. In this study, the feasibility of this noncontact technique was tested for in situ quantitative assessment of the biomechanical properties of the cornea. Methods. Brillouin light-scattering involves a spectral shift proportional to the longitudinal modulus of elasticity of the tissue. A 532-nm single-frequency laser and a custom-developed ultrahigh-resolution spectrometer were used to measure the Brillouin frequency. Confocal scanning was used to perform Brillouin elasticity imaging of the corneas of whole bovine eyes. The longitudinal modulus of the bovine corneas was compared before and after riboflavin corneal collagen photo-cross-linking. The Brillouin measurements were then compared with conventional stress–strain mechanical test results. Results. High-resolution Brillouin images of the cornea were obtained, revealing a striking depth-dependent variation of the elastic modulus across the cornea. Along the central axis, the Brillouin frequency shift varied gradually from 8.2 GHz in the epithelium to 7.5 GHz near the endothelium. The coefficients of the down slope were measured to be approximately 1.09, 0.32, and 2.94 GHz/mm in the anterior, posterior, and innermost stroma, respectively. On riboflavin collagen cross-linking, marked changes in the axial Brillouin profiles (P < 0.001) were noted before and after cross-linking. Conclusions. Brillouin imaging can assess the biomechanical properties of cornea in situ with high spatial resolution. This novel technique has the potential for use in clinical diagnostics and treatment monitoring. PMID:22159012

  20. Tear Mediators in Corneal Ectatic Disorders

    PubMed Central

    Pásztor, Dorottya; Kolozsvári, Bence Lajos; Csutak, Adrienne; Berta, András; Hassan, Ziad; Ujhelyi, Bernadett; Gogolák, Péter; Fodor, Mariann

    2016-01-01

    Purpose To compare the concentrations of 11 tear mediators in order to reveal the biochemical difference between pellucid marginal degeneration (PMD) and keratoconus (KC). Methods We have designed a cross-sectional study in which patients with corneal ectasia based on slit-lamp biomicroscopy and Pentacam HR (keratometry values (K1, K2, Kmax), astigmatism, minimal radius of curvature (Rmin), corneal thickness (Apex and Min), indices (surface variation, vertical asymmetry, keratoconus, central keratoconus, height asymmetry and decentration)) were enrolled. Eyes of keratoconic patients were similar to the PMD patients in age and severity (K2, Kmax and Rmin). Non-stimulated tear samples were collected from nine eyes of seven PMD patients, 55 eyes of 55 KC patients and 24 eyes of 24 healthy controls. The mediators’ (interleukin -6, -10, chemokine ligand 5, -8, -10, matrix metalloproteinase (MMP) -9, -13, tissue inhibitor of metalloproteinases (TIMP)-1, tissue plasminogen activator, plasminogen activator inhibitor, nerve growth factor) concentrations were measured using Cytometric Bead Array. Results MMP-9 was the only mediator which presented relevant variances between the two patient groups (p = 0.005). The ratios of MMP-9 and TIMP-1 were 2.45, 0.40 and 0.23 in PMD, KC and the controls, respectively. Conclusion As far as we are aware, this is the first study that aims to reveal the biochemical differences between PMD and KC. Further studies of biomarkers to investigate the precise role of these mediators need to be defined, and it is important to confirm the observed changes in a larger study to gain further insights into the molecular alterations in PMD. PMID:27074131

  1. Hypertonic saline in the treatment of corneal jellyfish stings.

    PubMed

    Yu Yao, Hsin; Cho, Ta Hsiung; Lu, Ching Hsiang; Lin, Feng Chi; Horng, Chi Ting

    2016-02-01

    A 20-year-old male soldier was hit by the jellyfish. The ophthalmic examination revealed that epithelial keratitis and corneal oedema in the right eye. We prescribed 3% NaCl eyedrops and 0.3% Norfloxacin eyedrops in the treatment of the corneal jellyfish stings. Two weeks later, the cornea in the right eye healed. In this case report, 3% NaCl eyedrops was effective in the treatment of acute phase of jellyfish stings of the cornea. PMID:26883926

  2. Corneal autofluorescence in choroidal melanoma or in choroidal naevus

    PubMed Central

    Muskens, R; Van Best, J A; Bleeker, J; Keunen, J

    2001-01-01

    AIMS—To investigate whether corneal autofluorescence is different in patients with choroidal melanoma or choroidal naevus.
METHODS—Corneal autofluorescence was determined by fluorophotometry in both eyes of 32 patients with a unilateral choroidal melanoma, 32 patients with a unilateral choroidal naevus, and 32 age matched healthy controls. The corneal autofluorescence ratio between affected and contralateral eyes of patients or between randomly selected eyes of healthy controls was calculated.
RESULTS—Mean corneal autofluorescence ratio of patients with a choroidal melanoma was significantly higher than that of healthy controls (mean ratio: 1.09 (SD 0.15) and 1.00 (0.09), respectively, ANOVA p=0.014), and than that of patients with choroidal naevus (mean ratio 0.96 (0.09), p<0.001). Mean ratios of patients with choroidal naevus and healthy controls were not significantly different (p=0.27).
CONCLUSIONS—Corneal autofluorescence ratio of patients with a unilateral choroidal melanoma is increased. This is probably due to an increased flow of glucose through the impaired blood-aqueous barrier in the affected eye, resulting in additional glycation of corneal proteins and hence in increased autofluorescence. The corneal autofluorescence is not increased in patients with a choroidal naevus, because the blood-aqueous barrier is not impaired in the affected eye in these patients. Measurement of corneal autofluorescence is simple, fast, and non-invasive, and might be helpful to distinguish between patients with choroidal melanoma and those with choroidal naevus.

 PMID:11371483

  3. [The use of iontophoresis in corneal crosslinking technique].

    PubMed

    Stanca, Horia T; Tabacaru, Bogdana

    2013-01-01

    Iontophoresis is a method of facilitating the penetration of a drug through an intact tissue in the presence of an low intensity electrical current. In corneal crosslinking technique, iontophoresis is used for transepitelial impregnation of cornea with riboflavin. Compared to passive technique of corneal impregnation, iontophoresis shortens the time needed for impregnation, the time of exposure to UVA radiation and does not require de-epithelialisation.

  4. Optical Coherence Tomography of Clear Corneal Incisions for Cataract Surgery

    PubMed Central

    Schallhorn, Julie M.; Tang, Maolong; Li, Yan; Song, Jonathan C.; Huang, David

    2008-01-01

    Purpose To study the architecture of clear corneal incisions for phacoemulsification cataract surgery using optical coherence tomography (OCT). Setting University-based cornea practice. Methods A prospective study of twenty eyes of twenty patients one month after cataract surgery performed by two experienced surgeons. Temporal clear corneal single-plane incisions were made with 3-mm metal keratomes; five of the twenty eyes received sutures for wound closure. Each eye was scanned before and 1 month after surgery with a prototype high-speed anterior segment OCT system (Carl Zeiss Meditec Inc.). The OCT scans were repeated 3 times during the same visit. The length of the corneal incision, thickness of the cornea, and position of the incision (distance from the external wound edge to the scleral spur) were measured using a computer caliper. The angle of the incision relative to the corneal surface was then calculated. Results The mean corneal incision length was 1.81±0.27mm, the mean corneal thickness at the incision was 747±67µm, and the mean distance between the incision and the scleral spur was 1.46±0.24mm. The average angle of the incision was 26.8±5.5°. The measurements were repeatable to within 0.072mm (pooled standard deviation) for the incision length, 11µm for the corneal thickness, and 0.042mm for the position of the incision. There was no statistically significant difference in any of the parameters between eyes with sutures and those without. Conclusions OCT provides an excellent way to evaluate corneal incisions in cataract surgery postoperatively. Measurements of wound dimensions using OCT are highly repeatable. PMID:18721720

  5. The IC3D Classification of the Corneal Dystrophies

    PubMed Central

    Weiss, Jayne S.; Møller, H. U.; Lisch, Walter; Kinoshita, Shigeru; Aldave, Anthony J.; Belin, Michael W.; Kivelä, Tero; Busin, Massimo; Munier, Francis L.; Seitz, Berthold; Sutphin, John; Bredrup, Cecilie; Mannis, Mark J.; Rapuano, Christopher J.; Van Rij, Gabriel; Kim, Eung Kweon; Klintworth, Gordon K.

    2010-01-01<