Science.gov

Sample records for rabbit tibial defect

  1. Allografts with autogenous platelet-rich plasma for tibial defect reconstruction: a rabbit study.

    PubMed

    Nather, Aziz; Wong, Keng Lin; David, Vikram; Pereira, Barry P

    2012-12-01

    To evaluate the effect of autogenous platelet-rich plasma (PRP) for fresh-frozen allografts in tibial defect reconstruction in rabbits. 40 adult New Zealand white rabbits underwent tibial defect reconstruction with autografts (n=12), allografts without PRP (n=12), or allografts with PRP (n=12) and were observed for 12, 16, and 24 weeks (4 for each period). Tibias of the remaining 4 rabbits were used as donor allografts, and the remaining allografts were procured from recipient rabbits. A 1.5- cm cortical segment of the tibia was osteotomised, and then fixed with a 9-hole mini-compression plate and 2 cerclage wires. Allografts were stripped off the periosteum and soft tissues and medullary contents, and then stored in a freezer at -80 ºC. All allografts were deep frozen for at least 4 weeks before transplantation. 7 ml of whole blood was drawn to prepare 1 ml of PRP. The PRP was then mixed with 1.0 ml of human thrombin to form a platelet gel. The PRP gel was then packed into the medullary canal of the allograft and applied on the cortical surface before tibial defect reconstruction. Rabbits were sacrificed at 12, 16, and 24 weeks. The specimens were assessed for bone union at host-graft junctions and for bone resorption, new bone formation, callus encasement, and viable osteocyte counts. There were 4 specimens in each group at each observation period. Osteoid bridging the gap at host-graft junctions was noted in all specimens in the autograft and allograft-with-PRP groups at week 12 and in the allograft-without-PRP group at week 24. Bone union in allografts without PRP was delayed. All indices for biological incorporation (resorption index, new bone formation index, callus encasement index, and viable osteocyte count) were significantly greater in the autograft than allograft-without-PRP groups, except for the resorption index at week 24, whereas the differences were not significant between the autograft and allograft-with-PRP groups. The differences between the 2

  2. Effect of Hydroxyapatite on Bone Integration in a Rabbit Tibial Defect Model

    PubMed Central

    Sohn, Sung-Keun; Kim, Kyung-Taek; Kim, Chul-Hong; Ahn, Hee-Bae; Rho, Mee-Sook; Jeong, Min-Ho; Sun, Sang-Kyu

    2010-01-01

    Background The aim of the present study was to prepare hydroxyapatite (HA) and then characterize its effect on bone integration in a rabbit tibial defect model. The bone formation with different designs of HA was compared and the bony integration of several graft materials was investigated qualitatively by radiologic and histologic study. Methods Ten rabbits were included in this study; two holes were drilled bilaterally across the near cortex and the four holes in each rabbit were divided into four treatment groups (HAP, hydroxyapatite powder; HAC, hydroxyapatite cylinder; HA/TCP, hydroxyapatite/tri-calcium phosphate cylinder, and titanium cylinder). The volume of bone ingrowth and the change of bone mineral density were statistically calculated by computed tomography five times for each treatment group at 0, 2, 4, 6, and 8 weeks after grafting. Histologic analysis was performed at 8 weeks after grafting. Results The HAP group showed the most pronounced effect on the bone ingrowth surface area, which seen at 4, 6, and 8 weeks after graft (p < 0.05). On comparing the change of bone mineral density the bone ingrowth surface area among the 4 groups, there were no statistically significant differences among the groups found for any period (p > 0.05). On histological examination, the HAP group revealed well-recovered cortical bone, but the bone was irregularly thickened and haphazardly admixed with powder. The HAC group showed similar histological features to those of the HA/TCP group; the cortical surface of the newly developed bone was smooth and the bone matrix on the surface of the cylinder was regularly arranged. Conclusions We concluded that both the hydroxyapatite powder and cylinder models investigated in our study may be suitable as a bone substitute in the rabbit tibial defect model, but their characteristic properties are quite different. In contrast to hydroxyapatite powder, which showed better results for the bone ingrowth surface, the hydroxyapatite

  3. Evaluation of carbonate apatite blocks fabricated from dicalcium phosphate dihydrate blocks for reconstruction of rabbit femoral and tibial defects.

    PubMed

    Kanazawa, Masayuki; Tsuru, Kanji; Fukuda, Naoyuki; Sakemi, Yuta; Nakashima, Yasuharu; Ishikawa, Kunio

    2017-06-01

    This study aimed to evaluate in vivo behavior of a carbonate apatite (CO 3 Ap) block fabricated by compositional transformation via a dissolution-precipitation reaction using a calcium hydrogen phosphate dihydrate [DCPD: CaHPO 4 ·2H 2 O] block as a precursor. These blocks were used to reconstruct defects in the femur and tibia of rabbits, using sintered dense hydroxyapatite (HAp) blocks as the control. Both the CO 3 Ap and HAp blocks showed excellent tissue response and good osteoconductivity. HAp block maintained its structure even after 24 weeks of implantation, so no bone replacement of the implant was observed throughout the post-implantation period in either femoral or tibial bone defects. In contrast, CO 3 Ap was resorbed with increasing time after implantation and replaced with new bone. The CO 3 Ap block was resorbed approximately twice as fast at the metaphysis of the proximal tibia than at the epiphysis of the distal femur. The CO 3 Ap block was resorbed at an approximately linear change over time, with complete resorption was estimated by extrapolation of data at approximately 1-1.5 years. Hence, the CO 3 Ap block fabricated in this study has potential value as an ideal artificial bone substitute because of its resorption and subsequent replacement by bone.

  4. Effect of interstitial low level laser therapy on tibial defect

    NASA Astrophysics Data System (ADS)

    Lee, Sangyeob; Ha, Myungjin; Hwang, Donghyun; Yu, Sungkon; Jang, Seulki; Park, Jihoon; Radfar, Edalat; Kim, Hansung; Jung, Byungjo

    2016-03-01

    Tibial defect is very common musculoskeletal disorder which makes patient painful and uncomfortable. Many studies about bone regeneration tried to figure out fast bone healing on early phase. It is already known that low level laser therapy (LLLT) is very convenient and good for beginning of bone disorder. However, light scattering and absorption obstruct musculoskeletal therapy which need optimal photon energy delivery. This study has used an interstitial laser probe (ILP) to overcome the limitations of light penetration depth and scattering. Animals (mouse, C57BL/6) were divided into three groups: laser treated test group 1 (660 nm; power 10 mW; total energy 5 J) and test group 2 (660 nm; power 20 mW; total energy 10 J); and untreated control group. All animals were taken surgical operation to make tibial defect on right crest of tibia. The test groups were treated every 48 hours with ILP. Bone volume and X-ray attenuation coefficient were measured on 0, 14th and 28th day with u-CT after treatment and were used to evaluate effect of LLLT. Results show that bone volume of test groups has been improved more than control group. X-ray attenuation coefficients of each groups have slightly different. The results suggest that LLLT combined with ILP may affect on early phase of bone regeneration and may be used in various musculoskeletal disease in deep tissue layer.

  5. Transplantation of free tibial periosteal grafts for the repair of articular cartilage defect: An experimental study

    PubMed Central

    Singh, Ravijot; Chauhan, Vijendra; Chauhan, Neena; Sharma, Sansar

    2009-01-01

    Background: Articular chondrocytes have got a long lifespan but rarely divides after maturity. Thus, an articular cartilage has a limited capacity for repair. Periosteal grafts have chondrogenic potential and have been used to repair defects in the articular cartilage. The purpose of the present study is to investigate the differentiation of free periosteal grafts in the patellofemoral joint where the cambium layer faces the subchondral bone and to investigate the applicability of periosteal grafts in the reconstruction of articular surfaces. Materials and Methods: The study was carried out over a period of 1 year on 25 adult, male Indian rabbits after obtaining permission from the institutional animal ethical committee. A full-thickness osteochondral defect was created by shaving off the whole articular cartilage of the patella of the left knee. The defect thus created was grafted with free periosteal graft. The patella of the right knee was taken as a control where no grafting was done after shaving off the articular cartilage. The first animal was used to study the normal histology of the patellar articular cartilage and periosteum obtained from the medial surface of tibial condyle. Rest 24 animals were subjected to patellectomy, 4 each at serial intervals of 2, 4, 8, 16, 32 and 48 weeks and the patellar articular surfaces were examined macroscopically and histologically. Results: The grafts got adherent to the underlying patellar articular surface at the end of 4 weeks. Microscopically, graft incorporation could be appreciated at 4 weeks. Mesenchymal cells of the cambium layer were seen differentiating into chondrocytes by the end of 4 weeks in four grafts (100%) and they were arranged in a haphazard manner. Till the end of 8 weeks, the cellular arrangement was mostly wooly. At 16 weeks, one graft (25%) had wooly arrangement of chondrocytes and three grafts (75%) had columnar formation of cells. Same percentage was maintained at 32 weeks. Four grafts (100%) at

  6. Experimental and finite element analysis of tibial stress fractures using a rabbit model.

    PubMed

    Franklyn, Melanie; Field, Bruce

    2013-01-01

    To determine if rabbit models can be used to quantify the mechanical behaviour involved in tibial stress fracture (TSF) development. Fresh rabbit tibiae were loaded under compression using a specifically-designed test apparatus. Weights were incrementally added up to a load of 30 kg and the mechanical behaviour of the tibia was analysed using tests for buckling, bone strain and hysteresis. Structural mechanics equations were subsequently employed to verify that the results were within the range of values predicted by theory. A finite element (FE) model was developed using cross-sectional computer tomography (CT) images scanned from one of the rabbit bones, and a static load of 6 kg (1.5 times the rabbit's body weight) was applied to represent running. The model was validated using the experimental strain gauge data, then geometric and elemental convergence tests were performed in order to find the minimum number of cross-sectional scans and elements respectively required for convergence. The analysis was then performed using both the model and the experimental results to investigate the mechanical behaviour of the rabbit tibia under compressive load and to examine crack initiation. The experimental tests showed that under a compressive load of up to 12 kg, the rabbit tibia demonstrates linear behaviour with little hysteresis. Up to 30 kg, the bone does not fail by elastic buckling; however, there are low levels of tensile stress which predominately occur at and adjacent to the anterior border of the tibial midshaft: this suggests that fatigue failure occurs in these regions, since bone under cyclic loading initially fails in tension. The FE model predictions were consistent with both mechanics theory and the strain gauge results. The model was highly sensitive to small changes in the position of the applied load due to the high slenderness ratio of the rabbit's tibia. The modelling technique used in the current study could have applications in the development of

  7. Segmental transports for posttraumatic lower extremity bone defects: are femoral bone transports safer than tibial?

    PubMed

    Liodakis, Emmanouil; Kenawey, Mohamed; Krettek, Christian; Ettinger, Max; Jagodzinski, Michael; Hankemeier, Stefan

    2011-02-01

    The long-term outcomes following femoral and tibial segment transports are not well documented. Purpose of the study is to compare the complication rates and life quality scores of femoral and tibial transports in order to find what are the complication rates of femoral and tibial monorail bone transports and if they are different? We retrospectively analyzed the medical records of 8 femoral and 14 tibial consecutive segment transports performed with the monorail technique between 2001 and 2008 in our institution. Mean follow-up was 5.1 ± 2.1 years with a minimum follow-up of 2 years. Aetiology of the defects was posttraumatic in all cases. Four femoral (50%) and nine tibial (64%) fractures were open. The Short Form-36 (SF-36) health survey was used to compare the life quality after femoral and tibial bone transports. The Mann-Whiney U test, Fisher exact test, and the Student's two tailed t-test were used for statistical analysis. P ≤ 0.05 was considered to be statistically significant. The tibial transport was associated with higher rates of severe complications and additional procedures (1.5 ± 0.9 vs. 3.4 ± 2.7, p = 0.048). Three patients of the tibial group were amputated because of recurrent infections and one developed a complete regenerate insufficiency that was treated with partial diaphyseal tibial replacement. Contrary to that none of patients of the femoral group developed a complete regenerate insufficiency or was amputated. Tibial bone transports have a higher rate of complete and incomplete regenerate insufficiency and can more often end in an amputation. The authors suggest systematic weekly controls of the CRP value and of the callus formation in patients with posttraumatic tibia bone transports. Further comparative studies comparing the results of bone transports with and without intramedullary implants are necessary.

  8. [The speed of nerve-conduction after micro-surgical suture of the tibial nerve of the rabbit (author's transl)].

    PubMed

    Weigert, M; Mellerowicz, H; Werhahn, C

    1975-10-01

    Isolated division of the tibial nerve in the thigh preserving the peroneal and sural nerves does not cause loss of normal position of the animal, in particular of sitting. Nor does it lead to pressure sores. The animals are fitter then after division of the sciatic nerve. Microsurgical suture of the isolated tibial nerve in the thigh of the rabbit with 1 or 2 simple sutures with 10 x 0 thread show that an average recovery can be achieved in over 80 per cent. As few sutures as possible should be used. Otherwise there with be scarring and no return of function.

  9. The application of porous tantalum cylinder to the repair of comminuted bone defects: a study of rabbit firearm injuries

    PubMed Central

    Ren, Bo; Zhai, Zhenbo; Guo, Kai; Liu, Yanpu; Hou, Weihuan; Zhu, Qingsheng; Zhu, Jinyu

    2015-01-01

    The aim of this study is to investigate the effect of porous tantalum material in repair tibial defects caused by firearm injuries in a rabbit model. A multifunctional biological impact machine was used to establish a rabbit tibial defect model of firearm injury. Porous tantalum rods were processed into a hollow cylinder. Kirschner wires were used for intramedullary fixation. We compared the differences of the bone ingrowth of the porous tantalum material by gross observations, X-rays and histological evaluations. The radiographic observations revealed that fibrous tissue covered the material surface after 4 weeks, and periosteal reactions and new bone callus extending materials appeared after 8 weeks. After 16 weeks, the calluses of the firearm injury group were completely wrapped around a porous tantalum material. The group with the highest Lane-Sandhu X-rays cores was the firearm injury and tantalum implant group, and the blank control group exhibited the lowest scores. The histological evaluations revealed that the presence of new bone around the biomaterial had grown into the porous tantalum. By the 16th week, the areas of bone tissue of the firearm injury group was significant higher than that of non-firearm injury group (P<0.05). The comminuted fractures treated with tantalum cylinders exhibited greater bone ingrowth in the firearm injury group. In conditions of firearm injuries, the porous tantalum biomaterial exhibited bone ingrowth that was beneficial to the treatment of bone defects. PMID:26131078

  10. Differences in joint morphology between the knee and ankle affect the repair of osteochondral defects in a rabbit model.

    PubMed

    Makitsubo, Manami; Adachi, Nobuo; Nakasa, Tomoyuki; Kato, Tomohiro; Shimizu, Ryo; Ochi, Mitsuo

    2016-10-04

    Although differences in the results of the bone marrow stimulation technique between the knee and ankle have been reported, a detailed mechanism for those differences has not been clarified. The purpose of this study was to examine whether morphological differences between the knee and ankle joint affect the results of drilling as treatment for osteochondral defects in a rabbit model. Osteochondral defects were created at the knee and ankle joint in the rabbit. In the knee, osteochondral defects were created at the medial femoral condyle (MFC) and patellar groove (PG). At the ankle, defects were created in the talus at either a covered or uncovered area by the tibial plafond. After creating the osteochondral defect, drilling was performed. At 4, 8, and 12 weeks after surgery, repair of the osteochondral defects were evaluated histologically. The proliferation of rabbit chondrocytes and proteoglycan release of cartilage tissue in response to IL-1β were analyzed in vitro in both joints. At 8 weeks after surgery, hyaline cartilage repair was observed in defects at the covered area of the talus and the MFC. At 12 weeks, hyaline cartilage with a normal thickness was observed for the defect at the covered area of the talus, but not for the defect at the MFC. At 12 weeks, subchondral bone formation progressed and a normal contour of subchondral bone was observed on CT in the defect at the covered area of the talus. No significant differences in chondrocyte proliferation rate and proteoglycan release were detected between the knee and ankle in vitro. Our results demonstrate that the covered areas of the talus show early and sufficient osteochondral repair compared to that of the knee and the uncovered areas of the talus. These results suggest that the congruent joint shows better subchondral repair prior to cartilage repair compared to that of the incongruent joint.

  11. Treatment of large posttraumatic tibial bone defects using the Ilizarov method: a subjective outcome assessment.

    PubMed

    Krappinger, Dietmar; Irenberger, Alexander; Zegg, Michael; Huber, Burkhart

    2013-06-01

    The treatment of large posttraumatic tibial bone defects using the Ilizarov method was shown to be successful in several studies. These studies, however, typically focus on the radiological and functional outcome using objective parameters only. The aim of the present study was therefore to assess the objective and subjective outcome of a consecutive series of patients with large posttraumatic tibial bone defects using the Ilizarov method. Additionally, it was our goal to assess the physical and mental stress for the patients and their relatives during the long treatment period and the general health status at final follow-up. A consecutive series of 15 patients with posttraumatic tibial bone defects of >30 mm after sustaining open tibial fractures and failure of internal fixation was included. The objective outcome was assessed at final follow-up using Paley's criteria. For the assessment of the subjective outcome, all patients were asked to evaluate their satisfaction with the function of the lower leg, the cosmetic appearance and overall outcome as well. The physical and mental stress of the treatment for the patients and the nearest relative of patients were assessed at the time of frame removal using a custom-made questionnaire. The SF-36 was used to evaluate the general health status at final follow-up. Solid bone union with stable soft tissue coverage and eradication of infection was achieved in all patients despite a high complication rate. The functional outcome at final follow-up was excellent or good in all patients. The patients' satisfaction with the overall outcome and the function of the lower extremity was high as well. The fear of amputation and complications was the major subjective burden for both the patients and their relatives. The long external fixation time is another relevant issue. The Ilizarov method is a safe option for the treatment of large posttraumatic tibial bone defects after failure of internal fixation despite the high

  12. Defining the Lower Limit of a "Critical Bone Defect" in Open Diaphyseal Tibial Fractures.

    PubMed

    Haines, Nikkole M; Lack, William D; Seymour, Rachel B; Bosse, Michael J

    2016-05-01

    To determine healing outcomes of open diaphyseal tibial shaft fractures treated with reamed intramedullary nailing (IMN) with a bone gap of 10-50 mm on ≥50% of the cortical circumference and to better define a "critical bone defect" based on healing outcome. Retrospective cohort study. Forty patients, age 18-65, with open diaphyseal tibial fractures with a bone gap of 10-50 mm on ≥50% of the circumference as measured on standard anteroposterior and lateral postoperative radiographs treated with IMN. IMN of an open diaphyseal tibial fracture with a bone gap. Level-1 trauma center. Healing outcomes, union or nonunion. Forty patients were analyzed. Twenty-one (52.5%) went on to nonunion and nineteen (47.5%) achieved union. Radiographic apparent bone gap (RABG) and infection were the only 2 covariates predicting nonunion outcome (P = 0.046 for infection). The RABG was determined by measuring the bone gap on each cortex and averaging over 4 cortices. Fractures achieving union had a RABG of 12 ± 1 mm versus 20 ± 2 mm in those going on to nonunion (P < 0.01). This remained significant when patients with infection were removed. Receiver operator characteristic analysis demonstrated that RABG was predictive of outcome (area under the curve of 0.79). A RABG of 25 mm was the statistically optimal threshold for prediction of healing outcome. Patients with open diaphyseal tibial fractures treated with IMN and a <25 mm RABG have a reasonable probability of achieving union without additional intervention, whereas those with larger gaps have a higher probability of nonunion. Research investigating interventions for RABGs should use a predictive threshold for defining a critical bone defect that is associated with greater than 50% risk of nonunion without supplementary treatment. Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.

  13. Treatment of open tibial fracture with bone defect caused by high velocity missiles: a case report.

    PubMed

    Golubović, Zoran; Vukajinović, Zoran; Stojiljković, Predrag; Golubović, Ivan; Visnjić, Aleksandar; Radovanović, Zoran; Najman, Stevo

    2013-01-01

    Tibia fracture caused by high velocity missiles is mostly comminuted and followed by bone defect which makes their healing process extremely difficult and prone to numerous complications. A 34-year-old male was wounded at close range by a semi-automatic gun missile. He was wounded in the distal area of the left tibia and suffered a massive defect of the bone and soft tissue. After the primary treatment of the wound, the fracture was stabilized with an external fixator type Mitkovic, with convergent orientation of the pins. The wound in the medial region of the tibia was closed with the secondary stitch, whereas the wound in the lateral area was closed with the skin transplant after Thiersch. Due to massive bone defect in the area of the rifle-missile wound six months after injury, a medical team placed a reconstructive external skeletal fixator type Mitkovic and performed corticotomy in the proximal metaphyseal area of the tibia. By the method of bone transport (distractive osteogenesis), the bone defect of the tibia was replaced. After the fracture healing seven months from the secondary surgery, the fixator was removed and the patient was referred to physical therapy. Surgical treatment of wounds, external fixation, performing necessary debridement, adequate antibiotic treatment and soft and bone tissue reconstruction are essential in achieving good results in patients with the open tibial fracture with bone defect caused by high velocity missiles. Reconstruction of bone defect can be successfully treated by reconstructive external fixator Mitkovic.

  14. [Current treatment situation and progress on bone defect of collapsed tibial plateau fractures].

    PubMed

    Luo, Chang-qi; Fang, Yue; Tu, Chong-qi; Yang, Tian-fu

    2016-02-01

    Characteristics of collapsed tibial plateau fracture determines that the joint surface must remain anatomical reduction,line of force in tibial must exist and internal fixation must be strong. However, while renewing articular surface smoothness, surgeons have a lot of problems in dealing with bone defect under the joint surface. Current materials used for bone defect treatment include three categories: autologous bone, allograft bone and bone substitutes. Some scholars think that autologous bone grafts have a number of drawbacks, such as increasing trauma, prolonged operation time, the limited source, bone area bleeding,continuous pain, local infection and anesthesia,but most scholars believe that the autologous cancellous bone graft is still the golden standard. Allograft bone has the ability of bone conduction, but the existence of immune responses, the possibility of a virus infection, and the limited source of the allograft cannot meet the clinical demands. Likewise, bone substitutes have the problem that osteogenesis does not match with degradation in rates. Clinical doctors can meet the demand of the patient's bone graft according to patient's own situation and economic conditions.

  15. Ilizarov bone transport versus fibular graft for reconstruction of tibial bone defects in children.

    PubMed

    Abdelkhalek, Mostafa; El-Alfy, Barakat; Ali, Ayman M

    2016-11-01

    The aim of this study was to compare the results of treatment of segmental tibial defects in the pediatric age group using an Ilizarov external fixator versus a nonvascularized fibular bone graft. This study included 24 patients (age range from 5.5 to 15 years) with tibial bone defects: 13 patients were treated with bone transport (BT) and 11 patients were treated with a nonvascularized fibular graft (FG). The outcome parameters were bone results (union, deformity, infection, leg-length discrepancy) and functional results: external fixation index and external fixation time. In group A (BT), one patient developed refracture at the regenerate site, whereas, in group B (FG), after removal of the external fixator, one of the FGs developed a stress fracture. The external fixator time in group A was 10.7 months (range 8-14.5) versus 7.8 months (range 4-11.5 months) in group B (FG). In group A (BT), one patient had a limb-length discrepancy (LLD), whereas, in group B (FG), three patients had LLD. The functional and bone results of the Ilizarov BT technique were excellent in 23.1 and 30.8%, good in 38.5 and 46.2, fair in 30.8 and 15.4, and poor in 7.6 and 7.6%, respectively. The poor functional result was related to the poor bone result because of prolonged external fixator time resulting in significant pain, limited ankle motion, whereas the functional and bone results of fibular grafting were excellent in 9.1 and 18.2%, good in 63.6 and 45.5%, fair in 18.2 and 27.2%, and poor in 9.1 and 9.1%, respectively. Segmental tibial defects can be effectively treated with both methods. The FG method provides satisfactory results, with early removal of the external fixator. However, it had a limitation in patients with severe infection and those with LLD. Also, it requires a long duration of limb bracing until adequate hypertrophy of the graft. The Ilizarov method has the advantages of early weight bearing, treatment of postinfection bone defect in a one-stage surgery, and the

  16. Influence of phototherapies on the outcome of complete tibial fractures grafted or not with MTA: Raman spectroscopic study on rabbits

    NASA Astrophysics Data System (ADS)

    Pinheiro, Antônio L. B.; Soares, Luiz G. P.; da Silva, Aline C. P.; Santos, Nicole R. S.; da Silva, Anna Paula L. T.; Neves, Bruno Luiz R. C.; Soares, Amanda P.; Silveira, Landulfo

    2018-02-01

    The aim of the present study was to assess, by means of Raman spectroscopy, the repair of complete surgical tibial fractures fixed with wire osteosynthesis or miniplates treated or not with infrared laser (λ780 nm) or infrared LED (λ850 +/- 10 nm) lights, 142.8 J/cm2 per treatment, associated or not to the use of mineral trioxide aggregate (MTA) cement. Surgical fractures were created on 36 rabbits and fixed with WO or miniplates and some groups were grafted with MTA. Irradiated groups received lights at every other day for 15 days and sacrifice occurred after 30 days. The results showed that only irradiation with either laser or LED influenced the peaks of phosphate ( 960 cm-1) and carbonated ( 1,070 cm-1) hydroxyapatite. Collagen peak (1,450 cm-1) was influenced by both the use of MTA and irradiation with either laser or LED. It is concluded that the use of either laser or LED phototherapy associated to MTA cement was efficacious on improving the repair of complete tibial fractures treated with wire osteosynthesis or miniplates.

  17. Flow-Through Free Fibula Osteocutaneous Flap in Reconstruction of Tibial Bone, Soft Tissue, and Main Artery Segmental Defects.

    PubMed

    Li, Zonghuan; Yu, Aixi; Qi, Baiwen; Pan, Zhenyu; Ding, Junhui

    2017-08-01

    The aim of this report was to present the use of flow-through free fibula osteocutaneous flap for the repair of complex tibial bone, soft tissue, and main artery segmental defects. Five patients with bone, soft tissue, and segmental anterior tibial artery defects were included. The lengths of injured tibial bones ranged from 4 to 7 cm. The sizes of impaired soft tissues were between 9 × 4 and 15 × 6 cm. The lengths of defect of anterior tibial artery segments ranged from 6 to 10 cm. Two patients had distal limb perfusion problems. Flow-through free fibula osteocutaneous flap was performed for all 5 patients. Patients were followed for 12 to 18 months. All wounds healed after 1-stage operation, and all flow-through flaps survived. The distal perfusion after vascular repair was normal in all patients. Superficial necrosis of flap edge was noted in 1 case. After the local debridement and partial thickness skin graft, the flap healed uneventfully, and the surgical operation did not increase injury to the donor site. Satisfactory bone union was achieved in all patients in 2 to 4 months postoperation. Enlargement of fibula graft was observed during follow-up from 12 to 18 months. The functions of adjacent joints were recovered, and all patients were able to walk normally. Flow-through free fibula osteocutaneous flap was shown to be an effective and efficient technique for repairing composite tibial bone, soft tissue, and main artery segmental defects. This 1-stage operation should be useful in clinical practice for the treatment of complex bone, soft tissue, and vessel defects.

  18. Ad hoc posterior tibial vessels perforator propeller flaps for the reconstruction of lower third leg soft- tissue defects

    PubMed Central

    Balakrishnan, Thalaivirithan Margabandu; Ramkumar, Jayagosh; Jaganmohan, Janardhanan

    2017-01-01

    Introduction: Lower third leg soft tissue defects with anatomical and pathological constraints are posing formidable challenges to reconstructive surgeon. Aim: This retrospective study was conducted to assess the effectiveness of ad hoc posterior tibial vessels perforator-propeller flaps for the reconstruction of small and medium sized soft tissue defects in the lower third leg. Patients and Methods: 22 patients (16 were males and 6 were females) were involved in this study between period of January 2012 and December 2016.We followed the protocol of initial non delineating exploratory incision made to find out single best perforator in all patients. All the defects in leg reconstructed with adhoc posterior tibial vessel propeller flaps. Results: All 22 flaps survived well. All in an average of 13 months follow up period, had pain free walking, with minimal scarring and acceptable aesthesis at the reconstruction sites with no need for any secondary procedure. Conclusion: With inability of preoperatively dopplering the perforators in the lower third leg region, the exploratory posterior nondelineating incision was used in all cases to secure the single best perforator for the propeller flaps. Thus adhoc posterior tibial vessel propeller flaps are dependable, easily adoptable for the reconstruction of soft tissue defects of the lower third leg region. PMID:29618863

  19. Ad hoc posterior tibial vessels perforator propeller flaps for the reconstruction of lower third leg soft- tissue defects.

    PubMed

    Balakrishnan, Thalaivirithan Margabandu; Ramkumar, Jayagosh; Jaganmohan, Janardhanan

    2017-01-01

    Lower third leg soft tissue defects with anatomical and pathological constraints are posing formidable challenges to reconstructive surgeon. This retrospective study was conducted to assess the effectiveness of ad hoc posterior tibial vessels perforator-propeller flaps for the reconstruction of small and medium sized soft tissue defects in the lower third leg. 22 patients (16 were males and 6 were females) were involved in this study between period of January 2012 and December 2016.We followed the protocol of initial non delineating exploratory incision made to find out single best perforator in all patients. All the defects in leg reconstructed with adhoc posterior tibial vessel propeller flaps. All 22 flaps survived well. All in an average of 13 months follow up period, had pain free walking, with minimal scarring and acceptable aesthesis at the reconstruction sites with no need for any secondary procedure. With inability of preoperatively dopplering the perforators in the lower third leg region, the exploratory posterior nondelineating incision was used in all cases to secure the single best perforator for the propeller flaps. Thus adhoc posterior tibial vessel propeller flaps are dependable, easily adoptable for the reconstruction of soft tissue defects of the lower third leg region.

  20. Computational modelling of ovine critical-sized tibial defects with implanted scaffolds and prediction of the safety of fixator removal.

    PubMed

    Doyle, Heather; Lohfeld, Stefan; Dürselen, Lutz; McHugh, Peter

    2015-04-01

    Computational model geometries of tibial defects with two types of implanted tissue engineering scaffolds, β-tricalcium phosphate (β-TCP) and poly-ε-caprolactone (PCL)/β-TCP, are constructed from µ-CT scan images of the real in vivo defects. Simulations of each defect under four-point bending and under simulated in vivo axial compressive loading are performed. The mechanical stability of each defect is analysed using stress distribution analysis. The results of this analysis highlights the influence of callus volume, and both scaffold volume and stiffness, on the load-bearing abilities of these defects. Clinically-used image-based methods to predict the safety of removing external fixation are evaluated for each defect. Comparison of these measures with the results of computational analyses indicates that care must be taken in the interpretation of these measures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Osteogenic capacity of nanocrystalline bone cement in a weight-bearing defect at the ovine tibial metaphysis.

    PubMed

    Harms, Christoph; Helms, Kai; Taschner, Tibor; Stratos, Ioannis; Ignatius, Anita; Gerber, Thomas; Lenz, Solvig; Rammelt, Stefan; Vollmar, Brigitte; Mittlmeier, Thomas

    2012-01-01

    The synthetic material Nanobone(®) (hydroxyapatite nanocrystallines embedded in a porous silica gel matrix) was examined in vivo using a standardized bone defect model in the ovine tibial metaphysis. A standardized 6 × 12 × 24-mm bone defect was created below the articular surface of the medial tibia condyles on both hind legs of 18 adult sheep. The defect on the right side was filled with Nanobone(®), while the defect on the contralateral side was left empty. The tibial heads of six sheep were analyzed after 6, 12, and 26 weeks each. The histological and radiological analysis of the defect on the control side did not reveal any bone formation after the total of 26 weeks. In contrast, the microcomputed tomography analysis of the defect filled with Nanobone(®) showed a 55%, 72%, and 74% volume fraction of structures with bone density after 6, 12, and 26 weeks, respectively. Quantitative histomorphological analysis after 6, and 12 weeks revealed an osteoneogenesis of 22%, and 36%, respectively. Hematoxylin and eosin sections demonstrated multinucleated giant cells on the surface of the biomaterial and resorption lacunae, indicating osteoclastic resorptive activity. Nanobone(®) appears to be a highly potent bone substitute material with osteoconductive properties in a loaded large animal defect model, supporting the potential use of Nanobone(®) also in humans.

  2. Osteogenic capacity of nanocrystalline bone cement in a weight-bearing defect at the ovine tibial metaphysis

    PubMed Central

    Harms, Christoph; Helms, Kai; Taschner, Tibor; Stratos, Ioannis; Ignatius, Anita; Gerber, Thomas; Lenz, Solvig; Rammelt, Stefan; Vollmar, Brigitte; Mittlmeier, Thomas

    2012-01-01

    The synthetic material Nanobone® (hydroxyapatite nanocrystallines embedded in a porous silica gel matrix) was examined in vivo using a standardized bone defect model in the ovine tibial metaphysis. A standardized 6 × 12 × 24-mm bone defect was created below the articular surface of the medial tibia condyles on both hind legs of 18 adult sheep. The defect on the right side was filled with Nanobone®, while the defect on the contralateral side was left empty. The tibial heads of six sheep were analyzed after 6, 12, and 26 weeks each. The histological and radiological analysis of the defect on the control side did not reveal any bone formation after the total of 26 weeks. In contrast, the microcomputed tomography analysis of the defect filled with Nanobone® showed a 55%, 72%, and 74% volume fraction of structures with bone density after 6, 12, and 26 weeks, respectively. Quantitative histomorphological analysis after 6, and 12 weeks revealed an osteoneogenesis of 22%, and 36%, respectively. Hematoxylin and eosin sections demonstrated multinucleated giant cells on the surface of the biomaterial and resorption lacunae, indicating osteoclastic resorptive activity. Nanobone® appears to be a highly potent bone substitute material with osteoconductive properties in a loaded large animal defect model, supporting the potential use of Nanobone® also in humans. PMID:22745551

  3. Management of Distal Tibial Metaphyseal Bone Defects With an Intramedullary Nitinol Scaffold: A Novel Technique.

    PubMed

    Ford, Samuel E; Ellington, J Kent

    2017-08-01

    Difficult problems that are faced when reconstructing severe pilon fractures include filling metaphyseal defects and supporting an impacted, multifragmented articular surface. Supplements to plate fixation currently available in a surgeon's armamentarium include cancellous bone autograft, structural bone allograft, demineralized bone matrix, and calcium-based cements. Cancellous autograft possesses limited inherent mechanical stability and is associated with graft site morbidity. Structural allografts incorporate inconsistently and are plagued by late resorption. Demineralized bone matrix also lacks inherent structural stability. Calcium phosphate cements are not rigidly fixed to bone unless fixation is applied from cortical bone or through a plate, which must be taken into consideration when planning fixation. The Conventus DRS (Conventus Orthopaedics, Maple Grove, MN) implant is an expandable nitinol scaffold that takes advantage of the elasticity and shape memory of nitinol alloy. Once deployed and locked, it serves as a stable intramedullary base for fragment-specific periarticular fracture fixation, even in the face of metaphyseal bone loss. Two cases of successful implant use are presented. In both cases, the implant is used to fill a metaphyseal void and provide stable articular support to the distal tibial plafond. Therapeutic Level V: Case Report, Expert Opinion.

  4. The indications and donor-site morbidity of tibial cortical strut autografts in the management of defects in long bones.

    PubMed

    Lauthe, O; Soubeyrand, M; Babinet, A; Dumaine, V; Anract, P; Biau, D J

    2018-05-01

    Aims The primary aim of this study was to determine the morbidity of a tibial strut autograft and characterize the rate of bony union following its use. Patients and Methods We retrospectively assessed a series of 104 patients from a single centre who were treated with a tibial strut autograft of > 5 cm in length. A total of 30 had a segmental reconstruction with continuity of bone, 27 had a segmental reconstruction without continuity of bone, 29 had an arthrodesis and 18 had a nonunion. Donor-site morbidity was defined as any event that required a modification of the postoperative management. Union was assessed clinically and radiologically at a median of 36 months (IQR, 14 to 74). Results Donor-site morbidity occurred in four patients (4%; 95% confidence interval (CI) 1 to 10). One patient had a stress fracture of the tibia, which healed with a varus deformity, requiring an osteotomy. Two patients required evacuation of a haematoma and one developed anterior compartment syndrome which required fasciotomies. The cumulative probability of union was 90% (95% CI 80 to 96) at five years. The type of reconstruction (p = 0.018), continuity of bone (p = 0.006) and length of tibial graft (p = 0.037) were associated with the time to union. Conclusion The tibial strut autograft has a low risk of morbidity and provides adequate bone stock for treating various defects of long bones. Cite this article: Bone Joint J 2018;100-B:667-74.

  5. Repair of large full-thickness articular cartilage defects in the rabbit: the effects of joint distraction and autologous bone-marrow-derived mesenchymal cell transplantation.

    PubMed

    Yanai, T; Ishii, T; Chang, F; Ochiai, N

    2005-05-01

    We produced large full-thickness articular cartilage defects in 33 rabbits in order to evaluate the effect of joint distraction and autologous culture-expanded bone-marrow-derived mesenchymal cell transplantation (ACBMT) at 12 weeks. After fixing the knee on a hinged external fixator, we resected the entire surface of the tibial plateau. We studied three groups: 1) with and without joint distraction; 2) with joint distraction and collagen gel, and 3) with joint distraction and ACBMT and collagen gel. The histological scores were significantly higher in the groups with ACBMT collagen gel (p < 0.05). The area of regenerated soft tissue was smaller in the group allowed to bear weight (p < 0.05). These findings suggest that the repair of large defects of cartilage can be enhanced by joint distraction, collagen gel and ACBMT.

  6. Treatment of open tibial shaft fracture with soft tissue and bone defect caused by aircraft bomb--case report.

    PubMed

    Golubović, Zoran; Vidić, Goran; Trenkić, Srbobran; Vukasinović, Zoran; Lesić, Aleksandar; Stojiljković, Predrag; Stevanović, Goran; Golubović, Ivan; Visnjić, Aleksandar; Najman, Stevo

    2010-01-01

    Aircraft bombs can cause severe orthopaedic injuries. Tibia shaft fractures caused by aircraft bombs are mostly comminuted and followed by bone defects, which makes the healing process extremely difficult and prone to numerous complications. The goal of this paper is to present the method of treatment and the end results of treatment of a serious open tibial fracture with soft and bone tissue defects resulting from aircraft bomb shrapnel wounds. A 26-year-old patient presented with a tibial fracture as the result of a cluster bomb shrapnel wound. He was treated applying the method of external bone fixation done two days after wounding, as well as of early coverage of the lower leg soft tissue defects done on the tenth day after the external fixation of the fracture. The external fixator was removed after five months, whereas the treatment was continued by means of functional plaster cast for another two months. The final functional result was good. Radical wound debridement, external bone fixation of the fracture, and early reconstruction of any soft tissue and bone defects are the main elements of the treatment of serious fractures.

  7. Rabbit Calvarial Defect Model for Customized 3D-Printed Bone Grafts.

    PubMed

    Lee, Kang-Gon; Lee, Kang-Sik; Kang, Yu-Jeoung; Hwang, Jong-Hyun; Lee, Se-Hwan; Park, Sang-Hyug; Park, Yongdoo; Cho, Young-Sam; Lee, Bu-Kyu

    2018-05-01

    Bone graft materials are commonly used to regenerate various bone defects, but their application is often limited because of the complex defect shape in various clinical conditions. Hence, customized bone grafts using three-dimensional (3D) printing techniques have been developed. However, conventional simple bone defect models are limited for evaluating the benefits and manufacturing accuracy of 3D-printed customized bone grafts. Thus, the aim of the present study was to develop a complex-shaped bone defect model. We designed an 8-shaped bony defect that consists of two simple circles attached to the rabbit calvarium. To determine the critical-sized defect (CSD) of the 8-shaped defects, 5.6- and 7-mm-diameter trephine burs were tested, and the 7-mm-diameter bur could successfully create a CSD, which was easily reproducible on the rabbit calvarium. The rate of new bone formation was 28.65% ± 8.63% at 16 weeks following creation of the defect. To confirm its efficacy for clinical use, the 8-shaped defect was created on a rabbit calvarium and 3D computed tomography (CT) was performed. A stereolithography file was produced using the CT data, and a 3D-printed polycaprolactone graft was fabricated. Using our 8-shaped defect model, we were able to modify the tolerances of the bone graft and calvarial defect to fabricate a more precise bone graft. Customized characteristics of the bone graft were then used to improve the accuracy of the bone graft. In addition, we confirmed the fitting ability of the 3D-printed graft during implantation of the graft. Our 8-shaped defect model on the rabbit calvarium using a 7.0-mm trephine bur may be a useful CSD model for evaluating 3D-printed graft materials.

  8. The developmental morphology of a "periosteal" ligament insertion: growth and maturation of the tibial insertion of the rabbit medial collateral ligament.

    PubMed

    Matyas, J R; Bodie, D; Andersen, M; Frank, C B

    1990-05-01

    The structural properties of ligament insertions change dramatically during growth and maturation, but little is known about their developmental anatomy. This study describes and quantifies changes in the gross and microscopic anatomy of the tibial insertion of the rabbit medial collateral ligament (MCL) during development and at skeletal maturity. Eighty animals were used for growth and descriptive studies. From this group, 27 animals, ranging in age from 1 to 24 months, were injected with fluorescent bone markers and their tibial insertions were processed undecalcified for histology. Sections were examined by polarized light and fluorescence microscopy to identify matrix and cells and to quantify mineral formation. Results showed that animals achieved histological skeletal maturity between 9 and 12 months of age. Body weights were a poor index of skeletal maturity. The tibial insertion was composed of five tissue layers, which changed proportions during growth and maturation. In immature animals, MCL fibers entered the periosteum; in older animals, MCL fibers were cemented to the tibia by advancing mineral. The tibial attachment of the MCL was thus transferred from the periosteum to the cortex during growth, suggesting that the term "periosteal insertion" is imprecise in adults. The hypothesis is put forward that these structural changes account for the reported increase in tensile failure of this insertion near skeletal maturity.

  9. Effect of calcium citrate on bone integration in a rabbit femur defect model.

    PubMed

    Zhang, Wei; Wang, Wei; Chen, Qing-Yu; Lin, Zhong-Qin; Cheng, Shao-Wen; Kou, Dong-Quan; Ying, Xiao-Zhou; Shen, Yue; Cheng, Xiao-Jie; Nie, Peng-Fei; Li, Xiu-Cui; Rompis, Ferdinand An; Huang, Hang; Zhang, Hua; Mu, Zhong-Lin; Peng, Lei

    2012-04-01

    To explore effect of calcium citrate on bone integration in a rabbit femur defect model, and to compare the bone formation with different sizes by radiological and histological study. Twenty-four male Japanese white rabbits were randomly divided into three groups (Group A, B, C) in this study. Under anesthesia, defects of four sizes (1.2, 1.5, 2.0 and 2.5 mm) were created in each of the rabbits. Commercially pure calcium citrate powder was placed inside the medullary compartment of the femur (Experimental), while in the contralateral femur (Control) nothing was implanted. The defects were analyzed using radiography and histological analysis by using Imagepro-Plus 6.0 software after animal was sacrificed at 4th(Group A), 6th(Group B) and 8th(Group C) weeks postoperatively. Four samples were analyzed for each size of defect and each healing period. The histological and the radiologic evaluation were performed after sacrification of all rabbits on postoperative 4th and 6th weeks, It showed significant difference between the experimental group and the control group when these defects were less than or equal to 2.0 mm. No statistical difference was observed when these defects were larger than 2.0 mm at all healing periods except at the 4th week. Calcium citrate affects the early periods of bone defects healing mechanism in Japanese white rabbits positively, especially when the defect is not too large. We suggest further studies on calcium citrate to determine the effects of various dosages, administration ways and the experimental time on the bone defects. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  10. Injectable gellan gum hydrogels with autologous cells for the treatment of rabbit articular cartilage defects.

    PubMed

    Oliveira, João T; Gardel, Leandro S; Rada, Tommaso; Martins, Luís; Gomes, Manuela E; Reis, Rui L

    2010-09-01

    In this work, the ability of gellan gum hydrogels coupled with autologous cells to regenerate rabbit full-thickness articular cartilage defects was tested. Five study groups were defined: (a) gellan gum with encapsulated chondrogenic predifferentiated rabbit adipose stem cells (ASC + GF); (b) gellan gum with encapsulated nonchondrogenic predifferentiated rabbit adipose stem cells (ASC); (c) gellan gum with encapsulated rabbit articular chondrocytes (AC) (standard control); (d) gellan gum alone (control); (e) empty defect (control). Full-thickness articular cartilage defects were created and the gellan gum constructs were injected and left for 8 weeks. The macroscopic aspect of the explants showed a progressive increase of similarity with the lateral native cartilage, stable integration at the defect site, more pronouncedly in the cell-loaded constructs. Tissue scoring showed that ASC + GF exhibited the best results regarding tissue quality progression. Alcian blue retrieved similar results with a better outcome for the cell-loaded constructs. Regarding real-time PCR analyses, ASC + GF had the best progression with an upregulation of collagen type II and aggrecan, and a downregulation of collagen type I. Gellan gum hydrogels combined with autologous cells constitute a promising approach for the treatment of articular cartilage defects, and adipose derived cells may constitute a valid alternative to currently used articular chondrocytes. (c) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Alternatives to Autograft Evaluated in a Rabbit Segmental Bone Defect

    DTIC Science & Technology

    2015-07-09

    available scaffolds containing either demineralised bone matrix (DBM) or a collagen /beta-tricalcium phosphate composite (Col:β-TCP); each scaffold was...also sub- jected to cell analyses and used to load scaffolds. Each batch of BMA or cBMA was used to load both a DBM and collagen -β-TCP (Col:β-TCP...with previously published work where rabbits [24], pigs [15] or humans [8] were used. Since the DBM grafts performed well regardless of whether BMA

  12. Induced membrane technique combined with two-stage internal fixation for the treatment of tibial osteomyelitis defects.

    PubMed

    Luo, Fei; Wang, Xiaohua; Wang, Shulin; Fu, Jingshu; Xie, Zhao

    2017-07-01

    The purpose of this study was to observe the effects of induced membrane technique combined with two-stage internal fixation in the treatment of tibial osteomyelitis defects. A retrospective analyses for 67 cases of tibialosteomyelitis defects were admitted to our department between September 2012 to February 2015, which were treated with induced membrane technique. At the first stage, implanted with a PMMA cement spacer in the defects after radical debridement and fixed with reconstructive locked plate. Bone grafting and exchanged the plate with intramedullary nail at the second stage. In current study, all patients were followed up for 18-35 months. Sixty-six patients achieved bone union with the average radiographic and clinical healing times of 5.55±2.19 and 7.45±1.69months, respectively. Seven patients required a second debridement before grafting, while four patients experienced a recurrence of infection or a relapse following second stage treatment. Twelve patients experienced either knee or ankle dysfunctions and 2 patients faced delayed wound healing. Donor site complications includes pain and infection were found in 7 and 3 patients, respectively with delayed stress fracture in 1 patient only. Induced membrane technique for the treatment of tibial osteomyelitis defects, seems a reliable method. The use of reconstructive locked plate as a temporary internal fixation at the first stage and exchanged with intramedullary nail at the second stage, potentially achieves good clinical efficacy. Care should be taken to restore the joint function especially in distal tibia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Assessment of apoptosis and MMP-1, MMP-3 and TIMP-2 expression in tibial hyaline cartilage after viable medial meniscus transplantation in the rabbit.

    PubMed

    Zwierzchowski, Tomasz J; Stasikowska-Kanicka, Olga; Danilewicz, Marian; Fabiś, Jarosław

    2012-12-20

    The porpuse of this animal study was to assess chondrocyte apoptosis and MMP-1, MMP-3 and TIMP-2 expression in rabbit tibial cartilage 6 months after viable medial meniscal autografts and allografts. Twenty white male New Zealand rabbits were chosen for the study. The medial meniscus was excised from 14 animals and stored under tissue culture conditions for 2 weeks, following which t of them were implantated as autografts and 7 as allografts. The control group consisted of 6 animals which underwent arthtrotomy. When the animals were eutanized, the tibial cartilage was used for immunohisochemical examination. Apoptosis (TUNEL method) and MMP-1, MMP-3 and TIMP-2 expression were estimated semiquantatively. An increased level of chodrocyte apoptosis in the tibail cartilage was observed after both kinds of transplants (p < 0.05), allografts (1.43 ±0.98) and autografts (0.86 ±0.69); no statistical diferences existed between them. An increased level of metalloproteinases and TIMP-2 expression was obreved only after allografts with statistical differences among the allograft group, the autograft group nad the control group (p < 0.05). Our findings suggest that the meniscal graft does not protect the hyaline cartilage against excessive apoptosis. The results of experimantal studies on humans indicate the need to device a method of apoptosis inhibition in the hyaline cartilage to improve long-term results of meniscal transplantation.

  14. Repair of full-thickness cartilage defects with cells of different origin in a rabbit model.

    PubMed

    Yan, Hui; Yu, Changlong

    2007-02-01

    The purpose of this study was to evaluate the repaired tissues formed in full-thickness cartilage defects in a rabbit model implanted with 4 types of chondrogenic cells, including chondrocytes, mesenchymal stem cells (MSCs) and fibroblasts from rabbit, and human umbilical cord blood (hUCB) stem cells. Chondrocytes, MSCs, and fibroblasts were isolated from 6-week-old New Zealand rabbits; hUCB stem cells were isolated from the umbilical cord blood of newborn children. These 4 types of cells were cultured in vitro and embedded in polylactic acid (PLA) matrices. Full-thickness defects were produced in the femoral trochlear grooves of both knees in 36 adult New Zealand White rabbits. Cell/PLA composites were transplanted into cartilage defects. A total of 5 groups were formed according to implanted cell type: Group A, chondrocytes; Group B, MSCs; Group C, fibroblasts; Group D, hUCB stem cells; and Group E, no cells (control group). Repaired tissues were evaluated grossly, histologically, and immunohistochemically at 6 weeks and 12 weeks after implantation. In Groups A and B, defects were repaired with hyaline-like cartilage. In Group C, defects were repaired with fibrous tissue. In Group D, defects were repaired primarily with fibrous tissue and scattered chondrocytes; in some specimens, defects were repaired with a thin layer of hyaline-like cartilage at 12 weeks. In Group E, defects were repaired with fibrous tissue. Histologic scores in Groups A and B were significantly higher than those in Groups C, D, and E at 6 and 12 weeks after transplantation. Full-thickness cartilage defects treated with chondrocyte or MSC transplantation were repaired with hyaline-like cartilage tissue, and repair was significantly better than in tissues treated with fibroblasts and hUCB stem cells, as well as in the control group. Repaired tissues treated with MSCs appeared to have better cell arrangement, subchondral bone remodeling, and integration with surrounding cartilage than did

  15. Healing of rabbit calvarial critical-sized defects using autogenous bone grafts and fibrin glue.

    PubMed

    Lappalainen, Olli-Pekka; Korpi, Riikka; Haapea, Marianne; Korpi, Jarkko; Ylikontiola, Leena P; Kallio-Pulkkinen, Soili; Serlo, Willy S; Lehenkari, Petri; Sándor, George K

    2015-04-01

    This study aimed to evaluate ossification of cranial bone defects comparing the healing of a single piece of autogenous calvarial bone representing a bone flap as in cranioplasty compared to particulated bone slurry with and without fibrin glue to represent bone collected during cranioplasty. These defect-filling materials were then compared to empty control cranial defects. Ten White New Zealand adult male rabbits had bilateral critical-sized calvarial defects which were left either unfilled as control defects or filled with a single full-thickness piece of autogenous bone, particulated bone, or particulated bone combined with fibrin glue. The defects were left to heal for 6 weeks postoperatively before termination. CT scans of the calvarial specimens were performed. Histomorphometric assessment of hematoxylin-eosin- and Masson trichrome-stained specimens was used to analyze the proportion of new bone and fibrous tissue in the calvarial defects. There was a statistically significant difference in both bone and soft tissue present in all the autogenous bone-grafted defect sites compared to the empty negative control defects. These findings were supported by CT scan findings. While fibrin glue combined with the particulated bone seemed to delay ossification, the healing was more complete compared to empty control non-grafted defects. Autogenous bone grafts in various forms such as solid bone flaps or particulated bone treated with fibrin glue were associated with bone healing which was superior to the empty control defects.

  16. In vivo investigation of tissue-engineered periosteum for the repair of allogeneic critical size bone defects in rabbits.

    PubMed

    Zhao, Lin; Zhao, Junli; Yu, Jiajia; Sun, Rui; Zhang, Xiaofeng; Hu, Shuhua

    2017-04-01

    The aim of the study was to evaluate the efficacy of tissue-engineered periosteum (TEP) in repairing allogenic bone defects in the long term. TEP was biofabricated with osteoinduced rabbit bone marrow mesenchymal stem cells and porcine small intestinal submucosa (SIS). A total of 24 critical sized defects were created bilaterally in radii of 12 New Zealand White rabbits. TEP/SIS was implanted into the defect site. Bone defect repair was evaluated with radiographic and histological examination at 4, 8 and 12 weeks. Bone defects were structurally reconstructed in the TEP group with mature cortical bone and medullary canals, however this was not observed in the SIS group at 12 weeks. The TEP approach can effectively restore allogenic critical sized defects, and achieve maturity of long-bone structure in 12 weeks in rabbit models.

  17. In Vivo Performance of Bilayer Hydroxyapatite Scaffolds for Bone Tissue Regeneration in the Rabbit Radius

    DTIC Science & Technology

    2011-02-02

    no treatments and the pres- ence of periosteal callus-like layer surrounding defects with scaffold implantation were observed after 8 weeks post...vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model. Biomaterials. 2004; 25(20):5037–44. 20. Lu JX, Gallur A, Flautre

  18. Bacterial Cellulose Membranes Used as Artificial Substitutes for Dural Defection in Rabbits

    PubMed Central

    Xu, Chen; Ma, Xia; Chen, Shiwen; Tao, Meifeng; Yuan, Lutao; Jing, Yao

    2014-01-01

    To improve the efficacy and safety of dural repair in neurosurgical procedures, a new dural material derived from bacterial cellulose (BC) was evaluated in a rabbit model with dural defects. We prepared artificial dura mater using bacterial cellulose which was incubated and fermented from Acetobacter xylinum. The dural defects of the rabbit model were repaired with BC membranes. All surgeries were performed under sodium pentobarbital anesthesia, and all efforts were made to minimize suffering. All animals were humanely euthanized by intravenous injection of phenobarbitone, at each time point, after the operation. Then, the histocompatibility and inflammatory effects of BC were examined by histological examination, real-time fluorescent quantitative polymerase chain reaction (PCR) and Western Blot. BC membranes evenly covered the surface of brain without adhesion. There were seldom inflammatory cells surrounding the membrane during the early postoperative period. The expression of inflammatory cytokines IL-1β, IL-6 and TNF-α as well as iNOS and COX-2 were lower in the BC group compared to the control group at 7, 14 and 21 days after implantation. BC can repair dural defects in rabbit and has a decreased inflammatory response compared to traditional materials. However, the long-term effects need to be validated in larger animals. PMID:24937688

  19. [Experimental study on loading naringin composite scaffolds for repairing rabbit osteochondral defects].

    PubMed

    Huang, Junbo; Wang, Shiyong; Zhang, Xiaomin; Li, Gen; Ji, Puzhong; Zhao, Hongbin

    2017-04-01

    To investigate the performance of loading naringin composite scaffolds and its effects on repair of osteochondral defects. The loading naringin and unloading naringin sustained release microspheres were prepared by W/O/W method; with the materials of the attpulgite and the collagen type I, the loading naringin, unloading naringin, and loading transforming growth factor β 1 (TGF-β 1 ) osteochondral composite scaffolds were constructed respectively by "3 layers sandwich method". The effect of sustained-release of loading naringin microspheres, the morphology of the composite scaffolds, and the biocompatibility were evaluated respectively by releasing in vitro , scanning electron microscope, and cell counting kit 8. Forty Japanese white rabbits were randomly divided into groups A, B, C, and D, 10 rabbits each group. After a osteochondral defect of 4.5 mm in diameter and 4 mm in depth was made in the intercondylar fossa of two femurs. Defect was not repaired in group A (blank control), and defect was repaired with unloading naringin composite scaffolds (negative control group), loading naringin composite scaffolds (experimental group), and loading TGF-β 1 composite scaffolds (positive control group) in groups B, C, and D respectively. At 3 and 6 months after repair, the intercondylar fossa was harvested for the general, HE staining, and toluidine blue staining to observe the repair effect. Western blot was used to detect the expression of collagen type II in the new cartilage. Loading naringin microspheres had good effect of sustained-release; the osteochondral composite scaffolds had good porosity; the cell proliferation rate on loading naringin composite scaffold was increased significantly when compared with unloading naringin scaffold ( P <0.05). General observation revealed that defect range of groups C and D was reduced significantly when compared with groups A and B at 3 months after repair; at 6 months after repair, defects of group C were covered by new

  20. A Modified Rabbit Ulna Defect Model for Evaluating Periosteal Substitutes in Bone Engineering: A Pilot Study

    SciTech Connect

    El Backly, Rania M.; IRCCS AOU San Martino–IST Istituto Nazionale per la Ricerca sul Cancro, Genova; Faculty of Dentistry, Alexandria University, Alexandria

    The present work defines a modified critical size rabbit ulna defect model for bone regeneration in which a non-resorbable barrier membrane was used to separate the radius from the ulna to create a valid model for evaluation of tissue-engineered periosteal substitutes. Eight rabbits divided into two groups were used. Critical defects (15 mm) were made in the ulna completely eliminating periosteum. For group I, defects were filled with a nanohydroxyapatite poly(ester urethane) scaffold soaked in PBS and left as such (group Ia) or wrapped with a tissue-engineered periosteal substitute (group Ib). For group II, an expanded-polytetrafluoroethylene (e-PTFE) (GORE-TEX{sup ®}) membranemore » was inserted around the radius then the defects received either scaffold alone (group IIa) or scaffold wrapped with periosteal substitute (group IIb). Animals were euthanized after 12–16 weeks, and bone regeneration was evaluated by radiography, computed microtomography (μCT), and histology. In the first group, we observed formation of radio-ulnar synostosis irrespective of the treatment. This was completely eliminated upon placement of the e-PTFE (GORE-TEX{sup ®}) membrane in the second group of animals. In conclusion, modification of the model using a non-resorbable e-PTFE membrane to isolate the ulna from the radius was a valuable addition allowing for objective evaluation of the tissue-engineered periosteal substitute.« less

  1. Ceramic-polylactide composite material used in a model of healing of osseous defects in rabbits.

    PubMed

    Myciński, Paweł; Zarzecka, Joanna; Skórska-Stania, Agnieszka; Jelonek, Agnieszka; Okoń, Krzysztof; Wróbel, Maria

    The growing demand for various kinds of bone regeneration material has in turn increased the desire to find materials with optimal physical, chemical, and biological properties. The objective of the present study was to identify the proportions of ceramic and polylactide components in a bone substitute material prepared in collaboration with the Crystal Chemistry of Drugs Team of the Faculty of Chemistry at the Jagiellonian University, which would be optimal for bone regeneration processes. Another goal was to provide a histological analysis of the influence of a ceramic-polylactide composite on the healing of osseous defects in rabbits. The study was performed on laboratory animals (18 New Zealand White rabbits). The following study groups were formed: - group A (study group, 9 animals) - in this group we performed a histological analysis of healing with a ceramic-polylactide composite based on an 80/20 mix of hydroxyapatite and polylactide; - group B (study group, 9 animals) - in this group we performed a histological analysis of healing with a ceramic-polylactide composite with a reduced amount of hydroxyapatite compared to the previous group, i.e. in a ratio of 61/39; - group K (control, 18 animals) - the control group comprised self-healing, standardised osseous defects prepared in the calvarial bone of the rabbits on the contralateral side. In the assessment of histological samples, we were also able to eliminate individual influences that might have led to differentiation in wound healing. The material used in the histological analysis took the form of rabbit bone tissue samples, containing both defects, with margins of around 0.5 cm, taken 1, 3, and 6 months after the experiment. The osseous defects from groups A and B filled with ceramic-polylactide material healed with less inflammatory infiltration than was the case with control group K. They were also characterised by faster regression, and no resorption or osteonecrosis, which allowed for better

  2. Osteogenic capability of autologous rabbit adipose-derived stromal cells in repairing calvarial defects.

    PubMed

    Cheng, Shao-Wen; Lin, Zhong-Qin; Wang, Wei; Zhang, Wei; Kou, Dong-Quan; Ying, Xiao-Zhou; Chen, Qing-Yu; Shen, Yue; Cheng, Xiao-Jie; Peng, Lei; Lv, Chuan-Zhu

    2011-01-01

    To evaluate the in vitro and in vivo osteogenic capability of adipose-derived stromal cells (ASCs). ASCs were isolated from New Zealand white rabbits and determined by alkaline phosphatase (ALP) staining, von Kossa staining and alizarin red staining. Some specific markers of osteogenic differentiation, including ALP, osteocalcin (OCN), osteopontin (OPN) were examined by reverse transcription-polymerase chain reaction (RT-PCR). In vivo, demineralized bone matrix (DBM)-ASCs composites were implanted into the rabbit calvarial defects created at each side of the longitudinal midline. After 6 weeks, histologic properties of the transplants were analyzed. ASCs were successfully induced into osteogenesis. ALP staining, von Kossa staining and alizarin red staining showed positive results. The expressions of ALP, OCN and OPN were detected in ASCs after cultivation in osteogenic medium. Extensive new bone was observed in the defects transplanted with DBM-ASCs composites. ASCs have the potential to differentiate into osteogenic lineage and DBM-ASCs constructs are a promising method for regeneration in bone defects.

  3. Bioactive glass in cavitary bone defects: a comparative experimental study in rabbits

    PubMed Central

    Camargo, André Ferrari de França; Baptista, André Mathias; Natalino, Renato; de Camargo, Olavo Pires

    2015-01-01

    OBJECTIVES: To compare bioactive glass and autograft regarding their histomorphometric characteristics. METHODS: The authors conducted a prospective case-control experimental study on animals in order to compare the histomorphometric characteristics of bioactive glass versus autograft. Eight rabbits underwent surgery in which a cavitary defect was created in both proximal femurs. One side was filled with bioactive glass granules and the other, with autograft grafted from the contralateral side. The sides were randomized. Fourteen days after surgery, the animals were euthanized. RESULTS: Histologic analysis revealed that bone neoformation was equivalent among the two groups and the osteoblasts cell-count was higher in the femurs treated with bioactive glass. The osteocytes cell-count, however, was lower. The similarity in bone formation between both groups was consistent to literature findings. CONCLUSION: Bioactive glass is similar to autograft regarding bone neoformation in this animal model of cavitary bone defects. Level of Evidence III, Case-Control Study. PMID:26327802

  4. Repair of rabbit cartilage defect based on the fusion of rabbit bone marrow stromal cells and Nano-HA/PLLA composite material.

    PubMed

    Zhu, Weimin; Guo, Daiqi; Peng, Liangquan; Chen, Yun Fang; Cui, Jiaming; Xiong, Jianyi; Lu, Wei; Duan, Li; Chen, Kang; Zeng, Yanjun; Wang, Daping

    2017-02-01

    Objective To assess the effect of the fusion of rabbit bone marrow stromal cells (rBMSCs) and Nano-hydroxyapatite/poly (l-lactic acid) (Nano-HA/PLLA) in repairing the rabbit knee joint with full-thickness cartilage defect. Method The rBMSCs were isolated and cultured in vitro, and the third generation of rBMSCs was co-cultured with the Nano-HA/PLLA to construct the tissue-engineered cartilage (TEC). Eighteen New Zealand white rabbits were selected and randomly divided into three groups, namely, TEC group, Nano-HA/PLLA group, and control group. A cartilage defect model with the diameter of 4.5 mm and depth of 5 mm was constructed on the articular surface of medial malleolus of rabbit femur. General observation, histological observation, and Wakitani's histological scoring were conducted in the 12th and 24th week postoperatively. Results The results of TEC group indicated that new cartilage tissue was formed on the defect site and subchondral bone achieved physiological integration basically. Histological and immunohistochemical analyses indicated the generation of massive extracellular matrix. In contrast, limited regeneration and reconstruction of cartilage was achieved in the Nano-HA/PLLA group and control group, with a significant difference from the TEC group (p < 0.05). Moreover, the effect of cartilage repair was positively correlated with time. Conclusion The porous Nano-HA/PLLA combined with BMSCs promoted the repair of weight-bearing bone of adult rabbit's knee joint with cartilage defect.

  5. Establishment of a preclinical ovine model for tibial segmental bone defect repair by applying bone tissue engineering strategies.

    PubMed

    Reichert, Johannes C; Epari, Devakara R; Wullschleger, Martin E; Saifzadeh, Siamak; Steck, Roland; Lienau, Jasmin; Sommerville, Scott; Dickinson, Ian C; Schütz, Michael A; Duda, Georg N; Hutmacher, Dietmar W

    2010-02-01

    Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties; however, they are limited in access and availability and associated with donor-site morbidity, hemorrhage, risk of infection, insufficient transplant integration, graft devitalization, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts. The field of tissue engineering has emerged as an important approach to bone regeneration. However, bench-to-bedside translations are still infrequent as the process toward approval by regulatory bodies is protracted and costly, requiring both comprehensive in vitro and in vivo studies. The subsequent gap between research and clinical translation, hence, commercialization, is referred to as the "Valley of Death" and describes a large number of projects and/or ventures that are ceased due to a lack of funding during the transition from product/technology development to regulatory approval and subsequently commercialization. One of the greatest difficulties in bridging the Valley of Death is to develop good manufacturing processes and scalable designs and to apply these in preclinical studies. In this article, we describe part of the rationale and road map of how our multidisciplinary research team has approached the first steps to translate orthopedic bone engineering from bench to bedside by establishing a preclinical ovine critical-sized tibial segmental bone defect model, and we discuss our preliminary data relating to this decisive step.

  6. Host responses to a strontium releasing high boron glass using a rabbit bilateral femoral defect model.

    PubMed

    O'Connell, Kathleen; Pierlot, Caitlin; O'Shea, Helen; Beaudry, Diane; Chagnon, Madeleine; Assad, Michel; Boyd, Daniel

    2017-10-01

    Borate glasses have shown promising potential as bioactive materials. With recent research demonstrating that glass properties may be modulated by appropriate compositional design. This may provide for indication specific material characteristics and controlled release of therapeutic inorganic ions (i.e., strontium); controlling such release is critical in order to harness the therapeutic potential. Within this sub-chronic pilot study, a rabbit long-bone model was utilized to explore the safety and efficacy of a high borate glass (LB102: 70B 2 O 3 -20SrO-6Na 2 O-4La 2 O 3 ) particulate (90 - 710 μm) for bone regeneration. Six bilateral full-thickness defects (Ø = 3.5 mm; L = 8 mm) were created in three white New Zealand rabbits. Longitudinal non-decalcified sections of each defect site were produced and stained with Goldner's Trichrome. Histopathological examination revealed that LB102 demonstrated osteoconductive and osseointegrative properties with greater new bone being formed within and surrounding LB102 particles, when compared to the sham control. The inflammatory cell infiltration was observed to be slightly higher in the control when compared to LB102 defect sites, while no significant difference in fibrosis and neovascularization was determined, indicating that healing was occurring in a normal fashion. These data further suggest the possible utility of high borate glasses with appropriate compositional design for medical applications, such as bone augmentation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1818-1827, 2017. © 2016 Wiley Periodicals, Inc.

  7. Local application of osteoprotegerin-chitosan gel in critical-sized defects in a rabbit model

    PubMed Central

    2017-01-01

    Background Osteoprotegerin (OPG) is used for the systemic treatment of bone diseases, although it has many side effects. The aim of this study was to investigate a newly formulated OPG-chitosan gel for local application to repair bone defects. Recent studies have reported that immunodetection of osteopontin (OPN) and osteocalcin (OC) can be used to characterise osteogenesis and new bone formation. Methods The osteogenic potential of the OPG-chitosan gel was evaluated in rabbits. Critical-sized defects were created in the calvarial bone, which were either left unfilled (control; group I), or filled with chitosan gel (group II) or OPG-chitosan gel (group III), with rabbits sacrificed at 6 and 12 weeks. Bone samples from the surgical area were decalcified and treated with routine histological and immunohistochemical protocols using OC, OPN, and cathepsin K (osteoclast marker) antibodies. The toxicity of the OPG-chitosan gel was evaluated by biochemical assays (liver and kidney function tests). Results The mean bone growth in defects filled with the OPG-chitosan gel was significantly higher than those filled with the chitosan gel or the unfilled group (p < 0.05). At 6 and 12 weeks, the highest levels of OC and OPN markers were found in the OPG-chitosan gel group, followed by the chitosan gel group. The number of osteoclasts in the OPG-chitosan gel group was lower than the other groups. The results of the liver and kidney functional tests indicated no signs of harmful systemic effects of treatment. In conclusion, the OPG-chitosan gel has many characteristics that make it suitable for bone repair and regeneration, highlighting its potential benefits for tissue engineering applications. PMID:28674665

  8. Autogenous bone particle/titanium fiber composites for bone regeneration in a rabbit radius critical-size defect model.

    PubMed

    Xie, Huanxin; Ji, Ye; Tian, Qi; Wang, Xintao; Zhang, Nan; Zhang, Yicai; Xu, Jun; Wang, Nanxiang; Yan, Jinglong

    2017-11-01

    To explore the effects of autogenous bone particle/titanium fiber composites on repairing segmental bone defects in rabbits. A model of bilateral radial bone defect was established in 36 New Zealand white rabbits which were randomly divided into 3 groups according to filling materials used for bilaterally defect treatment: in group C, 9 animal bone defect areas were prepared into simple bilateral radius bone defect (empty sham) as the control group; 27 rabbits were used in groups ABP and ABP-Ti. In group ABP, left defects were simply implanted with autogenous bone particles; meanwhile, group ABP-Ti animals had right defects implanted with autogenous bone particle/titanium fiber composites. Animals were sacrificed at 4, 8, and 12 weeks, respectively, after operation. Micro-CT showed that group C could not complete bone regeneration. Bone volume to tissue volume values in group ABP-Ti were better than group ABP. From histology and histomorphometry Groups ABP and ABP-Ti achieved bone repair, the bone formation of group ABP-Ti was better. The mechanical strength of group ABP-Ti was superior to that of other groups. These results confirmed the effectiveness of autologous bone particle/titanium fiber composites for promoting bone regeneration and mechanical strength.

  9. Repair of segmental bone defects with bone marrow and BMP-2 adenovirus in the rabbit radius

    NASA Astrophysics Data System (ADS)

    Cheng, Lijia; Lu, Xiaofeng; Shi, Yujun; Li, Li; Xue, Jing; Zhang, Li; Xia, Jie; Wang, Yujia; Zhang, Xingdong; Bu, Hong

    2012-12-01

    Bone tissue engineering (BTE) is approached via implantation of autogenous mesenchymal stem cells (MSCs), marrow cells, or platelet-rich plasma, etc. To the contrary, gene therapy combining with the bone marrow (BM) has not been often reported. This study was performed to investigate whether a modified BTE method, that is, the BM and a recombinant human bone morphogenetic protein-2 adenovirus (Ad.hBMP-2) gene administering in hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramics could accelerate the healing of segmental defects in the rabbit radius. In our study, ceramics were immersed in the adenovirus overnight, and half an hour before surgery, autologous BM aspirates were thoroughly mixed with the ceramics; at the same time, a 15-mm radius defect was introduced in the bilateral forelimbs of all animals, after that, this defect was filled with the following: (1) Ad.hBMP-2 + HA/β-TCP + autologous BM (group 1); (2) HA/β-TCP + Ad.hBMP-2 (group 2); (3) HA/β-TCP alone (group 3); (4) an empty defect as a control (group 4). Histological observation and μ-CT analyses were performed on the specimens at weeks 2, 4, 8, and 12, respectively. In group 1, new bone was observed at week 4 and BM appeared at week 12, in groups 2 and 3, new bone was observed at week 8 and it was more mature at week 12, in contrast, the defect was not bridged in group 4 at week 12. The new bone area percentage in group 1 was significantly higher than that in groups 2 and 3. Our study indicated that BM combined with hBMP-2 adenovirus and porous ceramics could significantly increase the amount of newly formed bone. And this modified BTE method thus might have potentials in future clinical application.

  10. Repair of segmental radial defect with autologous bone marrow aspirate and hydroxyapatite in rabbit radius: A clinical and radiographic evaluation

    PubMed Central

    Yassine, Kalbaza Ahmed; Mokhtar, Benchohra; Houari, Hemida; Karim, Amara; Mohamed, Melizi

    2017-01-01

    Aim: Finding an ideal bone substitute to treat large bone defects, delayed union and nonunions remain a challenge for orthopedic surgeons and researchers. Several studies have been conducted on bone regeneration; each has its own advantages and disadvantages. The aim of this study was to evaluate the effect of a combination of hydroxyapatite (HA) powder with autologous bone marrow (BM) aspirate on the repair of segmental radial defect in a rabbit model. Materials and Methods: A total of 36 male and adult New Zealand rabbit with a mean weight of 2.25 kg were used in this study. Approximately, 5 mm defect was created in the mid-shaft of the radius to be filled with HA powder in the control group “HA” (n=18) and with a combination of HA powder and autologous BM aspirate in the test group “HA+BM” (n=18). Animals were observed daily for healing by inspection of the surgical site, and six rabbits of each group were sacrificed at 30, 60, and 90 post-operative days to perform a radiographic evaluation of defect site. Results: Obtained results revealed a better and more rapid bone regeneration in the test group: Since the defect was rapidly and completely filled with mature bone tissue after 90 days. Conclusion: Based on these findings, we could infer that adding a BM aspirate to HA is responsible of a better regeneration process leading to a complete filling of the defect. PMID:28831217

  11. Functional Reconstruction of Tracheal Defects by Protein-Loaded, Cell-Seeded, Fibrous Constructs in Rabbits

    PubMed Central

    Ott, Lindsey M.; Vu, Cindy H.; Farris, Ashley L.; Fox, Katrina D.; Galbraith, Richard A.; Weiss, Mark L.; Weatherly, Robert A.

    2015-01-01

    Tracheal stenosis is a life-threatening disease and current treatments include surgical reconstruction with autologous rib cartilage and the highly complex slide tracheoplasty surgical technique. We propose using a sustainable implant, composed of a tunable, fibrous scaffold with encapsulated chondrogenic growth factor (transforming growth factor-beta3 [TGF-β3]) or seeded allogeneic rabbit bone marrow mesenchymal stromal cells (BMSCs). In vivo functionality of these constructs was determined by implanting them in induced tracheal defects in rabbits for 6 or 12 weeks. The scaffolds maintained functional airways in a majority of the cases, with the BMSC-seeded group having an improved survival rate and the Scaffold-only group having a higher occurrence of more patent airways as determined by microcomputed tomography. The BMSC group had a greater accumulation of inflammatory cells over the graft, while also exhibiting normal epithelium, subepithelium, and cartilage formation. Overall, it was concluded that a simple, acellular scaffold is a viable option for tracheal tissue engineering, with the intraoperative addition of cells being an optional variation to the scaffolds. PMID:26094554

  12. Implantation of Allogenic Synovial Stem Cells Promotes Meniscal Regeneration in a Rabbit Meniscal Defect Model

    PubMed Central

    Horie, Masafumi; Driscoll, Matthew D.; Sampson, H. Wayne; Sekiya, Ichiro; Caroom, Cyrus T.; Prockop, Darwin J.; Thomas, Darryl B.

    2012-01-01

    Update This article was updated on May 16, 2012, because of a previous error. The legend for Figures 7-A and 7-B that had previously read “Representative macroscopic appearance (Fig. 7-A) and histological sections (Fig. 7-B) of the meniscal defect one day to twelve weeks after the implantation of GFP-positive green fluorescent protein under fluorescence” now reads “Representative macroscopic appearance (Fig. 7-A) and histological sections (Fig. 7-B) of the meniscal defect one day to twelve weeks after the implantation of GFP-positive synovial mesenchymal stem cells under fluorescence.” Background: Indications for surgical meniscal repair are limited, and failure rates remain high. Thus, new ways to augment repair and stimulate meniscal regeneration are needed. Mesenchymal stem cells are multipotent cells present in mature individuals and accessible from peripheral connective tissue sites, including synovium. The purpose of this study was to quantitatively evaluate the effect of implantation of synovial tissue-derived mesenchymal stem cells on meniscal regeneration in a rabbit model of partial meniscectomy. Methods: Synovial mesenchymal stem cells were harvested from the knee of one New Zealand White rabbit, expanded in culture, and labeled with a fluorescent marker. A reproducible 1.5-mm cylindrical defect was created in the avascular portion of the anterior horn of the medial meniscus bilaterally in fifteen additional rabbits. Allogenic synovial mesenchymal stem cells suspended in phosphate-buffered saline solution were implanted into the right knees, and phosphate-buffered saline solution alone was placed in the left knees. Meniscal regeneration was evaluated histologically at four, twelve, and twenty-four weeks for (1) quantity and (2) quality (with use of an established three-component scoring system). A similar procedure was performed in four additional rabbits with use of green fluorescent protein-positive synovial mesenchymal stem cells for the

  13. Study of a novel three-dimensional scaffold to repair bone defect in rabbit.

    PubMed

    Chen, Yushu; Bai, Bo; Zhang, Shujiang; Ye, Jing; Zhai, Haohan; Chen, Yi; Zhang, Linlin; Zeng, Yanjun

    2014-05-01

    Both decalcified bone matrix (DBM) and fibrin gel possess good biocompatibility, so they are used as scaffolds to culture bone marrow mesenchymal stem cells (BMSCs). The feasibility and efficacy of using compound material being made of decalcified bone matrix and fibrin gel as a three-dimensional scaffold for bone growth were investigated. BMSCs were isolated from the femur of rabbit, then seeded in prepared scaffolds after incubation for 28 days in vitro. In vivo: 30 New Zealand White Rabbits received bone defect in left radius and divided three treatment groups randomly: (1) BMSCs/decalcified bone matrix/fibrin glue as experimental group; (2) decalcified bone matrix/fibrin glue without cells as control group; (3) nothing was implanted into the bone defects as blank group. The observation period of specimens was 12 weeks, and were analyzed bone formation in terms of serum proteomics (2D-PAGE and MALDI-TOF-TOF-MS), hematoxylin-eosin (HE) staining, ALP staining, and Osteopontin immunofluorescence detection. The experimental group present in three peculiar kinds of proteins, whose Geninfo identifier (GI) number were 136466, 126722803, and 126723746, respectively, correspond to TTR protein, ALB protein, RBP4 protein, and the histological inspections were superior to the other group. The content of osteopontin in experimental group was significantly higher than control group (p <  0.05). The overall results indicated that a combined material being made of BMSCs/decalcified bone matrix/fibrin glue can result in successful bone formation and decalcified bone matrix/fibrin glue admixtures can be used as a scaffold for bone tissue engineering. Copyright © 2013 Wiley Periodicals, Inc.

  14. Balancing the Rates of New Bone Formation and Polymer Degradation Enhances Healing of Weight-Bearing Allograft/Polyurethane Composites in Rabbit Femoral Defects

    PubMed Central

    Dumas, Jerald E.; Prieto, Edna M.; Zienkiewicz, Katarzyna J.; Guda, Teja; Wenke, Joseph C.; Bible, Jesse; Holt, Ginger E.

    2014-01-01

    There is a compelling clinical need for bone grafts with initial bone-like mechanical properties that actively remodel for repair of weight-bearing bone defects, such as fractures of the tibial plateau and vertebrae. However, there is a paucity of studies investigating remodeling of weight-bearing bone grafts in preclinical models, and consequently there is limited understanding of the mechanisms by which these grafts remodel in vivo. In this study, we investigated the effects of the rates of new bone formation, matrix resorption, and polymer degradation on healing of settable weight-bearing polyurethane/allograft composites in a rabbit femoral condyle defect model. The grafts induced progressive healing in vivo, as evidenced by an increase in new bone formation, as well as a decrease in residual allograft and polymer from 6 to 12 weeks. However, the mismatch between the rates of autocatalytic polymer degradation and zero-order (independent of time) new bone formation resulted in incomplete healing in the interior of the composite. Augmentation of the grafts with recombinant human bone morphogenetic protein-2 not only increased the rate of new bone formation, but also altered the degradation mechanism of the polymer to approximate a zero-order process. The consequent matching of the rates of new bone formation and polymer degradation resulted in more extensive healing at later time points in all regions of the graft. These observations underscore the importance of balancing the rates of new bone formation and degradation to promote healing of settable weight-bearing bone grafts that maintain bone-like strength, while actively remodeling. PMID:23941405

  15. Radiographical and clinical evaluation of critical size defects in rabbit calvaria filled with allograft and autograft: a pilot study

    PubMed Central

    Oporto V, Gonzalo H; Fuentes, Ramón; Borie, Eduardo; del Sol, Mariano; Orsi, Iara Augusta; Engelke, Wilfried

    2014-01-01

    Regeneration of resorbed edentulous sites can be induced by bone grafts from the subject himself and/or by the use of biomaterials. At present, there has been an extensive search for biomaterials that are evaluated by artificially creating one or more critical defects. The aim of this work was to clinically and radiographically analyze bone formation by the use of some biomaterials in artificially created defects in the parietal bone of rabbits. Six rabbits were used, creating defects of 8 mm in diameter in parietal bones. One defect was maintained with coagulum only, and in others, freeze-dried bone allograft (FDBA), autologous bone, and a combination of autologous bone with FDBA respectively, were added. Animals were sacrificed at 15-90 days with 2 weeks interval each, and calvaria were analyzed macroscopically, measuring by digital caliper the lack of filling at the surface of defects, identifying limits at anteroposterior and coronal view, realizing a digital photograph register of their external surfaces. This was subsequently evaluated radiographically by occlusal film radiography used to quantify its density through software. In conclusion, autologous bone showed the best behavior, clinically as well as radiographically. However, FDBA is a good option as an alternative to autologous bone as its behavior was slightly lower over time. The combination of autologous bone and FDBA in the same defect showed results considerably inferior to grafts used separately. Low radiopacity and clear limits were observed through time for the control coagulum filled defect. PMID:25126163

  16. Wound healing of osteotomy defects prepared with piezo or conventional surgical instruments: a pilot study in rabbits.

    PubMed

    Ma, Li; Mattheos, Nikos; Sun, Yan; Liu, Xi Ling; Yip Chui, Ying; Lang, Niklaus Peter

    2015-08-01

    The aim of the present study was to evaluate and compare the wound-healing process following osteotomies performed with either conventional rotary burs or piezoelectric surgery in a rabbit model. Two types of osteotomy window defects of the nasal cavities were prepared on the nasal bone of 16 adult New Zealand white rabbits with either a conventional rotary bur or piezo surgery. The defects were covered with a resorbable membrane. Four animals were killed at 1, 2, 3, and 5 weeks after the surgical procedure, respectively. Histological and morphometric evaluations were performed to assess the volumetric density of various tissue components: the blood clot, vascularized structures, provisional matrix, osteoid, mineralized bone, bone debris, residual tissue, and old bone. Significantly more bone debris was found at 1 week in the conventionally-prepared defects compared to the piezo surgically-prepared defects. At 2 and 3 weeks, a newly-formed hard tissue bridge, mainly composed of woven bone, was seen; however, no statistically-significant differences were observed. At 5 weeks, the defects were completely filled with newly-formed bone. The defects prepared by piezo surgery showed a significantly decreased proportion of bone debris at 1 week, compared to conventional rotary bur defect. © 2014 Wiley Publishing Asia Pty Ltd.

  17. 3D printed alendronate-releasing poly(caprolactone) porous scaffolds enhance osteogenic differentiation and bone formation in rat tibial defects.

    PubMed

    Kim, Sung Eun; Yun, Young-Pil; Shim, Kyu-Sik; Kim, Hak-Jun; Park, Kyeongsoon; Song, Hae-Ryong

    2016-09-29

    The aim of this study was to evaluate the in vitro osteogenic effects and in vivo new bone formation of three-dimensional (3D) printed alendronate (Aln)-releasing poly(caprolactone) (PCL) (Aln/PCL) scaffolds in rat tibial defect models. 3D printed Aln/PCL scaffolds were fabricated via layer-by-layer deposition. The fabricated Aln/PCL scaffolds had high porosity and an interconnected pore structure and showed sustained Aln release. In vitro studies showed that MG-63 cells seeded on the Aln/PCL scaffolds displayed increased alkaline phosphatase (ALP) activity and calcium content in a dose-dependent manner when compared with cell cultures in PCL scaffolds. In addition, in vivo animal studies and histologic evaluation showed that Aln/PCL scaffolds implanted in a rat tibial defect model markedly increased new bone formation and mineralized bone tissues in a dose-dependent manner compared to PCL-only scaffolds. Our results show that 3D printed Aln/PCL scaffolds are promising templates for bone tissue engineering applications.

  18. Gelatin microspheres containing calcitonin gene-related peptide or substance P repair bone defects in osteoporotic rabbits.

    PubMed

    Chen, Jianghao; Liu, Wei; Zhao, Jinxiu; Sun, Cong; Chen, Jie; Hu, Kaijin; Zhang, Linlin; Ding, Yuxiang

    2017-03-01

    To investigate the therapeutic effect of gelatin microspheres containing different concentrations of calcitonin gene-related peptide (CGRP) or substance P on repairing bone defects in a rabbit osteoporosis model. Gelatin microspheres containing different concentrations of CGRP or substance P promoted osteogenesis after 3 months in a rabbit osteoporotic bone defective model. From micro-computed tomography imaging results, 10 nM CGRP was optimal for increasing the trabecular number and decreasing the trabecular bone separation degree; similar effects were observed with the microspheres containing 1 µM substance P. Histological analysis showed that the gelatin microspheres containing CGRP or substance P, regardless of the concentration, effectively promoted osteogenesis, and the highest effect was achieved in the groups containing 1 µM CGRP or 1 µM substance P. Gelatin microspheres containing CGRP or substance P effectively promoted osteogenesis in a rabbit osteoporotic bone defect model dose-dependently, though their effects in repairing human alveolar ridge defects still need further investigation.

  19. Biphasic β-TCP mixed with silicon increases bone formation in critical site defects in rabbit calvaria.

    PubMed

    Calvo-Guirado, José Luis; Garces, Miguel; Delgado-Ruiz, Rafael Arcesio; Ramirez Fernandez, Maria P; Ferres-Amat, Eduard; Romanos, Georgios E

    2015-08-01

    The aim of this study was to assess the bone regeneration of critical size defects in rabbit calvarias filled with β-TCP doped with silicon. Twenty-one New Zealand rabbits were used in this study. Two critical size defects were created in the parietal bones. Three experimental groups were evaluated: Test A (HA/β-TCP granules alone), Test B (HA/β-TCP granules plus 3% silicon), Control (empty defect). The animals were sacrificed at 8 and 12 weeks. Evaluation was performed by μCT analysis and histomorphometry. μCT evaluation showed higher volume reduction in Test A group compared with Test B (P < 0.05). The Test B group showed the highest values for cortical closure and bone formation around the particles, followed by Test A and controls (P < 0.05). Within the limitations of this animal study, it can be concluded that HA/β-TCP plus 3% silicon increases bone formation in critical size defects in rabbit calvarias, and the incorporation of 3% silicon reduces the resorption rate of the HA/β-TCP granules. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Tibial tunnel defect size as a risk factor in growth arrest following paediatric transphyseal anterior cruciate ligament reconstruction: an anatomical study.

    PubMed

    Pananwala, Hasitha; Jabbar, Yaser; Mills, Leonora; Symes, Michael; Nandapalan, Haren; Sefton, Andrew; Delungahawatte, Lasitha; Dao, Quang

    2016-09-01

    There is ongoing controversy regarding growth disturbances in younger patients undergoing anterior cruciate ligament reconstructions. Animal models have shown that an injury of 7-9% of the physeal area is a risk factor for growth disturbances. A total of 39 magnetic resonance imaging studies of the knee were examined. The proximal tibial physeal area was determined using a calibrated 'region of interest' ligature encompassing the tibial physis in the axial plane. The potential defect left by commonly used drill sizes was calculated as a percentage of the physeal area. A 7-mm drill leaves a mean defect of 1.45% physeal area (range: 1.11-1.89%, SD: 0.28, 95% CI: ±0.09), 8-mm drill leaves a 1.84% mean defect (range: 1.43-2.49%, SD: 0.38, 95% CI: ±0.12) and a 9-mm drill leaves a 2.30% mean defect (range: 1.83-3.19%, SD: 0.58, 95% CI: ±0.17). At 55°, 7-mm drill leaves a mean defect of 1.96% (range: 1.32-2.28%, SD: 0.37, 95% CI: ±0.12), 8-mm drill leaves a mean defect of 2.19% (range: 1.71-2.95%, SD: 0.46, 95% CI: ±0.14) and a 9-mm drill leaves a mean defect of 2.76% (range: 2.16-3.73%, SD: 0.58, 95% CI: ±0.18). There was a statistically significant difference in the tunnel area with a change of drill angle (7-mm drill P = 0.005, 8-mm drill P = 0.001, 9-mm drill P = 0.001). On the basis of this study in the context of animal model and observational evidence, the area of physeal injury using drill tunnels for anterior cruciate ligament reconstruction would not appear to contribute to potential growth disturbances. © 2016 Royal Australasian College of Surgeons.

  1. Repair of articular cartilage defects in the knee with autologous iliac crest cartilage in a rabbit model.

    PubMed

    Jing, Lizhong; Zhang, Jiying; Leng, Huijie; Guo, Qinwei; Hu, Yuelin

    2015-04-01

    To demonstrate that iliac crest cartilage may be used to repair articular cartilage defects in the knees of rabbits. Full-thickness cartilage defects were created in the medial femoral condyle on both knees of 36 New Zealand white rabbits. The 72 defects were randomly assigned to be repaired with ipsilateral iliac crest cartilage (Group I), osteochondral tissues removed at defect creation (Group II), or no treatment (negative control, Group III). Animals were killed at 6, 12, and 24 weeks post-operatively. The repaired tissues were harvested for magnetic resonance imaging (MRI), histological studies (haematoxylin and eosin and immunohistochemical staining), and mechanical testing. At 6 weeks, the iliac crest cartilage graft was not yet well integrated with the surrounding articular cartilage, but at 12 weeks, the graft deep zone had partial ossification. By 24 weeks, the hyaline cartilage-like tissue was completely integrated with the surrounding articular cartilage. Osteochondral autografts showed more rapid healing than Group I at 6 weeks and complete healing at 12 weeks. Untreated defects were concave or partly filled with fibrous tissue throughout the study. MRI showed that Group I had slower integration with surrounding normal cartilage compared with Group II. The mechanical properties of Group I were significantly lower than those of Group II at 12 weeks, but this difference was not significant at 24 weeks. Iliac crest cartilage autografts were able to repair knee cartilage defects with hyaline cartilage and showed comparable results with osteochondral autografts in the rabbit model.

  2. Cell factory-derived bioactive molecules with polymeric cryogel scaffold enhance the repair of subchondral cartilage defect in rabbits.

    PubMed

    Gupta, Ankur; Bhat, Sumrita; Chaudhari, Bhushan P; Gupta, Kailash C; Tägil, Magnus; Zheng, Ming Hao; Kumar, Ashok; Lidgren, Lars

    2017-06-01

    We have explored the potential of cell factory-derived bioactive molecules, isolated from conditioned media of primary goat chondrocytes, for the repair of subchondral cartilage defects. Enzyme-linked immunosorbent assay (ELISA) confirms the presence of transforming growth factor-β1 in an isolated protein fraction (12.56 ± 1.15 ng/mg protein fraction). These bioactive molecules were used alone or with chitosan-agarose-gelatin cryogel scaffolds, with and without chondrocytes, to check whether combined approaches further enhance cartilage repair. To evaluate this, an in vivo study was conducted on New Zealand rabbits in which a subchondral defect (4.5 mm wide × 4.5 mm deep) was surgically created. Starting after the operation, bioactive molecules were injected at the defect site at regular intervals of 14 days. Histopathological analysis showed that rabbits treated with bioactive molecules alone had cartilage regeneration after 4 weeks. However, rabbits treated with bioactive molecules along with scaffolds, with or without cells, showed cartilage formation after 3 weeks; 6 weeks after surgery, the cartilage regenerated in rabbits treated with either bioactive molecules alone or in combinations showed morphological similarities to native cartilage. No systemic cytotoxicity or inflammatory response was induced by any of the treatments. Further, ELISA was done to determine systemic toxicity, which showed no difference in concentration of tumour necrosis factor-α in blood serum, before or after surgery. In conclusion, intra-articular injection with bioactive molecules alone may be used for the repair of subchondral cartilage defects, and bioactive molecules along with chondrocyte-seeded scaffolds further enhance the repair. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells.

    PubMed

    Cao, Lei; Yang, Fei; Liu, Guangwang; Yu, Degang; Li, Huiwu; Fan, Qiming; Gan, Yaokai; Tang, Tingting; Dai, Kerong

    2011-06-01

    Although Sox9 is essential for chondrogenic differentiation and matrix production, its application in cartilage tissue engineering has been rarely reported. In this study, the chondrogenic effect of Sox9 on bone marrow mesenchymal stem cells (BMSCs) in vitro and its application in articular cartilage repair in vivo were evaluated. Rabbit BMSCs were transduced with adenoviral vector containing Sox9. Toluidine blue, safranin O staining and real-time PCR were performed to check chondrogenic differentiation. The results showed that Sox9 could induce chondrogenesis of BMSCs both in monolayer and on PGA scaffold effectively. The rabbit model with full-thickness cartilage defects was established and then repaired by PGA scaffold and rabbit BMSCs with or without Sox9 transduction. HE, safranin O staining and immunohistochemistry were used to assess the repair of defects by the complex. Better repair, including more newly-formed cartilage tissue and hyaline cartilage-specific extracellular matrix and greater expression of several chondrogenesis marker genes were observed in PGA scaffold and BMSCs with Sox9 transduction, compared to that without transduction. Our findings defined the important role of Sox9 in the repair of cartilage defects in vivo and provided evidence that Sox9 had the potential and advantage in the application of tissue engineering. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Evaluation of an injectable bioactive borate glass cement to heal bone defects in a rabbit femoral condyle model.

    PubMed

    Cui, Xu; Huang, Wenhai; Zhang, Yadong; Huang, Chengcheng; Yu, Zunxiong; Wang, Lei; Liu, Wenlong; Wang, Ting; Zhou, Jie; Wang, Hui; Zhou, Nai; Wang, Deping; Pan, Haobo; Rahaman, Mohamed N

    2017-04-01

    There is a need for synthetic biomaterials to heal bone defects using minimal invasive surgery. In the present study, an injectable cement composed of bioactive borate glass particles and a chitosan bonding solution was developed and evaluated for its capacity to heal bone defects in a rabbit femoral condyle model. The injectability and setting time of the cement in vitro decreased but the compressive strength increased (8±2MPa to 31±2MPa) as the ratio of glass particles to chitosan solution increased (from 1.0gml -1 to 2.5gml -1 ). Upon immersing the cement in phosphate-buffered saline, the glass particles reacted and converted to hydroxyapatite, imparting bioactivity to the cement. Osteoblastic MC3T3-E1 cells showed enhanced proliferation and alkaline phosphatase activity when incubated in media containing the soluble ionic product of the cement. The bioactive glass cement showed a better capacity to stimulate bone formation in rabbit femoral condyle defects at 12weeks postimplantation when compared to a commercial calcium sulfate cement. The injectable bioactive borate glass cement developed in this study could provide a promising biomaterial to heal bone defects by minimal invasive surgery. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effects of Calcium Sulfate Combined with Platelet-rich Plasma on Restoration of Long Bone Defect in Rabbits

    PubMed Central

    Chen, Hua; Ji, Xin-Ran; Zhang, Qun; Tian, Xue-Zhong; Zhang, Bo-Xun; Tang, Pei-Fu

    2016-01-01

    Background: The treatment for long bone defects has been a hot topic in the field of regenerative medicine. This study aimed to evaluate the therapeutic effects of calcium sulfate (CS) combined with platelet-rich plasma (PRP) on long bone defect restoration. Methods: A radial bone defect model was constructed through an osteotomy using New Zealand rabbits. The rabbits were randomly divided into four groups (n = 10 in each group): a CS combined with PRP (CS-PRP) group, a CS group, a PRP group, and a positive (recombinant human bone morphogenetic protein-2) control group. PRP was prepared from autologous blood using a two-step centrifugation process. CS-PRP was obtained by mixing hemihydrate CS with PRP. Radiographs and histologic micrographs were generated. The percentage of bone regenerated bone area in each rabbit was calculated at 10 weeks. One-way analysis of variance was performed in this study. Results: The radiographs and histologic micrographs showed bone restoration in the CS-PRP and positive control groups, while nonunion was observed in the CS and PRP groups. The percentages of bone regenerated bone area in the CS-PRP (84.60 ± 2.87%) and positive control (52.21 ± 4.53%) groups were significantly greater than those in the CS group (12.34 ± 2.17%) and PRP group (16.52 ± 4.22%) (P < 0.001). In addition, the bone strength of CS-PRP group (43.10 ± 4.10%) was significantly greater than that of the CS group (20.10 ± 3.70%) or PRP group (25.10 ± 2.10%) (P < 0.001). Conclusion: CS-PRP functions as an effective treatment for long bone defects through stimulating bone regeneration and enhancing new bone strength. PMID:26904990

  6. Preparation of porous PLA/DBM composite biomaterials and experimental research of repair rabbit radius segmental bone defect.

    PubMed

    Zhang, Yumin; Wang, Jianru; Wang, Jue; Niu, Xiaojun; Liu, Jianchun; Gao, Lan; Zhai, Xiaoyan; Chu, Kaibo

    2015-12-01

    Bone substitutes are used in wide range of orthopaedic application. An ideal bone substitute should exhibit superior osteoinductive and osteoconductive properties. Neither bio-derived materials nor synthetic materials can meet the needs of an ideal bone substitute. Preparation of composite materials is a promising way to improve properties of biomaterial. In this study, the porous poly lactic acid (PLA)/demineralized bone matrix (DBM) composite biomaterials prepared by supercritical CO2 technique were implanted to repair rabbit radius segmental bone defect. By comparing with PLA and bone autograft, the X-ray result and histological analysis showed the repair effect of PLA/DBM porous composite materials is significantly better than that of the PLA group and the blank control group, and is similar to autologous bone. The PLA/DBM can promote the healing of bone defects and can be used as a kind of ideal alternative materials to repair bone defects.

  7. Similar hyaline-like cartilage repair of osteochondral defects in rabbits using isotropic and anisotropic collagen scaffolds.

    PubMed

    de Mulder, Eric L W; Hannink, Gerjon; van Kuppevelt, Toin H; Daamen, Willeke F; Buma, Pieter

    2014-02-01

    Lesions in knee joint articular cartilage (AC) have limited repair capacity. Many clinically available treatments induce a fibrous-like cartilage repair instead of hyaline cartilage. To induce hyaline cartilage repair, we hypothesized that type I collagen scaffolds with fibers aligned perpendicular to the AC surface would result in qualitatively better tissue repair due to a guided cellular influx from the subchondral bone. By specific freezing protocols, type I collagen scaffolds with isotropic and anisotropic fiber architectures were produced. Rabbits were operated on bilaterally and two full thickness defects were created in each knee joint. The defects were filled with (1) an isotropic scaffold, (2) an anisotropic scaffold with pores parallel to the cartilage surface, and (3) an anisotropic scaffold with pores perpendicular to the cartilage surface. Empty defects served as controls. After 4 (n=13) and 12 (n=13) weeks, regeneration was scored qualitatively and quantitatively using histological analysis and a modified O'Driscoll score. After 4 weeks, all defects were completely filled with partially differentiated hyaline cartilage tissue. No differences in O'Driscoll scores were measured between empty defects and scaffold types. After 12 weeks, all treatments led to hyaline cartilage repair visualized by increased glycosaminoglycan staining. Total scores were significantly increased for parallel anisotropic and empty defects over time (p<0.05). The results indicate that collagen scaffolds allow the formation of hyaline-like cartilage repair. Fiber architecture had no effect on cartilage repair.

  8. Repair of Osteochondral Defects Using Human Umbilical Cord Wharton's Jelly-Derived Mesenchymal Stem Cells in a Rabbit Model

    PubMed Central

    Jia, Yanhui; Yuan, Mei; Guo, Weimin; Huang, Jingxiang; Zhao, Bin; Xu, Wenjing; Lu, Shibi

    2017-01-01

    Umbilical cord Wharton's jelly-derived mesenchymal stem cell (WJMSC) is a new-found mesenchymal stem cell in recent years with multiple lineage potential. Due to its abundant resources, no damage procurement, and lower immunogenicity than other adult MSCs, WJMSC promises to be a good xenogenous cell candidate for tissue engineering. This in vivo pilot study explored the use of human umbilical cord Wharton's jelly mesenchymal stem cells (hWJMSCs) containing a tissue engineering construct xenotransplant in rabbits to repair full-thickness cartilage defects in the femoral patellar groove. We observed orderly spatial-temporal remodeling of hWJMSCs into cartilage tissues during repair over 16 months, with characteristic architectural features, including a hyaline-like neocartilage layer with good surface regularity, complete integration with adjacent host cartilage, and regenerated subchondral bone. No immune rejection was detected when xenograft hWJMSCs were implanted into rabbit cartilage defects. The repair results using hWJMSCs were superior to those of chondrogenically induced hWJMSCs after assessing gross appearance and histological grading scores. These preliminary results suggest that using novel undifferentiated hWJMSCs as seed cells might be a better approach than using transforming growth factor-β-induced differentiated hWJMSCs for in vivo tissue engineering treatment of cartilage defects. hWJMSC allografts may be promising for clinical applications. PMID:28261617

  9. Comparison between the effects of platelet-rich plasma and bone marrow concentrate on defect consolidation in the rabbit tibia

    PubMed Central

    Batista, Marco Antonio; Leivas, Tomaz Puga; Rodrigues, Consuelo Junqueira; Arenas, Géssica Cantadori Funes; Belitardo, Donizeti Rodrigues; Guarniero, Roberto

    2011-01-01

    OBJECTIVE: To perform a comparative analysis of the effects of platelet-rich plasma and centrifuged bone marrow aspirate on the induction of bone healing in rabbits. METHOD: Twenty adult, male New Zealand rabbits were randomly separated into two equal groups, and surgery was performed to create a bone defect (a cortical orifice 3.3 mm in diameter) in the proximal metaphysis of each rabbit's right tibia. In the first group, platelet-rich plasma was implanted in combination with β-tricalcium phosphate (platelet-rich plasma group), and in the second group, centrifuged bone marrow in combination with β-tricalcium phosphate (centrifuged bone marrow group) was implanted. After a period of four weeks, the animals were euthanized, and the tibias were evaluated using digital radiography, computed tomography, and histomorphometry. RESULTS: Seven samples from each group were evaluated. The radiographic evaluation confirmed the absence of fractures in the postoperative limb and identified whether bone consolidation had occurred. The tomographic evaluation revealed a greater amount of consolidation and the formation of a greater cortical bone thickness in the platelet-rich plasma group. The histomorphometry revealed a greater bone density in the platelet-rich plasma group compared with the centrifuged bone marrow group. CONCLUSION: After four weeks, the platelet-rich plasma promoted a greater amount of bone consolidation than the bone marrow aspirate concentrate. PMID:22012052

  10. Repair of articular cartilage defects by tissue-engineered cartilage constructed with adipose-derived stem cells and acellular cartilaginous matrix in rabbits.

    PubMed

    Wang, Z J; An, R Z; Zhao, J Y; Zhang, Q; Yang, J; Wang, J B; Wen, G Y; Yuan, X H; Qi, X W; Li, S J; Ye, X C

    2014-06-18

    After injury, inflammation, or degeneration, articular cartilage has limited self-repair ability. We aimed to explore the feasibility of repair of articular cartilage defects with tissue-engineered cartilage constructed by acellular cartilage matrices (ACMs) seeded with adipose-derived stem cells (ADSCs). The ADSCs were isolated from 3-month-old New Zealand albino rabbit by using collagenase and cultured and amplified in vitro. Fresh cartilage isolated from adult New Zealand albino rabbit were freeze-dried for 12 h and treated with Triton X-100, DNase, and RNase to obtain ACMs. ADSCs were seeded in the acellular cartilaginous matrix at 2x10(7)/mL, and cultured in chondrogenic differentiation medium for 2 weeks to construct tissue-engineered cartilage. Twenty-four New Zealand white rabbits were randomly divided into A, B, and C groups. Engineered cartilage was transplanted into cartilage defect position of rabbits in group A, group B obtained ACMs, and group C did not receive any transplants. The rabbits were sacrificed in week 12. The restored tissue was evaluated using macroscopy, histology, immunohistochemistry, and transmission electron microscopy (TEM). In the tissue-engineered cartilage group (group A), articular cartilage defects of the rabbits were filled with chondrocyte-like tissue with smooth surface. Immunohistochemistry showed type II-collagen expression and Alcian blue staining was positive. TEM showed chondrocytes in the recesses, with plenty of secretary matrix particles. In the scaffold group (group B), the defect was filled with fibrous tissue. No repaired tissue was found in the blank group (group C). Tissue-engineered cartilage using ACM seeded with ADSCs can help repair articular cartilage defects in rabbits.

  11. Effects of nandrolone decanoate on time to consolidation of bone defects resulting from osteotomy for tibial tuberosity advancement.

    PubMed

    Marques, Danilo R C; Marques, Danilo; Ibanez, Jose F; Freitas, Itallo B; Hespanha, Ana C; Monteiro, Juliana F; Eggert, Mayara; Becker, Amanda

    2017-09-12

    Experimental study. The aim of this study was to evaluate the effect of nandrolone decanoate (ND) on the time taken for bone consolidation in dogs undergoing tibial tuberosity advancement surgery (TTA). Seventeen dogs that underwent TTA surgery were randomly divided into two groups: group C (TTA; 9 stifles), and group TTA+ND (TTA and systemic administration of ND; 8 stifles). Three observers (two radiologists and an orthopaedic surgeon), assessed bone consolidation by visual inspection of serial radiographs at intervals of 21 days following surgery. There were no differences in median weight and age between groups, nor between the medians of the variables right and left stifle. Only weight and age values were normally distributed. The other variables, right and left stifle and time to consolidation, showed non-normal distribution. Meniscal injury was present in all animals in group C and all animals in group TTA+ND. There was a significant difference between time to consolidation in groups C and TTA+ND (p <0.05). One animal in the group TTA+ND showed increased libido. Kappa agreement among observers on radiographs was 0.87. Administration of ND reduces time to bone consolidation in dogs undergoing TTA.

  12. * Composite Biomaterial as a Carrier for Bone-Active Substances for Metaphyseal Tibial Bone Defect Reconstruction in Rats.

    PubMed

    Horstmann, Peter Frederik; Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner; Lidgren, Lars; Petersen, Michael Mørk; Tägil, Magnus

    2017-12-01

    Restoring lost bone is a major challenge in orthopedic surgery. Currently available treatment strategies have shortcomings, such as risk of infection, nonunion, and excessive resorption. Our primary aim was to study if a commercially available gentamicin-containing composite calcium sulfate/hydroxyapatite biomaterial (GBM) could serve as a carrier for local delivery of bone morphogenic protein-2 (BMP-2) and zoledronic acid (ZA) in a tibia defect model in rats. Empty and allograft-filled defects were used as controls. A 3 × 4-mm metaphyseal bone defect was created in the proximal tibia, and the rats were grouped according to defect filling: (1) Empty, (2) Allograft, (3) GBM, (4) GBM + ZA, and (5) GBM + ZA + BMP-2. In vivo microcomputed tomography (micro-CT) images at 4 weeks showed significantly higher mineralized tissue volume (MV) in the intramedullary defect region and the neocortical/callus region in all GBM-treated groups. After euthanization at 8 weeks, ex vivo micro-CT showed that addition of ZA (GBM + ZA) and BMP-2 (GBM + ZA + BMP-2) mainly increased the neocortical and callus formation, with the highest MV in the combined ZA and BMP-2-treated group. Qualitative histological analysis, verifying the increased neocortical/callus thickness and finding of trabecular bone in all GBM-treated groups, supported that the differences in MV measured with micro-CT in fact represented bone tissue. In conclusion, GBM can serve as a carrier for ZA and BMP-2 leading to increased MV in the neocortex and callus of a metaphyseal bone defect in rats.

  13. CARTILAGE CONSTRUCTS ENGINEERED FROM CHONDROCYTES OVEREXPRESSING IGF-I IMPROVE THE REPAIR OF OSTEOCHONDRAL DEFECTS IN A RABBIT MODEL

    PubMed Central

    Madry, Henning; Kaul, Gunter; Zurakowski, David; Vunjak-Novakovic, Gordana; Cucchiarini, Magali

    2015-01-01

    Tissue engineering combined with gene therapy is a promising approach for promoting articular cartilage repair. Here, we tested the hypothesis that engineered cartilage with chondrocytes over expressing a human insulin-like growth factor I (IGF-I) gene can enhance the repair of osteochondral defects, in a manner dependent on the duration of cultivation. Genetically modified chondrocytes were cultured on biodegradable polyglycolic acid scaffolds in dynamic flow rotating bioreactors for either 10 or 28 d. The resulting cartilaginous constructs were implanted into osteochondral defects in rabbit knee joints. After 28 weeks of in vivo implantation, immunoreactivity to ß-gal was detectable in the repair tissue of defects that received lacZ constructs. Engineered cartilaginous constructs based on IGF-I-over expressing chondrocytes markedly improved osteochondral repair compared with control (lacZ) constructs. Moreover, IGF-I constructs cultivated for 28 d in vitro significantly promoted osteochondral repair vis-à-vis similar constructs cultivated for 10 d, leading to significantly decreased osteoarthritic changes in the cartilage adjacent to the defects. Hence, the combination of spatially defined overexpression of human IGF-I within a tissue-engineered construct and prolonged bioreactor cultivation resulted in most enhanced articular cartilage repair and reduction of osteoarthritic changes in the cartilage adjacent to the defect. Such genetically enhanced tissue engineering provides a versatile tool to evaluate potential therapeutic genes in vivo and to improve our comprehension of the development of the repair tissue within articular cartilage defects. Insights gained with additional exploration using this model may lead to more effective treatment options for acute cartilage defects. PMID:23588785

  14. Cartilage constructs engineered from chondrocytes overexpressing IGF-I improve the repair of osteochondral defects in a rabbit model.

    PubMed

    Madry, H; Kaul, G; Zurakowski, D; Vunjak-Novakovic, G; Cucchiarini, M

    2013-04-16

    Tissue engineering combined with gene therapy is a promising approach for promoting articular cartilage repair. Here, we tested the hypothesis that engineered cartilage with chondrocytes overexpressing a human insulin-like growth factor I (IGF-I) gene can enhance the repair of osteochondral defects, in a manner dependent on the duration of cultivation. Genetically modified chondrocytes were cultured on biodegradable polyglycolic acid scaffolds in dynamic flow rotating bioreactors for either 10 or 28 d. The resulting cartilaginous constructs were implanted into osteochondral defects in rabbit knee joints. After 28 weeks of in vivo implantation, immunoreactivity to ß-gal was detectable in the repair tissue of defects that received lacZ constructs. Engineered cartilaginous constructs based on IGF-I-overexpressing chondrocytes markedly improved osteochondral repair compared with control (lacZ) constructs. Moreover, IGF-I constructs cultivated for 28 d in vitro significantly promoted osteochondral repair vis-à-vis similar constructs cultivated for 10 d, leading to significantly decreased osteoarthritic changes in the cartilage adjacent to the defects. Hence, the combination of spatially defined overexpression of human IGF-I within a tissue-engineered construct and prolonged bioreactor cultivation resulted in most enhanced articular cartilage repair and reduction of osteoarthritic changes in the cartilage adjacent to the defect. Such genetically enhanced tissue engineering provides a versatile tool to evaluate potential therapeutic genes in vivo and to improve our comprehension of the development of the repair tissue within articular cartilage defects. Insights gained with additional exploration using this model may lead to more effective treatment options for acute cartilage defects.

  15. Optimization of Soft Tissue Management, Spacer Design, and Grafting Strategies for Large Segmental Bone Defects using the Chronic Caprine Tibial Defect Model

    DTIC Science & Technology

    2016-12-01

    gastrocnemius muscles. 4. Place an interlocking intramedullary nail using a custom spacer to maintain 5-cm defect length. 5. Place a pre-molded 5 cm long x...2 cm diameter PMMA spacer around the nail in the defect. 6. Irrigate the wound with normal (0.9 %) saline and close the wound. The Treatment...PMMA spacer using a “bomb bay door opening”. 4. Remove the spacer without damaging the membrane or nail . 5. Collect appropriate IM samples as

  16. [Experiment of porous calcium phosphate/bone matrix gelatin composite cement for repairing lumbar vertebral bone defect in rabbit].

    PubMed

    Wang, Song; Yang, Han; Yang, Jian; Kang, Jianping; Wang, Qing; Song, Yueming

    2017-12-01

    To investigate the effect of a porous calcium phosphate/bone matrix gelatin (BMG) composite cement (hereinafter referred to as the "porous composite cement") for repairing lumbar vertebral bone defect in a rabbit model. BMG was extracted from adult New Zealand rabbits according to the Urist's method. Poly (lactic-co-glycolic) acid (PLGA) microsphere was prepared by W/O/W double emulsion method. The porous composite cement was developed by using calcium phosphate cement (CPC) composited with BMG and PLGA microsphere. The physicochemical characterizations of the porous composite cement were assessed by anti-washout property, porosity, and biomechanical experiment, also compared with the CPC. Thirty 2-month-old New Zealand rabbits were used to construct vertebral bone defect at L 3 in size of 4 mm×3 mm×3 mm. Then, the bone defect was repaired with porous composite cement (experimental group, n =15) or CPC (control group, n =15). At 4, 8, and 12 weeks after implantation, each bone specimen was assessed by X-ray films for bone fusion, micro-CT for bone mineral density (BMD), bone volume fraction (BVF), trabecular thickness (Tb. Th.), trabecular number (Tb.N.), and trabecular spacing (Tb. Sp.), and histological section with toluidine blue staining for new-born bone formation. The study demonstrated well anti-washout property in 2 groups. The porous composite cement has 55.06%±1.18% of porosity and (51.63±6.73) MPa of compressive strength. The CPC has 49.38%±1.75% of porosity and (63.34±3.27) MPa of compressive strength. There were significant differences in porosity and compressive strength between different cements ( t =4.254, P =0.006; t =2.476, P =0.034). X-ray films revealed that the zone between the cement and host bone gradually blurred with the time extending. At 12 weeks after implantation, the zone was disappeared in the experimental group, but clear in the control group. There were significant differences in BMD, BVF, Tb. Th., Tb. N., and Tb. Sp. between

  17. Effects of Titanium Mesh Surfaces-Coated with Hydroxyapatite/β-Tricalcium Phosphate Nanotubes on Acetabular Bone Defects in Rabbits

    PubMed Central

    Nguyen, Thuy-Duong Thi; Bae, Tae-Sung; Yang, Dae-hyeok; Park, Myung-sik; Yoon, Sun-jung

    2017-01-01

    The management of severe acetabular bone defects in revision reconstructive orthopedic surgery is challenging. In this study, cyclic precalcification (CP) treatment was used on both nanotube-surface Ti-mesh and a bone graft substitute for the acetabular defect model, and its effects were assessed in vitro and in vivo. Nanotube-Ti mesh coated with hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) was manufactured by an anodizing and a sintering method, respectively. An 8 mm diameter defect was created on each acetabulum of eight rabbits, then treated by grafting materials and covered by Ti meshes. At four and eight weeks, postoperatively, biopsies were performed for histomorphometric analyses. The newly-formed bone layers under cyclic precalcified anodized Ti (CP-AT) meshes were superior with regard to the mineralized area at both four and eight weeks, as compared with that under untreated Ti meshes. Active bone regeneration at 2–4 weeks was stronger than at 6–8 weeks, particularly with treated biphasic ceramic (p < 0.05). CP improved the bioactivity of Ti meshes and biphasic grafting materials. Moreover, the precalcified nanotubular Ti meshes could enhance early contact bone formation on the mesh and, therefore, may reduce the collapse of Ti meshes into the defect, increasing the sufficiency of acetabular reconstruction. Finally, cyclic precalcification did not affect bone regeneration by biphasic grafting materials in vivo. PMID:28686210

  18. Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model.

    PubMed

    Lin, Kaili; Liu, Yong; Huang, Hai; Chen, Lei; Wang, Zhen; Chang, Jiang

    2015-06-01

    The investigation of the bone regeneration ability, degradation and excretion of the grafts is critical for development and application of the newly developed biomaterials. Herein, the in vivo bone-regeneration, biodegradation and silicon (Si) excretion of the new type calcium silicate (CaSiO3, CS) bioactive ceramics were investigated using rabbit femur defect model, and the results were compared with the traditional β-tricalcium phosphate [β-Ca3(PO4)2, β-TCP] bioceramics. After implantation of the scaffolds in rabbit femur defects for 4, 8 and 12 weeks, the bone regenerative capacity and degradation were evaluated by histomorphometric analysis. While urine and some organs such as kidney, liver, lung and spleen were resected for chemical analysis to determine the excretion of the ionic products from CS implants. The histomorphometric analysis showed that the bioresorption rate of CS was similar to that of β-TCP in femur defect model, while the CS grafts could significantly stimulate bone formation capacity as compared with β-TCP bioceramics (P < 0.05). The chemical analysis results showed that Si concentration in urinary of the CS group was apparently higher than that in control group of β-TCP. However, no significant increase of the Si excretion was found in the organs including kidney, which suggests that the resorbed Si element is harmlessly excreted in soluble form via the urine. The present studies show that the CS ceramics can be used as safe, bioactive and biodegradable materials for hard tissue repair and tissue engineering applications.

  19. COMPARATIVE MACROSCOPIC STUDY OF OSTEOCHONDRAL DEFECTS PRODUCED IN FEMURS OF RABBITS REPAIRED WITH BIOPOLYMER GEL CANE SUGAR.

    PubMed

    de Albuquerque, Paulo Cezar Vidal Carneiro; Dos Santos, Saulo Monteiro; de Andrade Aguiar, José Lamartine; Filho, Nicodemus Pontes; de Mello, Roberto José Vieira; Costa, Mariana Lúcia Correia Ramos; de Albuquerque Olbertz, Clarissa Miranda Carneiro; de Souza Almeida, Tarciana Mendonça; da Silva Santos, Alessandro Henrique; da Silva, Joacil Carlos

    2011-01-01

    To study the surface, coloring, consistency, continuity and healing of osteochondral defects produced in the femoral condyles of rabbits and filled with sugar cane biopolymer gel (SCBG), after 90, 120 and 180 days, and in comparison with a control group. Sixteen adult New Zealand white rabbits aged 6 to 7 months, weighing between 2 and 2.5 kg and without locomotor system abnormalities were studied. In all the animals, a defect was made in the femoral condyles of the right and left knees, measuring 3.2 mm in diameter and 4 mm in depth, using a trephine. The animals were divided into two groups: study group formed by the right knees, in which the medial and lateral condyles received implants of SCBG; and control group formed by the left knees, in which the medial and lateral condyles were allowed to heal naturally. The knees were assessed 90, 120 and 180 days after the operation. After the animals had been sacrificed, the anatomical specimens were resected and placed in Bouin's solution. They were then photographed with a Nikon Coolpix 5400(®) coupled to a Nikon SM2800(®) stereoscopic loupe, to analyze the surface, coloring, consistency, continuity and healing. The results were evaluated using the chi-square test. There were no significant differences in the macroscopic assessments of healing between the study and control groups. With regard to the surface, coloring, consistency, continuity and healing of the defects, the macroscopic appearance of the tissue repaired with SCBG was similar to that of the control group.

  20. Bone Formation in a Rat Tibial Defect Model Using Carboxymethyl Cellulose/BioC/Bone Morphogenic Protein-2 Hybrid Materials

    PubMed Central

    Kim, Hak-Jun; Park, Kyeongsoon; Kim, Sung Eun; Song, Hae-Ryong

    2014-01-01

    The objective of this study was to assess whether carboxymethyl cellulose- (CMC-) based hydrogel containing BioC (biphasic calcium phosphate (BCP); tricalcium phosphate (TCP) : hydroxyapatite (Hap) = 70 : 30) and bone morphogenic protein-2 (BMP-2) led to greater bone formation than CMC-based hydrogel containing BioC without BMP-2. In order to demonstrate bone formation at 4 and 8 weeks, plain radiographs, microcomputed tomography (micro-CT) evaluation, and histological studies were performed after implantation of all hybrid materials on an 8 mm defect of the right tibia in rats. The plain radiographs and micro-CT analyses revealed that CMC/BioC/BMP-2 (0.5 mg) led to much greater mineralization at 4 and 8 weeks than did CMC/BioC or CMC/Bio/BMP-2 (0.1 mg). Likewise, bone formation and bone remodeling studies revealed that CMC/BioC/BMP-2 (0.5 mg) led to a significantly greater amount of bone formation and bone remodeling at 4 and 8 weeks than did CMC/BioC or CMC/BioC/BMP-2 (0.1 mg). Histological studies revealed that mineralized bone tissue was present around the whole circumference of the defect site with CMC/BioC/BMP-2 (0.5 mg) but not with CMC/BioC or CMC/BioC/BMP-2 (0.1 mg) at 4 and 8 weeks. These results suggest that CMC/BioC/BMP-2 hybrid materials induced greater bone formation than CMC/BioC hybrid materials. Thus, CMC/BioC/BMP-2 hybrid materials may be used as an injectable substrate to regenerate bone defects. PMID:24804202

  1. Evaluation of a press-fit osteochondral poly(ester-urethane) scaffold in a rabbit defect model.

    PubMed

    Dresing, Iska; Zeiter, Stephan; Auer, Jörg; Alini, Mauro; Eglin, David

    2014-07-01

    The purpose of this study was to evaluate the impact on osteochondral healing of press-fitted multiphasic osteochondral scaffolds consisting of poly(ester-urethane) (PUR) and hydroxyapatite into a cylindric osteochondral defect in the distal non-weight bearing femoral trochlear ridge of the rabbit. Two scaffolds were investigated, one with and one without an intermediate microporous membrane between the cartilage and the bone compartment of the scaffold. A control group without a scaffold placed into the defect was included. After 12 weeks macroscopic and histomorphological analyses were performed. The scaffold was easily press-fitted and provided a stable matrix for tissue repair. The membrane did not demonstrate a detrimental effect on tissue healing compared with the scaffold without membrane. However, the control group had statistically superior healing as reflected by histological differences in the cartilage and subchondral bone compartment between control group and each scaffold group. A more detailed analysis revealed that the difference was localized in the bone compartment healing. The present study demonstrates that an elastomeric PUR scaffold can easily be press-fitted into an osteochondral defect and provides a stable matrix for tissue repair. However, the multi-phasic scaffold did not provide a clear advantage for tissue healing. Future investigations should refine especially the bone phase of the implant to increase its stiffness, biocompatibility and osteoconductive activity. A more precise fabrication technique would be necessary for the matching of tissue organisation.

  2. Systematical Evaluation of Mechanically Strong 3D Printed Diluted magnesium Doping Wollastonite Scaffolds on Osteogenic Capacity in Rabbit Calvarial Defects

    PubMed Central

    Sun, Miao; Liu, An; Shao, Huifeng; Yang, Xianyan; Ma, Chiyuan; Yan, Shigui; Liu, Yanming; He, Yong; Gou, Zhongru

    2016-01-01

    Wollastonite (CaSiO3; CSi) ceramic is a promising bioactive material for bone defect repair due to slightly fast degradation of its porous constructs in vivo. In our previous strategy some key features of CSi ceramic have been significantly improved by dilute magnesium doping for regulating mechanical properties and biodegradation. Here we demonstrate that 6 ~ 14% of Ca substituted by Mg in CSi (CSi-Mgx, x = 6, 10, 14) can enhance the mechanical strength (>40 MPa) but not compromise biological performances of the 3D printed porous scaffolds with open porosity of 60‒63%. The in vitro cell culture tests in vitro indicated that the dilute Mg doping into CSi was beneficial for ALP activity and high expression of osteogenic marker genes of MC3T3-E1 cells in the scaffolds. A good bone tissue regeneration response and elastoplastic response in mechanical strength in vivo were determined after implantation in rabbit calvarial defects for 6‒12 weeks. Particularly, the CSi-Mg10 and CSi-Mg14 scaffolds could enhance new bone regeneration with a significant increase of newly formed bone tissue (18 ~ 22%) compared to the pure CSi (~14%) at 12 weeks post-implantation. It is reasonable to consider that, therefore, such CSi-Mgx scaffolds possessing excellent strength and reasonable degradability are promising for bone reconstruction in thin-wall bone defects. PMID:27658481

  3. Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits.

    PubMed

    Hu, Jianzhong; Yang, Zhiming; Zhou, Yongchun; Liu, Yong; Li, Kaiyang; Lu, Hongbin

    2015-11-01

    The osteoconduction of porous biphasic calcium phosphate (BCP) ceramics has been widely reported. In a previous study, we demonstrated that applying a nano-hydroxyapatite (nHA) coating enhances the osteoinductive potential of BCP ceramics, making these scaffolds more suitable for bone tissue engineering applications. The aim of the present study was to determine the effects of reconstructing radius defects in rabbits using nHA-coated BCP ceramics seeded with mesenchymal stem cells (MSCs) and to compare the bone regeneration induced by different scaffolds. Radius defects were created in 20 New Zealand rabbits, which were divided into four groups by treatment: porous BCP ceramics (Group A), nHA-coated porous BCP ceramics (Group B), porous BCP ceramics seeded with rabbit MSCs (Group C), and nHA-coated porous BCP ceramics seeded with rabbit MSCs (Group D). After in vitro incubation, the cell/scaffold complexes were implanted into the defects. Twelve weeks after implantation, the specimens were examined macroscopically and histologically. Both the nHA coating and seeding with MSCs enhanced the formation of new bone tissue in the BCP ceramics, though the osteoinductive potential of the scaffolds with MSCs was greater than that of the nHA-coated scaffolds. Notably, the combination of nHA coating and MSCs significantly improved the bone regeneration capability of the BCP ceramics. Thus, MSCs seeded into porous BCP ceramics coated with nHA may be an effective bone substitute to reconstruct bone defects in the clinic.

  4. Repair of bone defect by nano-modified white mineral trioxide aggregates in rabbit: A histopathological study.

    PubMed

    Saghiri, Mohammad-Ali; Orangi, Jafar; Tanideh, Nader; Asatourian, Armen; Janghorban, Kamal; Garcia-Godoy, Franklin; Sheibani, Nader

    2015-09-01

    Many researchers have tried to enhance materials functions in different aspects of science using nano-modification method, and in many cases the results have been encouraging. To evaluate the histopathological responses of the micro-/nano-size cement-type biomaterials derived from calcium silicate-based composition with addition of nano tricalcium aluminate (3CaO.Al2O3) on bone healing response. Ninety mature male rabbits were anesthetized and a bone defect was created in the right mandible. The rabbits were divided into three groups, which were in turn subdivided into five subgroups with six animals each based on the defect filled by: white mineral trioxide aggregate (WMTA), Nano-WMTA, WMTA without 3CaO.Al2O3, Nano-WMTA with 2% Nano-3CaO.Al2O3, and empty as control. Twenty, forty and sixty days postoperatively the animals were sacrificed and the right mandibles were removed for histopathological evaluations. Kruskal-Wallis test with post-hoc comparisons based on the LSMeans procedure was used for data analysis. All the experimental materials provoked a moderate to severe inflammatory reaction, which significantly differed from the control group (p< 0.05). Statistical analysis of bone formation and bone regeneration data showed significant differences between groups at 40- and 60- day intervals in all groups. Absence of 3CaO.Al2O3 leads to more inflammation and foreign body reaction than other groups in all time intervals. Both powder nano-modification and addition of 2% Nano-3CaO.Al2O3 to calcium silicate-based cement enhanced the favorable tissue response and osteogenesis properties of WMTA based materials.

  5. A biodegradable antibiotic-eluting PLGA nanofiber-loaded deproteinized bone for treatment of infected rabbit bone defects.

    PubMed

    Gao, Jianting; Huang, Guofeng; Liu, Guojun; Liu, Yan; Chen, Qi; Ren, Lei; Chen, Changqing; Ding, Zhenqi

    2016-08-01

    We fabricated a biodegradable antibiotic-eluting poly(d,l)-lactide-co-glycolide nanofiber-loaded deproteinized bone (ANDB) scaffold that provided sustained delivery of vancomycin to repair methicillin-resistant Staphylococcus aureus bone defects. To fabricate the biodegradable ANDB, poly(d,l)-lactide-co-glycolide and vancomycin were first dissolved in 1,1,1,3,3,3-hexafluoro-2-propano. The solution was then electrospun to produce biodegradable antibiotic-eluting membranes that were deposited on the surface of bovine deproteinized cancellous bone. We used scanning electron microscopy to determine the properties of the scaffold. Both elution and high-performance liquid chromatography assays were used to evaluate the in vitro vancomycin release rate from the ANDB scaffold. Three types of scaffolds were co-cultured with bacteria to confirm the in vitro antibacterial activity. The infected bone defect rabbit model was induced by injecting 10(7) colony forming units of a methicillin-resistant Staphylococcus aureus strain into the radial defect of rabbits. Animals were then separated into treatment groups and implanted according to the following scheme: ANDB scaffold in group A, poly(d,l)-lactide-co-glycolide nanofiber-loaded deproteinized bone (NDB) scaffold with intravenous (i.v.) vancomycin in group B, and NDB scaffold alone in group C. Treatment efficacy was evaluated after eight weeks using radiological, microbiological, and histological examinations. In vitro results revealed that biodegradable ANDB scaffolds released concentrations of vancomycin that were greater than the minimum inhibitory concentration for more than four weeks. Bacterial inhibition tests also confirmed antibacterial efficacy lasted for approximately four weeks. Radiological and histological scores obtained in vivo revealed significant differences between groups A, B and C. Importantly, group A had significantly lower bacterial load and better bone regeneration when compared to either group B

  6. Injectable Reactive Biocomposites For Bone Healing In Critical-Size Rabbit Calvarial Defects

    DTIC Science & Technology

    2012-03-29

    defects (i.e. be conformable), provide temporary protection to the brain until the bone heals, and enhance tissue regeneration with the delivery of...temporary protection to the brain until the bone heals, and enhance tissue regeneration with the delivery of biologics. In this study, we evaluated the...complex defects (i.e. be conformable), harden to provide temporary protection until tissue remodels (i.e. be settable), and enhance tissue regeneration

  7. Self-fitting shape memory polymer foam inducing bone regeneration: A rabbit femoral defect study.

    PubMed

    Xie, Ruiqi; Hu, Jinlian; Hoffmann, Oskar; Zhang, Yuanchi; Ng, Frankie; Qin, Tingwu; Guo, Xia

    2018-04-01

    Although tissue engineering has been attracted greatly for healing of critical-sized bone defects, great efforts for improvement are still being made in scaffold design. In particular, bone regeneration would be enhanced if a scaffold precisely matches the contour of bone defects, especially if it could be implanted into the human body conveniently and safely. In this study, polyurethane/hydroxyapatite-based shape memory polymer (SMP) foam was fabricated as a scaffold substrate to facilitate bone regeneration. The minimally invasive delivery and the self-fitting behavior of the SMP foam were systematically evaluated to demonstrate its feasibility in the treatment of bone defects in vivo. Results showed that the SMP foam could be conveniently implanted into bone defects with a compact shape. Subsequently, it self-matched the boundary of bone defects upon shape-recovery activation in vivo. Micro-computed tomography determined that bone ingrowth initiated at the periphery of the SMP foam with a constant decrease towards the inside. Successful vascularization and bone remodeling were also demonstrated by histological analysis. Thus, our results indicate that the SMP foam demonstrated great potential for bone regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Bone grafting materials in critical defects in rabbit calvariae. A systematic review and quality evaluation using ARRIVE guidelines.

    PubMed

    Delgado-Ruiz, Rafael Arcesio; Calvo Guirado, José Luis; Romanos, Georgios E

    2015-05-20

    To perform a systematic literature review of the regenerative potential of bone substitutes used to fill critical size defects (CSDs) in rabbit calvariae; to determine the quality of the included studies using ARRIVE guidelines. An Internet search was performed in duplicate using MEDLINE, PubMed and Google Scholar databases (without restrictions on publication date) for studies reporting the regenerative potential of bone substitutes in CSDs in rabbit calvariae. Four parameters were analyzed by histomorphometry: new bone formation (NB); defect closure (DC); residual graft (RG); and connective tissue (CT). Animal Research Reporting in In Vivo Experiments (ARRIVE) guidelines (a list of 20 aspects for scoring texts and ensuring comparison between different experimental studies in animals) were used to evaluate the quality of the selected works. Twenty-one manuscripts were included. CSDs with 15 mm were predominant (57.14%). Only one study described the four histomorphometric parameters. NB formation was analyzed in 15 studies (71.42%) and was higher for particulate autogenous bone grafts (range 52.1-82%) after 12 weeks. DC was evaluated in six studies (28.57%) and was higher for fragmented adipose tissue grafts (range 53.33-93.33%) after 12 weeks. RG was evaluated in four studies (19.04%) and was higher for hydroxyapatite/beta-tricalcium phosphate grafts with silica (HA/ß-TCP + Si) (range 35.78-47.54%) at 12 weeks. CT was evaluated in two studies (9.5%) and was higher for HA/ß-TCP + membrane (44.2%) at 12 weeks. Quality evaluation identified three items (title, introduction/objectives and experimental procedure) (15%) with excellent scores, 10 items (abstract, introduction/background, methods/ethical statement, experimental animals, experimental outcomes, statistics, results/baseline data, outcome/estimation and discussion interpretation/scientific implications) (50%) with average scores, and seven items (housing and husbandry, sample size, allocation, numbers

  9. The mechanical and biological studies of calcium phosphate cement-fibrin glue for bone reconstruction of rabbit femoral defects

    PubMed Central

    Dong, Jingjing; Cui, Geng; Bi, Long; Li, Jie; Lei, Wei

    2013-01-01

    In order to improve the mechanical and biological properties of calcium phosphate cement (CPC, nanometer-biomaterial) for bone reconstruction in the rabbit femoral defect model, fibrin glue (FG, the natural product, purified from the blood) was introduced at three different ratios. The CPC powder and the FG solution were mixed, respectively, at the powder/liquid (P/L) ratios (g/mL) of 1:1, 3:1, and 5:1 (g/mL), and pure CPC was used as a control. After being implanted into the femoral defect in rabbit, the healing process was evaluated by micro-computed tomography scan, biomechanical testing, and histological examination. By micro-computed tomography analysis, the P/L ratio of 1:1 (g/mL) group indicated the largest quantity of new bone formation at 4 weeks, 8 weeks, and 12 weeks after implantation, respectively. Bone volume per trabecular volume of the 1:1 group was highest in the four groups, which was 1.45% ± 0.42%, 7.35% ± 1.45%, and 29.10% ± 1.67% at 4 weeks, 8 weeks, and 12 weeks after the operation, respectively. In the biomechanical tests, the compressive strength and the elastic modulus of the three CPC–FG groups were much higher than those of the pure CPC group at the determined time point (P < 0.05). The histological evaluation also showed the best osseointegration in the 1:1 group at 4 weeks, 8 weeks, and 12 weeks after the operation, respectively. In the 1:1 group, the bone grew into the pore of the cement in the laminar arrangement and connected with the cement tightly at the 12th week after the operation. This present study indicated that the CPC–FG composite at the P/L ratio of 1:1 (g/mL) stimulated bone regeneration better than any other designed group, which suggested that CPC–FG at the P/L ratio of 1:1 has significant potential as the bioactive material for the treatment of bone defects. PMID:23576869

  10. The effect of systemic administration of G-CSF on a full-thickness cartilage defect in a rabbit model MSC proliferation as presumed mechanism

    PubMed Central

    Sasaki, T.; Akagi, R.; Akatsu, Y.; Fukawa, T.; Hoshi, H.; Yamamoto, Y.; Enomoto, T.; Sato, Y.; Nakagawa, R.; Takahashi, K.; Yamaguchi, S.

    2017-01-01

    Objectives The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage defect in a rabbit model. Methods MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium. A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically. Results The cell count in the low-dose G-CSF medium was significantly higher than that in the control medium. The differentiation potential of MSCs was preserved after culturing them with G-CSF. Macroscopically, defects were filled and surfaces were smoother in the G-CSF groups than in the control group at four weeks. At 12 weeks, the quality of repaired cartilage improved further, and defects were almost completely filled in all groups. Microscopically, at four weeks, defects were partially filled with hyaline-like cartilage in the G-CSF groups. At 12 weeks, defects were repaired with hyaline-like cartilage in all groups. Conclusions G-CSF promoted proliferation of MSCs in vitro. The systemic administration of G-CSF promoted the repair of damaged

  11. A Resorbable Antibiotic-Eluting Polymer Composite Bone Void Filler for Perioperative Infection Prevention in a Rabbit Radial Defect Model

    PubMed Central

    Brooks, Benjamin D.; Sinclair, Kristofer D.; Grainger, David W.; Brooks, Amanda E.

    2015-01-01

    Nearly 1.3 million total joint replacement procedures are performed in the United States annually, with numbers projected to rise exponentially in the coming decades. Although finite infection rates for these procedures remain consistently low, device-related infections represent a significant cause of implant failure, requiring secondary or revision procedures. Revision procedures manifest several-fold higher infection recurrence rates. Importantly, many revision surgeries, infected or not, require bone void fillers to support the host bone and provide a sufficient tissue bed for new hardware placement. Antibiotic-eluting bone void fillers (ABVF), providing both osteoconductive and antimicrobial properties, represent one approach for reducing rates of orthopedic device-related infections. Using a solvent-free, molten-cast process, a polymer-controlled antibiotic-eluting calcium carbonate hydroxyapatite (HAP) ceramic composite BVF (ABVF) was fabricated, characterized, and evaluated in vivo using a bacterial challenge in a rabbit radial defect window model. ABVF loaded with tobramycin eliminated the infectious burden in rabbits challenged with a clinically relevant strain of Staphylococcus aureus (inoculum as high as 107 CFU). Histological, microbiological, and radiographic methods were used to detail the effects of ABVF on microbial challenge to host bone after 8 weeks in vivo. In contrast to the HAP/BVF controls, which provided no antibiotic protection and required euthanasia 3 weeks post-operatively, tobramycin-releasing ABVF animals showed no signs of infection (clinical, microbiological, or radiographic) when euthanized at the 8-week study endpoint. ABVF sites did exhibit fibrous encapsulation around the implant at 8 weeks. Local antibiotic release from ABVF to orthopedic sites requiring bone void fillers eliminated the periprosthetic bacterial challenge in this 8-week in vivo study, confirming previous in vitro results. PMID:25815727

  12. Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects.

    PubMed

    Hoemann, C D; Sun, J; McKee, M D; Chevrier, A; Rossomacha, E; Rivard, G-E; Hurtig, M; Buschmann, M D

    2007-01-01

    We have previously shown that microfractured ovine defects are repaired with more hyaline cartilage when the defect is treated with in situ-solidified implants of chitosan-glycerol phosphate (chitosan-GP) mixed with autologous whole blood. The objectives of this study were (1) to characterize chitosan-GP/blood clots in vitro, and (2) to develop a rabbit marrow stimulation model in order to determine the effects of the chitosan-GP/blood implant and of debridement on the formation of incipient cartilage repair tissue. Blood clots were characterized by histology and in vitro clot retraction tests. Bilateral 3.5 x 4 mm trochlear defects debrided into the calcified layer were pierced with four microdrill holes and filled with a chitosan-GP/blood implant or allowed to bleed freely as a control. At 1 day post-surgery, initial defects were characterized by histomorphometry (n=3). After 8 weeks of repair, osteochondral repair tissues between or through the drill holes were evaluated by histology, histomorphometry, collagen type II expression, and stereology (n=16). Chitosan-GP solutions structurally stabilized the blood clots by inhibiting clot retraction. Treatment of drilled defects with chitosan-GP/blood clots led to the formation of a more integrated and hyaline repair tissue above a more porous and vascularized subchondral bone plate compared to drilling alone. Correlation analysis of repair tissue between the drill holes revealed that the absence of calcified cartilage and the presence of a porous subchondral bone plate were predictors of greater repair tissue integration with subchondral bone (P<0.005), and of a higher total O'Driscoll score (P<0.005 and P<0.01, respectively). Chitosan-GP/blood implants applied in conjunction with drilling, compared to drilling alone, elicited a more hyaline and integrated repair tissue associated with a porous subchondral bone replete with blood vessels. Concomitant regeneration of a vascularized bone plate during cartilage repair

  13. Treatment of Osteochondral Defects in the Rabbit's Knee Joint by Implantation of Allogeneic Mesenchymal Stem Cells in Fibrin Clots

    PubMed Central

    Berninger, Markus T.; Wexel, Gabriele; Rummeny, Ernst J.; Imhoff, Andreas B.; Anton, Martina

    2013-01-01

    successfully been used in several animal studies 19-21 and even first human trials 22. The following protocol will demonstrate an experimental technique for isolating mesenchymal stem cells from a rabbit's bone marrow, for subsequent proliferation in cell culture and for preparing a standardized in vitro-model for fibrin-cell-clots. Finally, a technique for the implantation of pre-established fibrin-cell-clots into artificial osteochondral defects of the rabbit's knee joint will be described. PMID:23728213

  14. Combination of Heel-strike like Mechanical Loading with Deproteinized Cancellous Bone Scaffold Implantation to Repair Segmental Bone Defects in Rabbits.

    PubMed

    Huang, Guofeng; Liu, Guojun; Zhang, Feng; Gao, Jianting; Wang, Jiangze; Chen, Qi; Wu, Benwen; Ding, Zhenqi; Cai, Taoyi

    2017-01-01

    Under physiological conditions bone defects often occur at mechanical load bearing sites and bone substitutes used for regeneration should be similarly subjected to mechanical loading stress. In this study, we investigated whether a novel heel-strike like mechanical loading method can be used as a complementary therapy to promote bone regeneration following bone substitute grafting. To test this, three groups of rabbits with segmental bone defects in the tibia were implanted with bovine deproteinized cancellous bone scaffold (DCBS), with one group also receiving heel-strike like mechanical loading generated by a rap stress stimulator. From weeks 4-12 post-operation X-ray and micro-CT scanning showed that rabbits receiving combination therapy had significantly more callus at the bone defect. Moreover, bone defects in the combination group were completely replaced with new bone at week 12, while the DCBS implantation alone group healed only partially and rabbits receiving neither DCBS nor mechanical loading developed only small calluses throughout the observation period. Analysis of micro-CT scanning results demonstrated that new bone density in the combination group was significantly higher than the DCBS only group at weeks 4 and 12 ( p <0.05). H&E staining results also indicated a significantly higher percentage of new bone in the bone defect area and a lower percentage of residual scaffold in the combination group compared to the DCBS only group ( p <0.05). Thus, this heel-strike like mechanical loading method appears to accelerate bone regeneration following substitute implantation by restoring a local mechanical loading environment in segmental bone defects.

  15. Effect of intermittent administration of teriparatide on the mechanical and histological changes in bone grafted with β-tricalcium phosphate using a rabbit bone defect model

    PubMed Central

    Komatsu, Jun; Nagura, Nana; Iwase, Hideaki; Igarashi, Mamoru; Ohbayashi, Osamu; Nagaoka, Isao; Kaneko, Kazuo

    2018-01-01

    Grafting β-tricalcium phosphate (TCP) is a well-established method for restoring bone defects; however, there is concern that the mechanical stability of the grafted β-TCP is not maintained during bone translation. Teriparatide has an anabolic effect, stimulating bone formation and increasing bone mineral density for the treatment of osteoporosis. The aim of the present study was to evaluate the effect of intermittent teriparatide treatment on changes in bone grafted with β-TCP using a rabbit bone defect model. Bone defects (5×15 mm) were created in the distal femoral condyle of Japanese white rabbits, and β-TCP granules of two different total porosities were manually grafted. Teriparatide (40 µg/kg) or 0.2% rabbit serum albumin solution as a vehicle control was subcutaneously injected three times per week following the surgery. At 4 or 8 weeks post-surgery, serum samples were obtained and the levels of γ-carboxylated osteocalcin (Gla-OC) were quantified using ELISA. Histomorphometry was also performed using sections of graft sites following staining for tartrate resistant acid phosphatase. Activity and mechanical strength (maximum shear strength, maximum shear stiffness and total energy absorption) were evaluated using an axial push-out load to failure test. Teriparatide treatment significantly increased (P<0.05) the serum levels of Gla-OC, a specific marker for bone formation, suggesting that teriparatide enhances bone formation in β-TCP-grafted rabbits. Furthermore teriparatide increased the degradation of β-TCP by bone remodeling (P<0.05) and promoted the formation of new bone following application of the graft compared with the control group (P<0.01). Furthermore, teriparatide suppressed the reduction in mechanical strength (P<0.05) during bone translation in bone defects grafted with β-TCP. The results of the present study demonstrate that teriparatide is effective in maintaining the mechanical stability of grafted β-TCP, possibly by promoting new

  16. A New Method for Xenogeneic Bone Graft Deproteinization: Comparative Study of Radius Defects in a Rabbit Model.

    PubMed

    Lei, Pengfei; Sun, Rongxin; Wang, Long; Zhou, Jialin; Wan, Lifei; Zhou, Tianjian; Hu, Yihe

    2015-01-01

    Deproteinization is an indispensable process for the elimination of antigenicity in xenograft bones. However, the hydrogen peroxide (H2O2) deproteinized xenograft, which is commonly used to repair bone defect, exhibits limited osteoinduction activity. The present study was designed to develop a new method for deproteinization and compare the osteogenic capacities of new pepsin deproteinized xenograft bones with those of conventional H2O2 deproteinized ones. Bones were deproteinized in H2O2 or pepsin for 8 hours. The morphologies were compared by HE staining. The content of protein and collagen I were measured by the Kjeldahl method and HPLC-MS, respectively. The physical properties were evaluated by SEM and mechanical tests. For in vivo study, X-ray, micro-CT and HE staining were employed to monitor the healing processes of radius defects in rabbit models transplanted with different graft materials. Compared with H2O2 deproteinized bones, no distinct morphological and physical changes were observed. However, pepsin deproteinized bones showed a lower protein content, and a higher collagen content were preserved. In vivo studies showed that pepsin deproteinized bones exhibited better osteogenic performance than H2O2 deproteinized bones, moreover, the quantity and quality of the newly formed bones were improved as indicated by micro-CT analysis. From the results of histological examination, the newly formed bones in the pepsin group were mature bones. Pepsin deproteinized xenograft bones show advantages over conventional H2O2 deproteinized bones with respect to osteogenic capacity; this new method may hold potential clinical value in the development of new biomaterials for bone grafting.

  17. A New Method for Xenogeneic Bone Graft Deproteinization: Comparative Study of Radius Defects in a Rabbit Model

    PubMed Central

    Lei, Pengfei; Sun, Rongxin; Wang, Long; Zhou, Jialin; Wan, Lifei; Zhou, Tianjian; Hu, Yihe

    2015-01-01

    Background and Objectives Deproteinization is an indispensable process for the elimination of antigenicity in xenograft bones. However, the hydrogen peroxide (H2O2) deproteinized xenograft, which is commonly used to repair bone defect, exhibits limited osteoinduction activity. The present study was designed to develop a new method for deproteinization and compare the osteogenic capacities of new pepsin deproteinized xenograft bones with those of conventional H2O2 deproteinized ones. Methods Bones were deproteinized in H2O2 or pepsin for 8 hours. The morphologies were compared by HE staining. The content of protein and collagen I were measured by the Kjeldahl method and HPLC-MS, respectively. The physical properties were evaluated by SEM and mechanical tests. For in vivo study, X-ray, micro-CT and HE staining were employed to monitor the healing processes of radius defects in rabbit models transplanted with different graft materials. Results Compared with H2O2 deproteinized bones, no distinct morphological and physical changes were observed. However, pepsin deproteinized bones showed a lower protein content, and a higher collagen content were preserved. In vivo studies showed that pepsin deproteinized bones exhibited better osteogenic performance than H2O2 deproteinized bones, moreover, the quantity and quality of the newly formed bones were improved as indicated by micro-CT analysis. From the results of histological examination, the newly formed bones in the pepsin group were mature bones. Conclusions Pepsin deproteinized xenograft bones show advantages over conventional H2O2 deproteinized bones with respect to osteogenic capacity; this new method may hold potential clinical value in the development of new biomaterials for bone grafting. PMID:26719896

  18. Role of tissue-engineered artificial tendon in healing of a large Achilles tendon defect model in rabbits.

    PubMed

    Moshiri, Ali; Oryan, Ahmad; Meimandi-Parizi, Abdolhamid

    2013-09-01

    Treatment of large Achilles tendon defects is technically demanding. Tissue engineering is an option. We constructed a collagen-based artificial tendon, covered it with a polydioxanon (PDS) sheath, and studied the role of this bioimplant on experimental tendon healing in vivo. A 2-cm tendon gap was created in the left Achilles tendon of rabbits (n = 120). The animals were randomly divided into 3 groups: control (no implant), treated with tridimensional-collagen, and treated with tridimensional-collagen-bidimensional-PDS implants. Each group was divided into 2 subgroups of 60 and 120 days postinjury (DPI). Another 50 pilot animals were used to study the host-implant interaction. Physical activity of the animals was scored and ultrasonographic and bioelectrical characteristics of the injured tendons were investigated weekly. After euthanasia, macro, micro, and nano morphologies and biophysical and biomechanical characteristics of the healing tendons were studied. Treatment improved function of the animals, time dependently. At 60 and 120 DPI, the treated tendons showed significantly higher maximum load, yield, stiffness, stress, and modulus of elasticity compared with controls. The collagen implant induced inflammation and absorbed the migrating fibroblasts in the defect area. By its unique architecture, it aligned the fibroblasts and guided their proliferation and collagen deposition along the stress line of the tendon and resulted in improved collagen density, micro-amp, micro-ohm, water uptake, and delivery of the regenerated tissue. The PDS-sheath covering amplified these characteristics. The implants were gradually absorbed and replaced by a new tendon. Minimum amounts of peritendinous adhesion, muscle atrophy, and fibrosis were observed in the treated groups. Some remnants of the implants were preserved and accepted as a part of the new tendon. The implants were cytocompatible, biocompatible, biodegradable, and effective in tendon healing and regeneration. This

  19. Combination therapy with intra-articular injection of mesenchymal stem cells and articulated joint distraction for repair of a chronic osteochondral defect in the rabbit.

    PubMed

    Harada, Yohei; Nakasa, Tomoyuki; Mahmoud, Elhussein Elbadry; Kamei, Goki; Adachi, Nobuo; Deie, Masataka; Ochi, Mitsuo

    2015-10-01

    The present study investigated intra-articular injection of bone-marrow-derived mesenchymal stem cells (MSCs) combined with articulated joint distraction as treatment for osteochondral defects. Large osteochondral defects were created in the weight-bearing area of the medial femoral condyle in rabbit knees. Four weeks after defect creation, rabbits were divided into six groups: control group, MSC group, distraction group, distraction + MSC group, temporary distraction group, and temporary distraction + MSC group. Groups with MSC received intra-articular injection of MSCs. Groups with distraction underwent articulated distraction arthroplasty. Groups with temporary distraction discontinued the distraction after 4 weeks. The rabbits were euthanized at 4, 8, and 12 weeks after treatment except temporary distraction groups which were euthanized at only 12 weeks. Histological scores in the distraction + MSC group were significantly better than in the control, MSC group or distraction group at 4 and 8 weeks, but showed no further improvement. At 12 weeks, the temporary distraction + MSC group showed the best results, demonstrating hyaline cartilage repair with regeneration of the osteochondral junction. In conclusion, joint distraction with intra-articular injection of MSCs promotes early cartilage repair, and compressive loading of the repair tissue after temporary distraction stimulates articular cartilage regeneration. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Sheet of osteoblastic cells combined with platelet-rich fibrin improves the formation of bone in critical-size calvarial defects in rabbits.

    PubMed

    Wang, Zhifa; Hu, Hanqing; Li, Zhijin; Weng, Yanming; Dai, Taiqiang; Zong, Chunlin; Liu, Yanpu; Liu, Bin

    2016-04-01

    Techniques that use sheets of cells have been successfully used in various types of tissue regeneration, and platelet-rich fibrin (PRF) can be used as a source of growth factors to promote angiogenesis. We have investigated the effects of the combination of PRF and sheets of mesenchymal stem cells (MSC) from bone marrow on the restoration of bone in critical-size calvarial defects in rabbits to find out whether the combination promotes bony healing. Sheets of MSC and PRF were prepared from the same donor. We then implanted the combined MSC and PRF in critical-size calvarial defects in rabbits and assessed bony restoration by microcomputed tomography (microCT) and histological analysis. The results showed that PRF significantly increased bony regeneration at 8 weeks after implantation of sheets of MSC and PRF compared with sheets of MSC alone (p=0.0048). Our results indicate that the combination of sheets of MSC and PRF increases bone regeneration in critical-size calvarial defects in rabbits, and provides a new way to improve skeletal healing. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  1. Assessment of tricalcium phosphate/collagen (TCP/collagene)nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits.

    PubMed

    Mohseni, Mahmoud; Jahandideh, Alireza; Abedi, Gholamreza; Akbarzadeh, Abolfazl; Hesaraki, Saeed

    2018-03-01

    Bone regeneration is an important objective in clinical practice and has been used for different applications. The aim of this study was to evaluate the effectiveness of nanocomposite tricalcium phosphate (TCP)/collagen scaffolds combined with hydroxyapatite scaffold for bone healing in surgery of femoral defects in rabbits. In this study, 45 mature male New Zealand white rabbits between 6 and 8 months old and weighting between 3 and 3.5 kg were examined. Rabbits were divided into three groups. Surgical procedures were performed after intramuscular injection of Ketamine 10% (ketamine hydrochloride, 50 mg/kg) and Rompun 5% (xylazine, 5 mg/kg). Then an approximately 6 mm diameter-5 mm cylinder bone defect was created in the femur of one of the hind limbs. After inducing the surgical wound, all rabbits were coloured and randomly divided into three experimental groups of 15 animals each. Group 1 received pure medical nanocomposite TCP/collagen granules, group 2 received hydroxyapatite, and third group was a control group which received no treatment. Histopathological evaluation was performed on days 15, 30, and 45 after surgery. On days 15, 30, and 45 after surgery, the quantity and the velocity of stages of bone formation at the healing site in nanocomposite TCP/collagen group were better than HA and control groups and the quantity of newly formed lamellar bone at the healing site in nanocomposite TCP/collagen group were better than onward compared with HA and control groups. In conclusion, it seems that TCP/collagen nanocomposite has a significant role in the reconstruction of bone defects and can be used as scaffold in bone fractures.

  2. Development of chondrocyte-seeded electrosprayed nanoparticles for repair of articular cartilage defects in rabbits.

    PubMed

    Yang, Shan-Wei; Ku, Kai-Chi; Chen, Shu-Ying; Kuo, Shyh-Ming; Chen, I-Fen; Wang, Ting-Yi; Chang, Shwu-Jen

    2018-01-01

    Due to limited self-healing capacity in cartilages, there is a rising demand for an innovative therapy that promotes chondrocyte proliferation while maintaining its biofunctionality for transplantation. Chondrocyte transplantation has received notable attention; however, the tendencies of cell de-differentiation and de-activation of biofunctionality have been major hurdles in its development, delaying this therapy from reaching the clinic. We believe it is due to the non-stimulative environment in the injured cartilage, which is unable to provide sustainable physical and biological supports to the newly grafted chondrocytes. Therefore, we evaluated whether providing an appropriate matrix to the transplanted chondrocytes could manipulate cell fate and recovery outcomes. Here, we proposed the development of electrosprayed nanoparticles composed of cartilage specific proteins, namely collagen type II and hyaluronic acid, for implantation with pre-seeded chondrocytes into articular cartilage defects. The fabricated nanoparticles were pre-cultured with chondrocytes before implantation into injured articular cartilage. The study revealed a significant potential for nanoparticles to support pre-seeded chondrocytes in cartilage repair, serving as a protein delivery system while improving the survival and biofunctionality of transplanted chondrocytes for prolonged period of time.

  3. Long-Term Results of Cartilage Repair after Allogeneic Transplantation of Cartilaginous Aggregates Formed from Bone Marrow-Derived Cells for Large Osteochondral Defects in Rabbit Knees.

    PubMed

    Yoshioka, Tomokazu; Mishima, Hajime; Sakai, Shinsuke; Uemura, Toshimasa

    2013-10-01

    The purpose of this study was to evaluate the long-term results of cartilage repair after allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells. Bone marrow cells were harvested from 12-day-old rabbits. The cells were subjected to a monolayer culture, and the spindle-shaped cells attached to the flask surface were defined as bone marrow-derived mesenchymal cells. After the monolayer culture, a 3-dimensional cartilaginous aggregate was formed using a bioreactor with chondrogenesis. We created osteochondral defects, measuring 5 mm in diameter and 4 mm in depth, at the femoral trochlea of 10-week-old rabbits. Two groups were established, the transplanted group in which the cartilaginous aggregate was transplanted into the defect, and the control group in which the defect was left untreated. Twenty-six and 52 weeks after surgery, the rabbits were sacrificed and their tissue repair status was evaluated macroscopically (International Cartilage Repair Society [ICRS] score) and histologically (O'Driscoll score). The ICRS scores were as follows: at week 26, 7.2 ± 0.5 and 7.6 ± 0.8; at week 52, 7.6 ± 1.1 and 9.7 ± 0.7, for the transplanted and control groups, respectively. O'Driscoll scores were as follows: at week 26, 12.6 ± 1.9 and 10.1 ± 1.9; at week 52, 9.6 ± 3.0 and 14.0 ± 1.4, each for transplanted and control groups, respectively. No significant differences were observed between the groups. This study demonstrates that allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells produces comparable long-term results based on macroscopic and histological outcome measures when compared with osteochondral defects that are left untreated.

  4. Long-Term Results of Cartilage Repair after Allogeneic Transplantation of Cartilaginous Aggregates Formed from Bone Marrow–Derived Cells for Large Osteochondral Defects in Rabbit Knees

    PubMed Central

    Mishima, Hajime; Sakai, Shinsuke; Uemura, Toshimasa

    2013-01-01

    Objective: The purpose of this study was to evaluate the long-term results of cartilage repair after allogeneic transplantation of cartilaginous aggregates formed from bone marrow–derived cells. Methods: Bone marrow cells were harvested from 12-day-old rabbits. The cells were subjected to a monolayer culture, and the spindle-shaped cells attached to the flask surface were defined as bone marrow–derived mesenchymal cells. After the monolayer culture, a 3-dimensional cartilaginous aggregate was formed using a bioreactor with chondrogenesis. We created osteochondral defects, measuring 5 mm in diameter and 4 mm in depth, at the femoral trochlea of 10-week-old rabbits. Two groups were established, the transplanted group in which the cartilaginous aggregate was transplanted into the defect, and the control group in which the defect was left untreated. Twenty-six and 52 weeks after surgery, the rabbits were sacrificed and their tissue repair status was evaluated macroscopically (International Cartilage Repair Society [ICRS] score) and histologically (O’Driscoll score). Results: The ICRS scores were as follows: at week 26, 7.2 ± 0.5 and 7.6 ± 0.8; at week 52, 7.6 ± 1.1 and 9.7 ± 0.7, for the transplanted and control groups, respectively. O’Driscoll scores were as follows: at week 26, 12.6 ± 1.9 and 10.1 ± 1.9; at week 52, 9.6 ± 3.0 and 14.0 ± 1.4, each for transplanted and control groups, respectively. No significant differences were observed between the groups. Conclusions: This study demonstrates that allogeneic transplantation of cartilaginous aggregates formed from bone marrow–derived cells produces comparable long-term results based on macroscopic and histological outcome measures when compared with osteochondral defects that are left untreated. PMID:26069678

  5. Combination of BMP-2-releasing gelatin/β-TCP sponges with autologous bone marrow for bone regeneration of X-ray-irradiated rabbit ulnar defects.

    PubMed

    Yamamoto, Masaya; Hokugo, Akishige; Takahashi, Yoshitake; Nakano, Takayoshi; Hiraoka, Masahiro; Tabata, Yasuhiko

    2015-07-01

    The objective of this study is to evaluate the feasibility of gelatin sponges incorporating β-tricalcium phosphate (β-TCP) granules (gelatin/β-TCP sponges) to enhance bone regeneration at a segmental ulnar defect of rabbits with X-ray irradiation. After X-ray irradiation of the ulnar bone, segmental critical-sized defects of 20-mm length were created, and bone morphogenetic protein-2 (BMP-2)-releasing gelatin/β-TCP sponges with or without autologous bone marrow were applied to the defects to evaluate bone regeneration. Both gelatin/β-TCP sponges containing autologous bone marrow and BMP-2-releasing sponges enhanced bone regeneration at the ulna defect to a significantly greater extent than the empty sponges (control). However, in the X-ray-irradiated bone, the bone regeneration either by autologous bone marrow or BMP-2 was inhibited. When combined with autologous bone marrow, the BMP-2 exhibited significantly high osteoinductivity, irrespective of the X-ray irradiation. The bone mineral content at the ulna defect was similar to that of the intact bone. It is concluded that the combination of bone marrow with the BMP-2-releasing gelatin/β-TCP sponge is a promising technique to induce bone regeneration at segmental bone defects after X-ray irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Osteogenic effect of a gastric pentadecapeptide, BPC-157, on the healing of segmental bone defect in rabbits: a comparison with bone marrow and autologous cortical bone implantation.

    PubMed

    Sebecić, B; Nikolić, V; Sikirić, P; Seiwerth, S; Sosa, T; Patrlj, L; Grabarević, Z; Rucman, R; Petek, M; Konjevoda, P; Jadrijević, S; Perović, D; Slaj, M

    1999-03-01

    Gastrectomy often results in increased likelihood of osteoporosis, metabolic aberration, and risk of fracture, and there is a need for a gastric peptide with osteogenic activity. A novel stomach pentadecapeptide, BPC-157, improves wound and fracture healing in rats in addition to having an angiogenic effect. Therefore, in the present study, using a segmental osteoperiosteal bone defect (0.8 cm, in the middle of the left radius) that remained incompletely healed in all control rabbits for 6 weeks (assessed in 2 week intervals), pentadecapeptide BPC-157 was further studied (either percutaneously given locally [10 microg/kg body weight] into the bone defect, or applied intramuscularly [intermittently, at postoperative days 7, 9, 14, and 16 at 10 microg/kg body weight] or continuously [once per day, postoperative days 7-21 at 10 microg or 10 ng/kg body weight]). For comparison, rabbits percutaneously received locally autologous bone marrow (2 mL, postoperative day 7). As standard treatment, immediately after its formation, the bone defect was filled with an autologous cortical graft. Saline-treated (2 mL intramuscularly [i.m.] and 2 mL locally into the bone defect), injured animals were used as controls. Pentadecapeptide BPC-157 significantly improved the healing of segmental bone defects. For instance, upon radiographic assessment, the callus surface, microphotodensitometry, quantitative histomorphometry (10 microg/kg body weight i.m. for 14 days), or quantitative histomorphometry (10 ng/kg body weight i.m. for 14 days) the effect of pentadecapeptide BPC-157 was shown to correspond to improvement after local application of bone marrow or autologous cortical graft. Moreover, a comparison of the number of animals with unhealed defects (all controls) or healed defects (complete bony continuity across the defect site) showed that besides pentadecapeptide intramuscular application for 14 days (i.e., local application of bone marrow or autologous cortical graft), also

  7. Proximal Tibial Bone Graft

    MedlinePlus

    ... All Site Content AOFAS / FootCareMD / Treatments Proximal Tibial Bone Graft Page Content What is a bone graft? Bone grafts may be needed for various ... the proximal tibia. What is a proximal tibial bone graft? Proximal tibial bone graft (PTBG) is a ...

  8. Reconstruction of irradiated bone segmental defects with a biomaterial associating MBCP+(R), microstructured collagen membrane and total bone marrow grafting: an experimental study in rabbits.

    PubMed

    Jégoux, Franck; Goyenvalle, Eric; Cognet, Ronan; Malard, Olivier; Moreau, Francoise; Daculsi, Guy; Aguado, Eric

    2009-12-15

    The bone tissue engineering models used today are still a long way from any oncologic application as immediate postimplantation irradiation would decrease their osteoinductive potential. The aim of this study was to reconstruct a segmental critical size defect in a weight-bearing bone irradiated after implantation. Six white New Zealand rabbits were immediately implanted with a biomaterial associating resorbable collagen membrane EZ(R) filled and micro-macroporous biphasic calcium phosphate granules (MBCP+(R)). After a daily schedule of radiation delivery, and within 4 weeks, a total autologous bone marrow (BM) graft was injected percutaneously into the center of the implant. All the animals were sacrificed at 16 weeks. Successful osseous colonization was found to have bridged the entire length of the defects. Identical distribution of bone ingrowth and residual ceramics at the different levels of the implant suggests that the BM graft plays an osteoinductive role in the center of the defect. Periosteum-like formation was observed at the periphery, with the collagen membrane most likely playing a role. This model succeeded in bridging a large segmental defect in weight-bearing bone with immediate postimplantation fractionated radiation delivery. This has significant implications for the bone tissue engineering approach to patients with cancer-related bone defects.

  9. Corneal protection by the ocular mucin secretagogue 15(S)-HETE in a rabbit model of desiccation-induced corneal defect.

    PubMed

    Gamache, Daniel A; Wei, Zhong-You; Weimer, Lori K; Miller, Steven T; Spellman, Joan M; Yanni, John M

    2002-08-01

    The mucin secretagogue 15(S)-HETE was found to stimulate glycoprotein secretion in human ocular tissue at submicromolar concentrations in the present studies. Therefore, the ability of topically applied 15(S)-HETE to preserve corneal integrity was investigated in a rabbit model of desiccation-induced corneal defect. Desiccation-induced corneal injury was elicited in anesthetized rabbits by maintaining one eye open with a speculum. Corneal staining and corneal thickness changes were determined immediately following desiccation. 15(S)-HETE dose-dependently reduced corneal damage (ED50 = 120 nM) during a two-hour desiccation. Corneal staining was unchanged relative to control using a 1 microM dose of 15(S)-HETE. Through four hours of desiccation, 15(S)-HETE (500 nM) decreased corneal staining by 71% and completely prevented corneal thinning. 15(S)-HETE (1 microM) was significantly more efficacious than an artificial tear product over the 4-hour desiccation period. There was no evidence of tachyphylaxis following repeated topical ocular dosing of 15(S)-HETE. These studies demonstrate that 15(S)-HETE stimulates ocular mucin secretion in vitro and effectively protects the cornea in a rabbit model of desiccation-induced injury. The results suggest that the ocular mucin secretagogue 15(S)-HETE may have therapeutic utility in dry eye patients, alleviating corneal injury and restoring corneal integrity.

  10. A preliminary study comparing the use of allogenic chondrogenic pre-differentiated and undifferentiated mesenchymal stem cells for the repair of full thickness articular cartilage defects in rabbits.

    PubMed

    Dashtdar, Havva; Rothan, Hussin A; Tay, Terence; Ahmad, Raja Elina; Ali, Razif; Tay, Liang Xin; Chong, Pan Pan; Kamarul, Tunku

    2011-09-01

    Chondrogenic differentiated mesenchymal stem cells (CMSCs) have been shown to produce superior chondrogenic expression markers in vitro. However, the use of these cells in vivo has not been fully explored. In this study, in vivo assessment of cartilage repair potential between allogenic-derived chondrogenic pre-differentiated mesenchymal stem cells and undifferentiated MSCs (MSCs) were compared. Bilateral full thickness cartilage defects were created on the medial femoral condyles of 12 rabbits (n = 12). Rabbits were divided into two groups. In one group, the defects in the right knees were repaired using alginate encapsulated MSCs while in the second group, CMSCs were used. The animals were sacrificed and the repaired and control knees were assessed at 3 and 6 months after implantation. Quantitative analysis was performed by measuring the Glycosaminoglycans (GAGs)/total protein content. The mean Brittberg score was higher in the transplanted knees as compared to the untreated knee at 6 months (p < 0.05). Quantitative analysis of GAGs was consistent with these results. Histological and immunohistochemical analysis demonstrated hyaline-like cartilage regeneration in the transplanted sites. Significant differences between the histological scores based on O'Driscoll histological grading were observed between contralateral knees at both 3 and 6 months (p < 0.05). No significant differences were observed between the Britberg, O'Driscoll scores, and GAGs/total protein content when comparing defect sites treated with MSC and CMSC (p > 0.05). This study demonstrates that the use of either MSC or CMSC produced superior healing when compared to cartilage defects that were untreated. However, both cells produced comparable treatment outcomes. Copyright © 2011 Orthopaedic Research Society.

  11. One-step repair for cartilage defects in a rabbit model: a technique combining the perforated decalcified cortical-cancellous bone matrix scaffold with microfracture.

    PubMed

    Dai, Linghui; He, Zhenming; Zhang, Xin; Hu, Xiaoqing; Yuan, Lan; Qiang, Ming; Zhu, Jingxian; Shao, Zhenxing; Zhou, Chunyan; Ao, Yingfang

    2014-03-01

    Cartilage repair still presents a challenge to clinicians and researchers alike. A more effective, simpler procedure that can produce hyaline-like cartilage is needed for articular cartilage repair. A technique combining microfracture with a biomaterial scaffold of perforated decalcified cortical-cancellous bone matrix (DCCBM; composed of cortical and cancellous parts) would create a 1-step procedure for hyaline-like cartilage repair. Controlled laboratory study. For the in vitro portion of this study, mesenchymal stem cells (MSCs) were isolated from bone marrow aspirates of New Zealand White rabbits. Scanning electron microscopy (SEM), confocal microscopy, and 1,9-dimethylmethylene blue assay were used to assess the attachment, proliferation, and cartilage matrix production of MSCs grown on a DCCBM scaffold. For the in vivo experiment, full-thickness defects were produced in the articular cartilage of the trochlear groove of 45 New Zealand White rabbits, and the rabbits were then assigned to 1 of 3 treatment groups: perforated DCCBM combined with microfracture (DCCBM+M group), perforated DCCBM alone (DCCBM group), and microfracture alone (M group). Five rabbits in each group were sacrificed at 6, 12, or 24 weeks after the operation, and the repair tissues were analyzed by histological examination, assessment of matrix staining, SEM, and nanoindentation of biomechanical properties. The DCCBM+M group showed hyaline-like articular cartilage repair, and the repair tissues appeared to have better matrix staining and revealed biomechanical properties close to those of the normal cartilage. Compared with the DCCBM+M group, there was unsatisfactory repair tissues with less matrix staining in the DCCBM group and no matrix staining in the M group, as well as poor integration with normal cartilage and poor biomechanical properties. The DCCBM scaffold is suitable for MSC growth and hyaline-like cartilage repair induction when combined with microfracture. Microfracture

  12. Evaluation of bone regeneration with biphasic calcium phosphate substitute implanted with bone morphogenetic protein 2 and mesenchymal stem cells in a rabbit calvarial defect model.

    PubMed

    Kim, Beom-Su; Choi, Moon-Ki; Yoon, Jung-Hoon; Lee, Jun

    2015-07-01

    The aim of this study was to evaluate the in vivo osteogenic potential of biphasic calcium phosphate (BCP), bone morphogenetic protein 2 (BMP-2), and/or mesenchymal stem cell (MSC) composites by using a rabbit calvarial defect model. Bone formation was assessed by using three different kinds of implants in rabbit calvarial defects, BCP alone, BCP/recombinant human (rh) BMP-2, and BCP/rhBMP-2/MSCs composite. The implants were harvested after 2 or 8 weeks, and the area of new bone formation was quantified by micro-computed tomography (micro-CT) and histologic studies. The highest bone formation was achieved with the BCP/rhBMP-2/MSCs treatment, and it was significantly higher than that achieved with the empty or BCP-alone treatment. The quantity of new bone at 8 weeks was greater than at 4 weeks in each group. The relative density of osteocalcin immunoreactivity also increased during this interval. These results indicate that the combination of BCP, rhBMP-2, and MSCs synergistically enhances osteogenic potential during the early healing period and could be used as a bone graft substitute. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The influence of platelet-rich fibrin on angiogenesis in guided bone regeneration using xenogenic bone substitutes: a study of rabbit cranial defects.

    PubMed

    Yoon, Jong-Suk; Lee, Sang-Hwa; Yoon, Hyun-Joong

    2014-10-01

    The purpose of this study was to investigate the influence of platelet-rich fibrin (PRF) on angiogenesis and osteogenesis in guided bone regeneration (GBR) using xenogenic bone in rabbit cranial defects. In each rabbit, 2 circular bone defects, one on either side of the midline, were prepared using a reamer drill. Each of the experimental sites received bovine bone with PRF, and each of the control sites received bovine bone alone. The animals were sacrificed at 1 week (n = 4), 2 weeks (n = 3) and 4 weeks (n = 3). Biopsy samples were examined histomorphometrically by light microscopy, and expression of vascular endothelial growth factor (VEGF) was determined by immunohistochemical staining. At all experimental time points, immunostaining intensity for VEGF was consistently higher in the experimental group than in the control group. However, the differences between the control group and the experimental group were not statistically significant in the histomorphometrical and immunohistochemical examinations. The results of this study suggest that PRF may increase the number of marrow cells. However, PRF along with xenogenic bone substitutes does not show a significant effect on bony regeneration. Further large-scale studies are needed to confirm our results. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  14. The effects of different doses of IGF-1 on cartilage and subchondral bone during the repair of full-thickness articular cartilage defects in rabbits.

    PubMed

    Zhang, Z; Li, L; Yang, W; Cao, Y; Shi, Y; Li, X; Zhang, Q

    2017-02-01

    To investigate the effects of different doses of insulin-like growth factor 1 (IGF-1) on the cartilage layer and subchondral bone (SB) during repair of full-thickness articular cartilage (AC) defects. IGF-1-loaded collagen membrane was implanted into full-thickness AC defects in rabbits. The effects of two different doses of IGF-1 on cartilage layer and SB adjacent to the defect, the cartilage structure, formation and integration, and the new SB formation were evaluated at the 1st, 4th and 8th week postoperation. Meanwhile, after 1 week treatment, the relative mRNA expressions in tissues adjacent to the defect, including cartilage and SB were determined by quantitative real-time RT-PCR (qRT-PCR), respectively. Different doses of IGF-1 induced different gene expression profiles in tissues adjacent to the defect and resulted in different repair outcomes. Particularly, at high dose IGF-1 aided cell survival, regulated the gene expressions in cartilage layer adjacent defect and altered ECM composition more effectively, improved the formation and integrity of neo-cartilage. While, at low dose IGF-1 regulated the gene expressions in SB more efficaciously and subsequently promoted the SB remodeling and reconstruction. Different doses of IGF-1 induced different responses of cartilage or SB during the repair of full-thickness AC defects. Particularly, high dose of IGF-1 was more beneficial to the neo-cartilage formation and integration, while low dose of it was more effective for the SB formation. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  15. Tendon Tissue Engineering and Its Role on Healing of the Experimentally Induced Large Tendon Defect Model in Rabbits: A Comprehensive In Vivo Study

    PubMed Central

    Meimandi-Parizi, Abdolhamid; Oryan, Ahmad; Moshiri, Ali

    2013-01-01

    Healing of large tendon defects is challenging. We studied the role of collagen implant with or without polydioxanone (PDS) sheath on the healing of a large Achilles tendon defect model, in rabbits. Sixty rabbits were divided into three groups. A 2 cm gap was created in the left Achilles tendon of all rabbits. In the control lesions, no implant was used. The other two groups were reconstructed by collagen and collagen-PDS implants respectively. The animals were clinically examined at weekly intervals and their lesions were observed by ultrasonography. Blood samples were obtained from the animals and were assessed for hematological analysis and determination of serum PDGF level, at 60 days post injury (DPI). The animals were then euthanized and their lesions were assessed for gross and histopathology, scanning electron microscopy, biomechanical testing, dry matter and hydroxyproline content. Another 65 pilot animals were also studied grossly and histopathologically to define the host implant interaction and graft incorporation at serial time points. The treated animals gained significantly better clinical scoring compared to the controls. Treatment with collagen and collagen-PDS implants significantly increased the biomechanical properties of the lesions compared to the control tendons at 60DPI (P<0.05). The tissue engineered implants also reduced peritendinous adhesion, muscle fibrosis and atrophy, and increased ultrasonographical echogenicity and homogenicity, maturation and differentiation of the collagen fibrils and fibers, tissue alignment and volume of the regenerated tissue compared to those of the control lesions (P<0.05). The implants were gradually absorbed and substituted by the new tendon. Implantation of the bioimplants had a significant role in initiating tendon healing and the implants were biocompatible, biodegradable and safe for application in tendon reconstructive surgery. The results of the present study may be valuable in clinical practice. PMID

  16. Evaluation of bone substitutes for treatment of peri-implant bone defects: biomechanical, histological, and immunohistochemical analyses in the rabbit tibia

    PubMed Central

    2016-01-01

    Purpose We sought to evaluate the effectiveness of bone substitutes in circumferential peri-implant defects created in the rabbit tibia. Methods Thirty rabbits received 45 implants in their left and right tibia. A circumferential bone defect (6.1 mm in diameter/4 mm depth) was created in each rabbit tibia using a trephine bur. A dental implant (4.1 mm × 8.5 mm) was installed after the creation of the defect, providing a 2-mm gap. The bone defect gaps between the implant and the bone were randomly filled according to the following groups: blood clot (CO), particulate Bio-Oss® (BI), and Bio-Oss® Collagen (BC). Ten animals were euthanized after periods of 15, 30, and 60 days. Biomechanical analysis by means of the removal torque of the implants, as well as histologic and immunohistochemical analyses for protein expression of osteocalcin (OC), Runx2, OPG, RANKL, and TRAP were evaluated. Results For biomechanics, BC showed a better biological response (61.00±15.28 Ncm) than CO (31.60±14.38 Ncm) at 30 days. Immunohistochemical analysis showed significantly different OC expression in CO and BC at 15 days, and also between the CO and BI groups, and between the CO and BC groups at 60 days. After 15 days, Runx2 expression was significantly different in the BI group compared to the CO and BC groups. RANKL expression was significantly different in the BI and CO groups and between the BI and BC groups at 15 days, and also between the BI and CO groups at 60 days. OPG expression was significantly higher at 60 days postoperatively in the BI group than the CO group. Conclusions Collectively, our data indicate that, compared to CO and BI, BC offered better bone healing, which was characterized by greater RUNX2, OC, and OPG immunolabeling, and required greater reversal torque for implant removal. Indeed, along with BI, BC presents promising biomechanical and biological properties supporting its possible use in osteoconductive grafts for filling peri-implant gaps. PMID:27382506

  17. Repair of articular cartilage and subchondral defects in rabbit knee joints with a polyvinyl alcohol/nano-hydroxyapatite/polyamide 66 biological composite material.

    PubMed

    Guo, Tao; Tian, Xiaobin; Li, Bo; Yang, Tianfu; Li, Yubao

    2017-11-15

    This study sought to prepare a new PVA/n-HA/PA66 composite to investigate the repair of articular cartilage and subchondral defects in rabbit knee joints. A 5 × 5 × 5 mm-sized defect was created in the patellofemoral joints of 72 healthy adult New Zealand rabbits. The rabbits were then randomly divided into three groups (n = 24): PVA/n-HA+PA66 group, polyvinyl alcohol (PVA) group, and control (untreated) group. Cylindrical PVA/n-HA+PA66, 5 × 5 mm, comprised an upper PVA layer and a lower n-HA+PA66 layer. Macroscopic and histological evaluations were performed at 4, 8, 12, and 24 weeks, postoperatively. Type II collagen was measured by immunohistochemical staining. The implant/cartilage and bone interfaces were observed by scanning electron microscopy. At 24 weeks postoperatively, the lower PVA/n-HA+PA66 layer became surrounded by cartilage, with no obvious degeneration. In the PVA group, an enlarged space was observed between the implant and the host tissue that had undergone degeneration. In the control group, the articular cartilage had become calcified. In the PVA/n-HA+PA66 group, positive type II collagen staining was observed between the composite and the surrounding cartilage and on the implant surface. In the PVA group, positive staining was slightly increased between the PVA and the surrounding cartilage, but reduced on the PVA surface. In the control group, reduced staining was observed throughout. Scanning electron microscopy showed increased bone tissue in the lower n-HA+PA66 layer that was in close approximation with the upper PVA layer of the composite. In the PVA group, the bone tissue around the material had receded, and in the control group, the defect was filled with bone tissue, while the superior aspect of the defect was filled with disordered, fibrous tissue. The diphase biological composite material PVA/n-HA+PA66 exhibits good histocompatibility and offers a satisfactory substitute for articular cartilage and subchondral bone.

  18. [Tibial periostitis ("medial tibial stress syndrome")].

    PubMed

    Fournier, Pierre-Etienne

    2003-06-01

    Medial tibial stress syndrome is characterised by complaints along the posteromedial tibia. Runners and athletes involved in jumping activities may develop this syndrome. Increased stress to stabilize the foot especially when excessive pronation is present explain the occurrence this lesion.

  19. Tibial bone fractures occurring after medioproximal tibial bone grafts for oral and maxillofacial reconstruction.

    PubMed

    Kim, Il-Kyu; Cho, Hyun-Young; Pae, Sang-Pill; Jung, Bum-Sang; Cho, Hyun-Woo; Seo, Ji-Hoon

    2013-12-01

    Oral and maxillofacial defects often require bone grafts to restore missing tissues. Well-recognized donor sites include the anterior and posterior iliac crest, rib, and intercalvarial diploic bone. The proximal tibia has also been explored as an alternative donor site. The use of the tibia for bone graft has many benefits, such as procedural ease, adequate volume of cancellous and cortical bone, and minimal complications. Although patients rarely complain of pain, swelling, discomfort, or dysfunction, such as gait disturbance, both patients and surgeons should pay close attention to such after effects due to the possibility of tibial fracture. The purpose of this study is to analyze tibial fractures that occurring after osteotomy for a medioproximal tibial graft. An analysis was intended for patients who underwent medioproximal tibial graft between March 2004 and December 2011 in Inha University Hospital. A total of 105 subjects, 30 females and 75 males, ranged in age from 17 to 78 years. We investigated the age, weight, circumstance, and graft timing in relation to tibial fracture. Tibial fractures occurred in four of 105 patients. There were no significant differences in graft region, shape, or scale between the fractured and non-fractured patients. Patients who undergo tibial grafts must be careful of excessive external force after the operation.

  20. Autogenous cultured growth plate chondrocyte transplantation in the treatment of physeal injury in rabbits.

    PubMed

    Tomaszewski, R; Bohosiewicz, J; Gap, A; Bursig, H; Wysocka, A

    2014-11-01

    The aim of this experimental study on New Zealand's white rabbits was to investigate the transplantation of autogenous growth plate cells in order to treat the injured growth plate. They were assessed in terms of measurements of radiological tibial varus and histological characteristics. An experimental model of plate growth medial partial resection of the tibia in 14 New Zealand white rabbits was created. During this surgical procedure the plate growth cells were collected and cultured. While the second surgery was being performed, the autologous cultured growth plate cells were grafted at the right tibia, whereas the left tibia was used as a control group. Histological examinations showed that the grafted right tibia presented the regular shape of the plate growth with hypertrophic maturation, chondrocyte columniation and endochondral calcification. Radiological study shows that the mean tibial deformity at the left angle was 20.29° (6.25 to 33) and 7.21° (5 to 10) in the right angle. This study has demonstrated that grafting of autogenous cultured growth plate cells into a defect of the medial aspect of the proximal tibial physis can prevent bone bridge formation, growth arrest and the development of varus deformity. Cite this article: Bone Joint Res 2014;3:310-16. ©2014 The British Editorial Society of Bone & Joint Surgery.

  1. Comparison of Monolateral External Fixation and Internal Fixation for Skeletal Stabilisation in the Management of Small Tibial Bone Defects following Successful Treatment of Chronic Osteomyelitis.

    PubMed

    Wang, Yicun; Jiang, Hui; Deng, Zhantao; Jin, Jiewen; Meng, Jia; Wang, Jun; Zhao, Jianning; Sun, Guojing; Qian, Hongbo

    2017-01-01

    To compare the salvage rate and complication between internal fixation and external fixation in patients with small bone defects caused by chronic infectious osteomyelitis debridement. 125 patients with chronic infectious osteomyelitis of tibia fracture who underwent multiple irrigation, debridement procedure, and local/systemic antibiotics were enrolled. Bone defects, which were less than 4 cm, were treated with bone grafting using either internal fixation or monolateral external fixation. 12-month follow-up was conducted with an interval of 3 months to evaluate union of bone defect. Patients who underwent monolateral external fixation had higher body mass index and fasting blood glucose, longer time since injury, and larger bone defect compared with internal fixation. No significant difference was observed in incidence of complications (23.5% versus 19.3%), surgery time (156 ± 23 minutes versus 162 ± 21 minutes), and time to union (11.1 ± 3.0 months versus 10.9 ± 3.1 months) between external fixation and internal fixation. Internal fixation had no significant influence on the occurrence of postoperation complications after multivariate adjustment when compared with external fixation. Furthermore, patients who underwent internal fixation experienced higher level of daily living scales and lower level of anxiety. It was relatively safe to use internal fixation for stabilization in osteomyelitis patients whose bone defects were less than 4 cm and infection was well controlled.

  2. Comparison of Monolateral External Fixation and Internal Fixation for Skeletal Stabilisation in the Management of Small Tibial Bone Defects following Successful Treatment of Chronic Osteomyelitis

    PubMed Central

    Wang, Yicun; Jiang, Hui; Deng, Zhantao; Meng, Jia; Wang, Jun

    2017-01-01

    Background To compare the salvage rate and complication between internal fixation and external fixation in patients with small bone defects caused by chronic infectious osteomyelitis debridement. Methods 125 patients with chronic infectious osteomyelitis of tibia fracture who underwent multiple irrigation, debridement procedure, and local/systemic antibiotics were enrolled. Bone defects, which were less than 4 cm, were treated with bone grafting using either internal fixation or monolateral external fixation. 12-month follow-up was conducted with an interval of 3 months to evaluate union of bone defect. Results Patients who underwent monolateral external fixation had higher body mass index and fasting blood glucose, longer time since injury, and larger bone defect compared with internal fixation. No significant difference was observed in incidence of complications (23.5% versus 19.3%), surgery time (156 ± 23 minutes versus 162 ± 21 minutes), and time to union (11.1 ± 3.0 months versus 10.9 ± 3.1 months) between external fixation and internal fixation. Internal fixation had no significant influence on the occurrence of postoperation complications after multivariate adjustment when compared with external fixation. Furthermore, patients who underwent internal fixation experienced higher level of daily living scales and lower level of anxiety. Conclusions It was relatively safe to use internal fixation for stabilization in osteomyelitis patients whose bone defects were less than 4 cm and infection was well controlled. PMID:29333448

  3. Methods to Analyze Bone Regenerative Response to Different rhBMP-2 Doses in Rabbit Craniofacial Defects

    DTIC Science & Technology

    2014-02-28

    sockets.6 The commercially available INFUSE system (Medtronic Spinal and Biologics, Memphis, TN), compris- ing an absorbable collagen sponge plus...a collagen sponge carrier) by Medtronics27 for bone healing in rabbits. Even the 25mg rhBMP-2 dose used showed significantly greater re- generated...visualization No 3D morphological analysis for small-animal modelsCan be repeated over course of healing for temporal trends Potential risk of X-ray

  4. Histological comparison of autograft, allograft-DBM, xenograft, and synthetic grafts in a trabecular bone defect: an experimental study in rabbits.

    PubMed

    Athanasiou, Vasilis T; Papachristou, Dionysios J; Panagopoulos, Andreas; Saridis, Alkis; Scopa, Chrisoula D; Megas, Panagiotis

    2010-01-01

    Different types of bone-graft substitutes have been developed and are on the market worldwide to eliminate the drawbacks of autogenous grafting. This experimental animal study was undertaken to evaluate the different histological properties of various bone graft substitutes utilized in this hospital. Ninety New Zealand white rabbits were divided into six groups of 15 animals. Under general anesthesia, a 4.5 mm-wide hole was drilled into both the lateral femoral condyles of each rabbit, for a total of 180 condyles for analysis. The bone defects were filled with various grafts, these being 1) autograft, 2) DBM crunch allograft (Grafton), 3) bovine cancellous bone xenograft (Lubboc), 4) calcium phosphate hydroxyapatite substitute (Ceraform), 5) calcium sulfate substitute (Osteoset), and 6) no filling (control). The animals were sacrificed at 1, 3, and 6 months after implantation and tissue samples from the implanted areas were processed for histological evaluation. A histological grading scale was designed to determine the different histological parameters of bone healing. The highest histological grades were achieved with the use of cancellous bone autograft. Bovine xenograft (Lubboc) was the second best in the histological scale grading. The other substitutes (Grafton, Ceraform, Osteoset) had similar scores but were inferior to both allograft and xenograft. Bovine xenograft showed better biological response than the other bone graft substitutes; however, more clinical studies are necessary to determine its overall effectiveness.

  5. CERAMENT treatment of fracture defects (CERTiFy): protocol for a prospective, multicenter, randomized study investigating the use of CERAMENT™ BONE VOID FILLER in tibial plateau fractures

    PubMed Central

    2014-01-01

    Background Bone graft substitutes are widely used for reconstruction of posttraumatic bone defects. However, their clinical significance in comparison to autologous bone grafting, the gold-standard in reconstruction of larger bone defects, still remains under debate. This prospective, randomized, controlled clinical study investigates the differences in pain, quality of life, and cost of care in the treatment of tibia plateau fractures-associated bone defects using either autologous bone grafting or bioresorbable hydroxyapatite/calcium sulphate cement (CERAMENT™|BONE VOID FILLER (CBVF)). Methods/Design CERTiFy (CERament™ Treatment of Fracture defects) is a prospective, multicenter, controlled, randomized trial. We plan to enroll 136 patients with fresh traumatic depression fractures of the proximal tibia (types AO 41-B2 and AO 41-B3) in 13 participating centers in Germany. Patients will be randomized to receive either autologous iliac crest bone graft or CBVF after reduction and osteosynthesis of the fracture to reconstruct the subchondral bone defect and prevent the subsidence of the articular surface. The primary outcome is the SF-12 Physical Component Summary at week 26. The co-primary endpoint is the pain level 26 weeks after surgery measured by a visual analog scale. The SF-12 Mental Component Summary after 26 weeks and costs of care will serve as key secondary endpoints. The study is designed to show non-inferiority of the CBVF treatment to the autologous iliac crest bone graft with respect to the physical component of quality of life. The pain level at 26 weeks after surgery is expected to be lower in the CERAMENT bone void filler treatment group. Discussion CERTiFy is the first randomized multicenter clinical trial designed to compare quality of life, pain, and cost of care in the use of the CBVF and the autologous iliac crest bone graft in the treatment of tibia plateau fractures. The results are expected to influence future treatment

  6. Evaluation of injectable strontium-containing borate bioactive glass cement with enhanced osteogenic capacity in a critical-sized rabbit femoral condyle defect model.

    PubMed

    Zhang, Yadong; Cui, Xu; Zhao, Shichang; Wang, Hui; Rahaman, Mohamed N; Liu, Zhongtang; Huang, Wenhai; Zhang, Changqing

    2015-02-04

    The development of a new generation of injectable bone cements that are bioactive and have enhanced osteogenic capacity for rapid osseointegration is receiving considerable interest. In this study, a novel injectable cement (designated Sr-BBG) composed of strontium-doped borate bioactive glass particles and a chitosan-based bonding phase was prepared and evaluated in vitro and in vivo. The bioactive glass provided the benefits of bioactivity, conversion to hydroxyapatite, and the ability to stimulate osteogenesis, while the chitosan provided a cohesive biocompatible and biodegradable bonding phase. The Sr-BBG cement showed the ability to set in situ (initial setting time = 11.6 ± 1.2 min) and a compressive strength of 19 ± 1 MPa. The Sr-BBG cement enhanced the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells in vitro when compared to a similar cement (BBG) composed of chitosan-bonded borate bioactive glass particles without Sr. Microcomputed tomography and histology of critical-sized rabbit femoral condyle defects implanted with the cements showed the osteogenic capacity of the Sr-BBG cement. New bone was observed at different distances from the Sr-BBG implants within eight weeks. The bone-implant contact index was significantly higher for the Sr-BBG implant than it was for the BBG implant. Together, the results indicate that this Sr-BBG cement is a promising implant for healing irregularly shaped bone defects using minimally invasive surgery.

  7. Do stress fractures induce hypertrophy of the grafted fibula? A report of three cases received free vascularized fibular graft treatment for tibial defects.

    PubMed

    Qi, Yong; Sun, Hong-Tao; Fan, Yue-Guang; Li, Fei-Meng; Lin, Zhou-Sheng

    2016-06-01

    The presence of large segmental defects of the diaphyseal bone is challenging for orthopedic surgeons. Free vascularized fibular grafting (FVFG) is considered to be a reliable reconstructive procedure. Stress fractures are a common complication following this surgery, and hypertrophy is the main physiological change of the grafted fibula. The exact mechanism of hypertrophy is not completely known. To the best of our knowledge, no studies have examined the possible relationship between stress fractures and hypertrophy. We herein report three cases of patients underwent FVFG. Two of them developed stress fractures and significant hypertrophy, while the remaining patient developed neither stress fractures nor significant hypertrophy. This phenomenon indicates that a relationship may exist between stress fractures and hypertrophy of the grafted fibula, specifically, that the presence of a stress fracture may initiate the process of hypertrophy.

  8. The effect of systemic administration of G-CSF on a full-thickness cartilage defect in a rabbit model MSC proliferation as presumed mechanism: G-CSF for cartilage repair.

    PubMed

    Sasaki, T; Akagi, R; Akatsu, Y; Fukawa, T; Hoshi, H; Yamamoto, Y; Enomoto, T; Sato, Y; Nakagawa, R; Takahashi, K; Yamaguchi, S; Sasho, T

    2017-03-01

    The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage defect in a rabbit model. MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium.A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically. The cell count in the low-dose G-CSF medium was significantly higher than that in the control medium. The differentiation potential of MSCs was preserved after culturing them with G-CSF.Macroscopically, defects were filled and surfaces were smoother in the G-CSF groups than in the control group at four weeks. At 12 weeks, the quality of repaired cartilage improved further, and defects were almost completely filled in all groups. Microscopically, at four weeks, defects were partially filled with hyaline-like cartilage in the G-CSF groups. At 12 weeks, defects were repaired with hyaline-like cartilage in all groups. G-CSF promoted proliferation of MSCs in vitro . The systemic administration of G-CSF promoted the repair of damaged cartilage possibly through increasing the

  9. Effects of annulus defects and implantation of poly(lactic-co-glycolic acid) (PLGA)/fibrin gel scaffolds on nerves ingrowth in a rabbit model of annular injury disc degeneration.

    PubMed

    Xin, Long; Xu, Weixing; Yu, Leijun; Fan, Shunwu; Wang, Wei; Yu, Fang; Wang, Zhenbin

    2017-05-12

    Growth of nerve fibers has been shown to occur in a rabbit model of intravertebral disc degeneration (IVD) induced by needle puncture. As nerve growth may underlie the process of chronic pain in humans affected by disc degeneration, we sought to investigate the factors underlying nerve ingrowth in a minimally invasive annulotomy rabbit model of IVD by comparing the effects of empty disc defects with those of defects filled with poly(lactic-co-glycolic acid)/fibrin gel (PLGA) plugs. New Zealand white rabbits (n = 24) received annular injuries at three lumbar levels (L3/4, L4/5, and L5/6). The discs were randomly assigned to four groups: (a) annular defect (1.8-mm diameter; 4-mm depth) by mini-trephine, (b) annular defect implanted with a PLGA scaffold containing a fibrin gel, (c) annular puncture by a 16G needle (5-mm depth), and (d) uninjured L2/3 disc (control). Disc degeneration was evaluated by radiography, MRI, histology, real-time PCR, and analysis of proteoglycan (PG) content. Nerve ingrowth into the discs was assessed by immunostaining with the nerve marker protein gene product 9.5. Injured discs showed a progressive disc space narrowing with significant disc degeneration and proteoglycan loss, as confirmed by imaging results, molecular and compositional analysis, and histological examinations. In 16G punctured discs, nerve ingrowth was observed on the surface of scar tissue. In annular defects, nerve fibers were found to be distributed along small fissures within the fibrocartilaginous-like tissue that filled the AF. In discs filled with PLGA/ fibrin gel, more nerve fibers were observed growing deeper into the inner AF along the open annular track.  In addition, innervations scores showed significantly higher than those of punctured discs and empty defects. A limited vascular proliferation was found in the injured sites and regenerated tissues. Nerve ingrowth was significantly higher in PLGA/fibrin-filled discs than in empty defects. Possible

  10. Dual-fibular reconstruction of a massive tibial defect after Ewing's sarcoma resection in a pediatric patient with a vascular variation.

    PubMed

    Saridis, Alkis G; Megas, Panagiotis D; Georgiou, Christos S; Diamantakis, Georgios M; Tyllianakis, Minos E

    2011-01-01

    In the management of malignancies of the extremities, limb salvage procedures have recently taken on greater significance. For those patients under intense adjuvant chemotherapy and with massive bone loss, free vascularized fibular grafting is currently advocated as a reliable reconstructive option, maybe because of the controversial results of bone transport in similar situations. However, when there is a vascular abnormality of either the recipient or donor extremity, microsurgical procedures are not feasible, further limiting potential reconstructive alternatives. We present the case of a 13-year-old female patient with Ewing's sarcoma of the right tibia. Preoperative angiography showed that vascularity of the affected side depended totally on a single peroneal artery. The patient was treated initially with multiagent chemotherapy, followed by an excision of 23 cm. The defect was bridged by a gradual medial transportation of the ipsilateral fibula with the Ilizarov technique and strengthened by nonvascularized transfer of the contralateral fibula. Total external fixation time was 162 days. After the removal of the Ilizarov frame a walking cast was applied for another month. At 5 years postoperatively there was no recurrence of the malignancy. The patient had full weight-bearing ability on the affected limb, with preservation of the ankle and knee joints motion and without any limb length discrepancy or axial deformity. The functional outcome that was visible was graded excellent. Transverse distraction osteogenesis of the ipsilateral fibula performed well under chemotherapy, showing unproblematic callus formation. Supplemented with nonvascularized transfer of the contralateral fibula, provided a reconstructive option with biological affinity, sufficient biomechanical strength and durability, and with a decreased complication rate. This case report presents a viable option, especially in cases in which vascular abnormalities of either the donor or the recipient

  11. Effects of a cell-free method using collagen vitrigel incorporating TGF-β1 on articular cartilage repair in a rabbit osteochondral defect model.

    PubMed

    Maruki, Hideyuki; Sato, Masato; Takezawa, Toshiaki; Tani, Yoshiki; Yokoyama, Munetaka; Takahashi, Takumi; Toyoda, Eriko; Okada, Eri; Aoki, Shigehisa; Mochida, Joji; Kato, Yoshiharu

    2017-11-01

    We studied the ability of collagen vitrigel material to repair cartilage in vivo when used alone or with transforming growth factor-β (TGF-β). We measured the time course and quantity of TGF-β1 released from the collagen vitrigel in vitro to quantify the controlled release of TGF-β1. Over 14 days, 0.91 ng of TGF-β was released from the collagen vitrigel. Osteochondral defects were made in the femoral trochlear groove in 36 Japanese white rabbits, which were divided into three groups: untreated group (group A), collagen vitrigel-implanted group (group B), and TGF-β1-incorporated collagen vitrigel-implanted group (group C). The weight distribution ratio between the affected and unaffected limbs served as an indicator of pain. Animals were sacrificed at 4 and 12 weeks after surgery, and their tissues were assessed histologically. The weight distribution ratio increased in all groups and did not differ significantly between groups at 12 weeks. Group A needed 6 weeks to attain maximum improvement, and groups B and C showed near-maximum improvement at 4 and 2 weeks, respectively. The International Cartilage Repair Society II score improved significantly in group C relative to the other groups. These findings suggest that sustained, slow release of TGF-β caused early pain mitigation and cartilage repair. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2592-2602, 2017. © 2016 Wiley Periodicals, Inc.

  12. Evaluation of implant osseointegration with different regeneration techniques in the treatment of bone defects around implants: an experimental study in a rabbit model.

    PubMed

    Guerra, Isabel; Morais Branco, Fernando; Vasconcelos, Mário; Afonso, Américo; Figueiral, Helena; Zita, Raquel

    2011-03-01

    The aim of this study was to evaluate the osseointegration of implants placed in areas with artificially created bone defects, using three bone regeneration techniques. The experimental model was the rabbit femur (16), where bone defects were created and implants were placed. The peri-implant bone defects were filled with a deproteinized bovine bone mineral, NuOss™ (N), NuOss™ combined with plasma rich in growth factors (PRGF) (N+PRGF), NuOss™ covered by an RCM(6) membrane (N+M), or remained unfilled (control group [C]). After 4 and 8 weeks, the animals were euthanized and bone tissue blocks with the implants and the surrounding bone tissue were removed and processed according to a histological protocol for hard tissues on non-decalcified ground sections. The samples were studied by light and electron scanning microscopy, histometric analysis was performed to assess the percentage of bone in direct contact with the implant surface and a statistical analysis of the results was performed. In the samples analyzed 4 weeks after implantation, the percentage of bone tissue in direct contact with the implant surface for the four groups were 57.66±24.39% (N), 58.62±20.37% (N+PRGF), 70.82±20.34 % (N+M) and 33.07±5.49% (C). In the samples with 8 weeks of implantation time, the percentage of bone in direct contact was 63.35±27.69% (N), 58.42±24.77% (N+PRGF), 78.02±15.13% (N+M) and 40.28±27.32% (C). In terms of the percentage of bone contact, groups N and N+M presented statistically significant differences from group C in the 4-week trial test (P<0.05; ANOVA). For the 8-week results, only group N+M showed statistically significant differences when compared with group C (P<0.05; ANOVA). In conclusion, the NuOss™ granules/RCM(6) membrane combination presented a percentage of bone contact with the implant surface statistically greater than in the other groups. © 2010 John Wiley & Sons A/S.

  13. Joint distraction and movement for repair of articular cartilage in a rabbit model with subsequent weight-bearing.

    PubMed

    Nishino, T; Chang, F; Ishii, T; Yanai, T; Mishima, H; Ochiai, N

    2010-07-01

    We have previously shown that joint distraction and movement with a hinged external fixation device for 12 weeks was useful for repairing a large articular cartilage defect in a rabbit model. We have now investigated the results after six months and one year. The device was applied to 16 rabbits who underwent resection of the articular cartilage and subchondral bone from the entire tibial plateau. In group A (nine rabbits) the device was applied for six months. In group B (seven rabbits) it was in place for six months, after which it was removed and the animals were allowed to move freely for an additional six months. The cartilage remained sound in all rabbits. The areas of type II collagen-positive staining and repaired soft tissue were larger in group B than in group A. These findings provide evidence of long-term persistence of repaired cartilage with this technique and that weight-bearing has a positive effect on the quality of the cartilage.

  14. Disposal rabbit

    DOEpatents

    Lewis, L.C.; Trammell, D.R.

    1983-10-12

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  15. Disposable rabbit

    DOEpatents

    Lewis, Leroy C.; Trammell, David R.

    1986-01-01

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  16. Bone response to collagenized xenografts of porcine origin (mp3(®) ) and a bovine bone mineral grafting (4BONE(™) XBM) grafts in tibia defects: experimental study in rabbits.

    PubMed

    Calvo-Guirado, José Luis; Aguilar-Salvatierra, Antonio; Ramírez-Fernández, Maria P; Maté Sánchez de Val, José E; Delgado-Ruiz, Rafael Arcesio; Gómez-Moreno, Gerardo

    2016-08-01

    This study aimed to carry out the evaluation of bone response of new bone formation to two different xenografts (bovine and porcine) biomaterials inserted in rabbit tibiae. The study used a total of 20 male New Zealand albino rabbits. They received a total of 40 grafts in the proximal metaphyseal areas of both tibiae. Two biomaterials were evaluated: 20 porcine xenografts, as a bone granulate (OsteoBiol(®) MP3(®) ; Tecnoss srl, Giaveno, Italy), were placed in the proximal metaphyseal area of the right tibia, 20 anorganic bovine bone mineral grafting (4BONE(™) XBM, MIS Implants Inc., BARLEV, Israel) were placed in the left tibia. Following graft insertion, the animals were sacrificed in two groups of 10 animals, after 1 and 4 months, respectively. For each group, biomaterials were analyzed: newly formed bone, residual graft materials and the connective tissue. Histomorphometric, EDX analysis and element mapping were performed at 1 and 4 months after graft insertion. At 4 months after treatment, the bone defects displayed radiological images that showed complete repair of osseous defects. Histomorphometric evaluation showed that for the porcine xenograft, the study averages for newly formed bone represented 84.23 ± 2.9%, while bovine matrix was 79.34 ± 2.1%. For residual graft material, the porcine biomaterial had 11.23 ± 1.7% and the bovine graft 31.56 ± 2.3%. Finally, the connective tissue for MP3 was 10.33 ± 1.8%, while for the 4BONE(™) XBM we obtained 14.34 ± 2.9%. Element analysis revealed higher percentages of Ca (54 ± 9%) and P (35 ± 6%) in the group B than group A and control group (P < 0.05). Defects of a critical size in a rabbit tibia model can be sealed using a bovine porous biphasic calcium phosphate and MP3 material; this supports new bone formation, creates a bridge between borders, and facilitates bone ingrowth in both biomaterials. Furthermore, this study observed partial dissolution of the mineral phase of four

  17. External fixation of tibial pilon fractures and fracture healing.

    PubMed

    Ristiniemi, Jukka

    2007-06-01

    Distal tibial fractures are rare and difficult to treat because the bones are subcutaneous. External fixation is commonly used, but the method often results in delayed union. The aim of the present study was to find out the factors that affect fracture union in tibial pilon fractures. For this purpose, prospective data collection of tibial pilon fractures was carried out in 1998-2004, resulting in 159 fractures, of which 83 were treated with external fixation. Additionally, 23 open tibial fractures with significant > 3 cm bone defect that were treated with a staged method in 2000-2004 were retrospectively evaluated. The specific questions to be answered were: What are the risk factors for delayed union associated with two-ring hybrid external fixation? Does human recombinant BMP-7 accelerate healing? What is the role of temporary ankle-spanning external fixation? What is the healing potential of distal tibial bone loss treated with a staged method using antibiotic beads and subsequent autogenous cancellous grafting compared to other locations of the tibia? The following risk factors for delayed healing after external fixation were identified: post-reduction fracture gap of >3 mm and fixation of the associated fibula fracture. Fracture displacement could be better controlled with initial temporary external fixation than with early definitive fixation, but it had no significant effect on healing time, functional outcome or complication rate. Osteoinduction with rhBMP-7 was found to accelerate fracture healing and to shorten the sick leave. A staged method using antibiotic beads and subsequent autogenous cancellous grafting proved to be effective in the treatment of tibial bone loss. Healing potential of the bone loss in distal tibia was at least equally good as in other locations of the tibia.

  18. Effectiveness of xenogenous-based bovine-derived platelet gel embedded within a three-dimensional collagen implant on the healing and regeneration of the Achilles tendon defect in rabbits

    PubMed Central

    Moshiri, Ali; Oryan, Ahmad; Meimandi-Parizi, Abdolhamid; Koohi-Hosseinabadi, Omid

    2014-01-01

    Background and objective: Tissue engineering is an option in reconstructing large tendon defects and managing their healing and regeneration. We designed and produced a novel xenogeneic-based bovine platelet, embedded it within a tissue-engineered collagen implant (CI) and applied it in an experimentally induced large tendon defect model in rabbits to test whether bovine platelets could stimulate tendon healing and regeneration in vivo. Methods: One hundred twenty rabbits were randomly divided into two experimental and pilot groups. In all the animals, the left Achilles tendon was surgically excised and the tendon edges were aligned by Kessler suture. Each group was then divided into three groups of control (no implant), treated with CI and treated with collagen-platelet implant. The pilot groups were euthanized at 10, 15, 30 and 40 days post-injury (DPI), and their gross and histologic characteristics were evaluated to study host–graft interaction mechanism. To study the tendon healing and its outcome, the experimental animals were tested during the experiment using hematologic, ultrasonographic and various methods of clinical examinations and then euthanized at 60 DPI and their tendons were evaluated by gross pathologic, histopathologic, scanning electron microscopic, biophysical and biochemical methods. Results: Bovine platelets embedded within a CI increased inflammation at short term while it increased the rate of implant absorption and matrix replacement compared with the controls and CI alone. Treatment also significantly increased diameter, density, amount, alignment and differentiation of the collagen fibrils and fibers and approximated the water uptake and delivery behavior of the healing tendons to normal contralaterals (p < 0.05). Treatment also improved echogenicity and homogenicity of the tendons and reduced peritendinous adhesion, muscle fibrosis and atrophy, and therefore, it improved the clinical scores and physical activity related to the

  19. Role of tissue engineered collagen based tridimensional implant on the healing response of the experimentally induced large Achilles tendon defect model in rabbits: a long term study with high clinical relevance

    PubMed Central

    2013-01-01

    Background Tendon injury is one of the orthopedic conditions poses with a significant clinical challenge to both the surgeons and patients. The major limitations to manage these injuries are poor healing response and development of peritendinous adhesions in the injured area. This study investigated the effectiveness of a novel collagen implant on tendon healing in rabbits. Results Seventy five mature White New-Zealand rabbits were divided into treated (n = 55) and control (n = 20) groups. The left Achilles tendon was completely transected and 2 cm excised. The defects of the treated animals were filled with collagen implants and repaired with sutures, but in control rabbits the defects were sutured similarly but the gap was left untreated. Changes in the injured and normal contralateral tendons were assessed weekly by measuring the diameter, temperature and bioelectrical characteristics of the injured area. Clinical examination was done and scored. Among the treated animals, small pilot groups were euthanized at 5, 10, 15, 20, 30, 40 and 60 (n = 5 at each time interval) and the remainder (n = 20) and the control animals at 120 days post injury (DPI). The lesions of all animals were examined at macroscopic and microscopic levels and the dry matter content, water delivery and water uptake characteristics of the lesions and normal contralateral tendons of both groups were analyzed at 120 DPI. No sign of rejection was seen in the treated lesions. The collagen implant was invaded by the inflammatory cells at the inflammatory phase, followed by fibroplasia phase in which remnant of the collagen implant were still present while no inflammatory reaction could be seen in the lesions. However, the collagen implant was completely absorbed in the remodeling phase and the newly regenerated tendinous tissue filled the gap. Compared to the controls, the treated lesions showed improved tissue alignment and less peritendinous adhesion, muscle atrophy and fibrosis

  20. Rabbit analgesia.

    PubMed

    Barter, Linda S

    2011-01-01

    With the increasing popularity of rabbits as household pets, the complexity of diagnostic and surgical procedures performed on rabbits is increasing, along with the frequency of routine surgical procedures. More practitioners are faced with the need to provide adequate analgesia for this species. Preemptive analgesia prior to planned surgical interventions may reduce nervous system changes in response to noxious input, as well as reduce postoperative pain levels and analgesic drug requirements. Concurrent administration of analgesic drugs to anesthetized rabbits undergoing painful procedures is warranted both pre- and intraoperatively as well as postoperatively. This article discusses the neuropharmacologic and pharmacologic aspects of pain in rabbits, and reviews current protocols for the use of analgesic drugs. Published by Elsevier Inc.

  1. TIBIAL SHAFT FRACTURES.

    PubMed

    Kojima, Kodi Edson; Ferreira, Ramon Venzon

    2011-01-01

    The long-bone fractures occur most frequently in the tibial shaft. Adequate treatment of such fractures avoids consolidation failure, skewed consolidation and reoperation. To classify these fractures, the AO/OTA classification method is still used, but it is worthwhile getting to know the Ellis classification method, which also includes assessment of soft-tissue injuries. There is often an association with compartmental syndrome, and early diagnosis can be achieved through evaluating clinical parameters and constant clinical monitoring. Once the diagnosis has been made, fasciotomy should be performed. It is always difficult to assess consolidation, but the RUST method may help in this. Radiography is assessed in two projections, and points are scored for the presence of the fracture line and a visible bone callus. Today, the dogma of six hours for cleaning the exposed fracture is under discussion. It is considered that an early start to intravenous antibiotic therapy and the lesion severity are very important. The question of early or late closure of the lesion in an exposed fracture has gone through several phases: sometimes early closure has been indicated and sometimes late closure. Currently, whenever possible, early closure of the lesion is recommended, since this diminishes the risk of infection. Milling of the canal when the intramedullary nail is introduced is still a controversial subject. Despite strong personal positions in favor of milling, studies have shown that there may be some advantage in relation to closed fractures, but not in exposed fractures.

  2. Medial tibial stress syndrome.

    PubMed

    Reshef, Noam; Guelich, David R

    2012-04-01

    MTSS is a benign, though painful, condition, and a common problem in the running athlete. It is prevalent among military personnel, runners, and dancers, showing an incidence of 4% to 35%. Common names for this problem include shin splints, soleus syndrome, tibial stress syndrome, and periostitis. The exact cause of this condition is unknown. Previous theories included an inflammatory response of the periosteum or periosteal traction reaction. More recent evidence suggests a painful stress reaction of bone. The most proven risk factors are hyperpronation of the foot, female sex, and history of previous MTSS. Patient evaluation is based on meticulous history taking and physical examination. Even though the diagnosis remains clinical, imaging studies, such as plain radiographs and bone scans are usually sufficient, although MRI is useful in borderline cases to rule out more significant pathology. Conservative treatment is almost always successful and includes several options; though none has proven more superior to rest. Prevention programs do not seem to influence the rate of MTSS, though shock-absorbing insoles have reduced MTSS rates in military personnel, and ESWT has shortened the duration of symptoms. Surgery is rarely indicated but has shown some promising results in patients who have not responded to all conservative options.

  3. Multiple Osteochondral Allograft Transplantation with Concomitant Tibial Tubercle Osteotomy for Multifocal Chondral Disease of the Knee.

    PubMed

    Cotter, Eric J; Waterman, Brian R; Kelly, Mick P; Wang, Kevin C; Frank, Rachel M; Cole, Brian J

    2017-08-01

    Symptomatic patellofemoral chondral lesions are a challenging clinical entity, as these defects may result from persistent lateral patellar maltracking or repetitive microtrauma. Anteromedializing tibial tubercle osteotomy has been shown to be an effective strategy for primary and adjunctive treatment of focal or diffuse patellofemoral disease to improve the biomechanical loading environment. Similarly, osteochondral allograft transplantation has proven efficacy in physiologically young, high-demand patients with condylar or patellofemoral lesions, particularly without early arthritic progression. The authors present the surgical management of a young athlete with symptomatic tricompartmental focal chondral defects with fresh osteochondral allograft transplantation and anteromedializing tibial tubercle osteotomy.

  4. Improving bone repair of femoral and radial defects in rabbit by incorporating PRP into PLGA/CPC composite scaffold with unidirectional pore structure.

    PubMed

    He, Fupo; Chen, Yan; Li, Jiyan; Lin, Bomiao; Ouyang, Yi; Yu, Bo; Xia, Yuanyou; Yu, Bo; Ye, Jiandong

    2015-04-01

    In this study, a platelet-rich plasma poly(lactic-co-glycolic acid) (PRP-PLGA)/calcium phosphate cement (CPC) composite scaffold was prepared by incorporating PRP into PLGA/CPC scaffold with unidirectional pore structure, which was fabricated by the unidirectional freeze casting of CPC slurry and the following infiltration of PLGA. The results from in vitro cell experiments and in vivo implantation in femoral defects manifested that incorporation of PRP into PLGA/CPC scaffold improved in vitro cell response (cell attachment, proliferation, and differentiation), and markedly boosted bone formation, angiogenesis and material degradation. The incorporation of PRP into scaffold showed more outstanding improvement in osteogenesis as the scaffolds were used to repair the segmental radial defects, especially at the early stage. The new bone tissues grew along the unidirectional lamellar pores of scaffold. At 12 weeks postimplantation, the segmental radial defects treated with PRP-PLGA/CPC scaffold had almost recuperated, whereas treated with the scaffold without PRP was far from healed. Taken together, the PRP-PLGA/CPC scaffold with unidirectional pore structure is a promising candidate to repair bone defects at various sites. © 2014 Wiley Periodicals, Inc.

  5. Management of tibial non-unions according to a novel treatment algorithm.

    PubMed

    Ferreira, Nando; Marais, Leonard Charles

    2015-12-01

    Tibial non-unions represent a spectrum of conditions that are challenging to treat. The optimal management remains unclear despite the frequency with which these diagnoses are encountered. The aim of this study was to determine the outcome of tibial non-unions managed according to a novel tibial non-union treatment algorithm. One hundred and eighteen consecutive patients with 122 uninfected tibial non-unions were treated according to our proposed tibial non-union treatment algorithm. All patients were followed-up clinically and radiologically for a minimum of six months after external fixator removal. Four patients were excluded because they did not complete the intended treatment process. The final study population consisted of 94 men and 24 women with a mean age of 34 years. Sixty-seven non-unions were stiff hypertrophic, 32 mobile atrophic, 16 mobile oligotrophic and one true pseudoarthrosis. Six non-unions were classified as type B1 defect non-unions. Bony union was achieved after the initial surgery in 113/122 (92.6%) tibias. Nine patients had failure of treatment. Seven persistent non-unions were successfully retreated according to the tibial non-union treatment algorithm. This resulted in final bony union in 120/122 (98.3%) tibias. The proposed tibial non-union treatment algorithm appears to produce high union rates across a diverse group of tibial non-unions. Tibial non-unions however, remain difficult to treat and should be referred to specialist units where advanced reconstructive techniques are practiced on a regular basis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. [Research of repairing rabbit knee joint cartilage defect by compound material of fibrin glue and decalcified bone matrix (DBM) and chondrocytes].

    PubMed

    He, Jie; Yang, Xiang; Yue, Peng-ju; Wang, Guan-yu; Guo, Ting; Zhao, Jian-ning

    2009-07-01

    To investigate the feasibility and effectivity of using compound material of fibrin glue and DBM as scaffolds for cartilage tissue engineering. Chondrocytes isolated from articular cartilage were seeded into prepared scaffolds, after incubation for 4 weeks in vitro. Chondrocytes and fibrin glue and DBM constructs were implanted in the joint cave of rabbit. The specimens were excised at the 4th, 8th, 12th week, examined grossly analyzed by haematoxylin cosine, toluidine blues staining and type II collagen immunohistochemistry reaction. Wakitani score was counted to evaluate the repairing effect. Grossly analysis showed some ivory tissue filled the caves after 4 weeks and the caves were full filled with smooth surface after 12 weeks. The microscope showed a good deal of chondrocytes appeared after 8 weeks and more type II collagen than 4 weeks. Twelve weeks later, cartilage lacuna could be observed. The cells arrangement and the amount of type II collagen both showed the same as the natural one. Complicated material of fibrin glue and DBM as scaffolds can be used as scaffolds for cartilage tissue engineering.

  7. Tibial lengthening over intramedullary nails

    PubMed Central

    Burghardt, R. D.; Manzotti, A.; Bhave, A.; Paley, D.

    2016-01-01

    Objectives The purpose of this study was to compare the results and complications of tibial lengthening over an intramedullary nail with treatment using the traditional Ilizarov method. Methods In this matched case study, 16 adult patients underwent 19 tibial lengthening over nails (LON) procedures. For the matched case group, 17 patients who underwent 19 Ilizarov tibial lengthenings were retrospectively matched to the LON group. Results The mean external fixation time for the LON group was 2.6 months and for the matched case group was 7.6 months. The mean lengthening amounts for the LON and the matched case groups were 5.2 cm and 4.9 cm, respectively. The radiographic consolidation time in the LON group was 6.6 months and in the matched case group 7.6 months. Using a clinical and radiographic outcome score that was designed for this study, the outcome was determined to be excellent in 17 and good in two patients for the LON group. The outcome was excellent in 14 and good in five patients in the matched case group. The LON group had increased blood loss and increased cost. The LON group had four deep infections; the matched case group did not have any deep infections. Conclusions The outcomes in the LON group were comparable with the outcomes in the matched case group. The LON group had a shorter external fixation time but experienced increased blood loss, increased cost, and four cases of deep infection. The advantage of reducing external fixation treatment time may outweigh these disadvantages in patients who have a healthy soft-tissue envelope. Cite this article: J. E. Herzenberg. Tibial lengthening over intramedullary nails: A matched case comparison with Ilizarov tibial lengthening. Bone Joint Res 2016;5:1–10. doi: 10.1302/2046-3758.51.2000577 PMID:26764351

  8. Cranial tibial wedge osteotomy: a technique for eliminating cranial tibial thrust in cranial cruciate ligament repair.

    PubMed

    Slocum, B; Devine, T

    1984-03-01

    Cranial tibial wedge osteotomy, surgical technique for cranial cruciate ligament rupture, was performed on 19 stifles in dogs. This procedure leveled the tibial plateau, thus causing weight-bearing forces to be compressive and eliminating cranial tibial thrust. Without cranial tibial thrust, which was antagonistic to the cranial cruciate ligament and its surgical reconstruction, cruciate ligament repairs were allowed to heal without constant loads. This technique was meant to be used as an adjunct to other cranial cruciate ligament repair techniques.

  9. Effect of gradual weight-bearing on regenerated articular cartilage after joint distraction and motion in a rabbit model.

    PubMed

    Nishino, Tomofumi; Ishii, Tomoo; Chang, Fei; Yanai, Takaji; Watanabe, Arata; Ogawa, Takeshi; Mishima, Hajime; Nakai, Kenjiro; Ochiai, Naoyuki

    2010-05-01

    The purpose of this study was to clarify the effect of gradual weight bearing (GWB) on regenerating cartilage. We developed a novel external fixation device (EFD) with a controllable weight-bearing system and continuous passive motion (CPM). A full-thickness defect was created by resection of the entire articular surface of the tibial plateau after the EFD was fixed in the rabbit's left knee. In the GWB group (n=6), GWB was started 6 weeks after surgery. In the CPM group (n=6), CPM with EFD was applied in the same manner without GWB. The control group (n=5) received only joint distraction. All rabbits were sacrificed 9 weeks after surgery. The central one-third of the regenerated tissue was assessed and scored blindly using a grading scale modified from the International Cartilage Repair Society visual histological assessment scale. The areas stained by Safranin-O and type II collagen antibody were measured, and the percentage of each area was calculated. There was no significant difference in the histological assessment scale among the groups. The percentage of the type II collagen-positive area was significantly larger in the GWB group than in the CPM group. The present study suggests that optimal mechanical stress, such as GWB, may affect regeneration of cartilage, in vivo. Copyright (c) 2009 Orthopaedic Research Society.

  10. Ideal tibial intramedullary nail insertion point varies with tibial rotation.

    PubMed

    Walker, Richard M; Zdero, Rad; McKee, Michael D; Waddell, James P; Schemitsch, Emil H

    2011-12-01

    The aim of the study was to investigate how superior entry point varies with tibial rotation and to identify landmarks that can be used to identify suitable radiographs for successful intramedullary nail insertion. The proximal tibia and knee were imaged for 12 cadaveric limbs undergoing 5° increments of internal and external rotation. Medial and lateral arthrotomies were performed, the ideal superior entry point was identified, and a 2-mm Kirschner wire inserted. A second Kirschner wire was sequentially placed at the 5-mm and then the 10-mm position, both medial and lateral to the initial Kirschner wire. Radiographs of the knee were obtained for all increments. The changing position of the ideal nail insertion point was recorded. A 30° arc (range, 25°-40°) provided a suitable anteroposterior radiograph. On the neutral anteroposterior radiograph, the Kirschner wire was 54% ± 1.5% (range, 51-56%) from the medial edge of the tibial plateau. For every 5° of rotation, the Kirschner wire moved 3% of the plateau width. During external rotation, a misleading medial entry point was obtained. A fibular bisector line correlated with an entry point that was ideal or up to 5 mm lateral to this but never medial. The film that best showed the fibular bisector line was between 0° and 10° of internal rotation of the tibia. The fibula head bisector line can be used to avoid choosing external rotation views and, thus, avoid medial insertion points. The current results may help the surgeon prevent malalignment during intramedullary nailing in proximal tibial fractures.

  11. [Repairing of soft tissue defect in leg by free vascularized thoracoumbilical flap with reversed flow].

    PubMed

    Xu, Y Q; Li, Z Y; Li, J

    2000-11-01

    To investigate the clinical effect of free vascularized thoracoumbilical flap with reversal flow in repairing the soft tissue defect in leg with tibia exposure. Forty-four casting mould specimens of leg arteries were studied firstly. Then 25 cases with soft tissue defect and tibia exposure in the proximal-middle segment of leg were adopted in this study. Among them, 18 cases had long distance thrombosis of the anterior tibial vessels or posterior tibial vessels due to traumatic lesion. The maximal size of defect was 28 cm x 11 cm and the minimal size of defect was 11 cm x 9 cm. In operation, the thoracoumbilical flap which was based on the inferior epigastric vessels was anastomosed to the distal end of the anterior tibial vessels or posterior tibial vessels. Anterior tibial artery, posterior tibial artery and fibular artery had rich communication branches in foot and ankle. All the flaps survived, the color and cosmetic result of them were good. The free vascularized thoracoumbilical flap with reversed flow is practical in repairing the soft tissue defect of leg with tibia exposure. Either the anterior tibial vessels or the posterior tibial vessels is normal, and the distal end of injured blood vessels is available, this technique can be adopted.

  12. Effect of simvastatin versus low level laser therapy (LLLT) on bone regeneration in rabbit's tibia

    NASA Astrophysics Data System (ADS)

    Gheith, Mostafa E.; Khairy, Maggie A.

    2014-02-01

    Simvastatin is a cholesterol lowering drug which proved effective on promoting bone healing. Recently low level laser therapy (LLLT) proved its effect as a biostimulator promoting bone regeneration. This study aims to compare the effect of both Simvastatin versus low level laser on bone healing in surgically created bone defects in rabbit's tibia. Material and methods: The study included 12 New Zealand white rabbits. Three successive 3mm defects were created in rabbits tibia first defect was left as control, second defect was filled with Simvastatin while the third defect was acted on with Low Level Laser (optical fiber 320micrometer). Rabbits were sacrificed after 48 hours, 1 week and 2 weeks intervals. Histopathology was conducted on the three defects Results: The histopathologic studies showed that the bony defects treated with the Low Level Laser showed superior healing patterns and bone regeneration than those treated with Simvastatin. While the control defect showed the least healing pattern.

  13. Free flap reconstructions of tibial fractures complicated after internal fixation.

    PubMed

    Nieminen, H; Kuokkanen, H; Tukiainen, E; Asko-Seljavaara, S

    1995-04-01

    The cases of 15 patients are presented where microvascular soft-tissue reconstructions became necessary after internal fixation of tibial fractures. Primarily, seven of the fractures were closed. Eleven fractures had originally been treated by open reduction and internal fixation using plates and screws, and four by intramedullary nailing. All of the patients suffered from postoperative complications leading to exposure of the bone or fixation material. The internal fixation material was removed and radical revision of dead and infected tissue was carried out in all cases. Soft tissue reconstruction was performed using a free microvascular muscle flap (11 latissimus dorsi, three rectus abdominis, and one gracilis). In eight cases the nonunion of the fracture indicated external fixation. The microvascular reconstruction was successful in all 15 patients. In one case the recurrence of deep infection finally indicated a below-knee amputation. In another case, chronic infection with fistulation recurred postoperatively. After a mean follow-up of 26 months the soft tissue coverage was good in all the remaining 13 cases. All the fractures united. Microvascular free muscle flap reconstruction of the leg is regarded as a reliable method for salvaging legs with large soft-tissue defects or defects in the distal leg. If after internal fixation of the tibial fracture the osteosynthesis material or fracture is exposed, reconstruction of the soft-tissue can successfully be performed by free flap transfer. By radical revision, external fixation, bone grafting, and a free flap the healing of the fracture can be achieved.

  14. Outcome of limb fracture repair in rabbits: 139 cases (2007-2015).

    PubMed

    Sasai, Hiroshi; Fujita, Daisuke; Seto, Eiko; Denda, Yuki; Imai, Yutaro; Okamoto, Kanako; Okamura, Kensaku; Furuya, Masaru; Tani, Hiroyuki; Sasai, Kazumi

    2018-02-15

    OBJECTIVE To evaluate outcome of limb fracture repair in rabbits. DESIGN Retrospective case series. ANIMALS 139 client-owned rabbits with limb fractures treated between 2007 and 2015. PROCEDURES Medical records were reviewed for information on fracture location, fracture treatment, and time to fracture healing. RESULTS 25 rabbits had fractures involving the distal aspects of the limbs (ie, metacarpal or metatarsal bones, phalanges, and calcaneus or talus). Fractures were treated in 23 of these 25 rabbits (external coaptation, n = 17; external skeletal fixation, 4; and intramedullary pinning, 2) and healed in all 23, with a median healing time of 28 days (range, 20 to 45 days). One hundred ten rabbits had long bone fractures, and fractures were treated in 100 of the 110 (external skeletal fixation, n = 89; bone plating, 1; intramedullary pinning, 3; and external coaptation, 7). The percentage of fractures that healed was significantly lower for open (14/18) than for closed (26/26) tibial fractures and was significantly lower for femoral (19/26) and treated humeral (4/6) fractures than for radial (23/24) or closed tibial (26/26) fractures. Micro-CT was used to assess fracture realignment during external skeletal fixator application and to evaluate fracture healing. CONCLUSIONS AND CLINICAL RELEVANCE The prognosis for rabbits with limb fractures was good, with fractures healing in most rabbits following fracture repair (109/123). Micro-CT was useful in assessing fracture realignment and evaluating fracture healing.

  15. Anthropometric measurements of tibial plateau and correlation with the current tibial implants.

    PubMed

    Erkocak, Omer Faruk; Kucukdurmaz, Fatih; Sayar, Safak; Erdil, Mehmet Emin; Ceylan, Hasan Huseyin; Tuncay, Ibrahim

    2016-09-01

    The aim of the study was to make an anthropometric analysis at the resected surfaces of the proximal tibia in the Turkish population and to compare the data with the dimensions of tibial components in current use. We hypothesized that tibial components currently available on the market do not fulfil the requirements of this population and a new tibial component design may be required, especially for female patients with small stature. Anthropometric data from the proximal tibia of 226 knees in 226 Turkish subjects were measured using magnetic resonance imaging. We measured the mediolateral, middle anteroposterior, medial and lateral anteroposterior dimensions and the aspect ratio of the resected proximal tibial surface. All morphological data were compared with the dimensions of five contemporary tibial implants, including asymmetric and symmetric design types. The dimensions of the tibial plateau of Turkish knees demonstrated significant differences according to gender (P < 0.05). Among the different tibial implants reviewed, neither asymmetric nor symmetric designs exhibited a perfect conformity to proximal tibial morphology in size and shape. The vast majority of tibial implants involved in this study tend to overhang anteroposteriorly, and a statistically significant number of women (21 %, P < 0.05) had tibial anteroposterior diameters smaller than the smallest available tibial component. Tibial components designed according to anthropometric measurements of Western populations do not perfectly meet the requirements of Turkish population. These data could provide the basis for designing the optimal and smaller tibial component for this population, especially for women, is required for best fit. II.

  16. Trifurcation of the tibial nerve within the tarsal tunnel.

    PubMed

    Develi, Sedat

    2018-05-01

    The tibial nerve is the larger terminal branch of the sciatic nerve and it terminates in the tarsal tunnel by giving lateral and medial plantar nerves. We present a rare case of trifurcation of the tibial nerve within the tarsal tunnel. The variant nerve curves laterally after branching from the tibial nerve and courses deep to quadratus plantae muscle. Interestingly, posterior tibial artery was also terminating by giving three branches. These branches were accompanying the terminal branches of the tibial nerve.

  17. Bilateral double level tibial lengthening in dwarfism.

    PubMed

    Burghardt, Rolf D; Yoshino, Koichi; Kashiwagi, Naoya; Yoshino, Shigeo; Bhave, Anil; Paley, Dror; Herzenberg, John E

    2015-12-01

    Outcome assessment after double level tibial lengthening in patients with dwarfism. Fourteen patients with dwarfism were analyzed after bilateral simultaneous double level tibial lengthening. Average age was 15.1 years. Average lengthening was 13.5 cm. The two levels were lengthened by an average of 7.5 cm proximally and 6.0 cm distally. Concomitant deformities were also addressed during lengthening. External fixation treatment time averaged 8.8 months. Healing index averaged 0.7 months/cm. Bilateral tibial lengthening for dwarfism is difficult, but the results are usually quite gratifying.

  18. The effect of plate position and size on tibial slope in high tibial osteotomy: a cadaveric study.

    PubMed

    Rubino, L Joseph; Schoderbek, Robert J; Golish, S Raymond; Baumfeld, Joshua; Miller, Mark D

    2008-01-01

    Opening wedge high tibial osteotomies are performed for degenerative changes and varus. Opening wedge osteotomies can change proximal tibial slope in the sagittal plane, possibly imparting stability in the ACL-deficient knee. The aim of this study was to assess the effect of plate position and size on change in tibial slope. Eight cadaveric knees underwent opening wedge high tibial osteotomy with Puddu plates of each different size. Plates were placed anterior, central, and posterior for each size used. Lateral radiographs were obtained. Tibial slope was measured and compared with baseline slope. Tibial slope was affected by plate position (P < 0.05) and size (P < 0.001). Smaller, posterior plates had less effect on tibial slope. However, anterior and central plates increased tibial slope over all plate sizes (P < 0.05). This study found that tibial slope increases with opening wedge high tibial osteotomy. Larger corrections and anterior placement of the plate are associated with larger increases in slope.

  19. RABBIT POX

    PubMed Central

    Greene, Harry S. N.

    1935-01-01

    The epidemiological significance of age, race, sex, genetic constitution and physiological status were studied by means of a differential analysis of the mortality data derived from a devastating epidemic of rabbit pox and, with the exception of sex, were found to be factors of the utmost importance in the determination of susceptibility. Young animals were more susceptible than adults and although the most susceptible age varied with the epidemic phase, it corresponded in general with the period of weaning. The influence of physiological status was further indicated by the increased susceptibility incident to lactation. Racial variations in susceptibility were obscured by age factors in young animals, but were of profound importance in the adult population and formed the most significant feature of the analysis. A high degree of conformity was found in the susceptibility of racially related breeds, and this similarity in behavior increased with the proximity of relationship. Moreover, a study of the hybrids obtained from the crossing of pure breeds showed that two separable groups of hereditary factors were concerned in the determination of breed susceptibility, one group consisting of essential racial characters, the other of constitutional factors incorporated in the stock by chance association, and that the final expression of susceptibility or resistance was the result of their combined interaction. PMID:19870417

  20. Bypass grafting to the anterior tibial artery.

    PubMed

    Armour, R H

    1976-01-01

    Four patients with severe ischaemia of a leg due to atherosclerotic occlusion of the tibial and peroneal arteries had reversed long saphenous vein grafts to the patent lower part of the anterior tibial artery. Two of these grafts continue to function 19 and 24 months after operation respectively. One graft failed on the fifth postoperative day and another occluded 4 months after operation. The literature on femorotibial grafting has been reviewed. The early failure rate of distal grafting is higher than in the case of femoropopliteal bypass, but a number of otherwise doomed limbs can be salvaged. Contrary to widely held views, grafting to the anterior tibial artery appears to give results comparable to those obtained when the lower anastomosis is made to the posterior tibial artery.

  1. Incidence and epidemiology of tibial shaft fractures.

    PubMed

    Larsen, Peter; Elsoe, Rasmus; Hansen, Sandra Hope; Graven-Nielsen, Thomas; Laessoe, Uffe; Rasmussen, Sten

    2015-04-01

    The literature lacks recent population-based epidemiology studies of the incidence, trauma mechanism and fracture classification of tibial shaft fractures. The purpose of this study was to provide up-to-date information on the incidence of tibial shaft fractures in a large and complete population and report the distribution of fracture classification, trauma mechanism and patient baseline demographics. Retrospective reviews of clinical and radiological records. A total of 196 patients were treated for 198 tibial shaft fractures in the years 2009 and 2010. The mean age at time of fracture was 38.5 (21.2SD) years. The incidence of tibial shaft fracture was 16.9/100,000/year. Males have the highest incidence of 21.5/100,000/year and present with the highest frequency between the age of 10 and 20, whereas women have a frequency of 12.3/100,000/year and have the highest frequency between the age of 30 and 40. AO-type 42-A1 was the most common fracture type, representing 34% of all tibial shaft fractures. The majority of tibial shaft fractures occur during walking, indoor activity and sports. The distribution among genders shows that males present a higher frequency of fractures while participating in sports activities and walking. Women present the highest frequency of fractures while walking and during indoor activities. This study shows an incidence of 16.9/100,000/year for tibial shaft fractures. AO-type 42-A1 was the most common fracture type, representing 34% of all tibial shaft fractures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Repair of Segmental Load-Bearing Bone Defect by Autologous Mesenchymal Stem Cells and Plasma-Derived Fibrin Impregnated Ceramic Block Results in Early Recovery of Limb Function

    PubMed Central

    Ng, Min Hwei; Duski, Suryasmi; Tan, Kok Keong; Yusof, Mohd Reusmaazran; Low, Kiat Cheong; Mohamed Rose, Isa; Mohamed, Zahiah; Bin Saim, Aminuddin; Idrus, Ruszymah Bt Hj

    2014-01-01

    Calcium phosphate-based bone substitutes have not been used to repair load-bearing bone defects due to their weak mechanical property. In this study, we reevaluated the functional outcomes of combining ceramic block with osteogenic-induced mesenchymal stem cells and platelet-rich plasma (TEB) to repair critical-sized segmental tibial defect. Comparisons were made with fresh marrow-impregnated ceramic block (MIC) and partially demineralized allogeneic bone block (ALLO). Six New Zealand White female rabbits were used in each study group and three rabbits with no implants were used as negative controls. By Day 90, 4/6 rabbits in TEB group and 2/6 in ALLO and MIC groups resumed normal gait pattern. Union was achieved significantly faster in TEB group with a radiological score of 4.50 ± 0.78 versus ALLO (1.06 ± 0.32), MIC (1.28 ± 0.24), and negative controls (0). Histologically, TEB group scored the highest percentage of new bone (82% ± 5.1%) compared to ALLO (5% ± 2.5%) and MIC (26% ± 5.2%). Biomechanically, TEB-treated tibiae achieved the highest compressive strength (43.50 ± 12.72 MPa) compared to those treated with ALLO (15.15 ± 3.57 MPa) and MIC (23.28 ± 6.14 MPa). In conclusion, TEB can repair critical-sized segmental load-bearing bone defects and restore limb function. PMID:25165699

  3. Variant Rabbit Hemorrhagic Disease Virus in Young Rabbits, Spain

    PubMed Central

    Dalton, Kevin P.; Nicieza, Inés; Balseiro, Ana; Muguerza, María A.; Rosell, Joan M.; Casais, Rosa; Álvarez, Ángel L.

    2012-01-01

    Outbreaks of rabbit hemorrhagic disease have occurred recently in young rabbits on farms on the Iberian Peninsula where rabbits were previously vaccinated. Investigation identified a rabbit hemorrhagic disease virus variant genetically related to apathogenic rabbit caliciviruses. Improved antivirus strategies are needed to slow the spread of this pathogen. PMID:23171812

  4. Medial Tibial Stress Shielding: A Limitation of Cobalt Chromium Tibial Baseplates.

    PubMed

    Martin, J Ryan; Watts, Chad D; Levy, Daniel L; Kim, Raymond H

    2017-02-01

    Stress shielding is a well-recognized complication associated with total knee arthroplasty. However, this phenomenon has not been thoroughly described. Specifically, no study to our knowledge has evaluated the radiographic impact of utilizing various tibial component compositions on tibial stress shielding. We retrospectively reviewed 3 cohorts of 50 patients that had a preoperative varus deformity and were implanted with a titanium, cobalt chromium (CoCr), or an all polyethylene tibial implant. A radiographic comparative analysis was performed to evaluate the amount of medial tibial bone loss in each cohort. In addition, a clinical outcomes analysis was performed on the 3 cohorts. The CoCr was noted to have a statistically significant increase in medial tibial bone loss compared with the other 2 cohorts. The all polyethylene cohort had a statistically significantly higher final Knee Society Score and was associated with the least amount of stress shielding. The CoCr tray is the most rigid of 3 implants that were compared in this study. Interestingly, this cohort had the highest amount of medial tibial bone loss. In addition, 1 patient in the CoCr cohort had medial soft tissue irritation which was attributed to a prominent medial tibial tray which required revision surgery to mitigate the symptoms. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Maximizing tibial coverage is detrimental to proper rotational alignment.

    PubMed

    Martin, Stacey; Saurez, Alex; Ismaily, Sabir; Ashfaq, Kashif; Noble, Philip; Incavo, Stephen J

    2014-01-01

    Traditionally, the placement of the tibial component in total knee arthroplasty (TKA) has focused on maximizing coverage of the tibial surface. However, the degree to which maximal coverage affects correct rotational placement of symmetric and asymmetric tibial components has not been well defined and might represent an implant design issue worthy of further inquiry. Using four commercially available tibial components (two symmetric, two asymmetric), we sought to determine (1) the overall amount of malrotation that would occur if components were placed for maximal tibial coverage; and (2) whether the asymmetric designs would result in less malrotation than the symmetric designs when placed for maximal coverage in a computer model using CT reconstructions. CT reconstructions of 30 tibial specimens were used to generate three-dimensional tibia reconstructions with attention to the tibial anatomic axis, the tibial tubercle, and the resected tibial surface. Using strict criteria, four commercially available tibial designs (two symmetric, two asymmetric) were placed on the resected tibial surface. The resulting component rotation was examined. Among all four designs, 70% of all tibial components placed in orientation maximizing fit to resection surface were internally malrotated (average 9°). The asymmetric designs had fewer cases of malrotation (28% and 52% for the two asymmetric designs, 100% and 96% for the two symmetric designs; p < 0.001) and less malrotation on average (2° and 5° for the asymmetric designs, 14° for both symmetric designs; p < 0.001). Maximizing tibial coverage resulted in implant malrotation in a large percentage of cases. Given similar amounts of tibial coverage, correct rotational positioning was more likely to occur with the asymmetric designs. Malrotation of components is an important cause of failure in TKA. Priority should be given to correct tibial rotational positioning. This study suggested that it is easier to balance rotation and

  6. Proximal tibial osteotomy. A survivorship analysis.

    PubMed

    Ritter, M A; Fechtman, R A

    1988-01-01

    Proximal tibial osteotomy is generally accepted as a treatment for the patient with unicompartmental arthritis. However, a few reports of the long-term results of this procedure are available in the literature, and none have used the technique known as survivorship analysis. This technique has an advantage over conventional analysis because it does not exclude patients for inadequate follow-up, loss to follow-up, or patient death. In this study, survivorship analysis was applied to 78 proximal tibial osteotomies, performed exclusively by the senior author for the correction of a preoperative varus deformity, and a survival curve was constructed. It was concluded that the reliable longevity of the proximal tibial osteotomy is approximately 6 years.

  7. [Surgical approaches to tibial plateau fractures].

    PubMed

    Krause, Matthias; Müller, Gunnar; Frosch, Karl-Heinz

    2018-06-06

    Intra-articular tibial plateau fractures can present a surgical challenge due to complex injury patterns and compromised soft tissue. The treatment goal is to spare the soft tissue and an anatomical reconstruction of the tibial articular surface. Depending on the course of the fracture, a fracture-specific access strategy is recommended to provide correct positioning of the plate osteosynthesis. While the anterolateral approach is used in the majority of lateral tibial plateau fractures, only one third of the joint surface is visible; however, posterolateral fragments require an individual approach, e. g. posterolateral or posteromedial. If necessary, osteotomy of the femoral epicondyles can improve joint access for reduction control. Injuries to the posterior columns should be anatomically reconstructed and biomechanically correctly addressed via posterior approaches. Bony posterior cruciate ligament tears can be refixed via a minimally invasive posteromedial approach.

  8. Compartment syndrome after tibial plateau fracture☆

    PubMed Central

    Pitta, Guilherme Benjamin Brandão; dos Santos, Thays Fernanda Avelino; dos Santos, Fernanda Thaysa Avelino; da Costa Filho, Edelson Moreira

    2014-01-01

    Fractures of the tibial plateau are relatively rare, representing around 1.2% of all fractures. The tibia, due to its subcutaneous location and poor muscle coverage, is exposed and suffers large numbers of traumas, not only fractures, but also crush injuries and severe bruising, among others, which at any given moment, could lead compartment syndrome in the patient. The case is reported of a 58-year-old patient who, following a tibial plateau fracture, presented compartment syndrome of the leg and was submitted to decompressive fasciotomy of the four right compartments. After osteosynthesis with internal fixation of the tibial plateau using an L-plate, the patient again developed compartment syndrome. PMID:26229779

  9. Tibial stress injuries: decisive diagnosis and treatment of 'shin splints'.

    PubMed

    Couture, Christopher J; Karlson, Kristine A

    2002-06-01

    Tibial stress injuries, commonly called 'shin splints,' often result when bone remodeling processes adapt inadequately to repetitive stress. Physicians who care for athletic patients need a thorough understanding of this continuum of injuries, including medial tibial stress syndrome and tibial stress fractures, because there are implications for appropriate diagnosis, management, and prevention.

  10. Tibial Stress Injuries: Decisive Diagnosis and Treatment of "Shin Splints."

    ERIC Educational Resources Information Center

    Couture, Christopher J.; Karlson, Kristine A.

    2002-01-01

    Tibial stress injuries, commonly called shin splints, often result when bone remodeling processes adopt inadequately to repetitive stress. Physicians who are caring for athletic patients must have a thorough understanding of this continuum of injuries, including medial tibial stress syndrome and tibial stress fractures, because there are…

  11. Tibial plateau fracture following gracilis-semitendinosus anterior cruciate ligament reconstruction: The tibial tunnel stress-riser.

    PubMed

    Sundaram, R O; Cohen, D; Barton-Hanson, N

    2006-06-01

    Tibial plateau fractures following anterior cruciate ligament (ACL) reconstruction are extremely rare. This is the first reported case of a tibial plateau fracture following four-strand gracilis-semitendinosus autograft ACL reconstruction. The tibial tunnel alone may behave as a stress riser which can significantly reduce bone strength.

  12. Cysticercosis in laboratory rabbits.

    PubMed

    Owiny, J R

    2001-03-01

    There are no data on the current incidence of Taenia pisiformis in laboratory rabbits. Two cases of cysticercosis most likely due to T. pisiformis in laboratory rabbits (intermediate host) are presented. Both rabbits had no contact with dogs (final host); their caretakers did not work with dogs, and these caretakers changed into facility scrubs and wore gloves when working with the rabbits. Rabbit 1 may have been infected after being fed hay at our facility. In light of the life cycle of the parasite and the history of rabbit 2, it potentially could have been infected prior to arrival at our facility. There have been only three cases of tapeworm cysts in rabbits in our facility (average daily census, 250) during the last 10 years (incidence, < 1%). This report indicates that although cysticercosis is rare in laboratory rabbits, one should always be aware of such incidental findings. Although it may not produce overt illness in the rabbit, hepatic migration could adversely affect the outcome of some experimental procedures

  13. Total knee arthroplasty in patients with a prior fracture of the tibial plateau.

    PubMed

    Weiss, Nicholas G; Parvizi, Javad; Trousdale, Robert T; Bryce, Rex D; Lewallen, David G

    2003-02-01

    A fracture of the tibial plateau may predispose the knee to the development of posttraumatic arthritis. Malunion, intra-articular chondro-osseous defects, limb malalignment, retained internal fixation devices, and poor surrounding soft tissues may in turn compromise the outcome of total knee arthroplasty. The aim of our study was to evaluate the results of total knee arthroplasty in patients with a previous fracture of the tibial plateau. The results of sixty-two condylar total knee arthroplasties performed with cement, from 1988 to 1999, in sixty-two patients with a previous fracture of the tibial plateau were reviewed. The fracture of the tibial plateau had been treated by open reduction and internal fixation in thirty-eight knees, external fixation in one knee, and nonoperatively in twenty-three knees. There were forty women and twenty-two men with an average age of sixty-three years at the time of the arthroplasty. Knee Society scores were recorded preoperatively and at the time of follow-up, at an average of 4.7 years, and complications were noted. No patient was lost to follow-up. The mean Knee Society scores improved significantly (p < 0.0001), from 43.9 points for pain and 52 points for function preoperatively to 82.9 and 84 points, respectively, at the time of the latest follow-up. There were thirteen reoperations, which included manipulation with the patient under anesthesia (five knees), wound revision (three knees), and component revision (five knees). There were six intraoperative complications (10%). A postoperative complication occurred in sixteen knees (26%). The vast majority of patients treated with total knee arthroplasty after a previous fracture of the tibial plateau have substantial improvement in function and relief of pain. However, these patients are at increased risk for perioperative complications, as evidenced by the high reoperation rate of 21% in this study.

  14. Birth Defects

    MedlinePlus

    ... both. Some birth defects like cleft lip or neural tube defects are structural problems that can be ... during pregnancy is a key factor in causing neural tube defects. For most birth defects, the cause ...

  15. Kinematically aligned total knee arthroplasty limits high tibial forces, differences in tibial forces between compartments, and abnormal tibial contact kinematics during passive flexion.

    PubMed

    Roth, Joshua D; Howell, Stephen M; Hull, Maury L

    2018-06-01

    Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion. Using cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor. The average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm (p < 0.0001) and 18 mm (p < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion. After kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give

  16. [Posttraumatic deformities of the knee joint : Intra-articular osteotomy after malreduction of tibial head fractures].

    PubMed

    Frosch, K-H; Krause, M; Frings, J; Drenck, T; Akoto, R; Müller, G; Madert, J

    2016-10-01

    Malreduction of tibial head fractures often leads to malalignment of the lower extremity, pain, limited range of motion and instability. The extent of the complaints and the degree of deformity requires an exact analysis and a standardized approach. True ligamentous instability should be distinguished from pseudoinstability of the joint. Also extra- and intra-articular deformities have to be differentiated. In intra-articular deformities the extent of articular surface displacement, defects and clefts must be accurately evaluated. A specific surgical approach is necessary, which allows adequate visualization, correct osteotomy and refixation of the fractured area of the tibial head. In the long-term course good clinical results are described for intra-articular osteotomies. If the joint is damaged to such an extent that it cannot be reconstructed or in cases of advanced posttraumatic osteoarthritis, total knee arthroplasty may be necessary; however, whenever possible and reasonable, anatomical reconstruction and preservation of the joint should be attempted.

  17. Effect of Tibial Plateau Levelling Osteotomy on Cranial Tibial Subluxation in the Feline Cranial Cruciate Deficient Stifle Joint: An Ex Vivo Experimental Study.

    PubMed

    Bilmont, A; Retournard, M; Asimus, E; Palierne, S; Autefage, A

    2018-06-11

     This study evaluated the effects of tibial plateau levelling osteotomy on cranial tibial subluxation and tibial rotation angle in a model of feline cranial cruciate ligament deficient stifle joint.  Quadriceps and gastrocnemius muscles were simulated with cables, turnbuckles and a spring in an ex vivo limb model. Cranial tibial subluxation and tibial rotation angle were measured radiographically before and after cranial cruciate ligament section, and after tibial plateau levelling osteotomy, at postoperative tibial plateau angles of +5°, 0° and -5°.  Cranial tibial subluxation and tibial rotation angle were not significantly altered after tibial plateau levelling osteotomy with a tibial plateau angle of +5°. Additional rotation of the tibial plateau to a tibial plateau angle of 0° and -5° had no significant effect on cranial tibial subluxation and tibial rotation angle, although 2 out of 10 specimens were stabilized by a postoperative tibial plateau angle of -5°. No stabilization of the cranial cruciate ligament deficient stifle was observed in this model of the feline stifle, after tibial plateau levelling osteotomy.  Given that stabilization of the cranial cruciate ligament deficient stifle was not obtained in this model, simple transposition of the tibial plateau levelling osteotomy technique from the dog to the cat may not be appropriate. Schattauer GmbH Stuttgart.

  18. [Application of tibial mechanical axis locator in tibial extra-articular deformity in total knee arthroplasty].

    PubMed

    Li, Guoliang; Han, Guangpu; Zhang, Jinxiu; Ma, Shiqiang; Guo, Donghui; Yuan, Fulu; Qi, Bingbing; Shen, Runbin

    2013-07-01

    To explore the application value of self-made tibial mechanical axis locator in tibial extra-articular deformity in total knee arthroplasty (TKA) for improving the lower extremity force line. Between January and August 2012, 13 cases (21 knees) of osteoarthritis with tibial extra-articular deformity were treated, including 5 males (8 knees) and 8 females (13 knees) with an average age of 66.5 years (range, 58-78 years). The disease duration was 2-5 years (mean, 3.5 years). The knee society score (KSS) was 45.5 +/- 15.5. Extra-articular deformities included 1 case of knee valgus (2 knees) and 12 cases of knee varus (19 knees). Preoperative full-length X-ray films of lower extremities showed 10-21 degrees valgus or varus deformity of tibial extra joint. Self-made tibial mechanical axis locator was used to determine and mark coronal tibial mechanical axis under X-ray before TKA, and then osteotomy was performed with extramedullary positioning device according to the mechanical axis marker.' All incisions healed by first intention, without related complications of infection and joint instability. All patients were followed up 5-12 months (mean, 8.3 months). The X-ray examination showed < 2 degrees knee deviation angle in the others except 1 case of 2.9 degrees knee deviation angle at 3 days after operation, and the accurate rate was 95.2%. No loosening or instability of prosthesis occurred during follow-up. KSS score was 85.5 +/- 15.0 at last follow-up, showing significant difference when compared with preoperative score (t=12.82, P=0.00). The seft-made tibial mechanical axis locator can improve the accurate rate of the lower extremity force line in TKA for tibia extra-articular deformity.

  19. Zoonoses of rabbits and rodents.

    PubMed

    Hill, William Allen; Brown, Julie Paige

    2011-09-01

    Millions of households in the US own rabbits or rodents, including hamsters, guinea pigs, and gerbils. Activities such as hunting and camping also involve human interactions with wild rabbits and rodents. In many environments, feral rabbits and rodents live in close proximity to humans, domesticated animals, and other wildlife. Education of rodent and rabbit owners and individuals with occupational or recreational exposures to these species is paramount to reduce the prevalence of zoonoses associated with rabbit and rodent exposure.

  20. [Magnetic resonance imaging of tibial periostitis].

    PubMed

    Meyer, X; Boscagli, G; Tavernier, T; Aczel, F; Weber, F; Legros, R; Charlopain, P; Martin, J P

    1998-01-01

    Tibial periostitis frequently occurs in athletes. We present our experience with MRI in a series of 7 patients (11 legs) with this condition. The clinical presentation and scintigraphic scanning suggested the diagnosis. MRI exploration of 11 legs demonstrated a high band-like juxta-osseous signal enhancement of SE and IR T2 weighted sequences in 6 cases, a signal enhancement after i.v. contrast administration in 4. Tibial periostitis is a clinical diagnosis and MRI and scintigraphic findings can be used to assure the differential diagnosis in difficult cases with stress fracture. MRI can visualize juxta-osseous edematous and inflammatory reactions and an increased signal would appear to be characteristic when the band-like image is fixed to the periosteum.

  1. Biomechanical Factors in Tibial Stress Fracture

    DTIC Science & Technology

    2001-08-01

    Relationship between Loading Rates and Tibial Accelerometry in Forefoot Strike Runners. Presented at the Annual American Society of Biomechanics Mtg...of the APTA, Seattle, WA, 2/99. McClay, IS, Williams, DS, and Manal, KT. Lower Extremity Mechanics of Runners with a Converted Forefoot Strike ...Management, Inc, 1998-1999 The Effect of Different Orthotic Devices on Lower Extremity Mechanics of Rearfoot and Forefoot Strikers, $3,500. Foot Management

  2. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea

    PubMed Central

    Zheng, Luo Luo; Vanchinathan, Vijay; Dalal, Roopa; Noolandi, Jaan; Waters, Dale J.; Hartmann, Laura; Cochran, Jennifer R.; Frank, Curtis W.; Yu, Charles Q.; Ta, Christopher N.

    2015-01-01

    We evaluated the biocompatibility of a poly(ethylene glycol) and poly(acrylic acid) (PEG/PAA) interpenetrating network hydrogel designed for artificial cornea in a rabbit model. PEG/PAA hydrogel measuring 6 mm in diameter was implanted in the corneal stroma of twelve rabbits. Stromal flaps were created with a microkeratome. Randomly, six rabbits were assigned to bear the implant for 2 months, two rabbits for 6 months, two rabbits for 9 months, one rabbit for 12 months, and one rabbit for 16 months. Rabbits were evaluated monthly. After the assigned period, eyes were enucleated, and corneas were processed for histology and immunohistochemistry. There were clear corneas in three of six rabbits that had implantation of hydrogel for 2 months. In the six rabbits with implant for 6 months or longer, the corneas remained clear in four. There was a high rate of epithelial defect and corneal thinning in these six rabbits. One planned 9-month rabbit developed extrusion of implant at 4 months. The cornea remained clear in the 16-month rabbit but histology revealed epithelial in-growth. Intrastromal implantation of PEG/PAA resulted in a high rate of long-term complications. PMID:25778285

  3. Cranial tibial thrust: a primary force in the canine stifle.

    PubMed

    Slocum, B; Devine, T

    1983-08-15

    A cranially directed force identified within the canine stifle joint was termed cranial tibial thrust. It was generated during weight bearing by tibial compression, of which the tarsal tendon of the biceps femoris is a major contributor, and by the slope of the tibial plateau, found to have a mean cranially directed inclination of 22.6 degrees. This force may be an important factor in cranial cruciate ligament rupture and in generation of cranial drawer sign.

  4. Tibial shaft fractures in football players

    PubMed Central

    Chang, Winston R; Kapasi, Zain; Daisley, Susan; Leach, William J

    2007-01-01

    Background Football is officially the most popular sport in the world. In the UK, 10% of the adult population play football at least once a year. Despite this, there are few papers in the literature on tibial diaphyseal fractures in this sporting group. In addition, conflicting views on the nature of this injury exist. The purpose of this paper is to compare our experience of tibial shaft football fractures with the little available literature and identify any similarities and differences. Methods and Results A retrospective study of all tibial football fractures that presented to a teaching hospital was undertaken over a 5 year period from 1997 to 2001. There were 244 tibial fractures treated. 24 (9.8%) of these were football related. All patients were male with a mean age of 23 years (range 15 to 29) and shin guards were worn in 95.8% of cases. 11/24 (45.8%) were treated conservatively, 11/24 (45.8%) by Grosse Kemp intramedullary nail and 2/24 (8.3%) with plating. A difference in union times was noted, conservative 19 weeks compared to operative group 23.9 weeks (p < 0.05). Return to activity was also different in the two groups, conservative 27.6 weeks versus operative 23.3 weeks (p < 0.05). The most common fracture pattern was AO Type 42A3 in 14/24 (58.3%). A high number 19/24 (79.2%) were simple transverse or short oblique fractures. There was a low non-union rate 1/24 (4.2%) and absence of any open injury in our series. Conclusion Our series compared similarly with the few reports available in the literature. However, a striking finding noted by the authors was a drop in the incidence of tibial shaft football fractures. It is likely that this is a reflection of recent compulsory FIFA regulations on shinguards as well as improvements in the design over the past decade since its introduction. PMID:17567522

  5. Laser/LED phototherapy on the repair of tibial fracture treated with wire osteosynthesis evaluated by Raman spectroscopy.

    PubMed

    Pinheiro, Antônio L B; Soares, Luiz G P; da Silva, Aline C P; Santos, Nicole R S; da Silva, Anna Paula L T; Neves, Bruno Luiz R C; Soares, Amanda P; Silveira, Landulfo

    2018-04-23

    The aim of the present study was to assess, by means of Raman spectroscopy, the repair of complete surgical tibial fractures fixed with wire osteosynthesis (WO) treated or not with infrared laser (λ780 nm) or infrared light emitting diode (LED) (λ850 ± 10 nm) lights, 142.8 J/cm 2 per treatment, associated or not to the use of mineral trioxide aggregate (MTA) cement. Surgical tibial fractures were created on 18 rabbits, and all fractures were fixed with WO and some groups were grafted with MTA. Irradiated groups received lights at every other day during 15 days, and all animals were sacrificed after 30 days, being the tibia removed. The results showed that only irradiation with either laser or LED influenced the peaks of phosphate hydroxyapatite (~ 960 cm -1 ). Collagen (~ 1450 cm -1 ) and carbonated hydroxyapatite (~ 1070 cm -1 ) peaks were influenced by both the use of MTA and the irradiation with either laser or LED. It is concluded that the use of either laser or LED phototherapy associated to MTA cement was efficacious on improving the repair of complete tibial fractures treated with wire osteosynthesis by increasing the synthesis of collagen matrix and creating a scaffold of calcium carbonate (carbonated hydroxyapatite-like) and the subsequent deposition of phosphate hydroxyapatite.

  6. Tibial tunnel aperture location during single-bundle posterior cruciate ligament reconstruction: comparison of tibial guide positions.

    PubMed

    Shin, Young-Soo; Han, Seung-Beom; Hwang, Yeok-Ku; Suh, Dong-Won; Lee, Dae-Hee

    2015-05-01

    We aimed to compare posterior cruciate ligament (PCL) tibial tunnel location after tibial guide insertion medial (between the PCL remnant and the medial femoral condyle) and lateral (between the PCL remnant and the anterior cruciate ligament) to the PCL stump as determined by in vivo 3-dimensional computed tomography (3D-CT). Tibial tunnel aperture location was analyzed by immediate postoperative in vivo CT in 66 patients who underwent single-bundle PCL reconstruction, 31 by over-the-PCL and 35 by under-the-PCL tibial guide insertion techniques. Tibial tunnel positions were measured in the medial to lateral and proximal to distal directions of the posterior proximal tibia. The center of the tibial tunnel aperture was located more laterally (by 2.7 mm) in the over-the-PCL group than in the under-the-PCL group (P = .040) and by a relative percentage (absolute value/tibial width) of 3.2% (P = .031). Tibial tunnel positions in the proximal to distal direction, determined by absolute value and relative percentage, were similar in the 2 groups. Tibial tunnel apertures were located more laterally after lateral-to-the-PCL tibial guide insertion than after medial-to-the-PCL tibial guide insertion. There was, however, no significant difference between these techniques in distance from the joint line to the tibial tunnel aperture. Insertion lateral to the PCL stump may result in better placement of the PCL in its anatomic footprint. Level III, retrospective comparative study. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  7. Anatomic tibial component design can increase tibial coverage and rotational alignment accuracy: a comparison of six contemporary designs.

    PubMed

    Dai, Yifei; Scuderi, Giles R; Bischoff, Jeffrey E; Bertin, Kim; Tarabichi, Samih; Rajgopal, Ashok

    2014-12-01

    The aim of this study was to comprehensively evaluate contemporary tibial component designs against global tibial anatomy. We hypothesized that anatomically designed tibial components offer increased morphological fit to the resected proximal tibia with increased alignment accuracy compared to symmetric and asymmetric designs. Using a multi-ethnic bone dataset, six contemporary tibial component designs were investigated, including anatomic, asymmetric, and symmetric design types. Investigations included (1) measurement of component conformity to the resected tibia using a comprehensive set of size and shape metrics; (2) assessment of component coverage on the resected tibia while ensuring clinically acceptable levels of rotation and overhang; and (3) evaluation of the incidence and severity of component downsizing due to adherence to rotational alignment and overhang requirements, and the associated compromise in tibial coverage. Differences in coverage were statistically compared across designs and ethnicities, as well as between placements with or without enforcement of proper rotational alignment. Compared to non-anatomic designs investigated, the anatomic design exhibited better conformity to resected tibial morphology in size and shape, higher tibial coverage (92% compared to 85-87%), more cortical support (posteromedial region), lower incidence of downsizing (3% compared to 39-60%), and less compromise of tibial coverage (0.5% compared to 4-6%) when enforcing proper rotational alignment. The anatomic design demonstrated meaningful increase in tibial coverage with accurate rotational alignment compared to symmetric and asymmetric designs, suggesting its potential for less intra-operative compromises and improved performance. III.

  8. Tibial Tray Thickness Significantly Increases Medial Tibial Bone Resorption in Cobalt-Chromium Total Knee Arthroplasty Implants.

    PubMed

    Martin, J Ryan; Watts, Chad D; Levy, Daniel L; Miner, Todd M; Springer, Bryan D; Kim, Raymond H

    2017-01-01

    Stress shielding is an uncommon complication associated with primary total knee arthroplasty. Patients are frequently identified radiographically with minimal clinical symptoms. Very few studies have evaluated risk factors for postoperative medial tibial bone loss. We hypothesized that thicker cobalt-chromium tibial trays are associated with increased bone loss. We performed a retrospective review of 100 posterior stabilized, fixed-bearing total knee arthroplasty where 50 patients had a 4-mm-thick tibial tray (thick tray cohort) and 50 patients had a 2.7-mm-thick tibial tray (thin tray cohort). A clinical evaluation and a radiographic assessment of medial tibial bone loss were performed on both cohorts at a minimum of 2 years postoperatively. Mean medial tibial bone loss was significantly higher in the thick tray cohort (1.07 vs 0.16 mm; P = .0001). In addition, there were significantly more patients with medial tibial bone loss in the thick tray group compared with the thin tray group (44% vs 10%, P = .0002). Despite these differences, there were no statistically significant differences in range of motion, knee society score, complications, or revision surgeries performed. A thicker cobalt-chromium tray was associated with significantly more medial tibial bone loss. Despite these radiographic findings, we found no discernable differences in clinical outcomes in our patient cohort. Further study and longer follow-up are needed to understand the effects and clinical significance of medial tibial bone loss. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Inducement of tissue regeneration of harvested hamstring tendons in a rabbit model

    PubMed Central

    Soejima, T.; Murakami, H.; Noguchi, K.; Shiba, N.; Nagata, K.

    2016-01-01

    Objectives The objective of this study was to determine if the use of fascia lata as a tendon regeneration guide (placed into the tendon canal following harvesting the semitendinosus tendon) would improve the incidence of tissue regeneration and prevent fatty degeneration of the semitendinosus muscle. Materials and Methods Bilateral semitendinosus tendons were harvested from rabbits using a tendon stripper. On the inducing graft (IG) side, the tendon canal and semitendinosus tibial attachment site were connected by the fascia lata, which was harvested at the same width as the semitendinosus tendon. On the control side, no special procedures were performed. Two groups of six rabbits were killed at post-operative weeks 4 and 8, respectively. In addition, three healthy rabbits were killed to obtain normal tissue. We evaluated the incidence of tendon tissue regeneration, cross-sectional area of the regenerated tendon tissue and proportion of fatty tissue in the semitendinosus muscle. Results At post-operative week 8, the distal end of the regenerated tissue reached the vicinity of the tibial insertion on the control side in two of six specimens. On the IG side, the regenerated tissue maintained continuity with the tibial insertion in all specimens. The cross-sectional area of the IG side was significantly greater than that of the control side. The proportion of fatty tissue in the semitendinosus muscle on the IG side was comparable with that of the control side, but was significantly greater than that of the normal muscle. Conclusions Tendon tissue regenerated with the fascia lata graft was thicker than naturally occurring regenerated tissue. However, the proportion of fatty tissue in the semitendinosus muscle was greater than that of normal muscle. Cite this article: K. Tabuchi, T. Soejima, H. Murakami, K. Noguchi, N. Shiba, K. Nagata. Inducement of tissue regeneration of harvested hamstring tendons in a rabbit model. Bone Joint Res 2016;5:247–252. DOI: 10

  10. Histological analysis of the tibial anterior cruciate ligament insertion.

    PubMed

    Oka, Shinya; Schuhmacher, Peter; Brehmer, Axel; Traut, Ulrike; Kirsch, Joachim; Siebold, Rainer

    2016-03-01

    This study was performed to investigate the morphology of the tibial anterior cruciate ligament (ACL) by histological assessment. The native (undissected) tibial ACL insertion of six fresh-frozen cadaveric knees was cut into four sagittal sections parallel to the long axis of the medial tibial spine. For histological evaluation, the slices were stained with haematoxylin and eosin, Safranin O and Russell-Movat pentachrome. All slices were digitalized and analysed at a magnification of 20×. The anterior tibial ACL insertion was bordered by a bony anterior ridge. The most medial ACL fibres inserted from the medial tibial spine and were adjacent to the articular cartilage of the medial tibial plateau. Parts of the bony insertions of the anterior and posterior horns of the lateral meniscus were in close contact with the lateral part of the tibial ACL insertion. A small fat pad was located just posterior to the functional ACL fibres. The anterior-posterior length of the medial ACL insertion was an average of 10.8 ± 1.1 mm compared with the lateral, which was only 6.2 ± 1.1 mm (p < 0.001). There were no central or posterolateral inserting ACL fibres. The shape of the bony tibial ACL insertion was 'duck-foot-like'. In contrast to previous findings, the functional mid-substance fibres arose from the most posterior part of the 'duck-foot' in a flat and 'c-shaped' way. The most anterior part of the tibial ACL insertion was bordered by a bony anterior ridge and the most medial by the medial tibial spine. No posterolateral fibres nor ACL bundles have been found histologically. This histological investigation may improve our understanding of the tibial ACL insertion and may provide important information for anatomical ACL reconstruction.

  11. Anterior Cruciate Ligament Reconstruction with Tibial Attachment Preserving Hamstring Graft without Implant on Tibial Side

    PubMed Central

    Sinha, Skand; Naik, Ananta Kumar; Maheshwari, Mridul; Sandanshiv, Sumedh; Meena, Durgashankar; Arya, Rajendra K

    2018-01-01

    Background: Tibial attachment preserving hamstring graft could prevent potential problems of free graft in anterior cruciate ligament (ACL) reconstruction such as pull out before graft-tunnel healing or rupture before ligamentization. Different implants have been reportedly used for tibial side fixation with this technique. We investigated short-term outcome of ACL reconstruction (ACLR) with tibial attachment sparing hamstring graft without implant on the tibial side by outside in technique. Materials and Methods: Seventy nine consecutive cases of ACL tear having age of 25.7 ± 6.8 years were included after Institutional Board Approval. All subjects were male. The mean time interval from injury to surgery was of 7.5 ± 6.4 months. Hamstring tendons were harvested with open tendon stripper leaving the tibial insertion intact. The free ends of the tendons were whip stitched, quadrupled, and whip stitched again over the insertion site of hamstring with fiber wire (Arthrex). Single bundle ACLR was done by outside in technique and the femoral tunnel was created with cannulated reamer. The graft was pulled up to the external aperture of femoral tunnel and fixed with interference screw (Arthrex). The scoring was done by Lysholm, Tegner, and KT 1000 by independent observers. All cases were followed up for 2 years. Results: The mean length of quadrupled graft attached to tibia was 127.65 ± 7.5 mm, and the mean width was 7.52 ± 0.78 mm. The mean preoperative Lysholm score of 47.15 ± 9.6, improved to 96.8 ± 2.4 at 1 year. All cases except two returned to the previous level of activity after ACLR. There was no significant difference statistically between preinjury (5.89 ± 0.68) and postoperative (5.87 ± 0.67) Tegner score. The anterior tibial translation (ATT) (KT 1000) improved from 11.44 ± 1.93 mm to 3.59 ± 0.89 mm. The ATT of operated knee returned to nearly the similar value as of the opposite knee (3.47 ± 1.16 mm). The Pivot shift test was negative in all cases

  12. The Valgus Inclination of the Tibial Component Increases the Risk of Medial Tibial Condylar Fractures in Unicompartmental Knee Arthroplasty.

    PubMed

    Inoue, Shinji; Akagi, Masao; Asada, Shigeki; Mori, Shigeshi; Zaima, Hironori; Hashida, Masahiko

    2016-09-01

    Medial tibial condylar fractures (MTCFs) are a rare but serious complication after unicompartmental knee arthroplasty. Although some surgical pitfalls have been reported for MTCFs, it is not clear whether the varus/valgus tibial inclination contributes to the risk of MTCFs. We constructed a 3-dimensional finite elemental method model of the tibia with a medial component and assessed stress concentrations by changing the inclination from 6° varus to 6° valgus. Subsequently, we repeated the same procedure adding extended sagittal bone cuts of 2° and 10° in the posterior tibial cortex. Furthermore, we calculated the bone volume that supported the tibial component, which is considered to affect stress distribution in the medial tibial condyle. Stress concentrations were observed on the medial tibial metaphyseal cortices and on the anterior and posterior tibial cortices in the corner of cut surfaces in all models; moreover, the maximum principal stresses on the posterior cortex were larger than those on the anterior cortex. The extended sagittal bone cuts in the posterior tibial cortex increased the stresses further at these 3 sites. In the models with a 10° extended sagittal bone cut, the maximum principal stress on the posterior cortex increased as the tibial inclination changed from 6° varus to 6° valgus. The bone volume decreased as the inclination changed from varus to valgus. In this finite element method, the risk of MTCFs increases with increasing valgus inclination of the tibial component and with increased extension of the sagittal cut in the posterior tibial cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Tibial Bowing and Pseudarthrosis in Neurofibromatosis Type 1

    DTIC Science & Technology

    2014-04-01

    Neurofibromatosis Type 1 PRINCIPAL INVESTIGATOR: Dr. David Stevenson CONTRACTING ORGANIZATION: University of Utah SALT LAKE CITY...COVERED 1 April 2013 - 31 March 2014 4. TITLE AND SUBTITLE Tibial Bowing and Pseudarthrosis in Neurofibromatosis Type 1 5a. CONTRACT NUMBER...SUPPLEMENTARY NOTES 14. ABSTRACT Anterolateral tibial bowing is a morbid skeletal manifestation observed in 5% of children with neurofibromatosis

  14. High tibial osteotomy in knee laxities: Concepts review and results

    PubMed Central

    Robin, Jonathan G.; Neyret, Philippe

    2016-01-01

    Patients with unstable, malaligned knees often present a challenging management scenario, and careful attention must be paid to the clinical history and examination to determine the priorities of treatment. Isolated knee instability treated with ligament reconstruction and isolated knee malalignment treated with periarticular osteotomy have both been well studied in the past. More recently, the effects of high tibial osteotomy on knee instability have been studied. Lateral closing-wedge high tibial osteotomy tends to reduce the posterior tibial slope, which has a stabilising effect on anterior tibial instability that occurs with ACL deficiency. Medial opening-wedge high tibial osteotomy tends to increase the posterior tibia slope, which has a stabilising effect in posterior tibial instability that occurs with PCL deficiency. Overall results from recent studies indicate that there is a role for combined ligament reconstruction and periarticular knee osteotomy. The use of high tibial osteotomy has been able to extend the indication for ligament reconstruction which, when combined, may ultimately halt the evolution of arthritis and preserve their natural knee joint for a longer period of time. Cite this article: Robin JG, Neyret P. High tibial osteotomy in knee laxities: Concepts review and results. EFORT Open Rev 2016;1:3-11. doi: 10.1302/2058-5241.1.000001. PMID:28461908

  15. The soleal line: a cause of tibial pseudoperiostitis.

    PubMed

    Levine, A H; Pais, M J; Berinson, H; Amenta, P S

    1976-04-01

    An unusually prominent soleal line (a normal anatomic variant) may mimic periosteal reaction along the posterior margin of the proximal tibial shaft. This area of pseudoperiostitis is differentiated from hyperostoses arising from the anterior tibial tubercle and the interosseous membrane. It is always associated with normal, undisturbed architecture of the underlying bone.

  16. Foot and ankle function after tibial overlengthening.

    PubMed

    Emara, Khaled M; Diab, Ramy Ahmed; El Ghazali, Sherif; Farouk, Amr; El Kersh, Mohamed Ahmed

    2014-01-01

    Lengthening the tibia more than 25% of its original length can be indicated for proximal femoral deficiency, poliomyelitis, or femoral infected nonunion. Such lengthening of the tibia can adversely affect the ankle or foot shape and function. The present study aimed to assess the effect of tibial lengthening of more than 25% of its original length on the foot and ankle shape and function compared with the preoperative condition. This was a retrospective study of 13 children with severe proximal focal femoral deficiency, Aitken classification type D, who had undergone limb lengthening from June 2000 to June 2008 using Ilizarov external fixators. The techniques used in tibial lengthening included lengthening without intramedullary rodding and lengthening over a nail. The foot assessment was done preoperatively, at fixator removal, and then annually for 3 years, documenting the range of motion and deformity of the ankle and subtalar joints and big toe and the navicular height, calcaneal pitch angle, and talo-first metatarsal angle. At fixator removal, all cases showed equinocavovarus deformity, with decreased ankle, subtalar, and big toe motion. The mean American Orthopedic Foot and Ankle Society score was significantly reduced. During follow-up, the range of motion, foot deformity, and American Orthopedic Foot and Ankle Society score improved, reaching nearly to the preoperative condition by 2 years of follow-up. The results of our study have shown that tibial overlengthening has an adverse effect on foot and ankle function. This effect was reversible in the patients included in the present study. Lengthening of more than 25% can be safely done after careful discussion with the patients and their families about the probable effects of lengthening on foot and ankle function. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Medial tibial stress syndrome: a critical review.

    PubMed

    Moen, Maarten H; Tol, Johannes L; Weir, Adam; Steunebrink, Miriam; De Winter, Theodorus C

    2009-01-01

    Medial tibial stress syndrome (MTSS) is one of the most common leg injuries in athletes and soldiers. The incidence of MTSS is reported as being between 4% and 35% in military personnel and athletes. The name given to this condition refers to pain on the posteromedial tibial border during exercise, with pain on palpation of the tibia over a length of at least 5 cm. Histological studies fail to provide evidence that MTSS is caused by periostitis as a result of traction. It is caused by bony resorption that outpaces bone formation of the tibial cortex. Evidence for this overloaded adaptation of the cortex is found in several studies describing MTSS findings on bone scan, magnetic resonance imaging (MRI), high-resolution computed tomography (CT) scan and dual energy x-ray absorptiometry. The diagnosis is made based on physical examination, although only one study has been conducted on this subject. Additional imaging such as bone, CT and MRI scans has been well studied but is of limited value. The prevalence of abnormal findings in asymptomatic subjects means that results should be interpreted with caution. Excessive pronation of the foot while standing and female sex were found to be intrinsic risk factors in multiple prospective studies. Other intrinsic risk factors found in single prospective studies are higher body mass index, greater internal and external ranges of hip motion, and calf girth. Previous history of MTSS was shown to be an extrinsic risk factor. The treatment of MTSS has been examined in three randomized controlled studies. In these studies rest is equal to any intervention. The use of neoprene or semi-rigid orthotics may help prevent MTSS, as evidenced by two large prospective studies.

  18. Return to Sport After Tibial Shaft Fractures

    PubMed Central

    Robertson, Greg A. J.; Wood, Alexander M.

    2015-01-01

    Context: Acute tibial shaft fractures represent one of the most severe injuries in sports. Return rates and return-to-sport times after these injuries are limited, particularly with regard to the outcomes of different treatment methods. Objective: To determine the current evidence for the treatment of and return to sport after tibial shaft fractures. Data Sources: OVID/MEDLINE (PubMed), EMBASE, CINAHL, Cochrane Collaboration Database, Web of Science, PEDro, SPORTDiscus, Scopus, and Google Scholar were all searched for articles published from 1988 to 2014. Study Selection: Inclusion criteria comprised studies of level 1 to 4 evidence, written in the English language, that reported on the management and outcome of tibial shaft fractures and included data on either return-to-sport rate or time. Studies that failed to report on sporting outcomes, those of level 5 evidence, and those in non–English language were excluded. Study Design: Systematic review. Level of Evidence: Level 4. Data Extraction: The search used combinations of the terms tibial, tibia, acute, fracture, athletes, sports, nonoperative, conservative, operative, and return to sport. Two authors independently reviewed the selected articles and created separate data sets, which were subsequently combined for final analysis. Results: A total of 16 studies (10 retrospective, 3 prospective, 3 randomized controlled trials) were included (n = 889 patients). Seventy-six percent (672/889) of the patients were men, with a mean age of 27.7 years. Surgical management was assessed in 14 studies, and nonsurgical management was assessed in 8 studies. Return to sport ranged from 12 to 54 weeks after surgical intervention and from 28 to 182 weeks after nonsurgical management (mean difference, 69.5 weeks; 95% CI, –83.36 to −55.64; P < 0.01). Fractures treated surgically had a return-to-sport rate of 92%, whereas those treated nonsurgically had a return rate of 67% (risk ratio, 1.37; 95% CI, 1.20 to 1.57; P < 0

  19. Tibial Plateau Fractures in Elderly Patients

    PubMed Central

    Vemulapalli, Krishna C.; Gary, Joshua L.; Donegan, Derek J.

    2016-01-01

    Tibial plateau fractures are common in the elderly population following a low-energy mechanism. Initial evaluation includes an assessment of the soft tissues and surrounding ligaments. Most fractures involve articular depression leading to joint incongruity. Treatment of these fractures may be complicated by osteoporosis, osteoarthritis, and medical comorbidities. Optimal reconstruction should restore the mechanical axis, provide a stable construct for mobilization, and reestablish articular congruity. This is accomplished through a variety of internal or external fixation techniques or with acute arthroplasty. Regardless of the treatment modality, particular focus on preservation and maintenance of the soft tissue envelope is paramount. PMID:27551570

  20. Tibial lengthening over humeral and tibial intramedullary nails in patients with sequelae of poliomyelitis: a comparative study.

    PubMed

    Chen, Daoyun; Chen, Jianmin; Jiang, Yao; Liu, Fanggang

    2011-06-01

    Leg discrepancy is common after poliomyelitis. Tibial lengthening is an effective way to solve this problem. It is believed lengthening over a tibial intramedullary nail can provide a more comfortable lengthening process than by the conventional technique. However, patients with sequelae of poliomyelitis typically have narrow intramedullary canals allowing limited space for inserting a tibial intramedullary nail and Kirschner wires. To overcome this problem, we tried using humeral nails instead of tibial nails in the lengthening procedure. In this study, we used humeral nails in 20 tibial lengthening procedures and compared the results with another group of patients who were treated with tibial lengthening over tibial intramedullary nails. The mean consolidation index, percentage of increase and external fixation index did not show significant differences between the two groups. However, less blood loss and shorter operating time were noted in the humeral nail group. More patients encountered difficulty with the inserted intramedullary nail in the tibial nail group procedure. The complications did not show a statistically significant difference between the two techniques on follow-up. In conclusion, we found the humeral nail lengthening technique was more suitable in leg discrepancy patients with sequelae of poliomyelitis.

  1. [APPLICATION OF V-Y ADVANCED SENSE-REMAINED POSTERIOR TIBIAL ARTERY PERFORATOR FLAP IN REPAIRING WOUND AROUND ANKLE].

    PubMed

    Tang, Xiujun; Wang, Bo; Wei, Zairong; Wang, Dali; Han, Wenjie; Zhang, Wenduo; Li, Shujun

    2015-12-01

    OBJECTIVE To explore the feasibility and effectiveness of V-Y advanced sense-remained posterior tibial artery perforator flap in repairing wound around the ankle. METHODS Between March 2012 and January 2015, 11 patients with wounds around the ankle were treated by V-Y advanced sense-remained posterior tibial artery perforator flap. There were 6 males and 5 females with a median age of 37 years (range, 21-56 years). The causes were traffic accident injury in 3 cases, thermal injury in 2 cases, burn in 2 cases, iatrogenic wounds in 2 cases, and local contusion in 2 cases. The disease duration ranged from 1 to 3 weeks (mean, 2 weeks). Injury was located at the medial malleolus in 4 cases, at the lateral malleolus in 3 cases, and at the heel in 4 cases. All had exposure of bone, tendon, or plate. The defect area ranged from 4 cmx2 cm to 5 cmx3 cm; the area of the flap ranged from 11 cmx4 cm to 15 cmx6 cm. Necrosis of distal flap occurred in 1 case after operation; re-operation to amputate the posterior tibial artery was given and the wound was repaired by proximal skin graft. Light necrosis of distal end was observed in 2 cases, and wound healed at 3 weeks after dressing. And other flaps successfully survived, and primary healing of wounds were obtained. The patients were followed up 6-24 months (mean, 11 months). The flaps were good in color, texture, and appearance. The ankle joint had normal activity. At last follow-up, 10 cases restored fine sense, and 1 case restored protective feeling with posterior tibial artery advanced flap after amputation. V-Y advanced sense-remained posterior tibial artery perforator flap has the advantages of reliable blood supply, simple operation, good appearance, and sensory recovery. Therefore, it is an ideal method to repair wound around the ankle.

  2. [Operative treatment for complex tibial plateau fractures].

    PubMed

    Song, Qi-Zhi; Li, Tao

    2012-03-01

    To explore the surgical methods and clinical evaluation of complex tibial plateau fractures resulted from high-energy injuries. From March 2006 to May 2009,48 cases with complex tibial plateau fractures were treated with open reduction and plate fixation, including 37 males and 11 females, with an average age of 37 years (ranged from 18 to 63 years). According to Schatzker classification, 16 cases were type IV, 20 cases type V and 12 cases type VI. All patients were examined by X-ray flim and CT scan. The function of knee joint were evaluated according to postoperative follow-up X-ray and Knee Merchant Rating. Forty-eight patients were followed up with a mean time of 14 months. According to Knee Merchant Rating, 24 cases got excellent results, 16 cases good, 6 cases fair and 2 cases poor. Appropriate operation time, anatomical reduction, suitable bone graft and reasonable rehabilitation exercises can maximally recovery the function of knee joint.

  3. The Cutaneous Rabbit Revisited

    ERIC Educational Resources Information Center

    Flach, Rudiger; Haggard, Patrick

    2006-01-01

    In the cutaneous rabbit effect (CRE), a tactile event (so-called attractee tap) is mislocalized toward an adjacent attractor tap. The effect depends on the time interval between the taps. The authors delivered sequences of taps to the forearm and asked participants to report the location of one of the taps. The authors replicated the original CRE…

  4. Do modern total knee replacements improve tibial coverage?

    PubMed

    Meier, Malin; Webb, Jonathan; Collins, Jamie E; Beckmann, Johannes; Fitz, Wolfgang

    2018-01-25

    The purpose of the present study is to compare newer designs of various symmetric and asymmetric tibial components and measure tibial bone coverage using the rotational safe zone defined by two commonly utilized anatomic rotational landmarks. Computed tomography scans (CT scans) of one hundred consecutive patients scheduled for total knee arthroplasty were obtained pre-operatively. A virtual proximal tibial cut was performed and two commonly used rotational axes were added for each image: the medio-lateral axis (ML-axis) and the medial 1/3 tibial tubercle axis (med-1/3-axis). Different symmetric and asymmetric implant designs were then superimposed in various rotational positions for best cancellous and cortical coverage. The images were imported to a public domain imaging software, and cancellous and cortical bone coverage was computed for each image, with each implant design in various rotational positions. One single implant type could not be identified that provided the best cortical and cancellous coverage of the tibia, irrespective of using the med-1/3-axis or the ML-axis for rotational alignment. However, it could be confirmed that the best bone coverage was dependent on the selected rotational landmark. Furthermore, improved bone coverage was observed when tibial implant positions were optimized between the two rotational axes. Tibial coverage is similar for symmetric and asymmetric designs, but depends on the rotational landmark for which the implant is designed. The surgeon has the option to improve tibial coverage by optimizing placement between the two anatomic rotational alignment landmarks, the medial 1/3 and the ML-axis. Surgeons should be careful assessing intraoperative rotational tibial placement using the described anatomic rotational landmarks to optimize tibial bony coverage without compromising patella tracking. III.

  5. USE OF BIOCERAMICS IN FILLING BONE DEFECTS

    PubMed Central

    Garrido, Carlos Antõnio; Sampaio, Tania Clarete Fonseca Vieira Sales

    2015-01-01

    Objective: To present the results from using biological ceramics for filling bone defects resulting from post-traumatic or orthopedic injuries. Methods: Thirty-six patients with bone defects caused by trauma or orthopedic injury were evaluated. Nineteen patients were male (52.8%) and 17 were female (47.2%). Their ages ranged from 19 to 84 years, with a mean of 45.7 years and median of 37 years. Only patients with defects that required at least five grams of biological ceramic were included. Eighteen cases were classified as orthopedic: bone defects were observed in 11 cases of total hip arthroplasty; one case of primary total hip arthroplasty, due to coxarthrosis; five cases of femoral or tibial open wedge osteotomy; and one case of tarsal arthrodesis. There were 18 cases of trauma-related defects; uninfected pseudarthrosis, eight cases; recent fractures of the tibial plateau with compression of the spongy bone, three cases; and exposed fractures treated with external fixators, seven cases. The surgical technique consisted of curetting and debriding the injury until bone suitable for grafting was found. Biological ceramic was then used to fill the defect and some kind of fixation was applied. Results: Among the 36 patients evaluated, it was seen that 35 (97.2%) presented integration of the biological ceramic, while one case of open fracture treated with external fixation had poor integration of the biological ceramic. Conclusion: Treatment of bone defects of orthopedic or post-traumatic etiology using a phosphocalcium ceramic composed of hydroxyapatite was shown to be a practical, effective and safe method. PMID:27022576

  6. Medial tibial stress syndrome: conservative treatment options.

    PubMed

    Galbraith, R Michael; Lavallee, Mark E

    2009-10-07

    Medial tibial stress syndrome (MTSS), commonly known as "shin splints," is a frequent injury of the lower extremity and one of the most common causes of exertional leg pain in athletes (Willems T, Med Sci Sports Exerc 39(2):330-339, 2007; Korkola M, Amendola A, Phys Sportsmed 29(6):35-50, 2001; Hreljac A, Med Sci Sports Exerc 36(5):845-849, 2004). Although often not serious, it can be quite disabling and progress to more serious complications if not treated properly. Often, the cause of MTSS is multi-factorial and involves training errors and various biomechanical abnormalities. Few advances have been made in the treatment of MTSS over the last few decades. Current treatment options are mostly based on expert opinion and clinical experience. The purpose of this article is to review published literature regarding conservative treatment options for MTSS and provide recommendations for sports medicine clinicians for improved treatment and patient outcomes.

  7. ACL double-bundle reconstruction with one tibial tunnel provides equal stability compared to two tibial tunnels.

    PubMed

    Drews, Björn Holger; Seitz, Andreas Martin; Huth, Jochen; Bauer, Gerhard; Ignatius, Anita; Dürselen, Lutz

    2017-05-01

    The purpose of this study was to investigate whether an anterior cruciate ligament (ACL) double-bundle reconstruction with one tibial tunnel displays the same in vitro stability as a conventional double-bundle reconstruction with two tibial tunnels when using the same tensioning protocol. In 11 fresh-frozen cadaveric knees, ACL double-bundle reconstruction with one and two tibial tunnels was performed. The two grafts were tightened using 80 N in different flexion angles (anteromedial-bundle at 60° and posterolateral-bundle at 15°). Anterior tibial translation (134 N) and translation with combined rotatory and valgus loads (10 Nm valgus stress and 4 Nm internal tibial torque) were determined at 0°, 30°, 60° and 90° flexion. Measurements were taken in intact ACL, resected ACL, three-tunnel reconstruction and four-tunnel reconstruction. Additionally, the tension on the grafts was determined. Student's t test was performed for statistical analysis of the related samples. Significance was set at p < 0.017 according to Bonferroni correction. The two reconstructive techniques displayed no significant differences in comparison with the intact ACL in anterior tibial translation at 0°, 60° and 90° of flexion. The same results were obtained for the anterior tibial translation with a combined rotatory load at 60° and 90°. When directly comparing both reconstructive techniques, there were no significant differences for the anterior tibial translation and combined rotatory load at all flexion angles. The measured tension on grafts displayed similar load sharing between both bundles. Except at full extension, both grafts displayed a significantly different tension increase under anterior tibial translation for both techniques (p = 0.0086). Tightening both bundles in ACL double-bundle reconstruction with one or two tibial tunnels in different flexion angles achieved comparable restoration of stability, although there was different load sharing on the bundles

  8. From rabbit antibody repertoires to rabbit monoclonal antibodies.

    PubMed

    Weber, Justus; Peng, Haiyong; Rader, Christoph

    2017-03-24

    In this review, we explain why and how rabbit monoclonal antibodies have become outstanding reagents for laboratory research and increasingly for diagnostic and therapeutic applications. Starting with the unique ontogeny of rabbit B cells that affords highly distinctive antibody repertoires rich in in vivo pruned binders of high diversity, affinity and specificity, we describe the generation of rabbit monoclonal antibodies by hybridoma technology, phage display and alternative methods, along with an account of successful humanization strategies.

  9. Tibial stress fracture after computer-navigated total knee arthroplasty.

    PubMed

    Massai, F; Conteduca, F; Vadalà, A; Iorio, R; Basiglini, L; Ferretti, A

    2010-06-01

    A correct alignment of the tibial and femoral component is one of the most important factors determining favourable long-term results of a total knee arthroplasty (TKA). The accuracy provided by the use of the computer navigation systems has been widely described in the literature so that their use has become increasingly popular in recent years; however, unpredictable complications, such as displaced or stress femoral or tibial fractures, have been reported to occur a few weeks after the operation. We present a case of a stress tibial fracture that occurred after a TKA performed with the use of a computer navigation system. The stress fracture, which eventually healed without further complications, occurred at one of the pinhole sites used for the placement of the tibial trackers.

  10. Total knee arthroplasty and fractures of the tibial plateau

    PubMed Central

    Softness, Kenneth A; Murray, Ryan S; Evans, Brian G

    2017-01-01

    Tibial plateau fractures are common injuries that occur in a bimodal age distribution. While there are various treatment options for displaced tibial plateau fractures, the standard of care is open reduction and internal fixation (ORIF). In physiologically young patients with higher demand and better bone quality, ORIF is the preferred method of treating these fractures. However, future total knee arthroplasty (TKA) is a consideration in these patients as post-traumatic osteoarthritis is a common long-term complication of tibial plateau fractures. In older, lower demand patients, ORIF is potentially less favorable for a variety of reasons, namely fixation failure and the need for delayed weight bearing. In some of these patients, TKA can be considered as primary mode of treatment. This paper will review the literature surrounding TKA as both primary treatment and as a salvage measure in patients with fractures of the tibial plateau. The outcomes, complications, techniques and surgical challenges are also discussed. PMID:28251061

  11. Rabbits killing birds revisited.

    PubMed

    Zhang, Jimin; Fan, Meng; Kuang, Yang

    2006-09-01

    We formulate and study a three-species population model consisting of an endemic prey (bird), an alien prey (rabbit) and an alien predator (cat). Our model overcomes several model construction problems in existing models. Moreover, our model generates richer, more reasonable and realistic dynamics. We explore the possible control strategies to save or restore the bird by controlling or eliminating the rabbit or the cat when the bird is endangered. We confirm the existence of the hyperpredation phenomenon, which is a big potential threat to most endemic prey. Specifically, we show that, in an endemic prey-alien prey-alien predator system, eradication of introduced predators such as the cat alone is not always the best solution to protect endemic insular prey since predator control may fail to protect the indigenous prey when the control of the introduced prey is not carried out simultaneously.

  12. Histological Analysis of the Tibial Anterior Cruciate Ligament Insertion

    PubMed Central

    Siebold, Rainer; Oka, Shinya; Traut, Ulrike; Schuhmacher, Peter; Kirsch, Joachim

    2017-01-01

    Objective: To describe the morphology of the tibial ACL insertion by histological assessment in the sagittal plane. Methods: For histology the native (undissected) tibial ACL insertion of 6 fresh-frozen cadaveric knees was cut into 4 sagittal sections parallel to the long axis of the medial tibial spine. The slices were stained with hematoxylin and eosin, Safranin O and Russell-Movat pentachrome. All slices were digitalized and analyzed at a magnification of ×20. Results: From medial to lateral the anterior-posterior lengths of the ACL insertion were an average of 10.2, 9.3, 7.6 and 5.8 mm. The anterior margin of the tibial ACL insertion raised from an anterior ridge. The most medial ACL fibers rose along with a peak of the anterior part of the medial tibial spine in which the direct insertion was adjacent to the articular cartilage. Parts of the bony insertions of the anterior and posterior horns of the lateral meniscus were in close contact to the lateral ACL insertion. A small fat pad was located just posterior to the tibial ACL insertion. There were no central or posterolateral inserting ACL fibers in the area intercondylaris anterior. Conclusion: The functional intraligamentous midsubstance ACL fibers arose from the most posterior part of its bony tibial insertion in a flat and “C-shape” way. The anterior border of this functional ACL started from a bony ‘anterior ridge’ and the medial border was along with a peak of the medial tibial spine.

  13. Physeal growth arrest after tibial lengthening in achondroplasia

    PubMed Central

    2012-01-01

    Background and purpose Bilateral tibial lengthening has become one of the standard treatments for upper segment-lower segment disproportion and to improve quality of life in achondroplasia. We determined the effect of tibial lengthening on the tibial physis and compared tibial growth that occurred at the physis with that in non-operated patients with acondroplasia. Methods We performed a retrospective analysis of serial radiographs until skeletal maturity in 23 achondroplasia patients who underwent bilateral tibial lengthening before skeletal maturity (lengthening group L) and 12 achondroplasia patients of similar height and age who did not undergo tibial lengthening (control group C). The mean amount of lengthening of tibia in group L was 9.2 cm (lengthening percentage: 60%) and the mean age at the time of lengthening was 8.2 years. The mean duration of follow-up was 9.8 years. Results Skeletal maturity (fusion of physis) occurred at 15.2 years in group L and at 16.0 years in group C. The actual length of tibia (without distraction) at skeletal maturity was 238 mm in group L and 277 mm in group C (p = 0.03). The mean growth rates showed a decrease in group L relative to group C from about 2 years after surgery. Physeal closure was most pronounced on the anterolateral proximal tibial physis, with relative preservation of the distal physis. Interpretation Our findings indicate that physeal growth rate can be disturbed after tibial lengthening in achondroplasia, and a close watch should be kept for such an occurrence—especially when lengthening of more than 50% is attempted. PMID:22489887

  14. Measurement of Posterior Tibial Slope Using Magnetic Resonance Imaging.

    PubMed

    Karimi, Elham; Norouzian, Mohsen; Birjandinejad, Ali; Zandi, Reza; Makhmalbaf, Hadi

    2017-11-01

    Posterior tibial slope (PTS) is an important factor in the knee joint biomechanics and one of the bone features, which affects knee joint stability. Posterior tibial slope has impact on flexion gap, knee joint stability and posterior femoral rollback that are related to wide range of knee motion. During high tibial osteotomy and total knee arthroplasty (TKA) surgery, proper retaining the mechanical and anatomical axis is important. The aim of this study was to evaluate the value of posterior tibial slope in medial and lateral compartments of tibial plateau and to assess the relationship among the slope with age, gender and other variables of tibial plateau surface. This descriptive study was conducted on 132 healthy knees (80 males and 52 females) with a mean age of 38.26±11.45 (20-60 years) at Imam Reza hospital in Mashhad, Iran. All patients, selected and enrolled for MRI in this study, were admitted for knee pain with uncertain clinical history. According to initial physical knee examinations the study subjects were reported healthy. The mean posterior tibial slope was 7.78± 2.48 degrees in the medial compartment and 6.85± 2.24 degrees in lateral compartment. No significant correlation was found between age and gender with posterior tibial slope ( P ≥0.05), but there was significant relationship among PTS with mediolateral width, plateau area and medial plateau. Comparison of different studies revealed that the PTS value in our study is different from other communities, which can be associated with genetic and racial factors. The results of our study are useful to PTS reconstruction in surgeries.

  15. The medial tibial stress syndrome. A cause of shin splints.

    PubMed

    Mubarak, S J; Gould, R N; Lee, Y F; Schmidt, D A; Hargens, A R

    1982-01-01

    The medial tibial stress syndrome is a symptom complex seen in athletes who complain of exercise-induced pain along the distal posterior-medial aspect of the tibia. Intramuscular pressures within the posterior compartments of the leg were measured in 12 patients with this disorder. These pressures were not elevated and therefore this syndrome is a not a compartment syndrome. Available information suggests that the medial tibial stress syndrome most likely represents a periostitis at this location of the leg.

  16. Tissue-Engineered Vocal Fold Mucosa Implantation in Rabbits.

    PubMed

    Shiba, Travis L; Hardy, Jordan; Luegmair, Georg; Zhang, Zhaoyan; Long, Jennifer L

    2016-04-01

    To assess phonatory function and wound healing of a tissue-engineered vocal fold mucosa (TE-VFM) in rabbits. An "artificial" vocal fold would be valuable for reconstructing refractory scars and resection defects, particularly one that uses readily available autologous cells and scaffold. This work implants a candidate TE-VFM after resecting native epithelium and lamina propria in rabbits. Prospective animal study. Research laboratory. Rabbit adipose-derived stem cells were isolated and cultured in three-dimensional fibrin scaffolds to form TE-VFM. Eight rabbits underwent laryngofissure, unilateral European Laryngologic Society type 2 cordectomy, and immediate reconstruction with TE-VFM. After 4 weeks, larynges were excised, phonated, and examined by histology. Uniform TE-VFM implants were created, with rabbit mesenchymal cells populated throughout fibrin hydrogels. Rabbits recovered uneventfully after implantation. Phonation was achieved in all, with mucosal waves evident at the implant site. Histology after 4 weeks showed resorbed fibrin matrix, continuous epithelium, and mildly increased collagen relative to contralateral unoperated vocal folds. Elastic fiber appearance was highly variable. Inflammatory cell infiltrate was limited to animals receiving sex-mismatched implants. TE-VFMs were successfully implanted into 8 rabbits, with minor evidence of scar formation and immune reaction. Vibration was preserved 4 weeks after resecting and reconstructing the complete vocal fold cover layer. Further studies will investigate the mechanism and durability of improvement. TE-VFM with autologous cells is a promising new approach for vocal fold reconstruction. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  17. Understanding the etiology of the posteromedial tibial stress fracture.

    PubMed

    Milgrom, Charles; Burr, David B; Finestone, Aharon S; Voloshin, Arkady

    2015-09-01

    Previous human in vivo tibial strain measurements from surface strain gauges during vigorous activities were found to be below the threshold value of repetitive cyclical loading at 2500 microstrain in tension necessary to reduce the fatigue life of bone, based on ex vivo studies. Therefore it has been hypothesized that an intermediate bone remodeling response might play a role in the development of tibial stress fractures. In young adults tibial stress fractures are usually oblique, suggesting that they are the result of failure under shear strain. Strains were measured using surface mounted unstacked 45° rosette strain gauges on the posterior aspect of the flat medial cortex just below the tibial midshaft, in a 48year old male subject while performing vertical jumps, staircase jumps and running up and down stadium stairs. Shear strains approaching 5000 microstrain were recorded during stair jumping and vertical standing jumps. Shear strains above 1250 microstrain were recorded during runs up and down stadium steps. Based on predictions from ex vivo studies, stair and vertical jumping tibial shear strain in the test subject was high enough to potentially produce tibial stress fracture subsequent to repetitive cyclic loading without necessarily requiring an intermediate remodeling response to microdamage. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Gender differences in passive knee biomechanical properties in tibial rotation.

    PubMed

    Park, Hyung-Soon; Wilson, Nicole A; Zhang, Li-Qun

    2008-07-01

    The anterior cruciate ligament (ACL) is the most commonly injured knee ligament with the highest incidence of injury in female athletes who participate in pivoting sports. Noncontact ACL injuries commonly occur with both internal and external tibial rotation. ACL impingement against the lateral wall of the intercondylar notch during tibial external rotation and abduction has been proposed as an injury mechanism, but few studies have evaluated in vivo gender-specific differences in laxity and stiffness in external and internal tibial rotations. The purpose of this study was to evaluate these differences. The knees of 10 male and 10 female healthy subjects were rotated between internal and external tibial rotation with the knee at 60 degrees of flexion. Joint laxity, stiffness, and energy loss were compared between male and female subjects. Women had higher laxity (p = 0.01), lower stiffness (p = 0.038), and higher energy loss (p = 0.008) in external tibial rotation than did men. The results suggest that women may be at greater risk of ACL injury resulting from impingement against the lateral wall of the intercondylar notch, which has been shown to be associated with external tibial rotation and abduction.

  19. All-polyethylene tibial components in distal femur limb-salvage surgery: a finite element analysis based on promising clinical outcomes.

    PubMed

    Tang, Fan; Zhou, Yong; Zhang, Wenli; Min, Li; Shi, Rui; Luo, Yi; Duan, Hong; Tu, Chongqi

    2017-04-04

    Whether all-polyethylene tibial (APT) components are beneficial to patients who received distal femur limb-salvage surgery lacks high-quality clinical follow-up and mechanical evidence. This study aimed to investigate the biomechanics of the distal femur reconstructed with APT tumor knee prostheses using finite element (FE) analysis based on our previous, promising clinical outcome. Three-dimensional FE models that use APT and metal-backed tibial (MBT) prostheses to reconstruct distal femoral bone defects were developed and input into the Abaqus FEA software version 6.10.1. Mesh refinement tests and gait simulation with a single foot both in the upright and 15°-flexion positions with mechanical loading were conducted. Stress distribution analysis was compared between APT and MBT at the two static positions. For both prosthesis types, the stress was concentrated on the junction of the stem and shaft, and the maximum stress in the femoral axis base was more than 100 Mpa. The stress on the tibial surface was relatively distributed, which was 1-19 MPa. The stress on the tibial bone-cement layer of the APT prosthesis was approximately 20 times higher than that on the MBT prosthesis in the same region. The stress on the proximal tibial cancellous bone and cortical bone of the APT prosthesis was 3-5 times greater than that of the MBT prosthesis, and it was more distributed. Although the stress of bone-cement around the APT component is relatively high, the stress was better distributed at the polyethylene-cement-bone interface in APT than in MBT prosthesis, which effectively protects the proximal tibia in distal femur tumor knee prosthesis replacement. These results should be considered when selecting the appropriate tibial component for a patient, especially under the foreseeable conditions of osteoporosis.

  20. Increased revision rate with posterior tibial tunnel placement after using the 70-degree tibial guide in ACL reconstruction.

    PubMed

    Inderhaug, Eivind; Raknes, Sveinung; Østvold, Thomas; Solheim, Eirik; Strand, Torbjørn

    2017-01-01

    To map knee morphology radiographically in a population with a torn ACL and to investigate whether anatomic factors could be related to outcomes after ACL reconstruction at mid- to long-term follow-up. Further, we wanted to assess tibial tunnel placement after using the 70-degree "anti-impingement" tibial tunnel guide and investigate any relation between tunnel placement and revision surgery. Patients undergoing ACL reconstruction involving the 70-degree tibial guide from 2003 to 2008 were included. Two independent investigators analysed pre- and post-operative radiographs. Demographic data and information on revision surgery were collected from an internal database. Anatomic factors and post-operative tibial tunnel placements were investigated as predictors of revision. Three-hundred and seventy-seven patients were included in the study. A large anatomic variation with significant differences between men and women was seen. None of the anatomic factors could be related to a significant increase in revision rate. Patients with a posterior tibial tunnel placement, defined as 50 % or more posterior on the Amis and Jakob line, did, however, have a higher risk of revision surgery compared to patients with an anterior tunnel placement (P = 0.03). Use of the 70-degree tibial guide did result in a high incidence (47 %) of posterior tibial tunnel placements associated with an increased rate of revision surgery. The current study was, however, not able to identify any anatomic variation that could be related to a higher risk of revision surgery. Avoiding graft impingement from the femoral roof in anterior tibial tunnel placements is important, but the insight that overly posterior tunnel placement can lead to inferior outcome should also be kept in mind when performing ACL surgery. IV.

  1. Neurofibromin Deficiency-Associated Transcriptional Dysregulation Suggests a Novel Therapy for Tibial Pseudoarthrosis in NF1

    PubMed Central

    Paria, Nandina; Cho, Tae-Joon; Choi, In Ho; Kamiya, Nobuhiro; Kayembe, Kay; Mao, Rong; Margraf, Rebecca L.; Obermosser, Gerlinde; Oxendine, Ila; Sant, David W.; Song, Mi Hyun; Stevenson, David A.; Viskochil, David H.; Wise, Carol A.; Kim, Harry K.W.; Rios, Jonathan J

    2014-01-01

    Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by mutations in NF1. Among the earliest manifestations is tibial pseudoarthrosis and persistent nonunion after fracture. To further understand the pathogenesis of pseudoarthrosis and the underlying bone remodeling defect, pseudoarthrosis tissue and cells cultured from surgically resected pseudoarthrosis tissue from NF1 individuals were analyzed using whole-exome and whole-transcriptome sequencing as well as genomewide microarray analysis. Genomewide analysis identified multiple genetic mechanisms resulting in somatic bi-allelic NF1 inactivation; no other genes with recurring somatic mutations were identified. Gene expression profiling identified dysregulated pathways associated with neurofibromin deficiency, including phosphoinosital-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways. Unlike aggressive NF1-associated malignancies, tibial pseudoarthrosis tissue does not harbor a high frequency of somatic mutations in oncogenes or other tumor-suppressor genes, such as p53. However, gene expression profiling indicates pseudoarthrosis tissue has a tumor-promoting transcriptional pattern, despite lacking tumorigenic somatic mutations. Significant over-expression of specific cancer-associated genes in pseudoarthrosis highlights a potential for receptor tyrosine kinase inhibitors to target neurofibromin-deficient pseudoarthrosis and promote proper bone remodeling and fracture healing. PMID:24932921

  2. [Application of rafting K-wire technique for tibial plateau fractures].

    PubMed

    Zhang, Xing-zhou; Yu, Wei-zhong; Li, Yun-feng; Liu, Yan-hui

    2015-12-01

    To summarize application of rafting K-wires technique for tibial plateau fractures. From January 2013 to January 2015,45 patients with tibial plateau fractures were treated by locking plate with rafting K-wires, including 33 males and 12 females with an average of 44.2 years old ranging from 22 to 56 years old. According to Schatzker classification, 6 cases were type II, 8 were type Ill, 4 were type IV, 4 were type V, and 5 were type VI. Allogeneic bone graft were performed for bone defects. All patients were fixed with two to five K-wires. Part of weight loading were encouraged at 3 months after operation,and full weight-loading were done at 5 months after operation. Postoperative complications were observed,and Rasmussen clinical and radiological assessment were used to evaluate clinical results. All Patients were followed up from 10 to 23 months with average of 14 months. According to Rasmussen clinical and radiological assessment, clinical scores 23.58 ± 6.33, radiological scores were 14.00 ± 6.33; and excellent and good rates were 82.2% and 77.8% respectively. Four patients occurred severe osteoporosis and collapse of articular surface; 5 patients occurred traumatic arthritis. Rafting K-wires technique with anatomized armor plate could effective fix and support platform collapse and joint bone fragments, increase support surface area and reduce postoperative reduction loss rate.

  3. Magnetoencephalography signals are influenced by skull defects.

    PubMed

    Lau, S; Flemming, L; Haueisen, J

    2014-08-01

    Magnetoencephalography (MEG) signals had previously been hypothesized to have negligible sensitivity to skull defects. The objective is to experimentally investigate the influence of conducting skull defects on MEG and EEG signals. A miniaturized electric dipole was implanted in vivo into rabbit brains. Simultaneous recording using 64-channel EEG and 16-channel MEG was conducted, first above the intact skull and then above a skull defect. Skull defects were filled with agar gels, which had been formulated to have tissue-like homogeneous conductivities. The dipole was moved beneath the skull defects, and measurements were taken at regularly spaced points. The EEG signal amplitude increased 2-10 times, whereas the MEG signal amplitude reduced by as much as 20%. The EEG signal amplitude deviated more when the source was under the edge of the defect, whereas the MEG signal amplitude deviated more when the source was central under the defect. The change in MEG field-map topography (relative difference measure, RDM(∗)=0.15) was geometrically related to the skull defect edge. MEG and EEG signals can be substantially affected by skull defects. MEG source modeling requires realistic volume conductor head models that incorporate skull defects. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Minimally invasive surgical technique: Percutaneous external fixation combined with titanium elastic nails for selective treatment of tibial fractures.

    PubMed

    Tu, Kai-Kai; Zhou, Xian-Ting; Tao, Zhou-Shan; Chen, Wei-Kai; Huang, Zheng-Liang; Sun, Tao; Zhou, Qiang; Yang, Lei

    2015-12-01

    Several techniques have been described to treat tibial fractures, which respectively remains defects. This article presents a novel intra- and extramedullary fixation technique: percutaneous external fixator combined with titanium elastic nails (EF-TENs system). The purpose of this study is to introduce this new minimally invasive surgical technique and selective treatment of tibial fractures, particularly in segmental fractures, diaphysis fractures accompanied with distal or proximal bone subfissure, or fractures with poor soft-tissue problems. Following ethical approval, thirty-two patients with tibial fractures were treated by the EF-TENs system between January 2010 and December 2012. The follow-up studies included clinical and radiographic examinations. All relevant outcomes were recorded during follow-up. All thirty-two patients were achieved follow-ups. According to the AO classification, 3 Type A, 9 Type B and 20 Type C fractures were included respectively. According to the Anderson-Gustilo classification, there were 5 Type Grade II, 3 Type Grade IIIA and 2 Type Grade IIIB. Among 32 patients, 8 of them were segmental fractures. 12 fractures accompanied with bone subfissure. Results showed no nonunion case, with an average time of 23.7 weeks (range, 14-32 weeks). Among them, there were 3/32 delayed union patients and 0/32 malunion case. 4/32 patients developed a pin track infection and no patient suffered deep infection. The external fixator was removed with a mean time of 16.7 weeks (range, 10-26 weeks). Moreover, only 1/32 patient suffered with the restricted ROM of ankle, none with the restricted ROM of knee. This preliminary study indicated that the EF-TENs system, as a novel intra- and extramedullary fixation technique, had substantial effects on selective treatment of tibial fractures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Shape optimization of tibial prosthesis components

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Mraz, P. J.; Davy, D. T.

    1993-01-01

    NASA technology and optimal design methodologies originally developed for the optimization of composite structures (engine blades) are adapted and applied to the optimization of orthopaedic knee implants. A method is developed enabling the shape tailoring of the tibial components of a total knee replacement implant for optimal interaction within the environment of the tibia. The shape of the implant components are optimized such that the stresses in the bone are favorably controlled to minimize bone degradation, to improve the mechanical integrity of the implant/interface/bone system, and to prevent failures of the implant components. A pilot tailoring system is developed and the feasibility of the concept is demonstrated and evaluated. The methodology and evolution of the existing aerospace technology from which this pilot optimization code was developed is also presented and discussed. Both symmetric and unsymmetric in-plane loading conditions are investigated. The results of the optimization process indicate a trend toward wider and tapered posts as well as thicker backing trays. Unique component geometries were obtained for the different load cases.

  6. Preserving the PCL during the tibial cut in total knee arthroplasty.

    PubMed

    Cinotti, G; Sessa, P; Amato, M; Ripani, F R; Giannicola, G

    2017-08-01

    Previous studies have shown that the PCL insertion may be damaged during the tibial cut performed in total knee arthroplasty. We investigated the maximum thickness of a tibial cut that preserves the PCL insertion and to what extent the posterior slope of the tibial cut and that of the patient's tibial plateaus affect the outcome. MR images of 83 knees were analysed. The maximum thickness of a tibial cut that preserves the PCL using a posterior slope of 0°, 3°, 5° and parallel to the patient's slope of the tibial plateau, was evaluated. Correlations between the results and the degrees of the posterior slope of the patient's tibial plateaus were also investigated. The maximum thickness of a tibial cut that preserves the entire PCL insertion was, on average, 5.5, 4.7, 4.2 and 3.1 mm when a posterior slope of 0°, 3°, 5° and parallel to the patients' tibial plateaus was used, respectively. When the 25th percentile was considered, the maximum thickness of a tibial cut that preserved the PCL was 4 and 3 mm with a tibial cut of 0° and 5° of posterior slope, respectively. The maximum thickness of a tibial cut that preserved the PCL was significantly greater in patients with a sagittal slope of the tibial plateaus more than 8° than in those with a sagittal slope less than 8°. In cruciate retaining implants, the PCL insertion may be spared in the majority of patients by performing a tibial cut of 4 mm, or even less when a posterior slope of 3°-5° is used. The clinical relevance of our study is that the execution of a conservative tibial cut, followed by a second tibial resection to achieve the thickness required for the tibial component to be implanted, may be an alternative technique to spare the PCL in CR TKA. II.

  7. Predictive formula for the length of tibial tunnel in anterior crucitate ligament reconstruction.

    PubMed

    Chernchujit, Bancha; Barthel, Thomas

    2009-12-01

    The anterior cruciate ligament (ACL) reconstruction using bone-patellar tendon bone graft is a common procedure in orthopedics. One challenging problem found is a graft-tunnel mismatch. Previous studies have reported the mathematic formula to predict the tibial angle length and angle to avoid graft-tunnel mismatch but these formulas have shown limited predictability. To propose a predictive formula for the length of tibial tunnel and to examine its predictability. Thirty six patients (26 males, 14 females) with ACL injury were included in this study. The preoperativemedial proximal tibial angle was measured. Intraoperatively, the tibial tunnel length and tibial entry point were measured. The postoperative coronal and saggital angle of tibial tunnel were measured from knee radiograph. The data were analysed by using trigonometry correlation and formulate the predictive formula of tibial tunnel length. We found that tibial tunnel length (T) has trigonometric correlation between the location of tibial tunnel entry point (w), coronal angle of tibial tunnel (b), saggital angle of tibial tunnel (a) and the medial proximal tibial slope (c) by using this formula T = Wcos(c)tan(b)/sin(a) This proposed predictive formula can well predict the length of the tibial tunnel at preoperative period to avoid graft-tunnel mismatch.

  8. Effect of tibial plateau leveling on stability of the canine cranial cruciate-deficient stifle joint: an in vitro study.

    PubMed

    Reif, Ullrich; Hulse, Donald A; Hauptman, Joe G

    2002-01-01

    To evaluate the effect of tibial plateau leveling on joint motion in canine stifle joints in which the cranial cruciate ligament (CCL) had been severed. In vitro cadaver study. Six canine cadaver hind legs. Radiographs of the stifle joints were made to evaluate the tibial plateau angle with respect to the long axis of the tibia. The specimens were mounted in a custom-made testing device to measure cranio-caudal translation of the tibia with respect to the femur. An axial load was applied to the tibia, and its position was recorded in the normal stifle, after transection of the CCL, and after tibial plateau leveling. Further, the amount of caudal tibial thrust was measured in the tibial plateau leveled specimen while series of eight linearly increasing axial tibial loads were applied. Transection of the CCL resulted in cranial tibial translation when axial tibial load was applied. After tibial plateau leveling, axial loading resulted in caudal translation of the tibia. Increasing axial tibial load caused a linear increase in caudal tibial thrust in all tibial plateau-leveled specimens. After tibial plateau leveling, axial tibial load generates caudal tibial thrust, which increases if additional axial load is applied. Tibial plateau leveling osteotomy may prevent cranial translation during weight bearing in dogs with CCL rupture by converting axial load into caudal tibial thrust. The amount of caudal tibial thrust seems to be proportional to the amount of weight bearing. Copyright 2002 by The American College of Veterinary Surgeons

  9. INFECTIOUS MYXOMATOSIS OF RABBITS

    PubMed Central

    Rivers, T. M.

    1930-01-01

    The virus of infectious myxomatosis of rabbits (Sanarelli) induces multiple lesions in the skin, lymph glands, tunica vaginalis,epididymis, testicle, spleen, and lungs. Growth and destruction of cells in the epidermis overlying the myxomatous masses leads to the formation of vesicles. Cytoplasmic inclusions are found in affected epidermal cells. Occasionally, similar inclusions are seen in other involved epithelial cells. The nature of the inclusions is an open question. In the myxomatous masses situated in the subcutaneous and other tissues, evidences of alteration and growth of certain cells are observed. PMID:19869741

  10. INFECTIOUS MYXOMATOSIS OF RABBITS

    PubMed Central

    Smadel, Joseph E.; Ward, S. M.; Rivers, Thomas M.

    1940-01-01

    A second soluble antigen, separable from the virus, occurs in extracts of infected skin and in the serum of rabbits acutely ill with infectious myxomatosis. Like the first antigen (A), the second (B) is heat labile and has certain characteristics of a globulin. The two antigens precipitate in different concentrations of ammonium sulfate and can be separated by this method. Neither of the antigens after being heated at 56°C. precipitates in the presence of specific antibody but each is capable of inhibiting the activity of its antibody. PMID:19871012

  11. Proximal tibial fracture following anterior cruciate ligament reconstruction surgery: a biomechanical analysis of the tibial tunnel as a stress riser.

    PubMed

    Aldebeyan, Wassim; Liddell, Antony; Steffen, Thomas; Beckman, Lorne; Martineau, Paul A

    2017-08-01

    This is the first biomechanical study to examine the potential stress riser effect of the tibial tunnel or tunnels after ACL reconstruction surgery. In keeping with literature, the primary hypothesis tested in this study was that the tibial tunnel acts as a stress riser for fracture propagation. Secondary hypotheses were that the stress riser effect increases with the size of the tunnel (8 vs. 10 mm), the orientation of the tunnel [standard (STT) vs. modified transtibial (MTT)], and with the number of tunnels (1 vs. 2). Tibial tunnels simulating both single bundle hamstring graft (8 mm) and bone-patellar tendon-bone graft (10 mm) either STT or MTT position, as well as tunnels simulating double bundle (DB) ACL reconstruction (7, 6 mm), were drilled in fourth-generation saw bones. These five experimental groups and a control group consisting of native saw bones without tunnels were loaded to failure on a Materials Testing System to simulate tibial plateau fracture. There were no statistically significant differences in peak load to failure between any of the groups, including the control group. The fracture occurred through the tibial tunnel in 100 % of the MTT tunnels (8 and 10 mm) and 80 % of the DB tunnels specimens; however, the fractures never (0 %) occurred through the tibial tunnel of the standard tunnels (8 or 10 mm) (P = 0.032). In the biomechanical model, the tibial tunnel does not appear to be a stress riser for fracture propagation, despite suggestions to the contrary in the literature. Use of a standard, more vertical tunnel decreases the risk of ACL graft compromise in the event of a fracture. This may help to inform surgical decision making on ACL reconstruction technique.

  12. Fractures of the Tibial Plateau Involve Similar Energies as the Tibial Pilon but Greater Articular Surface Involvement

    PubMed Central

    Dibbern, Kevin; Kempton, Laurence B.; Higgins, Thomas F.; Morshed, Saam; McKinley, Todd O.; Marsh, J. Lawrence; Anderson, Donald D.

    2016-01-01

    Patients with tibial pilon fractures have a higher incidence of post-traumatic osteoarthritis than those with fractures of the tibial plateau. This may indicate that pilon fractures present a greater mechanical insult to the joint than do plateau fractures. We tested the hypothesis that fracture energy and articular fracture edge length, two independent indicators of severity, are higher in pilon than plateau fractures. We also evaluated if clinical fracture classification systems accurately reflect severity. Seventy-five tibial plateau fractures and fifty-two tibial pilon fractures from a multi-institutional study were selected to span the spectrum of severity. Fracture severity measures were calculated using objective CT-based image analysis methods. The ranges of fracture energies measured for tibial plateau and pilon fractures were 3.2 to 33.2 Joules (J) and 3.6 to 32.2 J, respectively, and articular fracture edge lengths were 68.0 to 493.0 mm and 56.1 to 288.6 mm, respectively. There were no differences in the fracture energies between the two fracture types, but plateau fractures had greater articular fracture edge lengths (p<0.001). The clinical fracture classifications generally reflected severity, but there was substantial overlap of fracture severity measures between different classes. Clinical Significance Similar fracture energies with different degrees of articular surface involvement suggest a possible explanation for dissimilar rates of post-traumatic osteoarthritis for fractures of the tibial plateau compared to the tibial pilon. The substantial overlap of severity measures between different fracture classes may well have confounded prior clinical studies relying on fracture classification as a surrogate for severity. PMID:27381653

  13. Posterior tibial slope in medial opening-wedge high tibial osteotomy: 2-D versus 3-D navigation.

    PubMed

    Yim, Ji Hyeon; Seon, Jong Keun; Song, Eun Kyoo

    2012-10-01

    Although opening-wedge high tibial osteotomy (HTO) is used to correct deformities, it can simultaneously alter tibial slope in the sagittal plane because of the triangular configuration of the proximal tibia, and this undesired change in tibial slope can influence knee kinematics, stability, and joint contact pressure. Therefore, medial opening-wedge HTO is a technically demanding procedure despite the use of 2-dimensional (2-D) navigation. The authors evaluated the posterior tibial slope pre- and postoperatively in patients who underwent navigation-assisted opening-wedge HTO and compared posterior slope changes for 2-D and 3-dimensional (3-D) navigation versions. Patients were randomly divided into 2 groups based on the navigation system used: group A (2-D guidance for coronal alignment; 17 patients) and group B (3-D guidance for coronal and sagittal alignments; 17 patients). Postoperatively, the mechanical axis was corrected to a mean valgus of 2.81° (range, 1°-5.4°) in group A and 3.15° (range, 1.5°-5.6°) in group B. A significant intergroup difference existed for the amount of posterior tibial slope change (Δ slope) pre- and postoperatively (P=.04).Opening-wedge HTO using navigation offers accurate alignment of the lower limb. In particular, the use of 3-D navigation results in significantly less change in the posterior tibial slope postoperatively than does the use of 2-D navigation. Accordingly, the authors recommend the use of 3-D navigation systems because they provide real-time intraoperative information about coronal, sagittal, and transverse axes and guide the maintenance of the native posterior tibial slope. Copyright 2012, SLACK Incorporated.

  14. Modified arthroscopic suture fixation of a displaced tibial eminence fracture.

    PubMed

    Lehman, Ronald A; Murphy, Kevin P; Machen, M Shaun; Kuklo, Timothy R

    2003-02-01

    This study describes a new arthroscopic method using a whip-stitch technique for treating a displaced type III tibial eminence fracture. A 12-year-old girl who sustained a displaced type III tibial eminence fracture was treated with arthroscopic fixation using the Arthrosew disposable suture device (Surgical Dynamics, Norwalk, CT) to place a whip stitch into the anterior cruciate ligament (ACL). The Arthrex ACL guide (Arthrex, Naples, FL) was used to reduce the avulsed tibial spine fragment. Sutures were then passed through the tibial tunnel and secured over a bony bridge with the knee in 20 degrees of flexion. At 9 months, the patient has a full range of motion with normal Lachman and anterior drawer testing, and she has returned to competitive basketball. Radiographs show complete fracture healing. KT-1000 and isokinetic testing at 9-month follow-up show only minimal side-to-side differences. The Arthrosew device provides a significant advantage in the treatment of type III and IV fractures of the tibial eminence by obtaining arthroscopic fixation within the substance of the ACL, thus obviating arthrotomy and hardware placement. This technique also restores the proper length and tension to the ACL, and provides a simplified, reproducible method of treatment for this injury.

  15. Can the tibial slope be measured on lateral knee radiographs?

    PubMed

    Faschingbauer, M; Sgroi, M; Juchems, M; Reichel, H; Kappe, T

    2014-12-01

    The posterior tibial slope influences both the natural knee stability as well as the stability and kinematics after total knee arthroplasty (TKA). Exact definition of the posterior tibial slope (PTS) requires lateral radiographs of the lower limb. Only lateral knee radiographs are routinely obtained after TKA, however. The purpose of the present study therefore was to analyse the relationship between PTS measurement results on short and expanded lateral knee radiographs. The PTS was measured on 100 consecutive lateral radiographs of the lower limb using the mechanical and three diaphyseal axes with various distances below the tibial plateau. Significant differences between PTS results were found for all three diaphyseal axes, with the smallest differences and the strongest correlation for a diaphyseal axis at 16 and 20 cm below the tibial plateau. Using short distances below the tibial plateau (6 and 10 cm) resulted in an overestimation of the PTS of 3°, on average. The PTS measurements in long lateral knee radiographs are more accurate compared to short radiographs. On short lateral knee radiographs, only a estimation of the PTS can be carried out. Diagnostic study, Level II.

  16. Comparison of tibial shaft ski fractures in children and adults.

    PubMed

    Hamada, Tomo; Matsumoto, Kazu; Ishimaru, Daichi; Sumi, Hiroshi; Shimizu, Katsuji

    2014-09-01

    To examine whether child and adult skiers have different risk factors or mechanisms of injury for tibial shaft fractures. Descriptive epidemiological study. Prospectively analyzed the epidemiologic factors, injury types, and injury mechanisms at Sumi Memorial Hospital. This study analyzed information obtained from 276 patients with tibial fractures sustained during skiing between 2004 and 2012. We focused on 174 ski-related tibial shaft fractures with respect to the following factors: age, gender, laterality of fracture, skill level, mechanism of fracture (fall vs collision), scene of injury (steepness of slope), snow condition, and weather. Fracture pattern was graded according to Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification and mechanical direction [external (ER) or internal rotation (IR)]. Tibial shaft fractures were the most common in both children (89.3%) and adults (47.4%). There were no significant differences in gender, side of fracture, mechanism of fracture, snow condition, or weather between children and adults. Skill levels were significantly lower in children than in adults (P < 0.0001). Type A fractures were more dominant in children (73 cases, 72.3%) than in adults (39 cases, 53.4%). There was significantly more ER in children than in adults (P < 0.0001). Among children, female patients had significantly more IR than ER; in contrast, among adults, women were injured by ER. We found significant differences in some of these parameters, suggesting that child and adult skiers have different risk factors or mechanisms of injury for tibial shaft fractures.

  17. [Bone defect replacement under conditions of transosseous osteosynthesis and titanium nickelide implant application].

    PubMed

    Ir'ianov, Iu M; Ir'ianova, T Iu

    2012-01-01

    In the experiment conducted on 30 Wistar rats, the peculiarities of tibial bone defect replacement under conditions of transosseous osteosynthesis and implantation of titanium nickelide mesh structures were studied using the methods of scanning electron microscopy and x-ray electron probe microanalysis. It was demonstrated that implant osseointegration occured 7 days after surgery, and after 30 days the defect was replaced with bone tissue by the type of primary bone wound healing, thus the organotypical remodeling of regenerated bone took place.

  18. Effect of rhBMP-2 on tibial plateau fractures in a canine model.

    PubMed

    Schaefer, Susan L; Lu, Yan; Seeherman, Howard; Li, X Jian; Lopez, Mandi J; Markel, Mark D

    2009-04-01

    This study was to determine the efficacy of recombinant human bone morphogenetic protien-2 (rhBMP-2)/calcium phosphate matrix (CPX) paste to accelerate healing in a canine articular fracture model with associated subchondral defect. rhBMP-2/CPX (BMP), CPX alone (CPX) or autogenous bone graft (ABG) was administered to a canine articular tibial plateau osteotomy with a subchondral defect in each of 21 female dogs. The unoperated contralateral limbs served as controls. Ground reaction forces, synovial fluid, radiographic changes, mechanical testing, bone density, and histology of bone and synovium were analyzed at 6 weeks after surgery. Radiographic analysis demonstrated that the BMP and CPX groups showed improved bony healing compared to the ABG group at week 6. Histomorphometric analysis demonstrated that the BMP group had significantly increased trabecular bone volume compared to the CPX and ABG groups. Mechanical testing revealed that the BMP group had significantly greater maximum failure loads than the ABG group. Histological analysis demonstrated that the BMP group had significantly less sub-synovial inflammation than CPX group. This study demonstrated that rhBMP-2/CPX accelerated healing of articular fractures with subchondral defect compared to ABG in most of the parameters evaluated, and had less subsynovial inflammation than the CPX alone in a canine model.

  19. Marihuana-induced embryotoxicity in the rabbit.

    PubMed

    Rosenkrantz, H; Grant, R J; Fleischman, R W; Baker, J R

    1986-08-01

    Few teratogenic studies in animals have been performed simulating marihuana smoking in man. An inhalation marihuana teratology study was conducted in albino rabbits utilizing a modified automatic smoking machine originally developed for rats and mice. Appropriate numbers of dams were exposed to 4 puffs (0.14 mg/kg), 8 puffs (0.72 mg/kg), or 16 puffs (1.44 mg/kg) once daily during gestation Days 6 to 18, and sacrificed on Day 28. Control dams were exposed to 12 puffs of placebo cigarettes or sham-treated for a similar duration in the absence of any smoke. Consistency of smoke was monitored by cigarette weights, total particulate matter, concentrations of carbon monoxide (CO), and tetrahydrocannibinol (THC) in smoke, carboxyhemoglobin levels, and plasma THC levels. Except for a transient decrease in dam respiration rates, other gross toxic signs were absent. Reproductive parameters of mothers were generally normal except for a dose-related embryotoxicity predominantly associated with early resorptions. Despite twice the number of embryo/fetal deaths, there were no marihuana soft tissue or skeletal defects. A correlation between dam demises and CO levels among placebo-exposed animals was related to greater quantities of CO being generated during placebo combustion. It has been shown in the rabbit that marihuana is embryotoxic and not a teratogen at plasma THC levels found in human females.

  20. Primary Ankle Arthrodesis for Severely Comminuted Tibial Pilon Fractures.

    PubMed

    Al-Ashhab, Mohamed E

    2017-03-01

    Management of severely comminuted, complete articular tibial pilon fractures (Rüedi and Allgöwer type III) remains a challenge, with few treatment options providing good clinical outcomes. Twenty patients with severely comminuted tibial pilon fractures underwent primary ankle arthrodesis with a retrograde calcaneal nail and autogenous fibular bone graft. The fusion rate was 100% and the varus malunion rate was 10%. Fracture union occurred at a mean of 16 weeks (range, 13-18 weeks) postoperatively. Primary ankle arthrodesis is a successful method for treating highly comminuted tibial pilon fractures, having a low complication rate and a high satisfaction score. [Orthopedics. 2017; 40(2):e378-e381.]. Copyright 2016, SLACK Incorporated.

  1. 21 CFR 888.3590 - Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint tibial (hemi-knee) metallic resurfacing... Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis. (a) Identification. A knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis is a device intended to be implanted...

  2. Models of tibial fracture healing in normal and Nf1-deficient mice.

    PubMed

    Schindeler, Aaron; Morse, Alyson; Harry, Lorraine; Godfrey, Craig; Mikulec, Kathy; McDonald, Michelle; Gasser, Jürg A; Little, David G

    2008-08-01

    Delayed union and nonunion are common complications associated with tibial fractures, particularly in the distal tibia. Existing mouse tibial fracture models are typically closed and middiaphyseal, and thus poorly recapitulate the prevailing conditions following surgery on a human open distal tibial fracture. This report describes our development of two open tibial fracture models in the mouse, where the bone is broken either in the tibial midshaft (mid-diaphysis) or in the distal tibia. Fractures in the distal tibial model showed delayed repair compared to fractures in the tibial midshaft. These tibial fracture models were applied to both wild-type and Nf1-deficient (Nf1+/-) mice. Bone repair has been reported to be exceptionally problematic in human NF1 patients, and these patients can also spontaneously develop tibial nonunions (known as congenital pseudarthrosis of the tibia), which are recalcitrant to even vigorous intervention. pQCT analysis confirmed no fundamental differences in cortical or cancellous bone in Nf1-deficient mouse tibiae compared to wild-type mice. Although no difference in bone healing was seen in the tibial midshaft fracture model, the healing of distal tibial fractures was found to be impaired in Nf1+/- mice. The histological features associated with nonunited Nf1+/- fractures were variable, but included delayed cartilage removal, disproportionate fibrous invasion, insufficient new bone anabolism, and excessive catabolism. These findings imply that the pathology of tibial pseudarthrosis in human NF1 is complex and likely to be multifactorial.

  3. Bone stress in runners with tibial stress fracture.

    PubMed

    Meardon, Stacey A; Willson, John D; Gries, Samantha R; Kernozek, Thomas W; Derrick, Timothy R

    2015-11-01

    Combinations of smaller bone geometry and greater applied loads may contribute to tibial stress fracture. We examined tibial bone stress, accounting for geometry and applied loads, in runners with stress fracture. 23 runners with a history of tibial stress fracture & 23 matched controls ran over a force platform while 3-D kinematic and kinetic data were collected. An elliptical model of the distal 1/3 tibia cross section was used to estimate stress at 4 locations (anterior, posterior, medial and lateral). Inner and outer radii for the model were obtained from 2 planar x-ray images. Bone stress differences were assessed using two-factor ANOVA (α=0.05). Key contributors to observed stress differences between groups were examined using stepwise regression. Runners with tibial stress fracture experienced greater anterior tension and posterior compression at the distal tibia. Location, but not group, differences in shear stress were observed. Stepwise regression revealed that anterior-posterior outer diameter of the tibia and the sagittal plane bending moment explained >80% of the variance in anterior and posterior bone stress. Runners with tibial stress fracture displayed greater stress anteriorly and posteriorly at the distal tibia. Elevated tibial stress was associated with smaller bone geometry and greater bending moments about the medial-lateral axis of the tibia. Future research needs to identify key running mechanics associated with the sagittal plane bending moment at the distal tibia as well as to identify ways to improve bone geometry in runners in order to better guide preventative and rehabilitative efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. VENEREAL SPIROCHETOSIS IN AMERICAN RABBITS

    PubMed Central

    Noguchi, Hideyo

    1922-01-01

    Of 50 rabbits, otherwise regarded as normal, three adult females and two adult males (10 per cent) have been found to have in their genitoperineal region certain papulosquamous, often ulcerating, lesions. A recently purchased group of twenty rabbits contained six females (30 per cent) with similar lesions. This condition runs a chronic course and is characterized by the presence of a spiral organism closely resembling Treponema pallidum. The rabbit spirochete has the same morphological features as Treponema pallidum; it is possibly a trifle thicker and longer than the average pallidum. Long specimens measuring 30 µ are frequently encountered, and they show a tendency to form loosely entangled knots. A stellate arrangement of several organisms in a mass is frequently observed. In the lesion of one rabbit there were two types of spirochete, one of the variety just described, the other a somewhat coarser organism, closely resembling Treponema calligyrum found in a human condyloma, but a trifle thinner and longer. This organism is perhaps merely a variant type of the rabbit spirochete. The histological reactions are similar to, but considerably less cellular, than those occurring in typical primary syphilitic lesions. There is a marked hyperkeratosis and interpapillary infiltration not observed in scrotal chancre. The disease is transmissible to normal rabbits, in which the usual papular lesions can be readily reproduced in the genitoperineal region. In the first passages the incubation period varied from 20 to 88 days; subsequently one of the strains produced a lesion in 20 days on the second, and in 5 days on the third passage. No typical orchitis or keratitis was produced in the rabbits of the present series, although in one of the original rabbits (No. 4) scaly, papular lesions have developed on the nose, lips, eyelid, and paws. Monkeys (Macacus rhesus) failed to show any lesions within a period of 4 months after inoculation. In one instance transmission was

  5. [Pathological changes of the blood vessels in rabbit femoral head with glucocorticoid-induced necrosis].

    PubMed

    Hu, Zhi-ming; Wang, Hai-bin; Zhou, Ming-qian; Yao, Xin-sheng; Ma, Li; Wang, Xiao-ning

    2006-06-01

    To observe the pathological changes in the blood vessels in rabbit femoral head with glucocorticoid-induced necrosis and investigate the pathogenesis of glucocorticoid-induced osteonecrosis. Twenty New Zealand white rabbits were randomly divided into two groups, namely group A. which was injected with horse serum and prednisone and group B as the control group. Chinese ink was injected into the femoral cavity of the rabbits to observe the blood vessels in the femoral head under optical microscope and the femoral head was examined histopathologically. Compared with the normal control group, the rabbits in group A had significantly decreased number of perfused vessels, which was featured by defective perfusion, osteocytie pyknosis or necrosis, increase of empty ostoocyte lacunae and fat cells, decrease of hematopoietic tissue, and blood vessel occlusion. Vascular occlusion and vasculitis due to glucocorticoid treatment may cause avascular necrosis of the femoral head.

  6. Effect of Cell-seeded Hydroxyapatite Scaffolds on Rabbit Radius Bone Regeneration

    DTIC Science & Technology

    2013-06-22

    OK) for 14 d via a tissue processer (Leica TP1020 system; Bannockburn, IL). Samples were then embedded in photocuring resin (Technovit 7200 VLC ...Kulzer, Germany) and polymerized under blue light for 24 h. Block samples were adhered to a parallel plexiglass slide using the Exakt 7210 VLC system...induction, choice of evaluation time point, and use of a nonhealing defect. For example, a more challenging radial defect (1.5 cm) in rabbits and the

  7. The cottontail rabbits of Virginia

    USGS Publications Warehouse

    Llewellyn, L.M.; Handley, C.O.

    1945-01-01

    Five races of cottontail rabbits belonging to three species occur in Virginia. One of them, the Mearns cottontail (Sylvilagus floridanus mearnsi), is reported here for the first time. It occurs in six southwestern counties of the state, while the eastern cottontail (S. f. mallurus) occurs in the remainder of the state with the exception of Smith and Fishermans islands off the eastern coast of Cape Charles, where it is replaced by Hitchens cottontail (S. f. hitchensi). The New England cottontail (S. transitionalis) is found on the higher mountain peaks, above 3000 feet, and the swamp rabbit (S. palustris) occurs in the Dismal Swamp region of southeastern Virginia.....The height of the breeding season for the eastern cottontail in Virginia is March and April, but breeding continues through the entire year except in December and January. The average litter size based on embryo counts was 4.7. The sex ratio of 234 specimens from all parts of the state, taken mostly in the December to February period, was 53 males to 47 females. That of a group of 145 rabbits live-trapped at Blacksburg during February and Marchwas 58 males to 42 females. The figures show that males are more active than females during the winter months, and therefore are more easily taken then....In transplanting cottontails from one section of the state to another, it is recommended that only cottontails of the same race as those originally present in the region being restocked be released there....Tularemia is not a common disease among rabbits in Virginia, but the rabbit ticks are often carriers of the disease and may transmit it to rabbits. Rabbit ticks are also found to be carriers of Rocky Mountain fever and American Q. fever. After the ticks drop off the rabbits to hibernate in the ground, which is likely to occur during mid-winter in Virginia, there is relatively little danger of humans contracting tularemia by contact with rabbits. Present laws in Virginia which prohibit rabbit hunting until the

  8. Congenital Defects.

    ERIC Educational Resources Information Center

    Goldman, Allen S.; And Others

    There are two general categories (not necessarily mutually exclusive) of congenital defects: (1) abnormalities that have an hereditary basis, such as single and multiple genes, or chromosomal abberration; and (2) abnormalities that are caused by nonhereditary factors, such as malnutrition, maternal disease, radiation, infections, drugs, or…

  9. Open tibial fractures grade IIIC treated successfully with external fixation, negative-pressure wound therapy and recombinant human bone morphogenetic protein 7.

    PubMed

    Babiak, Ireneusz

    2014-10-01

    The aim of the therapy in open tibial fractures grade III was to cover the bone with soft tissue and achieve healed fracture without persistent infection. Open tibial fractures grade IIIC with massive soft tissue damage require combined orthopaedic, vascular and plastic-reconstructive procedures. Negative-pressure wound therapy (NPWT), used in two consecutive cases with open fracture grade IIIC of the tibia diaphysis, healed extensive soft tissue defect with exposure of the bone. NPWT eventually allowed for wound closure by split skin graft within 21-25 days. Ilizarov external fixator combined with application of recombinant human bone morphogenetic protein-7 at the site of delayed union enhanced definitive bone healing within 16-18 months. © 2012 The Authors. International Wound Journal © 2012 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  10. Medial tibial plateau morphology and stress fracture location: A magnetic resonance imaging study.

    PubMed

    Yukata, Kiminori; Yamanaka, Issei; Ueda, Yuzuru; Nakai, Sho; Ogasa, Hiroyoshi; Oishi, Yosuke; Hamawaki, Jun-Ichi

    2017-06-18

    To determine the location of medial tibial plateau stress fractures and its relationship with tibial plateau morphology using magnetic resonance imaging (MRI). A retrospective review of patients with a diagnosis of stress fracture of the medial tibial plateau was performed for a 5-year period. Fourteen patients [three female and 11 male, with an average age of 36.4 years (range, 15-50 years)], who underwent knee MRI, were included. The appearance of the tibial plateau stress fracture and the geometry of the tibial plateau were reviewed and measured on MRI. Thirteen of 14 stress fractures were linear, and one of them stellated on MRI images. The location of fractures was classified into three types. Three fractures were located anteromedially (AM type), six posteromedially (PM type), and five posteriorly (P type) at the medial tibial plateau. In addition, tibial posterior slope at the medial tibial plateau tended to be larger when the fracture was located more posteriorly on MRI. We found that MRI showed three different localizations of medial tibial plateau stress fractures, which were associated with tibial posterior slope at the medial tibial plateau.

  11. Medial tibial plateau morphology and stress fracture location: A magnetic resonance imaging study

    PubMed Central

    Yukata, Kiminori; Yamanaka, Issei; Ueda, Yuzuru; Nakai, Sho; Ogasa, Hiroyoshi; Oishi, Yosuke; Hamawaki, Jun-ichi

    2017-01-01

    AIM To determine the location of medial tibial plateau stress fractures and its relationship with tibial plateau morphology using magnetic resonance imaging (MRI). METHODS A retrospective review of patients with a diagnosis of stress fracture of the medial tibial plateau was performed for a 5-year period. Fourteen patients [three female and 11 male, with an average age of 36.4 years (range, 15-50 years)], who underwent knee MRI, were included. The appearance of the tibial plateau stress fracture and the geometry of the tibial plateau were reviewed and measured on MRI. RESULTS Thirteen of 14 stress fractures were linear, and one of them stellated on MRI images. The location of fractures was classified into three types. Three fractures were located anteromedially (AM type), six posteromedially (PM type), and five posteriorly (P type) at the medial tibial plateau. In addition, tibial posterior slope at the medial tibial plateau tended to be larger when the fracture was located more posteriorly on MRI. CONCLUSION We found that MRI showed three different localizations of medial tibial plateau stress fractures, which were associated with tibial posterior slope at the medial tibial plateau. PMID:28660141

  12. Comparison of volumetric bone mineral density in the tibial region of interest for ACL reconstruction.

    PubMed

    Klein, Scott A; Nyland, John; Caborn, David N M; Kocabey, Yavuz; Nawab, Akbar

    2005-12-01

    Adequate tibial bone mineral density (BMD) is essential to soft tissue graft fixation during anterior cruciate ligament (ACL) reconstruction. The purpose of this study was to compare volumetric bone plug density measurements at the tibial region of interest for ACL reconstruction using a standardized immersion technique and Archimedes' principle. Cancellous bone cores were harvested from the proximal, middle, and distal metaphyseal regions of the lateral tibia and from the standard tibial tunnel location used for ACL reconstruction of 18 cadaveric specimens. Proximal tibial cores displayed 32.6% greater BMD than middle tibial cores and 31.8% greater BMD than distal tibial cores, but did not differ from the BMD of the tibial tunnel cores. Correlational analysis confirmed that the cancellous BMD in the tibial tunnel related to the cancellous BMD of the proximal and distal lateral tibial metaphysis. In conjunction with its adjacent cortical bone, the cancellous BMD of the region used for standard tibial tunnel placement provides an effective foundation for ACL graft fixation. In tibia with poor BMD, bicortical fixation that incorporates cortical bone from the distal tibial tunnel region is recommended.

  13. Tibial dyschondroplasia associated proteomic changes in chicken growth plate cartilage

    USDA-ARS?s Scientific Manuscript database

    Tibial dyschondroplasia (TD) is a poultry leg problem that affects the proximal growth plate of tibia preventing its transition to bone. To understand the disease-induced proteomic changes we compared the protein extracts of cartilage from normal and TD- affected growth plates. TD was induced by fe...

  14. Anatomy, function, and pathophysiology of the posterior tibial tendon.

    PubMed

    Smith, C F

    1999-07-01

    The posterior tibial tendon is vital for the structure and function of the foot and ankle. Dysfunction of the tendon can be debilitating and devastating. In recent years, much attention had been directed toward the diagnosis and treatment of PTTD. To properly diagnose and devise an appropriate treatment regimen, the anatomy, function, and pathophysiology associated with PTTD need to be thoroughly understood.

  15. Tibial and fibular nerves evaluation using intraoperative electromyography in rats.

    PubMed

    Nepomuceno, André Coelho; Politani, Elisa Landucci; Silva, Eduardo Guandelini da; Salomone, Raquel; Longo, Marco Vinicius Losso; Salles, Alessandra Grassi; Faria, José Carlos Marques de; Gemperli, Rolf

    2016-08-01

    To evaluate a new model of intraoperative electromyographic (EMG) assessment of the tibial and fibular nerves, and its respectives motor units in rats. Eight Wistar rats underwent intraoperative EMG on both hind limbs at two different moments: week 0 and week 12. Supramaximal electrical stimulation applied on sciatic nerve, and compound muscle action potential recorded on the gastrocnemius muscle (GM) and the extensor digitorum longus muscle (EDLM) through electrodes at specifics points. Motor function assessment was performaced through Walking Track Test. Exposing the muscles and nerves for examination did not alter tibial (p=0.918) or fibular (p=0.877) function between the evaluation moments. Electromyography of the GM, innervated by the tibial nerve, revealed similar amplitude (p=0.069) and latency (p=0.256) at week 0 and at 12 weeks, creating a standard of normality. Meanwhile, electromyography of the EDLM, innervated by the fibular nerve, showed significant differences between the amplitudes (p=0.003) and latencies (p=0.021) at the two different moments of observation. Intraoperative electromyography determined and quantified gastrocnemius muscle motor unit integrity, innervated by tibial nerve. Although this study was not useful to, objectively, assess extensor digitorum longus muscle motor unit, innervated by fibular nerve.

  16. Automated Measurement of Patient-Specific Tibial Slopes from MRI

    PubMed Central

    Amerinatanzi, Amirhesam; Summers, Rodney K.; Ahmadi, Kaveh; Goel, Vijay K.; Hewett, Timothy E.; Nyman, Edward

    2017-01-01

    Background: Multi-planar proximal tibial slopes may be associated with increased likelihood of osteoarthritis and anterior cruciate ligament injury, due in part to their role in checking the anterior-posterior stability of the knee. Established methods suffer repeatability limitations and lack computational efficiency for intuitive clinical adoption. The aims of this study were to develop a novel automated approach and to compare the repeatability and computational efficiency of the approach against previously established methods. Methods: Tibial slope geometries were obtained via MRI and measured using an automated Matlab-based approach. Data were compared for repeatability and evaluated for computational efficiency. Results: Mean lateral tibial slope (LTS) for females (7.2°) was greater than for males (1.66°). Mean LTS in the lateral concavity zone was greater for females (7.8° for females, 4.2° for males). Mean medial tibial slope (MTS) for females was greater (9.3° vs. 4.6°). Along the medial concavity zone, female subjects demonstrated greater MTS. Conclusion: The automated method was more repeatable and computationally efficient than previously identified methods and may aid in the clinical assessment of knee injury risk, inform surgical planning, and implant design efforts. PMID:28952547

  17. Histopathological and biomechanical evaluation of bone healing properties of DBM and DBM-G90 in a rabbit model.

    PubMed

    Meimandi Parizi, Abdolhamid; Oryan, Ahmad; Haddadi, Shahram; Bigham Sadegh, Amin

    2015-01-01

    The present study was designed to investigate the effects of DBM and DBM-G90 on bone healing in a rabbit model. Thirty male white albino rabbits were used in this study. An incision was made in all rabbits under general anesthesia directly over the radius in order to expose it. A 10-mm segmental defect was created on the middle portion of each radius. The defects of 10 rabbits (Group I) were filled with DBM Block and Strip (Zimmer, Inc., Warsaw, IN, USA), the defects of 10 rabbits (Group II) were filled with DBM soaked in G90, and the defects of 10 rabbits (Group III/control) were left empty. The rabbits were euthanized at 60 days postoperatively for histopathological and biomechanical evaluation. At the histopathologic level, the defects of the animals in the DBM and DBM-G90 groups showed more advanced healing criteria than those of the control group. In biomechanical findings, there was a statistically significant difference between the injured bones and contralateral normal bones of the control group in terms of measured strength. There was not a statistically significant difference between the treated bones of the DBM and DBM-G90 groups with contralateral normal bones, nor was there a statistically significant difference between the treated bones of the DBM and DBM-G90 groups with the treated bones of the control group, in terms of other biomechanical tests. Based on the histopathological and biomechanical findings, the DBM and DBM-G90 groups demonstrated superior osteogenic potential; however, G90 shows no superiority over DBM on bone healing.

  18. Posterior tibial slope as a risk factor for anterior cruciate ligament rupture in soccer players.

    PubMed

    Senişik, Seçkin; Ozgürbüz, Cengizhan; Ergün, Metin; Yüksel, Oğuz; Taskiran, Emin; Işlegen, Cetin; Ertat, Ahmet

    2011-01-01

    Anterior cruciate ligament (ACL) is the primary stabilizer of the knee. An impairment of any of the dynamic or static stability providing factors can lead to overload on the other factors and ultimately to deterioration of knee stability. This can result in anterior tibial translation and rupture of the ACL. The purpose of this study was to examine the influence of tibial slope on ACL injury risk on soccer players. A total of 64 elite soccer players and 45 sedentary controls were included in this longitudinal and controlled study. The angle between the tibial mid-diaphysis line and the line between the anterior and posterior edges of the medial tibial plateau was measured as the tibial slope via lateral radiographs. Individual player exposure, and injuries sustained by the participants were prospectively recorded. Eleven ACL injuries were documented during the study period. Tibial slope was not different between soccer players and sedentary controls. Tibial slope in the dominant and non-dominant legs was greater for the injured players compared to the uninjured players. The difference reached a significant level only for the dominant legs (p < 0.001). While the tibial slopes of the dominant and non-dominant legs were not different on uninjured players (p > 0.05), a higher tibial slope was observed in dominant legs of injured players (p < 0.05). Higher tibial slope on injured soccer players compared to the uninjured ones supports the idea that the tibial slope degree might be an important risk factor for ACL injury. Key pointsDominant legs' tibial slopes of the injured players were significantly higher compared to the uninjured players (p < 0.001).Higher tibial slope was determined in dominant legs compared to the non-dominant side, for the injured players (p = 0.042). Different tibial slope measures in dominant and non-dominant legs might be the result of different loading and/or adaptation patterns in soccer.

  19. Measurement of bone adjacent to tibial shaft fracture.

    PubMed

    Findlay, S C; Eastell, R; Ingle, B M

    2002-12-01

    Delayed union and non-union are common complications after fracture of the tibial shaft. Response of the surrounding bone as a fracture heals could be monitored using techniques currently used in the study of osteoporosis. The aims of our study were to: (1) evaluate the decrement in bone measurements made close to the fracture using dual-energy X-ray absorptiometry (DXA), quantitative ultrasound (QUS) and peripheral quantitative computed tomography (pQCT); (2) compare values for fractured versus non-fractured leg to determine the duration of decrement in bone measurements; and (3) calculate short-term precision in DXA, QUS and pQCT in order to calculate the ratio of decrement to precision (response ratio, RR) to determine the optimal test for monitoring changes after tibial fracture. The biggest decrement in bone measurements at the ipsilateral limb of 28 patients with tibial shaft fracture was observed at the pQCT tibial trabecular sites (distal = 19%, p<0.0001; proximal 5% = 21%, p<0.001; proximal 10% = 28%, p<0.001) and the ultradistal tibia/fibula measured by DXA (19%, p<0.0001). When comparing Z-scores, the magnitude of decrements at the ipsilateral limb was bigger for variables measured directly at the tibia, both proximal and distal to the fracture. The magnitude of the decrement in ultradistal tibia/fibula BMD decreased as the time since fracture increased ( r = 0.55). When response ratios are considered, pQCT measurements at the distal tibia (RR 6-8) and proximal 5% and 10% trabecular sites (RR 5 and 9 respectively) were found to be the most sensitive to change. Therefore, pQCT of the trabecular regions of either the proximal or distal tibia should prove the most sensitive measurement for monitoring changes in bone adjacent to a tibial shaft fracture.

  20. Pathomorphism of spiral tibial fractures in computed tomography imaging.

    PubMed

    Guzik, Grzegorz

    2011-01-01

    Spiral fractures of the tibia are virtually homogeneous with regard to their pathomorphism. The differences that are seen concern the level of fracture of the fibula, and, to a lesser extent, the level of fracture of the tibia, the length of fracture cleft, and limb shortening following the trauma. While conventional radiographs provide sufficient information about the pathomorphism of fractures, computed tomography can be useful in demonstrating the spatial arrangement of bone fragments and topography of soft tissues surrounding the fracture site. Multiple cross-sectional computed tomography views of spiral fractures of the tibia show the details of the alignment of bone chips at the fracture site, axis of the tibial fracture cleft, and topography of soft tissues that are not visible on standard radiographs. A model of a spiral tibial fracture reveals periosteal stretching with increasing spiral and longitudinal displacement. The cleft in tibial fractures has a spiral shape and its line is invariable. Every spiral fracture of both crural bones results in extensive damage to the periosteum and may damage bellies of the long flexor muscle of toes, flexor hallucis longus as well as the posterior tibial muscle. Computed tomography images of spiral fractures of the tibia show details of damage that are otherwise invisible on standard radiographs. Moreover, CT images provide useful information about the spatial location of the bone chips as well as possible threats to soft tissues that surround the fracture site. Every spiral fracture of the tibia is associated with disruption of the periosteum. 1. Computed tomography images of spiral fractures of the tibia show details of damage otherwise invisible on standard radiographs, 2. The sharp end of the distal tibial chip can damage the tibialis posterior muscle, long flexor muscles of the toes and the flexor hallucis longus, 3. Every spiral fracture of the tibia is associated with disruption of the periosteum.

  1. Plate Versus Intramedullary Nail Fixation of Anterior Tibial Stress Fractures: A Biomechanical Study.

    PubMed

    Markolf, Keith L; Cheung, Edward; Joshi, Nirav B; Boguszewski, Daniel V; Petrigliano, Frank A; McAllister, David R

    2016-06-01

    Anterior midtibial stress fractures are an important clinical problem for patients engaged in high-intensity military activities or athletic training activities. When nonoperative treatment has failed, intramedullary (IM) nail and plate fixation are 2 surgical options used to arrest the progression of a fatigue fracture and allow bone healing. A plate will be more effective than an IM nail in preventing the opening of a simulated anterior midtibial stress fracture from tibial bending. Controlled laboratory study. Fresh-frozen human tibias were loaded by applying a pure bending moment in the sagittal plane. Thin transverse saw cuts, 50% and 75% of the depth of the anterior tibial cortex, were created at the midtibia to simulate a fatigue fracture. An extensometer spanning the defect was used to measure the fracture opening displacement (FOD) before and after the application of IM nail and plate fixation constructs. IM nails were tested without locking screws, with a proximal screw only, and with proximal and distal screws. Plates were tested with unlocked bicortical screws (standard compression plate) and locked bicortical screws; both plate constructs were tested with the plate edge placed 1 mm from the anterior tibial crest (anterior location) and 5 mm posterior to the crest. For the 75% saw cut depth, the mean FOD values for all IM nail constructs were 13% to 17% less than those for the saw cut alone; the use of locking screws had no significant effect on the FOD. The mean FOD values for all plate constructs were significantly less than those for all IM nail constructs. The mean FOD values for all plates were 28% to 46% less than those for the saw cut alone. Anterior plate placement significantly decreased mean FOD values for both compression and locked plate constructs, but the mean percentage reductions for locked and unlocked plates were not significantly different from each other for either plate placement. The percentage FOD reductions for all plate

  2. Tibial component coverage based on bone mineral density of the cut tibial surface during unicompartmental knee arthroplasty: clinical relevance of the prevention of tibial component subsidence.

    PubMed

    Lee, Yong Seuk; Yun, Ji Young; Lee, Beom Koo

    2014-01-01

    An optimally implanted tibial component during unicompartmental knee arthroplasty would be flush with all edges of the cut tibial surface. However, this is often not possible, partly because the tibial component may not be an ideal shape or because the ideal component size may not be available. In such situations, surgeons need to decide between component overhang and underhang and as to which sites must be covered and which sites could be undercovered. The objectives of this study were to evaluate the bone mineral density of the cut surface of the proximal tibia around the cortical rim and to compare the bone mineral density according to the inclusion of the cortex and the site-specific matched evaluation. One hundred and fifty consecutive patients (100 men and 50 women) were enrolled in this study. A quantitative computed tomography was used to determine the bone density of the cut tibial surface. Medial and lateral compartments were divided into anterior, middle, and posterior regions, and these three regions were further subdivided into two regions according to containment of cortex. The site-specific matched comparison (medial vs. lateral) of bone mineral density was performed. In medial sides, the mid-region, including the cortex, showed the highest bone mineral density in male and female patients. The posterior region showed the lowest bone mineral density in male patients, and the anterior and posterior regions showed the lowest bone mineral density in female patients. Regions including cortex showed higher bone mineral density than pure cancellous regions in medial sides. In lateral sides, posterior regions including cortex showed highest bone mineral density with statistical significance in both male and female patients. The anterior region showed the lowest bone mineral density in both male and female patients. The mid-region of the medial side and the posterior region of the lateral side are relatively safe without cortical coverage when the component

  3. Biology of the rabbit.

    PubMed

    Brewer, Nathan R

    2006-01-01

    In recognition of Dr. Nathan Brewer's many years of dedicated service to AALAS and the community of research animal care specialists, the premier issue of JAALAS includes the following compilation of Dr. Brewer's essays on rabbit anatomy and physiology. These essays were originally published in the ASLAP newsletter (formerly called Synapse), and are reprinted here with the permission and endorsement of that organization. I would like to thank Nina Hahn, Jane Lacher, and Nancy Austin for assistance in compiling these essays. Publishing this information in JAALAS allows Dr. Brewer's work to become part of the searchable literature for laboratory animal science and medicine and also assures that the literature references and information he compiled will not be lost to posterity. However, readers should note that this material has undergone only minor editing for style, has not been edited for content, and, most importantly, has not undergone peer review. With the agreement of the associate editors and the AALAS leadership, I elected to forego peer review of this work, in contradiction to standard JAALAS policy, based on the status of this material as pre-published information from an affiliate organization that holds the copyright and on the esteem in which we hold for Dr. Brewer as a founding father of our organization.

  4. INFECTIOUS MYXOMATOSIS OF RABBITS

    PubMed Central

    Rivers, Thomas M.; Ward, S. M.

    1937-01-01

    From the results of the experiments described in this paper it is obvious that large amounts of elementary bodies of myxoma can be obtained in a relatively pure state by means of the methods used. Furthermore, it is evident that infectious myxomatosis is a viral disease in which elementary bodies of the same order of magnitude as vaccinal elementary bodies play a conspicuous rô1e in that they either represent the etiological agent or are intimately associated with it. The bodies are specifically agglutinated by antimyxoma serum and are agglutinated to a less extent by serum from rabbits convalescing from fibroma, a disease closely related to myxoma. In virus-free filtrates of emulsions prepared from infected skin there is a soluble precipitinogen or precipitinogens specific for the malady. Moreover, a specific precipitinogen or precipitinogens are demonstrable in virus-free serum of animals acutely ill as a result of extensive infection with myxoma virus. It is believed that this is the second viral disease, yellow fever (14) being the first, in which a specific soluble antigen free from virus has been found in the serum of ill animals. PMID:19870643

  5. Efficacies of Ceftobiprole Medocaril and Comparators in a Rabbit Model of Osteomyelitis Due to Methicillin-Resistant Staphylococcus aureus▿

    PubMed Central

    Yin, Li-Yan; Calhoun, Jason H.; Thomas, Jacob K.; Shapiro, Stuart; Schmitt-Hoffmann, Anne

    2008-01-01

    The pharmacokinetics and distribution into bone tissue of ceftobiprole in uninfected New Zealand White rabbits were determined after subcutaneous administration of the prodrug ceftobiprole medocaril. Serum exposure (maximum concentration of the drug in serum, trough concentration, area under the concentration-time curve) to ceftobiprole at 20 and 80 mg/kg was dose proportional, and there was no accumulation of ceftobiprole following repeated (every 6 h [q6h]) injections of the antibiotic. Ceftobiprole titers in the tibial matrix and marrow were 3.2 ± 1.3 μg/g and 11.2 ± 6.5 μg/g, respectively, in uninfected animals treated with 20 mg/kg of the antibiotic and 13.4 ± 7.3 μg/g and 66.3 ± 43.2 μg/g, respectively, in uninfected animals treated with 80 mg/kg of the antibiotic. No differences in ceftobiprole titers were observed between right and left tibiae for either bone matrix or marrow. The efficacies of 4 weeks of treatment with ceftobiprole (40 mg/kg administered subcutaneously [s.c.] q6h), vancomycin (30 mg/kg administered s.c. q12h), or linezolid (60 mg/kg administered orally q8h) were compared, using a rabbit model of methicillin-resistant Staphylococcus aureus tibial osteomyelitis. After treatment with ceftobiprole, the bacterial titers in all infected left tibiae from evaluable rabbits were below the level of detection, whereas only 73% of infected left tibiae from vancomycin- or linezolid-treated animals had bacterial titers below the level of detection; the mean titers of ceftobiprole were 3 to 5 times higher in infected left tibiae than in uninfected right tibiae. These results indicate that ceftobiprole provided effective parenteral treatment of osteomyelitis in this rabbit model. PMID:18332175

  6. Efficacies of ceftobiprole medocaril and comparators in a rabbit model of osteomyelitis due to methicillin-resistant Staphylococcus aureus.

    PubMed

    Yin, Li-Yan; Calhoun, Jason H; Thomas, Jacob K; Shapiro, Stuart; Schmitt-Hoffmann, Anne

    2008-05-01

    The pharmacokinetics and distribution into bone tissue of ceftobiprole in uninfected New Zealand White rabbits were determined after subcutaneous administration of the prodrug ceftobiprole medocaril. Serum exposure (maximum concentration of the drug in serum, trough concentration, area under the concentration-time curve) to ceftobiprole at 20 and 80 mg/kg was dose proportional, and there was no accumulation of ceftobiprole following repeated (every 6 h [q6h]) injections of the antibiotic. Ceftobiprole titers in the tibial matrix and marrow were 3.2 +/- 1.3 microg/g and 11.2 +/- 6.5 microg/g, respectively, in uninfected animals treated with 20 mg/kg of the antibiotic and 13.4 +/- 7.3 microg/g and 66.3 +/- 43.2 microg/g, respectively, in uninfected animals treated with 80 mg/kg of the antibiotic. No differences in ceftobiprole titers were observed between right and left tibiae for either bone matrix or marrow. The efficacies of 4 weeks of treatment with ceftobiprole (40 mg/kg administered subcutaneously [s.c.] q6h), vancomycin (30 mg/kg administered s.c. q12h), or linezolid (60 mg/kg administered orally q8h) were compared, using a rabbit model of methicillin-resistant Staphylococcus aureus tibial osteomyelitis. After treatment with ceftobiprole, the bacterial titers in all infected left tibiae from evaluable rabbits were below the level of detection, whereas only 73% of infected left tibiae from vancomycin- or linezolid-treated animals had bacterial titers below the level of detection; the mean titers of ceftobiprole were 3 to 5 times higher in infected left tibiae than in uninfected right tibiae. These results indicate that ceftobiprole provided effective parenteral treatment of osteomyelitis in this rabbit model.

  7. Tibial component considerations in bicruciate-retaining total knee arthroplasty: A 3D MRI evaluation of proximal tibial anatomy.

    PubMed

    Saxena, Vishal; Anari, Jason B; Ruutiainen, Alexander T; Voleti, Pramod B; Stephenson, Jason W; Lee, Gwo-Chin

    2016-08-01

    Restoration of normal anatomy and proper ligament balance are theoretical prerequisites for reproducing physiological kinematics with bicruciate-retaining total knee arthroplasty (TKA). The purpose of this study was to use a 3D MRI technique to evaluate the topography of the proximal tibia and outline considerations in tibial component design for bicruciate-retaining TKA. We identified 100 consecutive patients (50 males and 50 females) between ages 20 and 40 years with knee MRIs without arthritis, dysplasia, ACL tears, or prior knee surgery. A novel 3D MRI protocol coordinating axial, coronal, and sagittal images was used to measure: 1) medial and lateral posterior tibial slopes; 2) medial and lateral coronal slopes; and 3) distance from the anterior tibia to the ACL footprint. There was no overall difference in medial and lateral posterior tibial slopes (5.5° (95% CI 5.0 to 6.0°) vs. 5.4° (95% CI 4.8 to 6.0°), respectively (p=0.80)), but 41 patients had side-to-side differences greater than 3°. The medial coronal slope was greater than the lateral coronal slope (4.6° (95% CI 4.0 to 5.1°) vs. 3.3° (95% CI 2.9 to 3.7°), respectively (p<0.0001)). Females had less clearance between the anterior tibia and ACL footprint than males (10.8mm (95% CI 10.4 to 11.2mm) vs. 13.0mm (95% CI 12.5 to 13.5mm), respectively (p<0.0001)). Due to highly variable proximal tibial topography, a monoblock bicruciate-retaining tibial baseplate may not reproduce normal anatomy in all patients. Level IV - Anatomic research study. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Local adherent technique for transplanting mesenchymal stem cells as a potential treatment of cartilage defect.

    PubMed

    Koga, Hideyuki; Shimaya, Masayuki; Muneta, Takeshi; Nimura, Akimoto; Morito, Toshiyuki; Hayashi, Masaya; Suzuki, Shiro; Ju, Young-Jin; Mochizuki, Tomoyuki; Sekiya, Ichiro

    2008-01-01

    Current cell therapy for cartilage regeneration requires invasive procedures, periosteal coverage and scaffold use. We have developed a novel transplantation method with synovial mesenchymal stem cells (MSCs) to adhere to the cartilage defect. For ex vivo analysis in rabbits, the cartilage defect was faced upward, filled with synovial MSC suspension, and held stationary for 2.5 to 15 minutes. The number of attached cells was examined. For in vivo analysis in rabbits, an autologous synovial MSC suspension was placed on the cartilage defect, and the position was maintained for 10 minutes to adhere the cells to the defect. For the control, either the same cell suspension was injected intra-articularly or the defects were left empty. The three groups were compared macroscopically and histologically. For ex vivo analysis in humans, in addition to the similar experiment in rabbits, the expression and effects of neutralizing antibodies for adhesion molecules were examined. Ex vivo analysis in rabbits demonstrated that the number of attached cells increased in a time-dependent manner, and more than 60% of cells attached within 10 minutes. The in vivo study showed that a large number of transplanted synovial MSCs attached to the defect at 1 day, and the cartilage defect improved at 24 weeks. The histological score was consistently better than the scores of the two control groups (same cell suspension injected intra-articularly or defects left empty) at 4, 12, and 24 weeks. Ex vivo analysis in humans provided similar results to those in rabbits. Intercellular adhesion molecule 1-positive cells increased between 1 minute and 10 minutes, and neutralizing antibodies for intercellular adhesion molecule 1, vascular cell adhesion molecule 1 and activated leukocyte-cell adhesion molecule inhibited the attachment. Placing MSC suspension on the cartilage defect for 10 minutes resulted in adherence of >60% of synovial MSCs to the defect, and promoted cartilage regeneration. This

  9. Simple Additive Weighting to Diagnose Rabbit Disease

    NASA Astrophysics Data System (ADS)

    Ramadiani; Marissa, Dyna; Jundillah, Muhammad Labib; Azainil; Hatta, Heliza Rahmania

    2018-02-01

    Rabbit is one of the many pets maintained by the general public in Indonesia. Like other pet, rabbits are also susceptible to various diseases. Society in general does not understand correctly the type of rabbit disease and the way of treatment. To help care for sick rabbits it is necessary a decision support system recommendation diagnosis of rabbit disease. The purpose of this research is to make the application of rabbit disease diagnosis system so that can help user in taking care of rabbit. This application diagnoses the disease by tracing the symptoms and calculating the recommendation of the disease using Simple Additive Weighting method. This research produces a web-based decision support system that is used to help rabbit breeders and the general public.

  10. Teratology studies in the rabbit.

    PubMed

    Allais, Linda; Reynaud, Lucie

    2013-01-01

    The rabbit is generally the non-rodent species or second species after the rat recommended by the regulatory authorities and is part of the package of regulatory reproductive studies for the detection of potential embryotoxic and/or teratogenic effects of pharmaceuticals, chemicals, food additives, and other compounds, including vaccines (see Chapters 1-7).Its availability, practicality in housing and in mating as well as its large size makes the rabbit the preferred choice as a non-rodent species. The study protocols are essentially similar to those established for the rat (Chapter 9), with some particularities. The study designs are well defined in guidelines and are relatively standardized between testing laboratories across the world.As for the rat, large litter sizes and extensive background data in the rabbit are valuable criteria for an optimal assessment of in utero development of the embryo or fetus and for the detection of potential external or internal fetal malformations.

  11. Temporary Fixation Using a Long Femoral-tibial Nail to Treat a Displaced Medial Tibial Plateau Fracture in a 90-year-old Patient: A Case Report

    PubMed Central

    Batta, V; Sinha, S; Trompeter, A

    2017-01-01

    Introduction: Tibial plateau fractures are complex injuries in the elderly population. When traditional methods of fixation are not suitable, an alternative method needs to be chosen for a favorable outcome. We demonstrate a previously undescribed treatment for displaced tibial plateau fractures in the very elderly with poor soft-tissue integrity. Case Report: A 90-year-old woman suffered an open, Gustilo Grade IIIA, displaced fracture of the tibial plateau. An intramedullary knee arthrodesis, the femoral-tibial nail was used to temporarily stabilize her fracture. She was able to weight bear immediately postfixation. Conclusion: A long femoral-tibial nail allows favorable fracture and soft tissue healing, ease of nursing and immediate full weight-bearing. It shows good promise and should be considered as a management option when traditional methods are not applicable in select patients. PMID:29181350

  12. Temporary Fixation Using a Long Femoral-tibial Nail to Treat a Displaced Medial Tibial Plateau Fracture in a 90-year-old Patient: A Case Report.

    PubMed

    Batta, V; Sinha, S; Trompeter, A

    2017-01-01

    Tibial plateau fractures are complex injuries in the elderly population. When traditional methods of fixation are not suitable, an alternative method needs to be chosen for a favorable outcome. We demonstrate a previously undescribed treatment for displaced tibial plateau fractures in the very elderly with poor soft-tissue integrity. A 90-year-old woman suffered an open, Gustilo Grade IIIA, displaced fracture of the tibial plateau. An intramedullary knee arthrodesis, the femoral-tibial nail was used to temporarily stabilize her fracture. She was able to weight bear immediately postfixation. A long femoral-tibial nail allows favorable fracture and soft tissue healing, ease of nursing and immediate full weight-bearing. It shows good promise and should be considered as a management option when traditional methods are not applicable in select patients.

  13. Island osteoperiosteal flap vitality when isolated from basal bone by silicone interposition: an experimental study in rabbit tibia.

    PubMed

    Laviv, Amir; Ringeman, Jason; Debecco, Meir; Jensen, Ole T; Casap, Nardy

    2014-01-01

    This study sought to confirm, through histologic evaluation, the vitality and viability of the island osteoperiosteal flap (i-flap) in a rabbit tibia model. In four rabbits, an osteotomy was performed on the tibial aspect of the right leg. A bone flap was raised, but the periosteal attachment was kept intact. The free-floating i-flap was separated from the rest of the bone by a silicone sheet. The rabbits were to be sacrificed after 1, 2, 4, and 8 weeks and histologic samples examined. All surgeries were accomplished successfully; however, three animals showed fractured tibiae within a few days after surgery and were sacrificed immediately after the fractures were discovered. The fourth rabbit was sacrificed at 4 weeks. Histologic specimens showed vital new bone in the i-flap area and signs of remodeling in the transition zone and the original basal bone. The i-flap remained vital. This suggests potential for use in bone augmentation strategies, particularly for the alveolar split procedure.

  14. Tibial Eminence Involvement With Tibial Plateau Fracture Predicts Slower Recovery and Worse Postoperative Range of Knee Motion.

    PubMed

    Konda, Sanjit R; Driesman, Adam; Manoli, Arthur; Davidovitch, Roy I; Egol, Kenneth A

    2017-07-01

    To examine 1-year functional and clinical outcomes in patients with tibial plateau fractures with tibial eminence involvement. Retrospective analysis of prospectively collected data. Academic Medical Center. All patients who presented with a tibial plateau fracture (Orthopaedic Trauma Association (OTA) 41-B and 41-C). Patients were divided into fractures with a tibial eminence component (+TE) and those without (-TE) cohorts. All patients underwent similar surgical approaches and fixation techniques for fractures. No tibial eminence fractures received fixation specifically. Short musculoskeletal functional assessment (SMFA), pain (Visual Analogue Scale), and knee range-of-motion (ROM) were evaluated at 3, 6, and 12 months postoperatively and compared between cohorts. Two hundred ninety-three patients were included for review. Patients with OTA 41-C fractures were more likely to have an associated TE compared with 41-B fractures (63% vs. 28%, P < 0.01). At 3 months postoperatively, the +TE cohort was noted to have worse knee ROM (75.16 ± 51 vs. 86.82 ± 53 degree, P = 0.06). At 6 months, total SMFA and knee ROM was significantly worse in the +TE cohort (29 ± 17 vs. 21 ± 18, P ≤ 0.01; 115.6 ± 20 vs. 124.1 ± 15, P = 0.01). By 12 months postoperatively, only knee ROM remained significantly worse in the +TE cohort (118.7 ± 15 vs. 126.9 ± 13, P < 0.01). Multivariate analysis revealed that tibial eminence involvement was a significant predictor of ROM at 6 and 12 months and SFMA at 6 months. Body mass index was found to be a significant predictor of ROM and age was a significant predictor of total SMFA at all time points. Knee ROM remains worse throughout the postoperative period in the +TE cohort. Functional outcome improves less rapidly in the +TE cohort but achieves similar results by 1 year. Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.

  15. Open Tibial Inlay PCL Reconstruction: Surgical Technique and Clinical Outcomes.

    PubMed

    Vellios, Evan E; Jones, Kristofer J; McAllister, David R

    2018-06-01

    To review the current literature on clinical outcomes following open tibial inlay posterior cruciate ligament (PCL) reconstruction and provide the reader with a detailed description of the author's preferred surgical technique. Despite earlier biomechanical studies which demonstrated superiority of the PCL inlay technique when compared to transtibial techniques, recent longitudinal cohort studies have shown no significant differences in clinical or functional outcomes at 10-year follow-up. Furthermore, no significant clinical differences have been shown between graft types used and/or single- versus double-bundle reconstruction methods. The optimal treatment for the PCL-deficient knee remains unclear. Open tibial inlay PCL reconstruction is safe, reproducible, and avoids the "killer turn" that may potentially lead to graft weakening and failure seen in transtibial reconstruction methods. No significant differences in subjective outcomes or clinical laxity have been shown between single-bundle versus double-bundle reconstruction methods.

  16. Posterior tibial vein aneurysm presenting as tarsal tunnel syndrome.

    PubMed

    Ayad, Micheal; Whisenhunt, Anumeha; Hong, EnYaw; Heller, Josh; Salvatore, Dawn; Abai, Babak; DiMuzio, Paul J

    2015-06-01

    Tarsal tunnel syndrome is a compressive neuropathy of the posterior tibial nerve within the tarsal tunnel. Its etiology varies, including space occupying lesions, trauma, inflammation, anatomic deformity, iatrogenic injury, and idiopathic and systemic causes. Herein, we describe a 46-year-old man who presented with left foot pain. Work up revealed a venous aneurysm impinging on the posterior tibial nerve. Following resection of the aneurysm and lysis of the nerve, his symptoms were alleviated. Review of the literature reveals an association between venous disease and tarsal tunnel syndrome; however, this report represents the first case of venous aneurysm causing symptomatic compression of the nerve. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. Cardio-ankle vascular index (CAVI) differentiates pharmacological properties of vasodilators nicardipine and nitroglycerin in anesthetized rabbits.

    PubMed

    Chiba, Tatsuo; Yamanaka, Mari; Takagi, Sachie; Shimizu, Kazuhiro; Takahashi, Mao; Shirai, Kohji; Takahara, Akira

    2015-08-01

    Cardio-ankle vascular index (CAVI) has been developed for measurement of vascular stiffness from the aorta to tibial artery, which is clinically utilized for assessing the progress of arteriosclerosis. In this study, we established measuring system of the CAVI in rabbits, and assessed whether the index could reflect different pharmacological actions of nitroglycerin and nicardipine on the systemic vasculature. Rabbits were anesthetized with halothane, and the CAVI was calculated from the well-established basic equations with variables obtained from brachial and tibial blood pressure and phonocardiogram. Nicardipine (1, 3 and 10 μg/kg, i.v.) decreased the blood pressure, femoral vascular resistance, and heart-ankle pulse wave velocity (haPWV). Meanwhile, no significant change was detected in the CAVI at the low or middle dose, which reflects the defining feature of the CAVI that is independent of blood pressure. The index increased at the high dose. Nitroglycerin (2, 4 and 8 μg/kg, i.v.) decreased the blood pressure, femoral vascular resistance, and haPWV. Meanwhile, the CAVI was decreased during the nitroglycerin infusion, which may reflect its well-known pharmacological action dilating conduit arteries. These results suggest that the CAVI differentiates the properties of these vasodilators in vivo. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  18. Biomechanical evaluation of tibial bone adaptation after revision total knee arthroplasty: A comparison of different implant systems

    PubMed Central

    Quilez, María Paz; Seral, Belen; Pérez, María Angeles

    2017-01-01

    The best methods to manage tibial bone defects following total knee arthroplasty remain under debate. Different fixation systems exist to help surgeons reconstruct knee osseous bone loss (such as tantalum cones, cement, modular metal augments, autografts, allografts and porous metaphyseal sleeves) However, the effects of the various solutions on the long-term outcome remain unknown. In the present work, a bone remodeling mathematical model was used to predict bone remodeling after total knee arthroplasty (TKA) revision. Five different types of prostheses were analyzed: one with a straight stem; two with offset stems, with and without supplements; and two with sleeves, with and without stems. Alterations in tibia bone density distribution and implant Von Mises stresses were quantified. In all cases, the bone density decreased in the proximal epiphysis and medullary channels, and an increase in bone density was predicted in the diaphysis and around stem tips. The highest bone resorption was predicted for the offset prosthesis without the supplement, and the highest bone formation was computed for the straight stem. The highest Von Mises stress was obtained for the straight tibial stem, and the lowest was observed for the stemless metaphyseal sleeves prosthesis. The computational model predicted different behaviors among the five systems. We were able to demonstrate the importance of choosing an adequate revision system and that in silico models may help surgeons choose patient-specific treatments. PMID:28886100

  19. Leg Muscle Usage on Tibial Elasticity During Running

    DTIC Science & Technology

    2005-01-01

    relative risk of forefoot versus heel- strike running. In summary, there is no evidence in the literature that either study arm is at more risk than...tested in TSF, or even studied in runners. These basic validation studies will determine if modulators of tibial stress, .such as heel- strike mechanics...the other for acute injuries, although it was agreed that forefoot runners will be periodically evaluated for injuries to the Achilles tendon. After

  20. Treatment of segmental tibial fractures with supercutaneous plating.

    PubMed

    He, Xianfeng; Zhang, Jingwei; Li, Ming; Yu, Yihui; Zhu, Limei

    2014-08-01

    Segmental tibial fractures usually follow a high-energy trauma and are often associated with many complications. The purpose of this report is to describe the authors' results in the treatment of segmental tibial fractures with supercutaneous locking plates used as external fixators. Between January 2009 and March 2012, a total of 20 patients underwent external plating (supercutaneous plating) of the segmental tibial fractures using a less-invasive stabilization system locking plate (Synthes, Paoli, Pennsylvania). Six fractures were closed and 14 were open (6 grade IIIa, 2 grade IIIb, 4 grade II, and 2 grade I, according to the Gustilo classification). When imaging studies confirmed bone union, the plates and screws were removed in the outpatient clinic. Average time of follow-up was 23 months (range, 12-47 months). All fractures achieved union. Median time to union was 19 weeks (range, 12-40 weeks) for the proximal fractures and 22 weeks (range, 12-42 weeks) for the distal fractures. Functional results were excellent in 17 patients and good in 3. Delayed union of the fracture occurred in 2 patients. All patients' radiographs showed normal alignment. No rotational deformities and leg shortening were seen. No incidences of deep infection or implant failures occurred. Minor screw tract infection occurred in 2 patients. A new 1-stage protocol using supercutaneous plating as a definitive fixator for segmental tibial fractures is less invasive, has a lower cost, and has a shorter hospitalization time. Surgeons can achieve good reduction, soft tissue reconstruction, stable fixation, and high union rates using supercutaneous plating. The current patients obtained excellent knee and ankle joint motion and good functional outcomes and had a comfortable clinical course. Copyright 2014, SLACK Incorporated.

  1. Tibial Bowing and Pseudarthrosis in Neurofibromatosis Type 1

    DTIC Science & Technology

    2015-01-01

    controlling for age and sex was used. However, there were no statistically significant differences between NF1 individuals with and without tibial...Dinorah Friedmann-Morvinski (The Salk Institute) presented a different model of glioblastoma in which tumors were induced from fully differentiated...a driver of Schwann cell tumorigenesis. Induction ofWnt signaling was sufficient to induce a transformed phenotype in human Schwann cells, while

  2. Multiple Tibial Insufficiency Fractures in the Same Tibia

    PubMed Central

    Defoort, Saartje; Mertens, Peter

    2011-01-01

    Stress fractures were first described by Briethaupt in 1855. Since then, there have been many discussions in the literature concerning stress fractures, which have been described in both weight-bearing and non-weight-bearing bones. Currently, the tibia is the most frequent location, but multiple stress fractures in the same tibia are rare. This paper presents an unusual case of a 60-year-old woman with multiple tibial stress fractures of spontaneous onset. PMID:23569673

  3. Biomechanical analysis of posteromedial tibial plateau split fracture fixation.

    PubMed

    Zeng, Zhi-Min; Luo, Cong-Feng; Putnis, Sven; Zeng, Bing-Fang

    2011-01-01

    The purpose of this study was to compare the biomechanical strength of four different fixation methods for a posteromedial tibial plateau split fracture. Twenty-eight tibial plateau fractures were simulated using right-sided synthetic tibiae models. Each fracture model was randomly instrumented with one of the four following constructs, anteroposterior lag-screws, an anteromedial limited contact dynamic compression plate (LC-DCP), a lateral locking plate, or a posterior T-shaped buttress plate. Vertical subsidence of the posteromedial fragment was measured from 500 N to 1500 N during biomechanical testing, the maximum load to failure was also determined. It was found that the posterior T-shaped buttress plate allowed the least subsidence of the posteromedial fragment and produced the highest mean failure load than each of the other three constructs (P=0.00). There was no statistical significant difference between using lag screws or an anteromedial LC-DCP construct for the vertical subsidence at a 1500 N load and the load to failure (P>0.05). This study showed that a posterior-based buttress technique is biomechanically the most stable in-vitro fixation method for posteromedial split tibial plateau fractures, with AP screws and anteromedial-based LC-DCP are not as stable for this type of fracture. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Case report: comprehensive management of medial tibial stress syndrome

    PubMed Central

    Krenner, Bernard John

    2002-01-01

    Abstract Activity or exercise-induced leg pain is a common complication among competitive and “weekend warrior” athletes. Shin splints is a term that has been used to describe all lower leg pain as a result of activity. There are many different causes of “shin splints,” one of which is medial tibial stress syndrome, and the treating clinician must be aware of potentially serious causes of activity related leg pain. Restoring proper biomechanics to the entire kinetic chain and rehabilitation of the injured area should be the primary aim of treatment to optimize shock absorption. The role inflammation plays in medial tibial stress syndrome is controversial, but in this case, seemed to be a causative factor as symptomatology was dramatically decreased with the addition of proteolytic enzymes. Medial tibial stress syndrome can be quite difficult to treat and keeping athletes away from activities that will slow healing or aggravate the condition can be challenging. “Active” rest is the best way in which to allow proper healing while allowing the athlete to maintain their fitness. PMID:19674573

  5. FMLP provokes coronary vasoconstriction and myocardial ischemia in rabbits

    SciTech Connect

    Gillespie, M.N.; Booth, D.C.; Friedman, B.J.

    Recent pathological studies of coronary arteries from humans with suspected coronary spasm have revealed an augmented intramural burden of inflammatory cells. To test the hypothesis than inappropriate activation of inflammatory cells participates in the evolution of coronary vasospasm, the present experiment employed a newly developed coronary arteriographic technique for use in pentobarbital-anesthetized rabbits to evaluate the coronary vasomotor actions of the nonselective inflammatory cell stimulant, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP). In 10 of 10 animals, selective left intracoronary injection of 200 ng fMLP evoked profound left coronary narrowing accompanied in all cases by ST segment deviation and dysrhythmias. Thallium-201 scintigraphy demonstrated hypoperfusion ofmore » the left ventricular free wall and septum supplied by the spastic coronary artery. The fMLP-induced epicardial vasoconstriction, ischemic electrocardiogram (ECG) changes, and thallium perfusion defects were reversed by intravenous nitroglycerin. Neither the right coronary artery nor its distribution were influenced by left coronary injection of fMLP. Additional experiments in isolated, salt solution-perfused rabbit hearts demonstrated that fMLP failed to exert direct coronary vasoconstrictor effects. These observations indicate that the nonselective inflammatory cell stimulant, fMLP, provokes arteriographically demonstrable coronary spasm with attendant myocardial hypoperfusion and ischemic ECG changes in anesthetized rabbits. Such a model may be useful in exploring the dynamic role of inflammatory cells in development of coronary spasm.« less

  6. Tibial rotational osteotomy for idiopathic torsion. A comparison of the proximal and distal osteotomy levels.

    PubMed

    Krengel, W F; Staheli, L T

    1992-10-01

    A retrospective analysis was done of 52 rotational tibial osteotomies (RTOs) performed on 35 patients with severe idiopathic tibial torsion. Thirty-nine osteotomies were performed at the proximal or midtibial level. Thirteen were performed at the distal tibial level with a technique previously described by one of the authors. Serious complications occurred in five (13%) of the proximal and in none of the distal RTOs. For severe and persisting idiopathic tibial torsion, the authors recommend correction by RTO at the distal level. Proximal level osteotomy is indicated only when a varus or valgus deformity required concurrent correction.

  7. Importance of tibial slope for stability of the posterior cruciate ligament deficient knee.

    PubMed

    Giffin, J Robert; Stabile, Kathryne J; Zantop, Thore; Vogrin, Tracy M; Woo, Savio L-Y; Harner, Christopher D

    2007-09-01

    Previous studies have shown that increasing tibial slope can shift the resting position of the tibia anteriorly. As a result, sagittal osteotomies that alter slope have recently been proposed for treatment of posterior cruciate ligament (PCL) injuries. Increasing tibial slope with an osteotomy shifts the resting position anteriorly in a PCL-deficient knee, thereby partially reducing the posterior tibial "sag" associated with PCL injury. This shift in resting position from the increased slope causes a decrease in posterior tibial translation compared with the PCL-deficient knee in response to posterior tibial and axial compressive loads. Controlled laboratory study. Three knee conditions were tested with a robotic universal force-moment sensor testing system: intact, PCL-deficient, and PCL-deficient with increased tibial slope. Tibial slope was increased via a 5-mm anterior opening wedge osteotomy. Three external loading conditions were applied to each knee condition at 0 degrees, 30 degrees, 60 degrees, 90 degrees, and 120 degrees of knee flexion: (1) 134-N anterior-posterior (A-P) tibial load, (2) 200-N axial compressive load, and (3) combined 134-N A-P and 200-N axial loads. For each loading condition, kinematics of the intact knee were recorded for the remaining 5 degrees of freedom (ie, A-P, medial-lateral, and proximal-distal translations, internal-external and varus-valgus rotations). Posterior cruciate ligament deficiency resulted in a posterior shift of the tibial resting position to 8.4 +/- 2.6 mm at 90 degrees compared with the intact knee. After osteotomy, tibial slope increased from 9.2 degrees +/- 1.0 degrees in the intact knee to 13.8 degrees +/- 0.9 degrees. This increase in slope reduced the posterior sag of the PCL-deficient knee, shifting the resting position anteriorly to 4.0 +/- 2.0 mm at 90 degrees. Under a 200-N axial compressive load with the osteotomy, an additional increase in anterior tibial translation to 2.7 +/- 1.7 mm at 30 degrees was

  8. Analysis of Knee Joint Line Obliquity after High Tibial Osteotomy.

    PubMed

    Oh, Kwang-Jun; Ko, Young Bong; Bae, Ji Hoon; Yoon, Suk Tae; Kim, Jae Gyoon

    2016-11-01

    The aim of this study was to evaluate which lower extremity alignment (knee and ankle joint) parameters affect knee joint line obliquity (KJLO) in the coronal plane after open wedge high tibial osteotomy (OWHTO). Overall, 69 knees of patients that underwent OWHTO were evaluated using radiographs obtained preoperatively and from 6 weeks to 3 months postoperatively. We measured multiple parameters of knee and ankle joint alignment (hip-knee-ankle angle [HKA], joint line height [JLH], posterior tibial slope [PS], femoral condyle-tibial plateau angle [FCTP], medial proximal tibial angle [MPTA], mechanical lateral distal femoral angle [mLDFA], KJLO, talar tilt angle [TTA], ankle joint obliquity [AJO], and the lateral distal tibial ground surface angle [LDTGA]; preoperative [-pre], postoperative [-post], and the difference between -pre and -post values [-Δ]). We categorized patients into two groups according to the KJLO-post value (the normal group [within ± 4 degrees, 56 knees] and the abnormal group [greater than ± 4 degrees, 13 knees]), and compared their -pre parameters. Multiple logistic regression analysis was used to examine the contribution of the -pre parameters to abnormal KJLO-post. The mean HKA-Δ (-9.4 ± 4.7 degrees) was larger than the mean KJLO-Δ (-2.1 ± 3.2 degrees). The knee joint alignment parameters (the HKA-pre, FCTP-pre) differed significantly between the two groups ( p  < 0.05). In addition, the HKA-pre (odds ratio [OR] = 1.27, p  = 0.006) and FCTP-pre (OR = 2.13, p  = 0.006) were significant predictors of abnormal KJLO-post. However, -pre ankle joint parameters (TTA, AJO, and LDTGA) did not differ significantly between the two groups and were not significantly associated with the abnormal KJLO-post. The -pre knee joint alignment and knee joint convergence angle evaluated by HKA-pre and FCTP-pre angle, respectively, were significant predictors of abnormal KJLO after OWHTO. However, -pre ankle joint

  9. Long-term complications following tibial plateau levelling osteotomy in small dogs with tibial plateau angles > 30°.

    PubMed

    Knight, Rebekah; Danielski, Alan

    2018-04-21

    Tibial plateau levelling osteotomy (TPLO) is commonly performed for surgical management of cranial cruciate ligament (CCL) disease. It has been suggested that small dogs may have steeper tibial plateau angles (TPAs) than large dogs, which has been associated with increased complication rates after TPLO. A retrospective study was performed to assess the rate and nature of long-term complications following TPLO in small dogs with TPAs>30°. Medical records were reviewed for dogs with TPAs>30° treated for CCL rupture by TPLO with a 2.0 mm plate over a five-year period. Radiographs were assessed to determine TPA, postoperative tibial tuberosity width and to identify any complication. Up-to-date medical records were obtained from the referring veterinary surgeon and any complications in the year after surgery were recorded. The effects of different variables on complication rate were assessed using logistic regression analysis. Minor complications were reported in 22.7 per cent of cases. This is similar to or lower than previously reported complication rates for osteotomy techniques in small dogs and dogs with steep TPAs. A smaller postoperative TPA was the only variable significantly associated with an increased complication rate. No major complications were identified. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Sinus Microanatomy and Microbiota in a Rabbit Model of Rhinosinusitis

    PubMed Central

    Cho, Do-Yeon; Mackey, Calvin; Van Der Pol, William J.; Skinner, Daniel; Morrow, Casey D.; Schoeb, Trenton R.; Rowe, Steven M.; Swords, William E.; Tearney, Guillermo J.; Woodworth, Bradford A.

    2018-01-01

    Background: Rabbits are useful for preclinical studies of sinusitis because of similar physiologic features to humans. The objective of this study is to develop a rabbit model of sinusitis that permits assessment of microanatomy and sampling for evaluating shifts in the sinus microbiota during the development of sinusitis and to test how the mucociliary clearance (MCC) defect might lead to dysbiosis and chronic rhinosinusitis (CRS). Methods: Generation of CRS was accomplished with an insertion of a sterile sponge into the left middle meatus of New Zealand white rabbits (n = 9) for 2 weeks. After sponge removal, 4 rabbits were observed for another 10 weeks and evaluated for CRS using endoscopy, microCT, visualization of the functional micro-anatomy by micro-optical coherence tomography (μOCT), and histopathological analysis of the sinus mucosa. Samples were taken from the left middle meatus and submitted for microbiome analysis. Results: CT demonstrated opacification of all left sinuses at 2 weeks in all rabbits (n = 9), which persisted in animals followed for another 12 weeks (n = 4). Histology at week 2 showed mostly neutrophils. On week 14, significant infiltration of plasma cells and lymphocytes was noted with increased submucosal glands compared to controls (p = 0.02). Functional microanatomy at 2 weeks showed diminished periciliary layer (PCL) depth (p < 0.0001) and mucus transport (p = 0.0044) compared to controls despite a thick mucus layer. By 12 weeks, the thickened mucus layer was resolved but PCL depletion persisted in addition to decreased ciliary beat frequency (CBF; p < 0.0001). The mucin fermenting microbes (Lactobacillales, Bacteroidales) dominated on week 2 and there was a significant shift to potential pathogens (e.g., Pseudomonas, Burkholderia) by week 14 compared to both controls and the acute phase (p < 0.05). Conclusion: We anticipate this reproducible model will provide a means for identifying underlying mechanisms of airway-surface liquid

  11. Does Treatment of the Tibia Matter in Bipolar Chondral Defects of the Knee? Clinical Outcomes with Greater Than 2 Years Follow-up.

    PubMed

    Hannon, Charles P; Weber, Alexander E; Gitelis, Matthew; Meyer, Maximillian A; Yanke, Adam B; Cole, Brian J

    2018-04-01

    To compare the osteochondral allograft (OCA) outcomes of bipolar defects with isolated femoral defects and to investigate the optimal treatment of bipolar defects by comparing femoral OCA with tibial debridement to femoral OCA and tibial microfracture. A series of patients with 2-year follow-up from March 2004 to September 2015 after femoral OCA for bipolar chondral defects was identified. Group 1 contained patients with tibial defects treated with debridement and group 2 contained patients with microfractured tibial defects. A third group (group 3) with isolated femoral defects treated with OCA was identified and matched by gender, body mass index (BMI), laterality, and OCA size to groups 1 and 2. Patient-specific, defect-specific, intraoperative, and postoperative data including patient-reported outcomes were collected on all patients. The study groups were compared using analyses of variance, paired sample t tests, and χ-square analyses. Thirty-six patients who had femoral OCA for bipolar lesions were identified with 20 patients in group 1 and 16 patients in group 2. Group 3 had 20 patients. There were no differences between the 3 groups in terms of gender (P = .616), BMI (P = .271), number of previous surgeries (P = .451), femoral or tibial defect size (P = .296), and OCA size (P = .981). Preoperative to postoperative patient-reported clinical outcomes (PROs) revealed statistical and clinically meaningful improvement in all 3 groups, but did not differ between groups. Patient-specific and defect-specific factors did not correlate with PROs. The graft survivorship for group 1 was 85% at 4.5 years, 100% for group 2 at 2.5 years, and 95% for group 3 at 3.8 years. Regardless of tibial treatment, patients with bipolar defects treated with femoral OCA have clinically meaningful improvements in PROs and excellent graft survivorship comparable to isolated femoral OCAs at more than 2 years. Level III, case-control study. Copyright © 2017 Arthroscopy

  12. Minimizing Alteration of Posterior Tibial Slope During Opening Wedge High Tibial Osteotomy: a Protocol with Experimental Validation in Paired Cadaveric Knees

    PubMed Central

    Westermann, Robert W; DeBerardino, Thomas; Amendola, Annunziato

    2014-01-01

    Introduction The High Tibial Osteotomy (HTO) is a reliable procedure in addressing uni- compartmental arthritis with associated coronal deformities. With osteotomy of the proximal tibia, there is a risk of altering the tibial slope in the sagittal plane. Surgical techniques continue to evolve with trends towards procedure reproducibility and simplification. We evaluated a modification of the Arthrex iBalance technique in 18 paired cadaveric knees with the goals of maintaining sagittal slope, increasing procedure efficiency, and decreasing use of intraoperative fluoroscopy. Methods Nine paired cadaveric knees (18 legs) underwent iBalance medial opening wedge high tibial osteotomies. In each pair, the right knee underwent an HTO using the modified technique, while all left knees underwent the traditional technique. Independent observers evaluated postoperative factors including tibial slope, placement of hinge pin, and implant placement. Specimens were then dissected to evaluate for any gross muscle, nerve or vessel injury. Results Changes to posterior tibial slope were similar using each technique. The change in slope in traditional iBalance technique was -0.3° ±2.3° and change in tibial slope using the modified iBalance technique was -0.4° ±2.3° (p=0.29). Furthermore, we detected no differences in posterior tibial slope between preoperative and postoperative specimens (p=0.74 traditional, p=0.75 modified). No differences in implant placement were detected between traditional and modified techniques. (p=0.85). No intraoperative iatrogenic complications (i.e. lateral cortex fracture, blood vessel or nerve injury) were observed in either group after gross dissection. Discussion & Conclusions Alterations in posterior tibial slope are associated with HTOs. Both traditional and modified iBalance techniques appear reliable in coronal plane corrections without changing posterior tibial slope. The present modification of the Arthrex iBalance technique may increase the

  13. Evaluation of different rotary devices on bone repair in rabbits.

    PubMed

    Ribeiro Junior, Paulo Domingos; Barleto, Christiane Vespasiano; Ribeiro, Daniel Araki; Matsumoto, Mariza Akemi

    2007-01-01

    In oral surgery, the quality of bone repair may be influenced by several factors that can increase the morbidity of the procedure. The type of equipment used for ostectomy can directly affect bone healing. The aim of this study was to evaluate bone repair of mandible bone defects prepared in rabbits using three different rotary devices. Fifteen New Zealand rabbits were randomly assigned to 3 groups (n=5) according to type of rotary device used to create bone defects: I--pneumatic low-speed rotation engine, II--pneumatic high-speed rotation engine, and III--electric low-speed rotation engine. The anatomic pieces were surgically obtained after 2, 7 and 30 days and submitted to histological and morphometric analysis. The morphometric results were expressed as the total area of bone remodeling matrix using an image analysis system. Increases in the bone remodeling matrix were noticed with time along the course of the experiment. No statistically significant differences (p>0.05) were observed among the groups at the three sacrificing time points considering the total area of bone mineralized matrix, although the histological analysis showed a slightly advanced bone repair in group III compared to the other two groups. The findings of the present study suggest that the type of rotary device used in oral and maxillofacial surgery does not interfere with the bone repair process.

  14. Tibial component alignment and risk of loosening in unicompartmental knee arthroplasty: a radiographic and radiostereometric study.

    PubMed

    Barbadoro, P; Ensini, A; Leardini, A; d'Amato, M; Feliciangeli, A; Timoncini, A; Amadei, F; Belvedere, C; Giannini, S

    2014-12-01

    Unicompartmental knee arthroplasty (UKA) has shown a higher rate of revision compared with total knee arthroplasty. The success of UKA depends on prosthesis component alignment, fixation and soft tissue integrity. The tibial cut is the crucial surgical step. The hypothesis of the present study is that tibial component malalignment is correlated with its risk of loosening in UKA. This study was performed in twenty-three patients undergoing primary cemented unicompartmental knee arthroplasties. Translations and rotations of the tibial component and the maximum total point motion (MTPM) were measured using radiostereometric analysis at 3, 6, 12 and 24 months. Standard radiological evaluations were also performed immediately before and after surgery. Varus/valgus and posterior slope of the tibial component and tibial-femoral axes were correlated with radiostereometric micro-motion. A survival analysis was also performed at an average of 5.9 years by contacting patients by phone. Varus alignment of the tibial component was significantly correlated with MTPM, anterior tibial sinking, varus rotation and anterior and medial translations from radiostereometry. The posterior slope of the tibial component was correlated with external rotation. The survival rate at an average of 5.9 years was 89%. The two patients who underwent revision presented a tibial component varus angle of 10° for both. There is correlation between varus orientation of the tibial component and MTPM from radiostereometry in unicompartmental knee arthroplasties. Particularly, a misalignment in varus larger than 5° could lead to risk of loosening the tibial component. Prognostic studies-retrospective study, Level II.

  15. Comparison of intraoperative anthropometric measurements of the proximal tibia and tibial component in total knee arthroplasty.

    PubMed

    Miyatake, Naohisa; Sugita, Takehiko; Aizawa, Toshimi; Sasaki, Akira; Maeda, Ikuo; Kamimura, Masayuki; Fujisawa, Hirokazu; Takahashi, Atsushi

    2016-09-01

    Precise matching of the tibial component and resected bony surfaces and proper rotational implanting of the tibial component are crucial for successful total knee arthroplasty. We aimed to analyze the exact anthropometric proximal tibial data of Japanese patients undergoing total knee arthroplasty and correlate the measurements with the dimensions of current total knee arthroplasty systems. A total of 703 knees in 566 Japanese patients who underwent total knee arthroplasty for osteoarthritis were included. The bone resection in the proximal tibia was performed perpendicular to the tibial axis in the frontal plane. Measurements of the proximal tibia were intraoperatively obtained after proximal tibial preparation. There were significant positive correlations between the lateral anteroposterior and medial anteroposterior and mediolateral dimensions. A progressive decrease in the mediolateral/lateral anteroposterior ratio with an increasing lateral anteroposterior dimension or the mediolateral/anteroposterior ratio with an increasing anteroposterior dimension was observed. The lateral anteroposterior dimension was smaller than the medial anteroposterior dimension by a mean of 4.8 ± 2.0 mm. The proximal tibia exhibited asymmetry between the lateral and medial plateaus. A comparison of the morphological data and dimensions of the implants, one of which was a symmetric tibial component (NexGen) and the others were asymmetric (Genesis II and Persona), indicated that an asymmetric tibial component could be beneficial to maximize tibial plateau coverage. This study provided important reference data for designing a proper tibial component for Japanese people. The proximal tibial cut surface was asymmetric. There was wide dispersion in the lateral anteroposterior, medial anteroposterior, and mediolateral dimensions depending on the patient. Our data showed that the tibial components of the Genesis II and Persona rather than that of the NexGen may be preferable for

  16. Improved Healing of Large, Osseous, Segmental Defects by Reverse Dynamization: Evaluation in a Sheep Model

    DTIC Science & Technology

    2014-10-01

    initiated. One such fixator has been tested on a cadaveric sheep tibia. In the unlocked, loose position, the axial stiffness of the tibia and fixator...suggested by our previous studies using rats. This aspect of the project is the present focus of attention, and additional cadaver legs will be tested...characterize external fixators). A 3 mm tibial defect was created in the leg of a cadaveric sheep, and stabilized with an experimental external

  17. Comparison of the primary stability of different tibial baseplate concepts to retain both cruciate ligaments during total knee arthroplasty.

    PubMed

    Nowakowski, Andrej M; Stangel, Melanie; Grupp, Thomas M; Valderrabano, Victor

    2013-10-01

    A novel tibial baseplate design (Transversal Support Tibial Plateau) as a new treatment concept for bi-cruciate retaining total knee arthroplasty is evaluated for mechanical stability and compared to other tibial baseplate designs. This concept should provide better primary stability and thus, less subsidence, than implantation of two separate unicondylar tibial baseplates. Different baseplates were implanted into synthetic bone specimens (Sawbones® Pacific Research Laboratories, Inc., Washington, USA), all uncemented. Using a standardized experimental setup, subsidence was achieved, enabling comparison of the models regarding primary stability. Overall implant subsidence was significantly increased for the two separate unicondylar tibial baseplates versus the new Transversal Support Tibial Plateau concept, which showed comparable levels to a conventional tibial baseplate. Reduced subsidence results in better primary stability. Linking of two separate baseplates appears to provide increased primary stability in terms of bony fixation, comparable to that of a conventional single tibial baseplate. © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Morphological assessment of bone mineralization in tibial metaphyses of ascorbic acid-deficient ODS rats.

    PubMed

    Hasegawa, Tomoka; Li, Minqi; Hara, Kuniko; Sasaki, Muneteru; Tabata, Chihiro; de Freitas, Paulo Henrique Luiz; Hongo, Hiromi; Suzuki, Reiko; Kobayashi, Masatoshi; Inoue, Kiichiro; Yamamoto, Tsuneyuki; Oohata, Noboru; Oda, Kimimitsu; Akiyama, Yasuhiro; Amizuka, Norio

    2011-08-01

    Osteogenic disorder shionogi (ODS) rats carry a hereditary defect in ascorbic acid synthesis, mimicking human scurvy when fed with an ascorbic acid-deficient (aa-def) diet. As aa-def ODS rats were shown to feature disordered bone formation, we have examined the bone mineralization in this rat model. A fibrous tissue layer surrounding the trabeculae of tibial metaphyses was found in aa-def ODS rats, and this layer showed intense alkaline phosphatase activity and proliferating cell nuclear antigen-immunopositivity. Many osteoblasts detached from the bone surfaces and were characterized by round-shaped rough endoplasmic reticulum (rER), suggesting accumulation of malformed collagen inside the rER. Accordingly, fine, fragile fibrillar collagenous structures without evident striation were found in aa-def bones, which may result from misassembling of the triple helices of collagenous α-chains. Despite a marked reduction in bone formation, ascorbic acid deprivation seemed to have no effect on mineralization: while reduced in number, normal matrix vesicles and mineralized nodules could be seen in aa-def bones. Fine needle-like mineral crystals extended from these mineralized nodules, and were apparently bound to collagenous fibrillar structures. In summary, collagen mineralization seems unaffected by ascorbic acid deficiency in spite of the fine, fragile collagenous fibrils identified in the bones of our animal model.

  19. Reconstruction of long digital extensor tendon by cranial tibial muscle fascia graft in a dog.

    PubMed

    Sabiza, Soroush; Khajeh, Ahmad; Naddaf, Hadi

    2016-01-01

    Tendon rupture in dogs is generally the result of a direct trauma. This report described the use of adjacent muscle autogenic fascial graft for reconstruction of distal rupture of long digital extensor tendon in a dog. A two-year-old male mix breed dog, was presented with a non-weight bearing lameness of the right hind limb and a deep rupture of lateral side of right tarsus. History taking revealed that this rupture appeared without any apparent cause, when walking around the farm, three days before. Radiography was done and no fracture was observed. Hyperextension of right tarsal joint compared to left limb was observed. Under general anesthesia, after dissections of the ruptured area, complete rupture of long digital extensor tendon was revealed. Then, we attempted to locate the edge of the tendon, however, the tendon length was shortened approximately 1 cm. Hence, a strip of 1 cm length from fascia of cranial tibial muscle was harvested to fill the defect. The graft was sutured to the two ends of tendon using locking loop pattern. Subcutaneous layers and the skin were sutured routinely. Ehmer sling bandage was applied to prevent weight bearing on the surgical region. Re-examination and phone contact with the owner eight weeks and six months postoperatively revealed a poor lameness and excellent function of the dog, respectively. It could be concluded that the fascia of adjacent muscles can be used as an autogenic graft for reconstruction of some tendon ruptures.

  20. Reconstruction of long digital extensor tendon by cranial tibial muscle fascia graft in a dog

    PubMed Central

    Sabiza, Soroush; Khajeh, Ahmad; Naddaf, Hadi

    2016-01-01

    Tendon rupture in dogs is generally the result of a direct trauma. This report described the use of adjacent muscle autogenic fascial graft for reconstruction of distal rupture of long digital extensor tendon in a dog. A two-year-old male mix breed dog, was presented with a non-weight bearing lameness of the right hind limb and a deep rupture of lateral side of right tarsus. History taking revealed that this rupture appeared without any apparent cause, when walking around the farm, three days before. Radiography was done and no fracture was observed. Hyperextension of right tarsal joint compared to left limb was observed. Under general anesthesia, after dissections of the ruptured area, complete rupture of long digital extensor tendon was revealed. Then, we attempted to locate the edge of the tendon, however, the tendon length was shortened approximately 1 cm. Hence, a strip of 1 cm length from fascia of cranial tibial muscle was harvested to fill the defect. The graft was sutured to the two ends of tendon using locking loop pattern. Subcutaneous layers and the skin were sutured routinely. Ehmer sling bandage was applied to prevent weight bearing on the surgical region. Re-examination and phone contact with the owner eight weeks and six months postoperatively revealed a poor lameness and excellent function of the dog, respectively. It could be concluded that the fascia of adjacent muscles can be used as an autogenic graft for reconstruction of some tendon ruptures. PMID:27872726

  1. Calcium phosphate cement augmentation in the treatment of depressed tibial plateau fractures with open reduction and internal fixation.

    PubMed

    Oztürkmen, Yusuf; Caniklioğlu, Mustafa; Karamehmetoğlu, Mahmut; Sükür, Erhan

    2010-01-01

    We aimed to evaluate the clinical and radiological outcomes of open reduction and internal fixation augmented with calcium phosphate cement (CPC) in the treatment of depressed tibial plateau fractures. Twenty-eight knees of 28 patients [19 males and 9 females; mean age, 41.2 years (range 22-72 years)] who had open reduction and internal fixation combined with CPC augmentation were included in this study. Seventeen fractures were Schatzker type II, 5 were type III, 3 were type IV, 2 were type V, and 1 was type VI. CPC was used to fill the subchondral bone defects in all knees. Fixation of the fragments was done with screws in 3 knees (10%). Standard proximal tibial plates or buttress plates were used in 25 knees (90%) with an additional split fragment extending distally to achieve internal fixation. Full weight-bearing was allowed in 6.4 weeks (range 6-12 weeks) after surgery. Resorption of CPC granules was defined as the decrease in the size and density of grafting material on radiographs. Rasmussen's radiological and clinical scores were determined postoperatively. Functionality was assessed with Lysholm knee scoring system. Activity was graded with Tegner's activity scale. Union was achieved in all patients with a mean follow-up of 22.2 months (range 6-36 months). There were no intraoperative complications. At the latest follow-up radiographs, resorption of the graft was observed in 25 knees (89%). Rasmussen's radiologic score was excellent in 17 patients (61%), good in 9 patients (32%), and fair in 2 patients (7%). Rasmussen's clinical score was excellent in 9 patients (32%), good in 18 patients (64%), and fair in 1 patient (4%). According to the Lysholm knee score, functional results were excellent in 16 patients (57%), good in 8 patients (29%), and fair in 4 patients (14%). Twenty-two patients (78%) achieved the preoperative activity level after surgery, and there was no significant difference between the mean preoperative and postoperative Tegner scores (4

  2. Neural Tube Defects

    MedlinePlus

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  3. Single Ventricle Defects

    MedlinePlus

    ... Your Risk • Symptoms & Diagnosis • Care & Treatment • Tools & Resources Web Booklets on Congenital Heart Defects These online publications ... to you or your child’s defect and concerns. Web Booklet: Adults With Congenital Heart Defects Web Booklet: ...

  4. Metachronous Bilateral Posterior Tibial Artery Aneurysms in Ehlers-Danlos Syndrome Type IV

    SciTech Connect

    Hagspiel, Klaus D., E-mail: kdh2n@virginia.edu; Bonatti, Hugo; Sabri, Saher

    2011-04-15

    Ehlers-Danlos syndrome type IV is a life-threatening genetic connective tissue disorder. We report a 24-year-old woman with EDS-IV who presented with metachronous bilateral aneurysms/pseudoaneurysms of the posterior tibial arteries 15 months apart. Both were treated successfully with transarterial coil embolization from a distal posterior tibial approach.

  5. Liquid nitrogen-treated autogenous dentin as bone substitute: an experimental study in a rabbit model.

    PubMed

    Atiya, Basim K; Shanmuhasuntharam, Palasuntharam; Huat, Siar; Abdulrazzak, Shurooq; Oon, Ha

    2014-01-01

    Different forms of dentin, including untreated, undemineralized, demineralized, boiled, or mixed with other materials, have been evaluated for efficacy as bone substitutes. However, the effects of application of liquid nitrogen-treated dentin for bone grafting remain unknown. The objective of this study was to chronologically evaluate bone healing following grafting with liquid nitrogen-treated dentin in a rabbit model. Autogenous dentin treated with liquid nitrogen at -196°C for 20 minutes was used. In 16 New Zealand White rabbits, a bone defect (5 mm in diameter) was created in each femur and randomly grafted with either autogenous dentin (experimental group) or autogenous bone grafts (positive control). In another four rabbits (negative control), a similar defect in each femur was left empty. The rabbits were sacrificed at 2, 4, 8, and 12 weeks. Explants of grafted sites were harvested for histologic and histomorphometric analysis. At 2 and 4 weeks in both the experimental and positive control groups, accelerated formation of new bone was observed, which was undergoing remodeling at 8 and 12 weeks. The mean new bone score was higher in the experimental than in the negative control groups, but this was not statistically significant. The present results demonstrated that liquid nitrogen-treated autogenous dentin has both osteoconductive and osteoinductive properties and therefore has potential as a bone substitute.

  6. Esophageal replacement by hydroxylated bacterial cellulose patch in a rabbit model.

    PubMed

    Zhu, Changlai; Liu, Fang; Qian, Wenbo; Wang, Yingjie; You, Qingsheng; Zhang, Tianyi; Li, Feng

    2015-01-01

    To repair esophageal defects by hydroxylated and kombucha-synthesized bacterial cellulose (HKBC) patch in a rabbit model. Semicircular esophageal defects 1 cm in length of the cervical esophagus were initially created in 18 Japanese big-ear rabbits and then repaired with HKBC patch grafts. The clinical outcomes including survival rate, weight change, food intake, and hematological and radiologic evaluation were observed. After X-ray evaluation, the rabbits were sacrificed sequentially at 1, 3, and 6 months for histopathologic analysis with light microscopy and scanning electron microscopy. Survival rate during the first month was 88.9% (n = 16). Two rabbits died from anastomotic leakage during the entire follow-up. Postoperatively, feeding function and body weight were gradually restored in the surviving animals. No hematological abnormalities were found, and no obvious anastomotic leakage, stenosis, or obstruction was observed under X-ray examination. The histopathologic results showed a progressive regeneration of the esophagus in the graft area, where the neo-esophagus tissue had characteristics similar to native esophageal tissue after 3 months of surgery. HKBC is beneficial for esophageal tissue regeneration and may be a promising material for esophageal reconstruction.

  7. ß-TCP bone substitutes in tibial plateau depression fractures.

    PubMed

    Rolvien, Tim; Barvencik, Florian; Klatte, Till Orla; Busse, Björn; Hahn, Michael; Rueger, Johannes Maria; Rupprecht, Martin

    2017-10-01

    The use of beta-tricalciumphospate (ß-TCP, Cerasorb®) ceramics as an alternative for autologous bone-grafting has been outlined previously, however with no study focusing on both clinical and histological outcomes of ß-TCP application in patients with multi-fragment tibial plateau fractures. The aim of this study was to analyze the long-term results of ß-TCP in patients with tibial plateau fractures. 52 patients were included in this study. All patients underwent open surgery with ß-TCP block or granulate application. After a mean follow-up of 36months (14-64months), the patients were reviewed. Radiography and computed-tomography were performed, while the Rasmussen score was obtained for clinical outcome. Furthermore, seven patients underwent biopsy during hardware removal, which was subsequently analyzed by histology and backscattered electron microscopy (BSEM). An excellent reduction with two millimeters or less of residual incongruity was achieved in 83% of the patients. At follow-up, no further changes occurred and no nonunions were observed. Functional outcome was good to excellent in 82%. Four patients underwent revision surgery due to reasons unrelated to the bone substitute material. Histologic analyses indicated that new bone was built around the ß-TCP-grafts, however a complete resorption of ß-TCP was not observed. ß-TCP combined with internal fixation represents an effective and safe treatment of tibial plateau depression fractures with good functional recovery. While its osteoconductivity seems to be successful, the biological degradation and replacement of ß-TCP is less pronounced in humans than previous animal studies have indicated. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Symptomatic venous thromboembolism following circular frame treatment for tibial fractures.

    PubMed

    Vollans, S; Chaturvedi, A; Sivasankaran, K; Madhu, T; Hadland, Y; Allgar, V; Sharma, H K

    2015-01-01

    Venous thromboembolism (VTE) is a significant cause of morbidity and mortality following tibial fractures. The risk is as high as 77% without prophylaxis and around 10% with prophylaxis. Within the current literature there are no figures reported specifically for those individuals treated with circular frames. Our aim was to evaluate the VTE incidence within a single surgeon series and to evaluate potential risk factors. We retrospectively reviewed our consecutive single surgeon series of 177 patients admitted to a major trauma unit with tibial fractures. All patients received standardised care, including chemical thromboprophylaxis within 24h of injury until independent mobility was achieved. We comprehensively reviewed our prospective database and medical records looking at demographics and potential risk factors. Seven patients (4.0% ± 2.87%) developed symptomatic VTE during the course of frame treatment; three deep vein thrombosis (DVTs) and four pulmonary embolisms (PEs). Those with a VTE event had significantly increased body mass index (BMI) (p = 0.01) when compared to those without symptomatic VTE. No differences (p > 0.05) were observed between the groups in age, gender, smoking status, fracture type (anatomical allocation or open/closed), delay to frame treatment, weight bearing status post-frame, inpatient stay or total duration of frame treatment. This study suggests that increased BMI is a statistically significant risk factor for VTE, as reported in current literature. In addition, we calculated the true risk of VTE following circular frame treatment for tibial fracture in our series is from 1.13% to 6.87%, which is at least comparable to other forms of treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Management of open tibial fractures – a regional experience

    PubMed Central

    Townley, WA; Nguyen, DQA; Rooker, JC; Dickson, JK; Goroszeniuk, DZ; Khan, MS; Camp, D

    2010-01-01

    INTRODUCTION The treatment of soft-tissue injuries associated with tibial diaphyseal fractures presents a clinical challenge that is best managed by a combined plastic and orthopaedic surgery approach. The current study was undertaken to assess early treatment outcomes and burden of service provision across five regional plastic surgery units in the South-West of England. SUBJECTS AND METHODS We conducted a prospective 6-month audit of open tibial diaphyseal fracture management in five plastic surgery units (Bristol, Exeter, Plymouth, Salisbury, Swansea) with a collective catchment of 9.2 million people. Detailed data were collected on patient demographics, injury pattern, surgical management and outcome followed to discharge. RESULTS The study group consisted of 55 patients (40 male, 15 female). Twenty-two patients presented directly to the emergency department at the specialist hospital (primary group), 33 patients were initially managed at a local hospital (tertiary group). The mean time from injury to soft tissue cover was significantly less (P < 0.001) in the primary group (3.6 ± 0.8 days) than the tertiary group (10.8 ± 2.2 days), principally due to a delay in referral in the latter group (5.4 ±1.7 days). Cover was achieved with 39 flaps (19 free, 20 local), eight split skin grafts. Nine wounds closed directly or by secondary intention. There were 11 early complications (20%) including one flap failure and four infections. The overall mean length of stay was 17.5 ± 2.8 days. CONCLUSIONS Multidisciplinary management of severe open tibial diaphyseal may not be feasible at presentation of injury depending on local hospital specialist services available. Our results highlight the need for robust assessment, triage and senior orthopaedic review in the early post-injury phase. However, broader improvements in the management of lower limb trauma will additionally require further development of combined specialist trauma centres. PMID:21047449

  10. Medial tibial pain: a dynamic contrast-enhanced MRI study.

    PubMed

    Mattila, K T; Komu, M E; Dahlström, S; Koskinen, S K; Heikkilä, J

    1999-09-01

    The purpose of this study was to compare the sensitivity of different magnetic resonance imaging (MRI) sequences to depict periosteal edema in patients with medial tibial pain. Additionally, we evaluated the ability of dynamic contrast-enhanced imaging (DCES) to depict possible temporal alterations in muscular perfusion within compartments of the leg. Fifteen patients with medial tibial pain were examined with MRI. T1-, T2-weighted, proton density axial images and dynamic and static phase post-contrast images were compared in ability to depict periosteal edema. STIR was used in seven cases to depict bone marrow edema. Images were analyzed to detect signs of compartment edema. Region-of-interest measurements in compartments were performed during DCES and compared with controls. In detecting periosteal edema, post-contrast T1-weighted images were better than spin echo T2-weighted and proton density images or STIR images, but STIR depicted the bone marrow edema best. DCES best demonstrated the gradually enhancing periostitis. Four subjects with severe periosteal edema had visually detectable pathologic enhancement during DCES in the deep posterior compartment of the leg. Percentage enhancement in the deep posterior compartment of the leg was greater in patients than in controls. The fast enhancement phase in the deep posterior compartment began slightly slower in patients than in controls, but it continued longer. We believe that periosteal edema in bone stress reaction can cause impairment of venous flow in the deep posterior compartment. MRI can depict both these conditions. In patients with medial tibial pain, MR imaging protocol should include axial STIR images (to depict bone pathology) with T1-weighted axial pre and post-contrast images, and dynamic contrast enhanced imaging to show periosteal edema and abnormal contrast enhancement within a compartment.

  11. High-resolution axial MR imaging of tibial stress injuries

    PubMed Central

    2012-01-01

    Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries. PMID:22574840

  12. Intravitreal flomoxef sodium in rabbits.

    PubMed

    Mochizuki, K; Torisaki, M; Yamashita, Y; Komatsu, M; Tanahashi, T

    1993-01-01

    We studied the intraocular concentration of flomoxef sodium in nonvitrectomized and vitrectomized eyes of albino rabbits after intravenous administration of 100 mg/kg flomoxef sodium. The concentration of flomoxef sodium in the vitreous body was undetectable (< 0.1 micrograms/ml) in nonvitrectomized eyes. Retinal toxicity of flomoxef sodium was investigated with ophthalmoscopy, electroretinography (ERG) and light microscopy after intravitreal injection of 200, 500, 1,000 and 2,000 micrograms flomoxef sodium in albino and pigmented rabbits. No ERG changes were induced with 200 micrograms. Other higher doses caused transient ERG changes. After the 200-micrograms injection, the intravitreal concentration decreased exponentially, the half-life being 4.4 h. The antibacterial activity, broad coverage and low intravitreal toxicity of flomoxef sodium suggest that this compound may be used to treat bacterial endophthalmitis.

  13. Bone tissue ultrastructural defects in a mouse model for osteogenesis imperfecta: a Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Chen, Tsoching; Kozloff, Kenneth M.; Goldstein, Steven A.; Morris, Michael D.

    2004-07-01

    Osteogenesis imperfecta (OI) is genetic defect in which the genes that code for the α1(I) or α2(I) chains of type I collagen are defective. The defects often result in substitution of a bulky amino acid for glycine, causing formation of collagen that can not form the normal triple helix. Depending on the details of the defects, the outcomes range from controllable to lethal. This study focuses on OI type IV, a more common and moderately severe form of the disease. People with the disease have a substantial increase in the risk and rate of fracture. We examine the spectroscopic consequences of these defects, using a mouse model (BRTL) that mimics OI type IV. We compare Raman images from tibial cortical tissue of wild-type mice and BRTL mice with single copy of mutation and show that both mineral to matrix ratios and collagen inter-fibril cross-links are different in wild-type and mutant mice.

  14. [Structural changes in the tibial bones from an excessive load].

    PubMed

    Moshiashvili, B I

    1977-10-01

    80 cases of pathological reconstruction of the tibia in young men at the age of 18--20 are described. The pathology developed as a result of intense regular physical exercise. In 53 patients the process was localized in the upper third of the tibia, in 20--in the middle third and in 7--in the lower third of the bone. In 6 cases the fracture of the tibial proximal metaphysis happened against the background of pathological reconstruction of the tibia; 3 of them sustained simultaneously a fracture of the fibular head. Some recommendations of practical importance are suggested.

  15. Teratology Studies on Lewisite and Sulfur Mustard Agents: Effects of Sulfur Mustard in Rats and Rabbits

    SciTech Connect

    Hackett, P. L.; Rommereim, R. L.; Burton, F. G.

    1987-09-30

    Sulfur mustard (HD) was administered to rats and rabbits by intragastric intubation. Rats were dosed daily from 6 through 15 days of gestation (dg) with 0. 0.5, 1.0 or 2.0 mg of HD/kg; rabbits were dosed with 0, 0.4, 0.6 or 0.8 mg/kg on 6 through 19 dg. Maternal animals were weighed periodically and, at necropsy, were examined for gross lesions of major organs and reproductive performance; live fetuses were weighed and examined for external, internal and skeletal defects. In rats, reductions in body weights were observed in maternal animals and their female fetuses at the lowest administered dose (0.5more » mg/kg), but the incidence of fetal malformations was not increased. In rabbits the highest administered dose (0.8 mg/kg) induced maternal mortality and depressed body weight measures but did not affect fetal development. These results suggest that orally administered HD is not teratogenic in rats and rabbits since fetal effects were observed only at dose levels that induced frank maternal toxicity. Estimations of dose ranges for "no observable effects levels" in rats and rabbits, respectively, were: < 0.5 and < 0.4 mg/kg in maternal animals and < 0.5 and > 0.8 mg/kg in their fetuses.« less

  16. Pseudoaneurysm of the Anterior Tibial Artery following Ankle Arthroscopy in a Soccer Player.

    PubMed

    Tonogai, Ichiro; Matsuura, Tetsuya; Iwame, Toshiyuki; Wada, Keizo; Takasago, Tomoya; Goto, Tomohiro; Hamada, Daisuke; Kawatani, Yohei; Fujimoto, Eiki; Kitagawa, Tetsuya; Takao, Shyoichiro; Iwamoto, Seiji; Yamanaka, Moriaki; Harada, Masafumi; Sairyo, Koichi

    2017-01-01

    Ankle arthroscopy carries a lower risk of vascular complications when standard anterolateral and anteromedial portals are used. However, the thickness of the fat pad at the anterior ankle affords little protection for the thin-walled anterior tibial artery, rendering it susceptible to indirect damage during procedures performed on the anterior ankle joint. To our knowledge, only 11 cases of pseudoaneurysm involving the anterior tibial artery after ankle arthroscopy have been described in the literature. Here we reported a rare case of a 19-year-old soccer player who presented with pseudoaneurysm of the anterior tibial artery following ankle arthroscopy using an ankle distraction method and underwent anastomosis for the anterior tibial artery injury. Excessive distraction of the ankle puts the neurovascular structures at greater risk for iatrogenic injury of the anterior tibial artery during ankle arthroscopy. Surgeons should look carefully for postoperative ankle swelling and pain after ankle arthroscopy.

  17. Pseudoaneurysm of the Anterior Tibial Artery following Ankle Arthroscopy in a Soccer Player

    PubMed Central

    Iwame, Toshiyuki; Hamada, Daisuke; Fujimoto, Eiki; Kitagawa, Tetsuya; Takao, Shyoichiro; Iwamoto, Seiji; Yamanaka, Moriaki; Harada, Masafumi

    2017-01-01

    Ankle arthroscopy carries a lower risk of vascular complications when standard anterolateral and anteromedial portals are used. However, the thickness of the fat pad at the anterior ankle affords little protection for the thin-walled anterior tibial artery, rendering it susceptible to indirect damage during procedures performed on the anterior ankle joint. To our knowledge, only 11 cases of pseudoaneurysm involving the anterior tibial artery after ankle arthroscopy have been described in the literature. Here we reported a rare case of a 19-year-old soccer player who presented with pseudoaneurysm of the anterior tibial artery following ankle arthroscopy using an ankle distraction method and underwent anastomosis for the anterior tibial artery injury. Excessive distraction of the ankle puts the neurovascular structures at greater risk for iatrogenic injury of the anterior tibial artery during ankle arthroscopy. Surgeons should look carefully for postoperative ankle swelling and pain after ankle arthroscopy. PMID:28607785

  18. Rabbits' eye globe sonographic biometry.

    PubMed

    Toni, Maria Carolina; Meirelles, Adriana Érica Wilkes Burton; Gava, Fábio Nelson; Camacho, Aparecido Antônio; Laus, José Luiz; Canola, Júlio Carlos

    2010-11-01

    To measure intraocular structures in New Zealand White breed rabbits (Oryctolagus cuniculus Linnaeus, 1758) using A-mode and B-mode ultrasound with a 20 MHz transducer. In this study, the eyes of 15 rabbits were evaluated for determination of intraocular measurements using an ophthalmic ultrasound unit able to operate in both A and B-modes. The distances from the cornea to the anterior capsule of the lens (D1), from the anterior capsule of the lens to the posterior capsule of the lens (D2), from the posterior capsule of the lens to the retina (D3) and the complete length of the eye, which corresponds to the distance from the cornea to the retina (D4) were taken. The mean values obtained were 2.70 mm (± 0.22 mm) for D1, 7.32 mm (± 0.40 mm) for D2, 7.10 mm (± 0.45 mm) for D3 and 17.12 mm (± 0.41 mm) for D4. Statistical analyses using the Student's t-test showed that there were no differences between the eyes. The study was feasible without the need of pharmacological restraint and yielded normal mean values for ocular sonographic biometry in rabbits. © 2010 American College of Veterinary Ophthalmologists.

  19. Characterization of a rabbit germ-line VH gene that is a candidate donor for VH gene conversion in mutant Alicia rabbits.

    PubMed

    Chen, H T; Alexander, C B; Mage, R G

    1995-06-15

    Normal rabbits preferentially rearrange the 3'-most VH gene, VH1, to encode Igs with VHa allotypes, which constitute the majority of rabbit serum Igs. A gene conversion-like mechanism is employed to diversify the primary Ab repertoire. In mutant Alicia rabbits that derived from a rabbit with VHa2 allotype, the VH1 gene was deleted. Our previous studies showed that the first functional gene (VH4) or VH4-like genes were rearranged in 2- to 8-wk-old homozygous Alicia. The VH1a2-like sequences that were found in splenic mRNA from 6-wk and older Alicia rabbits still had some residues that were typical of VH4. The appearances of sequences resembling that of VH1a2 may have been caused by gene conversions that altered the sequences of the rearranged VH or there may have been rearrangement of upstream VH1a2-like genes later in development. To investigate this further, we constructed a cosmid library and isolated a VH1a2-like gene, VH12-1-6, with a sequence almost identical to VH1a2. This gene had a deleted base in the heptamer of its recombination signal sequence. However, even if this defect diminished or eliminated its ability to rearrange, the a2-like gene could have acted as a donor for gene-conversion-like alteration of rearranged VH genes. Sequence comparisons suggested that this gene or a gene like it could have acted as a donor for gene conversion in mutant Alicia and in normal rabbits.

  20. Cardiovascular physiology and diseases of the rabbit.

    PubMed

    Pariaut, Romain

    2009-01-01

    This article reviews what is known about the diagnosis and management of cardiovascular diseases in the pet rabbit. Current knowledge is based on anecdotal reports, derived from research data using the rabbit as an animal model of human cardiovascular diseases, but most importantly canine and feline cardiology. It is likely that, as cardiovascular diseases are more often recognized, more specific information will soon become available for the treatment of the pet rabbit with cardiac disease.

  1. Open wedge high tibial osteotomies: Calcium-phosphate ceramic spacer versus autologous bonegraft.

    PubMed

    Gouin, F; Yaouanc, F; Waast, D; Melchior, B; Delecrin, J; Passuti, N

    2010-10-01

    Valgus tibial osteotomy (VTO) is a well-known procedure for the treatment of medial compartment femoro-tibial osteoarthritis. Good and very good results have been reported with calcium phosphate wedges, which avoid the inconveniences of autologous grafts use. The hypothesis of this study is that with equivalent results in the treatment of osteoarthritis of the knee, the use of calcium phosphate wedges (BMCaPh) to fill the bone defect created by osteotomy would result in fewer specific complications and less pain associated with autologous grafts (AUTO) harvesting. This prospective, controlled, randomised study included one arm that received a macroporous, biphasic calcium phosphate wedge (BMCaPh group) and one arm that received an autologous tricortical graft (AUTO group) for filling. The same plate with locked screws was used for fixation in all cases. All patients underwent at least two years of clinical and radiographic post-operative follow-up. Forty patients were included. Loss of correction occurred in six of the twenty-two patients in the BMCaPh group (27%), resulting in three early surgical revisions, compared to one loss of correction in the AUTO group. Lateral cortical hinge tears were a risk factor for loss of correction for the entire cohort and in the BMCaPh group. (relative risk 13.3 [1.9-92]. Moreover, union took significantly longer and pain lasted significantly longer in the BMCaPh group, although results were comparable at 6 months. A significant number of undesirable events (loss of correction) occurred in this study, limiting the number of included patients. Nevertheless, the results show that although there was no difference in the two groups for overall complications, number of revisions all causes combined, or clinical results, filling with BMCaPh was less tolerated and increased the risk of loss of correction when local mechanical conditions of the knee were unfavourable (lateral cortical hinge tears). Moreover, although it is not possible

  2. Standing balance in people with trans-tibial amputation due to vascular causes: A literature review.

    PubMed

    Seth, Mayank; Lamberg, Eric

    2017-08-01

    Balance is an important variable to consider during the rehabilitation process of individuals with trans-tibial amputation. Limited evidence exists on the balance abilities of people with trans-tibial amputation due to vascular causes. The purpose of this article is to review literature and determine if standing balance is diminished in people with trans-tibial amputation due to vascular causes. Literature review. Data were obtained from PubMed, Google Scholar, OandP.org , CINHAL, and Science Direct. Studies were selected only if they included standing balance assessment of people with unilateral trans-tibial amputation due to vascular causes. The review yielded seven articles that met the inclusion criteria. The general test methodology required participants to stand still on force platforms, with feet together, while center of pressure or postural sway was recorded. According to the findings of this review, individuals with trans-tibial amputees due to vascular causes have diminished balance abilities. Limited evidence suggests their balance might be further diminished as compared to individuals with trans-tibial amputation due to trauma. Although the evidence is limited, because of the underlying pathology and presence of comorbidities in individuals with trans-tibial amputation due to vascular causes, one cannot ignore these findings, as even a minor injury from a fall may develop into a non-healing ulcer and affect their health and well-being more severely than individuals with trans-tibial amputation due to trauma. Clinical relevance Individuals with trans-tibial amputation due to vascular causes have diminished balance abilities compared to healthy individuals and individuals with trans-tibial amputation due to trauma. This difference should be considered when designing and fabricating prostheses. Prosthetists and rehabilitation clinicians should consider designing amputation cause-specific rehabilitation interventions, focussing on balance and other

  3. Mortality in rabbits transported for slaughter.

    PubMed

    Voslarova, Eva; Vecerek, Vladimir; Bedanova, Iveta; Vecerkova, Lenka

    2018-06-01

    During transport rabbits may be exposed to various stressors which can compromise both their welfare and meat quality. Mortality related to the commercial transport of rabbits for slaughter was analyzed in the Czech Republic in the period from 2009 to 2016. The overall transport-related mortality of rabbits was 0.19%. Transport distance was found to have an impact on rabbit mortality; significantly (p < .001) greater losses were found in rabbits transported over longer distances. Mortality rates ranged from 0.02% in rabbits transported over distances of less than 50 km to 0.29% in rabbits transported over distances exceeding 400 km. A significantly (p < .001) increased risk was also associated with shipments in which 500 and more rabbits were delivered per batch. No effect of season was found. Our results show that rabbits can be transported within a wide range of temperatures (from -5 to 19.9°C) with no negative impact on mortality in transit. However, journeys carried out at temperatures below -5°C and above 20°C were associated with increased death losses (0.17% and 0.15%, respectively). © 2018 Japanese Society of Animal Science.

  4. A novel locus for split-hand/foot malformation associated with tibial hemimelia (SHFLD syndrome) maps to chromosome region 17p13.1-17p13.3.

    PubMed

    Lezirovitz, Karina; Maestrelli, Sylvia Regina Pedrosa; Cotrim, Nelson Henderson; Otto, Paulo A; Pearson, Peter L; Mingroni-Netto, Regina Celia

    2008-07-01

    Split-hand/foot malformation (SHFM) associated with aplasia of long bones, SHFLD syndrome or Tibial hemimelia-ectrodactyly syndrome is a rare condition with autosomal dominant inheritance, reduced penetrance and an incidence estimated to be about 1 in 1,000,000 liveborns. To date, three chromosomal regions have been reported as strong candidates for harboring SHFLD syndrome genes: 1q42.2-q43, 6q14.1 and 2q14.2. We characterized the phenotype of nine affected individuals from a large family with the aim of mapping the causative gene. Among the nine affected patients, four had only SHFM of the hands and no tibial defects, three had both defects and two had only unilateral tibial hemimelia. In keeping with previous publications of this and other families, there was clear evidence of both variable expression and incomplete penetrance, the latter bearing hallmarks of anticipation. Segregation analysis and multipoint Lod scores calculations (maximum Lod score of 5.03 using the LINKMAP software) using all potentially informative family members, both affected and unaffected, identified the chromosomal region 17p13.1-17p13.3 as the best and only candidate for harboring a novel mutated gene responsible for the syndrome in this family. The candidate gene CRK located within this region was sequenced but no pathogenic mutation was detected.

  5. Reconstruction of Ligament and Tendon Defects Using Cell Technologies.

    PubMed

    Chailakhyan, R K; Shekhter, A B; Ivannikov, S V; Tel'pukhov, V I; Suslin, D S; Gerasimov, Yu V; Tonenkov, A M; Grosheva, A G; Panyushkin, P V; Moskvina, I L; Vorob'eva, N N; Bagratashvili, V N

    2017-02-01

    We studied the possibility of restoring the integrity of the Achilles tendon in rabbits using autologous multipotent stromal cells. Collagen or gelatin sponges populated with cells were placed in a resorbable Vicryl mesh tube and this tissue-engineered construct was introduced into a defect of the middle part of the Achilles tendon. In 4 months, histological analysis showed complete regeneration of the tendon with the formation of parallel collagen fibers, spindle-shaped tenocytes, and newly formed vessels.

  6. Rare case of tibial hemimelia, preaxial polydactyly, and club foot

    PubMed Central

    Granite, Guinevere; Herzenberg, John E; Wade, Ronald

    2016-01-01

    A seven-month old female presented with left tibial hemimelia (or congenital tibial aplasia; Weber type VIIb, Jones et al type 1a), seven-toed preaxial polydactyly, and severe club foot (congenital talipes equinovarus). Definitive amputation surgery disarticulated the lower limb at the knee. This case report describes the anatomical findings of a systematic post-amputation examination of the lower limb’s superficial dissection, X-rays, and computed tomography (CT) scans. From the X-rays and CT scans, we found curved and overlapping preaxial supernumerary toes, hypoplastic first metatarsal, lack of middle and distal phalanges in one supernumerary toe, three tarsal bones, hypoplastic middle phalanx and no distal phalanx for fourth toe, and no middle or distal phalanges for fifth toe. The fibula articulated with the anteromedial calcaneus and the tibia was completely absent. We identified numerous muscles and nerves in the superficial dissection that are described in the results section of the case report. Due to the rarity of this combination of anatomical findings, descriptions of such cases are very infrequent in the literature. PMID:28035313

  7. Rare case of tibial hemimelia, preaxial polydactyly, and club foot.

    PubMed

    Granite, Guinevere; Herzenberg, John E; Wade, Ronald

    2016-12-16

    A seven-month old female presented with left tibial hemimelia (or congenital tibial aplasia; Weber type VIIb, Jones et al type 1a), seven-toed preaxial polydactyly, and severe club foot (congenital talipes equinovarus). Definitive amputation surgery disarticulated the lower limb at the knee. This case report describes the anatomical findings of a systematic post-amputation examination of the lower limb's superficial dissection, X-rays, and computed tomography (CT) scans. From the X-rays and CT scans, we found curved and overlapping preaxial supernumerary toes, hypoplastic first metatarsal, lack of middle and distal phalanges in one supernumerary toe, three tarsal bones, hypoplastic middle phalanx and no distal phalanx for fourth toe, and no middle or distal phalanges for fifth toe. The fibula articulated with the anteromedial calcaneus and the tibia was completely absent. We identified numerous muscles and nerves in the superficial dissection that are described in the results section of the case report. Due to the rarity of this combination of anatomical findings, descriptions of such cases are very infrequent in the literature.

  8. Analysis of anatomic periarticular tibial plate fit on normal adults.

    PubMed

    Goyal, Kanu S; Skalak, Anthony S; Marcus, Randall E; Vallier, Heather A; Cooperman, Daniel R

    2007-08-01

    Implant manufacturers are producing anatomically contoured periarticular plates to improve the treatment of proximal tibia fractures. We assessed the accuracy of the designation anatomic. We applied eight-hole medial and lateral anatomically contoured periarticular plates to 101 cadaveric tibiae. The tibiae and the plate fits were mapped, quantified, and analyzed using a MicroScribe G2LX digitizer, Rhinoceros software, and MATLAB software. By corresponding the clinical appearance of good fit with our digital findings, we created numerical criteria for plate fit in three planes: coronal (volume of free space between the plate and bone), sagittal (alignment with the tibial plateau and shaft), and axial (match in curvature between the proximal horizontal part of the plate and the tibial plateau). An anatomic fit should mirror the shape of the tibia in all three planes, and only four medial and four lateral plate fits qualified. Recognizing and understanding the substantial variations in fit that exist between anatomically contoured plates and the tibia may help lead to a more stable fixation and prevent malreduction of the fracture and/or soft tissue impingement.

  9. Outcome of intramedullary interlocking SIGN nail in tibial diaphyseal fracture.

    PubMed

    Khan, Irfanullah; Javed, Shahzad; Khan, Gauhar Nawaz; Aziz, Amer

    2013-03-01

    To determine the outcome of intramedullary interlocking surgical implant generation network (SIGN) nail in diaphyseal tibial fractures in terms of union and failure of implant (breakage of nail or interlocking screws). Case series. Orthopaedics and Spinal Surgery, Ghurki Trust Teaching Hospital, Lahore Medical and Dental College, Lahore, from September 2008 to August 2009. Fifty patients aged 14 - 60 years, of either gender were included, who had closed and Gustilo type I and II open fractures reported in 2 weeks, whose closed reduction was not possible or was unsatisfactory and fracture was located 7 cm below knee joint to 7 cm above ankle joint. Fractures previously treated with external fixator, infected fractures and unfit patients were excluded. All fractures were fixed with intramedullary interlocking SIGN nail and were followed clinically and radiographically for union and for any implant failure. Forty one (88%) patients had united fracture within 6 months, 5 (10%) patients had delayed union while 4 (8%) patients had non-union. Mean duration for achieving union was 163 + 30.6 days. Interlocking screws were broken in 2 patients while no nail was broken in any patient. Intramedullary interlocking nailing is an effective measure in treating closed and grade I and II open tibial fractures. It provides a high rate of union less complications and early return to function.

  10. [Experimental study on vascular bundle implantation combined with cellular transplantation in treating rabbit femoral head necrosis].

    PubMed

    Chen, Shuang-Tao; Zhang, Wei-Ping; Liu, Chang-An; Wang, Jun-Jiang; Song, Heng-Yi; Chai, Zhi-wen

    2013-03-01

    To discuss the feasibility of vascular bundle implantation combined with allogeneic bone marrow stromal cells (BMSCs) transplantation in treating rabbit femoral head osteonecrosis and bone defect, in order to explore a new method for the treatment of femoral head necrosis. Thirty-six New Zealand rabbits were randomly divided into three groups,with 12 rabbits in each group. Bilateral femoral heads of the rabbits were studied in the experiment. The models were made by liquid nitrogen frozen, and the femoral heads were drilled to cause bone defect. Group A was the control group,group B was stem cells transplantaion group of allograft marrow stromal,and group C was stem cells transplantation group of allograft marrow stromal combined with vascular bundle implantation. Three rabbits of each group were sacrificed respectively at 2, 4, 8, 12 weeks after operation. All specimens of the femoral heads were sliced for HE staining. Furthermore ,vascular density and the percentage of new bone trabecula of femoral head coronary section in defect area were measured and analyzed statistically. In group C,new bone trabecula and original micrangium formed at the 2nd week after operation; new bone trabecula was lamellar and interlaced with abundant micrangium at the 8th week;at the 12th week,the broadened,coarsened bone trabecula lined up regularly,and the mature bone trabecula and new marrow were visible. At the 2nd week after operation,there was no statistical significance in the percentage of new bone trabecula of femoral head coronary section in defect area between group B and C. While at 4, 8, 12 week after operation, vascular density and the percentage of new bone trabecula of femoral head coronary section in defect area of group C was higher than that of group B. Allogeneic bone marrow stromal cells cultured in vivo can form new bone trabecula, and can be applied to allotransplant. Vascular bundle implanted into the bone defect area of femoral head necrosis could improve blood

  11. Auricular Cartilage Regeneration with Adipose-Derived Stem Cells in Rabbits

    PubMed Central

    Park, Hee-Young; Choi, Kyung-Un; Kim, Sung-Dong; Kong, Soo-Keun

    2018-01-01

    Tissue engineering cell-based therapy using induced pluripotent stem cells and adipose-derived stem cells (ASCs) may be promising tools for therapeutic applications in tissue engineering because of their abundance, relatively easy harvesting, and high proliferation potential. The purpose of this study was to investigate whether ASCs can promote the auricular cartilage regeneration in the rabbit. In order to assess their differentiation ability, ASCs were injected into the midportion of a surgically created auricular cartilage defect in the rabbit. Control group was injected with normal saline. After 1 month, the resected auricles were examined histopathologically and immunohistochemically. The expression of collagen type II and transforming growth factor-β1 (TGF-β1) were analyzed by quantitative polymerase chain reaction. Histopathology showed islands of new cartilage formation at the site of the surgically induced defect in the ASC group. Furthermore, Masson's trichrome staining and immunohistochemistry for S-100 showed numerous positive chondroblasts. The expression of collagen type II and TGF-β1 were significantly higher in the ASCs than in the control group. In conclusion, ASCs have regenerative effects on the auricular cartilage defect of the rabbit. These effects would be expected to contribute significantly to the regeneration of damaged cartilage tissue in vivo. PMID:29743810

  12. The Tibial Slope in Patients With Achondroplasia: Its Characterization and Possible Role in Genu Recurvatum Development.

    PubMed

    Brooks, Jaysson T; Bernholt, David L; Tran, Kevin V; Ain, Michael C

    2016-06-01

    Genu recurvatum, a posterior resting position of the knee, is a common lower extremity deformity in patients with achondroplasia and has been thought to be secondary to ligamentous laxity. To the best of our knowledge, the role of the tibial slope has not been investigated, and no studies describe the tibial slope in patients with achondroplasia. Our goals were to characterize the tibial slope in children and adults with achondroplasia, explore its possible role in the development of genu recurvatum, and compare the tibial slope in patients with achondroplasia to that in the general population. We reviewed 252 lateral knee radiographs of 130 patients with achondroplasia seen at our clinic from November 2007 through September 2013. Patients were excluded if they had previous lower extremity surgery or radiographs with extreme rotation. We analyzed patient demographics and, on all radiographs, the tibial slope. We then compared the mean tibial slope to norms in the literature. Tibial slopes >90 degrees had an anterior tibial slope and received a positive prefix. Statistical analysis included intraclass and interclass reliability, Pearson correlation coefficient, and the Student t tests (significance, P<0.05). The overall mean tibial slope for the 252 knees was +1.32±7 degrees, which was significantly more anterior than the normal slopes reported in the literature for adults (7.2 to 10.7 degrees, P=0.0001) and children (10 to 11 degrees, P=0.0001). The Pearson correlation coefficient for mean tibial slope and age showed negative correlations of -0.4011 and -0.4335 for left and right knees, respectively. This anterior tibial slope produces proximal and posterior vector force components, which may shift the knee posteriorly in weightbearing. The mean tibial slope is significantly more anterior in patients with achondroplasia than in the general population; however, this difference diminishes as patients' age. An anterior tibial slope may predispose to a more posterior

  13. A 3D finite element model to investigate prosthetic interface stresses of different posterior tibial slope.

    PubMed

    Shen, Yi; Li, Xiaomiao; Fu, Xiaodong; Wang, Weili

    2015-11-01

    Posterior tibial slope that is created during proximal tibial resection in total knee arthroplasty has emerged as an important factor in the mechanics of the knee joint and the surgical outcome. But the ideal degree of posterior tibial slope for recovery of the knee joint function and preventions of complications remains controversial and should vary in different racial groups. The objective of this paper is to investigate the effects of posterior tibial slope on contact stresses in the tibial polyethylene component of total knee prostheses. Three-dimensional finite element analysis was used to calculate contact stresses in tibial polyethylene component of total knee prostheses subjected to a compressive load. The 3D finite element model of total knee prosthesis was constructed from the images produced by 3D scanning technology. Stresses in tibial polyethylene component were calculated with four different posterior tibial slopes (0°, 3°, 6° and 9°). The 3D finite element model of total knee prosthesis we presented was well validated. We found that the stress distribution in the polythene as evaluated by the distributions of the von Mises stress, the maximum principle stress, the minimum principle stress and the Cpress were more uniform with 3° and 6° posterior tibial slopes than with 0° and 9° posterior tibial slopes. Moreover, the peaks of the above stresses and trends of changes with increasing degree of knee flexion were more ideal with 3° and 6° posterior slopes. The results suggested that the tibial component inclination might be favourable to 7°-10° so far as the stress distribution is concerned. The range of the tibial component inclination also can decrease the wear of polyethylene. Chinese posterior tibial slope is bigger than in the West, and the current domestic use of prostheses is imported from the West, so their demands to tilt back bone cutting can lead to shorten the service life of prostheses; this experiment result is of important

  14. Facts about Birth Defects

    MedlinePlus

    ... Defects Language: English (US) Español (Spanish) Recommend on Facebook Tweet Share Compartir On This Page Birth Defects are Common Identifying Birth Defects Causes Prevention References Birth defects are common, costly, and critical conditions that affect 1 in every 33 babies born in the ...

  15. Tibial Acceleration and Spatiotemporal Mechanics in Distance Runners During Reduced-Body-Weight Conditions.

    PubMed

    Moran, Matthew F; Rickert, Brendan J; Greer, Beau K

    2017-05-01

    Treadmills that unload runners via a differential air-pressure (DAP) bladder (eg, AlterG Anti-Gravity Treadmill) are commonly used to reduce effective body weight (BW) in a clinical setting. However, the relationship between the level of unloading and tibial stress is currently unknown. To determine the relationship between tibial impact acceleration and level of BW unloading during running. Cross-sectional. University motion-analysis laboratory. 15 distance runners (9 male, 6 female; 20.4 ± 2.4 y, 60.1 ± 12.6 kg). Peak tibial acceleration and peak-to-peak tibial acceleration were measured via a uniaxial accelerometer attached to the tibia during a 37-min continuous treadmill run that simulated reduced-BW conditions via a DAP bladder. The trial began with a 10-min run at 100% BW followed by nine 3-min stages where BW was systematically reduced from 95% to 60% in 5% increments. There was no significant relationship between level of BW and either peak tibial acceleration or peak-to-peak tibial acceleration (P > .05). Both heart rate and step rate were significantly reduced with each 5% reduction in BW level (P < .01). Although ground-reaction forces are reduced when running in reduced-BW conditions on a DAP treadmill, tibial shock magnitudes are unchanged as an alteration in spatiotemporal running mechanics (eg, reduced step rate) and may nullify the unloading effect.

  16. Metal-backed versus all-polyethylene tibial components in primary total knee arthroplasty

    PubMed Central

    2011-01-01

    Background and purpose The choice of either all-polyethylene (AP) tibial components or metal-backed (MB) tibial components in total knee arthroplasty (TKA) remains controversial. We therefore performed a meta-analysis and systematic review of randomized controlled trials that have evaluated MB and AP tibial components in primary TKA. Methods The search strategy included a computerized literature search (Medline, EMBASE, Scopus, and the Cochrane Central Register of Controlled Trials) and a manual search of major orthopedic journals. A meta-analysis and systematic review of randomized or quasi-randomized trials that compared the performance of tibial components in primary TKA was performed using a fixed or random effects model. We assessed the methodological quality of studies using Detsky quality scale. Results 9 randomized controlled trials (RCTs) published between 2000 and 2009 met the inclusion quality standards for the systematic review. The mean standardized Detsky score was 14 (SD 3). We found that the frequency of radiolucent lines in the MB group was significantly higher than that in the AP group. There were no statistically significant differences between the MB and AP tibial components regarding component positioning, knee score, knee range of motion, quality of life, and postoperative complications. Interpretation Based on evidence obtained from this study, the AP tibial component was comparable with or better than the MB tibial component in TKA. However, high-quality RCTs are required to validate the results. PMID:21895503

  17. Anterior tibial stress fractures treated with anterior tension band plating in high-performance athletes.

    PubMed

    Cruz, Alexandre Santa; de Hollanda, João Paris Buarque; Duarte, Aires; Hungria Neto, José Soares

    2013-06-01

    The non-surgical treatment of anterior tibial cortex stress fractures requires long periods of abstention from sports activities and often results in non-union. Many different surgical techniques have already been previously described to treat these fractures, but there is no consensus on the best treatment. We describe the outcome of treatment using anterior tibial tension band plating in three high-performance athletes (4 legs) with anterior tibial cortex stress fractures. Tibial osteosynthesis with a 3.5-mm locking compression plate in the anterolateral aspect of the tibia was performed in all patients diagnosed with anterior tibial stress fracture after September 2010 at Santa Casa Hospital. All of the fractures were consolidated within a period of 3 months after surgery, allowing for an early return to pre-injury levels of competitive sports activity. There were no infection, non-union, malunion or anterior knee pain complications. Anterior tibial tension band plating leads to prompt fracture consolidation and is a good alternative for the treatment of anterior tibial cortex stress fractures. Bone grafts were shown to be unnecessary.

  18. Immediate effects of modified landing pattern on a probabilistic tibial stress fracture model in runners.

    PubMed

    Chen, T L; An, W W; Chan, Z Y S; Au, I P H; Zhang, Z H; Cheung, R T H

    2016-03-01

    Tibial stress fracture is a common injury in runners. This condition has been associated with increased impact loading. Since vertical loading rates are related to the landing pattern, many heelstrike runners attempt to modify their footfalls for a lower risk of tibial stress fracture. Such effect of modified landing pattern remains unknown. This study examined the immediate effects of landing pattern modification on the probability of tibial stress fracture. Fourteen experienced heelstrike runners ran on an instrumented treadmill and they were given augmented feedback for landing pattern switch. We measured their running kinematics and kinetics during different landing patterns. Ankle joint contact force and peak tibial strains were estimated using computational models. We used an established mathematical model to determine the effect of landing pattern on stress fracture probability. Heelstrike runners experienced greater impact loading immediately after landing pattern switch (P<0.004). There was an increase in the longitudinal ankle joint contact force when they landed with forefoot (P=0.003). However, there was no significant difference in both peak tibial strains and the risk of tibial stress fracture in runners with different landing patterns (P>0.986). Immediate transitioning of the landing pattern in heelstrike runners may not offer timely protection against tibial stress fracture, despite a reduction of impact loading. Long-term effects of landing pattern switch remains unknown. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Acute Dermal Toxicity of Ballpowder in Rabbits.

    DTIC Science & Technology

    1986-01-01

    No lesions 36946 85F00033 F Otitis media , purulent, bilateral 36947 85F00034 F Pin worms, cecum 36948 85F00035 F Pin worms, cecum 36949 85F00036 F No...rabbits (84F00033) had bilateral purulent otitis media . Thiscondition is very common in rabbits from commercial sources. It is most likelydue to

  20. Viral skin diseases of the rabbit.

    PubMed

    Meredith, Anna L

    2013-09-01

    This article describes the viral skin diseases affecting the domestic rabbit, the most important being myxomatosis. Transmission and pathogenesis, clinical signs, diagnosis, treatment, and control are described and the article will be of interest to veterinary practitioners who treat rabbits. Shope fibroma virus, Shope papilloma virus, and rabbitpox are also discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Rehabilitation after cell transplantation for cartilage defects.

    PubMed

    Deszczynski, J; Slynarski, K

    2006-01-01

    Rehabilitation is a key element of successful treatment of cartilage defects with cell transplantation. The process of graft maturation takes approximately 18 months and cannot be accelerated, but requires carefully introduced steps leading to early recovery of joint function. Rehabilitation starts at 8 hours after surgery with the continuous passive motion (CPM) exercises and physiotherapy. For the first 6 weeks, patients continue with CPM in the range of 0 degrees to 45 degrees for femoral and tibial defects and 0 degrees to 30 degrees for patellofemoral joint reconstruction. Isometric muscle training and scar manual therapy are introduced. Patients are allowed to weight-bear as tolerated from the second week after surgery. After this initial phase, from 6 to 8 weeks after surgery, rehabilitation is accelerated with increased load-bearing and progressive range of motion to full flexion. Usually patients are able to walk without crutches in this time. Proprioceptive training is introduced with the advance of pain-free full range of motion and no discomfort with full weight-bearing. At 6 months after surgery, most patients recover joint function, making it possible for them to return to daily living activities. However, they need to continue with muscle, proprioceptive, and sports-specific rehabilitation exercises. The rehabilitation process is complicated, requiring close cooperation between the patient and surgeon-physiotherapist team to understand the symptoms and address them in a timely fashion.

  2. Influence of the posterior tibial slope on the flexion gap in total knee arthroplasty.

    PubMed

    Okazaki, Ken; Tashiro, Yasutaka; Mizu-uchi, Hideki; Hamai, Satoshi; Doi, Toshio; Iwamoto, Yukihide

    2014-08-01

    Adjusting the joint gap length to be equal in both extension and flexion is an important issue in total knee arthroplasty (TKA). It is generally acknowledged that posterior tibial slope affects the flexion gap; however, the extent to which changes in the tibial slope angle directly affect the flexion gap remains unclear. This study aimed to clarify the influence of tibial slope changes on the flexion gap in cruciate-retaining (CR) or posterior-stabilizing (PS) TKA. The flexion gap was measured using a tensor device with the femoral trial component in 20 cases each of CR- and PS-TKA. A wedge plate with a 5° inclination was placed on the tibial cut surface by switching its front-back direction to increase or decrease the tibial slope by 5°. The flexion gap after changing the tibial slope was compared to that of the neutral slope measured with a flat plate that had the same thickness as that of the wedge plate center. When the tibial slope decreased or increased by 5°, the flexion gap decreased or increased by 1.9 ± 0.6mm or 1.8 ± 0.4mm, respectively, with CR-TKA and 1.2 ± 0.4mm or 1.1 ± 0.3mm, respectively, with PS-TKA. The influence of changing the tibial slope by 5° on the flexion gap was approximately 2mm with CR-TKA and 1mm with PS-TKA. This information is useful when considering the effect of manipulating the tibial slope on the flexion gap when performing CR- or PS-TKA. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Effect of tibial slope on the stability of the anterior cruciate ligament-deficient knee.

    PubMed

    Voos, James E; Suero, Eduardo M; Citak, Musa; Petrigliano, Frank P; Bosscher, Marianne R F; Citak, Mustafa; Wickiewicz, Thomas L; Pearle, Andrew D

    2012-08-01

    We aimed to quantify the effect of changes in tibial slope on the magnitude of anterior tibial translation (ATT) in the anterior cruciate ligament (ACL)-deficient knee during the Lachman and mechanized pivot shift tests. We hypothesized that increased posterior tibial slope would increase the amount of ATT of an ACL-deficient knee, while leveling the slope of the tibial plateau would decrease the amount of ATT. Lachman and mechanized pivot shift tests were performed on hip-to-toe cadaveric specimens, and ATT of the lateral and the medial compartments was measured using navigation (n = 11). The ACL was then sectioned. Stability testing was repeated, and ATT was recorded. A proximal tibial osteotomy in the sagittal plane was then performed achieving either +5 or -5° of tibial slope variation after which stability testing was repeated (n = 10). Sectioning the ACL resulted in a significant increase in ATT in both the Lachman and mechanized pivot shift tests (P < 0.05). Increasing or decreasing the slope of the tibial plateau had no effect on ATT during the Lachman test (n.s.). During the mechanized pivot shift tests, a 5° increase in posterior slope resulted in a significant increase in ATT compared to the native knee (P < 0.05), while a 5° decrease in slope reduced ATT to a level similar to that of the intact knee. Tibial slope changes did not affect the magnitude of translation during a Lachman test. However, large changes in tibial slope variation affected the magnitude of the pivot shift.

  4. Exploration of the wound healing effect of topical administration of nicotine in combination with collagen scaffold in a rabbit model.

    PubMed

    Masuoka, Hiromu; Morimoto, Naoki; Sakamoto, Michiharu; Ogino, Shuichi; Suzuki, Shigehiko

    2016-06-01

    Nicotine has been reported to prolong the wound healing; however, we showed that the topical application of 10(-4) M nicotine promoted murine wound healing. The objective of this study was to explore the wound healing effects of nicotine in combination with collagen scaffold using skin defects in rabbit. Three full-thickness skin defects 8 mm in diameter were made on the rabbit auricle. Artificial dermis was applied to the defects, and 10 μl of nicotine solution (10(-5), 10(-4), and10(-3) M), bFGF solution (0.5 μg/10 μl), and both bFGF and 10(-4) M nicotine solutions were injected into the artificial dermis once daily for 7 days. Rabbits were sacrificed on day 10, 15, or 20, and the wound healing process was evaluated. bFGF was superior in the formation of the dermis-like tissue and capillaries. In nicotine groups, the epithelial length and the dermis-like tissue formations in the 10(-4) M group were superior, in contrast, those were inhibited in the 10(-3) M group. The synergistic effect of bFGF and 10(-4) M nicotine was not confirmed. This study suggests that the topical application of 10(-4) M nicotine promoted wound healing in rabbit, but the effect was not apparent compared with murine models.

  5. Return to sport following tibial plateau fractures: A systematic review

    PubMed Central

    Robertson, Greg A J; Wong, Seng J; Wood, Alexander M

    2017-01-01

    AIM To systemically review all studies reporting return to sport following tibial plateau fracture, in order to provide information on return rates and times to sport, and to assess variations in sporting outcome for different treatment methods. METHODS A systematic search of CINAHAL, Cochrane, EMBASE, Google Scholar, MEDLINE, PEDro, Scopus, SPORTDiscus and Web of Science was performed in January 2017 using the keywords “tibial”, “plateau”, “fractures”, “knee”, “athletes”, “sports”, “non-operative”, “conservative”, “operative”, “return to sport”. All studies which recorded return rates and times to sport following tibial plateau fractures were included. RESULTS Twenty-seven studies were included: 1 was a randomised controlled trial, 7 were prospective cohort studies, 16 were retrospective cohort studies, 3 were case series. One study reported on the outcome of conservative management (n = 3); 27 reported on the outcome of surgical management (n = 917). Nine studies reported on Open Reduction Internal Fixation (ORIF) (n = 193), 11 on Arthroscopic-Assisted Reduction Internal Fixation (ARIF) (n = 253) and 7 on Frame-Assisted Fixation (FRAME) (n = 262). All studies recorded “return to sport” rates. Only one study recorded a “return to sport” time. The return rate to sport for the total cohort was 70%. For the conservatively-managed fractures, the return rate was 100%. For the surgically-managed fractures, the return rate was 70%. For fractures managed with ORIF, the return rate was 60%. For fractures managed with ARIF, the return rate was 83%. For fractures managed with FRAME was 52%. The return rate for ARIF was found to be significantly greater than that for ORIF (OR 3.22, 95%CI: 2.09-4.97, P < 0.001) and for FRAME (OR 4.33, 95%CI: 2.89-6.50, P < 0.001). No difference was found between the return rates for ORIF and FRAME (OR 1.35, 95%CI: 0.92-1.96, P = 0.122). The recorded return time was 6.9 mo (median), from a study

  6. Tibial plateau fracture after primary anatomic double-bundle anterior cruciate ligament reconstruction: a case report.

    PubMed

    Gobbi, Alberto; Mahajan, Vivek; Karnatzikos, Georgios

    2011-05-01

    Tibial plateau fracture after primary anatomic double-bundle anterior cruciate ligament (ACL) reconstruction is rare. To our knowledge, this is the first case report of a tibial plateau fracture after primary anatomic double-bundle ACL reconstruction. In our patient the tibial plateau fracture occurred after a torsional injury to the involved extremity. The fracture occurred 4.5 years after the ACL reconstruction. The fracture was intra-articular Schatzker type IV and had a significant displacement. The patient was treated operatively by open reduction-internal fixation. He recovered well. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  7. Medial tibial pain. A prospective study of its cause among military recruits.

    PubMed

    Milgrom, C; Giladi, M; Stein, M; Kashtan, H; Margulies, J; Chisin, R; Steinberg, R; Swissa, A; Aharonson, Z

    1986-12-01

    In a prospective study of 295 infantry recruits during 14 weeks of basic training, 41% had medial tibial pain. Routine scintigraphic evaluation in cases of medial tibial bone pain showed that 63% had abnormalities. A stress fracture was found in 46%. Only two patients had periostitis. None had ischemic medial compartment syndrome. Physical examination could not differentiate between cases with medial tibial bone pain secondary to stress fractures and those with scintigraphically normal tibias. When both pain and swelling were localized in the middle one-third of the tibia, the lesion most likely proved to be a stress fracture.

  8. Avulsion of the tibial tuberosity in a litter of greyhound puppies.

    PubMed

    Skelly, C M; McAllister, H; Donnelly, W J

    1997-10-01

    Avulsion of the tibial tuberosity was diagnosed in six of seven greyhound littermates aged five and a half months. The puppies showed hindlimb lameness of varying severity. Radiological assessment of affected stifle joints revealed partial or complete avulsion of the tibial tuberosities. In four puppies the lesions were bilateral. Euthanasia of the two most severely affected puppies was performed; the changes observed on histopathological examination of their cranioproximal tibiae suggested that the underlying lesion was that of osteochondrosis. A hereditary predisposition in greyhounds to osteochondrosis of the physis between the apophysis and the cranioproximal tibial diaphysis is postulated.

  9. Behavioral fever in newborn rabbits

    NASA Technical Reports Server (NTRS)

    Satinoff, E.; Mcewen, G. N., Jr.; Williams, B. A.

    1976-01-01

    New Zealand white rabbit pups aged 12 to 72 hr were divided into three groups and given an intraperitoneal injection of Pseudomonas polysaccharide, a saline vehicle alone, and no treatment, respectively. The animals injected with pyrogen and maintained at an ambient temperature of 32 C for 2 hr did not develop fever. When placed in a thermally graded alleyway, the animals injected with pyrogen selected gradient positions that represented significantly higher temperatures than controls injected with saline. Further stay at selected positions for 5 min caused a considerable increase in the rectal temperature of the pyrogen-injected pups but not that of controls. The results support the hypothesis that newborn rabbits will develop a fever by behavioral means after a single injection of an exogenous pyrogen if the opportunity for thermoregulatory behavior is present. No fever develops if the pups must rely solely on internal thermoregulatory mechanisms. The behavioral system for producing a fever is mature at birth, but an adequate system of internal reflexes does not appear to develop for some days.

  10. Elephantiasis nostras verrucosa complicated with chronic tibial osteomyelitis.

    PubMed

    Turhan, Egemen; Ege, Ahmet; Keser, Selcuk; Bayar, Ahmet

    2008-10-01

    Elephantiasis nostras verrucosa represents an infrequent clinical entity with cutaneous changes characterized by dermal fibrosis, hyperkeratotic verrucous and papillamotous lesions resulting from chronic non-filarial lymphedema secondary to infections, surgeries, tumor obstruction, radiation, congestive heart failure, and obesity. Although recurrent streptococcal lymphangitis is believed to play a critical role in the origin of elephantiasis nostras verrucosa, the exact pathogenesis of the disorder is not yet clear. Therapeutic efforts should aim to reduce lymph stasis, which will also lead to improvement of the cutaneous changes but unfortunately there is no specific treatment for advanced cases. In this report, we present a patient who was treated by below knee amputation as a result of elephantiasis nostras verrucosa complicated with chronic tibial osteomyelitis.

  11. Box 6: Nanoscale Defects

    NASA Astrophysics Data System (ADS)

    Alves, Eduardo; Breese, Mark

    Defects affect virtually all properties of crystalline materials, and their role is magnified in nanoscale structures. In this box we describe the different type of defects with particular emphasis on point and linear defects. Above zero Kelvin all real materials have a defect population within their structure, which affects either their crystalline, electronic or optical properties. It is common to attribute a negative connotation to the presence of defects. However, a perfect silicon crystal or any other defect-free semiconductor would have a limited functionality and might even be useless.

  12. Bone marrow stimulation of the medial femoral condyle produces inferior cartilage and bone repair compared to the trochlea in a rabbit surgical model.

    PubMed

    Chen, Hongmei; Chevrier, Anik; Hoemann, Caroline D; Sun, Jun; Picard, Genevieve; Buschmann, Michael D

    2013-11-01

    The influence of the location of cartilage lesions on cartilage repair outcome is incompletely understood. This study compared cartilage and bone repair in medial femoral condylar (MFC) versus femoral trochlear (TR) defects 3 months after bone marrow stimulation in mature rabbits. Intact femurs from adult rabbits served as controls. Results from quantitative histomorphometry and histological scoring showed that bone marrow stimulation produced inferior soft tissue repair in MFC versus TR defects, as indicated by significantly lower % Fill (p = 0.03), a significant increase in collagen type I immunostaining (p < 0.00001) and lower O'Driscoll scores (p < 0.05). 3D micro-CT analysis showed that repaired TR defects regained normal un-operated values of bone volume fraction, trabecular thickness, and trabecular number, whereas in MFC defects the repaired bone architecture appeared immature and less dense compared to intact un-operated MFC controls (p < 0.0001). Severe medial meniscal damage was found in 28% of operated animals and was strongly correlated with (i) low cartilage defect fill, (ii) incomplete bone repair in MFC, and (iii) with a more posterior defect placement in the weight-bearing region. We conclude that the location of cartilage lesions influences cartilage repair, with better outcome in TR versus MFC defects in rabbits. Meniscal degeneration is associated with cartilage damage. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Intramedullary nailing in the treatment of aseptic tibial nonunion.

    PubMed

    Megas, P; Panagiotopoulos, E; Skriviliotakis, S; Lambiris, E

    2001-04-01

    Fifty patients suffering from aseptic tibial nonunion underwent reamed intramedullary nailing (I.N.) and were retrospectively reviewed. Thirty-six patients were initially treated with external fixation, six with plate and screws, one with a static I.N., and seven with plaster of Paris. Eighteen of the fractures were initially open (A: 5, B: 6, and C: 7 according to the Gustilo classification). In 34 cases a closed procedure was performed, whereas in sixteen, an opening at the nonunion site was unavoidable either to remove metalwork or realign the fragments. Following failed external fixation, secondary I.N. was performed at least 10 days after removal of the device. Bone grafts from the iliac crest were used in three cases, and a fibular osteotomy was performed in 33. Patients were followed up for an average of 2.5 years after nailing, ranging from 10 months to 7 years. A solid union was achieved in all patients within a period of 6 months. One patient developed late infection, which settled after nail removal and one patient developed impending compartment syndrome which was detected on the first post-operative day and was treated with a fasciotomy. Transient peroneal nerve palsy occurred in one patient and this recovered in 3 months, whereas in nine patients a clinically acceptable deformity was noticed. In conclusion, we believe that reamed intramedullary nailing is a highly effective treatment for aseptic tibial nonunions. Early and late complications are rare and bone graft is rarely needed. The method allows early weight bearing even before solid union occurs, short hospitalisation time and early return to work without external support.

  14. The effect of muscle fatigue on in vivo tibial strains.

    PubMed

    Milgrom, Charles; Radeva-Petrova, Denitsa R; Finestone, Aharon; Nyska, Meir; Mendelson, Stephen; Benjuya, Nisim; Simkin, Ariel; Burr, David

    2007-01-01

    Stress fracture is a common musculoskeletal problem affecting athletes and soldiers. Repetitive high bone strains and strain rates are considered to be its etiology. The strain level necessary to cause fatigue failure of bone ex vivo is higher than the strains recorded in humans during vigorous physical activity. We hypothesized that during fatiguing exercises, bone strains may increase and reach levels exceeding those measured in the non-fatigued state. To test this hypothesis, we measured in vivo tibial strains, the maximum gastrocnemius isokinetic torque and ground reaction forces in four subjects before and after two fatiguing levels of exercise: a 2km run and a 30km desert march. Strains were measured using strain-gauged staples inserted percutaneously in the medial aspect of their mid-tibial diaphysis. There was a decrease in the peak gastrocnemius isokinetic torque of all four subjects' post-march as compared to pre-run (p=0.0001), indicating the presence of gastrocnemius muscle fatigue. Tension strains increased 26% post-run (p=0.002, 95 % confidence interval (CI) and 29% post-march (p=0.0002, 95% CI) as compared to the pre-run phase. Tension strain rates increased 13% post-run (p=0.001, 95% CI) and 11% post-march (p=0.009, 95% CI) and the compression strain rates increased 9% post-run (p=0.0004, 95% CI) and 17% post-march (p=0.0001, 95% CI). The fatigue state increases bone strains well above those recorded in rested individuals and may be a major factor in the stress fracture etiology.

  15. Effect of step width manipulation on tibial stress during running.

    PubMed

    Meardon, Stacey A; Derrick, Timothy R

    2014-08-22

    Narrow step width has been linked to variables associated with tibial stress fracture. The purpose of this study was to evaluate the effect of step width on bone stresses using a standardized model of the tibia. 15 runners ran at their preferred 5k running velocity in three running conditions, preferred step width (PSW) and PSW±5% of leg length. 10 successful trials of force and 3-D motion data were collected. A combination of inverse dynamics, musculoskeletal modeling and beam theory was used to estimate stresses applied to the tibia using subject-specific anthropometrics and motion data. The tibia was modeled as a hollow ellipse. Multivariate analysis revealed that tibial stresses at the distal 1/3 of the tibia differed with step width manipulation (p=0.002). Compression on the posterior and medial aspect of the tibia was inversely related to step width such that as step width increased, compression on the surface of tibia decreased (linear trend p=0.036 and 0.003). Similarly, tension on the anterior surface of the tibia decreased as step width increased (linear trend p=0.029). Widening step width linearly reduced shear stress at all 4 sites (p<0.001 for all). The data from this study suggests that stresses experienced by the tibia during running were influenced by step width when using a standardized model of the tibia. Wider step widths were generally associated with reduced loading of the tibia and may benefit runners at risk of or experiencing stress injury at the tibia, especially if they present with a crossover running style. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Evaluating Glucocorticoid Administration on Biomechanical Properties of Rats’ Tibial Diaphysis

    PubMed Central

    Freidouni, Mohammadjavad; Nejati, Hossein; Salimi, Maryam; Bayat, Mohammad; Amini, Abdollah; Noruzian, Mohsen; Asgharie, Mohammad Ali; Rezaian, Milad

    2015-01-01

    Background: Osteoporosis is a disease, which causes bone loss and fractures. Although glucocorticoids effectively suppress inflammation, their chronic use is accompanied by bone loss with a tendency toward secondary osteoporosis. Objectives: This study took into consideration the importance of cortical bone in the entire bone's mechanical competence. Hence, the aim of this study was to assess the effects of different protocols of glucocorticoid administration on the biomechanical properties of tibial bone diaphysis in rats compared to control and low-level laser-treated rats. Materials and Methods: This experimental study was conducted at Shahid Beheshti University of Medical Sciences, Tehran, Iran. We used systematic random sampling to divide 40 adult male rats into 8 groups with 5 rats in each group. Groups were as follows: 1) control, 2) dexamethasone (7 mg/week), 3) dexamethasone (0.7 mg/week), 4) methylprednisolone (7 mg/kg/week), 5) methylprednisolone (5 mg/kg twice weekly), 6) dexamethasone (7 mg/kg three times per week), 7) dexamethasone (0.7 mg/kg thrice per week), and 8) low-level laser-treated rats. The study periods were 4-7 weeks. At the end of the treatment periods, we examined the mechanical properties of tibial bone diaphysis. Data were analyzed by statistical analyses. Results: Glucocorticoid-treated rats showed weight loss and considerable mortality (21%). The biomechanical properties (maximum force) of glucocorticoid-treated rats in groups 4 (62 ± 2.9), 6 (63 ± 5.1), and 7 (60 ± 5.3) were comparable with the control (46 ± 1.5) and low-level laser-treated (57 ± 3.2) rats. Conclusions: In contrast to the findings in humans and certain other species, glucocorticoid administration caused anabolic effect on the cortical bone of tibia diaphysis bone in rats. PMID:26019900

  17. Lateralization of the Tibial Tubercle in Recurrent Patellar Dislocation: Verification Using Multiple Methods to Evaluate the Tibial Tubercle.

    PubMed

    Tensho, Keiji; Shimodaira, Hiroki; Akaoka, Yusuke; Koyama, Suguru; Hatanaka, Daisuke; Ikegami, Shota; Kato, Hiroyuki; Saito, Naoto

    2018-05-02

    The tibial tubercle deviation associated with recurrent patellar dislocation (RPD) has not been studied sufficiently. New methods of evaluation were used to verify the extent of tubercle deviation in a group with patellar dislocation compared with that in a control group, the frequency of patients who demonstrated a cutoff value indicating that tubercle transfer was warranted on the basis of the control group distribution, and the validity of these methods of evaluation for diagnosing RPD. Sixty-six patients with a history of patellar dislocation (single in 19 [SPD group] and recurrent in 47 [RPD group]) and 66 age and sex-matched controls were analyzed with the use of computed tomography (CT). The tibial tubercle-posterior cruciate ligament (TT-PCL) distance, TT-PCL ratio, and tibial tubercle lateralization (TTL) in the SPD and RPD groups were compared with those in the control group. Cutoff values to warrant 10 mm of transfer were based on either the minimum or -2SD (2 standard deviations below the mean) value in the control group, and the prevalences of patients in the RPD group with measurements above these cutoff values were calculated. The area under the curve (AUC) in receiver operating characteristic (ROC) curve analysis was used to assess the effectiveness of the measurements as predictors of RPD. The mean TT-PCL distance, TT-PCL ratio, and TTL were all significantly greater in the RPD group than in the control group. The numbers of patients in the RPD group who satisfied the cutoff criteria when they were based on the minimum TT-PCL distance, TT-PCL ratio, and TTL in the control group were 11 (23%), 7 (15%), and 6 (13%), respectively. When the cutoff values were based on the -2SD values in the control group, the numbers of patients were 8 (17%), 6 (13%), and 0, respectively. The AUC of the ROC curve for TT-PCL distance, TT-PCL ratio, and TTL was 0.66, 0.72, and 0.72, respectively. The extent of TTL in the RPD group was not substantial, and the percentages

  18. Early in situ changes in chondrocyte biomechanical responses due to a partial meniscectomy in the lateral compartment of the mature rabbit knee joint.

    PubMed

    Fick, J M; P Ronkainen, A; Madden, R; Sawatsky, A; Tiitu, V; Herzog, W; Korhonen, R K

    2016-12-08

    We determined the biomechanical responses of chondrocytes to indentation at specific locations within the superficial zone of cartilage (i.e. patellar, femoral groove, femoral condylar and tibial plateau sites) taken from female New Zealand white rabbits three days after a partial meniscectomy in the lateral compartment of a knee joint. Confocal laser scanning microscopy combined with a custom indentation system was utilized to image chondrocyte responses at sites taken from ten contralateral and experimental knee joints. Cell volume, height, width and depth changes, global, local axial and transverse strains and Young׳s moduli were determined. Histological assessment was performed and proteoglycan content from the superficial zone of each site was determined. Relative to contralateral group cells, patellar, femoral groove and lateral femoral condyle cells in the experimental group underwent greater volume decreases (p < 0.05), due to smaller lateral expansions (with greater decreases in cell height only for the lateral femoral condyle cells; p < 0.05) whereas medial femoral and medial tibial plateau cells underwent smaller volume decreases (p < 0.05), due to less deformation in cell height (p < 0.05). Proteoglycan content was reduced in the patellar (p > 0.05), femoral groove, medial femoral condyle and medial tibial plateau experimental sites (p < 0.05). The findings suggest: (i) cell biomechanical responses to cartilage loading in the rabbit knee joint can become altered as early as 3 days after a partial meniscectomy, (ii) are site-specific, and (iii) occur before alterations in tissue mechanics or changes detectable with histology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Nontraumatic tibial polyethylene insert cone fracture in mobile-bearing posterior-stabilized total knee arthroplasty.

    PubMed

    Tanikake, Yohei; Hayashi, Koji; Ogawa, Munehiro; Inagaki, Yusuke; Kawate, Kenji; Tomita, Tetsuya; Tanaka, Yasuhito

    2016-12-01

    A 72-year-old male patient underwent mobile-bearing posterior-stabilized total knee arthroplasty for osteoarthritis. He experienced a nontraumatic polyethylene tibial insert cone fracture 27 months after surgery. Scanning electron microscopy of the fracture surface of the tibial insert cone suggested progress of ductile breaking from the posterior toward the anterior of the cone due to repeated longitudinal bending stress, leading to fatigue breaking at the anterior side of the cone, followed by the tibial insert cone fracture at the anterior side of the cone, resulting in fracture at the base of the cone. This analysis shows the risk of tibial insert cone fracture due to longitudinal stress in mobile-bearing posterior-stabilized total knee arthroplasty in which an insert is designed to highly conform to the femoral component.

  20. Study of the anatomy of the tibial nerve and its branches in the distal medial leg

    PubMed Central

    Torres, André Leal Gonçalves; Ferreira, Marcus Castro

    2012-01-01

    Objective Determine, through dissection in fresh cadavers, the topographic anatomy of the tibial nerve and its branches at the ankle, in relation to the tarsal tunnel. Methods Bilateral dissections were performed on 26 fresh cadavers and the locations of the tibial nerve bifurcation and its branches were measured in millimeters. For the calcaneal branches, the amount and their respective nerves of origin were also analyzed. Results The tibial nerve bifurcation occurred under the tunnel in 88% of the cases and proximally in 12%. As for the calcaneal branches, the medial presented with one (58%), two (34%) and three (8%) branches, with the most common source occurring in the tibial nerve (90%) and the lower with a single branch per leg and lateral plantar nerve as the most common origin (70%). Level of Evidence, V Expert opinion. PMID:24453596

  1. Study of the anatomy of the tibial nerve and its branches in the distal medial leg.

    PubMed

    Torres, André Leal Gonçalves; Ferreira, Marcus Castro

    2012-01-01

    Determine, through dissection in fresh cadavers, the topographic anatomy of the tibial nerve and its branches at the ankle, in relation to the tarsal tunnel. Bilateral dissections were performed on 26 fresh cadavers and the locations of the tibial nerve bifurcation and its branches were measured in millimeters. For the calcaneal branches, the amount and their respective nerves of origin were also analyzed. The tibial nerve bifurcation occurred under the tunnel in 88% of the cases and proximally in 12%. As for the calcaneal branches, the medial presented with one (58%), two (34%) and three (8%) branches, with the most common source occurring in the tibial nerve (90%) and the lower with a single branch per leg and lateral plantar nerve as the most common origin (70%). Level of Evidence, V Expert opinion .

  2. Reconstruction of bilateral tibial aplasia and split hand-foot syndrome in a father and daughter.

    PubMed

    Al Kaissi, Ali; Ganger, Rudolf; Klaushofer, Klaus; Grill, Franz

    2014-01-01

    Tibial aplasia is of heterogeneous aetiology, the majority of reports are sporadic. We describe the reconstruction procedures in two subjects - a daughter and father manifested autosomal dominant (AD) inheritance of the bilateral tibial aplasia and split hand-foot syndrome. Reconstruction of these patients required multiple surgical procedures and orthoprosthesis was mandatory. The main goal of treatment was to achieve walking. Stabilization of the ankle joint by fibular-talar-chondrodesis on both sides, followed by bilateral Brown-procedure at the knee joint level has been applied accordingly. The outcome was with improved function of the deformed limbs and walking was achieved with simultaneous designation of orthotic fitting. This is the first study encompassing the diagnosis and management of a father and daughter with bilateral tibial aplasia associated with variable split hand/foot deformity without foot ablation. Our patients showed the typical AD pattern of inheritance of split-hand/foot and tibial aplasia.

  3. [Investigation of tibial bones of the rats exposed on board "Spacelab-2":histomorphometric analysis

    NASA Technical Reports Server (NTRS)

    Durnova, G. N.; Kaplanskii, A. S.; Morey-Holton, E. R.; Vorobeva, V. N.

    1996-01-01

    Proximal metaphyses of tibial bones from the Sprague-Dowly rats exposed in US dedicated space life sciences laboratory SLS-2 for 13-14 days and sacrificed on day 13 in microgravity and within 5 hours and 14 days following recovery were the subject of histological, histochemical, and histomorphometric analyses. After the 13-day flight of SLS-2 the rats showed initial signs of osteopenia in the spongy tissue of tibial bones, secondary spongiosis affected first. Resorption of the secondary spongiosis was consequent to enhanced resorption and inhibition of osteogenesis. In rats sacrificed within 5 hours of recovery manifestations of tibial osteopenia were more evident than in rats sacrificed during the flight. Spaceflight-induced changes in tibial spongiosis were reverse by character the amount of spongy bone was fully compensated and following 14 days of readaptation to the terrestrial gravity.

  4. Management of tibial fractures using a circular external fixator in two calves.

    PubMed

    Aithal, Hari Prasad; Kinjavdekar, Prakash; Amarpal; Pawde, Abhijit Motiram; Singh, Gaj Raj; Setia, Harish Chandra

    2010-07-01

    To report the repair of tibial diaphyseal fractures in 2 calves using a circular external skeletal fixator (CEF). Clinical report. Crossbred calves (n=2; age: 6 months; weight: 55 and 60 kg). Mid-diaphyseal tibial fractures were repaired by the use of a 4-ring CEF (made of aluminum rings with 2 mm K-wires) alone in 1 calf and in combination with hemicerclage wiring in 1 calf. Both calves had good weight bearing with moderate lameness postoperatively. Fracture healing occurred by day 60 in 1 calf and by day 30 in calf 2. The CEF was well maintained and tolerated by both calves through fracture healing. Joint mobility and limb usage improved gradually after CEF removal. CEF provided a stable fixation of tibial fractures and healing within 60 days and functional recovery within 90 days. CEF can be safely and successfully used for the management of selected tibial fractures in calves.

  5. Clues from defect photochemistry

    NASA Astrophysics Data System (ADS)

    De Angelis, Filippo; Petrozza, Annamaria

    2018-05-01

    Charge carriers in metal halide perovskites seem to be only marginally affected by defect-related trap states. Filippo De Angelis and Annamaria Petrozza suggest that the key to this behaviour lies in the redox chemistry of halide defects.

  6. Atrioventricular Canal Defect

    MedlinePlus

    ... birth (congenital). The condition is often associated with Down syndrome. Atrioventricular canal defect allows extra blood to flow ... baby's heart is developing. Some factors, such as Down syndrome, might increase the risk of atrioventricular canal defect. ...

  7. Effect of ACL Transection on Internal Tibial Rotation in an in Vitro Simulated Pivot Landing

    PubMed Central

    Oh, Youkeun K.; Kreinbrink, Jennifer L.; Ashton-Miller, James A.; Wojtys, Edward M.

    2011-01-01

    Background: The amount of resistance provided by the ACL (anterior cruciate ligament) to axial tibial rotation remains controversial. The goal of this study was to test the primary hypotheses that ACL transection would not significantly affect tibial rotation under the large impulsive loads associated with a simulated pivot landing but would increase anterior tibial translation. Methods: Twelve cadaveric knees (mean age of donors [and standard deviation] at the time of death, 65.0 ± 10.5 years) were mounted in a custom testing apparatus to simulate a single-leg pivot landing. A compound impulsive load was applied to the distal part of the tibia with compression (∼800 N), flexion moment (∼40 N-m), and axial tibial torque (∼17 N-m) in the presence of five trans-knee muscle forces. A differential variable reluctance transducer mounted on the anteromedial aspect of the ACL measured relative strain. With the knee initially in 15° of flexion, and after five combined compression and flexion moment (baseline) loading trials, six trials were conducted with the addition of either internal or external tibial torque (internal or external loading), and then six baseline trials were performed. The ACL was then sectioned, six baseline trials were repeated, and then six trials of either the internal or the external loading condition, whichever had initially resulted in the larger relative ACL strain, were carried out. Tibiofemoral kinematics were measured optoelectronically. The results were analyzed with a nonparametric Wilcoxon signed-rank test. Results: Following ACL transection, the increase in the normalized internal tibial rotation was significant but small (0.7°/N-m ± 0.3°/N-m to 0.8°/N-m ± 0.3°/N-m, p = 0.012), while anterior tibial translation increased significantly (3.8 ± 2.9 to 7.0 ± 2.9 mm, p = 0.017). Conclusions: ACL transection leads to a small increase in internal tibial rotation, equivalent to a 13% decrease in the dynamic rotational resistance

  8. Open wedge high tibial osteotomy using three-dimensional printed models: Experimental analysis using porcine bone.

    PubMed

    Kwun, Jun-Dae; Kim, Hee-June; Park, Jaeyoung; Park, Il-Hyung; Kyung, Hee-Soo

    2017-01-01

    The purpose of this study was to evaluate the usefulness of three-dimensional (3D) printed models for open wedge high tibial osteotomy (HTO) in porcine bone. Computed tomography (CT) images were obtained from 10 porcine knees and 3D imaging was planned using the 3D-Slicer program. The osteotomy line was drawn from the three centimeters below the medial tibial plateau to the proximal end of the fibular head. Then the osteotomy gap was opened until the mechanical axis line was 62.5% from the medial border along the width of the tibial plateau, maintaining the posterior tibial slope angle. The wedge-shaped 3D-printed model was designed with the measured angle and osteotomy section and was produced by the 3D printer. The open wedge HTO surgery was reproduced in porcine bone using the 3D-printed model and the osteotomy site was fixed with a plate. Accuracy of osteotomy and posterior tibial slope was evaluated after the osteotomy. The mean mechanical axis line on the tibial plateau was 61.8±1.5% from the medial tibia. There was no statistically significant difference (P=0.160). The planned and post-osteotomy correction wedge angles were 11.5±3.2° and 11.4±3.3°, and the posterior tibial slope angle was 11.2±2.2° pre-osteotomy and 11.4±2.5° post-osteotomy. There were no significant differences (P=0.854 and P=0.429, respectively). This study showed that good results could be obtained in high tibial osteotomy by using 3D printed models of porcine legs. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. All-Polyethylene Tibial Components: An Analysis of Long-Term Outcomes and Infection.

    PubMed

    Houdek, Matthew T; Wagner, Eric R; Wyles, Cody C; Watts, Chad D; Cass, Joseph R; Trousdale, Robert T

    2016-07-01

    There is debate regarding tibial component modularity and composition in total knee arthroplasty (TKA). Biomechanical studies have suggested improved stress distribution in metal-backed tibias; however, these results have not translated clinically. The purpose of this study was to analyze the outcomes of all-polyethylene components and to compare the results to those with metal-backed components. We reviewed 31,939 patients undergoing a primary TKA over a 43-year period (1970-2013). There were 28,224 (88%) metal-backed and 3715 (12%) all-polyethylene tibial components. The metal-backed and all-polyethylene groups had comparable demographics with respect to gender, age and body mass index (BMI). Mean follow-up was 7 years. The mean survival for all primary TKAs at the 5-, 10-, 20- and 30-year time points was 95%, 89%, 73%, and 57%, respectively. All-polyethylene tibial components were found to have a significantly improved (P < .0001) survivorship when compared with their metal-backed counterparts. All-polyethylene tibial components were also found to have a significantly lower rate of infection, instability, tibial component loosening, and periprosthetic fracture. The all-polyethylene group had improved survival rates in all age groups, except in patients 85 years old or greater, where there was no significant difference. All-polyethylene tibial components had improved survival for all BMI groups except in the morbidly obese (BMI ≥ 40) where there was no significant difference. All-polyethylene tibial components had significantly improved implant survival, reduced rates of postoperative infection, fracture, and tibial component loosening. All polyethylene should be considered for most of the patients, regardless of age and BMI. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Ground reaction forces and bone parameters in females with tibial stress fracture.

    PubMed

    Bennell, Kim; Crossley, Kay; Jayarajan, Jyotsna; Walton, Elizabeth; Warden, Stuart; Kiss, Z Stephen; Wrigley, Tim

    2004-03-01

    Tibial stress fracture is a common overuse running injury that results from the interplay of repetitive mechanical loading and bone strength. This research project aimed to determine whether female runners with a history of tibial stress fracture (TSF) differ in ground reaction force (GRF) parameters during running, regional bone density, and tibial bone geometry from those who have never sustained a stress fracture (NSF). Thirty-six female running athletes (13 TSF; 23 NSF) ranging in age from 18 to 44 yr were recruited for this cross-sectional study. The groups were well matched for demographic, training, and menstrual parameters. A force platform measured selected GRF parameters (peak and time to peak for vertical impact and active forces, and horizontal braking and propulsive forces) during overground running at 4.0 m.s.(-1). Lumbar spine, proximal femur, and distal tibial bone mineral density were assessed by dual energy x-ray absorptiometry. Tibial bone geometry (cross-sectional dimensions and areas, and second moments of area) was calculated from a computerized tomography scan at the junction of the middle and distal thirds. There were no significant differences between the groups for any of the GRF, bone density, or tibial bone geometric parameters (P > 0.05). Both TSF and NSF subjects had bone density levels that were average or above average compared with a young adult reference range. Factor analysis followed by discriminant function analysis did not find any combinations of variables that differentiated between TSF and NSF groups. These findings do not support a role for GRF, bone density, or tibial bone geometry in the development of tibial stress fractures, suggesting that other risk factors were more important in this cohort of female runners.

  11. Outcomes of Surgical Treatment for Anterior Tibial Stress Fractures in Athletes: A Systematic Review.

    PubMed

    Chaudhry, Zaira S; Raikin, Steven M; Harwood, Marc I; Bishop, Meghan E; Ciccotti, Michael G; Hammoud, Sommer

    2017-12-01

    Although most anterior tibial stress fractures heal with nonoperative treatment, some may require surgical management. To our knowledge, no systematic review has been conducted regarding surgical treatment strategies for the management of chronic anterior tibial stress fractures from which general conclusions can be drawn regarding optimal treatment in high-performance athletes. This systematic review was conducted to evaluate the surgical outcomes of anterior tibial stress fractures in high-performance athletes. Systematic review; Level of evidence, 4. In February 2017, a systematic review of the PubMed, MEDLINE, Cochrane, SPORTDiscus, and CINAHL databases was performed to identify studies that reported surgical outcomes for anterior tibial stress fractures. Articles meeting the inclusion criteria were screened, and reported outcome measures were documented. A total of 12 studies, published between 1984 and 2015, reporting outcomes for the surgical treatment of anterior tibial stress fractures were included in this review. All studies were retrospective case series. Collectively, surgical outcomes for 115 patients (74 males; 41 females) with 123 fractures were evaluated in this review. The overall mean follow-up was 23.3 months. The most common surgical treatment method reported in the literature was compression plating (n = 52) followed by drilling (n = 33). Symptom resolution was achieved in 108 of 123 surgically treated fractures (87.8%). There were 32 reports of complications, resulting in an overall complication rate of 27.8%. Subsequent tibial fractures were reported in 8 patients (7.0%). Moreover, a total of 17 patients (14.8%) underwent a subsequent procedure after their initial surgery. Following surgical treatment for anterior tibial stress fracture, 94.7% of patients were able to return to sports. The available literature indicates that surgical treatment of anterior tibial stress fractures is associated with a high rate of symptom resolution and return

  12. Physeal growth arrest after tibial lengthening in achondroplasia: 23 children followed to skeletal maturity.

    PubMed

    Song, Sang-Heon; Agashe, Mandar Vikas; Huh, Young-Jae; Hwang, Soon-Young; Song, Hae-Ryong

    2012-06-01

    Bilateral tibial lengthening has become one of the standard treatments for upper segment-lower segment disproportion and to improve quality of life in achondroplasia. We determined the effect of tibial lengthening on the tibial physis and compared tibial growth that occurred at the physis with that in non-operated patients with achondroplasia. We performed a retrospective analysis of serial radiographs until skeletal maturity in 23 achondroplasia patients who underwent bilateral tibial lengthening before skeletal maturity (lengthening group L) and 12 achondroplasia patients of similar height and age who did not undergo tibial lengthening (control group C). The mean amount of lengthening of tibia in group L was 9.2 cm (lengthening percentage: 60%) and the mean age at the time of lengthening was 8.2 years. The mean duration of follow-up was 9.8 years. Skeletal maturity (fusion of physis) occurred at 15.2 years in group L and at 16.0 years in group C. The actual length of tibia (without distraction) at skeletal maturity was 238 mm in group L and 277 mm in group C (p = 0.03). The mean growth rates showed a decrease in group L relative to group C from about 2 years after surgery. Physeal closure was most pronounced on the anterolateral proximal tibial physis, with relative preservation of the distal physis. Our findings indicate that physeal growth rate can be disturbed after tibial lengthening in achondroplasia, and a close watch should be kept for such an occurrence-especially when lengthening of more than 50% is attempted.

  13. Comparison of long-term results between osteo-odonto-keratoprosthesis and tibial bone keratoprosthesis.

    PubMed

    Charoenrook, Victor; Michael, Ralph; de la Paz, Maria Fideliz; Temprano, José; Barraquer, Rafael I

    2018-04-01

    To compare the anatomical and the functional results between osteo-odonto-keratoprosthesis (OOKP) and keratoprosthesis using tibial bone autograft (Tibial bone KPro). We reviewed the charts of 258 patients; 145 had OOKP whereas 113 had Tibial bone KPro implanted. Functional success was defined as best corrected visual acuity ≥0.05 on decimal scale and anatomical success as retention of the keratoprosthesis lamina. Kaplan-Meier survival curves were calculated for anatomical and functional survival as well as to estimate the probability of post-op complications. The anatomical survival for both KPro groups was not significantly different and was estimated as 67% for OOKP and 54% for Tibial bone KPro at 10 years after surgery. There was also no difference found after subdividing for primary diagnosis groups such as chemical injury, thermal burn, trachoma and all autoimmune cases combined. Estimated functional survival at 10 years post-surgery was 49% for OOKP and 25% for Tibial bone KPro, which was significantly different. The probability of patients with Tibial bone KPro developing one or more post-operative complications at 10 years after surgery (65%) was significantly higher than those with OOKP (40%). Mucous membrane necrosis and retroprosthetic membrane formation were more common in Tibial bone KPro than OOKP. Both types of autologous biological KPro, OOKP and Tibial bone KPro, had statistically similar rate of keratoprosthesis extrusion. Although functional success rate was significantly higher in OOKP, it may have been influenced by a better visual potential in the patients in this group. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Complex Medial Meniscus Tears Are Associated With a Biconcave Medial Tibial Plateau.

    PubMed

    Barber, F Alan; Getelman, Mark H; Berry, Kathy L

    2017-04-01

    To determine whether an association exists between a biconcave medial tibial plateau and complex medial meniscus tears. A consecutive series of stable knees undergoing arthroscopy were evaluated retrospectively with the use of preoperative magnetic resonance imaging (MRI), radiographs, and arthroscopy documented by intraoperative videos. Investigators independently performed blinded reviews of the MRI or videos. Based on the arthroscopy findings, medial tibial plateaus were classified as either biconcave or not biconcave. A transverse coronal plane ridge, separating the front of the tibial plateau from the back near the inner margin of the posterior body of the medial meniscus, was defined as biconcave. The medial plateau slope was calculated with MRI sagittal views. General demographic information, body mass index, and arthroscopically confirmed knee pathology were recorded. A total of 179 consecutive knees were studied from July 2014 through August 2015; 49 (27.2%) biconcave medial tibial plateaus and 130 (72.8%) controls were identified at arthroscopy. Complex medial meniscus tears were found in 103. Patients with a biconcave medial tibial plateau were found to have more complex medial meniscus tears (69.4%) than those without a biconcavity (53.1%) (P = .049) despite having lower body mass index (P = .020). No difference in medial tibial plateau slope was observed for biconcavities involving both cartilage and bone, bone only, or an indeterminate group (P = .47). Biconcave medial tibial plateaus were present in 27.4% of a consecutive series of patients undergoing knee arthroscopy. A biconcave medial tibial plateau was more frequently associated with a complex medial meniscus tear. Level III, case-control study. Copyright © 2016 Arthroscopy Association of North America. All rights reserved.

  15. [High tibial osteotomy--fixation by means of external fixation--indication, technique, complications (author's transl)].

    PubMed

    Klems, H

    1976-02-01

    High tibial osteotomy has proved its value in the treatment of gonarthrosis with or without axis deformity. The thrust of weight-bearing and other stresses is lessened on the degenerated tibial condyle and transferred to the more normal condyle. The stable fixation by means of external fixation allows early movement of the knee joint.-R-ferences to operative technique, indication, complications and after-treatment.

  16. Elementary defects in graphane

    NASA Astrophysics Data System (ADS)

    Podlivaev, A. I.; Openov, L. A.

    2017-07-01

    The main zero-dimensional defects in graphane, a completely hydrogenated single-layer graphene, having the chair-type conformation have been numerically simulated. The hydrogen and carbon-hydrogen vacancies, Stone-Wales defect, and "transmutation defect" resulting from the simultaneous hoppings of two hydrogen atoms between the neighboring carbon atoms have been considered. The energies of formations of these defects have been calculated and their effect on the electronic structure, phonon spectra, and Young modulus has been studied.

  17. Bobcat attack on a cottontail rabbit

    USGS Publications Warehouse

    Biggins, D.E.; Biggins, D.M.

    2006-01-01

    We observed an attack by a bobcat (Lynx rufus) on a cottontail rabbit (Sylvilagus) that involved stealthy approach by the cat for >1 h, followed by a 12.3-s chase covering 116.0 m for the cat and 128.4 m for the rabbit. During the chase, the route of the cat from starting point to kill site was more direct than the semi-circular route of the rabbit. Stride lengths for the cat and total distance covered by the chase were longer than those previously reported for bobcats.

  18. Use of routine clinical multimodality imaging in a rabbit model of osteoarthritis--part I.

    PubMed

    Bouchgua, M; Alexander, K; d'Anjou, M André; Girard, C A; Carmel, E Norman; Beauchamp, G; Richard, H; Laverty, S

    2009-02-01

    To evaluate in vivo the evolution of osteoarthritis (OA) lesions temporally in a rabbit model of OA with clinically available imaging modalities: computed radiography (CR), helical single-slice computed tomography (CT), and 1.5 tesla (T) magnetic resonance imaging (MRI). Imaging was performed on knees of anesthetized rabbits [10 anterior cruciate ligament transection (ACLT) and contralateral sham joints and six control rabbits] at baseline and at intervals up to 12 weeks post-surgery. Osteophytosis, subchondral bone sclerosis, bone marrow lesions (BMLs), femoropatellar effusion and articular cartilage were assessed. CT had the highest sensitivity (90%) and specificity (91%) to detect osteophytes. A significant increase in total joint osteophyte score occurred at all time-points post-operatively in the ACLT group alone. BMLs were identified and occurred most commonly in the lateral femoral condyle of the ACLT joints and were not identified in the tibia. A significant increase in joint effusion was present in the ACLT joints until 8 weeks after surgery. Bone sclerosis or cartilage defects were not reliably assessed with the selected imaging modalities. Combined, clinically available CT and 1.5 T MRI allowed the assessment of most of the characteristic lesions of OA and at early time-points in the development of the disease. However, the selected 1.5 T MRI sequences and acquisition times did not permit the detection of cartilage lesions in this rabbit OA model.

  19. Truncated C-terminus of fibrillin-1 induces Marfanoid-progeroid-lipodystrophy (MPL) syndrome in rabbit.

    PubMed

    Chen, Mao; Yao, Bing; Yang, Qiangbing; Deng, Jichao; Song, Yuning; Sui, Tingting; Zhou, Lina; Yao, HaoBing; Xu, Yuanyuan; Ouyang, Hongsheng; Pang, Daxin; Li, Zhanjun; Lai, Liangxue

    2018-04-09

    Various clinical differences have been observed between patients with the FBN1 gene mutation and those with the classical Marfan phenotype. Although FBN1 knockout (KO) or dominant-negative mutant mice are widely used as an animal model for Marfan syndrome (MFS), these mice cannot recapitulate the genotype/phenotype relationship of Marfanoid-progeroid-lipodystrophy (MPL) syndrome, which is caused by a mutation in the C-terminus of fibrillin-1, the penultimate exon of the FBN1 gene. Here, we describe the generation of a rabbit MPL model with C-terminal truncation of fibrillin-1 using a CRISPR/Cas9 system. FBN1 heterozygous ( FBN1 Het) rabbits faithfully recapitulated the phenotypes of MFS, including muscle wasting and impaired connective tissue, ocular syndrome and aortic dilation. Moreover, skin symptoms, lipodystrophy, growth retardation and dysglycemia were also seen in these FBN1 Het rabbits, and have not been reported in other animal models. In conclusion, this novel rabbit model mimics the histopathological changes and functional defects of MPL syndrome, and could become a valuable model for studies of pathogenesis and drug screening for MPL syndrome. © 2018. Published by The Company of Biologists Ltd.

  20. Total knee replacement-cementless tibial fixation with screws: 10-year results.

    PubMed

    Ersan, Önder; Öztürk, Alper; Çatma, Mehmet Faruk; Ünlü, Serhan; Akdoğan, Mutlu; Ateş, Yalım

    2017-12-01

    The aim of this study was to evaluate the long term clinical and radiological results of cementless total knee replacement. A total of 51 knees of 49 patients (33 female and 16 male; mean age: 61.6 years (range, 29-66 years)) who underwent TKR surgery with a posterior stabilized hydroxyapatite coated knee implant were included in this study. All of the tibial components were fixed with screws. The HSS scores were examined preoperatively and at the final follow-up. Radiological assessment was performed with Knee Society evaluating and scoring system. Kaplan-Meier survival analysis was performed to rule out the survival of the tibial component. The mean HSS scores were 45.8 (range 38-60) and 88.1 (range 61-93), preoperatively and at the final follow-up respectively. Complete radiological assessment was performed for 48 knees. Lucent lines at the tibial component were observed in 4 patients; one of these patients underwent a revision surgery due to the loosening of the tibial component. The 10-year survival rate of a tibial component was 98%. Cementless total knee replacement has satisfactory long term clinical results. Primary fixation of the tibial component with screws provides adequate stability even in elderly patients with good bone quality. Level IV, Therapeutic study. Copyright © 2017 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  1. Acute changes in foot strike pattern and cadence affect running parameters associated with tibial stress fractures.

    PubMed

    Yong, Jennifer R; Silder, Amy; Montgomery, Kate L; Fredericson, Michael; Delp, Scott L

    2018-05-18

    Tibial stress fractures are a common and debilitating injury that occur in distance runners. Runners may be able to decrease tibial stress fracture risk by adopting a running pattern that reduces biomechanical parameters associated with a history of tibial stress fracture. The purpose of this study was to test the hypothesis that converting to a forefoot striking pattern or increasing cadence without focusing on changing foot strike type would reduce injury risk parameters in recreational runners. Running kinematics, ground reaction forces and tibial accelerations were recorded from seventeen healthy, habitual rearfoot striking runners while running in their natural running pattern and after two acute retraining conditions: (1) converting to forefoot striking without focusing on cadence and (2) increasing cadence without focusing on foot strike. We found that converting to forefoot striking decreased two risk factors for tibial stress fracture: average and peak loading rates. Increasing cadence decreased one risk factor: peak hip adduction angle. Our results demonstrate that acute adaptation to forefoot striking reduces different injury risk parameters than acute adaptation to increased cadence and suggest that both modifications may reduce the risk of tibial stress fractures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Tibial anatomy in normal small breed dogs including anisometry of various extracapsular stabilizing suture attachment sites.

    PubMed

    Witte, P G

    2015-01-01

    To investigate proximal tibial anatomy and its influence on anisometry of extracapsular stabilizing sutures in small dog breeds. Mediolateral radiographs of the femora, stifles, and tibiae of 12 small breed dogs were acquired with the stifles positioned at various angles. Measurements taken included tibial plateau angle (TPA), diaphyseal: proximal tibial angle (DPA), patellar tendon angle (PTA), Z-angle, relative tibial tuberosity width (rTTW), and the distance between six combinations of two femoral and three tibial extra-capsular stabilizing suture (ECS) attachment sites. Theoretical strain through stifle range-of-motion was recorded. The TPA (32° ± 5.8°), DPA (10.2° ± 7.3°), PTA (103.7° ± 6.2°), and Z-angle (70.4° ± 9.0°) were positively correlated with one another (R >0.7), but none were correlated with rTTW (0.93 ± 0.10). The F2-T1 combination of ECS attachment sites had lowest strain for nine stifles. The shortest attachment site separation was at a stifle flexion of 50° for nine stifles. Proximal tibial anatomy measurements could not predict optimal attachment site combination, optimal stifle angle for suture placement, or ECS strain. There is individual variation in the optimal attachment site combination and stifle angle for suture placement, which may influence consistency of outcomes with ECS.

  3. Magnitude of cement-device interfacial stresses with and without tibial stemming: impact of BMI.

    PubMed

    Gopalakrishnan, Ananthkrishnan; Hedley, Anthony Keith; Kester, Mark A

    2011-03-01

    Patients expect their total knee arthroplasty to relieve pain and to be long lasting. With patients becoming more active, weighing more, and living longer, this expectation becomes increasingly more difficult to fulfill. Patients who are obese and active put greater loads on their implants and may have a greater risk of failure. Although much attention has been paid to decreasing polyethylene wear, a major cause of implant failure, very little research focus has been directed to elucidate other measures to reduce failure, such as the efficacy of prophylactic stemming of the tibial tray. This study explored whether additional mechanical support for tibial base plates would help reduce bone cement stresses in heavy patients, who, like patients with a high activity level, put added stress on their implants. A tibial base plate with a 12-mm-diameter x 50-mm-long stem was compared with the same tibial base plate with a 15-mm-diameter x 20-mm-long end cap using finite element analysis. The results indicate that the tibial base plate with a prophylactic stem significantly reduced compressive and shear stresses on the cement-device interface and therefore may help to reduce the possibility of tibial loosening in these at-risk patients. Further, such studies will aid the surgeon in educating patients and in selecting the appropriate implant strategy.

  4. The effects of sectioning the spring ligament on rearfoot stability and posterior tibial tendon efficiency.

    PubMed

    Jennings, Meagan M; Christensen, Jeffery C

    2008-01-01

    Posterior tibial tendon insufficiency has been implicated as a cause of adult acquired flatfoot. Multiple theories are debated as to whether or not a flatfoot deformity develops secondary to insufficiency of the posterior tibial tendon or of the ligamentous structures such as the spring ligament complex. This cadaveric study was undertaken in an attempt to determine the effect that sectioning the spring ligament complex has on foot stability, and whether engagement of the posterior tibial tendon would be able to compensate for the loss of the spring ligament complex. A 3-dimensional kinematic system and a custom-loading frame were used to quantify rotation about the talus, navicular, and calcaneus in 5 cadaveric specimens, before and after sectioning the spring ligament complex, while incremental tension was applied to the posterior tibial tendon. This study demonstrated that sectioning the spring ligament complex created instability in the foot for which the posterior tibial tendon was unable to compensate. Sectioning the spring ligament complex also produced significant changes in talar, navicular, and calcaneal rotations. During simulated midstance, the navicular plantarflexed, adducted, and everted; the talar head plantarflexed, adducted, and inverted; and the calcaneus plantarflexed, abducted, and everted, after sectioning the spring ligament complex. The results of this study indicate that the spring ligament complex is the major stabilizer of the arch during midstance and that the posterior tibial tendon is incapable of fully accommodating for its insufficiency, suggesting that the spring ligament complex should be evaluated and, if indicated, repaired in flatfoot reconstruction. 5.

  5. How does tibial cartilage volume relate to symptoms in subjects with knee osteoarthritis?

    PubMed Central

    Wluka, A; Wolfe, R; Stuckey, S; Cicuttini, F

    2004-01-01

    Background: No consistent relationship between the severity of symptoms of knee osteoarthritis (OA) and radiographic change has been demonstrated. Objectives: To determine the relationship between symptoms of knee OA and tibial cartilage volume, whether pain predicts loss of cartilage in knee OA, and whether change in cartilage volume over time relates to change in symptoms over the same period. Method: 132 subjects with symptomatic, early (mild to moderate) knee OA were studied. At baseline and 2 years later, participants had MRI scans of their knee and completed questionnaires quantifying symptoms of knee OA (knee-specific WOMAC: pain, stiffness, function) and general physical and mental health (SF-36). Tibial cartilage volume was determined from the MRI images. Results: Complete data were available for 117 (89%) subjects. A weak association was found between tibial cartilage volume and symptoms at baseline. The severity of the symptoms of knee OA at baseline did not predict subsequent tibial cartilage loss. However, weak associations were seen between worsening of symptoms of OA and increased cartilage loss: pain (rs = 0.28, p = 0.002), stiffness (rs = 0.17, p = 0.07), and deterioration in function (rs = 0.21, p = 0.02). Conclusion: Tibial cartilage volume is weakly associated with symptoms in knee OA. There is a weak association between loss of tibial cartilage and worsening of symptoms. This suggests that although cartilage is not a major determinant of symptoms in knee OA, it does relate to symptoms. PMID:14962960

  6. Prediction of Tibial Rotation Pathologies Using Particle Swarm Optimization and K-Means Algorithms.

    PubMed

    Sari, Murat; Tuna, Can; Akogul, Serkan

    2018-03-28

    The aim of this article is to investigate pathological subjects from a population through different physical factors. To achieve this, particle swarm optimization (PSO) and K-means (KM) clustering algorithms have been combined (PSO-KM). Datasets provided by the literature were divided into three clusters based on age and weight parameters and each one of right tibial external rotation (RTER), right tibial internal rotation (RTIR), left tibial external rotation (LTER), and left tibial internal rotation (LTIR) values were divided into three types as Type 1, Type 2 and Type 3 (Type 2 is non-pathological (normal) and the other two types are pathological (abnormal)), respectively. The rotation values of every subject in any cluster were noted. Then the algorithm was run and the produced values were also considered. The values of the produced algorithm, the PSO-KM, have been compared with the real values. The hybrid PSO-KM algorithm has been very successful on the optimal clustering of the tibial rotation types through the physical criteria. In this investigation, Type 2 (pathological subjects) is of especially high predictability and the PSO-KM algorithm has been very successful as an operation system for clustering and optimizing the tibial motion data assessments. These research findings are expected to be very useful for health providers, such as physiotherapists, orthopedists, and so on, in which this consequence may help clinicians to appropriately designing proper treatment schedules for patients.

  7. EXPERIMENTAL SYPHILIS IN THE RABBIT

    PubMed Central

    Brown, Wade H.; Pearce, Louise

    1920-01-01

    From a study of the phenomena of the primary infection on the one hand, and the phenomena of local spread, or dissemination, on the other, it is seen that a multiplicity of lesions develops in the testicle and scrotum of the rabbit which have much the same characteristics irrespective of their origin. Some of these lesions are clearly recognizable as primary lesions or parts of a primary reaction to infection, while others are just as clearly the results of dissemination of the virus from a primary focus of infection or correspond with lesions which are commonly spoken of as secondary lesions. The effort to draw a sharp line of distinction between these two groups of lesions or between a primary and a secondary stage of infection in the rabbit, however, would be largely an arbitrary procedure. The fact is that the tissues of the scrotum and testicle of the rabbit constitute favorable surroundings for the localization and development of pallidum infections. Under ordinary circumstances, a large part of the reaction to infection which expresses itself in the formation of lesions recognizable by ordinary methods of examination takes place in these tissues. These lesions present certain broad and general characteristics without regard to whether they are primary or secondary in origin; the reaction is merely a reaction to a syphilitic infection which in either case may assume the most diverse character. Further, it would appear that in rabbits infected with such strains of Treponema pallidum as we have used, the virus is never confined to the area occupied by the so called primary lesion, or chancre, but always spreads and always gives rise to a regional adenopathy. There may be no lesions to indicate the progress of this dissemination, but an examination of the inguinal nodes shows that dissemination occurs very soon after inoculation, and a pallidum reaction may be detected in these glands even before infection can be recognized in the scrotum. Subsequently lesions

  8. Higher Rate of Revision in PFC Sigma Primary Total Knee Arthroplasty With Mismatch of Femoro-Tibial Component Sizes.

    PubMed

    Young, Simon W; Clarke, Henry D; Graves, Stephen E; Liu, Yen-Liang; de Steiger, Richard N

    2015-05-01

    Total knee arthroplasty (TKA) systems permit a degree of femoro-tibial component size mismatch. The effect of mismatched components on revision rates has not been evaluated in a large study. We reviewed 21,906 fixed-bearing PFC Sigma primary TKAs using the Australian Orthopaedic Association National Joint Replacement Registry, dividing patients into three groups: no femoro-tibial size mismatch, tibial component size > femoral component size, and femoral component > tibial component. Revision rates were higher when the femoral size was greater than the tibia, compared to both equal size (HR = 1.20 (1.00, 1.45), P = 0.047) and to tibial size greater than femoral (HR = 1.60 (1.08, 2.37), P = 0.019). Potential mechanisms to explain these findings include edge loading of polyethylene and increased tibial component stresses. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. [The geometry of the keel determines the behaviour of the tibial tray against torsional forces in total knee replacement].

    PubMed

    García David, S; Cortijo Martínez, J A; Navarro Bermúdez, I; Maculé, F; Hinarejos, P; Puig-Verdié, L; Monllau, J C; Hernández Hermoso, J A

    2014-01-01

    The keel design of the tibial tray is essential for the transmission of the majority of the forces to the peripheral bone structures, which have better mechanical proprieties, thus reducing the risk of loosening. The aim of the present study was to compare the behaviour of different tibial tray designs submitted to torsional forces. Four different tibial components were modelled. The 3-D reconstruction was made using the Mimics software. The solid elements were generated by SolidWorks. The finite elements study was done by Unigraphics. A torsional force of 6 Nm. applied to the lateral aspects of each tibial tray was simulated. The GENUTECH® tibial tray, with peripheral trabecular bone support, showed a lower displacement and less transmitted tensions under torsional forces. The results suggest that a tibial tray with more peripheral support behaves mechanically better than the other studied designs. Copyright © 2013 SECOT. Published by Elsevier Espana. All rights reserved.

  10. Synthetic Defects for Vibrothermography

    NASA Astrophysics Data System (ADS)

    Renshaw, Jeremy; Holland, Stephen D.; Thompson, R. Bruce; Eisenmann, David J.

    2010-02-01

    Synthetic defects are an important tool used for characterizing the performance of nondestructive evaluation techniques. Viscous material-filled synthetic defects were developed for use in vibrothermography (also known as sonic IR) as a tool to improve inspection accuracy and reliability. This paper describes how the heat-generation response of these VMF synthetic defects is similar to the response of real defects. It also shows how VMF defects can be applied to improve inspection accuracy for complex industrial parts and presents a study of their application in an aircraft engine stator vane.

  11. Eyeblink conditioning in the developing rabbit

    PubMed Central

    Brown, Kevin L.; Woodruff-Pak, Diana S.

    2011-01-01

    Eyeblink classical conditioning in pre-weanling rabbits was examined in the present study. Using a custom lightweight headpiece and restrainer, New Zealand white littermates were trained once daily in 400 ms delay eyeblink classical conditioning from postnatal days (PD) 17–21 or PD 24–28. These ages were chosen because eyeblink conditioning emerges gradually over PD 17–24 in rats (Stanton, Freeman, & Skelton, 1992), another altricial species with neurodevelopmental features similar to those of rabbits. Consistent with well-established findings in rats, rabbits trained from PD 24–28 showed greater conditioning relative to littermates trained from PD 17–21. Both age groups displayed poor retention of eyeblink conditioning at retraining one month after acquisition. These findings are the first to demonstrate eyeblink conditioning in the developing rabbit. With further characterization of optimal conditioning parameters, this preparation may have applications to neurodevelopmental disease models as well as research exploring the ontogeny of memory. PMID:21953433

  12. Outcome of limb reconstruction system in open tibial diaphyseal fractures.

    PubMed

    Ajmera, Anand; Verma, Ankit; Agrawal, Mukul; Jain, Saurabh; Mukherjee, Arunangshu

    2015-01-01

    Management of open tibial diaphyseal fractures with bone loss is a matter of debate. The treatment options range from external fixators, nailing, ring fixators or grafting with or without plastic reconstruction. All the procedures have their own set of complications, like acute docking problems, shortening, difficulty in soft tissue management, chronic infection, increased morbidity, multiple surgeries, longer hospital stay, mal union, nonunion and higher patient dissatisfaction. We evaluated the outcome of the limb reconstruction system (LRS) in the treatment of open fractures of tibial diaphysis with bone loss as a definative mode of treatment to achieve union, as well as limb lengthening, simultaneously. Thirty open fractures of tibial diaphysis with bone loss of at least 4 cm or more with a mean age 32.5 years were treated by using the LRS after debridement. Distraction osteogenesis at rate of 1 mm/day was done away from the fracture site to maintain the limb length. On the approximation of fracture ends, the dynamized LRS was left for further 15-20 weeks and patient was mobilized with weight bearing to achieve union. Functional assessment was done by Association for the Study and Application of the Methods of Illizarov (ASAMI) criteria. Mean followup period was 15 months. The mean bone loss was 5.5 cm (range 4-9 cm). The mean duration of bone transport was 13 weeks (range 8-30 weeks) with a mean time for LRS in place was 44 weeks (range 24-51 weeks). The mean implant index was 56.4 days/cm. Mean union time was 52 weeks (range 31-60 weeks) with mean union index of 74.5 days/cm. Bony results as per the ASAMI scoring were excellent in 76% (19/25), good in 12% (3/25) and fair in 4% (1/25) with union in all except 2 patients, which showed poor results (8%) with only 2 patients having leg length discrepancy more than 2.5 cm. Functional results were excellent in 84% (21/25), good in 8% (2/25), fair in 8% (2/25). Pin tract infection was seen in 5 cases, out of which 4

  13. Production of Polyclonal Antibodies in Rabbits

    DTIC Science & Technology

    1995-10-01

    injections of bovine fetal serum acetylcholinesterase and horse serum butyrylcholinesterase in rabbits. Concentrations of these enzymes became...13 2. Horse Serum Butyrylcholinesterase (E-BChE) 14 3. Bovine Serum Albumin (BSA) and Rabbit Serum Al4umin (RSA) 14 4. Suppocire-D 14 5. Triglyceride...Extraction from Calcium Sulfate Microspheres 16 c. Removal of Sealant and Polymer Overcoat from Calcium 17 Sulfate Microspheres 5. Size Distribution 17 6. In

  14. International Conference on Immunogenetics of the Rabbit.

    DTIC Science & Technology

    1983-12-09

    Md. 20205 We have recently described a method for the direct removal of T lymphocytes by " panning " of rabbit splenocytes on plastic dishes coated...Research University of Illinois Washington, DC 20012 Chicago, IL 60612 Hammadi Ayadi Linda Cook Institut Jacques Monod University of Illinois, Chicago...other species and tested for its ability to inhibit a rabbit Id-anti-Id reaction. Guinea pigs, mice, goats, and chickens were immunized with al IgG and

  15. INFECTIOUS MYXOMATOSIS (SANARELLI) IN PREGNANT RABBITS

    PubMed Central

    Sprunt, Douglas H.

    1932-01-01

    Pregnancy in rabbits alters the reactivity of the tissues to the virus of infectious myxomatosis. The livers of pregnant animals with the myxoma have a central acidophilic necrosis. Secondary lesions in the lungs are much more numerous and larger in the pregnant than in the non-gravid animals. In like manner the lesions in the spleen are more extensive in the pregnant rabbit. On the other hand the skin lesions of the pregnant animal are decreased in size. PMID:19870088

  16. The Effect of Tibial Plateau Levelling Osteotomy on Stifle Extensor Mechanism Load: A Canine Ex Vivo Study.

    PubMed

    Drew, Jarrod O; Glyde, Mark R; Hosgood, Giselle L; Hayes, Alex J

    2018-02-01

     To evaluate the effect of tibial plateau levelling osteotomy on stifle extensor mechanism load in an ex vivo cruciate-intact canine cadaveric model.   Ex vivo mechanical testing study.  Cadaveric canine pelvic limbs ( n  = 6).  A 21-mm tibial radial osteotomy was performed on pelvic limbs ( n  = 6) prior to being mounted into a load-bearing limb press. The proximal tibial segment was incrementally rotated until the anatomical tibial plateau angle had been rotated to at least 1°. The proportional change in stifle extensor mechanism load between the anatomical tibial plateau angle and the neutralized (∼6.5 degrees) and over-rotated (∼1°) tibial plateau angle was analysed using a one-sample t -test against a null hypothesis of no change. A p -value ≤0.05 was considered significant.  There was no significant change in the stifle extensor mechanism load from the anatomical tibial plateau angle (308 N [261-355 N]) to the neutralized tibial plateau angle (313 N [254-372 N]; p =.81), or from the anatomical tibial plateau angle to the over-rotated tibial plateau angle (303 N [254-352 N; p  = 0.67).  Tibial plateau levelling osteotomy does not significantly alter stifle extensor mechanism load at either a neutralized or over-rotated tibial plateau angle in our cruciate-intact model. Schattauer GmbH Stuttgart.

  17. The transverse ligament as a landmark for tibial sagittal insertions of the anterior cruciate ligament: a cadaveric study.

    PubMed

    Kongcharoensombat, Wirat; Ochi, Mitsuo; Abouheif, Mohamed; Adachi, Nobuo; Ohkawa, Shingo; Kamei, Goki; Okuhara, Atushi; Shibuya, Hoyatoshi; Niimoto, Takuya; Nakasa, Tomoyuki; Nakamae, Atsuo; Deie, Masataka

    2011-10-01

    The purpose of this study was to determine the relation between the position of the transverse ligament, the anterior edge of the anterior cruciate ligament (ACL) tibial footprint, and the center of the ACL tibial insertion. We used arthroscopy for localization of the anatomic landmarks, followed by insertions of guide pins under direct visualization, and then the position of these guide pins was checked on plain lateral radiographs. The transverse ligament and the anterior aspect of the ACL tibial footprint were identified by arthroscopy in 20 unpaired cadaveric knees (10 left and 10 right). Guide pins were inserted with tibial ACL adapter drill guides under direct observation at the transverse ligament, the anterior aspect of the tibial footprint, and the center of tibial insertion of the ACL. Then, plain lateral radiographs of specimens were taken. The Amis and Jakob line was used to define the attachment of the ACL tibial insertion and the transverse ligament. A sagittal percentage of the location of the insertion point was determined and calculated from the anterior margin of the tibia in the anteroposterior direction. The transverse ligament averaged 21.20% ± 4.1%, the anterior edge of the ACL tibial insertion averaged 21.60% ± 4.0%, and the center of the ACL tibial insertion averaged 40.30% ± 4.8%. There were similar percent variations between the transverse ligament and the anterior edge of the ACL tibial insertion, with no significant difference between them (P = .38). Intraobserver and interobserver reliability was high, with small standard errors of measurement. This study shows that the transverse ligament coincides with the anterior edge of the ACL tibial footprint in the sagittal plane. The transverse ligament can be considered as a new landmark for tibial tunnel positioning during anatomic ACL reconstruction. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  18. Skull Defects in Finite Element Head Models for Source Reconstruction from Magnetoencephalography Signals

    PubMed Central

    Lau, Stephan; Güllmar, Daniel; Flemming, Lars; Grayden, David B.; Cook, Mark J.; Wolters, Carsten H.; Haueisen, Jens

    2016-01-01

    Magnetoencephalography (MEG) signals are influenced by skull defects. However, there is a lack of evidence of this influence during source reconstruction. Our objectives are to characterize errors in source reconstruction from MEG signals due to ignoring skull defects and to assess the ability of an exact finite element head model to eliminate such errors. A detailed finite element model of the head of a rabbit used in a physical experiment was constructed from magnetic resonance and co-registered computer tomography imaging that differentiated nine tissue types. Sources of the MEG measurements above intact skull and above skull defects respectively were reconstructed using a finite element model with the intact skull and one incorporating the skull defects. The forward simulation of the MEG signals reproduced the experimentally observed characteristic magnitude and topography changes due to skull defects. Sources reconstructed from measured MEG signals above intact skull matched the known physical locations and orientations. Ignoring skull defects in the head model during reconstruction displaced sources under a skull defect away from that defect. Sources next to a defect were reoriented. When skull defects, with their physical conductivity, were incorporated in the head model, the location and orientation errors were mostly eliminated. The conductivity of the skull defect material non-uniformly modulated the influence on MEG signals. We propose concrete guidelines for taking into account conducting skull defects during MEG coil placement and modeling. Exact finite element head models can improve localization of brain function, specifically after surgery. PMID:27092044

  19. Fatigue strength of common tibial intramedullary nail distal locking screws

    PubMed Central

    Griffin, Lanny V; Harris, Robert M; Zubak, Joseph J

    2009-01-01

    Background Premature failure of either the nail and/or locking screws with unstable fracture patterns may lead to angulation, shortening, malunion, and IM nail migration. Up to thirty percent of all unreamed nail locking screws can break after initial weight bearing is allowed at 8–10 weeks if union has not occurred. The primary problem this presents is hardware removal during revision surgery. The purposes of our study was to evaluate the relative fatigue resistance of distal locking screws and bolts from representative manufacturers of tibial IM nail systems, and develop a relative risk assessment of screws and materials used. Evaluations included quantitative and qualitative measures of the relative performance of these screws. Methods Fatigue tests were conducted to simulate a comminuted fracture that was treated by IM nailing assuming that all load was carried by the screws. Each screw type was tested ten times in a single screw configuration. One screw type was tested an additional ten times in a two-screw parallel configuration. Fatigue tests were performed using a servohydraulic materials testing system and custom fixturing that simulated screws placed in the distal region of an appropriately sized tibial IM nail. Fatigue loads were estimated based on a seventy-five kilogram individual at full weight bearing. The test duration was one million cycles (roughly one year), or screw fracture, whichever occurred first. Failure analysis of a representative sample of titanium alloy and stainless steel screws included scanning electron microscopy (SEM) and quantitative metallography. Results The average fatigue life of a single screw with a diameter of 4.0 mm was 1200 cycles, which would correspond roughly to half a day of full weight bearing. Single screws with a diameter of 4.5 mm or larger have approximately a 50 percent probability of withstanding a week of weight bearing, whereas a single 5.0 mm diameter screw has greater than 90 percent probability of

  20. The fixation strength of tibial PCL press-fit reconstructions.

    PubMed

    Ettinger, M; Wehrhahn, T; Petri, M; Liodakis, E; Olender, G; Albrecht, U-V; Hurschler, C; Krettek, C; Jagodzinski, M

    2012-02-01

    A secure tibial press-fit technique in posterior cruciate ligament reconstructions is an interesting technique because no hardware is necessary. For anterior cruciate ligament (ACL) reconstruction, a few press-fit procedures have been published. Up to the present point, no biomechanical data exist for a tibial press-fit posterior cruciate ligament (PCL) reconstruction. The purpose of this study was to characterize a press-fit procedure for PCL reconstruction that is biomechanically equivalent to an interference screw fixation. Quadriceps and hamstring tendons of 20 human cadavers (age: 49.2 ± 18.5 years) were used. A press-fit fixation with a knot in the semitendinosus tendon (K) and a quadriceps tendon bone block graft (Q) were compared to an interference screw fixation (I) in 30 porcine femora. In each group, nine constructs were cyclically stretched and then loaded until failure. Maximum load to failure, stiffness, and elongation during failure testing and cyclical loading were investigated. The maximum load to failure was 518 ± 157 N (387-650 N) for the (K) group, 558 ± 119 N (466-650 N) for the (I) group, and 620 ± 102 N (541-699 N) for the (Q) group. The stiffness was 55 ± 27 N/mm (18-89 N/mm) for the (K) group, 117 ± 62 N/mm (69-165 N/mm) for the (I) group, and 65 ± 21 N/mm (49-82 N/mm) for the (Q) group. The stiffness of the (I) group was significantly larger (P = 0.01). The elongation during cyclical loading was significantly larger for all groups from the 1st to the 5th cycle compared to the elongation in between the 5th to the 20th cycle (P < 0.03). All techniques exhibited larger elongation during initial loading. Load to failure and stiffness was significantly different between the fixations. The Q fixation showed equal biomechanical properties compared to a pure tendon fixation (I) with an interference screw. All three fixation techniques that were investigated exhibit comparable biomechanical properties

  1. Rabbits and men: relating their ages.

    PubMed

    Dutta, Sulagna; Sengupta, Pallav

    2018-04-19

    Rabbit, a member of the Lagomorpha order, is the closest phylogenetic relative to humans, next to primates. It possesses greater acceptability as a laboratory mammal than primates in terms of husbandry, breeding ease, cost effectiveness, and legal ethical conveniences. Moreover, as a laboratory animal, the rabbit also owns its advantages over mice or rats, in terms of phylogenetic resemblance to human, size, blood volume, responsiveness, and other congruences enabling them to better imitate human physiological characteristics in biomedical research. A specific research aspires to effectuate its outcome on a particular human age group, for which it is pivotal to select a laboratory rabbit of exact age, which will correlate with that specific age of a human, which is currently based on mere approximation. This article is the first ever scientific venture, focused to swap this approximation of laboratory rabbit age with accuracy by relating it with that of humans analyzing different phases of life individually. Considering the diminutive lifespan of rabbits compared to humans, the correlation of their age with respect to the entire lifespan, which we found out to be 45.625 days compared to one human year, is not enough. Thereby, like our previous articles that formulated concise relation of age of laboratory rats and mice with human age, in this article also, we aim to aid biomedical research specificity in the selection of laboratory model age, separately correlating different life phases of humans with that of rabbits, the second mostly used mammal in 2016 in the United States.

  2. The Critical Size Defect as an Experimental Model for Craniomaxillofacial Nonunions,

    DTIC Science & Technology

    1985-01-01

    union evident at two months. The wider defects of 12 m, 15 m, and 18 mm in length exhibited bony union in four months but exhibited drainage either...Prolo, D.J., (-btierrez, R.V., DeVine, J.S., and (*und, R.A.: Clinical l1tility of Alloqeneic Skull Discs in Human Craniotomy . Neurosurgery. 14:1R3, 1984...1. R rm craniotomy defect prepared in dried rat skull. Piq. 2. 15 rm craniotamy defect in dried rabbit skull. Fig. 3. r-ied dog mandible qhowing

  3. Effect of cranial cruciate ligament deficiency, tibial plateau leveling osteotomy, and tibial tuberosity advancement on contact mechanics and alignment of the stifle in flexion.

    PubMed

    Kim, Stanley E; Pozzi, Antonio; Banks, Scott A; Conrad, Bryan P; Lewis, Daniel D

    2010-04-01

    To assess contact mechanics and 3-dimensional (3-D) joint alignment in cranial cruciate ligament (CCL)-deficient stifles before and after tibial plateau leveling osteotomy (TPLO) and tibial tuberosity advancement (TTA) with the stifle in 90 degrees of flexion. In vitro biomechanical study. Cadaveric pelvic limb pairs (n=8) from dogs weighing 28-35 kg. Contralateral limbs were assigned to receive TPLO or TTA. Digital pressure sensors were used to measure femorotibial contact area, peak and mean contact pressure, and peak pressure location with the limb under a load of 30% body weight and stifle flexion angle of 90 degrees . 3-D poses were obtained using a Microscribe digitizer. Specimens were tested under normal, CCL deficient, and treatment conditions. Significant disturbances in alignment were not observed after CCL transection, although medial contact area was 10% smaller than normal (P=.003). There were no significant differences in contact mechanics or alignment between normal and TTA conditions; TPLO induced 6 degrees varus angulation (P<.001), 26% decrease in lateral peak pressure (P=.027), and 18% increase in medial mean pressure (P=.008) when compared with normal. Cranial tibial subluxation is nominal in CCL-deficient stifles loaded in flexion. Stifle alignment and contact mechanics are not altered by TTA, whereas TPLO causes mild varus and a subsequent increase in medial compartment loading. Cranial tibial subluxation of CCL-deficient stifles may not occur during postures that load the stifle in flexion. The significance of minor changes in loading patterns after TPLO is unknown.

  4. Flat midsubstance of the anterior cruciate ligament with tibial "C"-shaped insertion site.

    PubMed

    Siebold, Rainer; Schuhmacher, Peter; Fernandez, Francis; Śmigielski, Robert; Fink, Christian; Brehmer, Axel; Kirsch, Joachim

    2015-11-01

    This anatomical cadaver study was performed to investigate the flat appearance of the midsubstance shape of the anterior cruciate ligament (ACL) and its tibial "C"-shaped insertion site. The ACL midsubstance and the tibial ACL insertion were dissected in 20 cadaveric knees (n = 6 fresh frozen and n = 14 paraffined). Magnifying spectacles were used for all dissections. Morphometric measurements were performed using callipers and on digital photographs. In all specimens, the midsubstance of the ACL was flat with a mean width of 9.9 mm, thickness of 3.9 mm and cross-sectional area of 38.7 mm(2). The "direct" "C"-shaped tibial insertion runs from along the medial tibial spine to the anterior aspect of the lateral meniscus. The mean width (length) of the "C" was 12.6 mm, its thickness 3.3 mm and area 31.4 mm(2). The centre of the "C" was the bony insertion of the anterior root of the lateral meniscus overlayed by fat and crossed by the ACL. No posterolateral (PL) inserting ACL fibres were found. Together with the larger "indirect" part (area 79.6 mm(2)), the "direct" one formed a "duck-foot"-shaped footprint. The tibial ACL midsubstance and tibial "C"-shaped insertion are flat and are resembling a "ribbon". The centre of the "C" is the bony insertion of the anterior root of the lateral meniscus. There are no central or PL inserting ACL fibres. Anatomical ACL reconstruction may therefore require a flat graft and a "C"-shaped tibial footprint reconstruction with an anteromedial bone tunnel for single bundle and an additional posteromedial bone tunnel for double bundle.

  5. Bone microarchitecture of the tibial plateau in skeletal health and osteoporosis.

    PubMed

    Krause, Matthias; Hubert, Jan; Deymann, Simon; Hapfelmeier, Alexander; Wulff, Birgit; Petersik, Andreas; Püschel, Klaus; Amling, Michael; Hawellek, Thelonius; Frosch, Karl-Heinz

    2018-05-07

    Impaired bone structure poses a challenge for the treatment of osteoporotic tibial plateau fractures. As knowledge of region-specific structural bone alterations is a prerequisite to achieving successful long-term fixation, the aim of the current study was to characterize tibial plateau bone structure in patients with osteoporosis and the elderly. Histomorphometric parameters were assessed by high-resolution peripheral quantitative computed tomography (HR-pQCT) in 21 proximal tibiae from females with postmenopausal osteoporosis (mean age: 84.3 ± 4.9 years) and eight female healthy controls (45.5 ± 6.9 years). To visualize region-specific structural bony alterations with age, the bone mineral density (Hounsfield units) was additionally analyzed in 168 human proximal tibiae. Statistical analysis was based on evolutionary learning using globally optimal regression trees. Bone structure deterioration of the tibial plateau due to osteoporosis was region-specific. Compared to healthy controls (20.5 ± 4.7%) the greatest decrease in bone volume fraction was found in the medio-medial segments (9.2 ± 3.5%, p < 0.001). The lowest bone volume was found in central segments (tibial spine). Trabecular connectivity was severely reduced. Importantly, in the anterior and posterior 25% of the lateral and medial tibial plateaux, trabecular support and subchondral cortical bone thickness itself were also reduced. Thinning of subchondral cortical bone and marked bone loss in the anterior and posterior 25% of the tibial plateau should require special attention when osteoporotic patients require fracture fixation of the posterior segments. This knowledge may help to improve the long-term, fracture-specific fixation of complex tibial plateau fractures in osteoporosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The effect of posterior tibial slope on knee flexion in posterior-stabilized total knee arthroplasty.

    PubMed

    Shi, Xiaojun; Shen, Bin; Kang, Pengde; Yang, Jing; Zhou, Zongke; Pei, Fuxing

    2013-12-01

    To evaluate and quantify the effect of the tibial slope on the postoperative maximal knee flexion and stability in the posterior-stabilized total knee arthroplasty (TKA). Fifty-six patients (65 knees) who had undergone TKA with the posterior-stabilized prostheses were divided into the following 3 groups according to the measured tibial slopes: Group 1: ≤4°, Group 2: 4°-7° and Group 3: >7°. The preoperative range of the motion, the change in the posterior condylar offset, the elevation of the joint line, the postoperative tibiofemoral angle and the preoperative and postoperative Hospital for Special Surgery (HSS) scores were recorded. The tibial anteroposterior translation was measured using the Kneelax 3 Arthrometer at both the 30° and the 90° flexion angles. The mean values of the postoperative maximal knee flexion were 101° (SD 5), 106° (SD 5) and 113° (SD 9) in Groups 1, 2 and 3, respectively. A significant difference was found in the postoperative maximal flexion between the 3 groups (P < 0.001). However, no significant differences were found between the 3 groups in the postoperative HSS scores, the changes in the posterior condylar offset, the elevation of the joint line or the tibial anteroposterior translation at either the 30° or the 90° flexion angles. A 1° increase in the tibial slope resulted in a 1.8° flexion increment (r = 1.8, R (2) = 0.463, P < 0.001). An increase in the posterior tibial slope can significantly increase the postoperative maximal knee flexion. The tibial slope with an appropriate flexion and extension gap balance during the operation does not affect the joint stability.

  7. Effects of diabetic peripheral neuropathy on gait in vascular trans-tibial amputees.

    PubMed

    Nakajima, Hiroshi; Yamamoto, Sumiko; Katsuhira, Junji

    2018-07-01

    Patients with diabetes often develop diabetic peripheral neuropathy, which is a distal symmetric polyneuropathy, so foot function on the non-amputated side is expected to affect gait in vascular trans-tibial amputees. However, there is little information on the kinematics and kinetics of gait or the effects of diabetic peripheral neuropathy in vascular trans-tibial amputees. This study aimed to clarify these effects, including the biomechanics of the ankle on the non-amputated side. Participants were 10 vascular trans-tibial amputees with diabetic peripheral neuropathy (group V) and 8 traumatic trans-tibial amputees (group T). Each subject's gait was analyzed at a self-selected speed using a three-dimensional motion analyzer and force plates. Ankle plantarflexion angle, heel elevation angle, and peak and impulse of anterior ground reaction force were smaller on the non-amputated side during pre-swing in group V than in group T. Center of gravity during pre-swing on the non-amputated side was lower in group V than in group T. Hip extension torque during loading response on the prosthetic side was greater in group V than in group T. These findings suggest that the biomechanical function of the ankle on the non-amputated side during pre-swing is poorer in vascular trans-tibial amputees with DPN than in traumatic trans-tibial amputees; the height of the center of gravity could not be maintained during this phase in vascular trans-tibial amputees with diabetic peripheral neuropathy. The hip joint on the prosthetic side compensated for this diminished function at the ankle during loading response. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Major complications of tibial tuberosity advancement in 1613 dogs.

    PubMed

    Costa, Mario; Craig, Diane; Cambridge, Tony; Sebestyen, Peter; Su, Yuhua; Fahie, Maria A

    2017-05-01

    To report major postoperative complications in 1613 dogs with tibial tuberosity advancement (TTA). Retrospective case series. Dogs (n = 1613) with cranial cruciate ligament deficiency treated with TTA. Medical records of TTAs performed between December 2007-2013 were reviewed for age, sex, weight, contralateral stifle surgery, surgical approach, duration of preoperative lameness, presence of meniscal damage, concurrent patellar luxation and simultaneous bilateral TTA. Major postoperative complications were defined as surgical site infection (SSI) (superficial, deep, or organ/space), implant failure, fracture, patellar luxation, and meniscal tear. Major complications were recorded in 13.4% of cases. Superficial SSI (incisional irritation) was diagnosed in 6.9% cases, requiring only antimicrobial therapy. Other complications included postliminary medial meniscal tear (2% incidence), deep SSI (incisional dehiscence, 1.1%), implant failure (1%), patellar luxation (1.2%), fracture (0.9%), and organ/space SSI (septic arthritis, 0.4%). Dogs with normal menisci were less likely to develop postliminary meniscal tears if the medial meniscus was released at the time of TTA (P < .0001). No association was detected between recorded parameters and complications, although dogs >8 years old approached significance (P = .05) in terms of predisposition to major complications. Major complications after TTA are uncommon, even in dogs with concurrent patellar luxation or bilateral simultaneous procedures. In spite of its morbidity, medial meniscal release may prevent postliminary meniscal tears. © 2017 The American College of Veterinary Surgeons.

  9. Bilateral Posterior Tibial Tendon and Flexor Digitorum Longus Dislocations.

    PubMed

    Padegimas, Eric M; Beck, David M; Pedowitz, David I

    2017-04-01

    The authors present a case of a previously healthy and athletic 17-year-old female who presented with a 3.5-year history of medial left ankle pain after sustaining an inversion injury while playing basketball. Prior to presentation, she had failed prior immobilization and physical therapy for a presumed ankles sprain. Physical examination revealed a dislocated posterior tibial tendon (PTT) that was temporarily reducible, but would spontaneously dislocate immediately after reduction. She had pain and snapping of the PTT with resisted ankle plantar flexion and resisted inversion as well as 4/5 strength in ankle inversion. The diagnosis of dislocated PTT was confirmed on magnetic resonance imaging (MRI). The patient underwent suture anchor repair of the medial retinaculum of the left ankle. At the time of surgery both the PTT and flexor digitorum longus (FDL) were dislocated. Three months postoperatively, the patient represented with PTT dislocation of the right (nonoperative) ankle confirmed by MRI. After failure of immobilization, physical therapy, and oral anti-inflammatory medications, the patient underwent suture anchor repair of the medial retinaculum of the right ankle. At 6 months postoperatively, the patient has 5/5 strength inversion bilaterally, no subluxation of either PTT, and has returned to all activities without limitation. The authors present this unique case of bilateral PTT dislocation and concurrent PTT/FDL dislocation along with review of the literature for PTT dislocation. The authors highlight the common misdaiganosis of this injury and highlight the successful results of surgical intervention. Level V: Case report.

  10. Arthroscopic Management of Tibial Spine Avulsion Fractures: Principles and Techniques.

    PubMed

    Strauss, Eric J; Kaplan, Daniel James; Weinberg, Maxwell E; Egol, Jonathan; Jazrawi, Laith M

    2018-05-15

    Tibial spine fractures are uncommon injuries affecting the insertion of the anterior cruciate ligament on the tibia. They typically occur in skeletally immature patients aged 8 to 14 years and result from hyperextension of the knee with a valgus or rotational force. Diagnosis is based on history, physical examination, and standard radiographs. The use of MRI can identify entrapped soft tissue that may prevent reduction. Open or arthroscopic repair is indicated in patients with partially displaced fractures (>5 mm) with one third to one half of the avulsed fragment elevated, in patients who have undergone unsuccessful nonsurgical reduction and long leg casting or bracing, and in patients with completely displaced fractures. Arthroscopy offers reduced invasiveness and decreased morbidity. Suture fixation and screw fixation have produced successful results. Suture fixation can eliminate the risk of fracture fragment comminution during screw insertion, the risk of neurovascular injury, and the need for hardware removal. Suture fixation is ideal in cases in which existing comminution prevents screw fixation.

  11. Electrodiagnostic Examination of the Tibial Nerve in Clinically Normal Ferrets

    PubMed Central

    Bianchi, Ezio; Callegari, Daniela; Ravera, Manuela; Dondi, Maurizio

    2010-01-01

    Tibial nerves of 10 normal domestic ferrets (Mustela putorius furo) were evaluated by means of electrodiagnostic tests: motor nerve conduction studies (MNCSs), supramaximal repetitive nerve stimulation (SRNS), F waves, and cord dorsum potentials (CDPs). Values of conduction velocity, proximal and distal compound muscular action potentials, and amplitudes of MNCS were, respectively, 63.25 ± 7.56 m/sec, 10.79 ± 2.75 mV, and 13.02 ± 3.41 mV. Mean decrements in amplitude and area of compound muscular action potentials of wave 9 with low frequency SRNS were 0.3 ± 3.83% and 0.1 ± 3.51%. The minimum latency of the F waves and the F ratio were, respectively, 8.49 ± 0.65 ms and 1.92 ± 0.17. Onset latency of CDP was 1.99 ± 0.03 ms. These tests may help in diagnosing neuromuscular disorders and in better characterizing the hindlimb paresis reported in many ferrets with systemic illnesses. PMID:20706690

  12. The reverse sural artery fasciomusculocutaneous flap for small lower-limb defects: the use of the gastrocnemius muscle cuff as a plug for small bony defects following debridement of infected/necrotic bone.

    PubMed

    Al-Qattan, M M

    2007-09-01

    The reverse sural artery fasciomusculocutaneous flap is a modification of the original fasciocutaneous flap in which a midline gastrocnemius muscle cuff around the buried sural pedicle is included in the flap. This modification was done to improve the blood supply of the distal part of the flap, which is harvested from the upper leg. The aim of this paper is to demonstrate that there is another important advantage of the modified flap: the use of the muscle cuff as a "plug" for small lower limb defects following debridement of infected/necrotic bone. A total of 10 male adult patients with small complex lower-limb defects with underlying bone pathology were treated with the modified flap using the muscle component to fill up the small bony defects. The bony pathology included necrotic exposed bone without evidence of osteomyelitis or wound infection (n = 1), an underlying neglected tibial fracture with wound infection (n = 4), and a sinus at the heel with underlying calcaneal osteomyelitis (n = 5). Primary wound healing of the flap into the defect was noted in all patients. No recurrence of calcaneal osteomyelitis was seen and all tibial fractures united following appropriate orthopedic fixation. It was concluded that the reverse sural artery fasciomusculocutaneous flap is well suited for small complex lower-limb defects with underlying bone pathology.

  13. Implantation of autogenous meniscal fragments wrapped with a fascia sheath enhances fibrocartilage regeneration in vivo in a large harvest site defect.

    PubMed

    Kobayashi, Yasukazu; Yasuda, Kazunori; Kondo, Eiji; Katsura, Taro; Tanabe, Yoshie; Kimura, Masashi; Tohyama, Harukazu

    2010-04-01

    Concerning meniscal tissue regeneration, many investigators have studied the development of a tissue-engineered meniscus. However, the utility still remains unknown. Implantation of autogenous meniscal fragments wrapped with a fascia sheath into the donor site meniscal defect may significantly enhance fibrocartilage regeneration in vivo in the defect. Controlled laboratory study. Seventy-five mature rabbits were used in this study. In each animal, an anterior one-third of the right medial meniscus was resected. Then, the animals were divided into the following 3 groups of 25 rabbits each: In group 1, no treatment was applied to the meniscal defect. In group 2, the defect was covered with a fascia sheath. In group 3, after the resected meniscus was fragmented into small pieces, the fragments were grafted into the defect. Then, the defect with the meniscal fragments was covered with a fascia sheath. In each group, 5 rabbits were used for histological evaluation at 3, 6, and 12 weeks after surgery, and 5 rabbits were used for biomechanical evaluation at 6 and 12 weeks after surgery. Histologically, large round cells in group 3 were scattered in the core portion of the meniscus-shaped tissue, and the matrix around these cells was positively stained by safranin O and toluisin blue at 12 weeks. The histological score of group 3 was significantly higher than that of group 1 and group 2. Biomechanically, the maximal load and stiffness of group 3 were significantly greater than those of groups 1 and 2. This study clearly demonstrated that implantation of autogenous meniscal fragments wrapped with a fascia sheath into the donor site meniscal defect significantly enhanced fibrocartilage regeneration in vivo in the defect at 12 weeks after implantation in the rabbit. This study proposed a novel strategy to treat a large defect after a meniscectomy.

  14. Freezability genetics in rabbit semen.

    PubMed

    Lavara, R; Mocé, E; Baselga, M; Vicente, J S

    2017-10-15

    The aim of this study was to estimate the heritability of semen freezability and to estimate the genetic correlation between frozen-thawed sperm traits and the growth rate in a paternal rabbit line. Estimated heritabilities showed that frozen-thawed semen traits are heritable (ranged between 0.08 and 0.15). In the case of Live-FT (percentage of viable sperm after freezing), the estimated heritability is the highest one, and suggests the possibility of effective selection. After the study of genetic correlations it seems that daily weight gain (DG) was negatively correlated with sperm freezability, but no further conclusions could be drawn due to the high HPD95%. More data should be included in order to obtain better accuracy for the estimates of these genetic correlations. If the results obtained at present study were confirmed, it would imply that selection for DG could alter sperm cell membranes or seminal plasma composition, both components related to sperm cryoresistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Comparative study of new bone formation capability of zirconia bone graft material in rabbit calvarial.

    PubMed

    Kim, Ik-Jung; Shin, Soo-Yeon

    2018-06-01

    The purpose of this study was to compare the new bone formation capability of zirconia with those of other synthetic bone grafts. Twelve rabbits were used and four 6-mm diameter transcortical defects were formed on each calvaria. Each defect was filled with Osteon II (Os), Tigran PTG (Ti), and zirconia (Zi) bone grafts. For the control group, the defects were left unfilled. The rabbits were sacrificed at 2, 4, and 8 weeks. Specimens were analyzed through micro computed tomography (CT) and histomorphometric analysis. The Ti and Zi groups showed significant differences in the amount of newly formed bone between 2 and 4 weeks and between 2 and 8 weeks ( P <.05). The measurements of total bone using micro CT showed significant differences between the Os and Ti groups and between the Os and Zi groups at 2 and 8 weeks ( P <.05). Comparing by week in each group, the Ti group showed a significant difference between 4 and 8 weeks. Histomorphometric analysis also showed significant differences in new bone formation between the control group and the experimental groups at 2, 4, and 8 weeks ( P <.05). In the comparison of newly formed bone, significant differences were observed between 2 and 4 weeks and between 2 and 8 weeks ( P <.05) in all groups. Zirconia bone graft material showed satisfactory results in new bone formation and zirconia could be used as a new synthetic bone graft material.

  16. Sequential avulsions of the tibial tubercle in an adolescent basketball player.

    PubMed

    Huang, Ying Chieh; Chao, Ying-Hao; Lien, Fang-Chieh

    2010-05-01

    Tibial tubercle avulsion is an uncommon fracture in physically active adolescents. Sequential avulsion of tibial tubercles is extremely rare. We reported a healthy, active 15-year-old boy who suffered from left tibial tubercle avulsion fracture during a basketball game. He received open reduction and internal fixation with two smooth Kirschner wires and a cannulated screw, with every effort to reduce the plate injury. Long-leg splint was used for protection followed by programmed rehabilitation. He recovered uneventfully and returned to his previous level of activity soon. Another avulsion fracture happened at the right tibial tubercle 3.5 months later when he was playing the basketball. From the encouragement of previous successful treatment, we provided him open reduction and fixation with two small-caliber screws. He recovered uneventfully and returned to his previous level of activity soon. No genu recurvatum or other deformity was happening in our case at the end of 2-year follow-up. No evidence of Osgood-Schlatter disease or osteogenesis imperfecta was found. Sequential avulsion fractures of tibial tubercles are rare. Good functional recovery can often be obtained like our case if we treat it well. To a physically active adolescent, we should never overstate the risk of sequential avulsion of the other leg to postpone the return to an active, functional life.

  17. Tibial nerve stimulation to inhibit the micturition reflex by an implantable wireless driver microstimulator in cats

    PubMed Central

    Li, Xing; Liao, Li-Min; Chen, Guo-Qing; Wang, Zhao-Xia; Lu, Tian-Ji; Deng, Han; Loeb, Gerald-E

    2016-01-01

    Abstract Background: Traditional tibial nerve stimulation (TNS) has been used to treat overactive bladder syndrome (OAB), but there are some shortcomings. Thus, a novel alternative is needed for the treatment of OAB. The study investigated the effects of a new type of tibial nerve microstimulator on the micturition reflex in cats. Methods: An implantable wireless driver microstimulator was implanted around the tibial nerve in 9 α-chloralose anesthetized cats. Cystometry was performed by infusing 0.9% normal saline (NS) or 0.25% acetic acid (AA) through a urethral catheter. Multiple cystometrograms were performed before, during, and after TNS to determine the inhibitory effect of the microstimulator on the micturition reflex. Results: TNS at 2 threshold (T) intensity significantly increased the bladder capacity (BC) during NS infusion. Bladder overactivity was irritated by the intravesical infusion of 0.25% AA, which significantly reduced the BC compared with the NS infusion. TNS at 2 T intensity suppressed AA-induced bladder overactivity and significantly increased the BC compared with the AA control. Conclusion: The implantable wireless driver tibial nerve microstimulator appears to be effective in inhibiting the micturition reflex during physiologic and pathologic conditions. The implantable wireless driver tibial nerve microstimulator could be used to treat OAB. PMID:27537576

  18. Effect of tibial tuberosity advancement on femorotibial contact mechanics and stifle kinematics.

    PubMed

    Kim, Stanley E; Pozzi, Antonio; Banks, Scott A; Conrad, Bryan P; Lewis, Daniel D

    2009-01-01

    Objective- To evaluate the effects of tibial tuberosity advancement (TTA) on femorotibial contact mechanics and 3-dimensional kinematics in cranial cruciate ligament (CrCL)-deficient stifles of dogs. Study Design- In vitro biomechanical study. Animals- Unpaired pelvic limbs from 8 dogs, weighing 28-35 kg. Methods- Digital pressure sensors placed subjacent to the menisci were used to measure femorotibial contact force, contact area, peak and mean contact pressure, and peak pressure location with the limb under an axial load of 30% body weight and a stifle angle of 135 degrees . Three-dimensional static poses of the stifle were obtained using a Microscribe digitizing arm. Each specimen was tested under normal, CrCL-deficient, and TTA-treated conditions. Repeated measures analysis of variance with a Tukey post hoc test (P<.05) was used for statistical comparison. Results- Significant disturbances to all measured contact mechanic parameters were evident after CrCL transection, which corresponded to marked cranial tibial subluxation and internal tibial rotation in the CrCL-deficient stifle. No significant differences in any contact mechanic and kinematic parameters were detected between normal and TTA-treated stifles. Conclusion- TTA eliminates craniocaudal stifle instability during simulated weight-bearing and concurrently restores femorotibial contact mechanics to normal. Clinical Relevance- TTA may mitigate the progression of stifle osteoarthritis in dogs afflicted with CrCL insufficiency by eliminating cranial tibial thrust while preserving the normal orientation of the proximal tibial articulating surface.

  19. Does Tibial Slope Affect Perception of Coronal Alignment on a Standing Anteroposterior Radiograph?

    PubMed

    Schwartz, Adam J; Ravi, Bheeshma; Kransdorf, Mark J; Clarke, Henry D

    2017-07-01

    A standing anteroposterior (AP) radiograph is commonly used to evaluate coronal alignment following total knee arthroplasty (TKA). The impact of coronal alignment on TKA outcomes is controversial, perhaps due to variability in imaging and/or measurement technique. We sought to quantify the effect of image rotation and tibial slope on coronal alignment. Using a standard extramedullary tibial alignment guide, 3 cadaver legs were cut to accept a tibial tray at 0°, 3°, and 7° of slope. A computed tomography scan of the entire tibia was obtained for each specimen to confirm neutral coronal alignment. Images were then obtained at progressive 10° intervals of internal and external rotation up to 40° maximum in each direction. Images were then randomized and 5 blinded TKA surgeons were asked to determine coronal alignment. Continuous data values were transformed to categorical data (neutral [0], valgus [L], and varus [R]). Each 10° interval of external rotation of a 7° sloped tibial cut (or relative internal rotation of a tibial component viewed in the AP plane) resulted in perception of an additional 0.75° of varus. The slope of the proximal tibia bone cut should be taken into account when measuring coronal alignment on a standing AP radiograph. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Bilateral periprosthetic tibial stress fracture after total knee arthroplasty: A case report.

    PubMed

    Ozdemir, Guzelali; Azboy, Ibrahim; Yilmaz, Baris

    2016-01-01

    Periprosthetic fractures around the knee after total knee arthroplasty can be seen in the femur, tibia and patella. The tibial fractures are rare cases. Our case with bilateral tibial stress fracture developed after total knee arthroplasty (TKA) is the first of its kind in the literature. 75-year-old male patient with bilateral knee osteoarthritis had not benefited from conservative treatment methods previously applied. Left TKA was applied. In the second month postoperatively, periprosthetic tibial fracture was identified and osteosynthesis was implemented with locked tibia proximal plate-screw. Bone union in 12 weeks was observed in his follow-ups. After 15 months of his first operation, TKA was applied to the right knee. Postoperatively in the second month, as in the first operation, periprosthetic tibial fracture was detected. Osteosynthesis with locking plate-screw was applied and union in 12 weeks was observed in his follow-up. He was seen mobilized independently and without support in the last control of the case made in the 24th month after the second operation. The number of TKA applications is expected to increase in the future. The incidence of periprosthetic fractures should also be expected to increase in these cases. Periprosthetic tibial fractures after TKA are rarely seen. The treatment of periprosthetic fractures around the knee after TKA can be difficult. In the case of persistent pain in the upper end of the tibia after the surgery, stress fracture should be considered. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Reliability of frames of reference used for tibial component rotation in total knee arthroplasty.

    PubMed

    Page, Stephen R; Deakin, Angela H; Payne, Anthony P; Picard, Frederic

    2011-01-01

    This study evaluated seven different frames of reference used for tibial component rotation in total knee arthroplasty (TKA) to determine which ones showed good reliability between bone specimens. An optoelectronic system based around a computer-assisted surgical navigation system was used to measure and locate 34 individual anatomical landmarks on 40 tibias. Each particular frame of reference was reconstructed from a group of data points taken from the surface of each bone. The transverse axis was used as the baseline to which the other axes were compared, and the differences in angular rotation between the other six reference frames and the transverse axis were calculated. There was high variability in the tibial rotational alignment associated with all frames of reference. Of the references widely used in current TKA procedures, the tibial tuberosity axis and the anterior condylar axis had lower standard deviations (6.1° and 7.3°, respectively) than the transmalleolar axis and the posterior condylar axis (9.3° for both). In conclusion, we found high variability in the frames of reference used for tibial rotation alignment. However, the anterior condylar axis and transverse axis may warrant further tests with the use of navigation. Combining different frames of reference such as the tibial tuberosity axis, anterior condylar axis and transverse axis may reduce the range of errors found in all of these measurements.

  2. Knee braces can decrease tibial rotation during pivoting that occurs in high demanding activities.

    PubMed

    Giotis, Dimitrios; Tsiaras, Vasilios; Ristanis, Stavros; Zampeli, Franceska; Mitsionis, Grigoris; Stergiou, Nicholas; Georgoulis, Anastasios D

    2011-08-01

    The purpose of this study was to investigate whether knee braces could effectively decrease tibial rotation during high demanding activities. Using an in vivo three-dimensional kinematic analysis, 21 physically active, healthy, male subjects were evaluated. Each subject performed two tasks that were used extensively in the literature because they combine increased rotational and translational loads on the knee, (1) descending from a stair and subsequent pivoting and (2) landing from a platform and subsequent pivoting under three conditions: (A) wearing a prophylactic brace (braced), (B) wearing a patellofemoral brace (sleeved), and (C) unbraced condition. In the first task, tibial rotation during the pivoting phase was significantly decreased in the braced condition as compared to the sleeved condition (P = 0.019) and the non-braced condition (P = 0.002). In the second task, the same variable was significantly decreased in the braced condition as compared to the sleeved (P = 0.001) and the unbraced condition (P < 0.001). The sleeved condition also produced significantly decreased tibial rotation with respect to the unbraced condition (P = 0.021). Bracing decreased tibial rotation in activities where increased translational and rotational forces were applied. Because knee braces decreased tibial rotation, they can possibly be used with ACL-reconstructed and ACL-deficient patients to prevent such problems. Case-control study, Level III.

  3. [Mobility of a polyethylene tibial insert in a mobile total knee prosthesis].

    PubMed

    Castel, E; Roger, B; Camproux, A; Saillant, G

    1999-03-01

    We have studied the mobility of a mobile tibial implant in total knee arthroplasty (TKA) by a radiographical evaluation. We analyzed mobility of the polyethylene tibial insert of 15 "G2S" TKA implanted for one year or more. We established a dynamic radiographical evaluation. We used 3 weight-bearing radiographs: AP in extension and two lateral (one in extension and one at 90 degrees of flexion), two AP with femoral internal and external rotation, 2 strict lateral X-rays in neutral rotation in antero-posterior replacement with a 25 kilograms strength Telos, and 2 AP in varus and valgus with Telos. Wilcoxon's test and Fisher's exact test were used for statistical evaluation. Our study demonstrated preservation of the polyethylene mobility in tibial TKA implant in all movements: in rotation, in antero-posterior translation with Telos, and even in antero-posterior translation during physiological condition with flexion-extension weight-bearing radiographs. Statistical tests were very significant. We noticed that flexion induced anterior translation of tibial polyethylene when PCL was preserved. This study answered to our question whether mobility of TKA tibial implant persists after implantation. This mobility should reduce loosening forces to the tibia and stress in the polyethylene component. Now we have to determine the amplitude of mobility required to reach this objective.

  4. Ceramic hemi-unicondylar arthroplasty in an adolescent patient with idiopathic tibial chondrolysis.

    PubMed

    Dombroski, Derek; Garino, Jonathan; Lee, Gwo-Chin

    2009-06-01

    Despite recent advances in cartilage regeneration and restoration procedures, isolated, large, full-thickness cartilage lesions in young patients continue to pose significant challenges to patients and orthopedic surgeons. Treatment options for this difficult problem have traditionally included arthrodesis, osteotomy, osteochondral allograft, and prosthetic reconstruction. We present a case of an adolescent patient with isolated idiopathic lateral tibial chondrolysis treated with a custom ceramic hemi-unicondylar hemiarthroplasty. Preoperatively, a 3-dimensional computed tomography scan of the patient's knee was obtained to begin manufacturing a conforming custom ceramic insert that would articulate between the tibial base plate and the patient's native lateral femoral cartilage. Through a lateral parapatellar approach, the tibial preparation was carried out using the Zimmer M/G unicompartmental knee system (Warsaw, Indiana), and the tibial base plate was cemented into position in the standard fashion. A custom, conforming, prefabricated ceramic insert (CeramTec, Memphis, Tennessee) was then inserted onto the tibial base plate. At 5-year follow-up, this salvage procedure was successful in relieving pain and restoring function in this young patient. There were no signs of implant loosening or lysis. Magnetic resonance imaging of the knee at last follow-up revealed that the cartilage thickness of the patient's lateral femoral condyle remained unchanged. Unicondylar hemiarthroplasty performed in patients with large unipolar lesions in the knee can provide durable and reliable pain relief. Ceramic is a viable material that can be considered for articulation with native cartilage.

  5. The role of fixation and bone quality on the mechanical stability of tibial knee components.

    PubMed

    Lee, R W; Volz, R G; Sheridan, D C

    1991-12-01

    Tibial component loosening remains one of the major causes of failure of cemented and noncemented total knee arthroplasties. In this study, the authors identified the role of implant design, method of fixation, and bone density as it related to implant stability. The physical properties of "good" and "bad" bone were simulated using a "good" and "bad" foam model of the proximal tibia, fabricated in the laboratory from DARO RF-100 foam. A generic tibial component permitting various fixation designs was implanted into "good" and "bad" variable density foam tibial models in both cemented and noncemented modes. The mechanical stability of the implants was determined using a Materials Testing Machine by the application of an eccentrically applied cyclic load. The micromotion (subsidence and lift-off) of the tibial implants was recorded using two Linear Variable Differential Transformers. Statistically significant differences in implant stability were recorded as a function of fixation method. The most rigid implant fixation was achieved using four peripherally placed, 6.5-mm cancellous screws. The addition of a central stem added stability only in the case of "poor" quality foam. The mechanical stability of noncemented implants related directly to the density of the foam. Implant stability was greatly enhanced in "poor" quality foam by the use of cement. The method of implant fixation and bone density are critical determinants to tibial implant stability.

  6. The effect of high tibial osteotomy on osteoarthritis of the knee : Clinical and histological observations.

    PubMed

    Koshino, T; Tsuchiya, K

    1979-03-01

    High tibial osteotomies were performed on 136 osteoarthritic knees for correction of varus deformity. Before osteotomy all patients experienced moderate or severe pain, and the knees showed lateral thrust on weight-bearing. The patients were followed up for one to five years. Marked relief of pain was obtained in 112 knees, and the patients were satisfied with the result of operation in 122. These painless knees showed no lateral thrust, and in the majority the deformity had been adequately corrected, with post-operative femoro-tibial angles (standing) ranging from 165° to 174°. Four of 28 knees with femoro-tibial angles of 175° to 179°, when measured one year after operation, showed recurrence of varus deformity three years after osteotomy. Preoperative ranges of knee motion were well maintained after osteotomy even when arthrotomy had also been undertaken. Intra-articular assessment in two patients, several years after operation, showed that the most degenerated portions of the articular surface were completely covered by a fibrocartilagenous layer, with no bare bone.High tibial osteotomy is most effective in osteoarthritic knees with varus deformity, when correction is made to a femoro-tibial angle (standing) of 170° (10° valgus).

  7. The effect of high tibial osteotomy on osteoarthritis of the knee. Clinical and histological observations.

    PubMed

    Koshino, T; Tsuchiya, K

    1979-01-01

    High tibial osteotomies were performed on 136 osteoarthritic knees for correction of varus deformity. Before osteotomy all patients experienced moderate or severe pain, and the knees showed lateral thrust on weight-bearing. The patients were followed up for one to five years. Marked relief of pain was obtained in 112 knees, and the patients were satisfied with the result of operation in 122. These painless knees showed no lateral thrust, and in the majority the deformity had been adequately corrected, with post-operative femoro-tibial angles (standing) ranging from 165 degrees to 174 degrees. Four of 28 knees with femoro-tibial angles of 175 degrees to 179 degrees, when measured one year after operation, showed recurrence of varus deformity three years after osteotomy. Preoperative ranges of knee motion were well maintained after osteotomy even when arthrotomy had also been undertaken. Intra-articular assessment in two patients, several years after operation, showed that the most degenerated portions of the articular surface were completely covered by a fibrocartilagenous layer, with no bare bone. High tibial osteotomy is most effective in osteoarthritic knees with varus deformity, when correction is made to a femoro-tibial angle (standing) of 170 degrees (10 degrees valgus).

  8. The location of the tibial accelerometer does influence impact acceleration parameters during running.

    PubMed

    Lucas-Cuevas, Angel Gabriel; Encarnación-Martínez, Alberto; Camacho-García, Andrés; Llana-Belloch, Salvador; Pérez-Soriano, Pedro

    2017-09-01

    Tibial accelerations have been associated with a number of running injuries. However, studies attaching the tibial accelerometer on the proximal section are as numerous as those attaching the accelerometer on the distal section. This study aimed to investigate whether accelerometer location influences acceleration parameters commonly reported in running literature. To fulfil this purpose, 30 athletes ran at 2.22, 2.78 and 3.33 m · s -1 with three accelerometers attached with double-sided tape and tightened to the participants' tolerance on the forehead, the proximal section of the tibia and the distal section of the tibia. Time-domain (peak acceleration, shock attenuation) and frequency-domain parameters (peak frequency, peak power, signal magnitude and shock attenuation in both the low and high frequency ranges) were calculated for each of the tibial locations. The distal accelerometer registered greater tibial acceleration peak and shock attenuation compared to the proximal accelerometer. With respect to the frequency-domain analysis, the distal accelerometer provided greater values of all the low-frequency parameters, whereas no difference was observed for the high-frequency parameters. These findings suggest that the location of the tibial accelerometer does influence the acceleration signal parameters, and thus, researchers should carefully consider the location they choose to place the accelerometer so that equivalent comparisons across studies can be made.

  9. Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds.

    PubMed

    Solchaga, Luis A; Temenoff, Johnna S; Gao, Jizong; Mikos, Antonios G; Caplan, Arnold I; Goldberg, Victor M

    2005-04-01

    The natural repair of osteochondral defects can be enhanced with biocompatible, biodegradable materials that support the repair process. It is our hypothesis that hyaluronan-based scaffolds are superior to synthetic scaffolds because they provide biological cues. We tested this thesis by comparing two hyaluronan-based scaffolds [auto cross-linked polysaccharide polymer (ACP) and HYAFF-11] to polyester-based scaffolds [poly(DL-lactic-co-glycolic acid) (PLGA) and poly(L-lactic acid) (PLLA)] with similar pore size, porosity and degradation times. Fifty-four rabbits received bilateral osteochondral defects. One defect received a hyaluronan-based scaffold and the contralateral defect received the corresponding polyester-based scaffold. Rabbits were euthanized 4, 12 and 20 weeks after surgery and the condyles dissected and processed for histology. Only ACP-treated defects presented bone at the base of the defect at 4 weeks. At 12 weeks, only defects treated with rapidly dissolving implants (ACP and PLGA) presented bone reconstitution consistently, while bone was present in only one third of those treated with slowly dissolving scaffolds (HYAFF-11 and PLLA). After 20 weeks, the articular surface of PLGA-treated defects presented fibrillation more frequently than in ACP-treated defects. The surface of defects treated with slowly dissolving scaffolds presented more cracks and fissures. The degradation rate of the scaffolds is critical for the repair process. Slowly dissolving scaffolds sustain thicker cartilage at the surface but, it frequently presents cracks and discontinuities. These scaffolds also delay bone formation at the base of the defects. Hyaluronan-based scaffolds appear to allow faster cell infiltration leading to faster tissue formation. The degradation of ACP leads to rapid bone formation while the slow degradation of HYAFF-11 prolongs the presence of cartilage and delays endochondral bone formation.

  10. Electroacupuncture analgesia in a rabbit ovariohysterectomy.

    PubMed

    Parmen, Valentin

    2014-02-01

    This study investigated the effectiveness of electroacupuncture analgesia (EAA) at local and paravertebral acupoints for a rabbit undergoing an ovariohysterectomy. Twelve clinically healthy New Zealand white rabbits were chosen and divided into two groups: the control group (5 rabbits) and the experimental group (7 rabbits). A neuroleptanalgesic (ketamine + xylazine) was administered to the control group (NLA group); the experimental group received EAA treatment (EAA group). The EAA treatment includes one acupuncture formula for local stimulation at the incision site and systemic stimulation. Results of clinical research have shown postoperative analgesia using EAA treatment to be superior to that using NLA. The average postoperative recovery time was 5.2 times longer in the NLA group than in the EAA group. Because consciousness was maintained, EAA presented an advantage in thermoregulation. Animals administered NLA had prolonged thermal homeostasis because of neurovegetative disconnection. For the EAA group, the operative times were characterized as excellent (28%, p = 0.28) or good (72%, p = 0.72). Local stimulation at the incision site provided excellent analgesia of the abdominal wall (100%). In conclusion, EA can provide general analgesia with a considerable analgesic effect for a rabbit undergoing an ovariohysterectomy, resulting in a short postoperative recovery time. Copyright © 2014. Published by Elsevier B.V.

  11. Hypercholesterolemia Impaired Sperm Functionality in Rabbits

    PubMed Central

    Monclus, Maria A.; Cabrillana, Maria E.; Clementi, Marisa A.; Espínola, Leandro S.; Cid Barría, Jose L.; Vincenti, Amanda E.; Santi, Analia G.; Fornés, Miguel W.

    2010-01-01

    Hypercholesterolemia represents a high risk factor for frequent diseases and it has also been associated with poor semen quality that may lead to male infertility. The aim of this study was to analyze semen and sperm function in diet-induced hypercholesterolemic rabbits. Twelve adult White New Zealand male rabbits were fed ad libitum a control diet or a diet supplemented with 0.05% cholesterol. Rabbits under cholesterol-enriched diet significantly increased total cholesterol level in the serum. Semen examination revealed a significant reduction in semen volume and sperm motility in hypercholesterolemic rabbits (HCR). Sperm cell morphology was seriously affected, displaying primarily a “folded head”-head fold along the major axe-, and the presence of cytoplasmic droplet on sperm flagellum. Cholesterol was particularly increased in acrosomal region when detected by filipin probe. The rise in cholesterol concentration in sperm cells was determined quantitatively by Gas chromatographic-mass spectrometric analyses. We also found a reduction of protein tyrosine phosphorylation in sperm incubated under capacitating conditions from HCR. Interestingly, the addition of Protein Kinase A pathway activators -dibutyryl-cyclic AMP and iso-butylmethylxanthine- to the medium restored sperm capacitation. Finally, it was also reported a significant decrease in the percentage of reacted sperm in the presence of progesterone. In conclusion, our data showed that diet-induced hypercholesterolemia adversely affects semen quality and sperm motility, capacitation and acrosomal reaction in rabbits; probably due to an increase in cellular cholesterol content that alters membrane related events. PMID:20976152

  12. 9 CFR 354.124 - Quarantine of diseased rabbits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... shall be dealt with in one of the following ways: (a) If it is determined by a veterinary inspector that... veterinary inspector that further handling of the rabbits will not create a health hazard, such rabbits may...

  13. 9 CFR 354.124 - Quarantine of diseased rabbits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... shall be dealt with in one of the following ways: (a) If it is determined by a veterinary inspector that... veterinary inspector that further handling of the rabbits will not create a health hazard, such rabbits may...

  14. Cutaneous sensitivity in unilateral trans-tibial amputees

    PubMed Central

    Templeton, Cale A.; Strzalkowski, Nicholas D. J.; Galvin, Patti

    2018-01-01

    Aim To examine tactile sensitivity in the leg and foot sole of below-knee amputees (diabetic n = 3, traumatic n = 1), and healthy control subjects (n = 4), and examine the association between sensation and balance. Method Vibration perception threshold (VPT; 3, 40, 250Hz) and monofilaments (MF) were used to examine vibration and light touch sensitivity on the intact limb, residual limb, and homologous locations on controls. A functional reach test was performed to assess functional balance. Results Tactile sensitivity was lower for diabetic amputee subjects compared to age matched controls for both VPT and MF; which was expected due to presence of diabetic peripheral neuropathy. In contrast, the traumatic amputee participant showed increased sensitivity for VPT at 40Hz and 250Hz vibration in both the intact and residual limbs compared to controls. Amputees with lower tactile sensitivity had shorter reach distances compared to those with higher sensitivity. Conclusion Changes in tactile sensitivity in the residual limb of trans-tibial amputees may have implications for the interaction between the amputee and the prosthetic device. The decreased skin sensitivity observed in the residual limb of subjects with diabetes is of concern as changes in skin sensitivity may be important in 1) identification/prevention of excessive pressure and 2) for functional stability. Interestingly, we saw increased residual limb skin sensitivity in the individual with the traumatic amputation. Although not measured directly in the present study, this increase in tactile sensitivity may be related to cortical reorganisation, which is known to occur following amputation, and would support similar findings observed in upper limb amputees. PMID:29856766

  15. Polyaxial Screws in Locked Plating of Tibial Pilon Fractures.

    PubMed

    Yenna, Zachary C; Bhadra, Arup K; Ojike, Nwakile I; Burden, Robert L; Voor, Michael J; Roberts, Craig S

    2015-08-01

    This study examined the axial and torsional stiffness of polyaxial locked plating techniques compared with fixed-angle locked plating techniques in a distal tibia pilon fracture model. The effect of using a polyaxial screw to cross the fracture site was examined to determine its ability to control relative fracture site motion. A laboratory experiment was performed to investigate the biomechanical stiffness of distal tibia fracture models repaired with 3.5-mm anterior polyaxial distal tibial plates and locking screws. Sawbones Fourth Generation Composite Tibia models (Pacific Research Laboratories, Inc, Vashon, Washington) were used to model an Orthopaedic Trauma Association 43-A1.3 distal tibia pilon fracture. The polyaxial plates were inserted with 2 central locking screws at a position perpendicular to the cortical surface of the tibia and tested for load as a function of axial displacement and torque as a function of angular displacement. The 2 screws were withdrawn and inserted at an angle 15° from perpendicular, allowing them to span the fracture and insert into the opposing fracture surface. Each tibia was tested again for axial and torsional stiffness. In medial and posterior loading, no statistically significant difference was found between tibiae plated with the polyaxial plate and the central screws placed in the neutral position compared with the central screws placed at a 15° position. In torsional loading, a statistically significant difference was noted, showing greater stiffness in tibiae plated with the polyaxial plate and the central screws placed at a 15° position compared with tibiae plated with the central screws placed at a 0° (or perpendicular) position. This study showed that variable angle constructs show similar stiffness properties between perpendicular and 15° angle insertions in axial loading. The 15° angle construct shows greater stiffness in torsional loading. Copyright 2015, SLACK Incorporated.

  16. Medial Tibial Stress Syndrome: Evidence-Based Prevention

    PubMed Central

    Craig, Debbie I

    2008-01-01

    Reference: Thacker SB, Gilchrist J, Stroup DF, Kimsey CD. The prevention of shin splints in sports: a systematic review of literature. Med Sci Sports Exerc. 2002;34(1):32–40. Clinical Question: Among physically active individuals, which medial tibial stress syndrome (MTSS) prevention methods are most effective to decrease injury rates? Data Sources: Studies were identified by searching MEDLINE (1966–2000), Current Contents (1996–2000), Biomedical Collection (1993–1999), and Dissertation Abstracts. Reference lists of identified studies were searched manually until no further studies were identified. Experts in the field were contacted, including first authors of randomized controlled trials addressing prevention of MTSS. The Cochrane Collaboration (early stage of Cochrane Database of Systematic Reviews) was contacted. Study Selection: Inclusion criteria included randomized controlled trials or clinical trials comparing different MTSS prevention methods with control groups. Excluded were studies that did not provide primary research data or that addressed treatment and rehabilitation rather than prevention of incident MTSS. Data Extraction: A total of 199 citations were identified. Of these, 4 studies compared prevention methods for MTSS. Three reviewers independently scored the 4 studies. Reviewers were blinded to the authors' names and affiliations but not the results. Each study was evaluated independently for methodologic quality using a 100-point checklist. Final scores were averages of the 3 reviewers' scores. Main Results: Prevention methods studied were shock-absorbent insoles, foam heel pads, Achilles tendon stretching, footwear, and graduated running programs. No statistically significant results were noted for any of the prevention methods. Median quality scores ranged from 29 to 47, revealing flaws in design, control for bias, and statistical methods. Conclusions: No current evidence supports any single prevention method for MTSS. The most

  17. Medial tibial stress syndrome: evidence-based prevention.

    PubMed

    Craig, Debbie I

    2008-01-01

    Thacker SB, Gilchrist J, Stroup DF, Kimsey CD. The prevention of shin splints in sports: a systematic review of literature. Med Sci Sports Exerc. 2002;34(1):32-40. Among physically active individuals, which medial tibial stress syndrome (MTSS) prevention methods are most effective to decrease injury rates? Studies were identified by searching MEDLINE (1966-2000), Current Contents (1996-2000), Biomedical Collection (1993-1999), and Dissertation Abstracts. Reference lists of identified studies were searched manually until no further studies were identified. Experts in the field were contacted, including first authors of randomized controlled trials addressing prevention of MTSS. The Cochrane Collaboration (early stage of Cochrane Database of Systematic Reviews) was contacted. Inclusion criteria included randomized controlled trials or clinical trials comparing different MTSS prevention methods with control groups. Excluded were studies that did not provide primary research data or that addressed treatment and rehabilitation rather than prevention of incident MTSS. A total of 199 citations were identified. Of these, 4 studies compared prevention methods for MTSS. Three reviewers independently scored the 4 studies. Reviewers were blinded to the authors' names and affiliations but not the results. Each study was evaluated independently for methodologic quality using a 100-point checklist. Final scores were averages of the 3 reviewers' scores. Prevention methods studied were shock-absorbent insoles, foam heel pads, Achilles tendon stretching, footwear, and graduated running programs. No statistically significant results were noted for any of the prevention methods. Median quality scores ranged from 29 to 47, revealing flaws in design, control for bias, and statistical methods. No current evidence supports any single prevention method for MTSS. The most promising outcomes support the use of shock-absorbing insoles. Well-designed and controlled trials are critically needed

  18. Tibial Lengthening: Extraarticular Calcaneotibial Screw to Prevent Ankle Equinus

    PubMed Central

    Belthur, Mohan V.; Paley, Dror; Jindal, Gaurav; Burghardt, Rolf D.; Specht, Stacy C.

    2008-01-01

    Between 2003 and 2006, we used an extraarticular, cannulated, fully threaded posterior calcaneotibial screw to prevent equinus contracture in 10 patients (four male and six female patients, 14 limbs) undergoing tibial lengthening with the intramedullary skeletal kinetic distractor. Diagnoses were fibular hemimelia (two), mesomelic dwarfism (two), posteromedial bow (one), hemihypertrophy (one), poliomyelitis (one), achondroplasia (one), posttraumatic limb-length discrepancy (one), and hypochondroplasia (one). Average age was 24.5 years (range, 15–54 years). The screw (length, typically 125 mm; diameter, 7 mm) was inserted with the ankle in 10° dorsiflexion. Gastrocnemius soleus recession was performed in two patients to achieve 10° dorsiflexion. Average lengthening was 4.9 cm (range, 3–7 cm). Screws were removed after a mean 3.3 months (range, 2–6 months). Preoperative ankle range of motion was regained within 6 months of screw removal. No neurovascular complications were encountered, and no patients experienced equinus contracture. We also conducted a cadaveric study in which one surgeon inserted screws in eight cadaveric legs under image intensifier control. The flexor hallucis longus muscle belly was the closest anatomic structure noted during dissection. The screw should be inserted obliquely from upper lateral edge of the calcaneus and aimed lateral in the tibia to avoid the flexor hallucis longus muscle. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18800215

  19. Higher tibial quantitative ultrasound in young female swimmers.

    PubMed

    Falk, B; Bronshtein, Z; Zigel, L; Constantini, N; Eliakim, A

    2004-08-01

    It has been found that swimming, a non-impact sport, generally has no effect on bone mineral density. To examine bone properties, as measured by quantitative ultrasound, among female swimmers in comparison with control girls and women. Subjects included 61 swimmers and 71 controls aged 8.5 to 26.5 years. None of the swimmers was at the elite level and none had included resistance training in her schedule. Bone speed of sound (SOS) was measured bilaterally at the distal radius and the mid-tibia. No differences were observed between swimmers and controls in body mass (mean (SD): 49.7 (12.3) v 50.7 (12.4) kg, respectively), although swimmers were taller (159 (12) v 155 (12) cm) and had lower body fat (18.3 (4.2)% v 22.3 (5.4)%). No difference was found in time since menarche (5.2 (4.0) and 4.5 (2.9) years in swimmers and controls, respectively; 21 swimmers and 25 control were premenarcheal). Radial speed of sound (SOS) increased with age but did not differ between swimmers and controls (non-dominant: 3904 (172) and 3889 (165) m/s for swimmers and controls, respectively). Tibial SOS also increased with age and was significantly higher in swimmers than in controls (non-dominant: 3774 (155) v 3712 (171) m/s). No differences were found between dominant and non-dominant sides. Swimming appears to be associated with higher bone SOS in the lower but not in the upper extremities. Further studies are needed to assess whether this difference reflects higher habitual activity among the swimmers or swimming specific mechanisms.

  20. Defects in hardwood timber

    Treesearch

    Roswell D. Carpenter; David L. Sonderman; Everette D. Rast; Martin J. Jones

    1989-01-01

    Includes detailed information on all common defects that may aRect hardwood trees and logs. Relationships between manufactured products and those forms of round material to be processed from the tree for conversion into marketable products are discussed. This handbook supersedes Agriculture Handbook No. 244, Grade defects in hardwood timber and logs, by C.R. Lockard, J...

  1. Prevalence of fur mites in pet rabbits in South Korea.

    PubMed

    Kim, Sang-Hun; Jun, Hyung-Kyou; Song, Kun-Ho; Gram, Dunbar; Kim, Duck-Hwan

    2008-06-01

    The prevalence of fur mites, Cheyletiella parasitovorax and Leporacarus gibbus, in pet rabbits in South Korea was investigated by a diagnostic evaluation of skin surface tape strips and hair coat combings. C. parasitovorax was found in 80 of 140 rabbits (57.1%) and L. gibbus in six of 140 rabbits (4.3%). Clinical signs of pruritus and scaling were observed in 17 of 80 and 76 of 80 infested rabbits, respectively.

  2. Etiologic factors in the development of medial tibial stress syndrome: a review of the literature.

    PubMed

    Tweed, Jo L; Avil, Steven J; Campbell, Jackie A; Barnes, Mike R

    2008-01-01

    Medial tibial stress syndrome is a type of exercise-induced leg pain that is common in recreational and competitive athletes. Although various studies have attempted to find the exact pathogenesis of this common condition, it remains unknown. Various theories in literature from 1976 to 2006 were reviewed using key words. Until recently, inflammation of the periosteum due to excessive traction was thought to be the most likely cause of medial tibial stress syndrome. This periostitis has been hypothesized by some authors to be caused by the tearing away of the muscle fibers at the muscle-bone interface, although there are several suggestions as to which, if any, muscle is responsible. Recent studies have supported the view that medial tibial stress syndrome is not an inflammatory process of the periosteum but instead a stress reaction of bone that has become painful.

  3. Achilles lengthening/posterior tibial tenotomy with immediate weightbearing for patients with significant comorbidities.

    PubMed

    Redfern, John C; Thordarson, David B

    2008-03-01

    Fixed equinovarus deformities can be challenging to treat especially in medically debilitated patients. The purpose of this study was to evaluate Achilles lengthening with posterior tibial tenotomy and immediate weightbearing in this difficult group of patients. Thirteen extremities in 10 patients underwent Achilles lengthening and posterior tibial tenotomy for fixed equinovarus deformities with significant medical comorbidities. Pre- and postoperative ambulatory status and deformities were noted. Average age at the time of surgery was 65 with an average duration of deformity 6.3 years. The average equinus corrected from 26 degrees to 1.2 degrees and the average varus deformity improved from -8.5 degrees to 2.7 degrees. All patients except one who was wheelchair-bound had a significant improvement in ambulatory status. Achilles lengthening with posterior tibial tenotomy allowed for immediate postoperative weightbearing with improvement in deformity and ambulatory status in this complicated patient group.

  4. Evaluation of the effects of platelet-rich fibrin on bone regeneration in diabetic rabbits.

    PubMed

    Durmuşlar, M Cenk; Ballı, Umut; Öngöz Dede, Figen; Bozkurt Doğan, Şeyma; Mısır, A Ferhat; Barış, Emre; Yılmaz, Zehra; Çelik, H Hamdi; Vatansever, Alper

    2016-02-01

    This study aimed to investigate the effect of platelet-rich fibrin on bone regeneration in critical size defects in the calvaria of diabetic rabbits. In total, 40 male New Zealand rabbits, were divided into two groups a non-diabetic control group (Group A) and a diabetic experimental group (Group B). Two bicortical circular defects 15 mm in diameter were created in the parietal bone of each animal. Each group was further divided into four groups: subgroup E, the defect was left empty; subgroup PRF, the defects were filled only with PRF; subgroup AB, the defects were filled with autogenous bone; subgroup AB + PRF, the defects were filled with autogenous bone combined with PRF. The animals sacrificed at 4 weeks and 8 weeks. Bone formation was assessed by micro-computed tomography (micro-CT) scanning, histological and histomorphometric analysis. The total percent of new bone was the lowest in group A-E (6.77 ± 0.21 at 4 weeks, 11.01 ± 0.37 at 8 weeks) and highest in group A-AB + PRF (21.66 ± 0.91 at 4 weeks, 37.46 ± 1.25 at 8 weeks; p < 0.05). The mean percent of new bone was greatest in group B-AB + PRF at 4 and 8 weeks (16.87 ± 0.92, 29.59 ± 1.09, respectively) and lowest in group B-E (5.83 ± 0.09 at 4 weeks, 7.36 ± 1.02 at 8 weeks). This study, despite its limitations, showed that PRF can be used safely and that PRF induced bone healing in diabetic rabbits. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. All rights reserved.

  5. What Components Comprise the Measurement of the Tibial Tuberosity-Trochlear Groove Distance in a Patellar Dislocation Population?

    PubMed

    Tensho, Keiji; Akaoka, Yusuke; Shimodaira, Hiroki; Takanashi, Seiji; Ikegami, Shota; Kato, Hiroyuki; Saito, Naoto

    2015-09-02

    The tibial tuberosity-trochlear groove distance is used as an indicator for medial tibial tubercle transfer; however, to our knowledge, no studies have verified whether this distance is strongly affected by tubercle lateralization at the proximal part of the tibia. We hypothesized that the tibial tuberosity-trochlear groove distance is mainly affected by tibial tubercle lateralization at the proximal part of the tibia. Forty-four patients with a history of patellar dislocation and forty-four age and sex-matched controls were analyzed with use of computed tomography. The tibial tuberosity-trochlear groove distance, tibial tubercle lateralization, trochlear groove medialization, and knee rotation were measured and were compared between the patellar dislocation group and the control group. The association between the tibial tuberosity-trochlear groove distance and three other parameters was calculated with use of the Pearson correlation coefficient and partial correlation analysis. There were significant differences in the tibial tuberosity-trochlear groove distance (p < 0.001) and knee rotation (p < 0.001), but there was no difference in the tibial tubercle lateralization (p = 0.13) and trochlear groove medialization (p = 0.08) between the patellar dislocation group and the control group. The tibial tuberosity-trochlear groove distance had no linear correlation with tubercle lateralization (r = 0.21) or groove medialization (r = -0.15); however, knee rotation had a good positive correlation in the patellar dislocation group (r = 0.62). After adjusting for the remaining parameters, knee rotation strongly correlated with the tibial tuberosity-trochlear groove distance (r = 0.69, p < 0.001), whereas tubercle lateralization showed moderate significant correlations in the patellar dislocation group (r = 0.42; p = 0.005). Because the tibial tuberosity-trochlear groove distance is affected more by knee rotation than by tubercle malposition, its use as an indicator for

  6. Rabbit tissue model (RTM) harvesting technique.

    PubMed

    Medina, Marelyn

    2002-01-01

    A method for creating a tissue model using a female rabbit for laparoscopic simulation exercises is described. The specimen is called a Rabbit Tissue Model (RTM). Dissection techniques are described for transforming the rabbit carcass into a small, compact unit that can be used for multiple training sessions. Preservation is accomplished by using saline and refrigeration. Only the animal trunk is used, with the rest of the animal carcass being discarded. Practice exercises are provided for using the preserved organs. Basic surgical skills, such as dissection, suturing, and knot tying, can be practiced on this model. In addition, the RTM can be used with any pelvic trainer that permits placement of larger practice specimens within its confines.

  7. 9 CFR 354.124 - Quarantine of diseased rabbits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Quarantine of diseased rabbits. 354.124 Section 354.124 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Procedures; Ante-Mortem Inspections § 354.124 Quarantine of diseased rabbits. If live rabbits, which are...

  8. 9 CFR 354.124 - Quarantine of diseased rabbits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Quarantine of diseased rabbits. 354.124 Section 354.124 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Procedures; Ante-Mortem Inspections § 354.124 Quarantine of diseased rabbits. If live rabbits, which are...

  9. 9 CFR 354.124 - Quarantine of diseased rabbits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Quarantine of diseased rabbits. 354.124 Section 354.124 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Procedures; Ante-Mortem Inspections § 354.124 Quarantine of diseased rabbits. If live rabbits, which are...

  10. Retinitis-pigmentosa-like tapetoretinal degeneration in a rabbit breed.

    PubMed

    Reichenbach, A; Baar, U

    1985-08-15

    By chance, we found a rabbit strain with retinal dystrophy. The eyes of these rabbits were examined by ophthalmoscopy, electroretinography, histology, and cytology--the latter after retina dissociation with papaine. The results suggest this rabbit strain to be a possible animal model for human retinitis pigmentosa.

  11. [Listrophorus gibbus, a fur mite in domestic rabbits (author's transl)].

    PubMed

    de Vos, J P; Dorrestein, G M

    1978-07-01

    A case of infection with the fur mite of domestic rabbits, Listrophorus gibbus, is reported. Possible methods of treatment of individual rabbits as well as of colonies of rabbits are reviewed. The presence of Listrophorus gibbus in conjunction with Cheyletiella parasitivorax is also discussed.

  12. Does a conservative tibial cut in conventional total knee arthroplasty violate the deep medial collateral ligament?

    PubMed

    Maes, Michael; Luyckx, Thomas; Bellemans, Johan

    2014-11-01

    Based on the anatomy of the deep medial collateral ligament (MCL), it was hypothesized that at least part of its cross-sectional insertion area is jeopardized while performing a standard tibial cut in conventional total knee arthroplasty (TKA). The aim of this study was to determine whether it is anatomically possible to preserve the tibial deep MCL insertion during conventional TKA. Thirty-three unpaired cadaveric knee specimens were used for this study. Knees with severe varus/valgus deformity or damage to the medial structures of the knee were excluded. In the first part of the study, the dimensions of the tibial insertion of the deep MCL and its relationship to the joint line were recorded. Next, the cross-sectional area of the deep MCL insertion was determined using calibrated digital photographic analysis. In the second part, the effect of a standard 9-mm 3° sloped tibial cut on the structural integrity of the deep MCL cross-sectional insertion area was determined using conventional instrumentation. The proximal border of the deep MCL insertion site on the tibia was located on average 4.7 ± 1.2 mm distally to the joint line. After performing a standard 9-mm 3° sloped tibial cut, on average 54% of the deep MCL insertion area was resected. In 29% of the cases, the deep MCL insertion area was completely excised. The deep MCL cannot routinely be preserved in conventional TKA. The deep MCL insertion is at risk and may be jeopardized in case of a tibial cut 9 mm below the native joint line. As the deep MCL is a distinct medial stabilizer and plays an important role in rotational stability, this may have implications in future designs of both unicondylar and total knee arthroplasty, but further research is necessary.

  13. Posterior tibial nerve stimulation vs parasacral transcutaneous neuromodulation for overactive bladder in children.

    PubMed

    Barroso, Ubirajara; Viterbo, Walter; Bittencourt, Joana; Farias, Tiago; Lordêlo, Patrícia

    2013-08-01

    Parasacral transcutaneous electrical nerve stimulation and posterior tibial nerve stimulation have emerged as effective methods to treat overactive bladder in children. However, to our knowledge no study has compared the 2 methods. We evaluated the results of parasacral transcutaneous electrical nerve stimulation and posterior tibial nerve stimulation in children with overactive bladder. We prospectively studied children with overactive bladder without dysfunctional voiding. Success of treatment was evaluated by visual analogue scale and dysfunctional voiding symptom score, and by level of improvement of each specific symptom. Parasacral transcutaneous electrical nerve stimulation was performed 3 times weekly and posterior tibial nerve stimulation was performed once weekly. A total of 22 consecutive patients were treated with posterior tibial nerve stimulation and 37 with parasacral transcutaneous electrical nerve stimulation. There was no difference between the 2 groups regarding demographic characteristics or types of symptoms. Concerning the evaluation by visual analogue scale, complete resolution of symptoms was seen in 70% of the group undergoing parasacral transcutaneous electrical nerve stimulation and in 9% of the group undergoing posterior tibial nerve stimulation (p = 0.02). When the groups were compared, there was no statistically significant difference (p = 0.55). The frequency of persistence of urgency and diurnal urinary incontinence was nearly double in the group undergoing posterior tibial nerve stimulation. However, this difference was not statistically significant. We found that parasacral transcutaneous electrical nerve stimulation is more effective in resolving overactive bladder symptoms, which matches parental perception. However, there were no statistically significant differences in the evaluation by dysfunctional voiding symptom score, or in complete resolution of urgency or diurnal incontinence. Copyright © 2013 American Urological

  14. Do running speed and shoe cushioning influence impact loading and tibial shock in basketball players?

    PubMed Central

    Liebenberg, Jacobus; Woo, Jeonghyun; Park, Sang-Kyoon; Yoon, Suk-Hoon; Cheung, Roy Tsz-Hei; Ryu, Jiseon

    2018-01-01

    Background Tibial stress fracture (TSF) is a common injury in basketball players. This condition has been associated with high tibial shock and impact loading, which can be affected by running speed, footwear condition, and footstrike pattern. However, these relationships were established in runners but not in basketball players, with very little research done on impact loading and speed. Hence, this study compared tibial shock, impact loading, and foot strike pattern in basketball players running at different speeds with different shoe cushioning properties/performances. Methods Eighteen male collegiate basketball players performed straight running trials with different shoe cushioning (regular-, better-, and best-cushioning) and running speed conditions (3.0 m/s vs. 6.0 m/s) on a flat instrumented runway. Tri-axial accelerometer, force plate and motion capture system were used to determine tibial accelerations, vertical ground reaction forces and footstrike patterns in each condition, respectively. Comfort perception was indicated on a 150 mm Visual Analogue Scale. A 2 (speed) × 3 (footwear) repeated measures ANOVA was used to examine the main effects of shoe cushioning and running speeds. Results Greater tibial shock (P < 0.001; η2 = 0.80) and impact loading (P < 0.001; η2 = 0.73–0.87) were experienced at faster running speeds. Interestingly, shoes with regular-cushioning or best-cushioning resulted in greater tibial shock (P = 0.03; η2 = 0.39) and impact loading (P = 0.03; η2 = 0.38–0.68) than shoes with better-cushioning. Basketball players continued using a rearfoot strike during running, regardless of running speed and footwear cushioning conditions (P > 0.14; η2 = 0.13). Discussion There may be an optimal band of shoe cushioning for better protection against TSF. These findings may provide insights to formulate rehabilitation protocols for basketball players who are recovering from TSF. PMID:29770274

  15. Chronic shin splints. Classification and management of medial tibial stress syndrome.

    PubMed

    Detmer, D E

    1986-01-01

    A clinical classification and treatment programme has been developed for chronic medial tibial stress syndrome. Medial tibial stress syndrome has been reported to be either tibial stress fracture or microfracture, tibial periostitis, or distal deep posterior chronic compartment syndrome. Three chronic types exist and may coexist: Type I (tibial microfracture, bone stress reaction or cortical fracture); type II (periostalgia from chronic avulsion of the periosteum at the periosteal-fascial junction); and type III (chronic compartment syndrome syndrome). Type I disease is treated nonoperatively. Operations for resistant types II and III medial tibial stress syndrome were performed in 41 patients. Bilaterality was common (type II, 50% type III, 88%). Seven had coexistent type II/III; one had type I/II. Preoperative symptoms averaged 24 months in type II, 6 months in type III, and 33 months in types II/III. Mean age was 22 years (15 to 51). Resting compartment pressures were normal in type II (mean 12 mm Hg) and elevated in type III and type II/III (mean 23 mm Hg). Type II and type II/III patients received fasciotomy plus periosteal cauterisation. Type III patients had fasciotomy only. All procedures were performed on an outpatient basis using local anaesthesia. Follow up was complete and averaged 6 months (2 to 14 months). Improved performance was as follows: type II, 93%, type III, 100%; type II/III, 86%. Complete cures were as follows: type II, 78%; type III, 75%; and type II/III, 57%. This experience suggests that with precise diagnosis and treatment involving minimal risk and cost the athlete has a reasonable chance of return to full activity.

  16. High resolution ultrasonography of the tibial nerve in diabetic peripheral neuropathy.

    PubMed

    Singh, Kunwarpal; Gupta, Kamlesh; Kaur, Sukhdeep

    2017-12-01

    High-resolution ultrasonography of the tibial nerve is a fast and non invasive tool for diagnosis of diabetic peripheral neuropathy. Our study was aimed at finding out the correlation of the cross sectional area and maximum thickness of nerve fascicles of the tibial nerve with the presence and severity of diabetic peripheral neuropathy. 75 patients with type 2 diabetes mellitus clinically diagnosed with diabetic peripheral neuropathy were analysed, and the severity of neuropathy was determined using the Toronto Clinical Neuropathy Score. 58 diabetic patients with no clinical suspicion of diabetic peripheral neuropathy and 75 healthy non-diabetic subjects were taken as controls. The cross sectional area and maximum thickness of nerve fascicles of the tibial nerves were calculated 3 cm cranial to the medial malleolus in both lower limbs. The mean cross sectional area (22.63 +/- 2.66 mm 2 ) and maximum thickness of nerve fascicles (0.70 mm) of the tibial nerves in patients with diabetic peripheral neuropathy compared with both control groups was significantly larger, and statistically significant correlation was found with the Toronto Clinical Neuropathy Score ( p < 0.001). The diabetic patients with no signs of peripheral neuropathy had a larger mean cross sectional area (14.40 +/- 1.72 mm 2 ) and maximum thickness of nerve fascicles of the tibial nerve (0.40 mm) than healthy non-diabetic subjects (12.42 +/- 1.01 mm 2 and 0.30 mm respectively). The cross sectional area and maximum thickness of nerve fascicles of the tibial nerve is larger in diabetic patients with or without peripheral neuropathy than in healthy control subjects, and ultrasonography can be used as a good screening tool in these patients.

  17. Effects of tibial slope changes in the stability of fixed bearing medial unicompartmental arthroplasty in anterior cruciate ligament deficient knees.

    PubMed

    Suero, Eduardo M; Citak, Musa; Cross, Michael B; Bosscher, Marianne R F; Ranawat, Anil S; Pearle, Andrew D

    2012-08-01

    Patients with anterior cruciate ligament (ACL) deficiency may have increased failure rates with UKA as a result of abnormal contact stresses and altered knee kinematics. Variations in the slope of the tibial component in UKA may alter tibiofemoral translation, and affect outcomes. This cadaveric study evaluated tibiofemoral translation during the Lachman and pivot shift tests after changing the slope of a fixed bearing unicondylar tibial component. Sectioning the ACL increased tibiofemoral translation in both the Lachman and pivot shift tests (P<0.05). Tibial slope leveling (decreasing the posterior slope) of the polyethylene insert in a UKA decreases anteroposterior tibiofemoral translation in the sagittal plane to a magnitude similar to that of the intact knee. With 8° of tibial slope leveling, anterior tibial translation during the Lachman test decreased by approximately 5mm. However, no variation in slope altered the pivot shift kinematics in the ACL deficient knees. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Arthroscopic repair of the posterior horn of the medial meniscus with opening wedge high tibial osteotomy: surgical technique.

    PubMed

    Jung, Kwang Am; Kim, Sung Jae; Lee, Su Chan; Jeong, Jae Hoon; Song, Moon Bok; Lee, Choon Key

    2009-07-01

    Simultaneous repair of a radial tear at the tibial attachment site of the posterior horn of the medial meniscus under special circumstances requiring tibial valgus osteotomy is technically difficult. First, most patients who need an osteotomy have a narrowed medial tibiofemoral joint space. In such a situation, the pull-out suture technique is more difficult to perform than in a normal joint space. Second, pulling out suture strands that penetrate the posterior horn of the medial meniscus to the anterior tibial cortex increases the risk of transection during osteotomy. We performed a meniscus repair combined with an opening wedge tibial valgus osteotomy without complications and present our technique as a new method for use in selective cases necessitating both meniscus repair of a complete radial tear and opening wedge tibial osteotomy.

  19. [Influence of the posterior tibial tendon on the medial arch of the foot: an in vitro kinetic and kinematic study].

    PubMed

    Emmerich, J; Wülker, N; Hurschler, C

    2003-04-01

    The respective contributions of the active and passive structures of the foot to the stability of the medical arch were investigated using an in vitro kinetic and kinematic model. The effect of the tibialis posterior tendon on foot and ankle movements, and plantar pressure distribution of the foot were tested in a cadaveric human foot. The stance phase from heel-contact to toe-off of normal walking gait and after tibialis posterior tendon rupture was simulated in eight roentenographically normal human feet (age 66 +/- 19 years, males). Ground reaction force and tibial inclination was simulated by means of a tilting angle and force-controlled translation stage. Plantar pressure was measured using a pressure-measuring platform. The force developed by the flexors and extensor muscles of the foot were simulated via cables attached to 7 force-controlled hydraulic cylinders. Tibial rotation was produced by an electric servo-motor, and foot movements measured with an ultrasonic analysis system. The model was verified against the plantar distribution and kinematics of healthy subjects measured during normal gait. Tibialis posterior deficit did not result in any detectable changes in pressure or force-time integral in the medial regions of the foot--a common sign of flat foot (pressure: midfoot 0.2 < or = 0.9; medial forefoot 0.5 < or = p < or = 0.9; hallux 0.5 < or = p < or = 0.9; force-time integral: midfoot p = 0-871; medial forefoot p = 0.632; hallux p = 0.068). Only small tendential changes in the kinematics of the talus and calcaneus were observed in dorsiflexion (0-58 sec; talus 0.1 < or = p < or = 0.6; calcaneus 0.4 < or = p < or = 0.06) and eversion (talus: 0-60 sec. 0.1 < or = p < or = 0.6; calcaneus: 37-60 sec. 0.2 < or = p < or = 0.7). The results of this in vitro study show that defective tibialis posterior alone does not produce significant changes in the kinetics or kinematics of the stance phase of normal gait. This suggests that the development of flat foot