Science.gov

Sample records for rad1 deletion enhances

  1. Enhanced Deletion Formation by Aberrant DNA Replication in Escherichia Coli

    PubMed Central

    Saveson, C. J.; Lovett, S. T.

    1997-01-01

    Repeated genes and sequences are prone to genetic rearrangements including deletions. We have investigated deletion formation in Escherichia coli strains mutant for various replication functions. Deletion was selected between 787 base pair tandem repeats carried either on a ColE1-derived plasmid or on the E. coli chromosome. Only mutations in functions associated with DNA Polymerase III elevated deletion rates in our assays. Especially large increases were observed in strains mutant in dnaQ, the ε editing subunit of Pol III, and dnaB, the replication fork helicase. Mutations in several other functions also altered deletion formation: the α polymerase (dnaE), the γ clamp loader complex (holC, dnaX), and the β clamp (dnaN) subunits of Pol III and the primosomal proteins, dnaC and priA. Aberrant replication stimulated deletions through several pathways. Whereas the elevation in dnaB strains was mostly recA- and lexA-dependent, that in dnaQ strains was mostly recA- and lexA-independent. Deletion product analysis suggested that slipped mispairing, producing monomeric replicon products, may be preferentially increased in a dnaQ mutant and sister-strand exchange, producing dimeric replicon products, may be elevated in dnaE mutants. We conclude that aberrant Polymerase III replication can stimulate deletion events through several mechanisms of deletion and via both recA-dependent and independent pathways. PMID:9177997

  2. PTEN Deletion Enhances the Regenerative Ability of Adult Corticospinal Neurons

    PubMed Central

    Liu, Kai; Lu, Yi; Lee, Jae K.; Samara, Ramsey; Willenberg, Rafer; Sears-Kraxberger, Ilse; Tedeschi, Andrea; Park, Kevin Kyungsuk; Jin, Duo; Cai, Bin; Xu, Bengang; Connolly, Lauren; Steward, Oswald; Zheng, Binhai; He, Zhigang

    2010-01-01

    Despite the essential role of the corticospinal tract (CST) in controlling voluntary movements, successful regeneration of large numbers of injured CST axons beyond a spinal cord lesion has never been achieved. Here we demonstrate a critical involvement of PTEN/mTOR in controlling the regenerative capacity of mouse corticospinal neurons. Upon the completion of development, the regrowth potential of CST axons lost and this is accompanied by a down-regulation of mTOR activity in corticospinal neurons. Axonal injury further diminishes neuronal mTOR activity in these neurons. Forced up-regulation of mTOR activity in corticospinal neurons by conditional deletion of PTEN, a negative regulator of mTOR, enhances compensatory sprouting of uninjured CST axons and even more strikingly, enables successful regeneration of a cohort of injured CST axons past a spinal cord lesion. Furthermore, these regenerating CST axons possess the ability to reform synapses in spinal segments distal to the injury. Thus, modulating neuronal intrinsic PTEN/mTOR activity represents a potential therapeutic strategy for promoting axon regeneration and functional repair after adult spinal cord injury. PMID:20694004

  3. Replication-Dependent Sister Chromatid Recombination in Rad1 Mutants of Saccharomyces Cerevisiae

    PubMed Central

    Kadyk, L. C.; Hartwell, L. H.

    1993-01-01

    Homolog recombination and unequal sister chromatid recombination were monitored in rad1-1/rad1-1 diploid yeast cells deficient for excision repair, and in control cells, RAD1/rad1-1, after exposure to UV irradiation. In a rad1-1/rad1-1 diploid, UV irradiation stimulated much more sister chromatid recombination relative to homolog recombination when cells were irradiated in the G(1) or the G(2) phases of the cell cycle than was observed in RAD1/rad1-1 cells. Since sister chromatids are not present during G(1), this result suggested that unexcised lesions can stimulate sister chromatid recombination events during or subsequent to DNA replication. The results of mating rescue experiments suggest that unexcised UV dimers do not stimulate sister chromatid recombination during the G(2) phase, but only when they are present during DNA replication. We propose that there are two types of sister chromatid recombination in yeast. In the first type, unexcised UV dimers and other bulky lesions induce sister chromatid recombination during DNA replication as a mechanism to bypass lesions obstructing the passage of DNA polymerase, and this type is analogous to the type of sister chromatid exchange commonly observed cytologically in mammalian cells. In the second type, strand scissions created by X-irradiation or the excision of damaged bases create recombinogenic sites that result in sister chromatid recombination directly in G(2). Further support for the existence of two types of sister chromatid recombination is the fact that events induced in rad1-1/rad1-1 were due almost entirely to gene conversion, whereas those in RAD1/rad1-1 cells were due to a mixture of gene conversion and reciprocal recombination. PMID:8454200

  4. Tetranectin gene deletion induces Parkinson's disease by enhancing neuronal apoptosis.

    PubMed

    Chen, Zhifeng; Wang, Ersong; Hu, Rong; Sun, Yu; Zhang, Lei; Jiang, Jue; Zhang, Ying; Jiang, Hong

    Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). We previously identified tetranectin (TET) as a potential biomarker for PD whose expression is downregulated in the cerebrospinal fluid of PD patients. In the present study, we investigate the role of TET in neurodegeneration in vitro and in vivo. Our results showed that siRNA knockdown of TET decreased cell viability and the number of tyrosine hydroxylase (TH) positive cells, whereas it increased caspase-3 activity and the Bax/Bcl-2 ratio in cultured primary dopaminergic neurons. Overexpression of TET protected dopaminergic neurons against neuronal apoptosis in 1-methyl-4-phenylpyridinium cell culture model in vitro. In TET knockdown mouse model of PD, TET gene deletion decreased the number of TH positive cells in the SNpc, induced apoptosis via the p53/Bax pathway, and significantly impaired the motor behavior of transgenic mice. The findings suggest that TET plays a neuroprotective role via reducing neuron apoptosis and could be a valuable biomarker or potential therapeutic target for the treatment of patients with PD. PMID:26597345

  5. Enhance, delete, incept: manipulating hippocampus-dependent memories.

    PubMed

    Spiers, Hugo J; Bendor, Daniel

    2014-06-01

    Here we provide a brief overview of recent research on memory manipulation. We focus primarily on memories for which the hippocampus is thought to be required due to its central importance in the study of memory. The repertoire of methods employed is expanding and includes optogenetics, transcranial stimulation, deep brain stimulation, cued reactivation during sleep and the use of pharmacological agents. In addition, the possible mechanisms underlying these memory changes have been investigated using techniques such as single unit recording and functional magnetic resonance imaging (fMRI). This article is part of a Special Issue entitled 'Memory enhancement'. PMID:24397964

  6. Glandular epithelial AR inactivation enhances PTEN deletion-induced uterine pathology.

    PubMed

    Choi, Jaesung Peter; Zheng, Yu; Handelsman, David J; Simanainen, Ulla

    2016-05-01

    Phosphatase and tensin homolog (PTEN) deletion induces uterine pathology, whereas androgen actions via androgen receptor (AR) support uterine growth and therefore may modify uterine cancer risk. We hypothesized that the androgen actions mediated via uterine glandular epithelial AR could modify PTEN deletion-induced uterine pathology. To test our hypothesis, we developed uterine glandular epithelium-specific PTEN and/or AR knockout mouse models comparing the uterine pathology among wild-type (WT), glandular epithelium-specific AR inactivation (ugeARKO), PTEN deletion (ugePTENKO), and the combined PTEN and AR knockout (ugePTENARKO) female mice. The double knockout restricted to glandular epithelium showed that AR inactivation enhanced PTEN deletion-induced uterine pathology with development of intraepithelial neoplasia by 20 weeks of age. In ugePTENARKO, 6/10 (60%) developed intraepithelial neoplasia, whereas 3/10 (30%) developed only glandular hyperplasia in ugePTENKO uterus. No uterine pathology was observed in WT (n=8) and ugeARKO (n=7) uteri. Uterine weight was significantly (P=0.002) increased in ugePTENARKO (374±97 mg (mean±s.e.)) compared with WT (97±6 mg), ugeARKO (94±12 mg), and ugePTENKO (205±33 mg). Estrogen receptor alpha (ERα) and P-AKT expression was modified by uterine pathology but did not differ between ugePTENKO and ugePTENARKO, suggesting that its expressions are not directly affected by androgens. However, progesterone receptor (PR) expression was reduced in ugePTENARKO compared to ugePTENKO uterus, suggesting that PR expression could be regulated by glandular epithelial AR inactivation. In conclusion, glandular epithelial AR inactivation (with persistent stromal AR action) enhanced PTEN deletion-induced uterine pathology possibly by downregulating PR expression in the uterus.

  7. RFTS-deleted DNMT1 enhances tumorigenicity with focal hypermethylation and global hypomethylation

    PubMed Central

    Wu, Bo-Kuan; Mei, Szu-Chieh; Brenner, Charles

    2014-01-01

    Site-specific hypermethylation of tumor suppressor genes accompanied by genome-wide hypomethylation are epigenetic hallmarks of malignancy. However, the molecular mechanisms that drive these linked changes in DNA methylation remain obscure. DNA methyltransferase 1 (DNMT1), the principle enzyme responsible for maintaining methylation patterns is commonly dysregulated in tumors. Replication foci targeting sequence (RFTS) is an N-terminal domain of DNMT1 that inhibits DNA-binding and catalytic activity, suggesting that RFTS deletion would result in a gain of DNMT1 function. However, a substantial body of data suggested that RFTS is required for DNMT1 activity. Here, we demonstrate that deletion of RFTS alters DNMT1-dependent DNA methylation during malignant transformation. Compared to full-length DNMT1, ectopic expression of hyperactive DNMT1-ΔRFTS caused greater malignant transformation and enhanced promoter methylation with condensed chromatin structure that silenced DAPK and DUOX1 expression. Simultaneously, deletion of RFTS impaired DNMT1 chromatin association with pericentromeric Satellite 2 (SAT2) repeat sequences and produced DNA demethylation at SAT2 repeats and globally. To our knowledge, RFTS-deleted DNMT1 is the first single factor that can reprogram focal hypermethylation and global hypomethylation in parallel during malignant transformation. Our evidence suggests that the RFTS domain of DNMT1 is a target responsible for epigenetic changes in cancer. PMID:25485502

  8. RFTS-deleted DNMT1 enhances tumorigenicity with focal hypermethylation and global hypomethylation.

    PubMed

    Wu, Bo-Kuan; Mei, Szu-Chieh; Brenner, Charles

    2014-01-01

    Site-specific hypermethylation of tumor suppressor genes accompanied by genome-wide hypomethylation are epigenetic hallmarks of malignancy. However, the molecular mechanisms that drive these linked changes in DNA methylation remain obscure. DNA methyltransferase 1 (DNMT1), the principle enzyme responsible for maintaining methylation patterns is commonly dysregulated in tumors. Replication foci targeting sequence (RFTS) is an N-terminal domain of DNMT1 that inhibits DNA-binding and catalytic activity, suggesting that RFTS deletion would result in a gain of DNMT1 function. However, a substantial body of data suggested that RFTS is required for DNMT1 activity. Here, we demonstrate that deletion of RFTS alters DNMT1-dependent DNA methylation during malignant transformation. Compared to full-length DNMT1, ectopic expression of hyperactive DNMT1-ΔRFTS caused greater malignant transformation and enhanced promoter methylation with condensed chromatin structure that silenced DAPK and DUOX1 expression. Simultaneously, deletion of RFTS impaired DNMT1 chromatin association with pericentromeric Satellite 2 (SAT2) repeat sequences and produced DNA demethylation at SAT2 repeats and globally. To our knowledge, RFTS-deleted DNMT1 is the first single factor that can reprogram focal hypermethylation and global hypomethylation in parallel during malignant transformation. Our evidence suggests that the RFTS domain of DNMT1 is a target responsible for epigenetic changes in cancer.

  9. Structural and dynamic changes associated with beneficial engineered single-amino-acid deletion mutations in enhanced green fluorescent protein

    SciTech Connect

    Arpino, James A. J.; Rizkallah, Pierre J.; Jones, D. Dafydd

    2014-08-01

    The beneficial engineered single-amino-acid deletion variants EGFP{sup D190Δ} and EGFP{sup A227Δ} have been studied. Single-amino-acid deletions are a common part of the natural evolutionary landscape but are rarely sampled during protein engineering owing to limited and prejudiced molecular understanding of mutations that shorten the protein backbone. Single-amino-acid deletion variants of enhanced green fluorescent protein (EGFP) have been identified by directed evolution with the beneficial effect of imparting increased cellular fluorescence. Biophysical characterization revealed that increased functional protein production and not changes to the fluorescence parameters was the mechanism that was likely to be responsible. The structure EGFP{sup D190Δ} containing a deletion within a loop revealed propagated changes only after the deleted residue. The structure of EGFP{sup A227Δ} revealed that a ‘flipping’ mechanism was used to adjust for residue deletion at the end of a β-strand, with amino acids C-terminal to the deletion site repositioning to take the place of the deleted amino acid. In both variants new networks of short-range and long-range interactions are generated while maintaining the integrity of the hydrophobic core. Both deletion variants also displayed significant local and long-range changes in dynamics, as evident by changes in B factors compared with EGFP. Rather than being detrimental, deletion mutations can introduce beneficial structural effects through altering core protein properties, folding and dynamics, as well as function.

  10. Enhancing allele-specific PCR for specifically detecting short deletion and insertion DNA mutations.

    PubMed

    Wang, Yiran; Rollin, Joseph A; Zhang, Y-H Percival

    2010-02-01

    Allele-specific PCR (AS-PCR) has been widely used for the detection of single nucleotide polymorphism. But there are some challenges in using AS-PCR for specifically detecting DNA variations with short deletions or insertions. The challenges are associated with designing selective allele-specific primers as well as the specificity of AS-PCR in distinguishing some types of single base-pair mismatches. In order to address such problems and enhance the applicability of AS-PCR, a general primer design method was developed to create a multiple base-pair mismatch between the primer 3'-terminus and the template DNA. This approach can destabilize the primer-template complex more efficiently than does a single base-pair mismatch, and can dramatically increase the specificity of AS-PCR. As a proof-of-principle demonstration, the method of primer design was applied in colony PCR for identifying plasmid DNA deletion or insertion mutants after site-directed mutagenesis. As anticipated, multiple base-pair mismatches achieved much more specific PCR amplification than single base-pair mismatches. Therefore, with the proposed primer design method, the detection of short nucleotide deletion and insertion mutations becomes simple, accurate and more reliable.

  11. Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis.

    PubMed

    Gregorian, Caroline; Nakashima, Jonathan; Le Belle, Janel; Ohab, John; Kim, Rachel; Liu, Annie; Smith, Kate Barzan; Groszer, Matthias; Garcia, A Denise; Sofroniew, Michael V; Carmichael, S Thomas; Kornblum, Harley I; Liu, Xin; Wu, Hong

    2009-02-11

    Here we show that conditional deletion of Pten in a subpopulation of adult neural stem cells in the subependymal zone (SEZ) leads to persistently enhanced neural stem cell self-renewal without sign of exhaustion. These Pten null SEZ-born neural stem cells and progenies can follow the endogenous migration, differentiation, and integration pathways and contribute to constitutive neurogenesis in the olfactory bulb. As a result, Pten deleted animals have increased olfactory bulb mass and enhanced olfactory function. Pten null cells in the olfactory bulb can establish normal connections with peripheral olfactory epithelium and help olfactory bulb recovery from acute damage. Following a focal stroke, Pten null progenitors give rise to greater numbers of neuroblasts that migrate to peri-infarct cortex. However, in contrast to the olfactory bulb, no significant long-term survival and integration can be observed, indicating that additional factors are necessary for long-term survival of newly born neurons after stroke. These data suggest that manipulating PTEN-controlled signaling pathways may be a useful step in facilitating endogenous neural stem/progenitor expansion for the treatment of disorders or lesions in regions associated with constitutive neurogenesis. PMID:19211894

  12. Genomic deletion of a long-range bone enhancer misregulatessclerostin in Van Buchem disease

    SciTech Connect

    Loots, Gabriela G.; Kneissel, Michaela; Keller, Hansjoerg; Baptist, Myma; Chang, Jessie; Collette, Nicole M.; Ovcharenko, Dmitriy; Plajzer-Frick, Ingrid; Rubin, Edward M.

    2005-04-15

    Mutations in distant regulatory elements can negatively impact human development and health, yet due to the difficulty of detecting these critical sequences we predominantly focus on coding sequences for diagnostic purposes. We have undertaken a comparative sequence-based approach to characterize a large noncoding region deleted in patients affected by Van Buchem disease (VB), a severe sclerosing bone dysplasia. Using BAC recombination and transgenesis we characterized the expression of human sclerostin (sost) from normal (hSOSTwt) or Van Buchem(hSOSTvb D) alleles. Only the hSOSTwt allele faithfully expressed high levels of human sost in the adult bone and impacted bone metabolism, consistent with the model that the VB noncoding deletion removes a sost specific regulatory element. By exploiting cross-species sequence comparisons with in vitro and in vivo enhancer assays we were able to identify a candidate enhancer element that drives human sost expression in osteoblast-like cell lines in vitro and in the skeletal anlage of the E14.5 mouse embryo, and discovered a novel function for sclerostin during limb development. Our approach represents a framework for characterizing distant regulatory elements associated with abnormal human phenotypes.

  13. Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis.

    PubMed

    Gregorian, Caroline; Nakashima, Jonathan; Le Belle, Janel; Ohab, John; Kim, Rachel; Liu, Annie; Smith, Kate Barzan; Groszer, Matthias; Garcia, A Denise; Sofroniew, Michael V; Carmichael, S Thomas; Kornblum, Harley I; Liu, Xin; Wu, Hong

    2009-02-11

    Here we show that conditional deletion of Pten in a subpopulation of adult neural stem cells in the subependymal zone (SEZ) leads to persistently enhanced neural stem cell self-renewal without sign of exhaustion. These Pten null SEZ-born neural stem cells and progenies can follow the endogenous migration, differentiation, and integration pathways and contribute to constitutive neurogenesis in the olfactory bulb. As a result, Pten deleted animals have increased olfactory bulb mass and enhanced olfactory function. Pten null cells in the olfactory bulb can establish normal connections with peripheral olfactory epithelium and help olfactory bulb recovery from acute damage. Following a focal stroke, Pten null progenitors give rise to greater numbers of neuroblasts that migrate to peri-infarct cortex. However, in contrast to the olfactory bulb, no significant long-term survival and integration can be observed, indicating that additional factors are necessary for long-term survival of newly born neurons after stroke. These data suggest that manipulating PTEN-controlled signaling pathways may be a useful step in facilitating endogenous neural stem/progenitor expansion for the treatment of disorders or lesions in regions associated with constitutive neurogenesis.

  14. Targeted deletion of Sost distal enhancer increases bone formation and bone mass.

    PubMed

    Collette, Nicole M; Genetos, Damian C; Economides, Aris N; Xie, LiQin; Shahnazari, Mohammad; Yao, Wei; Lane, Nancy E; Harland, Richard M; Loots, Gabriela G

    2012-08-28

    The Wnt antagonist Sost has emerged as a key regulator of bone homeostasis through the modulation of Lrp4/5/6 Wnt coreceptors. In humans, lack of Sclerostin causes sclerosteosis and van Buchem (VB) disease, two generalized skeletal hyperostosis disorders that result from hyperactive Wnt signaling. Unlike sclerosteosis, VB patients lack SOST coding mutations but carry a homozygous 52 kb noncoding deletion that is essential for the transcriptional activation of SOST in bone. We recently identified a putative bone enhancer, ECR5, in the VB deletion region, and showed that the transcriptional activity of ECR5 is controlled by Mef2C transcription factor in vitro. Here we report that mice lacking ECR5 or Mef2C through Col1-Cre osteoblast/osteocyte-specific ablation result in high bone mass (HBM) due to elevated bone formation rates. We conclude that the absence of the Sost-specific long-range regulatory element ECR5 causes VB disease in rodents, and that Mef2C is the main transcription factor responsible for ECR5-dependent Sost transcriptional activation in the adult skeleton.

  15. Targeted deletion of Sost distal enhancer increases bone formation and bone mass

    PubMed Central

    Collette, Nicole M.; Genetos, Damian C.; Economides, Aris N.; Xie, LiQin; Shahnazari, Mohammad; Yao, Wei; Lane, Nancy E.; Harland, Richard M.; Loots, Gabriela G.

    2012-01-01

    The Wnt antagonist Sost has emerged as a key regulator of bone homeostasis through the modulation of Lrp4/5/6 Wnt coreceptors. In humans, lack of Sclerostin causes sclerosteosis and van Buchem (VB) disease, two generalized skeletal hyperostosis disorders that result from hyperactive Wnt signaling. Unlike sclerosteosis, VB patients lack SOST coding mutations but carry a homozygous 52 kb noncoding deletion that is essential for the transcriptional activation of SOST in bone. We recently identified a putative bone enhancer, ECR5, in the VB deletion region, and showed that the transcriptional activity of ECR5 is controlled by Mef2C transcription factor in vitro. Here we report that mice lacking ECR5 or Mef2C through Col1-Cre osteoblast/osteocyte-specific ablation result in high bone mass (HBM) due to elevated bone formation rates. We conclude that the absence of the Sost-specific long-range regulatory element ECR5 causes VB disease in rodents, and that Mef2C is the main transcription factor responsible for ECR5-dependent Sost transcriptional activation in the adult skeleton. PMID:22886088

  16. MtgA Deletion-Triggered Cell Enlargement of Escherichia coli for Enhanced Intracellular Polyester Accumulation

    PubMed Central

    Kadoya, Ryosuke; Matsumoto, Ken’ichiro; Ooi, Toshihiko; Taguchi, Seiichi

    2015-01-01

    Bacterial polyester polyhydroxyalkanoates (PHAs) have been produced in engineered Escherichia coli, which turned into an efficient and versatile platform by applying metabolic and enzyme engineering approaches. The present study aimed at drawing out the latent potential of this organism using genome-wide mutagenesis. To meet this goal, a transposon-based mutagenesis was carried out on E. coli, which was transformed to produce poly(lactate-co-3-hydroxybutyrate) from glucose. A high-throughput screening of polymer-accumulating cells on Nile red-containing plates isolated one mutant that produced 1.8-fold higher quantity of polymer without severe disadvantages in the cell growth and monomer composition of the polymer. The transposon was inserted into the locus within the gene encoding MtgA that takes part, as a non-lethal component, in the formation of the peptidoglycan backbone. Accordingly, the mtgA-deleted strain E. coli JW3175, which was a derivate of superior PHA-producing strain BW25113, was examined for polymer production, and exhibited an enhanced accumulation of the polymer (7.0 g/l) compared to the control (5.2 g/l). Interestingly, an enlargement in cell width associated with polymer accumulation was observed in this strain, resulting in a 1.6-fold greater polymer accumulation per cell compared to the control. This result suggests that the increase in volumetric capacity for accumulating intracellular material contributed to the enhanced polymer production. The mtgA deletion should be combined with conventional engineering approaches, and thus, is a promising strategy for improved production of intracellularly accumulated biopolymers. PMID:26039058

  17. Genetic deletion of MT₁/MT₂ melatonin receptors enhances murine cognitive and motor performance.

    PubMed

    O'Neal-Moffitt, G; Pilli, J; Kumar, S S; Olcese, J

    2014-09-26

    Melatonin, an indoleamine hormone secreted into circulation at night primarily by the brain's pineal gland, has been shown to have a wide variety of actions on the development and physiology of neurons in the CNS. Acting via two G-protein-coupled membrane receptors (MT1 and MT2), melatonin modulates neurogenesis, synaptic functions, neuronal cytoskeleton and gene expression. In the present studies, we sought to characterize the behavior and neuronal biology of transgenic mice lacking both of these melatonin receptors as a way to understand the hormone's receptor versus non-receptor-mediated actions in CNS-dependent activities, such as learning and memory, anxiety, general motor performance and circadian rhythmicity. Assessment of these behaviors was complemented by molecular analyses of gene expression in the brain. Our results demonstrate mild behavioral hyperactivity and a lengthened circadian period of free-running motor activity in melatonin receptor-deficient mice as compared to receptor-intact control mice beginning at an early age. Significant improvement in cognitive performance was found using the Barnes Maze and the Y-Maze. No behavioral changes in anxiety levels were found. Electrophysiological measures in hippocampal slices revealed a clear enhancement of long-term potentiation in mice lacking melatonin receptors with no significant differences in paired-pulse facilitation. Quantitative analysis of brain protein expression levels of phosphoCREB and phosphoERK1/2 and key markers of synaptic activity (synapsin, glutamate receptor 1, spinophilin, and glutamic acid decarboxylase 1) revealed significant differences between the double-knockout and wild-type animals, consistent with the behavioral findings. Thus, genetic deletion of melatonin receptors produces mice with enhanced cognitive and motor performance, supporting the view that these receptors play an important role in neurobehavioral development.

  18. Naturally Occurring Deletions of Hunchback Binding Sites in the Even-Skipped Stripe 3+7 Enhancer

    PubMed Central

    Palsson, Arnar; Wesolowska, Natalia; Reynisdóttir, Sigrún; Ludwig, Michael Z.; Kreitman, Martin

    2014-01-01

    Changes in regulatory DNA contribute to phenotypic differences within and between taxa. Comparative studies show that many transcription factor binding sites (TFBS) are conserved between species whereas functional studies reveal that some mutations segregating within species alter TFBS function. Consistently, in this analysis of 13 regulatory elements in Drosophila melanogaster populations, single base and insertion/deletion polymorphism are rare in characterized regulatory elements. Experimentally defined TFBS are nearly devoid of segregating mutations and, as has been shown before, are quite conserved. For instance 8 of 11 Hunchback binding sites in the stripe 3+7 enhancer of even-skipped are conserved between D. melanogaster and Drosophila virilis. Oddly, we found a 72 bp deletion that removes one of these binding sites (Hb8), segregating within D. melanogaster. Furthermore, a 45 bp deletion polymorphism in the spacer between the stripe 3+7 and stripe 2 enhancers, removes another predicted Hunchback site. These two deletions are separated by ∼250 bp, sit on distinct haplotypes, and segregate at appreciable frequency. The Hb8Δ is at 5 to 35% frequency in the new world, but also shows cosmopolitan distribution. There is depletion of sequence variation on the Hb8Δ-carrying haplotype. Quantitative genetic tests indicate that Hb8Δ affects developmental time, but not viability of offspring. The Eve expression pattern differs between inbred lines, but the stripe 3 and 7 boundaries seem unaffected by Hb8Δ. The data reveal segregating variation in regulatory elements, which may reflect evolutionary turnover of characterized TFBS due to drift or co-evolution. PMID:24786295

  19. Enhanced leavening ability of baker's yeast by overexpression of SNR84 with PGM2 deletion.

    PubMed

    Lin, Xue; Zhang, Cui-Ying; Bai, Xiao-Wen; Xiao, Dong-Guang

    2015-06-01

    Dough-leavening ability is one of the main aspects considered when selecting a baker's yeast strain for baking industry. Generally, modification of maltose metabolic pathway and known regulatory networks of maltose metabolism were used to increase maltose metabolism to improve leavening ability in lean dough. In this study, we focus on the effects of PGM2 (encoding for the phosphoglucomutase) and SNR84 (encoding for the H/ACA snoRNA) that are not directly related to both the maltose metabolic pathway and known regulatory networks of maltose metabolism on the leavening ability of baker's yeast in lean dough. The results show that the modifications on PGM2 and/or SNR84 are effective ways in improving leavening ability of baker's yeast in lean dough. Deletion of PGM2 decreased cellular glucose-1-phosphate and overexpression of SNR84 increased the maltose permease activity. These changes resulted in 11, 19 and 21% increases of the leavening ability for PGM2 deletion, SNR84 overexpression and SNR84 overexpression combining deleted PGM2, respectively.

  20. Enhanced leavening ability of baker's yeast by overexpression of SNR84 with PGM2 deletion.

    PubMed

    Lin, Xue; Zhang, Cui-Ying; Bai, Xiao-Wen; Xiao, Dong-Guang

    2015-06-01

    Dough-leavening ability is one of the main aspects considered when selecting a baker's yeast strain for baking industry. Generally, modification of maltose metabolic pathway and known regulatory networks of maltose metabolism were used to increase maltose metabolism to improve leavening ability in lean dough. In this study, we focus on the effects of PGM2 (encoding for the phosphoglucomutase) and SNR84 (encoding for the H/ACA snoRNA) that are not directly related to both the maltose metabolic pathway and known regulatory networks of maltose metabolism on the leavening ability of baker's yeast in lean dough. The results show that the modifications on PGM2 and/or SNR84 are effective ways in improving leavening ability of baker's yeast in lean dough. Deletion of PGM2 decreased cellular glucose-1-phosphate and overexpression of SNR84 increased the maltose permease activity. These changes resulted in 11, 19 and 21% increases of the leavening ability for PGM2 deletion, SNR84 overexpression and SNR84 overexpression combining deleted PGM2, respectively. PMID:25877163

  1. Tph2 gene deletion enhances amphetamine-induced hypermotility: effect of 5-HT restoration and role of striatal noradrenaline release.

    PubMed

    Carli, Mirjana; Kostoula, Chrysaugi; Sacchetti, Giuseppina; Mainolfi, Pierangela; Anastasia, Alessia; Villani, Claudia; Invernizzi, Roberto William

    2015-11-01

    Variants of tryptophan hydroxylase-2 (Tph2), the gene encoding enzyme responsible for the synthesis of brain serotonin (5-HT), have been associated with neuropsychiatric disorders, substance abuse and addiction. This study assessed the effect of Tph2 gene deletion on motor behavior and found that motor activity induced by 2.5 and 5 mg/kg amphetamine was enhanced in Tph2(-/-) mice. Using the in vivo microdialysis technique we found that the ability of amphetamine to stimulate noradrenaline (NA) release in the striatum was reduced by about 50% in Tph2(-/-) mice while the release of dopamine (DA) was not affected. Tph2 deletion did not affect the release of NA and DA in the prefrontal cortex. The role of endogenous 5-HT in enhancing the effect of amphetamine was confirmed showing that treatment with the 5-HT precursor 5-hydroxytryptophan (10 mg/kg) restored tissue and extracellular levels of brain 5-HT and the effects of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. Treatment with the NA precursor dihydroxyphenylserine (400 mg/kg) was sufficient to restore the effect of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. These findings indicate that amphetamine-induced hyperactivity is attenuated by endogenous 5-HT through the inhibition of striatal NA release. Tph2(-/-) mice may be a useful preclinical model to assess the role of 5-HT-dependent mechanisms in the action of psychostimulants. Acute sensitivity to the motor effects of amphetamine has been associated to increased risk of psychostimulant abuse. Here, we show that deletion of Tph2, the gene responsible for brain 5-HT synthesis, enhances the motor effect of amphetamine in mice through the inhibition of striatal NA release. This suggests that Tph2(-/-) mice is a useful preclinical model to assess the role of 5-HT-dependent mechanisms in psychostimulants action. Tph2, tryptophan hydroxylase-2.

  2. ``Black Holes" and Bacterial Pathogenicity: A Large Genomic Deletion that Enhances the Virulence of Shigella spp. and Enteroinvasive Escherichia coli

    NASA Astrophysics Data System (ADS)

    Maurelli, Anthony T.; Fernandez, Reinaldo E.; Bloch, Craig A.; Rode, Christopher K.; Fasano, Alessio

    1998-03-01

    Plasmids, bacteriophages, and pathogenicity islands are genomic additions that contribute to the evolution of bacterial pathogens. For example, Shigella spp., the causative agents of bacillary dysentery, differ from the closely related commensal Escherichia coli in the presence of a plasmid in Shigella that encodes virulence functions. However, pathogenic bacteria also may lack properties that are characteristic of nonpathogens. Lysine decarboxylate (LDC) activity is present in ≈ 90% of E. coli strains but is uniformly absent in Shigella strains. When the gene for LDC, cadA, was introduced into Shigella flexneri 2a, virulence became attenuated, and enterotoxin activity was inhibited greatly. The enterotoxin inhibitor was identified as cadaverine, a product of the reaction catalyzed by LDC. Comparison of the S. flexneri 2a and laboratory E. coli K-12 genomes in the region of cadA revealed a large deletion in Shigella. Representative strains of Shigella spp. and enteroinvasive E. coli displayed similar deletions of cadA. Our results suggest that, as Shigella spp. evolved from E. coli to become pathogens, they not only acquired virulence genes on a plasmid but also shed genes via deletions. The formation of these ``black holes,'' deletions of genes that are detrimental to a pathogenic lifestyle, provides an evolutionary pathway that enables a pathogen to enhance virulence. Furthermore, the demonstration that cadaverine can inhibit enterotoxin activity may lead to more general models about toxin activity or entry into cells and suggests an avenue for antitoxin therapy. Thus, understanding the role of black holes in pathogen evolution may yield clues to new treatments of infectious diseases.

  3. "Black holes" and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli.

    PubMed

    Maurelli, A T; Fernández, R E; Bloch, C A; Rode, C K; Fasano, A

    1998-03-31

    Plasmids, bacteriophages, and pathogenicity islands are genomic additions that contribute to the evolution of bacterial pathogens. For example, Shigella spp., the causative agents of bacillary dysentery, differ from the closely related commensal Escherichia coli in the presence of a plasmid in Shigella that encodes virulence functions. However, pathogenic bacteria also may lack properties that are characteristic of nonpathogens. Lysine decarboxylase (LDC) activity is present in approximately 90% of E. coli strains but is uniformly absent in Shigella strains. When the gene for LDC, cadA, was introduced into Shigella flexneri 2a, virulence became attenuated, and enterotoxin activity was inhibited greatly. The enterotoxin inhibitor was identified as cadaverine, a product of the reaction catalyzed by LDC. Comparison of the S. flexneri 2a and laboratory E. coli K-12 genomes in the region of cadA revealed a large deletion in Shigella. Representative strains of Shigella spp. and enteroinvasive E. coli displayed similar deletions of cadA. Our results suggest that, as Shigella spp. evolved from E. coli to become pathogens, they not only acquired virulence genes on a plasmid but also shed genes via deletions. The formation of these "black holes," deletions of genes that are detrimental to a pathogenic lifestyle, provides an evolutionary pathway that enables a pathogen to enhance virulence. Furthermore, the demonstration that cadaverine can inhibit enterotoxin activity may lead to more general models about toxin activity or entry into cells and suggests an avenue for antitoxin therapy. Thus, understanding the role of black holes in pathogen evolution may yield clues to new treatments of infectious diseases.

  4. Enhanced leavening properties of baker's yeast overexpressing MAL62 with deletion of MIG1 in lean dough.

    PubMed

    Sun, Xi; Zhang, Cuiying; Dong, Jian; Wu, Mingyue; Zhang, Yan; Xiao, Dongguang

    2012-10-01

    This study aimed to increase maltose fermentation in industrial baker's yeast to increase its leavening properties. To this end, we overexpressed MAL62 encoding alpha-glucosidase (maltase) and deleted MIG1 encoding a transcriptional repressor that regulates MAL gene expression. Strain overexpressing MAL62 showed 46.3 % higher alpha-glucosidase activity and enhanced leaving activity than the parental strain when tested in glucose-maltose low sugar model liquid dough (LSMLD). Deleting MIG1 was much less effective, but it could further strengthen leavening properties in a strain overexpressing MAL62. The relationship between maltose permease and alpha-glucosidase was further dissected by transforming the two genes. The results indicated that without increasing the maltose permease activity, maltose metabolism could also be enhanced by the increased alpha-glucosidase activity. Previous strategies for strain improvement have targeted the enhancement of alpha-glucosidase and maltose permease activities in concert. Our results suggest that increasing alpha-glucosidase activity is sufficient to improve maltose fermentation in lean dough.

  5. Enhanced anti-angiogenic effect of a deletion mutant of plasminogen kringle 5 on neovascularization.

    PubMed

    Cai, Weibin; Ma, Jianfang; Li, Chaoyang; Yang, Zhonghan; Yang, Xia; Liu, Wei; Liu, Zuguo; Li, Mintao; Gao, Guoquan

    2005-12-15

    Kringle 5 (K5), a proteolytic fragment of plasminogen, has been proved to be an angiogenic inhibitor. Previously, we have evaluated the effect of K5 on the vascular leakage and neovascularization in a rat model of oxygen-induced retinopathy. In this study, we expressed K5 and a deletion mutant of K5 (K5 mutant) in a prokaryocyte expression system and purified them by affinity chromatography. K5 mutant was generated by deleting 11 amino acids from K5 while retaining the three disulfide bonds. The anti-angiogenic activity of intact K5 and K5 mutant were compared in endothelial cells and retinal neovascularization rat model. K5 mutant inhibited the proliferation of primary human retinal capillary endothelial cells (HRCEC) in a concentration-dependent manner, with an apparent EC50 of approximate 35 nmol/L, which is twofold more potent than intact K5. In the even higher concentration range, K5 mutant did not inhibit pericytes from the same origin of HRCEC, which suggested an endothelial cell-specific inhibition. K5 mutant had no effect on normal liver cells and Bel7402 hepatoma cells even at high concentration range either. Intravitreal injection of the K5 and mutant in the oxygen-induced retinopathy rat model both resulted in significantly fewer neovascular tufts and nonperfusion area than controls with PBS injection, as shown by fluorescein angiography. Furthermore, K5 mutant exhibited more strong inhibition effect on neovascularization than intact K5 by quantification of vascular cells. These results suggest that this K5 deletion mutant is a more potent angiogenic inhibitor than intact K5 and may have therapeutic potential in the treatment of those disorders with neovascularization, such as solid tumor, diabetic retinopathy, age-related macular degeneration, rheumatoid arthritis, and hyperplasia of prostate. PMID:16167344

  6. Enhancement or attenuation of disease by deletion of genes from Citrus tristeza virus.

    PubMed

    Tatineni, Satyanarayana; Dawson, William O

    2012-08-01

    Stem pitting is a common virus-induced disease of perennial woody plants induced by a range of different viruses. The phenotype results from sporadic areas of the stem in which normal xylem and phloem development is prevented during growth of stems. These alterations interfere with carbohydrate transport, resulting in reduced plant growth and yield. Citrus tristeza virus (CTV), a phloem-limited closterovirus, induces economically important stem-pitting diseases of citrus. CTV has three nonconserved genes (p33, p18, and p13) that are not related to genes of other viruses and that are not required for systemic infection of some species of citrus, which allowed us to examine the effect of deletions of these genes on symptom phenotypes. In the most susceptible experimental host, Citrus macrophylla, the full-length virus causes only very mild stem-pitting symptoms. Surprisingly, we found that certain deletion combinations (p33 and p18 and/or p13) induced greatly increased stem-pitting symptoms, while other combinations (p13 or p13 plus p18) resulted in reduced stem pitting. These results suggest that the stem-pitting phenotype, which is one of more economically important disease phenotypes, can result not from a specific sequence or protein but from a balance between the expression of different viral genes. Unexpectedly, using green fluorescent protein-tagged full-length virus and deletion mutants (CTV9Δp33 and CTV9Δp33Δp18Δp13), the virus was found at pitted areas in abnormal locations outside the normal ring of phloem. Thus, increased stem pitting was associated not only with a prevention of xylem production but also with a proliferation of cells that supported viral replication, suggesting that at random areas of stems the virus can elicit changes in cellular differentiation and development.

  7. MTAP deletion confers enhanced dependency on the arginine methyltransferase PRMT5 in human cancer cells

    PubMed Central

    Kryukov, Gregory V; Wilson, Frederick H; Ruth, Jason R; Paulk, Joshiawa; Tsherniak, Aviad; Marlow, Sara E; Vazquez, Francisca; Weir, Barbara A; Fitzgerald, Mark E; Tanaka, Minoru; Bielski, Craig M; Scott, Justin M; Dennis, Courtney; Cowley, Glenn S; Boehm, Jesse S; Root, David E; Golub, Todd R; Clish, Clary B; Bradner, James E; Hahn, William C

    2016-01-01

    The discovery of cancer dependencies has the potential to inform therapeutic strategies and to identify putative drug targets. Integrating data from comprehensive genomic profiling of cancer cell lines and from functional characterization of cancer cell dependencies, we discovered that loss of the enzyme methylthioadenosine phosphorylase (MTAP) confers a selective dependence on protein arginine methyltransferase 5 (PRMT5) and its binding partner WDR77. MTAP is frequently lost due to its proximity to the commonly deleted tumor suppressor gene, CDKN2A. We observed increased intracellular concentrations of methylthioadenosine (MTA; the metabolite cleaved by MTAP) in cells harboring MTAP deletions. Furthermore, MTA specifically inhibited PRMT5 enzymatic activity. Administration of either MTA or a small molecule PRMT5 inhibitor showed a modest preferential impairment of cell viability for MTAP-null cancer cell lines compared to isogenic MTAP-expressing counterparts. Together, our findings reveal PRMT5 as a potential vulnerability across multiple cancer lineages augmented by a common “passenger” genomic alteration. PMID:26912360

  8. Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production.

    PubMed

    Jung, Moo-Young; Ng, Chiam Yu; Song, Hyohak; Lee, Jinwon; Oh, Min-Kyu

    2012-07-01

    2,3-Butanediol is an important bio-based chemical product, because it can be converted into several C4 industrial chemicals. In this study, a lactate dehydrogenase-deleted mutant was constructed to improve 2,3-butanediol productivity in Enterobacter aerogenes. To delete the gene encoding lactate dehydrogenase, λ Red recombination method was successfully adapted for E. aerogenes. The resulting strain produced a very small amount of lactate and 16.7% more 2,3-butanediol than that of the wild-type strain in batch fermentation. The mutant and its parental strain were then cultured with six different carbon sources, and the mutant showed higher carbon source consumption and microbial growth rates in all media. The 2,3-butanediol titer reached 69.5 g/l in 54 h during fed-batch fermentation with the mutant,which was 27.4% higher than that with the parental strain.With further optimization of the medium and aeration conditions,118.05 g/l 2,3-butanediol was produced in 54 h during fed-batch fermentation with the mutant. This is by far the highest titer of 2,3-butanediol with E. aerogenes achieved by metabolic pathway engineering.

  9. Structural and functional analyses of an archaeal XPF/Rad1/Mus81 nuclease: asymmetric DNA binding and cleavage mechanisms.

    PubMed

    Nishino, Tatsuya; Komori, Kayoko; Ishino, Yoshizumi; Morikawa, Kosuke

    2005-08-01

    XPF/Rad1/Mus81/Hef proteins recognize and cleave branched DNA structures. XPF and Rad1 proteins cleave the 5' side of nucleotide excision repair bubble, while Mus81 and Hef cleave similar sites of the nicked Holliday junction, fork, or flap structure. These proteins all function as dimers and consist of catalytic and helix-hairpin-helix DNA binding (HhH) domains. We have determined the crystal structure of the HhH domain of Pyrococcus furiosus Hef nuclease (HefHhH), which revealed the distinct mode of protein dimerization. Our structural and biochemical analyses also showed that each of the catalytic and HhH domains binds to distinct regions within the fork-structured DNA: each HhH domain from two separate subunits asymmetrically binds to the arm region, while the catalytic domain binds near the junction center. Upon binding to DNA, Hef nuclease disrupts base pairs near the cleavage site. It is most likely that this bipartite binding mode is conserved in the XPF/Rad1/Mus81 nuclease family. PMID:16084390

  10. mPGES-2 deletion remarkably enhances liver injury in streptozotocin-treated mice via induction of GLUT2

    PubMed Central

    Yang, Guangrui; Kakizoe, Yutaka; Liu, Mi; Yang, Kevin T.; Liu, Ying; Yang, Baoxue; Yang, Tianxin

    2015-01-01

    Background & Aims Microsomal prostaglandin E synthase-2 (mPGES-2) deletion does not influence in vivo PGE2 production and the function of this enzyme remains elusive. The present study was undertaken to investigate the role of mPGES-2 in streptozotocin (STZ)-induced type-1 diabetes and organ injuries. Methods mPGES-2 wild type (WT) and knockout (KO) mice were treated by a single intraperitoneal injection of STZ at the dose of 120 mg/kg to induce type-1 diabetes. Subsequently, glycemic status and organ injuries were evaluated. Results Following 4 days of STZ administration, mPGES-2 KO mice exhibited severe lethality in contrast to the normal phenotype observed in WT control mice. In a separate experiment, the analysis was performed at day 3 of the STZ treatment in order to avoid lethality. Blood glucose levels were similar between STZ-treated KO and WT mice. However, the livers of KO mice were yellowish with severe global hepatic steatosis, in parallel with markedly elevated liver enzymes and remarkable stomach expansion. However, the morphology of the other organs was largely normal. The STZ-treated KO mice displayed extensive hepatocyte apoptosis compared with WT mice in parallel with markedly enhanced inflammation and oxidative stress. More interestingly, a liver-specific 50% upregulation of GLUT2 was found in the KO mice accompanied with a markedly enhanced STZ accumulation and this induction of GLUT2 was likely to be associated with the insulin/SREBP-1c pathway. Primary cultured hepatocytes of KO mice exhibited an increased sensitivity to STZ-induced injury and higher cellular STZ content, which was markedly blunted by the selective GLUT2 inhibitor phloretin. Conclusions mPGES-2 deletion enhanced STZ-induced liver toxicity possibly via GLUT2-mediated STZ uptake, independently of diabetes mellitus. PMID:25076362

  11. Deletion of Herpud1 Enhances Heme Oxygenase-1 Expression in a Mouse Model of Parkinson's Disease.

    PubMed

    Le, Thuong Manh; Hashida, Koji; Ta, Hieu Minh; Takarada-Iemata, Mika; Kokame, Koichi; Kitao, Yasuko; Hori, Osamu

    2016-01-01

    Herp is an endoplasmic reticulum- (ER-) resident membrane protein that plays a role in ER-associated degradation. We studied the expression of Herp and its effect on neurodegeneration in a mouse model of Parkinson's disease (PD), in which both the oxidative stress and the ER stress are evoked. Eight hours after administering a PD-related neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), to mice, the expression of Herp increased at both the mRNA and the protein levels. Experiments using Herpud1 (+/+) and Herpud1 (-/-) mice revealed that the status of acute degeneration of nigrostriatal neurons and reactive astrogliosis was comparable between two genotypes after MPTP injection. However, the expression of a potent antioxidant, heme oxygenase-1 (HO-1), was detected to a higher degree in the astrocytes of Herpud1 (-/-) mice than in the astrocytes of Herpud1 (+/+) mice 24 h after MPTP administration. Further experiments using cultured astrocytes revealed that the stress response against MPP(+), an active form of MPTP, and hydrogen peroxide, both of which cause oxidative stress, was comparable between the two genotypes. These results suggest that deletion of Herpud1 may cause a slightly higher level of initial damage in the nigrastrial neurons after MPTP administration but is compensated for by higher induction of antioxidants such as HO-1 in astrocytes.

  12. Conditional genetic deletion of PTEN after a spinal cord injury enhances regenerative growth of CST axons and motor function recovery in mice

    PubMed Central

    Danilov, Camelia A.; Steward, Oswald

    2015-01-01

    Previous studies indicate that conditional genetic deletion of phosphatase and tensin homolog (PTEN) in neonatal mice enhances the ability of axons to regenerate following spinal cord injury (SCI) in adults. Here, we assessed whether deleting PTEN in adult neurons post-SCI is also effective, and whether enhanced regenerative growth is accompanied by enhanced recovery of voluntary motor function. PTENloxP/loxP mice received moderate contusion injuries at cervical level 5 (C5). One group received unilateral injections of adeno-associated virus expressing CRE (AAV-CRE) into the sensorimotor cortex; controls received a vector expressing green fluorescent protein (AAV-GFP) or injuries only (no vector injections). Forelimb function was tested for 14 weeks post-SCI using a grip strength meter (GSM) and a hanging task. The corticospinal tract (CST) was traced by injecting mini-ruby BDA into the sensorimotor cortex. Forelimb gripping ability was severely impaired immediately post-SCI but recovered slowly over time. The extent of recovery was significantly greater in PTEN-deleted mice in comparison to either the AAV-GFP group or the injury only group. BDA tract tracing revealed significantly higher numbers of BDA-labeled axons in caudal segments in the PTEN-deleted group compared to control groups. In addition, in the PTEN-deleted group, there were exuberant collaterals extending from the main tract rostral to the lesion, into and around the scar tissue at the injury site. These results indicate that PTEN deletion in adult mice shortly post-SCI can enhance regenerative growth of CST axons and forelimb motor function recovery. PMID:25704959

  13. CCAAT/enhancer binding protein {beta} deletion increases mitochondrial function and protects mice from LXR-induced hepatic steatosis

    SciTech Connect

    Rahman, Shaikh M.; Choudhury, Mahua; Janssen, Rachel C.; Baquero, Karalee C.; Miyazaki, Makoto; Friedman, Jacob E.

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer LXR agonist activation increases liver TG accumulation by increasing lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta}{sup -/-} mouse prevents LXR activation-mediated induction of hepatic lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta} deletion increases mitochondrial transport chain function. Black-Right-Pointing-Pointer Beneficial effects of LXR activation on liver cholesterol metabolism did not change. Black-Right-Pointing-Pointer C/EBP{beta} inhibition might have important therapeutic potential. -- Abstract: Drugs designed specifically to activate liver X receptors (LXRs) have beneficial effects on lowering cholesterol metabolism and inflammation but unfortunately lead to severe hepatic steatosis. The transcription factor CCAAT/enhancer binding protein beta (C/EBP{beta}) is an important regulator of liver gene expression but little is known about its involvement in LXR-based steatosis and cholesterol metabolism. The present study investigated the role of C/EBP{beta} expression in LXR agonist (T0901317)-mediated alteration of hepatic triglyceride (TG) and lipogenesis in mice. C/EBP{beta} deletion in mice prevented LXR agonist-mediated induction of lipogenic gene expression in liver in conjunction with significant reduction of liver TG accumulation. Surprisingly, C/EBP{beta}{sup -/-} mice showed a major increase in liver mitochondrial electron chain function compared to WT mice. Furthermore, LXR activation in C/EBP{beta}{sup -/-} mice increased the expression of liver ATP-binding cassette transporter ABCG1, a gene implicated in cholesterol efflux and reducing blood levels of total and LDL-cholesterol. Together, these findings establish a central role for C/EBP{beta} in the LXR-mediated steatosis and mitochondrial function, without impairing the influence of LXR activation on lowering LDL and increasing HDL-cholesterol. Inactivation of C/EBP{beta} might therefore be an important therapeutic strategy to prevent LXR

  14. Adipose tissue hyperplasia with enhanced adipocyte-derived stem cell activity in Tc1(C8orf4)-deleted mice

    PubMed Central

    Jang, Hayoung; Kim, Minsung; Lee, Soyoung; Kim, Jungtae; Woo, Dong-Cheol; Kim, Kyung Won; Song, Kyuyoung; Lee, Inchul

    2016-01-01

    Adipose tissue hyperplasia with increased number of adipocytes is implicated in a protective rather than deleterious effect on obesity-associated metabolic disorder. It is poorly understood how the adipose tissue cellularity is regulated. Tc1 is a gene of vertebrates that regulates diverse downstream genes. Young Tc1-deleted mice fed on standard chow diet show expanded adipose tissue with smaller adipocytes in size compared to wild type controls, representing adipose tissue hyperplasia. Tc1−/− mice show enhanced glucose tolerance and reduced serum lipids. Adipocyte-derived stem cells (ADSCs) from Tc1−/− mice show enhanced proliferative and adipogenic capacity compared to wild type controls, suggesting that the adipose hyperplasia is regulated at the stem cell level. PPARγ and CEBPα are up-regulated robustly in Tc1−/− ADSCs upon induction for adipogenesis. Wisp2 and Dlk1, inhibitors of adipogenesis, are down-regulated in Tc1−/− ADSCs compared to controls. Tc1-transfected NIH3T3 cells show higher β-catenin reporter signals than vector transfected controls, suggesting a role of canonical Wnt signaling in the Tc1-dependent adipose regulation. Our data support that Tc1 is a novel regulator for adipose stem cells. Adipose tissue hyperplasia may be implicated in the metabolic regulation of Tc1−/− mice. PMID:27775060

  15. The Exonuclease Homolog OsRAD1 Promotes Accurate Meiotic Double-Strand Break Repair by Suppressing Nonhomologous End Joining1[OPEN

    PubMed Central

    Tang, Ding; Shen, Yi; Chen, Xiaojun; Ji, Jianhui; Du, Guijie; Li, Yafei; Cheng, Zhukuan

    2016-01-01

    During meiosis, programmed double-strand breaks (DSBs) are generated to initiate homologous recombination, which is crucial for faithful chromosome segregation. In yeast, Radiation sensitive1 (RAD1) acts together with Radiation sensitive9 (RAD9) and Hydroxyurea sensitive1 (HUS1) to facilitate meiotic recombination via cell-cycle checkpoint control. However, little is known about the meiotic functions of these proteins in higher eukaryotes. Here, we characterized a RAD1 homolog in rice (Oryza sativa) and obtained evidence that O. sativa RAD1 (OsRAD1) is important for meiotic DSB repair. Loss of OsRAD1 led to abnormal chromosome association and fragmentation upon completion of homologous pairing and synapsis. These aberrant chromosome associations were independent of OsDMC1. We found that classical nonhomologous end-joining mediated by Ku70 accounted for most of the ectopic associations in Osrad1. In addition, OsRAD1 interacts directly with OsHUS1 and OsRAD9, suggesting that these proteins act as a complex to promote DSB repair during rice meiosis. Together, these findings suggest that the 9-1-1 complex facilitates accurate meiotic recombination by suppressing nonhomologous end-joining during meiosis in rice. PMID:27512017

  16. Grb10 deletion enhances muscle cell proliferation, differentiation and GLUT4 plasma membrane translocation.

    PubMed

    Mokbel, Nancy; Hoffman, Nolan J; Girgis, Christian M; Small, Lewin; Turner, Nigel; Daly, Roger J; Cooney, Gregory J; Holt, Lowenna J

    2014-11-01

    Grb10 is an intracellular adaptor protein which binds directly to several growth factor receptors, including those for insulin and insulin-like growth factor receptor-1 (IGF-1), and negatively regulates their actions. Grb10-ablated (Grb10(-/-) ) mice exhibit improved whole body glucose homeostasis and an increase in muscle mass associated specifically with an increase in myofiber number. This suggests that Grb10 may act as a negative regulator of myogenesis. In this study, we investigated in vitro, the molecular mechanisms underlying the increase in muscle mass and the improved glucose metabolism. Primary muscle cells isolated from Grb10(-/-) mice exhibited increased rates of proliferation and differentiation compared to primary cells isolated from wild-type mice. The improved proliferation capacity was associated with an enhanced phosphorylation of Akt and ERK in the basal state and changes in the expression of key cell cycle progression markers involved in regulating transition of cells from the G1 to S phase (e.g., retinoblastoma (Rb) and p21). The absence of Grb10 also promoted a faster transition to a myogenin positive, differentiated state. Glucose uptake was higher in Grb10(-/-) primary myotubes in the basal state and was associated with enhanced insulin signaling and an increase in GLUT4 translocation to the plasma membrane. These data demonstrate an important role for Grb10 as a link between muscle growth and metabolism with therapeutic implications for diseases, such as muscle wasting and type 2 diabetes.

  17. Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance.

    PubMed

    Lee, Yeji; Nasution, Olviyani; Choi, Eunyong; Choi, In-Geol; Kim, Wankee; Choi, Wonja

    2015-08-01

    Acetic acid inhibits the metabolic activities of Saccharomyces cerevisiae. Therefore, a better understanding of how S. cerevisiae cells acquire the tolerance to acetic acid is of importance to develop robust yeast strains to be used in industry. To do this, we examined the transcriptional changes that occur at 12 h post-exposure to acetic acid, revealing that 56 and 58 genes were upregulated and downregulated, respectively. Functional categorization of them revealed that 22 protein synthesis genes and 14 stress response genes constituted the largest portion of the upregulated and downregulated genes, respectively. To evaluate the association of the regulated genes with acetic acid tolerance, 3 upregulated genes (DBP2, ASC1, and GND1) were selected among 34 non-protein synthesis genes, and 54 viable mutants individually deleted for the downregulated genes were retrieved from the non-essential haploid deletion library. Strains overexpressing ASC1 and GND1 displayed enhanced tolerance to acetic acid, whereas a strain overexpressing DBP2 was sensitive. Fifty of 54 deletion mutants displayed enhanced acetic acid tolerance. Three chosen deletion mutants (hsps82Δ, ato2Δ, and ssa3Δ) were also tolerant to benzoic acid but not propionic and sorbic acids. Moreover, all those five (two overexpressing and three deleted) strains were more efficient in proton efflux and lower in membrane permeability and internal hydrogen peroxide content than controls. Individually or in combination, those physiological changes are likely to contribute at least in part to enhanced acetic acid tolerance. Overall, information of our transcriptional profile was very useful to identify molecular factors associated with acetic acid tolerance.

  18. Targeted deletion of the ara operon of Salmonella typhimurium enhances L-arabinose accumulation and drives PBAD-promoted expression of anti-cancer toxins and imaging agents.

    PubMed

    Hong, Hyun; Lim, Daejin; Kim, Geun-Joong; Park, Seung-Hwan; Sik Kim, Hyeon; Hong, Yeongjin; Choy, Hyon E; Min, Jung-Joon

    2014-01-01

    Tumor-specific expression of antitumor drugs can be achieved using attenuated Salmonella typhimurium harboring the PBAD promoter, which is induced by L-arabinose. However, L-arabinose does not accumulate because it is metabolized to D-xylulose-5-P by enzymes encoded by the ara operon in Salmonellae. To address this problem, we developed an engineered strain of S. typhimurium in which the ara operon is deleted. Linear DNA transformation was performed using λ red recombinase to exchange the ara operon with linear DNA carrying an antibiotic-resistance gene with homology to regions adjacent to the ara operon. The ara operon-deleted strain and its parental strain were transformed with a plasmid encoding Renilla luciferase variant 8 (RLuc8) or cytolysin A (clyA) under the control of the PBAD promoter. Luciferase assays demonstrated that RLuc8 expression was 49-fold higher in the ara operon-deleted S. typhimurium than in the parental strain after the addition of L-arabinose. In vivo bioluminescence imaging showed that the tumor tissue targeted by the ara operon-deleted Salmonella had a stronger imaging signal (~30-fold) than that targeted by the parental strain. Mice with murine colon cancer (CT26) that had been injected with the ara operon-deleted S. typhimurium expressing clyA showed significant tumor suppression. The present report demonstrates that deletion of the ara operon of S. typhimurium enhances L-arabinose accumulation and thereby drives PBAD-promoted expression of cytotoxic agents and imaging agents. This is a promising approach for tumor therapy and imaging.

  19. The rad16 gene of Schizosaccharomyces pombe: a homolog of the RAD1 gene of Saccharomyces cerevisiae.

    PubMed Central

    Carr, A M; Schmidt, H; Kirchhoff, S; Muriel, W J; Sheldrick, K S; Griffiths, D J; Basmacioglu, C N; Subramani, S; Clegg, M; Nasim, A

    1994-01-01

    The rad10, rad16, rad20, and swi9 mutants of the fission yeast Schizosaccharomyces pombe, isolated by their radiation sensitivity or abnormal mating-type switching, have been shown previously to be allelic. We have cloned DNA correcting the UV sensitivity or mating-type switching phenotype of these mutants and shown that the correcting DNA is encompassed in a single open reading frame. The gene, which we will refer to as rad16, is approximately 3 kb in length, contains seven introns, and encodes a protein of 892 amino acids. It is not essential for viability of S. pombe. The predicted protein is the homolog of the Saccharomyces cerevisiae RAD1 protein, which is involved in an early step in excision-repair of UV damage from DNA. The approximately 30% sequence identity between the predicted proteins from the two yeasts is distributed throughout the protein. Two-hybrid experiments indicate a strong protein-protein interaction between the products of the rad16 and swi10 genes of S. pombe, which mirrors that reported for RAD1 and RAD10 in S. cerevisiae. We have identified the mutations in the four alleles of rad16. They mapped to the N-terminal (rad10), central (rad20), and C-terminal (rad16 and swi9) regions. The rad10 and rad20 mutations are in the splice donor sequences of introns 2 and 4, respectively. The plasmid correcting the UV sensitivity of the rad20 mutation was missing the sequence corresponding to the 335 N-terminal amino acids of the predicted protein. Neither smaller nor larger truncations were, however, able to correct its UV sensitivity. Images PMID:8114734

  20. Comparative studies on mammalian Hoxc8 early enhancer sequence reveal a baleen whale-specific deletion of a cis-acting element

    PubMed Central

    Shashikant, Cooduvalli S.; Kim, Chang B.; Borbély, Marc A.; Wang, Wayne C. H.; Ruddle, Frank H.

    1998-01-01

    Variations in regulatory regions of developmental control genes have been implicated in the divergence of axial morphologies. To find potentially significant changes in cis-regulatory regions, we compared nucleotide sequences and activities of mammalian Hoxc8 early enhancers. The nucleotide sequence of the early enhancer region is extremely conserved among mammalian clades, with five previously described cis-acting elements, A–E, being invariant. However, a 4-bp deletion within element C of the Hoxc8 early enhancer sequence is observed in baleen whales. When assayed in transgenic mouse embryos, a baleen whale enhancer (unlike other mammalian enhancers) directs expression of the reporter gene to more posterior regions of the neural tube but fails to direct expression to posterior mesoderm. We suggest that regulation of Hoxc8 in baleen whales differs from other mammalian species and may be associated with variation in axial morphology. PMID:9860988

  1. In Vivo Deletion of the Cebpa +37 kb Enhancer Markedly Reduces Cebpa mRNA in Myeloid Progenitors but Not in Non-Hematopoietic Tissues to Impair Granulopoiesis

    PubMed Central

    Guo, Hong; Cooper, Stacy; Friedman, Alan D.

    2016-01-01

    The murine Cebpa gene contains a +37 kb, evolutionarily conserved 440 bp enhancer that directs high-level expression to myeloid progenitors in transgenic mice. The enhancer is bound and activated by Runx1, Scl, GATA2, C/EBPα, c-Myb, Pu.1, and additional Ets factors in myeloid cells. CRISPR/Cas9-mediated replacement of the wild-type enhancer with a variant mutant in its seven Ets sites leads to 20-fold reduction of Cebpa mRNA in the 32Dcl3 myeloid cell line. To determine the effect of deleting the enhancer in vivo, we now characterize C57BL/6 mice in which loxP sites flank a 688 bp DNA segment containing the enhancer. CMV-Cre mediated germline deletion resulted in diminution of the expected number of viable Enh(f/f);CMV-Cre offspring, with 28-fold reduction in marrow Cebpa mRNA but normal levels in liver, lung, adipose, intestine, muscle, and kidney. Cre-transduction of lineage-negative marrow cells in vitro reduced Cebpa mRNA 12-fold, with impairment of granulocytic maturation, morphologic blast accumulation, and IL-3 dependent myeloid colony replating for >12 generations. Exposure of Enh(f/f);Mx1-Cre mice to pIpC led to 14-fold reduction of Cebpa mRNA in GMP or CMP, 30-fold reduction in LSK, and <2-fold reduction in the LSK/SLAM subset. FACS analysis of marrow from these mice revealed 10-fold reduced neutrophils, 3-fold decreased GMP, and 3-fold increased LSK cells. Progenitor cell cycle progression was mildly impaired. Granulocyte and B lymphoid colony forming units were reduced while monocytic and erythroid colonies were increased, with reduced Pu.1 and Gfi1 and increased Egr1 and Klf4 in GMP. Finally, competitive transplantation indicated preservation of functional long-term hematopoietic stem cells upon enhancer deletion and confirmed marrow-intrinsic impairment of granulopoiesis and B cell generation with LSK and monocyte lineage expansion. These findings demonstrate a critical role for the +37 kb Cebpa enhancer for hematopoietic-specific Cebpa expression

  2. Neuroendocrine phenotypes in a boy with 5q14 deletion syndrome implicate the regulatory roles of myocyte-specific enhancer factor 2C in the postnatal hypothalamus.

    PubMed

    Sakai, Yasunari; Ohkubo, Kazuhiro; Matsushita, Yuki; Akamine, Satoshi; Ishizaki, Yoshito; Torisu, Hiroyuki; Ihara, Kenji; Sanefuji, Masafumi; Kim, Min-Seon; Lee, Ki-Up; Shaw, Chad A; Lim, Janghoo; Nakabeppu, Yusaku; Hara, Toshiro

    2013-09-01

    The 5q14.3 deletion syndrome is a rare chromosomal disorder characterized by moderate to severe intellectual disability, seizures and dysmorphic features. We report a 14-year-old boy with 5q14.3 deletion syndrome who carried a heterozygous deletion of the myocyte-specific enhancer factor 2c (MEF2C) gene. In addition to the typical neurodevelopmental features of 5q14.3 deletion syndrome, he showed recurrent hypoglycemia, appetite loss and hypothermia. Hormonal loading tests using insulin, arginine and growth hormone-releasing factor revealed that growth hormone was insufficiently released into serum in response to these stimuli, thus disclosing the hypothalamic dysfunction in the present case. To uncover the biological roles of MEF2C in the hypothalamus, we studied its expression in the postnatal mouse brain. Notably, neuropeptide Y (NPY)-positive interneurons in the hypothalamic arcuate nuclei highly expressed MEF2C. In contrast, the Rett syndrome-associated protein, Methyl-CpG binding Protein 2 (MECP2) was barely expressed in these neurons. MEF2C knockdown or overexpression experiments using Neuro2a cells revealed that MEF2C activated the endogenous transcription of NPY. Conversely, siRNA-mediated knockdown of MECP2 led to derepression of the Npy gene. These data support the concept that MEF2C and MECP2 share common molecular pathways regulating the homeostatic expression of NPY in the adult hypothalamus. We propose that individuals with 5q14.3 deletion syndrome may exhibit neuroendocrine phenotypes through the functional loss of MEF2C in the postnatal hypothalamus.

  3. Deletion of Glutamate Delta-1 Receptor in Mouse Leads to Enhanced Working Memory and Deficit in Fear Conditioning

    PubMed Central

    Yadav, Roopali; Hillman, Brandon G.; Gupta, Subhash C.; Suryavanshi, Pratyush; Bhatt, Jay M.; Pavuluri, Ratnamala; Stairs, Dustin J.; Dravid, Shashank M.

    2013-01-01

    Glutamate delta-1 (GluD1) receptors are expressed throughout the forebrain during development with high levels in the hippocampus during adulthood. We have recently shown that deletion of GluD1 receptor results in aberrant emotional and social behaviors such as hyperaggression and depression-like behaviors and social interaction deficits. Additionally, abnormal expression of synaptic proteins was observed in amygdala and prefrontal cortex of GluD1 knockout mice (GluD1 KO). However the role of GluD1 in learning and memory paradigms remains unknown. In the present study we evaluated GluD1 KO in learning and memory tests. In the eight-arm radial maze GluD1 KO mice committed fewer working memory errors compared to wildtype mice but had normal reference memory. Enhanced working memory in GluD1 KO was also evident by greater percent alternation in the spontaneous Y-maze test. No difference was observed in object recognition memory in the GluD1 KO mice. In the Morris water maze test GluD1 KO mice showed no difference in acquisition but had longer latency to find the platform in the reversal learning task. GluD1 KO mice showed a deficit in contextual and cue fear conditioning but had normal latent inhibition. The deficit in contextual fear conditioning was reversed by D-Cycloserine (DCS) treatment. GluD1 KO mice were also found to be more sensitive to foot-shock compared to wildtype. We further studied molecular changes in the hippocampus, where we found lower levels of GluA1, GluA2 and GluK2 subunits while a contrasting higher level of GluN2B in GluD1 KO. Additionally, we found higher postsynaptic density protein 95 (PSD95) and lower glutamate decarboxylase 67 (GAD67) expression in GluD1 KO. We propose that GluD1 is crucial for normal functioning of synapses and absence of GluD1 leads to specific abnormalities in learning and memory. These findings provide novel insights into the role of GluD1 receptors in the central nervous system. PMID:23560106

  4. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells | Office of Cancer Genomics

    Cancer.gov

    The discovery of cancer dependencies has the potential to inform therapeutic strategies and to identify putative drug targets. Integrating data from comprehensive genomic profiling of cancer cell lines and from functional characterization of cancer cell dependencies, we discovered that loss of the enzyme methylthioadenosine phosphorylase (MTAP) confers a selective dependence on protein arginine methyltransferase 5 (PRMT5) and its binding partner WDR77. MTAP is frequently lost due to its proximity to the commonly deleted tumor suppressor gene, CDKN2A.

  5. Genetic Deletion of the Transcriptional Repressor NFIL3 Enhances Axon Growth In Vitro but Not Axonal Repair In Vivo

    PubMed Central

    van der Kallen, Loek R.; Eggers, Ruben; Ehlert, Erich M.; Verhaagen, Joost; Smit, August B.; van Kesteren, Ronald E.

    2015-01-01

    Axonal regeneration after injury requires the coordinated expression of genes in injured neurons. We previously showed that either reducing expression or blocking function of the transcriptional repressor NFIL3 activates transcription of regeneration-associated genes Arg1 and Gap43 and strongly promotes axon outgrowth in vitro. Here we tested whether genetic deletion or dominant-negative inhibition of NFIL3 could promote axon regeneration and functional recovery after peripheral nerve lesion in vivo. Contrary to our expectations, we observed no changes in the expression of regeneration-associated genes and a significant delay in functional recovery following genetic deletion of Nfil3. When NFIL3 function was inhibited specifically in dorsal root ganglia prior to sciatic nerve injury, we observed a decrease in regenerative axon growth into the distal nerve segment rather than an increase. Finally, we show that deletion of Nfil3 changes sciatic nerve lesion-induced expression in dorsal root ganglia of genes that are not typically involved in regeneration, including several olfactory receptors and developmental transcription factors. Together our findings show that removal of NFIL3 in vivo does not recapitulate the regeneration-promoting effects that were previously observed in vitro, indicating that in vivo transcriptional control of regeneration is probably more complex and more robust against perturbation than in vitro data may suggest. PMID:25993115

  6. Genetic Deletion of the Transcriptional Repressor NFIL3 Enhances Axon Growth In Vitro but Not Axonal Repair In Vivo.

    PubMed

    van der Kallen, Loek R; Eggers, Ruben; Ehlert, Erich M; Verhaagen, Joost; Smit, August B; van Kesteren, Ronald E

    2015-01-01

    Axonal regeneration after injury requires the coordinated expression of genes in injured neurons. We previously showed that either reducing expression or blocking function of the transcriptional repressor NFIL3 activates transcription of regeneration-associated genes Arg1 and Gap43 and strongly promotes axon outgrowth in vitro. Here we tested whether genetic deletion or dominant-negative inhibition of NFIL3 could promote axon regeneration and functional recovery after peripheral nerve lesion in vivo. Contrary to our expectations, we observed no changes in the expression of regeneration-associated genes and a significant delay in functional recovery following genetic deletion of Nfil3. When NFIL3 function was inhibited specifically in dorsal root ganglia prior to sciatic nerve injury, we observed a decrease in regenerative axon growth into the distal nerve segment rather than an increase. Finally, we show that deletion of Nfil3 changes sciatic nerve lesion-induced expression in dorsal root ganglia of genes that are not typically involved in regeneration, including several olfactory receptors and developmental transcription factors. Together our findings show that removal of NFIL3 in vivo does not recapitulate the regeneration-promoting effects that were previously observed in vitro, indicating that in vivo transcriptional control of regeneration is probably more complex and more robust against perturbation than in vitro data may suggest.

  7. Deletion of the Saccharomyces cerevisiae ARO8 gene, encoding an aromatic amino acid transaminase, enhances phenylethanol production from glucose.

    PubMed

    Romagnoli, Gabriele; Knijnenburg, Theo A; Liti, Gianni; Louis, Edward J; Pronk, Jack T; Daran, Jean-Marc

    2015-01-01

    Phenylethanol has a characteristic rose-like aroma that makes it a popular ingredient in foods, beverages and cosmetics. Microbial production of phenylethanol currently relies on whole-cell bioconversion of phenylalanine with yeasts that harbour an Ehrlich pathway for phenylalanine catabolism. Complete biosynthesis of phenylethanol from a cheap carbon source, such as glucose, provides an economically attractive alternative for phenylalanine bioconversion. In this study, synthetic genetic array (SGA) screening was applied to identify genes involved in regulation of phenylethanol synthesis in Saccharomyces cerevisiae. The screen focused on transcriptional regulation of ARO10, which encodes the major decarboxylase involved in conversion of phenylpyruvate to phenylethanol. A deletion in ARO8, which encodes an aromatic amino acid transaminase, was found to underlie the transcriptional upregulation of ARO10 during growth, with ammonium sulphate as the sole nitrogen source. Physiological characterization revealed that the aro8Δ mutation led to substantial changes in the absolute and relative intracellular concentrations of amino acids. Moreover, deletion of ARO8 led to de novo production of phenylethanol during growth on a glucose synthetic medium with ammonium as the sole nitrogen source. The aro8Δ mutation also stimulated phenylethanol production when combined with other, previously documented, mutations that deregulate aromatic amino acid biosynthesis in S. cerevisiae. The resulting engineered S. cerevisiae strain produced >3 mm phenylethanol from glucose during growth on a simple synthetic medium. The strong impact of a transaminase deletion on intracellular amino acid concentrations opens new possibilities for yeast-based production of amino acid-derived products.

  8. Deletion modification enhances anthrax specific immunity and protective efficacy of a hepatitis B core particle-based anthrax epitope vaccine.

    PubMed

    Yin, Ying; Zhang, Sheng; Cai, Chenguang; Zhang, Jun; Dong, Dayong; Guo, Qiang; Fu, Ling; Xu, Junjie; Chen, Wei

    2014-02-01

    Protective antigen (PA) is one of the major virulence factors of anthrax and is also the major constituent of the current anthrax vaccine. Previously, we found that the 2β2-2β3 loop of PA contains a dominant neutralizing epitope, the SFFD. We successfully inserted the 2β2-2β3 loop of PA into the major immunodominant region (MIR) of hepatitis B virus core (HBc) protein. The resulting fusion protein, termed HBc-N144-PA-loop2 (HBcL2), can effectively produce anthrax specific protective antibodies in an animal model. However, the protective immunity caused by HBcL2 could still be improved. In this research, we removed amino acids 79-81 from the HBc MIR of the HBcL2. This region was previously reported to be the major B cell epitope of HBc, and in keeping with this finding, we observed that the short deletion in the MIR not only diminished the intrinsic immunogenicity of HBc but also stimulated a higher titer of anthrax specific immunity. Most importantly, this deletion led to the full protection of the immunized mice against a lethal dose anthrax toxin challenge. We supposed that the conformational changes which occurred after the short deletion and foreign insertion in the MIR of HBc were the most likely reasons for the improvement in the immunogenicity of the HBc-based anthrax epitope vaccine.

  9. Deletion modification enhances anthrax specific immunity and protective efficacy of a hepatitis B core particle-based anthrax epitope vaccine.

    PubMed

    Yin, Ying; Zhang, Sheng; Cai, Chenguang; Zhang, Jun; Dong, Dayong; Guo, Qiang; Fu, Ling; Xu, Junjie; Chen, Wei

    2014-02-01

    Protective antigen (PA) is one of the major virulence factors of anthrax and is also the major constituent of the current anthrax vaccine. Previously, we found that the 2β2-2β3 loop of PA contains a dominant neutralizing epitope, the SFFD. We successfully inserted the 2β2-2β3 loop of PA into the major immunodominant region (MIR) of hepatitis B virus core (HBc) protein. The resulting fusion protein, termed HBc-N144-PA-loop2 (HBcL2), can effectively produce anthrax specific protective antibodies in an animal model. However, the protective immunity caused by HBcL2 could still be improved. In this research, we removed amino acids 79-81 from the HBc MIR of the HBcL2. This region was previously reported to be the major B cell epitope of HBc, and in keeping with this finding, we observed that the short deletion in the MIR not only diminished the intrinsic immunogenicity of HBc but also stimulated a higher titer of anthrax specific immunity. Most importantly, this deletion led to the full protection of the immunized mice against a lethal dose anthrax toxin challenge. We supposed that the conformational changes which occurred after the short deletion and foreign insertion in the MIR of HBc were the most likely reasons for the improvement in the immunogenicity of the HBc-based anthrax epitope vaccine. PMID:24054942

  10. Heterozygous deletion of ATG5 in Apc(Min/+) mice promotes intestinal adenoma growth and enhances the antitumor efficacy of interferon-gamma.

    PubMed

    Wang, Lu; Wang, Yan; Lu, Yuyin; Zhang, Qianyun; Qu, Xianjun

    2015-01-01

    Autophagy related gene 5 (ATG5) was lost in 23% of the patients with colorectal cancer (CRC) and the role of loss of ATG5 in the pathogenesis of CRC remains unclear. Knockdown of ATG5 in cancer cells enhances the antitumor efficacy of lots of chemotherapeutic agents. However, there is still no animal model to validate these in vitro observations in vivo. In this study, we found that heterozygous deletion of ATG5 in Apc(Min/+) mice increased the number and size of adenomas as compared with those in Apc(Min/+)ATG5(+/+) mice. To investigate whether ATG5 deficiency could sensitize tumors to chemotherapies, we compared the antitumor effects of Interferon-gamma (IFN-γ) between Apc(Min/+)ATG5(+/+) and Apc(Min/+)ATG5(+/-) mice, as IFN-γ is a potential tumor suppressor for CRC and has been used clinically as an efficient adjuvant to chemotherapy of cancer. We revealed that heterozygous deletion of ATG5 significantly enhanced the antitumor efficacy of IFN-γ. Early treatment of Apc(Min/+)ATG5(+/-) mice with IFN-γ decreased tumor incidence rate to 16.7% and reduced the number of adenomas by 95.5% and late treatment led to regression of tumor. Moreover, IFN-γ treatment did not cause any evident toxic reaction. Mechanistic analysis revealed that heterozygous deletion of ATG5 activated EGFR/ERK1/2 and Wnt/β-catenin pathways in adenomas of Apc(Min/+) mice and enhanced the effects of IFN-γ-dependent inhibition of these 2 pathways. Our results demonstrate that ATG5 plays important roles in intestinal tumor growth and combination of IFN-γ and ATG5 deficiency or ATG5-targeted inhibition is a promising strategy for prevention and treatment of CRC. PMID:25695667

  11. CodY Deletion Enhances In Vivo Virulence of Community-Associated Methicillin-Resistant Staphylococcus aureus Clone USA300

    PubMed Central

    Boyle-Vavra, Susan; Roux, Agnès; Ebine, Kazumi; Sonenshein, Abraham L.; Daum, Robert S.

    2012-01-01

    The Staphylococcus aureus global regulator CodY responds to nutrient availability by controlling the expression of target genes. In vitro, CodY represses the transcription of virulence genes, but it is not known if CodY also represses virulence in vivo. The dominant community-associated methicillin-resistant S. aureus (CA-MRSA) clone, USA300, is hypervirulent and has increased transcription of global regulators and virulence genes; these features are reminiscent of a strain defective in CodY. Sequence analysis revealed, however, that the codY genes of USA300 and other sequenced S. aureus isolates are not significantly different from the codY genes in strains known to have active CodY. codY was expressed in USA300, as well as in other pulsotypes assessed. Deletion of codY from a USA300 clinical isolate resulted in modestly increased expression of the global regulators agr and saeRS, as well as the gene encoding the toxin alpha-hemolysin (hla). A substantial increase (>30-fold) in expression of the lukF-PV gene, encoding part of the Panton-Valentine leukocidin (PVL), was observed in the codY mutant. All of these expression differences were reversed by complementation with a functional codY gene. Moreover, purified CodY protein bound upstream of the lukSF-PV operon, indicating that CodY directly represses expression of lukSF-PV. Deletion of codY increased the virulence of USA300 in necrotizing pneumonia and skin infection. Interestingly, deletion of lukSF-PV from the codY mutant did not attenuate virulence, indicating that the hypervirulence of the codY mutant was not explained by overexpression of PVL. These results demonstrate that CodY is active in USA300 and that CodY-mediated repression restrains the virulence of USA300. PMID:22526672

  12. A large genomic deletion leads to enhancer adoption by the lamin B1 gene: a second path to autosomal dominant adult-onset demyelinating leukodystrophy (ADLD)

    SciTech Connect

    Giorgio, E.; Robyr, D.; Spielmann, M.; Ferrero, E.; Di Gregorio, E.; Imperiale, D.; Vaula, G.; Stamoulis, G.; Santoni, F.; Atzori, C.; Gasparini, L.; Ferrera, D.; Canale, C.; Guipponi, M.; Pennacchio, L. A.; Antonarakis, S. E.; Brussino, A.; Brusco, A.

    2015-02-20

    Chromosomal rearrangements with duplication of the lamin B1 (LMNB1) gene underlie autosomal dominant adult-onset demyelinating leukodystrophy (ADLD), a rare neurological disorder in which overexpression of LMNB1 causes progressive central nervous system demyelination. However, we previously reported an ADLD family (ADLD-1-TO) without evidence of duplication or other mutation in LMNB1 despite linkage to the LMNB1 locus and lamin B1 overexpression. By custom array-CGH, we further investigated this family and report here that patients carry a large (~660 kb) heterozygous deletion that begins 66 kb upstream of the LMNB1 promoter. Lamin B1 overexpression was confirmed in further ADLD-1-TO tissues and in a postmortem brain sample, where lamin B1 was increased in the frontal lobe. Through parallel studies, we investigated both loss of genetic material and chromosomal rearrangement as possible causes of LMNB1 overexpression, and found that ADLD-1-TO plausibly results from an enhancer adoption mechanism. The deletion eliminates a genome topological domain boundary, allowing normally forbidden interactions between at least three forebrain-directed enhancers and the LMNB1 promoter, in line with the observed mainly cerebral localization of lamin B1 overexpression and myelin degeneration. Finally, this second route to LMNB1 overexpression and ADLD is a new example of the relevance of regulatory landscape modifications in determining Mendelian phenotypes.

  13. A large genomic deletion leads to enhancer adoption by the lamin B1 gene: a second path to autosomal dominant adult-onset demyelinating leukodystrophy (ADLD)

    DOE PAGES

    Giorgio, E.; Robyr, D.; Spielmann, M.; Ferrero, E.; Di Gregorio, E.; Imperiale, D.; Vaula, G.; Stamoulis, G.; Santoni, F.; Atzori, C.; et al

    2015-02-20

    Chromosomal rearrangements with duplication of the lamin B1 (LMNB1) gene underlie autosomal dominant adult-onset demyelinating leukodystrophy (ADLD), a rare neurological disorder in which overexpression of LMNB1 causes progressive central nervous system demyelination. However, we previously reported an ADLD family (ADLD-1-TO) without evidence of duplication or other mutation in LMNB1 despite linkage to the LMNB1 locus and lamin B1 overexpression. By custom array-CGH, we further investigated this family and report here that patients carry a large (~660 kb) heterozygous deletion that begins 66 kb upstream of the LMNB1 promoter. Lamin B1 overexpression was confirmed in further ADLD-1-TO tissues and in amore » postmortem brain sample, where lamin B1 was increased in the frontal lobe. Through parallel studies, we investigated both loss of genetic material and chromosomal rearrangement as possible causes of LMNB1 overexpression, and found that ADLD-1-TO plausibly results from an enhancer adoption mechanism. The deletion eliminates a genome topological domain boundary, allowing normally forbidden interactions between at least three forebrain-directed enhancers and the LMNB1 promoter, in line with the observed mainly cerebral localization of lamin B1 overexpression and myelin degeneration. Finally, this second route to LMNB1 overexpression and ADLD is a new example of the relevance of regulatory landscape modifications in determining Mendelian phenotypes.« less

  14. A large genomic deletion leads to enhancer adoption by the lamin B1 gene: a second path to autosomal dominant adult-onset demyelinating leukodystrophy (ADLD)

    PubMed Central

    Giorgio, Elisa; Robyr, Daniel; Spielmann, Malte; Ferrero, Enza; Di Gregorio, Eleonora; Imperiale, Daniele; Vaula, Giovanna; Stamoulis, Georgios; Santoni, Federico; Atzori, Cristiana; Gasparini, Laura; Ferrera, Denise; Canale, Claudio; Guipponi, Michel; Pennacchio, Len A.; Antonarakis, Stylianos E.; Brussino, Alessandro; Brusco, Alfredo

    2015-01-01

    Chromosomal rearrangements with duplication of the lamin B1 (LMNB1) gene underlie autosomal dominant adult-onset demyelinating leukodystrophy (ADLD), a rare neurological disorder in which overexpression of LMNB1 causes progressive central nervous system demyelination. However, we previously reported an ADLD family (ADLD-1-TO) without evidence of duplication or other mutation in LMNB1 despite linkage to the LMNB1 locus and lamin B1 overexpression. By custom array-CGH, we further investigated this family and report here that patients carry a large (∼660 kb) heterozygous deletion that begins 66 kb upstream of the LMNB1 promoter. Lamin B1 overexpression was confirmed in further ADLD-1-TO tissues and in a postmortem brain sample, where lamin B1 was increased in the frontal lobe. Through parallel studies, we investigated both loss of genetic material and chromosomal rearrangement as possible causes of LMNB1 overexpression, and found that ADLD-1-TO plausibly results from an enhancer adoption mechanism. The deletion eliminates a genome topological domain boundary, allowing normally forbidden interactions between at least three forebrain-directed enhancers and the LMNB1 promoter, in line with the observed mainly cerebral localization of lamin B1 overexpression and myelin degeneration. This second route to LMNB1 overexpression and ADLD is a new example of the relevance of regulatory landscape modifications in determining Mendelian phenotypes. PMID:25701871

  15. Promoter/leader deletion analysis and plant expression vectors with the figwort mosaic virus (FMV) full length transcript (FLt) promoter containing single or double enhancer domains.

    PubMed

    Maiti, I B; Gowda, S; Kiernan, J; Ghosh, S K; Shepherd, R J

    1997-03-01

    The boundaries required for maximal expression from the promoter/leader region of the full length transcript of figwort mosaic virus (FLt promoter) coupled to reporter genes were defined by 5' and 3' deletion analyses. In transient expression assays using protoplasts of Nicotiana edwardsonii, a 314 bp FLt promoter fragment sequence (-249 to +65 from the transcription start site) was sufficient for strong expression activity. Plant expression vectors developed with modified FLt promoters were tested with GUS or CAT as reporter genes in transgenic plants. The FLt promoter is a strong constitutive promoter, with strength comparable to or greater than that of the CaMV 35S promoter. The FLt promoter with its double enhancer domain linked to GUS or CAT reporter genes provides an average 4-fold greater activity than the FLt promoter with a single enhancer domain (-55 to -249 bp upstream fragment) in tests with transgenic plants and in protoplast transient expression assays.

  16. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae.

    PubMed

    Ivanov, E L; Haber, J E

    1995-04-01

    HO endonuclease-induced double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae can be repaired by the process of gap repair or, alternatively, by single-strand annealing if the site of the break is flanked by directly repeated homologous sequences. We have shown previously (J. Fishman-Lobell and J. E. Haber, Science 258:480-484, 1992) that during the repair of an HO-induced DSB, the excision repair gene RAD1 is needed to remove regions of nonhomology from the DSB ends. In this report, we present evidence that among nine genes involved in nucleotide excision repair, only RAD1 and RAD10 are required for removal of nonhomologous sequences from the DSB ends. rad1 delta and rad10 delta mutants displayed a 20-fold reduction in the ability to execute both gap repair and single-strand annealing pathways of HO-induced recombination. Mutations in RAD2, RAD3, and RAD14 reduced HO-induced recombination by about twofold. We also show that RAD7 and RAD16, which are required to remove UV photodamage from the silent HML, locus, are not required for MAT switching with HML or HMR as a donor. Our results provide a molecular basis for understanding the role of yeast nucleotide excision repair gene and their human homologs in DSB-induced recombination and repair.

  17. HBV polymerase overexpression due to large core gene deletion enhances hepatoma cell growth by binding inhibition of microRNA-100.

    PubMed

    Huang, Ya-Hui; Tseng, Ying-Hsin; Lin, Wey-Ran; Hung, George; Chen, Tse-Ching; Wang, Tong-Hong; Lee, Wei-Chen; Yeh, Chau-Ting

    2016-02-23

    Different types of hepatitis B virus (HBV) core gene deletion mutants were identified in chronic hepatitis B patients. However, their clinical roles in different stages of natural chronic HBV infection remained unclear. To address this issue, HBV core genes were sequenced in three gender- and age-matched patient groups diagnosed as chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC), respectively. Functional analysis of the identified mutants was performed. A novel type of large-fragment core gene deletion (LFCD) was identified exclusively in HCC patients and significantly associated with unfavorable postoperative survival. The presence of LFCDs resulted in generation of precore-polymerase fusion protein or brought the polymerase reading frame under direct control of HBV precore/core promoter, leading to its over-expression. Enhanced cell proliferation and increased tumorigenicity in nude mice were found in hepatoma cells expressing LFCDs. Because of the epsilon-binding ability of HBV polymerase, we hypothesized that the over-expressed polymerase carrying aberrant amino-terminal sequence could bind to cellular microRNAs. Screening of a panel of microRNAs revealed physical association of a precore-polymerase fusion protein with microRNA-100. A binding inhibition effect on microRNA-100 by the precore-polymerase fusion protein with up-regulation of its target, polo-like kinase 1 (PLK1), was discovered. The binding inhibition and growth promoting effects could be reversed by overexpressing microRNA-100. Together, HCC patients carrying hepatitis B large-fragment core gene deletion mutants had an unfavorable postoperative prognosis. The growth promoting effect was partly due to polymerase overexpression, leading to binding inhibition of microRNA-100 and up-regulation of PLK1. PMID:26824500

  18. Enhanced freeze tolerance of baker's yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough.

    PubMed

    Tan, Haigang; Dong, Jian; Wang, Guanglu; Xu, Haiyan; Zhang, Cuiying; Xiao, Dongguang

    2014-08-01

    Several recombinant strains with overexpressed trehalose-6-phosphate synthase gene (TPS1) and/or deleted trehalase genes were obtained to elucidate the relationships between TPS1, trehalase genes, content of intracellular trehalose and freeze tolerance of baker's yeast, as well as improve the fermentation properties of lean dough after freezing. In this study, strain TL301(TPS1) overexpressing TPS1 showed 62.92 % higher trehalose-6-phosphate synthase (Tps1) activity and enhanced the content of intracellular trehalose than the parental strain. Deleting ATH1 exerted a significant effect on trehalase activities and the degradation amount of intracellular trehalose during the first 30 min of prefermentation. This finding indicates that acid trehalase (Ath1) plays a role in intracellular trehalose degradation. NTH2 encodes a functional neutral trehalase (Nth2) that was significantly involved in intracellular trehalose degradation in the absence of the NTH1 and/or ATH1 gene. The survival ratio, freeze-tolerance ratio and relative fermentation ability of strain TL301(TPS1) were approximately twice as high as those of the parental strain (BY6-9α). The increase in freeze tolerance of strain TL301(TPS1) was accompanied by relatively low trehalase activity, high Tps1 activity and high residual content of intracellular trehalose. Our results suggest that overexpressing TPS1 and deleting trehalase genes are sufficient to improve the freeze tolerance of baker's yeast in frozen dough. The present study provides guidance for the commercial baking industry as well as the research on the intracellular trehalose mobilization and freeze tolerance of baker's yeast. PMID:24951963

  19. Directing enhancer-traps and iTol2 end-sequences to deleted BAC ends with loxP- and lox511-Tn10 transposons.

    PubMed

    Chatterjee, Pradeep K

    2015-01-01

    A step-by-step detailed procedure is presented to progressively truncate genomic DNA inserts from either end in BACs. The bacterial transposon Tn10 carrying a loxP or a lox511 site is inserted at random into BAC DNA inside the bacterial cell. The cells are then infected with bacteriophage P1. The Cre protein expressed by phage P1 generates end-deletions by specifically recombining the inserted loxP (or lox511) with the loxP (or lox511) endogenous to and flanking insert DNA in BACs from the respective end. The Cre protein also helps phage P1 transduce the BAC DNA by packaging it in P1 heads. This packaging by P1 not only recovers the rare BAC clones containing Tn10 insertions efficiently but also selects end-truncated BACs from those containing inversions of portions of their DNA caused by transposition of Tn10 in the opposite orientation. The libraries of end-deleted BACs generated by this procedure are suitable for numerous mapping studies. Because DNA in front of the loxP (or lox511) arrowheads in the Tn10 transposon is retained at the newly created BAC end, exogenous DNA cassettes such as enhancer-traps and iTol2 ends can be efficiently introduced into BAC ends for germline expression in zebrafish or mice. The methodology should facilitate functional mapping studies of long-range cis-acting gene regulatory sequences in these organisms. PMID:25239743

  20. Deletion of Galectin-3 Enhances Xenobiotic Induced Murine Primary Biliary Cholangitis by Facilitating Apoptosis of BECs and Release of Autoantigens.

    PubMed

    Arsenijevic, Aleksandar; Milovanovic, Marija; Milovanovic, Jelena; Stojanovic, Bojana; Zdravkovic, Natasa; Leung, Patrick S C; Liu, Fu-Tong; Gershwin, M Eric; Lukic, Miodrag L

    2016-01-01

    Galectin-3 (Gal-3) is a carbohydrate binding lectin, with multiple roles in inflammatory diseases and autoimmunity including its antiapoptotic effect on epithelial cells. In particular, increased expression of Gal-3 in epithelial cells is protective from apoptosis. Based on the thesis that apoptosis of biliary epithelial cells (BECs) is critical to the pathogenesis of Primary Biliary Cholangitis (PBC), we have analyzed the role of Gal-3 in the murine model of autoimmune cholangitis. We took advantage of Gal-3 knockout mice and immunized them with a mimotope of the major mitochondrial autoantigen of PBC, 2-octynoic acid (2-OA) coupled to BSA (2OA-BSA) and evaluated the natural history of subsequent disease, compared to control wild-type mice, by measuring levels of antibodies to PDC-E2, immunohistology of liver, and expression of Gal-3. We report herein that deletion of Gal-3 significantly exacerbates autoimmune cholangitis in these mice. This is manifested by increased periportal infiltrations, bile duct damage, granulomas and fibrosis. Interestingly, the BECs of Gal-3 knockout mice had a higher response to apoptotic stimuli and there were more pro-inflammatory lymphocytes and dendritic cells (DCs) in the livers of Gal-3 knockout mice. In conclusion, Gal-3 plays a protective role in the pathways that lead to the inflammatory destruction of biliary epithelial cells. PMID:26996208

  1. Oncolytic Adenoviral Mutants with E1B19K Gene Deletions Enhance Gemcitabine-induced Apoptosis in Pancreatic Carcinoma Cells and Anti-Tumor Efficacy In vivo

    PubMed Central

    Leitner, Stephan; Sweeney, Katrina; Öberg, Daniel; Davies, Derek; Miranda, Enrique; Lemoine, Nick R.; Halldén, Gunnel

    2010-01-01

    Purpose Pancreatic adenocarcinoma is a rapidly progressive malignancy that is highly resistant to current chemotherapeutic modalities and almost uniformly fatal.We show that a novel targeting strategy combining oncolytic adenoviral mutants with the standard cytotoxic treatment, gemcitabine, can markedly improve the anticancer potency. Experimental Design Adenoviral mutants with the E1B19K gene deleted with and without E3B gene expression (AdΔE1B19K and dl337 mutants, respectively) were assessed for synergistic interactions in combination with gemcitabine. Cell viability, mechanism of cell death, and antitumor efficacy in vivo were determined in the pancreatic carcinoma cells PT45 and Suit2, normal human bronchial epithelial cells, and in PT45 xenografts. Results The ΔE1B19K-deleted mutants synergized with gemcitabine to selectively kill cultured pancreatic cancer cells and xenografts in vivo with no effect in normal cells. The corresponding wild-type virus (Ad5) stimulated drug-induced cell killing to a lesser degree. Gemcitabine blocked replication of all viruses despite the enhanced cell killing activity due to gemcitabine-induced delay in G1/S-cell cycle progression, with repression of cyclin E and cdc25A, which was not abrogated by viral E1A-expression. Synergistic cell death occurred through enhancement of gemcitabine-induced apoptosis in the presence of both AdΔE1B19K and dl337 mutants, shown by increased cell membrane fragmentation, caspase-3 activation, and mitochondrial dysfunction. Conclusions Our data suggest that oncolytic mutants lacking the antiapoptotic E1B19K gene can improve efficacy of DNA-damaging drugs such as gemcitabine through convergence on cellular apoptosis pathways.These findings imply that less toxic doses than currently practicedin the clinic could efficiently target pancreatic adenocarcinomas when combined with adenoviral mutants. PMID:19223497

  2. Targeted deletion of tumor suppressor PTEN augments neutrophil function and enhances host defense in neutropenia-associated pneumonia

    PubMed Central

    Li, Yitang; Jia, Yonghui; Pichavant, Muriel; Loison, Fabien; Sarraj, Bara; Kasorn, Anongnard; You, Jian; Robson, Bryanne E.; Umetsu, Dale T.; Mizgerd, Joseph P.; Ye, Keqiang

    2009-01-01

    Neutropenia and related infections are the most important dose-limiting toxicities in anticancer chemotherapy and radiotherapy. In this study, we explored a new strategy for augmenting host defense in neutropenia-related pneumonia. Phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) signaling in neutrophils was elevated by depleting PTEN, a phosphatidylinositol 3′-phosphatase that hydrolyzes PtdIns(3,4,5)P3. In myeloid-specific PTEN knockout mice, significantly more neutrophils were recruited to the inflamed lungs during neutropenia-associated pneumonia. Using an adoptive transfer technique, we demonstrated that this enhancement could be caused directly by PTEN depletion in neutrophils. In addition, disruption of PTEN increased the recruitment of macrophages and elevated proinflammatory cytokines/chemokine levels in the inflamed lungs, which could also be responsible for the enhanced neutrophil recruitment. Depleting PTEN also significantly delayed apoptosis and enhanced the bacteria-killing capability of the recruited neutrophils. Finally, we provide direct evidence that enhancement of neutrophil function by elevating PtdIns(3,4,5)P3 signaling can alleviate pneumonia-associated lung damage and decrease pneumonia-elicited mortality. Collectively, these results not only provide insight into the mechanism of action of PTEN and PtdIns(3,4,5)P3 signaling pathway in modulating neutrophil function during lung infection and inflammation, but they also establish PTEN and related pathways as potential therapeutic targets for treating neutropenia-associated pneumonia. PMID:19286998

  3. Deletion of Parasite Immune Modulatory Sequences Combined with Immune Activating Signals Enhances Vaccine Mediated Protection against Filarial Nematodes

    PubMed Central

    Babayan, Simon A.; Luo, HongLin; Gray, Nick; Taylor, David W.; Allen, Judith E.

    2012-01-01

    Background Filarial nematodes are tissue-dwelling parasites that can be killed by Th2-driven immune effectors, but that have evolved to withstand immune attack and establish chronic infections by suppressing host immunity. As a consequence, the efficacy of a vaccine against filariasis may depend on its capacity to counter parasite-driven immunomodulation. Methodology and Principal Findings We immunised mice with DNA plasmids expressing functionally-inactivated forms of two immunomodulatory molecules expressed by the filarial parasite Litomosoides sigmodontis: the abundant larval transcript-1 (LsALT) and cysteine protease inhibitor-2 (LsCPI). The mutant proteins enhanced antibody and cytokine responses to live parasite challenge, and led to more leukocyte recruitment to the site of infection than their native forms. The immune response was further enhanced when the antigens were targeted to dendritic cells using a single chain Fv-αDEC205 antibody and co-administered with plasmids that enhance T helper 2 immunity (IL-4) and antigen-presenting cell recruitment (Flt3L, MIP-1α). Mice immunised simultaneously against the mutated forms of LsALT and LsCPI eliminated adult parasites faster and consistently reduced peripheral microfilaraemia. A multifactorial analysis of the immune response revealed that protection was strongly correlated with the production of parasite-specific IgG1 and with the numbers of leukocytes present at the site of infection. Conclusions We have developed a successful strategy for DNA vaccination against a nematode infection that specifically targets parasite-driven immunosuppression while simultaneously enhancing Th2 immune responses and parasite antigen presentation by dendritic cells. PMID:23301106

  4. Enhanced production of branched-chain amino acids by Gluconacetobacter europaeus with a specific regional deletion in a leucine responsive regulator.

    PubMed

    Akasaka, Naoki; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2014-12-01

    Vinegar with increased amounts of branched-chain amino acids (BCAAs; valine, leucine and isoleucine) is favorable for human health as BCAAs decrease diet-induced obesity and hyperglycemia. To construct Gluconacetobacter europaeus which produces BCAAs, leucine responsive regulator (GeLrp) is focused and two Gelrp mutants were constructed. Wild-type KGMA0119 didn't produce significant amount of valine (0.13 mM) and leucine (0 mM) and strain KGMA7110 which lacks complete Gelrp accumulated valine (0.48 mM) and leucine (0.11 mM) but showed impaired growth, and it was fully restored in the presence of essential amino acids. Strain KGMA7203 was then constructed with a nonsense mutation at codon Trp132 in the Gelrp, which leads a specific deletion at an estimated ligand-sensing region in the C-terminal domain. KGMA7203 produced greater quantities of valine (0.80 mM) and leucine (0.26 mM) and showed the same growth characteristics as KGMA0119. mRNA levels of BCAAs biosynthesis genes (ilvI and ilvC) and probable BCAAs efflux pump (leuE) were determined by quantitative reverse-transcription PCR. Expression rates of ilvI and ilvC in the two Gelrp disruptants were greater than those in KGMA0119. leuE was highly expressed in KGMA7110 only, suggesting that the accumulation in KGMA7110 culture was caused by increased expression of the biosynthesis genes and abnormal enhanced export of amino acids resulting in impaired cell growth. In contrast, KGMA7203 would achieve the high level production through enhanced expression of the biosynthesis genes without enhancing that for the efflux pump. KGMA7203 was considered advantageous for production of vinegar with higher amounts of valine and leucine.

  5. Deletion of glycine transporter 1 (GlyT1) in forebrain neurons facilitates reversal learning: enhanced cognitive adaptability?

    PubMed

    Singer, Philipp; Boison, Detlev; Möhler, Hanns; Feldon, Joram; Yee, Benjamin K

    2009-10-01

    Local availability of glycine near N-methyl-D-aspartate receptors (NMDARs) is partly regulated by neuronal glycine transporter 1 (GlyT1), which can therefore modulate NMDAR function because binding to the glycine site of the NMDAR is necessary for channel activation. Disrupting GlyT1 in forebrain neurons has been shown to enhance Pavlovian conditioning and object recognition memory. Here, the authors report that the same genetic manipulation facilitated reversal learning in the water maze test of reference memory, but did not lead to any clear improvement in a working memory version of the water maze test. Facilitation in a nonspatial discrimination reversal task conducted on a T maze was also observed, supporting the conclusion that forebrain neuronal GlyT1 may modulate the flexibility in (new) learning and relevant mnemonic functions. One possibility is that these phenotypes may reflect reduced susceptibility to certain forms of proactive interference. This may be relevant for the suggested clinical application of GlyT1 inhibitors in the treatment of cognitive deficits, including schizophrenia, which is characterized by cognitive inflexibility in addition to the positive symptoms of the disease.

  6. Deletion of A44L, A46R and C12L Vaccinia Virus Genes from the MVA Genome Improved the Vector Immunogenicity by Modifying the Innate Immune Response Generating Enhanced and Optimized Specific T-Cell Responses.

    PubMed

    Holgado, María Pía; Falivene, Juliana; Maeto, Cynthia; Amigo, Micaela; Pascutti, María Fernanda; Vecchione, María Belén; Bruttomesso, Andrea; Calamante, Gabriela; Del Médico-Zajac, María Paula; Gherardi, María Magdalena

    2016-01-01

    MVA is an attenuated vector that still retains immunomodulatory genes. We have previously reported its optimization after deleting the C12L gene, coding for the IL-18 binding-protein. Here, we analyzed the immunogenicity of MVA vectors harboring the simultaneous deletion of A44L, related to steroid synthesis and A46R, a TLR-signaling inhibitor (MVAΔA44L-A46R); or also including a deletion of C12L (MVAΔC12L/ΔA44L-A46R). The absence of biological activities of the deleted genes in the MVA vectors was demonstrated. Adaptive T-cell responses against VACV epitopes, evaluated in spleen and draining lymph-nodes of C57Bl/6 mice at acute/memory phases, were of higher magnitude in those animals that received deleted MVAs compared to MVAwt. MVAΔC12L/ΔA44L-A46R generated cellular specific memory responses of higher quality characterized by bifunctionality (CD107a/b⁺/IFN-γ⁺) and proliferation capacity. Deletion of selected genes from MVA generated innate immune responses with higher levels of determining cytokines related to T-cell response generation, such as IL-12, IFN-γ, as well as IL-1β and IFN-β. This study describes for the first time that simultaneous deletion of the A44L, A46R and C12L genes from MVA improved its immunogenicity by enhancing the host adaptive and innate immune responses, suggesting that this approach comprises an appropriate strategy to increase the MVA vaccine potential. PMID:27223301

  7. Deletion of A44L, A46R and C12L Vaccinia Virus Genes from the MVA Genome Improved the Vector Immunogenicity by Modifying the Innate Immune Response Generating Enhanced and Optimized Specific T-Cell Responses

    PubMed Central

    Holgado, María Pía; Falivene, Juliana; Maeto, Cynthia; Amigo, Micaela; Pascutti, María Fernanda; Vecchione, María Belén; Bruttomesso, Andrea; Calamante, Gabriela; del Médico-Zajac, María Paula; Gherardi, María Magdalena

    2016-01-01

    MVA is an attenuated vector that still retains immunomodulatory genes. We have previously reported its optimization after deleting the C12L gene, coding for the IL-18 binding-protein. Here, we analyzed the immunogenicity of MVA vectors harboring the simultaneous deletion of A44L, related to steroid synthesis and A46R, a TLR-signaling inhibitor (MVAΔA44L-A46R); or also including a deletion of C12L (MVAΔC12L/ΔA44L-A46R). The absence of biological activities of the deleted genes in the MVA vectors was demonstrated. Adaptive T-cell responses against VACV epitopes, evaluated in spleen and draining lymph-nodes of C57Bl/6 mice at acute/memory phases, were of higher magnitude in those animals that received deleted MVAs compared to MVAwt. MVAΔC12L/ΔA44L-A46R generated cellular specific memory responses of higher quality characterized by bifunctionality (CD107a/b+/IFN-γ+) and proliferation capacity. Deletion of selected genes from MVA generated innate immune responses with higher levels of determining cytokines related to T-cell response generation, such as IL-12, IFN-γ, as well as IL-1β and IFN-β. This study describes for the first time that simultaneous deletion of the A44L, A46R and C12L genes from MVA improved its immunogenicity by enhancing the host adaptive and innate immune responses, suggesting that this approach comprises an appropriate strategy to increase the MVA vaccine potential. PMID:27223301

  8. Genetic deletion of aquaporin-1 results in microcardia and low blood pressure in mouse with intact nitric oxide-dependent relaxation, but enhanced prostanoids-dependent relaxation.

    PubMed

    Montiel, V; Leon Gomez, E; Bouzin, C; Esfahani, H; Romero Perez, M; Lobysheva, I; Devuyst, O; Dessy, C; Balligand, J L

    2014-02-01

    The water channels, aquaporins (AQPs) are key mediators of transcellular fluid transport. However, their expression and role in cardiac tissue is poorly characterized. Particularly, AQP1 was suggested to transport other molecules (nitric oxide (NO), hydrogen peroxide (H2O2)) with potential major bearing on cardiovascular physiology. We therefore examined the expression of all AQPs and the phenotype of AQP1 knockout mice (vs. wild-type littermates) under implanted telemetry in vivo, as well as endothelium-dependent relaxation in isolated aortas and resistance vessels ex vivo. Four aquaporins were expressed in wild-type heart tissue (AQP1, AQP7, AQP4, AQP8) and two aquaporins in aortic and mesenteric vessels (AQP1-AQP7). AQP1 was expressed in endothelial as well as cardiac and vascular muscle cells and co-segregated with caveolin-1. AQP1 knockout (KO) mice exhibited a prominent microcardia and decreased myocyte transverse dimensions despite no change in capillary density. Both male and female AQP1 KO mice had lower mean BP, which was not attributable to altered water balance or autonomic dysfunction (from baroreflex and frequency analysis of BP and HR variability). NO-dependent BP variability was unperturbed. Accordingly, endothelium-derived hyperpolarizing factor (EDH(F)) or NO-dependent relaxation were unchanged in aorta or resistance vessels ex vivo. However, AQP1 KO mesenteric vessels exhibited an increase in endothelial prostanoids-dependent relaxation, together with increased expression of COX-2. This enhanced relaxation was abrogated by COX inhibition. We conclude that AQP1 does not regulate the endothelial EDH or NO-dependent relaxation ex vivo or in vivo, but its deletion decreases baseline BP together with increased prostanoids-dependent relaxation in resistance vessels. Strikingly, this was associated with microcardia, unrelated to perturbed angiogenesis. This may raise interest for new inhibitors of AQP1 and their use to treat hypertrophic cardiac

  9. A Structural Hinge in Eukaryotic MutY Homologues Mediates Catalytic Activity and Rad9-Rad1-Hus1 Checkpoint Complex Interactions

    SciTech Connect

    P Luncsford; D Chang; G Shi; J Bernstein; A Madabushi; D Patterson; A Lu; E Toth

    2011-12-31

    The DNA glycosylase MutY homologue (MYH or MUTYH) removes adenines misincorporated opposite 8-oxoguanine as part of the base excision repair pathway. Importantly, defects in human MYH (hMYH) activity cause the inherited colorectal cancer syndrome MYH-associated polyposis. A key feature of MYH activity is its coordination with cell cycle checkpoint via interaction with the Rad9-Rad1-Hus1 (9-1-1) complex. The 9-1-1 complex facilitates cell cycle checkpoint activity and coordinates this activity with ongoing DNA repair. The interdomain connector (IDC, residues 295-350) between the catalytic domain and the 8-oxoguanine recognition domain of hMYH is a critical element that maintains interactions with the 9-1-1 complex. We report the first crystal structure of a eukaryotic MutY protein, a fragment of hMYH (residues 65-350) that consists of the catalytic domain and the IDC. Our structure reveals that the IDC adopts a stabilized conformation projecting away from the catalytic domain to form a docking scaffold for 9-1-1. We further examined the role of the IDC using Schizosaccharomyces pombe MYH as model system. In vitro studies of S. pombe MYH identified residues I261 and E262 of the IDC (equivalent to V315 and E316 of the hMYH IDC) as critical for maintaining the MYH/9-1-1 interaction. We determined that the eukaryotic IDC is also required for DNA damage selection and robust enzymatic activity. Our studies also provide the first evidence that disruption of the MYH/9-1-1 interaction diminishes the repair of oxidative DNA damage in vivo. Thus, preserving the MYH/9-1-1 interaction contributes significantly to minimizing the mutagenic potential of oxidative DNA damage.

  10. Schizophrenia and chromosomal deletions

    SciTech Connect

    Lindsay, E.A.; Baldini, A.; Morris, M. A.

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  11. Deletion of Stat3 enhances myeloid cell expansion and increases the severity of myeloproliferative neoplasms in Jak2V617F knock-in mice

    PubMed Central

    Yan, Dongqing; Jobe, Fatoumata; Hutchison, Robert E.; Mohi, Golam

    2015-01-01

    The JAK2V617F mutation commonly found in myeloproliferative neoplasms (MPNs) induces constitutive phosphorylation/activation of the signal transducer and activator of transcription 3 (Stat3). However, the contribution of Stat3 in MPN evoked by JAK2V617F remains unknown. To determine the role of Stat3 in JAK2V617F-induced MPN, we generated Stat3-deficient Jak2V617F-expressing mice. Whereas expression of Jak2V617F resulted in a PV-like disease characterized by increased red blood cells (RBC), hematocrit, neutrophils and platelets in the peripheral blood of Jak2V617F knock-in mice, deletion of Stat3 slightly reduced RBC, and hematocrit parameters and modestly increased platelet numbers in Jak2V617F knock-in mice. Moreover, deletion of Stat3 significantly increased the neutrophil counts/percentages and markedly reduced the survival of mice expressing Jak2V617F. These phenotypic manifestations were reproduced upon bone marrow transplantation into wild-type animals. Flow cytometric analysis showed increased hematopoietic stem cell and granulocyte-macrophage progenitor populations in the bone marrow and spleens of Stat3-deficient Jak2V617F mice. Stat3 deficiency also caused a marked expansion of Gr-1+/Mac-1+ myeloid cells in Jak2V617F knock-in mice. Histopathologic analysis revealed marked increase in granulocytes in the bone marrow, spleens and livers of Stat3-deficient Jak2V617F-expressing mice. Together, these results suggest that deletion of Stat3 increases the severity of MPN induced by Jak2V617F. PMID:26044284

  12. Targeted chromosomal deletions and inversions in zebrafish.

    PubMed

    Gupta, Ankit; Hall, Victoria L; Kok, Fatma O; Shin, Masahiro; McNulty, Joseph C; Lawson, Nathan D; Wolfe, Scot A

    2013-06-01

    Zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) provide powerful platforms for genome editing in plants and animals. Typically, a single nuclease is sufficient to disrupt the function of protein-coding genes through the introduction of microdeletions or insertions that cause frameshifts within an early coding exon. However, interrogating the function of cis-regulatory modules or noncoding RNAs in many instances requires the excision of this element from the genome. In human cell lines and invertebrates, two nucleases targeting the same chromosome can promote the deletion of intervening genomic segments with modest efficiencies. We have examined the feasibility of using this approach to delete chromosomal segments within the zebrafish genome, which would facilitate the functional study of large noncoding sequences in a vertebrate model of development. Herein, we demonstrate that segmental deletions within the zebrafish genome can be generated at multiple loci and are efficiently transmitted through the germline. Using two nucleases, we have successfully generated deletions of up to 69 kb at rates sufficient for germline transmission (1%-15%) and have excised an entire lincRNA gene and enhancer element. Larger deletions (5.5 Mb) can be generated in somatic cells, but at lower frequency (0.7%). Segmental inversions have also been generated, but the efficiency of these events is lower than the corresponding deletions. The ability to efficiently delete genomic segments in a vertebrate developmental system will facilitate the study of functional noncoding elements on an organismic level.

  13. Deletion of A-antigen in a human cancer cell line is associated with reduced promoter activity of CBF/NF-Y binding region, and possibly with enhanced DNA methylation of A transferase promoter.

    PubMed

    Iwamoto, S; Withers, D A; Handa, K; Hakomori, S

    1999-10-01

    Employing blood group A- and A+ clones derived from the same parental colonic cancer cell lines, we studied the molecular mechanism of deletion/reduction vs. continuous expression of A antigen in A tumors, a crucial determinant of human tumor malignancy. A- transferase mRNA level in one of the A- clones (A- SW480) was undetectable, while that in A+ SW480 was strongly detectable by semiquantitative RT-PCR. Relatively lower (approximately 1/3) transcript level was detectable in another A- clone (A- HT29) in comparison to A+ HT29 by the same RT-PCR procedure, although none of these tumor cell lines showed detectable level of A transcript by Northern blotting or RNase protection methods. Therefore, subsequent studies were performed employing A- vs. A+ SW480 clones. Deletion of A transcript in A- cells was not due to gene deletion, since Southern blot analysis showed equal presence of genomic DNA regardless of A- vs. A+ (SW480 or HT29) or B+ (KATOIII) tumor cells. Two transcriptional control mechanisms leading to differences of A expression in SW480 cells are indicated. i. Luciferase assay in A- and A+ SW480 cells showed that promoter activities of segments of 5' flanking sequence of ABO gene reflected transcript levels in these cell lines. The enhancing activity of a 43 bp tandem repeat unit located between -3899 to -3618 was reduced in A- compared to A+ cells. ii. Distinct differences in the pattern of CpG dinucleotide methylation were found in A- vs. A+ cells. Therefore, the methylation process of A promoter DNA may be another important factor controlling A activity in SW480 tumor cells. Since proliferation and motility of tumor cells are associated closely with A expression, transcription control mechanism for expression of A transferase as described above may be of crucial importance in defining human tumor malignancy. PMID:10972144

  14. Targeted Deletion of the Antisilencer/Enhancer (ASE) Element from Intron 1 of the Myelin Proteolipid Protein Gene (Plp1) in Mouse Reveals that the Element Is Dispensable for Plp1 Expression in Brain during Development and Remyelination

    PubMed Central

    Pereira, Glauber B.; Meng, Fanxue; Kockara, Neriman T.; Yang, Baoli; Wight, Patricia A.

    2012-01-01

    Myelin proteolipid protein gene (Plp1) expression is temporally regulated in brain, which peaks during the active myelination period of CNS development. Previous studies with Plp1-lacZ transgenic mice demonstrated that (mouse) Plp1 intron 1 DNA is required for high levels of expression in oligodendrocytes. Deletion-transfection analysis revealed the intron contains a single positive regulatory element operative in the N20.1 oligodendroglial cell line, which was named ASE (antisilencer/enhancer) based on its functional properties in these cells. To investigate the role of the ASE in vivo, the element was deleted from the native gene in mouse using a Cre/lox strategy. While removal of the ASE from Plp1-lacZ constructs profoundly decreased expression in transfected oligodendroglial cell lines (N20.1 and Oli-neu), the element was dispensable to achieve normal levels of Plp1 gene expression in mouse during development (except perhaps at postnatal day 15) and throughout the remyelination period following cuprizone-induced (acute) demyelination. Thus, it is possible that the ASE is nonfunctional in vivo, or that loss of the ASE from the native gene in mouse can be compensated for by the presence of other regulatory elements within the Plp1 gene. PMID:23157328

  15. Deletion of fusion peptide or destabilization of fusion core of HIV gp41 enhances antigenicity and immunogenicity of 4E10 epitope

    SciTech Connect

    Li Jing; Chen Xi; Jiang Shibo Chen Yinghua

    2008-11-07

    The human monoclonal antibody 4E10 against the membrane-proximal external region (MPER) of HIV-1 gp41 demonstrates broad neutralizing activity across various strains, and makes its epitope an attractive target for HIV-1 vaccine development. Although the contiguous epitope of 4E10 has been identified, attempts to re-elicit 4E10-like antibodies have failed, possibly due to the lack of proper conformation of the 4E10 epitope. Here we used pIg-tail expression system to construct a panel of eukaryotic cell-surface expression plasmids encoding the extracellular domain of gp41 with deletion of fusion peptide and/or introduction of L568P mutation that may disrupt the gp41 six-helix bundle core conformation as DNA vaccines for immunization of mice. We found that these changes resulted in significant increase of the antigenicity and immunogenicity of 4E10 epitope. This information is thus useful for rational design of vaccines targeting the HIV-1 gp41 MPER.

  16. Improvement of erythrose reductase activity, deletion of by-products and statistical media optimization for enhanced erythritol production from Yarrowia lipolytica mutant 49.

    PubMed

    Ghezelbash, Gholam Reza; Nahvi, Iraj; Emamzadeh, Rahman

    2014-08-01

    The purpose of the present investigation was to produce erythritol by Yarrowia lipolytica mutant without any by-products. Mutants of Y. lipolytica were generated by ultra-violet for enhancing erythrose reductase (ER) activity and erythritol production. The mutants showing the highest ER activity were screened by triphenyl tetrazolium chloride agar plate assay. Productivity of samples was analyzed by thin-layer chromatography and high-performance liquid chromatography equipped with the refractive index detector. One of the mutants named as mutant 49 gave maximum erythritol production without any other by-products (particularly glycerol). Erythritol production and specific ER activity in mutant 49 increased to 1.65 and 1.47 times, respectively, in comparison with wild-type strain. The ER gene of wild and mutant strains was sequenced and analyzed. A general comparison of wild and mutant gene sequences showed the replacement of Asp(270) with Glu(270) in ER protein. In order to enhance erythritol production, we used a three component-three level-one response Box-Behnken of response surface methodology model. The optimum medium composition for erythritol production was found to be (g/l) glucose 279.49, ammonium sulfate 9.28, and pH 5.41 with 39.76 erythritol production.

  17. Deletion (2)(q37)

    SciTech Connect

    Stratton, R.F.; Tolworthy, J.A.; Young, R.S.

    1994-06-01

    We report on a 5-month-old girl with widely spaced nipples, redundant nuchal skin, coarctation of the aorta, anal atresia with distal fistula, postnatal growth retardation, hypotonia, and sparse scalp hair. Initial clinical assessment suggested the diagnosis of Ullrich-Turner syndrome. Chromosome analysis showed a 46,XX,del(2)(q37) karyotype in peripheral lymphocytes. We compare her findings to those of other reported patients with terminal deletions of 2q. 8 refs., 2 figs., 1 tab.

  18. Deletion of forebrain glycine transporter 1 enhances conditioned freezing to a reliable, but not an ambiguous, cue for threat in a conditioned freezing paradigm.

    PubMed

    Dubroqua, Sylvain; Singer, Philipp; Yee, Benjamin K

    2014-10-15

    Enhanced expression of Pavlovian aversive conditioning but not appetitive conditioning may indicate a bias in the processing of threatening or fearful events. Mice with disruption of glycine transporter 1 (GlyT1) in forebrain neurons exhibit such a bias, but they are at the same time highly sensitive to manipulations that hinder the development of the conditioned response (CR) suggesting that the mutation may modify higher cognitive processes that extract predictive information between environmental cues. Here, we further investigated the development of fear conditioning in forebrain neuronal GlyT1 knockout mice when the predictiveness of a tone stimulus for foot-shock was rendered ambiguous by interspersing [tone→no shock] trials in-between [tone→shock] trials during acquisition. The CR to the ambiguous tone CS (conditioned stimulus) was compared with that generated by an unambiguous CS that was always followed by the shock US (unconditioned stimulus) during acquisition. We showed that rendering the CS ambiguous as described significantly attenuated the CR in the mutants, but it was not sufficient to modify the CR in the control mice. It is concluded that disruption of GlyT1 in forebrain neurons does not increase the risk of forming spurious and potentially maladaptive fear associations.

  19. The Prevention of Repeat-Associated Deletions in Saccharomyces Cerevisiae by Mismatch Repair Depends on Size and Origin of Deletions

    PubMed Central

    Tran, H. T.; Gordenin, D. A.; Resnick, M. A.

    1996-01-01

    We have investigated the effects of mismatch repair on 1- to 61-bp deletions in the yeast Saccharomyces cerevisiae. The deletions are likely to involve unpaired loop intermediates resulting from DNA polymerase slippage. The mutator effects of mutations in the DNA polymerase δ (POL3) gene and the recombinational repair RAD52 gene were studied in combination with mismatch repair defects. The pol3-t mutation increased up to 1000-fold the rate of extended (7-61 bp) but not of 1-bp deletions. In a rad52 null mutant only the 1-bp deletions were increased (12-fold). The mismatch repair mutations pms1, msh2 and msh3 did not affect 31- and 61-bp deletions in the pol3-t but increased the rates of 7- and 1-bp deletions. We propose that loops less than or equal to seven bases generated during replication are subject to mismatch repair by the PMS1, MSH2, MSH3 system and that it cannot act on loops >=31 bases. In contrast to the pol3-t, the enhancement of 1-bp deletions in a rad52 mutant is not altered by a pms1 mutation. Thus, mismatch repair appears to be specific to errors of DNA synthesis generated during semiconservative replication. PMID:8844147

  20. Genetic Counseling for the 22q11.2 Deletion

    ERIC Educational Resources Information Center

    McDonald-McGinn, Donna M.; Zackai, Elaine H.

    2008-01-01

    Because of advances in palliative medical care, children with the 22q11.2 deletion syndrome are surviving into adulthood. An increase in reproductive fitness will likely follow necessitating enhanced access to genetic counseling for these patients and their families. Primary care physicians/obstetric practitioners are in a unique position to…

  1. Deletion of ultraconserved elements yields viable mice

    SciTech Connect

    Ahituv, Nadav; Zhu, Yiwen; Visel, Axel; Holt, Amy; Afzal, Veena; Pennacchio, Len A.; Rubin, Edward M.

    2007-07-15

    Ultraconserved elements have been suggested to retainextended perfect sequence identity between the human, mouse, and ratgenomes due to essential functional properties. To investigate thenecessities of these elements in vivo, we removed four non-codingultraconserved elements (ranging in length from 222 to 731 base pairs)from the mouse genome. To maximize the likelihood of observing aphenotype, we chose to delete elements that function as enhancers in amouse transgenic assay and that are near genes that exhibit markedphenotypes both when completely inactivated in the mouse as well as whentheir expression is altered due to other genomic modifications.Remarkably, all four resulting lines of mice lacking these ultraconservedelements were viable and fertile, and failed to reveal any criticalabnormalities when assayed for a variety of phenotypes including growth,longevity, pathology and metabolism. In addition more targeted screens,informed by the abnormalities observed in mice where genes in proximityto the investigated elements had been altered, also failed to revealnotable abnormalities. These results, while not inclusive of all thepossible phenotypic impact of the deleted sequences, indicate thatextreme sequence constraint does not necessarily reflect crucialfunctions required for viability.

  2. Genetics Home Reference: 18q deletion syndrome

    MedlinePlus

    ... Veltman JA, van Ravenswaaij-Arts CM. Genotype-phenotype mapping of chromosome 18q deletions by high-resolution array ... L, Pihko H. 18q deletions: clinical, molecular, and brain MRI findings of 14 individuals. Am J Med ...

  3. 78 FR 46927 - Procurement List; Proposed Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Deletions from the Procurement List. SUMMARY: The Committee is proposing to delete products and services from the Procurement...

  4. 77 FR 66181 - Procurement List; Proposed Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-02

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Deletions from the Procurement List. SUMMARY: The Committee is proposing to delete products from the Procurement List that...

  5. 76 FR 9555 - Procurement List; Proposed Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed deletions from the Procurement...'Day Act (41 U.S.C. 46- 48c) in connection with the products proposed for deletion from the...

  6. 76 FR 22680 - Procurement List; Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Deletions from the Procurement List. SUMMARY: This action deletes services from the Procurement List that will be provided by nonprofit agencies...

  7. 75 FR 16757 - Procurement List; Proposed Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Deletions From the Procurement List. SUMMARY: The Committee is proposing to delete from the Procurement List services...

  8. Interstitial deletions are not the main mechanism leading to 18q deletions

    SciTech Connect

    Strathdee, G.; Harrison, W.; Goodart, S.A.; Overhauser, J. ); Riethman, H.C. )

    1994-06-01

    Most patients who present with the 18q- syndrome have an apparent terminal deletion of the long arm of chromosome 18. For precise phenotypic mapping of this syndrome, it is important to determine whether the deletions are terminal deletions or interstitial deletions. A human telomeric YAC clone has been identified that hybridizes specifically to the telomeric end of 18q. This clone was characterized and used to analyze seven patients with 18q deletions. By FISH and Southern blotting analysis, all patients were found to lack this chromosomal region on their deleted chromosome, demonstrating that the patients do not have cryptic interstitial deletions. 30 refs., 3 figs.

  9. Gene Deletion by Synthesis in Yeast.

    PubMed

    Kim, Jinsil; Kim, Dong-Uk; Hoe, Kwang-Lae

    2017-01-01

    Targeted gene deletion is a useful tool for understanding the function of a gene and its protein product. We have developed an efficient and robust gene deletion approach in yeast that employs oligonucleotide-based gene synthesis. This approach requires a deletion cassette composed of three modules: a central 1397-bp KanMX4 selection marker module and two 366-bp gene-specific flanking modules. The invariable KanMX4 module can be used in combination with different pairs of flanking modules targeting different genes. The two flanking modules consist of both sequences unique to each cassette (chromosomal homologous regions and barcodes) and those common to all deletion constructs (artificial linkers and restriction enzyme sites). Oligonucleotides for each module and junction regions are designed using the BatchBlock2Oligo program and are synthesized on a 96-well basis. The oligonucleotides are ligated into a single deletion cassette by ligase chain reaction, which is then amplified through two rounds of nested PCR to obtain sufficient quantities for yeast transformation. After removal of the artificial linkers, the deletion cassettes are transformed into wild-type diploid fission yeast SP286 cells. Verification of correct clone and gene deletion is achieved by performing check PCR and tetrad analysis. This method with proven effectiveness, as evidenced by a high success rate of gene deletion, can be potentially applicable to create systematic gene deletion libraries in a variety of yeast species. PMID:27671940

  10. 78 FR 56679 - Procurement List; Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... 8/2/2013 (78 FR 46927-46928), the Committee for Purchase From People Who Are Blind or Severely... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Deletions from the Procurement List. SUMMARY:...

  11. Alagille syndrome and deletion of 20p.

    PubMed Central

    Anad, F; Burn, J; Matthews, D; Cross, I; Davison, B C; Mueller, R; Sands, M; Lillington, D M; Eastham, E

    1990-01-01

    We add five cases of 20p deletion to the 10 cases already published. Four had craniofacial, vertebral, ocular, and cardiovascular features of Alagille syndrome, which adds weight to the assignment of this disorder to the short arm of chromosome 20. Included in our series is the first report of familial transmission of a 20p deletion. Images PMID:2074558

  12. Enhancement of laccase activity through the construction and breakdown of a hydrogen bond at the type I copper center in Escherichia coli CueO and the deletion mutant Δα5-7 CueO.

    PubMed

    Kataoka, Kunishige; Hirota, Shun; Maeda, Yasuo; Kogi, Hiroki; Shinohara, Naoya; Sekimoto, Madoka; Sakurai, Takeshi

    2011-02-01

    CueO is a multicopper oxidase involved in a copper efflux system of Escherichia coli and has high cuprous oxidase activity but little or no oxidizing activity toward various organic substances. However, its activity toward oxidization of organic substrates was found to be considerably increased by the removal of the methionine-rich helical segment that covers the substrate-binding site (Δα5-7 CueO) [Kataoka, K., et al. (2007) J. Mol. Biol. 373, 141]. In the study presented here, mutations at Pro444 to construct a second NH-S hydrogen bond between the backbone amide and coordinating Cys500 thiolate of the type I copper are shown to result in positive shifts in the redox potential of this copper center and enhanced oxidase activity in CueO. Analogous enhancement of the activity of Δα5-7 CueO has been identified only in the Pro444Gly mutant because Pro444 mutants limit the incorporation of copper ions into the trinuclear copper center. The activities of both CueO and Δα5-7 CueO were also enhanced by mutations to break down the hydrogen bond between the imidazole group of His443 that is coordinated to the type I copper and the β-carboxy group of Asp439 that is located in the outer sphere of the type I copper center. A synergetic effect of the positive shift in the redox potential of the type I copper center and the increase in enzyme activity has been achieved by the double mutation of Pro444 and Asp439 of CueO. Absorption, circular dichroism, and resonance Raman spectra indicate that the characteristics of the Cu(II)-S(Cys) bond were only minimally perturbed by mutations involving formation or disruption of a hydrogen bond from the coordinating groups to the type I copper. This study provides widely applicable strategies for tuning the activities of multicopper oxidases.

  13. 1p36 deletion syndrome: an update.

    PubMed

    Jordan, Valerie K; Zaveri, Hitisha P; Scott, Daryl A

    2015-01-01

    Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are the most common terminal deletions in humans. Medical problems commonly caused by terminal deletions of 1p36 include developmental delay, intellectual disability, seizures, vision problems, hearing loss, short stature, distinctive facial features, brain anomalies, orofacial clefting, congenital heart defects, cardiomyopathy, and renal anomalies. Although 1p36 deletion syndrome is considered clinically recognizable, there is significant phenotypic variation among affected individuals. This variation is due, at least in part, to the genetic heterogeneity seen in 1p36 deletions which include terminal and interstitial deletions of varying lengths located throughout the 30 Mb of DNA that comprise chromosome 1p36. Array-based copy number variant analysis can easily identify genomic regions of 1p36 that are deleted in an affected individual. However, predicting the phenotype of an individual based solely on the location and extent of their 1p36 deletion remains a challenge since most of the genes that contribute to 1p36-related phenotypes have yet to be identified. In addition, haploinsufficiency of more than one gene may contribute to some phenotypes. In this article, we review recent successes in the effort to map and identify the genes and genomic regions that contribute to specific 1p36-related phenotypes. In particular, we highlight evidence implicating MMP23B, GABRD, SKI, PRDM16, KCNAB2, RERE, UBE4B, CASZ1, PDPN, SPEN, ECE1, HSPG2, and LUZP1 in various 1p36 deletion phenotypes.

  14. 1p36 deletion syndrome: an update

    PubMed Central

    Jordan, Valerie K; Zaveri, Hitisha P; Scott, Daryl A

    2015-01-01

    Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are the most common terminal deletions in humans. Medical problems commonly caused by terminal deletions of 1p36 include developmental delay, intellectual disability, seizures, vision problems, hearing loss, short stature, distinctive facial features, brain anomalies, orofacial clefting, congenital heart defects, cardiomyopathy, and renal anomalies. Although 1p36 deletion syndrome is considered clinically recognizable, there is significant phenotypic variation among affected individuals. This variation is due, at least in part, to the genetic heterogeneity seen in 1p36 deletions which include terminal and interstitial deletions of varying lengths located throughout the 30 Mb of DNA that comprise chromosome 1p36. Array-based copy number variant analysis can easily identify genomic regions of 1p36 that are deleted in an affected individual. However, predicting the phenotype of an individual based solely on the location and extent of their 1p36 deletion remains a challenge since most of the genes that contribute to 1p36-related phenotypes have yet to be identified. In addition, haploinsufficiency of more than one gene may contribute to some phenotypes. In this article, we review recent successes in the effort to map and identify the genes and genomic regions that contribute to specific 1p36-related phenotypes. In particular, we highlight evidence implicating MMP23B, GABRD, SKI, PRDM16, KCNAB2, RERE, UBE4B, CASZ1, PDPN, SPEN, ECE1, HSPG2, and LUZP1 in various 1p36 deletion phenotypes. PMID:26345236

  15. Insertions, Deletions, and Single-Nucleotide Polymorphisms at Rare Restriction Enzyme Sites Enhance Discriminatory Power of Polymorphic Amplified Typing Sequences, a Novel Strain Typing System for Escherichia coli O157:H7

    PubMed Central

    Kudva, Indira T.; Griffin, Robert W.; Murray, Megan; John, Manohar; Perna, Nicole T.; Barrett, Timothy J.; Calderwood, Stephen B.

    2004-01-01

    Polymorphic amplified typing sequences (PATS) for Escherichia coli O157:H7 (O157) was previously based on indels containing XbaI restriction enzyme sites occurring in O-island sequences of the O157 genome. This strain-typing system, referred to as XbaI-based PATS, typed every O157 isolate tested in a reproducible, rapid, straightforward, and easy-to-interpret manner and had technical advantages over pulsed-field gel electrophoresis (PFGE). However, the system was less discriminatory than PFGE and was unable to differentiate fully between unrelated isolates. To overcome this drawback, we enhanced PATS by using another infrequently cutting restriction enzyme, AvrII (also known as BlnI), to identify additional polymorphic regions that could increase the discriminatory ability of PATS typing. Referred to as AvrII-based PATS, the system identified seven new polymorphic regions in the O157 genome. Unlike XbaI, polymorphisms involving AvrII sites were caused by both indels and single-nucleotide polymorphisms occurring in O-island and backbone sequences of the O157 genome. AvrII-based PATS by itself provided poor discrimination of the O157 isolates tested. However, when primer pairs amplifying the seven polymorphic AvrII sites were combined with those amplifying the eight polymorphic XbaI sites (combined PATS), the discriminatory power of PATS was enhanced. Combined PATS matched related O157 isolates better than PFGE while differentiating between unrelated isolates. PATS typed every O157 isolate tested and directly targeted polymorphic sequences responsible for differences in the restriction digest patterns of O157 genomic DNA, utilizing PCR rather than relying on gel electrophoresis. This enabled PATS to resolve the ambiguity in PFGE typing, including that arising from the “more distantly related” and “untypeable” profiles. PMID:15184409

  16. Mitochondrial DNA deletions sensitize cells to apoptosis at low heteroplasmy levels

    SciTech Connect

    Schoeler, S.; Szibor, R.; Gellerich, F.N.; Wartmann, T.; Mawrin, C.; Dietzmann, K.; Kirches, E. . E-mail: elmar.kirches@medizin.uni-magdeburg.de

    2005-06-24

    A heterogeneous group of multisystem disorders affecting various tissues and often including neuromuscular symptoms is caused by mutations of the mitochondrial genome, which codes 13 polypeptides of oxidative phosphorylation (OXPHOS) complexes and 22 tRNA genes needed for their translation. Since the link between OXPHOS dysfunction and clinical phenotype remains enigmatic in many diseases, a possible role of enhanced apoptosis is discussed besides bioenergetic crisis of affected cells. We analyzed the proapoptotic impact of the mitochondrial 5 kb common deletion (CD), affecting five tRNA genes, in transmitochondrial cybrid cell lines and found a slightly enhanced sensitivity to exogenous oxidative stress (H{sub 2}O{sub 2}) and a pronounced sensitization against death receptor stimulation (TRAIL) at a rather low CD heteroplasmy level of 22%. Mitochondrial deletions confer enhanced susceptibility against proapoptotic signals to proliferating cells, which might explain the elimination of deletions from hematopoietic stem cells.

  17. Parameterized Complexity of Eulerian Deletion Problems.

    PubMed

    Cygan, Marek; Marx, Dániel; Pilipczuk, Marcin; Pilipczuk, Michał; Schlotter, Ildikó

    2014-01-01

    We study a family of problems where the goal is to make a graph Eulerian, i.e., connected and with all the vertices having even degrees, by a minimum number of deletions. We completely classify the parameterized complexity of various versions: undirected or directed graphs, vertex or edge deletions, with or without the requirement of connectivity, etc. The collection of results shows an interesting contrast: while the node-deletion variants remain intractable, i.e., W[1]-hard for all the studied cases, edge-deletion problems are either fixed-parameter tractable or polynomial-time solvable. Of particular interest is a randomized FPT algorithm for making an undirected graph Eulerian by deleting the minimum number of edges, based on a novel application of the color coding technique. For versions that remain NP-complete but fixed-parameter tractable we consider also possibilities of polynomial kernelization; unfortunately, we prove that this is not possible unless NP⊆coNP/poly. PMID:24415818

  18. Somatic mosaicism for a DMD gene deletion

    SciTech Connect

    Saito, Kayoko; Ikeya, Kiyoko; Kondo, Eri

    1995-03-13

    Mosaicism is a mixed state, with two cell populations of different genetic origins caused by a cell mutation occurring after fertilization. In the present case, DNA analysis of lymphocytes led to a DMD diagnosis before death. Postmortem immunocytochemical and DNA analysis showed somatic mosaicism. At age 18 years, blood lymphocyte DNA analysis showed a DMD gene deletion, upstream from exon 7 to the 5{prime} end containing both muscle and brain promoters. As the patient`s mother and elder sister had no deletions, he was considered to have a new mutation. Immunocytochemical studies of postmortem tissues showed that dystrophin was absent from the tongue, deltoid, intercostal, psoas and rectus femoris muscles, but there was a mix of dystrophin-positive and negative fibers in the rectus abdominis, cardiac, temporalis and sternocleidomastoid muscles. All diaphragm cells were dystrophin positive. Polymerase chain reaction (PCR) amplification from all tissues except the temporalis and sternocleidomastoid muscles, diaphragm and kidney, in which no deletion was found, showed the deletion from at least exon 6 to the 5{prime} end containing both muscle and brain promoters. In this case, a genomic deletion of the DMD gene contributed to the formation of tissues derived from both ectoderm and endoderm, and cells of mesodermal origin showed genotypic and phenotypic heterogeneity. Our results indicate a mutation of the present case may have occurred just before the period of germ layer formation. 34 refs., 7 figs.

  19. Method for introducing unidirectional nested deletions

    DOEpatents

    Dunn, John J.; Quesada, Mark A.; Randesi, Matthew

    2001-01-01

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment in the context of a cloning vector which contains an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment. Also disclosed is a method for producing single-stranded DNA probes utilizing the same cloning vector. An optimal vector, PZIP is described. Methods for introducing unidirectional deletions into a terminal location of a cloned DNA sequence which is inserted into the vector of the present invention are also disclosed. These methods are useful for introducing deletions into either or both ends of a cloned DNA insert, for high throughput sequencing of any DNA of interest.

  20. Enhance, delete, incept: Manipulating hippocampus-dependent memories☆

    PubMed Central

    Spiers, Hugo J.; Bendor, Daniel

    2014-01-01

    Here we provide a brief overview of recent research on memory manipulation. We focus primarily on memories for which the hippocampus is thought to be required due to its central importance in the study of memory. The repertoire of methods employed is expanding and includes optogenetics, transcranial stimulation, deep brain stimulation, cued reactivation during sleep and the use of pharmacological agents. In addition, the possible mechanisms underlying these memory changes have been investigated using techniques such as single unit recording and functional magnetic resonance imaging (fMRI). This article is part of a Special Issue entitled ‘Memory enhancement’. PMID:24397964

  1. Selective neuronal PTEN deletion: can we take the brakes off of growth without losing control?

    PubMed Central

    Gutilla, Erin A.; Steward, Oswald

    2016-01-01

    The limited ability for injured adult axons to regenerate is a major cause for limited functional recovery after injury to the nervous system, motivating numerous efforts to uncover mechanisms capable of enhancing regeneration potential. One promising strategy involves deletion or knockdown of the phosphatase and tensin (PTEN) gene. Conditional genetic deletion of PTEN before, immediately following, or several months after spinal cord injury enables neurons of the corticospinal tract (CST) to regenerate their axons across the lesion, which is accompanied by enhanced recovery of skilled voluntary motor functions mediated by the CST. Although conditional genetic deletion or knockdown of PTEN in neurons enables axon regeneration, PTEN is a well-known tumor suppressor and mutations of the PTEN gene disrupt brain development leading to neurological abnormalities including macrocephaly, seizures, and early mortality. The long-term consequences of manipulating PTEN in the adult nervous system, as would be done for therapeutic intervention after injury, are only now being explored. Here, we summarize evidence indicating that long-term deletion of PTEN in mature neurons does not cause evident pathology; indeed, cortical neurons that have lived without PTEN for over 1 year appear robust and healthy. Studies to date provide only a first look at potential negative consequences of PTEN deletion or knockdown, but the absence of any detectable neuropathology supports guarded optimism that interventions to enable axon regeneration after injury are achievable. PMID:27651754

  2. Selective neuronal PTEN deletion: can we take the brakes off of growth without losing control?

    PubMed

    Gutilla, Erin A; Steward, Oswald

    2016-08-01

    The limited ability for injured adult axons to regenerate is a major cause for limited functional recovery after injury to the nervous system, motivating numerous efforts to uncover mechanisms capable of enhancing regeneration potential. One promising strategy involves deletion or knockdown of the phosphatase and tensin (PTEN) gene. Conditional genetic deletion of PTEN before, immediately following, or several months after spinal cord injury enables neurons of the corticospinal tract (CST) to regenerate their axons across the lesion, which is accompanied by enhanced recovery of skilled voluntary motor functions mediated by the CST. Although conditional genetic deletion or knockdown of PTEN in neurons enables axon regeneration, PTEN is a well-known tumor suppressor and mutations of the PTEN gene disrupt brain development leading to neurological abnormalities including macrocephaly, seizures, and early mortality. The long-term consequences of manipulating PTEN in the adult nervous system, as would be done for therapeutic intervention after injury, are only now being explored. Here, we summarize evidence indicating that long-term deletion of PTEN in mature neurons does not cause evident pathology; indeed, cortical neurons that have lived without PTEN for over 1 year appear robust and healthy. Studies to date provide only a first look at potential negative consequences of PTEN deletion or knockdown, but the absence of any detectable neuropathology supports guarded optimism that interventions to enable axon regeneration after injury are achievable.

  3. Selective neuronal PTEN deletion: can we take the brakes off of growth without losing control?

    PubMed Central

    Gutilla, Erin A.; Steward, Oswald

    2016-01-01

    The limited ability for injured adult axons to regenerate is a major cause for limited functional recovery after injury to the nervous system, motivating numerous efforts to uncover mechanisms capable of enhancing regeneration potential. One promising strategy involves deletion or knockdown of the phosphatase and tensin (PTEN) gene. Conditional genetic deletion of PTEN before, immediately following, or several months after spinal cord injury enables neurons of the corticospinal tract (CST) to regenerate their axons across the lesion, which is accompanied by enhanced recovery of skilled voluntary motor functions mediated by the CST. Although conditional genetic deletion or knockdown of PTEN in neurons enables axon regeneration, PTEN is a well-known tumor suppressor and mutations of the PTEN gene disrupt brain development leading to neurological abnormalities including macrocephaly, seizures, and early mortality. The long-term consequences of manipulating PTEN in the adult nervous system, as would be done for therapeutic intervention after injury, are only now being explored. Here, we summarize evidence indicating that long-term deletion of PTEN in mature neurons does not cause evident pathology; indeed, cortical neurons that have lived without PTEN for over 1 year appear robust and healthy. Studies to date provide only a first look at potential negative consequences of PTEN deletion or knockdown, but the absence of any detectable neuropathology supports guarded optimism that interventions to enable axon regeneration after injury are achievable.

  4. Selective neuronal PTEN deletion: can we take the brakes off of growth without losing control?

    PubMed

    Gutilla, Erin A; Steward, Oswald

    2016-08-01

    The limited ability for injured adult axons to regenerate is a major cause for limited functional recovery after injury to the nervous system, motivating numerous efforts to uncover mechanisms capable of enhancing regeneration potential. One promising strategy involves deletion or knockdown of the phosphatase and tensin (PTEN) gene. Conditional genetic deletion of PTEN before, immediately following, or several months after spinal cord injury enables neurons of the corticospinal tract (CST) to regenerate their axons across the lesion, which is accompanied by enhanced recovery of skilled voluntary motor functions mediated by the CST. Although conditional genetic deletion or knockdown of PTEN in neurons enables axon regeneration, PTEN is a well-known tumor suppressor and mutations of the PTEN gene disrupt brain development leading to neurological abnormalities including macrocephaly, seizures, and early mortality. The long-term consequences of manipulating PTEN in the adult nervous system, as would be done for therapeutic intervention after injury, are only now being explored. Here, we summarize evidence indicating that long-term deletion of PTEN in mature neurons does not cause evident pathology; indeed, cortical neurons that have lived without PTEN for over 1 year appear robust and healthy. Studies to date provide only a first look at potential negative consequences of PTEN deletion or knockdown, but the absence of any detectable neuropathology supports guarded optimism that interventions to enable axon regeneration after injury are achievable. PMID:27651754

  5. IAP gene deletion and conditional knockout models.

    PubMed

    Silke, John; Vaux, David L

    2015-03-01

    Gene deletion studies have helped reveal the unique and overlapping roles played by IAP proteins. Crossing IAP mutant mice has helped unravel the complex feed-back regulatory circuits in which cIAP1, cIAP2 and XIAP allow innate defensive responses to microbial pathogens, without the development of auto-inflammatory syndromes. Deletion of genes for Survivin and its homologs in yeasts, invertebrates and mammals has shown that it functions differently, as it is not a regulator of innate immunity or apoptosis, but acts together with INCENP, aurora kinase B and Borealin to allow chromosome segregation during mitosis. PMID:25545814

  6. Phenotypic variability in Angelman syndrome: comparison among different deletion classes and between deletion and UPD subjects.

    PubMed

    Varela, Monica Castro; Kok, Fernando; Otto, Paulo Alberto; Koiffmann, Celia Priszkulnik

    2004-12-01

    Angelman syndrome (AS) can result from either a 15q11-q13 deletion (del), paternal uniparental disomy (UPD), imprinting, or UBE3A mutations. Here, we describe the phenotypic and behavioral variability detected in 49 patients with different classes of deletions and nine patients with UPD. Diagnosis was made by methylation pattern analysis of exon 1 of the SNRPN-SNURF gene and by microsatellite profiling of loci within and outside the 15q11-q13 region. There were no major phenotypic differences between the two main classes (BP1-BP3; BP2-BP3) of AS deletion patients, except for the absence of vocalization, more prevalent in patients with BP1-BP3 deletions, and for the age of sitting without support, which was lower in patients with BP2-BP3 deletions. Our data suggest that gene deletions (NIPA1, NIPA2, CYF1P1, GCP5) mapped to the region between breakpoints BP1 and BP2 may be involved in the severity of speech impairment, since all BP1-BP3 deletion patients showed complete absence of vocalization, while 38.1% of the BP2-BP3 deletion patients were able to pronounce syllabic sounds, with doubtful meaning. Compared to UPD patients, deletion patients presented a higher incidence of swallowing disorders (73.9% del x 22.2% UPD) and hypotonia (73.3% del x 28.57% UPD). In addition, children with UPD showed better physical growth, fewer or no seizures, a lower incidence of microcephaly, less ataxia and higher cognitive skills. As a consequence of their milder or less typical phenotype, AS may remain undiagnosed, leading to an overall underdiagnosis of the disease.

  7. 77 FR 68737 - Procurement List, Proposed Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... From the Federal Register Online via the Government Publishing Office COMMITTEE FOR PURCHASE FROM... Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Deletions from the Procurement... Must Be Received On or Before: 12/17/2012. ADDRESSES: Committee for Purchase From People Who Are...

  8. 78 FR 65618 - Procurement List; Proposed Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... From the Federal Register Online via the Government Publishing Office COMMITTEE FOR PURCHASE FROM... Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Deletions from the Procurement... Received on or Before: 12/2/2013. ADDRESSES: Committee for Purchase From People Who Are Blind or...

  9. Deletion 5q35.3

    SciTech Connect

    Stratton, R.F.; Tedrowe, N.A.; Tolworthy, J.A.; Patterson, R.M.; Ryan, S.G.; Young, R.S.

    1994-06-01

    The authors report on a 15-month-old boy with a de novo deletion of the terminal band of 5q, macrocephaly, mild retrognathia, anteverted nares with low flat nasal bridge, telecanthus, minor earlobe anomalies, bellshaped chest, diastasis recti, short fingers, and mild developmental delay.

  10. Interstitial deletion (6)q13q15

    SciTech Connect

    Gershoni-Baruch, R.; Mandel, H.; Bar El, H.; Bar-Nizan, N.; Borochowitz, Z.; Dar, Hanna

    1996-04-24

    We report on a 2-year-old child with psychomotor retardation, facial and urogenital anomalies. His chromosome constitution was 46,XY,del(6)(q13q15). This case further contributes to the karyotype-phenotype correlation of proximal deletion 6q syndromes. 18 refs., 3 figs., 1 tab.

  11. 78 FR 23543 - Procurement List Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ...--Medical Equipment Set, X-Ray, Field NSN: 6545-00-920-7125--First Aid Kit, Gun Crew NPA: Ontario County...@AbilityOne.gov . SUPPLEMENTARY INFORMATION: Deletions On 3/8/2013 (78 FR 15000) and 11/2/2012 (77 FR...

  12. 22q11 deletion syndrome: current perspective

    PubMed Central

    Hacıhamdioğlu, Bülent; Hacıhamdioğlu, Duygu; Delil, Kenan

    2015-01-01

    Chromosome 22q11 is characterized by the presence of chromosome-specific low-copy repeats or segmental duplications. This region of the chromosome is very unstable and susceptible to mutations. The misalignment of low-copy repeats during nonallelic homologous recombination leads to the deletion of the 22q11.2 region, which results in 22q11 deletion syndrome (22q11DS). The 22q11.2 deletion is associated with a wide variety of phenotypes. The term 22q11DS is an umbrella term that is used to encompass all 22q11.2 deletion-associated phenotypes. The haploinsufficiency of genes located at 22q11.2 affects the early morphogenesis of the pharyngeal arches, heart, skeleton, and brain. TBX1 is the most important gene for 22q11DS. This syndrome can ultimately affect many organs or systems; therefore, it has a very wide phenotypic spectrum. An increasing amount of information is available related to the pathogenesis, clinical phenotypes, and management of this syndrome in recent years. This review summarizes the current clinical and genetic status related to 22q11DS. PMID:26056486

  13. Deletion of GPIHBP1 causing severe chylomicronemia.

    PubMed

    Rios, Jonathan J; Shastry, Savitha; Jasso, Juan; Hauser, Natalie; Garg, Abhimanyu; Bensadoun, André; Cohen, Jonathan C; Hobbs, Helen H

    2012-05-01

    Lipoprotein lipase (LPL) is a hydrolase that cleaves circulating triglycerides to release fatty acids to the surrounding tissues. The enzyme is synthesized in parenchymal cells and is transported to its site of action on the capillary endothelium by glycophosphatidylinositol (GPI)-anchored high-density lipoprotein-binding protein 1 (GPIHBP1). Inactivating mutations in LPL; in its cofactor, apolipoprotein (Apo) C2; or in GPIHBP1 cause severe hypertriglyceridemia. Here we describe an individual with complete deficiency of GPIHBP1. The proband was an Asian Indian boy who had severe chylomicronemia at 2 months of age. Array-based copy-number analysis of his genomic DNA revealed homozygosity for a 17.5-kb deletion that included GPIHBP1. A 44-year-old aunt with a history of hypertriglyceridemia and pancreatitis was also homozygous for the deletion. A bolus of intravenously administered heparin caused a rapid increase in circulating LPL and decreased plasma triglyceride levels in control individuals but not in two GPIHBP1-deficient patients. Thus, short-term treatment with heparin failed to attenuate the hypertriglyceridemia in patients with GPIHBP1 deficiency. The increasing resolution of copy number microarrays and their widespread adoption for routine cytogenetic analysis is likely to reveal a greater role for submicroscopic deletions in Mendelian conditions. We describe the first neonate with complete GPIHBP1 deficiency due to homozygosity for a deletion of GPIHBP1. PMID:22008945

  14. 78 FR 77106 - Procurement List; Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... INFORMATION: Deletions On 11/8/2013 (78 FR 67129-67130) and 11/15/2013 (78 FR 68823- 68824), the Committee for... Building and Courthouse, 205 4th Street, Coeur d'Alene, ID, U.S. Federal Building, St. Maries, ID NPA: TESH, Inc., Coeur d'Alene, ID Contracting Activity: GENERAL SERVICES ADMINISTRATION, FPDS AGENCY...

  15. Improving freeze-tolerance of baker's yeast through seamless gene deletion of NTH1 and PUT1.

    PubMed

    Dong, Jian; Chen, Didi; Wang, Guanglu; Zhang, Cuiying; Du, Liping; Liu, Shanshan; Zhao, Yu; Xiao, Dongguang

    2016-06-01

    Baker's yeast strains with freeze-tolerance are highly desirable to maintain high leavening ability after freezing. Enhanced intracellular concentration of trehalose and proline in yeast is linked with freeze-tolerance. In this study, we constructed baker's yeast with enhanced freeze-tolerance by simultaneous deletion of the neutral trehalase-encoded gene NTH1 and the proline oxidase-encoded gene PUT1. We first used the two-step integration-based seamless gene deletion method to separately delete NTH1 and PUT1 in haploid yeast. Subsequently, through two rounds of hybridization and sporulation-based allelic exchange and colony PCR-mediated tetrad analysis, we obtained strains with restored URA3 and deletion of NTH1 and/or PUT1. The resulting strain showed higher cell survival and dough-leavening ability after freezing compared to the wild-type strain due to enhanced accumulation of trehalose and/or proline. Moreover, mutant with simultaneous deletion of NTH1 and PUT1 exhibits the highest relative dough-leavening ability after freezing compared to mutants with single-gene deletion perhaps due to elevated levels of both trehalose and proline. These results verified that it is applicable to construct frozen dough baker's yeast using the method proposed in this paper.

  16. Improving freeze-tolerance of baker's yeast through seamless gene deletion of NTH1 and PUT1.

    PubMed

    Dong, Jian; Chen, Didi; Wang, Guanglu; Zhang, Cuiying; Du, Liping; Liu, Shanshan; Zhao, Yu; Xiao, Dongguang

    2016-06-01

    Baker's yeast strains with freeze-tolerance are highly desirable to maintain high leavening ability after freezing. Enhanced intracellular concentration of trehalose and proline in yeast is linked with freeze-tolerance. In this study, we constructed baker's yeast with enhanced freeze-tolerance by simultaneous deletion of the neutral trehalase-encoded gene NTH1 and the proline oxidase-encoded gene PUT1. We first used the two-step integration-based seamless gene deletion method to separately delete NTH1 and PUT1 in haploid yeast. Subsequently, through two rounds of hybridization and sporulation-based allelic exchange and colony PCR-mediated tetrad analysis, we obtained strains with restored URA3 and deletion of NTH1 and/or PUT1. The resulting strain showed higher cell survival and dough-leavening ability after freezing compared to the wild-type strain due to enhanced accumulation of trehalose and/or proline. Moreover, mutant with simultaneous deletion of NTH1 and PUT1 exhibits the highest relative dough-leavening ability after freezing compared to mutants with single-gene deletion perhaps due to elevated levels of both trehalose and proline. These results verified that it is applicable to construct frozen dough baker's yeast using the method proposed in this paper. PMID:26965428

  17. Recurring exon deletions in the haptoglobin (HP) gene associate with lower blood cholesterol levels

    PubMed Central

    Boettger, Linda M.; Salem, Rany M.; Handsaker, Robert E.; Peloso, Gina; Kathiresan, Sekar; Hirschhorn, Joel; McCarroll, Steven A.

    2016-01-01

    Two exons of the human haptoglobin (HP) gene exhibit copy number variation that affects HP multimerization and underlies one of the first protein polymorphisms identified in humans. The evolutionary origins and medical significance of this polymorphism have been uncertain. Here we show that this variation has likely arisen from the recurring reversion of an ancient hominin-specific duplication of these exons. Though this polymorphism has been largely invisible to genome-wide genetic studies to date, we describe a way to analyze it by imputation from SNP haplotypes and find among 22,288 individuals that these HP exonic deletions associate with reduced LDL and total cholesterol levels. We show that these deletions, and a SNP that affects HP expression, are the likely drivers of the strong but complex association of cholesterol levels to SNPs near HP. Recurring exonic deletions in the haptoglobin gene likely enhance human health by lowering cholesterol levels in the blood. PMID:26901066

  18. Interstitial deletion of distal 13q associated with Hirschsprung's disease.

    PubMed Central

    Lamont, M A; Fitchett, M; Dennis, N R

    1989-01-01

    Three cases of interstitial deletion of chromosome 13 involving the common segment 13q22.1----q32.1 are reported. In addition to the recognised clinical features of this deletion, two had Hirschsprung's disease. Images PMID:2918536

  19. In-Frame Deletions Allow Functional Characterization of Complex Cellulose Degradation Phenotypes in Cellvibrio japonicus

    PubMed Central

    Nelson, Cassandra E.

    2015-01-01

    The depolymerization of the recalcitrant polysaccharides found in lignocellulose has become an area of intense interest due to the role of this process in global carbon cycling, human gut microbiome nutritional contributions, and bioenergy production. However, underdeveloped genetic tools have hampered study of bacterial lignocellulose degradation, especially outside model organisms. In this report, we describe an in-frame deletion strategy for the Gram-negative lignocellulose-degrading bacterium Cellvibrio japonicus. This method leverages optimized growth conditions for conjugation and sacB counterselection for the generation of markerless in-frame deletions. This method produces mutants in as few as 8 days and allows for the ability to make multiple gene deletions per strain. It is also possible to remove large sections of the genome, as shown in this report with the deletion of the nine-gene (9.4-kb) gsp operon in C. japonicus. We applied this system to study the complex phenotypes of cellulose degradation in C. japonicus. Our data indicated that a Δcel5B Δcel6A double mutant is crippled for cellulose utilization, more so than by either single mutation alone. Additionally, we deleted individual genes in the two-gene cbp2ED operon and showed that both genes contribute to cellulose degradation in C. japonicus. Overall, these described techniques substantially enhance the utility of C. japonicus as a model system to study lignocellulose degradation. PMID:26116676

  20. Digital PCR methods improve detection sensitivity and measurement precision of low abundance mtDNA deletions

    PubMed Central

    Belmonte, Frances R.; Martin, James L.; Frescura, Kristin; Damas, Joana; Pereira, Filipe; Tarnopolsky, Mark A.; Kaufman, Brett A.

    2016-01-01

    Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error. PMID:27122135

  1. Depth perception from dynamic occlusion in motion parallax: roles of expansion-compression versus accretion-deletion.

    PubMed

    Yoonessi, Ahmad; Baker, Curtis L

    2013-10-15

    Motion parallax, or differential retinal image motion from observer movement, provides important information for depth perception. We previously measured the contribution of shear motion parallax to depth, which is only composed of relative motion information. Here, we examine the roles of relative motion and accretion-deletion information in dynamic occlusion motion parallax. Observers performed two-alternative forced choice depth-ordering tasks in response to low spatial frequency patterns of horizontal random dot motion that were synchronized to the observer's head movements. We examined conditions that isolated or combined expansion-compression and accretion-deletion across a range of simulated relative depths. At small depths, expansion-compression provided reliable depth perception while accretion-deletion had a minor contribution: When the two were in conflict, the perceived depth was dominated by expansion-compression. At larger depths in the cue-conflict experiment, accretion-deletion determined the depth-ordering performance. Accretion-deletion in isolation did not yield any percept of depth even though, in theory, it provided sufficient information for depth ordering. Thus, accretion-deletion can substantially enhance depth perception at larger depths but only in the presence of relative motion. The results indicate that expansion-compression contributes to depth from motion parallax across a broad range of depths whereas accretion-deletion contributes primarily at larger depths.

  2. Genetics Home Reference: 22q11.2 deletion syndrome

    MedlinePlus

    ... Home Health Conditions 22q11.2 deletion syndrome 22q11.2 deletion syndrome Enable Javascript to view the expand/ ... Download PDF Open All Close All Description 22q11.2 deletion syndrome (which is also known by several ...

  3. Genetics Home Reference: 22q13.3 deletion syndrome

    MedlinePlus

    ... Home Health Conditions 22q13.3 deletion syndrome 22q13.3 deletion syndrome Enable Javascript to view the expand/ ... Download PDF Open All Close All Description 22q13.3 deletion syndrome , which is also commonly known as ...

  4. Rac1 deletion causes thymic atrophy.

    PubMed

    Hunziker, Lukas; Benitah, Salvador Aznar; Aznar Benitah, Salvador; Braun, Kristin M; Jensen, Kim; McNulty, Katrina; Butler, Colin; Potton, Elspeth; Nye, Emma; Boyd, Richard; Laurent, Geoff; Glogauer, Michael; Wright, Nick A; Watt, Fiona M; Janes, Sam M

    2011-04-29

    The thymic stroma supports T lymphocyte development and consists of an epithelium maintained by thymic epithelial progenitors. The molecular pathways that govern epithelial homeostasis are poorly understood. Here we demonstrate that deletion of Rac1 in Keratin 5/Keratin 14 expressing embryonic and adult thymic epithelial cells leads to loss of the thymic epithelial compartment. Rac1 deletion led to an increase in c-Myc expression and a generalized increase in apoptosis associated with a decrease in thymic epithelial proliferation. Our results suggest Rac1 maintains the epithelial population, and equilibrium between Rac1 and c-Myc may control proliferation, apoptosis and maturation of the thymic epithelial compartment. Understanding thymic epithelial maintenance is a step toward the dual goals of in vitro thymic epithelial cell culture and T cell differentiation, and the clinical repair of thymic damage from graft-versus-host-disease, chemotherapy or irradiation.

  5. Duplication/deletion of chromosome 8p

    SciTech Connect

    Priest, J.H.

    1995-09-11

    The article by Guo et al. provides evidence for deletion of D8S596 loci (assigned to 8p23) in at least some patients with inverted duplications of 8p. Cytogenetic break points forming the inverted duplication are remarkably similar among most of their patients and those reported previously, suggesting a common mechanism for this interesting rearrangement. Why should similar breaks occur in 8p and why is a FISH signal absent in the distal short arm when the ONCOR digoxigenin-labeled probe for loci D8S596 is used? Other studies also indicate that duplication for the region 8p12-p22 is associated with a deletion distal to the duplication itself. 4 refs.

  6. A review of 18p deletions.

    PubMed

    Hasi-Zogaj, Minire; Sebold, Courtney; Heard, Patricia; Carter, Erika; Soileau, Bridgette; Hill, Annice; Rupert, David; Perry, Brian; Atkinson, Sidney; O'Donnell, Louise; Gelfond, Jon; Lancaster, Jack; Fox, Peter T; Hale, Daniel E; Cody, Jannine D

    2015-09-01

    Since 18p- was first described in 1963, much progress has been made in our understanding of this classic deletion condition. We have been able to establish a fairly complete picture of the phenotype when the deletion breakpoint occurs at the centromere, and we are working to establish the phenotypic effects when each gene on 18p is hemizygous. Our aim is to provide genotype-specific anticipatory guidance and recommendations to families with an 18p- diagnosis. In addition, establishing the molecular underpinnings of the condition will potentially suggest targets for molecular treatments. Thus, the next step is to establish the precise effects of specific gene deletions. As we look forward to deepening our understanding of 18p-, our focus will continue to be on the establishment of robust genotype-phenotype correlations and the penetrance of these phenotypes. We will continue to follow our 18p- cohort closely as they age to determine the presence or absence of some of these diagnoses, including spinocerebellar ataxia (SCA), facioscapulohumeral muscular dystrophy (FSHD), and dystonia. We will also continue to refine the critical regions for other phenotypes as we enroll additional (hopefully informative) participants into the research study and as the mechanisms of the genes in these regions are elucidated. Mouse models will also be developed to further our understanding of the effects of hemizygosity as well as to serve as models for treatment development. PMID:26250845

  7. Probabilistic phylogenetic inference with insertions and deletions.

    PubMed

    Rivas, Elena; Eddy, Sean R

    2008-01-01

    A fundamental task in sequence analysis is to calculate the probability of a multiple alignment given a phylogenetic tree relating the sequences and an evolutionary model describing how sequences change over time. However, the most widely used phylogenetic models only account for residue substitution events. We describe a probabilistic model of a multiple sequence alignment that accounts for insertion and deletion events in addition to substitutions, given a phylogenetic tree, using a rate matrix augmented by the gap character. Starting from a continuous Markov process, we construct a non-reversible generative (birth-death) evolutionary model for insertions and deletions. The model assumes that insertion and deletion events occur one residue at a time. We apply this model to phylogenetic tree inference by extending the program dnaml in phylip. Using standard benchmarking methods on simulated data and a new "concordance test" benchmark on real ribosomal RNA alignments, we show that the extended program dnamlepsilon improves accuracy relative to the usual approach of ignoring gaps, while retaining the computational efficiency of the Felsenstein peeling algorithm. PMID:18787703

  8. Experimental quantum deletion in an NMR quantum information processor

    NASA Astrophysics Data System (ADS)

    Long, Yu; Feng, GuanRu; Pearson, Jasong; Long, GuiLu

    2014-07-01

    We report an NMR experimental realization of a rapid quantum deletion algorithm that deletes marked states in an unsorted database. Unlike classical deletion, where search and deletion are equivalent, quantum deletion can be implemented with only a single query, which achieves exponential speed-up compared to the optimal classical analog. In the experimental realization, the GRAPE algorithm was used to obtain an optimized NMR pulse sequence, and the efficient method of maximum-likelihood has been used to reconstruct the experimental output state.

  9. Deletion of pyruvate decarboxylase by a new method for efficient markerless gene deletions in Gluconobacter oxydans.

    PubMed

    Peters, Björn; Junker, Anja; Brauer, Katharina; Mühlthaler, Bernadette; Kostner, David; Mientus, Markus; Liebl, Wolfgang; Ehrenreich, Armin

    2013-03-01

    Gluconobacter oxydans, a biotechnologically relevant species which incompletely oxidizes a large variety of carbohydrates, alcohols, and related compounds, contains a gene for pyruvate decarboxylase (PDC). This enzyme is found only in very few species of bacteria where it is normally involved in anaerobic ethanol formation via acetaldehyde. In order to clarify the role of PDC in the strictly oxidative metabolism of acetic acid bacteria, we developed a markerless in-frame deletion system for strain G. oxydans 621H which uses 5-fluorouracil together with a plasmid-encoded uracil phosphoribosyltransferase as counter selection method and used this technique to delete the PDC gene (GOX1081) of G. oxydans 621H. The PDC deletion mutant accumulated large amounts of pyruvate but almost no acetate during growth on D-mannitol, D-fructose or in the presence of L-lactate. This suggested that in G. oxydans acetate formation occurs by decarboxylation of pyruvate and subsequent oxidation of acetaldehyde to acetate. This observation and the efficiency of the markerless deletion system were confirmed by constructing deletion mutants of two acetaldehyde dehydrogenases (GOX1122 and GOX2018) and of the acetyl-CoA-synthetase (GOX0412). Acetate formation during growth of these mutants on mannitol did not differ significantly from the wild-type strain.

  10. FLCN intragenic deletions in Chinese familial primary spontaneous pneumothorax.

    PubMed

    Ding, Yibing; Zhu, Chengchu; Zou, Wei; Ma, Dehua; Min, Haiyan; Chen, Baofu; Ye, Minhua; Pan, Yanqing; Cao, Lei; Wan, Yueming; Zhang, Wenwen; Meng, Lulu; Mei, Yuna; Yang, Chi; Chen, Shilin; Gao, Qian; Yi, Long

    2015-05-01

    Primary spontaneous pneumothorax (PSP) is a significant clinical problem, affecting tens of thousands patients annually. Germline mutations in the FLCN gene have been implicated in etiology of familial PSP (FPSP). Most of the currently identified FLCN mutations are small indels or point mutations that detected by Sanger sequencing. The aim of this study was to determine large FLCN deletions in PSP families that having no FLCN sequence-mutations. Multiplex ligation-dependent probe amplification (MLPA) assays and breakpoint analyses were used to detect and characterize the deletions. Three heterozygous FLCN intragenic deletions were identified in nine unrelated Chinese families including the exons 1-3 deletion in two families, the exons 9-14 deletion in five families and the exon 14 deletion in two families. All deletion breakpoints are located in Alu repeats. A 5.5 Mb disease haplotype shared in the five families with exons 9-14 deletion may date the appearance of this deletion back to approximately 16 generations ago. Evidences for founder effects of the other two deletions were also observed. This report documents the first identification of founder mutations in FLCN, as well as expands mutation spectrum of the gene. Our findings strengthen the view that MLPA analysis for intragenic deletions/duplications, as an important genetic testing complementary to DNA sequencing, should be used for clinical molecular diagnosis in FPSP.

  11. Phenotypic characterization of rare interstitial deletion of chromosome 4

    PubMed Central

    Ismail, Samira; Helmy, Nivine A.; Mahmoud, Wael M.; El-Ruby, Mona O.

    2012-01-01

    Interstitial deletion of the long arm of chromosome 4 is rare. Patients with interstitial deletion of the long arm of chromosome 4 differ from those with terminal deletions. Phenotypes may be variable, depending upon the specific length and location of the deleted portion. Here, we report on a boy exhibiting most of the congenital malformations encountered in terminal 4q syndrome. The conventional karyotyping and Fluorescence in-situ hybridization revealed a de novo interstitial del (4)(q31q32). The current report is a further document highlighting that deletion of segment q31 could be contributing to the expression of most of the phenotype of 4q deletion syndrome. Using array comparative genome hybridization methodology is recommended for investigating further cases with similar segmental interstitial deletions to support and delineate findings and to define genes implicated in the pathogenesis of the disorder.

  12. Method for introducing unidirectional nested deletions

    DOEpatents

    Dunn, John J.; Quesada, Mark A.; Randesi, Matthew

    1999-07-27

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.

  13. Method for introducing unidirectional nested deletions

    DOEpatents

    Dunn, J.J.; Quesada, M.A.; Randesi, M.

    1999-07-27

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector. The cloning vector has an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe. 1 fig.

  14. Arginase II Deletion Increases Corpora Cavernosa Relaxation in Diabetic Mice

    PubMed Central

    Toque, Haroldo; Tostes, Rita; Yao, Lin; Xu, Zhimin; Webb, Clinton R.; Caldwell, Ruth; Caldwell, Robert

    2010-01-01

    Introduction Diabetes-induced erectile dysfunction involves elevated arginase (Arg) activity and expression. Because nitric oxide (NO) synthase and Arg share and compete for their substrate L-arginine, NO production is likely linked to regulation of Arg. Arg is highly expressed and implicated in erectile dysfunction. Aim It was hypothesized that Arg-II isoform deletion enhances relaxation function of corpora cavernosal (CC) smooth muscle in a streptozotocin (STZ) diabetic model. Methods Eight weeks after STZ-induced diabetes, vascular functional studies, Arg activity assay, and protein expression levels of Arg and constitutive NOS (using western blots) were assessed in CC tissues from non-diabetic wild type (WT), diabetic (D) WT (WT+D), Arg-II knockout (KO) and Arg-II KO+D mice (N=8–10 per group). Main Outcome Measures Inhibition or lack of arginase results in facilitation of CC relaxation in diabetic CC. Results Strips of CC from Arg-II KO mice exhibited an enhanced maximum endothelium-dependent relaxation (from 70+3% to 84+4%) and increased nitrergic relaxation (by 55%, 71%, 42%, 42%, and 24% for 1, 2, 4, 8 and 16 Hz, respectively) compared to WT mice. WT+D mice showed a significant reduction of endothelium-dependent maximum relaxation (44+8%), but this impairment of relaxation was significantly prevented in Arg-II KO+D mice (69+4%). Sympathetic-mediated and alpha-adrenergic agent-induced contractile responses also were increased in CC strips from D compared to non-D controls. Contractile responses were significantly lower in Arg-II KO control and D versus the WT groups. WT+D mice increased Arg activity (1.5-fold) and Arg-II protein expression and decreased total and phospho-eNOS at Ser-1177, and nNOS levels. These alterations were not seen in Arg-II KO mice. Additionally, the Arg inhibitor BEC (50 μM) enhanced nitrergic and endothelium-dependent relaxation in CC of WT+D mice. Conclusion These studies show for the first time that Arg-II deletion improves CC

  15. Whole genome HBV deletion profiles and the accumulation of preS deletion mutant during antiviral treatment

    PubMed Central

    2012-01-01

    Background Hepatitis B virus (HBV), because of its error-prone viral polymerase, has a high mutation rate leading to widespread substitutions, deletions, and insertions in the HBV genome. Deletions may significantly change viral biological features complicating the progression of liver diseases. However, the clinical conditions correlating to the accumulation of deleted mutants remain unclear. In this study, we explored HBV deletion patterns and their association with disease status and antiviral treatment by performing whole genome sequencing on samples from 51 hepatitis B patients and by monitoring changes in deletion variants during treatment. Clone sequencing was used to analyze preS regions in another cohort of 52 patients. Results Among the core, preS, and basic core promoter (BCP) deletion hotspots, we identified preS to have the highest frequency and the most complex deletion pattern using whole genome sequencing. Further clone sequencing analysis on preS identified 70 deletions which were classified into 4 types, the most common being preS2. Also, in contrast to the core and BCP regions, most preS deletions were in-frame. Most deletions interrupted viral surface epitopes, and are possibly involved in evading immuno-surveillance. Among various clinical factors examined, logistic regression showed that antiviral medication affected the accumulation of deletion mutants (OR = 6.81, 95% CI = 1.296 ~ 35.817, P = 0.023). In chronic carriers of the virus, and individuals with chronic hepatitis, the deletion rate was significantly higher in the antiviral treatment group (Fisher exact test, P = 0.007). Particularly, preS2 deletions were associated with the usage of nucleos(t)ide analog therapy (Fisher exact test, P = 0.023). Dynamic increases in preS1 or preS2 deletions were also observed in quasispecies from samples taken from patients before and after three months of ADV therapy. In vitro experiments demonstrated that preS2 deletions alone

  16. Molecular imaging of 1p/19q deletion in oligodendroglial tumours with 11C-methionine positron emission tomography

    PubMed Central

    Iwadate, Yasuo; Shinozaki, Natsuki; Matsutani, Tomoo; Uchino, Yoshio; Saeki, Naokatsu

    2016-01-01

    Objective Chromosome 1p/19q deletion is an established prognostic and predictive marker in the WHO grade III oligodendroglial tumours (OT). To estimate the genetic status preoperatively, the authors investigated the correlation between the uptake of 11C-methionine in positron emission tomography (PET) and the 1p/19q status in grades II and III OT. Methods We retrospectively reviewed 144 patients with gliomas who received 11C-methionine PET. 66 cases with grades II–III oligodendrogliomas or oligoastrocytomas underwent fluorescence in situ hybridisation to determine the 1p/19q status. The tissue uptake of 11C-methionine was expressed as the ratio of the maximum standardised uptake value (SUVmax) in tumour areas to the mean SUV (SUVmean) in the contralateral normal brain (tumour-to-normal tissue (T/N) ratio). Results The T/N ratio in 11C-methionine PET was significantly higher in grade III OT than in grade II tumours. The mean T/N ratio of the grade II tumours without 1p/19q deletion was significantly higher than that of the grade II tumours with 1p/19q deletion (mean 2.67 vs 1.94, respectively; p=0.0457). In grade III tumours, the mean T/N ratio of the tumours without 1p/19q deletion was also significantly higher than that of the tumours with 1p/19q deletion (mean 4.83 vs 3.49, respectively; p=0.0261). The rate of IDH1 mutation was lower and the rate of contrast enhancement on MRIs was higher in the 1p/19q non-deleted OT than those with 1p/19q deletion, which may contribute to the high T/N ratio. Conclusions Among suspected OT, 11C-methionine PET may help us preoperatively discriminate tumours with and without 1p/19q deletion. PMID:26848169

  17. Are there ethnic differences in deletions in the dystrophin gene?

    SciTech Connect

    Banerjee, M.; Verma, I.C.

    1997-01-20

    We studied 160 cases of Duchenne muscular dystrophy (DMD) drawn from all parts of India, using multiplex PCR of 27 exons. Of these, 103 (64.4%) showed intragenic deletions. Most (69.7%) of the deletions involved exons 45-51. The phenotype of cases with deletion of single exons did not differ significantly from those with deletion of multiple exons. The distribution of deletions in studies from different countries was variable, but this was accounted for either by the small number of cases studied, or by fewer exons analyzed. It is concluded that there is likely to be no ethnic difference with respect to deletions in the DMD gene. 38 refs., 2 figs., 3 tabs.

  18. FAK deletion accelerates liver regeneration after two-thirds partial hepatectomy

    PubMed Central

    Shang, Na; Arteaga, Maribel; Chitsike, Lennox; Wang, Fang; Viswakarma, Navin; Breslin, Peter; Qiu, Wei

    2016-01-01

    Understanding the molecular mechanisms of liver regeneration is essential to improve the survival rate of patients after surgical resection of large amounts of liver tissue. Focal adhesion kinase (FAK) regulates different cellular functions, including cell survival, proliferation and cell migration. The role of FAK in liver regeneration remains unknown. In this study, we found that Fak is activated and induced during liver regeneration after two-thirds partial hepatectomy (PHx). We used mice with liver-specific deletion of Fak and investigated the role of Fak in liver regeneration in 2/3 PHx model (removal of 2/3 of the liver). We found that specific deletion of Fak accelerates liver regeneration. Fak deletion enhances hepatocyte proliferation prior to day 3 post-PHx but attenuates hepatocyte proliferation 3 days after PHx. Moreover, we demonstrated that the deletion of Fak in liver transiently increases EGFR activation by regulating the TNFα/HB-EGF axis during liver regeneration. Furthermore, we found more apoptosis in Fak-deficient mouse livers compared to WT mouse livers after PHx. Conclusion: Our data suggest that Fak is involved in the process of liver regeneration, and inhibition of FAK may be a promising strategy to accelerate liver regeneration in recipients after liver transplantation. PMID:27677358

  19. Deletions of the elastin gene in Williams Syndrome

    SciTech Connect

    Greenberg, F.; Nickerson, E.; McCaskill, C.

    1994-09-01

    To investigate deletions in the elastin gene in patients with Williams Syndrome (WS), we screened 37 patients and their parents for deletions in the elastin gene by both fluorescence in situ hybridization (FISH) using cosmid cELN272 containing the 5{prime} end of the elastin gene and by polymerase chain reaction (PCR) using a primer pair which amplifies intron 17 in the elastin gene, producing a polymorphic amplification product. Thirty-two patients have been investigated by both the FISH and PCR techniques, one patient was studied only by PCR, and 4 patients were studied only by FISH. Overall, 34 of 37 patients (92%) were deleted for the elastin gene. Using the PCR marker, 14 patients were informative and 12 were shown to be deleted [maternal (n=5) and paternal (n=7)]. Using cosmid cELN272, 33 of 36 patients demonstrated a deletion of chromosome 7q11.23. In one family, both the mother and daughter were deleted due to an apparently de novo deletion arising in the mother. Three patients were not deleted using the elastin cosmid; 2 of these patients have classic WS. Another non-deleted patient has the typical facial features and hypercalcemia but normal intelligence. These three patients will be important in delineating the critical region(s) responsible for the facial features, hypercalcemia, mental retardation and supravalvular aortic stenosis (SVAS). There was not an absolute correlation between deletions in elastin and SVAS, although these individuals may be at risk for other cardiovascular complications such as hypertention. Since the majority of WS patients are deleted for a portion of the elastin gene, most likely this marker will be an important diagnostic tool, although more patients will need to be studied. Those patients who are not deleted but clinically have WS will be missed using only this one marker. Expansion of the critical region to other loci and identification of additional markers will be essential for identifying all patients with WS.

  20. Comprehensive Analysis of Pathogenic Deletion Variants in Fanconi Anemia Genes

    PubMed Central

    Flynn, Elizabeth K.; Kamat, Aparna; Lach, Francis P.; Donovan, Frank X.; Kimble, Danielle C.; Narisu, Narisu; Sanborn, Erica; Boulad, Farid; Davies, Stella M.; Gillio, Alfred P.; Harris, Richard E.; MacMillan, Margaret L.; Wagner, John E.; Smogorzewska, Agata; Auerbach, Arleen D.; Ostrander, Elaine A.; Chandrasekharappa, Settara C.

    2014-01-01

    Fanconi anemia (FA) is a rare recessive disease resulting from mutations in one of at least 16 different genes. Mutation types and phenotypic manifestations of FA are highly heterogeneous and influence the clinical management of the disease. We analyzed 202 FA families for large deletions, using high-resolution Comparative Genome Hybridization arrays (arrayCGH), Single Nucleotide Polymorphism arrays (SNParrays) and DNA sequencing. We found pathogenic deletions in 88 FANCA, seven FANCC, two FANCD2, and one FANCB families. We find 35% of FA families carry large deletions, accounting for 18% of all FA pathogenic variants. Cloning and sequencing across the deletion breakpoints revealed that 52 FANCA deletion ends, and one FANCC deletion end extended beyond the gene boundaries, potentially affecting neighboring genes with phenotypic consequences. Seventy-five percent of the FANCA deletions are Alu-Alu mediated, predominantly by AluY elements, and appear to be caused by Non-Allelic Homologous Recombination. Individual Alu hotspots were identified. Defining the haplotypes of four FANCA deletions shared by multiple families revealed that three share a common ancestry. Knowing the exact molecular changes that lead to the disease may be critical for a better understanding of the FA phenotype, and to gain insight into the mechanisms driving these pathogenic deletion variants. PMID:25168418

  1. Polymorphic insertions and deletions in parabasalian enolase genes.

    PubMed

    Keeling, Patrick J

    2004-05-01

    Insertions and deletions in gene sequences have been used as characters to infer phylogenetic relationships and, like any character, the information they contain varies in utility between different levels of evolution. In one case, the absence of two otherwise highly conserved deletions in the enolase genes of parabasalian protists has been interpreted as a primitive characteristic that suggests these were among the first eukaryotes. Here, semi-environmental 3'-RACE was used to sample enolases from parabasalia in the hindgut of the termite Zootermopsis angusticolis to examine the conservation of this character within the parabasalia. Parabasalian homologues were found to be polymorphic for these deletions, and the phylogeny of parabasalian enolases shows that the deletion-possessing genes branch within deletion-lacking genes (i.e., they did not form two clearly distinct groups). Phylogenetic incongruence was detected in the carboxy-terminal third of the sequence (in the region of the deletions), but there is no unambiguous evidence for recombination. The polymorphism of this character discredits these deletions as strong evidence for the early origin of parabasalia, although the complex distribution makes it impossible to state whether parabasalian enolases were ancestrally like those of other eukaryotes. These observations stress the importance of strong corroborating evidence when considering insertion and deletion data, and raises some interesting questions about the apparent variation in degree of conservation of these deletions between different eukaryotic groups.

  2. Ventromedial hypothalamus–specific Ptpn1 deletion exacerbates diet-induced obesity in female mice

    PubMed Central

    Chiappini, Franck; Catalano, Karyn J.; Lee, Jennifer; Peroni, Odile D.; Lynch, Jacqueline; Dhaneshwar, Abha S.; Wellenstein, Kerry; Sontheimer, Alexandra; Neel, Benjamin G.; Kahn, Barbara B.

    2014-01-01

    Protein-tyrosine phosphatase 1B (PTP1B) regulates food intake (FI) and energy expenditure (EE) by inhibiting leptin signaling in the hypothalamus. In peripheral tissues, PTP1B regulates insulin signaling, but its effects on CNS insulin action are largely unknown. Mice harboring a whole-brain deletion of the gene encoding PTP1B (Ptpn1) are lean, leptin-hypersensitive, and resistant to high fat diet–induced (HFD-induced) obesity. Arcuate proopiomelanocortin (POMC) neuron–specific deletion of Ptpn1 causes a similar, but much milder, phenotype, suggesting that PTP1B also acts in other neurons to regulate metabolism. Steroidogenic factor-1–expressing (SF-1–expressing) neurons in the ventromedial hypothalamus (VMH) play an important role in regulating body weight, FI, and EE. Surprisingly, Ptpn1 deletion in SF-1 neurons caused an age-dependent increase in adiposity in HFD-fed female mice. Although leptin sensitivity was increased and FI was reduced in these mice, they had impaired sympathetic output and decreased EE. Immunohistochemical analysis showed enhanced leptin and insulin signaling in VMH neurons from mice lacking PTP1B in SF-1 neurons. Thus, in the VMH, leptin negatively regulates FI, promoting weight loss, whereas insulin suppresses EE, leading to weight gain. Our results establish a novel role for PTP1B in regulating insulin action in the VMH and suggest that increased insulin responsiveness in SF-1 neurons can overcome leptin hypersensitivity and enhance adiposity. PMID:25083988

  3. 78 FR 75912 - Procurement List; Addition and Deletion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-13

    ... INFORMATION: Addition On 6/28/2013 (78 FR 38952-38953), the Committee for Purchase From People Who Are Blind... Services Administration, Fort Worth, TX Deletion On 11/1/2013 (78 FR 65618), the Committee for Purchase... is deleted from the Procurement List: Product NSN: 7930-01-367-0989--Cleaner, Water Soluble...

  4. 75 FR 43153 - Procurement List Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Proposed Additions and Deletions AGENCY... Deletions From the Procurement List. SUMMARY: The Committee is proposing to add products to the Procurement... proposed for addition to the Procurement List. Comments on this certification are invited....

  5. 76 FR 63905 - Procurement List; Proposed Additions and Deletion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Additions and Deletion AGENCY... Deletion from the Procurement List. SUMMARY: The Committee is proposing to add a product and services to the Procurement List that will be furnished by nonprofit agencies employing persons who are blind...

  6. 76 FR 2673 - Procurement List Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Proposed Additions and Deletions AGENCY... deletions from the procurement list. SUMMARY: The Committee is proposing to add services to the Procurement... addition to the Procurement List. Comments on this certification are invited. Commenters should...

  7. 78 FR 9386 - Procurement List; Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-08

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Additions and Deletions AGENCY... Deletions from the Procurement List. SUMMARY: The Committee is proposing to add products and services to the Procurement List that will be furnished by nonprofit agencies employing persons who are blind or have...

  8. 37 CFR 2.35 - Adding, deleting, or substituting bases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Adding, deleting, or substituting bases. 2.35 Section 2.35 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK..., deleting, or substituting bases. (a) In an application under section 66(a) of the Act, an applicant may...

  9. 37 CFR 2.35 - Adding, deleting, or substituting bases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Adding, deleting, or substituting bases. 2.35 Section 2.35 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK..., deleting, or substituting bases. (a) In an application under section 66(a) of the Act, an applicant may...

  10. 37 CFR 2.35 - Adding, deleting, or substituting bases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Adding, deleting, or substituting bases. 2.35 Section 2.35 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK..., deleting, or substituting bases. (a) In an application under section 66(a) of the Act, an applicant may...

  11. 37 CFR 2.35 - Adding, deleting, or substituting bases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Adding, deleting, or substituting bases. 2.35 Section 2.35 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK..., deleting, or substituting bases. (a) In an application under section 66(a) of the Act, an applicant may...

  12. 37 CFR 2.35 - Adding, deleting, or substituting bases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Adding, deleting, or substituting bases. 2.35 Section 2.35 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK..., deleting, or substituting bases. (a) In an application under section 66(a) of the Act, an applicant may...

  13. 16 CFR 312.10 - Data retention and deletion requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Data retention and deletion requirements. 312.10 Section 312.10 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS CHILDREN'S ONLINE PRIVACY PROTECTION RULE § 312.10 Data retention and deletion requirements....

  14. Multivariate Variable Deletion Methods: Don't Do Stepwise

    ERIC Educational Resources Information Center

    Kadhi, TauGamba

    2003-01-01

    This paper explains the theory and methodology behind the use of variable deletion in canonical correlational analysis (CCA). Both the Capraro and Capraro (2002) and the Cantrell (1997) data tables are evaluated and explained in order to clarify strategies utilized. Understanding of variable deletion strategies and their proper usages in a CCA…

  15. 5 CFR 2502.18 - Deletion of exempted information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AVAILABILITY OF RECORDS Production or Disclosure of Records Under the Freedom of Information Act, 5 U.S.C. 552 Charges for Search and Reproduction § 2502.18 Deletion of exempted information. Where requested records... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Deletion of exempted information....

  16. 42 CFR 401.118 - Deletion of identifying details.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Deletion of identifying details. 401.118 Section 401.118 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... Deletion of identifying details. When CMS publishes or otherwise makes available an opinion or...

  17. 29 CFR 1610.20 - Deletion of exempted matters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Deletion of exempted matters. 1610.20 Section 1610.20 Labor... Production or Disclosure Under 5 U.S.C. 552 § 1610.20 Deletion of exempted matters. Where requested records contain matters which are exempted under 5 U.S.C. 552(b) but which matters are reasonably segregable...

  18. 29 CFR 1610.20 - Deletion of exempted matters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Deletion of exempted matters. 1610.20 Section 1610.20 Labor... Production or Disclosure Under 5 U.S.C. 552 § 1610.20 Deletion of exempted matters. Where requested records contain matters which are exempted under 5 U.S.C. 552(b) but which matters are reasonably segregable...

  19. Linguistic and Psychomotor Development in Children with Chromosome 14 Deletions

    ERIC Educational Resources Information Center

    Zampini, Laura; D'Odorico, Laura; Zanchi, Paola; Zollino, Marcella; Neri, Giovanni

    2012-01-01

    The present study focussed on a specific type of rare genetic condition: chromosome 14 deletions. Children with this genetic condition often show developmental delays and brain and neurological problems, although the type and severity of symptoms varies depending on the size and location of the deleted genetic material. The specific aim of the…

  20. 75 FR 78977 - Procurement List Proposed Addition and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Proposed Addition and Deletions AGENCY... deletions from the Procurement List. SUMMARY: The Committee is proposing to add a service to the Procurement...) 603-0655, or e-mail CMTEFedReg@AbilityOne.gov . Due to Federal holidays occurring on Friday,...

  1. 75 FR 66741 - Procurement List, Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List, Additions and Deletions AGENCY: Committee for... Procurement List. SUMMARY: This action adds products and services to the Procurement List that will be... deletes products from the Procurement List previously furnished by such agencies. DATES: Effective...

  2. 76 FR 21335 - Procurement List Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Additions and Deletions AGENCY: Committee for... procurement list. SUMMARY: This action adds products and services to the Procurement List that will be... deletes products and services from the Procurement List previously furnished by such agencies....

  3. 75 FR 78976 - Procurement List Proposed Addition and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Proposed Addition and Deletions AGENCY... deletions from the Procurement List. SUMMARY: The Committee is proposing to add a service to the Procurement...) 603-0655, or e-mail CMTEFedReg@AbilityOne.gov . Due to Federal holidays occurring on Friday,...

  4. 76 FR 40342 - Procurement List; Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Additions and Deletions AGENCY... Deletions from the Procurement List. SUMMARY: The Committee is proposing to add products and a service to the Procurement List that will be furnished by nonprofit agencies employing persons who are blind...

  5. 75 FR 56995 - Procurement List Proposed Additions and Deletion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Proposed Additions and Deletion AGENCY... Deletion From the Procurement List. SUMMARY: The Committee is proposing to add products to the Procurement...-0655, or e-mail: CMTEFedReg@AbilityOne.gov . SUPPLEMENTARY INFORMATION: This notice is...

  6. 75 FR 56996 - Procurement List Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Additions and Deletions AGENCY: Committee for... Procurement List. SUMMARY: This action adds a product and a service to the Procurement List that will be... deletes products and services from the Procurement List previously furnished by such agencies....

  7. 76 FR 21336 - Procurement List; Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Additions and Deletions AGENCY... Deletions from the Procurement List. SUMMARY: The Committee is proposing to add products and services to the Procurement List that will be furnished by nonprofit agencies employing persons who are blind or have...

  8. 49 CFR 7.6 - Deletion of identifying detail.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Deletion of identifying detail. 7.6 Section 7.6 Transportation Office of the Secretary of Transportation PUBLIC AVAILABILITY OF INFORMATION Information Required To Be Made Public by DOT § 7.6 Deletion of identifying detail. Whenever it is determined to...

  9. 44 CFR 5.27 - Deletion of identifying details.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Deletion of identifying details. 5.27 Section 5.27 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY..., FEMA may delete identifying details when making available or publishing an opinion, statement of...

  10. Attenuation of Monkeypox Virus by Deletion of Genomic Regions

    PubMed Central

    Lopera, Juan G.; Falendysz, Elizabeth A.; Rocke, Tonie E.; Osorio, Jorge E.

    2015-01-01

    Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivo studies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence. PMID:25462353

  11. Attenuation of monkeypox virus by deletion of genomic regions

    USGS Publications Warehouse

    Lopera, Juan G.; Falendysz, Elizabeth A.; Rocke, Tonie E.; Osorio, Jorge E.

    2015-01-01

    Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivostudies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence.

  12. Growth patterns of patients with 1p36 deletion syndrome.

    PubMed

    Sangu, Noriko; Shimojima, Keiko; Shimada, Shino; Ando, Tomohiro; Yamamoto, Toshiyuki

    2014-05-01

    1p36 deletion syndrome is one of the most common subtelomeric deletion syndromes. Obesity is frequently observed in patients with this syndrome. Thus, it is important to evaluate the growth status of an individual patient. For this purpose, we accumulated recorded growth data from 44 patients with this syndrome and investigated the growth patterns of patients. Most of the patients showed weight parameters within normal limits, whereas a few of these patients showed intrauterine growth delay and microcephaly. The length of the patients after birth was under the 50th centile in most patients. Many patients showed poor weight gain after birth, and only two female patients were overweight. These findings indicate two different phenotypes of the 1p36 deletion syndrome. The overweight patients with 1p36 deletion started excessive weight gain after two years of life. This characteristic of the patients with 1p36 deletion syndrome is similar to Prader-Willi syndrome.

  13. The yeast deletion collection: a decade of functional genomics.

    PubMed

    Giaever, Guri; Nislow, Corey

    2014-06-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MAT A: and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general.

  14. Molecular mimicry and clonal deletion: A fresh look.

    PubMed

    Rose, Noel R

    2015-06-21

    In this article, I trace the historic background of clonal deletion and molecular mimicry, two major pillars underlying our present understanding of autoimmunity and autoimmune disease. Clonal deletion originated as a critical element of the clonal selection theory of antibody formation in order to explain tolerance of self. If we did have complete clonal deletion, there would be major voids, the infamous "black holes", in our immune repertoire. For comprehensive, protective adaptive immunity, full deletion is necessarily a rare event. Molecular mimicry, the sharing of epitopes among self and non-self antigens, is extraordinary common and provides the evidence that complete deletion of self-reactive clones is rare. If molecular mimicry were not common, protective adaptive immunity could not be all-encompassing. By taking a fresh look at these two processes together we can envision their evolutionary basis and understand the need for regulatory devices to prevent molecular mimicry from progressing to autoimmune disease.

  15. Transcriptional enhancer from milk protein genes

    DOEpatents

    Casperson, Gerald F.; Schmidhauser, Christian T.; Bissell, Mina J.

    1999-01-01

    The invention relates to novel enhancer nucleotide sequences which stimulate transcription of heterologous DNA in cells in culture. The enhancers are derived from major milk protein genes by the process of deletion mapping and functional analysis. The invention also relates to expression vectors containing the novel enhancers.

  16. Cardiac-specific deletion of protein phosphatase 1β promotes increased myofilament protein phosphorylation and contractile alterations

    PubMed Central

    Liu, Ruijie; Correll, Robert N.; Davis, Jennifer; Vagnozzi, Ronald J.; York, Allen J.; Sargent, Michelle A.; Nairn, Angus C.; Molkentin, Jeffery D.

    2015-01-01

    There are 3 protein phosphatase 1 (PP1) catalytic isoforms (α, β and γ) encoded within the mammalian genome. These 3 gene products share ~90% amino acid homology within their catalytic domains but each has unique N- and C-termini that likely underlie distinctive subcellular localization or functionality. In this study, we assessed the effect associated with loss of each PP1 isoform in the heart using a conditional Cre-loxP targeting approach in mice. Ppp1ca-loxP, Ppp1cb-loxP and Ppp1cc-oxP alleles were crossed with either an Nkx2.5-Cre knock-in containing allele for early embryonic deletion or a tamoxifen inducible α-myosin heavy chain (αMHC)-MerCreMer transgene for adult and cardiac-specific deletion. We determined that while deletion of Ppp1ca (PP1α) or Ppp1cc (PP1γ) had little effect on the whole heart, deletion of Ppp1cb (PP1β) resulted in concentric remodeling of the heart, interstitial fibrosis and contractile dysregulation, using either the embryonic or adult-specific Cre-expressing alleles. However, myocytes isolated from Ppp1cb deleted hearts surprisingly showed enhanced contractility. Mechanistically we found that deletion of any of the 3 PP1 gene-encoding isoforms had no effect on phosphorylation of phospholamban, nor were Ca2+ handling dynamics altered in adult myocytes from Ppp1cb deleted hearts. However, loss of Ppp1cb from the heart, but not Ppp1ca or Ppp1cc, resulted in elevated phosphorylation of myofilament proteins such as myosin light chain 2 and cardiac myosin binding protein C, consistent with an enriched localization profile of this isoform to the sarcomeres. These results suggest a unique functional role for the PP1β isoform in affecting cardiac contractile function. PMID:26334248

  17. Microsecond Molecular Dynamics Simulations of Influenza Neuraminidase Suggest a Mechanism for the Increased Virulence of Stalk-Deletion Mutants

    PubMed Central

    2016-01-01

    Deletions in the stalk of the influenza neuraminidase (NA) surface protein are associated with increased virulence, but the mechanisms responsible for this enhanced virulence are unclear. Here we use microsecond molecular dynamics simulations to explore the effect of stalk deletion on enzymatic activity, contrasting NA proteins from the A/swine/Shandong/N1/2009 strain both with and without a stalk deletion. By modeling and simulating neuraminidase apo glycoproteins embedded in complex-mixture lipid bilayers, we show that the geometry and dynamics of the neuraminidase enzymatic pocket may differ depending on stalk length, with possible repercussions on the binding of the endogenous sialylated-oligosaccharide receptors. We also use these simulations to predict previously unrecognized druggable “hotspots” on the neuraminidase surface that may prove useful for future efforts aimed at structure-based drug design. PMID:27141956

  18. Stress resistance and lifespan are increased in C. elegans but decreased in S. cerevisiae by mafr-1/maf1 deletion.

    PubMed

    Cai, Ying; Wei, Yue-Hua

    2016-03-01

    Maf1 is a conserved effector of the mechanistic target of rapamycin (mTOR), an aging promoting kinase. However, whether Maf1 is required for lifespan extension caused by mTOR inhibition, such as dietary restriction (DR) or calorie restriction (CR) remains elusive. Here we show that deletion of maf1 in the budding yeast S. cerevisiae but not mafr-1 in C. elegans prevents DR or CR to extend lifespan. Interestingly, mafr-1 deletion increases stress tolerance and extends lifespan. MAFR-1 is phosphorylated in a mTOR-dependent manner and mafr-1 deletion alleviates the inhibition of tRNA synthesis caused by reduced mTOR activity. We find that the opposite effect of mafr-1 deletion on lifespan is due to an enhancement of stress response, including oxidative stress response, mitochondrial unfolded protein response (UPRmt) and autophagy. mafr-1 deletion also attenuates the paralysis of a C. elegans model of Alzheimer's disease. Our study reveals distinct mechanisms of lifespan regulation by Maf1 and MAFR-1.

  19. Stress resistance and lifespan are increased in C. elegans but decreased in S. cerevisiae by mafr-1/maf1 deletion.

    PubMed

    Cai, Ying; Wei, Yue-Hua

    2016-03-01

    Maf1 is a conserved effector of the mechanistic target of rapamycin (mTOR), an aging promoting kinase. However, whether Maf1 is required for lifespan extension caused by mTOR inhibition, such as dietary restriction (DR) or calorie restriction (CR) remains elusive. Here we show that deletion of maf1 in the budding yeast S. cerevisiae but not mafr-1 in C. elegans prevents DR or CR to extend lifespan. Interestingly, mafr-1 deletion increases stress tolerance and extends lifespan. MAFR-1 is phosphorylated in a mTOR-dependent manner and mafr-1 deletion alleviates the inhibition of tRNA synthesis caused by reduced mTOR activity. We find that the opposite effect of mafr-1 deletion on lifespan is due to an enhancement of stress response, including oxidative stress response, mitochondrial unfolded protein response (UPRmt) and autophagy. mafr-1 deletion also attenuates the paralysis of a C. elegans model of Alzheimer's disease. Our study reveals distinct mechanisms of lifespan regulation by Maf1 and MAFR-1. PMID:26934328

  20. A highly penetrant form of childhood apraxia of speech due to deletion of 16p11.2.

    PubMed

    Fedorenko, Evelina; Morgan, Angela; Murray, Elizabeth; Cardinaux, Annie; Mei, Cristina; Tager-Flusberg, Helen; Fisher, Simon E; Kanwisher, Nancy

    2016-02-01

    Individuals with heterozygous 16p11.2 deletions reportedly suffer from a variety of difficulties with speech and language. Indeed, recent copy-number variant screens of children with childhood apraxia of speech (CAS), a specific and rare motor speech disorder, have identified three unrelated individuals with 16p11.2 deletions. However, the nature and prevalence of speech and language disorders in general, and CAS in particular, is unknown for individuals with 16p11.2 deletions. Here we took a genotype-first approach, conducting detailed and systematic characterization of speech abilities in a group of 11 unrelated children ascertained on the basis of 16p11.2 deletions. To obtain the most precise and replicable phenotyping, we included tasks that are highly diagnostic for CAS, and we tested children under the age of 18 years, an age group where CAS has been best characterized. Two individuals were largely nonverbal, preventing detailed speech analysis, whereas the remaining nine met the standard accepted diagnostic criteria for CAS. These results link 16p11.2 deletions to a highly penetrant form of CAS. Our findings underline the need for further precise characterization of speech and language profiles in larger groups of affected individuals, which will also enhance our understanding of how genetic pathways contribute to human communication disorders. PMID:26173965

  1. Clonal deletion of specific thymocytes by an immunoglobulin idiotype.

    PubMed Central

    Bogen, B; Dembic, Z; Weiss, S

    1993-01-01

    We have investigated whether immunoglobulin can induce clonal deletion of thymocytes by employing two strains of transgenic mice. One strain is transgenic for an alpha/beta T cell receptor (TCR) which recognizes a processed idiotypic peptide of the lambda 2(315) light chain variable region, bound to the I-Ed class II major histocompatibility complex molecule. The other mouse strain is transgenic for the lambda 2(315) gene. Double transgenic offspring from a TCR-transgenic female mated with a lambda 2(315) transgenic male exhibit a pronounced clonal deletion of CD4+CD8+ thymocytes. Analysis of neonates from the reciprocal (lambda 2(315)-transgenic female x TCR-transgenic male) cross suggests that the deletion in double transgenic offspring most likely is caused by lambda 2(315) produced within the thymus rather than by maternally derived IgG, lambda 2(315). Nevertheless, IgG, lambda 2(315) can cause deletion of CD4+CD8+ thymocytes when injected in large amounts intraperitoneally into either adult or neonatal TCR-transgenic mice. Deletion is evident 48 and 72 h after injection, but by day 7 the thymus has already regained its normal appearance. A serum concentration of several hundred microgram/ml is required for deletion to be observed. Therefore, the heterogeneous idiotypes of serum Ig are probably each of too low concentration to cause thymocyte deletion in normal animals. Images PMID:8428591

  2. Two 22q telomere deletions serendipitously detected by FISH.

    PubMed

    Precht, K S; Lese, C M; Spiro, R P; Huttenlocher, P R; Johnston, K M; Baker, J C; Christian, S L; Kittikamron, K; Ledbetter, D H

    1998-11-01

    Cryptic telomere deletions have been proposed to be a significant cause of idiopathic mental retardation. We present two unrelated subjects, with normal G banding analysis, in whom 22q telomere deletions were serendipitously detected at two different institutions using fluorescence in situ hybridisation (FISH). Both probands presented with several of the previously described features associated with 22q deletions, including hypotonia, developmental delay, and absence of speech. Our two cases increase the total number of reported 22q telomere deletions to 19, the majority of which were identified by cytogenetic banding analysis. With the limited sensitivity of routine cytogenetic studies (approximately 2-5 Mb), these two new cases suggest that the actual prevalence of 22q telomere deletions may be higher than currently documented. Of additional interest is the phenotypic overlap with Angelman syndrome (AS) as it raises the possibility of a 22q deletion in patients in whom AS has been ruled out. The use of telomeric probes as diagnostic reagents would be useful in determining an accurate prevalence of chromosome 22q deletions and could result in a significantly higher detection rate of subtelomeric rearrangements.

  3. Do listeners recover "deleted" final /t/ in German?

    PubMed

    Zimmerer, Frank; Reetz, Henning

    2014-01-01

    Reduction and deletion processes occur regularly in conversational speech. A segment that is affected by such reduction and deletion processes in many Germanic languages (e.g., Dutch, English, German) is /t/. There are similarities concerning the factors that influence the likelihood of final /t/ to get deleted, such as segmental context. However, speakers of different languages differ with respect to the acoustic cues they leave in the speech signal when they delete final /t/. German speakers usually lengthen a preceding /s/ when they delete final /t/. This article investigates to what extent German listeners are able to reconstruct /t/ when they are presented with fragments of words where final /t/ has been deleted. It aims also at investigating whether the strategies that are used by German depend on the length of /s/, and therefore whether listeners are using language-specific cues. Results of a forced-choice segment detection task suggest that listeners are able to reconstruct deleted final /t/ in about 45% of the times. The length of /s/ plays some role in the reconstruction, however, it does not explain the behavior of German listeners completely.

  4. Impact of partial DAZ1/2 deletion and partial DAZ3/4 deletion on male infertility.

    PubMed

    Zhang, Yuening; Li, Muyan; Xiao, Feifan; Teng, Ruobing; Zhang, Chengdong; Lan, Aihua; Gu, Kailong; Li, Jiatong; Wang, Di; Li, Hongtao; Jiang, Li; Zeng, Siping; He, Min; Huang, Yi; Guo, Peifen; Zhang, Xinhua; Yang, Xiaoli

    2015-10-15

    This study aims to investigate the effect of the partial DAZ1/2 deletion and partial DAZ3/4 deletion on male infertility through a comprehensive literature search. All case-control studies related to partial DAZ1/2 and DAZ3/4 deletions and male infertility risk were included in our study. Odd ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the association and its precision, respectively. Eleven partial DAZ1/2 deletion and nine partial DAZ3/4 deletion studies were included. Partial DAZ1/2 deletion was significantly associated with male infertility risk in the overall analysis (ORs=2.58, 95%CI: 1.60-4.18, I(2)=62.1%). Moreover, in the subgroup analysis stratified by ethnicity, partial DAZ1/2 deletion was significantly associated with male infertility risk in the East Asian populations under the random effect model (ORs=2.96, 95%CI: 1.87-4.71, I(2)=51.3%). Meanwhile, the analysis suggested that partial DAZ3/4 deletion was not associated with male infertility risk in East-Asian ethnicity (ORs=1.02, 95%CI: 0.54-1.92, I(2)=71.3%), but not in Non-East Asian under the random effect model (ORs=3.56, 95%CI: 1.13-11.23, I(2)=0.0%,). More interestingly, partial DAZ1/2 deletion was associated with azoospermia (ORs=2.63, 95%CI: 1.19-5.81, I(2)=64.7%) and oligozoospermia (ORs=2.53, 95%CI: 1.40-4.57, I(2)=51.8%), but partial DAZ3/4 deletion was not associated with azoospermia (ORs=0.71, 95%CI: 0.23-2.22, I(2)=71.7%,) and oligozoospermia (ORs=1.21, 95%CI: 0.65-2.24, I(2)=55.5%). In our meta-analysis, partial DAZ1/2 deletion is a risk factor for male infertility and different ethnicities have different influences, whereas partial DAZ3/4 deletion has no effect on fertility but partial DAZ3/4 deletion might have an impact on Non-East Asian male.

  5. Ectrodactyly and proximal/intermediate interstitial deletion 7q

    SciTech Connect

    McElveen, C.; Carvajal, M.V.; Moscatello, D.

    1995-03-13

    We report on an individual with severe mental retardation, seizures, microcephaly, unusual face, scoliosis, and cleft feet and cleft right hand. The chromosomal study showed a proximal interstitial deletion 7q (q11.23q22). From our review of the literature, 11 patients have been reported with ectrodactyly (split hand/split foot malformation) and proximal/intermediate interstitial deletions or rearrangements of 7q. The critical segment for ectrodactyly seems to be located between 7q21.2 and 7q22.1. This malformation is present in 41% of the patients whose deletion involves the critical segment. 37 refs., 3 figs., 1 tab.

  6. Detection of genomic deletions in rice using oligonucleotide microarrays

    PubMed Central

    Bruce, Myron; Hess, Ann; Bai, Jianfa; Mauleon, Ramil; Diaz, M Genaleen; Sugiyama, Nobuko; Bordeos, Alicia; Wang, Guo-Liang; Leung, Hei; Leach, Jan E

    2009-01-01

    Background The induction of genomic deletions by physical- or chemical- agents is an easy and inexpensive means to generate a genome-saturating collection of mutations. Different mutagens can be selected to ensure a mutant collection with a range of deletion sizes. This would allow identification of mutations in single genes or, alternatively, a deleted group of genes that might collectively govern a trait (e.g., quantitative trait loci, QTL). However, deletion mutants have not been widely used in functional genomics, because the mutated genes are not tagged and therefore, difficult to identify. Here, we present a microarray-based approach to identify deleted genomic regions in rice mutants selected from a large collection generated by gamma ray or fast neutron treatment. Our study focuses not only on the utility of this method for forward genetics, but also its potential as a reverse genetics tool through accumulation of hybridization data for a collection of deletion mutants harboring multiple genetic lesions. Results We demonstrate that hybridization of labeled genomic DNA directly onto the Affymetrix Rice GeneChip® allows rapid localization of deleted regions in rice mutants. Deletions ranged in size from one gene model to ~500 kb and were predicted on all 12 rice chromosomes. The utility of the technique as a tool in forward genetics was demonstrated in combination with an allelic series of mutants to rapidly narrow the genomic region, and eventually identify a candidate gene responsible for a lesion mimic phenotype. Finally, the positions of mutations in 14 mutants were aligned onto the rice pseudomolecules in a user-friendly genome browser to allow for rapid identification of untagged mutations . Conclusion We demonstrate the utility of oligonucleotide arrays to discover deleted genes in rice. The density and distribution of deletions suggests the feasibility of a database saturated with deletions across the rice genome. This community resource can continue

  7. 22q11.2 deletion syndrome

    PubMed Central

    McDonald-McGinn, Donna M.; Sullivan, Kathleen E.; Marino, Bruno; Philip, Nicole; Swillen, Ann; Vorstman, Jacob A. S.; Zackai, Elaine H.; Emanuel, Beverly S.; Vermeesch, Joris R.; Morrow, Bernice E.; Scambler, Peter J.; Bassett, Anne S.

    2016-01-01

    22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness — all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population. PMID:27189754

  8. Myeloid-specific SIRT1 Deletion Aggravates Hepatic Inflammation and Steatosis in High-fat Diet-fed Mice

    PubMed Central

    Kim, Kyung Eun; Kim, Hwajin; Heo, Rok Won; Shin, Hyun Joo; Yi, Chin-ok; Lee, Dong Hoon; Kim, Hyun Joon; Kang, Sang Soo; Cho, Gyeong Jae; Choi, Wan Sung

    2015-01-01

    Sirtuin 1 (SIRT1) is a mammalian NAD+-dependent protein deacetylase that regulates cellular metabolism and inflammatory response. The organ-specific deletion of SIRT1 induces local inflammation and insulin resistance in dietary and genetic obesity. Macrophage-mediated inflammation contributes to insulin resistance and metabolic syndrome, however, the macrophage-specific SIRT1 function in the context of obesity is largely unknown. C57/BL6 wild type (WT) or myeloid-specific SIRT1 knockout (KO) mice were fed a high-fat diet (HFD) or normal diet (ND) for 12 weeks. Metabolic parameters and markers of hepatic steatosis and inflammation in liver were compared in WT and KO mice. SIRT1 deletion enhanced HFD-induced changes on body and liver weight gain, and increased glucose and insulin resistance. In liver, SIRT1 deletion increased the acetylation, and enhanced HFD-induced nuclear translocation of nuclear factor kappa B (NF-κB), hepatic inflammation and macrophage infiltration. HFD-fed KO mice showed severe hepatic steatosis by activating lipogenic pathway through sterol regulatory element-binding protein 1 (SREBP-1), and hepatic fibrogenesis, as indicated by induction of connective tissue growth factor (CTGF), alpha-smooth muscle actin (α-SMA), and collagen secretion. Myeloid-specific deletion of SIRT1 stimulates obesity-induced inflammation and increases the risk of hepatic fibrosis. Targeted induction of macrophage SIRT1 may be a good therapy for alleviating inflammation-associated metabolic syndrome. PMID:26330758

  9. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury

    PubMed Central

    Xie, Cuicui; Ginet, Vanessa; Sun, Yanyan; Koike, Masato; Zhou, Kai; Li, Tao; Li, Hongfu; Li, Qian; Wang, Xiaoyang; Uchiyama, Yasuo; Truttmann, Anita C.; Kroemer, Guido; Puyal, Julien; Blomgren, Klas; Zhu, Changlian

    2016-01-01

    ABSTRACT Perinatal asphyxia induces neuronal cell death and brain injury, and is often associated with irreversible neurological deficits in children. There is an urgent need to elucidate the neuronal death mechanisms occurring after neonatal hypoxia-ischemia (HI). We here investigated the selective neuronal deletion of the Atg7 (autophagy related 7) gene on neuronal cell death and brain injury in a mouse model of severe neonatal hypoxia-ischemia. Neuronal deletion of Atg7 prevented HI-induced autophagy, resulted in 42% decrease of tissue loss compared to wild-type mice after the insult, and reduced cell death in multiple brain regions, including apoptosis, as shown by decreased caspase-dependent and -independent cell death. Moreover, we investigated the lentiform nucleus of human newborns who died after severe perinatal asphyxia and found increased neuronal autophagy after severe hypoxic-ischemic encephalopathy compared to control uninjured brains, as indicated by the numbers of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3)-, LAMP1 (lysosomal-associated membrane protein 1)-, and CTSD (cathepsin D)-positive cells. These findings reveal that selective neuronal deletion of Atg7 is strongly protective against neuronal death and overall brain injury occurring after HI and suggest that inhibition of HI-enhanced autophagy should be considered as a potential therapeutic target for the treatment of human newborns developing severe hypoxic-ischemic encephalopathy. PMID:26727396

  10. GSTT1 deletion is related to polycyclic aromatic hydrocarbons-induced DNA damage and lymphoma progression.

    PubMed

    Yang, Fan; Xiong, Jie; Jia, Xiao-E; Gu, Zhao-Hui; Shi, Jing-Yi; Zhao, Yan; Li, Jun-Min; Chen, Sai-Juan; Zhao, Wei-Li

    2014-01-01

    The interrelationship between genetic susceptibility and carcinogenic exposure is important in cancer development. Polymorphisms in detoxification enzymes of the glutathione-S-transferases (GST) family are associated with an increased incidence of lymphoma. Here we investigated the molecular connection of the genetic polymorphism of GSTT1 to the response of lymphocytes to polycyclic aromatic hydrocarbons (PAH). In neoplastic situation, GSTT1 deletions were more frequently observed in lymphoma patients (54.9%) than in normal controls (42.0%, P = 0.009), resulting in an increased risk for lymphoma in individuals with GSTT1-null genotype (Odds ratio = 1.698, 95% confidence interval = 1.145-2.518). GSTT1 gene and protein expression were accordingly decreased in GSTT1-deleting patients, consistent with activated profile of cell cycle regulation genes. Mimicking environmental exposure using long-term repeat culture with low-dose PAH metabolite Hydroquinone, malignant B- and T-lymphocytes presented increased DNA damage, pCHK1/MYC expression and cell proliferation, which were counteracted by ectopic expression of GSTT1. Moreover, GSTT1 expression retarded xenograft tumor formation of Hydroquinone-treated lymphoma cells in nude mice. In non-neoplastic situation, when zebrafish was exposed to PAH Benzo(a)pyrene, molecular silencing of gstt1 enhanced the proliferation of normal lymphocytes and upregulated myca expression. Collectively, these findings suggested that GSTT1 deletion is related to genetic predisposition to lymphoma, particularly interacting with environmental pollutants containing PAH.

  11. Nrf2 gene deletion fails to alter psychostimulant-induced behavior or neurotoxicity.

    PubMed

    Pacchioni, Alejandra M; Vallone, Joseph; Melendez, Roberto I; Shih, Andy; Murphy, Timothy H; Kalivas, Peter W

    2007-01-01

    The transcription factor NF-E2-related factor (Nrf2) regulates the induction of phase 2 detoxifying enzymes by oxidative stress, including synthesis of the catalytic subunit (xCT) of the heterodimeric cystine-glutamate exchanger (system xc-). Repeated cocaine treatment in rats causes persistent neuroadaptations in glutamate neurotransmission in the nucleus accumbens that result, in part, from reduced activity of system xc-. Since in vitro under- or over-expression of Nrf2 regulates system xc- activity and xCT content, it was hypothesized that in vivo deletion of the Nrf2 gene would: 1) decrease system xc- activity, 2) produce a behavioral phenotype resembling that elicited by chronic cocaine administration, and 3) enhance dopamine depletion after methamphetamine-induced oxidative stress. In all three experiments no genotypic difference was measured between mice sustaining homozygous Nrf2 gene deletion and wild-type littermates. Thus, while Nrf2 is a transcriptional regulator of xCT and capable of protecting cells from oxidative stress, following Nrf2 gene deletion this role can be partially compensated by other mechanisms and methamphetamine-induced oxidative stress and dopamine toxicity does not significantly involve Nrf2.

  12. GSTT1 deletion is related to polycyclic aromatic hydrocarbons-induced DNA damage and lymphoma progression.

    PubMed

    Yang, Fan; Xiong, Jie; Jia, Xiao-E; Gu, Zhao-Hui; Shi, Jing-Yi; Zhao, Yan; Li, Jun-Min; Chen, Sai-Juan; Zhao, Wei-Li

    2014-01-01

    The interrelationship between genetic susceptibility and carcinogenic exposure is important in cancer development. Polymorphisms in detoxification enzymes of the glutathione-S-transferases (GST) family are associated with an increased incidence of lymphoma. Here we investigated the molecular connection of the genetic polymorphism of GSTT1 to the response of lymphocytes to polycyclic aromatic hydrocarbons (PAH). In neoplastic situation, GSTT1 deletions were more frequently observed in lymphoma patients (54.9%) than in normal controls (42.0%, P = 0.009), resulting in an increased risk for lymphoma in individuals with GSTT1-null genotype (Odds ratio = 1.698, 95% confidence interval = 1.145-2.518). GSTT1 gene and protein expression were accordingly decreased in GSTT1-deleting patients, consistent with activated profile of cell cycle regulation genes. Mimicking environmental exposure using long-term repeat culture with low-dose PAH metabolite Hydroquinone, malignant B- and T-lymphocytes presented increased DNA damage, pCHK1/MYC expression and cell proliferation, which were counteracted by ectopic expression of GSTT1. Moreover, GSTT1 expression retarded xenograft tumor formation of Hydroquinone-treated lymphoma cells in nude mice. In non-neoplastic situation, when zebrafish was exposed to PAH Benzo(a)pyrene, molecular silencing of gstt1 enhanced the proliferation of normal lymphocytes and upregulated myca expression. Collectively, these findings suggested that GSTT1 deletion is related to genetic predisposition to lymphoma, particularly interacting with environmental pollutants containing PAH. PMID:24586676

  13. Nogo receptor deletion and multimodal exercise improve distinct aspects of recovery in cervical spinal cord injury.

    PubMed

    Harel, Noam Y; Song, Kang-Ho; Tang, Xin; Strittmatter, Stephen M

    2010-11-01

    We tested the ability of two plasticity-promoting approaches to enhance recovery in a mouse model of incomplete spinal cord injury (SCI). Genetically, we reduced myelin-mediated inhibition of neural plasticity through Nogo66-receptor (NgR) gene deletion. Behaviorally, we utilized a novel multimodal exercise training paradigm. Adult mice of wild-type or NgR-null genotype were subjected to partial lateral hemisection (LHx) at C3-C4 with the intent of producing anatomically and functionally mild deficits. Exercise training or control treatment proceeded for 14 weeks. Behavioral outcomes were assessed prior to tract tracing and histological analysis. Genotype and training exerted differing effects on performance; training improved performance on a test related to the training regimen (task-specific benefit), whereas genotype also improved performance on more generalized behaviors (task-non-specific benefit). There were no significant histological differences across genotype or training assignment with regard to lesion size or axonal tract staining. Thus either NgR gene deletion or exercise training benefits mice with mild cervical spinal injury. In this lesion model, the effects of NgR deletion and training were not synergistic for the tasks assessed. Further work is required to optimize the interaction between pharmacological and physical interventions for SCI.

  14. Deletion of Rapgef6, a candidate schizophrenia susceptibility gene, disrupts amygdala function in mice

    PubMed Central

    Levy, R J; Kvajo, M; Li, Y; Tsvetkov, E; Dong, W; Yoshikawa, Y; Kataoka, T; Bolshakov, V Y; Karayiorgou, M; Gogos, J A

    2015-01-01

    In human genetic studies of schizophrenia, we uncovered copy-number variants in RAPGEF6 and RAPGEF2 genes. To discern the effects of RAPGEF6 deletion in humans, we investigated the behavior and neural functions of a mouse lacking Rapgef6. Rapgef6 deletion resulted in impaired amygdala function measured as reduced fear conditioning and anxiolysis. Hippocampal-dependent spatial memory and prefrontal cortex-dependent working memory tasks were intact. Neural activation measured by cFOS phosphorylation demonstrated a reduction in hippocampal and amygdala activation after fear conditioning, while neural morphology assessment uncovered reduced spine density and primary dendrite number in pyramidal neurons of the CA3 hippocampal region of knockout mice. Electrophysiological analysis showed enhanced long-term potentiation at cortico–amygdala synapses. Rapgef6 deletion mice were most impaired in hippocampal and amygdalar function, brain regions implicated in schizophrenia pathophysiology. The results provide a deeper understanding of the role of the amygdala in schizophrenia and suggest that RAPGEF6 may be a novel therapeutic target in schizophrenia. PMID:26057047

  15. miR-155 Deletion in Female Mice Prevents Diet-Induced Obesity

    PubMed Central

    Gaudet, Andrew D.; Fonken, Laura K.; Gushchina, Liubov V.; Aubrecht, Taryn G.; Maurya, Santosh K.; Periasamy, Muthu; Nelson, Randy J.; Popovich, Phillip G.

    2016-01-01

    Obesity is a growing epidemic in developed countries. Obese individuals are susceptible to comorbidities, including cardiovascular disease and metabolic disorder. Increasing the ability of adipose tissue to expend excess energy could improve protection from obesity. One promising target is microRNA (miR)-155-5p. We demonstrate that deletion of miR-155 (-5p and -3p) in female mice prevents diet-induced obesity. Body weight gain did not differ between wild-type (WT) and miR-155 knockout (KO) mice fed control diet (CD); however, miR-155 KO mice fed high-fat diet (HFD) gained 56% less body weight and 74% less gonadal white adipose tissue (WAT) than WT mice. Enhanced WAT thermogenic potential, brown adipose tissue differentiation, and/or insulin sensitivity might underlie this obesity resistance. Indeed, miR-155 KO mice on HFD had 21% higher heat release than WT HFD mice. Compared to WT adipocytes, miR-155 KO adipocytes upregulated brown (Ucp1, Cidea, Pparg) and white (Fabp4, Pnpla2, AdipoQ, Fasn) adipogenic genes, and glucose metabolism genes (Glut4, Irs1). miR-155 deletion abrogated HFD-induced adipocyte hypertrophy and WAT inflammation. Therefore, miR-155 deletion increases adipogenic, insulin sensitivity, and energy uncoupling machinery, while limiting inflammation in WAT, which together could restrict HFD-induced fat accumulation. Our results identify miR-155 as a novel candidate target for improving obesity resistance. PMID:26953132

  16. A Large U3 Deletion Causes Increased In Vivo Expression from a Nonintegrating Lentiviral Vector

    PubMed Central

    Bayer, Matthew; Kantor, Boris; Cockrell, Adam; Ma, Hong; Zeithaml, Brian; Li, Xiangping; McCown, Thomas; Kafri, Tal

    2008-01-01

    The feasibility of employing nonintegrating lentiviral vectors has been demonstrated by recent studies showing the ability of nonintegrating lentiviral vectors to maintain transgene expression in vitro and in vivo. Furthermore, HIV-1 vectors packaged with a mutated integrase were able to correct retinal disease in a mouse model. Interestingly, these results differ from earlier studies in which first-generation nonintegrating lentiviral vectors yielded insignificant levels of transduction. However, to date a rigorous characterization of transgene expression from the currently used self-inactivating (SIN) nonintegrating lentiviral vectors has not been published. Here we characterize transgene expression from SIN nonintegrating lentiviral vectors. Overall, we found that nonintegrating vectors express transgenes at a significantly lower level than their integrating counterparts. Expression from nonintegrating vectors was improved upon introducing a longer deletion in the vector’s U3 region. A unique shuttle-vector assay indicated that the relative abundance of the different episomal forms was not altered by the longer U3 deletion. Interestingly, the longer U3 deletion did not enhance expression in the corpus callosum of the rat brain, suggesting that the extent of silencing of episomal transcription is influenced by tissue-specific factors. Finally, and for the first time, episomal expression in the mouse liver was potent and sustained. PMID:18797449

  17. A large U3 deletion causes increased in vivo expression from a nonintegrating lentiviral vector.

    PubMed

    Bayer, Matthew; Kantor, Boris; Cockrell, Adam; Ma, Hong; Zeithaml, Brian; Li, Xiangping; McCown, Thomas; Kafri, Tal

    2008-12-01

    The feasibility of using nonintegrating lentiviral vectors has been demonstrated by recent studies showing their ability to maintain transgene expression both in vitro and in vivo. Furthermore, human immunodeficiency virus-1 (HIV-1) vectors packaged with a mutated integrase were able to correct retinal disease in a mouse model. Interestingly, these results differ from earlier studies in which first-generation nonintegrating lentiviral vectors yielded insignificant levels of transduction. However, to date, a rigorous characterization of transgene expression from the currently used self-inactivating (SIN) nonintegrating lentiviral vectors has not been published. In this study, we characterize transgene expression from SIN nonintegrating lentiviral vectors. Overall, we found that nonintegrating vectors express transgenes at a significantly lower level than their integrating counterparts. Expression from nonintegrating vectors was improved upon introducing a longer deletion in the vector's U3 region. A unique shuttle-vector assay indicated that the relative abundance of the different episomal forms was not altered by the longer U3 deletion. Interestingly, the longer U3 deletion did not enhance expression in the corpus callosum of the rat brain, suggesting that the extent of silencing of episomal transcription is influenced by tissue-specific factors. Finally, and for the first time, episomal expression in the mouse liver was potent and sustained.

  18. Genetics Home Reference: 19p13.13 deletion syndrome

    MedlinePlus

    ... Resources (1 link) National Human Genome Research Institute: Chromosome Abnormalities Educational Resources (5 links) MalaCards: chromosome 19p13.13 deletion syndrome March of Dimes: Chromosomal ...

  19. 78 FR 57844 - Procurement List; Proposed Addition and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-20

    ... Activity: DEPT OF COMMERCE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, BOULDER, CO. Deletions The... listed: Service Service Type/Location: Janitorial/Custodial Service, National Oceanic & Atmospheric Administration, National Weather Service Office, Except Communication & Electrical Room, 500 Airport Blvd.,...

  20. 76 FR 13362 - Procurement List Proposed Additions and Deletion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ..., Jefferson Plaza 2, Suite 10800, 1421 Jefferson Davis Highway, Arlington, Virginia 22202-3259. For Further... service is proposed for deletion from the Procurement List: Service Service Type/Location:...

  1. Constitutional Ip36 deletion in a child with neuroblastoma

    SciTech Connect

    Biegel, J.A.; Zackai, E.H.; Scher, C.D.; Emanuel, B.S. Univ. of Pennsylvania, Philadelphia ); White, P.S.; Marshall, H.N.; Fujimori, Minoru; Brodeur, G.M. )

    1993-01-01

    The authors describe a child with dysmorphic features, as well as developmental and growth delay, who developed neuroblastoma at 5 mo of age. Cytogenetic analysis of blood lymphocytes revealed an interstitial deletion of 1p36.1 [r arrow] 1p36.2, which was apparent only with high-resolution banding. Molecular analysis with a collection of polymorphic DNA probes for 1p confirmed an interstitial deletion involving subbands of 1p36. Deletions of this region are a common finding in neuroblastoma cells from patients with advanced stages of disease. Therefore, these results (a) suggest that constitutional deletion of this region predisposed the patient to the development of neuroblastoma and (b) support the localization of a neuroblastoma tumor-suppressor locus to 1p36. 48 refs., 2 figs.

  2. Characterization of a lymphoblastoid line deleted for lambda immunoglobulin genes

    SciTech Connect

    Hough, C.A., White, B.N., Holden, J.A.

    1995-04-01

    While characterizing the cat eye syndrome (CES) supernumerary chromosome for the presence of {lambda} immunoglobulin gene region sequences, a lymphoblastoid cell line from one CES patient was identified in which there was selection of cells deleted from some IGLC and IGLV genes. Two distinct deletions, one on each chromosome 22, were identified, presumably arising from independent somatic recombination events occurring during B-lymphocyte differentiation. The extent of the deleted regions was determined using probes from the various IGLV subgroups and they each covered at least 82 kilobases. The precise definition of the deletions was not possible because of conservation of some restriction sites in the IGLV region. The cell line was used to map putative IGLV genes within the recombinant phage {lambda}V{lambda}135 to the distal part of the IGLV gene region. 35 refs., 4 figs.

  3. 78 FR 63967 - Procurement List; Proposed Addition and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ...: Social Vocational Services, Inc.--Deleted, San Jose, CA Contracting Activity: DEPT OF THE ARMY, W40M NATL... Sustainment Systems, Natick, MA NPA: ReadyOne Industries (ROI), Inc., El Paso, TX Contracting Activity:...

  4. Bilateral hand amyotrophy with PMP-22 gene deletion.

    PubMed

    Gochard, A; Guennoc, A M; Praline, J; Malinge, M C; de Toffol, B; Corcia, P

    2007-01-01

    Hereditary neuropathy with liability to pressure palsies (HNPP) phenotypes are heterogeneous. We report the case of a 52-year-old woman without medical history, who complained of bilateral hand weakness suggestive first of a motor neuron disorder. The presence of a diffuse predominant distal demyelinating neuropathy suggested a deletion of PMP-22 gene, which was confirmed by genetic analysis. This case report underlines a novel phenotype related to the deletion of PMP-22 gene.

  5. Multigenerational autosomal dominant inheritance of 5p chromosomal deletions.

    PubMed

    Zhang, Bin; Willing, Marcia; Grange, Dorothy K; Shinawi, Marwan; Manwaring, Linda; Vineyard, Marisa; Kulkarni, Shashikant; Cottrell, Catherine E

    2016-03-01

    Deletion of the short arm of chromosome 5 (5p-) is associated with phenotypic features including a cat-like cry in infancy, dysmorphic facial features, microcephaly, and intellectual disability, and when encompassing a minimal critical region, may be defined as Cri-du-Chat syndrome (CdCS). Most 5p deletions are de novo in origin, and familial cases are often associated with translocation and inversion. Herein, we report three multigenerational families carrying 5p terminal deletions of different size transmitted in an autosomal dominant manner causing variable clinical findings. Terminal 5p deletions and the mode of inheritance were clinically characterized and molecularly analyzed by a combination of microarray and fluorescence in situ hybridization analyses. Shared phenotypic features documented in this cohort included neuropsychiatric findings, poor growth, and dysmorphic facial features. This study supports newly recognized effects of aberrant SEMA5A and CTNND2 dosage on severity of autistic and cognitive phenotypes. Comparative analysis of the breakpoints narrows the critical region for the cat-like cry down to an interval less than 1 Mb encompassing a candidate gene ICE1, which regulates small nuclear RNA transcription. This study also indicates that familial terminal 5p deletion is a rare presentation displaying intra- and inter-familial phenotypic variability, the latter of which may be attributed to size and gene content of the deletion. The observed intra-familial phenotypic heterogeneity suggests that additional modifying elements including genetic and environmental factors may have an impact on the clinical manifestations observed in 5p deletion carriers, and in time, further high resolution studies of 5p deletion breakpoints will continue to aid in defining genotype-phenotype correlations. PMID:26601658

  6. Multigenerational autosomal dominant inheritance of 5p chromosomal deletions.

    PubMed

    Zhang, Bin; Willing, Marcia; Grange, Dorothy K; Shinawi, Marwan; Manwaring, Linda; Vineyard, Marisa; Kulkarni, Shashikant; Cottrell, Catherine E

    2016-03-01

    Deletion of the short arm of chromosome 5 (5p-) is associated with phenotypic features including a cat-like cry in infancy, dysmorphic facial features, microcephaly, and intellectual disability, and when encompassing a minimal critical region, may be defined as Cri-du-Chat syndrome (CdCS). Most 5p deletions are de novo in origin, and familial cases are often associated with translocation and inversion. Herein, we report three multigenerational families carrying 5p terminal deletions of different size transmitted in an autosomal dominant manner causing variable clinical findings. Terminal 5p deletions and the mode of inheritance were clinically characterized and molecularly analyzed by a combination of microarray and fluorescence in situ hybridization analyses. Shared phenotypic features documented in this cohort included neuropsychiatric findings, poor growth, and dysmorphic facial features. This study supports newly recognized effects of aberrant SEMA5A and CTNND2 dosage on severity of autistic and cognitive phenotypes. Comparative analysis of the breakpoints narrows the critical region for the cat-like cry down to an interval less than 1 Mb encompassing a candidate gene ICE1, which regulates small nuclear RNA transcription. This study also indicates that familial terminal 5p deletion is a rare presentation displaying intra- and inter-familial phenotypic variability, the latter of which may be attributed to size and gene content of the deletion. The observed intra-familial phenotypic heterogeneity suggests that additional modifying elements including genetic and environmental factors may have an impact on the clinical manifestations observed in 5p deletion carriers, and in time, further high resolution studies of 5p deletion breakpoints will continue to aid in defining genotype-phenotype correlations.

  7. Mitochondrial DNA deletions in patients with chronic suppurative otitis media.

    PubMed

    Tatar, Arzu; Tasdemir, Sener; Sahin, Ibrahim; Bozoglu, Ceyda; Erdem, Haktan Bagis; Yoruk, Ozgur; Tatar, Abdulgani

    2016-09-01

    The aim of this study was to investigate the 4977 and 7400 bp deletions of mitochondrial DNA in patients with chronic suppurative otitis media and to indicate the possible association of mitochondrial DNA deletions with chronic suppurative otitis media. Thirty-six patients with chronic suppurative otitis media were randomly selected to assess the mitochondrial DNA deletions. Tympanomastoidectomy was applied for the treatment of chronic suppurative otitis media, and the curettage materials including middle ear tissues were collected. The 4977 and 7400 bp deletion regions and two control regions of mitochondrial DNA were assessed by using the four pair primers. DNA was extracted from middle ear tissues and peripheral blood samples of the patients, and then polymerase chain reactions (PCRs) were performed. PCR products were separated in 2 % agarose gel. Seventeen of 36 patients had the heterozygote 4977 bp deletion in the middle ear tissue but not in peripheral blood. There wasn't any patient who had the 7400 bp deletion in mtDNA of their middle ear tissue or peripheral blood tissue. The patients with the 4977 bp deletion had a longer duration of chronic suppurative otitis media and a higher level of hearing loss than the others (p < 0.01). Long time chronic suppurative otitis media and the reactive oxygen species can cause the mitochondrial DNA deletions and this may be a predisposing factor to sensorineural hearing loss in chronic suppurative otitis media. An antioxidant drug as a scavenger agent may be used in long-term chronic suppurative otitis media.

  8. A human brain tumor-derived PDGFR-alpha deletion mutant is transforming.

    PubMed

    Clarke, I D; Dirks, P B

    2003-02-01

    Aberrant receptor tyrosine kinase signaling plays an important role in the molecular pathogenesis of brain tumors. We have been studying a previously identified human glioblastoma-derived PDGFR-alpha mutant that has an in-frame deletion in the extracellular domain, causing loss of exons 8 and 9 (PDGFR-alpha(delta8,9)). In the primary tumor, this deletion mutant receptor was shown to be amplified and overexpressed. The purpose of this study was to determine the expression, activity, localization, and transformation properties of this deletion mutant. In the absence of serum, or PDGF-AA, PDGFR-alpha(delta8,9) was phosphorylated on tyrosine residues, indicating ligand-independent autoactivation. Localization by staining and cell surface biotinylation studies revealed expression of the deletion mutant predominantly in the cytoplasm, with very little present on the cell surface. To determine if PDGFR-alpha(delta8,9) was oncogenic, we transfected wild-type and mutant receptors into Rat1 cells and performed analyses of cell growth, in vitro transformation, and subcutaneous growth in the nude mouse. PDGFR-alpha(delta8,9)-expressing cells displayed enhanced cell growth and survival in low serum, and formed foci in monolayer cultures. PDGFR-alpha(delta8,9)-expressing Rat1 cells were also tumorigenic when injected subcutaneously into nude mice. Expression of PDGFR-alpha(delta8,9) was also associated with increased c-Jun phosphorylation in the absence of PDGF ligand, demonstrating also that the mutant receptor is associated with altered intracellular signaling. These data demonstrate that PDGFR-alpha(delta8,9) is transforming, and it is the first demonstration of a naturally occurring tumor-derived mutant PDGFR-alpha with oncogenic properties.

  9. A human brain tumor-derived PDGFR-alpha deletion mutant is transforming.

    PubMed

    Clarke, I D; Dirks, P B

    2003-02-01

    Aberrant receptor tyrosine kinase signaling plays an important role in the molecular pathogenesis of brain tumors. We have been studying a previously identified human glioblastoma-derived PDGFR-alpha mutant that has an in-frame deletion in the extracellular domain, causing loss of exons 8 and 9 (PDGFR-alpha(delta8,9)). In the primary tumor, this deletion mutant receptor was shown to be amplified and overexpressed. The purpose of this study was to determine the expression, activity, localization, and transformation properties of this deletion mutant. In the absence of serum, or PDGF-AA, PDGFR-alpha(delta8,9) was phosphorylated on tyrosine residues, indicating ligand-independent autoactivation. Localization by staining and cell surface biotinylation studies revealed expression of the deletion mutant predominantly in the cytoplasm, with very little present on the cell surface. To determine if PDGFR-alpha(delta8,9) was oncogenic, we transfected wild-type and mutant receptors into Rat1 cells and performed analyses of cell growth, in vitro transformation, and subcutaneous growth in the nude mouse. PDGFR-alpha(delta8,9)-expressing cells displayed enhanced cell growth and survival in low serum, and formed foci in monolayer cultures. PDGFR-alpha(delta8,9)-expressing Rat1 cells were also tumorigenic when injected subcutaneously into nude mice. Expression of PDGFR-alpha(delta8,9) was also associated with increased c-Jun phosphorylation in the absence of PDGF ligand, demonstrating also that the mutant receptor is associated with altered intracellular signaling. These data demonstrate that PDGFR-alpha(delta8,9) is transforming, and it is the first demonstration of a naturally occurring tumor-derived mutant PDGFR-alpha with oncogenic properties. PMID:12569364

  10. Xp22. 3 deletions in isolated familial Kallmann's syndrome

    SciTech Connect

    Hardelin, J.P.; Levilliers, J.; Legouis, R.; Petit, C. ); Young, J.; Pholsena, M.; Schaison, G. ); Kirk, J.; Bouloux, P. )

    1993-04-01

    Several familial cases of Kallmann's syndrome (KS) have been reported, among which the X-chromosome-linked mode of inheritance is the most frequent. The gene responsible for the X-linked KS has been localized to the terminal part of the X-chromosome short arm (Xp22.3 region), immediately proximal to the steroid sulfatase gene responsible for X-linked ichthyosis. Large deletions of this region have been previously shown in patients affected with both X-linked ichthyosis and KS. The authors report here the search for Xp22.3 deletions in 20 unrelated males affected with isolated X-linked KS. Only 2 deletions were found using Southern blot analysis, indicating that large deletions are uncommon in patients affected with KS alone. Both deletions were shown to include the entire KAL gene responsible for X-linked KS. The patients carrying these deletions exhibit additional clinical anomalies, which are discussed: unilateral renal aplasia, unilateral absence of vas deferens, mirror movements, and sensory neural hearing loss. 47 refs., 2 figs., 1 tab.

  11. Clinical and cytogenetic aspects of X-chromosome deletions.

    PubMed

    Goldman, B; Polani, P E; Daker, M G; Angell, R R

    1982-01-01

    Karyotype/phenotype correlations in six non-mosaic patients with dysgenetic ovaries and partial deletions of the X-chromosome (three patients with short arm, and three with long arm deletions) are presented and the pertinent literature is analysed. It would appear that functioning ovarian tissue is present more often in patients with a short arm deletion than in those with a deleted long arm. This may represent a difference in the strength of two sets of controlling factors, but it can also be related to break point position. This in turn may be misinterpreted due to the difficulty in distinguishing between terminal and interstitial deletions in the long arm. Stature may be a heterochromatic effect, but if specific genetic factors influencing stature exist, then they would appear to be situated mostly on the short arm of the X-chromosome, although some 'statural determinants' occur also on the long arm and could be located rather close to the centromere. Deletions of the short arm of the X-chromosome were almost always associated with some features of the Turner phenotype, and could possibly be related to a gene dosage effect.

  12. Fast detection of deletion breakpoints using quantitative PCR

    PubMed Central

    Abildinova, Gulshara; Abdrakhmanova, Zhanara; Tuchinsky, Helena; Nesher, Elimelech; Pinhasov, Albert; Raskin, Leon

    2016-01-01

    Abstract The routine detection of large and medium copy number variants (CNVs) is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories. PMID:27560363

  13. Fast detection of deletion breakpoints using quantitative PCR.

    PubMed

    Abildinova, Gulshara; Abdrakhmanova, Zhanara; Tuchinsky, Helena; Nesher, Elimelech; Pinhasov, Albert; Raskin, Leon

    2016-01-01

    The routine detection of large and medium copy number variants (CNVs) is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories. PMID:27560363

  14. Megabase deletions of gene deserts result in viable mice

    SciTech Connect

    Nobrega, Marcelo A.; Zhu, Yiwen; Plajzer-Frick, Ingrid; Afzal,Veena; Rubin, Edward M.

    2004-05-01

    The functional importance of the approximately 98 percent of mammalian genomes not corresponding to protein coding sequences remain largely un-scrutinized 1. To test experimentally whether some extensive regions of non-coding DNA, referred to as gene deserts 2-4, contain critical functions essential for the viability of the organism, we deleted two large non-coding intervals, 1,511 kb and 845 kb in length, from the mouse genome. Viable mice homozygous for the deletions were generated and were indistinguishable from wild-type litter mates with regards to morphology, reproductive fitness, growth, longevity and a variety of parameters assaying general homeostasis. Further in-depth analysis of the expression of genes bracketing the deletions revealed similar expression characteristics in homozygous deletion and wild-type mice. Together, the two deleted segments harbour 1,243 non-coding sequences conserved between humans and rodents (>100bp, 70 percent identity). These studies demonstrate that some large-scale deletions of non-coding DNA can be well tolerated by an organism, bringing into question the role of many human-mouse conserved sequences 5,6, and further supports the existence of potentially ''disposable DNAi'' in the genomes of mammals.

  15. Interstitial deletion of 13q associated with polymicrogyria.

    PubMed

    Kogan, Jillene M; Egelhoff, John C; Saal, Howard M

    2008-04-01

    Interstitial deletion of the long arm of chromosome 13 is a rare condition characterized by multiple clinical findings. We report a male dizygotic twin with an interstitial deletion of 13q and failure to thrive, hypotonia, polymicrogyria, bilateral foci of retinoblastoma, hearing loss, bilateral inguinal hernias, submucous cleft palate, and dysmorphic features including a triangular shaped face, broad forehead, small chin, prominent eyes, downslanting palpebral fissures, and a downturned mouth. Chromosome analysis showed an interstitial deletion of chromosome 13 which was confirmed by fluorescence in situ hybridization analysis to include the Rb locus, but spare the 13q subtelomeric region. The karyotype was 46,XY,del(13)(q14.1q31.2).ish del(13)(RB1-,D13S327+) de novo. Breakpoints were further characterized by SNP-based microarray. Retinoblastoma tumors are a well-known complication of deletion of the retinoblastoma susceptibility gene, located at chromosome 13q14.2. Growth retardation is another common feature that has been described in other patients with a deletion of 13q. Additionally, this patient had brain findings on MRI consistent with bilateral polymicrogyria with predominance of the frontal lobes, as well as prominent infratentorial and supratentorial vasculature. There are a variety of polymicrogyria syndromes that are distinguished by the cortical location of the abnormal folding. Several of the subtypes have known genetic loci associated with them. To our knowledge, this is the only report of polymicrogyria in association with a deletion of chromosome 13.

  16. Myeloid Deletion of α1AMPK Exacerbates Atherosclerosis in LDL Receptor Knockout (LDLRKO) Mice.

    PubMed

    Cao, Qiang; Cui, Xin; Wu, Rui; Zha, Lin; Wang, Xianfeng; Parks, John S; Yu, Liqing; Shi, Hang; Xue, Bingzhong

    2016-06-01

    Macrophage inflammation marks all stages of atherogenesis, and AMPK is a regulator of macrophage inflammation. We therefore generated myeloid α1AMPK knockout (MAKO) mice on the LDL receptor knockout (LDLRKO) background to investigate whether myeloid deletion of α1AMPK exacerbates atherosclerosis. When fed an atherogenic diet, MAKO/LDLRKO mice displayed exacerbated atherosclerosis compared with LDLRKO mice. To determine the underlying pathophysiological pathways, we characterized macrophage inflammation/chemotaxis and lipid/cholesterol metabolism in MAKO/LDLRKO mice. Myeloid deletion of α1AMPK increased macrophage inflammatory gene expression and enhanced macrophage migration and adhesion to endothelial cells. Remarkably, MAKO/LDLRKO mice also displayed higher composition of circulating chemotaxically active Ly-6C(high) monocytes, enhanced atherosclerotic plaque chemokine expression, and monocyte recruitment into plaques, leading to increased atherosclerotic plaque macrophage content and inflammation. MAKO/LDLRKO mice also exhibited higher plasma LDL and VLDL cholesterol content, increased circulating apolipoprotein B (apoB) levels, and higher liver apoB expression. We conclude that macrophage α1AMPK deficiency promotes atherogenesis in LDLRKO mice and is associated with enhanced macrophage inflammation and hypercholesterolemia and that macrophage α1AMPK may serve as a therapeutic target for prevention and treatment of atherosclerosis. PMID:26822081

  17. Soluble epoxide hydrolase gene deletion improves blood flow and reduces infarct size after cerebral ischemia in reproductively senescent female mice

    PubMed Central

    Zuloaga, Kristen L.; Zhang, Wenri; Roese, Natalie E.; Alkayed, Nabil J.

    2015-01-01

    Soluble epoxide hydrolase (sEH), a key enzyme in the metabolism of vasodilatory epoxyeicosatrienoic acids (EETs), is sexually dimorphic, suppressed by estrogen, and contributes to underlying sex differences in cerebral blood flow and injury after cerebral ischemia. We tested the hypothesis that sEH inhibition or gene deletion in reproductively senescent (RS) female mice would increase cerebral perfusion and decrease infarct size following stroke. RS (15–18 month old) and young (3–4 month old) female sEH knockout (sEHKO) mice and wild type (WT) mice were subjected to 45 min middle cerebral artery occlusion (MCAO) with laser Doppler perfusion monitoring. WT mice were treated with vehicle or a sEH inhibitor t-AUCB at the time of reperfusion and every 24 h thereafter for 3 days. Differences in regional cerebral blood flow were measured in vivo using optical microangiography (OMAG). Infarct size was measured 3 days after reperfusion. Infarct size and cerebral perfusion 24 h after MCAO were not altered by age. Both sEH gene deletion and sEH inhibition increased cortical perfusion 24 h after MCAO. Neither sEH gene deletion nor sEH inhibition reduced infarct size in young mice. However, sEH gene deletion, but not sEH inhibition of the hydrolase domain of the enzyme, decreased infarct size in RS mice. Results of these studies show that sEH gene deletion and sEH inhibition enhance cortical perfusion following MCAO and sEH gene deletion reduces damage after ischemia in RS female mice; however this neuroprotection in absent is young mice. PMID:25642188

  18. Deletion of the trichodiene synthase gene of Fusarium venenatum: two systems for repeated gene deletions.

    PubMed

    Royer, J C; Christianson, L M; Yoder, W T; Gambetta, G A; Klotz, A V; Morris, C L; Brody, H; Otani, S

    1999-10-01

    The trichodiene synthase (tri5) gene of Fusarium venenatum was cloned from a genomic library. Vectors were created in which the tri5 coding sequence was replaced with the Neurospora crassa nitrate reductase (nit3) gene and with the Aspergillus nidulans acetamidase (amdS) gene flanked by direct repeats. The first vector was utilized to transform a nitrate reductase (niaD) mutant of F. venenatum to prototrophy, and the second vector was utilized to confer acetamide utilization to the wild-type strain. Several of the transformants lost the capacity to produce the trichothecene diacetoxyscirpenol and were shown by hybridization analysis to have gene replacements at the tri5 locus. The nit3 gene was removed by retransformation with a tri5 deletion fragment and selection on chlorate. The amdS gene was shown to excise spontaneously via the flanking direct repeats when spores were plated onto fluoroacetamide. PMID:10512673

  19. The phenotype associated with a large deletion on MECP2

    PubMed Central

    Bebbington, Ami; Downs, Jenny; Percy, Alan; Pineda, Mercé; Zeev, Bruria Ben; Bahi-Buisson, Nadia; Leonard, Helen

    2012-01-01

    Multiplex ligation-dependent Probe Amplification (MLPA) has become available for the detection of a large deletion on the MECP2 gene allowing genetic confirmation of previously unconfirmed cases of clinical Rett syndrome. This study describes the phenotype of those with a large deletion and compares with those with other pathogenic MECP2 mutations. Individuals were ascertained from the Australian Rett Syndrome and InterRett databases with data sourced from family and clinician questionnaires, and two case studies were constructed from the longitudinal Australian data. Regression and survival analysis were used to compare severity and age of onset of symptoms in those with and without a large deletion. Data were available for 974 individuals including 51 with a large deletion and ages ranged from 1 year 4 months to 49 years (median 9 years). Those with a large deletion were more severely affected than those with other mutation types. Specifically, individuals with large deletions were less likely to have learned to walk (OR 0.42, 95% CI: 0.22–0.79, P=0.007) and to be currently walking (OR 0.53, 95% CI: 0.26–1.10, P=0.089), and were at higher odds of being in the most severe category of gross motor function (OR 1.84, 95% CI: 0.98–3.48, P=0.057) and epilepsy (OR 2.72, 95% CI: 1.38–5.37, P=0.004). They also developed epilepsy, scoliosis, hand stereotypies and abnormal breathing patterns at an earlier age. We have described the disorder profile associated with a large deletion from the largest sample to date and have found that the phenotype is severe with motor skills particularly affected. PMID:22473088

  20. A deletion variant of the alpha2b-adrenoceptor is related to emotional memory in Europeans and Africans.

    PubMed

    de Quervain, Dominique J-F; Kolassa, Iris-Tatjana; Ertl, Verena; Onyut, P Lamaro; Neuner, Frank; Elbert, Thomas; Papassotiropoulos, Andreas

    2007-09-01

    Emotionally arousing events are recalled better than neutral events. This phenomenon, which helps us to remember important and potentially vital information, depends on the activation of noradrenergic transmission in the brain. Here we show that a deletion variant of ADRA2B, the gene encoding the alpha2b-adrenergic receptor, is related to enhanced emotional memory in healthy Swiss subjects and in survivors of the Rwandan civil war who experienced highly aversive emotional situations. PMID:17660814

  1. The BIM deletion polymorphism: A paradigm of a permissive interaction between germline and acquired TKI resistance factors in chronic myeloid leukemia.

    PubMed

    Ko, Tun Kiat; Chin, Hui San; Chuah, Charles T H; Huang, John W J; Ng, King-Pan; Khaw, Seong Lin; Huang, David C S; Ong, S Tiong

    2016-01-19

    Both germline polymorphisms and tumor-specific genetic alterations can determine the response of a cancer to a given therapy. We previously reported a germline deletion polymorphism in the BIM gene that was sufficient to mediate intrinsic resistance to tyrosine kinase inhibitors (TKI) in chronic myeloid leukemia (CML), as well as other cancers [1]. The deletion polymorphism favored the generation of BIM splice forms lacking the pro-apoptotic BH3 domain, conferring a relative resistance to the TKI imatinib (IM). However, CML patients with the BIM deletion polymorphism developed both partial and complete IM resistance. To understand the mechanisms underlying the latter, we grew CML cells either with or without the BIM deletion polymorphism in increasing IM concentrations. Under these conditions, the BIM deletion polymorphism enhanced the emergence of populations with complete IM resistance, mimicking the situation in patients. Importantly, the combined use of TKIs with the BH3 mimetic ABT-737 overcame the BCR-ABL1-dependent and -independent resistance mechanisms found in these cells. Our results illustrate the interplay between germline and acquired genetic factors in confering TKI resistance, and suggest a therapeutic strategy for patients with complete TKI resistance associated with the BIM deletion polymorphism.

  2. Functional Genomics Using the Saccharomyces cerevisiae Yeast Deletion Collections.

    PubMed

    Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri

    2016-01-01

    Constructed by a consortium of 16 laboratories, the Saccharomyces genome-wide deletion collections have, for the past decade, provided a powerful, rapid, and inexpensive approach for functional profiling of the yeast genome. Loss-of-function deletion mutants were systematically created using a polymerase chain reaction (PCR)-based gene deletion strategy to generate a start-to-stop codon replacement of each open reading frame by homologous recombination. Each strain carries two molecular barcodes that serve as unique strain identifiers, enabling their growth to be analyzed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays or through the use of next-generation sequencing technologies. Functional profiling of the deletion collections, using either strain-by-strain or parallel assays, provides an unbiased approach to systematically survey the yeast genome. The Saccharomyces yeast deletion collections have proved immensely powerful in contributing to the understanding of gene function, including functional relationships between genes and genetic pathways in response to diverse genetic and environmental perturbations. PMID:27587784

  3. Functional Profiling Using the Saccharomyces Genome Deletion Project Collections.

    PubMed

    Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri

    2016-01-01

    The ability to measure and quantify the fitness of an entire organism requires considerably more complex approaches than simply using traditional "omic" methods that examine, for example, the abundance of RNA transcripts, proteins, or metabolites. The yeast deletion collections represent the only systematic, comprehensive set of null alleles for any organism in which such fitness measurements can be assayed. Generated by the Saccharomyces Genome Deletion Project, these collections allow the systematic and parallel analysis of gene functions using any measurable phenotype. The unique 20-bp molecular barcodes engineered into the genome of each deletion strain facilitate the massively parallel analysis of individual fitness. Here, we present functional genomic protocols for use with the yeast deletion collections. We describe how to maintain, propagate, and store the deletion collections and how to perform growth fitness assays on single and parallel screening platforms. Phenotypic fitness analyses of the yeast mutants, described in brief here, provide important insights into biological functions, mechanisms of drug action, and response to environmental stresses. It is important to bear in mind that the specific assays described in this protocol represent some of the many ways in which these collections can be assayed, and in this description particular attention is paid to maximizing throughput using growth as the phenotypic measure. PMID:27587776

  4. The yeast deletion collection: a decade of functional genomics.

    PubMed

    Giaever, Guri; Nislow, Corey

    2014-06-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MAT A: and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  5. The Yeast Deletion Collection: A Decade of Functional Genomics

    PubMed Central

    Giaever, Guri; Nislow, Corey

    2014-01-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  6. Deletion 2q37 syndrome: Cognitive-behavioral trajectories and autistic features related to breakpoint and deletion size.

    PubMed

    Fisch, Gene S; Falk, Rena E; Carey, John C; Imitola, Jaime; Sederberg, Maria; Caravalho, Karen S; South, Sarah

    2016-09-01

    Subtelomeric deletions have been reported in ∼2.5% of individuals with developmental disabilities. Subtelomeric deletion 2q37 has been detected in many individuals diagnosed with intellectual disabilities (ID) and autism spectrum disorders (ASD). Previously, genotype-phenotype correspondences were examined for their relationship to breakpoints 37.1, 37.2, or 37.3. Our purpose was to ascertain whether there were phenotypic differences at these breakpoints, elucidate the cognitive-behavioral phenotype in del2q37, and examine the genotype-phenotype association in the deletion with respect to cognitive-behavioral profiles and ASD. We administered a comprehensive cognitive-behavioral battery to nine children diagnosed with del 2q37, ages 3.9-17.75 years. ID for five tested with the Stanford-Binet (4th Edition) (SBFE) ranged from severe to mild [IQ Range: 36-59]. Adaptive behavior scores from the Vineland Adaptive Behavior Scale (VABS) were much below adequate levels (DQ Range: floor value ["19"] to 55). Autism scores from the Child Autism Rating Scale (CARS) ranged from 22 [non-autistic] to 56 [extremely autistic]; 5/8 [63%] children received scores on the autism spectrum. Participants with the largest deletions, 10.1 and 9.5 Mb, attained the highest IQ and DQ scores while those with the smallest deletions, 7.9 and 6.6 Mb, made the lowest IQ and DQ scores. No association between deletion breakpoint and phenotype were found. Assessment of the various deleted regions suggested histone deacetylase 4 gene (HDAC4) was a likely candidate gene for ASD in our sample. However, two earlier reports found no association between HDAC4 haploinsufficiency and ASD. © 2016 Wiley Periodicals, Inc. PMID:27282419

  7. Deletion 2q37 syndrome: Cognitive-behavioral trajectories and autistic features related to breakpoint and deletion size.

    PubMed

    Fisch, Gene S; Falk, Rena E; Carey, John C; Imitola, Jaime; Sederberg, Maria; Caravalho, Karen S; South, Sarah

    2016-09-01

    Subtelomeric deletions have been reported in ∼2.5% of individuals with developmental disabilities. Subtelomeric deletion 2q37 has been detected in many individuals diagnosed with intellectual disabilities (ID) and autism spectrum disorders (ASD). Previously, genotype-phenotype correspondences were examined for their relationship to breakpoints 37.1, 37.2, or 37.3. Our purpose was to ascertain whether there were phenotypic differences at these breakpoints, elucidate the cognitive-behavioral phenotype in del2q37, and examine the genotype-phenotype association in the deletion with respect to cognitive-behavioral profiles and ASD. We administered a comprehensive cognitive-behavioral battery to nine children diagnosed with del 2q37, ages 3.9-17.75 years. ID for five tested with the Stanford-Binet (4th Edition) (SBFE) ranged from severe to mild [IQ Range: 36-59]. Adaptive behavior scores from the Vineland Adaptive Behavior Scale (VABS) were much below adequate levels (DQ Range: floor value ["19"] to 55). Autism scores from the Child Autism Rating Scale (CARS) ranged from 22 [non-autistic] to 56 [extremely autistic]; 5/8 [63%] children received scores on the autism spectrum. Participants with the largest deletions, 10.1 and 9.5 Mb, attained the highest IQ and DQ scores while those with the smallest deletions, 7.9 and 6.6 Mb, made the lowest IQ and DQ scores. No association between deletion breakpoint and phenotype were found. Assessment of the various deleted regions suggested histone deacetylase 4 gene (HDAC4) was a likely candidate gene for ASD in our sample. However, two earlier reports found no association between HDAC4 haploinsufficiency and ASD. © 2016 Wiley Periodicals, Inc.

  8. [Construction and Function Verification of a Novel Shuttle Vector Containing a Marker Gene Self-deletion System].

    PubMed

    Li, Lili; Wang, Zhan; Zhou, Yubai; Zhang, Fang; Shen, Sisi; Li, Zelin; Zeng, Yi

    2015-09-01

    For rapid and accurate screening of recombinant modified vaccinia virus Ankara (rMVA) that satisfied the quality standards of clinical trials, a novel shuttle vector that can delete the marker gene automatically during virus propagation was construted: pZL-EGFP. To construct the pZL-EGFP, the original shuttle vector pSC11 was modified by replacing the LacZ marker gene with enhanced green fluorescent protein (EGFP) and then inserting homologous sequences of TKL into the flank regions of EGFP. Baby hamster kidney (BHK)-21 cells were cotransfected with pZL-EGFP and MVA, and underwent ten passages and one plaque screening to obtain the EGFP-free rMVA carrying the exogenous gene. Resulting rMVA was tested by polymerase chain reaction and western blotting to verify pZL-EGFP function. A novel shuttle vector pZL-EGFP containing an EGFP marker gene which could be deleted automatically was constructed. This gene deletion had no effect on the activities of rMVA, and the exogenous gene could be expressed stably. These results suggest that rMVA can be packaged efficiently by homologous recombination between pZL-EGFP and MVA in BHK-21 cells, and that the carried EGFP gene can be removed automatically by intramolecular homologous recombination during virus passage. Meanwhile, the gene deletion had no influence on the activities of rMVA and the expression of exogenous target gene. This study lays a solid foundation for the future research.

  9. Physiological activation of Akt by PHLPP1 deletion protects against pathological hypertrophy

    PubMed Central

    Moc, Courtney; Taylor, Amy E.; Chesini, Gino P.; Zambrano, Cristina M.; Barlow, Melissa S.; Zhang, Xiaoxue; Gustafsson, Åsa B.; Purcell, Nicole H.

    2015-01-01

    Aims To examine the role of physiological Akt signalling in pathological hypertrophy through analysis of PHLPP1 (PH domain leucine-rich repeat protein phosphatase) knock-out (KO) mice. Methods and results To investigate the in vivo requirement for ‘physiological’ control of Akt activation in cardiac growth, we examined the effect of deleting the Akt phosphatase, PHLPP, on the induction of cardiac hypertrophy. Basal Akt phosphorylation increased nearly two-fold in the cardiomyocytes from PHLPP1 KO mice and physiological hypertrophy induced by swimming exercise was accentuated as assessed by increased heart size and myocyte cell area. In contrast, the development of pathophysiological hypertrophy induced by pressure overload and assessed by increases in heart size, myocyte cell area, and hypertrophic gene expression was attenuated. This attenuation coincided with decreased fibrosis and cell death in the KO mice. Cast moulding revealed increased capillary density basally in the KO hearts, which was further elevated relative to wild-type mouse hearts in response to pressure overload. In vitro studies with isolated myocytes in co-culture also demonstrated that PHLPP1 deletion in cardiomyocytes can enhance endothelial tube formation. Expression of the pro-angiogenic factor VEGF was also elevated basally and accentuated in response to transverse aortic constriction in hearts from KO mice. Conclusion Our data suggest that enhancing Akt activity by inhibiting its PHLPP1-mediated dephosphorylation promotes processes associated with physiological hypertrophy that may be beneficial in attenuating the development of pathological hypertrophy. PMID:25411382

  10. Molecular dissection of the 5q deletion in myelodysplastic syndrome

    PubMed Central

    Ebert, Benjamin L.

    2011-01-01

    The 5q- syndrome is a subtype of myelodysplastic syndrome (MDS) with a defined clinical phenotype associated with heterozygous deletions of Chromosome 5q. While no genes have been identified that undergo recurrent homozygous inactivation, functional studies have revealed individual genes that contribute to the clinical phenotype of MDS through haploinsufficient gene expression. Heterozygous loss of the RPS14 gene on 5q leads to activation of p53 in the erythroid lineage and the macrocytic anemia characteristic of the 5q- syndrome. The megakaryocytic and platelet phenotype of the 5q- syndrome has been attributed to heterozygous deletion of miR145 and miR146a. Murine models have implicated heterozygous loss of APC, EGR1, DIAPH1, and NPM1 in the pathophysiology of del(5q) MDS. These findings indicate that the phenotype of MDS patients with deletions of Chromosome 5q is due to haploinsufficiency of multiple genes. PMID:21943668

  11. Spontaneous Hepatocellular Carcinoma after the Combined Deletion of Akt Isoforms.

    PubMed

    Wang, Qi; Yu, Wan-Ni; Chen, Xinyu; Peng, Xiao-Ding; Jeon, Sang-Min; Birnbaum, Morris J; Guzman, Grace; Hay, Nissim

    2016-04-11

    Akt is frequently hyperactivated in human cancers and is targeted for cancer therapy. However, the physiological consequences of systemic Akt isoform inhibition were not fully explored. We showed that while combined Akt1 and Akt3 deletion in adult mice is tolerated, combined Akt1 and Akt2 deletion induced rapid mortality. Akt2(-/-) mice survived hepatic Akt1 deletion but all developed spontaneous hepatocellular carcinoma (HCC), which is associated with FoxO-dependent liver injury and inflammation. The gene expression signature of HCC-bearing livers is similar to aggressive human HCC. Consistently, neither Akt1(-/-) nor Akt2(-/-) mice are resistant to diethylnitrosamine-induced hepatocarcinogenesis, and Akt2(-/-) mice display a high incidence of lung metastasis. Thus, in contrast to other cancers, hepatic Akt inhibition induces liver injury that could promote HCC. PMID:26996309

  12. Dissecting the phenotypes of Dravet syndrome by gene deletion

    PubMed Central

    Rubinstein, Moran; Han, Sung; Tai, Chao; Westenbroek, Ruth E.; Hunker, Avery; Scheuer, Todd

    2015-01-01

    Neurological and psychiatric syndromes often have multiple disease traits, yet it is unknown how such multi-faceted deficits arise from single mutations. Haploinsufficiency of the voltage-gated sodium channel Nav1.1 causes Dravet syndrome, an intractable childhood-onset epilepsy with hyperactivity, cognitive deficit, autistic-like behaviours, and premature death. Deletion of Nav1.1 channels selectively impairs excitability of GABAergic interneurons. We studied mice having selective deletion of Nav1.1 in parvalbumin- or somatostatin-expressing interneurons. In brain slices, these deletions cause increased threshold for action potential generation, impaired action potential firing in trains, and reduced amplification of postsynaptic potentials in those interneurons. Selective deletion of Nav1.1 in parvalbumin- or somatostatin-expressing interneurons increases susceptibility to thermally-induced seizures, which are strikingly prolonged when Nav1.1 is deleted in both interneuron types. Mice with global haploinsufficiency of Nav1.1 display autistic-like behaviours, hyperactivity and cognitive impairment. Haploinsufficiency of Nav1.1 in parvalbumin-expressing interneurons causes autistic-like behaviours, but not hyperactivity, whereas haploinsufficiency in somatostatin-expressing interneurons causes hyperactivity without autistic-like behaviours. Heterozygous deletion in both interneuron types is required to impair long-term spatial memory in context-dependent fear conditioning, without affecting short-term spatial learning or memory. Thus, the multi-faceted phenotypes of Dravet syndrome can be genetically dissected, revealing synergy in causing epilepsy, premature death and deficits in long-term spatial memory, but interneuron-specific effects on hyperactivity and autistic-like behaviours. These results show that multiple disease traits can arise from similar functional deficits in specific interneuron types. PMID:26017580

  13. Internal deletion mutants of Xenopus transcription factor IIIA.

    PubMed Central

    Hanas, J S; Littell, R M; Gaskins, C J; Zebrowski, R

    1989-01-01

    Xenopus transcription factor IIIA (TFIIIA) or TFIIIA mutants with internal deletions were expressed in E. coli utilizing a bacteriophage T7 RNA polymerase system. TFIIIA or deletion mutant TFIIIAs, isolated from E.coli cell extracts, were identified by SDS PAGE and immunoblotting with rabbit antiserum against native TFIIIA purified from Xenopus immature oocytes. Specific DNA binding of intact or internally deleted TFIIIA was compared by analyzing their abilities to protect the internal control gene (ICR) of the Xenopus 5S RNA gene from DNase I digestion. Intact protein, synthesized from a full-length TFIIIA cDNA, bound specifically to the entire ICR (+96 to +43) and promoted 5S RNA gene transcription in vitro. One TFIIIA deletion mutant, expressed from cDNA lacking the coding sequence for the putative fourth zinc finger (designated from the N-terminus, amino acids 103-132) protected the ICR from DNase I digestion from nucleotide positions +96 to +78. A second TFIIIA mutant resulting from fusion of putative zinc fingers 7 and 8 (deletion of amino acids 200-224) protected the 5S gene ICR from positions +96 to +63. The DNase I protection patterns of these mutant proteins are consistent with the formation of strong ICR contacts by those regions of the protein on the N-terminal side of the mutation but not by those regions on the C-terminal side of the mutation. The regions of the protein comprising the N-terminal 3 fingers and N-terminal six fingers appear to be in contact with approximately 18 and 33 bp of DNA respectively on the 3' side of the 5S gene ICR. These internal deletion mutants promoted 5S RNA synthesis in vitro and DNA renaturation. Images PMID:2690011

  14. GENERAL ENHANCEMENT OF MUTAGENIC POTENCY OF VARIOUS MUTAGENS DUE TO DELETED GENES IN THE ΔuvrB STRAINS TA 98 AND TA 100 OF SALMONELLA COMPARED WITH STRAINS CONTAINING ONLY A POINT MUTATION IN uvrB

    EPA Science Inventory

    The two most common strains used in Ames mutagenicity assays, TA98 and TA 100, contain a �uvrB mutation designed to enhance the mutagenicity of compounds, presumably due to the loss of the nucleotide excision repair system. We showed previously that the �uvrB mutations in these s...

  15. Interstitial deletion of long arm of chromosome 13.

    PubMed

    Carnevale, A; Frias, S; Alcantar, R

    1984-01-01

    The case is presented of a patient with the karyotype 46,XX,del(13q)(pter----q22::q32----qter) confirmed by densitometry and a phenotype of mental and growth deficiency, hypotonia, hypertelorism, ptosis, broad nasal bridge, protruding upper incisors, short neck, dislocation of the hip, hypoplasia of the thumbs, fusion of fourth and fifth metacarpal bones and syndactyly of toes. The findings are compared with those of well documented cases with a similar deleted segment of the long arm of chromosome 13. Although it seems obvious that a clinical syndrome for the distal deletion 13q appears to exist more studies with banded chromosomes are needed. PMID:6609673

  16. Serine Racemase Deletion Protects Against Cerebral Ischemia And Excitotoxicity

    PubMed Central

    Mustafa, Asif K.; Ahmad, Abdullah S.; Zeynalov, Emil; Gazi, Sadia K.; Sikka, Gautam; Ehmsen, Jeffrey T.; Barrow, Roxanne K.; Coyle, Joseph T.; Snyder, Solomon H.; Doré, Sylvain

    2010-01-01

    D-serine, formed from L-serine by serine racemase (SR), is a physiologic co-agonist at NMDA receptors. Using mice with targeted deletion of SR, we demonstrate a role for D-serine in NMDA receptor mediated neurotoxicity and stroke. Brain cultures of SR deleted mice display markedly diminished nitric oxide (NO) formation and neurotoxicity. In intact SR knockout mice NO formation and nitrosylation of NO targets are substantially reduced. Infarct volume following middle cerebral artery occlusion is dramatically diminished in several regions of the brains of SR mutant mice despite evidence of increased NMDA receptor number and sensitivity. PMID:20107067

  17. A large TAT deletion in a tyrosinaemia type II patient.

    PubMed

    Legarda, Maria; Wlodarczyk, Katarzyna; Lage, Sergio; Andrade, Fernando; Kim, Gwang-Jin; Bausch, Elke; Scherer, Gerd; Aldamiz-Echevarria, Luis Jose

    2011-11-01

    A girl, born to unrelated Spanish parents, presented at 6 months of age with photophobia, keratitis, palmar hyperkeratosis and high plasma tyrosine levels, indicative of tyrosinaemia type II. Analysis of the tyrosine aminotransferase (TAT) gene revealed a paternally inherited frameshift mutation c.1213delCinsAG at codon 405 causing a premature stop codon, and a maternally inherited deletion of 193kb encompassing the complete TAT gene and three neighbouring genes. This is the first complete TAT deletion in tyrosinaemia type II described so far.

  18. Deletion and deletion/insertion mutations in the juxtamembrane domain of the FLT3 gene in adult acute myeloid leukemia

    PubMed Central

    Deeb, Kristin K.; Smonskey, Matthew T.; DeFedericis, HanChun; Deeb, George; Sait, Sheila N.J.; Wetzler, Meir; Wang, Eunice S.; Starostik, Petr

    2014-01-01

    In contrast to FLT3 ITD mutations, in-frame deletions in the FLT3 gene have rarely been described in adult acute leukemia. We report two cases of AML with uncommon in-frame mutations in the juxtamembrane domain of the FLT3 gene: a 3-bp (c.1770_1774delCTACGinsGT; p.F590_V592delinsLF) deletion/insertion and a 12-bp (c.1780_1791delTTCAGAGAATAT; p.F594_Y597del) deletion. We verified by sequencing that the reading frame of the FLT3 gene was preserved and by cDNA analysis that the mRNA of the mutant allele was expressed in both cases. Given the recent development of FLT3 inhibitors, our findings may be of therapeutic value for AML patients harboring similar FLT3 mutations. PMID:25379410

  19. A deletion and a duplication in distal 22q11.2 deletion syndrome region. Clinical implications and review

    PubMed Central

    Fernández, Luis; Nevado, Julián; Santos, Fernando; Heine-Suñer, Damià; Martinez-Glez, Victor; García-Miñaur, Sixto; Palomo, Rebeca; Delicado, Alicia; Pajares, Isidora López; Palomares, María; García-Guereta, Luis; Valverde, Eva; Hawkins, Federico; Lapunzina, Pablo

    2009-01-01

    Background Individuals affected with DiGeorge and Velocardiofacial syndromes present with both phenotypic diversity and variable expressivity. The most frequent clinical features include conotruncal congenital heart defects, velopharyngeal insufficiency, hypocalcemia and a characteristic craniofacial dysmorphism. The etiology in most patients is a 3 Mb recurrent deletion in region 22q11.2. However, cases of infrequent deletions and duplications with different sizes and locations have also been reported, generally with a milder, slightly different phenotype for duplications but with no clear genotype-phenotype correlation to date. Methods We present a 7 month-old male patient with surgically corrected ASD and multiple VSDs, and dysmorphic facial features not clearly suggestive of 22q11.2 deletion syndrome, and a newborn male infant with cleft lip and palate and upslanting palpebral fissures. Karyotype, FISH, MLPA, microsatellite markers segregation studies and SNP genotyping by array-CGH were performed in both patients and parents. Results Karyotype and FISH with probe N25 were normal for both patients. MLPA analysis detected a partial de novo 1.1 Mb deletion in one patient and a novel partial familial 0.4 Mb duplication in the other. Both of these alterations were located at a distal position within the commonly deleted region in 22q11.2. These rearrangements were confirmed and accurately characterized by microsatellite marker segregation studies and SNP array genotyping. Conclusion The phenotypic diversity found for deletions and duplications supports a lack of genotype-phenotype correlation in the vicinity of the LCRC-LCRD interval of the 22q11.2 chromosomal region, whereas the high presence of duplications in normal individuals supports their role as polymorphisms. We suggest that any hypothetical correlation between the clinical phenotype and the size and location of these alterations may be masked by other genetic and/or epigenetic modifying factors. PMID

  20. Consequences of ccmR deletion on respiration, fermentation and H2 metabolism in cyanobacterium Synechococcus sp. PCC 7002.

    PubMed

    Krishnan, Anagha; Zhang, Shuyi; Liu, Yang; Tadmori, Kinan A; Bryant, Donald A; Dismukes, Charles G

    2016-07-01

    CcmR, a LysR-type transcriptional regulator, represses the genes encoding components of the high-affinity carbon concentration mechanism in cyanobacteria. Unexpectedly, deletion of the ccmR gene was found to alter the expression of the terminal oxidase and fermentative genes, especially the hydrogenase operon in the cyanobacterium Synechococcus sp. PCC 7002. Consistent with the transcriptomic data, the deletion strain exhibits flux increases (30-50%) in both aerobic O2 respiration and anaerobic H2 evolution. To understand how CcmR influences anaerobic metabolism, the kinetics of autofermentation were investigated following photoautotrophic growth. The autofermentative H2 yield increased by 50% in the CcmR deletion strain compared to the wild-type strain, and increased to 160% (within 20 h) upon continuous removal of H2 from the medium ("milking") to suppress H2 uptake. Consistent with this greater reductant flux to H2 , the mutant excreted less lactate during autofermentation (NAD(P)H consuming pathway). To enhance the rate of NADH production during anaerobic metabolism, the ccmR mutant was engineered to introduce GAPDH overexpression (more NADH production) and LDH deletion (less NADH consumption). The triple mutant (ccmR deletion + GAPDH overexpression + LDH deletion) showed 6-8-fold greater H2 yield than the WT strain, achieving conversion rates of 17 nmol 10(8)  cells(-1)  h(-1) and yield of 0.87 H2 per glucose equivalent (8.9% theoretical maximum). Simultaneous monitoring of the intracellular NAD(P)H concentration and H2 production rate by these mutants reveals an inverse correspondence between these variables indicating hydrogenase-dependent H2 production as a major sink for consuming NAD(P)H in preference to excretion of reduced carbon as lactate during fermentation. Biotechnol. Bioeng. 2016;113: 1448-1459. © 2015 Wiley Periodicals, Inc. PMID:26704377

  1. Genomic anatomy of the Tyrp1 (brown) deletion complex

    SciTech Connect

    Hunsicker, Patricia R; Johnson, Dabney K

    2006-01-01

    Chromosome deletions in the mouse have proven invaluable in the dissection of gene function. The brown deletion complex comprises >28 independent genome rearrangements, which have been used to identify several functional loci on chromosome 4 required for normal embryonic and postnatal development. We have constructed a 172-bacterial artificial chromosome contig that spans this 22- egabase (Mb) interval and have produced a contiguous, finished, and manually annotated sequence from these clones. The deletion complex is strikingly gene- oor, containing only 52 protein-coding genes (of which only 39 are supported by human homologues) and has several further notable genomic features, including several segments of >1 Mb, apparently devoid of a coding sequence. We have used sequence polymorphisms to finely map the deletion breakpoints and identify strong candidate genes for the known phenotypes that map to this region, including three lethal loci (l4Rn1, l4Rn2, and l4Rn3) and the fitness mutant brown-associated fitness (baf). We have also characterized misexpression of the basonuclin homologue, Bnc2, associated with the inversion-ediated coat color mutant white-based brown (Bw). This study provides a molecular insight into the basis of several characterized mouse mutants, which will allow further dissection of this region by targeted or chemical mutagenesis.

  2. 23 CFR 658.11 - Additions, deletions, exceptions, and restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... AND TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS § 658.11 Additions, deletions, exceptions, and restrictions. To ensure that the National Network remains... National Network as well as requests for the imposition of certain restrictions. FHWA approval...

  3. 23 CFR 658.11 - Additions, deletions, exceptions, and restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... AND TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS § 658.11 Additions, deletions, exceptions, and restrictions. To ensure that the National Network remains... National Network as well as requests for the imposition of certain restrictions. FHWA approval...

  4. 76 FR 51954 - Procurement List Additions And Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... CMTEFedReg@AbilityOne.gov . SUPPLEMENTARY INFORMATION: Additions On 6/17/2011 (76 FR 35415-35417), 6/24/2011 (76 FR 37069-37070), and 7/1/2011 (76 FR 38641-38642), the Committee for Purchase From People Who... Motor Carrier Safety Administration, Washington, DC. Deletions On 5/27/2011 (76 FR 30923-30924) and...

  5. 75 FR 38468 - Procurement List; Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ...@AbilityOne.gov . SUPPLEMENTARY INFORMATION: Additions On 4/30/2010 (75 FR 22744-22745) and 5/7/2010 (75 FR... a significant impact on a substantial number of small entities. The major factors considered for..., Office of Procurement, Washington, DC. Deletions On 5/7/2010 (75 FR 25210-25211), the Committee...

  6. 75 FR 1355 - Procurement List Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Additions and Deletions AGENCY: Committee for... Procurement List. SUMMARY: This action adds to the Procurement List services to be furnished by nonprofit... Procurement List products and services previously furnished by such agencies. DATES: Effective Date:...

  7. 75 FR 7451 - Procurement List Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Additions and Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Additions to the Procurement List. SUMMARY: This action adds to the Procurement List products and services to be furnished by nonprofit...

  8. Schizophrenia in an Adult With 6p25 Deletion Syndrome

    PubMed Central

    Caluseriu, O.; Mirza, G.; Ragoussis, J.; Chow, E.W.C.; MacCrimmon, D.; Bassett, A.S.

    2011-01-01

    Chromosomal deletions at 6p25-p24 are rare findings in patients with developmental delay. There is limited information about the adult phenotype. We present a 36-year-old patient with schizophrenia, mild mental retardation, progressive hearing deficits, and characteristic facial features. Ocular (Axenfeld–Rieger anomaly) abnormalities were diagnosed in infancy; vision, however, has remained unimpaired. There were no other major congenital anomalies. Brain imaging showed only minor changes. There was no family history of intellectual deficits or psychosis. Karyotyping revealed a 6p25 deletion, and detailed fluorescence in situ hybridization (FISH) analyses using 23 probes confirmed a 6.7 Mb 6p25-pter deletion. The breakpoint is near a possible 6p25-p24 locus for schizophrenia. Psychotic illness may be part of the neurodevelopmental abnormalities and long-term outcome of patients with 6p terminal deletions. Other similarly affected patients likely remain to be diagnosed in adult populations of schizophrenia and/or mental retardation. PMID:16642507

  9. 75 FR 18164 - Procurement List: Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ...., Williamsport, PA Portfolio, Double Pocket NSN: 7510-01-411-7000 NPA: Susquehanna Association for the Blind and... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List: Proposed Additions and Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Additions To...

  10. 76 FR 66913 - Procurement List Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Proposed Additions and Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Additions to and... Procurement List that will be furnished by nonprofit agencies employing persons who are blind or have...

  11. 77 FR 22288 - Procurement List; Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... . SUPPLEMENTARY INFORMATION: Additions On 2/17/2012 (77 FR 9631), the Committee for Purchase From People Who Are..., Office of Acquisitions, Alexandria, VA. Deletions On 2/17/2012 (77 FR 9631), the Committee for Purchase... From the Federal Register Online via the Government Publishing Office COMMITTEE FOR PURCHASE...

  12. 78 FR 29119 - Procurement List; Additions and Deletion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... . SUPPLEMENTARY INFORMATION: Additions On 3/15/2013 (78 FR 16475-16476) and 3/22/2013 (78 FR 17641-17642), the...: Washington Headquarters Services (WHS), Acquisition Directorate, Washington, DC. Deletion On 4/5/2013 (78 FR... Rice Center, Walla Walla, WA. ] Contracting Activity: Dept of the Army, W071 Endist Walla Walla,...

  13. 78 FR 53733 - Procurement List Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... . SUPPLEMENTARY INFORMATION: Additions On 7/8/2013 (78 FR 40727-40728) and 7/12/2013 (78 FR 41915-41916), the... Regional Fleet Mgt Office, Fort Worth, TX ] Deletions On 7/19/2013 (78 FR 43180), the Committee for... following products and services are added to the Procurement List: Products NSN: MR 546--Sponge,...

  14. Multigene deletions in lung adenocarcinomas from irradiated and control mice

    SciTech Connect

    Zhang, Y.; Woloschak, G.E.

    1996-06-01

    K-ras codon 12 point mutations mRb and p53 gene deletions were examined in tissues from 120 normal lungs and lung adenocarcinomas that were Formalin-treated and paraffin-embedded 25 years ago. The results showed that 12 of 60 (20%) lung adenocarcinomas had mRb deletions. All lung adenocarcinomas that were initially found bearing deleted mRb had p53 deletions (15 of 15; 100%). A significantly higher mutation frequency for K-ras codon 12 point mutations was also found in the lung adenocarcinomas from mice exposed to 24 once-weekly neutron irradiation (10 of 10; 100%) compared with those exposed to 24 or 60 once-weekly {gamma}-ray doses (5 of 10; 50%). The data suggested that p53 and K-ras gene alterations were two contributory factors responsible for the increased incidence of lung adenocarcinoma in B6CF{sub 1} male mice exposed to protracted neutron radiation.

  15. 76 FR 27999 - Procurement List; Addition and Deletion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... . SUPPLEMENTARY INFORMATION: Addition On 3/11/2011 (76 FR 13362-13363), the Committee for Purchase From People Who.... ] Deletion On 3/11/2011 (76 FR 13362-13363), the Committee for Purchase From People Who Are Blind or Severely... business the opportunity to compete for these projects in the future. The Javits-Wagner-O'Day Act and...

  16. 76 FR 3880 - Procurement List; Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ...@AbilityOne.gov . SUPPLEMENTARY INFORMATION: Additions On 9/10/2010 (75 FR 55309-55310); 11/15/2010 (75 FR 69639-69640); and 11/19/2010 (75 FR 70909-70910), the Committee for Purchase From People Who Are Blind... Interior, National Park Service, Midwest Region, Omaha, NE. Deletions On 10/22/2010 (FR 65305) and...

  17. 75 FR 76960 - Procurement List; Additions And Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-10

    ...@AbilityOne.gov . SUPPLEMENTARY INFORMATION: Additions On 10/15/2010 (75 FR 63446-63447), the Committee for..., LA. Deletions On 10/15/2010 (75 FR 63446-63447), the Committee for Purchase From People Who Are Blind...-Wagner-O'Day Act (41 U.S.C. 46- 48c) in connection with the product and service proposed for addition...

  18. 76 FR 51955 - Procurement List Proposed Addition and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... the objectives of the Javits-Wagner-O'Day Act (41 U.S.C. 46- 48c) in connection with the service... the Javits-Wagner-O'Day Act (41 U.S.C. 46- 48c) in connection with the services proposed for deletion... e-mail CMTEFedReg@AbilityOne.gov . SUPPLEMENTARY INFORMATION: This notice is published pursuant...

  19. 76 FR 50184 - Procurement List, Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ...@AbilityOne.gov . SUPPLEMENTARY INFORMATION: Additions On 5/20/2011 (76 FR 29210-29211) and 6/17/2011 (76 FR 35415-35417), the Committee for Purchase From People Who Are Blind or Severely Disabled published...: Department of Veterans Affairs, VISN 11, Indianapolis, IN Deletions On 4/8/2011 (76 FR 19750-19751),...

  20. Remarks on Causative Verbs and Object Deletion in English

    ERIC Educational Resources Information Center

    Onozuka, Hiromi

    2007-01-01

    Rappaport Hovav and Levin [Rappaport Hovav, M., Levin, B., 1998. "Building verb meanings." In: Butt, M., Geuder, W. (Eds.), "The Projection of Arguments: Lexical and Compositional Factors." CSLI Publications, Stanford, pp. 97-134] contend that result verbs disallow object deletion because of their lexical semantic properties. Their point is that…

  1. 36 CFR 1275.58 - Deletion of restricted portions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Deletion of restricted portions. 1275.58 Section 1275.58 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NIXON PRESIDENTIAL MATERIALS PRESERVATION AND PROTECTION OF AND ACCESS TO THE...

  2. 36 CFR 1275.58 - Deletion of restricted portions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Deletion of restricted portions. 1275.58 Section 1275.58 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NIXON PRESIDENTIAL MATERIALS PRESERVATION AND PROTECTION OF AND ACCESS TO THE...

  3. 36 CFR 1275.58 - Deletion of restricted portions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Deletion of restricted portions. 1275.58 Section 1275.58 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NIXON PRESIDENTIAL MATERIALS PRESERVATION AND PROTECTION OF AND ACCESS TO THE...

  4. 36 CFR 1275.58 - Deletion of restricted portions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Deletion of restricted portions. 1275.58 Section 1275.58 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NIXON PRESIDENTIAL MATERIALS PRESERVATION AND PROTECTION OF AND ACCESS TO THE...

  5. 36 CFR 1275.58 - Deletion of restricted portions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Deletion of restricted portions. 1275.58 Section 1275.58 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION NIXON PRESIDENTIAL MATERIALS PRESERVATION AND PROTECTION OF AND ACCESS TO THE...

  6. 78 FR 20620 - Procurement List; Additions to and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... . SUPPLEMENTARY INFORMATION: Additions On 2/1/2013 (78 FR 7412-7413) and 2/8/2013 (78 FR 9386-9387), the Committee... impact on a substantial number of small entities. The major factors considered for this certification... SERVICE, GSA/PBS/R03 SOUTH SERVICE CENTER, PHILADELPHIA, PA Deletions On 3/23/2012 (77 FR 17035),...

  7. 75 FR 16755 - Procurement List Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Additions and Deletions AGENCY: Committee for... Procurement List. SUMMARY: This action adds to the Procurement List a product and services to be furnished by... Procurement List products previously furnished by such agencies. DATES: Effective Date: May 3, 2010....

  8. 78 FR 71581 - Procurement List; Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... Prime Vendor Supply Chain Management Service [to support production, assembly, receipt, storage...-APG Natick, Natick, MA. Service Type/Location: Integrated Prime Vendor, Supply Chain Management... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Additions and Deletions AGENCY: Committee...

  9. 78 FR 38952 - Procurement List; Proposed Additions to and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ..., W7NX USPFO ACTIVITY PA ARNG, ANNVILLE, PA. Service Type/Location: Integrated Prime Vendor Supply Chain... Type/Location: Integrated Prime Vendor Supply Chain Management Service, U.S. Navy, Naval Surface... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Additions to and Deletions...

  10. Deletion Mutations Keep Kinase Inhibitors in the Loop

    PubMed Central

    Freed, Daniel M.; Park, Jin H.; Radhakrishnan, Ravi; Lemmon, Mark A.

    2016-01-01

    Effective clinical application of conformationally selective kinase inhibitors requires tailoring drug choice to the tumor's activating mutation(s). In this issue of Cancer Cell, Foster et al. (2016) describe how activating deletions in BRAF, EGFR, and HER2 cause primary resistance to common inhibitors, suggesting strategies for improved inhibitor selection. PMID:27070691

  11. 76 FR 6452 - Procurement List; Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ...@AbilityOne.gov . SUPPLEMENTARY INFORMATION: Additions On 9/24/2010 (75 FR 58367); 10/22/2010 (75 FR 65305); and 12/10/ 2010 (75 FR 76961-76962), the Committee for Purchase From People Who Are Blind or Severely.... Deletions On 12/10/2010 (75 FR 76961-76962), the Committee for Purchase From People Who Are Blind...

  12. 75 FR 13262 - Procurement List Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... . SUPPLEMENTARY INFORMATION: Additions On 1/11/2010 (75 FR 1354-1355) and 1/15/2010 (75 FR 2510), the Committee.... Deletions On 1/11/2010 (75 FR 1354-1355), the Committee for Purchase From People Who Are Blind or Severely... Logistics Agency, DLA Support Services--DSS, Fort Belvoir, VA. Patricia Briscoe, Deputy Director,...

  13. Automatic Element Addition and Deletion in Lens Optimization

    NASA Astrophysics Data System (ADS)

    Cheng, Xuemin; Wang, Yongtian; Hao, Qun; Sasian, Jose

    2003-03-01

    A mechanism is established for the automatic addition and deletion of optical elements during the course of lens optimization. Two lens-form parameters, quantifying the symmetry of the optical system and the optical-power distribution among the individual lens elements, are used as criteria in this automatic procedure. Design examples are provided that demonstrate the practicability of the scheme.

  14. On Making a Distinguished Vertex Minimum Degree by Vertex Deletion

    NASA Astrophysics Data System (ADS)

    Betzler, Nadja; Bredereck, Robert; Niedermeier, Rolf; Uhlmann, Johannes

    For directed and undirected graphs, we study the problem to make a distinguished vertex the unique minimum-(in)degree vertex through deletion of a minimum number of vertices. The corresponding NP-hard optimization problems are motivated by applications concerning control in elections and social network analysis. Continuing previous work for the directed case, we show that the problem is W[2]-hard when parameterized by the graph's feedback arc set number, whereas it becomes fixed-parameter tractable when combining the parameters "feedback vertex set number" and "number of vertices to delete". For the so far unstudied undirected case, we show that the problem is NP-hard and W[1]-hard when parameterized by the "number of vertices to delete". On the positive side, we show fixed-parameter tractability for several parameterizations measuring tree-likeness, including a vertex-linear problem kernel with respect to the parameter "feedback edge set number". On the contrary, we show a non-existence result concerning polynomial-size problem kernels for the combined parameter "vertex cover number and number of vertices to delete", implying corresponding nonexistence results when replacing vertex cover number by treewidth or feedback vertex set number.

  15. Deletion and Interallelic Complementation Analysis of Steel Mutant Mice

    PubMed Central

    Bedell, M. A.; Cleveland, L. S.; O'Sullivan, T. N.; Copeland, N. G.; Jenkins, N. A.

    1996-01-01

    Mutations at the Steel (St) locus produce pleiotropic effects on viability as well as hematopoiesis, pigmentation and fertility. Several homozygous viable Sl alleles have previously been shown to contain either structural alterations in mast cell growth factor (Mgf) or regulatory mutations that affect expression of the Mgf gene. More severe Sl alleles cause lethality to homozygous embryos and all lethal Sl alleles examined to data contain deletions that remove the entire Mgf coding region. As the timing of the lethality varies from early to late in gestation, it is possible that some deletions may affect other closely linked genes in addition to Mgf. We have analyzed the extent of deleted sequences in seven homozygous lethal Sl alleles. The results of this analysis suggest that late gestation lethality represents the Sl null phenotype and that peri-implantation lethality results from the deletion of at least one essential gene that maps proximal to Sl. We have also examined gene dosage effects of Sl by comparing the phenotypes of mice homozygous and hemizygous for each of four viable Sl alleles. Lastly, we show that certain combinations of the viable Sl alleles exhibit interallelic complementation. Possible mechanisms by which such complementation could occur are discussed. PMID:8849899

  16. 78 FR 54870 - Procurement List; Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ... Vendor, Supply Chain Management Service(inventory control, obsolescence identification, engineering...: Additions On 6/28/2013 (78 FR 38952-38953) and 7/19/2013 (78 FR 43180), the Committee for Purchase From...: Dept of the Navy, NSWC Crane, Crane, IN Deletions On 7/26/2013 (78 FR45183) and 8/2/2013 (78 FR...

  17. Minimum prevalence of chromosome 22q11 deletions

    SciTech Connect

    Wilson, D.I.; Cross, I.E.; Burn, J.

    1994-09-01

    Submicroscopic deletions from within chromosome 22q11 are associated with DiGeorge (DGS), velocardiofacial (VCFS) and conotruncal anomaly syndromes and isolated congenital heart defects. In 1993 our pediatric cardiologists clinically referred all children in whom a chromosome 22q11 deletion was suspected for fluorescent in situ hybridization studies using probes from the DGS critical region. 10 affected individuals have been identified to date from the children born in 1993 in the Northern Region served exclusively by our center. A further case, the subsequent pregnancy in one of these families was affected and terminated on the basis of a major heart malformation. In the years 1988-92, for which we have complete ascertainment, there were 1009 heart defects among 191,700 births (mean 202 per annum). Thus we estimate that chromosome 22q11 deletions were the cause of at least 5% of congenital heart disease. As not all children with chromosome 22q11 deletions have a heart defect, this gives an estimated minimum prevalence of 1/4000 live births.

  18. 75 FR 44940 - Procurement List Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-30

    ...@AbilityOne.gov . SUPPLEMENTARY INFORMATION: Additions On 6/4/2010 (75 FR 31768-31769), the Committee for... Administration, Hdqtrs-- Office of Acquisition & Grants, Baltimore, MD. Deletions On 5/21/2010 (75 FR 28589-28590); 6/4/2010 (75 FR 31768-31769); and 6/11/2010 (75 FR 33270-33271), the Committee for Purchase...

  19. 42 CFR 401.118 - Deletion of identifying details.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false Deletion of identifying details. 401.118 Section 401.118 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN..., statement of policy, or other record which relates to a private party or parties, the name or names or...

  20. [Multiplex PCR for detecting genotypes of deletional alpha-thalassemia].

    PubMed

    Wu, Jie-Ying; Liao, Can; Li, Jian; Huang, Yi-Ning

    2004-08-01

    To investigate the clinical application of multiplex PCR in detecting genotypes of deletional alpha-thalassemia in South China and observe the distribution frequency of alpha-globin gene deletion, 145 patients with silent carrier, alpha thalassemia trait or HbH were identified by M-PCR and 1.2% agarose gel electrophoresis. There are 1.3, 1.6, 1.8 and 2.0 kb bands which indicate --(SEA), -alpha(4.2), alphaalpha and -alpha(3.7), respectively. The results showed that among 145 patients, 100 patients with --(SEA)/alphaalpha (68.9%), 15 with -alpha(3.7)/alphaalpha (10.3%), 8 with -alpha(4.2)/alphaalpha (5.52%), 2 with -alpha(3.7)/-alpha(4.2) (1.38%), 1 with -alpha(3.7)/-alpha(3.7) (0.69%), 1 with -alpha(4.2)/-alpha(4.2) (0.69%), 14 with --(SEA)/-alpha(3.7) (9.65%), 2 with --(SEA)/-alpha(4.2) (1.38%) were found. Two patients prenatal diagnosed were confirmed with Bart's hydrops fetuses. In conclusion, M-PCR analysis is a simple, rapid and accurate method for detection of alpha-thalassemia gene deletion. This technique is helpful in screening, carrier identification and prenatal diagnosis of deletional alpha-thalassemia.

  1. 77 FR 40344 - Procurement List; Proposed Additions and Deletion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... Resource Center, Alexandria, VA (CONUS). Contracting Activity: Defense Human Resource Center, Alexandria... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Additions and Deletion AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Additions to...

  2. Seven major genomic deletions of vaccinia virus Tiantan strain are sufficient to decrease pathogenicity.

    PubMed

    Li, Yiquan; Sheng, Yuan; Chu, Yunjie; Ji, Huifan; Jiang, Shuang; Lan, Tian; Li, Min; Chen, Shuang; Fan, Yuanyuan; Li, Wenjie; Li, Xiao; Sun, Lili; Jin, Ningyi

    2016-05-01

    Attenuated strain TTVAC7, as a multi-gene-deleted vaccinia virus Tiantan strain (VTT), was constructed by knocking out parts of non-essential genes related to virulence, host range and immunomodulation of VTT, and by combining double marker screening with exogenous selectable marker knockout techniques. In this study, shuttle vector plasmids pTC-EGFP, pTA35-EGFP, pTA66-EGFP, pTE-EGFP, pTB-EGFP, pTI-EGFP and pTJ-EGFP were constructed, which contained seven pairs of recombinant arms linked to the early and late strong promoter pE/L, as well as to enhanced green fluorescent protein (EGFP) as an exogenous selectable marker. BHK cells were co-transfected/infected successively with the above plasmids and VTT or gene-deleted VTT, and homologous recombination and fluorescence plaque screening methods were used to knock out the gene fragments (TC: TC7L ∼ TK2L; TA35: TA35L; TA66: TA66R; TE: TE3L ∼ TE4L; TB: TB13R; TI: TI4L; TJ: TJ2R). The Cre/LoxP system was then applied to knock out the exogenous selectable marker, and ultimately the gene-deleted attenuated strain TTVAC7 was obtained. A series of in vivo and in vitro experiments demonstrated that not only the host range of TTVAC7 could be narrowed and its toxicity weakened significantly, but its high immunogenicity was maintained at the same time. These results support the potential of TTVAC7 to be developed as a safe viral vector or vaccine. PMID:26821204

  3. Seven major genomic deletions of vaccinia virus Tiantan strain are sufficient to decrease pathogenicity.

    PubMed

    Li, Yiquan; Sheng, Yuan; Chu, Yunjie; Ji, Huifan; Jiang, Shuang; Lan, Tian; Li, Min; Chen, Shuang; Fan, Yuanyuan; Li, Wenjie; Li, Xiao; Sun, Lili; Jin, Ningyi

    2016-05-01

    Attenuated strain TTVAC7, as a multi-gene-deleted vaccinia virus Tiantan strain (VTT), was constructed by knocking out parts of non-essential genes related to virulence, host range and immunomodulation of VTT, and by combining double marker screening with exogenous selectable marker knockout techniques. In this study, shuttle vector plasmids pTC-EGFP, pTA35-EGFP, pTA66-EGFP, pTE-EGFP, pTB-EGFP, pTI-EGFP and pTJ-EGFP were constructed, which contained seven pairs of recombinant arms linked to the early and late strong promoter pE/L, as well as to enhanced green fluorescent protein (EGFP) as an exogenous selectable marker. BHK cells were co-transfected/infected successively with the above plasmids and VTT or gene-deleted VTT, and homologous recombination and fluorescence plaque screening methods were used to knock out the gene fragments (TC: TC7L ∼ TK2L; TA35: TA35L; TA66: TA66R; TE: TE3L ∼ TE4L; TB: TB13R; TI: TI4L; TJ: TJ2R). The Cre/LoxP system was then applied to knock out the exogenous selectable marker, and ultimately the gene-deleted attenuated strain TTVAC7 was obtained. A series of in vivo and in vitro experiments demonstrated that not only the host range of TTVAC7 could be narrowed and its toxicity weakened significantly, but its high immunogenicity was maintained at the same time. These results support the potential of TTVAC7 to be developed as a safe viral vector or vaccine.

  4. Olfactomedin 4 deletion induces colon adenocarcinoma in ApcMin/+ mice

    PubMed Central

    Liu, W; Li, H; Hong, S-H; Piszczek, G P; Chen, W; Rodgers, G P

    2016-01-01

    Colon carcinogenesis is a multiple-step process involving the accumulation of a series of genetic and epigenetic alterations. The most commonly initiating event of intestinal carcinogenesis is mutation of the adenomatous polyposis coli (APC) gene, which leads to activation of the Wnt/β-catenin pathway. Olfactomedin 4 (OLFM4) has emerged as an intestinal stem-cell marker, but its biological function in the intestine remains to be determined. Here we show that Olfm4 deletion induced colon adenocarcinoma in the distal colon of ApcMin/+ mice. Mechanistically, we found that OLFM4 is a target gene of the Wnt/β-catenin pathway and can downregulate β-catenin signaling by competing with Wnt ligands for binding to Frizzled receptors, as well as by inhibition of the Akt-GSK-3β (Akt-glycogen synthase kinase-3β) pathway. We have shown that both Wnt and nuclear factor-κB (NF-κB) signaling were boosted in tumor tissues of Apc Olfm4 double-mutant mice. These data establish OLFM4 as a critical negative regulator of the Wnt/β-catenin and NF-κB pathways that inhibits colon-cancer development initiated by APC mutation. In addition, Olfm4 deletion significantly enhanced intestinal-crypt proliferation and inflammation induced by azoxymethane/dextran sodium sulfate. Thus, OLFM4 has an important role in the regulation of intestinal inflammation and tumorigenesis, and could be a potential therapeutic target for intestinal malignant tumors. Unlike the human colonic epithelium, the mouse colonic epithelium does not express OLFM4, but nevertheless, systemic OLFM4 deletion promotes colon tumorigenesis and that loss from mucosal neutrophils may have a role to play. PMID:26973250

  5. Deletion of Cd151 reduces mammary tumorigenesis in the MMTV/PyMT mouse model

    PubMed Central

    2014-01-01

    Background Tetraspanins are transmembrane proteins that serve as scaffolds for multiprotein complexes containing, for example, integrins, growth factor receptors and matrix metalloproteases, and modify their functions in cell adhesion, migration and transmembrane signaling. CD151 is part of the tetraspanin family and it forms tight complexes with β1 and β4 integrins, both of which have been shown to be required for tumorigenesis and/or metastasis in transgenic mouse models of breast cancer. High levels of the tetraspanin CD151 have been linked to poor patient outcome in several human cancers including breast cancer. In addition, CD151 has been implicated as a promoter of tumor angiogenesis and metastasis in various model systems. Methods Here we investigated the effect of Cd151 deletion on mammary tumorigenesis by crossing Cd151-deficient mice with a spontaneously metastasising transgenic model of breast cancer induced by the polyoma middle T antigen (PyMT) driven by the murine mammary tumor virus promoter (MMTV). Results Cd151 deletion did not affect the normal development and differentiation of the mammary gland. While there was a trend towards delayed tumor onset in Cd151−/− PyMT mice compared to Cd151+/+ PyMT littermate controls, this result was only approaching significance (Log-rank test P-value =0.0536). Interestingly, Cd151 deletion resulted in significantly reduced numbers and size of primary tumors but did not appear to affect the number or size of metastases in the MMTV/PyMT mice. Intriguingly, no differences in the expression of markers of cell proliferation, apoptosis and blood vessel density was observed in the primary tumors. Conclusion The findings from this study provide additional evidence that CD151 acts to enhance tumor formation initiated by a range of oncogenes and strongly support its relevance as a potential therapeutic target to delay breast cancer progression. PMID:25012362

  6. Deletion of potD, encoding a putative spermidine-binding protein, results in a complex phenotype in Legionella pneumophila.

    PubMed

    Nasrallah, Gheyath K; Abdelhady, Hany; Tompkins, Nicholas P; Carson, Kaitlyn R; Garduño, Rafael A

    2014-07-01

    L. pneumophila is an intracellular pathogen that replicates in a membrane-bound compartment known as the Legionella-containing vacuole (LCV). We previously observed that the polyamine spermidine, produced by host cells or added exogenously, enhances the intracellular growth of L. pneumophila. To study this enhancing effect and determine whether polyamines are used as nutrients, we deleted potD from L. pneumophila strain JR32. The gene potD encodes a spermidine-binding protein that in other bacteria is essential for the function of the PotABCD polyamine transporter. Deletion of potD did not affect L. pneumophila growth in vitro in the presence or absence of spermidine and putrescine, suggesting that PotD plays a redundant or no role in polyamine uptake. However, deletion of potD resulted in a puzzlingly complex phenotype that included defects in L. pneumophila's ability to form filaments, tolerate Na(+), associate with macrophages and amoeba, recruit host vesicles to the LCV, and initiate intracellular growth. Moreover, the ΔpotD mutant was completely unable to grow in L929 cells treated with a pharmacological inhibitor of spermidine synthesis. These complex and disparate effects suggest that the L. pneumophila potD encodes either: (i) a multifunctional protein, (ii) a protein that interacts with, or regulates a, multifunctional protein, or (iii) a protein that contributes (directly or indirectly) to a regulatory network. Protein function studies with the L. pneumophila PotD protein are thus warranted. PMID:24928741

  7. Further delineation of the chromosome 14q terminal deletion syndrome.

    PubMed

    van Karnebeek, Clara D M; Quik, Safira; Sluijter, Sigrid; Hulsbeek, Miriam M F; Hoovers, Jan M N; Hennekam, Raoul C M

    2002-06-01

    A patient with hypotonia, blepharophimosis, ptosis, a bulbous nose, a long philtrum, upturned corners of the mouth, and mild developmental delay was found to have a small subtelomeric deletion of the long arm of chromosome 14 (q32.31-qter). In comparing her phenotype with previously reported patients with similar 14q deletions, due to either a linear deletion or to a ring chromosome 14, a clinically recognizable terminal 14q microdeletion syndrome was evident. Due to the limited number of cases reported, it was not possible to assign specific features to specific regions of terminal 14q. The comparison of features in cases with a linear deletion of 14qter (n = 19) to those in cases with a deletion due to a ring chromosome 14 (n = 23), both with the same breakpoint in 14q, showed that seizures and retinitis pigmentosa have been found only in patients with ring chromosomes. Several hypotheses are put forward to explain this difference: mitotic instability of ring chromosomes; a telomere position effect in ring chromosomes in which the 14p telomere silences nearby gene(s) on the q-arm; and dose-dependent gene(s) involved in seizures and retinitis pigmentosa located on the short arm of chromosome 14. In our opinion, only seizures may be explained by the mitotic instability of ring chromosomes, while both seizures and retinitis pigmentosa may be explained by silencing of gene(s) on 14q by the 14p telomere; the third hypothesis seems unlikely to explain either symptom.

  8. Deletion affecting band 7q36 not associated with holoprosencephaly

    SciTech Connect

    Ebrahim, S.A.D.; Krivchenia, E.; Mohamed, A.N.

    1994-09-01

    Although the appearance of 7q36 aberrations have been postulated to be responsible for holoprosencephaly (HPE), the presence of a de novo 7q36 deletion in fetus without HPE has not been reported. We report the first case of a fetus with 7q36 deletion but lacking HPE. Ultrasound examination of a 25-year-old G3P1 Caucasian female showed small head circumference with microcephaly at 28 weeks. Decreased amniotic fluid volume, bilateral renal dilatation and abnormal facial features were also noted. Chromosome analysis after cordocentesis showed an abnormal female karyotype with a deletion involving the chromosome band 7q36, 46,XX,del(7)(q36). Chromosome studies on the biological parents were normal. In view of the chromosome finding and after extensive counseling, the couple elected to terminate the pregnancy. The chromosome findings were confirmed by fetal blood chromosome analysis at termination. Post-mortem examination confirmed dysmorphic features including a depressed nasal bridge and large flat ears with no lobules, but no cleft lip or palate was noted. Internal abnormalities included a bicuspid pulmonary valve and abnormally located lungs. The brain weighed 190g (249 {plus_minus} 64g expected) and had symmetric cerebral hemispheres without evidence of HPE or other gross or microscopic malformation, except focal cerebellar cortical dysplasia. In summary, our patient showed a deletion of the same chromosomal band implicated in HPE but lacked HPE. This finding indicates that 7q36 deletion may be seen in the absence of HPE and suggests that other genetic mechanisms may be responsible for HPE in this setting.

  9. Rare Copy Number Deletions Predict Individual Variation in Intelligence

    PubMed Central

    Yeo, Ronald A.; Gangestad, Steven W.; Liu, Jingyu; Calhoun, Vince D.; Hutchison, Kent E.

    2011-01-01

    Phenotypic variation in human intellectual functioning shows substantial heritability, as demonstrated by a long history of behavior genetic studies. Many recent molecular genetic studies have attempted to uncover specific genetic variations responsible for this heritability, but identified effects capture little variance and have proven difficult to replicate. The present study, motivated an interest in “mutation load” emerging from evolutionary perspectives, examined the importance of the number of rare (or infrequent) copy number variations (CNVs), and the total number of base pairs included in such deletions, for psychometric intelligence. Genetic data was collected using the Illumina 1MDuoBeadChip Array from a sample of 202 adult individuals with alcohol dependence, and a subset of these (N = 77) had been administered the Wechsler Abbreviated Scale of Intelligence (WASI). After removing CNV outliers, the impact of rare genetic deletions on psychometric intelligence was investigated in 74 individuals. The total length of the rare deletions significantly and negatively predicted intelligence (r = −.30, p = .01). As prior studies have indicated greater heritability in individuals with relatively higher parental socioeconomic status (SES), we also examined the impact of ethnicity (Anglo/White vs. Other), as a proxy measure of SES; these groups did not differ on any genetic variable. This categorical variable significantly moderated the effect of length of deletions on intelligence, with larger effects being noted in the Anglo/White group. Overall, these results suggest that rare deletions (between 5% and 1% population frequency or less) adversely affect intellectual functioning, and that pleotropic effects might partly account for the association of intelligence with health and mental health status. Significant limitations of this research, including issues of generalizability and CNV measurement, are discussed. PMID:21298096

  10. A Genetically Engineered Waterfowl Influenza Virus with a Deletion in the Stalk of the Neuraminidase Has Increased Virulence for Chickens▿

    PubMed Central

    Munier, S.; Larcher, T.; Cormier-Aline, F.; Soubieux, D.; Su, B.; Guigand, L.; Labrosse, B.; Cherel, Y.; Quéré, P.; Marc, D.; Naffakh, N.

    2010-01-01

    A deletion of about 20 amino acids in the stalk of the neuraminidase (NA) is frequently detected upon transmission of influenza A viruses from waterfowl to domestic poultry. Using reverse genetics, a recombinant virus derived from a wild duck influenza virus isolate, A/Mallard/Marquenterre/Z237/83 (MZ), and an NA stalk deletion variant (MZ-delNA) were produced. Compared to the wild type, the MZ-delNA virus showed a moderate growth advantage on avian cultured cells. In 4-week-old chickens inoculated intratracheally with the MZ-delNA virus, viral replication in the lungs, liver, and kidneys was enhanced and interstitial pneumonia lesions were more severe than with the wild-type virus. The MZ-delNA-inoculated chickens showed significantly increased levels of mRNAs encoding interleukin-6 (IL-6), transforming growth factor-β4 (TGF-β4), and CCL5 in the lungs and a higher frequency of apoptotic cells in the liver than did their MZ-inoculated counterparts. Molecular mechanisms possibly underlying the growth advantage of the MZ-delNA virus were explored. The measured enzymatic activities toward a small substrate were similar for the wild-type and deleted NA, but the MZ-delNA virus eluted from chicken erythrocytes at reduced rates. Pseudoviral particles expressing the MZ hemagglutinin in combination with the MZ-NA or MZ-delNA protein were produced from avian cultured cells with similar efficiencies, suggesting that the deletion in the NA stalk does not enhance the release of progeny virions and probably affects an earlier step of the viral cycle. Overall, our data indicate that a shortened NA stalk is a strong determinant of adaptation and virulence of waterfowl influenza viruses in chickens. PMID:19889765

  11. Conditional deletion of WT1 in the septum transversum mesenchyme causes congenital diaphragmatic hernia in mice.

    PubMed

    Carmona, Rita; Cañete, Ana; Cano, Elena; Ariza, Laura; Rojas, Anabel; Muñoz-Chápuli, Ramon

    2016-01-01

    Congenital diaphragmatic hernia (CDH) is a severe birth defect. Wt1-null mouse embryos develop CDH but the mechanisms regulated by WT1 are unknown. We have generated a murine model with conditional deletion of WT1 in the lateral plate mesoderm, using the G2 enhancer of the Gata4 gene as a driver. 80% of G2-Gata4(Cre);Wt1(fl/fl) embryos developed typical Bochdalek-type CDH. We show that the posthepatic mesenchymal plate coelomic epithelium gives rise to a mesenchyme that populates the pleuroperitoneal folds isolating the pleural cavities before the migration of the somitic myoblasts. This process fails when Wt1 is deleted from this area. Mutant embryos show Raldh2 downregulation in the lateral mesoderm, but not in the intermediate mesoderm. The mutant phenotype was partially rescued by retinoic acid treatment of the pregnant females. Replacement of intermediate by lateral mesoderm recapitulates the evolutionary origin of the diaphragm in mammals. CDH might thus be viewed as an evolutionary atavism. PMID:27642710

  12. Neuron-Specific Deletion of the Nf2 Tumor Suppressor Impairs Functional Nerve Regeneration

    PubMed Central

    Schulz, Alexander; Büttner, Robert; Toledo, Andrea; Baader, Stephan L.; von Maltzahn, Julia; Irintchev, Andrey; Bauer, Reinhard; Morrison, Helen

    2016-01-01

    In contrast to axons of the central nervous system (CNS), axons of the peripheral nervous system (PNS) show better, but still incomplete and often slow regeneration following injury. The tumor suppressor protein merlin, mutated in the hereditary tumor syndrome Neurofibromatosis type 2 (NF2), has recently been shown to have RhoA regulatory functions in PNS neurons—in addition to its well-characterized, growth-inhibitory activity in Schwann cells. Here we report that the conditional knockout of merlin in PNS neurons leads to impaired functional recovery of mice following sciatic nerve crush injury, in a gene-dosage dependent manner. Gross anatomical or electrophysiological alterations of sciatic nerves could not be detected. However, correlating with attenuated RhoA activation due to merlin deletion, ultrastructural analysis of nerve samples indicated enhanced sprouting of axons with reduced caliber size and increased myelination compared to wildtype animals. We conclude that deletion of the tumor suppressor merlin in the neuronal compartment of peripheral nerves results in compromised functional regeneration after injury. This mechanism could explain the clinical observation that NF2 patients suffer from higher incidences of slowly recovering facial nerve paralysis after vestibular schwannoma surgery. PMID:27467574

  13. Conditional deletion of WT1 in the septum transversum mesenchyme causes congenital diaphragmatic hernia in mice

    PubMed Central

    Carmona, Rita; Cañete, Ana; Cano, Elena; Ariza, Laura; Rojas, Anabel; Muñoz-Chápuli, Ramon

    2016-01-01

    Congenital diaphragmatic hernia (CDH) is a severe birth defect. Wt1-null mouse embryos develop CDH but the mechanisms regulated by WT1 are unknown. We have generated a murine model with conditional deletion of WT1 in the lateral plate mesoderm, using the G2 enhancer of the Gata4 gene as a driver. 80% of G2-Gata4Cre;Wt1fl/fl embryos developed typical Bochdalek-type CDH. We show that the posthepatic mesenchymal plate coelomic epithelium gives rise to a mesenchyme that populates the pleuroperitoneal folds isolating the pleural cavities before the migration of the somitic myoblasts. This process fails when Wt1 is deleted from this area. Mutant embryos show Raldh2 downregulation in the lateral mesoderm, but not in the intermediate mesoderm. The mutant phenotype was partially rescued by retinoic acid treatment of the pregnant females. Replacement of intermediate by lateral mesoderm recapitulates the evolutionary origin of the diaphragm in mammals. CDH might thus be viewed as an evolutionary atavism. DOI: http://dx.doi.org/10.7554/eLife.16009.001 PMID:27642710

  14. Neuron-Specific Deletion of the Nf2 Tumor Suppressor Impairs Functional Nerve Regeneration.

    PubMed

    Schulz, Alexander; Büttner, Robert; Toledo, Andrea; Baader, Stephan L; von Maltzahn, Julia; Irintchev, Andrey; Bauer, Reinhard; Morrison, Helen

    2016-01-01

    In contrast to axons of the central nervous system (CNS), axons of the peripheral nervous system (PNS) show better, but still incomplete and often slow regeneration following injury. The tumor suppressor protein merlin, mutated in the hereditary tumor syndrome Neurofibromatosis type 2 (NF2), has recently been shown to have RhoA regulatory functions in PNS neurons-in addition to its well-characterized, growth-inhibitory activity in Schwann cells. Here we report that the conditional knockout of merlin in PNS neurons leads to impaired functional recovery of mice following sciatic nerve crush injury, in a gene-dosage dependent manner. Gross anatomical or electrophysiological alterations of sciatic nerves could not be detected. However, correlating with attenuated RhoA activation due to merlin deletion, ultrastructural analysis of nerve samples indicated enhanced sprouting of axons with reduced caliber size and increased myelination compared to wildtype animals. We conclude that deletion of the tumor suppressor merlin in the neuronal compartment of peripheral nerves results in compromised functional regeneration after injury. This mechanism could explain the clinical observation that NF2 patients suffer from higher incidences of slowly recovering facial nerve paralysis after vestibular schwannoma surgery. PMID:27467574

  15. PTEN deletion from adult-generated dentate granule cells disrupts granule cell mossy fiber axon structure.

    PubMed

    LaSarge, Candi L; Santos, Victor R; Danzer, Steve C

    2015-03-01

    Dysregulation of the mTOR-signaling pathway is implicated in the development of temporal lobe epilepsy. In mice, deletion of PTEN from hippocampal dentate granule cells leads to mTOR hyperactivation and promotes the rapid onset of spontaneous seizures. The mechanism by which these abnormal cells initiate epileptogenesis, however, is unclear. PTEN-knockout granule cells develop abnormally, exhibiting morphological features indicative of increased excitatory input. If these cells are directly responsible for seizure genesis, it follows that they should also possess increased output. To test this prediction, dentate granule cell axon morphology was quantified in control and PTEN-knockout mice. Unexpectedly, PTEN deletion increased giant mossy fiber bouton spacing along the axon length, suggesting reduced innervation of CA3. Increased width of the mossy fiber axon pathway in stratum lucidum, however, which likely reflects an unusual increase in mossy fiber axon collateralization in this region, offsets the reduction in boutons per axon length. These morphological changes predict a net increase in granule cell innervation of CA3. Increased diameter of axons from PTEN-knockout cells would further enhance granule cell communication with CA3. Altogether, these findings suggest that amplified information flow through the hippocampal circuit contributes to seizure occurrence in the PTEN-knockout mouse model of temporal lobe epilepsy.

  16. Deletion of Histone Deacetylase 7 in Osteoclasts Decreases Bone Mass in Mice by Interactions with MITF

    PubMed Central

    Stemig, Melissa; Astelford, Kristina; Emery, Ann; Cho, Jangyeun J.; Allen, Ben; Huang, Tsang-hai; Gopalakrishnan, Rajaram; Mansky, Kim C.; Jensen, Eric D.

    2015-01-01

    Molecular regulators of osteoclast formation and function are an important area of research due to the central role of osteoclasts in bone resorption. Transcription factors such as MITF are essential for osteoclast generation by regulating expression of the genes required for cellular differentiation and resorptive function. We recently reported that histone deacetylase 7 (HDAC7) binds to and represses the transcriptional activity of MITF in osteoclasts, and that loss of HDAC7 in vitro accelerated osteoclastogenesis. In the current study, we extend this initial observation by showing that conditional deletion of HDAC7 in osteoclasts of mice leads to an in vivo enhancement in osteoclast formation, associated with increased bone resorption and lower bone mass. Expression of multiple MITF target genes is increased in bone marrow derived osteoclast cultures from the HDAC7 knockout mice. Interestingly, multiple regions of the HDAC7 amino-terminus can bind to MITF or exert repressive activity. Moreover, mutation or deletion of the HDAC7 conserved deacetylase catalytic domain had little effect on repressive function. These observations identify HDAC7 in osteoclasts as an important molecular regulator of MITF activity and bone homeostasis, but also highlight a gap in our understanding of exactly how HDAC7 functions as a corepressor. PMID:25875108

  17. PTEN deletion from adult-generated dentate granule cells disrupts granule cell mossy fiber axon structure

    PubMed Central

    LaSarge, Candi L.; Santos, Victor R; Danzer, Steve C.

    2015-01-01

    Dysregulation of the mTOR-signaling pathway is implicated in the development of temporal lobe epilepsy. In mice, deletion of PTEN from hippocampal dentate granule cells leads to mTOR hyperactivation and promotes the rapid onset of spontaneous seizures. The mechanism by which these abnormal cells initiate epileptogenesis, however, is unclear. PTEN-knockout granule cells develop abnormally, exhibiting morphological features indicative of increased excitatory input. If these cells are directly responsible for seizure genesis, it follows that they should also possess increased output. To test this prediction, dentate granule cell axon morphology was quantified in control and PTEN-knockout mice. Unexpectedly, PTEN deletion increased giant mossy fiber bouton spacing along the axon length, suggesting reduced innervation of CA3. Increased width of the mossy fiber axon pathway in stratum lucidum, however, which likely reflects an unusual increase in mossy fiber axon collateralization in this region, offset the reduction in boutons per axon length. These morphological changes predicts a net increase in granule cell >> CA3 innervation. Increased diameter of axons from PTEN-knockout cells would further enhance granule cell >> CA3 communication. Altogether, these findings suggest that amplified information flow through the hippocampal circuit contributes to seizure occurrence in the PTEN-knockout mouse model of temporal lobe epilepsy. PMID:25600212

  18. Lysis Delay and Burst Shrinkage of Coliphage T7 by Deletion of Terminator Tφ Reversed by Deletion of Early Genes

    PubMed Central

    Nguyen, Huong Minh

    2014-01-01

    ABSTRACT Bacteriophage T7 terminator Tφ is a class I intrinsic terminator coding for an RNA hairpin structure immediately followed by oligo(U), which has been extensively studied in terms of its transcription termination mechanism, but little is known about its physiological or regulatory functions. In this study, using a T7 mutant phage, where a 31-bp segment of Tφ was deleted from the genome, we discovered that deletion of Tφ from T7 reduces the phage burst size but delays lysis timing, both of which are disadvantageous for the phage. The burst downsizing could directly result from Tφ deletion-caused upregulation of gene 17.5, coding for holin, among other Tφ downstream genes, because infection of gp17.5-overproducing Escherichia coli by wild-type T7 phage showed similar burst downsizing. However, the lysis delay was not associated with cellular levels of holin or lysozyme or with rates of phage adsorption. Instead, when allowed to evolve spontaneously in five independent adaptation experiments, the Tφ-lacking mutant phage, after 27 or 29 passages, recovered both burst size and lysis time reproducibly by deleting early genes 0.5, 0.6, and 0.7 of class I, among other mutations. Deletion of genes 0.5 to 0.7 from the Tφ-lacking mutant phage decreased expression of several Tφ downstream genes to levels similar to that of the wild-type phage. Accordingly, phage T7 lysis timing is associated with cellular levels of Tφ downstream gene products. This suggests the involvement of unknown factor(s) besides the known lysis proteins, lysozyme and holin, and that Tφ plays a role of optimizing burst size and lysis time during T7 infection. IMPORTANCE E. coli PMID:24335287

  19. Transmitted deletions of medial 5p and learning difficulties; does the cadherin cluster only become penetrant when flanking genes are deleted?

    PubMed

    Barber, John C K; Huang, Shuwen; Bateman, Mark S; Collins, Amanda L

    2011-11-01

    The central portion of the short arm of chromosome 5 is unusual in that large, cytogenetically visible interstitial deletions segregate in families with and without phenotypic consequences. Here we present a family in which a transmitted interstitial deletion of 5p13.3 to 5p14.3 co-segregated with learning and/or behavioral difficulties in six family members. Facial dysmorphism was not striking but a father and daughter both had lacrimal fistulae. The deletion was 12.23 Mb in size (chr5:20,352,535-32,825,775) and contained fifteen known protein coding genes. Five of these (GOLPH3; MTMR12; ZFR; SUB1; and NPR3) and an ultra-conserved microRNA (hsa-miR-579) were present in an 883 kb candidate gene region in 5p13.3 that was deleted in the present family but not in previously reported overlapping benign deletions. Members of the cadherin precursor gene cluster, with brain specific expression, were deleted in both affected and benign deletion families. The candidate genes in 5p13.3 may be sufficient to account for the consistent presence or absence of phenotype in medial 5p deletions. However, we consider the possibility of position effects in which CDH6, and/or other cadherin genes, become penetrant when adjacent genes, or modifiers of gene expression, are also deleted. This could account for the absence of intellectual disability in benign deletions of the cadherin cluster, the cognitive phenotype in medial 5p deletion syndrome and the greater severity of intellectual disability in patients with cri-du-chat syndrome and deletions of 5p15 that extend into the region deleted in the present family. PMID:21965044

  20. A VNTR element associated with steroid sulfatase gene deletions stimulates recombination in cultured cells

    SciTech Connect

    Gong, Y.; Li, X.M.; Shapiro, L.J.

    1994-09-01

    Steroid sulfatase deficiency is a common genetic disorder, with a prevalence of approximately one in every 3500 males world wide. About 90% of these patients have complete gene deletions, which appear to result from recombination between members of a low-copy repeat family (CRI-232 is the prototype) that flank the gene. RU1 and RU2 are two VNTR elements found within each of these family members. RU1 consists of 30 bp repeating units and its length shows minimal variation among individuals. The RU2 element consists of repeating sequences which are highly asymmetric, with about 90% purines and no C`s on one strand, and range from 0.6 kb to over 23 kb among different individuals. We conducted a study to determine if the RU1 or RU2 elements can promote recombination in an in vivo test system. We inserted these elements adjacent to the neo gene in each of two pSV2neo derivatives, one of which has a deletion in the 5{prime} portion of the neo gene and the other having a deletion in the 3{prime} portion. These plasmids were combined and used to transfect EJ cells. Survival of cells in G418 indicates restoration of a functional neo gene by recombination between two deletion constructs. Thus counting G418 resistant colonies gives a quantitative measure of the enhancement of recombination by the inserted VNTR elements. The results showed no effect on recombination by the inserted RU1 element (compared to the insertion of a nonspecific sequence), while the RU2 element stimulated recombination by 3.5-fold (P<0.01). A separate set of constructs placed RU1 or RU2 within the intron of an exon trapping vector. Following tranfection of cells, recombination events were monitored by a PCR assay that detected the approximation of primer binding sites (as a result of recombination). These studies showed that, as in the first set of experiments, the highly variable RU2 element is capable of stimulating somatic recombination in mammalian cells.

  1. Development of TaqMan allelic discrimination based genotyping of large DNA deletions.

    PubMed

    Fedick, Anastasia; Su, Jing; Treff, Nathan R

    2012-03-01

    The high prevalence of genetic diseases resulting from gross deletions has highlighted a need for a quick, simple, and reliable method of genotyping these mutations. Here, we developed a novel strategy for applying TaqMan allelic discrimination to accurately genotype 3 different large deletions in a high-throughput manner. Allelic discrimination has previously been used to genotype frame shift and point mutations, and small insertions or deletions six base pairs in length, but not large deletions. The assays designed here recognize a 2502 base pair deletion in the Nebulin (NEB) gene that results in Nemaline Myopathy, a 308,769 base pair deletion in the Gap Junction Protein, beta 6 (GJB6) gene that causes Hearing Loss, and a 6433 base pair deletion in the Mucolipin 1 (MCOLN1) gene responsible for causing Mucolipidosis IV Disease. This methodology may also be successfully applied to high throughput genotyping of other large deletions. PMID:22281206

  2. Restoration of half the normal dystrophin sequence in a double-deletion Duchenne muscular dystrophy family

    SciTech Connect

    Hoop, R.C.; Schwartz, L.S.; Hoffman, E.P.; Russo, L.S.; Riconda, D.L.

    1994-02-01

    Two male cousins with Duchenne muscular dystrophy were found to have different maternal dystrophin gene haplotypes and different deletion mutations. One propositus showed two noncontiguous deletions-one in the 5{prime}, proximal deletional hotspot region, and the other in the 3{prime}, more distal deletional hotspot region. The second propositus showed only the 5{prime} deletion. Using multiple fluorescent exon dosage and fluorescent multiplex CA repeat linkage analyses, the authors show that the mother of each propositus carries both deletions on the same grandmaternal X chromosome. This paradox is explained by a single recombinational event between the 2 deleted regions of one of the carrier`s dystrophin genes, giving rise to a son with a partially {open_quotes}repaired{close_quotes} gene retaining only the 5{prime} deletion. 20 refs., 4 figs.

  3. Velo-cardio-facial syndrome: Frequency and textent of 22q11 deletions

    SciTech Connect

    Lindsay, E.A.; Goldberg, R.; Jurecic, V.

    1995-07-03

    Velo-cardio-facial (VCFS) or Shprintzen syndrome is associated with deletions in a region of chromosome 22q11.2 also deleted in DiGeorge anomaly and some forms of congenital heart disease. Due to the variability of phenotype, the evaluation of the incidence of deletions has been hampered by uncertainty of diagnosis. In this study, 54 patients were diagnosed with VCFS by a single group of clinicians using homogeneous clinical criteria independent of the deletion status. Cell lines of these patients were established and the deletion status evaluated for three loci within the commonly deleted region at 22q11.2 using fluorescence in situ hybridization (FISH). In 81% of the patients all three loci were hemizygous. In one patient we observed a smaller interstitial deletion than that defined by the three loci. The phenotype of this patient was not different from that observed in patients with larger deletions. 22 refs., 2 figs., 1 tab.

  4. Short, direct repeats at the breakpoints of deletions of the retinoblastoma gene

    SciTech Connect

    Canning, S.; Dryja, T.P. )

    1989-07-01

    The authors found deletions involving the retinoblastoma gene in 12 of 49 tumors from patients with retinoblastoma or osteosarcoma. After mapping the deletion breakpoints, they found that no two breakpoints coincided. Thus, the data do not support the conclusions of others regarding the existence of a hotspot for deletion breakpoints in this gene. In 4 of the tumors, they sequenced 200 base pairs surrounding each deletion breakpoint. Three deletions had termini within pairs of short, direct repeats ranging in size from 4 to 7 base pairs. These results indicate that the slipped mispairing mechanism may predominate in the generation of deletions at this locus. The review of deletion breakpoints at other genetic loci reveals that the nature of the sequences present at deletion breakpoints (short, direct repeats versus middle repetitive elements) varies according to the genetic locus under study.

  5. Neuropathology of 16p13.11 Deletion in Epilepsy

    PubMed Central

    Liu, Joan Y. W.; Kasperavičiūtė, Dalia; Martinian, Lillian; Thom, Maria; Sisodiya, Sanjay M.

    2012-01-01

    16p13.11 genomic copy number variants are implicated in several neuropsychiatric disorders, such as schizophrenia, autism, mental retardation, ADHD and epilepsy. The mechanisms leading to the diverse clinical manifestations of deletions and duplications at this locus are unknown. Most studies favour NDE1 as the leading disease-causing candidate gene at 16p13.11. In epilepsy at least, the deletion does not appear to unmask recessive-acting mutations in NDE1, with haploinsufficiency and genetic modifiers being prime candidate disease mechanisms. NDE1 encodes a protein critical to cell positioning during cortical development. As a first step, it is important to determine whether 16p13.11 copy number change translates to detectable brain structural alteration. We undertook detailed neuropathology on surgically resected brain tissue of two patients with intractable mesial temporal lobe epilepsy (MTLE), who had the same heterozygous NDE1-containing 800 kb 16p13.11 deletion, using routine histological stains and immunohistochemical markers against a range of layer-specific, white matter, neural precursor and migratory cell proteins, and NDE1 itself. Surgical temporal lobectomy samples from a MTLE case known not to have a deletion in NDE1 and three non-epilepsy cases were included as disease controls. We found that apart from a 3 mm hamartia in the temporal cortex of one MTLE case with NDE1 deletion and known hippocampal sclerosis in the other case, cortical lamination and cytoarchitecture were normal, with no differences between cases with deletion and disease controls. How 16p13.11 copy changes lead to a variety of brain diseases remains unclear, but at least in epilepsy, it would not seem to be through structural abnormality or dyslamination as judged by microscopy or immunohistochemistry. The need to integrate additional data with genetic findings to determine their significance will become more pressing as genetic technologies generate increasingly rich datasets

  6. CD4+ T Cell Tolerance to Tissue-Restricted Self Antigens Is Mediated by Antigen-Specific Regulatory T Cells Rather Than Deletion.

    PubMed

    Legoux, Francois P; Lim, Jong-Baeck; Cauley, Andrew W; Dikiy, Stanislav; Ertelt, James; Mariani, Thomas J; Sparwasser, Tim; Way, Sing Sing; Moon, James J

    2015-11-17

    Deletion of self-antigen-specific T cells during thymic development provides protection from autoimmunity. However, it is unclear how efficiently this occurs for tissue-restricted self antigens, or how immune tolerance is maintained for self-antigen-specific T cells that routinely escape deletion. Here we show that endogenous CD4+ T cells with specificity for a set of tissue-restricted self antigens were not deleted at all. For pancreatic self antigen, this resulted in an absence of steady-state tolerance, while for the lung and intestine, tolerance was maintained by the enhanced presence of thymically-derived antigen-specific Foxp3+ regulatory T (Treg) cells. Unlike deletional tolerance, Treg cell-mediated tolerance was broken by successive antigen challenges. These findings reveal that for some tissue-restricted self antigens, tolerance relies entirely on nondeletional mechanisms that are less durable than T cell deletion. This might explain why autoimmunity is often tissue-specific, and it offers a rationale for cancer vaccine strategies targeting tissue-restricted tumor antigens.

  7. Spinal cord glioneuronal tumor with neuropil-like islands with 1p/19q deletion in an adult with low-grade cerebral oligodendroglioma.

    PubMed

    Fraum, Tyler J; Barak, Stephanie; Pack, Svetlana; Lonser, Russell R; Fine, Howard A; Quezado, Martha; Iwamoto, Fabio M

    2012-04-01

    Glioneuronal tumor with neuropil-like islands (GTNI) is considered a rare variant of astrocytoma, characterized by discrete aggregates of cells expressing neuronal markers that punctuate a GFAP-positive glial background. Of the 24 published GTNI cases, only two occurred in adult spinal cords; none occurred concurrent with another CNS tumor; and none of those tested exhibited the 1p/19q deletion typical of oligodendroglioma. A 48-year-old man without significant past medical history was diagnosed with a WHO grade II oligodendroglioma by stereotactic biopsy of a lesion discovered after the patient suffered a generalized tonic-clonic seizure. By FISH analysis, this tumor exhibited the 1p/19q deletion present in up to 80% of oligodendrogliomas. The patient received 14 monthly cycles of temozolomide, and his cerebral tumor had a minor response. When the patient subsequently reported progressive paresthesias of his lower extremities, an MRI revealed an enhancing, cystic tumor of the thoracic spinal cord that was diagnosed as GTNI by histological analysis. By FISH analysis, this lesion exhibited the same 1p/19q deletion present in the concurrent cerebral oligodendroglioma. This case of a spinal cord GTNI with 1p/19q deletions constitutes the third report of a spinal cord GTNI in an adult patient; the first report of a GTNI in an individual with a separate CNS neoplasm; and the first report of a GTNI with 1p/19q deletions. This case establishes a potential genetic kinship between GTNI and oligodendroglioma that warrants further investigation.

  8. Sequence Homology at the Breakpoint and Clinical Phenotype of Mitochondrial DNA Deletion Syndromes

    PubMed Central

    Sadikovic, Bekim; Wang, Jing; El-Hattab, Ayman; Landsverk, Megan; Douglas, Ganka; Brundage, Ellen K.; Craigen, William J.; Schmitt, Eric S.; Wong, Lee-Jun C.

    2010-01-01

    Mitochondrial DNA (mtDNA) deletions are a common cause of mitochondrial disorders. Large mtDNA deletions can lead to a broad spectrum of clinical features with different age of onset, ranging from mild mitochondrial myopathies (MM), progressive external ophthalmoplegia (PEO), and Kearns-Sayre syndrome (KSS), to severe Pearson syndrome. The aim of this study is to investigate the molecular signatures surrounding the deletion breakpoints and their association with the clinical phenotype and age at onset. MtDNA deletions in 67 patients were characterized using array comparative genomic hybridization (aCGH) followed by PCR-sequencing of the deletion junctions. Sequence homology including both perfect and imperfect short repeats flanking the deletion regions were analyzed and correlated with clinical features and patients' age group. In all age groups, there was a significant increase in sequence homology flanking the deletion compared to mtDNA background. The youngest patient group (<6 years old) showed a diffused pattern of deletion distribution in size and locations, with a significantly lower sequence homology flanking the deletion, and the highest percentage of deletion mutant heteroplasmy. The older age groups showed rather discrete pattern of deletions with 44% of all patients over 6 years old carrying the most common 5 kb mtDNA deletion, which was found mostly in muscle specimens (22/41). Only 15% (3/20) of the young patients (<6 years old) carry the 5 kb common deletion, which is usually present in blood rather than muscle. This group of patients predominantly (16 out of 17) exhibit multisystem disorder and/or Pearson syndrome, while older patients had predominantly neuromuscular manifestations including KSS, PEO, and MM. In conclusion, sequence homology at the deletion flanking regions is a consistent feature of mtDNA deletions. Decreased levels of sequence homology and increased levels of deletion mutant heteroplasmy appear to correlate with earlier onset and

  9. 47 CFR 1.229 - Motions to enlarge, change, or delete issues.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Motions to enlarge, change, or delete issues. 1.229 Section 1.229 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Hearing Proceedings Participants and Issues § 1.229 Motions to enlarge, change, or delete issues. (a) A motion to enlarge, change or delete...

  10. 5p deletions: Current knowledge and future directions.

    PubMed

    Nguyen, Joanne M; Qualmann, Krista J; Okashah, Rebecca; Reilly, AmySue; Alexeyev, Mikhail F; Campbell, Dennis J

    2015-09-01

    Disorders resulting from 5p deletions (5p-) were first recognized by Lejeune et al. in 1963 [Lejeune et al. (1963); C R Hebd Seances Acad Sci 257:3098-3102]. 5p- is caused by partial or total deletion of the short arm of chromosome 5. The most recognizable phenotype is characterized by a high-pitched cry, dysmorphic features, poor growth, and developmental delay. This report reviews 5p- disorders and their molecular basis. Hemizygosity for genes located within this region have been implicated in contributing to the phenotype. A review of the genes on 5p which may be dosage sensitive is summarized. Because of the growing knowledge of these specific genes, future directions to explore potential targeted therapies for individuals with 5p- are discussed. © 2015 Wiley Periodicals, Inc. PMID:26235846

  11. Bayesian Case-deletion Model Complexity and Information Criterion

    PubMed Central

    Zhu, Hongtu; Ibrahim, Joseph G.; Chen, Qingxia

    2015-01-01

    We establish a connection between Bayesian case influence measures for assessing the influence of individual observations and Bayesian predictive methods for evaluating the predictive performance of a model and comparing different models fitted to the same dataset. Based on such a connection, we formally propose a new set of Bayesian case-deletion model complexity (BCMC) measures for quantifying the effective number of parameters in a given statistical model. Its properties in linear models are explored. Adding some functions of BCMC to a conditional deviance function leads to a Bayesian case-deletion information criterion (BCIC) for comparing models. We systematically investigate some properties of BCIC and its connection with other information criteria, such as the Deviance Information Criterion (DIC). We illustrate the proposed methodology on linear mixed models with simulations and a real data example. PMID:26180578

  12. 5p Deletions: Current Knowledge and Future Directions

    PubMed Central

    Nguyen, Joanne M.; Qualmann, Krista J.; Okashah, Rebecca; Reilly, Amysue; Alexeyev, Mikhail F.; Campbell, Dennis J.

    2016-01-01

    Disorders resulting from 5p deletions (5p–) were first recognized by Lejeune et al. in 1963 [Lejeune et al. (1963); C R Hebd Seances Acad Sci 257:3098-3102]. 5p– is caused by partial or total deletion of the short arm of chromosome 5. The most recognizable phenotype is characterized by a high-pitched cry, dysmorphic features, poor growth, and developmental delay. This report reviews 5p– disorders and their molecular basis. Hemizygosity for genes located within this region have been implicated in contributing to the phenotype. A review of the genes on 5p which may be dosage sensitive is summarized. Because of the growing knowledge of these specific genes, future directions to explore potential targeted therapies for individuals with 5p– are discussed. PMID:26235846

  13. 75 FR 19945 - Procurement List; Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... INFORMATION: Additions On 2/12/2010 (75 FR 6869-6870) and 2/19/2010 (75 FR 7450-7451), the Committee for..., FORT CARSON, CO. Deletions On 2/12/2010 (75 FR 6869-6870 and 2/19/2010 (75 FR 7450-7451), the Committee..., Internal Revenue Services, 5100 River Road, Schiller Park, IL. NPAs: ServiceSource, Inc., Alexandria,...

  14. Learning About Gene Regulatory Networks From Gene Deletion Experiments

    PubMed Central

    Brazma, Alvis

    2002-01-01

    Gene regulatory networks are a major focus of interest in molecular biology. A crucial question is how complex regulatory systems are encoded and controlled by the genome. Three recent publications have raised the question of what can be learned about gene regulatory networks from microarray experiments on gene deletion mutants. Using this indirect approach, topological features such as connectivity and modularity have been studied. PMID:18629255

  15. 78 FR 21916 - Procurement List; Addition And Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... INFORMATION: Addition On 2/22/2013 (78 FR 12296-12297), the Committee for Purchase From People Who Are Blind... Activity: DEPT OF THE ARMY, W40M WESTERN RGNL CNTRG OFC, TACOMA, WA Deletions On 3/23/2012 (77 FR 17035); 3/30/2012 (77 FR 19263); 4/6/2012 (77 FR 20795); 4/27/2012 (77 FR 25146-25147); 5/11/2012 (77 FR...

  16. 75 FR 34703 - Procurement List; Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ...-0655, or e-mail CMTEFedReg@AbilityOne.gov . SUPPLEMENTARY INFORMATION: Additions On 4/23/2010 (75 FR... PROCUREMENT, WASHINGTON, DC Deletions On 4/2/2010 (75 FR 16757); 4/9/2010 (75 FR 18164-18165); 4/16/2010 (75 FR 19945-19946); 4/23/2010 (75 FR 21244-21246); and 4/30/2010 (75 FR 22744-22745), the Committee...

  17. 76 FR 32145 - Procurement List Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ...@AbilityOne.gov . SUPPLEMENTARY INFORMATION: Additions On 3/11/2011 (76 FR 13362-13363); 3/25/2011 (76 FR 16733-16734); 4/ 1/2011 (76 FR 18188-18189); and 4/8/2011 (76 FR 19750-19751), the Committee for...: Dept of the Army, ] W6QM Ft Sam Houston Contr Ctr, Fort Sam Houston, TX. Deletions On 3/25/2011 (76...

  18. Deletion (11)(q14.1q21)

    SciTech Connect

    Stratton, R.F.; Lazarus, K.H.; Ritchie, E.J.L.; Bell, A.M.

    1994-02-01

    The authors report on a 4-year-old girl with moderate development delay, horseshoe kidney, bilateral duplication of the ureters with right upper pole obstruction, hydronephrosis and nonfunction, and subsequent Wilms tumor of the right lower pole. She had an interstitial deletion of the long arm of chromosome 11 involving the region 11(q14.1q21). 22 refs., 2 figs., 1 tab.

  19. 76 FR 30924 - Procurement List Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ...@AbilityOne.gov . SUPPLEMENTARY INFORMATION: Additions On 3/25/2011 (76 FR 16733-16734); 4/1/2011 (76 FR 18188-18189); 4/ 8/2011 (76 FR 19750-19751); and 4/11/2011 (76 FR 19978), the Committee for Purchase... FT Eustis CONTR CTR, Fort Eustis, VA. Deletions On 4/1/2011 (76 FR 18188-18189), the Committee...

  20. 76 FR 38640 - Procurement List; Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ...@AbilityOne.gov . SUPPLEMENTARY INFORMATION: Additions On 4/15/2011 (76 FR 21336-21337); 4/29/2011 (76 FR 23998); and 5/6/ 2011 (76 FR 26279), the Committee for Purchase From People Who Are Blind or Severely... Activity: Dept of the Army, W6QM FT Bragg Contr Ctr, Fort Bragg, NC. Deletions On 4/15/2011 (76 FR...

  1. 78 FR 73503 - Procurement List Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... . SUPPLEMENTARY INFORMATION: Additions On 8/9/2013 (78 FR 48656-48657), and 9/6/2013 (78 FR 54871), the Committee... aggregated by the Defense Commissary Agency. Deletions On 10/25/2013 (78 FR 63967-63968) and 11/1/2013 (78 FR... Containers, Holiday, 12 oz. or 16 oz., 6PK. NSN: MR 380--Set, Baking Cups and Picks, Holiday, 24PC....

  2. 76 FR 78248 - Procurement List; Addition and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ...@AbilityOne.gov . SUPPLEMENTARY INFORMATION: Addition On 9/30/2011 (76 FR 60810), the Committee for... Energy, Idaho Operations Office, Idaho Falls, ID. Deletions On 7/8/2011 (76 FR 40342-40343); 7/22/2011 (76 FR 43990-43991); 8/ 19/2011 (76 FR 51955-51956); 9/2/2011 (76 FR 54741-54742); 9/30/2011...

  3. 75 FR 49481 - Procurement List; Additions and Deletion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... . SUPPLEMENTARY INFORMATION: Additions On 6/4/2010 (75 FR 31768-31769), 6/11/2010 (75 FR 33270-33271), and 6/18/2010 (75 FR 34701-34702), the Committee for Purchase From People Who Are Blind or Severely Disabled... Air Force, FA4407 375 CONS LGC, Scott AFG, IL. Deletion On 6/4/2010 (75 FR 31768-31769), the...

  4. 77 FR 26520 - Procurement List Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ...@AbilityOne.gov . SUPPLEMENTARY INFORMATION: Additions On 3/2/2012 (77 FR 12816-12817) and 3/9/2012 (77 FR... 9'', Green NSN: 7530-00-NIB-1012--60 Pages NSN: 7530-00-NIB-1013--80 Pages NPA: Alabama Industries... Rouge, LA. Deletions On 3/2/2012 (77 FR 12816-12817), the Committee for Purchase From People Who...

  5. 75 FR 60739 - Procurement List; Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ...@AbilityOne.gov . SUPPLEMENTARY INFORMATION: Additions On 6/4/2010 (75 FR 31768-31769); 6/25/2010 (75 FR 36363-36371); 8/ 6/2010 (75 FR 47551); and 8/27/2010 (75 FR 52723-52724), the Committee for Purchase.... Deletions On 7/23/2010 (75 FR 43153-43155), the Committee for Purchase From People Who Are Blind or...

  6. 78 FR 46926 - Procurement List Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... . SUPPLEMENTARY INFORMATION: Additions On 5/31/2013 (78 FR 32631-32632); 6/7/2013 (78 FR 34350-34351); and 6/21/2013 (78 FR 37524-37525), the Committee for Purchase From People Who Are Blind or Severely Disabled... Contracting Activity: Dept of the Army, W071 ENDIST Kansas City, Kansas City, MO Deletions On 5/31/2013 (78...

  7. 75 FR 27313 - Procurement List; Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... INFORMATION: Additions On 3/12/2010 (75 FR 11863-11864) and 3/26/2010 (75 FR 14575-14576), the Committee for..., PA. ] Deletions On 3/5/2010 (75 FR 10223-10224) and 3/12/2010 (75 FR 11863-11864), the Committee for... Protection NSN: 7045-01-558-4983--512MB. NSN: 7045-01-558-4984--USB Flash Drive. USB Flash Drive with...

  8. The effects of upaB deletion and the double/triple deletion of upaB, aatA, and aatB genes on pathogenicity of avian pathogenic Escherichia coli.

    PubMed

    Zhu-Ge, Xiang-Kai; Pan, Zi-Hao; Tang, Fang; Mao, Xiang; Hu, Lin; Wang, Shao-Hui; Xu, Bin; Lu, Cheng-Ping; Fan, Hong-Jie; Dai, Jian-Jun

    2015-12-01

    Autotransporters (ATs) are associated with pathogenesis of Avian Pathogenic Escherichia coli (APEC). The molecular characterization of APEC ATs can provide insights about their relevance to APEC pathogenesis. Here, we characterized a conventional autotransporter UpaB in APEC DE205B genome. The upaB existed in 41.9 % of 236 APEC isolates and was predominantly associated with ECOR B2 and D. Our studies showed that UpaB mediates the DE205B adhesion in DF-1 cells, and enhances autoaggregation and biofilm formation of fimbria-negative E. coli AAEC189 (MG1655Δfim) in vitro. Deletion of upaB of DE205B attenuates the virulence in duck model and early colonization in the duck lungs during APEC systemic infection. Furthermore, double and triple deletion of upaB, aatA, and aatB genes cumulatively attenuated DE205B adhesion in DF-1 cells, accompanying with decreased 50 % lethal dose (LD50) in duck model and the early colonization in the duck lungs. However, DE205BΔupaB/ΔaatA/ΔaatB might "compensate" the influence of gene deletion by upregulating the expression of fimbrial adhesin genes yqiL, yadN, and vacuolating autotransporter vat during early colonization of APEC. Finally, we demonstrated that vaccination with recombinant UpaB, AatA, and AatB proteins conferred protection against colisepticemia caused by DE205B infection in duck model.

  9. Distinct phenotype of PHF6 deletions in females.

    PubMed

    Di Donato, N; Isidor, B; Lopez Cazaux, S; Le Caignec, C; Klink, B; Kraus, C; Schrock, E; Hackmann, K

    2014-02-01

    We report on two female patients carrying small overlapping Xq26.2 deletions of 100 kb and 270 kb involving the PHF6 gene. Mutations in PHF6 have been reported in individuals with Borjeson-Forssman-Lehmann syndrome, a condition present almost exclusively in males. Two very recent papers revealed de novo PHF6 defects in seven female patients with intellectual disability and a phenotype resembling Coffin-Siris syndrome (sparse hair, bitemporal narrowing, arched eyebrows, synophrys, high nasal root, bulbous nasal tip, marked clinodactyly with the hypoplastic terminal phalanges of the fifth fingers and cutaneous syndactyly of the toes, Blaschkoid linear skin hyperpigmentation, dental anomalies and occasional major malformations). The clinical presentation of these patients overlaps completely with our first patient, who carries a germline deletion involving PHF6. The second patient has a mosaic deletion and presented with a very mild phenotype of PHF6 loss in females. Our report confirms that PHF6 loss in females results in a recognizable phenotype overlapping with Coffin-Siris syndrome and distinct from Borjeson-Forssman-Lehmann syndrome. We expand the clinical spectrum and provide the first summary of the recommended medical evaluation.

  10. Targeted deletion of Vegfa in adult mice induces vision loss.

    PubMed

    Kurihara, Toshihide; Westenskow, Peter D; Bravo, Stephen; Aguilar, Edith; Friedlander, Martin

    2012-11-01

    Current therapies directed at controlling vascular abnormalities in cancers and neovascular eye diseases target VEGF and can slow the progression of these diseases. While the critical role of VEGF in development has been well described, the function of locally synthesized VEGF in the adult eye is incompletely understood. Here, we show that conditionally knocking out Vegfa in adult mouse retinal pigmented epithelial (RPE) cells, which regulate retinal homeostasis, rapidly leads to vision loss and ablation of the choriocapillaris, the major blood supply for the outer retina and photoreceptor cells. This deletion also caused rapid dysfunction of cone photoreceptors, the cells responsible for fine visual acuity and color vision. Furthermore, Vegfa deletion showed significant downregulation of multiple angiogenic genes in both physiological and pathological states, whereas the deletion of the upstream regulatory transcriptional factors HIFs did not affect the physiological expressions of angiogenic genes. These results suggest that endogenous VEGF provides critical trophic support necessary for retinal function. Targeting factors upstream of VEGF, such as HIFs, may be therapeutically advantageous compared with more potent and selective VEGF antagonists, which may have more off-target inhibitory trophic effects. PMID:23093773

  11. Mitochondrial DNA exhibits resistance to induced point and deletion mutations

    PubMed Central

    Valente, William J.; Ericson, Nolan G.; Long, Alexandra S.; White, Paul A.; Marchetti, Francesco; Bielas, Jason H.

    2016-01-01

    The accumulation of somatic mitochondrial DNA (mtDNA) mutations contributes to the pathogenesis of human disease. Currently, mitochondrial mutations are largely considered results of inaccurate processing of its heavily damaged genome. However, mainly from a lack of methods to monitor mtDNA mutations with sufficient sensitivity and accuracy, a link between mtDNA damage and mutation has not been established. To test the hypothesis that mtDNA-damaging agents induce mtDNA mutations, we exposed MutaTMMouse mice to benzo[a]pyrene (B[a]P) or N-ethyl-N-nitrosourea (ENU), daily for 28 consecutive days, and quantified mtDNA point and deletion mutations in bone marrow and liver using our newly developed Digital Random Mutation Capture (dRMC) and Digital Deletion Detection (3D) assays. Surprisingly, our results demonstrate mutagen treatment did not increase mitochondrial point or deletion mutation frequencies, despite evidence both compounds increase nuclear DNA mutations and demonstrated B[a]P adduct formation in mtDNA. These findings contradict models of mtDNA mutagenesis that assert the elevated rate of mtDNA mutation stems from damage sensitivity and abridged repair capacity. Rather, our results demonstrate induced mtDNA damage does not readily convert into mutation. These findings suggest robust mitochondrial damage responses repress induced mutations after mutagen exposure. PMID:27550180

  12. Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta.

    PubMed

    Poulter, James A; Murillo, Gina; Brookes, Steven J; Smith, Claire E L; Parry, David A; Silva, Sandra; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2014-10-15

    Amelogenesis imperfecta (AI) describes a heterogeneous group of inherited dental enamel defects reflecting failure of normal amelogenesis. Ameloblastin (AMBN) is the second most abundant enamel matrix protein expressed during amelogenesis. The pivotal role of AMBN in amelogenesis has been confirmed experimentally using mouse models. However, no AMBN mutations have been associated with human AI. Using autozygosity mapping and exome sequencing, we identified genomic deletion of AMBN exon 6 in a second cousin consanguineous family with three of the six children having hypoplastic AI. The genomic deletion corresponds to an in-frame deletion of 79 amino acids, shortening the protein from 447 to 368 residues. Exfoliated primary teeth (unmatched to genotype) were available from family members. The most severely affected had thin, aprismatic enamel (similar to that reported in mice homozygous for Ambn lacking exons 5 and 6). Other teeth exhibited thicker but largely aprismatic enamel. One tooth had apparently normal enamel. It has been suggested that AMBN may function in bone development. No clinically obvious bone or other co-segregating health problems were identified in the family investigated. This study confirms for the first time that AMBN mutations cause non-syndromic human AI and that mouse models with disrupted Ambn function are valid.

  13. Insertion and deletion mutagenesis of the human cytomegalovirus genome

    SciTech Connect

    Spaete, R.R.; Mocarski, E.S.

    1987-10-01

    Studies on human cytomegalovirus (CMV) have been limited by a paucity of molecular genetic techniques available for manipulating the viral genome. The authors have developed methods for site-specific insertion and deletion mutagenesis of CMV utilizing a modified Escherichia coli lacZ gene as a genetic marker. The lacZ gene was placed under the control of the major ..beta.. gene regulatory signals and inserted into the viral genome by homologous recombination, disrupting one of two copies of this ..beta.. gene within the L-component repeats of CMV DNA. They observed high-level expression of ..beta..-galactosidase by the recombinant in a temporally authentic manner, with levels of this enzyme approaching 1% of total protein in infected cells. Thus, CMV is an efficient vector for high-level expression of foreign gene products in human cells. Using back selection of lacZ-deficient virus in the presence of the chromogenic substrate 5-bromo-4-chloro-3-indolyl ..beta..-D-galactoside, they generated random endpoint deletion mutants. Analysis of these mutant revealed that CMV DNA sequences flanking the insert had been removed, thereby establishing this approach as a means of determining whether sequences flanking a lacZ insertion are dispensable for viral growth. In an initial test of the methods, they have shown that 7800 base pairs of one copy of L-component repeat sequences can be deleted without affecting viral growth in human fibroblasts.

  14. Deletion of Prepl Causes Growth Impairment and Hypotonia in Mice

    PubMed Central

    Lone, Anna Mari; Leidl, Mathias; McFedries, Amanda K.; Horner, James W.; Creemers, John; Saghatelian, Alan

    2014-01-01

    Genetic studies of rare diseases can identify genes of unknown function that strongly impact human physiology. Prolyl endopeptidase-like (PREPL) is an uncharacterized member of the prolyl peptidase family that was discovered because of its deletion in humans with hypotonia-cystinuria syndrome (HCS). HCS is characterized by a number of physiological changes including diminished growth and neonatal hypotonia or low muscle tone. HCS patients have deletions in other genes as well, making it difficult to tease apart the specific role of PREPL. Here, we develop a PREPL null (PREPL−/−) mouse model to address the physiological role of this enzyme. Deletion of exon 11 from the Prepl gene, which encodes key catalytic amino acids, leads to a loss of PREPL protein as well as lower Prepl mRNA levels. PREPL−/− mice have a pronounced growth phenotype, being significantly shorter and lighter than their wild type (PREPL+/+) counterparts. A righting assay revealed that PREPL−/− pups took significantly longer than PREPL+/+ pups to right themselves when placed on their backs. This deficit indicates that PREPL−/− mice suffer from neonatal hypotonia. According to these results, PREPL regulates growth and neonatal hypotonia in mice, which supports the idea that PREPL causes diminished growth and neonatal hypotonia in humans with HCS. These animals provide a valuable asset in deciphering the underlying biochemical, cellular and physiological pathways that link PREPL to HCS, and this may eventually lead to new insights in the treatment of this disease. PMID:24586561

  15. Random single amino acid deletion sampling unveils structural tolerance and the benefits of helical registry shift on GFP folding and structure.

    PubMed

    Arpino, James A J; Reddington, Samuel C; Halliwell, Lisa M; Rizkallah, Pierre J; Jones, D Dafydd

    2014-06-10

    Altering a protein's backbone through amino acid deletion is a common evolutionary mutational mechanism, but is generally ignored during protein engineering primarily because its effect on the folding-structure-function relationship is difficult to predict. Using directed evolution, enhanced green fluorescent protein (EGFP) was observed to tolerate residue deletion across the breadth of the protein, particularly within short and long loops, helical elements, and at the termini of strands. A variant with G4 removed from a helix (EGFP(G4Δ)) conferred significantly higher cellular fluorescence. Folding analysis revealed that EGFP(G4Δ) retained more structure upon unfolding and refolded with almost 100% efficiency but at the expense of thermodynamic stability. The EGFP(G4Δ) structure revealed that G4 deletion caused a beneficial helical registry shift resulting in a new polar interaction network, which potentially stabilizes a cis proline peptide bond and links secondary structure elements. Thus, deletion mutations and registry shifts can enhance proteins through structural rearrangements not possible by substitution mutations alone.

  16. Deletion of Plasmodium berghei-Specific CD4+ T Cells Adoptively Transferred into Recipient Mice after Challenge with Homologous Parasite

    NASA Astrophysics Data System (ADS)

    Hirunpetcharat, Chakrit; Good, Michael F.

    1998-02-01

    The immune response to malaria parasites includes T cell responses that reduce parasites by effector T cell responses and by providing help for antibody responses. Some parasites are more sensitive to antibody and others are more sensitive to cell-mediated immunity. We demonstrate that cultured CD4+ T cells that produce interferon CD4+ and interleukin 2, but not interleukin 4, in response to stimulation with the rodent parasite Plasmodium berghei can reduce but not eliminate parasites in vivo after adoptive transfer. Although cells can persist in vivo for up to 9 months in uninfected mice, infection results in elimination of up to 99% of specific T cells in different tissues, as judged by tracking T cells labeled with the fluorescent dye 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester. T cells specific for ovalbumin are unaffected. In vivo activation and division of transferred T cells per se are not responsible for deletion because T cells positive for 5-(and -6)-carboxyfluorescein diacetate succinimidyl ester divide up to six times within 7 days in uninfected mice and are not deleted. Understanding the factors responsible for parasite-mediated specific deletion of T cells would enhance our knowledge of parasite immunity.

  17. Application of functional vincristine plus dasatinib liposomes to deletion of vasculogenic mimicry channels in triple-negative breast cancer

    PubMed Central

    Zeng, Fan; Ju, Rui-Jun; Liu, Lei; Xie, Hong-Jun; Mu, Li-Min; Zhao, Yao; Yan, Yan; Hu, Ying-Jie; Wu, Jia-Shuan; Lu, Wan-Liang

    2015-01-01

    Standard chemotherapy cannot eradicate triple-negative breast cancer (TNBC) while the residual cancer cells readily form the vasculogenic mimicry (VM) channels, which lead to the relapse of cancer after treatment. In this study, the functional vincristine plus dasatinib liposomes, modified by a targeting molecule DSPE-PEG2000-c(RGDyK), were fabricated to address this issue. The investigations were performed on TNBC MDA-MB-231 cells and MDA-MB-231 xenografts in nude mice. The liposomes exhibited the superior performances in the following aspects: the enhancement of cellular uptake via targeted action; the induction of apoptosis via activation of caspase 8, 9, and 3, increased expression of Bax, decreased expression of Mcl-1, and generation of reactive oxygen species (ROS); and the deletion of VM channels via inhibitions on the VM channel indicators, which consisted of vascular endothelial-cadherin (VE-Cad), focal adhesion kinase (FAK), phosphatidylinositide 3-kinase (PI3K), and matrix metallopeptidases (MMP-2, and MMP-9). Furthermore, the liposomes displayed the prolonged circulation time in the blood, the increased accumulation in tumor tissue, and the improved therapeutic efficacy along with deletion of VM channels in the TNBC-bearing mice. In conclusion, the nanostructured functional drug-loaded liposomes may provide a promising strategy for the treatment of invasive TNBC along with deletion of VM channels. PMID:26429872

  18. Interstitial deletion 5p accompanied by dicentric ring formation of the deleted segment resulting in trisomy 5p13-cen

    SciTech Connect

    Schuffenhauer, S.; Daumer-Haas, C.; Murken, J.

    1996-10-02

    Karyotypes with an interstitial deletion and a marker chromosome formed from the deleted segment are rare. We identified such a rearrangement in a newborn infant, who presented with macrocephaly, asymmetric square skull, minor facial anomalies, omphalocele, inguinal hernias, hypospadias, and club feet. The karyotype 46,XY,del(5)(pter{r_arrow}p13::cen{r_arrow}qter)/47,XY,+dicr(5)(:p13{r_arrow}cen::p13{r_arrow}cen),del(5)(pter{r_arrow}p13::cen{r_arrow}qter) was identified by banding studies and FISH analysis in the peripheral lymphocytes. One breakpoint on the del(5) maps distal to GDNF, and FISH analysis using an {alpha}-satellite probe suggests that the proximal breakpoint maps within the centromere. The dicentric r(5) consists of two copies of the segment deleted in the del(5), resulting in trisomy of proximal 5p (5p13-cen). The phenotype of the propositus is compared with other trisomy 5p cases and possible mechanisms for the generation of this unique chromosomal rearrangement are discussed. 27 refs., 3 figs.

  19. Characterization of genetic deletions in Becker muscular dystrophy using monoclonal antibodies against a deletion-prone region of dystrophin

    SciTech Connect

    Thanh, L.T.; Man, Nguyen Thi; Morris, G.E.

    1995-08-28

    We have produced a new panel of 20 monoclonal antibodies (mAbs) against a region of the dystrophin protein corresponding to a deletion-prone region of the Duchenne muscular dystrophy gene (exons 45-50). We show that immunohistochemistry or Western blotting with these {open_quotes}exon-specific{close_quotes} mAbs can provide a valuable addition to Southern blotting or PCR methods for the accurate identification of genetic deletions in Becker muscular dystrophy patients. The antibodies were mapped to the following exons: exon 45 (2 mAbs), exon 46 (6), exon 47 (1), exons 47/48 (4), exons 48-50 (6), and exon 50 (1). PCR amplification of single exons or groups of exons was used both to produce specific dystrophin immunogens and to map the mAbs obtained. PCR-mediated mutagenesis was also used to identify regions of dystrophin important for mAb binding. Because the mAbs can be used to characterize the dystrophin produced by individual muscle fibres, they will also be useful for studying {open_quotes}revertant{close_quotes} fibres in Duchenne muscle and for monitoring the results of myoblast therapy trials in MD patients with deletions in this region of the dystrophin gene. 27 refs., 7 figs., 3 tabs.

  20. Overlapping deletions spanning the proximal two-thirds of the mouse t complex

    PubMed Central

    Bergstrom, David E.; Bergstrom, Rebecca A.; Munroe, Robert J.; Lee, Barbara K.; Browning, Victoria L.; You, Yun; Eicher, Eva M.; Schimenti, John C.

    2008-01-01

    Chromosome deletion complexes in model organisms serve as valuable genetic tools for the functional and physical annotation of complex genomes. Among their many roles, deletions can serve as mapping tools for simple or quantitative trait loci (QTLs), genetic reagents for regional mutagenesis experiments, and, in the case of mice, models of human contiguous gene deletion syndromes. Deletions also are uniquely suited for identifying regions of the genome containing haploinsufficient or imprinted loci. Here we describe the creation of new deletions at the proximal end of mouse Chromosome (Chr) 17 by using the technique of ES cell irradiation and the extensive molecular characterization of these and previously isolated deletions that, in total, cover much of the mouse t complex. The deletions are arranged in five overlapping complexes that collectively span about 25 Mbp. Furthermore, we have integrated each of the deletion complexes with physical data from public and private mouse genome sequences, and our own genetic data, to resolve some discrepancies. These deletions will be useful for characterizing several phenomena related to the t complex and t haplotypes, including transmission ratio distortion, male infertility, and the collection of t haplotype embryonic lethal mutations. The deletions will also be useful for mapping other loci of interest on proximal Chr 17, including T-associated sex reversal (Tas) and head-tilt (het). The new deletions have thus far been used to localize the recently identified t haplolethal (Thl1) locus to an approximately 1.3-Mbp interval. PMID:14724736

  1. On the Components of Segregation Distortion in DROSOPHILA MELANOGASTER. II. Deletion Mapping and Dosage Analysis of the SD Locus

    PubMed Central

    Brittnacher, John G.; Ganetzky, Barry

    1983-01-01

    Segregation distorter (SD) chromosomes are preferentially transmitted to offspring from heterozygous SD/SD+ males owing to the induced dysfunction of the SD+-bearing sperm. This phenomenon involves at least two major loci: the Sd locus whose presence is necessary for distortion to occur and the Rsp locus which acts as the site of Sd action. Several additional loci on SD chromosomes enhance distortion.—In a previous study deletions were used to map the Sd locus and to determine some of its properties. We have extended this analysis with the isolation and characterization of 14 new deletions in the Sd region. From our results we conclude (1) SD chromosomes contain a single Sd locus located in region 37D2-6 of the salivary gland chromosome map. Deletion of this locus in any of three SD chromosomes now studied results in complete loss of ability to distort a sensitive chromosome; (2) the reduced male fecundity observed in many homozygous SD or SDi/SDj combinations is due at least in part to the action of the Sd locus. The fecundity of these males can be substantially increased by deletion of one Sd locus. Thus, it is the presence of two doses of Sd rather than the absence of Sd+ that produces the lowered male fecundity in SD homozygotes; (3) Sd behaves as a neomorph, whereas Sd+, if it exists at all, is amorphic with respect to segregation distortion; (4) these results support a model in which the Sd product is made in limiting amounts and the interaction of this product with the Rsp locus causes sperm dysfunction. The Sd product appears to act preferentially at Rsps (sensitive-Responder) but may also act at Rspi (insensitive-Responder). PMID:17246120

  2. Deletion of chromosomal region 13q14.3 in childhood acute lymphoblastic leukemia.

    PubMed

    Cavé, H; Avet-Loiseau, H; Devaux, I; Rondeau, G; Boutard, P; Lebrun, E; Méchinaud, F; Vilmer, E; Grandchamp, B

    2001-03-01

    Deletion of the 13q14 chromosomal region is frequent in B cell chronic lymphocytic leukemia (B-CLL) and is believed to inactivate a tumor supressor gene (TSG) next to RB1. We studied microsatellite markers spanning the 13q14 chromosomal region in 138 children with acute lymphoblastic leukemia (ALL). Allelic loss was demonstrated in six cases (4.3%). Deletion did not include RB1 in two cases. In five patients, the deleted region overlapped that described in B-CLL. A sixth patient harbored a smaller deletion, slightly more telomeric than minimal deleted regions reported in B-CLL. Apparent differences in the delineation of the minimal deleted region could be due to the fact that the putative TSG is a very large gene, with some deletions affecting only a part of it. Our present findings suggest that at least some of its exons lie within a region of less than 100 kb more telomeric that previously thought.

  3. Deletion pattern in the dystrophin gene in Turks and a comparison with Europeans and Indians.

    PubMed

    Onengüt, S; Kavaslar, G N; Battaloğlu, E; Serdaroğlu, P; Deymeer, F; Ozdemir, C; Calafell, F; Tolun, A

    2000-01-01

    Patterns of dystrophin gene deletions in DMD/BMD patients were compared in four populations: Turks (n = 146 deletions), Europeans (n = 838), North Indians (n = 89), and Indians from all over India (n = 103). Statistical tests revealed that there are differences in the proportions of small deletions. In contrast, the distribution of deletion breakpoints and the frequencies of specific deletions commonly observed in the four populations are not significantly different. The variations strongly suggest that sequence differences exist in the introns, and the differences are in agreement with genetic distances among populations. The similarities suggest that some intronic sequences have been conserved and that those will trigger recurrent deletions, since it is unlikely that gene flow would disperse the deleted chromosomes, which vanish from the gene pool in a few generations.

  4. Intragenic MBD5 familial deletion variant does not negatively impact MBD5 mRNA expression.

    PubMed

    Mullegama, Sureni V; Elsea, Sarah H

    2014-01-01

    2q23.1 deletion syndrome is characterized by intellectual disability, speech impairment, seizures, disturbed sleep pattern, behavioral problems, and hypotonia. Core features of this syndrome are due to haploinsufficiency of MBD5. Deletions that include coding and noncoding exons show reduced MBD5 mRNA expression. We report a patient with a neurological and behavioral phenotype similar to 2q23.1 deletion syndrome with an inherited intronic deletion in the 5-prime untranslated region of MBD5. Our data show that this patient has normal MBD5 mRNA expression; therefore, this deletion is likely not causative for 2q23.1 deletion syndrome. Overall, it is important to validate intronic deletions for pathogenicity.

  5. Reduced cocaine-induced serotonin, but not dopamine and noradrenaline, release in rats with a genetic deletion of serotonin transporters.

    PubMed

    Verheij, Michel M M; Karel, Peter; Cools, Alexander R; Homberg, Judith R

    2014-11-01

    It has recently been proposed that the increased reinforcing properties of cocaine and ecstasy observed in rats with a genetic deletion of serotonin transporters are the result of a reduction in the psychostimulant-induced release of serotonin. Here we provide the neurochemical evidence in favor of this hypothesis and show that changes in synaptic levels of dopamine or noradrenaline are not very likely to play an important role in the previously reported enhanced psychostimulant intake of these serotonin transporter knockout rats. The results may very well explain why human subjects displaying a reduced expression of serotonin transporters have an increased risk to develop addiction. PMID:25261262

  6. Molecular cytogenetic detection of chromosome 15 deletions in patients with Prader-Willi and Angelman syndromes

    SciTech Connect

    Chadwick, D.E.; Weksberg, R.; Shuman, C.

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are clinically distinct genetic disorders involving alterations of chromosome 15q11-q13. Approximately 75% of individuals with PWS and AS have deletions within 15q11-q13 by molecular analysis. We have evaluated fluorescence in situ hybridization (FISH) for the clinical laboratory detection of del(15)(q11q13) using the cosmid probes D15S11 and GABRB3 (ONCOR, Gaithersburg, NY). 4/4 PWS and 1/1 AS patients previously identified as having cytogenetic deletions were deleted for both probes. In a prospectively ascertained series of 54 patient samples referred to rule out either PWS or AS, 8 were deleted for D15S11 and GABRB3. In addition, an atypical deletion patient with PWS was also identified who was found to be deleted for GABRB3 but not D15S11. The SNRPN locus was also deleted in this patient. Only 4 of the 9 patient samples having molecular cytogenetic deletions were clearly deleted by high resolution banding (HRB) analysis. The microscopic and submicroscopic deletions have been confirmed by dinucleotide (CA) repeat analysis. Microsatellite polymorphism analysis was also used to demonstrate that five non-deletion patients in this series had biparental inheritance of chromosome 15, including region q11-q13. Deletions were not detected by either HRB, FISH or microsatellite polymorphism analysis in samples obtained from parents of the deletion patients. Methylation studies of chromosome 15q11-q13 are in progress for this series of PWS and AS families. FISH analysis of chromosome 15q11-q13 in patients with PWS and AS is a rapid, sensitive and reliable method for deletion detection.

  7. Deletion involving D15S113 in a mother and son without Angelman syndrome: Refinement of the Angelman syndrome critical deletion region

    SciTech Connect

    Michaelis, R.C.; Skinner, S.A.; Lethco, B.A.

    1995-01-02

    Deletions of 15q11-q13 typically result in Angelman syndrome when inherited from the mother and Prader-Willi syndrome when inherited from the father. The critical deletion region for Angelman syndrome has recently been restricted by a report of an Angelman syndrome patient with a deletion spanning less than 200 kb around the D15S113 locus. We report here on a mother and son with a deletion of chromosome 15 that includes the D15S113 locus. The son has mild to moderate mental retardation and minor anomalies, while the mother has a borderline intellectual deficit and slightly downslanting palpebral fissures. Neither patient has the seizures, excessive laughter and hand clapping, ataxia or the facial anomalies which are characteristic of Angelman syndrome. The proximal boundary of the deletion in our patients lies between the D15S10 and The D15S113 loci. Our patients do not have Angelman syndrome, despite the deletion of the D15S113 marker. This suggests that the Angelman syndrome critical deletion region is now defined as the overlap between the deletion found in the previously reported Angelman syndrome patient and the region that is intact in our patients. 28 refs., 6 figs.

  8. Ped gene deletion polymorphism frequency in wild mice.

    PubMed

    Newmark, Judith A; Sacher, Frank; Jones, Gwilym S; Warner, Carol M

    2002-07-01

    The Ped gene influences the rate of cleavage of preimplantation embryos and their subsequent survival. Embryos that express the product of the Ped gene, Qa-2 protein, cleave at a faster rate than embryos with an absence of Qa-2 protein. In addition, the Ped gene has pleiotropic effects on reproduction. Thus, there is a reproductive advantage to those mouse strains that are Qa-2 positive. The presence or absence of Qa-2 is reflected at the DNA level by the presence or absence (deletion polymorphism) of the gene(s) encoding Qa-2 protein. Many inbred and wild-derived mouse strains have been characterized as Qa-2 positive or negative, but no previous studies have looked at the distribution of the Ped gene in a population of free-living wild mice. The purpose of this study was to determine the Ped gene deletion polymorphism frequency in a sample of free-living wild mice. Twenty-nine mice were collected and identified as Mus musculus. Genomic DNA extraction was performed on tail tips, and PCR was used to amplify a region from the Ped gene. Known Qa-2 positive and negative mice were used as controls. Results showed that all 29 wild mice were positive for the Ped gene. Since the Ped gene is dominant and provides a reproductive advantage, it is not surprising that all of the wild mice were Qa-2 positive. However, our assay could not distinguish homozygous from heterozygous mice. It is possible that the Qa-2 deletion polymorphism is segregating in the population, and a larger sample size would identify some Qa-2 negative mice. PMID:12115912

  9. 5q14.3 deletion neurocutaneous syndrome: Contiguous gene syndrome caused by simultaneous deletion of RASA1 and MEF2C: A progressive disease.

    PubMed

    Ilari, Rita; Agosta, Guillermo; Bacino, Carlos

    2016-03-01

    We report the case of a young girl who was presented with complex clinical symptoms caused by the deletion of contiguous genes: RASA1 and MEF2C, located on chromosome 5q14.3. Specifically, the diagnosis of her skin disorder and vascular malformations involving central nervous system is consistent with a RASopathy. The child's neurological manifestations are observed in most patients suffering from 5q14.3 by deletion or mutation of the MEF2C gene. A review of the literature allowed us to conclude that the contiguous deletion of genes RASA1 and MEF2C fulfills the criteria for the diagnosis of a Neurocutaneous syndrome as proposed by Carr et al. [2011]. We also assessed the penetrance of RASA1 and clinical manifestations of MEF2C according to the type of deletion. This child described presents the complete symptomatology of both deleted genes. We would also like to highlight the progression of the disorder.

  10. Radial aplasia and chromosome 22q11 deletion.

    PubMed Central

    Digilio, M C; Giannotti, A; Marino, B; Guadagni, A M; Orzalesi, M; Dallapiccola, B

    1997-01-01

    We report on a neonate with deletion 22q11 (del22q11) presenting with facial dysmorphism, ocular coloboma, congenital heart defect, urogenital malformations, and unilateral radial aplasia. This malformation complex includes features frequently occurring in velocardiofacial syndrome as well as findings described in the CHARGE and VACTERL associations. To our knowledge, the present case is the first report of radial aplasia in del22q11. This observation further supports and extends the clinical variability of del22q11. Images PMID:9391893

  11. Levodopa response in Parkinsonism with multiple mitochondrial DNA deletions.

    PubMed

    Wilcox, Robert A; Churchyard, Andrew; Dahl, Henrik H; Hutchison, Wendy M; Kirby, Denise M; Thyagarajan, Dominic

    2007-05-15

    We report a patient with an autosomal dominant chronic progressive external ophthalmoplegia phenotype associated with multiple mtDNA deletions in muscle from a family in which linkage analysis excluded mutations in DNA polymerase gamma (POLG), adenine nucleotide translocase (ANT-1) or C10orf2 (Twinkle). She presented with prominent Parkinsonism characterized by prolonged benefit from levodopa (L-dopa) and the later development of L-dopa induced dyskinesias and motor fluctuations. Thus L-dopa responsiveness, L-dopa induced dyskinesias and motor fluctuations may also occur in atypical Parkinsonism of mitochondrial disease, just as they may in multiple system atrophy. PMID:17357142

  12. Genetic studies of coliphage P1. I. Mapping by use of prophage deletions.

    PubMed Central

    Walker, D H; Walker, J T

    1975-01-01

    One hundred and ten amber mutants of coliphage P1 were isolated and localized into groups with respect to the existing genetic map by use of nonpermissive Escherichia coli K-12 strains lysogenic for P1 with deletions. These lysogens contain one of three types of deletion prophages: P1cry and its derivatives, P1dlacs, and P1dpros. Fourteen such lysogens were tested for their ability to rescue the amber mutants which were then assigned to one of nine deletion segments of the P1 genome defined by the termini of the various prophage deletions. The relationship of the nine deletion segments with the published P1 map is described, two new segments having been added. The deletions of the 14 prophages overlapped sufficiently to indicate that the P1 genetic prophage map should be represented in circular form, which is consistent with the fact that P1 is normally a circular plasmid in the prophage state. The distribution of mutants into deletion segments is nonrandom for at least one segment. In addition, the deletion termini of the 14 defective prophages coincided in five out of nine regions separating the nine deletion segments. Various possible explanations are discussed for the nonrandom recurrence of these deletion termini, including the evidence of hot spots of recombination. PMID:1099231

  13. Geometric figure-ground cues override standard depth from accretion-deletion.

    PubMed

    Tanrikulu, Ömer Daglar; Froyen, Vicky; Feldman, Jacob; Singh, Manish

    2016-01-01

    Accretion-deletion is widely considered a decisive cue to surface depth ordering, with the accreting or deleting surface interpreted as behind an adjoining surface. However, Froyen, Feldman, and Singh (2013) have shown that when accretion-deletion occurs on both sides of a contour, accreting-deleting regions can also be perceived as in front and as self-occluding due to rotation in three dimensions. In this study we ask whether geometric figure-ground cues can override the traditional "depth from accretion-deletion" interpretation even when accretion-deletion takes place only on one side of a contour. We used two tasks: a relative-depth task (front/back), and a motion-classification task (translation/rotation). We conducted two experiments, in which texture in only one set of alternating regions was moving; the other set was static. Contrary to the traditional interpretation of accretion-deletion, the moving convex and symmetric regions were perceived as figural and rotating in three dimensions in roughly half of the trials. In the second experiment, giving different motion directions to the moving regions (thereby weakening motion-based grouping) further weakened the traditional accretion-deletion interpretation. Our results show that the standard "depth from accretion-deletion" interpretation is overridden by static geometric cues to figure-ground. Overall, the results demonstrate a rich interaction between accretion-deletion, figure-ground, and structure from motion that is not captured by existing models of depth from motion.

  14. Molecular analysis of three patients with interstitial deletions of chromosome band 14q31.

    PubMed Central

    Byth, B C; Costa, M T; Teshima, I E; Wilson, W G; Carter, N P; Cox, D W

    1995-01-01

    Two patients and one three generation family with interstitial deletions of distal chromosome band 14q31 are described. The deletions were initially identified by chromosome analysis; we have used highly informative simple sequence repeat polymorphisms to define the deletions at the molecular level. This analysis also establishes the parental origin of the deleted chromosome. One of the patients was initially described as having a terminal deletion of chromosome 14 from 14q31 to 14qter; we show here that this child has instead an interstitial deletion of band 14q31. The smallest deletion involves a single anonymous DNA marker and is associated with an almost normal phenotype. The two patients with larger deletions have phenotypes similar to those seen in previously described cases of interstitial deletions of chromosome 14, including minor dysmorphic features and developmental delay. Delineation of these deletions allows the ordering of markers within the 14q31 region, in which the gene for the degenerative neurological disorder Machado-Joseph disease is localised. Images PMID:7562974

  15. Intragenic ERG Deletions Do Not Explain the Biology of ERG-Related Acute Lymphoblastic Leukemia

    PubMed Central

    Potuckova, Eliska; Zuna, Jan; Hovorkova, Lenka; Starkova, Julia; Stary, Jan; Trka, Jan; Zaliova, Marketa

    2016-01-01

    Intragenic ERG deletions occur in 3–5% of B-cell precursor acute lymphoblastic leukemia, specifically in B-other subtype lacking the classifying genetic lesions. They represent the only genetic lesion described so far present in the majority of cases clustering into a subgroup of B-other subtype characterized by a unique gene expression profile, probably sharing a common, however, not yet fully described, biological background. We aimed to elucidate whether ERG deletions could drive the specific biology of this ERG-related leukemia subgroup through expression of aberrant or decreased expression of wild type ERG isoforms. We showed that leukemic cells with endogenous ERG deletion express an aberrant transcript translated into two proteins in transfected cell lines and that one of these proteins colocalizes with wild type ERG. However, we did not confirm expression of the proteins in acute lymphoblastic leukemia cases with endogenous ERG deletion. ERG deletions resulted in significantly lower expression of wild type ERG transcripts compared to B-other cases without ERG deletion. However, cases with subclonal ERG deletion, clustering to the same ERG deletion associated subgroup, presented similar levels of wild type ERG as cases without ERG deletion. In conclusion, our data suggest that neither the expression of aberrant proteins from internally deleted allele nor the reduced expression of wild type ERG seem to provide a plausible explanation of the specific biology of ERG -related leukemia subgroup. PMID:27494621

  16. Novel large-range mitochondrial DNA deletions and fatal multisystemic disorder with prominent hepatopathy

    SciTech Connect

    Bianchi, Marzia; Rizza, Teresa; Verrigni, Daniela; Martinelli, Diego; Tozzi, Giulia; Torraco, Alessandra; Piemonte, Fiorella; Dionisi-Vici, Carlo; Nobili, Valerio; Francalanci, Paola; Boldrini, Renata; Callea, Francesco; Santorelli, Filippo Maria; Bertini, Enrico; and others

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Expanded array of mtDNA deletions. Black-Right-Pointing-Pointer Pearson syndrome with prominent hepatopathy associated with single mtDNA deletions. Black-Right-Pointing-Pointer Detection of deletions in fibroblasts and blood avoids muscle and liver biopsy. Black-Right-Pointing-Pointer Look for mtDNA deletions before to study nuclear genes related to mtDNA depletion. -- Abstract: Hepatic involvement in mitochondrial cytopathies rarely manifests in adulthood, but is a common feature in children. Multiple OXPHOS enzyme defects in children with liver involvement are often associated with dramatically reduced amounts of mtDNA. We investigated two novel large scale deletions in two infants with a multisystem disorder and prominent hepatopathy. Amount of mtDNA deletions and protein content were measured in different post-mortem tissues. The highest levels of deleted mtDNA were in liver, kidney, pancreas of both patients. Moreover, mtDNA deletions were detected in cultured skin fibroblasts in both patients and in blood of one during life. Biochemical analysis showed impairment of mainly complex I enzyme activity. Patients manifesting multisystem disorders in childhood may harbour rare mtDNA deletions in multiple tissues. For these patients, less invasive blood specimens or cultured fibroblasts can be used for molecular diagnosis. Our data further expand the array of deletions in the mitochondrial genomes in association with liver failure. Thus analysis of mtDNA should be considered in the diagnosis of childhood-onset hepatopathies.

  17. De novo proximal interstitial deletions of 14q: Cytogenetic and molecular investigations

    SciTech Connect

    Shapira, S.K.; Anderson, K.L.; Orr-Urtregar, A.; Craigen, W.J.; Lupski, J.R.; Shaffer, L.G.

    1994-08-01

    We report on 2 unrelated patients who had chromosome analysis performed because of psychomotor delay, failure to thrive, and minor anomalies. Each patient had a novel proximal 14q deletion (q11.2 to q21.1 in patient 737 and q12 to q22 in patient 777). Polymorphic (C-A){sub n} microsatellite markers distributed along the length of chromosome 14q were examined in both patients and their parents in order to determine which marker loci were deleted. The deletion in patient 737 was found to be paternal in origin, based on the analysis of 2 marker loci (D14S54 and D14S70), thus assigning these loci to the deleted interval q11.2 q21.1. Furthermore, 3 loci were not deleted (TCRD, D14S50, and D14S80), suggesting that they are within or proximal to 14q11.2. In the other family (patient 777), none of the markers were fully informative, but the deleted chromosome was determined to be paternally derived based on cytogenetic heteromorphisms. Despite having overlapping proximal 14q deletions, these 2 patients shared few phenotypic similarities except for failure to thrive, micrognathia, and hypoplasia of the corpus callosum. Therefore, a distinct proximal 14q deletion syndrome is not yet apparent. However, the molecular analyses facilitated the localization of several 14q DNA markers to the deletion regions in these 2 patients, while excluding other markers from each deletion. 24 refs., 4 figs.

  18. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion.

    PubMed

    Camp, Shelley; Zhang, Limin; Marquez, Michael; de la Torre, Brian; Long, Jeffery M; Bucht, Goran; Taylor, Palmer

    2005-12-15

    . delaTorre, P. Taylor, Knockout mice with deletions of alternatively spliced exons of Acetylcholinesterase, in: N.C. Inestrosa, E.O. Campus (Eds.), VII International Meeting on Cholinesterases, Pucon-Chile Cholinesterases in the Second Millennium: Biomolecular and Pathological Aspects. P. Universidad Catholica de Chile-FONDAP Biomedicina, 2004, pp. 43-48; R.Y.Y. Chan, C. Boudreau-Larivière, L.A. Angus, F. Mankal, B.J. Jasmin, An intronic enhancer containing an N-box motif is required for synapse- and tissue-specific expression of the acetylcholinesterase gene in skeletal muscle fibers. Proc. Natl. Acad. Sci. USA 96 (1999) 4627-4632], is also presented. The intronic region was floxed and then deleted by mating with Ella-cre transgenic mice. The deletion of this region produced a dramatic phenotype; a mouse with near normal AChE expression in brain and other CNS tissues, but no AChE expression in muscle. Phenotype and AChE tissue activities are compared with the total AChE knockout mouse [W. Xie, J.A. Chatonnet, P.J. Wilder, A. Rizzino, R.D. McComb, P. Taylor, S.H. Hinrichs, O. Lockridge, Postnatal developmental delay and supersensitivity to organophosphate in gene-targeted mice lacking acetylcholinesterase. J. Pharmacol. Exp. Ther. 293 (3) (2000) 896-902].

  19. Effects of Naturally Occuring Arginine 14 Deletion on Phospholamban Conformational Dynamics and Membrane Interactions

    PubMed Central

    Vostrikov, Vitaly V.; Soller, Kailey J.; Ha, Kim N.; Gopinath, T.; Veglia, Gianluigi

    2014-01-01

    Phospholamban (PLN) is a single-pass membrane protein that regulates the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA). Phosphorylation of PLN at Ser16 reverses its inhibitory function under β-adrenergic stimulation, augmenting Ca2+ uptake in the sarcoplasmic reticulum and muscle contractility. PLN exists in two conformations; a T state, where the cytoplasmic domain is helical and absorbed on the membrane surface, and an R state, where the cytoplasmic domain is unfolded and membrane detached. Previous studies from our group have shown that the PLN conformational equilibrium is crucial to SERCA regulation. Here, we used a combination of solution and solid-state NMR techniques to compare the structural topology and conformational dynamics of monomeric PLN (PLNAFA) with that of the PLNR14del, a naturally occurring deletion mutant that is linked to the progression of dilated cardiomyopathy. We found that the behavior of the inhibitory transmembrane domain of PLNR14del is similar to that of the native sequence. In contrast, the conformational dynamics of R14del both in micelles and lipid membranes are enhanced. We conclude that the deletion of Arg14 in the cytoplasmic region weakens the interactions with the membrane and shifts the conformational equilibrium of PLN toward the disordered R state. This conformational transition is correlated with the loss-of-function character of this mutant and is corroborated by SERCA’s activity assays. These findings further support our hypothesis that SERCA function is fine-tuned by PLN conformational dynamics and begin to explain the aberrant regulation of SERCA by the R14del mutant. PMID:25251363

  20. Uridine insertion/deletion editing in trypanosomes: a playground for RNA-guided information transfer.

    PubMed

    Aphasizhev, Ruslan; Aphasizheva, Inna

    2011-01-01

    RNA editing is a collective term referring to enzymatic processes that change RNA sequence apart from splicing, 5' capping or 3' extension. In this article, we focus on uridine insertion/deletion mRNA editing found exclusively in mitochondria of kinetoplastid protists. This type of editing corrects frameshifts, introduces start and stops codons, and often adds much of the coding sequence to create an open reading frame. The mitochondrial genome of trypanosomatids, the most extensively studied clade within the order Kinetoplastida, is composed of ∼50 maxicircles with limited coding capacity and thousands of minicircles. To produce functional mRNAs, a multitude of nuclear-encoded factors mediate interactions of maxicircle-encoded pre-mRNAs with a vast repertoire of minicircle-encoded guide RNAs. Editing reactions of mRNA cleavage, U-insertions or U-deletions, and ligation are catalyzed by the RNA editing core complex (RECC, the 20S editosome) while each step of this enzymatic cascade is directed by guide RNAs. These 50-60 nucleotide (nt) molecules are 3' uridylated by RET1 TUTase and stabilized via association with the gRNA binding complex (GRBC). Remarkably, the information transfer between maxicircle and minicircle transcriptomes does not rely on template-dependent polymerization of nucleic acids. Instead, intrinsic substrate specificities of key enzymes are largely responsible for the fidelity of editing. Conversely, the efficiency of editing is enhanced by assembling enzymes and RNA binding proteins into stable multiprotein complexes. WIREs RNA 2011 2 669-685 DOI: 10.1002/wrna.82 For further resources related to this article, please visit the WIREs website.

  1. Angelman syndrome: Validation of molecular cytogenetic analysis of chromosome 15q11-q13 for deletion detection

    SciTech Connect

    White, L.; Knoll, J.H.M.

    1995-03-13

    In a series of 18 individuals comprising parents of Angelman syndrome (AS) patients and AS patients with large deletions, microdeletions, and no deletions, we utilized fluorescence in situ hybridization (FISH) with genomic phage clones for loci D15S63 and GABRB3 for deletion detection of chromosome 15q11-q13. Utilization of probes at these loci allows detection of common large deletions and permits discrimination of less common small deletions. In all individuals the molecular cytogenetic data were concordant with the DNA deletion analyses. FISH provides an accurate method of deletion detection for chromosome 15q11-q13. 23 refs., 2 figs., 1 tab.

  2. Adipocyte-Specific Deletion of Manganese Superoxide Dismutase Protects From Diet-Induced Obesity Through Increased Mitochondrial Uncoupling and Biogenesis.

    PubMed

    Han, Yong Hwan; Buffolo, Márcio; Pires, Karla Maria; Pei, Shaobo; Scherer, Philipp E; Boudina, Sihem

    2016-09-01

    Obesity and insulin resistance are associated with oxidative stress (OS). The causal role of adipose OS in the pathogenesis of these conditions is unknown. To address this issue, we generated mice with an adipocyte-selective deletion of manganese superoxide dismutase (MnSOD). When fed a high-fat diet (HFD), the AdSod2 knockout (KO) mice exhibited less adiposity, reduced adipocyte hypertrophy, and decreased circulating leptin. The resistance to diet-induced adiposity was the result of an increased metabolic rate and energy expenditure. Furthermore, palmitate oxidation was elevated in the white adipose tissue (WAT) and brown adipose tissue of AdSod2 KO mice fed an HFD, and the expression of key fatty acid oxidation genes was increased. To gain mechanistic insight into the increased fat oxidation in HFD-fed AdSod2 KO mice, we quantified the mitochondrial function and mitochondrial content in WAT and found that MnSOD deletion increased mitochondrial oxygen consumption and induced mitochondrial biogenesis. This effect was preserved in cultured adipocytes from AdSod2 KO mice in vitro. As expected from the enhanced fat oxidation, circulating levels of free fatty acids were reduced in the HFD-fed AdSod2 KO mice. Finally, HFD-fed AdSod2 KO mice were protected from hepatic steatosis, adipose tissue inflammation, and glucose and insulin intolerance. Taken together, these results demonstrate that MnSOD deletion in adipocytes triggered an adaptive stress response that activated mitochondrial biogenesis and enhanced mitochondrial fatty acid oxidation, thereby preventing diet-induced obesity and insulin resistance. PMID:27284109

  3. 22q11 Deletion Syndrome: A Genetic Subtype of Schizophrenia

    PubMed Central

    Bassett, Anne S.; Chow, Eva W.C.

    2012-01-01

    Schizophrenia is likely to be caused by several susceptibility genes and may have environmental factors that interact with susceptibility genes and/or nongenetic causes. Recent evidence supports the likelihood that 22q11 Deletion Syndrome (22qDS) represents an identifiable genetic subtype of schizophrenia. 22qDS is an under-recognized genetic syndrome associated with microdeletions on chromosome 22 and a variable expression that often includes mild congenital dysmorphic features, hypernasal speech, and learning difficulties. Initial evidence indicates that a minority of patients with schizophrenia (~2%) may have 22qDS and that prevalence may be somewhat higher in subpopulations with developmental delay. This paper proposes clinical criteria (including facial features, learning disabilities, hypernasal speech, congenital heart defects and other congenital anomalies) to aid in identifying patients with schizophrenia who may have this subtype and outlines features that may increase the index of suspicion for this syndrome. Although no specific causal gene or genes have yet been identified in the deletion region, 22qDS may represent a more homogeneous subtype of schizophrenia. This subtype may serve as a model for neurodevelopmental origins of schizophrenia that could aid in delineating etiologic and pathogenetic mechanisms. PMID:10509171

  4. Systematic discovery of complex insertions and deletions in human cancers.

    PubMed

    Ye, Kai; Wang, Jiayin; Jayasinghe, Reyka; Lameijer, Eric-Wubbo; McMichael, Joshua F; Ning, Jie; McLellan, Michael D; Xie, Mingchao; Cao, Song; Yellapantula, Venkata; Huang, Kuan-lin; Scott, Adam; Foltz, Steven; Niu, Beifang; Johnson, Kimberly J; Moed, Matthijs; Slagboom, P Eline; Chen, Feng; Wendl, Michael C; Ding, Li

    2016-01-01

    Complex insertions and deletions (indels) are formed by simultaneously deleting and inserting DNA fragments of different sizes at a common genomic location. Here we present a systematic analysis of somatic complex indels in the coding sequences of samples from over 8,000 cancer cases using Pindel-C. We discovered 285 complex indels in cancer-associated genes (such as PIK3R1, TP53, ARID1A, GATA3 and KMT2D) in approximately 3.5% of cases analyzed; nearly all instances of complex indels were overlooked (81.1%) or misannotated (17.6%) in previous reports of 2,199 samples. In-frame complex indels are enriched in PIK3R1 and EGFR, whereas frameshifts are prevalent in VHL, GATA3, TP53, ARID1A, PTEN and ATRX. Furthermore, complex indels display strong tissue specificity (such as VHL in kidney cancer samples and GATA3 in breast cancer samples). Finally, structural analyses support findings of previously missed, but potentially druggable, mutations in the EGFR, MET and KIT oncogenes. This study indicates the critical importance of improving complex indel discovery and interpretation in medical research. PMID:26657142

  5. Dystrophin in frameshift deletion patients with Becker Muscular Dystrophy

    SciTech Connect

    Gangopadhyay, S.B.; Ray, P.N.; Worton, R.G.; Sherratt, T.G.; Heckmatt, J.Z.; Dubowitz, V.; Strong, P.N.; Miller, G. ); Shokeir, M. )

    1992-09-01

    In a previous study the authors identified 14 cases with Duchenne muscular dystrophy (DMD) or its milder variant, Becker muscular dystrophy (BMD), with a deletion of exons 3-7, a deletion that would be expected to shift the translational reading frame of the mRNA and give a severe phenotype. They have examined dystrophin and its mRNA from muscle biopsies of seven cases with either mild or intermediate phenotypes. In all cases they detected slightly lower-molecular-weight dystrophin in 12%-15% abundance relative to the normal. By sequencing amplified mRNA they have found that exon 2 is spliced to exon 8, a splice that produces a frameshifted mRNA, and have found no evidence for alternate splicing that might be involved in restoration of dystrophin mRNA reading frame in the patients with a mild phenotype. Other transcriptional and posttranscriptional mechanisms such as cryptic promoter, ribosomal frameshifting, and reinitiation are suggested that might play some role in restoring the reading frame. 34 refs., 5 figs. 1 tab.

  6. AML1 deletion in adult mice causes splenomegaly and lymphomas.

    PubMed

    Putz, G; Rosner, A; Nuesslein, I; Schmitz, N; Buchholz, F

    2006-02-01

    AML1 (RUNX1) encodes a DNA-binding subunit of the CBF transcription factor family and is required for the establishment of definitive hematopoiesis. AML1 is one of the most frequently mutated genes associated with human acute leukemia, suggesting that genetic alterations of the gene contribute to leukemogenesis. Here, we report the analysis of mice carrying conditional AML1 knockout alleles that were inactivated using the Cre/loxP system. AML1 was deleted in adult mice by inducing Cre activity to replicate AML1 deletions found in human MDS, familial platelet disorder and rare de novo human AML. At a latency of 2 months after induction, the thymus was reduced in size and frequently populated by immature double negative thymocytes, indicating defective T-lymphocyte maturation, resulting in lymphatic diseases with 50% penetrance, including atypical hyperplasia and thymic lymphoma. Metastatic lymphomas to the liver and the meninges were observed. Mice also developed splenomegaly with an expansion of the myeloid compartment. Increased Howell-Jolly body counts indicated splenic hypofunction. Thrombocytopenia occurred due to immaturity of mini-megakaryocytes in the bone marrow. Together with mild lymphocytopenia in the peripheral blood and increased fractions of immature cells in the bone marrow, AML1 deficient mice display features of a myelodysplastic syndrome, suggesting a preleukemic state.

  7. A spontaneous segmental deletion from chromosome arm 3DL enhances Fusarium head blight resistance in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much effort has been directed at identifying sources of resistance to Fusarium head blight (FHB) in wheat. We sought to identify molecular markers for what we hypothesized was a new major FHB resistance locus originating from the wheat cultivar 'Freedom' and introgressed into the susceptible wheat c...

  8. Deletion of xylR gene enhances expression of xylose isomerase in Streptomyces lividans TK24.

    PubMed

    Heo, Gun-Young; Kim, Won-Chan; Joo, Gil-Jae; Kwak, Yun-Young; Shin, Jae-Ho; Roh, Dong-Hyun; Park, Heui-Dong; Rhee, In-Koo

    2008-05-01

    Glucose (xylose) isomerases from Streptomyces sp. have been used for the production of high fructose corn syrup for industrial purposes. An 11-kb DNA fragment containing the xyl gene cluster was isolated from Streptomyces lividans TK24 and its nucleotide sequences were analyzed. It was found that the xyl gene cluster contained a putative transcriptional repressor (xylR), xylulokinase (xylB), and xylose isomerase (xylA) genes. The transcriptional directions of the xylB and xylA genes were divergent, which is consistent to those found in other streptomycetes. A gene encoding XylR was located downstream of the xylB gene in the same direction, and its mutant strain produced xylose isomerase regardless of xylose in the media. The enzyme expression level in the mutant was 4.6 times higher than that in the parent strain under xylose-induced condition. Even in the absence of xylose, the mutant strain produce over 60% of enzyme compared with the xylose-induced condition. Gel mobility shift assay showed that XylR was able to bind to the putative xyl promoter, and its binding was inhibited by the addition of xylose in vitro. This result suggested that XylR acts as a repressor in the S. lividans xylose operon.

  9. Grin1 deletion in CRF neurons sex-dependently enhances fear, sociability, and social stress responsivity.

    PubMed

    Gilman, T Lee; DaMert, Jeffrey P; Meduri, Jeremy D; Jasnow, Aaron M

    2015-08-01

    The corticotropin releasing factor (CRF) system plays a critical role in responses to stressful stimuli, and is expressed in many areas of the brain involved in processing fear, anxiety, and social behaviors. To better understand the mechanisms by which the CRF system modulates responses to stressful events and social stimuli, we employed a mouse model that selectively disrupts NMDA receptor function via NMDA receptor subunit NR1 (Grin1) knockout specifically in Cre-expressing CRF neurons. These animals (Cre+/(fGrin1+)) were compared with littermates lacking Cre expression (Cre-/(fGrin1+)). Following cue discrimination fear conditioning, male Cre+/(fGrin1+) mice showed increased fear expression to the tone paired with a foot shock (CS+) while still discriminating the CS+ from a tone never paired with a foot shock (CS-). In contrast to males, female mice learned and discriminated fear cues equivalently across the genotypes. Similarly, no genotype differences in sociability or social novelty were observed in female mice, but Cre+/(fGrin1+) males displayed greater naive sociability and preference for social novelty than Cre-/(fGrin1+) littermates. Furthermore, the level of social withdrawal exhibited by male Cre+/(fGrin1+) mice susceptible to social defeat stress relative to same genotype controls was significantly more pronounced than that displayed by susceptible Cre-/(fGrin1+) mice compared to control Cre-/(fGrin1+) mice. Together, these results demonstrate increased fear, social, and stress responsiveness specifically in male Cre+/(fGrin1+) mice. Our findings indicate that NMDA-mediated glutamatergic regulation of CRF neurons is important for appropriately regulating fear and social responses, likely functioning to promote survival under aversive circumstances.

  10. Activation Mechanism of Oncogenic Deletion Mutations in BRAF, EGFR, and HER2.

    PubMed

    Foster, Scott A; Whalen, Daniel M; Özen, Ayşegül; Wongchenko, Matthew J; Yin, JianPing; Yen, Ivana; Schaefer, Gabriele; Mayfield, John D; Chmielecki, Juliann; Stephens, Philip J; Albacker, Lee A; Yan, Yibing; Song, Kyung; Hatzivassiliou, Georgia; Eigenbrot, Charles; Yu, Christine; Shaw, Andrey S; Manning, Gerard; Skelton, Nicholas J; Hymowitz, Sarah G; Malek, Shiva

    2016-04-11

    Activating mutations in protein kinases drive many cancers. While how recurring point mutations affect kinase activity has been described, the effect of in-frame deletions is not well understood. We show that oncogenic deletions within the β3-αC loop of HER2 and BRAF are analogous to the recurrent EGFR exon 19 deletions. We identify pancreatic carcinomas with BRAF deletions mutually exclusive with KRAS mutations. Crystal structures of BRAF deletions reveal the truncated loop restrains αC in an active "in" conformation, imparting resistance to inhibitors like vemurafenib that bind the αC "out" conformation. Characterization of loop length explains the prevalence of five amino acid deletions in BRAF, EGFR, and HER2 and highlights the importance of this region for kinase activity and inhibitor efficacy. PMID:26996308

  11. Complementarity of quantum correlations in cloning and deleting of quantum states

    NASA Astrophysics Data System (ADS)

    Sazim, Sk; Chakrabarty, Indranil; Datta, Annwesha; Pati, Arun K.

    2015-06-01

    We quantify the amount of correlation generated between two different output modes in imperfect cloning and deletion processes. We use three different measures of quantum correlations and investigate their role in determining the fidelity of cloning and deletion. We obtain a bound on the total correlation generated in the successive processes of cloning and deleting operations. This bound displays a different kind of complementary relationship between the quantum correlations required in generating a copy of a quantum state and the amount of correlation required to bring it back to the original state by deleting and vice versa. Our result shows that the better we clone (delete) a state, the more difficult it will be to bring the state back to its original form by the process of deleting (cloning).

  12. Deletions of the survival motor neuron gene in unaffected siblings of patients with spinal muscular atrophy

    SciTech Connect

    Cobben, J.M.; Steege, G. van der; Grootscholten, P.

    1995-10-01

    DNA studies in 103 spinal muscular atrophy (SMA) patients from The Netherlands revealed homozygosity for a survival motor neuron (SMN) deletion in 96 (93%) of 103. Neuronal apoptosis inhibitory protein deletions were found in 38 (37%) of 103 and occurred most frequently in SMA type 1. SMN deletions have not yet been described to occur in healthy subjects. In this study, however, four unaffected sibs from two SMA families showed homozygosity for SMN deletions. Homozygosity for an SMN deletion in unaffected persons seems to be very rare. Therefore, demonstration of a homozygous SMN deletion in a clinically presumed SMA patient should be considered as a confirmation of the diagnosis, whether or not SMN is in fact the causal gene for SMA. 19 refs., 2 figs.

  13. Mucopolysaccharidosis type IVA: Common double deletion in the N-Acetylgalactosamine-6-sulfatase gene (GALNS)

    SciTech Connect

    Hori, Toshinori; Tomatsu, Shunji; Fukuda, Seiji

    1995-04-10

    Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by a deficiency in N-acetylgalactosamine-6-sulfatase (GALNS). We found two separate deletions of nearly 8.0 and 6.0 kb in the GALNS gene, including some exons. There are Alu repetitive elements near the breakpoints of the 8.0-kb deletion, and this deletion resulted from an Alu-Alu recombination. The other 6.0-kb deletion involved illegitimate recombinational events between incomplete short direct repeats of 8 bp at deletion breakpoints. The same rearrangement has been observed in a heteroallelic state in four unrelated patients. This is the first documentation of a common double deletion a gene that is not a member of a gene cluster. 39 refs., 5 figs.

  14. Effects of MIG1, TUP1 and SSN6 deletion on maltose metabolism and leavening ability of baker’s yeast in lean dough

    PubMed Central

    2014-01-01

    Background Glucose repression is a global regulatory system in baker’s yeast. Maltose metabolism in baker’s yeast strains is negatively influenced by glucose, thereby affecting metabolite productivity (leavening ability in lean dough). Even if the general repression system constituted by MIG1, TUP1 and SSN6 factors has already been reported, the functions of these three genes in maltose metabolism remain unclear. In this work, we explored the effects of MIG1 and/or TUP1 and/or SSN6 deletion on the alleviation of glucose-repression to promote maltose metabolism and leavening ability of baker’s yeast. Results Results strongly suggest that the deletion of MIG1 and/or TUP1 and/or SSN6 can exert various effects on glucose repression for maltose metabolism. The deletion of TUP1 was negative for glucose derepression to facilitate the maltose metabolism. By contrast, the deletion of MIG1 and/or SSN6, rather than other double-gene or triple-gene mutations could partly relieve glucose repression, thereby promoting maltose metabolism and the leavening ability of baker’s yeast in lean dough. Conclusions The mutants of industrial baker’s yeast with enhanced maltose metabolism and leavening ability in lean dough were developed by genetic engineering. These baker’s yeast strains had excellent potential industrial applications. PMID:24993311

  15. The noncoding RNAs SNORD50A and SNORD50B bind K-Ras and are recurrently deleted in human cancer.

    PubMed

    Siprashvili, Zurab; Webster, Dan E; Johnston, Danielle; Shenoy, Rajani M; Ungewickell, Alexander J; Bhaduri, Aparna; Flockhart, Ross; Zarnegar, Brian J; Che, Yonglu; Meschi, Francesca; Puglisi, Joseph D; Khavari, Paul A

    2016-01-01

    Small nucleolar RNAs (snoRNAs) are conserved noncoding RNAs best studied as ribonucleoprotein (RNP) guides in RNA modification. To explore their role in cancer, we compared 5,473 tumor-normal genome pairs to identify snoRNAs with frequent copy number loss. The SNORD50A-SNORD50B snoRNA locus was deleted in 10-40% of 12 common cancers, where its loss was associated with reduced survival. A human protein microarray screen identified direct SNORD50A and SNORD50B RNA binding to K-Ras. Loss of SNORD50A and SNORD50B increased the amount of GTP-bound, active K-Ras and hyperactivated Ras-ERK1/ERK2 signaling. Loss of these snoRNAs also increased binding by farnesyltransferase to K-Ras and increased K-Ras prenylation, suggesting that KRAS mutation might synergize with SNORD50A and SNORD50B loss in cancer. In agreement with this hypothesis, CRISPR-mediated deletion of SNORD50A and SNORD50B in KRAS-mutant tumor cells enhanced tumorigenesis, and SNORD50A and SNORD50B deletion and oncogenic KRAS mutation co-occurred significantly in multiple human tumor types. SNORD50A and SNORD50B snoRNAs thus directly bind and inhibit K-Ras and are recurrently deleted in human cancer.

  16. Testicular dysgenesis/regression without campomelic dysplasia in patients carrying missense mutations and upstream deletion of SOX9.

    PubMed

    Katoh-Fukui, Yuko; Igarashi, Maki; Nagasaki, Keisuke; Horikawa, Reiko; Nagai, Toshiro; Tsuchiya, Takayoshi; Suzuki, Erina; Miyado, Mami; Hata, Kenichiro; Nakabayashi, Kazuhiko; Hayashi, Keiko; Matsubara, Yoichi; Baba, Takashi; Morohashi, Ken-Ichirou; Igarashi, Arisa; Ogata, Tsutomu; Takada, Shuji; Fukami, Maki

    2015-11-01

    SOX9 haploinsufficiency underlies campomelic dysplasia (CD) with or without testicular dysgenesis. Current understanding of the phenotypic variability and mutation spectrum of SOX9 abnormalities remains fragmentary. Here, we report three patients with hitherto unreported SOX9 abnormalities. These patients were identified through molecular analysis of 33 patients with 46,XY disorders of sex development (DSD). Patients 1-3 manifested testicular dysgenesis or regression without CD. Patients 1 and 2 carried probable damaging mutations p.Arg394Gly and p.Arg437Cys, respectively, in the SOX9 C-terminal domain but not in other known 46,XY DSD causative genes. These substitutions were absent from ~120,000 alleles in the exome database. These mutations retained normal transactivating activity for the Col2a1 enhancer, but showed impaired activity for the Amh promoter. Patient 3 harbored a maternally inherited ~491 kb SOX9 upstream deletion that encompassed the known 32.5 kb XY sex reversal region. Breakpoints of the deletion resided within nonrepeat sequences and were accompanied by a short-nucleotide insertion. The results imply that testicular dysgenesis and regression without skeletal dysplasia may be rare manifestations of SOX9 abnormalities. Furthermore, our data broaden pathogenic SOX9 abnormalities to include C-terminal missense substitutions which lead to target-gene-specific protein dysfunction, and enhancer-containing upstream microdeletions mediated by nonhomologous end-joining. PMID:26740947

  17. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction

    PubMed Central

    Ducharme, Anique; Frantz, Stefan; Aikawa, Masanori; Rabkin, Elena; Lindsey, Merry; Rohde, Luis E.; Schoen, Frederick J.; Kelly, Ralph A.; Werb, Zena; Libby, Peter; Lee, Richard T.

    2000-01-01

    Matrix metalloproteinase-9 (MMP-9) is prominently overexpressed after myocardial infarction (MI). We tested the hypothesis that mice with targeted deletion of MMP9 have less left ventricular (LV) dilation after experimental MI than do sibling wild-type (WT) mice. Animals that survived ligation of the left coronary artery underwent echocardiographic studies after MI; all analyses were performed without knowledge of mouse genotype. By day 8, MMP9 knockout (KO) mice had significantly smaller increases in end-diastolic and end-systolic ventricular dimensions at both midpapillary and apical levels, compared with infarcted WT mice; these differences persisted at 15 days after MI. MMP-9 KO mice had less collagen accumulation in the infarcted area than did WT mice, and they showed enhanced expression of MMP-2, MMP-13, and TIMP-1 and a reduced number of macrophages. We conclude that targeted deletion of the MMP9 gene attenuates LV dilation after experimental MI in mice. The decrease in collagen accumulation and the enhanced expression of other MMPs suggest that MMP-9 plays a prominent role in extracellular matrix remodeling after MI. PMID:10880048

  18. Restoration of skilled locomotion by sprouting corticospinal axons induced by co-deletion of PTEN and SOCS3

    PubMed Central

    Jin, Duo; Liu, Yuanyuan; Sun, Fang; Wang, Xuhua; Liu, Xuefeng; He, Zhigang

    2015-01-01

    The limited rewiring of the corticospinal tract (CST) only partially compensates the lost functions after stroke, brain trauma and spinal cord injury. Therefore it is important to develop new therapies to enhance the compensatory circuitry mediated by spared CST axons. Here by using a unilateral pyramidotomy model, we find that deletion of cortical suppressor of cytokine signaling 3 (SOCS3), a negative regulator of cytokine-activated pathway, promotes sprouting of uninjured CST axons to the denervated spinal cord. A likely trigger of such sprouting is ciliary neurotrophic factor (CNTF) expressed in local spinal neurons. Such sprouting can be further enhanced by deletion of phosphatase and tensin homolog (PTEN), a mechanistic target of rapamycin (mTOR) negative regulator, resulting in significant recovery of skilled locomotion. Ablation of the corticospinal neurons with sprouting axons abolishes the improved behavioural performance. Furthermore, by optogenetics-based specific CST stimulation, we show a direct limb motor control by sprouting CST axons, providing direct evidence for the reformation of a functional circuit. PMID:26598325

  19. Deletion mapping indicates that MTS1 is the target of frequent deletions at chromosome 9p21 in paediatric acute lymphoblastic leukaemias.

    PubMed

    Guidal-Giroux, C; Gérard, B; Cavé, H; Duval, M; Rohrlich, P; Elion, J; Vilmer, E; Grandchamp, B

    1996-02-01

    Recent reports have indicated a high frequency of deletions of MTS1 (CDKN2, p16ink4, CDKI4) in acute lymphoblastic leukaemias (ALLs). This gene is located at chromosome 9p21 and encodes an inhibitor of cyclin D-dependent kinases. In contrast with the observations in some other malignancies, no inactivation of MTS1 by intragenic mutation was demonstrated in leukaemias. A contribution of MTS1 alterations to leukaemogenesis therefore remains questionable. In order to test for the implication of MTS1 as a tumour suppressor gene in paediatric ALLs we have explored the 9p21 chromosomal region of 46 children with this disease. The copy number of the MTS1 gene in blasts from the patients was determined using a quantitative PCR assay enabling us to precisely detect mono- and bi-allelic deletions. Rearrangements of the gene were sought by Southern blot analysis. The extent of the deletions was studied using microsatellite markers spanning the 9p21 chromosomal region. Point mutations were sought in exon 1 and exon 2 of the MTS1 gene in patients with a mono-allelic deletion in addition, exon 2 of MTS1, which contains two-thirds of the coding region, was sequenced in all patients who had no deletion of the gene. Altogether, our data are consistent with the view that MTS1 is the target of 9p21 deletions. Either one or two alleles of the gene were deleted in 36% of non-selected children with B-lineage ALL and both alleles were deleted in all seven patients we studied with T-lineage ALL. The absence of any point mutation implies that the major mechanism of inactivation of MTS1 in ALLs is deletional.

  20. Mini-Review: Monosomy 1p36 syndrome: reviewing the correlation between deletion sizes and phenotypes.

    PubMed

    Rocha, C F; Vasques, R B; Santos, S R; Paiva, C L A

    2016-01-01

    The major clinical features of monosomy 1p36 deletion are developmental delay and hypotonia associated with short stature and craniofacial dysmorphisms. The objective of this study was to review the cases of 1p36 deletion that was reported between 1999 and 2014, in order to identify a possible correlation between the size of the 1p36-deleted segment and the clinical phenotype of the disease. Scientific articles published in the (National Center for Biotechnology Information; NCBI http://www.ncbi.nlm.nih.gov/pubmed) and Scientific Electronic Library Online (www.scielo.com.br) databases were searched using key word combinations, such as "1p36 deletion", "monosomy 1p36 deletion", and "1p36 deletion syndrome". Articles in English or Spanish reporting the correlation between deletion sizes and the respective clinical phenotypes were retrieved, while letters, reviews, guidelines, and studies with mouse models were excluded. Among the 746 retrieved articles, only 17 (12 case reports and 5 series of cases), comprising 29 patients (9 males and 20 females, aged 0 months (neonate) to 22 years) bearing the 1p36 deletions and whose clinical phenotypes were described, met the inclusion criteria. The genotype-phenotype correlation in monosomy 1p36 is a challenge because of the variability in the size of the deleted segment, as well as in the clinical manifestations of similar size deletions. Therefore, the severity of the clinical features was not always associated with the deletion size, possibly because of the other influences, such as stochastic factors, epigenetic events, or reduced penetration of the deleted genes.

  1. Choanal atresia in a patient with the deletion (9p) syndrome

    SciTech Connect

    Shashi, V.; Golden, W.L.; Fryburg, J.S.

    1994-01-01

    The authors report on a child with choanal atresia and deletion 9p. A review of the literature documented one previous instance of choanal atresia in a patient with del(9p). Choanal atresia may be part of the spectrum of malformations in the deletion (9p) syndrome and its presence should prompt a search for this particular deletion as part of the differential diagnosis. 9 refs., 3 figs.

  2. Cognitive and structural neuroimaging characteristics of schizophrenia patients with large, rare copy number deletions.

    PubMed

    Kenneth Martin, Andrew; Robinson, Gail; Reutens, David; Mowry, Bryan

    2014-12-30

    Large (>500 Kb), rare (frequency <1%) deletions are associated with risk for schizophrenia. The aim of the study was to characterise patients with these deletions using measures of cognition, grey-matter volume and white-matter integrity. Patients with schizophrenia and large, rare deletions (SZ-del) (n=17) were assessed on a test of intelligence, the Wechsler Abbreviated Scale of Intelligence (WASI), and compared with age- and sex-matched schizophrenia patients without large, rare deletions (SZ-nodel) (n=65), and healthy controls (HCs) (n=50). Regional grey-matter differences were investigated using voxel-based morphometry (SZ-del=9; SZ-nodel=26; HC=19). White-matter integrity was assessed using fractional anisotropy (SZ-del=9; SZ-nodel=24; HC=15). Compared with schizophrenia patients without large, rare deletions, those with large, rare deletions had lower IQ; greater grey-matter volume in clusters with peaks in the left and right cerebellum, left hippocampus, and right rectal gyrus; and increased white-matter anisotropy in the body and genu of the corpus callosum. Compared with healthy controls, patients with large, rare deletions had reduced grey matter volume in the right calcarine gyrus. In sum, patients with large, rare deletions had structural profiles intermediate to those observed in healthy controls and schizophrenia patients without large, rare deletions, but had greater impairment in intelligence. PMID:25453991

  3. Molecular definition of the smallest region of deletion overlap in the Wolf-Hirschhorn syndrome

    SciTech Connect

    Gandelman, K.Y.; Gibson, L.; Meyn, M.S.; Yang-Feng, T.L. )

    1992-09-01

    Wolf-Hirschhorn syndrome (WHS), associated with a deletion of chromosome 4p, is characterized by mental and growth retardation and typical dysmorphism. A girl with clinical features of WHS was found to carry a subtle deletion of chromosome 4p. Initially suggested by high-resolution chromosome analysis, her deletion was confirmed by fluorescence in situ hybridization (FISH) with cosmid probes, E13, and Y2, of D4S113. To delineate this 4p deletion, the authors performed a series of FISH and pulsed-field gel electrophoresis analysis by using probes from 4p16.3. A deletion of [approximately]2.5 Mb with the breakpoint at [approximately]80 kb distal to D4S43 was defined in this patient and appears to be the smallest WHS deletion so far identified. To further refine the WHS critical region, they have studied three unrelated patients with presumptive 4p deletions, two resulting from unbalanced segregations of parental chromosomal translocations and one resulting from an apparently de novo unbalanced translocation. Larger deletions were identified in two patients with WHS. One patient who did not clinically present with WHS had a smaller deletion that thus eliminates the distal 100-300 kb from the telomere as being part of the WHS region. This study has localized the WHS region to [approximately]2 MB between D4S43 and D4S142. 37 refs., 4 figs., 1 tab.

  4. Compound heterozygous PMP22 deletion mutations causing severe Charcot-Marie-Tooth disease type 1.

    PubMed

    Abe, Akiko; Nakamura, Kazuyuki; Kato, Mitsuhiro; Numakura, Chikahiko; Honma, Tomomi; Seiwa, Chizuru; Shirahata, Emi; Itoh, Aiko; Kishikawa, Yumiko; Hayasaka, Kiyoshi

    2010-11-01

    We present a 3⅓-year-old girl with severe Charcot-Marie-Tooth disease type 1 (Dejerine-Sottas disease), who was a compound heterozygote carrying a deletion of the whole peripheral myelin protein 22 (PMP22) and a deletion of exon 5 in the other PMP22 allele. Haplotype analyses and sequence determination revealed a 11.2 kb deletion spanning from intron 4 to 3'-region of PMP22, which was likely generated by nonhomologous end joining. Severely affected patients carrying a PMP22 deletion must be analyzed for the mutations of the other copy of PMP22. PMID:20739940

  5. Mosaic 7q31 deletion involving FOXP2 gene associated with language impairment.

    PubMed

    Palka, Chiara; Alfonsi, Melissa; Mohn, Angelika; Cerbo, Renato; Guanciali Franchi, Paolo; Fantasia, Donatella; Morizio, Elisena; Stuppia, Liborio; Calabrese, Giuseppe; Zori, Roberto; Chiarelli, Francesco; Palka, Giandomenico

    2012-01-01

    We report on a 10-year-old patient with childhood apraxia of speech (CAS) and mild dysmorphic features. Although multiple karyotypes were reported as normal, a bacterial artificial chromosome array comparative genomic hybridization revealed the presence of a de novo 14.8-Mb mosaic deletion of chromosome 7q31. The deleted region involved several genes, including FOXP2, which has been associated with CAS. Interestingly, the deletion reported here was observed in about 50% of cells, which is the first case of mosaicism in a 7q31 deletion. Despite the presence of the deletion in only 50% of cells, the phenotype of the patient was not milder than other published cases. To date, 6 cases with a deletion of 9.1-20 Mb involving the FOXP2 gene have been reported, suggesting a new contiguous gene deletion syndrome characterized mainly by CAS caused by haploinsufficiency of the genes encompassed in the 7q critical region. This report suggests that children found with a deletion involving the FOXP2 region should be evaluated for CAS and that analysis of the FOXP2 gene including array comparative genomic hybridization should be considered in selected patients with CAS. Mosaic deletions in this area may also be considered as causative of CAS.

  6. Syndrome of proximal interstitial deletion 4p15

    SciTech Connect

    Fryns, J.P.

    1995-09-11

    In this journal, Chitayat et al. reported on 2 boys and a girl with interstitial deletion in the short arm of chromosome 4, including p15.2p15.33. All 3 patients had a characteristic face distinct from that of Wolf-Hirschhorn syndrome and multiple minor congenital anomalies. One patient had a congenitally enlarged penis. The authors noted that all had normal growth, and all had moderate psychomotor retardation (patient 1, developmental age of 4-6 years at age 9 years; patient 2, mental age 6 years at age 25 years; and patient 3, global delay with hypotonia, difficulties in both gross and fine motor development, and persistent delay in language skills). 5 refs., 1 fig.

  7. Early neuroimaging markers of FOXP2 intragenic deletion

    PubMed Central

    Liégeois, Frédérique J.; Hildebrand, Michael S.; Bonthrone, Alexandra; Turner, Samantha J.; Scheffer, Ingrid E.; Bahlo, Melanie; Connelly, Alan; Morgan, Angela T.

    2016-01-01

    FOXP2 is the major gene associated with severe, persistent, developmental speech and language disorders. While studies in the original family in which a FOXP2 mutation was found showed volume reduction and reduced activation in core language and speech networks, there have been no imaging studies of different FOXP2 mutations. We conducted a multimodal MRI study in an eight-year-old boy (A-II) with a de novo FOXP2 intragenic deletion. A-II showed marked bilateral volume reductions in the hippocampus, thalamus, globus pallidus, and caudate nucleus compared with 26 control males (effect sizes from −1 to −3). He showed no detectable functional MRI activity when repeating nonsense words. The hippocampus is implicated for the first time in FOXP2 diseases. We conclude that FOXP2 anomaly is either directly or indirectly associated with atypical development of widespread subcortical networks early in life. PMID:27734906

  8. Independent origin and restricted distribution of RPGR deletions causing XLPRA.

    PubMed

    Zangerl, Barbara; Johnson, Jennifer L; Acland, Gregory M; Aguirre, Gustavo D

    2007-01-01

    Canine X-linked progressive retinal atrophy (XLPRA) is an inherited blinding disorder caused by mutations in the ORF15 of the RPGR gene and homolog to human retinitis pigmentosa 3 (RP3). The disease is observed in 2 variations, XLPRA1 in Siberian husky and samoyed and XLPRA2 derived from mongrel dogs. A third, neutral, deletion has been described in red wolves. Haplotype analysis of the 633-kbp RP3 interval in 6 different canidae confirmed the same decent for the XLPRA1 mutation in both affected breeds but suggests a recent and independent origin for both forms of XLPRA. The RP3 interval was excluded from causative associations with blindness in the red wolf and akita, a breed closely related to Nordic sled dogs. Overall, these data suggest a limited distribution of the affected haplotypes and indicate that mutations in the ORF15 are likely to be limited to the described dog breeds.

  9. Analysis of deletion within the reindeer pseudocowpoxvirus genome.

    PubMed

    Hautaniemi, Maria; Vaccari, Francesca; Scagliarini, Alessandra; Scacliarini, Alessandra; Laaksonen, Sauli; Huovilainen, Anita; McInnes, Colin J

    2011-09-01

    Cases of contagious pustular stomatitis have been reported in Finnish reindeer for many years. Two species of the genus Parapoxvirus of the family Poxviridae have been identified as the causative agent of the disease; orf virus (ORFV) was found during the 1992-1993 epidemic and pseudocowpoxvirus (PCPV) was connected to the 1999-2000 epidemic. The genome of reindeer parapoxvirus from the latter outbreak, isolate F00.120R, was recently sequenced and confirmed as PCPV. The six gene deletion of the right terminus of the F00.120R genome, in comparison to ORFV, was investigated in an attempt to use it in differentiating viruses causing pustular stomatitis in reindeer. The present study describes discovery and analysis of genes 116-121 in reindeer PCPV and in an Italian field isolate of bovine PCPV. The results show that a 5431 bp sequence containing genes 116-121 was likely to have been deleted from the F00.120R genome between the 6th and 7th passage in cell culture, and that these genes are present in other isolates of reindeer and bovine PCPV isolated in Finland during the years 2005-2010. The data presented here extends our knowledge of the PCPV genome, confirming that it contains homologues of all known ORFV genes and further reinforces their close genetic relationship. The similarity between the EEV envelope and GM-CSF inhibitory factor genes from reindeer PCPV and ORFV isolates, Finnish sheep ORFV and cattle PCPV isolates indicate that these viruses have been circulating among Finnish reindeer, cattle and sheep over a long period of time.

  10. Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection

    PubMed Central

    2014-01-01

    Background Genome-wide sensitivity screens in yeast have been immensely popular following the construction of a collection of deletion mutants of non-essential genes. However, the auxotrophic markers in this collection preclude experiments on minimal growth medium, one of the most informative metabolic environments. Here we present quantitative growth analysis for mutants in all 4,772 non-essential genes from our prototrophic deletion collection across a large set of metabolic conditions. Results The complete collection was grown in environments consisting of one of four possible carbon sources paired with one of seven nitrogen sources, for a total of 28 different well-defined metabolic environments. The relative contributions to mutants' fitness of each carbon and nitrogen source were determined using multivariate statistical methods. The mutant profiling recovered known and novel genes specific to the processing of nutrients and accurately predicted functional relationships, especially for metabolic functions. A benchmark of genome-scale metabolic network modeling is also given to demonstrate the level of agreement between current in silico predictions and hitherto unavailable experimental data. Conclusions These data address a fundamental deficiency in our understanding of the model eukaryote Saccharomyces cerevisiae and its response to the most basic of environments. While choice of carbon source has the greatest impact on cell growth, specific effects due to nitrogen source and interactions between the nutrients are frequent. We demonstrate utility in characterizing genes of unknown function and illustrate how these data can be integrated with other whole-genome screens to interpret similarities between seemingly diverse perturbation types. PMID:24721214

  11. Deletion of 7q33-q35 in a Patient with Intellectual Disability and Dysmorphic Features: Further Characterization of 7q Interstitial Deletion Syndrome.

    PubMed

    Dilzell, Kristen; Darcy, Diana; Sum, John; Wallerstein, Robert

    2015-01-01

    This case report concerns a 16-year-old girl with a 9.92 Mb, heterozygous interstitial chromosome deletion at 7q33-q35, identified using array comparative genomic hybridization. The patient has dysmorphic facial features, intellectual disability, recurrent infections, self-injurious behavior, obesity, and recent onset of hemihypertrophy. This patient has overlapping features with previously reported individuals who have similar deletions spanning the 7q32-q36 region. It has been difficult to describe an interstitial 7q deletion syndrome due to variations in the sizes and regions in the few patients reported in the literature. This case contributes to the further characterization of an interstitial distal 7q deletion syndrome. PMID:26064708

  12. 22.5 MB DELETION OF 13q31.1-q34 ASSOCIATED WITH HPE, DWM, AND HSCR: A CASE REPORT AND REDEFINING THE SMALLEST DELETED REGIONS.

    PubMed

    Alp, M Y; Çebi, A H; Seyhan, S; Cansu, A; Aydin, H; Ikbal, M

    2016-01-01

    Partial deletion of the long arm of the chromosome 13, 13q deletion syndrome is a rare chromosomal disorder characterized by severe growth and mental retardation, microcephaly, facial dysmorphism, brain malformations (holoprosencephaly, Dandy-Walker malformation), distal limb defects, eye anomalies, genitourinary and gastrointestinal tract malformations (Hirschsprung's disease). Approximately 1.2 Mb region in 13q32 was suggested as minimal critical region which is responsible for severe mental and growth retardation and brain anomalies. Here we described a male patient with de novo interstitial deletion of 13q31.1-q34 associated with short stature, microcephaly, facial dysmorphism, clinodactyly, cryptorchidism, micropenis, epilepsy, HPE, DWM, and HSCR. According to the literature review, present case indicated that smallest deleted region associated with DWM and HPE might be located at the 13q32.3, limb defects 13q34, anogenital malformations 13q33.3-34, and HSCR 13q31.1-32.1. PMID:27192891

  13. Deletion of open reading frame UL26 from the human cytomegalovirus genome results in reduced viral growth, which involves impaired stability of viral particles.

    PubMed

    Lorz, Kerstin; Hofmann, Heike; Berndt, Anja; Tavalai, Nina; Mueller, Regina; Schlötzer-Schrehardt, Ursula; Stamminger, Thomas

    2006-06-01

    We previously showed that open reading frame (ORF) UL26 of human cytomegalovirus, a member of the US22 multigene family of betaherpesviruses, encodes a novel tegument protein, which is imported into cells in the course of viral infection. Moreover, we demonstrated that pUL26 contains a strong transcriptional activation domain and is capable of stimulating the major immediate-early (IE) enhancer-promoter. Since this suggested an important function of pUL26 during the initiation of the viral replicative cycle, we sought to ascertain the relevance of pUL26 by construction of a viral deletion mutant lacking the UL26 ORF using the bacterial artificial chromosome mutagenesis procedure. The resulting deletion virus was verified by PCR, enzyme restriction, and Southern blot analyses. After infection of human foreskin fibroblasts, the UL26 deletion mutant showed a small-plaque phenotype and replicated to significantly lower titers than wild-type or revertant virus. In particular, we noticed a striking decrease of infectious titers 7 days postinfection in a multistep growth experiment, whereas the release of viral DNA from infected cells was not impaired. A further investigation of this aspect revealed a significantly diminished stability of viral particles derived from the UL26 deletion mutant. Consistent with this, we observed that the tegument composition of the deletion mutant deviates from that of the wild-type virus. We therefore hypothesize that pUL26 plays a role not only in the onset of IE gene transcription but also in the assembly of the viral tegument layer in a stable and correct manner. PMID:16699023

  14. Deletion of protein tyrosine phosphatase 1b in proopiomelanocortin neurons reduces neurogenic control of blood pressure and protects mice from leptin- and sympatho-mediated hypertension.

    PubMed

    Bruder-Nascimento, Thiago; Butler, Benjamin R; Herren, David J; Brands, Michael W; Bence, Kendra K; Belin de Chantemèle, Eric J

    2015-12-01

    Protein tyrosine phosphatase 1b (Ptp1b), which represses leptin signaling, is a promising therapeutic target for obesity. Genome wide deletion of Ptp1b, increases leptin sensitivity, protects mice from obesity and diabetes, but alters cardiovascular function by increasing blood pressure (BP). Leptin-control of metabolism is centrally mediated and involves proopiomelanocortin (POMC) neurons. Whether these neurons contribute to leptin-mediated increases in BP remain unclear. We hypothesized that increasing leptin signaling in POMC neurons with Ptp1b deletion will sensitize the cardiovascular system to leptin and enhance neurogenic control of BP. We analyzed the cardiovascular phenotype of Ptp1b+/+ and POMC-Ptp1b-/- mice, at baseline and after 7 days of leptin infusion or sympatho-activation with phenylephrine. POMCPtp1b deletion did not alter baseline cardiovascular hemodynamics (BP, heart rate) but reduced BP response to ganglionic blockade and plasma catecholamine levels that suggests a decreased neurogenic control of BP. In contrast, POMC-Ptp1b deletion increased vascular adrenergic reactivity and aortic α-adrenergic receptors expression. Chronic leptin treatment reduced vascular adrenergic reactivity and blunted diastolic and mean BP increases in POMC-Ptp1b-/- mice only. Similarly POMC-Ptp1b-/- mice exhibited a blunted increased in diastolic and mean BP accompanied by a gradual reduction in adrenergic reactivity in response to chronic vascular sympatho-activation with phenylephrine. Together these data rule out our hypothesis but suggest that deletion of Ptp1b in POMC neurons protects from leptin- and sympatho-mediated increases in BP. Vascular adrenergic desensitization appears as a protective mechanism against hypertension, and POMC-Ptp1b as a key therapeutic target for the treatment of metabolic and cardiovascular dysfunctions associated with obesity.

  15. Third case of 8q23.3-q24.13 deletion in a patient with Langer-Giedion syndrome phenotype without TRPS1 gene deletion.

    PubMed

    Pereza, Nina; Severinski, Srećko; Ostojić, Saša; Volk, Marija; Maver, Aleš; Dekanić, Kristina Baraba; Kapović, Miljenko; Peterlin, Borut

    2012-03-01

    Langer-Giedion syndrome (LGS) is a contiguous gene syndrome caused by a hemizygous deletion on chromosome 8q23.3-q24.11 involving TRPS1 and EXT1 genes. We report on a girl with LGS phenotype and a 7.5 Mb interstitial deletion at chromosome 8q23.3-q24.13. Array-comparative genomic hybridization (a-CGH) revealed a deletion encompassing only the EXT1 and not the TRPS1 gene. Even though the deletion of TRPS1 and EXT1 genes is responsible for craniofacial and skeletal features of LGS, there have been previous reports of patients with LGS phenotype and 8q24 deletions leaving the TRPS1 gene intact. To our knowledge, this is the third such case. Our patient differs from previously reported LGS patients without TRPS1 gene deletion in that she has the typical LGS facial dysmorphism and skeletal abnormalities. However, the girl is of normal height and has only a mild developmental delay. Additionally, she has dyslalia and premature adrenarche classified as Tanner stage 3 premature pubarche which have not yet been described as features of LGS. We examine the molecular breakpoints and phenotypes of our patient and previously reported cases.

  16. Human polymerase kappa uses a template-slippage deletion mechanism, but can realign the slipped strands to favour base substitution mutations over deletions.

    PubMed

    Mukherjee, Purba; Lahiri, Indrajit; Pata, Janice D

    2013-05-01

    Polymerases belonging to the DinB class of the Y-family translesion synthesis DNA polymerases have a preference for accurately and efficiently bypassing damaged guanosines. These DinB polymerases also generate single-base (-1) deletions at high frequencies with most occurring on repetitive 'deletion hotspot' sequences. Human DNA polymerase kappa (hPolκ), the eukaryotic DinB homologue, displays an unusual efficiency for to extend from mispaired primer termini, either by extending directly from the mispair or by primer-template misalignment. This latter property explains how hPolκ creates single-base deletions in non-repetitive sequences, but does not address how deletions occur in repetitive deletion hotspots. Here, we show that hPolκ uses a classical Streisinger template-slippage mechanism to generate -1 deletions in repetitive sequences, as do the bacterial and archaeal homologues. After the first nucleotide is added by template slippage, however, hPolκ can efficiently realign the primer-template duplex before continuing DNA synthesis. Strand realignment results in a base-substitution mutation, minimizing generation of more deleterious frameshift mutations. On non-repetitive sequences, we find that nucleotide misincorporation is slower if the incoming nucleotide can correctly basepair with the nucleotide immediately 5' to the templating base, thereby competing against the mispairing with the templating base. PMID:23558743

  17. Investigation of TBX1 gene deletion in Iranian children with 22q11.2 deletion syndrome: correlation with conotruncal heart defects

    PubMed Central

    Ganji, Hamid; Salehi, Mansoor; Sedghi, Maryam; Abdali, Hossein; Nouri, Nayereh; Sadri, Leyli; Hosseinzadeh, Majid; Vakili, Bahareh; Lotfi, Mahdi

    2013-01-01

    Background DiGeorge syndrome (DGS) is the result of a microdeletion in chromosome 22q11.2 in over 90% of cases. DGS is the second most frequent syndrome after Down syndrome and has an incidence of 1/4000 births. Unequal crossover between low-copy repeats, on the proximal part of the long arm of chromosome 22, usually results in a 3 Mb deletion in one of the chromosome 22 and a reciprocal and similarly sized duplication on the other one. Several studies have indicated that TBX1 (T-box 1) haploinsufficiency is responsible for many of the phenotypic traits of 22q11.2 deletion syndrome. Conotruncal heart defects (CTDs) are present in 75–85% of patients with 22q11.2 deletion syndrome in Western countries. Methods Among 78 patients fulfilling the criteria for DGS diagnosed by the fluorescence in situ hybridisation test, 24 had 22q11.2 deletion. Screening for TBX1 gene deletion was performed by multiplex ligation-dependent probe amplification (MLPA). Results Our results revealed that of 24 patients with TBX1 gene deletion, 12 had CTDs while 12 did not show any heart defects. Conclusions Our findings indicate that other genes or gene interactions may play a role in penetrance or the severity of heart disease among patients with DGS. PMID:27326128

  18. Potential Novel Mechanism for Axenfeld-Rieger Syndrome: Deletion of a Distant Region Containing Regulatory Elements of PITX2

    PubMed Central

    Volkmann, Bethany A.; Zinkevich, Natalya S.; Mustonen, Aki; Schilter, Kala F.; Bosenko, Dmitry V.; Reis, Linda M.; Broeckel, Ulrich; Link, Brian A.

    2011-01-01

    Purpose. Mutations in PITX2 are associated with Axenfeld-Rieger syndrome (ARS), which involves ocular, dental, and umbilical abnormalities. Identification of cis-regulatory elements of PITX2 is important to better understand the mechanisms of disease. Methods. Conserved noncoding elements surrounding PITX2/pitx2 were identified and examined through transgenic analysis in zebrafish; expression pattern was studied by in situ hybridization. Patient samples were screened for deletion/duplication of the PITX2 upstream region using arrays and probes. Results. Zebrafish pitx2 demonstrates conserved expression during ocular and craniofacial development. Thirteen conserved noncoding sequences positioned within a gene desert as far as 1.1 Mb upstream of the human PITX2 gene were identified; 11 have enhancer activities consistent with pitx2 expression. Ten elements mediated expression in the developing brain, four regions were active during eye formation, and two sequences were associated with craniofacial expression. One region, CE4, located approximately 111 kb upstream of PITX2, directed a complex pattern including expression in the developing eye and craniofacial region, the classic sites affected in ARS. Screening of ARS patients identified an approximately 7600-kb deletion that began 106 to 108 kb upstream of the PITX2 gene, leaving PITX2 intact while removing regulatory elements CE4 to CE13. Conclusions. These data suggest the presence of a complex distant regulatory matrix within the gene desert located upstream of PITX2 with an essential role in its activity and provides a possible mechanism for the previous reports of ARS in patients with balanced translocations involving the 4q25 region upstream of PITX2 and the current patient with an upstream deletion. PMID:20881290

  19. Gene expression profiling of a nisin-sensitive Listeria monocytogenes Scott A ctsR deletion mutant.

    PubMed

    Liu, Yanhong; Morgan, Shannon; Ream, Amy; Huang, Lihan

    2013-05-01

    Listeria monocytogenes is a food-borne pathogen of significant threat to public health. Nisin is the only bacteriocin that can be used as a food preservative. Due to its antimicrobial activity, it can be used to control L. monocytogenes in food; however, the antimicrobial mechanism of nisin activity against L. monocytogenes is not fully understood. The CtsR (class III stress gene repressor) protein negatively regulates the expression of class III heat shock genes. A spontaneous pressure-tolerant ctsR deletion mutant that showed increased sensitivity to nisin has been identified. Microarray technology was used to monitor the gene expression profiles of the ctsR mutant under treatments with nisin. Compared to the nisin-treated wild type, 113 genes were up-regulated (>2-fold increase) in the ctsR deletion mutant whereas four genes were down-regulated (<-2-fold decrease). The up-regulated genes included genes that encode for ribosomal proteins, membrane proteins, cold-shock domain proteins, translation initiation and elongation factors, cell division, an ATP-dependent ClpC protease, a putative accessory gene regulator protein D, transport and binding proteins, a beta-glucoside-specific phosphotransferase system IIABC component, as well as hypothetical proteins. The down-regulated genes consisted of genes that encode for virulence, a transcriptional regulator, a stress protein, and a hypothetical protein. The gene expression changes determined by microarray assays were confirmed by quantitative real-time PCR analyses. Moreover, an in-frame deletion mutant for one of the induced genes (LMOf2365_1877) was constructed in the wild-type L. monocytogenes F2365 background. ΔLMOf2365_1877 had increased nisin sensitivity compared to the wild-type strain. This study enhances our understanding of how nisin interacts with the ctsR gene product in L. monocytogenes and may contribute to the understanding of the antibacterial mechanisms of nisin. PMID:23494707

  20. Currarino Syndrome and HPE Microform Associated with a 2.7-Mb Deletion in 7q36.3 Excluding SHH Gene.

    PubMed

    Coutton, C; Poreau, B; Devillard, F; Durand, C; Odent, S; Rozel, C; Vieville, G; Amblard, F; Jouk, P-S; Satre, V

    2014-01-01

    Holoprosencephaly (HPE) is the most common forebrain defect in humans. It results from incomplete midline cleavage of the prosencephalon and can be caused by environmental and genetic factors. HPE is usually described as a continuum of brain malformations from the most severe alobar HPE to the middle interhemispheric fusion variant or syntelencephaly. A microform of HPE is limited to craniofacial features such as congenital nasal pyriform aperture stenosis and single central maxillary incisor, without brain malformation. Among the heterogeneous causes of HPE, point mutations and deletions in the SHH gene at 7q36 have been identified as well as extremely rare chromosomal rearrangements in the long-range enhancers of this gene. Here, we report a boy with an HPE microform associated with a Currarino syndrome. Array CGH detected a de novo 2.7-Mb deletion in the 7q36.3 region including the MNX1 gene, usually responsible for the Currarino triad but excluding SHH, which is just outside the deletion. This new case provides further evidence of the importance of the SHH long-range enhancers in the HPE spectrum. PMID:24550762

  1. Currarino Syndrome and HPE Microform Associated with a 2.7-Mb Deletion in 7q36.3 Excluding SHH Gene

    PubMed Central

    Coutton, C.; Poreau, B.; Devillard, F.; Durand, C.; Odent, S.; Rozel, C.; Vieville, G.; Amblard, F.; Jouk, P.-S.; Satre, V.

    2014-01-01

    Holoprosencephaly (HPE) is the most common forebrain defect in humans. It results from incomplete midline cleavage of the prosencephalon and can be caused by environmental and genetic factors. HPE is usually described as a continuum of brain malformations from the most severe alobar HPE to the middle interhemispheric fusion variant or syntelencephaly. A microform of HPE is limited to craniofacial features such as congenital nasal pyriform aperture stenosis and single central maxillary incisor, without brain malformation. Among the heterogeneous causes of HPE, point mutations and deletions in the SHH gene at 7q36 have been identified as well as extremely rare chromosomal rearrangements in the long-range enhancers of this gene. Here, we report a boy with an HPE microform associated with a Currarino syndrome. Array CGH detected a de novo 2.7-Mb deletion in the 7q36.3 region including the MNX1 gene, usually responsible for the Currarino triad but excluding SHH, which is just outside the deletion. This new case provides further evidence of the importance of the SHH long-range enhancers in the HPE spectrum. PMID:24550762

  2. 14 CFR 1206.202 - Deletion of segregable portions of a record.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Deletion of segregable portions of a record. 1206.202 Section 1206.202 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION AVAILABILITY OF AGENCY RECORDS TO MEMBERS OF THE PUBLIC Records Available § 1206.202 Deletion of...

  3. 14 CFR 1206.202 - Deletion of segregable portions of a record.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Deletion of segregable portions of a record. 1206.202 Section 1206.202 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION AVAILABILITY OF AGENCY RECORDS TO MEMBERS OF THE PUBLIC Records Available § 1206.202 Deletion of...

  4. Increased mitochondrial DNA deletions in substantia nigra dopamine neurons of the aged rat.

    PubMed

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2014-01-01

    The dopaminergic neurons of the substantia nigra (SN), which constitute the origin of the nigrostriatal system, are vulnerable to age-related degenerative processes. For example, in humans there is a relatively small age-related loss of neurons but a marked decline of the dopaminergic phenotype associated with impaired voluntary motor control. However, the mechanisms responsible for the dysfunction and degeneration of SN dopamine neurons remain poorly understood. One potential contributor is mitochondrial dysfunction, resulting from an increased abundance of mitochondrial DNA (mtDNA) mutations such as deletions. Human studies have identified relatively high levels of mtDNA deletions in these cells in both aging and Parkinson's disease (>35%), with a higher abundance of deletions (>60%) in individual neurons with mitochondrial dysfunction. However, it is unknown whether similar mtDNA mutations occur in other species such as the rat. In the present study, we quantified mtDNA deletion abundance in laser microdissected SN dopaminergic neurons from young and old F344 rats. Our results indicate that mtDNA deletions accumulated with age, with approximately 20% more mtDNA deletions in SN dopaminergic neurons from old compared to young animals. Thus, while rat SN dopaminergic neurons do accumulate mtDNA deletions with aging, this does not reflect the deletion burden in humans, and other mechanisms may be operating to compensate for age-related mtDNA damage in the rat SN dopaminergic neurons. PMID:25612740

  5. Validation of a Word Deletion Procedure as a Measure of Reading Comprehension.

    ERIC Educational Resources Information Center

    Deck, Dennis Dorian

    Word-deletion items to be used as measures of comprehension were constructed by deleting a content word from an ambiguous target sentence constrained by an accompanying context sentence. One hundred twenty, third-grade students and 120 sixth-grade students each completed all of the items as one of three degrees of contextual constraint. Analysis…

  6. Interstitial 3p deletion in a child due to paternal paracentric inserted inversion.

    PubMed

    Wyandt, H E; Kasprzak, R; Ennis, J; Willson, K; Koch, V; Schnatterly, P; Wilson, W; Kelly, T E

    1980-09-01

    An infant with multiple anomalies and developmental delay during his first year was found to have an intersitital deletion of band p14 from the proximal short arm of chromosome 3. Examination of the father's chromosomes indicates an "inserted paracentric inversion" in chromosome 3 as the probable origin of the deletion in the child.

  7. Interstitial 3p deletion in a child due to paternal paracentric inserted inversion.

    PubMed Central

    Wyandt, H E; Kasprzak, R; Ennis, J; Willson, K; Koch, V; Schnatterly, P; Wilson, W; Kelly, T E

    1980-01-01

    An infant with multiple anomalies and developmental delay during his first year was found to have an intersitital deletion of band p14 from the proximal short arm of chromosome 3. Examination of the father's chromosomes indicates an "inserted paracentric inversion" in chromosome 3 as the probable origin of the deletion in the child. Images Fig. 1 Fig. 2 Fig. 3 PMID:7424912

  8. Cardiac Defects and Results of Cardiac Surgery in 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Carotti, Adriano; Digilio, Maria Cristina; Piacentini, Gerardo; Saffirio, Claudia; Di Donato, Roberto M.; Marino, Bruno

    2008-01-01

    Specific types and subtypes of cardiac defects have been described in children with 22q11.2 deletion syndrome as well as in other genetic syndromes. The conotruncal heart defects occurring in patients with 22q11.2 deletion syndrome include tetralogy of Fallot, pulmonary atresia with ventricular septal defect, truncus arteriosus, interrupted aortic…

  9. I'm Deleting as Fast as I Can: Negotiating Learning Practices in Cyberspace

    ERIC Educational Resources Information Center

    Thompson, Terrie Lynn

    2012-01-01

    Learning in and through work is one of the many spaces in which pedagogy may unfold. Web technologies amplify this fluidity and online learning now encompasses a plethora of practices. In this paper I focus on the delete button and deleting practices of self-employed workers engaged in informal work-related learning in online communities. How the…

  10. Reduction in Syllable Onsets in the Acquisition of Polish: Deletion, Coalescence, Metathesis and Gemination

    ERIC Educational Resources Information Center

    Lukaszewicz, Beata

    2007-01-01

    This paper focuses on four strategies of onset reduction employed by a single child (4;0-4;4) acquiring Polish: deletion, coalescence, metathesis, and gemination. Deletion and coalescence occur in word-initial onsets while metathesis and gemination are restricted to word-medial position. The data, which constitute an intriguing "conspiracy" case…

  11. A Segmental Deletion Series Generated by Sister-Chromatid Transposition of Ac Transposable Elements in Maize

    PubMed Central

    Zhang, Jianbo; Peterson, Thomas

    2005-01-01

    Certain configurations of maize Ac/Ds transposon termini can undergo alternative transposition reactions leading to chromosome breakage and various types of stable chromosome rearrangements. Here, we show that a particular allele of the maize p1 gene containing an intact Ac element and a nearby terminally deleted Ac element (fAc) can undergo sister-chromatid transposition (SCT) reactions that generate large flanking deletions. Among 35 deletions characterized, all begin at the Ac termini in the p1 gene and extend to various flanking sites proximal to p1. The deletions range in size from the smallest of 12,567 bp to the largest of >4.6 cM; >80% of the deletions removed the p2 gene, a paralog of p1 located ∼60 kb from p1 in the p1-vv allele and its derivatives. Sequencing of representative cases shows that the deletions have precise junctions between the transposon termini and the flanking genomic sequences. These results show that SCT events can efficiently generate interstitial deletions that are useful for in vivo dissection of local genome regions and for the rapid correlation of genetic and physical maps. Finally, we discuss evidence suggesting that deletions induced by alternative transposition reactions can occur at other genomic loci, indicating that this mechanism may have had a significant impact on genome evolution. PMID:15965263

  12. Rapid deletion plasmid construction methods for protoplast and Agrobacterium based fungal transformation systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing availability of genomic data and sophistication of analytical methodology in fungi has elevated the need for functional genomics tools in these organisms. Gene deletion is a critical tool for functional analysis. The targeted deletion of genes requires both a suitable method for the trans...

  13. Getting a Foot in the Electronic Door: The Process of Reading or Deleting Electronic Mail.

    ERIC Educational Resources Information Center

    Tuten, Tracy L.

    1998-01-01

    Investigates the process by which individuals at German universities make decisions about opening and reading versus deleting electronic mail. Assesses attitudes toward electronic mail surveys. Indicates that individuals delete mail when the subject line does not interest them or when they do not recognize the name of the sender. Finds favorable…

  14. 41 CFR 51-6.8 - Deletion of items from the Procurement List.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the Procurement List. 51-6.8 Section 51-6.8 Public Contracts and Property Management Other Provisions...-PROCUREMENT PROCEDURES § 51-6.8 Deletion of items from the Procurement List. (a) When a central nonprofit agency decides to request that the Committee delete a commodity or service from the Procurement List,...

  15. L1CAM whole gene deletion in a child with L1 syndrome.

    PubMed

    Chidsey, Brandalyn A; Baldwin, Erin E; Toydemir, Reha; Ahles, Lauren; Hanson, Heather; Stevenson, David A

    2014-06-01

    L1 syndrome is a group of overlapping, X-linked disorders caused by mutations in L1CAM. Clinical phenotypes within L1 syndrome include X-linked hydrocephalus with stenosis of the aqueduct of sylvius (HSAS); mental retardation, adducted thumbs, shuffling gait, and aphasia (MASA) syndrome; spastic paraplegia type 1; and agenesis of the corpus callosum. Over 200 mutations in L1CAM have been reported; however, only a few large gene deletions have been observed. We report on a 4-month-old male with a de novo whole gene deletion of L1CAM presenting with congenital hydrocephalus, aqueductal stenosis, and adducted thumbs. Initial failure of L1CAM gene sequencing suggested the possibility of a whole gene deletion of L1CAM. Further investigation through chromosome microarray analysis showed a 62Kb deletion encompassing the first exon of the PDZD4 gene and the entire L1CAM gene. Investigations into genotype-phenotype correlations have suggested that mutations leading to truncated or absent L1 protein cause more severe forms of L1 syndrome. Based on the presentation of the proband and other reported patients with whole gene deletions, we provide further evidence that L1CAM whole gene deletions result in L1 syndrome with a severe phenotype, deletions of PDZD4 do not cause additional manifestations, and that X-linked nephrogenic diabetes insipidus reported in a subset of patients with large L1CAM deletions results from the loss of AVPR2. PMID:24668863

  16. 41 CFR 51-6.8 - Deletion of items from the Procurement List.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 1 2012-07-01 2009-07-01 true Deletion of items from the Procurement List. 51-6.8 Section 51-6.8 Public Contracts and Property Management Other Provisions Relating to Public Contracts COMMITTEE FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED 6-PROCUREMENT PROCEDURES § 51-6.8 Deletion of...

  17. A case of 9p deletion syndrome with Duane retraction syndrome

    PubMed Central

    Sinha, Rahul; Dalal, Shamsher; Raju, Uma; John, Biju M.; Negi, Vandana

    2012-01-01

    The chromosome 9p deletion syndrome is a rare but specific clinical event. The clinical manifestations include dysmorphic facial features (trigonocephaly, midface hypoplasia, upward slanting palpebral fissures, and a long philtrum) and psychomotor retardation. Here we report a child with chromosome 9p deletion with Duane retraction syndrome, which has never been reported in the literature before.

  18. 32 CFR 310.34 - Amendment and deletion of system notices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Amendment and deletion of system notices. 310.34 Section 310.34 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM DOD PRIVACY PROGRAM Publication Requirements § 310.34 Amendment and deletion of system notices. (a) Criteria for...

  19. 47 CFR 76.1601 - Deletion or repositioning of broadcast signals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Deletion or repositioning of broadcast signals. 76.1601 Section 76.1601 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1601 Deletion...

  20. 47 CFR 76.1601 - Deletion or repositioning of broadcast signals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Deletion or repositioning of broadcast signals. 76.1601 Section 76.1601 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1601 Deletion...

  1. 47 CFR 76.1601 - Deletion or repositioning of broadcast signals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Deletion or repositioning of broadcast signals. 76.1601 Section 76.1601 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1601 Deletion...

  2. 47 CFR 76.1601 - Deletion or repositioning of broadcast signals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Deletion or repositioning of broadcast signals. 76.1601 Section 76.1601 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1601 Deletion...

  3. 47 CFR 76.1601 - Deletion or repositioning of broadcast signals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Deletion or repositioning of broadcast signals. 76.1601 Section 76.1601 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1601 Deletion...

  4. 36 CFR 902.14 - Deletion of nondiscloseable information from requested records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Deletion of nondiscloseable information from requested records. 902.14 Section 902.14 Parks, Forests, and Public Property PENNSYLVANIA..., distribution, or copying. Appeal of deletions shall be made in accordance with subpart H of this part....

  5. 48 CFR 1845.7101-4 - Types of deletions from contractor property records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Types of deletions from contractor property records. 1845.7101-4 Section 1845.7101-4 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONTRACT MANAGEMENT GOVERNMENT PROPERTY Forms Preparation 1845.7101-4 Types of deletions from...

  6. 48 CFR 1845.7101-4 - Types of deletions from contractor property records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Types of deletions from contractor property records. 1845.7101-4 Section 1845.7101-4 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONTRACT MANAGEMENT GOVERNMENT PROPERTY Forms Preparation 1845.7101-4 Types of deletions from...

  7. 77 FR 26279 - Scheduled Change and Deletion of Agenda Item From April 27, 2012, Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... COMMISSION Scheduled Change and Deletion of Agenda Item From April 27, 2012, Open Meeting Date: April 25, 2012. The following item has been deleted from the list of Agenda items scheduled for consideration at the Friday, April 27, 2012, Open Meeting and previously listed in the Commission's Notice of April...

  8. DPY19L2 Deletion as a Major Cause of Globozoospermia

    PubMed Central

    Koscinski, Isabelle; ElInati, Elias; Fossard, Camille; Redin, Claire; Muller, Jean; Velez de la Calle, Juan; Schmitt, Françoise; Ben Khelifa, Mariem; Ray, Pierre; Kilani, Zaid; Barratt, Christopher L.R.; Viville, Stéphane

    2011-01-01

    Globozoospermia, characterized by round-headed spermatozoa, is a rare (< 0.1% in male infertile patients) and severe teratozoospermia consisting primarily of spermatozoa lacking an acrosome. Studying a Jordanian consanguineous family in which five brothers were diagnosed with complete globozoospermia, we showed that the four out of five analyzed infertile brothers carried a homozygous deletion of 200 kb on chromosome 12 encompassing only DPY19L2. Very similar deletions were found in three additional unrelated patients, suggesting that DPY19L2 deletion is a major cause of globozoospermia, given that 19% (4 of 21) of the analyzed patients had such deletion. The deletion is most probably due to a nonallelic homologous recombination (NAHR), because the gene is surrounded by two low copy repeats (LCRs). We found DPY19L2 deletion in patients from three different origins and two different breakpoints, strongly suggesting that the deletion results from recurrent events linked to the specific architectural feature of this locus rather than from a founder effect, without fully excluding a recent founder effect. DPY19L2 is associated with a complete form of globozoospermia, as is the case for the first two genes found to be associated with globozoospermia, SPATA16 or PICK1. However, in contrast to SPATA16, for which no pregnancy was reported, pregnancies were achieved, via intracytoplasmic sperm injection, for two patients with DPY19L2 deletion, who then fathered three children. PMID:21397063

  9. Structural Brain Abnormalities in Patients with Schizophrenia and 22q11 Deletion Syndrome

    PubMed Central

    Chow, Eva W.C.; Zipursky, Robert B.; Mikulis, David J.; Bassett, Anne S.

    2012-01-01

    Background 22q11 Deletion Syndrome is a genetic syndrome associated with an increased risk for developing schizophrenia. Brain abnormalities have been reported in 22q11 Deletion Syndrome, but little is known about whether differences in brain structure underlie the psychotic disorders associated with this syndrome. In the current study, we used magnetic resonance imaging to characterize the structural brain abnormalities found in adults who have both 22q11 Deletion Syndrome and schizophrenia. Methods Magnetic resonance imaging brain scans of 14 adults (7 male, 7 female) with 22q11 Deletion Syndrome and schizophrenia and 14 age- and gender-matched healthy volunteers were analyzed to derive measures of gray matter, white matter, and cerebrospinal fluid. Differences between the two groups were tested using student t tests. Results 22q11 Deletion Syndrome and schizophrenia subjects had significantly smaller total gray matter volume (t = 2.88, p < .01) and larger lateral ventricles (t = 4.08, p < .001) than healthy controls. Gray matter deficits were most prominent in the frontal and temporal lobes. Total white matter volumes did not differ between the two groups. Conclusions Findings from this 22q11 Deletion Syndrome and schizophrenia study are similar to those reported in other patients with schizophrenia, but only partially consistent with those reported in nonpsychotic children with 22q11 Deletion Syndrome. 22q11 Deletion Syndrome may provide a valuable genetic neurodevelop-mental model for investigating the relationship between abnormalities in brain development and the expression of schizophrenia. PMID:11839363

  10. A de novo interstitial deletion of chromosome 6 (q22.2q23.1).

    PubMed

    Park, J P; Graham, J M; Berg, S Z; Wurster-Hill, D H

    1988-02-01

    A unique interstitial deletion of the long arm of chromosome 6 involving bands q22.2 and q23.1 was observed in a patient referred for craniostenosis and developmental delay. The associated phenotypic anomalies are compared with other reported cases of deletion 6q involving adjacent regions.

  11. Novel approach to identifying the hepatitis B virus pre-S deletions associated with hepatocellular carcinoma

    PubMed Central

    Zhao, Zhi-Mei; Jin, Yan; Gan, Yu; Zhu, Yu; Chen, Tao-Yang; Wang, Jin-Bing; Sun, Yan; Cao, Zhi-Gang; Qian, Geng-Sun; Tu, Hong

    2014-01-01

    AIM: To develop a novel non-sequencing method for the detection of hepatitis B virus (HBV) pre-S deletion mutants in HBV carriers. METHODS: The entire region of HBV pre-S1 and pre-S2 was amplified by polymerase chain reaction (PCR). The size of PCR products was subsequently determined by capillary gel electrophoresis (CGE). CGE were carried out in a PACE-MDQ instrument equipped with a UV detector set at 254 nm. The samples were separated in 50 μm ID eCAP Neutral Coated Capillaries using a voltage of 6 kV for 30 min. Data acquisition and analysis were performed using the 32 Karat Software. A total of 114 DNA clones containing different sizes of the HBV pre-S gene were used to determine the accuracy of the CGE method. One hundred and fifty seven hepatocellular carcinoma (HCC) and 160 non-HCC patients were recruited into the study to assess the association between HBV pre-S deletion and HCC by using the newly-established CGE method. Nine HCC cases with HBV pre-S deletion at the diagnosis year were selected to conduct a longitudinal observation using serial serum samples collected 2-9 years prior to HCC diagnosis. RESULTS: CGE allowed the separation of PCR products differing in size > 3 bp and was able to identify 10% of the deleted DNA in a background of wild-type DNA. The accuracy rate of CGE-based analysis was 99.1% compared with the clone sequencing results. Using this assay, pre-S deletion was more frequently found in HCC patients than in non-HCC controls (47.1% vs 28.1%, P < 0.001). Interestingly, the increased risk of HCC was mainly contributed by the short deletion of pre-S. While the deletion ≤ 99 bp was associated with a 2.971-fold increased risk of HCC (95%CI: 1.723-5.122, P < 0.001), large deletion (> 99 bp) did not show any association with HCC (P = 0.918, OR = 0.966, 95%CI: 0.501-1.863). Of the 9 patients who carried pre-S deletions at the stage of HCC, 88.9% (8/9) had deletions 2-5 years prior to HCC, while only 44.4%4 (4/9) contained such deletions 6

  12. AZFc deletions do not affect the function of human spermatogonia in vitro

    PubMed Central

    Nickkholgh, B.; Korver, C.M.; van Daalen, S.K.M.; van Pelt, A.M.M.; Repping, S.

    2015-01-01

    Azoospermic factor c (AZFc) deletions are the underlying cause in 10% of azoo- or severe oligozoospermia. Through extensive molecular analysis the precise genetic content of the AZFc region and the origin of its deletion have been determined. However, little is known about the effect of AZFc deletions on the functionality of germ cells at various developmental steps. The presence of normal, fertilization-competent sperm in the ejaculate and/or testis of the majority of men with AZFc deletions suggests that the process of differentiation from spermatogonial stem cells (SSCs) to mature spermatozoa can take place in the absence of the AZFc region. To determine the functionality of AZFc-deleted spermatogonia, we compared in vitro propagated spermatogonia from six men with complete AZFc deletions with spermatogonia from three normozoospermic controls. We found that spermatogonia of AZFc-deleted men behave similar to controls during culture. Short-term (18 days) and long-term (48 days) culture of AZFc-deleted spermatogonia showed the same characteristics as non-deleted spermatogonia. This similarity was revealed by the same number of passages, the same germ cell clusters formation and similar level of genes expression of spermatogonial markers including ubiquitin carboxyl-terminal esterase L1 (UCHL1), zinc finger and BTB domain containing 16 (ZBTB16) and glial cell line-derived neurotrophic factor family receptor alpha 1 (GFRA1), as well as germ cell differentiation markers including signal transducer and activator of transcription 3 (STAT3), spermatogenesis and oogenesis specific basic helix-loophelix 2 (SOHLH2), v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) and synaptonemal complex protein 3 (SYCP3). The only exception was melanoma antigen family A4 (MAGEA4) which showed significantly lower expression in AZFc-deleted samples than controls in short-term culture while in long-term culture it was hardly detected in both AZFc-deleted and control

  13. Spectrum of Common α-Globin Deletion Mutations in the Southern Region of Vietnam.

    PubMed

    Bui Thi Kim, Ly; Phu Chi, Dung; Hoang Thanh, Chi

    2016-06-01

    The common deletion mutations of α-globin genes in the Vietnamese population is not well known. Here we report the presence of five deletional mutations of Southeast Asia in the southern region of Vietnam. The - -(SEA) (NG_000006.1: g.26264_45564del19301) mutation is the most common type of deletion (87.35%), followed by the -α(3.7) (rightward) (NG_000006.1: g.34164_37967del3804) deletion (9.64%), -α(4.2) (leftward) (AF221717) deletion (2.41%) and - -(THAI) (NG_000006.1: g.10664_44164del33501) (0.6%) mutation in this region. The - -(FIL) (NG_000006.1: g.11684_43534del31581) mutation was not detected in this study. This result provided a view of the distribution of common α-globin gene mutations in Vietnam and could serve as a baseline for further investigations into these genetic defects. PMID:27117571

  14. Short stature in a mother and daughter with terminal deletion of Xp22.3

    SciTech Connect

    Schwinger, E.; Kirschstein, M.; Konermann, T.

    1996-05-03

    Short stature in females is often caused by homozygosity for the terminal portion of Xp due to monosomy X or a deletion. We report on a mother and daughter with short stature as sole phenotypic abnormality and deletion of bands Xp22.32-p22.33 demonstrated by classic and molecular cytogenetic analysis. In both individuals, the deleted X chromosome was late replicating. Molecular analysis suggested that the deletion is terminal and the breakpoint was localized between the STS and DXS7470 loci in Xp22.32. Chromosome analysis is often done on females with short stature to exclude Ullrich-Turner syndrome. Small deletions, terminal or interstitial, are easily missed by conventional cytogenetic investigation; thus molecular analyses are useful to detect those cases. 8 refs., 3 figs.

  15. Relatively low proportion of dystrophin gene deletions in Israeili Duchenne and Becker muscular dystrophy patients

    SciTech Connect

    Shomrat, R.; Gluck, E.; Legum, C.; Shiloh, Y.

    1994-02-15

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic disorders caused by mutations in the X-linked dystrophin gene. The most common mutations in western populations are deletions that are spread non-randomly throughout the gene. Molecular analysis of the dystrophin gene structure by hybridization of the full length cDNA to Southern blots and by PCR in 62 unrelated Israeli male DMD/BMD patients showed deletions in 23 (37%). This proportion is significantly lower than that found in European and North American populations (55-65%). Seventy-eight percent of the deletions were confined to exons 44-52, half of these exons 44-45, and the remaining 22% to exons 1 and 19. There was no correlation between the size of the deletion and the severity of the disease. All the deletions causing frameshift resulted in the DMD phenotypes. 43 refs., 1 fig., 1 tab.

  16. Induction of anchorage-independent growth of human embryonic fibroblasts with a deletion in the short arm of chromosome 11 by human papillomavirus type 16 DNA

    SciTech Connect

    Smits, H.L.; Raadsheer, E.; Rood, I.; Mehendale, S.; Slater, R.M.; van der Noordaa, J.; Ter Schegget, J.

    1988-12-01

    Human embryonic fibroblasts with a large deletion (11p11.11p15.1) in the short arm of one chromosome 11 (del-11 cells) appeared to be susceptible to transformation by early human papillomavirus type 16 (HPV-16) DNA, whereas diploid human embryonic fibroblasts were not. This difference in susceptibility might be explained by the absence of a tumor suppressor gene located within the deleted part on the short arm of chromosome 11. The presence of abundant viral early-gene transcripts in transformed cells suggests that transformation was induced by an elevated level of an HPV-16 early-gene product(s). The low transcriptional activity of HPV-16 in diploid cells may indicate that cellular genes affect viral transcription. Interruption of the HPV-16 E2 early open reading frame is probably required for high-level HPV-16 early-gene expression driven from the homologous enhancer-promoter region.

  17. Deletions spanning the neurofibromatosis 1 gene: identification and phenotype of five patients.

    PubMed Central

    Kayes, L. M.; Burke, W.; Riccardi, V. M.; Bennett, R.; Ehrlich, P.; Rubenstein, A.; Stephens, K.

    1994-01-01

    Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder characterized by marked variation in clinical severity. To investigate the contribution to variability by genes either contiguous to or contained within the NF1 gene, we screened six NF1 patients with mild facial dysmorphology, mental retardation, and/or learning disabilities, for DNA rearrangement of the NF1 region. Five of the six patients had NF1 gene deletions on the basis of quantitative densitometry, locus hemizygosity, and analysis of somatic cell hybrid lines. Analyses of hybrid lines carrying each of the patient's chromosomes 17, with 15 regional DNA markers, demonstrated that each of the five patients carried a deletion > 700 kb in size. Minimally, each of the deletions involved the entire 350-kb NF1 gene; the three genes--EVI2A, EVI2B, and OMG--that are contained within an NF1 intron; and considerable flanking DNA. For four of the patients, the deletions mapped to the same interval; the deletion in the fifth patient was larger, extending farther in both directions. The remaining NF1 allele presumably produced functional neurofibromin; no gene rearrangements were detected, and RNA-PCR demonstrated that it was transcribed. These data provide compelling evidence that the NF1 disorder results from haploid insufficiency of neurofibromin. Of the three documented de novo deletion cases, two involved the paternal NF1 allele and one the maternal allele. The parental origin of the single remaining expressed NF1 allele had no dramatic effect on patient phenotype. The deletion patients exhibited a variable number of physical anomalies that were not correlated with the extent of their deletion. All five patients with deletions were remarkable for exhibiting a large number of neurofibromas for their age, suggesting that deletion of an unknown gene in the NF1 region may affect tumor initiation or development. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8116612

  18. Translesion DNA polymerases are required for spontaneous deletion formation in Salmonella typhimurium.

    PubMed

    Koskiniemi, Sanna; Andersson, Dan I

    2009-06-23

    How spontaneous deletions form in bacteria is still a partly unresolved problem. Here, we show that deletion formation in Salmonella typhimurium requires the presence of functional translesion polymerases. First, in wild-type bacteria, removal of the known translesion DNA polymerases, PolII (polB), PolIV (dinB), PolV (umuDC), and SamAB (samAB), resulted in a 10-fold decrease in the deletion rate, indicating that 90% of all spontaneous deletions require these polymerases for their formation. Second, overexpression of these polymerases by derepression of the DNA damage-inducible LexA regulon caused a 25-fold increase in deletion rate that depended on the presence of functional translesion polymerases. Third, overexpression of the polymerases PolII and PolIV from a plasmid increased the deletion rate 12- to 30-fold, respectively. Last, in a recBC(-) mutant where dsDNA ends are stabilized due to the lack of the end-processing nuclease RecBC, the deletion rate was increased 20-fold. This increase depended on the translesion polymerases. In lexA(def) mutant cells with constitutive SOS expression, a 10-fold increase in DNA breaks was observed. Inactivation of all 4 translesion polymerases in the lexA(def) mutant reduced the deletion rate 250-fold without any concomitant reduction in the amount of DNA breaks. Mutational inactivation of 3 endonucleases under LexA control reduced the number of DNA breaks to the wild-type level in a lexA(def) mutant with a concomitant 50-fold reduction in deletion rate. These findings suggest that the translesion polymerases are not involved in forming the DNA breaks, but that they require them to stimulate deletion formation. PMID:19525399

  19. Deletions spanning the neurofibromatosis I gene: Identification and phenotype of five patients

    SciTech Connect

    Kayes, L.M.; Burke, W.; Bennett, R.; Ehrlich, P.; Stephens, K. ); Riccardi, V.M. ); Rubenstein, A. )

    1994-03-01

    Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder characterized by marked variation in clinical severity. To investigate the contribution to variability by genes either contiguous to or contained within the NF1 gene, the authors screened six NF1 patients with mild facial dysmorphology, mental retardation, and/or learning disabilities, for DNA rearrangement of the NF1 region. Five of the six patients had NF1 gene deletions on the basis of quantitative densitometry, locus hemizygosity, and analysis of somatic cell hybrid lines. Analysis of hybrid lines carrying each of the patient's chromosomes 17, with 15 regional DNA markers, demonstrated that each of the five patients carried a deletion >700 kb in size. Minimally, each of the deletions involved the entire 350-kb NF1 gene; the three genes - EVI2A, EVI2B, and OMG-that are contained within an NF1 intron; and considerable flanking DNA. For four of the patients, the deletions mapped to the same interval; the deletion in the fifth patient was larger, extending farther in both directions. The remaining NF1 allele presumably produced functional neurofibromin; no gene rearrangements were detected, and RNA-PCR demonstrated that it was transcribed. These data provide compelling evidence that the NF1 disorder results from haploid insufficiency of neurofibromin. Of the three documented de novo deletion cases, two involved the paternal NF1 allele and one the maternal allele. The parental origin of the single remaining expresses NF1 allele had no dramatic effect on patient phenotype. The deletion patients exhibited a variable number of physical anomalies that were not correlated with the extent of their deletion. All five patients with deletions were remarkable for exhibiting a large number of neurfibromas for their age, suggesting that deletion of an unknown gene in the NF1 region may affect tumor initiation or development. 69 refs., 5 figs., 1 tab.

  20. Heterogeneity and chronology of 6q15 deletion and ERG-fusion in prostate cancer

    PubMed Central

    Krohn, Antje; Freudenthaler, Fabian; Bauer, Melanie; Salomon, Georg; Heinzer, Hans; Michl, Uwe; Steurer, Stefan; Simon, Ronald; Sauter, Guido; Schlomm, Thorsten; Minner, Sarah

    2016-01-01

    Prostate cancer is notorious for its heterogeneity, which poses a problem for the applicability of diagnostic molecular markers. However, heterogeneity analysis can provide valuable information on the chronology in which molecular alterations arise. Here, we constructed a heterogeneity tissue microarray (TMA) comprising samples from 10 different tumor areas of 189 prostate cancers each in order to study the sequence of two frequent molecular alterations, i.e. 6q15 deletion and TMPRSS2:ERG fusion. Previous work shows a marked inverse relationship between these alterations, suggesting that presence of one of these alterations might impact development of the other. 6q15 deletion was analyzed by fluorescence in situ hybridization and ERG-expression by immunohistochemistry. Only 6.6% of 334 ERG-positive but 28.4% of 440 ERG-negative TMA spots showed 6q15 deletions (p < 0.0001). A breakdown of these data to the level of tumor foci revealed 6q deletions in 138 tumor foci that were large enough to have at least 3 analyzable TMA spots. These included 42 tumor foci with homogeneous ERG positivity and 16 with homogeneous 6q15 deletions. Remarkably, six of the 42 homogeneously ERG-positive tumor foci (14.3%) harbored small 6q15-deleted areas, but none of the 34 6q15-deleted foci showed areas of ERG positivity (p = 0.022). In conclusion, our data suggest that ERG-fusion can precede 6q15 deletion, but not vice versa. The complete absence of ERG-positive tumor areas in 6q15-deleted tumor foci further suggest that the functional consequences of 6q15 deletions may prevent the development of TMPRSS2:ERG fusions. PMID:26684029

  1. Spontaneous and mutagen-induced deletions: mechanistic studies in Salmonella tester strain TA102

    SciTech Connect

    Levin, D.E.; Marnett, L.J.; Ames, B.N.

    1984-07-01

    Salmonella tester strain TA102 carries the hisG428 ochre mutation on the multicopy plasmid pAQ1. DNA sequence analysis of 45 spontaneous revertants of hisG428 on the chromosome in the presence of pKM101 (strain TA103) indicates that hisG428 revertants fall into three major categories: (i) small, in-frame deletions (3 or 6 base pairs) that remove part or all of the ochre triplet; (ii) base substitution mutations at the ochre site; (iii) extragenic ochre suppressors. Deletion revertants are identified in a simple phenotypic screen by their resistance to the inhibitory histidine analog thiazolealanine, which feedback inhibits the wild-type hisG enzyme but not the enzyme resulting from the deletions. The effect of various genetic backgrounds on the generation of spontaneous deletion revertants was examined. The presence of a uvrB mutation or a recA mutation suppressed the generation of spontaneous deletion revertants to approximately 1/2.5. When hisG428 was in multiple copies on pAQ1, the frequency of spontaneous deletion revertants increased by 40-fold, which is the approximate copy number of pAQ1. Mutagenic agents that induce single-strand breaks in DNA (e.g., x-rays, bleomycin, and nalidixic acid) induced deletion revertants in TA102. These agents induced deletion revertants only in hisG428 on pAQ1 and only in the presence of pKM101. Deletion revertants were not induced by frameshift mutagens (i.e., ICR-191 and 9aminoacridine). These results indicate that different pathways exist for the generation of spontaneous and mutagen-induced deletion revertants of hisG428. 41 references, 2 figures, 3 tables.

  2. Mitochondrial DNA deletions serve as biomarkers of aging in the skin, but are typically absent in nonmelanoma skin cancers.

    PubMed

    Eshaghian, Alex; Vleugels, Ruth A; Canter, Jeffrey A; McDonald, Michel A; Stasko, Thomas; Sligh, James E

    2006-02-01

    The potential role of mitochondrial DNA (mtDNA) deletions in nonmelanoma skin cancer (NMSC) and in cutaneous photoaging was explored using a genetic approach. Tumors and photodamaged tumor-free "margin" skin were obtained from NMSC patients undergoing excision and the mtDNA from these specimens was screened for the presence of deletions using long extension PCR. mtDNA deletions were abundant in margin tissue specimens from older patients and their number correlated with the patient age. There was a statistically significant difference between the number of mtDNA deletions in tumors and margins. Fewer deletions were detected in the tumors than the margins and the tumors often had no deletions, implying a potential selection for full-length mtDNA or perhaps a protective role for mtDNA deletions in the process of tumorigenesis. The observed mtDNA deletions from skin were often unreported (19 of 21 deletions), but typically shared structural features with mtDNA deletions reported in other tissues. Some mtDNA deletions were detected from the skin of multiple individuals, including 3,715 and 6,278-base pair (bp) deletions, whose frequencies approached that of the previously well-characterized 4977-bp "common" deletion. These data support the use of mtDNA mutations as biomarkers of photoaging in the skin.

  3. Parathyroid hormone ablation alters erythrocyte parameters that are rescued by calcium-sensing receptor gene deletion.

    PubMed

    Romero, Jose R; Youte, Rodeler; Brown, Edward M; Pollak, Martin R; Goltzman, David; Karaplis, Andrew; Pong, Lie-Chin; Chien, Lawrence; Chattopadhyay, Naibedya; Rivera, Alicia

    2013-07-01

    The mechanisms by which parathyroid hormone (PTH) produces anemia are unclear. Parathyroid hormone secretion is regulated by the extracellular Ca2+ -sensing receptor. We investigated the effects of ablating PTH on hematological indices and erythrocytes volume regulation in wild-type, PTH-null, and Ca2+ -sensing receptor-null/PTH-null mice. The erythrocyte parameters were measured in whole mouse blood, and volume regulatory systems were determined by plasma membrane K+ fluxes, and osmotic fragility was measured by hemoglobin determination at varying osmolarities. We observed that the absence of PTH significantly increases mean erythrocyte volume and reticulocyte counts, while decreasing erythrocyte counts, hemoglobin, hematocrit, and mean corpuscular hemoglobin concentration. These changes were accompanied by increases in erythrocyte cation content, a denser cell population, and increased K+ permeability, which were in part mediated by activation of the K+ /Cl- cotransporter and Gardos channel. In addition we observed that erythrocyte osmotic fragility in PTH-null compared with wild-type mice was enhanced. When Ca2+ -sensing receptor gene was deleted on the background of PTH-null mice, we observed that several of the alterations in erythrocyte parameters of PTH-null mice were largely rescued, particularly those related to erythrocyte volume, K+ fluxes and osmotic fragility, and became similar to those observed in wild-type mice. Our results demonstrate that Ca2+ -sensing receptor and parathyroid hormone are functionally coupled to maintain erythrocyte homeostasis. PMID:23528155

  4. A simplified system for generating recombinant E3-deleted canine adenovirus-2.

    PubMed

    Yu, Zuo; Jiang, Qian; Liu, Jiasen; Guo, Dongchun; Quan, Chuansong; Li, Botao; Qu, Liandong

    2015-01-01

    Canine adenovirus type 2 (CAV-2) has been used extensively as a vector for studying gene therapy and vaccine applications. We describe a simple strategy for generating a replication-competent recombinant CAV-2 using a backbone vector and a shuttle vector. The backbone plasmid containing the full-length CAV-2 genome was constructed by homologous recombination in Escherichia coli strain BJ5183. The shuttle plasmid, which has a deletion of 1478 bp in the nonessential E3 viral genome region, was generated by subcloning a fusion fragment containing the flanking sequences of the CAV-2 E3 region and expression cassette sequences from pcDNA3.1(+) into modified pUC18. To determine system effectiveness, a gene for enhanced green fluorescent protein (EGFP) was inserted into the shuttle plasmid and cloned into the backbone plasmid using two unique NruI and SalI sites. Transfection of Madin-Darby canine kidney (MDCK) cells with the recombinant adenovirus genome containing the EGFP expression cassette resulted in infectious viral particles. This strategy provides a solid foundation for developing candidate vaccines using CAV-2 as a delivery vector. PMID:25450764

  5. Escape from R-peptide deletion in a {gamma}-retrovirus

    SciTech Connect

    Schneider, Irene C.; Eckhardt, Manon; Brynza, Julia; Collins, Mary K.; Cichutek, Klaus; Buchholz, Christian J.

    2011-09-30

    The R peptide in the cytoplasmic tail (C-tail) of {gamma}-retroviral envelope proteins (Env) prevents membrane fusion before budding. To analyse its role in the formation of replication competent, infectious particles, we developed chimeric murine leukaemia viruses (MLV) with unmodified or R-peptide deleted Env proteins of the gibbon ape leukaemia virus (GaLV). While titres of these viruses were unaffected, R-peptide deficiency led to strongly impaired spreading. Most remarkably, we isolated an escape mutant which had restored an open reading frame for a C-terminal extension of the truncated C-tail. A reconstituted virus encoding this escape C-tail replicated in cell culture. In contrast to R-peptide deficient Env, particle incorporation of the escape Env was effective due to an enhanced protein expression and restored intracellular co-localisation with Gag proteins. Our data demonstrate that the R peptide not only regulates membrane fusion but also mediates efficient Env protein particle incorporation in {gamma}-retrovirus infected cells.

  6. Deletion of a Malaria Invasion Gene Reduces Death and Anemia, in Model Hosts

    PubMed Central

    Gómez, Noé D.; Safeukui, Innocent; Adelani, Aanuoluwa A.; Tewari, Rita; Reddy, Janardan K.; Rao, Sam; Holder, Anthony; Buffet, Pierre; Mohandas, Narla; Haldar, Kasturi

    2011-01-01

    Malaria parasites induce complex cellular and clinical phenotypes, including anemia, cerebral malaria and death in a wide range of mammalian hosts. Host genes and parasite ‘toxins’ have been implicated in malarial disease, but the contribution of parasite genes remains to be fully defined. Here we assess disease in BALB/c mice and Wistar rats infected by the rodent malaria parasite Plasmodium berghei with a gene knock out for merozoite surface protein (MSP) 7. MSP7 is not essential for infection but in P. falciparum, it enhances erythrocyte invasion by 20%. In vivo, as compared to wild type, the P. berghei Δmsp7 mutant is associated with an abrogation of death and a decrease from 3% to 2% in peak, circulating parasitemia. The Δmsp7 mutant is also associated with less anemia and modest increase in the size of follicles in the spleen. Together these data show that deletion of a single parasite invasion ligand modulates blood stage disease, as measured by death and anemia. This work is the first to assess the contribution of a gene present in all plasmodial species in severe disease. PMID:21980474

  7. Conditional deletion of Mecp2 in parvalbumin-expressing GABAergic cells results in the absence of critical period plasticity.

    PubMed

    He, Ling-jie; Liu, Nan; Cheng, Tian-lin; Chen, Xiao-jing; Li, Yi-ding; Shu, You-sheng; Qiu, Zi-long; Zhang, Xiao-hui

    2014-10-09

    Mutations in the X-linked gene encoding the transcriptional modulator methyl-CpG-binding protein 2 (MeCP2) impair postnatal development of the brain. Here we use neuronal-type specific gene deletion in mice to show that conditional Mecp2 deletion in GABAergic parvalbumin-expressing (PV) cells (PV-Mecp2(-/y)) does not cause most Rett-syndrome-like behaviours, but completely abolishes experience-dependent critical period plasticity of primary visual cortex (V1) that develops normal visual functions. However, selective loss of Mecp2 in GABAergic somatostatin-expressing cells or glutamatergic pyramidal cells does not affect the critical period plasticity. MeCP2-deficient PV cells exhibit high intrinsic excitability, selectively reduced efficacy of recurrent excitatory synapses in V1 layer 4 circuits, and decreased evoked visual responses in vivo. Enhancing cortical gamma-aminobutyric acid (GABA) inhibition with diazepam infusion can restore critical period plasticity in both young and adult PV-Mecp2(-/y) mice. Thus, MeCP2 expression in inhibitory PV cells during the critical period is essential for local circuit functions underlying experience-dependent cortical plasticity.

  8. Modulation of superantigen-induced T-cell deletion by antibody anti-Pgp-1 (CD44).

    PubMed Central

    Ayroldi, E; Cannarile, L; Ricardi, C

    1996-01-01

    We examined the effects of anti-Pgp-1 (CD44) antibody on the in vitro deletion of murine CD4 and CD8 single positive T cells induced by Staphylococcal enterotoxin B (SEB). Soluble anti-Pgp-1 antibody enhanced the apoptosis and decreased the proliferation of SEB-responding T cells. In contrast, cross-linked anti-Pgp-1 antibody provided costimulatory signals for the T-cell activation induced by anti-CD3 antibody. Hyaluronic acid (HA), a ligand of Pgp-1, did not affect proliferation and deletion induced by SEB, whereas it mimicked the effects of the cross-linked antibody in anti-CD3-driven proliferation. T-cell Pgp-1 surface expression after 48 hr incubation with SEB was unchanged as compared to unstimulated cells. However, when the memory T cells were established, some V beta 8+ (SEB-specific) T cells Pgp-1low became Pgp-1high, displaying a bimodal character. Moreover, the Pgp-1 increased expression correlated with an increase of Pgp-1 soluble form in the supernatant. These findings suggested that signals following the triggering of the Pgp-1 molecule are important in controlling T-cell survival. Images Figure 7 PMID:8698379

  9. Increased liver carcinogenesis and enrichment of stem cell properties in livers of Dickkopf 2 (Dkk2) deleted mice.

    PubMed

    Maass, Thorsten; Marquardt, Jens; Lee, Ju-Seog; Krupp, Markus; Scholz-Kreisel, Peter; Mogler, Carolin; Schirmacher, Peter; Müller, Martina; Westphal, Heiner; Galle, Peter R; Teufel, Andreas

    2016-05-17

    Dkk2 a antagonist of the Wnt/β-catenin-signaling pathway was shown to be silenced in diverse cancers. More recent data indicate that Dkk family members may also possess functions independent of Wnt-signaling during carcinogenesis. The detailed biological function of Dkks and its relevance for liver cancer is unknown. We analyzed the effects of a genetic deletion of Dkk2 (Dkk2-/-) in a hepatocarcinogenesis model using DEN/Phenobarbital. Untreated Dkk2-/- animals, showed considerable atypia with variation of hepatocyte size and chromatin density. In livers of Dkk2-/- mice nodule formation was seen at 9 months of age with focal loss of trabecular architecture and atypical hepatocytes and after DEN induction Dkk2-/- mice developed significantly more liver tumors compared to controls. Whole transcriptome analysis of untreated Dkk2-/- liver tissue revealed a Dkk2-dependent genetic network involving Wnt/β-Catenin but also multiple additional oncogenic factors, such as e.g. Pdgf-b, Gdf-15 and Hnf4a. Dkk2-/- tumor cells showed a significant deregulation of stemness genes associated with enhanced colony forming properties. Integration of the Dkk2-/- signature into human data was strongly associated with patients survival. Dkk2 deletion results in alterations of liver morphology leading to an increased frequency of liver cancer. The associated genetic changes included factors not primarily related to Wnt/β-Catenin-signaling and correlated with the clinical outcome of HCC-patients.

  10. Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line

    PubMed Central

    Kumagai, Ayako; Fujita, Akira; Yokoyama, Tomoki; Nonobe, Yuki; Hasaba, Yasuhiro; Sasaki, Tsutomu; Itoh, Yumi; Koura, Minako; Suzuki, Osamu; Adachi, Shigeki; Ryo, Haruko; Kohara, Arihiro; Tripathi, Lokesh P.; Sanosaka, Masato; Fukushima, Toshiki; Takahashi, Hiroyuki; Kitagawa, Kazuo; Nagaoka, Yasuo; Kawahara, Hidehisa; Mizuguchi, Kenji; Nomura, Taisei; Matsuda, Junichiro; Tabata, Toshihide; Takemori, Hiroshi

    2014-01-01

    Memantine is a non-competitive antagonist of the N-methyl-d-aspartate (NMDA) receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer’s disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg) disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR) and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds. PMID:25513882

  11. Altered Actions of Memantine and NMDA-Induced Currents in a New Grid2-Deleted Mouse Line.

    PubMed

    Kumagai, Ayako; Fujita, Akira; Yokoyama, Tomoki; Nonobe, Yuki; Hasaba, Yasuhiro; Sasaki, Tsutomu; Itoh, Yumi; Koura, Minako; Suzuki, Osamu; Adachi, Shigeki; Ryo, Haruko; Kohara, Arihiro; Tripathi, Lokesh P; Sanosaka, Masato; Fukushima, Toshiki; Takahashi, Hiroyuki; Kitagawa, Kazuo; Nagaoka, Yasuo; Kawahara, Hidehisa; Mizuguchi, Kenji; Nomura, Taisei; Matsuda, Junichiro; Tabata, Toshihide; Takemori, Hiroshi

    2014-12-11

    Memantine is a non-competitive antagonist of the N-methyl-D-aspartate (NMDA) receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer's disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg) disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR) and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds.

  12. Comparison of facial features of DiGeorge syndrome (DGS) due to deletion 10p13-10pter with DGS due to 22q11 deletion

    SciTech Connect

    Goodship, J.; Lynch, S.; Brown, J.

    1994-09-01

    DiGeorge syndrome (DGS) is a congenital anomaly consisting of cardiac defects, aplasia or hypoplasia of the thymus and parathroid glands, and dysmorphic facial features. The majority of DGS cases have a submicroscopic deletion within chromosome 22q11. However there have been a number of reports of DGS in association with other chromosomal abnormalities including four cases with chromosome 10p deletions. We describe a further 10p deletion case and suggest that the facial features in children with DGS due to deletions of 10p are different from those associated with chromosome 22 deletions. The propositus was born at 39 weeks gestation to unrelated caucasian parents, birth weight 2580g (10th centile) and was noted to be dysmorphic and cyanosed shortly after birth. The main dysmorphic facial features were a broad nasal bridge with very short palpebral fissures. Echocardiography revealed a large subsortic VSD and overriding aorta. She had a low ionised calcium and low parathroid hormone level. T cell subsets and PHA response were normal. Abdominal ultrasound showed duplex kidneys and on further investigation she was found to have reflux and raised plasma creatinine. She had an anteriorly placed anus. Her karyotype was 46,XX,-10,+der(10)t(3;10)(p23;p13)mat. The dysmorphic facial features in this baby are strikingly similar to those noted by Bridgeman and Butler in child with DGS as the result of a 10p deletion and distinct from the face seen in children with DiGeorge syndrome resulting from interstitial chromosome 22 deletions.

  13. Cognitive-behavioral characteristics and developmental trajectories in children with deletion 11qter (Jacobsen syndrome), and their relation to deletion size.

    PubMed

    Fisch, Gene S

    2015-01-01

    Subtelomeric deletions represent an important class of abnormalities to be considered when investigating genetic links to intellectual disability (ID). One subtelomeric deletion found on the long arm of chromosome 11q produces a characteristic phenotype that includes ID and is often referred to as Jacobsen syndrome (JBS). Previously, researchers found an inverse relationship between IQ and deletion size. While useful, IQ does not provide a comprehensive picture of the cognitive-behavioral strengths and weaknesses in JBS, nor does it reveal how the profiles evolve as these individuals age. One purpose of this study was to confirm the relationship between IQ or adaptive behavior (DQ) and deletion size. We also examined cognitive-behavioral profiles of children with JBS and the extent to which they changed over time. Initially, at T1, we examined 10 children, ages 5-20 years, diagnosed with JBS. Cognitive ability was assessed with the Stanford-Binet (4th Edition). Adaptive behavoir was evaluated with the Vineland Adaptive Behavior Scales (VABS). Eight children were reassessed 2 years later (T2). Results show a negative but non-significant correlation between IQ and deletion size. There was no statistically significant relationship between DQ and deletion size. As for our second aim, IQ and DQ scores were stable from T1 to T2. Cognitive profiles were not significantly different from T1 to T2. However, there were significant changes in adaptive behavior domain scores from T1 to T2. Lack of a significant relationship between cognitive-behavioral measures and deletion size, as well as changes in cognitive-behavioral profiles are discussed.

  14. Cognitive-behavioral characteristics and developmental trajectories in children with deletion 11qter (Jacobsen syndrome), and their relation to deletion size.

    PubMed

    Fisch, Gene S

    2015-01-01

    Subtelomeric deletions represent an important class of abnormalities to be considered when investigating genetic links to intellectual disability (ID). One subtelomeric deletion found on the long arm of chromosome 11q produces a characteristic phenotype that includes ID and is often referred to as Jacobsen syndrome (JBS). Previously, researchers found an inverse relationship between IQ and deletion size. While useful, IQ does not provide a comprehensive picture of the cognitive-behavioral strengths and weaknesses in JBS, nor does it reveal how the profiles evolve as these individuals age. One purpose of this study was to confirm the relationship between IQ or adaptive behavior (DQ) and deletion size. We also examined cognitive-behavioral profiles of children with JBS and the extent to which they changed over time. Initially, at T1, we examined 10 children, ages 5-20 years, diagnosed with JBS. Cognitive ability was assessed with the Stanford-Binet (4th Edition). Adaptive behavoir was evaluated with the Vineland Adaptive Behavior Scales (VABS). Eight children were reassessed 2 years later (T2). Results show a negative but non-significant correlation between IQ and deletion size. There was no statistically significant relationship between DQ and deletion size. As for our second aim, IQ and DQ scores were stable from T1 to T2. Cognitive profiles were not significantly different from T1 to T2. However, there were significant changes in adaptive behavior domain scores from T1 to T2. Lack of a significant relationship between cognitive-behavioral measures and deletion size, as well as changes in cognitive-behavioral profiles are discussed. PMID:25425441

  15. Upper limb malformations in chromosome 22q11 deletions

    SciTech Connect

    Shalev, S.A.; Dar, H.; Barel, H.; Borochowitz, Z.

    1996-03-29

    We read with interest the report of Cormier-Daire et al. in a recent issue of the journal, describing upper limb malformations in DiGeorge syndrome. We observed a family with this group of rare clinical expression of chromosome 22q11 deletions. The proposita was examined in our clinic when she was 4 years old. She was mildly mentally retarded. Clinical evaluation showed normal growth, long thin nose with squared tip, nasal speech, and abundant scalp hair and no cardiac anomalies. The girl was accompanied by her mother. Facial similarities were noted between the two. The mother reported to be treated with oral calcium due to hypoparathyroidism, diagnosed several years ago. Clinical evaluation showed wide flat face, short stature, mild mental retardation, slight hypertelorism, peculiar nose similar to her daughter`s, and nasal speech. No cardiac anomalies were found. Recently, a brother was born. Clinical examination documented large ventriculo-septal defect, retrognathia, narrow palpebral fissures, and long thin nose with squared tip. 1 ref.

  16. Stochastic deletion-insertion algorithm to construct dense linkage maps

    PubMed Central

    Wu, Jixiang; Lou, Xiang-Yang; Gonda, Michael

    2011-01-01

    In this study, we proposed a stochastic deletion-insertion (SDI) algorithm for constructing large-scale linkage maps. This SDI algorithm was compared with three published approximation approaches, the seriation (SER), neighbor mapping (NM), and unidirectional growth (UG) approaches, on the basis of simulated F2 data with different population sizes, missing genotype rates, and numbers of markers. Simulation results showed that the SDI method had a similar or higher percentage of correct linkage orders than the other three methods. This SDI algorithm was also applied to a real dataset and compared with the other three methods. The total linkage map distance (cM) obtained by the SDI method (148.08 cM) was smaller than the distance obtained by SER (225.52 cM) and two published distances (150.11 cM and 150.38 cM). Since this SDI algorithm is stochastic, a more accurate linkage order can be quickly obtained by repeating this algorithm. Thus, this SDI method, which combines the advantages of accuracy and speed, is an important addition to the current linkage mapping toolkit for constructing improved linkage maps. PMID:21927641

  17. Cardiomyocyte specific deletion of PP2A causes cardiac hypertrophy

    PubMed Central

    Li, Lei; Fang, Chao; Xu, Di; Xu, Yidan; Fu, Heling; Li, Jianmin

    2016-01-01

    Cardiac hypertrophy is a common pathological alteration in heart disease, which has been reported to be connected with serine/threonine protein phosphatases that control the dephosphorylation of a variety of cardiac proteins. Herein, we generated protein phosphatase type 2A knockout expressing a tamoxifen-inducible Cre recombinase protein fused to two mutant estrogen-receptor ligand-binding domains (MerCreMer) under the control of the a-myosin heavy chain promoter. Cardiac function of mice was determined by echocardiography. Decrease in PP2A activity leads to increased cardiomyocyte hypertrophy and fibrosis. Loss of PP2ACα leads to the heart failure, including the changes of EF, FS, LV, ANP and BNP. On the molecular level, knockout mice shows increased expression of B55a and B56e at 60 days after tamoxifen injection. Additionally, the regulation of the Akt/GSK3β/β-catenin pathway is severely disturbed in knockout mice. In conclusion, cardiomyocyte specific deletion of PP2A gene causes the cardiac hypertrophy. We will use the knockout mice to generate a type of cardiomyocyte hypertrophy mouse model with myocardial fibrosis. PMID:27186301

  18. Deletion mapping of genetic regions associated with apomixis in Hieracium.

    PubMed

    Catanach, Andrew S; Erasmuson, Sylvia K; Podivinsky, Ellen; Jordan, Brian R; Bicknell, Ross

    2006-12-01

    Although apomixis has been quoted as a technology with the potential to deliver benefits similar in scale to those achieved with the Green Revolution, very little is currently known of the genetic mechanisms that control this trait in plants. To address this issue, we developed Hieracium, a genus of daisies native to Eurasia and North America, as a genetic model to study apomixis. In a molecular mapping study, we defined the number of genetic loci involved in apomixis, and we explored dominance and linkage relationships between these loci. To avoid difficulties often encountered with inheritance studies of apomicts, we based our mapping effort on the use of deletion mutagenesis, coupled with amplified fragment length polymorphism (AFLP) as a genomic fingerprinting tool. The results indicate that apomixis in Hieracium caespitosum is controlled at two principal loci, one of which regulates events associated with the avoidance of meiosis (apomeiosis) and the other, an unlinked locus that controls events associated with the avoidance of fertilization (parthenogenesis). AFLP bands identified as central to both loci were isolated, sequenced, and used to develop sequence-characterized amplified region (SCAR) markers. The validity of the AFLP markers was verified by using a segregating population generated by hybridization. The validity of the SCAR markers was verified by their pattern of presence/absence in specific mutants. The mutants, markers, and genetic data derived from this work are now being used to isolate genes controlling apomixis in this system.

  19. Analysis of chromosomal integration and deletions of yeast plasmids.

    PubMed Central

    Cameron, J R; Philippsen, P; Davis, R W

    1977-01-01

    Plasmid DNAs from six strains of Saccharomyces cerevisiae were compared. Three different plasmids were found, designated Scp 1, Scp 2 and Scp 3, with monomer lengths of 6.19, 6.06 and 5.97 kilobases as referenced to sequenced phiX174 DNA. DNA from each of the plasmids was inserted into a lambda vector DNA. Hybrid phage containing inserted DNA of the desired size were enriched by genetic selection and their DNAs analysed by rapid techniques. All three plasmids share the same organization, two unique sequences separated by two inverted repeats, and share basically the same DNA sequences. Scp 2 and Scp 3 differ from Scp 1 by missing a unique HpaI site and by having small overlapping deletions in the same region. The HpaI site in Scp 1 is, therefore, in a nonessential region and suitable for insertion of foreign DNA in the potential use of the yeast plasmid as a vector. Hybridization of labelled cloned plasmid DNA to restriction fragments of linear yeast DNA separated on agarose gels showed that the plasmid DNA was not stably integrated into the yeast chromosomal DNA. Images PMID:331256

  20. Telomere Rapid Deletion Regulates Telomere Length in Arabidopsis thaliana▿

    PubMed Central

    Watson, J. Matthew; Shippen, Dorothy E.

    2007-01-01

    Telomere length is maintained in species-specific equilibrium primarily through a competition between telomerase-mediated elongation and the loss of terminal DNA through the end-replication problem. Recombinational activities are also capable of both lengthening and shortening telomeres. Here we demonstrate that elongated telomeres in Arabidopsis Ku70 mutants reach a new length set point after three generations. Restoration of wild-type Ku70 in these mutants leads to discrete telomere-shortening events consistent with telomere rapid deletion (TRD). These findings imply that the longer telomere length set point is achieved through competition between overactive telomerase and TRD. Surprisingly, in the absence of telomerase, a subset of elongated telomeres was further lengthened, suggesting that in this background a mechanism of telomerase-independent lengthening of telomeres operates. Unexpectedly, we also found that plants possessing wild-type-length telomeres exhibit TRD when telomerase is inactivated. TRD is stochastic, and all chromosome ends appear to be equally susceptible. The frequency of TRD decreases as telomeres shorten; telomeres less than 2 kb in length are rarely subject to TRD. We conclude that TRD functions as a potent force to regulate telomere length in Arabidopsis. PMID:17189431

  1. Duplication and deletion of CFC1 associated with heterotaxy syndrome.

    PubMed

    Cao, Ruixue; Long, Fei; Wang, Liping; Xu, Yuejuan; Guo, Ying; Li, Fen; Chen, Sun; Sun, Kun; Xu, Rang

    2015-02-01

    Heterotaxy syndrome, which causes significant morbidity and mortality, is a class of congenital disorders, in which normal left-right asymmetry cannot be properly established. To explore the role of copy number variants (CNVs) in the occurrence of heterotaxy syndrome, we recruited 93 heterotaxy patients and studied 12 of them by the Affymetrix Genome-Wide Human SNP 6.0 Array. The results were confirmed in the remaining 81 patients and 500 healthy children by quantitative real-time polymerase chain reaction (qPCR). The analysis of the SNP6.0 array showed a duplication of chromosome 2q21.1, which was verified by qPCR. The result of qPCR in the other 81 patients showed that 8/81 patients had the CNVs of 2q21.1 and the only overlapping gene in these patients is CFC1. However, in the 500 healthy children, only one carried the duplication of CFC1 (p=3.5×10(-7)). The duplication and deletion of CFC1 may play key roles in the occurrence of heterotaxy syndrome. Moreover, the transposed great arteries, double outlet right ventricle, single atrium, and single ventricle may share a common genetic etiology with the heterotaxy syndrome. PMID:25423076

  2. Systematic deletion analysis of fission yeast protein kinases.

    PubMed

    Bimbó, Andrea; Jia, Yonghui; Poh, Siew Lay; Karuturi, R Krishna Murthy; den Elzen, Nicole; Peng, Xu; Zheng, Liling; O'Connell, Matthew; Liu, Edison T; Balasubramanian, Mohan K; Liu, Jianhua

    2005-04-01

    Eukaryotic protein kinases are key molecules mediating signal transduction that play a pivotal role in the regulation of various biological processes, including cell cycle progression, cellular morphogenesis, development, and cellular response to environmental changes. A total of 106 eukaryotic protein kinase catalytic-domain-containing proteins have been found in the entire fission yeast genome, 44% (or 64%) of which possess orthologues (or nearest homologues) in humans, based on sequence similarity within catalytic domains. Systematic deletion analysis of all putative protein kinase-encoding genes have revealed that 17 out of 106 were essential for viability, including three previously uncharacterized putative protein kinases. Although the remaining 89 protein kinase mutants were able to form colonies under optimal growth conditions, 46% of the mutants exhibited hypersensitivity to at least 1 of the 17 different stress factors tested. Phenotypic assessment of these mutants allowed us to arrange kinases into functional groups. Based on the results of this assay, we propose also the existence of four major signaling pathways that are involved in the response to 17 stresses tested. Microarray analysis demonstrated a significant correlation between the expression signature and growth phenotype of kinase mutants tested. Our complete microarray data sets are available at http://giscompute.gis.a-star.edu.sg/~gisljh/kinome. PMID:15821139

  3. Deletion mapping of genetic regions associated with apomixis in Hieracium.

    PubMed

    Catanach, Andrew S; Erasmuson, Sylvia K; Podivinsky, Ellen; Jordan, Brian R; Bicknell, Ross

    2006-12-01

    Although apomixis has been quoted as a technology with the potential to deliver benefits similar in scale to those achieved with the Green Revolution, very little is currently known of the genetic mechanisms that control this trait in plants. To address this issue, we developed Hieracium, a genus of daisies native to Eurasia and North America, as a genetic model to study apomixis. In a molecular mapping study, we defined the number of genetic loci involved in apomixis, and we explored dominance and linkage relationships between these loci. To avoid difficulties often encountered with inheritance studies of apomicts, we based our mapping effort on the use of deletion mutagenesis, coupled with amplified fragment length polymorphism (AFLP) as a genomic fingerprinting tool. The results indicate that apomixis in Hieracium caespitosum is controlled at two principal loci, one of which regulates events associated with the avoidance of meiosis (apomeiosis) and the other, an unlinked locus that controls events associated with the avoidance of fertilization (parthenogenesis). AFLP bands identified as central to both loci were isolated, sequenced, and used to develop sequence-characterized amplified region (SCAR) markers. The validity of the AFLP markers was verified by using a segregating population generated by hybridization. The validity of the SCAR markers was verified by their pattern of presence/absence in specific mutants. The mutants, markers, and genetic data derived from this work are now being used to isolate genes controlling apomixis in this system. PMID:17047034

  4. Deletion of the Cel48S cellulase from Clostridium thermocellum

    SciTech Connect

    Olson, Daniel G; Tripathi, Shital A.; Giannone, Richard J; Lo, Jonathan; Caiazza, Nicky; Hogsett, David A; Hettich, Robert {Bob} L; Guss, Adam M; Dubrovsky, Genia; Lynd, Lee R

    2010-01-01

    Clostridium thermocellum is a thermophilic anaerobic bacterium that rapidly solubilizes cellulose with the aid of a multienzyme cellulosome complex. Creation of knockout mutants for Cel48S (also known as CelS, SS, and S8), the most abundant cellulosome subunit, was undertaken to gain insight into its role in enzymatic and microbial cellulose solubilization. Cultures of the Cel48S deletion mutant (S mutant) were able to completely solubilize 10 g/L crystalline cellulose. The cellulose hydrolysis rate of the S mutant strain was 60% lower than the parent strain, with the S mutant strain also exhibiting a 40% reduction in cell yield. The cellulosome produced by the S mutant strain was purified by affinity digestion, characterized enzymatically, and found to have a 35% lower specific activity on Avicel. The composition of the purified cellulosome was analyzed by tandem mass spectrometry with APEX quantification and no significant changes in abundance were observed in any of the major (>1% of cellulosomal protein) enzymatic subunits. Although most cellulolytic bacteria have one family 48 cellulase, C. thermocellum has two, Cel48S and Cel48Y. Cellulose solubilization by a Cel48S and Cel48Y double knockout was essentially the same as that of the Cel48S single knockout. Our results indicate that solubilization of crystalline cellulose by C. thermocellum can proceed to completion without expression of a family 48 cellulase.

  5. Maternal origin of 15q11-13 deletions in Angelman syndrome suggests a role for genomic imprinting.

    PubMed

    Williams, C A; Zori, R T; Stone, J W; Gray, B A; Cantu, E S; Ostrer, H

    1990-03-01

    Six persons with the classical Angelman syndrome (AS) phenotype and de novo deletions of chromosome 15q11-q13 were studied to determine the parental origin of the chromosome deletion. Four of the 6 patients had informative cytogenetic studies and all demonstrated maternal inheritance of the deletion. These findings, together with other reported cases of the origin of the chromosome 15 deletion in AS, suggest that deletion of the maternally contributed chromosome leads to the AS phenotype. This contrasts with the Prader-Willi syndrome (PWS) in which a similar deletion of the paternally contributed chromosome 15 is observed. In deletion cases, a parental gamete effect such as genomic imprinting may be the best model to explain why apparently identical 15q11-q13 deletions may develop the different phenotypes of AS or PWS.

  6. Deletion of CB2 Cannabinoid Receptor Induces Schizophrenia-Related Behaviors in Mice

    PubMed Central

    Ortega-Alvaro, Antonio; Aracil-Fernández, Auxiliadora; García-Gutiérrez, María S; Navarrete, Francisco; Manzanares, Jorge

    2011-01-01

    The possible role of the CB2 receptor (CB2r) in psychiatric disorders has been considered. Several animal models use knockout (KO) mice that display schizophrenia-like behaviors and this study evaluated the role of CB2r in the regulation of such behaviors. Mice lacking the CB2r (CB2KO) were challenged in open field, light–dark box, elevated plus-maze, tail suspension, step down inhibitory avoidance, and pre-pulse inhibition tests (PPI). Furthermore, the effects of treatment with cocaine and risperidone were evaluated using the OF and the PPI test. Gene expression of dopamine D2 (D2r), adrenergic-α2C (α2Cr), serotonergic 5-HT2A and 5-HT2C receptors (5-HT2Ar and 5-HT2Cr) were studied by RT-PCR in brain regions related to schizophrenia. Deletion of CB2r decreased motor activity in the OF test, but enhanced response to acute cocaine and produced mood-related alterations, PPI deficit, and cognitive impairment. Chronic treatment with risperidone tended to impair PPI in WT mice, whereas it ‘normalized' the PPI deficit in CB2KO mice. CB2KO mice presented increased D2r and α2Cr gene expressions in the prefrontal cortex (PFC) and locus coeruleus (LC), decreased 5-HT2Cr gene expression in the dorsal raphe (DR), and 5-HT2Ar gene expression in the PFC. Chronic risperidone treatment in WT mice left α2Cr gene expression unchanged, decreased D2r gene expression (15 μg/kg), and decreased 5-HT2Cr and 5-HT2Ar in PFC and DR. In CB2KO, the gene expression of D2r in the PFC, of α2Cr in the LC, and of 5-HT2Cr and 5-HT2Ar in PFC was reduced; 5-HT2Cr and 5-HT2Ar gene expressions in DR were increased after treatment with risperidone. These results suggest that deletion of CB2r has a relation with schizophrenia-like behaviors. Pharmacological manipulation of CB2r may merit further study as a potential therapeutic target for the treatment of schizophrenia-related disorders. PMID:21430651

  7. Deletion of CB2 cannabinoid receptor induces schizophrenia-related behaviors in mice.

    PubMed

    Ortega-Alvaro, Antonio; Aracil-Fernández, Auxiliadora; García-Gutiérrez, María S; Navarrete, Francisco; Manzanares, Jorge

    2011-06-01

    The possible role of the CB(2) receptor (CB(2)r) in psychiatric disorders has been considered. Several animal models use knockout (KO) mice that display schizophrenia-like behaviors and this study evaluated the role of CB(2)r in the regulation of such behaviors. Mice lacking the CB(2)r (CB(2)KO) were challenged in open field, light-dark box, elevated plus-maze, tail suspension, step down inhibitory avoidance, and pre-pulse inhibition tests (PPI). Furthermore, the effects of treatment with cocaine and risperidone were evaluated using the OF and the PPI test. Gene expression of dopamine D(2) (D(2)r), adrenergic-α(2C) (α(2C)r), serotonergic 5-HT(2A) and 5-HT(2C) receptors (5-HT(2A)r and 5-HT(2C)r) were studied by RT-PCR in brain regions related to schizophrenia. Deletion of CB(2)r decreased motor activity in the OF test, but enhanced response to acute cocaine and produced mood-related alterations, PPI deficit, and cognitive impairment. Chronic treatment with risperidone tended to impair PPI in WT mice, whereas it 'normalized' the PPI deficit in CB(2)KO mice. CB(2)KO mice presented increased D(2)r and α(2C)r gene expressions in the prefrontal cortex (PFC) and locus coeruleus (LC), decreased 5-HT(2C)r gene expression in the dorsal raphe (DR), and 5-HT(2A)r gene expression in the PFC. Chronic risperidone treatment in WT mice left α(2C)r gene expression unchanged, decreased D(2)r gene expression (15 μg/kg), and decreased 5-HT(2C)r and 5-HT(2A)r in PFC and DR. In CB(2)KO, the gene expression of D(2)r in the PFC, of α(2C)r in the LC, and of 5-HT(2C)r and 5-HT(2A)r in PFC was reduced; 5-HT(2C)r and 5-HT(2A)r gene expressions in DR were increased after treatment with risperidone. These results suggest that deletion of CB(2)r has a relation with schizophrenia-like behaviors. Pharmacological manipulation of CB(2)r may merit further study as a potential therapeutic target for the treatment of schizophrenia-related disorders. PMID:21430651

  8. Origins and dispersal of the mitochondrial DNA region V 9 bp deletion and insertion in Nigeria and the Ivory Coast

    SciTech Connect

    Merriwether, D.A.; Huston, S.L.; Bunker, C.A.

    1994-09-01

    An intergenic region V Mitochondrial DNA (mtDNA) 9 bp deletion located between the genes for tRNA{sup LYS} and cytochrome oxidase II was discovered in a small percentage of Nigerian and Ivory Coast natives. Previously this deletion has been described as Asian-specific and has been reported throughout the New World, Asia, S.E. Asia, and the Pacific Islands at frequencies ranging from 0% to 100%. In the New World and the Pacific Islands, the deletion is almost always accompanied by an Hae III restriction site gain at nt 16517. All 9 occurrences of the deletion observed in Africa (from four different populations) co-occur with the Hae III 16517 site gain, indicating that the African deletion probably shares a common origin with the deletion described as {open_quotes}Asian-specific{close_quotes}. The deletion was found in Benin and Sokoto, Nigeria in 2/54 Edo Bini, 1/2 Edo Ishan, 3/99 Hausa, 0/18 Fulani, and 0/16 other Nigerians. The deletion was also detected in 3/115 Ivory Coast natives from Abidjan. A 9 bp insertion (triplication) was observed in 1/115 Ivory Coast natives. The triplicated individual also possessed the Hae III 16517 site gain. The fragment containing the African deletion was sequenced and found to be identical in sequence to the Asian deletion region. D-loop sequence of nts 15975 to 00048 revealed that 2 of the 3 Ivory Coast deleted individuals and 1 of the 6 Nigerians deleted (Hausa) had a T-C transition at nt position 16189 which is common in New World-deleted individuals. These results raise the possibility that the occurrence of this deletion predates the separation of Asian and African populations from a common ancestral populations, or that the deletion has occurred more than once in human evolution. Either explanation requires that caution be exercised when using the 9 bp deletion as a population marker.

  9. Detection of classical 17p11.2 deletions, an atypical deletion and RAI1 alterations in patients with features suggestive of Smith–Magenis syndrome

    PubMed Central

    Vieira, Gustavo H; Rodriguez, Jayson D; Carmona-Mora, Paulina; Cao, Lei; Gamba, Bruno F; Carvalho, Daniel R; de Rezende Duarte, Andréa; Santos, Suely R; de Souza, Deise H; DuPont, Barbara R; Walz, Katherina; Moretti-Ferreira, Danilo; Srivastava, Anand K

    2012-01-01

    Smith–Magenis syndrome (SMS) is a complex disorder whose clinical features include mild to severe intellectual disability with speech delay, growth failure, brachycephaly, flat midface, short broad hands, and behavioral problems. SMS is typically caused by a large deletion on 17p11.2 that encompasses multiple genes including the retinoic acid induced 1, RAI1, gene or a mutation in the RAI1 gene. Here we have evaluated 30 patients with suspected SMS and identified SMS-associated classical 17p11.2 deletions in six patients, an atypical deletion of ∼139 kb that partially deletes the RAI1 gene in one patient, and RAI1 gene nonsynonymous alterations of unknown significance in two unrelated patients. The RAI1 mutant proteins showed no significant alterations in molecular weight, subcellular localization and transcriptional activity. Clinical features of patients with or without 17p11.2 deletions and mutations involving the RAI1 gene were compared to identify phenotypes that may be useful in diagnosing patients with SMS. PMID:21897445

  10. Dual entanglement measures based on no local cloning and no local deleting

    SciTech Connect

    Horodecki, Michal; Sen, Aditi; Sen, Ujjwal

    2004-11-01

    The impossibility of cloning and deleting of unknown states constitute important restrictions on processing of information in the quantum world. On the other hand, a known quantum state can always be cloned or deleted. However, if we restrict the class of allowed operations, there will arise restrictions on the ability of cloning and deleting machines. We have shown that cloning and deleting of known states is in general not possible by local operations. This impossibility hints at quantum correlation in the state. We propose dual measures of quantum correlation based on the dual restrictions of no local cloning and no local deleting. The measures are relative entropy distances of the desired states in a (generally impossible) perfect local cloning or local deleting process from the best approximate state that is actually obtained by imperfect local cloning or deleting machines. Just like the dual measures of entanglement cost and distillable entanglement, the proposed measures are based on important processes in quantum information. We discuss their properties. For the case of pure states, estimations of these two measures are also provided. Interestingly, the entanglement of cloning for a maximally entangled state of two two-level systems is not unity.

  11. High-frequency deletion in recovered retrovirus vectors containing exogenous DNA with promoters.

    PubMed Central

    Emerman, M; Temin, H M

    1984-01-01

    We previously described infectious retrovirus vectors constructed from spleen necrosis virus which contain the herpes simplex virus thymidine kinase gene and the mouse alpha-globin gene (K. Shimotohno and H. M. Temin, Nature [London] 299:255-268, 1982). In the present study we report that when TK- chicken cells infected with a virus containing the mouse alpha-globin promoter and other 5' noncoding sequences in addition to the alpha-globin coding sequences were selected for thymidine kinase (TK) activity, all virus-producing TK+ cell clones shed virus with a deletion. These deletions were of different sizes and included the mouse alpha-globin coding sequences and the mouse alpha-globin transcriptional promoter. One of the deleted viruses was molecularly cloned. DNA sequencing showed that the deleted sequences are flanked by a short direct repeat. This deleted virus was also shown to have an advantage over the nondeleted parent both in multiplication and in its specific TK-transforming unit titer. In contrast to the results described above, TK+ cell clones established with viruses that contained only the coding sequences from the mouse alpha-globin gene did not delete and were stable over many cell passages. The implications of the high-frequency deletion of the viruses with internal promoters are discussed in terms of the evolution of retroviruses and the construction of retrovirus vectors. Images PMID:6321798

  12. A common cognitive, psychiatric, and dysmorphic phenotype in carriers of NRXN1 deletion.

    PubMed

    Viñas-Jornet, Marina; Esteba-Castillo, Susanna; Gabau, Elisabeth; Ribas-Vidal, Núria; Baena, Neus; San, Joan; Ruiz, Anna; Coll, Maria Dolors; Novell, Ramon; Guitart, Miriam

    2014-11-01

    Deletions in the 2p16.3 region that includes the neurexin (NRXN1) gene are associated with intellectual disability and various psychiatric disorders, in particular, autism and schizophrenia. We present three unrelated patients, two adults and one child, in whom we identified an intragenic 2p16.3 deletion within the NRXN1 gene using an oligonucleotide comparative genomic hybridization array. The three patients presented dual diagnosis that consisted of mild intellectual disability and autism and bipolar disorder. Also, they all shared a dysmorphic phenotype characterized by a long face, deep set eyes, and prominent premaxilla. Genetic analysis of family members showed two inherited deletions. A comprehensive neuropsychological examination of the 2p16.3 deletion carriers revealed the same phenotype, characterized by anxiety disorder, borderline intelligence, and dysexecutive syndrome. The cognitive pattern of dysexecutive syndrome with poor working memory and reduced attention switching, mental flexibility, and verbal fluency was the same than those of the adult probands. We suggest that in addition to intellectual disability and psychiatric disease, NRXN1 deletion is a risk factor for a characteristic cognitive and dysmorphic profile. The new cognitive phenotype found in the 2p16.3 deletion carriers suggests that 2p16.3 deletions might have a wide variable expressivity instead of incomplete penetrance.

  13. FISH detection of chromosome 15 deletions in Prader-Willi and Angelman syndromes

    SciTech Connect

    Teshima, I.; Chadwick, D.; Chitayat, D.

    1996-03-29

    We have evaluated fluorescence in situ hybridization (FISH) analysis for the clinical laboratory detection of the 15q11-q13 deletion seen in Prader-Willi syndrome (PWS) and Angelman syndrome (AS) using probes for loci D15S11, SNRPN, D15S10, and GABRB3. In a series of 118 samples from patients referred for PWS or AS, 29 had deletions by FISH analysis. These included two brothers with a paternally transmitted deletion detectable with the probe for SNRPN only. G-banding analysis was less sensitive for deletion detection but useful in demonstrating other cytogenetic alterations in four cases. Methylation and CA-repeat analyses of 15q11-q13 were used to validate the FISH results. Clinical findings of patients with deletions were variable, ranging from newborns with hypotonia as the only presenting feature to children who were classically affected. We conclude that FISH analysis is a rapid and reliable method for detection of deletions within 15q11-q13 and whenever a deletion is found, FISH analysis of parental chromosomes should also be considered. 41 refs., 4 figs., 2 tabs.

  14. A common cognitive, psychiatric, and dysmorphic phenotype in carriers of NRXN1 deletion

    PubMed Central

    Viñas-Jornet, Marina; Esteba-Castillo, Susanna; Gabau, Elisabeth; Ribas-Vidal, Núria; Baena, Neus; San, Joan; Ruiz, Anna; Coll, Maria Dolors; Novell, Ramon; Guitart, Miriam

    2014-01-01

    Deletions in the 2p16.3 region that includes the neurexin (NRXN1) gene are associated with intellectual disability and various psychiatric disorders, in particular, autism and schizophrenia. We present three unrelated patients, two adults and one child, in whom we identified an intragenic 2p16.3 deletion within the NRXN1 gene using an oligonucleotide comparative genomic hybridization array. The three patients presented dual diagnosis that consisted of mild intellectual disability and autism and bipolar disorder. Also, they all shared a dysmorphic phenotype characterized by a long face, deep set eyes, and prominent premaxilla. Genetic analysis of family members showed two inherited deletions. A comprehensive neuropsychological examination of the 2p16.3 deletion carriers revealed the same phenotype, characterized by anxiety disorder, borderline intelligence, and dysexecutive syndrome. The cognitive pattern of dysexecutive syndrome with poor working memory and reduced attention switching, mental flexibility, and verbal fluency was the same than those of the adult probands. We suggest that in addition to intellectual disability and psychiatric disease, NRXN1 deletion is a risk factor for a characteristic cognitive and dysmorphic profile. The new cognitive phenotype found in the 2p16.3 deletion carriers suggests that 2p16.3 deletions might have a wide variable expressivity instead of incomplete penetrance. PMID:25614873

  15. Characterizing partial AZFc deletions of the Y chromosome with amplicon-specific sequence markers

    PubMed Central

    Navarro-Costa, Paulo; Pereira, Luísa; Alves, Cíntia; Gusmão, Leonor; Proença, Carmen; Marques-Vidal, Pedro; Rocha, Tiago; Correia, Sónia C; Jorge, Sónia; Neves, António; Soares, Ana P; Nunes, Joaquim; Calhaz-Jorge, Carlos; Amorim, António; Plancha, Carlos E; Gonçalves, João

    2007-01-01

    Background The AZFc region of the human Y chromosome is a highly recombinogenic locus containing multi-copy male fertility genes located in repeated DNA blocks (amplicons). These AZFc gene families exhibit slight sequence variations between copies which are considered to have functional relevance. Yet, partial AZFc deletions yield phenotypes ranging from normospermia to azoospermia, thwarting definite conclusions on their real impact on fertility. Results The amplicon content of partial AZFc deletion products was characterized with novel amplicon-specific sequence markers. Data indicate that partial AZFc deletions are a male infertility risk [odds ratio: 5.6 (95% CI: 1.6–30.1)] and although high diversity of partial deletion products and sequence conversion profiles were recorded, the AZFc marker profiles detected in fertile men were also observed in infertile men. Additionally, the assessment of rearrangement recurrence by Y-lineage analysis indicated that while partial AZFc deletions occurred in highly diverse samples, haplotype diversity was minimal in fertile men sharing identical marker profiles. Conclusion Although partial AZFc deletion products are highly heterogeneous in terms of amplicon content, this plasticity is not sufficient to account for the observed phenotypical variance. The lack of causative association between the deletion of specific gene copies and infertility suggests that AZFc gene content might be part of a multifactorial network, with Y-lineage evolution emerging as a possible phenotype modulator. PMID:17903263

  16. Increased frequency of deletions in the mitochondrial genome with age of Caenorhabditis elegans.

    PubMed Central

    Melov, S; Lithgow, G J; Fischer, D R; Tedesco, P M; Johnson, T E

    1995-01-01

    We have developed a long-extension-PCR strategy which amplifies approximately half of the mitochondrial genome (6.3 kb) of Caenorhabditis elegans using an individual worm as target. We analyzed three strains over their life span to assess the number of detectable deletions in the mitochondrial genome. Two of these strains are wild-type for life span while the third is mutant in the age-1 gene, approximately doubling its maximum life span. At the mean life span in wild-type strains, there was a significant difference between the frequency of deletions detected in the mitochondrial genome compared with the mean number of deletions in young animals. In addition, deletions in the mitochondrial genome occur at a significantly lower rate in age-1 mutants as compared with wild type. We cloned and identified the breakpoints of two deletions and found that one of the deletions had a direct repeat of 8 bp at the breakpoint. This is the largest single study (over 900 individual animals) characterizing the frequency of deletions in the mitochondrial genome as a function of age yet carried out. Images PMID:7753635

  17. Comparison of female and male interstitial deletions in the distal Xq

    SciTech Connect

    Schmidt, M.

    1996-07-12

    We reviewed female interstitial deletions in the distal Xq and compared them to those reported in males. Most of the deletions were common to females and males, and they were scattered within Xq27 and proximal Xq. Six females had large deletions of 1-10 Mb which formed a contig covering {approximately}13 Mb within Xq27.1{r_arrow}proximal Xq28. In 3 of these patients the deleted X chromosome was preferentially active, and the phenotype was abnormal (mental retardation in the patient of Schmidt et al.; mental retardation and Hunter syndrome in the patient of Clarke et al.; and mental retardation and myotubular myopathy in the patient of Dahl et al.) All three deletions occurred de novo. Our previous analysis of these deletions showed no abnormalities in the methylation and replication patterns of the region distal to the deletion, and in the corresponding area on the normal X chromosome. Thus, there is no evidence that the skewed inactivation pattern in these cases resulted from the cell selection driven by anomalies of X inactivation. 33 refs., 1 fig.

  18. The evolution and functional impact of human deletion variants shared with archaic hominin genomes.

    PubMed

    Lin, Yen-Lung; Pavlidis, Pavlos; Karakoc, Emre; Ajay, Jerry; Gokcumen, Omer

    2015-04-01

    Allele sharing between modern and archaic hominin genomes has been variously interpreted to have originated from ancestral genetic structure or through non-African introgression from archaic hominins. However, evolution of polymorphic human deletions that are shared with archaic hominin genomes has yet to be studied. We identified 427 polymorphic human deletions that are shared with archaic hominin genomes, approximately 87% of which originated before the Human-Neandertal divergence (ancient) and only approximately 9% of which have been introgressed from Neandertals (introgressed). Recurrence, incomplete lineage sorting between human and chimp lineages, and hominid-specific insertions constitute the remaining approximately 4% of allele sharing between humans and archaic hominins. We observed that ancient deletions correspond to more than 13% of all common (>5% allele frequency) deletion variation among modern humans. Our analyses indicate that the genomic landscapes of both ancient and introgressed deletion variants were primarily shaped by purifying selection, eliminating large and exonic variants. We found 17 exonic deletions that are shared with archaic hominin genomes, including those leading to three fusion transcripts. The affected genes are involved in metabolism of external and internal compounds, growth and sperm formation, as well as susceptibility to psoriasis and Crohn's disease. Our analyses suggest that these "exonic" deletion variants have evolved through different adaptive forces, including balancing and population-specific positive selection. Our findings reveal that genomic structural variants that are shared between humans and archaic hominin genomes are common among modern humans and can influence biomedically and evolutionarily important phenotypes.

  19. Molecular investigations of mitochondrial deletions: evaluating the usefulness of different genetic tests.

    PubMed

    Tońska, Katarzyna; Piekutowska-Abramczuk, Dorota; Kaliszewska, Magdalena; Kowalski, Paweł; Tańska, Anna; Bartnik, Ewa; Pronicka, Ewa; Krajewska-Walasek, Małgorzata

    2012-09-10

    Deletions in mitochondrial DNA are a common cause of mitochondrial disorders. The molecular diagnosis of mtDNA deletions for years was based on Southern hybridization later replaced by PCR methods such as PCR with primers specific for a particular deletion (mainly the so-called common deletion of 4977 bp) and long PCR. In order to evaluate the usefulness of MLPA (Multiplex Ligation-dependent Probe Amplification) in molecular diagnosis of large scale mtDNA deletions we compare four diagnostic methods: Southern hybridization, PCR, long-PCR and MLPA in a group of 16 patients with suspected deletions. Analysis was performed on blood, muscle and in one case hepatic tissue DNA. The MLPA was not able to confirm all the deletions detected by PCR methods, but due to its relative ease of processing, minimal equipment, low costs and the additional possibility to detect frequent point mtDNA mutations in one assay it is worth considering as a screening method. We recommend to always confirm MLPA results by PCR methods.

  20. A naturally occurring deletion mutant of figwort mosaic virus (caulimovirus) is generated by RNA splicing.

    PubMed

    Scholthof, H B; Wu, F C; Richins, R D; Shepherd, R J

    1991-09-01

    A naturally occurring deletion mutant is observed in plants infected with figwort mosaic virus (FMV), a caulimovirus. The encapsidated mutant genome is formed spontaneously in association with two different strains of FMV in four host plant species. The mutant also appears when cloned wild-type viral DNA is used as the inoculum. The deletion mutant alone is not infectious and it appears unable to replicate after its formation, even in the presence of wild-type virus. The gene for chloramphenicol acetyltransferase was inserted at different positions in the deletion mutant genome, and subsequent transient assays showed that gene expression of the mutant occurs despite the deletion. Sequence analyses of the mutant genome revealed a deletion of 1237-bp segment encompassing a major portion of the coat protein gene and the 5' end of the downstream reverse transcriptase gene. This deletion is associated with consensus signals for RNA splicing including the conserved 5' and 3' splice sites plus surrounding sequences, putative branch point(s) for lariat formation, and an extremely high adenosine content (41%) of the removed fragment. This suggests that splicing of the FMV full-length transcript has occurred prior to reverse transcription and this accounts for the presence and accumulation of encapsidated DNAs with the same deletion.

  1. Sequence characterisation of deletion breakpoints in the dystrophin gene by PCR

    SciTech Connect

    Abbs, S.; Sandhu, S.; Bobrow, M.

    1994-09-01

    Partial deletions of the dystrophin gene account for 65% of cases of Duchenne muscular dystrophy. A high proportion of these structural changes are generated by new mutational events, and lie predominantly within two `hotspot` regions, yet the underlying reasons for this are not known. We are characterizing and sequencing the regions surrounding deletion breakpoints in order to: (i) investigate the mechanisms of deletion mutation, and (ii) enable the design of PCR assays to specifically amplify mutant and normal sequences, allowing us to search for the presence of somatic mosaicism in appropriate family members. Using this approach we have been able to demonstrate the presence of somatic mosaicism in a maternal grandfather of a DMD-affected male, deleted for exons 49-50. Three deletions, namely of exons 48-49, 49-50, and 50, have been characterized using a PCR approach that avoids any cloning procedures. Breakpoints were initially localized to within regions of a few kilobases using Southern blot restriction analyses with exon-specific probes and PCR amplification of exonic and intronic loci. Sequencing was performed directly on PCR products: (i) mutant sequences were obtained from long-range or inverse-PCR across the deletion junction fragments, and (ii) normal sequences were obtained from the products of standard PCR, vectorette PCR, or inverse-PCR performed on YACs. Further characterization of intronic sequences will allow us to amplify and sequence across other deletion breakpoints and increase our knowledge of the mechanisms of mutation in the dystophin gene.

  2. Mitochondrial DNA common deletion is not associated with thyroid, breast and colorectal tumors in Turkish patients

    PubMed Central

    2010-01-01

    Recently, efforts have been focused on mitochondrial DNA changes and their relation to human cancers. Among them, a 4977 bp deletion of mitochondrial DNA, named “common deletion”, has been investigated in several types of tumors, with inconsistent results. In this study, we investigated the presence of the common deletion in tissues from 25 breast, 25 colorectal and 50 thyroid tumors and in the adjacent healthy tissues from Turkish patients. Samples from healthy volunteers were also evaluated for comparison. Two PCR-based methods were used for the detection of the common deletion. First, two pairs of primers were used to amplify wild-type and deleted mtDNA. Then, a highly sensitive nested-PCR was performed, to determine low amounts of deleted genomes. By the first method, wild-type mtDNAs were observed in all samples, but a deletion was observed in only six thyroid samples, by using the nested-PCR method. In conclusion, the mitochondrial common deletion was very rare in our study group and did not appear to be not related with cancer. PMID:21637595

  3. The use of two different MLPA kits in 22q11.2 deletion syndrome.

    PubMed

    Evers, L J M; Engelen, J J M; Houben, L M H; Curfs, L M G; van Amelsvoort, T A M J

    2016-04-01

    22q11.2 deletion syndrome (22q11DS) is one of the most common recurrent copy-number variant disorder, caused by a microdeletion in chromosome band 22q11.2 and occurring with a population prevalence of 1 in 2000. Until today there has been no evidence that the size of the deletion has an influence on the clinical phenotype. Most studies report that 22q11DS is associated with mild or borderline intellectual disability. There are a limited number of reports on 22q11DS subjects with moderate or severe intellectual disability. In this study we describe 63 adult patients with 22q11DS, including 22q11DS patients functioning at a moderate to severe intellectual disabled level. Deletion size was established with an experimental Multiplex ligation-dependent probe amplification (MLPA) mixture (P324) in addition to the commonly used MLPA kit (P250). We compared deletion size with intellectual functioning and presence of psychotic symptoms during life. The use of the experimental MLPA kit gives extra information on deletion size, only when combined with the common MLPA kit. We were able to detect eleven atypical deletions and in two cases the deletion size was shorter than all other "typical ones". We conclude that the use of the experimental kit P324 gives extra information about the deletion size, but only when used together with the standard P250 kit. We did not found any relation of deletion size with intelligence or presence of psychosis. PMID:26921528

  4. Mild developmental delay and obesity in two patients with mosaic 1p36 deletion syndrome.

    PubMed

    Shimada, Shino; Maegaki, Yoshihiro; Osawa, Makiko; Yamamoto, Toshiyuki

    2014-02-01

    We identified mosaic 1p36 deletions in two patients with developmental delay, distinctive features, and obesity, who can walk alone and communicate with others. Thus, their neurological defects are milder than those in typical patients with 1p36 deletion syndrome because most patients with 1p36 deletion cannot acquire expressive language. Chromosomal microarray testing revealed 3.0 and 4.5 Mb aberrations in the subtelomeric region of the short arm of chromosome 1. Mean signal ratios of the identified aberrations were -0.4 and -0.5, indicating mosaicism, which was confirmed by fluorescence in situ hybridization analysis with a mosaic ratio of 70% and 77%, respectively. Previous studies demonstrated that deletion of the distal 2-3 Mb region would be responsible for hyperphagia and obesity seen in patients. On the other hand, the severity of the neurological defect often correlates with the size of the terminal deletion of 1p36, and patients with larger deletions of 1p36 would usually show severely impaired developmental milestones and be immobile and aphasic. In such cases, hyperphagia and obesity could be clinically masked. In this study, two patients with mosaic deletions of 1p36 showed obesity as a consequence of hyperphagia. This study suggests that patients with 1p36 deletion would be at risk for hyperphagia and obesity when they have both risk factors, that is, (1) deletions including the 2-3 Mb critical region and (2) milder phenotypes that allow them to reach food on their own and to overeat.

  5. Evolution of mouse hepatitis virus: detection and characterization of spike deletion variants during persistent infection.

    PubMed Central

    Rowe, C L; Baker, S C; Nathan, M J; Fleming, J O

    1997-01-01

    High-frequency RNA recombination has been proposed as an important mechanism for generating viral deletion variants of murine coronavirus. Indeed, a number of variants with deletions in the spike glycoprotein have been isolated from persistently infected animals. However, the significance of generating and potentially accumulating deletion variants in the persisting viral RNA population is unclear. To study this issue, we evaluated the evolution of spike variants by examining the population of spike RNA sequences detected in the brains and spinal cords of mice inoculated with coronavirus and sacrificed at 4, 42, or 100 days postinoculation. We focused on the S1 hypervariable region since previous investigators had shown that this region is subject to recombination and deletion. RNA isolated from the brains or spinal cords of infected mice was rescued by reverse transcription-PCR, and the amplified products were cloned and used in differential colony hybridizations to identify individual isolates with deletions. We found that 11 of 20 persistently infected mice harbored spike deletion variants (SDVs), indicating that deletions are common but not required for persistent infection. To determine if a specific type of SDV accumulated during persistence, we sequenced 106 of the deletion isolates. We identified 23 distinct patterns of SDVs, including 5 double-deletion variants. Furthermore, we found that each mouse harbored distinct variants in its central nervous system (CNS), suggesting that SDVs are generated during viral replication in the CNS. Interestingly, mice with the most severe and persisting neurological disease harbored the most prevalent and diverse quasispecies of SDVs. Overall, these findings illustrate the complexity of the population of persisting viral RNAs which may contribute to chronic disease. PMID:9060655

  6. Strong correlation of elastin deletions, detected by FISH, with Williams syndrome: Evaluation of 235 patients

    SciTech Connect

    Lowery, M.C.; Brothman, L.J.; Leonard, C.O.

    1995-07-01

    Williams syndrome (WS) is generally characterized by mental deficiency, gregarious personality, dysmorphic facies, supravalvular aortic stenosis, and idiopathic infantile hypercalcemia. Patients with WS show allelic loss of elastin (ELN), exhibiting a submicroscopic deletion, at 7q11.23, detectable by FISH. Hemizygosity is likely the cause of vascular abnormalities in WS patients. A series of 235 patients was studied, and molecular cytogenetic deletions were seen in 96% of patients with classic WS. Patients included 195 solicited through the Williams Syndrome Association (WSA), plus 40 clinical cytogenetics cases referred by primary-care physicians. Photographs and medical records of most WSA subjects were reviewed, and patients were identified as {open_quotes}classic{open_quotes} (n = 114) or{open_quotes}uncertain{close_quotes} (n = 39). An additional 42 WSA patients were evaluated without clinical information. FISH was performed with biotinylated ELN cosmids on metaphase cells from immortalized lymphoblastoid lines from WSA patients and after high-resolution banding analysis on clinical referral patients. An alpha-satellite probe for chromosome 7 was included in hybridizations, as an internal control. Ninety-six percent of the patients with classic WS showed a deletion in one ELN allele; four of these did not show a deletion. Of the uncertain WS patients, only 3 of 39 showed a deletion. Of the 42 who were not classified phenotypically, because of lack of clinical information, 25 patients (60%) showed a deletion. Thirty-eight percent (15/40) of clinical cytogenetics cases showed an ELN deletion and no cytogenetic deletion by banded analysis. These results support the usefulness of FISH for the detection of elastin deletions as an initial diagnostic assay for WS. 14 refs., 2 figs., 4 tabs.

  7. Novel features of 3q29 deletion syndrome: Results from the 3q29 registry

    PubMed Central

    Glassford, Megan R.; Rosenfeld, Jill A.; Freedman, Alexa A.; Zwick, Michael E.

    2016-01-01

    3q29 deletion syndrome is caused by a recurrent, typically de novo heterozygous 1.6 Mb deletion, but because incidence of the deletion is rare (1 in 30,000 births) the phenotype is not well described. To characterize the range of phenotypic manifestations associated with 3q29 deletion syndrome, we have developed an online registry (3q29deletion.org) for ascertainment of study subjects and phenotypic data collection via Internet‐based survey instruments. We report here on data collected during the first 18 months of registry operation, from 44 patients. This is the largest cohort of 3q29 deletion carriers ever assembled and surveyed in a systematic way. Our data reveal that 28% of registry participants report neuropsychiatric phenotypes, including anxiety disorder, panic attacks, depression, bipolar disorder, and schizophrenia. Other novel findings include a high prevalence (64%) of feeding problems in infancy and reduced weight at birth for 3q29 deletion carriers (average reduction 13.9 oz (394 g), adjusted for gestational age and sex, P = 6.5e‐07). We further report on the frequency of heart defects, autism, recurrent ear infections, gastrointestinal phenotypes, and dental phenotypes, among others. We also report on the expected timing of delayed developmental milestones. This is the most comprehensive description of the 3q29 deletion phenotype to date. These results are clinically actionable toward improving patient care for 3q29 deletion carriers, and can guide the expectations of physicians and parents. These data also demonstrate the value of patient‐reported outcomes to reveal the full phenotypic spectrum of rare genomic disorders. © 2016 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc. PMID:26738761

  8. Extent of Host Deletions Associated with Bacteriophage P2-Mediated Education

    PubMed Central

    Sunshine, Melvin G.; Kelly, Beatrice

    1971-01-01

    A series of independent Escherichia coli K eductants has been isolated and tested to determine the extent of their deletions. The deletions cover the P2 prophage in location H, the his operon, a suppressor of the recBC phenotype (sbcB), the gene for gluconate-6-phosphate dehydrogenase (gnd), a locus involved in cell wall synthesis (rfb), and in some cases all or part of genes involved in methylgalactoside uptake (mglP). One end of the deletion, the P2 prophage end, appears to be the same for all eductants. The other end, however, can be located before, within, and after the mglP locus. PMID:4942760

  9. Microcephaly/lymphedema and terminal deletion of the long arm of chromosome 13

    SciTech Connect

    Fryns, J.P.

    1995-07-03

    Recently, we examined a 2-year-old boy with the association of microcephaly and significant pedal edema that extended to the distal parts of the legs. Prometaphase chromosome studies showed a small terminal deletion in the long arm of chromosome 13 of band 13q34, karyotype 46,XY,del(13)(q34{yields}qter). The present finding of a small terminal 13q34 deletion in this young boy with microcephaly/lymphedema is a first indication that the lymphedema/microcephaly association can be due to a small terminal 13q deletion. 2 refs.

  10. De novo interstitial deletion q16.2q21 on chromosome 6

    SciTech Connect

    Villa, A.; Urioste, M.; Luisa, M.

    1995-01-30

    A de novo interstitial deletion of 6q16.2q21 was observed in a 23-month-old boy with mental and psychomotor delay, obese appearance, minor craniofacial anomalies, and brain anomalies. We compare clinical manifestations of this patient with those observed in previously reported cases with similar 6q interstitial deletions. It is interesting to note the clinical similarities between some patients with interstitial deletions of 6q16 or q21 bands and patients with Prader-Willi syndrome (PWS) and it may help to keep in mind cytogenetic studies of patients with some PWS findings. 24 refs., 3 figs., 2 tabs.

  11. Congenital hypothyroidism in association with chromosome 3p25.3-pter deletion.

    PubMed

    Malhotra, Atul; Bergman, Phil; Brown, Justin; Mc Gillivray, George

    2011-01-01

    This report describes a case of a neonate presenting with many of the typical phenotypic characteristics of chromosome 3p deletion including hypertelorism, flat nasal bridge, flat philtrum, thin lips and low-set ears. The hands and feet showed post axial polydactyly, single palmar creases and rocker bottom feet. A karyotype confirmed chromosome 3p25.3-pter deletion with normal parental karyotypes. A high TSH was noted on newborn screening and congenital hypothyroidism was confirmed on thyroid function tests. Thyroid nuclear imaging was suggestive of dyshormonogenesis. This is the first reported case of congenital hypothyroidism in an infant with chromosome 3p deletion. PMID:22145477

  12. Thrombocytopenia and Postpartum Hemorrhage in a Woman with Chromosome 22q11.2 Deletion Syndrome

    PubMed Central

    Deng, Kathy; Nanda, Deepak

    2016-01-01

    Chromosome 22q11.2 deletion syndrome, also known as DiGeorge or velocardiofacial syndrome, is associated with a wide spectrum of phenotypic features. It is known to be associated with severe macrothrombocytopenia. Postpartum hemorrhage is a leading cause of maternal morbidity and mortality globally. Chromosome 22q11.2 deletion syndrome is rare cause of thrombocytopenia that can be a significant risk factor for life-threatening postpartum hemorrhage. We report a case of postpartum hemorrhage in a woman with 22q11.2 deletion syndrome causing severe macrothrombocytopenia. PMID:27366335

  13. Novel airway findings in a patient with 1p36 deletion syndrome.

    PubMed

    Ferril, Geoffrey R; Barham, Henry P; Prager, Jeremy D

    2014-01-01

    1p36 deletion syndrome comprises a phenotypic presentation that includes central nervous system, cardiac, and craniofacial anomalies. There has been no report of associated airway anomalies with this syndrome. We present here a case report and literature review. Prenatally, amniocentesis for chromosomal analysis was performed on our patient, with results consistent with 1p36 deletion syndrome. Respiratory distress and unsuccessful attempts at intubation prompted transfer to Children's Hospital of Colorado. Microlaryngoscopy was subsequently performed, revealing a persistent buccopharyngeal membrane and unidentifiable larynx. Emergent tracheostomy was then performed to secure the airway. Airway anomalies may be associated with 1p36 deletion syndrome.

  14. Fluorescence in situ hybridization evaluation of chromosome deletion patterns in prostate cancer.

    PubMed Central

    Huang, S. F.; Xiao, S.; Renshaw, A. A.; Loughlin, K. R.; Hudson, T. J.; Fletcher, J. A.

    1996-01-01

    Various nonrandom chromosomal aberrations have been identified in prostate carcinoma. These aberrations include deletions of several chromosome regions, particularly the chromosome 8 short arm. Large-scale numerical aberrations, reflected in aberrant DNA ploidy, are also found in a minority of cases. However, it is unclear whether prostate carcinomas contain aberrations of certain chromosome regions that are deleted frequently in other common types of cancer. In this study, we performed dual-color fluorescence in situ hybridization on intact nuclei from touch preparations of 16 prostate cancers. Chromosome copy number was determined using pericentromeric probes, whereas potential chromosome arm deletions were evaluated using yeast artificial chromosome (YAC) and P1 probes. Two YAC probes targeted chromosome 8 short arm regions known to be deleted frequently in prostate cancer. Other YACs and P1s were for chromosome regions, including 1p22, 3p14, 6q21, 9p21, and 22q12, that are deletion targets in a variety of cancers although not extensively studied in prostate cancer. Hybridization efficiencies and signal intensities were excellent for both repeat sequence (alpha-satellite) and single, copy (YAC and P1) fluorescence in situ hybridization probes. Of 16 prostate cancers, 11 had clonal aberrations of 1 or more of the 13 chromosome regions evaluated, and 10 cases (62.5%) had 8p deletions, including 4 cases with 8p deletion in virtually all cells and aneuploidy in only a subset of those deleted cells. Deletions at 3p14, 6q21, and 22q12 were identified in 2, 1, and 1 case, respectively, and each of those cases had a similarly sized cell population with 8p deletion. These studies confirm 8p deletion in the majority of prostate carcinomas. 8p deletions appear to be early events in prostate tumorigenesis, often antedating aneuploidy. Fluorescence in situ hybridization strategies incorporating pericentromeric and single-copy regional chromosome probes offer a powerful and

  15. Thrombocytopenia and Postpartum Hemorrhage in a Woman with Chromosome 22q11.2 Deletion Syndrome.

    PubMed

    Pachtman, Sarah L; Deng, Kathy; Nanda, Deepak

    2016-01-01

    Chromosome 22q11.2 deletion syndrome, also known as DiGeorge or velocardiofacial syndrome, is associated with a wide spectrum of phenotypic features. It is known to be associated with severe macrothrombocytopenia. Postpartum hemorrhage is a leading cause of maternal morbidity and mortality globally. Chromosome 22q11.2 deletion syndrome is rare cause of thrombocytopenia that can be a significant risk factor for life-threatening postpartum hemorrhage. We report a case of postpartum hemorrhage in a woman with 22q11.2 deletion syndrome causing severe macrothrombocytopenia. PMID:27366335

  16. Small terminal deletions of the long arm of chromosome 2: Two new cases

    SciTech Connect

    Fisher, A.M.; Ellis, K.H.; Browne, C.E.; Barber, J.C.K.; Barker, M.; Kennedy, C.R.; Foley, H.; Patton, M.A.

    1994-12-01

    We report on 2 girls with small de novo terminal deletions of the long arm of chromosome 2 and breakpoints within q37. Four cases with similar or more extensive deletions have been previously reported in full. Hypotonia and psychomotor retardation were the only manifestations common to all 6 cases. The phenotype associated with small terminal 2q deletions is variable and clearly not always as mild as indicated in previous reports. The abnormality may also be more common than has been assumed. 12 refs., 3 figs., 1 tab.

  17. Mitochondrial Genome Deletion for Detection of Prostate Cancer — EDRN Public Portal

    Cancer.gov

    The Prostate Core Mitomic Test™ is based upon a 3.4 kb mitochondrial genome deletion (3.4 mtdelta) that was identified through PCR analysis of frozen prostate cancer samples. In cancer research it has been found that deletions in mitochondrial DNA can correlate with cellular changes that indicate development of cancer. This deletion includes the terminal 22 bases of MT-ND4L, all of MT-ND4, 3 tRNAs (histidine, serine 2, and leucine 2), and all except the terminal 24 bases of MT-ND5.

  18. Intragenic deletion of RBFOX1 associated with neurodevelopmental/neuropsychiatric disorders and possibly other clinical presentations

    PubMed Central

    2013-01-01

    Background RBFOX1 is an important splicing factor regulating developmental and tissue-specific alternative splicing in heart, muscle, and neuronal tissues. Constitutional genetic defects in RBFOX1 are implicated in multiple medical conditions. Results We identified 14 copy number variants (CNV) involving RBFOX1 from 2,124 consecutive pediatric patients referred for chromosomal microarray analysis (CMA), including 13 intragenic deletions and a single intragenic duplication. The clinical significances of the intragenic deletions of RBFOX1 were evaluated. Conclusions Our data strongly supports the associations of intragenic deletions of RBFOX1 with a diversity of neurodevelopmental and neuropsychiatric disorders, and possibly other clinical features. PMID:23822903

  19. Occurrence of two different intragenic deletions in two male relatives affected with Duchenne muscular dystrophy

    SciTech Connect

    Mostacciuolo, M.L.; Miorin, M.; Vitiello, L.; Rampazzo, A.; Fanin, M.; Angelini, C.; Danieli, G.A.

    1994-03-01

    The occurrence of 2 different intragenic deletions (exons 10-44 and exon 45, respectively) is reported in 2 male relatives affected with Duchenne muscular dystrophy, both showing the same haplotype for DNA markers not included in the deleted segment. The 2 different deletions seem to have occurred independently in the same X chromosome. This finding, together with other reports, suggests possibly an increased predisposition to mutations within the DMD locus in some families. Therefore, when dealing with prenatal diagnosis, the investigation on fetal DNA cannot be restricted only to the region in which a mutation was previously identified in the family. 14 refs., 1 fig.

  20. Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid.

    PubMed

    Yoshiyama, Yoko; Tanaka, Koichi; Yoshiyama, Kohei; Hibi, Makoto; Ogawa, Jun; Shima, Jun

    2015-02-01

    Trehalose confers protection against various environmental stresses on yeast cells. In this study, trehalase gene deletion mutants that accumulate trehalose at high levels showed significant stress tolerance to acetic acid. The enhancement of trehalose accumulation can thus be considered a target in the breeding of acetic acid-tolerant yeast strains.