Science.gov

Sample records for rad51 polymerization reveals

  1. Interrogation of the protein-protein interactions between human BRCA2 BRC repeats and RAD51 reveals atomistic determinants of affinity.

    PubMed

    Cole, Daniel J; Rajendra, Eeson; Roberts-Thomson, Meredith; Hardwick, Bryn; McKenzie, Grahame J; Payne, Mike C; Venkitaraman, Ashok R; Skylaris, Chris-Kriton

    2011-07-01

    The breast cancer suppressor BRCA2 controls the recombinase RAD51 in the reactions that mediate homologous DNA recombination, an essential cellular process required for the error-free repair of DNA double-stranded breaks. The primary mode of interaction between BRCA2 and RAD51 is through the BRC repeats, which are ∼35 residue peptide motifs that interact directly with RAD51 in vitro. Human BRCA2, like its mammalian orthologues, contains 8 BRC repeats whose sequence and spacing are evolutionarily conserved. Despite their sequence conservation, there is evidence that the different human BRC repeats have distinct capacities to bind RAD51. A previously published crystal structure reports the structural basis of the interaction between human BRC4 and the catalytic core domain of RAD51. However, no structural information is available regarding the binding of the remaining seven BRC repeats to RAD51, nor is it known why the BRC repeats show marked variation in binding affinity to RAD51 despite only subtle sequence variation. To address these issues, we have performed fluorescence polarisation assays to indirectly measure relative binding affinity, and applied computational simulations to interrogate the behaviour of the eight human BRC-RAD51 complexes, as well as a suite of BRC cancer-associated mutations. Our computational approaches encompass a range of techniques designed to link sequence variation with binding free energy. They include MM-PBSA and thermodynamic integration, which are based on classical force fields, and a recently developed approach to computing binding free energies from large-scale quantum mechanical first principles calculations with the linear-scaling density functional code onetep. Our findings not only reveal how sequence variation in the BRC repeats directly affects affinity with RAD51 and provide significant new insights into the control of RAD51 by human BRCA2, but also exemplify a palette of computational and experimental tools for the

  2. RAD51AP2, a novel vertebrate- and meiotic-specific protein, sharesa conserved RAD51-interacting C-terminal domain with RAD51AP1/PIR51

    SciTech Connect

    Kovalenko, Oleg V.; Wiese, Claudia; Schild, David

    2006-07-25

    Many interacting proteins regulate and/or assist the activities of RAD51, a recombinase which plays a critical role in both DNA repair and meiotic recombination. Yeast two-hybrid screening of a human testis cDNA library revealed a new protein, RAD51AP2 (RAD51 Associated Protein 2), that interacts strongly with RAD51. A full-length cDNA clone predicts a novel vertebrate specific protein of 1159 residues, and the RAD51AP2 transcript was observed only in meiotic tissue (i.e. adult testis and fetal ovary), suggesting a meiotic-specific function for RAD51AP2. In HEK293 cells the interaction of RAD51 with an ectopically-expressed recombinant large fragment of RAD51AP2 requires the C-terminal 57 residues of RAD51AP2. This RAD51-binding region shows 81% homology to the C-terminus of RAD51AP1/PIR51, an otherwise totally unrelated RAD51-binding partner that is ubiquitously expressed. Analyses using truncations and point mutations in both RAD51AP1 and RAD51AP2 demonstrate that these proteins use the same structural motif for RAD51 binding. RAD54 shares some homology with this RAD51-binding motif, but this homologous region plays only an accessory role to the adjacent main RAD51-interacting region, which has been narrowed here to 40 amino acids. A novel protein, RAD51AP2, has been discovered that interacts with RAD51 through a C-terminal motif also present in RAD51AP1.

  3. Rad51c- and Trp53-double-mutant mouse model reveals common features of homologous recombination-deficient breast cancers.

    PubMed

    Tumiati, M; Munne, P M; Edgren, H; Eldfors, S; Hemmes, A; Kuznetsov, S G

    2016-09-01

    Almost half of all hereditary breast cancers (BCs) are associated with germ-line mutations in homologous recombination (HR) genes. However, the tumor phenotypes associated with different HR genes vary, making it difficult to define the role of HR in BC predisposition. To distinguish between HR-dependent and -independent features of BCs, we generated a mouse model in which an essential HR gene, Rad51c, is knocked-out specifically in epidermal tissues. Rad51c is one of the key mediators of HR and a well-known BC predisposition gene. Here, we demonstrate that deletion of Rad51c invariably requires inactivation of the Trp53 tumor suppressor (TP53 in humans) to produce mammary carcinomas in 63% of female mice. Nonetheless, loss of Rad51c shortens the latency of Trp53-deficient mouse tumors from 11 to 6 months. Remarkably, the histopathological features of Rad51c-deficient mammary carcinomas, such as expression of hormone receptors and luminal epithelial markers, faithfully recapitulate the histopathology of human RAD51C-mutated BCs. Similar to other BC models, Rad51c/p53 double-mutant mouse mammary tumors also reveal a propensity for genomic instability, but lack the focal amplification of the Met locus or distinct mutational signatures reported for other HR genes. Using the human mammary epithelial cell line MCF10A, we show that deletion of TP53 can rescue RAD51C-deficient cells from radiation-induced cellular senescence, whereas it exacerbates their centrosome amplification and nuclear abnormalities. Altogether, our data indicate that a trend for genomic instability and inactivation of Trp53 are common features of HR-mediated BCs, whereas histopathology and somatic mutation patterns are specific for different HR genes. PMID:26820992

  4. A Dominant Mutation in Human RAD51 Reveals Its Function in DNA Interstrand Crosslink Repair Independent of Homologous Recombination.

    PubMed

    Wang, Anderson T; Kim, Taeho; Wagner, John E; Conti, Brooke A; Lach, Francis P; Huang, Athena L; Molina, Henrik; Sanborn, Erica M; Zierhut, Heather; Cornes, Belinda K; Abhyankar, Avinash; Sougnez, Carrie; Gabriel, Stacey B; Auerbach, Arleen D; Kowalczykowski, Stephen C; Smogorzewska, Agata

    2015-08-01

    Repair of DNA interstrand crosslinks requires action of multiple DNA repair pathways, including homologous recombination. Here, we report a de novo heterozygous T131P mutation in RAD51/FANCR, the key recombinase essential for homologous recombination, in a patient with Fanconi anemia-like phenotype. In vitro, RAD51-T131P displays DNA-independent ATPase activity, no DNA pairing capacity, and a co-dominant-negative effect on RAD51 recombinase function. However, the patient cells are homologous recombination proficient due to the low ratio of mutant to wild-type RAD51 in cells. Instead, patient cells are sensitive to crosslinking agents and display hyperphosphorylation of Replication Protein A due to increased activity of DNA2 and WRN at the DNA interstrand crosslinks. Thus, proper RAD51 function is important during DNA interstrand crosslink repair outside of homologous recombination. Our study provides a molecular basis for how RAD51 and its associated factors may operate in a homologous recombination-independent manner to maintain genomic integrity. PMID:26253028

  5. RAD51AP2, a novel vertebrate- and meiotic-specific protein, shares a conserved RAD51-interacting C-terminal domain with RAD51AP1/PIR51

    PubMed Central

    Kovalenko, Oleg V.; Wiese, Claudia; Schild, David

    2006-01-01

    Many interacting proteins regulate and/or assist the activities of RAD51, a recombinase which plays a critical role in both DNA repair and meiotic recombination. Yeast two-hybrid screening of a human testis cDNA library revealed a new protein, RAD51AP2 (RAD51 Associated Protein 2), that interacts strongly with RAD51. A full-length cDNA clone predicts a novel vertebrate-specific protein of 1159 residues, and the RAD51AP2 transcript was observed only in meiotic tissue (i.e. adult testis and fetal ovary), suggesting a meiotic-specific function for RAD51AP2. In HEK293 cells the interaction of RAD51 with an ectopically-expressed recombinant large fragment of RAD51AP2 requires the C-terminal 57 residues of RAD51AP2. This RAD51-binding region shows 81% homology to the C-terminus of RAD51AP1/PIR51, an otherwise totally unrelated RAD51-binding partner that is ubiquitously expressed. Analyses using truncations and point mutations in both RAD51AP1 and RAD51AP2 demonstrate that these proteins use the same structural motif for RAD51 binding. RAD54 shares some homology with this RAD51-binding motif, but this homologous region plays only an accessory role to the adjacent main RAD51-interacting region, which has been narrowed here to 40 amino acids. A novel protein, RAD51AP2, has been discovered that interacts with RAD51 through a C-terminal motif also present in RAD51AP1. PMID:16990250

  6. Molecular Basis for Enhancement of the Meiotic DMCI Recombinase by RAD51AP1

    SciTech Connect

    Dray, Eloise; Dunlop, Myun Hwa; Kauppi, Liisa; San Filippo, Joseph San; Wiese, Claudia; Tsai, Miaw-Sheue; Begovic, Sead; Schild, David; Jasin, Maria; Keeney, Scott; Sung, Patrick

    2010-11-05

    Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 Associated Protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional co-operation is dependent on complex formation between DMC1 and RAD51AP1, and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci co-localize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination.

  7. Interactions involving the Rad51 paralogs Rad51C and XRCC3 in human cells

    NASA Technical Reports Server (NTRS)

    Wiese, Claudia; Collins, David W.; Albala, Joanna S.; Thompson, Larry H.; Kronenberg, Amy; Schild, David; Chatterjee, A. (Principal Investigator)

    2002-01-01

    Homologous recombinational repair of DNA double-strand breaks and crosslinks in human cells is likely to require Rad51 and the five Rad51 paralogs (XRCC2, XRCC3, Rad51B/Rad51L1, Rad51C/Rad51L2 and Rad51D/Rad51L3), as has been shown in chicken and rodent cells. Previously, we reported on the interactions among these proteins using baculovirus and two- and three-hybrid yeast systems. To test for interactions involving XRCC3 and Rad51C, stable human cell lines have been isolated that express (His)6-tagged versions of XRCC3 or Rad51C. Ni2+-binding experiments demonstrate that XRCC3 and Rad51C interact in human cells. In addition, we find that Rad51C, but not XRCC3, interacts directly or indirectly with Rad51B, Rad51D and XRCC2. These results argue that there are at least two complexes of Rad51 paralogs in human cells (Rad51C-XRCC3 and Rad51B-Rad51C-Rad51D-XRCC2), both containing Rad51C. Moreover, Rad51 is not found in these complexes. X-ray treatment did not alter either the level of any Rad51 paralog or the observed interactions between paralogs. However, the endogenous level of Rad51C is moderately elevated in the XRCC3-overexpressing cell line, suggesting that dimerization between these proteins might help stabilize Rad51C.

  8. Complex formation by the human Rad51B and Rad51C DNA repair proteins and their activities in vitro

    NASA Technical Reports Server (NTRS)

    Lio, Yi-Ching; Mazin, Alexander V.; Kowalczykowski, Stephen C.; Chen, David J.

    2003-01-01

    The human Rad51 protein is essential for DNA repair by homologous recombination. In addition to Rad51 protein, five paralogs have been identified: Rad51B/Rad51L1, Rad51C/Rad51L2, Rad51D/Rad51L3, XRCC2, and XRCC3. To further characterize a subset of these proteins, recombinant Rad51, Rad51B-(His)(6), and Rad51C proteins were individually expressed employing the baculovirus system, and each was purified from Sf9 insect cells. Evidence from nickel-nitrilotriacetic acid pull-down experiments demonstrates a highly stable Rad51B.Rad51C heterodimer, which interacts weakly with Rad51. Rad51B and Rad51C proteins were found to bind single- and double-stranded DNA and to preferentially bind 3'-end-tailed double-stranded DNA. The ability to bind DNA was elevated with mixed Rad51 and Rad51C, as well as with mixed Rad51B and Rad51C, compared with that of the individual protein. In addition, both Rad51B and Rad51C exhibit DNA-stimulated ATPase activity. Rad51C displays an ATP-independent apparent DNA strand exchange activity, whereas Rad51B shows no such activity; this apparent strand exchange ability results actually from a duplex DNA destabilization capability of Rad51C. By analogy to the yeast Rad55 and Rad57, our results suggest that Rad51B and Rad51C function through interactions with the human Rad51 recombinase and play a crucial role in the homologous recombinational repair pathway.

  9. Structural and torsional properties of the RAD51-dsDNA nucleoprotein filament

    PubMed Central

    Lee, Mina; Lipfert, Jan; Sanchez, Humberto; Wyman, Claire; Dekker, Nynke H.

    2013-01-01

    Human RAD51 is a key protein in the repair of DNA by homologous recombination. Its assembly onto DNA, which induces changes in DNA structure, results in the formation of a nucleoprotein filament that forms the basis of strand exchange. Here, we determine the structural and mechanical properties of RAD51-dsDNA filaments. Our measurements use two recently developed magnetic tweezers assays, freely orbiting magnetic tweezers and magnetic torque tweezers, designed to measure the twist and torque of individual molecules. By directly monitoring changes in DNA twist on RAD51 binding, we determine the unwinding angle per RAD51 monomer to be 45°, in quantitative agreement with that of its bacterial homolog, RecA. Measurements of the torque that is built up when RAD51-dsDNA filaments are twisted show that under conditions that suppress ATP hydrolysis the torsional persistence length of the RAD51-dsDNA filament exceeds that of its RecA counterpart by a factor of three. Examination of the filament’s torsional stiffness for different combinations of divalent ions and nucleotide cofactors reveals that the Ca2+ ion, apart from suppressing ATPase activity, plays a key role in increasing the torsional stiffness of the filament. These quantitative measurements of RAD51-imposed DNA distortions and accumulated mechanical stress suggest a finely tuned interplay between chemical and mechanical interactions within the RAD51 nucleoprotein filament. PMID:23703213

  10. Promotion of Homologous Recombination and Genomic Stability by RAD51AP1 via RAD51 Recombinase Enhancement

    PubMed Central

    Wiese, Claudia; Dray, Eloïse; Groesser, Torsten; Filippo, Joseph San; Shi, Idina; Collins, David W.; Tsai, Miaw-Sheue; Williams, Gareth; Rydberg, Bjorn; Sung, Patrick; Schild, David

    2007-01-01

    Summary Homologous recombination (HR) repairs chromosome damage and is indispensable for tumor suppression in humans. RAD51 mediates the DNA strand pairing step in HR. RAD51AP1 (RAD51 Associated Protein 1) is a RAD51-interacting protein whose function has remained elusive. Knockdown of RAD51AP1 in human cells by RNA interference engenders sensitivity to different types of genotoxic stress, and RAD51AP1 is epistatic to the HR protein XRCC3. Moreover, RAD51AP1-depleted cells are impaired for the recombinational repair of a DNA double-strand break and exhibit chromatid breaks both spontaneously and upon DNA damaging treatment. Purified RAD51AP1 binds both dsDNA and a D-loop structure, and, only when able to interact with RAD51, greatly stimulates the RAD51-mediated D-loop reaction. Biochemical and cytological results show that RAD51AP1 functions at a step subsequent to the assembly of the RAD51-ssDNA nucleoprotein filament. Our findings provide evidence that RAD51AP1 helps maintain genomic integrity via RAD51 recombinase enhancement. PMID:17996711

  11. RAD51B in Familial Breast Cancer.

    PubMed

    Pelttari, Liisa M; Khan, Sofia; Vuorela, Mikko; Kiiski, Johanna I; Vilske, Sara; Nevanlinna, Viivi; Ranta, Salla; Schleutker, Johanna; Winqvist, Robert; Kallioniemi, Anne; Dörk, Thilo; Bogdanova, Natalia V; Figueroa, Jonine; Pharoah, Paul D P; Schmidt, Marjanka K; Dunning, Alison M; García-Closas, Montserrat; Bolla, Manjeet K; Dennis, Joe; Michailidou, Kyriaki; Wang, Qin; Hopper, John L; Southey, Melissa C; Rosenberg, Efraim H; Fasching, Peter A; Beckmann, Matthias W; Peto, Julian; Dos-Santos-Silva, Isabel; Sawyer, Elinor J; Tomlinson, Ian; Burwinkel, Barbara; Surowy, Harald; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E; Nordestgaard, Børge G; Benitez, Javier; González-Neira, Anna; Neuhausen, Susan L; Anton-Culver, Hoda; Brenner, Hermann; Arndt, Volker; Meindl, Alfons; Schmutzler, Rita K; Brauch, Hiltrud; Brüning, Thomas; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Hartikainen, Jaana M; Chenevix-Trench, Georgia; Van Dyck, Laurien; Janssen, Hilde; Chang-Claude, Jenny; Rudolph, Anja; Radice, Paolo; Peterlongo, Paolo; Hallberg, Emily; Olson, Janet E; Giles, Graham G; Milne, Roger L; Haiman, Christopher A; Schumacher, Fredrick; Simard, Jacques; Dumont, Martine; Kristensen, Vessela; Borresen-Dale, Anne-Lise; Zheng, Wei; Beeghly-Fadiel, Alicia; Grip, Mervi; Andrulis, Irene L; Glendon, Gord; Devilee, Peter; Seynaeve, Caroline; Hooning, Maartje J; Collée, Margriet; Cox, Angela; Cross, Simon S; Shah, Mitul; Luben, Robert N; Hamann, Ute; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; Couch, Fergus J; Yannoukakos, Drakoulis; Orr, Nick; Swerdlow, Anthony; Darabi, Hatef; Li, Jingmei; Czene, Kamila; Hall, Per; Easton, Douglas F; Mattson, Johanna; Blomqvist, Carl; Aittomäki, Kristiina; Nevanlinna, Heli

    2016-01-01

    Common variation on 14q24.1, close to RAD51B, has been associated with breast cancer: rs999737 and rs2588809 with the risk of female breast cancer and rs1314913 with the risk of male breast cancer. The aim of this study was to investigate the role of RAD51B variants in breast cancer predisposition, particularly in the context of familial breast cancer in Finland. We sequenced the coding region of RAD51B in 168 Finnish breast cancer patients from the Helsinki region for identification of possible recurrent founder mutations. In addition, we studied the known rs999737, rs2588809, and rs1314913 SNPs and RAD51B haplotypes in 44,791 breast cancer cases and 43,583 controls from 40 studies participating in the Breast Cancer Association Consortium (BCAC) that were genotyped on a custom chip (iCOGS). We identified one putatively pathogenic missense mutation c.541C>T among the Finnish cancer patients and subsequently genotyped the mutation in additional breast cancer cases (n = 5259) and population controls (n = 3586) from Finland and Belarus. No significant association with breast cancer risk was seen in the meta-analysis of the Finnish datasets or in the large BCAC dataset. The association with previously identified risk variants rs999737, rs2588809, and rs1314913 was replicated among all breast cancer cases and also among familial cases in the BCAC dataset. The most significant association was observed for the haplotype carrying the risk-alleles of all the three SNPs both among all cases (odds ratio (OR): 1.15, 95% confidence interval (CI): 1.11-1.19, P = 8.88 x 10-16) and among familial cases (OR: 1.24, 95% CI: 1.16-1.32, P = 6.19 x 10-11), compared to the haplotype with the respective protective alleles. Our results suggest that loss-of-function mutations in RAD51B are rare, but common variation at the RAD51B region is significantly associated with familial breast cancer risk. PMID:27149063

  12. RAD51B in Familial Breast Cancer

    PubMed Central

    Pelttari, Liisa M.; Khan, Sofia; Vuorela, Mikko; Kiiski, Johanna I.; Vilske, Sara; Nevanlinna, Viivi; Ranta, Salla; Schleutker, Johanna; Winqvist, Robert; Kallioniemi, Anne; Dörk, Thilo; Bogdanova, Natalia V.; Figueroa, Jonine; Pharoah, Paul D. P.; Schmidt, Marjanka K.; Dunning, Alison M.; García-Closas, Montserrat; Bolla, Manjeet K.; Dennis, Joe; Michailidou, Kyriaki; Wang, Qin; Hopper, John L.; Southey, Melissa C.; Rosenberg, Efraim H.; Fasching, Peter A.; Beckmann, Matthias W.; Peto, Julian; dos-Santos-Silva, Isabel; Sawyer, Elinor J.; Tomlinson, Ian; Burwinkel, Barbara; Surowy, Harald; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E.; Nordestgaard, Børge G.; Benitez, Javier; González-Neira, Anna; Neuhausen, Susan L.; Anton-Culver, Hoda; Brenner, Hermann; Arndt, Volker; Meindl, Alfons; Schmutzler, Rita K.; Brauch, Hiltrud; Brüning, Thomas; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Hartikainen, Jaana M.; Chenevix-Trench, Georgia; Van Dyck, Laurien; Janssen, Hilde; Chang-Claude, Jenny; Rudolph, Anja; Radice, Paolo; Peterlongo, Paolo; Hallberg, Emily; Olson, Janet E.; Giles, Graham G.; Milne, Roger L.; Haiman, Christopher A.; Schumacher, Fredrick; Simard, Jacques; Dumont, Martine; Kristensen, Vessela; Borresen-Dale, Anne-Lise; Zheng, Wei; Beeghly-Fadiel, Alicia; Grip, Mervi; Andrulis, Irene L.; Glendon, Gord; Devilee, Peter; Seynaeve, Caroline; Hooning, Maartje J.; Collée, Margriet; Cox, Angela; Cross, Simon S.; Shah, Mitul; Luben, Robert N.; Hamann, Ute; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; Couch, Fergus J.; Yannoukakos, Drakoulis; Orr, Nick; Swerdlow, Anthony; Darabi, Hatef; Li, Jingmei; Czene, Kamila; Hall, Per; Easton, Douglas F.; Mattson, Johanna; Blomqvist, Carl; Aittomäki, Kristiina; Nevanlinna, Heli

    2016-01-01

    Common variation on 14q24.1, close to RAD51B, has been associated with breast cancer: rs999737 and rs2588809 with the risk of female breast cancer and rs1314913 with the risk of male breast cancer. The aim of this study was to investigate the role of RAD51B variants in breast cancer predisposition, particularly in the context of familial breast cancer in Finland. We sequenced the coding region of RAD51B in 168 Finnish breast cancer patients from the Helsinki region for identification of possible recurrent founder mutations. In addition, we studied the known rs999737, rs2588809, and rs1314913 SNPs and RAD51B haplotypes in 44,791 breast cancer cases and 43,583 controls from 40 studies participating in the Breast Cancer Association Consortium (BCAC) that were genotyped on a custom chip (iCOGS). We identified one putatively pathogenic missense mutation c.541C>T among the Finnish cancer patients and subsequently genotyped the mutation in additional breast cancer cases (n = 5259) and population controls (n = 3586) from Finland and Belarus. No significant association with breast cancer risk was seen in the meta-analysis of the Finnish datasets or in the large BCAC dataset. The association with previously identified risk variants rs999737, rs2588809, and rs1314913 was replicated among all breast cancer cases and also among familial cases in the BCAC dataset. The most significant association was observed for the haplotype carrying the risk-alleles of all the three SNPs both among all cases (odds ratio (OR): 1.15, 95% confidence interval (CI): 1.11–1.19, P = 8.88 x 10−16) and among familial cases (OR: 1.24, 95% CI: 1.16–1.32, P = 6.19 x 10−11), compared to the haplotype with the respective protective alleles. Our results suggest that loss-of-function mutations in RAD51B are rare, but common variation at the RAD51B region is significantly associated with familial breast cancer risk. PMID:27149063

  13. Characterization of the Interaction between the Saccharomyces cerevisiae Rad51 Recombinase and the DNA Translocase Rdh54*

    PubMed Central

    Santa Maria, Sergio R.; Kwon, YoungHo; Sung, Patrick; Klein, Hannah L.

    2013-01-01

    The Saccharomyces cerevisiae Rdh54 protein is a member of the Swi2/Snf2 family of DNA translocases required for meiotic and mitotic recombination and DNA repair. Rdh54 interacts with the general recombinases Rad51 and Dmc1 and promotes D-loop formation with either recombinase. Rdh54 also mediates the removal of Rad51 from undamaged chromatin in mitotic cells, which prevents formation of nonrecombinogenic complexes that can otherwise become toxic for cell growth. To determine which of the mitotic roles of Rdh54 are dependent on Rad51 complex formation, we finely mapped the Rad51 interaction domain in Rdh54, generated N-terminal truncation variants, and characterized their attributes biochemically and in cells. Here, we provide evidence suggesting that the N-terminal region of Rdh54 is not necessary for the response to the DNA-damaging agent methyl methanesulfonate. However, truncation variants missing 75–200 residues at the N terminus are sensitive to Rad51 overexpression. Interestingly, a hybrid protein containing the N-terminal region of Rad54, responsible for Rad51 interaction, fused to the Swi2/Snf2 core of Rdh54 is able to effectively complement the sensitivity to both methyl methanesulfonate and excess Rad51 in rdh54 null cells. Altogether, these results reveal a distinction between damage sensitivity and Rad51 removal with regard to Rdh54 interaction with Rad51. PMID:23798704

  14. Promotion of Homologous Recombination and Genomic Stability byRAD51AP1 via RAD51 Recombinase Enhancement

    SciTech Connect

    Wiese, Claudia; Dray, Eloise; Groesser, Torsten; San Filippo,Joseph; Shi, Idina; Collins, David W.; Tsai, Miaw-Sheue; Williams,Gareth; Rydberg, Bjorn; Sung, Patrick; Schild, David

    2007-04-11

    Homologous recombination (HR) repairs chromosome damage and is indispensable for tumor suppression in humans. RAD51 mediates the DNA strand pairing step in HR. RAD51AP1 (RAD51 Associated Protein 1) is a RAD51-interacting protein whose function has remained elusive. Knockdown of RAD51AP1 in human cells by RNA interference engenders sensitivity to different types of genotoxic stress. Moreover, RAD51AP1-depleted cells are impaired for the recombinational repair of a DNA double-strand break and exhibit chromatid breaks both spontaneously and upon DNA damaging treatment. Purified RAD51AP1 binds dsDNA and RAD51, and it greatly stimulates the RAD51-mediated D-loop reaction. Biochemical and cytological results show that RAD51AP1 functions at a step subsequent to the assembly of the RAD51-ssDNA nucleoprotein filament. Our findings provide the first evidence that RAD51AP1 helps maintain genomic integrity via RAD51 recombinase enhancement.

  15. Two classes of BRC repeats in BRCA2 promote RAD51 nucleoprotein filament function by distinct mechanisms.

    PubMed

    Carreira, Aura; Kowalczykowski, Stephen C

    2011-06-28

    The human tumor suppressor protein BRCA2 plays a key role in recombinational DNA repair. BRCA2 recruits RAD51 to sites of DNA damage through interaction with eight conserved motifs of approximately 35 amino acids, the BRC repeats; however, the specific function of each repeat remains unclear. Here, we investigated the function of the individual BRC repeats by systematically analyzing their effects on RAD51 activities. Our results reveal the existence of two categories of BRC repeats that display unique functional characteristics. One group, comprising BRC1, -2, -3, and -4, binds to free RAD51 with high affinity. The second group, comprising BRC5, -6, -7, and -8, binds to free RAD51 with low affinity but binds to the RAD51-ssDNA filament with high affinity. Each member of the first group reduces the ATPase activity of RAD51, whereas none of the BRC repeats of the second group affects this activity. Thus, through different mechanisms, both types of BRC repeats bind to and stabilize the RAD51 nucleoprotein filament on ssDNA. In addition, members of the first group limit binding of RAD51 to duplex DNA, where members of the second group do not. Only the first group enhances DNA strand exchange by RAD51. Our results suggest that the two groups of BRC repeats have differentially evolved to ensure efficient formation of a nascent RAD51 filament on ssDNA by promoting its nucleation and growth, respectively. We propose that the BRC repeats cooperate in a partially redundant but reinforcing manner to ensure a high probability of RAD51 filament formation.

  16. Contribution of Germline Mutations in the RAD51B, RAD51C, and RAD51D Genes to Ovarian Cancer in the Population

    PubMed Central

    Song, Honglin; Dicks, Ed; Ramus, Susan J.; Tyrer, Jonathan P.; Intermaggio, Maria P.; Hayward, Jane; Edlund, Christopher K.; Conti, David; Harrington, Patricia; Fraser, Lindsay; Philpott, Susan; Anderson, Christopher; Rosenthal, Adam; Gentry-Maharaj, Aleksandra; Bowtell, David D.; Alsop, Kathryn; Cicek, Mine S.; Cunningham, Julie M.; Fridley, Brooke L.; Alsop, Jennifer; Jimenez-Linan, Mercedes; Høgdall, Estrid; Høgdall, Claus K.; Jensen, Allan; Kjaer, Susanne Krüger; Lubiński, Jan; Huzarski, Tomasz; Jakubowska, Anna; Gronwald, Jacek; Poblete, Samantha; Lele, Shashi; Sucheston-Campbell, Lara; Moysich, Kirsten B.; Odunsi, Kunle; Goode, Ellen L.; Menon, Usha; Jacobs, Ian J.; Gayther, Simon A.; Pharoah, Paul D.P.

    2015-01-01

    Purpose The aim of this study was to estimate the contribution of deleterious mutations in the RAD51B, RAD51C, and RAD51D genes to invasive epithelial ovarian cancer (EOC) in the population and in a screening trial of individuals at high risk of ovarian cancer. Patients and Methods The coding sequence and splice site boundaries of the three RAD51 genes were sequenced and analyzed in germline DNA from a case-control study of 3,429 patients with invasive EOC and 2,772 controls as well as in 2,000 unaffected women who were BRCA1/BRCA2 negative from the United Kingdom Familial Ovarian Cancer Screening Study (UK_FOCSS) after quality-control analysis. Results In the case-control study, we identified predicted deleterious mutations in 28 EOC cases (0.82%) compared with three controls (0.11%; P < .001). Mutations in EOC cases were more frequent in RAD51C (14 occurrences, 0.41%) and RAD51D (12 occurrences, 0.35%) than in RAD51B (two occurrences, 0.06%). RAD51C mutations were associated with an odds ratio of 5.2 (95% CI, 1.1 to 24; P = .035), and RAD51D mutations conferred an odds ratio of 12 (95% CI, 1.5 to 90; P = .019). We identified 13 RAD51 mutations (0.65%) in unaffected UK_FOCSS participants (RAD51C, n = 7; RAD51D, n = 5; and RAD51B, n = 1), which was a significantly greater rate than in controls (P < .001); furthermore, RAD51 mutation carriers were more likely than noncarriers to have a family history of ovarian cancer (P < .001). Conclusion These results confirm that RAD51C and RAD51D are moderate ovarian cancer susceptibility genes and suggest that they confer levels of risk of EOC that may warrant their use alongside BRCA1 and BRCA2 in routine clinical genetic testing. PMID:26261251

  17. TODRA, a lncRNA at the RAD51 Locus, Is Oppositely Regulated to RAD51, and Enhances RAD51-Dependent DSB (Double Strand Break) Repair

    PubMed Central

    Renbaum, Paul; Zeligson, Sharon; Eini, Lital; Bashari, Dana; Smith, Yoav; Lahad, Amnon; Goldberg, Michal; Ginsberg, Doron; Levy-Lahad, Ephrat

    2015-01-01

    Expression of RAD51, a crucial player in homologous recombination (HR) and DNA double-strand break (DSB) repair, is dysregulated in human tumors, and can contribute to genomic instability and tumor progression. To further understand RAD51 regulation we functionally characterized a long non-coding (lnc) RNA, dubbed TODRA (Transcribed in the Opposite Direction of RAD51), transcribed 69bp upstream to RAD51, in the opposite direction. We demonstrate that TODRA is an expressed transcript and that the RAD51 promoter region is bidirectional, supporting TODRA expression (7-fold higher than RAD51 in this assay, p = 0.003). TODRA overexpression in HeLa cells induced expression of TPIP, a member of the TPTE family which includes PTEN. Similar to PTEN, we found that TPIP co-activates E2F1 induction of RAD51. Analysis of E2F1's effect on the bidirectional promoter showed that E2F1 binding to the same site that promotes RAD51 expression, results in downregulation of TODRA. Moreover, TODRA overexpression induces HR in a RAD51-dependent DSB repair assay, and increases formation of DNA damage-induced RAD51-positive foci. Importantly, gene expression in breast tumors supports our finding that E2F1 oppositely regulates RAD51 and TODRA: increased RAD51 expression, which is associated with an aggressive tumor phenotype (e.g. negative correlation with positive ER (r = -0.22, p = 0.02) and positive PR status (r = -0.27, p<0.001); positive correlation with ki67 status (r = 0.36, p = 0.005) and HER2 amplification (r = 0.41, p = 0.001)), correlates as expected with lower TODRA and higher E2F1 expression. However, although E2F1 induction resulted in TPIP downregulation in cell lines, we find that TPIP expression in tumors is not reduced despite higher E2F1 expression, perhaps contributing to increased RAD51 expression. Our results identify TPIP as a novel E2F1 co-activator, suggest a similar role for other TPTEs, and indicate that the TODRA lncRNA affects RAD51 dysregulation and RAD51

  18. BRCA2 BRC motifs bind RAD51-DNA filaments.

    PubMed

    Galkin, Vitold E; Esashi, Fumiko; Yu, Xiong; Yang, Shixin; West, Stephen C; Egelman, Edward H

    2005-06-14

    Germ-line mutations in BRCA2 account for approximately half the cases of autosomal dominant familial breast cancers. BRCA2 has been shown to interact directly with RAD51, an essential component of the cellular machinery for homologous recombination and the maintenance of genome stability. Interactions between BRCA2 and RAD51 take place by means of the conserved BRC repeat regions of BRCA2. Previously, it was shown that peptides corresponding to BRC3 or BRC4 bind RAD51 monomers and block RAD51-DNA filament formation. In this work, we further analyze these interactions and find that at lower molar ratios BRC3 or BRC4 actually bind and form stable complexes with RAD51-DNA nucleoprotein filaments. Only at high concentrations of the BRC repeats are filaments disrupted. The specific protein-protein contacts occur in the RAD51 filament by means of the N-terminal domain of RAD51 for BRC3 and the nucleotide-binding core of RAD51 for BRC4. These observations show that the BRC repeats bind distinct regions of RAD51 and are nonequivalent in their mode of interaction. The results provide insight into why mutation in just one of the eight BRC repeats would affect the way that BRCA2 protein interacts with the RAD51 filament. Disruption of a single RAD51 interaction site, one of several simultaneous interactions occurring throughout the BRC repeat-containing exon 11 of BRCA2, might modulate the ability of RAD51 to promote recombinational repair and lead to an increased risk of breast cancer.

  19. Nuclear localization of Rad51B is independent of BRCA2

    SciTech Connect

    Miller, K A; Hinz, J M; Yamada, A; Thompson, L H; Albala, J S

    2005-06-28

    Human Rad51 is critical for the maintenance of genome stability through its role in the repair of DNA double-strand breaks. Rad51B (Rad51L1/hRec2) is one of the five known paralogs of human Rad51 found in a multi-protein complex with three other Rad51 paralogs, Rad51C, Rad51D and Xrcc2. Examination of EGFP-Rad51B fusion protein in HeLa S3 cells and immunofluorescence in several human cell lines confirms the nuclear localization of Rad51B. This is the first report to detail putative interactions of a Rad51 paralog protein with BRCA2. Utilization of a BRCA2 mutant cell line, CAPAN-1 suggests that Rad51B localizes to the nucleus independent of BRCA2. Although both Rad51B and BRCA2 are clearly involved in the homologous recombinational repair pathway, Rad51B and BRCA2 do not appear to associate directly. Furthermore, mutations in the KKLK motif of Rad51B, amino acid residues 4-7, mislocalizes Rad51B to the cytoplasm suggesting that this is the nuclear localization signal for the Rad51B protein. Examination of wild-type EGFP-Rad51B fusion protein in mammalian cells deficient in Rad51C showed that Rad51B localizes to the nucleus independent of Rad51C; further suggesting that Rad51B, like Rad51C, contains its own nuclear localization signal.

  20. Dbl2 Regulates Rad51 and DNA Joint Molecule Metabolism to Ensure Proper Meiotic Chromosome Segregation

    PubMed Central

    Hyppa, Randy W.; Benko, Zsigmond; Misova, Ivana; Schleiffer, Alexander; Smith, Gerald R.; Gregan, Juraj

    2016-01-01

    To identify new proteins required for faithful meiotic chromosome segregation, we screened a Schizosaccharomyces pombe deletion mutant library and found that deletion of the dbl2 gene led to missegregation of chromosomes during meiosis. Analyses of both live and fixed cells showed that dbl2Δ mutant cells frequently failed to segregate homologous chromosomes to opposite poles during meiosis I. Removing Rec12 (Spo11 homolog) to eliminate meiotic DNA double-strand breaks (DSBs) suppressed the segregation defect in dbl2Δ cells, indicating that Dbl2 acts after the initiation of meiotic recombination. Analyses of DSBs and Holliday junctions revealed no significant defect in their formation or processing in dbl2Δ mutant cells, although some Rec12-dependent DNA joint molecules persisted late in meiosis. Failure to segregate chromosomes in the absence of Dbl2 correlated with persistent Rad51 foci, and deletion of rad51 or genes encoding Rad51 mediators also suppressed the segregation defect of dbl2Δ. Formation of foci of Fbh1, an F-box helicase that efficiently dismantles Rad51-DNA filaments, was impaired in dbl2Δ cells. Our results suggest that Dbl2 is a novel regulator of Fbh1 and thereby Rad51-dependent DSB repair required for proper meiotic chromosome segregation and viable sex cell formation. The wide conservation of these proteins suggests that our results apply to many species. PMID:27304859

  1. Rad51 Regulates Reprogramming Efficiency through DNA Repair Pathway

    PubMed Central

    Lee, Jae-Young; Kim, Dae-Kwan; Ko, Jeong-Jae; Kim, Keun Pil; Park, Kyung-Soon

    2016-01-01

    Rad51 is a key component of homologous recombination (HR) to repair DNA double-strand breaks and it forms Rad51 recombinase filaments of broken single-stranded DNA to promote HR. In addition to its role in DNA repair and cell cycle progression, Rad51 contributes to the reprogramming process during the generation of induced pluripotent stem cells. In light of this, we performed reprogramming experiments to examine the effect of co-expression of Rad51 and four reprogramming factors, Oct4, Sox2, Klf4, and c-Myc, on the reprogramming efficiency. Co-expression of Rad51 significantly increased the numbers of alkaline phosphatase-positive colonies and embryonic stem cell-like colonies during the process of reprogramming. Co-expression ofRad51 significantly increased the expression of epithelial markers at an early stage of reprogramming compared with control cells. Phosphorylated histone H2AX (γH2AX), which initiates the DNA double-strand break repair system, was highly accumulated in reprogramming intermediates upon co-expression of Rad51. This study identified a novel role of Rad51 in enhancing the reprogramming efficiency, possibly by facilitating mesenchymal-to-epithelial transition and by regulating a DNA damage repair pathway during the early phase of the reprogramming process. PMID:27660832

  2. Rad51 Regulates Reprogramming Efficiency through DNA Repair Pathway.

    PubMed

    Lee, Jae-Young; Kim, Dae-Kwan; Ko, Jeong-Jae; Kim, Keun Pil; Park, Kyung-Soon

    2016-06-01

    Rad51 is a key component of homologous recombination (HR) to repair DNA double-strand breaks and it forms Rad51 recombinase filaments of broken single-stranded DNA to promote HR. In addition to its role in DNA repair and cell cycle progression, Rad51 contributes to the reprogramming process during the generation of induced pluripotent stem cells. In light of this, we performed reprogramming experiments to examine the effect of co-expression of Rad51 and four reprogramming factors, Oct4, Sox2, Klf4, and c-Myc, on the reprogramming efficiency. Co-expression of Rad51 significantly increased the numbers of alkaline phosphatase-positive colonies and embryonic stem cell-like colonies during the process of reprogramming. Co-expression ofRad51 significantly increased the expression of epithelial markers at an early stage of reprogramming compared with control cells. Phosphorylated histone H2AX (γH2AX), which initiates the DNA double-strand break repair system, was highly accumulated in reprogramming intermediates upon co-expression of Rad51. This study identified a novel role of Rad51 in enhancing the reprogramming efficiency, possibly by facilitating mesenchymal-to-epithelial transition and by regulating a DNA damage repair pathway during the early phase of the reprogramming process. PMID:27660832

  3. RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion.

    PubMed

    Malkova, Anna; Naylor, Maria L; Yamaguchi, Miyuki; Ira, Grzegorz; Haber, James E

    2005-02-01

    Diploid Saccharomyces cells experiencing a double-strand break (DSB) on one homologous chromosome repair the break by RAD51-mediated gene conversion >98% of the time. However, when extensive homologous sequences are restricted to one side of the DSB, repair can occur by both RAD51-dependent and RAD51-independent break-induced replication (BIR) mechanisms. Here we characterize the kinetics and checkpoint dependence of RAD51-dependent BIR when the DSB is created within a chromosome. Gene conversion products appear within 2 h, and there is little, if any, induction of the DNA damage checkpoint; however, RAD51-dependent BIR occurs with a further delay of 2 to 4 h and cells arrest in response to the G(2)/M DNA damage checkpoint. RAD51-dependent BIR does not require special facilitating sequences that are required for a less efficient RAD51-independent process. RAD51-dependent BIR occurs efficiently in G(2)-arrested cells. Once repair is initiated, the rate of repair replication during BIR is comparable to that of normal DNA replication, as copying of >100 kb is completed less than 30 min after repair DNA synthesis is detected close to the DSB.

  4. Rad51 supports triple negative breast cancer metastasis

    PubMed Central

    Wiegmans, Adrian P; Al-Ejeh, Fares; Chee, Nicole; Yap, Pei-Yi; Gorski, Julia J; Silva, Leonard Da; Bolderson, Emma; Chenevix-Trench, Georgia; Anderson, Robin; Simpson, Peter T; Lakhani, Sunil R; Khanna, Kum Kum

    2014-01-01

    In contrast to extensive studies on familial breast cancer, it is currently unclear whether defects in DNA double strand break (DSB) repair genes play a role in sporadic breast cancer development and progression. We performed analysis of immunohistochemistry in an independent cohort of 235 were sporadic breast tumours. This analysis suggested that RAD51 expression is increased during breast cancer progression and metastasis and an oncogenic role for RAD51 when deregulated. Subsequent knockdown of RAD51 repressed cancer cell migration in vitro and reduced primary tumor growth in a syngeneic mouse model in vivo. Loss of RAD51 also inhibited associated metastasis not only in syngeneic mice but human xenografts and changed the metastatic gene expression profile of cancer cells, consistent with inhibition of distant metastasis. This demonstrates for the first time a new function of RAD51 that may underlie the proclivity of patients with RAD51 overexpression to develop distant metastasis. RAD51 is a potential biomarker and attractive drug target for metastatic triple negative breast cancer, with the capability to extend the survival of patients, which is less than 6 months. PMID:24811120

  5. A core activity associated with the N terminus of the yeast RAD52 protein is revealed by RAD51 overexpression suppression of C-terminal rad52 truncation alleles.

    PubMed Central

    Asleson, E N; Okagaki, R J; Livingston, D M

    1999-01-01

    C-terminal rad52 truncation and internal deletion mutants were characterized for their ability to repair MMS-induced double-strand breaks and to produce viable spores during meiosis. The rad52-Delta251 allele, encoding the N-terminal 251 amino acids of the predicted 504-amino-acid polypeptide, supports partial activity for both functions. Furthermore, RAD51 overexpression completely suppresses the MMS sensitivity of a rad52-Delta251 mutant. The absence of the C terminus in the truncated protein makes it likely that suppression occurs by bypassing the C-terminal functions of Rad52p. RAD51 overexpression does not suppress the low level of spore viability that the rad52-Delta251 allele causes and only partially suppresses the defect in rad52 alleles encoding the N-terminal 292 or 327 amino acids. The results of this study also show that intragenic complementation between rad52 alleles is governed by a complex relationship that depends heavily on the two alleles involved and their relative dosage. In heteroallelic rad52 diploids, the rad52-Delta251 allele does not complement rad52 missense mutations altering residues 61 or 64 in the N terminus. However, complementation is achieved with each of these missense alleles when the rad52-Delta251 allele is overexpressed. Complementation also occurs between rad52-Delta327 and an internal deletion allele missing residues 210 through 327. We suggest that the first 251 amino acids of Rad52p constitute a core domain that provides critical RAD52 activities. PMID:10511548

  6. ATP-dependent nucleosome unwrapping catalyzed by human RAD51.

    PubMed

    North, Justin A; Amunugama, Ravindra; Klajner, Marcelina; Bruns, Aaron N; Poirier, Michael G; Fishel, Richard

    2013-08-01

    Double-strand breaks (DSB) occur in chromatin following replication fork collapse and chemical or physical damage [Symington and Gautier (Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 2011;45:247-271.)] and may be repaired by homologous recombination (HR) and non-homologous end-joining. Nucleosomes are the fundamental units of chromatin and must be remodeled during DSB repair by HR [Andrews and Luger (Nucleosome structure(s) and stability: variations on a theme. Annu. Rev. Biophys. 2011;40:99-117.)]. Physical initiation of HR requires RAD51, which forms a nucleoprotein filament (NPF) that catalyzes homologous pairing and strand exchange (recombinase) between DNAs that ultimately bridges the DSB gap [San Filippo, Sung and Klein. (Mechanism of eukaryotic HR. Annu. Rev. Biochem. 2008;77:229-257.)]. RAD51 forms an NPF on single-stranded DNA and double-stranded DNA (dsDNA). Although the single-stranded DNA NPF is essential for recombinase initiation, the role of the dsDNA NPF is less clear. Here, we demonstrate that the human RAD51 (HsRAD51) dsDNA NPF disassembles nucleosomes by unwrapping the DNA from the core histones. HsRAD51 that has been constitutively or biochemically activated for recombinase functions displays significantly reduced nucleosome disassembly activity. These results suggest that HsRAD51 can perform ATP hydrolysis-dependent nucleosome disassembly in addition to its recombinase functions. PMID:23757189

  7. Rad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation.

    PubMed

    Vallerga, María Belén; Mansilla, Sabrina F; Federico, María Belén; Bertolin, Agustina P; Gottifredi, Vanesa

    2015-12-01

    After UV irradiation, DNA polymerases specialized in translesion DNA synthesis (TLS) aid DNA replication. However, it is unclear whether other mechanisms also facilitate the elongation of UV-damaged DNA. We wondered if Rad51 recombinase (Rad51), a factor that escorts replication forks, aids replication across UV lesions. We found that depletion of Rad51 impairs S-phase progression and increases cell death after UV irradiation. Interestingly, Rad51 and the TLS polymerase polη modulate the elongation of nascent DNA in different ways, suggesting that DNA elongation after UV irradiation does not exclusively rely on TLS events. In particular, Rad51 protects the DNA synthesized immediately before UV irradiation from degradation and avoids excessive elongation of nascent DNA after UV irradiation. In Rad51-depleted samples, the degradation of DNA was limited to the first minutes after UV irradiation and required the exonuclease activity of the double strand break repair nuclease (Mre11). The persistent dysregulation of nascent DNA elongation after Rad51 knockdown required Mre11, but not its exonuclease activity, and PrimPol, a DNA polymerase with primase activity. By showing a crucial contribution of Rad51 to the synthesis of nascent DNA, our results reveal an unanticipated complexity in the regulation of DNA elongation across UV-damaged templates.

  8. Rad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation

    PubMed Central

    Vallerga, María Belén; Mansilla, Sabrina F.; Federico, María Belén; Bertolin, Agustina P.; Gottifredi, Vanesa

    2015-01-01

    After UV irradiation, DNA polymerases specialized in translesion DNA synthesis (TLS) aid DNA replication. However, it is unclear whether other mechanisms also facilitate the elongation of UV-damaged DNA. We wondered if Rad51 recombinase (Rad51), a factor that escorts replication forks, aids replication across UV lesions. We found that depletion of Rad51 impairs S-phase progression and increases cell death after UV irradiation. Interestingly, Rad51 and the TLS polymerase polη modulate the elongation of nascent DNA in different ways, suggesting that DNA elongation after UV irradiation does not exclusively rely on TLS events. In particular, Rad51 protects the DNA synthesized immediately before UV irradiation from degradation and avoids excessive elongation of nascent DNA after UV irradiation. In Rad51-depleted samples, the degradation of DNA was limited to the first minutes after UV irradiation and required the exonuclease activity of the double strand break repair nuclease (Mre11). The persistent dysregulation of nascent DNA elongation after Rad51 knockdown required Mre11, but not its exonuclease activity, and PrimPol, a DNA polymerase with primase activity. By showing a crucial contribution of Rad51 to the synthesis of nascent DNA, our results reveal an unanticipated complexity in the regulation of DNA elongation across UV-damaged templates. PMID:26627254

  9. Rad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation.

    PubMed

    Vallerga, María Belén; Mansilla, Sabrina F; Federico, María Belén; Bertolin, Agustina P; Gottifredi, Vanesa

    2015-12-01

    After UV irradiation, DNA polymerases specialized in translesion DNA synthesis (TLS) aid DNA replication. However, it is unclear whether other mechanisms also facilitate the elongation of UV-damaged DNA. We wondered if Rad51 recombinase (Rad51), a factor that escorts replication forks, aids replication across UV lesions. We found that depletion of Rad51 impairs S-phase progression and increases cell death after UV irradiation. Interestingly, Rad51 and the TLS polymerase polη modulate the elongation of nascent DNA in different ways, suggesting that DNA elongation after UV irradiation does not exclusively rely on TLS events. In particular, Rad51 protects the DNA synthesized immediately before UV irradiation from degradation and avoids excessive elongation of nascent DNA after UV irradiation. In Rad51-depleted samples, the degradation of DNA was limited to the first minutes after UV irradiation and required the exonuclease activity of the double strand break repair nuclease (Mre11). The persistent dysregulation of nascent DNA elongation after Rad51 knockdown required Mre11, but not its exonuclease activity, and PrimPol, a DNA polymerase with primase activity. By showing a crucial contribution of Rad51 to the synthesis of nascent DNA, our results reveal an unanticipated complexity in the regulation of DNA elongation across UV-damaged templates. PMID:26627254

  10. Roles of Rad51 paralogs for promoting homologous recombination in Leishmania infantum

    PubMed Central

    Genois, Marie-Michelle; Plourde, Marie; Éthier, Chantal; Roy, Gaétan; Poirier, Guy G.; Ouellette, Marc; Masson, Jean-Yves

    2015-01-01

    To achieve drug resistance Leishmania parasite alters gene copy number by using its repeated sequences widely distributed through the genome. Even though homologous recombination (HR) is ascribed to maintain genome stability, this eukaryote exploits this potent mechanism driven by the Rad51 recombinase to form beneficial extrachromosomal circular amplicons. Here, we provide insights on the formation of these circular amplicons by analyzing the functions of the Rad51 paralogs. We purified three Leishmania infantum Rad51 paralogs homologs (LiRad51-3, LiRad51-4 and LiRad51-6) all of which directly interact with LiRad51. LiRad51-3, LiRad51-4 and LiRad51-6 show differences in DNA binding and annealing capacities. Moreover, it is also noteworthy that LiRad51-3 and LiRad51-4 are able to stimulate Rad51-mediated D-loop formation. In addition, we succeed to inactivate the LiRad51-4 gene and report a decrease of circular amplicons in this mutant. The LiRad51-3 gene was found to be essential for cell viability. Thus, we propose that the LiRad51 paralogs play crucial functions in extrachromosomal circular DNA amplification to circumvent drug actions and preserve survival. PMID:25712090

  11. Roles of Rad51 paralogs for promoting homologous recombination in Leishmania infantum.

    PubMed

    Genois, Marie-Michelle; Plourde, Marie; Éthier, Chantal; Roy, Gaétan; Poirier, Guy G; Ouellette, Marc; Masson, Jean-Yves

    2015-03-11

    To achieve drug resistance Leishmania parasite alters gene copy number by using its repeated sequences widely distributed through the genome. Even though homologous recombination (HR) is ascribed to maintain genome stability, this eukaryote exploits this potent mechanism driven by the Rad51 recombinase to form beneficial extrachromosomal circular amplicons. Here, we provide insights on the formation of these circular amplicons by analyzing the functions of the Rad51 paralogs. We purified three Leishmania infantum Rad51 paralogs homologs (LiRad51-3, LiRad51-4 and LiRad51-6) all of which directly interact with LiRad51. LiRad51-3, LiRad51-4 and LiRad51-6 show differences in DNA binding and annealing capacities. Moreover, it is also noteworthy that LiRad51-3 and LiRad51-4 are able to stimulate Rad51-mediated D-loop formation. In addition, we succeed to inactivate the LiRad51-4 gene and report a decrease of circular amplicons in this mutant. The LiRad51-3 gene was found to be essential for cell viability. Thus, we propose that the LiRad51 paralogs play crucial functions in extrachromosomal circular DNA amplification to circumvent drug actions and preserve survival.

  12. Rad51–Rad52 Mediated Maintenance of Centromeric Chromatin in Candida albicans

    PubMed Central

    Mitra, Sreyoshi; Gómez-Raja, Jonathan; Larriba, Germán; Dubey, Dharani Dhar; Sanyal, Kaustuv

    2014-01-01

    Specification of the centromere location in most eukaryotes is not solely dependent on the DNA sequence. However, the non-genetic determinants of centromere identity are not clearly defined. While multiple mechanisms, individually or in concert, may specify centromeres epigenetically, most studies in this area are focused on a universal factor, a centromere-specific histone H3 variant CENP-A, often considered as the epigenetic determinant of centromere identity. In spite of variable timing of its loading at centromeres across species, a replication coupled early S phase deposition of CENP-A is found in most yeast centromeres. Centromeres are the earliest replicating chromosomal regions in a pathogenic budding yeast Candida albicans. Using a 2-dimensional agarose gel electrophoresis assay, we identify replication origins (ORI7-LI and ORI7-RI) proximal to an early replicating centromere (CEN7) in C. albicans. We show that the replication forks stall at CEN7 in a kinetochore dependent manner and fork stalling is reduced in the absence of the homologous recombination (HR) proteins Rad51 and Rad52. Deletion of ORI7-RI causes a significant reduction in the stalled fork signal and an increased loss rate of the altered chromosome 7. The HR proteins, Rad51 and Rad52, have been shown to play a role in fork restart. Confocal microscopy shows declustered kinetochores in rad51 and rad52 mutants, which are evidence of kinetochore disintegrity. CENP-ACaCse4 levels at centromeres, as determined by chromatin immunoprecipitation (ChIP) experiments, are reduced in absence of Rad51/Rad52 resulting in disruption of the kinetochore structure. Moreover, western blot analysis reveals that delocalized CENP-A molecules in HR mutants degrade in a similar fashion as in other kinetochore mutants described before. Finally, co-immunoprecipitation assays indicate that Rad51 and Rad52 physically interact with CENP-ACaCse4 in vivo. Thus, the HR proteins Rad51 and Rad52 epigenetically maintain

  13. Significance of ligand interactions involving Hop2-Mnd1 and the RAD51 and DMC1 recombinases in homologous DNA repair and XX ovarian dysgenesis.

    PubMed

    Zhao, Weixing; Sung, Patrick

    2015-04-30

    The evolutionarily conserved Hop2-Mnd1 complex is a key cofactor for the meiosis-specific recombinase Dmc1. However, emerging evidence has revealed that Hop2-Mnd1 is expressed in somatic tissues, primary human fibroblasts and cell lines, and that it functions in conjunction with the Rad51 recombinase to repair damaged telomeres via the alternate lengthening of telomeres mechanism. Here, we reveal how distinct DNA-binding activities of Hop2-Mnd1 mediate the stabilization of the RAD51-ssDNA presynaptic filament or stimulate the homologous DNA pairing reaction. We have also endeavored to define the interface that governs the assembly of the higher order complex of Hop2-Mnd1 with RAD51. Unexpectedly, we find that ATP enhances the interaction between Hop2-Mnd1 and RAD51, and that both Hop2 and Mnd1 are involved in RAD51 interaction via their C-terminal regions. Importantly, mutations introduced into these Hop2 and Mnd1 domains, including the HOP2 p.del201Glu mutation present in a patient of XX ovarian dysgenesis, diminish the association and functional synergy of Hop2-Mnd1 with both RAD51 and DMC1. Our findings help delineate the intricate manner in which Hop2-Mnd1 engages and functions with RAD51 and DMC1 in mammalian cells and speak to the possible cause of XX ovarian dysgenesis.

  14. Trypanosoma brucei BRCA2 acts in a life cycle-specific genome stability process and dictates BRC repeat number-dependent RAD51 subnuclear dynamics.

    PubMed

    Trenaman, Anna; Hartley, Claire; Prorocic, Marko; Passos-Silva, Danielle G; van den Hoek, Moniek; Nechyporuk-Zloy, Volodymyr; Machado, Carlos R; McCulloch, Richard

    2013-01-01

    Trypanosoma brucei survives in mammals through antigenic variation, which is driven by RAD51-directed homologous recombination of Variant Surface Glycoproteins (VSG) genes, most of which reside in a subtelomeric repository of >1000 silent genes. A key regulator of RAD51 is BRCA2, which in T. brucei contains a dramatic expansion of a motif that mediates interaction with RAD51, termed the BRC repeats. BRCA2 mutants were made in both tsetse fly-derived and mammal-derived T. brucei, and we show that BRCA2 loss has less impact on the health of the former. In addition, we find that genome instability, a hallmark of BRCA2 loss in other organisms, is only seen in mammal-derived T. brucei. By generating cells expressing BRCA2 variants with altered BRC repeat numbers, we show that the BRC repeat expansion is crucial for RAD51 subnuclear dynamics after DNA damage. Finally, we document surprisingly limited co-localization of BRCA2 and RAD51 in the T. brucei nucleus, and we show that BRCA2 mutants display aberrant cell division, revealing a function distinct from BRC-mediated RAD51 interaction. We propose that BRCA2 acts to maintain the huge VSG repository of T. brucei, and this function has necessitated the evolution of extensive RAD51 interaction via the BRC repeats, allowing re-localization of the recombinase to general genome damage when needed.

  15. RAD51C deficiency in mice results in early prophase I arrest in males and sister chromatid separation at metaphase II in females

    PubMed Central

    Kuznetsov, Sergey; Pellegrini, Manuela; Shuda, Kristy; Fernandez-Capetillo, Oscar; Liu, Yilun; Martin, Betty K.; Burkett, Sandra; Southon, Eileen; Pati, Debananda; Tessarollo, Lino; West, Stephen C.; Donovan, Peter J.; Nussenzweig, Andre; Sharan, Shyam K.

    2007-01-01

    RAD51C is a member of the RecA/RAD51 protein family, which is known to play an important role in DNA repair by homologous recombination. In mice, it is essential for viability. Therefore, we have generated a hypomorphic allele of Rad51c in addition to a null allele. A subset of mice expressing the hypomorphic allele is infertile. This infertility is caused by sexually dimorphic defects in meiotic recombination, revealing its two distinct functions. Spermatocytes undergo a developmental arrest during the early stages of meiotic prophase I, providing evidence for the role of RAD51C in early stages of RAD51-mediated recombination. In contrast, oocytes can progress normally to metaphase I after superovulation but display precocious separation of sister chromatids, aneuploidy, and broken chromosomes at metaphase II. These defects suggest a possible late role of RAD51C in meiotic recombination. Based on the marked reduction in Holliday junction (HJ) resolution activity in Rad51c-null mouse embryonic fibroblasts, we propose that this late function may be associated with HJ resolution. PMID:17312021

  16. RAD51 and BRCA2 enhance oncolytic adenovirus type 5 activity in ovarian cancer

    PubMed Central

    Tookman, Laura A.; Browne, Ashley K.; Connell, Claire M.; Bridge, Gemma; Ingemarsdotter, Carin K.; Dowson, Suzanne; Shibata, Atsushi; Lockley, Michelle; Martin, Sarah A.; McNeish, Iain A.

    2015-01-01

    Homologous Recombination (HR) function is critically important in High Grade Serous Ovarian Cancer (HGSOC). HGSOC with intact HR has a worse prognosis and is less likely to respond to platinum chemotherapy and PARP inhibitors. Oncolytic adenovirus, a novel therapy for human malignancies, stimulates a potent DNA damage response that influences overall anti-tumor activity. Here, the importance of HR was investigated by determining the efficacy of adenovirus type 5 (Ad5) vectors in ovarian cancer. Using matched BRCA2 mutant and wild-type HGSOC cells, it was demonstrated that intact HR function promotes viral DNA replication and augments overall efficacy, without influencing viral DNA processing. These data were confirmed in a wider panel of HR competent and defective ovarian cancer lines. Mechanistically, both BRCA2 and RAD51 localize to viral replication centers within the infected cell nucleus and that RAD51 localization occurs independently of BRCA2. In addition, a direct interaction was identified between RAD51 and adenovirus E2 DNA binding protein. Finally, using functional assays of HR competence, despite inducing degradation of MRE11, Ad5 infection does not alter cellular ability to repair DNA double strand break damage via HR. These data reveal that Ad5 redistributes critical HR components to viral replication centers and enhances cytotoxicity. Implications Oncolytic adenoviral therapy may be most clinically relevant in tumors with intact HR function. PMID:26452665

  17. Screening for RAD51 and BRCA2 BRC repeat mutations in breast and ovarian cancer families.

    PubMed

    Rapakko, Katrin; Heikkinen, Katri; Karppinen, Sanna-Maria; Winqvist, Robert

    2006-05-01

    Together, germline mutations in the two major susceptibility genes BRCA1 and BRCA2 account for approximately 20-30% and 70-80% of the familial breast and ovarian cancer cases, respectively. This indicates involvement of additional susceptibility genes, perhaps in combination with a polygenic effect. However, it is also possible that part of the mutations disrupting BRCA1 and BRCA2 function still remains to be discovered. In response to double-strand DNA damage the co-operation between RAD51 and BRCA2 is of great importance, and the conserved BRC repeat motifs in BRCA2 are crucial for this interaction. In the current study, patients belonging to 126 breast and/or ovarian cancer families were screened for RAD51 and BRCA2 BRC repeat mutations in order to uncover aberrations that may contribute to hereditary cancer susceptibility. The performed study revealed several novel alterations, however, none of them appeared to be disease-related. Thus, it seems likely that germline mutations in the highly conserved RAD51 gene are extremely rare and generally poorly tolerated.

  18. ATM/ATR-mediated phosphorylation of PALB2 promotes RAD51 function.

    PubMed

    Ahlskog, Johanna K; Larsen, Brian D; Achanta, Kavya; Sørensen, Claus S

    2016-05-01

    DNA damage activates the ATM and ATR kinases that coordinate checkpoint and DNA repair pathways. An essential step in homology-directed repair (HDR) of DNA breaks is the formation of RAD51 nucleofilaments mediated by PALB2-BRCA2; however, roles of ATM and ATR in this critical step of HDR are poorly understood. Here, we show that PALB2 is markedly phosphorylated in response to genotoxic stresses such as ionizing radiation and hydroxyurea. This response is mediated by the ATM and ATR kinases through three N-terminal S/Q-sites in PALB2, the consensus target sites for ATM and ATR Importantly, a phospho-deficient PALB2 mutant is unable to support proper RAD51 foci formation, a key PALB2 regulated repair event, whereas a phospho-mimicking PALB2 version supports RAD51 foci formation. Moreover, phospho-deficient PALB2 is less potent in HDR than wild-type PALB2. Further, this mutation reveals a separation in PALB2 function, as the PALB2-dependent checkpoint response is normal in cells expressing the phospho-deficient PALB2 mutant. Collectively, our findings highlight a critical importance of PALB2 phosphorylation as a novel regulatory step in genome maintenance after genotoxic stress. PMID:27113759

  19. Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity

    PubMed Central

    Bugreev, Dmitry V.; Mazin, Alexander V.

    2004-01-01

    Human Rad51 (hRad51) protein plays a key role in homologous recombination and DNA repair. hRad51 protein forms a helical filament on single-stranded DNA (ssDNA), which performs the basic steps of homologous recombination: a search for homologous double-stranded DNA (dsDNA) and DNA strand exchange. hRad51 protein possesses DNA-dependent ATPase activity; however, the role of this activity has not been understood. Our current results show that Ca2+ greatly stimulates DNA strand exchange activity of hRad51 protein. We found that Ca2+ exerts its stimulatory effect by modulating the ATPase activity of hRad51 protein. Our data demonstrate that, in the presence of Mg2+, the hRad51-ATP-ssDNA filament is quickly converted to an inactive hRad51-ADP-ssDNA form, due to relatively rapid ATP hydrolysis and slow dissociation of ADP. Ca2+ maintains the active hRad51-ATP-ssDNA filament by reducing the ATP hydrolysis rate. These findings demonstrate a crucial role of the ATPase activity in regulation of DNA strand exchange activity of hRad51 protein. This mechanism of Rad51 protein regulation by modulating its ATPase activity is evolutionarily recent; we found no such mechanism for yeast Rad51 (yRad51) protein. PMID:15226506

  20. Interactions among Trypanosoma brucei RAD51 paralogues in DNA repair and antigenic variation

    PubMed Central

    Dobson, Rachel; Stockdale, Christopher; Lapsley, Craig; Wilkes, Jonathan; McCulloch, Richard

    2011-01-01

    Homologous recombination in Trypanosoma brucei is used for moving variant surface glycoprotein (VSG) genes into expression sites during immune evasion by antigenic variation. A major route for such VSG switching is gene conversion reactions in which RAD51, a universally conserved recombinase, catalyses homology-directed strand exchange. In any eukaryote, RAD51-directed strand exchange in vivo is mediated by further factors, including RAD51-related proteins termed Rad51 paralogues. These appear to be ubiquitously conserved, although their detailed roles in recombination remain unclear. In T. brucei, four putative RAD51 paralogue genes have been identified by sequence homology. Here we show that all four RAD51 paralogues act in DNA repair, recombination and RAD51 subnuclear dynamics, though not equivalently, while mutation of only one RAD51 paralogue gene significantly impedes VSG switching. We also show that the T. brucei RAD51 paralogues interact, and that the complexes they form may explain the distinct phenotypes of the mutants as well as observed expression interdependency. Finally, we document the Rad51 paralogues that are encoded by a wide range of protists, demonstrating that the Rad51 paralogue repertoire in T. brucei is unusually large among microbial eukaryotes and that one member of the protein family corresponds with a key, conserved eukaryotic Rad51 paralogue. PMID:21615552

  1. Interactions among Trypanosoma brucei RAD51 paralogues in DNA repair and antigenic variation.

    PubMed

    Dobson, Rachel; Stockdale, Christopher; Lapsley, Craig; Wilkes, Jonathan; McCulloch, Richard

    2011-07-01

    Homologous recombination in Trypanosoma brucei is used for moving variant surface glycoprotein (VSG) genes into expression sites during immune evasion by antigenic variation. A major route for such VSG switching is gene conversion reactions in which RAD51, a universally conserved recombinase, catalyses homology-directed strand exchange. In any eukaryote, RAD51-directed strand exchange in vivo is mediated by further factors, including RAD51-related proteins termed Rad51 paralogues. These appear to be ubiquitously conserved, although their detailed roles in recombination remain unclear. In T. brucei, four putative RAD51 paralogue genes have been identified by sequence homology. Here we show that all four RAD51 paralogues act in DNA repair, recombination and RAD51 subnuclear dynamics, though not equivalently, while mutation of only one RAD51 paralogue gene significantly impedes VSG switching. We also show that the T. brucei RAD51 paralogues interact, and that the complexes they form may explain the distinct phenotypes of the mutants as well as observed expression interdependency. Finally, we document the Rad51 paralogues that are encoded by a wide range of protists, demonstrating that the Rad51 paralogue repertoire in T. brucei is unusually large among microbial eukaryotes and that one member of the protein family corresponds with a key, conserved eukaryotic Rad51 paralogue.

  2. The BRC repeats of human BRCA2 differentially regulate RAD51 binding on single- versus double-stranded DNA to stimulate strand exchange.

    PubMed

    Shivji, Mahmud K K; Mukund, Shreyas R; Rajendra, Eeson; Chen, Shaoxia; Short, Judith M; Savill, Jane; Klenerman, David; Venkitaraman, Ashok R

    2009-08-11

    The breast and ovarian cancer suppressor BRCA2 controls the enzyme RAD51 during homologous DNA recombination (HDR) to preserve genome stability. BRCA2 binds to RAD51 through 8 conserved BRC repeat motifs dispersed in an 1127-residue region (BRCA2([BRC1-8])). Here, we show that BRCA2([BRC1-8]) exerts opposing effects on the binding of RAD51 to single-stranded (ss) versus double-stranded (ds) DNA substrates, enhancing strand exchange. BRCA2([BRC1-8]) alters the electrophoretic mobility of RAD51 bound to an ssDNA substrate, accompanied by an increase in ssDNA-bound protein assemblies, revealed by electron microscopy. Single-molecule fluorescence spectroscopy shows that BRCA2([BRC1-8]) promotes RAD51 loading onto ssDNA. In contrast, BRCA2([BRC1-8]) has a different effect on RAD51 assembly on dsDNA; it suppresses and slows this process. When homologous ssDNA and dsDNA are both present, BRCA2([BRC1-8]) stimulates strand exchange, with delayed RAD51 loading onto dsDNA accompanying the appearance of joint molecules representing recombination products. Collectively, our findings suggest that BRCA2([BRC1-8]) targets RAD51 to ssDNA while inhibiting dsDNA binding and that these contrasting activities together bolster one another to stimulate HDR. Our work provides fresh insight into the mechanism of HDR in humans, and its regulation by the BRCA2 tumor suppressor.

  3. Peptide aptamer mimicking RAD51-binding domain of BRCA2 inhibits DNA damage repair and survival in Trypanosoma brucei.

    PubMed

    Hall, Mack; Misra, Smita; Chaudhuri, Minu; Chaudhuri, Gautam

    2011-05-01

    The eukaryotic DNA recombination repair protein BRCA2 is functional in the parasitic protozoan Trypanosoma brucei. The mechanism of the involvement of BRCA2 in homologous recombination includes its interaction with the DNA recombinase proteins of the RAD51 family. BRCA2 is known to interact with RAD51 through its unique and essential BRC sequence motifs. T. brucei BRCA2 homolog (TbBRCA2) has fifteen repeating BRC motifs as compared to mammalian BRCA2 that has only eight. We report here our yeast 2-hybrid analysis studies on the interactions of TbBRCA2 BRC motifs with five different RAD51 paralogues of T. brucei. Our study revealed that a single BRC motif is sufficient to bind to these RAD51 paralogues. To test the possibility whether a single 44 amino acid long repeating unit of the TbBRCA2 BRC motif may be exploited as an inhibitor of T. brucei growth, we ectopically expressed this peptide segment in the procyclic form of the parasite and evaluated its effects on cell survival as well as the sensitivity of these cells to the DNA damaging agent methyl methane sulfonate (MMS). Expression of a single BRC motif led to MMS sensitivity and inhibited cellular proliferation in T. brucei.

  4. Polymorphism within the distal RAD51 gene promoter is associated with colorectal cancer in a Polish population

    PubMed Central

    Mucha, Bartosz; Kabzinski, Jacek; Dziki, Adam; Przybylowska-Sygut, Karolina; Sygut, Andrzej; Majsterek, Ireneusz; Dziki, Lukasz

    2015-01-01

    Background: colorectal cancer (CRC) is one of the most common cancers in developed countries. Annually, over one million of new cases in the world are recorded. Majority of CRCs occur sporadically with dominant phenotype of chromosomal instability (CIN). Permanent exposure to DNA damaging agents such as ionizing radiation result in DNA double-stranded breaks, which create favorable conditions for chromosomal aberration to arise. Homologous recombination repair (HRR) is the leading process engaged in maintaining of the genome integrity. RAD51 protein was recognized as crucial in HRR. Single nucleotide polymorphisms are the primary source of genetic variation which presence in the RAD51 promoter region can affect on its expression and consequently modulate HR efficiency. Objectives: The aim of this study was to analyze the distribution of genotypes and allele frequencies of -4791A/T and -4601A/G RAD51 gene polymorphisms, followed by an assessment of their relationship with the risk of CRC. Material and methods: The study included 115 patients with confirmed CRC. Control group was consisted of 118 cancer-free individuals with a negative family history. The genotypes were identified by PCR-RFLP method. Conclusion: This study revealed statistically significant association between appearance of G/A genotype in position -4601 of RAD51 gene and CRC risk. PMID:26617897

  5. Insights into the mechanism of Rad51 recombinase from the structure and properties of a filament interface mutant

    SciTech Connect

    Chen, Jianhong; Villanueva, Nicolas; Rould, Mark A.; Morrical, Scott W.

    2010-09-03

    Rad51 protein promotes homologous recombination in eukaryotes. Recombination activities are activated by Rad51 filament assembly on ssDNA. Previous studies of yeast Rad51 showed that His352 occupies an important position at the filament interface, where it could relay signals between subunits and active sites. To investigate, we characterized yeast Rad51 H352A and H352Y mutants, and solved the structure of H352Y. H352A forms catalytically competent but salt-labile complexes on ssDNA. In contrast, H352Y forms salt-resistant complexes on ssDNA, but is defective in nucleotide exchange, RPA displacement and strand exchange with full-length DNA substrates. The 2.5 {angstrom} crystal structure of H352Y reveals a right-handed helical filament in a high-pitch (130 {angstrom}) conformation with P61 symmetry. The catalytic core and dimer interface regions of H352Y closely resemble those of DNA-bound Escherichia coli RecA protein. The H352Y mutation stabilizes Phe187 from the adjacent subunit in a position that interferes with the {gamma}-phosphate-binding site of the Walker A motif/P-loop, potentially explaining the limited catalysis observed. Comparison of Rad51 H352Y, RecA-DNA and related structures reveals that the presence of bound DNA correlates with the isomerization of a conserved cis peptide near Walker B to the trans configuration, which appears to prime the catalytic glutamate residue for ATP hydrolysis.

  6. Caffeine inhibits gene conversion by displacing Rad51 from ssDNA.

    PubMed

    Tsabar, Michael; Mason, Jennifer M; Chan, Yuen-Ling; Bishop, Douglas K; Haber, James E

    2015-08-18

    Efficient repair of chromosomal double-strand breaks (DSBs) by homologous recombination relies on the formation of a Rad51 recombinase filament that forms on single-stranded DNA (ssDNA) created at DSB ends. This filament facilitates the search for a homologous donor sequence and promotes strand invasion. Recently caffeine treatment has been shown to prevent gene targeting in mammalian cells by increasing non-productive Rad51 interactions between the DSB and random regions of the genome. Here we show that caffeine treatment prevents gene conversion in yeast, independently of its inhibition of the Mec1(ATR)/Tel1(ATM)-dependent DNA damage response or caffeine's inhibition of 5' to 3' resection of DSB ends. Caffeine treatment results in a dosage-dependent eviction of Rad51 from ssDNA. Gene conversion is impaired even at low concentrations of caffeine, where there is no discernible dismantling of the Rad51 filament. Loss of the Rad51 filament integrity is independent of Srs2's Rad51 filament dismantling activity or Rad51's ATPase activity and does not depend on non-specific Rad51 binding to undamaged double-stranded DNA. Caffeine treatment had similar effects on irradiated HeLa cells, promoting loss of previously assembled Rad51 foci. We conclude that caffeine treatment can disrupt gene conversion by disrupting Rad51 filaments.

  7. Caffeine inhibits gene conversion by displacing Rad51 from ssDNA

    PubMed Central

    Tsabar, Michael; Mason, Jennifer M.; Chan, Yuen-Ling; Bishop, Douglas K.; Haber, James E.

    2015-01-01

    Efficient repair of chromosomal double-strand breaks (DSBs) by homologous recombination relies on the formation of a Rad51 recombinase filament that forms on single-stranded DNA (ssDNA) created at DSB ends. This filament facilitates the search for a homologous donor sequence and promotes strand invasion. Recently caffeine treatment has been shown to prevent gene targeting in mammalian cells by increasing non-productive Rad51 interactions between the DSB and random regions of the genome. Here we show that caffeine treatment prevents gene conversion in yeast, independently of its inhibition of the Mec1ATR/Tel1ATM-dependent DNA damage response or caffeine's inhibition of 5′ to 3′ resection of DSB ends. Caffeine treatment results in a dosage-dependent eviction of Rad51 from ssDNA. Gene conversion is impaired even at low concentrations of caffeine, where there is no discernible dismantling of the Rad51 filament. Loss of the Rad51 filament integrity is independent of Srs2's Rad51 filament dismantling activity or Rad51's ATPase activity and does not depend on non-specific Rad51 binding to undamaged double-stranded DNA. Caffeine treatment had similar effects on irradiated HeLa cells, promoting loss of previously assembled Rad51 foci. We conclude that caffeine treatment can disrupt gene conversion by disrupting Rad51 filaments. PMID:26019181

  8. Characterization of strand exchange activity of yeast Rad51 protein.

    PubMed Central

    Namsaraev, E; Berg, P

    1997-01-01

    The Saccharomyces cerevisiae RAD51 gene product takes part in genetic recombination and repair of DNA double strand breaks. Rad51, like Escherichia coli RecA, catalyzes strand exchange between homologous circular single-stranded DNA (ssDNA) and linear double-stranded DNA (dsDNA) in the presence of ATP and ssDNA-binding protein. The formation of joint molecules between circular ssDNA and linear dsDNA is initiated at either the 5' or the 3' overhanging end of the complementary strand; joint molecules are formed only if the length of the overhanging end is more than 1 nucleotide. Linear dsDNAs with recessed complementary or blunt ends are not utilized. The polarity of strand exchange depends upon which end is used to initiate the formation of joint molecules. Joint molecules formed via the 5' end are processed by branch migration in the 3'-to-5' direction with respect to ssDNA, and joint molecules formed with a 3' end are processed in the opposite direction. PMID:9271413

  9. Disparate requirements for the Walker A and B ATPase motifs ofhuman RAD51D in homologous recombination

    SciTech Connect

    Wiese, Claudia; Hinz, John M.; Tebbs, Robert S.; Nham, Peter B.; Urbin, Salustra S.; Collins, David W.; Thompson, Larry H.; Schild, David

    2006-04-21

    In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C, and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks. Ectopic expression of wild type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.

  10. Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart.

    PubMed

    Somyajit, Kumar; Saxena, Sneha; Babu, Sharath; Mishra, Anup; Nagaraju, Ganesh

    2015-11-16

    Mammalian RAD51 paralogs are implicated in the repair of collapsed replication forks by homologous recombination. However, their physiological roles in replication fork maintenance prior to fork collapse remain obscure. Here, we report on the role of RAD51 paralogs in short-term replicative stress devoid of DSBs. We show that RAD51 paralogs localize to nascent DNA and common fragile sites upon replication fork stalling. Strikingly, RAD51 paralogs deficient cells exhibit elevated levels of 53BP1 nuclear bodies and increased DSB formation, the latter being attributed to extensive degradation of nascent DNA at stalled forks. RAD51C and XRCC3 promote the restart of stalled replication in an ATP hydrolysis dependent manner by disengaging RAD51 and other RAD51 paralogs from the halted forks. Notably, we find that Fanconi anemia (FA)-like disorder and breast and ovarian cancer patient derived mutations of RAD51C fails to protect replication fork, exhibit under-replicated genomic regions and elevated micro-nucleation. Taken together, RAD51 paralogs prevent degradation of stalled forks and promote the restart of halted replication to avoid replication fork collapse, thereby maintaining genomic integrity and suppressing tumorigenesis.

  11. Strand pairing by Rad54 and Rad51 is enhanced by chromatin.

    PubMed

    Alexiadis, Vassilios; Kadonaga, James T

    2002-11-01

    We investigated the role of chromatin in the catalysis of homologous strand pairing by Rad54 and Rad51. Rad54 is related to the ATPase subunits of chromatin-remodeling factors, whereas Rad51 is related to bacterial RecA. In the absence of superhelical tension, we found that the efficiency of strand pairing with chromatin is >100-fold higher than that with naked DNA. In addition, we observed that Rad54 and Rad51 function cooperatively in the ATP-dependent remodeling of chromatin. These findings indicate that Rad54 and Rad51 have evolved to function with chromatin, the natural substrate, rather than with naked DNA. PMID:12414729

  12. The BRC repeats of BRCA2 modulate the DNA-binding selectivity of RAD51.

    PubMed

    Carreira, Aura; Hilario, Jovencio; Amitani, Ichiro; Baskin, Ronald J; Shivji, Mahmud K K; Venkitaraman, Ashok R; Kowalczykowski, Stephen C

    2009-03-20

    The breast cancer susceptibility protein, BRCA2, is essential for recombinational DNA repair. BRCA2 delivers RAD51 to double-stranded DNA (dsDNA) breaks through interaction with eight conserved, approximately 35 amino acid motifs, the BRC repeats. Here we show that the solitary BRC4 promotes assembly of RAD51 onto single-stranded DNA (ssDNA), but not dsDNA, to stimulate DNA strand exchange. BRC4 acts by blocking ATP hydrolysis and thereby maintaining the active ATP-bound form of the RAD51-ssDNA filament. Single-molecule visualization shows that BRC4 does not disassemble RAD51-dsDNA filaments but rather blocks nucleation of RAD51 onto dsDNA. Furthermore, this behavior is manifested by a domain of BRCA2 comprising all eight BRC repeats. These results establish that the BRC repeats modulate RAD51-DNA interaction in two opposing but functionally reinforcing ways: targeting active RAD51 to ssDNA and prohibiting RAD51 nucleation onto dsDNA. Thus, BRCA2 recruits RAD51 to DNA breaks and, we propose, the BRC repeats regulate DNA-binding selectivity.

  13. Identification and characterization of the RAD51 gene from the ciliate Tetrahymena thermophila.

    PubMed Central

    Campbell, C; Romero, D P

    1998-01-01

    The RAD51 gene is a eukaryotic homolog of rec A, a critical component in homologous recombination and DNA repair pathways in Escherichia coli . We have cloned the RAD51 homolog from Tetrahymena thermophila , a ciliated protozoan. Tetrahymena thermophila RAD51 encodes a 36.3 kDa protein whose amino acid sequence is highly similar to representative Rad51 homologs from other eukaryotic taxa. Recombinant Rad51 protein was purified to near homogeneity following overproduction in a bacterial expression system. The purified protein binds to both single- and double-stranded DNA, possesses a DNA-dependent ATPase activity and promotes intermolecular ligation of linearized plasmid DNA. While steady-state levels of Rad51 mRNA are low in normally growing cells, treatment with UV light resulted in a >100-fold increase in mRNA levels. This increase in mRNA was time dependent, but relatively independent of UV dose over a range of 1400-5200 J/m2. Western blot analysis confirmed that Rad51 protein levels increase upon UV irradiation. Exposure to the alkylating agent methyl methane sulfonate also resulted in substantially elevated Rad51 protein levels in treated cells, with pronounced localization in the macronucleus. These data are consistent with the hypothesis that ciliates such as T.thermophila utilize a Rad51-dependent pathway to repair damaged DNA. PMID:9628914

  14. Polymorphisms of homologous recombination RAD51, RAD51B, XRCC2, and XRCC3 genes and the risk of prostate cancer.

    PubMed

    Nowacka-Zawisza, Maria; Wiśnik, Ewelina; Wasilewski, Andrzej; Skowrońska, Milena; Forma, Ewa; Bryś, Magdalena; Różański, Waldemar; Krajewska, Wanda M

    2015-01-01

    Genetic polymorphisms in DNA repair genes may induce individual variations in DNA repair capacity, which may in turn contribute to the risk of cancer developing. Homologous recombination repair (HRR) plays a critical role in maintaining chromosomal integrity and protecting against carcinogenic factors. The aim of the present study was to evaluate the relationship between prostate cancer risk and the presence of single nucleotide polymorphisms (SNPs) in the genes involved in HRR, that is, RAD51 (rs1801320 and rs1801321), RAD51B (rs10483813 and rs3784099), XRCC2 (rs3218536), and XRCC3 (rs861539). Polymorphisms were analyzed by PCR-RFLP and Real-Time PCR in 101 patients with prostate adenocarcinoma and 216 age- and sex-matched controls. A significant relationship was detected between the RAD51 gene rs1801320 polymorphism and increased prostate cancer risk. Our results indicate that the RAD51 gene rs1801320 polymorphism may contribute to prostate cancer susceptibility in Poland. PMID:26339569

  15. S100A11 plays a role in homologous recombination and genome maintenance by influencing the persistence of RAD51 in DNA repair foci.

    PubMed

    Foertsch, Franziska; Szambowska, Anna; Weise, Anja; Zielinski, Alexandra; Schlott, Bernhard; Kraft, Florian; Mrasek, Kristin; Borgmann, Kerstin; Pospiech, Helmut; Grosse, Frank; Melle, Christian

    2016-10-17

    The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is an essential process in maintenance of chromosomal stability. A key player of HR is the strand exchange factor RAD51 whose assembly at sites of DNA damage is tightly regulated. We detected an endogenous complex of RAD51 with the calcium-binding protein S100A11, which is localized at sites of DNA repair in HaCaT cells as well as in normal human epidermal keratinocytes (NHEK) synchronized in S phase. In biochemical assays, we revealed that S100A11 enhanced the RAD51 strand exchange activity. When cells expressing a S100A11 mutant lacking the ability to bind Ca(2+), a prolonged persistence of RAD51 in repair sites and nuclear γH2AX foci was observed suggesting an incomplete DNA repair. The same phenotype became apparent when S100A11 was depleted by RNA interference. Furthermore, down-regulation of S100A11 resulted in both reduced sister chromatid exchange confirming the restriction of the recombination capacity of the cells, and in an increase of chromosomal aberrations reflecting the functional requirement of S100A11 for the maintenance of genomic stability. Our data indicate that S100A11 is involved in homologous recombination by regulating the appearance of RAD51 in DSB repair sites. This function requires the calcium-binding activity of S100A11. PMID:27590262

  16. Differential roles of XRCC2 in S-phase RAD51 focus formation induced by DNA replication inhibitors

    SciTech Connect

    Lim, C; Liu, N

    2004-05-14

    RAD51 proteins accumulate in discrete nuclear foci in response to DNA damage. Previous studies demonstrated that human RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3) are essential for the assembly of RAD51 foci induced by ionizing radiation and cross-linking agents. Here we report that XRCC2 also plays important roles in RAD51 focus formation induced by replication arrest during S-phase of cell cycle. In wild-type hamster V79 cells treated with hydroxyurea (HU), RAD51 protein form punctuate nuclear foci, accompanied by increased RAD51 protein level in both cytoplasmic and nuclear fractions, and increased association of RAD51 with chromatin. In contrast, xrcc2 hamster mutant irs1 cells are deficient in the formation of RAD51 foci after HU treatment, suggesting that the function of XRCC2 is required for the assembly of RAD51 at HU-induced stalled replication forks. Interestingly, we found that irs1 cells are able to form intact RAD51 foci in S-phase cells treated with thymidine (TR) or aphidicolin, although irs1 cells are hypersensitive to both HU and TR. Our findings suggest that there may be two distinct pathways (XRCC2-dependent or XRCC2-independent) involved in loading of RAD51 onto stalled replication forks, probably depending upon the structure of DNA lesions.

  17. A region of human BRCA2 containing multiple BRC repeats promotes RAD51-mediated strand exchange.

    PubMed

    Shivji, Mahmud K K; Davies, Owen R; Savill, Jane M; Bates, Debbie L; Pellegrini, Luca; Venkitaraman, Ashok R

    2006-01-01

    Human BRCA2, a breast and ovarian cancer suppressor, binds to the DNA recombinase RAD51 through eight conserved BRC repeats, motifs of approximately 30 residues, dispersed across a large region of the protein. BRCA2 is essential for homologous recombination in vivo, but isolated BRC repeat peptides can prevent the assembly of RAD51 into active nucleoprotein filaments in vitro, suggesting a model in which BRCA2 sequesters RAD51 in undamaged cells, and promotes recombinase function after DNA damage. How BRCA2 might fulfill these dual functions is unclear. We have purified a fragment of human BRCA2 (BRCA2(BRC1-8)) with 1127 residues spanning all 8 BRC repeats but excluding the C-terminal DNA-binding domain (BRCA2(CTD)). BRCA2(BRC1-8) binds RAD51 nucleoprotein filaments in a ternary complex, indicating it may organize RAD51 on DNA. Human RAD51 is relatively ineffective in vitro at strand exchange between homologous DNA molecules unless non-physiological ions like NH4+ are present. In an ionic milieu more typical of the mammalian nucleus, BRCA2(BRCI-8) stimulates RAD51-mediated strand exchange, suggesting it may be an essential co-factor in vivo. Thus, the human BRC repeats, embedded within their surronding sequences as an eight-repeat unit, mediate homologous recombination independent of the BRCA2(CTD) through a previously unrecognized role in control of RAD51 activity.

  18. The Tumor-Associated Variant RAD51 G151D Induces a Hyper-Recombination Phenotype

    PubMed Central

    Marsden, Carolyn G.; Jensen, Ryan B.; Zagelbaum, Jennifer; Rothenberg, Eli; Morrical, Scott W.; Wallace, Susan S.; Sweasy, Joann B.

    2016-01-01

    The RAD51 protein plays a key role in the homology-directed repair of DNA double-strand breaks and is important for maintaining genome stability. Here we report on a novel human RAD51 variant found in an aggressive and therapy-refractive breast carcinoma. Expression of the RAD51 G151D variant in human breast epithelial cells increases the levels of homology-directed repair. Expression of RAD51 G151D in cells also promotes high levels of chromosomal aberrations and sister chromatid exchanges. In vitro, the purified RAD51 G151D protein directly and significantly enhances DNA strand exchange activity in the presence of RPA. In concordance with this result, co-incubation of G151D with BRCA2 resulted in a much higher level of strand-exchange activity compared to WT RAD51. Strikingly, the RAD51 G151D variant confers resistance to multiple DNA damaging agents, including ionizing radiation, mitomycin C, and doxorubicin. Our findings demonstrate that the RAD51 G151D somatic variant has a novel hyper-recombination phenotype and suggest that this property of the protein is important for the repair of DNA damage, leading to drug resistance. PMID:27513445

  19. RAD54 family translocases counter genotoxic effects of RAD51 in human tumor cells

    PubMed Central

    Mason, Jennifer M.; Dusad, Kritika; Wright, William Douglass; Grubb, Jennifer; Budke, Brian; Heyer, Wolf-Dietrich; Connell, Philip P.; Weichselbaum, Ralph R.; Bishop, Douglas K.

    2015-01-01

    The RAD54 family DNA translocases have several biochemical activities. One activity, demonstrated previously for the budding yeast translocases, is ATPase-dependent disruption of RAD51-dsDNA binding. This activity is thought to promote dissociation of RAD51 from heteroduplex DNA following strand exchange during homologous recombination. In addition, previous experiments in budding yeast have shown that the same activity of Rad54 removes Rad51 from undamaged sites on chromosomes; mutants lacking Rad54 accumulate nonrepair-associated complexes that can block growth and lead to chromosome loss. Here, we show that human RAD54 also promotes the dissociation of RAD51 from dsDNA and not ssDNA. We also show that translocase depletion in tumor cell lines leads to the accumulation of RAD51 on chromosomes, forming complexes that are not associated with markers of DNA damage. We further show that combined depletion of RAD54L and RAD54B and/or artificial induction of RAD51 overexpression blocks replication and promotes chromosome segregation defects. These results support a model in which RAD54L and RAD54B counteract genome-destabilizing effects of direct binding of RAD51 to dsDNA in human tumor cells. Thus, in addition to having genome-stabilizing DNA repair activity, human RAD51 has genome-destabilizing activity when expressed at high levels, as is the case in many human tumors. PMID:25765654

  20. Role of the Saccharomyces cerevisiae Rad51 paralogs in sister chromatid recombination.

    PubMed

    Mozlin, Amy M; Fung, Cindy W; Symington, Lorraine S

    2008-01-01

    Rad51 requires a number of other proteins, including the Rad51 paralogs, for efficient recombination in vivo. Current evidence suggests that the yeast Rad51 paralogs, Rad55 and Rad57, are important in formation or stabilization of the Rad51 nucleoprotein filament. To gain further insights into the function of the Rad51 paralogs, reporters were designed to measure spontaneous or double-strand break (DSB)-induced sister or nonsister recombination. Spontaneous sister chromatid recombination (SCR) was reduced 6000-fold in the rad57 mutant, significantly more than in the rad51 mutant. Although the DSB-induced recombination defect of rad57 was suppressed by overexpression of Rad51, elevated temperature, or expression of both mating-type alleles, the rad57 defect in spontaneous SCR was not strongly suppressed by these same factors. In addition, the UV sensitivity of the rad57 mutant was not strongly suppressed by MAT heterozygosity, even though Rad51 foci were restored under these conditions. This lack of suppression suggests that Rad55 and Rad57 have different roles in the recombinational repair of stalled replication forks compared with DSB repair. Furthermore, these data suggest that most spontaneous SCR initiates from single-stranded gaps formed at stalled replication forks rather than DSBs.

  1. Enhancement of the RAD51 Recombinase Activity by the Tumor Suppressor PALB2

    SciTech Connect

    Dray, Eloise; Etchin, Julia; Wiese, Claudia; Saro, Dorina; Williams, Gareth J.; Hammel, Michal; Yu, Xiong; Galkin, Vitold E.; Liu, Dongqing; Tsai, Miaw-Sheue; Sy, Shirley M-H.; Egelman, Edward; Chen, Junjie; Sung, Patrick; Schild, D.

    2010-08-24

    Homologous recombination mediated by the RAD51 recombinase helps eliminate chromosomal lesions, such as DNA double-stranded breaks induced by radiation or arising from injured DNA replication forks. The tumor suppressors BRCA2 and PALB2 act together to deliver RAD51 to chromosomal lesions to initiate repair. Here we document a new function of PALB2 in the enhancement of RAD51's ability to form the D-loop. We show that PALB2 binds DNA and physically interacts with RAD51. Importantly, while PALB2 alone stimulates D-loop formation, a cooperative effect is seen with RAD51AP1, an enhancer of RAD51. This stimulation stems from PALB2's ability to function with RAD51 and RAD51AP1 to assemble the synaptic complex. Our results help unveil a multi-faceted role of PALB2 in chromosome damage repair. Since PALB2 mutations can cause breast and other tumors or lead to Fanconi anemia, our findings are important for understanding the mechanism of tumor suppression in humans.

  2. Elevated recombination in immortal human cells is mediated by HsRAD51 recombinase.

    PubMed

    Xia, S J; Shammas, M A; Shmookler Reis, R J

    1997-12-01

    Normal diploid cells have a limited replicative potential in culture, with progressively increasing interdivision time. Rarely, cell lines arise which can divide indefinitely; like tumor cells, such "immortal" lines display frequent chromosomal aberrations which may reflect high rates of recombination. Recombination frequencies within a plasmid substrate were 3.5-fold higher in nine immortal human cell lines than in six untransformed cell strains. Expression of HsRAD51, a human homolog of the yeast RAD51 and Escherichia coli recA recombinase genes, was 4.5-fold higher in immortal cell lines than in mortal cells. Stable transformation of human fibroblasts with simian virus 40 large T antigen prior to cell immortalization increased both chromosomal recombination and the level of HsRAD51 transcripts by two- to fivefold. T-antigen induction of recombination was efficiently blocked by introduction of HsRAD51 antisense (but not control) oligonucleotides spanning the initiation codon, implying that HsRAD51 expression mediates augmented recombination. Since p53 binds and inactivates HsRAD51, T-antigen-p53 association may block such inactivation and liberate HsRAD51. Upregulation of HsRAD51 transcripts in T-antigen-transformed and other immortal cells suggests that recombinase activation can also occur at the RNA level and may facilitate cell transformation to immortality.

  3. Caffeine suppresses homologous recombination through interference with RAD51-mediated joint molecule formation.

    PubMed

    Zelensky, Alex N; Sanchez, Humberto; Ristic, Dejan; Vidic, Iztok; van Rossum-Fikkert, Sari E; Essers, Jeroen; Wyman, Claire; Kanaar, Roland

    2013-07-01

    Caffeine is a widely used inhibitor of the protein kinases that play a central role in the DNA damage response. We used chemical inhibitors and genetically deficient mouse embryonic stem cell lines to study the role of DNA damage response in stable integration of the transfected DNA and found that caffeine rapidly, efficiently and reversibly inhibited homologous integration of the transfected DNA as measured by several homologous recombination-mediated gene-targeting assays. Biochemical and structural biology experiments revealed that caffeine interfered with a pivotal step in homologous recombination, homologous joint molecule formation, through increasing interactions of the RAD51 nucleoprotein filament with non-homologous DNA. Our results suggest that recombination pathways dependent on extensive homology search are caffeine-sensitive and stress the importance of considering direct checkpoint-independent mechanisms in the interpretation of the effects of caffeine on DNA repair.

  4. Overlapping mechanisms promote postsynaptic RAD-51 filament disassembly during meiotic double-strand break repair.

    PubMed

    Ward, Jordan D; Muzzini, Diego M; Petalcorin, Mark I R; Martinez-Perez, Enrique; Martin, Julie S; Plevani, Paolo; Cassata, Giuseppe; Marini, Federica; Boulton, Simon J

    2010-01-29

    Homologous recombination (HR) is essential for repair of meiotic DNA double-strand breaks (DSBs). Although the mechanisms of RAD-51-DNA filament assembly and strand exchange are well characterized, the subsequent steps of HR are less well defined. Here, we describe a synthetic lethal interaction between the C. elegans helicase helq-1 and RAD-51 paralog rfs-1, which results in a block to meiotic DSB repair after strand invasion. Whereas RAD-51-ssDNA filaments assemble at meiotic DSBs with normal kinetics in helq-1, rfs-1 double mutants, persistence of RAD-51 foci and genetic interactions with rtel-1 suggest a failure to disassemble RAD-51 from strand invasion intermediates. Indeed, purified HELQ-1 and RFS-1 independently bind to and promote the disassembly of RAD-51 from double-stranded, but not single-stranded, DNA filaments via distinct mechanisms in vitro. These results indicate that two compensating activities are required to promote postsynaptic RAD-51 filament disassembly, which are collectively essential for completion of meiotic DSB repair.

  5. Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1.

    PubMed

    Callender, Tracy L; Laureau, Raphaelle; Wan, Lihong; Chen, Xiangyu; Sandhu, Rima; Laljee, Saif; Zhou, Sai; Suhandynata, Ray T; Prugar, Evelyn; Gaines, William A; Kwon, YoungHo; Börner, G Valentin; Nicolas, Alain; Neiman, Aaron M; Hollingsworth, Nancy M

    2016-08-01

    During meiosis, programmed double strand breaks (DSBs) are repaired preferentially between homologs to generate crossovers that promote proper chromosome segregation at Meiosis I. In many organisms, there are two strand exchange proteins, Rad51 and the meiosis-specific Dmc1, required for interhomolog (IH) bias. This bias requires the presence, but not the strand exchange activity of Rad51, while Dmc1 is responsible for the bulk of meiotic recombination. How these activities are regulated is less well established. In dmc1Δ mutants, Rad51 is actively inhibited, thereby resulting in prophase arrest due to unrepaired DSBs triggering the meiotic recombination checkpoint. This inhibition is dependent upon the meiosis-specific kinase Mek1 and occurs through two different mechanisms that prevent complex formation with the Rad51 accessory factor Rad54: (i) phosphorylation of Rad54 by Mek1 and (ii) binding of Rad51 by the meiosis-specific protein Hed1. An open question has been why inhibition of Mek1 affects Hed1 repression of Rad51. This work shows that Hed1 is a direct substrate of Mek1. Phosphorylation of Hed1 at threonine 40 helps suppress Rad51 activity in dmc1Δ mutants by promoting Hed1 protein stability. Rad51-mediated recombination occurring in the absence of Hed1 phosphorylation results in a significant increase in non-exchange chromosomes despite wild-type levels of crossovers, confirming previous results indicating a defect in crossover assurance. We propose that Rad51 function in meiosis is regulated in part by the coordinated phosphorylation of Rad54 and Hed1 by Mek1.

  6. Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1

    PubMed Central

    Callender, Tracy L.; Laljee, Saif; Zhou, Sai; Suhandynata, Ray T.; Gaines, William A.; Kwon, YoungHo; Börner, G. Valentin; Nicolas, Alain; Neiman, Aaron M.

    2016-01-01

    During meiosis, programmed double strand breaks (DSBs) are repaired preferentially between homologs to generate crossovers that promote proper chromosome segregation at Meiosis I. In many organisms, there are two strand exchange proteins, Rad51 and the meiosis-specific Dmc1, required for interhomolog (IH) bias. This bias requires the presence, but not the strand exchange activity of Rad51, while Dmc1 is responsible for the bulk of meiotic recombination. How these activities are regulated is less well established. In dmc1Δ mutants, Rad51 is actively inhibited, thereby resulting in prophase arrest due to unrepaired DSBs triggering the meiotic recombination checkpoint. This inhibition is dependent upon the meiosis-specific kinase Mek1 and occurs through two different mechanisms that prevent complex formation with the Rad51 accessory factor Rad54: (i) phosphorylation of Rad54 by Mek1 and (ii) binding of Rad51 by the meiosis-specific protein Hed1. An open question has been why inhibition of Mek1 affects Hed1 repression of Rad51. This work shows that Hed1 is a direct substrate of Mek1. Phosphorylation of Hed1 at threonine 40 helps suppress Rad51 activity in dmc1Δ mutants by promoting Hed1 protein stability. Rad51-mediated recombination occurring in the absence of Hed1 phosphorylation results in a significant increase in non-exchange chromosomes despite wild-type levels of crossovers, confirming previous results indicating a defect in crossover assurance. We propose that Rad51 function in meiosis is regulated in part by the coordinated phosphorylation of Rad54 and Hed1 by Mek1. PMID:27483004

  7. Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1.

    PubMed

    Callender, Tracy L; Laureau, Raphaelle; Wan, Lihong; Chen, Xiangyu; Sandhu, Rima; Laljee, Saif; Zhou, Sai; Suhandynata, Ray T; Prugar, Evelyn; Gaines, William A; Kwon, YoungHo; Börner, G Valentin; Nicolas, Alain; Neiman, Aaron M; Hollingsworth, Nancy M

    2016-08-01

    During meiosis, programmed double strand breaks (DSBs) are repaired preferentially between homologs to generate crossovers that promote proper chromosome segregation at Meiosis I. In many organisms, there are two strand exchange proteins, Rad51 and the meiosis-specific Dmc1, required for interhomolog (IH) bias. This bias requires the presence, but not the strand exchange activity of Rad51, while Dmc1 is responsible for the bulk of meiotic recombination. How these activities are regulated is less well established. In dmc1Δ mutants, Rad51 is actively inhibited, thereby resulting in prophase arrest due to unrepaired DSBs triggering the meiotic recombination checkpoint. This inhibition is dependent upon the meiosis-specific kinase Mek1 and occurs through two different mechanisms that prevent complex formation with the Rad51 accessory factor Rad54: (i) phosphorylation of Rad54 by Mek1 and (ii) binding of Rad51 by the meiosis-specific protein Hed1. An open question has been why inhibition of Mek1 affects Hed1 repression of Rad51. This work shows that Hed1 is a direct substrate of Mek1. Phosphorylation of Hed1 at threonine 40 helps suppress Rad51 activity in dmc1Δ mutants by promoting Hed1 protein stability. Rad51-mediated recombination occurring in the absence of Hed1 phosphorylation results in a significant increase in non-exchange chromosomes despite wild-type levels of crossovers, confirming previous results indicating a defect in crossover assurance. We propose that Rad51 function in meiosis is regulated in part by the coordinated phosphorylation of Rad54 and Hed1 by Mek1. PMID:27483004

  8. Identification and characterization of human Rad51 inhibitors by screening of an existing drug library.

    PubMed

    Normand, Anaïs; Rivière, Emmanuelle; Renodon-Cornière, Axelle

    2014-10-01

    Homologous Recombination (HR) plays an essential role in cellular proliferation and in maintaining genomic stability by repairing DNA double-stranded breaks that appear during replication. Rad51, a key protein of HR in eukaryotes, can have an elevated expression level in tumor cells, which correlates with their resistance to anticancer therapies. Therefore, targeted inhibition of Rad51 through inhibitor may improve the tumor response to these therapies. In order to identify small molecules that inhibit Rad51 activity, we screened the Prestwick Library (1120 molecules) for their effect on the strand exchange reaction catalyzed by Rad51. We found that Chicago Sky Blue (CSB) is a potent inhibitor of Rad51, showing IC₅₀ values in the low nanomolar range (400 nM). Biochemical analysis demonstrated that the inhibitory mechanism probably occurs by disrupting the Rad51 association with the single-stranded DNA, which prevents the nucleoprotein filament formation, the first step of the protein activity. Structure Activity Relationship analysis with a number of compounds that shared structure homology with CSB was also performed. The sensitivity of Rad51 inhibition to CSB modifications suggests specific interactions between the molecule and Rad51 nucleofilament. CSB and some of its analogs open up new perspectives in the search for agents capable of potentiating chemo- and radio-therapy treatments for cancer. Moreover, these compounds may be excellent tools to analyze Rad51 cellular functions. Our study also highlights how CSB and its analogs, which are frequently used in colorants, stains and markers, could be responsible of unwanted side effects by perturbing the DNA repair process. PMID:25124703

  9. Rad51C deficiency destabilizes XRCC3, impairs recombination and radiosensitizes S/G2-phase cells

    SciTech Connect

    Lio, Yi-Ching; Schild, David; Brenneman, Mark A.; Redpath, J. Leslie; Chen, David J.

    2004-05-01

    The highly conserved Rad51 protein plays an essential role in repairing DNA damage through homologous recombination. In vertebrates, five Rad51 paralogs (Rad51B, Rad51C, Rad51D, XRCC2, XRCC3) are expressed in mitotically growing cells, and are thought to play mediating roles in homologous recombination, though their precise functions remain unclear. Here we report the use of RNA interference to deplete expression of Rad51C protein in human HT1080 and HeLa cells. In HT1080 cells, depletion of Rad51C by small interfering RNA caused a significant reduction of frequency in homologous recombination. The level of XRCC3 protein was also sharply reduced in Rad51C-depleted HeLa cells, suggesting that XRCC3 is dependent for its stability upon heterodimerization with Rad51C. In addition, Rad51C-depleted HeLa cells showed hypersensitivity to the DNA cross-linking agent mitomycin C, and moderately increased sensitivity to ionizing radiation. Importantly, the radiosensitivity of Rad51C-deficient HeLa cells was evident in S and G{sub 2}/M phases of the cell cycle but not in G{sub 1} phase. Together, these results provide direct cellular evidence for the importance of human Rad51C in homologous recombinational repair.

  10. Two modules in the BRC repeats of BRCA2 mediate structural and functional interactions with the RAD51 recombinase.

    PubMed

    Rajendra, Eeson; Venkitaraman, Ashok R

    2010-01-01

    The breast and ovarian cancer suppressor protein BRCA2 controls the RAD51 recombinase in reactions that lead to homologous DNA recombination (HDR). BRCA2 binds RAD51 via eight conserved BRC repeat motifs of approximately 35 amino acids, each with a varying capacity to bind RAD51. BRC repeats both promote and inhibit RAD51 assembly on different DNA substrates to regulate HDR, but the structural basis for these functions is unclear. Here, we demarcate two tetrameric clusters of hydrophobic residues in the BRC repeats, interacting with distinct pockets in RAD51, and show that the co-location of both modules within a single BRC repeat is necessary for BRC-RAD51 binding and function. The two modules comprise the sequence FxxA, known to inhibit RAD51 assembly by blocking the oligomerization interface, and a previously unrecognized tetramer with the consensus sequence LFDE, which binds to a RAD51 pocket distinct from this interface. The LFDE motif is essential in BRC repeats for modes of RAD51 binding both permissive and inhibitory to RAD51 oligomerization. Targeted insertion of point mutations in RAD51 that disrupt the LFDE-binding pocket impair its assembly at DNA damage sites in living cells. Our findings suggest a model for the modular architecture of BRC repeats that provides fresh insight into the mechanisms regulating homologous DNA recombination.

  11. Synthesis, Molecular Modeling, and Biological Evaluation of Novel RAD51 Inhibitors

    PubMed Central

    Zhu, Jiewen; Chen, Hongyuan; Guo, Xuning Emily; Qiu, Xiao-Long; Hu, Chun-Mei; Chamberlin, A. Richard; Lee, Wen-Hwa

    2015-01-01

    RAD51 recombinase plays a critical role for cancer cell proliferation and survival. Targeting RAD51 is therefore an attractive strategy for treating difficult-to-treat cancers, e.g. triple negative breast cancers which are often resistant to existing therapeutics. To this end, we have designed, synthesized and evaluated a panel of new RAD51 inhibitors, denoted IBR compounds. Among these compounds, we have identified a novel small molecule RAD51 inhibitor, IBR120, which exhibited a 4.8-fold improved growth inhibition activity in triple negative human breast cancer cell line MBA-MD-468. IBR120 also inhibited the proliferation of a broad spectrum of other cancer cell types. Approximately 10-fold difference between the IC50 values in normal and cancer cells were observed. Moreover, IBR120 was capable of disrupting RAD51 multimerization, impairing homologous recombination repair, and inducing apoptotic cell death. Therefore, these novel RAD51 inhibitors may serve as potential candidates for the development of pharmaceutical strategies against difficult-to-treat cancers. PMID:25874343

  12. Visualizing the Nonhomogeneous Structure of RAD51 Filaments Using Nanofluidic Channels.

    PubMed

    Fornander, Louise H; Frykholm, Karolin; Fritzsche, Joachim; Araya, Joshua; Nevin, Philip; Werner, Erik; Çakır, Ali; Persson, Fredrik; Garcin, Edwige B; Beuning, Penny J; Mehlig, Bernhard; Modesti, Mauro; Westerlund, Fredrik

    2016-08-23

    RAD51 is the key component of the homologous recombination pathway in eukaryotic cells and performs its task by forming filaments on DNA. In this study we investigate the physical properties of RAD51 filaments formed on DNA using nanofluidic channels and fluorescence microscopy. Contrary to the bacterial ortholog RecA, RAD51 forms inhomogeneous filaments on long DNA in vitro, consisting of several protein patches. We demonstrate that a permanent "kink" in the filament is formed where two patches meet if the stretch of naked DNA between the patches is short. The kinks are readily seen in the present microscopy approach but would be hard to identify using conventional single DNA molecule techniques where the DNA is more stretched. We also demonstrate that protein patches separated by longer stretches of bare DNA roll up on each other and this is visualized as transiently overlapping filaments. RAD51 filaments can be formed at several different conditions, varying the cation (Mg(2+) or Ca(2+)), the DNA substrate (single-stranded or double-stranded), and the RAD51 concentration during filament nucleation, and we compare the properties of the different filaments formed. The results provide important information regarding the physical properties of RAD51 filaments but also demonstrate that nanofluidic channels are perfectly suited to study protein-DNA complexes. PMID:27479732

  13. Real-time assembly and disassembly of human RAD51 filaments on individual DNA molecules

    PubMed Central

    van der Heijden, Thijn; Seidel, Ralf; Modesti, Mauro; Kanaar, Roland; Wyman, Claire; Dekker, Cees

    2007-01-01

    The human DNA repair protein RAD51 is the crucial component of helical nucleoprotein filaments that drive homologous recombination. The molecular mechanistic details of how this structure facilitates the requisite DNA strand rearrangements are not known but must involve dynamic interactions between RAD51 and DNA. Here, we report the real-time kinetics of human RAD51 filament assembly and disassembly on individual molecules of both single- and double-stranded DNA, as measured using magnetic tweezers. The relative rates of nucleation and filament extension are such that the observed filament formation consists of multiple nucleation events that are in competition with each other. For varying concentration of RAD51, a Hill coefficient of 4.3 ± 0.5 is obtained for both nucleation and filament extension, indicating binding to dsDNA with a binding unit consisting of multiple (≥4) RAD51 monomers. We report Monte Carlo simulations that fit the (dis)assembly data very well. The results show that, surprisingly, human RAD51 does not form long continuous filaments on DNA. Instead each nucleoprotein filament consists of a string of many small filament patches that are only a few tens of monomers long. The high flexibility and dynamic nature of this arrangement is likely to facilitate strand exchange. PMID:17709342

  14. Overexpressed of RAD51 suppresses recombination defects: a possible mechanism to reverse genomic instability

    SciTech Connect

    Schild, David; Wiese, Claudia

    2009-10-15

    RAD51, a key protein in the homologous recombinational DNA repair (HRR) pathway, is the major strand-transferase required for mitotic recombination. An important early step in HRR is the formation of single-stranded DNA (ss-DNA) coated by RPA (a ss-DNA binding protein). Displacement of RPA by RAD51 is highly regulated and facilitated by a number of different proteins known as the 'recombination mediators'. To assist these recombination mediators, a second group of proteins also is required and we are defining these proteins here as 'recombination co-mediators'. Defects in either recombination mediators or comediators, including BRCA1 and BRCA2, lead to impaired HRR that can genetically be complemented for (i.e. suppressed) by overexpression of RAD51. Defects in HRR have long been known to contribute to genomic instability leading to tumor development. Since genomic instability also slows cell growth, precancerous cells presumably require genomic restabilization to gain a growth advantage. RAD51 is overexpressed in many tumors, and therefore, we hypothesize that the complementing ability of elevated levels of RAD51 in tumors with initial HRR defects limits genomic instability during carcinogenic progression. Of particular interest, this model may also help explain the high frequency of TP53 mutations in human cancers, since wild-type p53 represses RAD51.

  15. Panobinostat Enhances Cytarabine and Daunorubicin Sensitivities in AML Cells through Suppressing the Expression of BRCA1, CHK1, and Rad51

    PubMed Central

    Edwards, Holly; Caldwell, J. Timothy; Chen, Wei; Inaba, Hiroto; Xu, Xuelian; Buck, Steven A.; Taub, Jeffrey W.; Baker, Sharyn D.; Ge, Yubin

    2013-01-01

    Acute myeloid leukemia (AML) remains a challenging disease to treat and urgently requires new therapies to improve its treatment outcome. In this study, we investigated the molecular mechanisms underlying the cooperative antileukemic activities of panobinostat and cytarabine or daunorubicin (DNR) in AML cell lines and diagnostic blast samples in vitro and in vivo. Panobinostat suppressed expression of BRCA1, CHK1, and RAD51 in AML cells in a dose-dependent manner. Further, panobinostat significantly increased cytarabine- or DNR-induced DNA double-strand breaks and apoptosis, and abrogated S and/or G2/M cell cycle checkpoints. Analogous results were obtained by shRNA knockdown of BRCA1, CHK1, or RAD51. Cotreatment of NOD-SCID-IL2Rγnull mice bearing AML xenografts with panobinostat and cytarabine significantly increased survival compared to either cytarabine or panobinostat treatment alone. Additional studies revealed that panobinostat suppressed the expression of BRCA1, CHK1, and RAD51 through downregulation of E2F1 transcription factor. Our results establish a novel mechanism underlying the cooperative antileukemic activities of these drug combinations in which panobinostat suppresses expression of BRCA1, CHK1, and RAD51 to enhance cytarabine and daunorubicin sensitivities in AML cells. PMID:24244429

  16. RAD51 G135C genetic polymorphism and their potential role in gastric cancer induced by Helicobacter pylori infection in Bhutan.

    PubMed

    Trang, T T H; Nagashima, H; Uchida, T; Mahachai, V; Vilaichone, R-K; Tshering, L; Binh, T T; Yamaoka, Y

    2016-01-01

    In order to evaluate the role of the RAD51 G135C genetic polymorphism on the risk of gastric cancer induced by Helicobacter pylori infection, we determined allele frequency and genotype distribution of this polymorphism in Bhutan--a population documented with high prevalence of gastric cancer and extremely high prevalence of H. pylori infection. The status of RAD51 G135C was examined by restriction fragment length polymorphism analysis of PCR amplified fragments and sequencing. Histological scores were evaluated according to the updated Sydney system. G135C carriers showed significantly higher scores for intestinal metaplasia in the antrum than G135G carriers [mean (median) 0·33 (0) vs. 0·08 (0), P = 0·008]. Higher scores for intestinal metaplasia of G135C carriers compared to those of G135G carriers were also observed in H. pylori-positive patients [0·3 (0) vs. 0·1 (0), P = 0·002] and H. pylori-positive patients with gastritis [0·4 (0) vs. 0·1 (0), P = 0·002] but were not found in H. pylori-negative patients. Our findings revealed that a combination of H. pylori infection and RAD51 G135C genotype of the host showed an increasing score for intestinal metaplasia. Therefore, RAD51 G135C might be the important predictor for gastric cancer of H. pylori-infected patients.

  17. RAD51 G135C genetic polymorphism and their potential role in gastric cancer induced by Helicobacter pylori infection in Bhutan.

    PubMed

    Trang, T T H; Nagashima, H; Uchida, T; Mahachai, V; Vilaichone, R-K; Tshering, L; Binh, T T; Yamaoka, Y

    2016-01-01

    In order to evaluate the role of the RAD51 G135C genetic polymorphism on the risk of gastric cancer induced by Helicobacter pylori infection, we determined allele frequency and genotype distribution of this polymorphism in Bhutan--a population documented with high prevalence of gastric cancer and extremely high prevalence of H. pylori infection. The status of RAD51 G135C was examined by restriction fragment length polymorphism analysis of PCR amplified fragments and sequencing. Histological scores were evaluated according to the updated Sydney system. G135C carriers showed significantly higher scores for intestinal metaplasia in the antrum than G135G carriers [mean (median) 0·33 (0) vs. 0·08 (0), P = 0·008]. Higher scores for intestinal metaplasia of G135C carriers compared to those of G135G carriers were also observed in H. pylori-positive patients [0·3 (0) vs. 0·1 (0), P = 0·002] and H. pylori-positive patients with gastritis [0·4 (0) vs. 0·1 (0), P = 0·002] but were not found in H. pylori-negative patients. Our findings revealed that a combination of H. pylori infection and RAD51 G135C genotype of the host showed an increasing score for intestinal metaplasia. Therefore, RAD51 G135C might be the important predictor for gastric cancer of H. pylori-infected patients. PMID:26119522

  18. The role of Rad51 in safeguarding mitochondrial activity during the meiotic cell cycle in mammalian oocytes

    PubMed Central

    Kim, Kyeoung-Hwa; Park, Ji-Hoon; Kim, Eun-Young; Ko, Jung-Jae; Park, Kyung-Soon; Lee, Kyung-Ah

    2016-01-01

    Rad51 is a conserved eukaryotic protein that mediates the homologous recombination repair of DNA double-strand breaks that occur during mitosis and meiosis. In addition, Rad51 promotes mitochondrial DNA synthesis when replication stress is increased. Rad51 also regulates cell cycle progression by preserving the G2/M transition in embryonic stem cells. In this study, we report a novel function of Rad51 in regulating mitochondrial activity during in vitro maturation of mouse oocytes. Suppression of Rad51 by injection of Rad51 dsRNA into germinal vesicle-stage oocytes resulted in arrest of meiosis in metaphase I. Rad51-depleted oocytes showed chromosome misalignment and failures in spindle aggregation, affecting the completion of cytokinesis. We found that Rad51 depletion was accompanied by decreased ATP production and mitochondrial membrane potential and increased DNA degradation. We further demonstrated that the mitochondrial defect activated autophagy in Rad51-depleted oocytes. Taken together, we concluded that Rad51 functions to safeguard mitochondrial integrity during the meiotic maturation of oocytes. PMID:27677401

  19. RNF138 interacts with RAD51D and is required for DNA interstrand crosslink repair and maintaining chromosome integrity.

    PubMed

    Yard, Brian D; Reilly, Nicole M; Bedenbaugh, Michael K; Pittman, Douglas L

    2016-06-01

    The RAD51 family is integral for homologous recombination (HR) mediated DNA repair and maintaining chromosome integrity. RAD51D, the fourth member of the family, is a known ovarian cancer susceptibility gene and required for the repair of interstrand crosslink DNA damage and preserving chromosomal stability. In this report, we describe the RNF138 E3 ubiquitin ligase that interacts with and ubiquitinates the RAD51D HR protein. RNF138 is a member of an E3 ligase family that contains an amino-terminal RING finger domain and a putative carboxyl-terminal ubiquitin interaction motif. In mammalian cells, depletion of RNF138 increased the stability of the RAD51D protein, suggesting that RNF138 governs ubiquitin-proteasome-mediated degradation of RAD51D. However, RNF138 depletion conferred sensitivity to DNA damaging agents, reduced RAD51 focus formation, and increased chromosomal instability. Site-specific mutagenesis of the RNF138 RING finger domain demonstrated that it was necessary for RAD51D ubiquitination. Presence of RNF138 also enhanced the interaction between RAD51D and a known interacting RAD51 family member XRCC2 in a yeast three-hybrid assay. Therefore, RNF138 is a newly identified regulatory component of the HR mediated DNA repair pathway that has implications toward understanding how ubiquitination modifies the functions of the RAD51 paralog protein complex.

  20. TOPBP1 regulates RAD51 phosphorylation and chromatin loading and determines PARP inhibitor sensitivity

    PubMed Central

    Moudry, Pavel; Watanabe, Kenji; Wolanin, Kamila M.; Bartkova, Jirina; Wassing, Isabel E.; Watanabe, Sugiko; Strauss, Robert; Troelsgaard Pedersen, Rune; Oestergaard, Vibe H.; Lisby, Michael; Andújar-Sánchez, Miguel; Maya-Mendoza, Apolinar; Esashi, Fumiko; Lukas, Jiri

    2016-01-01

    Topoisomerase IIβ-binding protein 1 (TOPBP1) participates in DNA replication and DNA damage response; however, its role in DNA repair and relevance for human cancer remain unclear. Here, through an unbiased small interfering RNA screen, we identified and validated TOPBP1 as a novel determinant whose loss sensitized human cells to olaparib, an inhibitor of poly(ADP-ribose) polymerase. We show that TOPBP1 acts in homologous recombination (HR) repair, impacts olaparib response, and exhibits aberrant patterns in subsets of human ovarian carcinomas. TOPBP1 depletion abrogated RAD51 loading to chromatin and formation of RAD51 foci, but without affecting the upstream HR steps of DNA end resection and RPA loading. Furthermore, TOPBP1 BRCT domains 7/8 are essential for RAD51 foci formation. Mechanistically, TOPBP1 physically binds PLK1 and promotes PLK1 kinase–mediated phosphorylation of RAD51 at serine 14, a modification required for RAD51 recruitment to chromatin. Overall, our results provide mechanistic insights into TOPBP1’s role in HR, with potential clinical implications for cancer treatment. PMID:26811421

  1. Distinct binding of BRCA2 BRC repeats to RAD51 generates differential DNA damage sensitivity.

    PubMed

    Chatterjee, Gouri; Jimenez-Sainz, Judit; Presti, Thomas; Nguyen, Tiffany; Jensen, Ryan B

    2016-06-20

    BRCA2 is a multi-faceted protein critical for the proper regulation of homology-directed repair of DNA double-strand breaks. Elucidating the mechanistic features of BRCA2 is crucial for understanding homologous recombination and how patient-derived mutations impact future cancer risk. Eight centrally located BRC repeats in BRCA2 mediate binding and regulation of RAD51 on resected DNA substrates. Herein, we dissect the biochemical and cellular features of the BRC repeats tethered to the DNA binding domain of BRCA2. To understand how the BRC repeats and isolated domains of BRCA2 contribute to RAD51 binding, we analyzed both the biochemical and cellular properties of these proteins. In contrast to the individual BRC repeat units, we find that the BRC5-8 region potentiates RAD51-mediated DNA strand pairing and provides complementation functions exceeding those of BRC repeats 1-4. Furthermore, BRC5-8 can efficiently repair nuclease-induced DNA double-strand breaks and accelerate the assembly of RAD51 repair complexes upon DNA damage. These findings highlight the importance of the BRC5-8 domain in stabilizing the RAD51 filament and promoting homology-directed repair under conditions of cellular DNA damage.

  2. TOPBP1 regulates RAD51 phosphorylation and chromatin loading and determines PARP inhibitor sensitivity.

    PubMed

    Moudry, Pavel; Watanabe, Kenji; Wolanin, Kamila M; Bartkova, Jirina; Wassing, Isabel E; Watanabe, Sugiko; Strauss, Robert; Troelsgaard Pedersen, Rune; Oestergaard, Vibe H; Lisby, Michael; Andújar-Sánchez, Miguel; Maya-Mendoza, Apolinar; Esashi, Fumiko; Lukas, Jiri; Bartek, Jiri

    2016-02-01

    Topoisomerase IIβ-binding protein 1 (TOPBP1) participates in DNA replication and DNA damage response; however, its role in DNA repair and relevance for human cancer remain unclear. Here, through an unbiased small interfering RNA screen, we identified and validated TOPBP1 as a novel determinant whose loss sensitized human cells to olaparib, an inhibitor of poly(ADP-ribose) polymerase. We show that TOPBP1 acts in homologous recombination (HR) repair, impacts olaparib response, and exhibits aberrant patterns in subsets of human ovarian carcinomas. TOPBP1 depletion abrogated RAD51 loading to chromatin and formation of RAD51 foci, but without affecting the upstream HR steps of DNA end resection and RPA loading. Furthermore, TOPBP1 BRCT domains 7/8 are essential for RAD51 foci formation. Mechanistically, TOPBP1 physically binds PLK1 and promotes PLK1 kinase-mediated phosphorylation of RAD51 at serine 14, a modification required for RAD51 recruitment to chromatin. Overall, our results provide mechanistic insights into TOPBP1's role in HR, with potential clinical implications for cancer treatment. PMID:26811421

  3. Distinct binding of BRCA2 BRC repeats to RAD51 generates differential DNA damage sensitivity

    PubMed Central

    Chatterjee, Gouri; Jimenez-Sainz, Judit; Presti, Thomas; Nguyen, Tiffany; Jensen, Ryan B.

    2016-01-01

    BRCA2 is a multi-faceted protein critical for the proper regulation of homology-directed repair of DNA double-strand breaks. Elucidating the mechanistic features of BRCA2 is crucial for understanding homologous recombination and how patient-derived mutations impact future cancer risk. Eight centrally located BRC repeats in BRCA2 mediate binding and regulation of RAD51 on resected DNA substrates. Herein, we dissect the biochemical and cellular features of the BRC repeats tethered to the DNA binding domain of BRCA2. To understand how the BRC repeats and isolated domains of BRCA2 contribute to RAD51 binding, we analyzed both the biochemical and cellular properties of these proteins. In contrast to the individual BRC repeat units, we find that the BRC5–8 region potentiates RAD51-mediated DNA strand pairing and provides complementation functions exceeding those of BRC repeats 1–4. Furthermore, BRC5–8 can efficiently repair nuclease-induced DNA double-strand breaks and accelerate the assembly of RAD51 repair complexes upon DNA damage. These findings highlight the importance of the BRC5–8 domain in stabilizing the RAD51 filament and promoting homology-directed repair under conditions of cellular DNA damage. PMID:27084934

  4. Suppression of OsRAD51D results in defects in reproductive development in rice (Oryza sativa L.).

    PubMed

    Byun, Mi Young; Kim, Woo Taek

    2014-07-01

    The cellular roles of RAD51 paralogs in somatic and reproductive growth have been extensively described in a wide range of animal systems and, to a lesser extent, in Arabidopsis, a dicot model plant. Here, the OsRAD51D gene was identified and characterized in rice (Oryza sativa L.), a monocot model crop. In the rice genome, three alternative OsRAD51D mRNA splicing variants, OsRAD51D.1, OsRAD51D.2, and OsRAD51D.3, were predicted. Yeast two-hybrid studies, however, showed that only OsRAD51D.1 interacted with OsRAD51B and OsRAD51C paralogs, suggesting that OsRAD51D.1 is a functional OsRAD51D protein in rice. Loss-of-function osrad51d mutant rice plants displayed normal vegetative growth. However, the mutant plants were defective in reproductive growth, resulting in sterile flowers. Homozygous osrad51d mutant flowers exhibited impaired development of lemma and palea and contained unusual numbers of stamens and stigmas. During early meiosis, osrad51d pollen mother cells (PMCs) failed to form normal homologous chromosome pairings. In subsequent meiotic progression, mutant PMCs represented fragmented chromosomes. The osrad51d pollen cells contained numerous abnormal micro-nuclei that resulted in malfunctioning pollen. The abnormalities of heterozygous mutant and T2 Ubi:RNAi-OsRAD51D RNAi-knock-down transgenic plants were intermediate between those of wild type and homozygous mutant plants. The osrad51d and Ubi:RNAi-OsRAD51D plants contained longer telomeres compared with wild type plants, indicating that OsRAD51D is a negative factor for telomere lengthening. Overall, these results suggest that OsRAD51D plays a critical role in reproductive growth in rice. This essential function of OsRAD51D is distinct from Arabidopsis, in which AtRAD51D is not an essential factor for meiosis or reproductive development.

  5. Interactions between canine RAD51 and full length or truncated BRCA2 BRC repeats.

    PubMed

    Ochiai, K; Yoshikawa, Y; Oonuma, T; Tomioka, Y; Hashizume, K; Morimatsu, M

    2011-11-01

    In humans, mutations in the gene for the breast cancer susceptibility protein BRCA2 affect its interactions with the recombinase RAD51 and are associated with an increased risk of cancer. This interaction occurs through a series of eight BRC repeat sequences in BRCA2. A mammalian two-hybrid assay using individual BRC repeats demonstrated that BRC6 did not bind to RAD51, whereas there was strong (BRC1, 2 and 4), intermediate (BRC8), or weak (BRC3, 5 and 7) binding of other BRC repeats to RAD51. In serial deletion mutation experiments, binding strengths were increased when the C-terminal BRC repeat was removed from BRC1-8, BRC1-5 and BRC1-3. These results may provide an insight into the effects of missense or truncation mutations in BRCA2 in canine tumours.

  6. Promotion of Homologous Recombination by SWS-1 in Complex with RAD-51 Paralogs in Caenorhabditis elegans.

    PubMed

    McClendon, T Brooke; Sullivan, Meghan R; Bernstein, Kara A; Yanowitz, Judith L

    2016-05-01

    Homologous recombination (HR) repairs cytotoxic DNA double-strand breaks (DSBs) with high fidelity. Deficiencies in HR result in genome instability. A key early step in HR is the search for and invasion of a homologous DNA template by a single-stranded RAD-51 nucleoprotein filament. The Shu complex, composed of a SWIM domain-containing protein and its interacting RAD51 paralogs, promotes HR by regulating RAD51 filament dynamics. Despite Shu complex orthologs throughout eukaryotes, our understanding of its function has been most extensively characterized in budding yeast. Evolutionary analysis of the SWIM domain identified Caenorhabditis elegans sws-1 as a putative homolog of the yeast Shu complex member Shu2. Using a CRISPR-induced nonsense allele of sws-1, we show that sws-1 promotes HR in mitotic and meiotic nuclei. sws-1 mutants exhibit sensitivity to DSB-inducing agents and fail to form mitotic RAD-51 foci following treatment with camptothecin. Phenotypic similarities between sws-1 and the two RAD-51 paralogs rfs-1 and rip-1 suggest that they function together. Indeed, we detect direct interaction between SWS-1 and RIP-1 by yeast two-hybrid assay that is mediated by the SWIM domain in SWS-1 and the Walker B motif in RIP-1 Furthermore, RIP-1 bridges an interaction between SWS-1 and RFS-1, suggesting that RIP-1 facilitates complex formation with SWS-1 and RFS-1 We propose that SWS-1, RIP-1, and RFS-1 compose a C. elegans Shu complex. Our work provides a new model for studying Shu complex disruption in the context of a multicellular organism that has important implications as to why mutations in the human RAD51 paralogs are associated with genome instability.

  7. Promotion of Homologous Recombination by SWS-1 in Complex with RAD-51 Paralogs in Caenorhabditis elegans.

    PubMed

    McClendon, T Brooke; Sullivan, Meghan R; Bernstein, Kara A; Yanowitz, Judith L

    2016-05-01

    Homologous recombination (HR) repairs cytotoxic DNA double-strand breaks (DSBs) with high fidelity. Deficiencies in HR result in genome instability. A key early step in HR is the search for and invasion of a homologous DNA template by a single-stranded RAD-51 nucleoprotein filament. The Shu complex, composed of a SWIM domain-containing protein and its interacting RAD51 paralogs, promotes HR by regulating RAD51 filament dynamics. Despite Shu complex orthologs throughout eukaryotes, our understanding of its function has been most extensively characterized in budding yeast. Evolutionary analysis of the SWIM domain identified Caenorhabditis elegans sws-1 as a putative homolog of the yeast Shu complex member Shu2. Using a CRISPR-induced nonsense allele of sws-1, we show that sws-1 promotes HR in mitotic and meiotic nuclei. sws-1 mutants exhibit sensitivity to DSB-inducing agents and fail to form mitotic RAD-51 foci following treatment with camptothecin. Phenotypic similarities between sws-1 and the two RAD-51 paralogs rfs-1 and rip-1 suggest that they function together. Indeed, we detect direct interaction between SWS-1 and RIP-1 by yeast two-hybrid assay that is mediated by the SWIM domain in SWS-1 and the Walker B motif in RIP-1 Furthermore, RIP-1 bridges an interaction between SWS-1 and RFS-1, suggesting that RIP-1 facilitates complex formation with SWS-1 and RFS-1 We propose that SWS-1, RIP-1, and RFS-1 compose a C. elegans Shu complex. Our work provides a new model for studying Shu complex disruption in the context of a multicellular organism that has important implications as to why mutations in the human RAD51 paralogs are associated with genome instability. PMID:26936927

  8. Identification of Rad51 regulation by BRCA2 using Caenorhabditis elegans BRCA2 and bimolecular fluorescence complementation analysis

    SciTech Connect

    Min, Jaewon; Park, Pil-gu; Ko, Eunkyong; Choi, Eunhee; Lee, Hyunsook

    2007-11-03

    BRCA2 is involved in double-stranded DNA break repair by binding and regulating Rad51-mediated homologous recombination. Insights as to how BRCA2 regulates Rad51-mediated DNA repair arose from in vitro biochemical studies on fragments of BRCA2. However, the large 400-kDa BRCA2 protein has hampered our ability to understand the entire process by which full-length BRCA2 regulates Rad51. Here, we show that CeBRC-2, which is only one tenth the size of mammalian BRCA2, complemented BRCA2-deficiency in Rad51 regulation. CeBRC-2 was able to bind to mammalian Rad51 (mRad51) and form distinct nuclear foci when they interacted. In our bimolecular fluorescence complementation analysis (BiFC), we show that the strength of the interaction between CeBRC-2 and mRad51 increased markedly after DNA damage. The BRC motif of CeBRC-2 was responsible for binding mRad51, but without the OB fold, the complex was unable to target damaged DNA. When CeBRC-2 was introduced into BRCA2-deficient cells, it restored Rad51 foci after DNA damage. Our study suggests a mode of action for BRCA2 with regard to DNA repair.

  9. SUMO modification regulates BLM and RAD51 interaction at damaged replication forks.

    PubMed

    Ouyang, Karen J; Woo, Leslie L; Zhu, Jianmei; Huo, Dezheng; Matunis, Michael J; Ellis, Nathan A

    2009-12-01

    The gene mutated in Bloom's syndrome, BLM, is important in the repair of damaged replication forks, and it has both pro- and anti-recombinogenic roles in homologous recombination (HR). At damaged forks, BLM interacts with RAD51 recombinase, the essential enzyme in HR that catalyzes homology-dependent strand invasion. We have previously shown that defects in BLM modification by the small ubiquitin-related modifier (SUMO) cause increased gamma-H2AX foci. Because the increased gamma-H2AX could result from defective repair of spontaneous DNA damage, we hypothesized that SUMO modification regulates BLM's function in HR repair at damaged forks. To test this hypothesis, we treated cells that stably expressed a normal BLM (BLM+) or a SUMO-mutant BLM (SM-BLM) with hydroxyurea (HU) and examined the effects of stalled replication forks on RAD51 and its DNA repair functions. HU treatment generated excess gamma-H2AX in SM-BLM compared to BLM+ cells, consistent with a defect in replication-fork repair. SM-BLM cells accumulated increased numbers of DNA breaks and were hypersensitive to DNA damage. Importantly, HU treatment failed to induce sister-chromatid exchanges in SM-BLM cells compared to BLM+ cells, indicating a specific defect in HR repair and suggesting that RAD51 function could be compromised. Consistent with this hypothesis, RAD51 localization to HU-induced repair foci was impaired in SM-BLM cells. These data suggested that RAD51 might interact noncovalently with SUMO. We found that in vitro RAD51 interacts noncovalently with SUMO and that it interacts more efficiently with SUMO-modified BLM compared to unmodified BLM. These data suggest that SUMOylation controls the switch between BLM's pro- and anti-recombinogenic roles in HR. In the absence of BLM SUMOylation, BLM perturbs RAD51 localization at damaged replication forks and inhibits fork repair by HR. Conversely, BLM SUMOylation relieves its inhibitory effects on HR, and it promotes RAD51 function.

  10. Suppression of mutagenesis by Rad51D-mediated homologous recombination

    SciTech Connect

    Hinz, J M; Tebbs, R S; Wilson, P F; Nham, P B; Salazar, E P; Nagasawa, H; Urbin, S S; Thompson, L H

    2005-11-15

    Homologous recombinational repair (HRR) restores chromatid breaks arising during DNA replication and prevents chromosomal rearrangements that can occur from the misrepair of such breaks. In vertebrates, five Rad51 paralogs are identified that contribute in a nonessential but critical manner to HRR efficiency. We constructed and characterized a Rad51D knockout cell line in widely studied CHO cells. The rad51d mutant (51D1) displays sensitivity to a wide spectrum of induced DNA damage, indicating the broad relevance of HRR to genotoxicity. Untreated 51D1 cells exhibit {approx}5-fold elevated chromosomal breaks, a 12-fold increased rate of hprt mutation, and 4- to 10-fold increased rates of gene amplification at the dhfr and CAD loci, respectively. These results explicitly show the quantitative importance of HHR in preventing these types genetic alterations, which are associated with carcinogenesis. Thus, HRR copes in an error-free manner with spontaneous DNA damage encountered during DNA replication, and Rad51D is essential for this fidelity.

  11. RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA.

    PubMed

    Wolf, Christine; Rapp, Alexander; Berndt, Nicole; Staroske, Wolfgang; Schuster, Max; Dobrick-Mattheuer, Manuela; Kretschmer, Stefanie; König, Nadja; Kurth, Thomas; Wieczorek, Dagmar; Kast, Karin; Cardoso, M Cristina; Günther, Claudia; Lee-Kirsch, Min Ae

    2016-01-01

    Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear membrane, but is drawn into the nucleus by binding to the DNA replication and repair factors RPA and Rad51. Knockdown of RPA and Rad51 enhances cytosolic leakage of ssDNA resulting in cGAS-dependent type I IFN activation. Mutations in the exonuclease TREX1 cause type I IFN-dependent autoinflammation and autoimmunity. We demonstrate that TREX1 is anchored within the outer nuclear membrane to ensure immediate degradation of ssDNA leaking into the cytosol. In TREX1-deficient fibroblasts, accumulating ssDNA causes exhaustion of RPA and Rad51 resulting in replication stress and activation of p53 and type I IFN. Thus, the ssDNA-binding capacity of RPA and Rad51 constitutes a cell intrinsic mechanism to protect the cytosol from self DNA. PMID:27230542

  12. RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA

    PubMed Central

    Wolf, Christine; Rapp, Alexander; Berndt, Nicole; Staroske, Wolfgang; Schuster, Max; Dobrick-Mattheuer, Manuela; Kretschmer, Stefanie; König, Nadja; Kurth, Thomas; Wieczorek, Dagmar; Kast, Karin; Cardoso, M. Cristina; Günther, Claudia; Lee-Kirsch, Min Ae

    2016-01-01

    Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear membrane, but is drawn into the nucleus by binding to the DNA replication and repair factors RPA and Rad51. Knockdown of RPA and Rad51 enhances cytosolic leakage of ssDNA resulting in cGAS-dependent type I IFN activation. Mutations in the exonuclease TREX1 cause type I IFN-dependent autoinflammation and autoimmunity. We demonstrate that TREX1 is anchored within the outer nuclear membrane to ensure immediate degradation of ssDNA leaking into the cytosol. In TREX1-deficient fibroblasts, accumulating ssDNA causes exhaustion of RPA and Rad51 resulting in replication stress and activation of p53 and type I IFN. Thus, the ssDNA-binding capacity of RPA and Rad51 constitutes a cell intrinsic mechanism to protect the cytosol from self DNA. PMID:27230542

  13. Rad51 Inhibits Translocation Formation by Non-Conservative Homologous Recombination in Saccharomyces cerevisiae

    PubMed Central

    Manthey, Glenn M.; Bailis, Adam M.

    2010-01-01

    Chromosomal translocations are a primary biological response to ionizing radiation (IR) exposure, and are likely to result from the inappropriate repair of the DNA double-strand breaks (DSBs) that are created. An abundance of repetitive sequences in eukaryotic genomes provides ample opportunity for such breaks to be repaired by homologous recombination (HR) between non-allelic repeats. Interestingly, in the budding yeast, Saccharomyces cerevisiae the central strand exchange protein, Rad51 that is required for DSB repair by gene conversion between unlinked repeats that conserves genomic structure also suppresses translocation formation by several HR mechanisms. In particular, Rad51 suppresses translocation formation by single-strand annealing (SSA), perhaps the most efficient mechanism for translocation formation by HR in both yeast and mammalian cells. Further, the enhanced translocation formation that emerges in the absence of Rad51 displays a distinct pattern of genetic control, suggesting that this occurs by a separate mechanism. Since hypomorphic mutations in RAD51 in mammalian cells also reduce DSB repair by conservative gene conversion and stimulate non-conservative repair by SSA, this mechanism may also operate in humans and, perhaps contribute to the genome instability that propels the development of cancer. PMID:20686691

  14. Cancer-associated mutations in BRC domains of BRCA2 affect homologous recombination induced by Rad51.

    PubMed

    Tal, Asaf; Arbel-Goren, Rinat; Stavans, Joel

    2009-11-13

    The tumor suppressor BRCA2 protein plays a major role in the regulation of Rad51-catalyzed homologous recombination. BRCA2 interacts with monomeric Rad51 primarily via conserved BRC domains and coordinates the formation of Rad51 filaments at double-stranded DNA (dsDNA) breaks. A number of cancer-associated mutations in BRC4 and BRC2 domains have been reported. To elucidate their effects on homologous recombination, we studied Rad51 filament formation on single-stranded DNA and dsDNA substrates and Rad51-catalyzed strand exchange, in the presence of wild-type and mutated peptides of either BRC4 or BRC2. While the wild-type BRC2 and BRC4 peptides inhibited filament formation and, thus, strand exchange, the mutated forms decreased significantly these inhibitory effects. These results are consistent with a three-dimensional model for the interface between individual BRC repeats and Rad51. We suggest that mutations at sites crucial for the association between Rad51 and BRC domains impair the ability of BRCA2 to recruit Rad51 to dsDNA breaks, hampering recombinational repair.

  15. Tumor-associated mutations in a conserved structural motif alter physical and biochemical properties of human RAD51 recombinase

    PubMed Central

    Chen, Jianhong; Morrical, Milagros D.; Donigan, Katherine A.; Weidhaas, Joanne B.; Sweasy, Joann B.; Averill, April M.; Tomczak, Jennifer A.; Morrical, Scott W.

    2015-01-01

    Human RAD51 protein catalyzes DNA pairing and strand exchange reactions that are central to homologous recombination and homology-directed DNA repair. Successful recombination/repair requires the formation of a presynaptic filament of RAD51 on ssDNA. Mutations in BRCA2 and other proteins that control RAD51 activity are associated with human cancer. Here we describe a set of mutations associated with human breast tumors that occur in a common structural motif of RAD51. Tumor-associated D149N, R150Q and G151D mutations map to a Schellman loop motif located on the surface of the RecA homology domain of RAD51. All three variants are proficient in DNA strand exchange, but G151D is slightly more sensitive to salt than wild-type (WT). Both G151D and R150Q exhibit markedly lower catalytic efficiency for adenosine triphosphate hydrolysis compared to WT. All three mutations alter the physical properties of RAD51 nucleoprotein filaments, with G151D showing the most dramatic changes. G151D forms mixed nucleoprotein filaments with WT RAD51 that have intermediate properties compared to unmixed filaments. These findings raise the possibility that mutations in RAD51 itself may contribute to genome instability in tumor cells, either directly through changes in recombinase properties, or indirectly through changes in interactions with regulatory proteins. PMID:25539919

  16. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair.

    PubMed

    Petermann, Eva; Orta, Manuel Luís; Issaeva, Natalia; Schultz, Niklas; Helleday, Thomas

    2010-02-26

    Faithful DNA replication is essential to all life. Hydroxyurea (HU) depletes the cells of dNTPs, which initially results in stalled replication forks that, after prolonged treatment, collapse into DSBs. Here, we report that stalled replication forks are efficiently restarted in a RAD51-dependent process that does not trigger homologous recombination (HR). The XRCC3 protein, which is required for RAD51 foci formation, is also required for replication restart of HU-stalled forks, suggesting that RAD51-mediated strand invasion supports fork restart. In contrast, replication forks collapsed by prolonged replication blocks do not restart, and global replication is rescued by new origin firing. We find that RAD51-dependent HR is triggered for repair of collapsed replication forks, without apparent restart. In conclusion, our data suggest that restart of stalled replication forks and HR repair of collapsed replication forks require two distinct RAD51-mediated pathways.

  17. Valine 1532 of human BRC repeat 4 plays an important role in the interaction between BRCA2 and RAD51.

    PubMed

    Ochiai, Kazuhiko; Yoshikawa, Yasunaga; Yoshimatsu, Kumiko; Oonuma, Toshina; Tomioka, Yukiko; Takeda, Eichi; Arikawa, Jiro; Mominoki, Katsumi; Omi, Toshinori; Hashizume, Kazuyoshi; Morimatsu, Masami

    2011-06-23

    The breast cancer susceptibility protein BRCA2 is essential for recombinational DNA repair. BRCA2 specifically binds to RAD51 via eight BRC repeat motifs and delivers RAD51 to double-stranded DNA breaks. In this study, a mammalian two-hybrid assay and competitive ELISA showed that the interaction between BRC repeat 4 (BRC4) and RAD51 was strengthened by the substitution of a single BRC4 amino acid from valine to isoleucine (V1532I). However, the cancer-associated V1532F mutant exhibited very weak interaction with RAD51. This study used a comparative analysis of BRC4 between animal species to identify V1532 as an important residue that interacts with RAD51.

  18. Homologous recombination repair signaling in chemical carcinogenesis: prolonged particulate hexavalent chromium exposure suppresses the Rad51 response in human lung cells.

    PubMed

    Qin, Qin; Xie, Hong; Wise, Sandra S; Browning, Cynthia L; Thompson, Kelsey N; Holmes, Amie L; Wise, John Pierce

    2014-11-01

    The aim of this study was to focus on hexavalent chromium, [Cr(VI)], a chemical carcinogen and major public health concern, and consider its ability to impact DNA double strand break repair. We further focused on particulate Cr(VI), because it is the more potent carcinogenic form of Cr(VI). DNA double strand break repair serves to protect cells against the detrimental effects of DNA double strand breaks. For particulate Cr(VI), data show DNA double strand break repair must be overcome for neoplastic transformation to occur. Acute Cr(VI) exposures reveal a robust DNA double strand break repair response, however, longer exposures have not been considered. Using the comet assay, we found longer exposures to particulate zinc chromate induced concentration-dependent increases in DNA double strand breaks indicating breaks were occurring throughout the exposure time. Acute (24 h) exposure induced DNA double strand break repair signaling by inducing Mre11 foci formation, ATM phosphorylation and phosphorylated ATM foci formation, Rad51 protein levels and Rad51 foci formation. However, longer exposures reduced the Rad51 response. These data indicate a major chemical carcinogen can simultaneously induce DNA double strand breaks and alter their repair and describe a new and important aspect of the carcinogenic mechanism for Cr(VI). PMID:25173789

  19. Interaction with the BRCA2 C terminus protects RAD51-DNA filaments from disassembly by BRC repeats.

    PubMed

    Davies, Owen Richard; Pellegrini, Luca

    2007-06-01

    BRCA2 has an essential function in DNA repair by homologous recombination, interacting with RAD51 via short motifs in the middle and at the C terminus of BRCA2. Here, we report that a conserved 36-residue sequence of human BRCA2 encoded by exon 27 (BRCA2Exon27) interacts with RAD51 through the specific recognition of oligomerized RAD51 ATPase domains. BRCA2Exon27 binding stabilizes the RAD51 nucleoprotein filament against disassembly by BRC repeat 4. The protection is specific for RAD51 filaments formed on single-stranded DNA and is lost when BRCA2Exon27 is phosphorylated on Ser3291. We propose that productive recombination results from the functional balance between the different RAD51-binding modes [corrected] of the BRC repeat and exon 27 regions of BRCA2. Our results further suggest a mechanism in which CDK phosphorylation of BRCA2Exon27 at the G2-M transition alters the balance in favor of RAD51 filament disassembly, thus terminating recombination.

  20. A novel Fanconi anaemia subtype associated with a dominant-negative mutation in RAD51

    PubMed Central

    Ameziane, Najim; May, Patrick; Haitjema, Anneke; van de Vrugt, Henri J.; van Rossum-Fikkert, Sari E.; Ristic, Dejan; Williams, Gareth J.; Balk, Jesper; Rockx, Davy; Li, Hong; Rooimans, Martin A.; Oostra, Anneke B.; Velleuer, Eunike; Dietrich, Ralf; Bleijerveld, Onno B.; Maarten Altelaar, A. F.; Meijers-Heijboer, Hanne; Joenje, Hans; Glusman, Gustavo; Roach, Jared; Hood, Leroy; Galas, David; Wyman, Claire; Balling, Rudi; den Dunnen, Johan; de Winter, Johan P.; Kanaar, Roland; Gelinas, Richard; Dorsman, Josephine C.

    2015-01-01

    Fanconi anaemia (FA) is a hereditary disease featuring hypersensitivity to DNA cross-linker-induced chromosomal instability in association with developmental abnormalities, bone marrow failure and a strong predisposition to cancer. A total of 17 FA disease genes have been reported, all of which act in a recessive mode of inheritance. Here we report on a de novo g.41022153G>A; p.Ala293Thr (NM_002875) missense mutation in one allele of the homologous recombination DNA repair gene RAD51 in an FA-like patient. This heterozygous mutation causes a novel FA subtype, ‘FA-R', which appears to be the first subtype of FA caused by a dominant-negative mutation. The patient, who features microcephaly and mental retardation, has reached adulthood without the typical bone marrow failure and paediatric cancers. Together with the recent reports on RAD51-associated congenital mirror movement disorders, our results point to an important role for RAD51-mediated homologous recombination in neurodevelopment, in addition to DNA repair and cancer susceptibility. PMID:26681308

  1. A novel Fanconi anaemia subtype associated with a dominant-negative mutation in RAD51.

    PubMed

    Ameziane, Najim; May, Patrick; Haitjema, Anneke; van de Vrugt, Henri J; van Rossum-Fikkert, Sari E; Ristic, Dejan; Williams, Gareth J; Balk, Jesper; Rockx, Davy; Li, Hong; Rooimans, Martin A; Oostra, Anneke B; Velleuer, Eunike; Dietrich, Ralf; Bleijerveld, Onno B; Maarten Altelaar, A F; Meijers-Heijboer, Hanne; Joenje, Hans; Glusman, Gustavo; Roach, Jared; Hood, Leroy; Galas, David; Wyman, Claire; Balling, Rudi; den Dunnen, Johan; de Winter, Johan P; Kanaar, Roland; Gelinas, Richard; Dorsman, Josephine C

    2015-01-01

    Fanconi anaemia (FA) is a hereditary disease featuring hypersensitivity to DNA cross-linker-induced chromosomal instability in association with developmental abnormalities, bone marrow failure and a strong predisposition to cancer. A total of 17 FA disease genes have been reported, all of which act in a recessive mode of inheritance. Here we report on a de novo g.41022153G>A; p.Ala293Thr (NM_002875) missense mutation in one allele of the homologous recombination DNA repair gene RAD51 in an FA-like patient. This heterozygous mutation causes a novel FA subtype, 'FA-R', which appears to be the first subtype of FA caused by a dominant-negative mutation. The patient, who features microcephaly and mental retardation, has reached adulthood without the typical bone marrow failure and paediatric cancers. Together with the recent reports on RAD51-associated congenital mirror movement disorders, our results point to an important role for RAD51-mediated homologous recombination in neurodevelopment, in addition to DNA repair and cancer susceptibility. PMID:26681308

  2. Clinical Characteristics of Ovarian Cancer Classified by BRCA1, BRCA2, and RAD51C Status

    PubMed Central

    Cunningham, J. M.; Cicek, M. S.; Larson, N. B.; Davila, J.; Wang, C.; Larson, M. C.; Song, H.; Dicks, E. M.; Harrington, P.; Wick, M.; Winterhoff, B. J.; Hamidi, H.; Konecny, G. E.; Chien, J.; Bibikova, M.; Fan, J.-B.; Kalli, K. R.; Lindor, N. M.; Fridley, B. L.; Pharoah, P. P. D.; Goode, E. L.

    2014-01-01

    We evaluated homologous recombination deficient (HRD) phenotypes in epithelial ovarian cancer (EOC) considering BRCA1, BRCA2, and RAD51C in a large well-annotated patient set. We evaluated EOC patients for germline deleterious mutations (n = 899), somatic mutations (n = 279) and epigenetic alterations (n = 482) in these genes using NGS and genome-wide methylation arrays. Deleterious germline mutations were identified in 32 (3.6%) patients for BRCA1, in 28 (3.1%) for BRCA2 and in 26 (2.9%) for RAD51C. Ten somatically sequenced patients had deleterious alterations, six (2.1%) in BRCA1 and four (1.4%) in BRCA2. Fifty two patients (10.8%) had methylated BRCA1 or RAD51C. HRD patients with germline or somatic alterations in any gene were more likely to be high grade serous, have an earlier diagnosis age and have ovarian and/or breast cancer family history. The HRD phenotype was most common in high grade serous EOC. Identification of EOC patients with an HRD phenotype may help tailor specific therapies. PMID:24504028

  3. Polymorphisms of canine BRCA2 BRC repeats affecting interaction with RAD51.

    PubMed

    Ochiai, Kazuhiko; Ishiguro-Oonuma, Toshina; Yoshikawa, Yasunaga; Udagawa, Chihiro; Kato, Yuiko; Watanabe, Masami; Bonkobara, Makoto; Morimatsu, Masami; Omi, Toshinori

    2015-01-01

    Mutations in the breast cancer susceptibility gene BRCA2 leading to the failure of interactions with the recombinase RAD51 are associated with an increased risk of cancer in humans. This interaction depends on the eight BRC repeat (BRC1-8) sequences in BRCA2. We previously reported that canine BRC3 has two polymorphisms (T1425P and K1435R) influencing the interaction with RAD51, and 1435R was identified in mammary tumor dog samples. In this study, we investigated the sequence variations of BRC3 and 4 in 236 dogs of five breeds. Allele frequencies of 1425P and 1435R were 0.063 and 0.314, respectively, and there was no other polymorphism in the sequenced region. A mammalian two-hybrid assay using BRC3-4 sequences demonstrated that 1425P allele reduced the binding strength with RAD51 but 1435R had no effect. These results may provide an insight into the functions of not only individual but also multiple BRC repeats of BRCA2 in dogs.

  4. Polymorphisms of canine BRCA2 BRC repeats affecting interaction with RAD51.

    PubMed

    Ochiai, Kazuhiko; Ishiguro-Oonuma, Toshina; Yoshikawa, Yasunaga; Udagawa, Chihiro; Kato, Yuiko; Watanabe, Masami; Bonkobara, Makoto; Morimatsu, Masami; Omi, Toshinori

    2015-01-01

    Mutations in the breast cancer susceptibility gene BRCA2 leading to the failure of interactions with the recombinase RAD51 are associated with an increased risk of cancer in humans. This interaction depends on the eight BRC repeat (BRC1-8) sequences in BRCA2. We previously reported that canine BRC3 has two polymorphisms (T1425P and K1435R) influencing the interaction with RAD51, and 1435R was identified in mammary tumor dog samples. In this study, we investigated the sequence variations of BRC3 and 4 in 236 dogs of five breeds. Allele frequencies of 1425P and 1435R were 0.063 and 0.314, respectively, and there was no other polymorphism in the sequenced region. A mammalian two-hybrid assay using BRC3-4 sequences demonstrated that 1425P allele reduced the binding strength with RAD51 but 1435R had no effect. These results may provide an insight into the functions of not only individual but also multiple BRC repeats of BRCA2 in dogs. PMID:25876666

  5. Genetic variability of Xrcc3 and Rad51 modulates the risk of head and neck cancer.

    PubMed

    Gresner, Peter; Gromadzinska, Jolanta; Polanska, Kinga; Twardowska, Ewa; Jurewicz, Joanna; Wasowicz, Wojciech

    2012-08-10

    A case-control study was conducted to analyze the possible associations between the head and neck cancer (HNC) risk and fourteen single nucleotide polymorphisms (SNPs) and haplotypes in Xrcc3 and Rad51 genes. This study involved 81 HNC cases and 111 healthy control subjects. A significant risk-increasing effect of rs3212057 (p.Arg94His) SNP in Xrcc3 (OR=6.6; p<0.01) was observed. On the other hand, risk-decreasing effect was found for rs5030789 (g.3997A>G) and rs1801321 (c.-60G>T) in 5' near gene and 5'UTR regions of Rad51, respectively (OR=0.3 and OR=0.2, p<0.05, respectively). Moreover, these effects were shown to be modulated by tobacco-smoking status and gene-gene interactions. Concluding, the genetic variability of Xrcc3 and/or Rad51 genes might be of relevance with respect to HNC risk. PMID:22613844

  6. Rad51C: a novel suppressor gene modulates the risk of head and neck cancer.

    PubMed

    Gresner, Peter; Gromadzinska, Jolanta; Twardowska, Ewa; Rydzynski, Konrad; Wasowicz, Wojciech

    2014-04-01

    We conducted a case-control study to investigate the possible association between the head and neck cancer (HNC) and genetic variability of Rad51C tumor suppressor gene. Eight polymorphic sites spanning over non-coding regions of Rad51C promoter, exon 1 and intron 1 were genotyped in 81 HNC cases and 156 healthy controls using the real-time PCR technique. One investigated site turned out to be not polymorphic, while among the remaining seven sites a significant HNC risk-increasing effect was found for rs16943176 (c.-118G>A), rs12946397 (c.-26C>T) and rs17222691 (c.145+947C>T) on both allelic (OR=1.8; p<0.05) and genotypic (OR=2.0; p<0.05) level. Furthermore, our data seem to provide marginal evidence, that this effect might possibly be confined to women only (OR=2.8; p=0.05 for allelic and OR=3.7; p=0.05 for genotypic comparisons). These SNPs were found to co-segregate together forming two distinct, HNC risk-modulating haplotypes. The genetic variability of Rad51C might thus be of relevance with respect to HNC risk. PMID:24631219

  7. Tel1 and Rad51 are involved in the maintenance of telomeres with capping deficiency.

    PubMed

    Di Domenico, Enea Gino; Mattarocci, Stefano; Cimino-Reale, Graziella; Parisi, Paola; Cifani, Noemi; D'Ambrosio, Ettore; Zakian, Virginia A; Ascenzioni, Fiorentina

    2013-07-01

    Vertebrate-like T2AG3 telomeres in tlc1-h yeast consist of short double-stranded regions and long single-stranded overhang (G-tails) and, although based on Tbf1-capping activity, they are capping deficient. Consistent with this idea, we observe Y' amplification because of homologous recombination, even in the presence of an active telomerase. In these cells, Y' amplification occurs by different pathways: in Tel1(+) tlc1h cells, it is Rad51-dependent, whereas in the absence of Tel1, it depends on Rad50. Generation of telomeric G-tail, which is cell cycle regulated, depends on the MRX (Mre11-Rad50-Xrs2) complex in tlc1h cells or is MRX-independent in tlc1h tel1Δ mutants. Unexpectedly, we observe telomere elongation in tlc1h lacking Rad51 that seems to act as a telomerase competitor for binding to telomeric G-tails. Overall, our results show that Tel1 and Rad51 have multiple roles in the maintenance of vertebrate-like telomeres in yeast, supporting the idea that they may participate to evolutionary conserved telomere protection mechanism/s acting at uncapped telomeres.

  8. Prodigiosin-induced cytotoxicity involves RAD51 down-regulation through the JNK and p38 MAPK pathways in human breast carcinoma cell lines.

    PubMed

    Lu, Chien-Hsing; Lin, Shin-Chang; Yang, Shu-Yi; Pan, Mu-Yun; Lin, Yun-Wei; Hsu, Chun-Yi; Wei, Yu-Hong; Chang, Jo-Shu; Chang, Chia-Che

    2012-07-01

    RAD51 is essential for homologous recombination (HR)-mediated repair of DNA double-strand breaks (DSBs) in mammalian cells. RAD51 is an attractive target for anticancer drugs, given high RAD51 levels are frequently observed in many human tumors and associated with increased resistance to DSBs-inducing chemotherapeutics. Prodigiosin is a bacterial tripyrrole pigment with potent anticancer activity and also provokes DSBs. We hereby aimed to elucidate the role of RAD51 in prodigiosin-induced cytotoxicity. Prodigiosin was found to down-regulate RAD51 in multiple human breast carcinoma cell lines irrespective of p53 status. Mechanistically, prodigiosin lowered RAD51 mRNA expression, whereas blockade of proteasome-mediated degradation failed to restore RAD51 levels following prodigiosin treatment. In addition, prodigiosin triggered phosphorylation of JNK and p38 MAPK, while pharmacological inhibition of JNK or p38 MAPK attenuated prodigiosin-mediated inhibition of RAD51 mRNA expression. Lastly, cells with enforced RAD51 expression showed increased resistance to prodigiosin-induced cytotoxicity as well as inhibition of colony formation. Collectively, we conclude that RAD51 down-regulation represents one of the modes of prodigiosin's cytotoxic action, ostensibly by augmenting the genotoxic effect of prodigiosin through suppression of RAD51-mediated HR repair. Our findings further implicate the use of prodigiosin to potentiate the cytotoxicity of DSB-inducing chemotherapeutics through RAD51 down-regulation.

  9. RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2.

    PubMed

    Wong, A K; Pero, R; Ormonde, P A; Tavtigian, S V; Bartel, P L

    1997-12-19

    Recent work has shown that the murine BRCA2 tumor suppressor protein interacts with the murine RAD51 protein. This interaction suggests that BRCA2 participates in DNA repair. Residues 3196-3232 of the murine BRCA2 protein were shown to be involved in this interaction. Here, we report the detailed mapping of additional domains that are involved in interactions between the human homologs of these two proteins. Through yeast two-hybrid and biochemical assays, we demonstrate that the RAD51 protein interacts specifically with the eight evolutionarily conserved BRC motifs encoded in exon 11 of brca2 and with a similar motif found in a Caenorhabditis elegans hypothetical protein. Deletion analysis demonstrates that residues 98-339 of human RAD51 interact with the 59-residue minimal region that is conserved in all BRC motifs. These data suggest that the BRC repeats function to bind RAD51.

  10. Enhanced Histone Deacetylase Activity in Malignant Melanoma Provokes RAD51 and FANCD2-Triggered Drug Resistance.

    PubMed

    Krumm, Andrea; Barckhausen, Christina; Kücük, Pelin; Tomaszowski, Karl-Heinz; Loquai, Carmen; Fahrer, Jörg; Krämer, Oliver Holger; Kaina, Bernd; Roos, Wynand Paul

    2016-05-15

    DNA-damaging anticancer drugs remain a part of metastatic melanoma therapy. Epigenetic reprogramming caused by increased histone deacetylase (HDAC) activity arising during tumor formation may contribute to resistance of melanomas to the alkylating drugs temozolomide, dacarbazine, and fotemustine. Here, we report on the impact of class I HDACs on the response of malignant melanoma cells treated with alkylating agents. The data show that malignant melanomas in situ contain a high level of HDAC1/2 and malignant melanoma cells overexpress HDAC1/2/3 compared with noncancer cells. Furthermore, pharmacologic inhibition of class I HDACs sensitizes malignant melanoma cells to apoptosis following exposure to alkylating agents, while not affecting primary melanocytes. Inhibition of HDAC1/2/3 caused sensitization of melanoma cells to temozolomide in vitro and in melanoma xenografts in vivo HDAC1/2/3 inhibition resulted in suppression of DNA double-strand break (DSB) repair by homologous recombination because of downregulation of RAD51 and FANCD2. This sensitized cells to the cytotoxic DNA lesion O(6)-methylguanine and caused a synthetic lethal interaction with the PARP-1 inhibitor olaparib. Furthermore, knockdown experiments identified HDAC2 as being responsible for the regulation of RAD51. The influence of class I HDACs on DSB repair by homologous recombination and the possible clinical implication on malignant melanoma therapy with temozolomide and other alkylating drugs suggests a combination approach where class I HDAC inhibitors such as valproic acid or MS-275 (entinostat) appear to counteract HDAC- and RAD51/FANCD2-mediated melanoma cell resistance. Cancer Res; 76(10); 3067-77. ©2016 AACR. PMID:26980768

  11. XRCC3 ATPase activity is required for normal XRCC3-Rad51C complex dynamics and homologous recombination

    SciTech Connect

    Yamada, N; Hinz, J; Kopf, V L; Segalle, K; Thompson, L

    2004-02-25

    Homologous recombinational repair is a major DNA repair pathway that preserves chromosomal integrity by removing double-strand breaks, crosslinks, and other DNA damage. In eukaryotic cells, the Rad51 paralogs (XRCC2, XRCC3, Rad51B, Rad51C, and Rad51D) are involved in this process, although their exact functions are largely undetermined. All five paralogs contain ATPase motifs, and XRCC3 appears to exist in a single complex with Rad51C. To begin to examine the function of this Rad51C-XRCC3 complex, we generated mammalian expression vectors that produce human wild-type XRCC3 or mutant XRCC3 with either a non-conservative mutation (K113A) or a conservative mutation (K113R) in the GKT Walker A box of the ATPase motif. The three vectors were independently transfected into Xrcc3-deficient irs1SF CHO cells. Wild-type XRCC3 complemented irs1SF cells, albeit to varying degrees, while ATPase mutants had no complementing activity, even when the mutant protein was expressed at comparable levels to that in wild-type-complemented clones. Because of the mutants' dysfunction, we propose that ATP binding and hydrolyzing activities of XRCC3 are essential. We tested in vitro complex formation by wild-type and mutant XRCC3 with His6-tagged Rad51C upon coexpression in bacteria, nickel affinity purification, and western blotting. Wild-type and K113A mutant XRCC3 formed stable complexes with Rad51C and co-purified with Rad51C, while the K113R mutant did not and was predominantly insoluble. Addition of 5 mM ATP, but not ADP, also abolished complex formation by the wild-type proteins. These results suggest that XRCC3 is likely to regulate the dissociation and formation of Rad51C-XRCC3 complex through ATP binding and hydrolysis, with both processes being essential for the complex's ability to participate in HRR.

  12. RAD51 and Breast Cancer Susceptibility: No Evidence for Rare Variant Association in the Breast Cancer Family Registry Study

    PubMed Central

    Le Calvez-Kelm, Florence; Oliver, Javier; Damiola, Francesca; Forey, Nathalie; Robinot, Nivonirina; Durand, Geoffroy; Voegele, Catherine; Vallée, Maxime P.; Byrnes, Graham; Registry, Breast Cancer Family; Hopper, John L.; Southey, Melissa C.; Andrulis, Irene L.; John, Esther M.; Tavtigian, Sean V.; Lesueur, Fabienne

    2012-01-01

    Background Although inherited breast cancer has been associated with germline mutations in genes that are functionally involved in the DNA homologous recombination repair (HRR) pathway, including BRCA1, BRCA2, TP53, ATM, BRIP1, CHEK2 and PALB2, about 70% of breast cancer heritability remains unexplained. Because of their critical functions in maintaining genome integrity and already well-established associations with breast cancer susceptibility, it is likely that additional genes involved in the HRR pathway harbor sequence variants associated with increased risk of breast cancer. RAD51 plays a central biological function in DNA repair and despite the fact that rare, likely dysfunctional variants in three of its five paralogs, RAD51C, RAD51D, and XRCC2, have been associated with breast and/or ovarian cancer risk, no population-based case-control mutation screening data are available for the RAD51 gene. We thus postulated that RAD51 could harbor rare germline mutations that confer increased risk of breast cancer. Methodology/Principal Findings We screened the coding exons and proximal splice junction regions of the gene for germline sequence variation in 1,330 early-onset breast cancer cases and 1,123 controls from the Breast Cancer Family Registry, using the same population-based sampling and analytical strategy that we developed for assessment of rare sequence variants in ATM and CHEK2. In total, 12 distinct very rare or private variants were characterized in RAD51, with 10 cases (0.75%) and 9 controls (0.80%) carrying such a variant. Variants were either likely neutral missense substitutions (3), silent substitutions (4) or non-coding substitutions (5) that were predicted to have little effect on efficiency of the splicing machinery. Conclusion Altogether, our data suggest that RAD51 tolerates so little dysfunctional sequence variation that rare variants in the gene contribute little, if anything, to breast cancer susceptibility. PMID:23300655

  13. Gefitinib Synergizes with Irinotecan to Suppress Hepatocellular Carcinoma via Antagonizing Rad51-Mediated DNA-Repair

    PubMed Central

    Peng, Xueming; Chen, Min; Zhu, Yuanrun; Xu, Li; Zhu, Hong; Yang, Bo; Luo, Peihua; He, Qiaojun

    2016-01-01

    Chemotherapy is the only choice for most of the advanced hepatocellular carcinoma (HCC) patients, while few agents were available, making it an urgent need to develop new chemotherapy strategies. A phase II clinical trial suggested that the efficacy of irinotecan in HCC was limited due to dose-dependent toxicities. Here, we found that gefitinib exhibited synergistic activity in combination with SN-38, an active metabolite of irinotecan, in HCC cell lines. And the enhanced apoptosis induced by gefitinib plus SN-38 was a result from caspase pathway activation. Mechanistically, gefitinib dramatically promoted the ubiquitin–proteasome-dependent degradation of Rad51 protein, suppressed the DNA repair, gave rise to more DNA damages, and ultimately resulted in the synergism of these two agents. In addition, the increased antitumor efficacy of gefitinib combined with irinotecan was further validated in a HepG2 xenograft mice model. Taken together, our data demonstrated for the first time that the combination of irinotecan and gefitinib showed potential benefit in HCC, which suggests that Rad51 is a promising target and provides a rationale for clinical trials investigating the efficacy of the combination of topoisomerase I inhibitors and gefitinib in HCC. PMID:26752698

  14. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability

    PubMed Central

    Parplys, Ann C.; Zhao, Weixing; Sharma, Neelam; Groesser, Torsten; Liang, Fengshan; Maranon, David G.; Leung, Stanley G.; Grundt, Kirsten; Dray, Eloïse; Idate, Rupa; Østvold, Anne Carine; Schild, David; Sung, Patrick; Wiese, Claudia

    2015-01-01

    NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintaining wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression. PMID:26323318

  15. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability

    SciTech Connect

    Parplys, Ann C.; Zhao, Weixing; Sharma, Neelam; Groesser, Torsten; Liang, Fengshan; Maranon, David G.; Leung, Stanley G.; Grundt, Kirsten; Dray, Eloïse; Idate, Rupa; Østvold, Anne Carine; Schild, David; Sung, Patrick; Wiese, Claudia

    2015-08-31

    NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintaining wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Finally, our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression.

  16. Nanoscopic exclusion between Rad51 and 53BP1 after ion irradiation in human HeLa cells

    NASA Astrophysics Data System (ADS)

    Reindl, Judith; Drexler, Guido A.; Girst, Stefanie; Greubel, Christoph; Siebenwirth, Christian; Drexler, Sophie E.; Dollinger, Günther; Friedl, Anna A.

    2015-12-01

    Many proteins involved in detection, signalling and repair of DNA double-strand breaks (DSB) accumulate in large number in the vicinity of DSB sites, forming so called foci. Emerging evidence suggests that these foci are sub-divided in structural or functional domains. We use stimulated emission depletion (STED) microscopy to investigate localization of mediator protein 53BP1 and recombination factor Rad51 after irradiation of cells with low linear energy transfer (LET) protons or high LET carbon ions. With a resolution better than 100 nm, STED microscopy and image analysis using a newly developed analyzing algorithm, the reduced product of the differences from the mean, allowed us to demonstrate that with both irradiation types Rad51 occupies spherical regions of about 200 nm diameter. These foci locate within larger 53BP1 accumulations in regions of local 53BP1 depletion, similar to what has been described for the localization of Brca1, CtIP and RPA. Furthermore, localization relative to 53BP1 and size of Rad51 foci was not different after irradiation with low and high LET radiation. As expected, 53BP1 foci induced by low LET irradiation mostly contained one Rad51 focal structure, while after high LET irradiation, most foci contained >1 Rad51 accumulation.

  17. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability.

    PubMed

    Parplys, Ann C; Zhao, Weixing; Sharma, Neelam; Groesser, Torsten; Liang, Fengshan; Maranon, David G; Leung, Stanley G; Grundt, Kirsten; Dray, Eloïse; Idate, Rupa; Østvold, Anne Carine; Schild, David; Sung, Patrick; Wiese, Claudia

    2015-11-16

    NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintaining wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression. PMID:26323318

  18. Human CST Facilitates Genome-wide RAD51 Recruitment to GC-Rich Repetitive Sequences in Response to Replication Stress.

    PubMed

    Chastain, Megan; Zhou, Qing; Shiva, Olga; Whitmore, Leanne; Jia, Pingping; Dai, Xueyu; Huang, Chenhui; Fadri-Moskwik, Maria; Ye, Ping; Chai, Weihang

    2016-08-01

    The telomeric CTC1/STN1/TEN1 (CST) complex has been implicated in promoting replication recovery under replication stress at genomic regions, yet its precise role is unclear. Here, we report that STN1 is enriched at GC-rich repetitive sequences genome-wide in response to hydroxyurea (HU)-induced replication stress. STN1 deficiency exacerbates the fragility of these sequences under replication stress, resulting in chromosome fragmentation. We find that upon fork stalling, CST proteins form distinct nuclear foci that colocalize with RAD51. Furthermore, replication stress induces physical association of CST with RAD51 in an ATR-dependent manner. Strikingly, CST deficiency diminishes HU-induced RAD51 foci formation and reduces RAD51 recruitment to telomeres and non-telomeric GC-rich fragile sequences. Collectively, our findings establish that CST promotes RAD51 recruitment to GC-rich repetitive sequences in response to replication stress to facilitate replication restart, thereby providing insights into the mechanism underlying genome stability maintenance.

  19. Rad52-mediated DNA annealing after Rad51-mediated DNA strand exchange promotes second ssDNA capture.

    PubMed

    Sugiyama, Tomohiko; Kantake, Noriko; Wu, Yun; Kowalczykowski, Stephen C

    2006-11-29

    Rad51, Rad52, and RPA play central roles in homologous DNA recombination. Rad51 mediates DNA strand exchange, a key reaction in DNA recombination. Rad52 has two distinct activities: to recruit Rad51 onto single-strand (ss)DNA that is complexed with the ssDNA-binding protein, RPA, and to anneal complementary ssDNA complexed with RPA. Here, we report that Rad52 promotes annealing of the ssDNA strand that is displaced by DNA strand exchange by Rad51 and RPA, to a second ssDNA strand. An RPA that is recombination-deficient (RPA(rfa1-t11)) failed to support annealing, explaining its in vivo phenotype. Escherichia coli RecO and SSB proteins, which are functional homologues of Rad52 and RPA, also facilitated the same reaction, demonstrating its conserved nature. We also demonstrate that the two activities of Rad52, recruiting Rad51 and annealing DNA, are coordinated in DNA strand exchange and second ssDNA capture. PMID:17093500

  20. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability

    DOE PAGESBeta

    Parplys, Ann C.; Zhao, Weixing; Sharma, Neelam; Groesser, Torsten; Liang, Fengshan; Maranon, David G.; Leung, Stanley G.; Grundt, Kirsten; Dray, Eloïse; Idate, Rupa; et al

    2015-08-31

    NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintainingmore » wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Finally, our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression.« less

  1. Chromatin architecture may dictate the target site for DMC1, but not for RAD51, during homologous pairing

    PubMed Central

    Kobayashi, Wataru; Takaku, Motoki; Machida, Shinichi; Tachiwana, Hiroaki; Maehara, Kazumitsu; Ohkawa, Yasuyuki; Kurumizaka, Hitoshi

    2016-01-01

    In eukaryotes, genomic DNA is compacted as chromatin, in which histones and DNA form the nucleosome as the basic unit. DMC1 and RAD51 are essential eukaryotic recombinases that mediate homologous chromosome pairing during homologous recombination. However, the means by which these two recombinases distinctly function in chromatin have remained elusive. Here we found that, in chromatin, the human DMC1-single-stranded DNA complex bypasses binding to the nucleosome, and preferentially promotes homologous pairing at the nucleosome-depleted regions. Consistently, DMC1 forms ternary complex recombination intermediates with the nucleosome-free DNA or the nucleosome-depleted DNA region. Surprisingly, removal of the histone tails improperly enhances the nucleosome binding by DMC1. In contrast, RAD51 does not specifically target the nucleosome-depleted region in chromatin. These are the first demonstrations that the chromatin architecture specifies the sites to promote the homologous recombination reaction by DMC1, but not by RAD51. PMID:27052786

  2. Structure-activity relationship of the peptide binding-motif mediating the BRCA2:RAD51 protein-protein interaction.

    PubMed

    Scott, Duncan E; Marsh, May; Blundell, Tom L; Abell, Chris; Hyvönen, Marko

    2016-04-01

    RAD51 is a recombinase involved in the homologous recombination of double-strand breaks in DNA. RAD51 forms oligomers by binding to another molecule of RAD51 via an 'FxxA' motif, and the same recognition sequence is similarly utilised to bind BRCA2. We have tabulated the effects of mutation of this sequence, across a variety of experimental methods and from relevant mutations observed in the clinic. We use mutants of a tetrapeptide sequence to probe the binding interaction, using both isothermal titration calorimetry and X-ray crystallography. Where possible, comparison between our tetrapeptide mutational study and the previously reported mutations is made, discrepancies are discussed and the importance of secondary structure in interpreting alanine scanning and mutational data of this nature is considered.

  3. Induction of Rad51 protein levels by p38 MAPK decreases cytotoxicity and mutagenicity in benzo[a]pyrene-exposed human lung cancer cells

    SciTech Connect

    Chuang, S.-M.; Wang, L.-H.; Hong, J.-H.; Lin, Y.-W.

    2008-08-01

    Rad51 is an essential component of the homologous recombination repair pathway. Abnormal expression of Rad51 has been reported in various carcinomas. Benzo[a]pyrene (B[a]P), a polycyclic hydrocarbon carcinogen found in the environment, induces cancer in multiple organs. B[a]P has been shown to activate the p38 MAPK signaling pathway in mammalian cells. The prime purpose of this study was to determine how B[a]P activates the p38 MAPK signaling pathway, and how this then regulates Rad51 expression in human cancer cells. Exposure of human lung cancer cells with B[a]P increased Rad51 protein levels in a time- and dose-dependent fashion. B[a]P also induced Rad51 mRNA and protein synthesis. Blockage of p38 MAPK activation by SB202190 or small interfering RNA (si-p38) decreased B[a]P-elicited Rad51 protein levels by increasing Rad51 protein instability, but did not affect Rad51 mRNA transcription. Furthermore, enhancement of p38 MAPK signaling by constitutively active MKK6 (MKK6E) increased Rad51 protein levels and protein stability. Moreover, B[a]P-induced cytotoxicity and mutagenicity were significantly increased in cells depleted of endogenous Rad51. Taken together, these results indicate that Rad51 protein provides a critical role in inhibiting the cytotoxicity and mutagenicity of B[a]P in B[a]P-treated human lung cancer cells. Furthermore, the work points to an unexpected role of p38 MAPK signaling in the control of Rad51 protein stability in response to B[a]P exposure.

  4. p53 is involved in clearance of ionizing radiation-induced RAD51 foci in a human colon cancer cell line

    SciTech Connect

    Orre, Lukas M. . E-mail: Lukas.Orre@ki.se; Stenerloew, Bo; Dhar, Sumeer; Larsson, Rolf; Lewensohn, Rolf; Lehtioe, Janne

    2006-04-21

    We have investigated p53-related differences in cellular response to DNA damaging agents, focusing on p53s effects on RAD51 protein level and sub-cellular localization post exposure to ionizing radiation. In a human colon cancer cell line, HCT116 and its isogenic p53-/- subcell line we show here p53-independent RAD51 foci formation but interestingly the resolution of RAD51 foci showed clear p53 dependence. In p53 wt cells, but not in p53-/- cells, RAD51 protein level decreased 48 h post irradiation and fluorescence immunostaining showed resolution of RAD51 foci and relocalization of RAD51 to nucleoli at time points corresponding to the decrease in RAD51 protein level. Both cell lines rejoined DNA double strand breaks efficiently with similar kinetics and p53 status did not influence sensitivity to DNA damaging agents. We suggest that p53 has a role in RAD51 clearance post DSB repair and that nucleoli might be sites of RAD51 protein degradation.

  5. On the role of AtDMC1, AtRAD51 and its paralogs during Arabidopsis meiosis

    PubMed Central

    Pradillo, Mónica; Varas, Javier; Oliver, Cecilia; Santos, Juan L.

    2014-01-01

    Meiotic recombination plays a critical role in achieving accurate chromosome segregation and increasing genetic diversity. Many studies, mostly in yeast, have provided important insights into the coordination and interplay between the proteins involved in the homologous recombination pathway, especially the recombinase RAD51 and the meiosis-specific DMC1. Here we summarize the current progresses on the function of both recombinases and the CX3 complex encoded by AtRAD51 paralogs, in the plant model species Arabidopsis thaliana. Similarities and differences respect to the function of these proteins in other organisms are also indicated. PMID:24596572

  6. Nap1 stimulates homologous recombination by RAD51 and RAD54 in higher-ordered chromatin containing histone H1.

    PubMed

    Machida, Shinichi; Takaku, Motoki; Ikura, Masae; Sun, Jiying; Suzuki, Hidekazu; Kobayashi, Wataru; Kinomura, Aiko; Osakabe, Akihisa; Tachiwana, Hiroaki; Horikoshi, Yasunori; Fukuto, Atsuhiko; Matsuda, Ryo; Ura, Kiyoe; Tashiro, Satoshi; Ikura, Tsuyoshi; Kurumizaka, Hitoshi

    2014-01-01

    Homologous recombination plays essential roles in mitotic DNA double strand break (DSB) repair and meiotic genetic recombination. In eukaryotes, RAD51 promotes the central homologous-pairing step during homologous recombination, but is not sufficient to overcome the reaction barrier imposed by nucleosomes. RAD54, a member of the ATP-dependent nucleosome remodeling factor family, is required to promote the RAD51-mediated homologous pairing in nucleosomal DNA. In higher eukaryotes, most nucleosomes form higher-ordered chromatin containing the linker histone H1. However, the mechanism by which RAD51/RAD54-mediated homologous pairing occurs in higher-ordered chromatin has not been elucidated. In this study, we found that a histone chaperone, Nap1, accumulates on DSB sites in human cells, and DSB repair is substantially decreased in Nap1-knockdown cells. We determined that Nap1 binds to RAD54, enhances the RAD54-mediated nucleosome remodeling by evicting histone H1, and eventually stimulates the RAD51-mediated homologous pairing in higher-ordered chromatin containing histone H1. PMID:24798879

  7. BRCA2 diffuses as oligomeric clusters with RAD51 and changes mobility after DNA damage in live cells.

    PubMed

    Reuter, Marcel; Zelensky, Alex; Smal, Ihor; Meijering, Erik; van Cappellen, Wiggert A; de Gruiter, H Martijn; van Belle, Gijsbert J; van Royen, Martin E; Houtsmuller, Adriaan B; Essers, Jeroen; Kanaar, Roland; Wyman, Claire

    2014-12-01

    Genome maintenance by homologous recombination depends on coordinating many proteins in time and space to assemble at DNA break sites. To understand this process, we followed the mobility of BRCA2, a critical recombination mediator, in live cells at the single-molecule level using both single-particle tracking and fluorescence correlation spectroscopy. BRCA2-GFP and -YFP were compared to distinguish diffusion from fluorophore behavior. Diffusive behavior of fluorescent RAD51 and RAD54 was determined for comparison. All fluorescent proteins were expressed from endogenous loci. We found that nuclear BRCA2 existed in oligomeric clusters, and exhibited heterogeneous mobility. DNA damage increased BRCA2 transient binding, presumably including binding to damaged sites. Despite its very different size, RAD51 displayed mobility similar to BRCA2, which indicates physical interaction between these proteins both before and after induction of DNA damage. We propose that BRCA2-mediated sequestration of nuclear RAD51 serves to prevent inappropriate DNA interactions and that all RAD51 is delivered to DNA damage sites in association with BRCA2.

  8. Selective chromatid segregation mechanism invoked for the human congenital mirror hand movement disorder development by RAD51 mutations: a hypothesis.

    PubMed

    Klar, Amar J S

    2014-01-01

    The vertebrate body plan externally is largely symmetrical across the midline but internal organs develop asymmetrically. The biological basis of asymmetric organ development has been investigated extensively for years, although the proposed mechanisms remain controversial. By comparison, the biological origin of external organs symmetry has not been extensively investigated. Bimanual hand control is one such external organs symmetry allowing independent motor control movements of both hands to a person. This gap in our knowledge is illustrated by the recent reports of heterozygous rad51 mutations causing mysterious symptoms of congenital mirror hand movement disorder (MM) in humans with 50% penetrance by an unknown mechanism. The analysis of mutations that vary symmetry or asymmetry could be exploited to decipher the mechanisms of laterality development. Here I present a hypothesis for explaining 50% penetrance of the rad51 mutation. The MM's origin is explained with the Somatic Strand-specific Imprinting and selective sister chromatid Segregation (SSIS) hypothesis proposed originally as the mechanism of asymmetric cell division to promote visceral organs body plan laterality development in vertebrates. By hypothesis, random sister chromatid segregation in mitosis occurs for a specific chromosome due to rad51/RAD51 constitution causing MM disorder development in 50% of subjects. PMID:25210500

  9. The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment.

    PubMed

    Chen, P L; Chen, C F; Chen, Y; Xiao, J; Sharp, Z D; Lee, W H

    1998-04-28

    The BRCA2 gene was identified based on its involvement in familial breast cancer. The analysis of its sequence predicts that the gene encodes a protein with 3,418 amino acids but provides very few clues pointing to its biological function. In an attempt to address this question, specific antibodies were prepared that identified the gene product of BRCA2 as a 390-kDa nuclear protein. Furthermore, direct binding of human RAD51 to each of the four single 30-amino acid BRC repeats located at the 5' portion of exon 11 of BRCA2 was demonstrated. Such an interaction is significant, as BRCA2 and RAD51 can be reciprocally coimmunoprecipitated by each of the individual, specific antibodies and form complexes in vivo. Inferring from the function of RAD51 in DNA repair, human pancreatic cancer cells, Capan-1, expressing truncated BRCA2 were shown to be hypersensitive to methyl methanesulfonate (MMS) treatment. Exogenous expression of wild-type BRCA2, but not BRC-deleted mutants, in Capan-1 cells confers resistance to MMS treatment. These results suggest that the interaction between the BRC repeats of BRCA2 and RAD51 is critical for cellular response to DNA damage caused by MMS.

  10. Identification of the meiotic toolkit in diatoms and exploration of meiosis-specific SPO11 and RAD51 homologs in the sexual species Pseudo-nitzschia multistriata and Seminavis robusta

    DOE PAGESBeta

    Patil, Shrikant; Moeys, Sara; von Dassow, Peter; Huysman, Marie J. J.; Mapleson, Daniel; De Veylder, Lieven; Sanges, Remo; Vyverman, Wim; Montresor, Marina; Ferrante, Maria Immacolata

    2015-11-14

    Sexual reproduction is an obligate phase in the life cycle of most eukaryotes. Meiosis varies among organisms, which is reflected by the variability of the gene set associated to the process. Diatoms are unicellular organisms that belong to the stramenopile clade and have unique life cycles that can include a sexual phase. The exploration of five diatom genomes and one diatom transcriptome led to the identification of 42 genes potentially involved in meiosis. While these include the majority of known meiosis-related genes, several meiosis-specific genes, including DMC1, could not be identified. Furthermore, phylogenetic analyses supported gene identification and revealed ancestralmore » loss and recent expansion in the RAD51 family in diatoms. The two sexual species Pseudo-nitzschia multistriata and Seminavis robusta were used to explore the expression of meiosis-related genes: RAD21, SPO11-2, RAD51-A, RAD51-B and RAD51-C were upregulated during meiosis, whereas other paralogs in these families showed no differential expression patterns, suggesting that they may play a role during vegetative divisions. An almost identical toolkit is shared among Pseudo-nitzschia multiseries and Fragilariopsis cylindrus, as well as two species for which sex has not been observed, Phaeodactylum tricornutum and Thalassiosira pseudonana, suggesting that these two may retain a facultative sexual phase. Lastly, our results reveal the conserved meiotic toolkit in six diatom species and indicate that Stramenopiles share major modifications of canonical meiosis processes ancestral to eukaryotes, with important divergences in each Kingdom.« less

  11. Inhibition of filament formation of human Rad51 protein by a small peptide derived from the BRC-motif of the BRCA2 protein.

    PubMed

    Nomme, Julian; Takizawa, Yoshimasa; Martinez, Susan F; Renodon-Cornière, Axelle; Fleury, Fabrice; Weigel, Pierre; Yamamoto, Ken-ichi; Kurumizaka, Hitoshi; Takahashi, Masayuki

    2008-05-01

    Human Rad51 is a key element of recombinational DNA repair and is related to the resistance of cancer cells to chemo- and radiotherapies. The protein is thus a potential target of anti-cancer treatment. The crystallographic analysis shows that the BRC-motif of the BRCA2 tumor suppressor is in contact with the subunit-subunit interface of Rad51 and could thus prevent filament formation of Rad51. However, biochemical analysis indicates that a BRC-motif peptide of 69 amino acids preferentially binds to the N-terminal part of Rad51. We show experimentally that a short peptide of 28 amino acids derived from the BRC4 motif binds to the subunit-subunit interface and dissociates its filament, both in the presence and absence of DNA, certainly by binding to dissociated monomers. The inhibition is efficient and specific for Rad51: the peptide does not even interact with Rad51 homologs or prevent their interaction with DNA. Neither the N-terminal nor the C-terminal half of the peptide interacts with human Rad51, indicating that both parts are involved in the interaction, as expected from the crystal structure. These results suggest the possibility of developing inhibitors of human Rad51 based on this peptide.

  12. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells.

    PubMed

    Ko, Jen-Chung; Chen, Jyh-Cheng; Wang, Tai-Jing; Zheng, Hao-Yu; Chen, Wen-Ching; Chang, Po-Yuan; Lin, Yun-Wei

    2016-04-01

    Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 μM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC.

  13. Transcriptional profile of the homologous recombination machinery and characterization of the EhRAD51 recombinase in response to DNA damage in Entamoeba histolytica

    PubMed Central

    López-Casamichana, Mavil; Orozco, Esther; Marchat, Laurence A; López-Camarillo, César

    2008-01-01

    Background In eukaryotic and prokaryotic cells, homologous recombination is an accurate mechanism to generate genetic diversity, and it is also used to repair DNA double strand-breaks. RAD52 epistasis group genes involved in recombinational DNA repair, including mre11, rad50, nsb1/xrs2, rad51, rad51c/rad57, rad51b/rad55, rad51d, xrcc2, xrcc3, rad52, rad54, rad54b/rdh54 and rad59 genes, have been studied in human and yeast cells. Notably, the RAD51 recombinase catalyses strand transfer between a broken DNA and its undamaged homologous strand, to allow damaged region repair. In protozoan parasites, homologous recombination generating antigenic variation and genomic rearrangements is responsible for virulence variation and drug resistance. However, in Entamoeba histolytica the protozoan parasite responsible for human amoebiasis, DNA repair and homologous recombination mechanisms are still unknown. Results In this paper, we initiated the study of the mechanism for DNA repair by homologous recombination in the primitive eukaryote E. histolytica using UV-C (150 J/m2) irradiated trophozoites. DNA double strand-breaks were evidenced in irradiated cells by TUNEL and comet assays and evaluation of the EhH2AX histone phosphorylation status. In E. histolytica genome, we identified genes homologous to yeast and human RAD52 epistasis group genes involved in DNA double strand-breaks repair by homologous recombination. Interestingly, the E. histolytica RAD52 epistasis group related genes were differentially expressed before and after UV-C treatment. Next, we focused on the characterization of the putative recombinase EhRAD51, which conserves the typical architecture of RECA/RAD51 proteins. Specific antibodies immunodetected EhRAD51 protein in both nuclear and cytoplasmic compartments. Moreover, after DNA damage, EhRAD51 was located as typical nuclear foci-like structures in E. histolytica trophozoites. Purified recombinant EhRAD51 exhibited DNA binding and pairing activities and

  14. Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer.

    PubMed

    Lin, Zhenguo; Kong, Hongzhi; Nei, Masatoshi; Ma, Hong

    2006-07-01

    The bacterial recA gene and its eukaryotic homolog RAD51 are important for DNA repair, homologous recombination, and genome stability. Members of the recA/RAD51 family have functions that have differentiated during evolution. However, the evolutionary history and relationships of these members remains unclear. Homolog searches in prokaryotes and eukaryotes indicated that most eubacteria contain only one recA. However, many archaeal species have two recA/RAD51 homologs (RADA and RADB), and eukaryotes possess multiple members (RAD51, RAD51B, RAD51C, RAD51D, DMC1, XRCC2, XRCC3, and recA). Phylogenetic analyses indicated that the recA/RAD51 family can be divided into three subfamilies: (i) RADalpha, with highly conserved functions; (ii) RADbeta, with relatively divergent functions; and (iii) recA, functioning in eubacteria and eukaryotic organelles. The RADalpha and RADbeta subfamilies each contain archaeal and eukaryotic members, suggesting that a gene duplication occurred before the archaea/eukaryote split. In the RADalpha subfamily, eukaryotic RAD51 and DMC1 genes formed two separate monophyletic groups when archaeal RADA genes were used as an outgroup. This result suggests that another duplication event occurred in the early stage of eukaryotic evolution, producing the DMC1 clade with meiosis-specific genes. The RADbeta subfamily has a basal archaeal clade and five eukaryotic clades, suggesting that four eukaryotic duplication events occurred before animals and plants diverged. The eukaryotic recA genes were detected in plants and protists and showed strikingly high levels of sequence similarity to recA genes from proteobacteria or cyanobacteria. These results suggest that endosymbiotic transfer of recA genes occurred from mitochondria and chloroplasts to nuclear genomes of ancestral eukaryotes.

  15. Characterization of recombinase DMC1B and its functional role as Rad51 in DNA damage repair in Giardia duodenalis trophozoites.

    PubMed

    Torres-Huerta, Ana Laura; Martínez-Miguel, Rosa María; Bazán-Tejeda, María Luisa; Bermúdez-Cruz, Rosa María

    2016-08-01

    Homologous recombination (HR) is a highly conserved pathway for the repair of chromosomes that harbor DNA double-stranded breaks (DSBs). The recombinase RAD51 plays a key role by catalyzing the pairing of homologous DNA molecules and the exchange of information between them. Two putative DMC1 homologs (DMC1A and DMC1B) have been identified in Giardia duodenalis. In terms of sequences, GdDMC1A and GdDMC1B bear all of the characteristic recombinase domains: DNA binding domains (helix-turn-helix motif, loops 1 and 2), an ATPcap and Walker A and B motifs associated with ATP binding and hydrolysis. Because GdDMC1B is expressed at the trophozoite stage and GdDMC1A is expressed in the cyst stage, we cloned the giardial dmc1B gene and expressed and purified its protein to determine its activities, including DNA binding, ATP hydrolysis, and DNA strand exchange. Our results revealed that it possessed these activities, and they were modulated by divalent metal ions in different manners. GdDMC1B expression at the protein and transcript levels, as well as its subcellular localization in trophozoites upon DNA damage, was assessed. We found a significant increase in GdDMC1B transcript and protein levels after ionizing radiation treatment. Additionally, GdDMC1B protein was mostly located in the nucleus of trophozoites after DNA damage. These results indicate that GdDMC1B is the recombinase responsible for DSBs repair in the trophozoite; therefore, a functional Rad51 role is proposed for GdDMC1B.

  16. RAD51 plays a crucial role in halting cell death program induced by ionizing radiation in bovine oocytes.

    PubMed

    Kujjo, Loro L; Ronningen, Reg; Ross, Pablo; Pereira, Ricardo J G; Rodriguez, Ramon; Beyhan, Zeki; Goissis, Marcelo D; Baumann, Thomas; Kagawa, Wataru; Camsari, Cagri; Smith, George W; Kurumizaka, Hitoshi; Yokoyama, Shigeyuki; Cibelli, Jose B; Perez, Gloria I

    2012-03-01

    Reproductive health of humans and animals exposed to daily irradiants from solar/cosmic particles remains largely understudied. We evaluated the sensitivities of bovine and mouse oocytes to bombardment by krypton-78 (1 Gy) or ultraviolet B (UV-B; 100 microjoules). Mouse oocytes responded to irradiation by undergoing massive activation of caspases, rapid loss of energy without cytochrome-c release, and subsequent necrotic death. In contrast, bovine oocytes became positive for annexin-V, exhibited cytochrome-c release, and displayed mild activation of caspases and downstream DNAses but with the absence of a complete cell death program; therefore, cytoplasmic fragmentation was never observed. However, massive cytoplasmic fragmentation and increased DNA damage were induced experimentally by both inhibiting RAD51 and increasing caspase 3 activity before irradiation. Microinjection of recombinant human RAD51 prior to irradiation markedly decreased both cytoplasmic fragmentation and DNA damage in both bovine and mouse oocytes. RAD51 response to damaged DNA occurred faster in bovine oocytes than in mouse oocytes. Therefore, we conclude that upon exposure to irradiation, bovine oocytes create a physiologically indeterminate state of partial cell death, attributed to rapid induction of DNA repair and low activation of caspases. The persistence of these damaged cells may represent an adaptive mechanism with potential implications for livestock productivity and long-term health risks associated with human activity in space. PMID:22190703

  17. RAD51 plays a crucial role in halting cell death program induced by ionizing radiation in bovine oocytes.

    PubMed

    Kujjo, Loro L; Ronningen, Reg; Ross, Pablo; Pereira, Ricardo J G; Rodriguez, Ramon; Beyhan, Zeki; Goissis, Marcelo D; Baumann, Thomas; Kagawa, Wataru; Camsari, Cagri; Smith, George W; Kurumizaka, Hitoshi; Yokoyama, Shigeyuki; Cibelli, Jose B; Perez, Gloria I

    2012-03-01

    Reproductive health of humans and animals exposed to daily irradiants from solar/cosmic particles remains largely understudied. We evaluated the sensitivities of bovine and mouse oocytes to bombardment by krypton-78 (1 Gy) or ultraviolet B (UV-B; 100 microjoules). Mouse oocytes responded to irradiation by undergoing massive activation of caspases, rapid loss of energy without cytochrome-c release, and subsequent necrotic death. In contrast, bovine oocytes became positive for annexin-V, exhibited cytochrome-c release, and displayed mild activation of caspases and downstream DNAses but with the absence of a complete cell death program; therefore, cytoplasmic fragmentation was never observed. However, massive cytoplasmic fragmentation and increased DNA damage were induced experimentally by both inhibiting RAD51 and increasing caspase 3 activity before irradiation. Microinjection of recombinant human RAD51 prior to irradiation markedly decreased both cytoplasmic fragmentation and DNA damage in both bovine and mouse oocytes. RAD51 response to damaged DNA occurred faster in bovine oocytes than in mouse oocytes. Therefore, we conclude that upon exposure to irradiation, bovine oocytes create a physiologically indeterminate state of partial cell death, attributed to rapid induction of DNA repair and low activation of caspases. The persistence of these damaged cells may represent an adaptive mechanism with potential implications for livestock productivity and long-term health risks associated with human activity in space.

  18. Small-Molecule Inhibitors That Target Protein–Protein Interactions in the RAD51 Family of Recombinases

    PubMed Central

    Scott, Duncan E; Coyne, Anthony G; Venkitaraman, Ashok; Blundell, Tom L; Abell, Chris; Hyvönen, Marko

    2015-01-01

    The development of small molecules that inhibit protein–protein interactions continues to be a challenge in chemical biology and drug discovery. Herein we report the development of indole-based fragments that bind in a shallow surface pocket of a humanised surrogate of RAD51. RAD51 is an ATP-dependent recombinase that plays a key role in the repair of double-strand DNA breaks. It both self-associates, forming filament structures with DNA, and interacts with the BRCA2 protein through a common “FxxA” tetrapeptide motif. We elaborated previously identified fragment hits that target the FxxA motif site and developed small-molecule inhibitors that are approximately 500-fold more potent than the initial fragments. The lead compounds were shown to compete with the BRCA2-derived Ac-FHTA-NH2 peptide and the self-association peptide of RAD51, but they had no effect on ATP binding. This study is the first reported elaboration of small-molecular-weight fragments against this challenging target. PMID:25470112

  19. A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53.

    PubMed Central

    Lim, D S; Hasty, P

    1996-01-01

    RecA in Escherichia coli and its homolog, ScRad51 in Saccharomyces cerevisiae, are known to be essential for recombinational repair. The homolog of RecA and ScRad51 in mice, MmRad51, was mutated to determine its function. Mutant embryos arrested early during development. A decrease in cell proliferation, followed by programmed cell death and chromosome loss, was observed. Radiation sensitivity was demonstrated in trophectoderm-derived cells. Interestingly, embryonic development progressed further in a p53 null background; however, fibroblasts derived from double-mutant embryos failed to proliferate in tissue culture. PMID:8943369

  20. Expression of BRC repeats in breast cancer cells disrupts the BRCA2-Rad51 complex and leads to radiation hypersensitivity and loss of G(2)/M checkpoint control.

    PubMed

    Chen, C F; Chen, P L; Zhong, Q; Sharp, Z D; Lee, W H

    1999-11-12

    BRCA2 is a breast tumor suppressor with a potential function in the cellular response to DNA damage. BRCA2 binds to Rad51 through its BRC repeats. In support of the biological significance of this interaction, we found that the complex of BRCA2 and Rad51 in breast cancer MCF-7 cells was diminished upon conditional expression of a wild-type, but not a mutated, BRC4 repeat using the tetracycline-inducible system. Cells expressing a wild-type BRC4 repeat showed hypersensitivity to gamma-irradiation, an inability to form Rad51 radiation-induced foci, and a failure of radiation-induced G(2)/M, but not G(1)/S, checkpoint control. These results strongly suggest that the interaction between BRCA2 and Rad51 mediated by BRC repeats is critical for the cellular response to DNA damage.

  1. A variant of the breast cancer type 2 susceptibility protein (BRC) repeat is essential for the RECQL5 helicase to interact with RAD51 recombinase for genome stabilization.

    PubMed

    Islam, M Nurul; Paquet, Nicolas; Fox, David; Dray, Eloise; Zheng, Xiao-Feng; Klein, Hannah; Sung, Patrick; Wang, Weidong

    2012-07-01

    The BRC repeat is a structural motif in the tumor suppressor BRCA2 (breast cancer type 2 susceptibility protein), which promotes homologous recombination (HR) by regulating RAD51 recombinase activity. To date, the BRC repeat has not been observed in other proteins, so that its role in HR is inferred only in the context of BRCA2. Here, we identified a BRC repeat variant, named BRCv, in the RECQL5 helicase, which possesses anti-recombinase activity in vitro and suppresses HR and promotes cellular resistance to camptothecin-induced replication stress in vivo. RECQL5-BRCv interacted with RAD51 through two conserved motifs similar to those in the BRCA2-BRC repeat. Mutations of either motif compromised functions of RECQL5, including association with RAD51, inhibition of RAD51-mediated D-loop formation, suppression of sister chromatid exchange, and resistance to camptothecin-induced replication stress. Potential BRCvs were also found in other HR regulatory proteins, including Srs2 and Sgs1, which possess anti-recombinase activities similar to that of RECQL5. A point mutation in the predicted Srs2-BRCv disrupted the ability of the protein to bind RAD51 and to inhibit D-loop formation. Thus, BRC is a common RAD51 interaction module that can be utilized by different proteins to either promote HR, as in the case of BRCA2, or to suppress HR, as in RECQL5.

  2. Design, synthesis, and characterization of BRC4 mutants based on the crystal structure of BRC4-RAD51(191-220).

    PubMed

    Zhao, Dongxin; Lu, Kui

    2015-11-01

    Breast cancer susceptibility gene 2 (BRCA2)-a human tumor suppressor gene-is related to various malignancies such as breast and ovarian cancer. This gene can induce the key protein RAD51 recombinase, which is involved in homologous recombination with single-stranded DNA in the human body and can regulate RAD51 to complete the repair of damaged double-stranded DNA. Eight highly conserved BRC repeat motifs in BRCA2 protein serve as sites for the interaction between BRCA2 and RAD51. BRCA2 regulates RAD51 through these motifs. However, the mechanism of this interaction still requires further research. In this study, the BRC4 motif that demonstrated strong interaction with RAD51 was selected as template peptide. On the basis of known data regarding the crystal structure of the BRC4-RAD51(191-220) complex, a series of BRC4 mutants was designed using PyMOL software based on the sequence of BRC4, and polypeptides were synthesized by the Fmoc solid-phase method. After purification by reversed-phase high-performance liquid chromatography, the purity of the polypeptides reached >95 %. The primary determination of circular dichroism spectra showed that the polypeptides exhibited slight changes in secondary structure, which indicated that mutation on the non-conserved sites in BRC4 probably affected the interaction with BRC4. These findings will facilitate research on the interaction between targeting peptides and BRC4 mutants, as well the basic rules covering this interaction. PMID:26522863

  3. Rad51 Nucleoprotein Filament Disassembly Captured Using Fluorescent Plasmodium falciparum SSB as a Reporter for Single-Stranded DNA

    PubMed Central

    Davenport, Eric Parker; Harris, Derek F.; Origanti, Sofia

    2016-01-01

    Single-stranded DNA binding (SSB) proteins coordinate DNA replication, repair, and recombination and are critical for maintaining genomic integrity. SSB binds to single-stranded DNA (ssDNA) rapidly and with very high affinity making it a useful molecular tool to detect free ssDNA in solution. We have labeled SSB from Plasmodium falciparum (Pf-SSB) with the MDCC (7-diethylamino-3-((((2-maleimidyl)ethyl)amino)-carbonyl)coumarin) fluorophore which yields a four-fold increase in fluorescence upon binding to ssDNA. Pf-SSBMDCC binding to DNA is unaffected by NaCl or Mg2+ concentration and does not display salt-dependent changes in DNA binding modes or cooperative binding on long DNA substrates. These features are unique to Pf-SSB, making it an ideal tool to probe the presence of free ssDNA in any biochemical reaction. Using this Pf-SSBMDCC probe as a sensor for free ssDNA, we have investigated the clearing of preformed yeast Rad51 nucleoprotein filaments by the Srs2 helicase during HR. Our studies provide a rate for the disassembly of the Rad51 filament by full length Srs2 on long ssDNA substrates. Mutations in the conserved 2B domain in the homologous bacterial UvrD, Rep and PcrA helicases show an enhancement of DNA unwinding activity, but similar mutations in Srs2 do not affect its DNA unwinding or Rad51 clearing properties. These studies showcase the utility of the Pf-SSB probe in mechanistic investigation of enzymes that function in DNA metabolism. PMID:27416037

  4. BRG1 promotes the repair of DNA double-strand breaks by facilitating the replacement of RPA with RAD51

    PubMed Central

    Qi, Wenjing; Wang, Ruoxi; Chen, Hongyu; Wang, Xiaolin; Xiao, Ting; Boldogh, Istvan; Ba, Xueqing; Han, Liping; Zeng, Xianlu

    2015-01-01

    ABSTRACT DNA double-strand breaks (DSBs) are a type of lethal DNA damage. The repair of DSBs requires tight coordination between the factors modulating chromatin structure and the DNA repair machinery. BRG1, the ATPase subunit of the chromatin remodelling complex Switch/Sucrose non-fermentable (SWI/SNF), is often linked to tumorigenesis and genome instability, and its role in DSB repair remains largely unclear. In the present study, we show that BRG1 is recruited to DSB sites and enhances DSB repair. Using DR-GFP and EJ5-GFP reporter systems, we demonstrate that BRG1 facilitates homologous recombination repair rather than nonhomologous end-joining (NHEJ) repair. Moreover, the BRG1–RAD52 complex mediates the replacement of RPA with RAD51 on single-stranded DNA (ssDNA) to initiate DNA strand invasion. Loss of BRG1 results in a failure of RAD51 loading onto ssDNA, abnormal homologous recombination repair and enhanced DSB-induced lethality. Our present study provides a mechanistic insight into how BRG1, which is known to be involved in chromatin remodelling, plays a substantial role in the homologous recombination repair pathway in mammalian cells. PMID:25395584

  5. Design of potent inhibitors of human RAD51 recombinase based on BRC motifs of BRCA2 protein: modeling and experimental validation of a chimera peptide.

    PubMed

    Nomme, Julian; Renodon-Cornière, Axelle; Asanomi, Yuya; Sakaguchi, Kazuyasu; Stasiak, Alicja Z; Stasiak, Andrzej; Norden, Bengt; Tran, Vinh; Takahashi, Masayuki

    2010-08-12

    We have previously shown that a 28-amino acid peptide derived from the BRC4 motif of BRCA2 tumor suppressor inhibits selectively human RAD51 recombinase (HsRad51). With the aim of designing better inhibitors for cancer treatment, we combined an in silico docking approach with in vitro biochemical testing to construct a highly efficient chimera peptide from eight existing human BRC motifs. We built a molecular model of all BRC motifs complexed with HsRad51 based on the crystal structure of the BRC4 motif-HsRad51 complex, computed the interaction energy of each residue in each BRC motif, and selected the best amino acid residue at each binding position. This analysis enabled us to propose four amino acid substitutions in the BRC4 motif. Three of these increased the inhibitory effect in vitro, and this effect was found to be additive. We thus obtained a peptide that is about 10 times more efficient in inhibiting HsRad51-ssDNA complex formation than the original peptide.

  6. Modulation of Homology-Directed Repair in T98G Glioblastoma Cells Due to Interactions between Wildtype p53, Rad51 and HCMV IE1-72

    PubMed Central

    Kulkarni, Amit S.; Fortunato, Elizabeth A.

    2014-01-01

    Human cytomegalovirus (HCMV) is a ubiquitous pathogen capable of causing life threatening consequences in neonates and immune-compromised individuals. HCMV inflicts site-specific double strand breaks (DSBs) in the cellular genome. DNA damage infliction raises the corollary question of virus modulation of DNA repair. We recently reported HDR was stimulated in wt human foreskin fibroblasts (HFFs) during fully permissive infection or expression of the HCMV protein IE1-72 (IE72). These studies have been extended into semi-permissive T98G glioblastoma cells. T98Gs encode a mutant p53, which may contribute to their high baseline rate of HDR. We fully expected HCMV infection to increase HDR in T98Gs, similar to its effects in HFFs. Surprisingly in T98Gs HCMV infection, or sole expression of IE72, decreased HDR by two-fold. Transient expression of wt p53 in T98Gs also reduced HDR by two-fold. Dual transient expression of wt p53 and IE72 restored high baseline HDR levels. GST pulldown experiments revealed that both IE72 and wt p53 bound the important HDR protein, Rad51. We conclude that the expression of certain HCMV proteins can modulate HDR in an infected cell, dependent upon p53 status. We propose a model of the protein interactions explaining this behavior. PMID:24576846

  7. RAD51 135G→C Modifies Breast Cancer Risk among BRCA2 Mutation Carriers: Results from a Combined Analysis of 19 Studies

    PubMed Central

    Antoniou, Antonis C. ; Sinilnikova, Olga M. ; Simard, Jacques ; Léoné, Mélanie ; Dumont, Martine ; Neuhausen, Susan L. ; Struewing, Jeffery P. ; Stoppa-Lyonnet, Dominique ; Barjhoux, Laure ; Hughes, David J. ; Coupier, Isabelle ; Belotti, Muriel ; Lasset, Christine ; Bonadona, Valérie ; Bignon, Yves-Jean ; Rebbeck, Timothy R. ; Wagner, Theresa ; Lynch, Henry T. ; Domchek, Susan M. ; Nathanson, Katherine L. ; Garber, Judy E. ; Weitzel, Jeffrey ; Narod, Steven A. ; Tomlinson, Gail ; Olopade, Olufunmilayo I. ; Godwin, Andrew ; Isaacs, Claudine ; Jakubowska, Anna ; Lubinski, Jan ; Gronwald, Jacek ; Górski, Bohdan ; Byrski, Tomasz ; Huzarski, Tomasz ; Peock, Susan ; Cook, Margaret ; Baynes, Caroline ; Murray, Alexandra ; Rogers, Mark ; Daly, Peter A. ; Dorkins, Huw ; Schmutzler, Rita K. ; Versmold, Beatrix ; Engel, Christoph ; Meindl, Alfons ; Arnold, Norbert ; Niederacher, Dieter ; Deissler, Helmut ; Spurdle, Amanda B. ; Chen, Xiaoqing ; Waddell, Nicola ; Cloonan, Nicole ; Kirchhoff, Tomas ; Offit, Kenneth ; Friedman, Eitan ; Kaufmann, Bella ; Laitman, Yael ; Galore, Gilli ; Rennert, Gad ; Lejbkowicz, Flavio ; Raskin, Leon ; Andrulis, Irene L. ; Ilyushik, Eduard ; Ozcelik, Hilmi ; Devilee, Peter ; Vreeswijk, Maaike P. G. ; Greene, Mark H. ; Prindiville, Sheila A. ; Osorio, Ana ; Benítez, Javier ; Zikan, Michal ; Szabo, Csilla I. ; Kilpivaara, Outi ; Nevanlinna, Heli ; Hamann, Ute ; Durocher, Francine ; Arason, Adalgeir ; Couch, Fergus J. ; Easton, Douglas F. ; Chenevix-Trench, Georgia 

    2007-01-01

    RAD51 is an important component of double-stranded DNA–repair mechanisms that interacts with both BRCA1 and BRCA2. A single-nucleotide polymorphism (SNP) in the 5′ untranslated region (UTR) of RAD51, 135G→C, has been suggested as a possible modifier of breast cancer risk in BRCA1 and BRCA2 mutation carriers. We pooled genotype data for 8,512 female mutation carriers from 19 studies for the RAD51 135G→C SNP. We found evidence of an increased breast cancer risk in CC homozygotes (hazard ratio [HR] 1.92 [95% confidence interval {CI} 1.25–2.94) but not in heterozygotes (HR 0.95 [95% CI 0.83–1.07]; P=.002, by heterogeneity test with 2 degrees of freedom [df]). When BRCA1 and BRCA2 mutation carriers were analyzed separately, the increased risk was statistically significant only among BRCA2 mutation carriers, in whom we observed HRs of 1.17 (95% CI 0.91–1.51) among heterozygotes and 3.18 (95% CI 1.39–7.27) among rare homozygotes (P=.0007, by heterogeneity test with 2 df). In addition, we determined that the 135G→C variant affects RAD51 splicing within the 5′ UTR. Thus, 135G→C may modify the risk of breast cancer in BRCA2 mutation carriers by altering the expression of RAD51. RAD51 is the first gene to be reliably identified as a modifier of risk among BRCA1/2 mutation carriers. PMID:17999359

  8. Roles of C-Terminal Region of Yeast and Human Rad52 in Rad51-Nucleoprotein Filament Formation and ssDNA Annealing

    PubMed Central

    Khade, Nilesh V.; Sugiyama, Tomohiko

    2016-01-01

    Yeast Rad52 (yRad52) has two important functions at homologous DNA recombination (HR); annealing complementary single-strand DNA (ssDNA) molecules and recruiting Rad51 recombinase onto ssDNA (recombination mediator activity). Its human homolog (hRAD52) has a lesser role in HR, and apparently lacks mediator activity. Here we show that yRad52 can load human Rad51 (hRAD51) onto ssDNA complexed with yeast RPA in vitro. This is biochemically equivalent to mediator activity because it depends on the C-terminal Rad51-binding region of yRad52 and on functional Rad52-RPA interaction. It has been reported that the N-terminal two thirds of both yRad52 and hRAD52 is essential for binding to and annealing ssDNA. Although a second DNA binding region has been found in the C-terminal region of yRad52, its role in ssDNA annealing is not clear. In this paper, we also show that the C-terminal region of yRad52, but not of hRAD52, is involved in ssDNA annealing. This suggests that the second DNA binding site is required for the efficient ssDNA annealing by yRad52. We propose an updated model of Rad52-mediated ssDNA annealing. PMID:27362509

  9. Saccharomyces cerevisiae Dmc1 and Rad51 proteins preferentially function with Tid1 and Rad54 proteins, respectively, to promote DNA strand invasion during genetic recombination.

    PubMed

    Nimonkar, Amitabh V; Dombrowski, Christopher C; Siino, Joseph S; Stasiak, Alicja Z; Stasiak, Andrzej; Kowalczykowski, Stephen C

    2012-08-17

    The Saccharomyces cerevisiae Dmc1 and Tid1 proteins are required for the pairing of homologous chromosomes during meiotic recombination. This pairing is the precursor to the formation of crossovers between homologs, an event that is necessary for the accurate segregation of chromosomes. Failure to form crossovers can have serious consequences and may lead to chromosomal imbalance. Dmc1, a meiosis-specific paralog of Rad51, mediates the pairing of homologous chromosomes. Tid1, a Rad54 paralog, although not meiosis-specific, interacts with Dmc1 and promotes crossover formation between homologs. In this study, we show that purified Dmc1 and Tid1 interact physically and functionally. Dmc1 forms stable nucleoprotein filaments that can mediate DNA strand invasion. Tid1 stimulates Dmc1-mediated formation of joint molecules. Under conditions optimal for Dmc1 reactions, Rad51 is specifically stimulated by Rad54, establishing that Dmc1-Tid1 and Rad51-Rad54 function as specific pairs. Physical interaction studies show that specificity in function is not dictated by direct interactions between the proteins. Our data are consistent with the hypothesis that Rad51-Rad54 function together to promote intersister DNA strand exchange, whereas Dmc1-Tid1 tilt the bias toward interhomolog DNA strand exchange.

  10. Identification of the meiotic toolkit in diatoms and exploration of meiosis-specific SPO11 and RAD51 homologs in the sexual species Pseudo-nitzschia multistriata and Seminavis robusta

    SciTech Connect

    Patil, Shrikant; Moeys, Sara; von Dassow, Peter; Huysman, Marie J. J.; Mapleson, Daniel; De Veylder, Lieven; Sanges, Remo; Vyverman, Wim; Montresor, Marina; Ferrante, Maria Immacolata

    2015-11-14

    Sexual reproduction is an obligate phase in the life cycle of most eukaryotes. Meiosis varies among organisms, which is reflected by the variability of the gene set associated to the process. Diatoms are unicellular organisms that belong to the stramenopile clade and have unique life cycles that can include a sexual phase. The exploration of five diatom genomes and one diatom transcriptome led to the identification of 42 genes potentially involved in meiosis. While these include the majority of known meiosis-related genes, several meiosis-specific genes, including DMC1, could not be identified. Furthermore, phylogenetic analyses supported gene identification and revealed ancestral loss and recent expansion in the RAD51 family in diatoms. The two sexual species Pseudo-nitzschia multistriata and Seminavis robusta were used to explore the expression of meiosis-related genes: RAD21, SPO11-2, RAD51-A, RAD51-B and RAD51-C were upregulated during meiosis, whereas other paralogs in these families showed no differential expression patterns, suggesting that they may play a role during vegetative divisions. An almost identical toolkit is shared among Pseudo-nitzschia multiseries and Fragilariopsis cylindrus, as well as two species for which sex has not been observed, Phaeodactylum tricornutum and Thalassiosira pseudonana, suggesting that these two may retain a facultative sexual phase. Lastly, our results reveal the conserved meiotic toolkit in six diatom species and indicate that Stramenopiles share major modifications of canonical meiosis processes ancestral to eukaryotes, with important divergences in each Kingdom.

  11. CHK1 and RAD51 activation after DNA damage is regulated via urokinase receptor/TLR4 signaling

    PubMed Central

    Narayanaswamy, Pavan B; Tkachuk, Sergey; Haller, Hermann; Dumler, Inna; Kiyan, Yulia

    2016-01-01

    Mechanisms of DNA damage and repair signaling are not completely understood that hinder the efficiency of cancer therapy. Urokinase-type plasminogen activator receptor (PLAUR) is highly expressed in most solid cancers and serves as a marker of poor prognosis. We show that PLAUR actively promotes DNA repair in cancer cells. On the contrary, downregulation of PLAUR expression results in delayed DNA repair. We found PLAUR to be essential for activation of Checkpoint kinase 1 (CHK1); maintenance of cell cycle arrest after DNA damage in a TP53-dependent manner; expression, nuclear import and recruitment to DNA-damage foci of RAD51 recombinase, the principal protein involved in the homologous recombination repair pathway. Underlying mechanism implies auto-/paracrine signaling of PLAUR/TLR4 receptor complex leading to activation of CHK1 and DNA repair. The signaling is induced by a danger molecule released by DNA-damaged cells and mediates, at least partially, activation of DNA-damage response. This study describes a new mechanism of DNA repair activation initiated by auto-/paracrine signaling of membrane receptors PLAUR/TLR4. It adds to the understanding of role of PLAUR in cancer and provides a rationale for therapeutic targeting of PLAUR/TLR4 interaction in TP53-positive cancers. PMID:27685627

  12. In Vivo Delivery of miR-34a Sensitizes Lung Tumors to Radiation Through RAD51 Regulation

    PubMed Central

    Cortez, Maria Angelica; Valdecanas, David; Niknam, Sharareh; Peltier, Heidi J; Diao, Lixia; Giri, Uma; Komaki, Ritsuko; Calin, George A; Gomez, Daniel R; Chang, Joe Y; Heymach, John Victor; Bader, Andreas G; Welsh, James William

    2015-01-01

    MiR-34a, an important tumor-suppressing microRNA, is downregulated in several types of cancer; loss of its expression has been linked with unfavorable clinical outcomes in non-small-cell lung cancer (NSCLC), among others. MiR-34a represses several key oncogenic proteins, and a synthetic mimic of miR-34a is currently being tested in a cancer trial. However, little is known about the potential role of miR-34a in regulating DNA damage response and repair. Here, we demonstrate that miR-34a directly binds to the 3' untranslated region of RAD51 and regulates homologous recombination, inhibiting double-strand-break repair in NSCLC cells. We further demonstrate the therapeutic potential of miR-34a delivery in combination with radiotherapy in mouse models of lung cancer. Collectively, our results suggest that administration of miR-34a in combination with radiotherapy may represent a novel strategy for treating NSCLC. PMID:26670277

  13. In Vivo Delivery of miR-34a Sensitizes Lung Tumors to Radiation Through RAD51 Regulation.

    PubMed

    Cortez, Maria Angelica; Valdecanas, David; Niknam, Sharareh; Peltier, Heidi J; Diao, Lixia; Giri, Uma; Komaki, Ritsuko; Calin, George A; Gomez, Daniel R; Chang, Joe Y; Heymach, John Victor; Bader, Andreas G; Welsh, James William

    2015-01-01

    MiR-34a, an important tumor-suppressing microRNA, is downregulated in several types of cancer; loss of its expression has been linked with unfavorable clinical outcomes in non-small-cell lung cancer (NSCLC), among others. MiR-34a represses several key oncogenic proteins, and a synthetic mimic of miR-34a is currently being tested in a cancer trial. However, little is known about the potential role of miR-34a in regulating DNA damage response and repair. Here, we demonstrate that miR-34a directly binds to the 3' untranslated region of RAD51 and regulates homologous recombination, inhibiting double-strand-break repair in NSCLC cells. We further demonstrate the therapeutic potential of miR-34a delivery in combination with radiotherapy in mouse models of lung cancer. Collectively, our results suggest that administration of miR-34a in combination with radiotherapy may represent a novel strategy for treating NSCLC. PMID:26670277

  14. Curcumin enhances the mitomycin C-induced cytotoxicity via downregulation of MKK1/2-ERK1/2-mediated Rad51 expression in non-small cell lung cancer cells

    SciTech Connect

    Ko, Jen-Chung; Tsai, Min-Shao; Weng, Shao-Hsing; Kuo, Ya-Hsun; Chiu, Yu-Fan; Lin, Yun-Wei

    2011-09-15

    Curcumin (diferuloylmethane), a major active component of turmeric (Curcuma longa), has been reported to suppress the proliferation of a wide variety of tumor cells. Rad51 is a key protein in the homologous recombination (HR) pathway of DNA double-strand break repair, and HR represents a novel target for cancer therapy. A high expression of Rad51 has been reported in chemo- or radio-resistant carcinomas. Therefore, in the current study, we will examine whether curcumin could enhance the effects of mitomycin C (MMC), a DNA interstrand cross-linking agent, to induce cytotoxicity by decreasing Rad51 expression. Exposure of two human non-small lung cancer (NSCLC) cell lines (A549 and H1975) to curcumin could suppress MMC-induced MKK1/2-ERK1/2 signal activation and Rad51 protein expression. Enhancement of ERK1/2 activation by constitutively active MKK1/2 (MKK1/2-CA) increased Rad51 protein levels in curcumin and MMC co-treated human lung cells. Moreover, the synergistic cytotoxic effect induced by curcumin combined with MMC was decreased by MKK1-CA-mediated enhancement of ERK1/2 activation by a significant degree. In contrast, MKK1/2 inhibitor, U0126 was shown to augment the cytotoxicity of curcumin and MMC through downregulation of ERK1/2 activation and Rad51 expression. Depletion of endogenous Rad51 expression by siRad51 RNA transfection significantly enhanced MMC and/or curcumin induced cell death and cell growth inhibition. In contrast, an overexpression of Rad51 protected lung cancer cells from synergistic cytotoxic effects induced by curcumin and MMC. We concluded that Rad51 inhibition may be an additional action mechanism for enhancing the chemosensitization of MMC by curcumin in NSCLC. - Highlights: > Curcumin downregulates MKK-ERK-mediated Rad51 expression. > Curcumin enhances mitomycin C-induced cytotoxicity. > Rad51 protects cells from cytotoxic effects induced by curcumin and mitomycin C. > Rad51 inhibition enhances the chemosensitization of mitomycin C by

  15. Different mating-type-regulated genes affect the DNA repair defects of Saccharomyces RAD51, RAD52 and RAD55 mutants.

    PubMed

    Valencia-Burton, Maria; Oki, Masaya; Johnson, Jean; Seier, Tracey A; Kamakaka, Rohinton; Haber, James E

    2006-09-01

    Saccharomyces cerevisiae cells expressing both a- and alpha-mating-type (MAT) genes (termed mating-type heterozygosity) exhibit higher rates of spontaneous recombination and greater radiation resistance than cells expressing only MATa or MATalpha. MAT heterozygosity suppresses recombination defects of four mutations involved in homologous recombination: complete deletions of RAD55 or RAD57, an ATPase-defective Rad51 mutation (rad51-K191R), and a C-terminal truncation of Rad52, rad52-Delta327. We investigated the genetic basis of MAT-dependent suppression of these mutants by deleting genes whose expression is controlled by the Mata1-Matalpha2 repressor and scoring resistance to both campothecin (CPT) and phleomycin. Haploid rad55Delta strains became more damage resistant after deleting genes required for nonhomologous end-joining (NHEJ), a process that is repressed in MATa/MATalpha cells. Surprisingly, NHEJ mutations do not suppress CPT sensitivity of rad51-K191R or rad52-Delta327. However, rad51-K191R is uniquely suppressed by deleting the RME1 gene encoding a repressor of meiosis or its coregulator SIN4; this effect is independent of the meiosis-specific homolog, Dmc1. Sensitivity of rad52-Delta327 to CPT was unexpectedly increased by the MATa/MATalpha-repressed gene YGL193C, emphasizing the complex ways in which MAT regulates homologous recombination. The rad52-Delta327 mutation is suppressed by deleting the prolyl isomerase Fpr3, which is not MAT regulated. rad55Delta is also suppressed by deletion of PST2 and/or YBR052C (RFS1, rad55 suppressor), two members of a three-gene family of flavodoxin-fold proteins that associate in a nonrandom fashion with chromatin. All three recombination-defective mutations are made more sensitive by deletions of Rad6 and of the histone deacetylases Rpd3 and Ume6, although these mutations are not themselves CPT or phleomycin sensitive.

  16. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins.

    PubMed Central

    Hays, S L; Firmenich, A A; Berg, P

    1995-01-01

    The repair of DNA double-strand breaks in Saccharomyces cerevisiae requires genes of the RAD52 epistasis group, of which RAD55 and RAD57 are members. Here, we show that the x-ray sensitivity of rad55 and rad57 mutant strains is suppressible by overexpression of RAD51 or RAD52. Virtually complete suppression is provided by the simultaneous overexpression of RAD51 and RAD52. This suppression occurs at 23 degrees C, where these mutants are more sensitive to x-rays, as well as at 30 degrees C and 36 degrees C. In addition, a recombination defect of rad55 and rad57 mutants is similarly suppressed. Direct in vivo interactions between the Rad51 and Rad55 proteins, and between Rad55 and Rad57, have also been identified by using the two-hybrid system. These results indicate that these four proteins constitute part of a complex, a "recombinosome," to effect the recombinational repair of double-strand breaks. PMID:7624345

  17. Assessment of DNA binding to human Rad51 protein by using quartz crystal microbalance and atomic force microscopy: effects of ADP and BRC4-28 peptide inhibitor.

    PubMed

    Esnault, Charles; Renodon-Cornière, Axelle; Takahashi, Masayuki; Casse, Nathalie; Delorme, Nicolas; Louarn, Guy; Fleury, Fabrice; Pilard, Jean-François; Chénais, Benoît

    2014-12-01

    The interaction of human Rad51 protein (HsRad51) with single-stranded deoxyribonucleic acid (ssDNA) was investigated by using quartz crystal microbalance (QCM) monitoring and atomic force microscopy (AFM) visualization. Gold surfaces for QCM and AFM were modified by electrografting of the in situ generated aryldiazonium salt from the sulfanilic acid to obtain the organic layer Au-ArSO3 H. The Au-ArSO3 H layer was activated by using a solution of PCl5 in CH2 Cl2 to give a Au-ArSO2 Cl layer. The modified surface was then used to immobilize long ssDNA molecules. The results obtained showed that the presence of adenosine diphosphate promotes the protein autoassociation rather than nucleation around DNA. In addition, when the BRC4-28 peptide inhibitor was used, both QCM and AFM confirmed the inhibitory effect of BRC4-28 toward HsRad51 autoassociation. Altogether these results show the suitability of this modified surface to investigate the kinetics and structure of DNA-protein interactions and for the screening of inhibitors.

  18. Augmentation of Response to Chemotherapy by microRNA-506 Through Regulation of RAD51 in Serous Ovarian Cancers

    PubMed Central

    Liu, Guoyan; Yang, Da; Rupaimoole, Rajesha; Pecot, Chad V.; Sun, Yan; Mangala, Lingegowda S.; Li, Xia; Ji, Ping; Cogdell, David; Hu, Limei; Wang, Yingmei; Rodriguez-Aguayo, Cristian; Lopez-Berestein, Gabriel; Shmulevich, Ilya; De Cecco, Loris; Chen, Kexin; Mezzanzanica, Delia; Xue, Fengxia; Sood, Anil K.

    2015-01-01

    Background: Chemoresistance is a major challenge in cancer treatment. miR-506 is a potent inhibitor of the epithelial-to-mesenchymal transition (EMT), which is also associated with chemoresistance. We characterized the role of miR-506 in chemotherapy response in high-grade serous ovarian cancers. Methods: We used Kaplan-Meier and log-rank methods to analyze the relationship between miR-506 and progression-free and overall survival in The Cancer Genome Atlas (TCGA) (n = 468) and Bagnoli (n = 130) datasets, in vitro experiments to study whether miR-506 is associated with homologous recombination, and response to chemotherapy agents. We used an orthotopic ovarian cancer mouse model (n = 10 per group) to test the effect of miR-506 on cisplatin and PARP inhibitor sensitivity. All statistical tests were two-sided. Results: MiR-506 was associated with better response to therapy and longer progression-free and overall survival in two independent epithelial ovarian cancer patient cohorts (PFS: high vs low miR-506 expression; Bagnoli: hazard ratio [HR] = 3.06, 95% confidence interval [CI] = 1.90 to 4.70, P < .0001; TCGA: HR = 1.49, 95% CI = 1.00 to 2.25, P = 0.04). MiR-506 sensitized cells to DNA damage through directly targeting the double-strand DNA damage repair gene RAD51. Systemic delivery of miR-506 in 8–12 week old female athymic nude mice statistically significantly augmented the cisplatin and olaparib response (mean tumor weight ± SD, control miRNA plus cisplatin vs miR-506 plus cisplatin: 0.36±0.05g vs 0.07±0.02g, P < .001; control miRNA plus olaparib vs miR-506 plus olaparib: 0.32±0.13g vs 0.05±0.02g, P = .045, respectively), thus recapitulating the clinical observation. Conclusions: MiR-506 is a robust clinical marker for chemotherapy response and survival in serous ovarian cancers and has important therapeutic value in sensitizing cancer cells to chemotherapy. PMID:25995442

  19. The role of repair protein Rad51 in synergistic cytotoxicity and mutagenicity induced by epidermal growth factor receptor inhibitor (Gefitinib, Iressa{sup R}) and benzo[a]pyrene in human lung cancer

    SciTech Connect

    Ko, J.-C.; Hong, J.-H.; Wang, L.-H.; Lin, Y.-W.

    2008-05-01

    Rad51 protein is essential for homologous recombination repair of DNA damage, and is over-expressed in chemo- or radioresistant carcinomas. The polycyclic hydrocarbon carcinogen benzo[a]pyrene (B[a]P) affects MAPKs transduction pathways. Gefitinib (Iressa{sup R}, ZD1839) is a selective epidermal growth factor receptor tyrosine kinase inhibitor that blocks growth factor-mediated cell proliferation and ERK1/2 activation. We hypothesized that gefitinib enhances B[a]P-mediated cytotoxicity by decreasing ERK1/2 activation. Exposure of human lung cancer cells to gefitinib decreased B[a]P-elicited ERK1/2 activation and induced Rad51 protein expression. Gefitinib and B[a]P co-treatment decreased Rad51 protein stability by triggering degradation via a 26S proteasome-dependent pathway. Expression of constitutive active MKK1/2 vectors (MKK1/2-CA) rescues the decreased ERK1/2 activity, and restores Rad51 protein level and stability under gefitinib and B[a]P co-treatment. Gefitinib enhances B[a]P-induced growth inhibition, cytotoxicity and mutagenicity. Co-treatment with gefitinib and B[a]P can further inhibit cell growth significantly after depletion of endogenous Rad51 by siRad51 RNA transfection. Enhancement of ERK1/2 activation by MKK1-CA expression decrease B[a]P- and gefitinib-induced cytotoxicity, and B[a]P-induced mutagenicity. Rad51 protein protects lung cancer cells from synergistic cytotoxic and mutagenic effects induced by gefitinib and B[a]P. Suppression of Rad51 protein expression may be a novel lung cancer therapeutic modality to overcome drug resistance to gefitinib.

  20. Homogeneous vs heterogeneous polymerization catalysis revealed by single-particle fluorescence microscopy.

    PubMed

    Esfandiari, N Melody; Blum, Suzanne A

    2011-11-16

    A high-sensitivity and high-resolution single-particle fluorescence microscopy technique differentiated between homogeneous and heterogeneous metathesis polymerization catalysis by imaging the location of the early stages of polymerization. By imaging single polymers and single crystals of Grubbs II, polymerization catalysis was revealed to be solely homogeneous rather than heterogeneous or both.

  1. A unique DNase activity shares the active site with ATPase activity of the RecA/Rad51 homologue (Pk-REC) from a hyperthermophilic archaeon.

    PubMed

    Rashid, N; Morikawa, M; Kanaya, S; Atomi, H; Imanaka, T

    1999-02-19

    A RecA/Rad51 homologue from Pyrococcus kodakaraensis KOD1 (Pk-REC) is the smallest protein among various RecA/Rad51 homologues. Nevertheless, Pk-Rec is a super multifunctional protein and shows a deoxyribonuclease activity. This deoxyribonuclease activity was inhibited by 3 mM or more ATP, suggesting that the catalytic centers of the ATPase and deoxyribonuclease activities are overlapped. To examine whether these two enzymatic activities share the same active site, a number of site-directed mutations were introduced into Pk-REC and the ATPase and deoxyribonuclease activities of the mutant proteins were determined. The mutant enzyme in which double mutations Lys-33 to Ala and Thr-34 to Ala were introduced, fully lost both of these activities, indicating that Lys-33 and/or Thr-34 are important for both ATPase and deoxyribonuclease activities. The mutation of Asp-112 to Ala slightly and almost equally reduced both ATPase and deoxyribonuclease activities. In addition, the mutation of Glu-54 to Gln did not seriously affect the ATPase, deoxyribonuclease, and UV tolerant activities. These results strongly suggest that the active sites of the ATPase and deoxyribonuclease activities of Pk-REC are common. It is noted that unlike Glu-96 in Escherichia coli RecA, which has been proposed to be a catalytic residue for the ATPase activity, the corresponding residual Glu-54 in Pk-REC is not involved in the catalytic function of the protein.

  2. Brief Report: Identification of BACH2 and RAD51B as Rheumatoid Arthritis Susceptibility Loci in a Meta-Analysis of Genome-Wide Data

    PubMed Central

    McAllister, Kate; Yarwood, Annie; Bowes, John; Orozco, Gisela; Viatte, Sebastian; Diogo, Dorothée; Hocking, Lynne J; Steer, Sophia; Wordsworth, Paul; Wilson, A G; Morgan, Ann W; Kremer, Joel M; Pappas, Dimitrios; Gregersen, Peter; Klareskog, Lars; Plenge, Robert; Barton, Anne; Greenberg, Jeffrey; Worthington, Jane; Eyre, Stephen

    2013-01-01

    Objective A recent high-density fine-mapping (ImmunoChip) study of genetic associations in rheumatoid arthritis (RA) identified 14 risk loci with validated genome-wide significance, as well as a number of loci showing associations suggestive of significance (P = 5 × 10−5 < 5 × 10−8), but these have yet to be replicated. The aim of this study was to determine whether these potentially significant loci are involved in the pathogenesis of RA, and to explore whether any of the loci are associated with a specific RA serotype. Methods A total of 16 single-nucleotide polymorphisms (SNPs) were selected for genotyping and association analyses in 2 independent validation cohorts, comprising 6,106 RA cases and 4,290 controls. A meta-analysis of the data from the original ImmunoChip discovery cohort and from both validation cohorts was carried out, for a combined total of 17,581 RA cases and 20,160 controls. In addition, stratified analysis of patient subsets, defined according to their anti–cyclic citrullinated peptide (anti-CCP) antibody status, was performed. Results A significant association with RA risk (P < 0.05) was replicated for 6 of the SNPs assessed in the validation cohorts. All SNPs in the validation study had odds ratios (ORs) for RA susceptibility in the same direction as those in the ImmunoChip discovery study. One SNP, rs72928038, mapping to an intron of BACH2, achieved genome-wide significance in the meta-analysis (P = 1.2 × 10−8, OR 1.12), and a second SNP, rs911263, mapping to an intron of RAD51B, was significantly associated in the anti-CCP–positive RA subgroup (P = 4 × 10−8, OR 0.89), confirming that both are RA susceptibility loci. Conclusion This study provides robust evidence for an association of RA susceptibility with genes involved in B cell differentiation (BACH2) and DNA repair (RAD51B). The finding that the RAD51B gene exhibited different associations based on serologic subtype adds to the expanding knowledge base in defining

  3. Associations of UBE2I with RAD52, UBL1, p53, and RAD51 proteins in a yeast two-hybrid system

    SciTech Connect

    Shen, Zhiyuan; Pardington-Purtymun, P.E.; Comeaux, J.C.

    1996-10-15

    The yeast RAD52-dependent pathway is involved in DNA recombination and double-strand break repair. Yeast ubiquitin-conjugating enzyme UBC9 participates in S- and M-phase cyclin degradation and mitotic control. Using the human RAD52 protein as the bait in a yeast two-hybrid system, we have identified a human homolog of yeast UBC9, designated UBE2I, that interacts with RAD52, RAD51, p53, and a ubiquitin-like protein UBL1. These interactions are UBE2I-specific, since another DNA repair-related ubiquitin-conjugating enzyme, RAD6 (UBC2), does not interact with these proteins. The interaction of UBE2I with RAD52 is mediated by RAD52`s self-association region. These results suggest that the RAD52-dependent processes, cell cycle control, p53-mediated pathway(s), and ubiquitination interact through human UBE2I. 22 refs., 3 figs.

  4. The carboxyl-terminal of BRCA1 is required for subnuclear assembly of RAD51 after treatment with cisplatin but not ionizing radiation in human breast and ovarian cancer cells

    SciTech Connect

    Zhou Chenyi; Huang Peng; Liu Jinsong . E-mail: jliu@mdanderson.org

    2005-10-28

    BRCA1 plays an important role in maintaining genomic stability through its involvement in DNA repair. Although it is known that BRCA1 and RAD51 form distinct DNA repair subnuclear complexes, or foci, following environmental insults to the DNA, the role of BRCA1 in this process remains to be characterized. The purpose of the study was therefore to determine the role of BRCA1 in the formation of RAD51 foci following treatment with cisplatin and ionizing radiation. We found that although a functional BRCA1 is required for the subnuclear assembly of BRCA1 foci following treatment with either ionizing radiation or cisplatin, a functional BRCA1 is required for RAD51 foci to form following treatment with cisplatin but not with ionizing radiation. Similar results were obtained in SKOV-3 cells when the level of BRCA1 expression was knocked down by stable expression of a retrovirus-mediated small-interfering RNA against BRCA1. We also found that the carboxyl-terminal of BRCA1 contains uncharacterized phosphorylation sites that are responsive to cisplatin. The functional BRCA1 is also required for breast and ovarian cancer cells to mount resistance to cisplatin. These results suggest that the carboxyl-terminal of BRCA1 is required for the cisplatin-induced recruitment of RAD51 to the DNA-damage site, which may contribute to cisplatin resistance.

  5. Single Nucleotide Polymorphisms (SNPs) of RAD51-G172T and XRCC2-41657C/T Homologous Recombination Repair Genes and the Risk of Triple- Negative Breast Cancer in Polish Women.

    PubMed

    Michalska, Magdalena M; Samulak, Dariusz; Romanowicz, Hanna; Smolarz, Beata

    2015-09-01

    Double strand DNA breaks are the most dangerous DNA damage which, if non-repaired or misrepaired, may result in genomic instability, cancer transformation or cell death. RAD51 and XRCC2 encode proteins that are important for the repair of double-strand DNA breaks by homologous recombination. Therefore, genetic variability in these genes may contribute to the occurrence and progression of triple-negative breast cancer. The polymorphisms of the XRCC2 gene -41657C/T (rs718282) and of the RAD51 gene, -172G/T (rs1801321), were investigated by PCR-RFLP in 70 patients with triple-negative breast cancer and 70 age- and sex matched non-cancer controls. The obtained results demonstrated a significant positive association between the RAD51 T/T genotype and TNBC, with an adjusted odds ratio (OR) of 4.94 (p = 0.001). The homozygous T/T genotype was found in 60 % of TNBC cases and in 14 % of the used controls. Variant 172 T allele of RAD51 increased cancer risk (OR = 2.81 (1.72-4.58), p < .0001). No significant associations were observed between -41657C/T genotype of XRCC2 and the incidence of TNBC. There were no significant differences between the distribution of XRCC2 -41657C/T genotypes in the subgroups assigned to histological grades. The obtained results indicate that the polymorphism of RAD51, but not of XRCC2 gene, may be positively associated with the incidence of triple-negative breast carcinoma in the population of Polish women.

  6. The chromatin assembly factor 1 promotes Rad51-dependent template switches at replication forks by counteracting D-loop disassembly by the RecQ-type helicase Rqh1.

    PubMed

    Pietrobon, Violena; Fréon, Karine; Hardy, Julien; Costes, Audrey; Iraqui, Ismail; Ochsenbein, Françoise; Lambert, Sarah A E

    2014-10-01

    At blocked replication forks, homologous recombination mediates the nascent strands to switch template in order to ensure replication restart, but faulty template switches underlie genome rearrangements in cancer cells and genomic disorders. Recombination occurs within DNA packaged into chromatin that must first be relaxed and then restored when recombination is completed. The chromatin assembly factor 1, CAF-1, is a histone H3-H4 chaperone involved in DNA synthesis-coupled chromatin assembly during DNA replication and DNA repair. We reveal a novel chromatin factor-dependent step during replication-coupled DNA repair: Fission yeast CAF-1 promotes Rad51-dependent template switches at replication forks, independently of the postreplication repair pathway. We used a physical assay that allows the analysis of the individual steps of template switch, from the recruitment of recombination factors to the formation of joint molecules, combined with a quantitative measure of the resulting rearrangements. We reveal functional and physical interplays between CAF-1 and the RecQ-helicase Rqh1, the BLM homologue, mutations in which cause Bloom's syndrome, a human disease associating genome instability with cancer predisposition. We establish that CAF-1 promotes template switch by counteracting D-loop disassembly by Rqh1. Consequently, the likelihood of faulty template switches is controlled by antagonistic activities of CAF-1 and Rqh1 in the stability of the D-loop. D-loop stabilization requires the ability of CAF-1 to interact with PCNA and is thus linked to the DNA synthesis step. We propose that CAF-1 plays a regulatory role during template switch by assembling chromatin on the D-loop and thereby impacting the resolution of the D-loop. PMID:25313826

  7. A genome-wide IR-induced RAD51 foci RNAi screen identifies CDC73 involved in chromatin remodeling for DNA repair

    PubMed Central

    Herr, Patrick; Lundin, Cecilia; Evers, Bastiaan; Ebner, Daniel; Bauerschmidt, Christina; Kingham, Guy; Palmai-Pallag, Timea; Mortusewicz, Oliver; Frings, Oliver; Sonnhammer, Erik; Helleday, Thomas

    2015-01-01

    To identify new regulators of homologous recombination repair, we carried out a genome-wide short-interfering RNA screen combined with ionizing irradiation using RAD51 foci formation as readout. All candidates were confirmed by independent short-interfering RNAs and validated in secondary assays like recombination repair activity and RPA foci formation. Network analysis of the top modifiers identified gene clusters involved in recombination repair as well as components of the ribosome, the proteasome and the spliceosome, which are known to be required for effective DNA repair. We identified and characterized the RNA polymerase II-associated protein CDC73/Parafibromin as a new player in recombination repair and show that it is critical for genomic stability. CDC73 interacts with components of the SCF/Cullin and INO80/NuA4 chromatin-remodeling complexes to promote Histone ubiquitination. Our findings indicate that CDC73 is involved in local chromatin decondensation at sites of DNA damage to promote DNA repair. This function of CDC73 is related to but independent of its role in transcriptional elongation. PMID:27462432

  8. Sensitization of Tumor to {sup 212}Pb Radioimmunotherapy by Gemcitabine Involves Initial Abrogation of G2 Arrest and Blocked DNA Damage Repair by Interference With Rad51

    SciTech Connect

    Yong, Kwon Joong; Milenic, Diane E.; Baidoo, Kwamena E.; Brechbiel, Martin W.

    2013-03-15

    Purpose: To elucidate the mechanism of the therapeutic efficacy of targeted α-particle radiation therapy using {sup 212}Pb-TCMC-trastuzumab together with gemcitabine for treatment of disseminated peritoneal cancers. Methods and Materials: Mice bearing human colon cancer LS-174T intraperitoneal xenografts were pretreated with gemcitabine, followed by {sup 212}Pb-TCMC-trastuzumab and compared with controls. Results: Treatment with {sup 212}Pb-TCMC-trastuzumab increased the apoptotic rate in the S-phase-arrested tumors induced by gemcitabine at earlier time points (6 to 24 hours). {sup 212}Pb-TCMC-trastuzumab after gemcitabine pretreatment abrogated G2/M arrest at the same time points, which may be associated with the inhibition of Chk1 phosphorylation and, in turn, cell cycle perturbation, resulting in apoptosis. {sup 212}Pb-TCMC-trastuzumab treatment after gemcitabine pretreatment caused depression of DNA synthesis, DNA double-strand breaks, accumulation of unrepaired DNA, and down-regulation of Rad51 protein, indicating that DNA damage repair was blocked. In addition, modification in the chromatin structure of p21 may be associated with transcriptionally repressed chromatin states, indicating that the open structure was delayed at earlier time points. Conclusion: These findings suggest that the cell-killing efficacy of {sup 212}Pb-TCMC-trastuzumab after gemcitabine pretreatment may be associated with abrogation of the G2/M checkpoint, inhibition of DNA damage repair, and chromatin remodeling.

  9. Brh2 and Rad51 promote telomere maintenance in Ustilago maydis, a new model system of DNA repair proteins at telomeres.

    PubMed

    Yu, Eun Young; Kojic, Milorad; Holloman, William K; Lue, Neal F

    2013-07-01

    Recent studies implicate a number of DNA repair proteins in mammalian telomere maintenance. However, because several key repair proteins in mammals are missing from the well-studied budding and fission yeast, their roles at telomeres cannot be modeled in standard fungi. In this report, we explored the dimorphic fungus Ustilago maydis as an alternative model for telomere research. This fungus, which belongs to the phylum Basidiomycota, has a telomere repeat unit that is identical to the mammalian repeat, as well as a constellation of DNA repair proteins that more closely mimic the mammalian collection. We showed that the two core components of homology-directed repair (HDR) in U. maydis, namely Brh2 and Rad51, both promote telomere maintenance in telomerase positive cells, just like in mammals. In addition, we found that Brh2 is localized to telomeres in vivo, suggesting that it acts directly at chromosome ends. We surveyed a series of mutants with DNA repair defects, and found many of them to have short telomeres. Our results indicate that factors involved in DNA repair are probably also needed for optimal telomere maintenance in U. maydis, and that this fungus is a useful alternative model system for telomere research.

  10. Specific inhibition of Wee1 kinase and Rad51 recombinase: A strategy to enhance the sensitivity of leukemic T-cells to ionizing radiation-induced DNA double-strand breaks

    SciTech Connect

    Havelek, Radim; Cmielova, Jana; Kralovec, Karel; Bruckova, Lenka; Bilkova, Zuzana; Fousova, Ivana; Sinkorova, Zuzana; Vavrova, Jirina; Rezacova, Martina

    2014-10-24

    Highlights: • Pre-treatment with the inhibitors increased the sensitivity of Jurkat cells to irradiation. • Combining both inhibitors together resulted in a G2 cell cycle arrest abrogation in Jurkat. • Jurkat cells pre-treated with inhibitors were positive for γH2AX foci 24 h upon irradiation. • Pre-treatment with Rad51 RI-1 had no effect on apoptosis induction in MOLT-4 cells. • When dosed together, the combination decreased MOLT-4 cell survival. - Abstract: Present-day oncology sees at least two-thirds of cancer patients receiving radiation therapy as a part of their anticancer treatment. The objectives of the current study were to investigate the effects of the small molecule inhibitors of Wee1 kinase II (681641) and Rad51 (RI-1) on cell cycle progression, DNA double-strand breaks repair and apoptosis following ionizing radiation exposure in human leukemic T-cells Jurkat and MOLT-4. Pre-treatment with the Wee1 681641 or Rad51 RI-1 inhibitor alone increased the sensitivity of Jurkat cells to irradiation, however combining both inhibitors together resulted in a further enhancement of apoptosis. Jurkat cells pre-treated with inhibitors were positive for γH2AX foci 24 h upon irradiation. MOLT-4 cells were less affected by inhibitors application prior to ionizing radiation exposure. Pre-treatment with Rad51 RI-1 had no effect on apoptosis induction; however Wee1 681641 increased ionizing radiation-induced cell death in MOLT-4 cells.

  11. Low-dose irradiation promotes Rad51 expression by down-regulating miR-193b-3p in hepatocytes

    NASA Astrophysics Data System (ADS)

    Lee, Eon-Seok; Won, Yeo Jin; Kim, Byoung-Chul; Park, Daeui; Bae, Jin-Han; Park, Seong-Joon; Noh, Sung Jin; Kang, Yeong-Rok; Choi, Si Ho; Yoon, Je-Hyun; Heo, Kyu; Yang, Kwangmo; Son, Tae Gen

    2016-05-01

    Current evidence indicates that there is a relationship between microRNA (miRNA)-mediated gene silencing and low-dose irradiation (LDIR) responses. Here, alterations of miRNA expression in response to LDIR exposure in male BALB/c mice and three different types of hepatocytes were investigated. The miRNome of the LDIR-exposed mouse spleens (0.01 Gy, 6.5 mGy/h) was analyzed, and the expression of miRNA and mRNA was validated by qRT-PCR. Western blotting, chromatin immunoprecipitation (ChIP), and luciferase assays were also performed to evaluate the interaction between miRNAs and their target genes and to gain insight into the regulation of miRNA expression. The expression of miRNA-193b-3p was down-regulated in the mouse spleen and liver and in various hepatocytes (NCTC, Hepa, and HepG2 cell lines) in response to LDIR. The down-regulation of miR-193b-3p expression was caused by histone deacetylation on the miR-193b-3p promoter in the HepG2 cells irradiated with 0.01 Gy. However, the alteration of histone deacetylation and miR-193b-3p and Rad51 expression in response to LDIR was restored by pretreatment with N-acetyl-cyctein. In conclusion, we provide evidence that miRNA responses to LDIR include the modulation of cellular stress responses and repair mechanisms.

  12. Low-dose irradiation promotes Rad51 expression by down-regulating miR-193b-3p in hepatocytes

    PubMed Central

    Lee, Eon-Seok; Won, Yeo Jin; Kim, Byoung-Chul; Park, Daeui; Bae, Jin-Han; Park, Seong-Joon; Noh, Sung Jin; Kang, Yeong-Rok; Choi, Si Ho; Yoon, Je-Hyun; Heo, Kyu; Yang, Kwangmo; Son, Tae Gen

    2016-01-01

    Current evidence indicates that there is a relationship between microRNA (miRNA)-mediated gene silencing and low-dose irradiation (LDIR) responses. Here, alterations of miRNA expression in response to LDIR exposure in male BALB/c mice and three different types of hepatocytes were investigated. The miRNome of the LDIR-exposed mouse spleens (0.01 Gy, 6.5 mGy/h) was analyzed, and the expression of miRNA and mRNA was validated by qRT-PCR. Western blotting, chromatin immunoprecipitation (ChIP), and luciferase assays were also performed to evaluate the interaction between miRNAs and their target genes and to gain insight into the regulation of miRNA expression. The expression of miRNA-193b-3p was down-regulated in the mouse spleen and liver and in various hepatocytes (NCTC, Hepa, and HepG2 cell lines) in response to LDIR. The down-regulation of miR-193b-3p expression was caused by histone deacetylation on the miR-193b-3p promoter in the HepG2 cells irradiated with 0.01 Gy. However, the alteration of histone deacetylation and miR-193b-3p and Rad51 expression in response to LDIR was restored by pretreatment with N-acetyl-cyctein. In conclusion, we provide evidence that miRNA responses to LDIR include the modulation of cellular stress responses and repair mechanisms. PMID:27225532

  13. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization

    PubMed Central

    Zhang, Liman; Chen, Shuobing; Ruan, Jianbin; Wu, Jiayi; Tong, Alexander B.; Yin, Qian; Li, Yang; David, Liron; Lu, Alvin; Wang, Wei Li; Marks, Carolyn; Ouyang, Qi; Zhang, Xinzheng; Mao, Youdong; Wu, Hao

    2015-01-01

    The NLR family apoptosis inhibitory proteins (NAIPs) bind conserved bacterial ligands, such as the bacterial rod protein PrgJ, and recruit NLR family CARD-containing protein 4 (NLRC4) as the inflammasome adapter to activate innate immunity. We found that the PrgJ-NAIP2-NLRC4 inflammasome is assembled into multisubunit disk-like structures through a unidirectional adenosine triphosphatase polymerization, primed with a single PrgJ-activated NAIP2 per disk. Cryo–electron microscopy (cryo-EM) reconstruction at subnanometer resolution revealed a ~90° hinge rotation accompanying NLRC4 activation. Unlike in the related heptameric Apaf-1 apoptosome, in which each subunit needs to be conformationally activated by its ligand before assembly, a single PrgJ-activated NAIP2 initiates NLRC4 polymerization in a domino-like reaction to promote the disk assembly. These insights reveal the mechanism of signal amplification in NAIP-NLRC4 inflammasomes. PMID:26449474

  14. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization.

    PubMed

    Zhang, Liman; Chen, Shuobing; Ruan, Jianbin; Wu, Jiayi; Tong, Alexander B; Yin, Qian; Li, Yang; David, Liron; Lu, Alvin; Wang, Wei Li; Marks, Carolyn; Ouyang, Qi; Zhang, Xinzheng; Mao, Youdong; Wu, Hao

    2015-10-23

    The NLR family apoptosis inhibitory proteins (NAIPs) bind conserved bacterial ligands, such as the bacterial rod protein PrgJ, and recruit NLR family CARD-containing protein 4 (NLRC4) as the inflammasome adapter to activate innate immunity. We found that the PrgJ-NAIP2-NLRC4 inflammasome is assembled into multisubunit disk-like structures through a unidirectional adenosine triphosphatase polymerization, primed with a single PrgJ-activated NAIP2 per disk. Cryo-electron microscopy (cryo-EM) reconstruction at subnanometer resolution revealed a ~90° hinge rotation accompanying NLRC4 activation. Unlike in the related heptameric Apaf-1 apoptosome, in which each subunit needs to be conformationally activated by its ligand before assembly, a single PrgJ-activated NAIP2 initiates NLRC4 polymerization in a domino-like reaction to promote the disk assembly. These insights reveal the mechanism of signal amplification in NAIP-NLRC4 inflammasomes. PMID:26449474

  15. Replication-Competent Adenovirus Formation in 293 Cells: the Recombination-Based Rate Is Influenced by Structure and Location of the Transgene Cassette and Not Increased by Overproduction of HsRad51, Rad51-Interacting, or E2F Family Proteins

    PubMed Central

    Duigou, Gregory J.; Young, C. S. H.

    2005-01-01

    Propagation of E1 region replacement adenovirus vectors in 293 cells results in the rare appearance of replication-competent adenovirus (RCA). The RCA genome contains E1 DNA acquired from the 293 cellular genome. The Luria-Delbrück fluctuation test was adapted to measure RCA formation rates. To test if structure affected rate, we measured rates during the production of adenovirus vectors with genomes containing three different expression cassette arrangements. The vectors had different extents of sequence identity with integrated Ad5 DNA of 293 cells and had different distributions of identity flanking the expression cassettes. Empty cassette vector RCA rates ranged from 2.5 × 10−8 to 5.6 × 10−10. The extent of sequence identity was not an accurate RCA rate predictor. The vector with the highest RCA rate also had the least overall sequence identity. To define factors controlling RCA generation, adenovirus vectors expressing E2F family proteins, known to modulate recombination gene expression, and overexpressing the human Rad51 recombination protein were analyzed. Compared to their corresponding empty vectors, RCA rates were not increased but were slightly decreased. Initial results suggested expression cassette orientation and/or transcription direction as potential RCA rate modifiers. Testing adenovirus vectors with identical transgene cassettes oriented in opposite directions suggested that transcription direction was not the basis of these rate differences. Thus, the overall structure and location of the transgene cassette had the largest effect on RCA rate. The RCA fluctuation test should be useful for investigators who require accurate measurements of targeted recombination and the probability of RCA formation during stock production. PMID:15827158

  16. Single Nucleotide Polymorphisms in Noncoding Regions of Rad51C Do Not Change the Risk of Unselected Breast Cancer but They Modulate the Level of Oxidative Stress and the DNA Damage Characteristics: A Case-Control Study

    PubMed Central

    Gresner, Peter; Gromadzinska, Jolanta; Jablonska, Ewa; Stepnik, Maciej; Zambrano Quispe, Oscar; Twardowska, Ewa; Wasowicz, Wojciech

    2014-01-01

    Deleterious and missense mutations of RAD51C have recently been suggested to modulate the individual susceptibility to hereditary breast and ovarian cancer and unselected ovarian cancer, but not unselected breast cancer (BrC). We enrolled 132 unselected BrC females and 189 cancer-free female subjects to investigate whether common single nucleotide polymorphisms (SNPs) in non-coding regions of RAD51C modulate the risk of BrC, and whether they affect the level of oxidative stress and the extent/characteristics of DNA damage. Neither SNPs nor reconstructed haplotypes were found to significantly affect the unselected BrC risk. Contrary to this, carriers of rs12946522, rs16943176, rs12946397 and rs17222691 rare-alleles were found to present significantly increased level of blood plasma TBARS compared to respective wild-type homozygotes (p<0.05). Furthermore, these carriers showed significantly decreased fraction of oxidatively generated DNA damage (34% of total damaged DNA) in favor of DNA strand breakage, with no effect on total DNA damage, unlike respective wild-types, among which more evenly distributed proportions between oxidatively damaged DNA (48% of total DNA damage) and DNA strand breakage was found (p<0.0005 for the difference). Such effects were found among both the BrC cases and healthy subjects, indicating that they cannot be assumed as causal factors contributing to BrC development. PMID:25343521

  17. Single nucleotide polymorphisms in noncoding regions of Rad51C do not change the risk of unselected breast cancer but they modulate the level of oxidative stress and the DNA damage characteristics: a case-control study.

    PubMed

    Gresner, Peter; Gromadzinska, Jolanta; Jablonska, Ewa; Stepnik, Maciej; Zambrano Quispe, Oscar; Twardowska, Ewa; Wasowicz, Wojciech

    2014-01-01

    Deleterious and missense mutations of RAD51C have recently been suggested to modulate the individual susceptibility to hereditary breast and ovarian cancer and unselected ovarian cancer, but not unselected breast cancer (BrC). We enrolled 132 unselected BrC females and 189 cancer-free female subjects to investigate whether common single nucleotide polymorphisms (SNPs) in non-coding regions of RAD51C modulate the risk of BrC, and whether they affect the level of oxidative stress and the extent/characteristics of DNA damage. Neither SNPs nor reconstructed haplotypes were found to significantly affect the unselected BrC risk. Contrary to this, carriers of rs12946522, rs16943176, rs12946397 and rs17222691 rare-alleles were found to present significantly increased level of blood plasma TBARS compared to respective wild-type homozygotes (p<0.05). Furthermore, these carriers showed significantly decreased fraction of oxidatively generated DNA damage (34% of total damaged DNA) in favor of DNA strand breakage, with no effect on total DNA damage, unlike respective wild-types, among which more evenly distributed proportions between oxidatively damaged DNA (48% of total DNA damage) and DNA strand breakage was found (p<0.0005 for the difference). Such effects were found among both the BrC cases and healthy subjects, indicating that they cannot be assumed as causal factors contributing to BrC development.

  18. Effect of species-specific differences in chromosome morphology on chromatin compaction and the frequency and distribution of RAD51 and MLH1 foci in two bovid species: cattle (Bos taurus) and the common eland (Taurotragus oryx).

    PubMed

    Sebestova, Hana; Vozdova, Miluse; Kubickova, Svatava; Cernohorska, Halina; Kotrba, Radim; Rubes, Jiri

    2016-03-01

    Meiotic recombination between homologous chromosomes is crucial for their correct segregation into gametes and for generating diversity. We compared the frequency and distribution of MLH1 foci and RAD51 foci, synaptonemal complex (SC) length and DNA loop size in two related Bovidae species that share chromosome arm homology but show an extreme difference in their diploid chromosome number: cattle (Bos taurus, 2n = 60) and the common eland (Taurotragus oryx, 2nmale = 31). Compared to cattle, significantly fewer MLH1 foci per cell were observed in the common eland, which can be attributed to the lower number of initial double-strand breaks (DSBs) detected as RAD51 foci in leptonema. Despite the significantly shorter total autosomal SC length and longer DNA loop size of the common eland bi-armed chromosomes compared to those of bovine acrocentrics, the overall crossover density in the common eland was still lower than in cattle, probably due to the reduction in the number of MLH1 foci in the proximal regions of the bi-armed chromosomes. The formation of centric fusions during karyotype evolution of the common eland accompanied by meiotic chromatin compaction has greater implications in the reduction in the number of DSBs in leptonema than in the decrease of MLH1 foci number in pachynema. PMID:26194101

  19. Single nucleotide polymorphisms in noncoding regions of Rad51C do not change the risk of unselected breast cancer but they modulate the level of oxidative stress and the DNA damage characteristics: a case-control study.

    PubMed

    Gresner, Peter; Gromadzinska, Jolanta; Jablonska, Ewa; Stepnik, Maciej; Zambrano Quispe, Oscar; Twardowska, Ewa; Wasowicz, Wojciech

    2014-01-01

    Deleterious and missense mutations of RAD51C have recently been suggested to modulate the individual susceptibility to hereditary breast and ovarian cancer and unselected ovarian cancer, but not unselected breast cancer (BrC). We enrolled 132 unselected BrC females and 189 cancer-free female subjects to investigate whether common single nucleotide polymorphisms (SNPs) in non-coding regions of RAD51C modulate the risk of BrC, and whether they affect the level of oxidative stress and the extent/characteristics of DNA damage. Neither SNPs nor reconstructed haplotypes were found to significantly affect the unselected BrC risk. Contrary to this, carriers of rs12946522, rs16943176, rs12946397 and rs17222691 rare-alleles were found to present significantly increased level of blood plasma TBARS compared to respective wild-type homozygotes (p<0.05). Furthermore, these carriers showed significantly decreased fraction of oxidatively generated DNA damage (34% of total damaged DNA) in favor of DNA strand breakage, with no effect on total DNA damage, unlike respective wild-types, among which more evenly distributed proportions between oxidatively damaged DNA (48% of total DNA damage) and DNA strand breakage was found (p<0.0005 for the difference). Such effects were found among both the BrC cases and healthy subjects, indicating that they cannot be assumed as causal factors contributing to BrC development. PMID:25343521

  20. An integrated in silico approach to analyze the involvement of single amino acid polymorphisms in FANCD1/BRCA2-PALB2 and FANCD1/BRCA2-RAD51 complex.

    PubMed

    Doss, C George Priya; Nagasundaram, N

    2014-11-01

    Fanconi anemia (FA) is an autosomal recessive human disease characterized by genomic instability and a marked increase in cancer risk. The importance of FANCD1 gene is manifested by the fact that deleterious amino acid substitutions were found to confer susceptibility to hereditary breast and ovarian cancers. Attaining experimental knowledge about the possible disease-associated substitutions is laborious and time consuming. The recent introduction of genome variation analyzing in silico tools have the capability to identify the deleterious variants in an efficient manner. In this study, we conducted in silico variation analysis of deleterious non-synonymous SNPs at both functional and structural level in the breast cancer and FA susceptibility gene BRCA2/FANCD1. To identify and characterize deleterious mutations in this study, five in silico tools based on two different prediction methods namely pathogenicity prediction (SIFT, PolyPhen, and PANTHER), and protein stability prediction (I-Mutant 2.0 and MuStab) were analyzed. Based on the deleterious scores that overlap in these in silico approaches, and the availability of three-dimensional structures, structure analysis was carried out with the major mutations that occurred in the native protein coded by FANCD1/BRCA2 gene. In this work, we report the results of the first molecular dynamics (MD) simulation study performed to analyze the structural level changes in time scale level with respect to the native and mutated protein complexes (G25R, W31C, W31R in FANCD1/BRCA2-PALB2, and F1524V, V1532F in FANCD1/BRCA2-RAD51). Analysis of the MD trajectories indicated that predicted deleterious variants alter the structural behavior of BRCA2-PALB2 and BRCA2-RAD51 protein complexes. In addition, statistical analysis was employed to test the significance of these in silico tool predictions. Based on these predictions, we conclude that the identification of disease-related SNPs by in silico methods, in combination with MD

  1. Associations of common variants at 1p11.2 and 14q24.1 (RAD51L1) with breast cancer risk and heterogeneity by tumor subtype: findings from the Breast Cancer Association Consortium†

    PubMed Central

    Figueroa, Jonine D.; Garcia-Closas, Montserrat; Humphreys, Manjeet; Platte, Radka; Hopper, John L.; Southey, Melissa C.; Apicella, Carmel; Hammet, Fleur; Schmidt, Marjanka K.; Broeks, Annegien; Tollenaar, Rob A.E.M.; Van't Veer, Laura J.; Fasching, Peter A.; Beckmann, Matthias W.; Ekici, Arif B.; Strick, Reiner; Peto, Julian; dos Santos Silva, Isabel; Fletcher, Olivia; Johnson, Nichola; Sawyer, Elinor; Tomlinson, Ian; Kerin, Michael; Burwinkel, Barbara; Marme, Federik; Schneeweiss, Andreas; Sohn, Christof; Bojesen, Stig; Flyger, Henrik; Nordestgaard, Børge G.; Benítez, Javier; Milne, Roger L.; Ignacio Arias, Jose; Zamora, M. Pilar; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Rahman, Nazneen; Turnbull, Clare; Seal, Sheila; Renwick, Anthony; Brauch, Hiltrud; Justenhoven, Christina; Brüning, Thomas; Chang-Claude, Jenny; Hein, Rebecca; Wang-Gohrke, Shan; Dörk, Thilo; Schürmann, Peter; Bremer, Michael; Hillemanns, Peter; Nevanlinna, Heli; Heikkinen, Tuomas; Aittomäki, Kristiina; Blomqvist, Carl; Bogdanova, Natalia; Antonenkova, Natalia; Rogov, Yuri I.; Karstens, Johann Hinrich; Bermisheva, Marina; Prokofieva, Darya; Hanafievich Gantcev, Shamil; Khusnutdinova, Elza; Lindblom, Annika; Margolin, Sara; Chenevix-Trench, Georgia; Beesley, Jonathan; Chen, Xiaoqing; Mannermaa, Arto; Kosma, Veli-Matti; Soini, Ylermi; Kataja, Vesa; Lambrechts, Diether; Yesilyurt, Betül T.; Chrisiaens, Marie-Rose; Peeters, Stephanie; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Barile, Monica; Couch, Fergus; Lee, Adam M.; Diasio, Robert; Wang, Xianshu; Giles, Graham G.; Severi, Gianluca; Baglietto, Laura; Maclean, Catriona; Offit, Ken; Robson, Mark; Joseph, Vijai; Gaudet, Mia; John, Esther M.; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Andrulis, Irene; Knight, Julia A.; Marie Mulligan, Anna; O'Malley, Frances P.; Brinton, Louise A.; Sherman, Mark E.; Lissowska, Jolanta; Chanock, Stephen J.; Hooning, Maartje; Martens, John W.M.; van den Ouweland, Ans M.W.; Collée, J. Margriet; Hall, Per; Czene, Kamila; Cox, Angela; Brock, Ian W.; Reed, Malcolm W.R.; Cross, Simon S.; Pharoah, Paul; Dunning, Alison M.; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Ahn, Sei-Hyun; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Shen, Chen-Yang; Ding, Shian-ling; Hsu, Huan-Ming; Yu, Jyh-Cherng; Anton-Culver, Hoda; Ziogas, Argyrios; Ashworth, Alan; Swerdlow, Anthony; Jones, Michael; Orr, Nick; Trentham-Dietz, Amy; Egan, Kathleen; Newcomb, Polly; Titus-Ernstoff, Linda; Easton, Doug; Spurdle, Amanda B.

    2011-01-01

    A genome-wide association study (GWAS) identified single-nucleotide polymorphisms (SNPs) at 1p11.2 and 14q24.1 (RAD51L1) as breast cancer susceptibility loci. The initial GWAS suggested stronger effects for both loci for estrogen receptor (ER)-positive tumors. Using data from the Breast Cancer Association Consortium (BCAC), we sought to determine whether risks differ by ER, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), grade, node status, tumor size, and ductal or lobular morphology. We genotyped rs11249433 at 1p.11.2, and two highly correlated SNPs rs999737 and rs10483813 (r2= 0.98) at 14q24.1 (RAD51L1), for up to 46 036 invasive breast cancer cases and 46 930 controls from 39 studies. Analyses by tumor characteristics focused on subjects reporting to be white women of European ancestry and were based on 25 458 cases, of which 87% had ER data. The SNP at 1p11.2 showed significantly stronger associations with ER-positive tumors [per-allele odds ratio (OR) for ER-positive tumors was 1.13, 95% CI = 1.10–1.16 and, for ER-negative tumors, OR was 1.03, 95% CI = 0.98–1.07, case-only P-heterogeneity = 7.6 × 10−5]. The association with ER-positive tumors was stronger for tumors of lower grade (case-only P= 6.7 × 10−3) and lobular histology (case-only P= 0.01). SNPs at 14q24.1 were associated with risk for most tumor subtypes evaluated, including triple-negative breast cancers, which has not been described previously. Our results underscore the need for large pooling efforts with tumor pathology data to help refine risk estimates for SNP associations with susceptibility to different subtypes of breast cancer. PMID:21852249

  2. Chinese Herbal Mixture, Tien-Hsien Liquid, Induces G2/M Cycle Arrest and Radiosensitivity in MCF-7 Human Breast Cancer Cells through Mechanisms Involving DNMT1 and Rad51 Downregulation

    PubMed Central

    Chow, Jyh-Ming; Yang, Chia-Ming; Kuo, Hui-Ching; Chang, Chia-Lun; Lee, Hsin-Lun; Lai, I-Chun; Chuang, Shuang-En

    2016-01-01

    The Chinese herbal mixture, Tien-Hsien Liquid (THL), has been proven to suppress the growth and invasiveness of cancer cells and is currently regarded as a complementary medicine for the treatment of cancer. Our previous study using acute promyelocytic leukemia cells uncovered its effect on the downregulation of DNA methyltransferase 1 (DNMT1) which is often overexpressed in cancer cells resulting in the repression of tumor suppressors via hypermethylation. Herein, we explored the effects of THL in MCF-7 breast cancer cells that also demonstrate elevated DNMT1. The results show that THL dose-dependently downregulated DNMT1 accompanied by the induction of tumor suppressors such as p21 and p15. THL arrested cell cycle in G2/M phase and decreased the protein levels of cyclin A, cyclin B1, phospho-pRb, and AKT. DNMT1 inhibition was previously reported to exert a radiosensitizing effect in cancer cells through the repression of DNA repair. We found that THL enhanced radiation-induced clonogenic cell death in MCF-7 cells and decreased the level of DNA double-strand break repair protein, Rad51. Our observations may be the result of DNMT1 downregulation. Due to the fact that DNMT1 inhibition is now a mainstream strategy for anticancer therapy, further clinical trials of THL to confirm its clinical efficacy are warranted. PMID:27525019

  3. A multi-stage genome-wide association in breast cancer identifies two novel risk alleles at 1p11.2 and 14q24.1 (RAD51L1)

    PubMed Central

    Thomas, Gilles; Jacobs, Kevin B.; Kraft, Peter; Yeager, Meredith; Wacholder, Sholom; Cox, David G.; Hankinson, Susan E.; Hutchinson, Amy; Wang, Zhaoming; Yu, Kai; Chatterjee, Nilanjan; Garcia-Closas, Montserrat; Gonzalez-Bosquet, Jesus; Prokunina-Olsson, Ludmila; Orr, Nick; Willett, Walter C.; Colditz, Graham A.; Ziegler, Regina G.; Berg, Christine D.; Buys, Saundra S.; McCarty, Catherine A.; Feigelson, Heather Spencer; Calle, Eugenia E.; Thun, Michael J.; Diver, Ryan; Prentice, Ross; Jackson, Rebecca; Kooperberg, Charles; Chlebowski, Rowan; Lissowska, Jolanta; Peplonska, Beata; Brinton, Louise A.; Sigurdson, Alice; Doody, Michele; Bhatti, Parveen; Alexander, Bruce H.; Buring, Julie; Lee, I-Min; Vatten, Lars J; Hveem, Kristian; Kumle, Merethe; Hayes, Richard B.; Tucker, Margaret; Gerhard, Daniela S.; Fraumeni, Joseph F.; Hoover, Robert N.; Chanock, Stephen J; Hunter, David J.

    2010-01-01

    The Cancer Genetic Markers of Susceptibility (CGEMS) initiative has conducted a three-stage genome-wide association study (GWAS) of breast cancer in 9,770 cases and 10,799 controls. In Stage 1, we genotyped 528,173 single nucleotide polymorphisms (SNPs) in 1,145 cases of invasive breast cancer among postmenopausal white women, and 1,142 controls; in Stage 2, 24,909 SNPs with low p values observed in Stage 1 were analyzed in 4,547 cases and 4,434 controls. In Stage 3 we investigated 21 loci in 4,078 cases and 5,223 controls with low p values from Stage 1 and 2 combined. Two novel loci achieved genome-wide significance. A pericentromeric SNP on chromosome 1p11.2, rs11249433, (p=6.74 × 10-10 adjusted genotype test with 2 degrees of freedom) resides in a large block of linkage disequilibrium neighboring NOTCH2 and FCGR1B and is predominantly associated with estrogen receptor-positive breast cancer. A second SNP, rs999737 on chromosome 14q24.1 (p=1.74 × 10−7), localizes to RAD51L1, a gene in the homologous recombination DNA repair pathway, a prior candidate pathway for breast cancer susceptibility. We confirmed previously reported markers on chromosome 2q35, 5q11.2, 5p12, 8q24, 10q26, and 16q12.1. Our results underscore the importance of large-scale replication in the identification of low penetrance breast cancer alleles. PMID:19330030

  4. Nucleocapsid protein structures from orthobunyaviruses reveal insight into ribonucleoprotein architecture and RNA polymerization

    PubMed Central

    Ariza, Antonio; Tanner, Sian J.; Walter, Cheryl T.; Dent, Kyle C.; Shepherd, Dale A.; Wu, Weining; Matthews, Susan V.; Hiscox, Julian A.; Green, Todd J.; Luo, Ming; Elliott, Richard M.; Fooks, Anthony R.; Ashcroft, Alison E.; Stonehouse, Nicola J.; Ranson, Neil A.; Barr, John N.; Edwards, Thomas A.

    2013-01-01

    All orthobunyaviruses possess three genome segments of single-stranded negative sense RNA that are encapsidated with the virus-encoded nucleocapsid (N) protein to form a ribonucleoprotein (RNP) complex, which is uncharacterized at high resolution. We report the crystal structure of both the Bunyamwera virus (BUNV) N–RNA complex and the unbound Schmallenberg virus (SBV) N protein, at resolutions of 3.20 and 2.75 Å, respectively. Both N proteins crystallized as ring-like tetramers and exhibit a high degree of structural similarity despite classification into different orthobunyavirus serogroups. The structures represent a new RNA-binding protein fold. BUNV N possesses a positively charged groove into which RNA is deeply sequestered, with the bases facing away from the solvent. This location is highly inaccessible, implying that RNA polymerization and other critical base pairing events in the virus life cycle require RNP disassembly. Mutational analysis of N protein supports a correlation between structure and function. Comparison between these crystal structures and electron microscopy images of both soluble tetramers and authentic RNPs suggests the N protein does not bind RNA as a repeating monomer; thus, it represents a newly described architecture for bunyavirus RNP assembly, with implications for many other segmented negative-strand RNA viruses. PMID:23595147

  5. Polymeric microspheres

    DOEpatents

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  6. Spatial distribution of intra-molecular water and polymeric components in polyelectrolyte dendrimers revealed by small angle scattering investigations

    SciTech Connect

    Chen, Chun-Yu; Chen, Wei-Ren; Herwig, Kenneth W; Hong, Kunlun; Li, Xin; Liu, Emily; Liu, Yun; Smith, Gregory Scott; Wu, Bin; Yang, Jun; Do, Changwoo

    2011-01-01

    An experimental scheme using contrast variation small angle neutron scattering technique (SANS), is developed to investigate the structural characteristics of amine-terminated poly(amidoamine) dendrimers (PAMAM) solutions. The focus is placed on understanding the dependence of intra-dendrimer water and polymer distribution on molecular protonation, which can be precisely adjusted by tuning the pH value of solution. Assuming the spherical symmetry in the spatial arrangement of the constituent component of dendrimer, and the atomic ratio of hydrogen-to-deuterium for the solvent residing within the cavities of dendrimer is identical to that for the solvent outside dendrimer, the intra-dendrimer water distribution along the radial direction can be determined based on the model of coherent scattering cross section developed in this work. Moreover, our result clearly reveals an outward relocation of the peripheral groups, as well as the enhanced intra-dendrimer hydration, upon increasing the molecular protonation and therefore allows the determination of segmental backfolding in a quantitative manner. The connection between these charge-induced structural changes and our recently observed progressively active segmental dynamics is also discussed.

  7. A novel technique using potassium permanganate and reflectance confocal microscopy to image biofilm extracellular polymeric matrix reveals non-eDNA networks in Pseudomonas aeruginosa biofilms.

    PubMed

    Swearingen, Matthew C; Mehta, Ajeet; Mehta, Amar; Nistico, Laura; Hill, Preston J; Falzarano, Anthony R; Wozniak, Daniel J; Hall-Stoodley, Luanne; Stoodley, Paul

    2016-02-01

    Biofilms are etiologically important in the development of chronic medical and dental infections. The biofilm extracellular polymeric substance (EPS) determines biofilm structure and allows bacteria in biofilms to adapt to changes in mechanical loads such as fluid shear. However, EPS components are difficult to visualize microscopically because of their low density and molecular complexity. Here, we tested potassium permanganate, KMnO4, for use as a non-specific EPS contrast-enhancing stain using confocal laser scanning microscopy in reflectance mode. We demonstrate that KMnO4 reacted with EPS components of various strains of Pseudomonas, Staphylococcus and Streptococcus, yielding brown MnO2 precipitate deposition on the EPS, which was quantifiable using data from the laser reflection detector. Furthermore, the MnO2 signal could be quantified in combination with fluorescent nucleic acid staining. COMSTAT image analysis indicated that KMnO4 staining increased the estimated biovolume over that determined by nucleic acid staining alone for all strains tested, and revealed non-eDNA EPS networks in Pseudomonas aeruginosa biofilm. In vitro and in vivo testing indicated that KMnO4 reacted with poly-N-acetylglucosamine and Pseudomonas Pel polysaccharide, but did not react strongly with DNA or alginate. KMnO4 staining may have application as a research tool and for diagnostic potential for biofilms in clinical samples.

  8. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  9. Polymerization of perfluorobutadiene

    NASA Technical Reports Server (NTRS)

    Newman, J.; Toy, M. S.

    1970-01-01

    Diisopropyl peroxydicarbonate dissolved in liquid perfluorobutadiene is conducted in a sealed vessel at the autogenous pressure of polymerization. Reaction temperature, ratio of catalyst to monomer, and amount of agitation determine degree of polymerization and product yield.

  10. Photoacoustic analysis of dental resin polymerization

    NASA Astrophysics Data System (ADS)

    Coloiano, E. C. R.; Rocha, R.; Martin, A. A.; da Silva, M. D.; Acosta-Avalos, D.; Barja, P. R.

    2005-06-01

    In this work, we use the photoacoustic technique to monitor the curing process of diverse dental materials, as the resins chemically activated (RCA). The results obtained reveal that the composition of a determined RCA significantly alters its activation kinetics. Photoacoustic data also show that temperature is a significant parameter in the activation kinetics of resins. The photoacoustic technique was also applied to evaluate the polymerization kinetics of photoactivated resins. Such resins are photoactivated by incidence of continuous light from a photodiode. This leads to the polymerization of the resin, modifying its thermal properties and, consequently, the level of the photoacoustic signal. Measurements show that the polymerization of the resin changes the photoacoustic signal amplitude, indicating that photoacoustic measurements can be utilized to monitor the polymerization kinetic and the degree of polymerization of photoactivated dental resins.

  11. Polymerization Reactor Engineering.

    ERIC Educational Resources Information Center

    Skaates, J. Michael

    1987-01-01

    Describes a polymerization reactor engineering course offered at Michigan Technological University which focuses on the design and operation of industrial polymerization reactors to achieve a desired degree of polymerization and molecular weight distribution. Provides a list of the course topics and assigned readings. (TW)

  12. A high-throughput chemical screen with FDA approved drugs reveals that the antihypertensive drug Spironolactone impairs cancer cell survival by inhibiting homology directed repair

    PubMed Central

    Shahar, Or David; Kalousi, Alkmini; Eini, Lital; Fisher, Benoit; Weiss, Amelie; Darr, Jonatan; Mazina, Olga; Bramson, Shay; Kupiec, Martin; Eden, Amir; Meshorer, Eran; Mazin, Alexander V.; Brino, Laurent; Goldberg, Michal; Soutoglou, Evi

    2014-01-01

    DNA double-strand breaks (DSBs) are the most severe type of DNA damage. DSBs are repaired by non-homologous end-joining or homology directed repair (HDR). Identifying novel small molecules that affect HDR is of great importance both for research use and therapy. Molecules that elevate HDR may improve gene targeting whereas inhibiting molecules can be used for chemotherapy, since some of the cancers are more sensitive to repair impairment. Here, we performed a high-throughput chemical screen for FDA approved drugs, which affect HDR in cancer cells. We found that HDR frequencies are increased by retinoic acid and Idoxuridine and reduced by the antihypertensive drug Spironolactone. We further revealed that Spironolactone impairs Rad51 foci formation, sensitizes cancer cells to DNA damaging agents, to Poly (ADP-ribose) polymerase (PARP) inhibitors and cross-linking agents and inhibits tumor growth in xenografts, in mice. This study suggests Spironolactone as a new candidate for chemotherapy. PMID:24682826

  13. A high-throughput chemical screen with FDA approved drugs reveals that the antihypertensive drug Spironolactone impairs cancer cell survival by inhibiting homology directed repair.

    PubMed

    Shahar, Or David; Kalousi, Alkmini; Eini, Lital; Fisher, Benoit; Weiss, Amelie; Darr, Jonatan; Mazina, Olga; Bramson, Shay; Kupiec, Martin; Eden, Amir; Meshorer, Eran; Mazin, Alexander V; Brino, Laurent; Goldberg, Michal; Soutoglou, Evi

    2014-05-01

    DNA double-strand breaks (DSBs) are the most severe type of DNA damage. DSBs are repaired by non-homologous end-joining or homology directed repair (HDR). Identifying novel small molecules that affect HDR is of great importance both for research use and therapy. Molecules that elevate HDR may improve gene targeting whereas inhibiting molecules can be used for chemotherapy, since some of the cancers are more sensitive to repair impairment. Here, we performed a high-throughput chemical screen for FDA approved drugs, which affect HDR in cancer cells. We found that HDR frequencies are increased by retinoic acid and Idoxuridine and reduced by the antihypertensive drug Spironolactone. We further revealed that Spironolactone impairs Rad51 foci formation, sensitizes cancer cells to DNA damaging agents, to Poly (ADP-ribose) polymerase (PARP) inhibitors and cross-linking agents and inhibits tumor growth in xenografts, in mice. This study suggests Spironolactone as a new candidate for chemotherapy.

  14. Step-Growth Polymerization.

    ERIC Educational Resources Information Center

    Stille, J. K.

    1981-01-01

    Following a comparison of chain-growth and step-growth polymerization, focuses on the latter process by describing requirements for high molecular weight, step-growth polymerization kinetics, synthesis and molecular weight distribution of some linear step-growth polymers, and three-dimensional network step-growth polymers. (JN)

  15. Halley's polymeric organic molecules

    NASA Technical Reports Server (NTRS)

    Huebner, W. F.; Boice, D. C.; Korth, A.

    1989-01-01

    The detection of polymeric organic compounds in the mass spectrum of Comet Halley obtained with the Positive Ion Cluster Composition analyzer on Giotto are examined. It is found that, in addition to polyoxymethylene, other polymers and complex molecules may exist in the comet. It is suggested that polymerized hydrogen cyanide may be a source for the observed CN and NH2 jets.

  16. Polymeric Carbon Dioxide

    SciTech Connect

    Yoo, C-S.

    1999-11-02

    Synthesis of polymeric carbon dioxide has long been of interest to many chemists and materials scientists. Very recently we discovered the polymeric phase of carbon dioxide (called CO{sub 2}-V) at high pressures and temperatures. Our optical and x-ray results indicate that CO{sub 2}-V is optically non-linear, generating the second harmonic of Nd: YLF laser at 527 nm and is also likely superhard similar to cubic-boron nitride or diamond. CO{sub 2}-V is made of CO{sub 4} tetrahedra, analogous to SiO{sub 2} polymorphs, and is quenchable at ambient temperature at pressures above 1 GPa. In this paper, we describe the pressure-induced polymerization of carbon dioxide together with the stability, structure, and mechanical and optical properties of polymeric CO{sub 2}-V. We also present some implications of polymeric CO{sub 2} for high-pressure chemistry and new materials synthesis.

  17. Organometallic Polymeric Conductors

    NASA Technical Reports Server (NTRS)

    Youngs, Wiley J.

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. Many aerospace applications require a combination of properties. Thus, hybrid films made from polyimides or other engineering resins are of primary interest, but only if conductivities on the same order as those obtained with a polystyrene base could be obtained. Hence, a series of experiments was performed to optimize the conductivity of polyimide-based composite films. The polyimide base chosen for this study was Kapton. 3-MethylThiophene (3MT) was used for the conductive phase. Three processing variables were identified for producing these composite films, namely time, temperature, and oxidant concentration for the in situ oxidation. Statistically designed experiments were used to examine the effects of these variables and synergistic/interactive effects among variables on the electrical conductivity and mechanical strength of the films. Multiple linear regression analysis of the tensile data revealed that temperature and time have the greatest effect on maximum stress. The response surface of maximum stress vs. temperature and time (for oxidant concentration at 1.2 M) is shown. Conductivity of the composite films was measured for

  18. Concise polymeric materials encyclopedia

    SciTech Connect

    Salamone, J.C.

    1999-01-01

    This comprehensive, accessible resource abridges the ``Polymeric Materials Encyclopedia'', presenting more than 1,100 articles and featuring contributions from more than 1,800 scientists from all over the world. The text discusses a vast array of subjects related to the: (1) synthesis, properties, and applications of polymeric materials; (2) development of modern catalysts in preparing new or modified polymers; (3) modification of existing polymers by chemical and physical processes; and (4) biologically oriented polymers.

  19. Radical-Mediated Enzymatic Polymerizations.

    PubMed

    Zavada, Scott R; Battsengel, Tsatsral; Scott, Timothy F

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes--catalytic proteins--owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol-ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  20. Radical-Mediated Enzymatic Polymerizations

    PubMed Central

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  1. Polymeric bicontinuous microemulsions

    NASA Astrophysics Data System (ADS)

    Krishnan, Kasiraman

    Rheology of complex fluids has been a topic of considerable interest recently. Bicontinuous microemulsions (BmuE), made by mixing appropriate amounts of oil, water and a surfactant, form a unique class of complex fluids. They possess a characteristic nanostructure consisting of undulating surfaces with vanishingly small interfacial curvature. BmuEs can also be generated in polymers by mixing appropriate amounts of two homopolymers and their corresponding diblock copolymer. The main objective of the present research is to study effects of shear on a model polymeric BmuE. Scattering is used as a predominant tool with in situ flow devices, along with optical microscopy and rheology. The model BmuE consists of a ternary blend of poly(ethyl ethylene) (PEE), poly(dimethyl siloxane) (PDMS) and a PEE-PDMS diblock copolymer. Steady shear experiments reveal four regimes as a function of shear rate. At low shear rates (regime I), Newtonian behavior is observed; there is onset of shear thinning at higher rates (regime II). In regime III, the stress is independent of shear rate, whereas it increases with shear rate once again in regime IV. Morphological characterization was carried out for each of these four regimes using scattering and microscopy, the key result being the evidence for flow-induced phase separation in regime III. Transient rheological measurements were conducted for startup and step changes in shear rate, and the BmuE exhibits features similar to worm-like micellar colloidal systems. Time-resolved light scattering and microscopy also reveal interesting characteristics. Dynamic mechanical spectroscopy indicates similarities with neat block copolymers near the order-disorder transition. The equilibrium rheological behavior is intriguing and detailed comparisons are made with Landau-Ginzburg theoretical models. Other areas of research as a part of this thesis include study of structural dynamics of BmuEs with dynamic light scattering, and the rheological

  2. Integrated data analysis reveals uterine leiomyoma subtypes with distinct driver pathways and biomarkers

    PubMed Central

    Mehine, Miika; Kaasinen, Eevi; Heinonen, Hanna-Riikka; Mäkinen, Netta; Kämpjärvi, Kati; Sarvilinna, Nanna; Aavikko, Mervi; Vähärautio, Anna; Pasanen, Annukka; Bützow, Ralf; Heikinheimo, Oskari; Sjöberg, Jari; Pitkänen, Esa; Vahteristo, Pia; Aaltonen, Lauri A.

    2016-01-01

    Uterine leiomyomas are common benign smooth muscle tumors that impose a major burden on women’s health. Recent sequencing studies have revealed recurrent and mutually exclusive mutations in leiomyomas, suggesting the involvement of molecularly distinct pathways. In this study, we explored transcriptional differences among leiomyomas harboring different genetic drivers, including high mobility group AT-hook 2 (HMGA2) rearrangements, mediator complex subunit 12 (MED12) mutations, biallelic inactivation of fumarate hydratase (FH), and collagen, type IV, alpha 5 and collagen, type IV, alpha 6 (COL4A5-COL4A6) deletions. We also explored the transcriptional consequences of 7q22, 22q, and 1p deletions, aiming to identify possible target genes. We investigated 94 leiomyomas and 60 corresponding myometrial tissues using exon arrays, whole genome sequencing, and SNP arrays. This integrative approach revealed subtype-specific expression changes in key driver pathways, including Wnt/β-catenin, Prolactin, and insulin-like growth factor (IGF)1 signaling. Leiomyomas with HMGA2 aberrations displayed highly significant up-regulation of the proto-oncogene pleomorphic adenoma gene 1 (PLAG1), suggesting that HMGA2 promotes tumorigenesis through PLAG1 activation. This was supported by the identification of genetic PLAG1 alterations resulting in expression signatures as seen in leiomyomas with HMGA2 aberrations. RAD51 paralog B (RAD51B), the preferential translocation partner of HMGA2, was up-regulated in MED12 mutant lesions, suggesting a role for this gene in the genesis of leiomyomas. FH-deficient leiomyomas were uniquely characterized by activation of nuclear factor erythroid 2-related factor 2 (NRF2) target genes, supporting the hypothesis that accumulation of fumarate leads to activation of the oncogenic transcription factor NRF2. This study emphasizes the need for molecular stratification in leiomyoma research and possibly in clinical practice as well. Further research is

  3. Organocatalyzed Group Transfer Polymerization.

    PubMed

    Chen, Yougen; Kakuchi, Toyoji

    2016-08-01

    In contrast to the conventional group transfer polymerization (GTP) using a catalyst of either an anionic nucleophile or a transition-metal compound, the organocatalyzed GTP has to a great extent improved the living characteristics of the polymerization from the viewpoints of synthesizing structurally well-defined acrylic polymers and constructing defect-free polymer architectures. In this article, we describe the organocatalyzed GTP from a relatively personal perspective to provide our colleagues with a perspicuous and systematic overview on its recent progress as well as a reply to the curiosity of how excellently the organocatalysts have performed in this field. The stated perspectives of this review mainly cover five aspects, in terms of the assessment of the livingness of the polymerization, limit and scope of applicable monomers, mechanistic studies, control of the polymer structure, and a new GTP methodology involving the use of tris(pentafluorophenyl)borane and hydrosilane. PMID:27427399

  4. Polymerization of vegetable oils

    SciTech Connect

    Korus, R.A.; Mousetis, T.L.; Lloyd, L.

    1982-01-01

    The addition of antioxidants and dispersants is not sufficient to eliminate gum formation in vegetable oils. Even with relatively unsaturated oils like rapeseed the extent of unsaturation overwhelms these additives. Fuel deterioration during storage will be minimized in an anaerobic storage environment and, to a lesser extent, with a lower degree of oil unsaturation. Gum formation and carbon coking can also occur immediately preceding and during combustion. Thermal polymerization may be the dominant gum forming reaction under combustion conditions since thermal polymerization has a higher activation energy than oxidative polymerization and anaerobic conditions can occur within atomized fuel droplets. Carbon coking can be reduced with a lower degree of oil unsaturation and with better atomization of the fuel. 4 figures, 1 table.

  5. Variable Effect during Polymerization

    ERIC Educational Resources Information Center

    Lunsford, S. K.

    2005-01-01

    An experiment performing the polymerization of 3-methylthiophene(P-3MT) onto the conditions for the selective electrode to determine the catechol by using cyclic voltammetry was performed. The P-3MT formed under optimized conditions improved electrochemical reversibility, selectivity and reproducibility for the detection of the catechol.

  6. Protein specific polymeric immunomicrospheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1980-01-01

    Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such as hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.

  7. Programmable Supramolecular Polymerizations.

    PubMed

    van der Zwaag, Daan; de Greef, Tom F A; Meijer, E W

    2015-07-13

    Living large: Rational design of self-assembly pathways has been demonstrated in supramolecular polymers. By controlling the concentration of an aggregation-competent monomer through intramolecular interactions, living supramolecular polymerization conditions were achieved. This universal approach can be used to obtain aggregates of well-defined length and narrow dispersity, and allows access to new supramolecular polymer architectures. PMID:26095705

  8. Effective integrative supramolecular polymerization.

    PubMed

    Zhang, Qiwei; Tian, He

    2014-09-26

    Exercise control: By taking advantage of self-sorting processes among host-guest components, a controlled supramolecular polymerization can be realized, as demonstrated recently with the preparation of a cucurbit[n]uril-based supramolecular polymer. This method may be used for the design of more ordered supramolecular polymers from complex and discrete components. PMID:25080388

  9. Polymerized and functionalized triglycerides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant oils are useful sustainable raw materials for the development of new chemical products. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a new method for polymerizing epoxidized triglycerides with the use of fluorosulfonic acid. Depending on the ...

  10. Versatile Tandem Ring-Opening/Ring-Closing Metathesis Polymerization: Strategies for Successful Polymerization of Challenging Monomers and Their Mechanistic Studies.

    PubMed

    Park, Hyeon; Kang, Eun-Hye; Müller, Laura; Choi, Tae-Lim

    2016-02-24

    Tandem ring-opening/ring-closing metathesis (RO/RCM) results in extremely fast living polymerization; however, according to previous reports, only monomers containing certain combinations of cycloalkenes, terminal alkynes, and nitrogen linkers successfully underwent tandem polymerization. After examining the polymerization pathways, we proposed that the relatively slow intramolecular cyclization might lead to competing side reactions such as intermolecular cross metathesis reactions to form inactive propagating species. Thus, we developed two strategies to enhance tandem polymerization efficiency. First, we modified monomer structures to accelerate tandem RO/RCM cyclization by enhancing the Thorpe-Ingold effect. This strategy increased the polymerization rate and suppressed the chain transfer reaction to achieve controlled polymerization, even for challenging syntheses of dendronized polymers. Alternatively, reducing the reaction concentration facilitated tandem polymerization, suggesting that the slow tandem RO/RCM cyclization step was the main reason for the previous failure. To broaden the monomer scope, we used monomers containing internal alkynes and observed that two different polymer units with different ring sizes were produced as a result of nonselective α-addition and β-addition on the internal alkynes. Thorough experiments with various monomers with internal alkynes suggested that steric and electronic effects of the alkyne substituents influenced alkyne addition selectivity and the polymerization reactivity. Further polymerization kinetics studies revealed that the rate-determining step of monomers containing certain internal alkynes was the six-membered cyclization step via β-addition, whereas that for other monomers was the conventional intermolecular propagation step, as observed in other chain-growth polymerizations. This conclusion agrees well with all those polymerization results and thus validates our strategies. PMID:26878670

  11. [Molecular/polymeric magnetism

    SciTech Connect

    Not Available

    1993-01-01

    New materials were synthesized to test the generality of magnetism in molecular/polymeric systems. The first room temperature molecular based magnet V(TCNE)[sub x][center dot]y(solvent) (1) is disclosed. The ferromagnetic and related transitions were studied in decamethylferrocenium tetracyanoethanide (TCNE), (1), and related materials. Our and others' models were tested for ferromagnetic and antiferromagnetic exchange between local sites; models for control of [Tc] were also tested.

  12. Surface polymerization agents

    SciTech Connect

    Taylor, C.; Wilkerson, C.

    1996-12-01

    This is the final report of a 1-year, Laboratory-Directed R&D project at LANL. A joint technical demonstration was proposed between US Army Missile Command (Redstone Arsenal) and LANL. Objective was to demonstrate that an unmanned vehicle or missile could be used as a platform to deliver a surface polymerization agent in such a manner as to obstruct the filters of an air-breathing mechanism, resulting in operational failure.

  13. Polymeric Bicontinuous Microemulsions

    NASA Astrophysics Data System (ADS)

    Bates, Frank S.; Maurer, Wayne W.; Lipic, Paul M.; Hillmyer, Marc A.; Almdal, Kristoffer; Mortensen, Kell; Fredrickson, Glenn H.; Lodge, Timothy P.

    1997-08-01

    High molecular weight block copolymers can be viewed as macromolecular surfactants when blended with thermodynamically incompatible homopolymers. This Letter describes the formation of polymeric bicontinuous microemulsions in mixtures containing a model diblock copolymer and two homopolymers. Although we attribute development of this equilibrium morphology to the effects of fluctuations, mean-field theory provides a quantitative strategy for preparing the bicontinuous state at blend compositions near an isotropic Lifshitz point.

  14. [Effect of techniques of composite resin insertion and polymerization on microleakage and microhardness].

    PubMed

    Amaral, Cristiane Mariote; Castro, Ana Karina Barbieri Bedran de; Pimenta, Luiz André Freire; Ambrosano, Glaucia Maria Boni

    2002-01-01

    The aim of this study was to evaluate the influence of techniques of composite resin polymerization and insertion on microleakage and microhardness. One hundred and eighty class II cavities were prepared in bovine teeth and assigned to six groups: G1 - bulk filling + conventional polymerization; G2 - bucco-lingual increments + conventional polymerization; G3 - bulk filling + soft-start polymerization; G4 - bucco-lingual increments + soft-start polymerization; G5 - bulk filling + progressive polymerization; G6 - bucco-lingual increments + progressive polymerization. All cavities were restored with the Z100/Single Bond system (3M). After thermocycling, the samples were immersed in 2% methylene blue dye solution for 4 hours. Half of the samples were embedded in polystyrene resin, and Knoop microhardness was measured. The Kruskal-Wallis test did not reveal statistical differences (p > 0.05) between the polymerization and insertion techniques as to microleakage. Regarding microhardness, the two-way ANOVA and the Tukey test did not reveal statistical differences between the restorative techniques (p > 0.05), but progressive polymerization (G5 and G6) was associated with smaller Knoop microhardness values (p < 0.05): G = 144.11; G2 = 143.89; G3 = 141.14; G4 = 142.79; G5 = 132.15; G6 = 131.67. It was concluded that the evaluated polymerization and insertion techniques did not affect marginal microleakage, but a decrease in microhardness occurred when progressive polymerization was carried out.

  15. Bimorphic polymeric photomechanical actuator

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)

    2006-01-01

    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.

  16. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Baumann, Robert

    2003-08-26

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  17. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Baumann, Robert

    1999-01-01

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  18. Living olefin polymerization processes

    DOEpatents

    Schrock, R.R.; Baumann, R.

    1999-03-30

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  19. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Bauman, Robert

    2006-11-14

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  20. Sustainable polymerizations in recoverable microemulsions.

    PubMed

    Chen, Zhenzhen; Yan, Feng; Qiu, Lihua; Lu, Jianmei; Zhou, Yinxia; Chen, Jiaxin; Tang, Yishan; Texter, John

    2010-03-16

    Free radical and atom-transfer radical polymerizations were conducted in monomer/ionic liquid microemulsions. After the polymerization and isolation of the resultant polymers, the mixture of the catalyst and ionic liquids (surfactant and continuous phase) can be recovered and reused, thereby dramatically improving the environmental sustainability of such chemical processing. The addition of monomer to recovered ionic liquid mixtures regenerates transparent, stable microemulsions that are ready for the next polymerization cycle upon addition of initiator. The method combines the advantages of IL recycling and microemulsion polymerization and minimizes environmental disposable effects from surfactants and heavy metal ions. PMID:20170175

  1. Polymerization Evaluation by Spectrophotometric Measurements.

    ERIC Educational Resources Information Center

    Dunach, Jaume

    1985-01-01

    Discusses polymerization evaluation by spectrophotometric measurements by considering: (1) association degrees and molar absorptivities; (2) association degrees and equilibrium constants; and (3) absorbance and equilibrium constants. (JN)

  2. Enzymatic polymerization of dihydroquercetin using bilirubin oxidase.

    PubMed

    Khlupova, M E; Vasil'eva, I S; Shumakovich, G P; Morozova, O V; Chertkov, V A; Shestakova, A K; Kisin, A V; Yaropolov, A I

    2015-02-01

    Dihydroquercetin (or taxifolin) is one of the most famous flavonoids and is abundant in Siberian larch (Larix sibirica). The oxidative polymerization of dihydroquercetin (DHQ) using bilirubin oxidase as a biocatalyst was investigated and some physicochemical properties of the products were studied. DHQ oligomers (oligoDHQ) with molecular mass of 2800 and polydispersity of 8.6 were obtained by enzymatic reaction under optimal conditions. The oligomers appeared to be soluble in dimethylsulfoxide, dimethylformamide, and methanol. UV-visible spectra of oligoDHQ in dimethylsulfoxide indicated the presence of highly conjugated bonds. The synthesized oligoDHQ was also characterized by FTIR and (1)H and (13)C NMR spectroscopy. Comparison of NMR spectra of oligoDHQ with DHQ monomer and the parent flavonoids revealed irregular structure of a polymer formed via the enzymatic oxidation of DHQ followed by nonselective radical polymerization. As compared with the monomer, oligoDHQ demonstrated higher thermal stability and high antioxidant activity.

  3. Orthogonal gradient networks via post polymerization reaction

    NASA Astrophysics Data System (ADS)

    Chinnayan Kannan, Pandiyarajan; Genzer, Jan

    2015-03-01

    We report a novel synthetic route to generate orthogonal gradient networks through post polymerization reaction using pentaflurophenylmethacrylate (PFPMAc) active ester chemistry. These chemoselective monomers were successfully copolymerized with 5 mole% of the photo (methacryloyloxybenzophenone) and thermal (styrenesulfonylazide) crosslinkers. Subsequently, the copolymers were modified by a series of amines having various alkyl chain lengths. The conversion of post polymerization reaction was monitored using Fourier Transform Infrared Spectroscopy (FT-IR) and noticed that almost all pentaflurophenyl moieties are substituted by amines within in an hour without affecting the crosslinkers. In addition, the incorporation of photo and thermal crosslinkers in the polymer enabled us to achieve stable and covalently surface-bound polymer gradient networks (PGN) in an orthogonal manner, i.e. complete control over the crosslink density of the network in two opposite directions (i.e. heat vs photo). The network properties such as wettability, swelling and tensile modulus of the gradient coatings are studied and revealed in the paper.

  4. All-polymeric control of nanoferronics

    PubMed Central

    Xu, Beibei; Li, Huashan; Hall, Asha; Gao, Wenxiu; Gong, Maogang; Yuan, Guoliang; Grossman, Jeffrey; Ren, Shenqiang

    2015-01-01

    In the search for light and flexible nanoferronics, significant research effort is geared toward discovering the coexisting magnetic and electric orders in crystalline charge-transfer complexes. We report the first example of multiferroicity in centimeter-sized crystalline polymeric charge-transfer superstructures that grow at the liquid-air interface and are controlled by the regioregularity of the polymeric chain. The charge order–driven ferroic mechanism reveals spontaneous and hysteretic polarization and magnetization at the donor-acceptor interface. The charge transfer and ordering in the ferroic assemblies depend critically on the self-organizing and molecular packing of electron donors and acceptors. The invention described here not only represents a new coupling mechanism of magnetic and electric ordering but also creates a new class of emerging all-organic nanoferronics. PMID:26824068

  5. Organometallic Polymeric Conductors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. The highest conductivities reported (approximately 4/Scm) were achieved with polythiophene in a polystyrene host polymer. The best films using a polyamide as base polymer were four orders of magnitude less conductive than the polystyrene films. The authors suggested that this was because polyimides were unable to swell sufficiently for infiltration of monomer as in the polystyrene. It was not clear, however, if the different conductivities obtained were merely the result of differing oxidation conditions. Oxidation time, temperature and oxidant concentration varied widely among the studies.

  6. Amplification of actin polymerization forces

    PubMed Central

    Dmitrieff, Serge; Nédélec, François

    2016-01-01

    The actin cytoskeleton drives many essential processes in vivo, using molecular motors and actin assembly as force generators. We discuss here the propagation of forces caused by actin polymerization, highlighting simple configurations where the force developed by the network can exceed the sum of the polymerization forces from all filaments. PMID:27002174

  7. Coating of plasma polymerized film

    NASA Technical Reports Server (NTRS)

    Morita, S.; Ishibashi, S.

    1980-01-01

    Plasma polymerized thin film coating and the use of other coatings is suggested for passivation film, thin film used for conducting light, and solid body lubrication film of dielectrics of ultra insulators for electrical conduction, electron accessories, etc. The special features of flow discharge development and the polymerized film growth mechanism are discussed.

  8. Gold-promoted styrene polymerization.

    PubMed

    Urbano, Juan; Hormigo, A Jesús; de Frémont, Pierre; Nolan, Steven P; Díaz-Requejo, M Mar; Pérez, Pedro J

    2008-02-14

    Styrene can be polymerized at room temperature in the presence of equimolar mixtures of the gold(III) complexes (NHC)AuBr3 (NHC = N-heterocyclic carbene ligand) and NaBAr'4, in the first example of a gold-induced olefin polymerization reaction.

  9. Three new structures of left-handed RADA helical filaments: structural flexibility of N-terminal domain is critical for recombinase activity.

    PubMed

    Chang, Yu-Wei; Ko, Tzu-Ping; Lee, Chien-Der; Chang, Yuan-Chih; Lin, Kuei-Ann; Chang, Chia-Seng; Wang, Andrew H-J; Wang, Ting-Fang

    2009-01-01

    RecA family proteins, including bacterial RecA, archaeal RadA, and eukaryotic Dmc1 and Rad51, mediate homologous recombination, a reaction essential for maintaining genome integrity. In the presence of ATP, these proteins bind a single-strand DNA to form a right-handed nucleoprotein filament, which catalyzes pairing and strand exchange with a homologous double-stranded DNA (dsDNA), by as-yet unknown mechanisms. We recently reported a structure of RadA left-handed helical filament, and here present three new structures of RadA left-handed helical filaments. Comparative structural analysis between different RadA/Rad51 helical filaments reveals that the N-terminal domain (NTD) of RadA/Rad51, implicated in dsDNA binding, is highly flexible. We identify a hinge region between NTD and polymerization motif as responsible for rigid body movement of NTD. Mutant analysis further confirms that structural flexibility of NTD is essential for RadA's recombinase activity. These results support our previous hypothesis that ATP-dependent axial rotation of RadA nucleoprotein helical filament promotes homologous recombination.

  10. Production of monodisperse, polymeric microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Rhim, Won-Kyu (Inventor); Hyson, Michael T. (Inventor); Chang, Manchium (Inventor)

    1990-01-01

    Very small, individual polymeric microspheres with very precise size and a wide variation in monomer type and properties are produced by deploying a precisely formed liquid monomer droplet, suitably an acrylic compound such as hydroxyethyl methacrylate into a containerless environment. The droplet which assumes a spheroid shape is subjected to polymerizing radiation such as ultraviolet or gamma radiation as it travels through the environment. Polymeric microspheres having precise diameters varying no more than plus or minus 5 percent from an average size are recovered. Many types of fillers including magnetic fillers may be dispersed in the liquid droplet.

  11. High temperature structural, polymeric foams from high internal emulsion polymerization

    SciTech Connect

    Hoisington, M.A.; Duke, J.R.; Apen, P.G.

    1996-02-01

    In 1982, a high internal phase emulsion (HIPE) polymerization process to manufacture microcellular, polymeric foam systems was patented by Unilever. This patent discloses a polymerization process that occurs in a water-in-oil emulsion in which the water represents at least 76% of the emulsion by volume. The oil phase consists of vinyl monomers such as styrene and acrylates that are crosslinked by divinyl monomers during polymerization. After polymerization and drying to remove the water phase, the result is a crosslinked polymer foam with an open cell microstructure that is homogeneous throughout in terms of morphology, density, and mechanical properties. Since 1982, numerous patents have examined various HIPE polymerized foam processing techniques and applications that include absorbents for body fluids, cleaning materials, and ion exchange systems. All the published HIPE polymerized foams have concentrated on materials for low temperature applications. Copolymerization of styrene with maleic anhydride and N-substituted maleimides to produce heat resistant thermoplastics has been studied extensively. These investigations have shown that styrene will free radically copolymerize with N-substituted maleimides to create an alternating thermoplastic copolymer with a Tg of approximately 200{degrees}C. However, there are many difficulties in attempting the maleimide styrene copolymerization in a HIPE such as lower polymerization temperatures, maleimide solubility difficulties in both styrene and water, and difficulty obtaining a stable HIPE with a styrene/maleimide oil phase. This work describes the preparation of copolymer foams from N-ethylmaleimide and Bis(3-ethyl-5-methyl-4-maleimide-phenyl)methane with styrene based monomers and crosslinking agents.

  12. Rubber products prepared from silica modified by radiation-induced admicellar polymerization

    NASA Astrophysics Data System (ADS)

    Pongprayoon, Thirawudh; Yooprasert, Narissara; Suwanmala, Phiriyatorn; Hemvichian, Kasinee

    2012-05-01

    Unmodified silica, silica modified with Si69, silica modified by thermal admicellar polymerization and silica modified by radiation-induced admicellar polymerization were applied as rubber reinforcement. Mechanical properties of these different rubber formulae were subsequently tested. The results revealed that the mechanical properties of rubber reinforced with silica modified by admicellar polymerization were superior to those reinforced with unmodified silica or silica modified with Si69. As for the silica modified by admicellar polymerization, cetyltrimethyl ammonium bromide (CTAB) proved to be the most effective surfactant, compared to dodecyltrimethyl ammonium bromide (DTAB) and tetradecyltrimethyl ammonium bromide (TTAB).

  13. Stimulation of actin polymerization by vacuoles via Cdc42p-dependent signaling.

    PubMed

    Isgandarova, Sabina; Jones, Lynden; Forsberg, Daniel; Loncar, Ana; Dawson, John; Tedrick, Kelly; Eitzen, Gary

    2007-10-19

    We have previously shown that actin ligands inhibit the fusion of yeast vacuoles in vitro, which suggests that actin remodeling is a subreaction of membrane fusion. Here, we demonstrate the presence of vacuole-associated actin polymerization activity, and its dependence on Cdc42p and Vrp1p. Using a sensitive in vitro pyrene-actin polymerization assay, we found that vacuole membranes stimulated polymerization, and this activity increased when vacuoles were preincubated under conditions that support membrane fusion. Vacuoles purified from a VRP1-gene deletion strain showed reduced polymerization activity, which could be recovered when reconstituted with excess Vrp1p. Cdc42p regulates this activity because overexpression of dominant-negative Cdc42p significantly reduced vacuole-associated polymerization activity, while dominant-active Cdc42p increased activity. We also used size-exclusion chromatography to directly examine changes in yeast actin induced by vacuole fusion. This assay confirmed that actin undergoes polymerization in a process requiring ATP. To further confirm the need for actin polymerization during vacuole fusion, an actin polymerization-deficient mutant strain was examined. This strain showed in vivo defects in vacuole fusion, and actin purified from this strain inhibited in vitro vacuole fusion. Affinity isolation of vacuole-associated actin and in vitro binding assays revealed a polymerization-dependent interaction between actin and the SNARE Ykt6p. Our results suggest that actin polymerization is a subreaction of vacuole membrane fusion governed by Cdc42p signal transduction.

  14. Kinetics of silica polymerization

    SciTech Connect

    Weres, O.; Yee, A.; Tsao, L.

    1980-05-01

    The polymerization of silicic acid in geothermal brine-like aqueous solutions to produce amorphous silica in colloidal form has been studied experimentally and theoretically. A large amount of high quality experimental data has been generated over the temperature rang 23 to 100{sup 0}C. Wide ranges of dissolved silica concentration, pH, and sodium chloride concentration were covered. The catalytic effects of fluoride and the reaction inhibiting effects of aluminum and boron were studied also. Two basic processes have been separately studied: the formation of new colloidal particles by the homogeneous nucleation process and the deposition of dissolved silica on pre-existing colloidal particles. A rigorous theory of the formation of colloidal particles of amorphous silica by homogeneous nucleation was developed. This theory employs the Lothe-Pound formalism, and is embodied in the computer code SILNUC which quantitatively models the homogeneous nucleation and growth of colloidal silica particles in more than enough detail for practical application. The theory and code were extensively used in planning the experimental work and analyzing the data produced. The code is now complete and running in its final form. It is capable of reproducing most of the experimental results to within experimental error. It is also capable of extrapolation to experimentally inaccessible conditions, i.e., high temperatures, rapidly varying temperature and pH, etc.

  15. Some novel polymeric nanocomposites.

    PubMed

    Mark, James E

    2006-12-01

    The nanocomposites described here all involve polymers and were chosen because they are already of commercial importance, show some promise of becoming so, or simply seem interesting. The field is so broad that some topics are mentioned only very briefly, and there is considerable emphasis on the polysiloxane nanocomposites studied by the author's research group. Some are typically prepared using techniques very similar to those used in the new sol-gel approach to ceramics, with either the polymer or the ceramic being the continuous phase. Other dispersed phases include particles responsive to an applied magnetic field, intercalated or exfoliated platelets obtained from clays, mica, or graphite, silsesquioxane nanocages, nanotubes, dual fillers, porous particles, spherical and ellipsoidal polymeric particles, and nanocatalysts. Also described are some typical studies involving theory or simulations on such particle reinforcement. Experiments on ceramics modified by dispersed polymers are equally interesting, but there is less relevant theory. Many of the fields mentioned have become so vast that the approach taken here is simply to describe general approaches and characteristics of the composites, list some specific examples, and provide leading references (with some emphasis on studies that are relatively recent or in the nature of reviews).

  16. Polymerization of anionic wormlike micelles.

    PubMed

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles.

  17. Polymerization of anionic wormlike micelles.

    PubMed

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles. PMID:16430253

  18. Mutational analysis of Brh2 reveals requirements for compensating mediator functions

    PubMed Central

    Kojic, Milorad; Zhou, Qingwen; Fan, Jie; Holloman, William K.

    2010-01-01

    SUMMARY Brh2, a member of the BRCA2 family of proteins, governs homologous recombination in the fungus Ustilago maydis through interaction with Rad51. Brh2 serves at an early step in homologous recombination to mediate Rad51 nucleoprotein filament formation and also has the capability to function at a later step in recombination through its inherent DNA annealing activity. Rec2, a Rad51 paralog, and Rad52, are additional components of the homologous recombination system, but the absence of either is less critical than Brh2 for operational activity. Here we tested a variety of mutant forms of Brh2 for activity in recombinational repair as measured by DNA repair proficiency. We found that a mutant of Brh2 deleted of the non-canonical DNA-binding domain within the N-terminal region is dependent upon the presence of Rad52 for DNA-repair activity. We also determined that a motif first identified in human BRCA2 as important in binding DMC1 also contributes to DNA repair proficiency and cooperates with the BRC element in Rad51 binding. PMID:21166902

  19. Polymeric materials in Space

    NASA Astrophysics Data System (ADS)

    Skurat, Vladimir

    Paper of short review type. It is the continuation of and addition to previous review papers "V. E. Skurat. Polymers in Space. In: Encyclopedia of aerospace engineering, vol. 4, Wiley and sons, 2010; Ibid., 2012 (on line)". Following topics are considered: (1) Destruction of polymers by solar radiation with various wavelengths in different spectral regions (visible-UV, vacuum UV (VUV), deep UV, soft and hard X-rays) are discussed. In difference with common polymer photochemistry induced by UV radiation, directions of various routs of polymer phototransformations and their relative yields are greatly dependent on wavelength of light (photon energy) during illuminations in VUV, deep UV and X-ray regions. During last twenty years, intensive spacecraft investigations of solar spectrum show great periodic and spontaneous variations of radiation intensities in short-wavelengths regions - up to one - two decimal orders of magnitude for X-rays. As a result, during solar flares the absorbed dose on the polymer surfaces from X-rays can be compared with absorbed dose from VUV radiation. (2) Some new approaches to predictions of reaction efficiencies of fast orbital atomic oxygen in their interaction with polymeric materials are considered. (3) Some aspects of photocatalitic destruction of polymers in vacuum conditions by full-spectrum solar radiation are discussed. This process can take place in enamels containing semiconducting particles (TiO2, ZnO) as pigments. (4) Contamination of spacecraft surfaces from intrinsic outer atmosphere play important role not only from the point of view of deterioration of optical and thermophysical properties. Layers of SiO2 contaminations with nanometer thicknesses can greatly diminish mass losses from perfluorinated polymers under VUV irradiation.

  20. Polymeric materials for neovascularization

    NASA Astrophysics Data System (ADS)

    DeVolder, Ross John

    Revascularization therapies have emerged as a promising strategy to treat various acute and chronic wounds, cardiovascular diseases, and tissue defects. It is common to either administer proangiogenic growth factors, such as vascular endothelial growth factor (VEGF), or transplant cells that endogenously express multiple proangiogenic factors. Additionally, these strategies utilize a wide variety of polymeric systems, including hydrogels and biodegradable plastics, to deliver proangiogenic factors in a sophisticated manner to maintain a sustained proangiogenic environment. Despite some impressive results in rebuilding vascular networks, it is still a challenging task to engineer mature and functional neovessels in target tissues, because of the increasing complexities involved with neovascularization applications. To resolve these challenges, this work aims to design a wide variety of proangiogenic biomaterial systems with tunable properties used for neovascularization therapies. This thesis describes the design of several biomaterial systems used for the delivery of proangiogenic factors in neovascularization therapies, including: an electrospun/electrosprayed biodegradable plastic patch used for directional blood vessel growth (Chapter 2), an alginate-g-pyrrole hydrogel system that biochemically stimulates cellular endogenous proangiogenic factor expression (Chapter 3), an enzyme-catalyzed alginate-g-pyrrole hydrogel system for VEGF delivery (Chapter 4), an enzyme-activated alginate-g-pyrrole hydrogel system with systematically controllable electrical and mechanical properties (Chapter 5), and an alginate-g-pyrrole hydrogel that enables the decoupled control of electrical conductivity and mechanical rigidity and is use to electrically stimulate cellular endogenous proangiogenic factor expression (Chapter 6). Overall, the biomaterial systems developed in this thesis will be broadly useful for improving the quality of a wide array of molecular and cellular based

  1. Mechanochemical solid-state polymerization. VIII. Novel composite polymeric prodrugs prepared by mechanochemical polymerization in the presence of pharmaceutical aids.

    PubMed

    Kondo, S; Hosaka, S; Kuzuya, M

    1998-04-01

    We carried out the mechanochemical polymerization of methacryloyl derivatives of acetoaminophen and 5-fluorouracil in the presence of lactose. The reaction proceeded readily and the polymeric prodrugs were quantitatively produced. This method produces powdered polymeric prodrugs in which fine particles of lactose are homogeneously dispersed, since the reaction proceeds quantitatively through a totally dry process. It is difficult to prepare such a powdered polymeric prodrug by conventional solution polymerization. The rate of drug release of polymeric prodrugs increases with increasing content of lactose, as is shown to be true of the specific surface of polymeric prodrugs. These results suggest that lactose is homogeneously dispersed in powdered polymeric prodrugs. The present method seems applicable to a wide variety of pharmaceutical aids. If one takes the physiochemical property of pharmaceutical aids into consideration, novel polymeric prodrugs with a variety of drug release rates can be synthesized simultaneously with mixing. PMID:9579043

  2. Stereospecific olefin polymerization catalysts

    DOEpatents

    Bercaw, John E.; Herzog, Timothy A.

    1998-01-01

    A metallocene catalyst system for the polymerization of .alpha.-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula ##STR1## wherein: R.sup.1, R.sup.2, and R.sup.3 are independently selected from the group consisting of hydrogen, C.sub.1 to C.sub.10 alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C.sub.1 to C.sub.10 alkyls as a substituent, C.sub.6 to C.sub.15 aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R.sup.8).sub.3 where R.sup.8 is selected from the group consisting of C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; R.sup.4 and R.sup.6 are substituents both having van der Waals radii larger than the van der Waals radii of groups R.sup.1 and R.sup.3 ; R.sup.5 is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E.sup.1, E.sup.2 are independently selected from the group consisting of Si(R.sup.9).sub.2, Si(R.sup.9).sub.2 --Si(R.sup.9).sub.2, Ge(R.sup.9).sub.2, Sn(R.sup.9).sub.2, C(R.sup.9).sub.2, C(R.sup.9).sub.2 --C(R.sup.9).sub.2, where R.sup.9 is C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; and the ligand may have C.sub.S or C.sub.1 -symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from .alpha.-olefin monomers.

  3. Stereospecific olefin polymerization catalysts

    DOEpatents

    Bercaw, J.E.; Herzog, T.A.

    1998-01-13

    A metallocene catalyst system is described for the polymerization of {alpha}-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula shown wherein: R{sup 1}, R{sup 2}, and R{sup 3} are independently selected from the group consisting of hydrogen, C{sub 1} to C{sub 10} alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C{sub 1} to C{sub 10} alkyls as a substituent, C{sub 6} to C{sub 15} aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R{sup 8}){sub 3} where R{sup 8} is selected from the group consisting of C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; R{sup 4} and R{sup 6} are substituents both having van der Waals radii larger than the van der Waals radii of groups R{sup 1} and R{sup 3}; R{sup 5} is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E{sup 1}, E{sup 2} are independently selected from the group consisting of Si(R{sup 9}){sub 2}, Si(R{sup 9}){sub 2}--Si(R{sup 9}){sub 2}, Ge(R{sup 9}){sub 2}, Sn(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}--C(R{sup 9}){sub 2}, where R{sup 9} is C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; and the ligand may have C{sub S} or C{sub 1}-symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from {alpha}-olefin monomers.

  4. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    NASA Astrophysics Data System (ADS)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  5. Incorporation of small molecular weight active agents into polymeric components.

    PubMed

    Iconomopoulou, Sofia M; Kallitsis, Joannis K; Voyiatzis, George A

    2008-01-01

    The incorporation of small molecular weight active agents into polymeric matrixes bearing controlled release characteristics represents an interesting strategy with numerous useful applications. Antimicrobials, biocides, fungicides or drugs, encapsulated into erodible or non-erodible polymeric micro-spheres, micro-capsules and micro-shells or/and embedded into continuous polymeric matrixes, are controlled released either by particular degradation routes or/and by specific stimuli. Cross-linking, curing or micro-porosity generating agents acting during polymerization impart additional controlled encapsulation characteristics to the active substances. Release modulating agents, like retardants or carrier materials used as vehicles are often encapsulated into microspheres or dispersed within polymeric compositions for the controlled introduction of an active agent into a liquid-based medium. The aim of this review is to reveal relevant strategies reported in recent patents on the encapsulation or incorporation of low molecular weight active agents into the matrix of polymers bearing controlled release characteristics. The inventions described implicate the formation of both erodible and non erodible polymer microparticles that contain active ingredients. Modification of polymer matrix and inorganic porous carriers represent pertinent major strategies that have been also developed and patented.

  6. Targeting intracellular compartments by magnetic polymeric nanoparticles.

    PubMed

    Kocbek, Petra; Kralj, Slavko; Kreft, Mateja Erdani; Kristl, Julijana

    2013-09-27

    Superparamagnetic iron oxide nanoparticles (SPIONs) show a great promise for a wide specter of bioapplications, due to their characteristic magnetic properties exhibited only in the presence of magnetic field. Their advantages in the fields of magnetic drug targeting and imaging are well established and their safety is assumed, since iron oxide nanoparticles have already been approved for in vivo application, however, according to many literature reports the bare metal oxide nanoparticles may cause toxic effects on treated cells. Therefore, it is reasonable to prevent the direct interactions between metal oxide core and surrounding environment. In the current research ricinoleic acid coated maghemite nanoparticles were successfully synthesized, characterized and incorporated in the polymeric matrix, resulting in nanosized magnetic polymeric particles. The carrier system was shown to exhibit superparamagnetic properties and was therefore responsive towards external magnetic field. Bioevaluation using T47-D breast cancer cells confirmed internalization of magnetic polymeric nanoparticles (MNPs) and their intracellular localization in various subcellular compartments, depending on presence/absence of external magnetic field. However, the number of internalized MNPs observed by fluorescent and transmission electron microscopy was relatively low, making such way of targeting effective only for delivery of highly potent drugs. The scanning electron microscopy of treated cells revealed that MNPs influenced the cell adhesion, when external magnetic field was applied, and that treatment resulted in damaged apical plasma membrane right after exposure to the magnetic carrier. On the other hand, MNPs showed only reversibly reduced cellular metabolic activity in concentrations up to 200 μg/ml and, in the tested concentration the cell cycle distribution was within the normal range, indicating safety of the established magnetic carrier system for the treated cells.

  7. On-demand photoinitiated polymerization

    SciTech Connect

    Boydston, Andrew J; Grubbs, Robert H; Daeffler, Chris; Momcilovic, Nebojsa

    2013-12-10

    Compositions and methods for adjustable lenses are provided. In some embodiments, the lenses contain a lens matrix material, a masking compound, and a prepolymer. The lens matrix material provides structure to the lens. The masking compound is capable of blocking polymerization or crosslinking of the prepolymer, until photoisomerization of the compound is triggered, and the compound is converted from a first isomer to a second isomer having a different absorption profile. The prepolymer is a composition that can undergo a polymerization or crosslinking reaction upon photoinitiation to alter one or more of the properties of the lenses.

  8. On-demand photoinitiated polymerization

    SciTech Connect

    Boydston, Andrew J; Grubbs, Robert H; Daeffler, Chris; Momcilovic, Nebojsa

    2015-01-13

    Compositions and methods for adjustable lenses are provided. In some embodiments, the lenses contain a lens matrix material, a masking compound, and a prepolymer. The lens matrix material provides structure to the lens. The masking compound is capable of blocking polymerization or crosslinking of the prepolymer, until photoisomerization of the compound is triggered, and the compound is converted from a first isomer to a second isomer having a different absorption profile. The prepolymer is a composition that can undergo a polymerization or crosslinking reaction upon photoinitiation to alter one or more of the properties of the lenses.

  9. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycely O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers. acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors, in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors. weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 1000 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  10. Novel polymeric materials from triglycerides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triglycerides are good platforms for new polymeric products that can substitute for petroleum-based materials. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a number of reactions in efforts to produce a wide range of value-added products. In this ...

  11. Supramolecular polymerization: Living it up

    NASA Astrophysics Data System (ADS)

    Würthner, Frank

    2014-03-01

    Protein fibril formation is involved in many human diseases and thus has been mechanistically elucidated in the context of understanding -- and in turn treating -- them. This biological phenomenon has now also inspired the design of a supramolecular system that undergoes living polymerization.

  12. The absorption of polymeric composites

    NASA Astrophysics Data System (ADS)

    Řídký, R.; Popovič, M.; Rolc, S.; Drdlová, M.; Krátký, J.

    2016-06-01

    An absorption capacity of soft, viscoelastic materials at high strain rates is important for wide range of practical applications. Nowadays there are many variants of numerical models suitable for this kind of analysis. The main difficulty is in selection of the most realistic numerical model and a correct setup of many unknown material constants. Cooperation between theoretical simulations and real testing is next crucial point in the investigation process. Standard open source material database offer material properties valid for strain rates less than 250 s-1. There are experiments suitable for analysis of material properties with strain rates close to 2000 s-1. The high strain-rate characteristics of a specific porous blast energy absorbing material measured by modified Split Hopkinson Pressure Bar apparatus is presented in this study. Testing these low impedance materials using a metallic split Hopkinson pressure bar setup results in poor signal to noise ratios due to impedance mismatching. These difficulties are overcome by using polymeric Hopkinson bars. Conventional Hopkinson bar analysis cannot be used on the polymeric bars due to the viscoelastic nature of the bar material. One of the possible solution leads to complex and frequency depended Young modulus of testing bars material. This testing technique was applied to materials composed of porous glass/ceramic filler and polymeric binder, with density of 125 - 300 kg/m3 and particle size in range of 50 µm - 2 mm. The achieved material model was verified in practical application of sandwich structure includes polymeric composites under a blast test.

  13. The Viscosity of Polymeric Fluids.

    ERIC Educational Resources Information Center

    Perrin, J. E.; Martin, G. C.

    1983-01-01

    To illustrate the behavior of polymeric fluids and in what respects they differ from Newtonian liquids, an experiment was developed to account for the shear-rate dependence of non-Newtonian fluids. Background information, procedures, and results are provided for the experiment. Useful in transport processes, fluid mechanics, or physical chemistry…

  14. Buckling of polymerized monomolecular films

    NASA Astrophysics Data System (ADS)

    Bourdieu, L.; Daillant, J.; Chatenay, D.; Braslau, A.; Colson, D.

    1994-03-01

    The buckling of a two-dimensional polymer network at the air-water interface has been evidenced by grazing incidence x-ray scattering. A comprehensive description of the inhomogeneous octadecyltrichlorosilane polymerized film was obtained by atomic force microscopy and x-ray scattering measurements. The buckling occurs with a characteristic wavelength ~=10 μm.

  15. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, Thomas J.; Ijadi-Maghsoodi, Sina; Pang, Yi

    1992-05-19

    A polymeric material which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl.sub.5 or W(CO).sub.6 /hv.

  16. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, Thomas J.; Ijadi-Maghsoodi, Sina; Pang, Yi

    1993-10-19

    A polymeric material which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl.sub.5 or W(CO).sub.6 /hv.

  17. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, T.J.; Ijadi-Maghsooodi, S; Yi Pang.

    1993-10-19

    A polymeric material is described which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl[sub 5] or W(CO)[sub 6].

  18. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, T.J.; Ijadi-Maghsoodi, S.; Pang, Y.

    1992-05-19

    A polymeric material which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl[sub 5] or W(CO)[sub 6]/hv.

  19. Glycine Polymerization on Oxide Minerals

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2016-07-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  20. Polymeric cationic substituted acrylamide surfactants

    SciTech Connect

    Nieh, E.C.Y.

    1983-11-15

    A new composition of matter comprises a copolymer of a surface active quaternary ammonium monomer salt and from 50 to 97% by wt of acrylamide. The new copolymers can have molecular weights substantially greater than 10,000 and still remain water soluble and surface active. Copolymers are prepared by polymerization techniques known in the art. The quaternary ammonium monomer is dispersed under inert atmosphere in aqueous solution which may additionally contain dissolved therein a low molecular weight alcohol such as ethanol, isopropanol, and the like. Acidic polymerization initiator such as the azo initiators, organic peroxides, or redox initiators such as the sulfite- persulfate system is then added in an amount calculated to yield a polymer product of desired molecular weight. (14 claims.

  1. Metal containing polymeric functional microspheres

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)

    1979-01-01

    Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered.

  2. Renewable and functional wood materials by grafting polymerization within cell walls.

    PubMed

    Cabane, Etienne; Keplinger, Tobias; Merk, Vivian; Hass, Philipp; Burgert, Ingo

    2014-04-01

    A "grafting-from" polymerization approach within and at the complex and heterogeneous macromolecular assembly of wood cell walls is shown. The approach allows for the implementation of novel functionalities in renewable and functional wood-based materials. The native wood structure is retained and used as a hierarchical multiscale framework for a modular two-step polymerization process. The versatility and potential of the approach is shown by a polymerization of either hydrophobic or hydrophilic and pH-responsive monomers in the wood structure. Characterization of the modified wood reveals the presence of polymer in the cell wall, and the new properties of these wood materials are discussed.

  3. Radiation-hardened polymeric films

    DOEpatents

    Arnold, C. Jr.; Hughes, R.C.; Kepler, R.G.; Kurtz, S.R.

    1984-07-16

    The radiation-induced conductivity of polymeric dielectrics with low electronic mobility is reduced by doping with electron donor or electron acceptor compounds at a level of 10/sup 15/ to 10/sup 21/ molecules of dopant/cm/sup 3/. Polyesters, polyolefins, perfluoropolyolefins, vinyl polymers, vinylidene polymers, polycarbonates, polysulfones and polyimides can benefit from such a treatment. Usable dopants include 2,4,7-trinitro-9-fluorenone, tetracyanethylene, 7,7,8,8-tetracyanoquinodimethane, m-dinitrobenzene, 2-isopropylcarbazole, and triphenylamine.

  4. Radiation-hardened polymeric films

    DOEpatents

    Arnold, Jr., Charles; Hughes, Robert C.; Kepler, R. Glen; Kurtz, Steven R.

    1986-01-01

    The radiation-induced conductivity of polymeric dielectrics with low electronic mobility is reduced by doping with electron donor or electron acceptor compounds at a level of 10.sup.15 to 10.sup.21 molecules of dopant/cm.sup.3. Polyesters, polyolefins, perfluoropolyolefins, vinyl polymers, vinylidene polymers, polycarbonates, polysulfones and polyimides can benefit from such a treatment. Usable dopants include 2,4,7-trinitro-9-fluorenone, tetracyanethylene, 7,7,8,8-tetracyanoquinodimethane, m-dinitrobenzene, 2-isopropylcarbazole, and triphenylamine.

  5. Two Photon Polymerization of Ormosils

    NASA Astrophysics Data System (ADS)

    Matei, A.; Zamfirescu, M.; Jipa, F.; Luculescu, C.; Dinescu, M.; Buruiana, E. C.; Buruiana, T.; Sima, L. E.; Petrescu, S. M.

    2010-10-01

    In this work, 3D structures of hybrid polymers—ORMOSILS (organically modified silicates) were produced via Two Photon Polymerization (2PP) of hybrid methacrylates based on silane derivates. Synthetic routes have been used to obtain series of hybrid monomers, their structure and purity being checked by NMR Spectroscopy and Fourier Transform Infrared Spectroscopy. Two photon polymerization method (a relatively new technology which allows fast micro and nano processing of three-dimensional structures with application in medical devices, tissue scaffolds, photonic crystals etc) was used for monomers processing. As laser a Ti: Sapphire laser was used, with 200 fs pulse duration and 2 kHz repetition rate, emitting at 775 nm. A parametric study on the influence of the processing parameters (laser fluence, laser scanning velocity, photo initiator) on the written structures was carried out. The as prepared polymeric scaffolds were tested in mesenchymal stem cells and fibroblasts cell cultures, with the aim of further obtaining bone and dermal grafts. Cells morphology, proliferation, adhesion and alignment were analyzed for different experimental conditions.

  6. Lithographically defined shape-specific polymeric particulates for nanomedicine application

    NASA Astrophysics Data System (ADS)

    Tao, Li

    Size and shape are fundamental properties of micro/nano particles that are critically important for nanomedicine applications. Extensive studies have revealed the effect particle size has on spherical particles with respect to biological behaviors such as blood circulation time or targeting efficacy to specific receptors on the cell. In contrast, the importance of particle shape has been less understood. The major contributing factor is that conventional bottom-up fabrication methods are limited in their ability to control the shape of polymeric particles precisely. This dissertation will mainly focus on the development of top-down platforms to fabricate shape-specific polymeric particles. Shape-specific polymeric particles incorporated with fluorescent or magnetic agents were demonstrated with high uniformity. Microfluidic testing platform was built to verify the shape effect on the flow behavior of fabricated particles. The fabrication platform developed here opened up the opportunity to perform fundamental study on how shape can alter the biological behavior of polymeric nanomedicine, thus leading to a more rational design of nanomedicine with enhanced efficacy but reduced toxicity.

  7. Kinetic polymerization behavior of fluorinated monomers for dental use.

    PubMed

    Kadoma, Yoshinori

    2010-10-01

    The kinetic polymerization behavior of 2,2,2-trifluoroethyl methacrylate (TFEMA), 1,1,1,3,3,3-hexafluoroisopropyl methacrylate (HFIPMA), 2,2,2-trifluoroethyl acrylate (TFEA) and 1,1,1,3,3,3-hexafluoroisopropyl acrylate (HFIPA) was determined by isothermal differential scanning calorimetry (DSC) and high-performance liquid chromatography (HPLC) in order to improve the properties of fluorinated powder-liquid adhesive resins. Conversion and heat of polymerization were calculated, and the solubility of the homopolymers in common solvents was examined. Comparison of their polymerization reactivity with that of MMA revealed that the overall rate of polymerization initiated by benzoyl peroxide (BPO) decreased in the order TFEA>MMA>TFEMA>HFIPA>HFIPMA. Based on the retention time of the monomer determined by HPLC, the hydrophobicity of the monomers was found to increase in the order MMA

  8. Visualization and characterization of interfacial polymerization layer formation.

    PubMed

    Zhang, Yali; Benes, Nieck E; Lammertink, Rob G H

    2015-01-21

    We present a microfluidic platform to visualize the formation of free-standing films by interfacial polymerization. A microfluidic device is fabricated, with an array of micropillars to stabilize an aqueous-organic interface that allows a direct observation of the films formation process via optical microscopy. Three different amines are selected to react with trimesoyl chloride: piperazine, JEFFAMINE(®)D-230, and an ammonium functionalized polyhedral oligomeric silsesquioxane. Tracking the formation of the free-standing films in time reveals strong effects of the characteristics of the amine precursor on the morphological evolution of the films. Piperazine exhibits a rapid reaction with trimesoyl chloride, forming a film up to 20 μm thick within half a minute. JEFFAMINE(®)D-230 displays much slower film formation kinetics. The location of the polymerization reaction was initially in the aqueous phase and then shifted into the organic phase. Our in situ real-time observations provide information on the kinetics and the changing location of the polymerization. This provides insights with important implications for fine-tuning of interfacial polymerizations for various applications.

  9. Ultrasound-Mediated Polymeric Micelle Drug Delivery.

    PubMed

    Xia, Hesheng; Zhao, Yue; Tong, Rui

    2016-01-01

    The synthesis of multi-functional nanocarriers and the design of new stimuli-responsive means are equally important for drug delivery. Ultrasound can be used as a remote, non-invasive and controllable trigger for the stimuli-responsive release of nanocarriers. Polymeric micelles are one kind of potential drug nanocarrier. By combining ultrasound and polymeric micelles, a new modality (i.e., ultrasound-mediated polymeric micelle drug delivery) has been developed and has recently received increasing attention. A major challenge remaining in developing ultrasound-responsive polymeric micelles is the improvement of the sensitivity or responsiveness of polymeric micelles to ultrasound. This chapter reviews the recent advance in this field. In order to understand the interaction mechanism between ultrasound stimulus and polymeric micelles, ultrasound effects, such as thermal effect, cavitation effect, ultrasound sonochemistry (including ultrasonic degradation, ultrasound-initiated polymerization, ultrasonic in-situ polymerization and ultrasound site-specific degradation), as well as basic micellar knowledge are introduced. Ultrasound-mediated polymeric micelle drug delivery has been classified into two main streams based on the different interaction mechanism between ultrasound and polymeric micelles; one is based on the ultrasound-induced physical disruption of the micelle and reversible release of payload. The other is based on micellar ultrasound mechanochemical disruption and irreversible release of payload.

  10. Structural insights into de novo actin polymerization

    PubMed Central

    Dominguez, Roberto

    2010-01-01

    Summary Many cellular functions depend on rapid and localized actin polymerization/depolymerization. Yet, the de novo polymerization of actin in cells is kinetically unfavorable because of the instability of polymerization intermediates (small actin oligomers) and the actions of actin monomer binding proteins. Cells use filament nucleation and elongation factors to initiate and sustain polymerization. Structural biology is beginning to shed light on the diverse mechanisms by which these unrelated proteins initiate polymerization, undergo regulation, and mediate the transition of monomeric actin onto actin filaments. A prominent role is played by the W domain, which in some of these proteins occurs in tandem repeats that recruit multiple actin subunits. Pro-rich regions are also abundant and mediate the binding of profilin-actin complexes, which are the main source of polymerization competent actin in cells. Filament nucleation and elongation factors frequently interact with Rho family GTPases, which relay signals from membrane receptors to regulate actin cytoskeleton remodeling. PMID:20096561

  11. Rheology of a Polymeric Bicontinuous Microemulsion

    NASA Astrophysics Data System (ADS)

    Krishnan, Kasiraman; Lodge, Timothy P.; Bates, Frank S.; Burghardt, Wesley R.

    2002-03-01

    We have investigated the rheological properties of a model polymeric bicontinuous microemulsion. The microemulsion consists of a ternary blend of poly(ethyl ethylene) (PEE), poly(dimethyl siloxane) (PDMS) and the diblock copolymer PEE-PDMS. Steady shear measurements reveal four regimes as a function of shear rate. Newtonian behavior is observed at low shear rates (regime I), whereas shear thinning occurs in regime II. The striking feature is a stress plateau in regime III, independent of shear rate; the stress increases with shear rate again in regime IV. The morphologies in different regimes were characterized by neutron scattering, x-ray scattering, light scattering and microscopy, and these provide evidence for the occurrence of flow-induced phase separation. Transient rheological measurements reveal a behavior similar to worm-like micelles. Transient measurements for step changes in shear rate between different regimes confirm the proposed morphologies. Equilibrium rheological measurements show similarities with diblock copolymer lamellar phases just above the order-disorder transition.

  12. Ionene modified small polymeric beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1977-01-01

    Linear ionene polyquaternary cationic polymeric segments are bonded by means of the Menshutkin reaction (quaternization) to biocompatible, extremely small, porous particles containing halide or tertiary amine sites which are centers for attachment of the segments. The modified beads in the form of emulsions or suspensions offer a large, positively-charged surface area capable of irreversibly binding polyanions such as heparin, DNA, RNA or bile acids to remove them from solution or of reversibly binding monoanions such as penicillin, pesticides, sex attractants and the like for slow release from the suspension.

  13. Marketing NASA Langley Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Flynn, Diane M.

    1995-01-01

    A marketing tool was created to expand the knowledge of LaRC developed polymeric materials, in order to facilitate the technology transfer process and increase technology commercialization awareness among a non-technical audience. The created brochure features four materials, LaRC-CP, LaRC-RP46, LaRC-SI, and LaRC-IA, and highlights their competitive strengths in potential commercial applications. Excellent opportunities exist in the $40 million per year microelectronics market and the $6 billion adhesives market. It is hoped that the created brochure will generate inquiries regarding the use of the above materials in markets such as these.

  14. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  15. Computational studies of polymeric systems

    NASA Astrophysics Data System (ADS)

    Carrillo, Jan-Michael Y.

    Polymeric systems involving polyelectrolytes in surfaces and interfaces, semiflexible polyelectrolytes and biopolymers in solution, complex polymeric systems that had applications in nanotechnology were modeled using coarse grained molecular dynamics simulation. In the area of polyelectrolytes in surfaces and interfaces, the phenomena of polyelectrolyte adsorption at oppositely charge surface was investigated. Simulations found that short range van der Waals interaction was a major factor in determining morphology and thickness of the adsorbed layer. Hydrophobic polyelectrolytes adsorbed in hydrophobic surfaces tend to be the most effective in forming multi-layers because short range attraction enhances the adsorption process. Adsorbed polyelectrolytes could move freely along the surface which was in contrast to polyelectrolyte brushes. The morphologies of hydrophobic polyelectrolyte brushes were investigated and simulations found that brushes had different morphologies depending on the strength of the short range monomer-monomer attraction, electrostatic interaction and counterion condensation. Planar polyelectrolyte brushes formed: (1) vertically oriented cylindrical aggregates, (2) maze-like aggregate structures, or (3) thin polymeric layer covering a substrate. While, the spherical polyelectrolyte brushes could be in any of the previous morphologies or be in a micelle-like conformation with a dense core and charged corona. In the area of biopolymers and semiflexible polyelectrolytes in solution, simulations demonstrated that the bending rigidity of these polymers was scale-dependent. The bond-bond correlation function describing a chain's orientational memory could be approximated by a sum of two exponential functions manifesting the existence of the two characteristic length scales. The existence of the two length scales challenged the current practice of describing chain stretching experiments using a single length scale. In the field of nanotechnology

  16. Multicomponent diffusion in polymeric liquids.

    PubMed Central

    Curtiss, C F; Bird, R B

    1996-01-01

    It is shown how the phase-space kinetic theory of polymeric liquid mixtures leads to a set of extended Maxwell-Stefan equations describing multicomponent diffusion. This expression reduces to standard results for dilute solutions and for undiluted polymers. The polymer molecules are modeled as flexible bead-spring structures. To obtain the Maxwell-Stefan equations, the usual expression for the hydrodynamic drag force on a bead, used in previous kinetic theories, must be replaced by a new expression that accounts explicitly for bead-bead interactions between different molecules. PMID:11607693

  17. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  18. Ketoprofen as a photoinitiator for anionic polymerization.

    PubMed

    Wang, Yu-Hsuan; Wan, Peter

    2015-06-01

    A new photoinitiating system for anionic polymerization of acrylates based on the efficient photodecarboxylation of Ketoprofen (1) and the related derivatives 3 and 4 that generate the corresponding carbanion intermediates is presented. Carbanion intermediates are confirmed by deuterium incorporation in the trapped Michael adducts and by spectroscopic detection using laser flash photolysis (LFP). This novel anionic initiating system features excitation in the near UV and visible regions, potential characteristics of photocontrolled living polymerization, and metal-free photoinitiators generated from photoexcitation, different from typical anionic polymerization where the polymerizations are initiated by heat and strong base containing alkali metals.

  19. Effect of Cross-Linking on the Structure and Growth of Polymer Films Prepared by Interfacial Polymerization.

    PubMed

    Berezkin, Anatoly V; Kudryavtsev, Yaroslav V

    2015-11-10

    Interfacial polymerization of tri- and bifunctional monomers (A3B2 polymerization) is investigated by dissipative particle dynamics to reveal an effect of cross-linking on the reaction kinetics and structure of the growing polymer film. Regardless of the comonomer reactivity and miscibility, the kinetics in an initially bilayer melt passes from the reaction to diffusion control. Within the crossover period, branched macromolecules undergo gelation, which drastically changes the scenario of the polymerization process. Comparison with the previously studied linear interfacial polymerization (Berezkin, A. V.; Kudryavtsev, Y. V. Linear Interfacial Polymerization: Theory and Simulations with Dissipative Particle Dynamics J. Chem. Phys. 2014, 141, 194906) shows similar conversion rates but very different product characteristics. Cross-linked polymer films are markedly heterogeneous in density, their average polymerization degree grows with the comonomer miscibility, and end groups are mostly trapped deeply in the film core. Products of linear interfacial polymerization demonstrate opposite trends as they are spontaneously homogenized by a convective flow of macromolecules expelled from the reactive zone to the film periphery, which we call the reactive extrusion effect and which is hampered in branched polymerization. Influence of the comonomer architecture on the polymer film characteristics could be used in various practical applications of interfacial polymerization, such as fabrication of membranes, micro- and nanocapsules and 3D printing. PMID:26471239

  20. Effect of Cross-Linking on the Structure and Growth of Polymer Films Prepared by Interfacial Polymerization.

    PubMed

    Berezkin, Anatoly V; Kudryavtsev, Yaroslav V

    2015-11-10

    Interfacial polymerization of tri- and bifunctional monomers (A3B2 polymerization) is investigated by dissipative particle dynamics to reveal an effect of cross-linking on the reaction kinetics and structure of the growing polymer film. Regardless of the comonomer reactivity and miscibility, the kinetics in an initially bilayer melt passes from the reaction to diffusion control. Within the crossover period, branched macromolecules undergo gelation, which drastically changes the scenario of the polymerization process. Comparison with the previously studied linear interfacial polymerization (Berezkin, A. V.; Kudryavtsev, Y. V. Linear Interfacial Polymerization: Theory and Simulations with Dissipative Particle Dynamics J. Chem. Phys. 2014, 141, 194906) shows similar conversion rates but very different product characteristics. Cross-linked polymer films are markedly heterogeneous in density, their average polymerization degree grows with the comonomer miscibility, and end groups are mostly trapped deeply in the film core. Products of linear interfacial polymerization demonstrate opposite trends as they are spontaneously homogenized by a convective flow of macromolecules expelled from the reactive zone to the film periphery, which we call the reactive extrusion effect and which is hampered in branched polymerization. Influence of the comonomer architecture on the polymer film characteristics could be used in various practical applications of interfacial polymerization, such as fabrication of membranes, micro- and nanocapsules and 3D printing.

  1. Effects of some polymeric additives on the cocrystallization of caffeine

    NASA Astrophysics Data System (ADS)

    Chung, Jihae; Kim, Il Won

    2011-11-01

    Effects of polymeric additives on the model cocrystallization were examined. The model cocrystal was made from caffeine and oxalic acid, and poly(ethylene glycol) (PEG), poly( L-lactide) (PLLA), poly(ɛ-caprolactone) (PCL), and poly(acrylic acid) (PAA) were the additives. The cocrystals were formed as millimeter-sized crystals without additives, and they became microcrystals with PLLA and PCL, and nanocrystals with PAA. XRD and IR revealed that the cocrystal structure was unchanged despite the strong effects of the additives on the crystal morphology, although some decrease in crystallinity was observed with PAA as confirmed by DSC. The DSC study also showed that the cocrystal melted and recrystallized to form α-caffeine upon heating. The present study verified that the polymeric additives can be utilized to modulate the size and morphology of the cocrystals without interfering the intermolecular interactions essential to the integrity of the cocrystal structures.

  2. Reverse saturable absorption studies in polymerized indole - Effect of polymerization in the phenomenal enhancement of third order optical nonlinearity

    NASA Astrophysics Data System (ADS)

    Jayakrishnan, K.; Joseph, Antony; Bhattathiripad, Jayakrishnan; Ramesan, M. T.; Chandrasekharan, K.; Siji Narendran, N. K.

    2016-04-01

    We report our results on the identification of large order enhancement in nonlinear optical coefficients of polymerized indole and its comparative study with reference to its monomer counterpart. Indole monomer shows virtually little third order effects whereas its polymerized version exhibits phenomenal increase in its third order nonlinear optical parameters such as nonlinear refractive index and nonlinear absorption. Open aperture Z-scan trace of polyindole done with Q-switched Nd:YAG laser source (532 nm, 7 ns), shows β value as high as 89 cm/GW at a beam energy of 0.83 GW/cm2. Closed aperture Z-scan done at identical energies reveals nonlinear refractive index of the order of -3.55 × 10-17 m2/W. Band gap measurement of polyindole was done with UV-Vis absorption spectra and compared with that of Indole. FTIR spectra of the monomer and polymerized versions were recorded and relevant bond formations were confirmed from the characteristic peaks. Photo luminescent spectra were investigated to know the emission features of both molecules. Beam energy (I0) versus nonlinear absorption coefficient (β) plot indicates reverse saturable type of absorption behaviour in polyindole molecules. Degenerate Four Wave Mixing (DFWM) plot of polyindole reveals quite a cubic dependence between probe and phase conjugate signal and the resulting χ(3) is comparable with Z-scan results. Optical limiting efficiency of polyindole is comparable with certain derivatives of porphyrins, phthalocyanines and graphene oxides.

  3. VOLUMETRIC POLYMERIZATION SHRINKAGE OF CONTEMPORARY COMPOSITE RESINS

    PubMed Central

    Nagem, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire) to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (á=0.05) was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01) and Definite (1.89±0.01) shrank significantly less than the other composite resins. SureFil (2.01±0.06), Filtek Z250 (1.99±0.03), and Fill Magic (2.02±0.02) presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation. PMID:19089177

  4. Polymeric Additives For Graphite/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Nir, Z.

    1990-01-01

    Report describes experimental studies of properties of several graphite/epoxy composites containing polymeric additives as flexibilizing or toughening agents. Emphasizes effects of brominated polymeric additives (BPA's) with or without carboxy-terminated butadiene acrylonitrile rubber. Reviews effects of individual and combined additives on fracture toughnesses, environmental stabilities, hot/wet strengths, thermomechanical behaviors, and other mechanical properties of composites.

  5. Radiation polymerization of diethyl fumarate [rapid communication

    NASA Astrophysics Data System (ADS)

    Alkassiri, Haroun

    2005-05-01

    Diethyl fumarate (DEF) has been polymerized by gamma irradiation using doses in the range 50-300 kGy, and in this dose range the polymerization yield increased almost linearly. The polymer has a glass transition temperature of about -20 °C, softening point about 15 °C, and decomposition temperature 300 °C.

  6. Molecular recognition driven catalysis using polymeric nanoreactors.

    PubMed

    Cotanda, Pepa; O'Reilly, Rachel K

    2012-10-25

    The concept of using polymeric micelles to catalyze organic reactions in water is presented and compared to surfactant based micelles in the context of molecular recognition. We report for the first time enzyme-like specific catalysis by tethering the catalyst in the well-defined hydrophobic core of a polymeric micelle.

  7. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, Mohsen

    1995-01-01

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications.

  8. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, M.

    1995-02-14

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications. 5 figs.

  9. Escalation of polymerization in a thermal gradient

    PubMed Central

    Mast, Christof B.; Schink, Severin; Gerland, Ulrich; Braun, Dieter

    2013-01-01

    For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of >10600 compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers. PMID:23630280

  10. Targeted polymeric nanoparticles for cancer gene therapy

    PubMed Central

    Kim, Jayoung; Wilson, David R.; Zamboni, Camila G.; Green, Jordan J.

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented. PMID:26061296

  11. Targeted polymeric nanoparticles for cancer gene therapy.

    PubMed

    Kim, Jayoung; Wilson, David R; Zamboni, Camila G; Green, Jordan J

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented.

  12. The reconstitution of actin polymerization on liposomes.

    PubMed

    Stamnes, Mark; Xu, Weidong

    2010-01-01

    Membrane-associated actin polymerization is of considerable interest due to its role in cell migration and the motility of intracellular organelles. Intensive research efforts are underway to investigate the physiological role of membrane-associated actin as well as the regulation and mechanics of actin assembly. Branched actin polymerization on membranes is catalyzed by the Arp2/3 complex. Signaling events leading to the activation of the guanosine triphosphate (GTP)-binding protein Cdc42 stimulate Arp2/3-dependent actin polymerization. We have studied the role of Cdc42 at the Golgi apparatus in part by reconstituting actin polymerization on isolated Golgi membranes and on liposomes. In this manner, we showed that cytosolic proteins are sufficient for actin assembly on a phospholipid bilayer. Here we describe methods for the cell-free reconstitution of membrane-associated actin polymerization using liposomes and brain cytosol.

  13. Modeling liquid crystal polymeric devices

    NASA Astrophysics Data System (ADS)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  14. Polymeric materials from renewable resources

    NASA Astrophysics Data System (ADS)

    Frollini, Elisabete; Rodrigues, Bruno V. M.; da Silva, Cristina G.; Castro, Daniele O.; Ramires, Elaine C.; de Oliveira, Fernando; Santos, Rachel P. O.

    2016-05-01

    The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called "biopolyethylene" (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.

  15. Pressure-induced polymerization of P(CN)3

    NASA Astrophysics Data System (ADS)

    Gou, Huiyang; Yonke, Brendan L.; Epshteyn, Albert; Kim, Duck Young; Smith, Jesse S.; Strobel, Timothy A.

    2015-05-01

    Motivated to explore the formation of novel extended carbon-nitrogen solids via well-defined molecular precursor pathways, we studied the chemical reactivity of highly pure phosphorous tricyanide, P(CN)3, under conditions of high pressure at room temperature. Raman and infrared (IR) spectroscopic measurements reveal a series of phase transformations below 10 GPa, and several low-frequency vibrational modes are reported for the first time. Synchrotron powder X-ray diffraction measurements taken during compression show that molecular P(CN)3 is highly compressible, with a bulk modulus of 10.0 ± 0.3 GPa, and polymerizes into an amorphous solid above ˜10.0 GPa. Raman and IR spectra, together with first-principles molecular-dynamics simulations, show that the amorphization transition is associated with polymerization of the cyanide groups into CN bonds with predominantly sp2 character, similar to known carbon nitrides, resulting in a novel phosphorous carbon nitride (PCN) polymeric phase, which is recoverable to ambient pressure.

  16. Pressure-induced polymerization of P(CN){sub 3}

    SciTech Connect

    Gou, Huiyang E-mail: tstrobel@ciw.edu; Kim, Duck Young; Strobel, Timothy A. E-mail: tstrobel@ciw.edu; Yonke, Brendan L.; Epshteyn, Albert; Smith, Jesse S.

    2015-05-21

    Motivated to explore the formation of novel extended carbon-nitrogen solids via well-defined molecular precursor pathways, we studied the chemical reactivity of highly pure phosphorous tricyanide, P(CN){sub 3}, under conditions of high pressure at room temperature. Raman and infrared (IR) spectroscopic measurements reveal a series of phase transformations below 10 GPa, and several low-frequency vibrational modes are reported for the first time. Synchrotron powder X-ray diffraction measurements taken during compression show that molecular P(CN){sub 3} is highly compressible, with a bulk modulus of 10.0 ± 0.3 GPa, and polymerizes into an amorphous solid above ∼10.0 GPa. Raman and IR spectra, together with first-principles molecular-dynamics simulations, show that the amorphization transition is associated with polymerization of the cyanide groups into CN bonds with predominantly sp{sup 2} character, similar to known carbon nitrides, resulting in a novel phosphorous carbon nitride (PCN) polymeric phase, which is recoverable to ambient pressure.

  17. Post-Polymerization Crosslinked Polyurethane Shape-Memory Polymers

    PubMed Central

    Hearon, K.; Gall, K.; Ware, T.; Maitland, D. J.; Bearinger, J. P.; Wilson, T. S.

    2011-01-01

    Novel urethane shape-memory polymers (SMPs) of significant industrial relevance have been synthesized and characterized. Chemically crosslinked SMPs have traditionally been made in a one-step polymerization of monomers and crosslinking agents. However, these new post-polymerization crosslinked SMPs can be processed into complex shapes by thermoplastic manufacturing methods and later crosslinked by heat exposure or by electron beam irradiation. Several series of linear, olefinic urethane polymers were made from 2-butene-1,4-diol, other saturated diols, and various aliphatic diisocyanates. These thermoplastics were melt-processed into desired geometries and thermally crosslinked at 200°C or radiation crosslinked at 50 kGy. The SMPs were characterized by solvent swelling and extraction, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile testing, and qualitative shape-recovery analysis. Swelling and DMA results provided concrete evidence of chemical crosslinking, and further characterization revealed that the urethanes had outstanding mechanical properties. Key properties include tailorable transitions between 25 and 80°C, tailorable rubbery moduli between 0.2 and 4.2 MPa, recoverable strains approaching 100%, failure strains of over 500% at Tg, and qualitative shape-recovery times of less than 12 seconds at body temperature (37°C). Because of its outstanding thermo-mechanical properties, one polyurethane was selected for implementation in the design of a complex medical device. These post-polymerization crosslinked urethane SMPs are an industrially relevant class of highly processable shape-memory materials. PMID:21572577

  18. Polymeric human Fc-fusion proteins with modified effector functions

    NASA Astrophysics Data System (ADS)

    Mekhaiel, David N. A.; Czajkowsky, Daniel M.; Andersen, Jan Terje; Shi, Jianguo; El-Faham, Marwa; Doenhoff, Michael; McIntosh, Richard S.; Sandlie, Inger; He, Jianfeng; Hu, Jun; Shao, Zhifeng; Pleass, Richard J.

    2011-10-01

    The success of Fc-fusion bio-therapeutics has spurred the development of other Fc-fusion products for treating and/or vaccinating against a range of diseases. We describe a method to modulate their function by converting them into well-defined stable polymers. This strategy resulted in cylindrical hexameric structures revealed by tapping mode atomic force microscopy (AFM). Polymeric Fc-fusions were significantly less immunogenic than their dimeric or monomeric counterparts, a result partly owing to their reduced ability to interact with critical Fc-receptors. However, in the absence of the fusion partner, polymeric IgG1-Fc molecules were capable of binding selectively to FcγRs, with significantly increased affinity owing to their increased valency, suggesting that these reagents may prove of immediate utility in the development of well-defined replacements for intravenous immunoglobulin (IVIG) therapy. Overall, these findings establish an effective IgG Fc-fusion based polymeric platform with which the therapeutic and vaccination applications of Fc-fusion immune-complexes can now be explored.

  19. Composite plasma polymerized sulfonated polystyrene membrane for PEMFC

    SciTech Connect

    Nath, Bhabesh Kumar; Khan, Aziz; Chutia, Joyanti

    2015-10-15

    Highlights: • Methyl methane sulfonate (MMS) is used as the sulfonating agent. • The proton conductivity of the membrane is found to be 0.141 S cm{sup −1}. • Power density of fuel cell with styrene/MMS membrane is 0.5 W cm{sup −2}. • The membrane exhibits thermal stability up to 140 °C. - Abstract: This work presents the introduction of an organic compound methyl methane sulfonate (MMS) for the first time in fabrication of polystyrene based proton exchange membrane (PEM) by plasma polymerization process. The membrane is fabricated by co-polymerizing styrene and MMS in capacitively coupled continuous RF plasma. The chemical composition of the plasma polymerized polymer membrane is investigated using Fourier Transform Infrared Spectroscopy which reveals the formation of composite structure of styrene and MMS. The surface morphology studied using AFM and SEM depicts the effect of higher partial pressure of MMS on surface topography of the membrane. The proton transport property of the membrane studied using electrochemical impedance spectroscopy shows the achievement of maximum proton conductivity of 0.141 S cm{sup −1} which is comparable to Nafion 117 membrane. Fuel cell performance test of the synthesized membrane shows a maximum power density of 500 mW cm{sup −2} and current density of 0.62 A cm{sup −2} at 0.6 V.

  20. Post-Polymerization Crosslinked Polyurethane Shape-Memory Polymers.

    PubMed

    Hearon, K; Gall, K; Ware, T; Maitland, D J; Bearinger, J P; Wilson, T S

    2011-07-01

    Novel urethane shape-memory polymers (SMPs) of significant industrial relevance have been synthesized and characterized. Chemically crosslinked SMPs have traditionally been made in a one-step polymerization of monomers and crosslinking agents. However, these new post-polymerization crosslinked SMPs can be processed into complex shapes by thermoplastic manufacturing methods and later crosslinked by heat exposure or by electron beam irradiation. Several series of linear, olefinic urethane polymers were made from 2-butene-1,4-diol, other saturated diols, and various aliphatic diisocyanates. These thermoplastics were melt-processed into desired geometries and thermally crosslinked at 200°C or radiation crosslinked at 50 kGy. The SMPs were characterized by solvent swelling and extraction, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile testing, and qualitative shape-recovery analysis. Swelling and DMA results provided concrete evidence of chemical crosslinking, and further characterization revealed that the urethanes had outstanding mechanical properties. Key properties include tailorable transitions between 25 and 80°C, tailorable rubbery moduli between 0.2 and 4.2 MPa, recoverable strains approaching 100%, failure strains of over 500% at T(g), and qualitative shape-recovery times of less than 12 seconds at body temperature (37°C). Because of its outstanding thermo-mechanical properties, one polyurethane was selected for implementation in the design of a complex medical device. These post-polymerization crosslinked urethane SMPs are an industrially relevant class of highly processable shape-memory materials.

  1. Partitioning of Laponite Clay Platelets in Pickering Emulsion Polymerization.

    PubMed

    Brunier, Barthélémy; Sheibat-Othman, Nida; Chevalier, Yves; Bourgeat-Lami, Elodie

    2016-01-12

    Partitioning of laponite disklike clay platelets between polymer particles and bulk aqueous phase was investigated in Pickering surfactant-free emulsion polymerization of styrene. Adsorption of laponite clay platelets plays an important role in the stabilization of this system, influencing the particle size and the number of particles, and, hence, the reaction rate. Adsorption isotherms show that, while the laponite clay platelets are almost fully exfoliated in water, they form multilayers on the surface of the polymer particles by the end of polymerization, as confirmed by transmission electron microscopy (TEM). This observation is supported by quartz crystal microbalance, conductivity, and TEM measurements, which reveal interactions between the clay and polystyrene, as a function of the ionic strength. The strong adsorption of clay platelets leaves a low residual concentration in the aqueous phase that cannot cause further nucleation of polymer particles, as demonstrated during seeded emulsion polymerization experiments in the presence of a high excess of clay. A Brunauer-Emmett-Teller (BET)-type model for laponite adsorption on polystyrene particles matches the adsorption isotherms.

  2. Calorimetric studies of the in vitro polymerization of brain tubulin.

    PubMed Central

    Sutherland, J W; Sturtevant, J M

    1976-01-01

    The enthalpy change for chain propagation in the polymerization of bovine tubulin has been studied directly by stopped-flow microcalorimetry at 17 degrees and 25 degrees, and found to be 0 +/- 1 kcal per mol of 6S tubulin dimer at both temperatures. Substantial heat evolution with a half-time of decay of approximately 1 hr was observed w-en tubulin was injected into the calorimeter. This heat was shown to result from contamination of the tublin by small amounts of some material from the crude brain homogenate from which the tubulin was prepared, and to be totally unconnected with microtubule assembly. Model calculations of nucleated polymerization processes reveal that the van't Hoff enthalpy calculated from the temperature dependence of the critical polymerization concentration is a complicated function of the separate enthalpy changes for nucleation and chain propagation. The published values of this quantity for tubulin probably pertain primarily to the nucleation process. It is shown that our observation of a propagation enthalpy change of vanishingly small size is not necessarily inconsistent with the reported van't Hoff enthalpies. PMID:1068468

  3. New model for polymerization of oligomeric alcohol dehydrogenases into nanoaggregates.

    PubMed

    Barzegar, Abolfazl; Moosavi-Movahedi, Ali A; Kyani, Anahita; Goliaei, Bahram; Ahmadian, Shahin; Sheibani, Nader

    2010-02-01

    Polymerization and self-assembly of proteins into nanoaggregates of different sizes and morphologies (nanoensembles or nanofilaments) is a phenomenon that involved problems in various neurodegenerative diseases (medicine) and enzyme instability/inactivity (biotechnology). Thermal polymerization of horse liver alcohol dehydrogenase (dimeric) and yeast alcohol dehydrogenase (tetrameric), as biotechnological ADH representative enzymes, was evaluated for the development of a rational strategy to control aggregation. Constructed ADH nuclei, which grew to larger amorphous nanoaggregates, were prevented via high repulsion strain of the net charge values. Good correlation between the variation in scattering and lambda(-2) was related to the amorphousness of the nanoaggregated ADHs, shown by electron microscopic images. Scattering corrections revealed that ADH polymerization was related to the quaternary structural changes, including delocalization of subunits without unfolding, i.e. lacking the 3D conformational and/or secondary-ordered structural changes. The results demonstrated that electrostatic repulsion was not only responsible for disaggregation but also caused a delay in the onset of aggregation temperature, decreasing maximum values of aggregation and amounts of precipitation. Together, our results demonstrate and propose a new model of self-assembly for ADH enzymes based on the construction of nuclei, which grow to formless nanoaggregates with minimal changes in the tertiary and secondary conformations. PMID:19444390

  4. A Fractal Nature for Polymerized Laminin

    PubMed Central

    Hochman-Mendez, Camila; Cantini, Marco; Moratal, David; Salmeron-Sanchez, Manuel; Coelho-Sampaio, Tatiana

    2014-01-01

    Polylaminin (polyLM) is a non-covalent acid-induced nano- and micro-structured polymer of the protein laminin displaying distinguished biological properties. Polylaminin stimulates neuritogenesis beyond the levels achieved by ordinary laminin and has been shown to promote axonal regeneration in animal models of spinal cord injury. Here we used confocal fluorescence microscopy (CFM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) to characterize its three-dimensional structure. Renderization of confocal optical slices of immunostained polyLM revealed the aspect of a loose flocculated meshwork, which was homogeneously stained by the antibody. On the other hand, an ordinary matrix obtained upon adsorption of laminin in neutral pH (LM) was constituted of bulky protein aggregates whose interior was not accessible to the same anti-laminin antibody. SEM and AFM analyses revealed that the seed unit of polyLM was a flat polygon formed in solution whereas the seed structure of LM was highly heterogeneous, intercalating rod-like, spherical and thin spread lamellar deposits. As polyLM was visualized at progressively increasing magnifications, we observed that the morphology of the polymer was alike independently of the magnification used for the observation. A search for the Hausdorff dimension in images of the two matrices showed that polyLM, but not LM, presented fractal dimensions of 1.55, 1.62 and 1.70 after 1, 8 and 12 hours of adsorption, respectively. Data in the present work suggest that the intrinsic fractal nature of polymerized laminin can be the structural basis for the fractal-like organization of basement membranes in the neurogenic niches of the central nervous system. PMID:25296244

  5. Redox-controlled polymerization of lactide catalyzed by bis(imino)pyridine iron bis(alkoxide) complexes.

    PubMed

    Biernesser, Ashley B; Li, Bo; Byers, Jeffery A

    2013-11-01

    Bis(imino)pyridine iron bis(alkoxide) complexes have been synthesized and utilized in the polymerization of (rac)-lactide. The activities of the catalysts were particularly sensitive to the identity of the initiating alkoxide with more electron-donating alkoxides resulting in faster polymerization rates. The reaction displayed characteristics of a living polymerization with production of polymers that exhibited low molecular weight distributions, linear relationships between molecular weight and conversion, and polymer growth observed for up to fifteen sequential additions of lactide monomer to the polymerization reaction. Mechanistic experiments revealed that iron bis(aryloxide) catalysts initiate polymerization with one alkoxide ligand, while iron bis(alkylalkoxide) catalysts initiate polymerization with both alkoxide ligands. Oxidation of an iron(II) catalyst precursor lead to a cationic iron(III) bis-alkoxide complex that was completely inactive toward lactide polymerization. When redox reactions were carried out during lactide polymerization, catalysis could be switched off and turned back on upon oxidation and reduction of the iron catalyst, respectively.

  6. Method for forming polymerized microfluidic devices

    DOEpatents

    Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.; Renzi, Ronald F.; Claudnic, Mark R.

    2011-11-01

    Methods for making a micofluidic device according to embodiments of the present invention include defining a cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  7. Polymerized nanotips via two-photon photopolymerization

    NASA Astrophysics Data System (ADS)

    Qi, Fengjie; Li, Yan; Tan, Dengfeng; Yang, Hong; Gong, Qihuang

    2007-02-01

    We present new methods to produce polymerized nanotips via two-photon photopolymerization. By gradually changing the laser power, we fabricate a single polymerized tip with the size of 120nm. When two rectangle anchors with protuberances are close enough, lines with the slimmest part of about 20-30nm and tips with the widths of about 35nm are produced between anchors, which are the best resolution obtained with the resin SCR-500 to our knowledge. As the tips are adhered to larger polymerized structures, they can survive post processing in spite of their small sizes.

  8. Method for forming polymerized microfluidic devices

    SciTech Connect

    Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.; Renzi, Ronald F.; Claudnic, Mark R.

    2013-03-12

    Methods for making a microfluidic device according to embodiments of the present invention include defining.about.cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  9. Polymeric MST - high precision at low cost

    NASA Astrophysics Data System (ADS)

    Elderstig, Håkan; Larsson, Olle

    1997-09-01

    A low-cost production process for fabrication of polymeric microstructures from micromachined silicon is demonstrated in a splice for the splicing of optical fibers and an optical motherboard. Measurements on splices showed less than 0.5 dB insertion losses. The prototype polymeric motherboard concisted of an optical receiver module. The detector that was mounted on the polymeric optical motherboard detected about 70% of the transferred light. Measurements with modulated light indicates an optical bandwidth of 5 GHz at 2 V reverse current on the pin-diode.

  10. Polymerization in emulsion microdroplet reactors

    NASA Astrophysics Data System (ADS)

    Carroll, Nick J.

    The goal of this research project is to utilize emulsion droplets as chemical reactors for execution of complex polymerization chemistries to develop unique and functional particle materials. Emulsions are dispersions of immiscible fluids where one fluid usually exists in the form of drops. Not surprisingly, if a liquid-to-solid chemical reaction proceeds to completion within these drops, the resultant solid particles will possess the shape and relative size distribution of the drops. The two immiscible liquid phases required for emulsion polymerization provide unique and complex chemical and physical environments suitable for the engineering of novel materials. The development of novel non-ionic fluorosurfactants allows fluorocarbon oils to be used as the continuous phase in a water-free emulsion. Such emulsions enable the encapsulation of almost any hydrocarbon compound in droplets that may be used as separate compartments for water-sensitive syntheses. Here, we exemplify the promise of this approach by suspension polymerization of polyurethanes (PU), in which the liquid precursor is emulsified into droplets that are then converted 1:1 into polymer particles. The stability of the droplets against coalescence upon removal of the continuous phase by evaporation confirms the formation of solid PU particles. These results prove that the water-free environment of fluorocarbon based emulsions enables high conversion. We produce monodisperse, cross-linked, and fluorescently labeled PU-latexes with controllable mesh size through microfluidic emulsification in a simple one-step process. A novel method for the fabrication of monodisperse mesoporous silica particles is presented. It is based on the formation of well-defined equally sized emulsion droplets using a microfluidic approach. The droplets contain the silica precursor/surfactant solution and are suspended in hexadecane as the continuous oil phase. The solvent is then expelled from the droplets, leading to

  11. Discovery of Biarylaminoquinazolines as Novel Tubulin Polymerization Inhibitors

    PubMed Central

    Ferrarese, Alessandro; Brun, Paola; Castagliuolo, Ignazio; Conconi, Maria Teresa; La Regina, Giuseppe; Bai, Ruoli; Silvestri, Romano; Hamel, Ernest; Chilin, Adriana

    2014-01-01

    Cell cycle experiments with our previously reported 4-biphenylaminoquinazoline (1–3) multityrosine kinase inhibitors revealed an activity profile resembling that of known tubulin polymerization inhibitors. Novel 4-biarylaminoquinazoline analogues of compound 2 were synthesized and evaluated as inhibitors of several tyrosine kinases and of tubulin. Although compounds 1–3 acted as dual inhibitors, the heterobiaryl analogues possessed only anti-tubulin properties and targeted the colchicine site. Furthermore, molecular modeling studies allowed the rationalization of the pharmacodynamic properties of the compounds. PMID:24801610

  12. Thermal properties of ruthenium alkylidene-polymerized dicyclopentadiene.

    PubMed

    Vidavsky, Yuval; Navon, Yotam; Ginzburg, Yakov; Gottlieb, Moshe; Lemcoff, N Gabriel

    2015-01-01

    Differential scanning calorimetry (DSC) analysis of ring opening methatesis polymerization (ROMP) derived polydicyclopentadiene (PDCPD) revealed an unexpected thermal behavior. A recurring exothermic signal can be observed in the DSC analysis after an elapsed time period. This exothermic signal was found to be proportional to the resting period and was accompanied by a constant increase in the glass-transition temperature. We hypothesize that a relaxation mechanism within the cross-linked scaffold, together with a long-lived stable ruthenium alkylidene species are responsible for the observed phenomenon. PMID:26425203

  13. Polymeric Coatings for Electrodynamic Tethers

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Kamenetzky, Rachel R.; Finckenor, Miria M.; Schuler, Peter

    2000-01-01

    Two polymeric coatings have been developed for the Propulsive Small Expendable Deployer System (ProSEDS) mission. ProSEDS is designed to provide an on-orbit demonstration of the electrodynamic propulsion capabilities of tethers in space. The ProSEDS experiment will be a secondary payload on a Delta II unmanned expendable booster scheduled for launch in August 2000. A 5-km conductive tether is attached to the Delta 11 second stage and collects current from the low Earth orbit (LEO) plasma to facilitate de-orbit of the spent stage. The conductive tether is attached to a 10-km non-conductive tether, the other end of which is attached to an endmass containing several scientific instruments. A bare metal tether would have the best conductivity but thermal concerns preclude this design. A conductive polymer developed by Triton Systems has been optimized for conductivity and thermo-optical properties. The current design for the ProSEDS conductive tether is seven strands of 28 AWG aluminum wire individually coated with 8.7 micrometers (0.35 mil) of an atomic oxygen-resistant conductive polymer composed of a mixture of 87% Clear Oxygen-Resistant polymer (COR) and 13% polyanaline (PANi), wrapped around a braided Kevlar (TM) 49 core. Extensive testing has been performed at the Marshall Space Flight Center (MSFC) to qualify this material for flight on ProSEDS. Atomic oxygen exposure was performed, with solar absorptance and infrared emittance measured before and after exposure. Conductivity was measured before and after atomic oxygen exposure. High voltage tests, up to 1500 V, of the current collecting ability of the COR/PANi have been completed. Approximately 160 meters of the conductive tether closest to the Delta 11 second stage is insulated to prevent any electron reconnection to the tether from the plasma contactor. The insulation is composed of polyimide overcoated with TOR-BP, another polymeric coating developed by Triton for this mission. TOR-BP acts as both insulator

  14. Radiation effects on polymeric materials

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.

    1988-01-01

    It is important to study changes in properties of polymeres after irradiation with charged particles, with ultraviolet radiation, and with combinations of both. An apparatus for this purpose has been built at the NASA Langley Research Center. It consists of a chamber 9 inches in diameter and 9 inches high with a port for an electron gun, another port for a mass spectrometer, and a quartz window through which an ultraviolet lamp can be focused. The chamber, including the electron gun and the mass spectrometer, can be evacuated to a pressure of 10 to the 8th power torr. A sample placed in the chamber can be irradiated with electrons and ultraviolet radiation separately, sequentially, or simultaneously, while volatile products can be monitored during all irradiations with the mass spectrometer. The apparatus described above has been used to study three different polymer films: lexan; a polycarbonate; P1700, a polysulfone; and mylar, a polyethylene terephthalate. All three polymers had been studied extensively with both electrons and ultraviolet radiation separately, but not simultaneously. Also, volatile products had not been monitored during irradiation for the materials. A high electron dose rate of 530 Mrads/hr was used so that a sufficient concentration of volatile products would be formed to yield a reasonable mass spectrum.

  15. Highly elastic conductive polymeric MEMS

    NASA Astrophysics Data System (ADS)

    Ruhhammer, J.; Zens, M.; Goldschmidtboeing, F.; Seifert, A.; Woias, P.

    2015-02-01

    Polymeric structures with integrated, functional microelectrical mechanical systems (MEMS) elements are increasingly important in various applications such as biomedical systems or wearable smart devices. These applications require highly flexible and elastic polymers with good conductivity, which can be embedded into a matrix that undergoes large deformations. Conductive polydimethylsiloxane (PDMS) is a suitable candidate but is still challenging to fabricate. Conductivity is achieved by filling a nonconductive PDMS matrix with conductive particles. In this work, we present an approach that uses new mixing techniques to fabricate conductive PDMS with different fillers such as carbon black, silver particles, and multiwalled carbon nanotubes. Additionally, the electrical properties of all three composites are examined under continuous mechanical stress. Furthermore, we present a novel, low-cost, simple three-step molding process that transfers a micro patterned silicon master into a polystyrene (PS) polytetrafluoroethylene (PTFE) replica with improved release features. This PS/PTFE mold is used for subsequent structuring of conductive PDMS with high accuracy. The non sticking characteristics enable the fabrication of delicate structures using a very soft PDMS, which is usually hard to release from conventional molds. Moreover, the process can also be applied to polyurethanes and various other material combinations.

  16. Polymeric conjugates for drug delivery

    PubMed Central

    Larson, Nate; Ghandehari, Hamidreza

    2012-01-01

    The field of polymer therapeutics has evolved over the past decade and has resulted in the development of polymer-drug conjugates with a wide variety of architectures and chemical properties. Whereas traditional non-degradable polymeric carriers such as poly(ethylene glycol) (PEG) and N-(2-hydroxypropyl methacrylamide) (HPMA) copolymers have been translated to use in the clinic, functionalized polymer-drug conjugates are increasingly being utilized to obtain biodegradable, stimuli-sensitive, and targeted systems in an attempt to further enhance localized drug delivery and ease of elimination. In addition, the study of conjugates bearing both therapeutic and diagnostic agents has resulted in multifunctional carriers with the potential to both “see and treat” patients. In this paper, the rational design of polymer-drug conjugates will be discussed followed by a review of different classes of conjugates currently under investigation. The design and chemistry used for the synthesis of various conjugates will be presented with additional comments on their potential applications and current developmental status. PMID:22707853

  17. Evaluation of metal-polymeric fixed partial prosthesis using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sinescu, C.; Negrutiu, M. L.; Duma, V. F.; Marcauteanu, C.; Topala, F. I.; Rominu, M.; Bradu, A.; Podoleanu, A. Gh.

    2013-11-01

    Metal-Polymeric fixed partial prosthesis is the usual prosthetic treatment for many dental patients. However, during the mastication the polymeric component of the prosthesis is fractured and will be lost. This fracture is caused by the material defects or by the fracture lines trapped inside the esthetic components of the prosthesis. This will finally lead to the failure of the prosthetic treatment. Nowadays, there is no method of identification and forecast for the materials defects of the polymeric materials. The aim of this paper is to demonstrate the capability of Optical Coherence Tomography (OCT) as a non-invasive clinical method that can be used for the evaluation of metal-polymeric fixed partial prostheses. Twenty metal-polymeric fixed partial prostheses were used for this study. The esthetic component of the prostheses has been Adoro (Ivoclar). Optical investigations of the metal prostheses have revealed no material defects or fracture lines. All the prostheses were temporary cemented in the oral cavities of the patients for six month. The non-invasive method used for the investigations was OCT working in Time Domain mode at 1300 nm. The evaluations of the prostheses were performed before and after their cementation in the patient mouths. All the imagistic results were performed in 2D and than in 3D, after the reconstruction. The results obtained after the OCT evaluation allowed for the identification of 4 metal-polymeric fixed partial prostheses with material defects immediately after finishing the technological procedures. After 6 month in the oral environment other 3 fixed partial prostheses revealed fracture lines. In conclusion, OCT proved to be a valuable tool for the noninvasive evaluation of the metal-polymeric fixed partial prostheses.

  18. Polymeric controlled release formulations of niclosamide for control of Biomphalaria alexandrina, the vector snail of schistosomiasis.

    PubMed

    Kenawy, El-Refaie; Rizk, El-Sayed

    2004-02-20

    Schistosomiasis is one of the most important public health problems in many developing countries. The present study was conducted to investigate the effect of the polymeric niclosamide formulations against Biomphalaria alexandrina snails, the intermediate host of Schistosoma mansoni in Egypt. Three new polymeric formulations were prepared for the molluscicide niclosamide. The formulations were prepared either by the chemical modifications of poly(glycidyl methacrylate) or by physical entrapment of the niclosamide in calcium alginate beads. The release of the niclosamide from the polymeric formulations was investigated. The activity of the prepared formulations against Biomphalaria alexandrina was investigated. The results obtained revealed higher potency for polymerized niclosamide B3 than B1; the lowest potency was revealed for B2. After an exposure period of 24 hours, LC(50) values were 0.073, 0.098 and 1.09 ppm for B3, B1 and B2, respectively. In addition, the molluscicidal potency of the test polymeric niclosamide was age-dependent, where old snails were more tolerant to the test solutions than young and newly hatched snails. The results also indicated that the molluscicidal activity of B3 was extended for 21 days and 17 days for B1, compared with 5 days for free niclosamide. However, the molluscicidal potency of the polymerized niclosamide was increased after boiling for one hour, and was increased with increasing the pH of the medium to pH 9. In addition, their potency was increased with decreasing the water hardness concentrations (CaCO(3)).Molluscicidal activity of free niclosamide and its polymeric formulations vs. exposure time.

  19. Polymerization as a Model Chain Reaction

    ERIC Educational Resources Information Center

    Morton, Maurice

    1973-01-01

    Describes the features of the free radical, anionic, and cationic mechanisms of chain addition polymerization. Indicates that the nature of chain reactions can be best taught through the study of macromolecules. (CC)

  20. Hydrocarbon polymeric binder for advanced solid propellant

    NASA Technical Reports Server (NTRS)

    Potts, J. E. (Editor)

    1972-01-01

    A series of DEAB initiated isoprene polymerizations were run in the 5-gallon stirred autoclave reactor. Polymerization run parameters such as initiator concentration and feed rate were correlated with the molecular weight to provide a basis for molecular weight control in future runs. Synthetic methods were developed for the preparation of n-1,3-alkadienes. By these methods, 1,3-nonadiene was polymerized using DEAB initiator to give an ester-telechelic polynonadiene. This was subsequently hydrogenated with copper chromite catalyst to give a hydroxyl terminated saturated liquid hydrocarbon prepolymer having greatly improved viscosity characteristics and a Tg 18 degrees lower than that of the hydrogenated polyisoprenes. The hydroxyl-telechelic saturated polymers prepared by the hydrogenolysis of ester-telechelic polyisoprene were reached with diisocyanates under conditions favoring linear chain extension gel permeation chromatography was used to monitor this condensation polymerization. Fractions having molecular weights above one million were produced.

  1. Reverse-osmosis membranes by plasma polymerization

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1972-01-01

    Thin allyl amine polymer films were developed using plasma polymerization. Resulting dry composite membranes effectively reject sodium chloride during reverse osmosis. Films are 98% sodium chloride rejective, and 46% urea rejective.

  2. Isothermal Titration Calorimetry of Chiral Polymeric Nanoparticles.

    PubMed

    Werber, Liora; Preiss, Laura C; Landfester, Katharina; Muñoz-Espí, Rafael; Mastai, Yitzhak

    2015-09-01

    Chiral polymeric nanoparticles are of prime importance, mainly due to their enantioselective potential, for many applications such as catalysis and chiral separation in chromatography. In this article we report on the preparation of chiral polymeric nanoparticles by miniemulsion polymerization. In addition, we describe the use of isothermal titration calorimetry (ITC) to measure the chiral interactions and the energetics of the adsorption of enantiomers from aqueous solutions onto chiral polymeric nanoparticles. The characterization of chirality in nano-systems is a very challenging task; here, we demonstrate that ITC can be used to accurately determine the thermodynamic parameters associated with the chiral interactions of nanoparticles. The use of ITC to measure the energetics of chiral interactions and recognition at the surfaces of chiral nanoparticles can be applied to other nanoscale chiral systems and can provide further insight into the chiral discrimination processes of nanomaterials.

  3. Physicochemically functional ultrathin films by interfacial polymerization

    DOEpatents

    Lonsdale, H.K.; Babcock, W.C.; Friensen, D.T.; Smith, K.L.; Johnson, B.M.; Wamser, C.C.

    1990-08-14

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclosed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers. 3 figs.

  4. Physicochemically functional ultrathin films by interfacial polymerization

    DOEpatents

    Lonsdale, Harold K.; Babcock, Walter C.; Friensen, Dwayne T.; Smith, Kelly L.; Johnson, Bruce M.; Wamser, Carl C.

    1990-01-01

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclsoed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers.

  5. DNA detection with a polymeric nanochannel device.

    PubMed

    Fanzio, Paola; Mussi, Valentina; Manneschi, Chiara; Angeli, Elena; Firpo, Giuseppe; Repetto, Luca; Valbusa, Ugo

    2011-09-01

    We present the development and the electrical characterization of a polymeric nanochannel device. Standard microfabrication coupled to Focused Ion Beam (FIB) nanofabrication is used to fabricate a silicon master, which can be then replicated in a polymeric material by soft lithography. Such an elastomeric nanochannel device is used to study DNA translocation events during electrophoresis experiments. Our results demonstrate that an easy and low cost fabrication technique allows creation of a low noise device for single molecule analysis.

  6. Biaxially oriented film on flexible polymeric substrate

    DOEpatents

    Finkikoglu, Alp T.; Matias, Vladimir

    2009-10-13

    A flexible polymer-based template having a biaxially oriented film grown on the surface of a polymeric substrate. The template having the biaxially oriented film can be used for further epitaxial growth of films of interest for applications such as photovoltaic cells, light emitting diodes, and the like. Methods of forming such a flexible template and providing the polymeric substrate with a biaxially oriented film deposited thereon are also described.

  7. Post polymerization cure shape memory polymers

    SciTech Connect

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  8. Nonperturbative Renormalization Group Approach to Polymerized Membranes

    NASA Astrophysics Data System (ADS)

    Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique

    2014-03-01

    Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.

  9. Catalytic living ring-opening metathesis polymerization

    NASA Astrophysics Data System (ADS)

    Nagarkar, Amit A.; Kilbinger, Andreas F. M.

    2015-09-01

    In living ring-opening metathesis polymerization (ROMP), a transition-metal-carbene complex polymerizes ring-strained olefins with very good control of the molecular weight of the resulting polymers. Because one molecule of the initiator is required for each polymer chain, however, this type of polymerization is expensive for widespread use. We have now designed a chain-transfer agent (CTA) capable of reducing the required amount of metal complex while still maintaining full control over the living polymerization process. This new method introduces a degenerative transfer process to ROMP. We demonstrate that substituted cyclohexene rings are good CTAs, and thereby preserve the ‘living’ character of the polymerization using catalytic quantities of the metal complex. The resulting polymers show characteristics of a living polymerization, namely narrow molecular-weight distribution, controlled molecular weights and block copolymer formation. This new technique provides access to well-defined polymers for industrial, biomedical and academic use at a fraction of the current costs and significantly reduced levels of residual ruthenium catalyst.

  10. Equilibrium polymerization of cyclic carbonate oligomers

    NASA Astrophysics Data System (ADS)

    Ballone, P.; Jones, R. O.

    2001-08-01

    A model of the polymerization of ring oligomers of bisphenol A polycarbonate (BPA-PC) is used to investigate the influence of dimensionality (2D or 3D), density and temperature on the size distribution of the polymer chains. The polymerization step is catalyzed by a single active particle, conserves the number and type of the chemical bonds, and occurs without a significant gain in either potential energy or configurational entropy. Monte Carlo and molecular dynamics simulations show that polymerization of cyclic oligomers occurs readily at high density and is driven by the entropy associated with the distribution of interparticle bonds. Polymerization competes at lower densities with long range diffusion, which favors small molecular species, and is prevented if the system is sufficiently dilute. Polymerization occurs in 2D via a weakly first order transition as a function of density and is characterized by low hysteresis and large fluctuations in the size of polymer chains. Polymerization occurs more readily in 3D than in 2D, and is favored by increasing temperature, as expected for an entropy-driven process.

  11. Polymeric micelles for acyclovir drug delivery.

    PubMed

    Sawdon, Alicia J; Peng, Ching-An

    2014-10-01

    Polymeric prodrug micelles for delivery of acyclovir (ACV) were synthesized. First, ACV was used directly to initiate ring-opening polymerization of ɛ-caprolactone to form ACV-polycaprolactone (ACV-PCL). Through conjugation of hydrophobic ACV-PCL with hydrophilic methoxy poly(ethylene glycol) (MPEG) or chitosan, polymeric micelles for drug delivery were formed. (1)H NMR, FTIR, and gel permeation chromatography were employed to show successful conjugation of MPEG or chitosan to hydrophobic ACV-PCL. Through dynamic light scattering, zeta potential analysis, transmission electron microscopy, and critical micelle concentration (CMC), the synthesized ACV-tagged polymeric micelles were characterized. It was found that the average size of the polymeric micelles was under 200nm and the CMCs of ACV-PCL-MPEG and ACV-PCL-chitosan were 2.0mgL(-1) and 6.6mgL(-1), respectively. The drug release kinetics of ACV was investigated and cytotoxicity assay demonstrates that ACV-tagged polymeric micelles were non-toxic.

  12. Nonlinear finite element modeling of dental composite polymerization behavior

    NASA Astrophysics Data System (ADS)

    Laughlin, Gayle A.

    2003-07-01

    Polymerization shrinkage has been one of the primary shortcomings preventing the use of resin composites as a universal dental restorative material. This shrinkage of the bonded restoration causes residual stresses in the composite which in turn are transferred to the adhesive interface. The deleterious effects of this stress environment include compromise of the interface itself and the decrease in the mechanical properties of the cured composite. Novel materials which claim to produce less shrinkage have been presented as a new class of restorative materials that could reduce the effects of this problem. One difficulty in assessing the actual in vivo benefits of these new materials is the fact that there is currently no direct way to measure the stress environment at the composite/tooth clinical interface. Computer modeling using finite element analysis (FEA) could provide helpful information regarding the clinical stress performance of dental composites. The purpose of this study was to develop a model that accurately simulates the nonlinear polymerization behavior of light-cured dental composites using a commercial FEA program, which could be accessible for future research. Two phases were needed to accomplish this purpose. First, a data collection phase included volumetric shrinkage, shrinkage stress, tooth analog strain, and dynamic mechanical analysis experiments. Three composites, a standard methacrylate(Z250) and two experimental low stress epoxy-based composites (oxirane and silorane), were tested. The experimental results revealed an intriguing range of polymerization behavior exhibited by the three composites, indicating that the development of a low stress composite is possible. The information gathered from this phase supplied the necessary material input for the computer modeling, and provided empirical validation data for the model solutions. In the second modeling phase, an FEA approach based on a elastic/viscoplastic material model was used to

  13. Polymerization in emulsion microdroplet reactors

    NASA Astrophysics Data System (ADS)

    Carroll, Nick J.

    The goal of this research project is to utilize emulsion droplets as chemical reactors for execution of complex polymerization chemistries to develop unique and functional particle materials. Emulsions are dispersions of immiscible fluids where one fluid usually exists in the form of drops. Not surprisingly, if a liquid-to-solid chemical reaction proceeds to completion within these drops, the resultant solid particles will possess the shape and relative size distribution of the drops. The two immiscible liquid phases required for emulsion polymerization provide unique and complex chemical and physical environments suitable for the engineering of novel materials. The development of novel non-ionic fluorosurfactants allows fluorocarbon oils to be used as the continuous phase in a water-free emulsion. Such emulsions enable the encapsulation of almost any hydrocarbon compound in droplets that may be used as separate compartments for water-sensitive syntheses. Here, we exemplify the promise of this approach by suspension polymerization of polyurethanes (PU), in which the liquid precursor is emulsified into droplets that are then converted 1:1 into polymer particles. The stability of the droplets against coalescence upon removal of the continuous phase by evaporation confirms the formation of solid PU particles. These results prove that the water-free environment of fluorocarbon based emulsions enables high conversion. We produce monodisperse, cross-linked, and fluorescently labeled PU-latexes with controllable mesh size through microfluidic emulsification in a simple one-step process. A novel method for the fabrication of monodisperse mesoporous silica particles is presented. It is based on the formation of well-defined equally sized emulsion droplets using a microfluidic approach. The droplets contain the silica precursor/surfactant solution and are suspended in hexadecane as the continuous oil phase. The solvent is then expelled from the droplets, leading to

  14. Mixing in polymeric microfluidic devices.

    SciTech Connect

    Schunk, Peter Randall; Sun, Amy Cha-Tien; Davis, Robert H.; Brotherton, Christopher M. (University of Colorado at Boulder, Boulder, CO)

    2006-04-01

    This SAND report describes progress made during a Sandia National Laboratories sponsored graduate fellowship. The fellowship was funded through an LDRD proposal. The goal of this project is development and characterization of mixing strategies for polymeric microfluidic devices. The mixing strategies under investigation include electroosmotic flow focusing, hydrodynamic focusing, physical constrictions and porous polymer monoliths. For electroosmotic flow focusing, simulations were performed to determine the effect of electroosmotic flow in a microchannel with heterogeneous surface potential. The heterogeneous surface potential caused recirculations to form within the microchannel. These recirculations could then be used to restrict two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the mixing region surface potential to the average channel surface potential was made large in magnitude and negative in sign, and when the ratio of the characteristic convection time to the characteristic diffusion time was minimized. Based on these results, experiments were performed to evaluate the manipulation of surface potential using living-radical photopolymerization. The material chosen to manipulate typically exhibits a negative surface potential. Using living-radical surface grafting, a positive surface potential was produced using 2-(Dimethylamino)ethyl methacrylate and a neutral surface was produced using a poly(ethylene glycol) surface graft. Simulations investigating hydrodynamic focusing were also performed. For this technique, mixing is enhanced by using a tertiary fluid stream to constrict the two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the tertiary flow stream flow-rate to the mixing streams flow-rate was maximized. Also, like the electroosmotic focusing mixer, mixing was also maximized when the ratio of the characteristic convection time to the

  15. Fire-Retardant Polymeric Additives

    NASA Technical Reports Server (NTRS)

    Williams, Martha K.; Smith, Trent M.

    2011-01-01

    component forms polybenzoxazole (PBO) in a reaction that absorbs heat from its surroundings. PBO under thermal stress cross-links, forming a protective char layer, which thermally insulates the polymer. Thus, the formation of the char layer further assists to extinguish the fire by preventing vaporization of the polymeric fuel.

  16. Novel functionalized fluorescent polymeric nanoparticles for immobilization of biomolecules

    NASA Astrophysics Data System (ADS)

    Jain, Swati; Chattopadhyay, Sruti; Jackeray, Richa; Abid, C. K. V. Zainul; Singh, Harpal

    2013-07-01

    Novel, size controlled fluorescent polymeric nanoparticles (FPNP) were synthesized having acetoacetoxy functionality on the surface for immobilization of biomolecules which can be utilized as biomarkers and labels in fluoroimmunoassays. Core-shell nanoparticles of poly(styrene, St-methyl methacrylate, MMA-acetoacetoxy ethyl methacrylate, AAEM), stabilized by various concentrations of surfactant, sodium lauryl sulphate (SLS), were obtained by facile miniemulsion co-polymerization encapsulated with pyrene molecules in their hydrophobic core. Analytical, spectroscopic and imaging characterization techniques revealed the formation of stable, monodisperse, spherical nano sized particles exhibiting high luminescence properties. Particles with 1% SLS (S1) showed good dispersion stability and fluorescence intensity and were chosen as ideal candidates for further immobilization studies. Steady state fluorescence studies showed 10 times higher fluorescence intensity of S1 nanoparticles than that of pyrene solution in solvent-toluene at the same concentration. Environmental factors such as pH, ionic strength and time were found to have no effect on fluorescence intensity of FPNPs. Surface β-di-ketone groups were utilized for the covalent immobilization of enzyme conjugated antibodies without any activation or pre-treatment of nanoparticles.Novel, size controlled fluorescent polymeric nanoparticles (FPNP) were synthesized having acetoacetoxy functionality on the surface for immobilization of biomolecules which can be utilized as biomarkers and labels in fluoroimmunoassays. Core-shell nanoparticles of poly(styrene, St-methyl methacrylate, MMA-acetoacetoxy ethyl methacrylate, AAEM), stabilized by various concentrations of surfactant, sodium lauryl sulphate (SLS), were obtained by facile miniemulsion co-polymerization encapsulated with pyrene molecules in their hydrophobic core. Analytical, spectroscopic and imaging characterization techniques revealed the formation of stable

  17. Cellular force measurements using single-spaced polymeric microstructures: isolating cells from base substrate

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Chew Lim, Chee; Sawyer, Douglas B.; Liao, Ronglih; Zhang, Xin

    2005-09-01

    Mechanical force is one of the most important parameters in cellular physiological behavior. To quantify the cellular force locally and more precisely, soft material probes, such as bulk polymeric surfaces or raised individual polymeric structures, have been developed which are deformable by the cell. The extent of deformation and the elastic properties of the probes allow for calculation of the mechanical forces exerted by the cell. Bulk polymeric surfaces have the disadvantage of requiring computational intensive calculations due to the continuous distortion of a large area, and investigators have attempted to address this problem by using raised polymeric structures to simplify the derivation of cellular mechanical force. These studies, however, have ignored the possibility of formation of local adhesions of the cell to the underlying base substrate, which could result in inaccurate cellular force measurements. Clearly, there is a need to develop polymeric structures that can efficiently isolate the cells from the underlying base substrate, in order to eliminate the continuous distortion problem. In this paper, we demonstrate the measurement of cellular force in isolated cardiac myocytes using single-spaced polymeric microstructures. Each structure is 2 µm in diameter and single-spaced packed. This geometry of the structures successfully isolates the cells from the underlying substrate. Displacement of the structures was measured in areas underneath the attached cell and at areas in close proximity to the cell. The results show that the individual structures underneath the cell were significantly displaced whereas no substantial strain in the underlying base substrate was detected. The mechanical force of the cell was derived from the displacements of individual structures upon multiplication with the locally determined spring constant. The force distribution reveals a parallel alignment as well as a periodic motion of the contractile units of the myocyte. The

  18. Delivery of antibiotics with polymeric particles.

    PubMed

    Xiong, Meng-Hua; Bao, Yan; Yang, Xian-Zhu; Zhu, Yan-Hua; Wang, Jun

    2014-11-30

    Despite the wide use of antibiotics, bacterial infection is still one of the leading causes of hospitalization and mortality. The clinical failure of antibiotic therapy is linked with low bioavailability, poor penetration to bacterial infection sites, and the side effects of antibiotics, as well as the antibiotic resistance properties of bacteria. Antibiotics encapsulated in nanoparticles or microparticles made up of a biodegradable polymer have shown great potential in replacing the administration of antibiotics in their "free" form. Polymeric particles provide protection to antibiotics against environmental deactivation and alter antibiotic pharmacokinetics and biodistribution. Polymeric particles can overcome tissue and cellular barriers and deliver antibiotics into very dense tissues and inaccessible target cells. Polymeric particles can be modified to target or respond to particular tissues, cells, and even bacteria, and thereby facilitate the selective concentration or release of the antibiotic at infection sites, respectively. Thus, the delivery of antibiotics with polymeric particles augments the level of the bioactive drug at the site of infection while reducing the dosage and the dosing frequency. The end results are improved therapeutic effects as well as decreased "pill burden" and drug side effects in patients. The main objective of this review is to analyze recent advances and current perspectives in the use of polymeric antibiotic delivery systems in the treatment of bacterial infection.

  19. Polymerization of Actin from Maize Pollen.

    PubMed Central

    Yen, L. F.; Liu, X.; Cai, S.

    1995-01-01

    Here we describe the in vitro polymerization of actin from maize (Zea mays) pollen. The purified actin from maize pollen reported in our previous paper (X. Liu, L.F. Yen [1992] Plant Physiol 99: 1151-1155) is biologically active. In the presence of ATP, KCl, and MgCl2 the purified pollen actin polymerized into filaments. During polymerization the spectra of absorbance at 232 nm increased gradually. Polymerization of pollen actin was evidently accompanied by an increase in viscosity of the pollen actin solution. Also, the specific viscosity of pollen F-actin increased in a concentration-dependent manner. The ultraviolet difference spectrum of pollen actin is very similar to that of rabbit muscle actin. The activity of myosin ATPase from rabbit muscle was activated 7-fold by the polymerized pollen actin (F-actin). The actin filaments were visualized under the electron microscope as doubly wound strands of 7 nm diameter. If cytochalasin B was added before staining, no actin filaments were observed. When actin filaments were treated with rabbit heavy meromyosin, the actin filaments were decorated with an arrowhead structure. These results imply that there is much similarity between pollen and muscle actin. PMID:12228343

  20. How do polymeric micelles cross epithelial barriers?

    PubMed

    Pepić, Ivan; Lovrić, Jasmina; Filipović-Grčić, Jelena

    2013-09-27

    Non-parenteral delivery of drugs using nanotechnology-based delivery systems is a promising non-invasive way to achieve effective local or systemic drug delivery. The efficacy of drugs administered non-parenterally is limited by their ability to cross biological barriers, and epithelial tissues particularly present challenges. Polymeric micelles can achieve transepithelial drug delivery because of their ability to be internalized into cells and/or cross epithelial barriers, thereby delivering drugs either locally or systematically following non-parenteral administration. This review discusses the particular characteristics of various epithelial barriers and assesses their potential as non-parenteral routes of delivery. The material characteristics of polymeric micelles (e.g., size, surface charge, and surface decoration) and of unimers dissociated from polymeric micelles determine their interactions (non-specific and/or specific) with mucus and epithelial cells as well as their intracellular fate. This paper outlines the mechanisms governing the major modes of internalization of polymeric micelles into epithelial cells, with an emphasis on specific recent examples of the transport of drug-loaded polymeric micelles across epithelial barriers.

  1. Colchicine activates actin polymerization by microtubule depolymerization.

    PubMed

    Jung, H I; Shin, I; Park, Y M; Kang, K W; Ha, K S

    1997-06-30

    Swiss 3T3 fibroblasts were treated with the microtubule-disrupting agent colchicine to study any interaction between microtubule dynamics and actin polymerization. Colchicine increased the amount of filamentous actin (F-actin), in a dose- and time-dependent manner with a significant increase at 1 h by about 130% over control level. Confocal microscopic observation showed that colchicine increased F-actin contents by stress fiber formation without inducing membrane ruffling. Colchicine did not activate phospholipase C and phospholipase D, whereas lysophosphatidic acid did, indicating that colchicine may have a different mechanism of actin polymerization regulation from LPA. A variety of microtubule-disrupting agents stimulated actin polymerization in Swiss 3T3 and Rat-2 fibroblasts as did colchicine, but the microtubule-stabilizing agent taxol inhibited actin polymerization induced by the above microtubule-disrupting agents. In addition, colchicine-induced actin polymerization was blocked by two protein phosphatase inhibitors, okadaic acid and calyculin A. These results suggest that microtubule depolymerization activates stress fiber formation by serine/threonine dephosphorylation in fibroblasts. PMID:9264034

  2. Volatilization of alachlor from polymeric formulations.

    PubMed

    Dailey, Oliver D

    2004-11-01

    Pesticides may be dispersed throughout the environment by several means, including groundwater contamination, surface water contamination, and volatilization with subsequent atmospheric transport and deposition. In earlier research primarily directed at reducing the potential for groundwater contamination, a number of herbicides were microencapsulated within several different polymers. These polymeric formulations were evaluated for efficacy in the greenhouse. In the studies described in this paper, three polymeric alachlor formulations that were the most effective in the greenhouse were evaluated in laboratory volatility studies using pure alachlor and a commercial formulation (Lasso 4EC) for comparison purposes. In a given experiment, technical alachlor, Lasso 4EC, and two polymeric formulations were applied to soil and evaluated in a contained system under 53% humidity with a fixed flow rate. Evolved alachlor was collected in ethylene glycol, recovered with C18 solid phase extraction cartridges, and analyzed by reverse-phase high-performance thin-layer chromatography with densitometry. Duration of the studies ranged from 32 to 39 days. In studies in which all formulations were uniformly incorporated in the soil, total alachlor volatilization from the polymeric microcapsules was consistently lower than that from the alachlor and Lasso 4EC formulations. In studies in which the polymeric formulations were sprinkled on the surface of the soil, microcapsules prepared with the polymer cellulose acetate butyrate released the smallest quantity of volatilized alachlor.

  3. Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization

    PubMed Central

    Lee, Wei Lin; Grimes, Jonathan M; Robinson, Robert C

    2016-01-01

    Pathogenic Yersinia species evade host immune systems through the injection of Yersinia outer proteins (Yops) into phagocytic cells. One Yop, YopO, also known as YpkA, induces actin-filament disruption, impairing phagocytosis. Here we describe the X-ray structure of Yersinia enterocolitica YopO in complex with actin, which reveals that YopO binds to an actin monomer in a manner that blocks polymerization yet allows the bound actin to interact with host actin-regulating proteins. SILAC-MS and biochemical analyses confirm that actin-polymerization regulators such as VASP, EVL, WASP, gelsolin and the formin diaphanous 1 are directly sequestered and phosphorylated by YopO through formation of ternary complexes with actin. This leads to a model in which YopO at the membrane sequesters actin from polymerization while using the bound actin as bait to recruit, phosphorylate and misregulate host actin-regulating proteins to disrupt phagocytosis. PMID:25664724

  4. Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization.

    PubMed

    Lee, Wei Lin; Grimes, Jonathan M; Robinson, Robert C

    2015-03-01

    Pathogenic Yersinia species evade host immune systems through the injection of Yersinia outer proteins (Yops) into phagocytic cells. One Yop, YopO, also known as YpkA, induces actin-filament disruption, impairing phagocytosis. Here we describe the X-ray structure of Yersinia enterocolitica YopO in complex with actin, which reveals that YopO binds to an actin monomer in a manner that blocks polymerization yet allows the bound actin to interact with host actin-regulating proteins. SILAC-MS and biochemical analyses confirm that actin-polymerization regulators such as VASP, EVL, WASP, gelsolin and the formin diaphanous 1 are directly sequestered and phosphorylated by YopO through formation of ternary complexes with actin. This leads to a model in which YopO at the membrane sequesters actin from polymerization while using the bound actin as bait to recruit, phosphorylate and misregulate host actin-regulating proteins to disrupt phagocytosis.

  5. Tailor-Made Stereoblock Copolymers of Poly(lactic acid) by a Truly Living Polymerization Catalyst.

    PubMed

    Rosen, Tomer; Goldberg, Israel; Venditto, Vincenzo; Kol, Moshe

    2016-09-21

    Poly(lactic acid) (PLA) is a biodegradable polymer prepared by the catalyzed ring opening polymerization of lactide. An ideal catalyst should enable a sequential polymerization of the lactide enantiomers to afford stereoblock copolymers with predetermined number and lengths of blocks. We describe a magnesium based catalyst that combines very high activity with a true-living nature, which gives access to PLA materials of unprecedented microstructures. Full consumption of thousands of equivalents of L-LA within minutes gave PLLA of expected molecular weights and narrow molecular weight distributions. Precise PLLA-b-PDLA diblock copolymers having block lengths of up to 500 repeat units were readily prepared within 30 min, and their thermal characterization revealed a stereocomplex phase only with very high melting transitions and melting enthalpies. The one pot sequential polymerization was extended up to precise hexablocks having "dialed-in" block lengths. PMID:27602949

  6. Tankyrase Requires SAM Domain-Dependent Polymerization to Support Wnt-β-Catenin Signaling.

    PubMed

    Mariotti, Laura; Templeton, Catherine M; Ranes, Michael; Paracuellos, Patricia; Cronin, Nora; Beuron, Fabienne; Morris, Edward; Guettler, Sebastian

    2016-08-01

    The poly(ADP-ribose) polymerase (PARP) Tankyrase (TNKS and TNKS2) is paramount to Wnt-β-catenin signaling and a promising therapeutic target in Wnt-dependent cancers. The pool of active β-catenin is normally limited by destruction complexes, whose assembly depends on the polymeric master scaffolding protein AXIN. Tankyrase, which poly(ADP-ribosyl)ates and thereby destabilizes AXIN, also can polymerize, but the relevance of these polymers has remained unclear. We report crystal structures of the polymerizing TNKS and TNKS2 sterile alpha motif (SAM) domains, revealing versatile head-to-tail interactions. Biochemical studies informed by these structures demonstrate that polymerization is required for Tankyrase to drive β-catenin-dependent transcription. We show that the polymeric state supports PARP activity and allows Tankyrase to effectively access destruction complexes through enabling avidity-dependent AXIN binding. This study provides an example for regulated signal transduction in non-membrane-enclosed compartments (signalosomes), and it points to novel potential strategies to inhibit Tankyrase function in oncogenic Wnt signaling. PMID:27494558

  7. Supramolecular Polymerization Engineered with Molecular Recognition.

    PubMed

    Haino, Takeharu

    2015-10-01

    Supramolecular polymeric assemblies represent an emerging, promising class of molecular assemblies with enormous versatility compared with their covalent polymeric counterparts. Although a large number of host-guest motifs have been produced over the history of supramolecular chemistry, only a limited number of recognition motifs have been utilized as supramolecular connections in polymeric assemblies. This account describes the molecular recognition of host molecules based on calix[5]arene and bisporphyrin that demonstrate unique guest encapsulations; subsequently, these host-guest motifs are applied to the synthesis of supramolecular polymers that display polymer-like properties in solution and solid states. In addition, new bisresorcinarenes are developed to form supramolecular polymers that are connected via a rim-to-rim hydrogen-bonded dimeric structure, which is composed of two resorcinarene moieties. PMID:26178364

  8. Self-Healing of biocompatible polymeric nanocomposities

    NASA Astrophysics Data System (ADS)

    Espino, Omar; Chipara, Dorina

    2014-03-01

    Polymers are vulnerable to damage in form of cracks deep within the structure, where detection is difficult and repair is near to impossible. These cracks lead to mechanical degradation of the polymer. A method has been created to solve this problem named polymeric self healing. Self healing capabilities implies the dispersion within the polymeric matrix of microcapsules filled with a monomer and of catalyst. Poly urea-formaldehyde microcapsules used in this method are filled with dicyclopentadiene that is liberated after being ruptured by the crack propagation in the material. Polymerization is assisted by a catalyst FGGC that ignites the self healing process. Nanocomposites, such as titanium oxide, will be used as an integration of these polymers that will be tested by rupturing mechanically slowly. In order to prove the self healing process, Raman spectroscopy, FTIR, and SEM are used.

  9. Immobilization of Polymeric Luminophor on Nanoparticles Surface

    NASA Astrophysics Data System (ADS)

    Bolbukh, Yuliia; Podkoscielna, Beata; Lipke, Agnieszka; Bartnicki, Andrzej; Gawdzik, Barbara; Tertykh, Valentin

    2016-04-01

    Polymeric luminophors with reduced toxicity are of the priorities in the production of lighting devices, sensors, detectors, bioassays or diagnostic systems. The aim of this study was to develop a method of immobilization of the new luminophor on a surface of nanoparticles and investigation of the structure of the grafted layer. Monomer 2,7-(2-hydroxy-3-methacryloyloxypropoxy)naphthalene (2,7-NAF.DM) with luminophoric properties was immobilized on silica and carbon nanotubes in two ways: mechanical mixing with previously obtained polymer and by in situ oligomerization with chemisorption after carrier's modification with vinyl groups. The attached polymeric (or oligomeric) surface layer was studied using thermal and spectral techniques. Obtained results confirm the chemisorption of luminophor on the nanotubes and silica nanoparticles at the elaborated synthesis techniques. The microstructure of 2,7-NAF.DM molecules after chemisorption was found to be not changed. The elaborated modification approach allows one to obtain nanoparticles uniformly covered with polymeric luminophor.

  10. Universal metastability of sickle hemoglobin polymerization

    NASA Astrophysics Data System (ADS)

    Weng, Weijun

    Sickle hemoglobin (HbS) is a natural mutation of the normal hemoglobin (HbA) found in the red blood cells of human body. Polymerization of HbS occurs when the concentration of deoxyHbS exceeds a well-defined solubility, which is the underlying cause of the Sickle Cell Disease. It has long been assumed that thermodynamic equilibrium is reached when polymerization comes to an end. However, in this thesis we demonstrate that in confined volume as well as in bulk solution, HbS polymerization terminates prematurely, leaving the solution in a metastable state. A newly developed Reservoir method as well as modulated excitation method were adopted for the study. This discovery of universal metastability gives us new insights into understanding the mechanism of sickle cell disease.

  11. Reversible addition-fragmentation chain transfer polymerization in microemulsion.

    PubMed

    O'Donnell, Jennifer M

    2012-04-21

    This tutorial review first details the uncontrolled microemulsion polymerization mechanism, and the RAFT polymerization mechanism to provide the necessary background for examining the RAFT microemulsion polymerization mechanism. The effect of the chain transfer agent per micelle ratio and the chain transfer agent aqueous solubility on the RAFT microemulsion polymerization kinetics, polymer molecular weight and polydispersity, and polymer nanoparticle size are discussed with a focus on oil-in-water microemulsions. Modeling of RAFT microemulsion polymerization kinetics and the resulting final polymer molecular weight are presented to assist with the analysis of observed experimental trends. Lastly, the current significance of RAFT microemulsion polymerization and the future directions are discussed. PMID:22246214

  12. Thrombin interaction with fibrin polymerization sites.

    PubMed

    Hsieh, K

    1997-05-15

    Thrombin is central to hemostasis, and postclotting fibrinolysis and wound healing. During clotting, thrombin transforms plasma fibrinogen into polymerizing fibrin, which selectively adsorbs the enzyme into the clot. This protects thrombin from heparin-antithrombin inactivation, thus preserving the enzyme for postclotting events. To determine how the fibrin N-terminal polymerization sites of A alpha 17-23 (GPRVVER) and B beta 15-25 (GHRPLDKKREE) and their analogs may interact with thrombin, amidolysis vs. plasma- and fibrinogen-clotting assays were used to differentiate blockade of catalytic site vs. other thrombin domains. Amidolysis studies suggest GPRVVER inhibition of thrombin catalytic site through hydrophobic interaction, and GPRVVER inhibited clotting. Neither GPRP nor VVER nor the B beta 15-25 homologs inhibited amidolysis. Contrary to heparin, acyl-DKKREE promoted plasma-clotting, but inhibited fibrinogen-clotting. In addition, acyl-DKKREE reversed the anticoagulant effect of heparin (0.1 U/ml) in plasma. The results suggest fibrin B beta 15-25 interaction with thrombin, possibly by blocking the heparin-binding site. Together with the reported fibrin A alpha 27-50 binding to thrombin, polymerizing fibrin appears to initially bind to thrombin catalytic site and exosite-1 through A alpha 17-50, and to another thrombin site through B beta 15-25. As these fibrin sites are also involved in polymerization, competition of the polymerization process with thrombin-binding could subsequently dislodge thrombin from fibrin alpha-chain. This may re-expose the catalytic site and exosite-1, thus explaining the thrombogenicity of clot-bound thrombin. The implications of these findings in polymerization mechanism and anticoagulant design are discussed.

  13. Regulation of enzyme localization by polymerization: polymer formation by the SAM domain of diacylglycerol kinase delta1.

    PubMed

    Harada, Bryan T; Knight, Mary Jane; Imai, Shin-Ichi; Qiao, Feng; Ramachander, Ranjini; Sawaya, Michael R; Gingery, Mari; Sakane, Fumio; Bowie, James U

    2008-03-01

    The diacylglycerol kinase (DGK) enzymes function as regulators of intracellular signaling by altering the levels of the second messengers, diacylglycerol and phosphatidic acid. The DGK delta and eta isozymes possess a common protein-protein interaction module known as a sterile alpha-motif (SAM) domain. In DGK delta, SAM domain self-association inhibits the translocation of DGK delta to the plasma membrane. Here we show that DGK delta SAM forms a polymer and map the polymeric interface by a genetic selection for soluble mutants. A crystal structure reveals that DGKSAM forms helical polymers through a head-to-tail interaction similar to other SAM domain polymers. Disrupting polymerization by polymer interface mutations constitutively localizes DGK delta to the plasma membrane. Thus, polymerization of DGK delta regulates the activity of the enzyme by sequestering DGK delta in an inactive cellular location. Regulation by dynamic polymerization is an emerging theme in signal transduction.

  14. Polymeric matrix materials for infrared metamaterials

    DOEpatents

    Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar

    2014-04-22

    A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.

  15. Possible mediators of the ``living'' radical polymerization

    NASA Astrophysics Data System (ADS)

    Motyakin, M. V.; Wasserman, A. M.; Stott, P. E.; Zaikov, G. E.

    2006-03-01

    The stable radicals derived from different compounds were detected in process of styrene autopolymerization. The nitroxide radicals are produced from nitrosocompound, hindered hydroxylamine, nitrophenols and nitroanisoles. The phenoxyl radicals are formed from quinine methides, and naphtoxyl radicals are generated from 2-nitro-1-naphtol. The radicals are identified, the kinetics of their formation and follow-up evolution are studied. These radicals can participate in process of living radical polymerization as the mediators and can effect significantly on kinetics of polymerization and structure of the resulting polymer.

  16. Producing ORMOSIL scaffolds by femtosecond laser polymerization

    NASA Astrophysics Data System (ADS)

    Matei, A.; Zamfirescu, M.; Radu, C.; Buruiana, E. C.; Buruiana, T.; Mustaciosu, C.; Petcu, I.; Radu, M.; Dinescu, M.

    2012-07-01

    Structures with different geometries and sizes were built via direct femtosecond laser writing, starting from new organic/inorganic hybrid monomers based on hybrid methacrylate containing triethoxysilane, in addition to urethane and urea groups. Multifunctional oligomer of urethane dimethacrylate type was chosen as comonomer in polymerization experiments because dimethacrylates give rise to the formation of a polymer network, having a number of favorable properties including biocompatibility and surface nanostructuring. Free standing polymeric structures were designed and created in order to be tested in fibroblast cells culture. Investigations of the cellular adhesion, proliferation, and viability of L929 mouse fibroblasts on free-standing laser processed scaffolds were performed for different scaffold designs.

  17. Molecular diffusion in plasma-polymerized tetrafluoroethylene

    SciTech Connect

    Butler, M.A.; Buss, R.J. )

    1992-11-01

    Diffusion of an array of molecules in micrometer-thick films of plasma-polymerized tetrafluoroethylene has been measured using an optical interferometric technique. The diffusivity is approximately independent of molecular size up to a molar volume of about 100 cm{sup 3} and drops rapidly for larger molecules. For much larger molecules no penetration of the films is observed. These results suggest that plasma-polymerized tetrafluoroethylene films are heavily cross linked and that this limits the size of the molecules that can penetrate the polymer. The temperature dependence and the molecular size dependence of the diffusivities are discussed in the context of free-volume theory.

  18. Flat phase of quantum polymerized membranes

    NASA Astrophysics Data System (ADS)

    Coquand, O.; Mouhanna, D.

    2016-09-01

    We investigate the flat phase of quantum polymerized phantom membranes by means of a nonperturbative renormalization group approach. We first implement this formalism for general quantum polymerized membranes and derive the flow equations that encompass both quantum and thermal fluctuations. We then deduce and analyze the flow equations relevant to study the flat phase and discuss their salient features: quantum to classical crossover and, in each of these regimes, strong to weak coupling crossover. We finally illustrate these features in the context of free-standing graphene physics.

  19. Polymeric materials science in the microgravity environment

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.

    1989-01-01

    The microgravity environment presents some interesting possibilities for the study of polymer science. Properties of polymeric materials depend heavily on their processing history and environment. Thus, there seem to be some potentially interesting and useful new materials that could be developed. The requirements for studying polymeric materials are in general much less rigorous than those developed for studying metals, for example. Many of the techniques developed for working with other materials, including heat sources, thermal control hardware and noncontact temperature measurement schemes should meet the needs of the polymer scientist.

  20. Polymerization Initiated by Organic Electron Donors.

    PubMed

    Broggi, Julie; Rollet, Marion; Clément, Jean-Louis; Canard, Gabriel; Terme, Thierry; Gigmes, Didier; Vanelle, Patrice

    2016-05-10

    Polymerization reactions with organic electron donors (OED) as initiators are presented herein. The metal-free polymerization of various activated alkene and cyclic ester monomers was performed in short reaction times, under mild conditions, with small amounts of organic reducing agents, and without the need for co-initiators or activation by photochemical, electrochemical, or other methods. Hence, OED initiators enabled the development of an efficient, rapid, room-temperature process that meets the technical standards expected for industrial processes, such as energy savings, cost-effectiveness and safety. Mechanistic investigations support an electron-transfer initiation pathway that leads to the reduction of the monomer. PMID:27061743

  1. A Fluidic Device with Polymeric Textured Ratchets

    PubMed Central

    Sekeroglu, Koray; Demirel, Melik C.

    2014-01-01

    Nanotextured surfaces are widely used throughout nature for adhesion, wetting, and transport. Chemistry, geometry, and morphology are important factors for creating tunable textured surfaces, in which directionality of droplets can be controlled. Here, we fabricated nano textured polymeric surfaces, and studied the effect of tilting on the mobility of frequency modulated water droplet transported on asymmetric nano-PPX tracks. Plastically-deformed tracks guided water droplets for sorting, gating, and merging them as a function on their volume. Polymeric ratchets open up new avenues for the fields of digital fluidics and flexible device fabrication. PMID:25641987

  2. Development of new catalysts for living polymerizations: From interesting reaction mechanisms to new polymeric materials

    NASA Astrophysics Data System (ADS)

    Hustad, Phillip Dene

    Synthetic polymers have revolutionized the modern world. The synthesis of these new materials has relied heavily on the development of new catalytic methods. Remarkable advances have been reported over the past twenty years concerning development of homogeneous olefin polymerization catalysts. Single-site catalysts are now available that are unparalleled in all of polymer chemistry concerning the detailed control of macromolecular stereochemistry. Despite years of fervent research, very few catalytic systems are available for living/controlled polymerization of olefins. While various methods for living anionic, cationic, and radical-based polymerizations have been exploited for the synthesis of complex polymer architectures, the lack of methodology concerning olefin polymerization has limited the development of new polyolefin-based materials. As part of an ongoing effort in the development of new methods for controlled polymerization reactions, a catalyst for the highly stereospecific and living polymerization of propylene was discovered. The complex, a titanium chloride bearing two perfluorinated phenoxyimine ligands, was originally designed for isospecific propylene polymerization. However, the activated catalyst gave highly syndiotactic polypropylene with a narrow molecular weight distribution. The living nature of the polymerization was demonstrated by the synthesis of a series of new ethylene/propylene block copolymers. Mechanistic studies, including a new propagation-based approach, determined that this unexpected microstructure was the result of chain-end control enhanced by an unusual secondary monomer insertion. This mechanism was exploited for the synthesis of vinyl-functional polyolefins, and these polymers were transformed to a series of functional polymers through chemical modification. Although polyolefins are currently indispensable materials, the search for degradable polymeric materials derived from renewable resources is critical for

  3. Optical and electrical characterization of plasma polymerized pyrrole films

    NASA Astrophysics Data System (ADS)

    Kumar, D. Sakthi; Nakamura, Kenji; Nishiyama, Satoko; Ishii, Shigeru; Noguchi, Hiromichi; Kashiwagi, Kunihiro; Yoshida, Yasuhiko

    2003-03-01

    Plasma polymerization of pyrrole was carried out in the presence and absence of iodine, and the resulting films were characterized by optical and electrical means. Their infrared spectra were very similar to each other, suggesting that iodine was neither bonded in any manner to, nor strongly interacting with, the pyrrole polymer chains. Based on their infrared spectra, a chemical structure was proposed for the plasma-polymerized pyrrole (PPPy) film. An analysis of the electronic spectra gave band gap energies of 1.3 and 0.8 eV for the undoped and doped PPPy films, respectively. In line with this result, the current-voltage characteristics of the two types of polymer films revealed that the conductivity of the doped PPPy film was approximately two times greater than that of the undoped one. An investigation of the scanning electron micrographs led us to conclude that iodine had changed the surface morphology of the PPPy film, resulting in the small increase in conductivity. A detailed analysis of the conduction mechanism disclosed that the conduction mechanism in the undoped PPPy film is a Schottky-type mechanism.

  4. In vitro polymerization of microtubules with a fullerene derivative.

    PubMed

    Ratnikova, Tatsiana A; Govindan, Praveen Nedumpully; Salonen, Emppu; Ke, Pu Chun

    2011-08-23

    Fullerene derivative C(60)(OH)(20) inhibited microtubule polymerization at low micromolar concentrations. The inhibition was mainly attributed to the formation of hydrogen bonding between the nanoparticle and the tubulin heterodimer, the building block of the microtubule, as evidenced by docking and molecular dynamics simulations. Our circular dichroism spectroscopy measurement indicated changes in the tubulin secondary structures, while our guanosine-5'-triphosphate hydrolysis assay showed hindered release of inorganic phosphate by the nanoparticle. Isothermal titration calorimetry revealed that C(60)(OH)(20) binds to tubulin at a molar ratio of 9:1 and with a binding constant of 1.3 ± 0.16 × 10(6) M(-1), which was substantiated by the binding site and binding energy analysis using docking and molecular dynamics simulations. Our simulations further suggested that occupancy by the nanoparticles at the longitudinal contacts between tubulin dimers within a protofilament or at the lateral contacts of the M-loop and H5 and H12 helices of neighboring tubulins could also influence the polymerization process. This study offered a new molecular-level insight on how nanoparticles may reshape the assembly of cytoskeletal proteins, a topic of essential importance for illuminating cell response to engineered nanoparticles and for the advancement of nanomedicine.

  5. Polymeric micelles encapsulating photosensitizer: structure/photodynamic therapy efficiency relation.

    PubMed

    Gibot, Laure; Lemelle, Arnaud; Till, Ugo; Moukarzel, Béatrice; Mingotaud, Anne-Françoise; Pimienta, Véronique; Saint-Aguet, Pascale; Rols, Marie-Pierre; Gaucher, Mireille; Violleau, Frédéric; Chassenieux, Christophe; Vicendo, Patricia

    2014-04-14

    Various polymeric micelles were formed from amphiphilic block copolymers, namely, poly(ethyleneoxide-b-ε-caprolactone), poly(ethyleneoxide-b-d,l-lactide), and poly(ethyleneoxide-b-styrene). The micelles were characterized by static and dynamic light scattering, electron microscopy, and asymmetrical flow field-flow fractionation. They all displayed a similar size close to 20 nm. The influence of the chemical structure of the block copolymers on the stability upon dilution of the polymeric micelles was investigated to assess their relevance as carriers for nanomedicine. In the same manner, the stability upon aging was assessed by FRET experiments under various experimental conditions (alone or in the presence of blood proteins). In all cases, a good stability over 48 h for all systems was encountered, with PDLLA copolymer-based systems being the first to release their load slowly. The cytotoxicity and photocytotoxicity of the carriers were examined with or without their load. Lastly, the photodynamic activity was assessed in the presence of pheophorbide a as photosensitizer on 2D and 3D tumor cell culture models, which revealed activity differences between the 2D and 3D systems. PMID:24552313

  6. Polymeric micelles encapsulating photosensitizer: structure/photodynamic therapy efficiency relation.

    PubMed

    Gibot, Laure; Lemelle, Arnaud; Till, Ugo; Moukarzel, Béatrice; Mingotaud, Anne-Françoise; Pimienta, Véronique; Saint-Aguet, Pascale; Rols, Marie-Pierre; Gaucher, Mireille; Violleau, Frédéric; Chassenieux, Christophe; Vicendo, Patricia

    2014-04-14

    Various polymeric micelles were formed from amphiphilic block copolymers, namely, poly(ethyleneoxide-b-ε-caprolactone), poly(ethyleneoxide-b-d,l-lactide), and poly(ethyleneoxide-b-styrene). The micelles were characterized by static and dynamic light scattering, electron microscopy, and asymmetrical flow field-flow fractionation. They all displayed a similar size close to 20 nm. The influence of the chemical structure of the block copolymers on the stability upon dilution of the polymeric micelles was investigated to assess their relevance as carriers for nanomedicine. In the same manner, the stability upon aging was assessed by FRET experiments under various experimental conditions (alone or in the presence of blood proteins). In all cases, a good stability over 48 h for all systems was encountered, with PDLLA copolymer-based systems being the first to release their load slowly. The cytotoxicity and photocytotoxicity of the carriers were examined with or without their load. Lastly, the photodynamic activity was assessed in the presence of pheophorbide a as photosensitizer on 2D and 3D tumor cell culture models, which revealed activity differences between the 2D and 3D systems.

  7. Nitric oxide-releasing polymeric nanoparticles against Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Seabra, A. B.; Kitice, N. A.; Pelegrino, M. T.; Lancheros, C. A. C.; Yamauchi, L. M.; Pinge-Filho, P.; Yamada-Ogatta, S. F.

    2015-05-01

    NO-releasing nanoparticle-treated cells was observed. Taken together, our results reveal a potent toxic effect of NO-releasing polymeric nanoparticles against different life cycle forms of T. cruzi, indicating that the encapsulation of the NO donor S-nitroso-MSA represents an interesting approach to combat and to prevent Chagas disease.

  8. Polymerization Initiated at the Sidewalls of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Hudson, Jared L.

    2011-01-01

    A process has been developed for growing polymer chains via anionic, cationic, or radical polymerization from the side walls of functionalized carbon nanotubes, which will facilitate greater dispersion in polymer matrices, and will greatly enhance reinforcement ability in polymeric material.

  9. Method of Making Thermally Stable, Piezoelectric and Proelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium: applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  10. Biocompatibility of Experimental Polymeric Tracheal Matrices.

    PubMed

    Kiselevskii, M V; Chikileva, I O; Vlasenko, R Ya; Sitdikova, S M; Tenchurin, T Kh; Mamagulashvili, V G; Shepelev, A D; Grigoriev, T A; Chvalun, S N

    2016-08-01

    Biocompatibility of a new tracheal matrix is studied. The new matrix is based on polymeric ultra-fiber material colonized by mesenchymal multipotent stromal cells. The experiments demonstrate cytoconductivity of the synthetic matrices and no signs of their degradation within 2 months after their implantation to recipient mice. These data suggest further studies of the synthetic tracheal matrices on large laboratory animals. PMID:27591876

  11. The morphology of emulsion polymerized latex particles

    SciTech Connect

    Wignall, G.D.; Ramakrishnan, V.R.; Linne, M.A.; Klein, A.; Sperling, L.H.; Wai, M.P.; Gelman, R.A.; Fatica, M.G.; Hoerl, R.H.; Fisher, L.W.

    1987-11-01

    Under monomer starved feed conditions, emulsion polymerization of perdeuterated methyl methacrylate and styrene in the presence of preformed polymethylmethacrylate latexes resulted in particles with a core-shell morphology, as determined by small-angle neutron scattering (SANS) analysis for a hollow sphere. The locus of polymerization of the added deuterated monomer is therefore at the particle surface. In similar measurements a statistical copolymer of styrene and methyl methacrylate was used as seed particles for further polymerization of trideuteromethyl methacrylate. The resulting polymer latex was again shown to have a core-shell morphological structre as determined by SANS. SANS experiments were also undertaken on polystyrene latexes polymerized by equilibrium swelling methods, with deuterated polymer forming the first or second step. The experiments covered a molecular weight range of 6 x 10/sup 4/ < M < 6 x 10/sup 6/ g/mol. For M > 10/sup 6/ the molecular weights are consistent with the experimental errors, indicating that the deuterium labeled molecules are randomly distributed in the latex. These results led to the finding that the polymer chains were constrained in the latex particles by factors of 2 to 4 from the relaxed coil dimensions. For M < 10/sup 6/ g/mol SANS gave zero angle scattering intensities much higher than expected on the basis of a random distribution of labeled molecules. Several models were examined, including the possible development of core-shell structures at lower molecular weights. 25 refs., 6 figs., 3 tabs.

  12. Polymerization of epoxidized triglycerides with fluorosulfonic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of triglycerides as agri-based renewable raw materials for the development of new products is highly desirable in view of uncertain future petroleum prices. A new method of polymerizing epoxidized soybean oil has been devised with the use of fluorosulfonic acid. Depending on the reaction con...

  13. Impregnated metal-polymeric functional beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Volksen, Willi (Inventor)

    1978-01-01

    Amine containing polymeric microspheres such as polyvinyl pyridine are complexed with metal salts or acids containing metals such as gold, platinum or iron. After reduction with sodium borohydride, the salt is reduced to finely divided free metal or metal oxides, useful as catalysts. Microspheres containing covalent bonding sites can be used for labeling or separating proteins.

  14. The Morphology of Emulsion Polymerized Latex Particles

    DOE R&D Accomplishments Database

    Wignall, G. D.; Ramakrishnan, V. R.; Linne, M. A.; Klein, A.; Sperling, L. H.; Wai, M. P.; Gelman, R. A.; Fatica, M. G.; Hoerl, R. H.; Fisher, L. W.

    1987-11-01

    Under monomer starved feed conditions, emulsion polymerization of perdeuterated methyl methacrylate and styrene in the presence of preformed polymethylmethacrylate latexes resulted in particles with a core-shell morphology, as determined by small-angle neutron scattering (SANS) analysis for a hollow sphere. The locus of polymerization of the added deuterated monomer is therefore at the particle surface. In similar measurements a statistical copolymer of styrene and methyl methacrylate was used as seed particles for further polymerization of trideuteromethyl methacrylate. The resulting polymer latex was again shown to have a core-shell morphological structure as determined by SANS. SANS experiments were also undertaken on polystyrene latexes polymerized by equilibrium swelling methods, with deuterated polymer forming the first or second step. The experiments covered a molecular weight range of 6 x 10{sup 4} 10{sup 6} the molecular weights are consistent with the experimental errors, indicating that the deuterium labeled molecules are randomly distributed in the latex. These results led to the finding that the polymer chains were constrained in the latex particles by factors of 2 to 4 from the relaxed coil dimensions. For M < 10{sup 6} g/mol SANS gave zero angle scattering intensities much higher than expected on the basis of a random distribution of labeled molecules. Several models were examined, including the possible development of core-shell structures at lower molecular weights.

  15. Polymeric Electrolytic Hygrometer For Harsh Environments

    NASA Technical Reports Server (NTRS)

    Lawson, Daniel D.; Shakkottai, Parthasarathy; Venkateshan, Shakkottai P.

    1989-01-01

    Design of polymeric electrolytic hygrometer improved to meet need for reliable measurements of relative humidity in harsh environments of pulpmills and papermills. Redesigned sensor head features shorter, more-rigidly-held sensing element, less vulnerable than previous version to swell and loss of electrical contact. Useful for control of batch dryers in food and pharmaceutical industries.

  16. Hot-embossed polymeric optical waveguides

    NASA Astrophysics Data System (ADS)

    Choi, Choon-Gi; Kim, Jin-Tae; Han, Sang-Pil; Ahn, Seung-Ho

    2004-10-01

    Polymer waveguides have attracted a great deal of attention for their potential applications as optical components in optical communications, optical interconnections and optical sensors because they are easy to manufacture at a low temperature, and they have a low processing cost. Hot embossing is powerful and effective tools to produce a large volume of waveguides and structure high-precision micro/nano patterns of thin polymer films using a stamp for optical applications. In this work, fabrication techniques of hot embossed polymeric optical waveguides for parallel optical interconnection module, multi-channel variable optical attenuator and optical printed circuit boards are demonstrated. The single- and multi-mode waveguides are produced by core filling and UV curing processes. New approaches to fabricating single-mode polymeric waveguides with the high thermal stability in thermosetting polymers and two-dimensional multi-mode polymeric waveguides for high-density parallel optical interconnections as well as a simultaneous fabrication of single-mode polymeric waveguides with micro pedestals for passive fiber alignment are also reported.

  17. Impregnated metal-polymeric functional beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Volksen, Willi (Inventor)

    1980-01-01

    Amine containing polymeric microspheres such as polyvinyl pyridine are complexed with metal salts or acids containing metals such as gold, platinum or iron. After reduction with sodium borohydride, the salt is reduced to finely divided free metal or metal oxides, useful as catalysts. Microspheres containing covalent bonding sites can be used for labeling or separating proteins.

  18. TRANSITION METAL CATALYSIS IN CONTROLLED RADICAL POLYMERIZATION: ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    EPA Science Inventory

    Novel and diversified macromolecular structures, which include polymers with designed topologies (top), compostions (middle), and functionalities (bottom), can be prepared by atom transfer radical polymerization processes. These polymers can be synthesized from a large variety of...

  19. Free heme and sickle hemoglobin polymerization

    NASA Astrophysics Data System (ADS)

    Uzunova, Veselina V.

    This work investigates further the mechanism of one of the most interesting of the protein self-assembly systems---the polymerization of sickle hemoglobin and the role of free heme in it. Polymerization of sickle hemoglobin is the primary event in the pathology of a chronic hemolytic condition called sickle cell anemia with complex pathogenesis, unexplained variability and symptomatic treatment. Auto-oxidation develops in hemoglobin solutions exposed to room temperature and causes release of ferriheme. The composition of such solutions is investigated by mass spectrometry. Heme dimers whose amount corresponds to the initial amounts of heme released from the protein are followed. Differences in the dimer peak height are established for hemoglobin variants A, S and C and depending on the exposure duration. The effects of free heme on polymerization kinetics are studied. Growth rates and two characteristic parameters of nucleation are measured for stored Hb S. After dialysis of polymerizing solutions, no spherulites are detected at moderately high supersaturation and prolonged exposure times. The addition of 0.16-0.26 mM amounts of heme to dialyzed solutions leads to restoration of polymerization. The measured kinetic parameters have higher values compared to the ones before dialysis. The amount of heme in non-dialyzed aged solution is characterized using spectrophotometry. Three methods are used: difference in absorbance of dialyzed and non-dialyzed solutions, characteristic absorbance of heme-albumin complex and absorbance of non-dialyzed solutions with added potassium cyanide. The various approaches suggest the presence of 0.12 to 0.18 mM of free ferriheme in such solutions. Open questions are whether the same amounts of free heme are present in vivo and whether the same mechanism operates intracellulary. If the answer to those questions is positive, then removal of free heme from erythrocytes can influence their readiness to sickle.

  20. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to...

  1. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold...

  2. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold...

  3. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold...

  4. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to...

  5. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to...

  6. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to...

  7. 40 CFR 721.10299 - Polymeric MDI based polyurethanes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymeric MDI based polyurethanes... Specific Chemical Substances § 721.10299 Polymeric MDI based polyurethanes (generic). (a) Chemical... as polymeric MDI based polyurethanes (PMNs P-00-2, P-00-5, and P-00-6) are subject to reporting...

  8. 40 CFR 721.10299 - Polymeric MDI based polyurethanes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymeric MDI based polyurethanes... Specific Chemical Substances § 721.10299 Polymeric MDI based polyurethanes (generic). (a) Chemical... as polymeric MDI based polyurethanes (PMNs P-00-2, P-00-5, and P-00-6) are subject to reporting...

  9. 40 CFR 721.10299 - Polymeric MDI based polyurethanes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymeric MDI based polyurethanes... Specific Chemical Substances § 721.10299 Polymeric MDI based polyurethanes (generic). (a) Chemical... as polymeric MDI based polyurethanes (PMNs P-00-2, P-00-5, and P-00-6) are subject to reporting...

  10. Biochemical analysis of the human ENA/VASP-family proteins, MENA, VASP and EVL, in homologous recombination.

    PubMed

    Takaku, Motoki; Ueno, Hiroyuki; Kurumizaka, Hitoshi

    2011-06-01

    MENA, VASP and EVL are members of the ENA/VASP family of proteins and are involved in cytoplasmic actin remodeling. Previously, we found that EVL directly interacts with RAD51, an essential protein in the homologous recombinational repair of double-strand breaks (DSBs) and stimulates the RAD51-mediated recombination reactions in vitro. The EVL-knockdown MCF7 cells exhibited a clear reduction in RAD51-foci formation, suggesting that EVL may function in the DSB repair pathway through RAD51-mediated homologous recombination. However, the DSB repair defects were less significant in the EVL-knockdown cells, implying that two EVL paralogues, MENA and VASP, may complement the EVL function in human cells. Therefore, in the present study, we purified human MENA, VASP and EVL as recombinant proteins, and compared their biochemical activities in vitro. We found that all three proteins commonly exhibited the RAD51 binding, DNA binding and DNA-annealing activities. Stimulation of the RAD51-mediated homologous pairing was also observed with all three proteins. In addition, surface plasmon resonance analyses revealed that MENA, VASP and EVL mutually interacted. These results support the ideas that the ENA/VASP-family proteins are functionally redundant in homologous recombination, and that all three may be involved in the DSB repair pathway in humans.

  11. Revealing Mercury

    NASA Astrophysics Data System (ADS)

    Prockter, L. M.; Solomon, S. C.; Head, J. W.; Watters, T. R.; Murchie, S. L.; Robinson, M. S.; Chapman, C. R.; McNutt, R. L.

    2009-04-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, developed under NASA's Discovery Program, launched in August 2004. En route to insertion into orbit about Mercury in 2011, MESSENGER flies by Mercury three times. The first and second of these encounters were accomplished in January and October of 2008. These flybys viewed portions of Mercury's surface that were not observed by Mariner 10 during its reconnaissance of somewhat less than half of the planet in 1974-1975. All MESSENGER instruments operated during each flyby and returned a wealth of new data. Many of the new observations were focused on the planet's geology, including monochrome imaging at resolutions as high as 100 m/pixel, multispectral imaging in 11 filters at resolutions as high as 500 m/pixel, laser altimetry tracks extending over several thousands of kilometers, and high-resolution spectral measurements of several types of terrain. Here we present an overview of the first inferences on the global geology of Mercury from the MESSENGER observations. Whereas evidence for volcanism was equivocal from Mariner 10 data, the new MESSENGER images and altimetry provide compelling evidence that volcanism was widespread and protracted on Mercury. Color imaging reveals three common spectral units on the surface: a higher-reflectance, relatively red material occurring as a distinct class of smooth plains, typically with distinct embayment relationships interpreted to indicate volcanic emplacement; a lower-reflectance, relatively blue material typically excavated by impact craters and therefore inferred to be more common at depth; and a spectrally intermediate terrain that constitutes much of the uppermost crust. Three more minor spectral units are also seen: fresh crater ejecta, reddish material associated with rimless depressions interpreted to be volcanic centers, and high-reflectance deposits seen in some crater floors. Preliminary measurements of crater size

  12. Effect of high-pressure polymerization on mechanical properties of PMMA denture base resin.

    PubMed

    Murakami, Natsuko; Wakabayashi, Noriyuki; Matsushima, Rie; Kishida, Akio; Igarashi, Yoshimasa

    2013-04-01

    The aim of this study was to assess the effect of high-pressure polymerization on mechanical properties of denture base resin. A heat-curing denture base resin and an experimental PMMA were polymerized under 500MPa of pressure by means of an isostatic pressurization machine at 70°C for 24h to make rectangular specimens whose dimensions were 30mm×2mm×2mm. Each specimen was deflected on a three-point flexural test until either fracture occurred or the sample was loaded up to 8mm in deflection. The molecular weight of the PMMA without filler was analyzed using the high-speed liquid chromatography system. Increased ductility without fracture was shown in the specimens subjected to high pressure, while most of the control specimens (ambient pressure) fractured. The mean toughness of the PMMA specimens polymerized under the high pressure was significantly higher than the same material polymerized under ambient pressure (p<0.01). The high pressure groups of the denture resin and the PMMA revealed a significantly lower mean 0.2% yield stress, flexural strength, and elastic modulus than control groups (p<0.01). There were certain amounts of higher molecular weight polymers in the high pressure specimens than were present in the controls. The increased toughness shown in the PMMA polymerized under the high pressure was presumably attributed to the higher molecular weight produced by the pressure. The result suggests a potential application of the high-pressure polymerization to the development of PMMA-based denture resin with improved fracture resistance.

  13. Rapid polymerization of Entamoeba histolytica actin induced by interaction with target cells.

    PubMed

    Bailey, G B; Day, D B; Gasque, J W

    1985-08-01

    Within 5 s of challenge of Entamoeba histolytica trophozoites with red blood cells (RBC), attachment and deformation of target cells occurred at multiple sites on the amoeba surface. Many trophozoite-target interfaces were outlined with a ring of polymerized amoeba actin, revealed by rhodamine-phalloidin staining of glutaraldehyde-fixed and Triton-X 100-extracted cells. The beginnings of phagocytic pseudopods rimmed many targets. The phagocytic membrane and underlying actin network grew uniformly about a target cell, which became dramatically elongated and constricted, sometimes severed, as it entered the amoeba. Total engulfment of RBC targets occurred within 10 s. By methanol extraction and spectrofluorimetric measurement of bound rhodamine-phalloidin we were able to quantitate polymerized actin in amoebae. Interaction with target cells was accompanied by a net increase of up to twofold in the average polymerized actin content of trophozoites. This reached a maximum during the period of most active phagocytosis (4 min after challenge at 25 degrees C), and declined as phagocytic activity diminished (8-16 min). Challenge with latex beads of similar size and number, which E. histolytica phagocytized more slowly than RBC, induced neither a detectable increase in polymerized actin content nor appearance of polymerized actin at the contact interface. RBC inhibited phagocytosis of latex beads, but the reverse did not occur. The results demonstrate a rapid, recognition-specific stimulation of reorganization of the actin cytoskeleton of E. histolytica induced by binding to target cells. Vigorous phagocytic activity is frequently an immediate consequence of cell-cell contact, which emphasizes the importance of this process in the contact-mediated attack mechanism of this pathogen. The quantitative assay of polymerized actin may be useful in further studies of this mechanism. PMID:2862217

  14. Stealth polymeric vesicles via metal-free click coupling.

    PubMed

    Isaacman, Michael J; Corigliano, Eleonora M; Theogarajan, Luke S

    2013-09-01

    The strain-promoted azide-alkyne cycloaddition represents an optimal metal-free method for the modular coupling of amphiphilic polymer blocks. Hydrophilic poly(oxazoline) (PMOXA) or poly(ethylene glycol) (PEG) A-blocks were coupled with a hydrophobic poly(siloxane) B-block to provide triblock copolymers capable of self-assembling into vesicular nanostructures. Stealth properties investigated via a complement activation assay revealed the superior in vitro stealth attributes of polymeric vesicles synthesized via a metal-free approach to those coupled via the widely used copper-catalyzed click method. Furthermore, the ability to change a single parameter, such as the hydrophilic block, allowed the direct comparison of the biocompatibility properties of triblock copolymers containing PMOXA or PEG. Our studies convincingly demonstrate the need for a metal-free approach, both in preventing cytotoxicity while imparting optimal stealth properties for potential biomedical applications.

  15. A simple polymeric model describes cell nuclear mechanical response

    NASA Astrophysics Data System (ADS)

    Banigan, Edward; Stephens, Andrew; Marko, John

    The cell nucleus must continually resist inter- and intracellular mechanical forces, and proper mechanical response is essential to basic cell biological functions as diverse as migration, differentiation, and gene regulation. Experiments probing nuclear mechanics reveal that the nucleus stiffens under strain, leading to two characteristic regimes of force response. This behavior depends sensitively on the intermediate filament protein lamin A, which comprises the outer layer of the nucleus, and the properties of the chromatin interior. To understand these mechanics, we study a simulation model of a polymeric shell encapsulating a semiflexible polymer. This minimalistic model qualitatively captures the typical experimental nuclear force-extension relation and observed nuclear morphologies. Using a Flory-like theory, we explain the simulation results and mathematically estimate the force-extension relation. The model and experiments suggest that chromatin organization is a dominant contributor to nuclear mechanics, while the lamina protects cell nuclei from large deformations.

  16. Polymeric Pseudo-Liquid Membranes from Poly(N-oleylacrylamide)

    PubMed Central

    Shiono, Hiroko; Yoshikawa, Masakazu

    2014-01-01

    A polymeric pseudo-liquid membrane (PPLM) was constructed from poly(N-oleylacrylamide) (PC18AAm), which exhibited a rubbery state under membrane transport conditions and used as the membrane matrix. In the present study, dibenzo-18-crown-6 (DB18C6) and dibenzo-21-crown-7 (DB21C7) were adopted as transporters for alkali metal ions. KCl was adopted as a model substrate for DB18C6 and CsCl the latter. Chiral transporter, O-allyl-N-(9-anthracenylmethyl)cinchonidinium bromide (AAMC) was used as a transporter for chiral separation of a racemic mixture of phenylglycine (Phegly). The l-somer was transported in preference to the antipode. The present study revealed that PPLMs are applicable to membrane transport, such as metal ion transport and chiral separation. PMID:24957173

  17. Comparative assessment of water treatment using polymeric and inorganic coagulants

    NASA Astrophysics Data System (ADS)

    Manda, Innocent K. M.; Chidya, Russel C. G.; Saka, John D. K.; Biswick, Timothy T.

    2016-06-01

    Portable water plays a vital role in improving human life, particularly in controlling the spread of diseases. However, problems associated with lack of potable water are still common especially in developing countries including Malawi. Until now little information exists on the effectiveness of available commercial coagulants used by national water boards in Malawi. Therefore, this study was undertaken in Southern Region Water Board (SRWB) to investigate the efficiency of polymeric coagulants (sufdfloc 3850 and algaefloc 19s) in turbidity reduction comparative with inorganic coagulant (aluminium sulphate) at Zomba, Liwonde, Mangochi, Chikwawa and Mulanje Treatment plants. The jar test method was used to determine the effectiveness of the water coagulants. The results revealed that sudfloc 3850 was most effective in reducing turbidity at Mangochi (99.4 ± 0.06%) and Liwonde (97.2 ± 0.04%) using 0.4 mg L-1 flocculant dose. The Zomba, Mulanje and Chikwawa plants gave 19.56 ± 0.03%, 29.23 ± 0.02% and 9.43 ± 0.02% total reductions respectively. Algaefloc 19s afforded the highest turbidity reduction at Liwonde and Mangochi plants (98.66 ± 0.06 and 97.48 ± 0.05% at a dose of 0.4 and 0.6 mg L-1 respectively), while Chikwawa provided the lowest (9.52 ± 0.01%). At the Zomba and Mulanje plants 20.5 ± 0.03% and 28.4 ± 0.04% reductions were obtained respectively. The inorganic flocculant, alum provided a 99.0 ± 0.05% and 98.6 ± 0.04% reduction at a dose of 4.0 mg L-1 and 6.0 mg L-1 at Zomba and Liwonde plants respectively. The lowest reductions in turbidity were achieved at Chikwawa (7.50 ± 0.01%), Mangochi (12.97 ± 0.02%) and Mulanje (25.00 ± 0.02). The best and optimum pH ranges for polymeric and inorganic coagulants were 7.20-7.80 and 7.35 to 7.57 respectively. The results further revealed that sudfloc 3850 and algaefloc 19s achieved faster formation of heavy flocs than alum. At 0.4 mg L-1 flocculant dosage sudfloc 3850 and algaefloc 19s required ten times

  18. Mechanisms of Drug Diffusion from Polymeric Devices.

    NASA Astrophysics Data System (ADS)

    Sharma, Kuldeepak

    1987-09-01

    A detailed mechanistic study of drug diffusion and the factors which influence drug diffusion through polymeric controlled release systems was undertaken to understand drug diffusion through hydrophilic and hydrophobic polymeric systems. The effect of improved aqueous solubility of the salt form (ionizable form) of selected drugs on diffusion through hydrophilic and hydrophobic polymeric membranes was compared to diffusion of the less soluble (unionizable form) of the drugs. Model drugs chosen for these studies were prednisolone, prednisolone phosphate sodium (prednisolone phosphoric acid disodium salt), pilocarpine, pilocarpine hydrochloride, sulfacetamide and sodium sulfacetamide. The hydrophilic polymers were hydrogels of hydroxyethylmethacrylate (PHEMA) and hydrophobic polymers were copolyether-urethane -urea (Biomer) and polydimethylsiloxane (PDMS). Salt forms of the drugs permeated faster than the free forms through the hydrophilic polymers because of higher aqueous solubility. The free forms of the drugs had higher diffusion rates than the salt forms due to increased solubility in the hydrophobic polymers. Drug solubility in polymers and the water fraction of the polymeric membrane were determined to be the primary factors in diffusion through polymeric membranes. Drug aqueous solubility was of secondary importance. Two controlled release systems were then designed to further study drug release. The Biomer and copolymers of polystyrene and PHEMA were chosen as the polymers for the fabrication of the devices. These copolymers incorporated the favorable attributes of hydrophobic and hydrophilic homopolymers into single polymers. Prednisolone was used as a model drug for these studies. The effects of initial drug load, drug loading solvents and the drug polymer interactions on drug release from the devices were then studied. The drug release from these devices increased as the initial drug load increased. Drug loading solvents had a marked effect on drug

  19. Elasticity Imaging of Polymeric Media

    PubMed Central

    Sridhar, Mallika; Liu, Jie; Insana, Michael F.

    2009-01-01

    Viscoelastic properties of soft tissues and hydropolymers depend on the strength of molecular bonding forces connecting the polymer matrix and surrounding fluids. The basis for diagnostic imaging is that disease processes alter molecular-scale bonding in ways that vary the measurable stiffness and viscosity of the tissues. This paper reviews linear viscoelastic theory as applied to gelatin hydrogels for the purpose of formulating approaches to molecular-scale interpretation of elasticity imaging in soft biological tissues. Comparing measurements acquired under different geometries, we investigate the limitations of viscoelastic parameters acquired under various imaging conditions. Quasistatic (step-and-hold and low-frequency harmonic) stimuli applied to gels during creep and stress relaxation experiments in confined and unconfined geometries reveal continuous, bimodal distributions of respondance times. Within the linear range of responses, gelatin will behave more like a solid or fluid depending on the stimulus magnitude. Gelatin can be described statistically from a few parameters of low-order rheological models that form the basis of viscoelastic imaging. Unbiased estimates of imaging parameters are obtained only if creep data are acquired for greater than twice the highest retardance time constant and any steady-state viscous response has been eliminated. Elastic strain and retardance time images are found to provide the best combination of contrast and signal strength in gelatin. Retardance times indicate average behavior of fast (1–10 s) fluid flows and slow (50–400 s) matrix restructuring in response to the mechanical stimulus. Insofar as gelatin mimics other polymers, such as soft biological tissues, elasticity imaging can provide unique insights into complex structural and biochemical features of connectives tissues affected by disease. PMID:17408331

  20. Monitoring patterned enzymatic polymerization on DNA origami at single-molecule level

    NASA Astrophysics Data System (ADS)

    Okholm, A. H.; Aslan, H.; Besenbacher, F.; Dong, M.; Kjems, J.

    2015-06-01

    DNA origami has been used to orchestrate reactions with nano-precision using a variety of biomolecules. Here, the dynamics of albumin-assisted, localized single-molecule DNA polymerization by terminal deoxynucleotidyl transferase on a 2D DNA origami are monitored using AFM in liquid. Direct visualization of the surface activity revealed the mechanics of growth.DNA origami has been used to orchestrate reactions with nano-precision using a variety of biomolecules. Here, the dynamics of albumin-assisted, localized single-molecule DNA polymerization by terminal deoxynucleotidyl transferase on a 2D DNA origami are monitored using AFM in liquid. Direct visualization of the surface activity revealed the mechanics of growth. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01945a

  1. Cooperative polymerization of one-patch colloids

    SciTech Connect

    Vissers, Teun; Smallenburg, Frank; Munaò, Gianmarco; Preisler, Zdeněk; Sciortino, Francesco

    2014-04-14

    We numerically investigate cooperative polymerization in an off-lattice model based on a pairwise additive potential using particles with a single attractive patch that covers 30% of the colloid surface. Upon cooling, these particles self-assemble into small clusters which, below a density-dependent temperature, spontaneously reorganize into long straight tubes. We evaluate the partition functions of clusters of all sizes to provide an accurate description of the chemical reaction constants governing this process. Our calculations show that, for intermediate sizes, the partition functions retain contributions from two different structures, differing in both energy and entropy. We illustrate the microscopic mechanism behind the complex polymerization process in this system and provide a detailed evaluation of its thermodynamics.

  2. Hierarchical Nanowires Synthesized by Supramolecular Stepwise Polymerization.

    PubMed

    Zhuang, Zeliang; Jiang, Tao; Lin, Jiaping; Gao, Liang; Yang, Chaoying; Wang, Liquan; Cai, Chunhua

    2016-09-26

    The self-organization of pre-assembled aggregates is an efficient stepwise strategy for fabricating nanostructures with a second level of hierarchy. Herein, we report that anisotropic spindle-like micelles, self-assembled from polypeptide graft copolymers with rigid backbones, can serve as ideal pre-assembled subunits for constructing one-dimensional materials with hierarchical structures. By adding organic solvents and dialyzing against water, reactive points can be generated at the ends of the spindle-like micelles, which subsequently drive the anisotropic micelles to grow as rods in a chain and eventually self-assemble into hierarchical nanowires in a stepwise manner. The second self-assembly step is a hierarchical process that resembles step polymerization. Hierarchical structures can be precisely synthesized by this new type of polymerization. These nanostructures can be tailored by the activity of the reactive points, which depends on the nature of the solvent and the molecular architecture. PMID:27604499

  3. Polymeric synthesis of silicon carbide with microwaves.

    PubMed

    Aguilar, Juan; Urueta, Luis; Valdez, Zarel

    2007-01-01

    The aim of this work is conducting polymeric synthesis with microwaves for producing beta-SiC. A polymeric precursor was prepared by means of hydrolysis and condensation reactions from pheniltrimethoxysilane, water, methanol, ammonium hydroxide and chloride acid. The precursor was placed into a quartz tube in vacuum; pyrolysis was carried out conventionally in a tube furnace, and by microwaves at 2.45 GHz in a multimode cavity. Conventional tests took place in a scheme where temperature was up to 1500 degrees C for 120 minutes. Microwave heating rate was not controlled and tests lasted 60 and 90 minutes, temperature was around 900 degrees C. Products of the pyrolysis were analyzed by means of x-ray diffraction; in the microwave case the diffraction patterns showed a strong background of either very fine particles or amorphous material, then infrared spectroscopy was also employed for confirming carbon bonds. In both processes beta-SiC was found as the only produced carbide.

  4. Polymeric multilayer capsules in drug delivery.

    PubMed

    De Cock, Liesbeth J; De Koker, Stefaan; De Geest, Bruno G; Grooten, Johan; Vervaet, Chris; Remon, Jean Paul; Sukhorukov, Gleb B; Antipina, Maria N

    2010-09-17

    Recent advances in medicine and biotechnology have prompted the need to develop nanoengineered delivery systems that can encapsulate a wide variety of novel therapeutics such as proteins, chemotherapeutics, and nucleic acids. Moreover, these delivery systems should be "intelligent", such that they can deliver their payload at a well-defined time, place, or after a specific stimulus. Polymeric multilayer capsules, made by layer-by-layer (LbL) coating of a sacrificial template followed by dissolution of the template, allow the design of microcapsules in aqueous conditions by using simple building blocks and assembly procedures, and provide a previously unmet control over the functionality of the microcapsules. Polymeric multilayer capsules have recently received increased interest from the life science community, and many interesting systems have appeared in the literature with biodegradable components and biospecific functionalities. In this Review we give an overview of the recent breakthroughs in their application for drug delivery.

  5. Polymeric Gel Electrolytes for Electrochemical Capacitors

    NASA Astrophysics Data System (ADS)

    Morita, Masayuki; Qiao, Jin-Li; Ohsumi, Naoki; Yoshimoto, Nobuko; Egashira, Minato

    2006-06-01

    Three kinds of the polymer matrix, poly(ethylene oxide)-grafted polymethacrylate (PEO-PMA), poly(vinyldene fluoride) (PVdF) and poly(vinyldene-co-hexafluoropripylene) (PVdF-HFP), were used for gel preparation. A proper amount of organic salts or acids were dissolved in the polymer matrix together with organic plasticizers, dimethylformamide (DMF) and/or poly-(efhylene glycol)-dimethylether (PEGDE), without water. Thin films of the polymeric gel were obtained by either direct polymerization of the mixed monomer solution or a thermal casting method. The composition of the polymer-electrolyte complex system is optimized to obtain good capacitor performances of the electrochemical capacitor (ECC) system.

  6. Simultaneous covalent and noncovalent hybrid polymerizations

    NASA Astrophysics Data System (ADS)

    Yu, Zhilin; Tantakitti, Faifan; Yu, Tao; Palmer, Liam C.; Schatz, George C.; Stupp, Samuel I.

    2016-01-01

    Covalent and supramolecular polymers are two distinct forms of soft matter, composed of long chains of covalently and noncovalently linked structural units, respectively. We report a hybrid system formed by simultaneous covalent and supramolecular polymerizations of monomers. The process yields cylindrical fibers of uniform diameter that contain covalent and supramolecular compartments, a morphology not observed when the two polymers are formed independently. The covalent polymer has a rigid aromatic imine backbone with helicoidal conformation, and its alkylated peptide side chains are structurally identical to the monomer molecules of supramolecular polymers. In the hybrid system, covalent chains grow to higher average molar mass relative to chains formed via the same polymerization in the absence of a supramolecular compartment. The supramolecular compartments can be reversibly removed and re-formed to reconstitute the hybrid structure, suggesting soft materials with novel delivery or repair functions.

  7. Simultaneous covalent and noncovalent hybrid polymerizations.

    PubMed

    Yu, Zhilin; Tantakitti, Faifan; Yu, Tao; Palmer, Liam C; Schatz, George C; Stupp, Samuel I

    2016-01-29

    Covalent and supramolecular polymers are two distinct forms of soft matter, composed of long chains of covalently and noncovalently linked structural units, respectively. We report a hybrid system formed by simultaneous covalent and supramolecular polymerizations of monomers. The process yields cylindrical fibers of uniform diameter that contain covalent and supramolecular compartments, a morphology not observed when the two polymers are formed independently. The covalent polymer has a rigid aromatic imine backbone with helicoidal conformation, and its alkylated peptide side chains are structurally identical to the monomer molecules of supramolecular polymers. In the hybrid system, covalent chains grow to higher average molar mass relative to chains formed via the same polymerization in the absence of a supramolecular compartment. The supramolecular compartments can be reversibly removed and re-formed to reconstitute the hybrid structure, suggesting soft materials with novel delivery or repair functions. PMID:26823427

  8. Therapeutic strategies based on polymeric microparticles.

    PubMed

    Vilos, C; Velasquez, L A

    2012-01-01

    The development of the field of materials science, the ability to perform multidisciplinary scientific work, and the need for novel administration technologies that maximize therapeutic effects and minimize adverse reactions to readily available drugs have led to the development of delivery systems based on microencapsulation, which has taken one step closer to the target of personalized medicine. Drug delivery systems based on polymeric microparticles are generating a strong impact on preclinical and clinical drug development and have reached a broad development in different fields supporting a critical role in the near future of medical practice. This paper presents the foundations of polymeric microparticles based on their formulation, mechanisms of drug release and some of their innovative therapeutic strategies to board multiple diseases.

  9. Living anionic polymerization using a microfluidic reactor

    SciTech Connect

    Iida, Kazunori; Chastek, Thomas Q.; Beers, Kathryn L.; Cavicchi, Kevin A.; Chun, Jaehun; Fasolka, Michael J.

    2009-02-01

    Living anionic polymerizations were conducted within aluminum-polyimide microfluidic devices. Polymerizations of styrene in cyclohexane were carried out at various conditions, including elevated temperature (60 °C) and high monomer concentration (42%, by volume). The reactions were safely maintained at a controlled temperature at all points in the reactor. Conducting these reactions in a batch reactor results in uncontrolled heat generation with potentially dangerous rises in pressure. Moreover, the microfluidic nature of these devices allows for flexible 2D designing of the flow channel. Four flow designs were examined (straight, periodically pinched, obtuse zigzag, and acute zigzag channels). The ability to use the channel pattern to increase the level of mixing throughout the reactor was evaluated. When moderately high molecular mass polymers with increased viscosity were made, the patterned channels produced polymers with narrower PDI, indicating that passive mixing arising from the channel design is improving the reaction conditions.

  10. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Milbourne, M.

    2005-01-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. The objective of this task is to quantify lifetimes through measurement of the optical and mechanical stability of candidate polymeric glazing and absorber materials. Polycarbonate sheet glazings, as proposed by two industry partners, have been tested for resistance to UV radiation with three complementary methods. Incorporation of a specific 2-mil thick UV-absorbing screening layer results in glazing lifetimes of at least 15 years; improved screens promise even longer lifetimes. Proposed absorber materials were tested for creep and embrittlement under high temperature, and appear adequate for planned ICS absorbers.

  11. Formation of Micro Lens by Laser Polymerization

    NASA Astrophysics Data System (ADS)

    Mori, Akira; Horiuchi, Takashi; Mizumachi, Manabu; Seino, Satoshi; Nakagawa, Takuya; Suzuki, Kaoru

    Recently, a micro lens has been demanded in uniting a laser device and an optical fiber. We have fabricated a new type of plastic micro lens by laser polymerization. The amount of the resin polymerized by exposing laser light, namely light-curing, depends on the laser power and exposing time. The shape of the lens can be controlled by changing the condition of laser irradiation. In this paper, the characteristic of the lens formed by this method was examined. Moreover, the relation between the lens shape and the condition of laser irradiation was investigated, and the condition to reducing a transverse spherical aberration was examined. As the result, the lens of 390μm in diameter was formed. The area which can be used for light coupling from a laser diode to a multimode fiber will be 81 % in the total lens area.

  12. [Molecular/polymeric magnetism]. Progress report

    SciTech Connect

    Not Available

    1993-03-01

    New materials were synthesized to test the generality of magnetism in molecular/polymeric systems. The first room temperature molecular based magnet V(TCNE){sub x}{center_dot}y(solvent) (1) is disclosed. The ferromagnetic and related transitions were studied in decamethylferrocenium tetracyanoethanide (TCNE), (1), and related materials. Our and others` models were tested for ferromagnetic and antiferromagnetic exchange between local sites; models for control of {Tc} were also tested.

  13. INHIBITING THE POLYMERIZATION OF NUCLEAR COOLANTS

    DOEpatents

    Colichman, E.L.

    1959-10-20

    >The formation of new reactor coolants which contain an additive tbat suppresses polymerization of the primary dissoclation free radical products of the pyrolytic and radiation decomposition of the organic coolants is described. The coolants consist of polyphenyls and condensed ring compounds having from two to about four carbon rings and from 0.1 to 5% of a powdered metal hydride chosen from the group consisting of the group IIA and IVA dispersed in the hydrocarbon.

  14. Biologically produced acid precipitable polymeric lignin

    DOEpatents

    Crawford, Don L.; Pometto, III, Anthony L.

    1984-01-01

    A water soluble, acid precipitable polymeric degraded lignin (APPL), having a molecular weight of at least 12,000 daltons, and comprising, by percentage of total weight, at least three times the number of phenolic hydroxyl groups and carboxylic acid groups present in native lignin. The APPL may be modified by chemical oxidation and reduction to increase its phenolic hydroxyl content and reduce the number of its antioxidant inhibitory side chains, thereby improving antioxidant properties.

  15. Bimetallic complexes and polymerization catalysts therefrom

    DOEpatents

    Patton, Jasson T.; Marks, Tobin J.; Li, Liting

    2000-11-28

    Group 3-6 or Lanthanide metal complexes possessing two metal centers, catalysts derived therefrom by combining the same with strong Lewis acids, Bronsted acid salts, salts containing a cationic oxidizing agent or subjected to bulk electrolysis in the presence of compatible, inert non-coordinating anions and the use of such catalysts for polymerizing olefins, diolefins and/or acetylenically unsaturated monomers are disclosed.

  16. Biologically responsive polymeric nanoparticles for drug delivery.

    PubMed

    Colson, Yolonda L; Grinstaff, Mark W

    2012-07-24

    Responsive nanoparticles that release their drug cargo in accordance with a change in pH or oxidative stress are of significant clinical interest as this approach offers the opportunity to link drug delivery to a specific location or disease state. This research news article reviews the current state of this field by examining a series of published articles that highlight the novelty and benefits of using responsive polymeric particles to achieve functionally-targeted drug delivery. PMID:22988558

  17. Polymeric assemblies for sensitive colorimetric assays

    DOEpatents

    Charych, Deborah

    2000-01-01

    The presently claimed invention relates to polymeric assemblies which visibly change color in the presence of analyte. In particular, the presently claimed invention relates to liposomes comprising a plurality of lipid monomers, which comprises a polymerizable group, a hydrophilic head group and a hydrophobic tail group, and one or more ligands. Overall carbon chain length, and polymerizable group positioning on the monomer influence color change sensitivity to analyte concentrations.

  18. Supported polymeric liquid membranes for wastewater treatment

    SciTech Connect

    Ho, S.V.

    1997-12-31

    The removal or elimination of organic residues from aqueous waste streams represents a major need in the chemical industry. A class of membrane has been developed called supported polymeric liquid membranes capable of removing and concentrating low molecular weight organic compounds from dilute aqueous solutions, especially those that also contain high concentrations of inorganic salts. These membranes are prepared by filling the pores of microfiltration or ultrafiltration membranes with polymeric (oligomeric) liquids having affinity for the organic compounds of interest. With this approach, membrane`s separation characteristics are decoupled from its mechanical stability and depend primarily on the chemical properties of the liquid polymer used. As a result, membranes of diverse separation capabilities can be conveniently prepared using liquid polymers possessing the appropriate functional groups. Physical properties typical of polymeric liquids such as high viscosity, extremely low volatility and insolubility in water contribute to the observed stability of the membranes under broad operating conditions. This membrane process has been successfully applied to several aqueous waste streams. This paper describes the early development activities for treating a waste stream containing a dilute mixture of C2-C6 carboxylic acids. Feasibility testings were initially carried out with flat sheet membranes in a small stirred cell. Scaleup was then conducted using hollow fiber membranes, first with small modules prepared in the laboratory, then with a much larger commercial module. Attractive features of this membrane process include the ability to recover the contaminants in concentrated form for either recycle or more economical disposal, low pressure (ambient) operation, simple scale-up using commercial hollow fiber modules, and ease of in-situ regeneration of the polymeric liquid.

  19. Tailored probes for atomic force microscopy fabricated by two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Göring, Gerald; Dietrich, Philipp-Immanuel; Blaicher, Matthias; Sharma, Swati; Korvink, Jan G.; Schimmel, Thomas; Koos, Christian; Hölscher, Hendrik

    2016-08-01

    3D direct laser writing based on two-photon polymerization is considered as a tool to fabricate tailored probes for atomic force microscopy. Tips with radii of 25 nm and arbitrary shape are attached to conventionally shaped micro-machined cantilevers. Long-term scanning measurements reveal low wear rates and demonstrate the reliability of such tips. Furthermore, we show that the resonance spectrum of the probe can be tuned for multi-frequency applications by adding rebar structures to the cantilever.

  20. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, T.J.; Eisen, M.S.; Giardello, M.A.

    1995-10-03

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C{sub 5}R{prime}{sub 4{minus}x}R*{sub x})A(C{sub 5}R{double_prime}{sub 4{minus}y}R{double_prime}{prime}{sub y})MQ{sub p}, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R{prime}, R{double_prime}, R{double_prime}{prime}, and R* represent substituted and unsubstituted alkyl groups having 1--30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3{>=}p{>=}0. Related complexes may be prepared by alkylation of the corresponding dichlorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form ``cation-like`` species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other {alpha}-olefin polymerization can be effected with very high efficiency and isospecificity. 1 fig.

  1. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, T.J.; Eisen, M.S.; Giardello, M.A.

    1994-07-19

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C[sub 5]R[prime][sub 4[minus]x]R*[sub x])-A-(C[sub 5]R[double prime][sub 4[minus]y]R[prime][double prime][sub y])-M-Q[sub p], where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R[prime], R[double prime], R[prime][double prime], and R* represent substituted and unsubstituted alkyl groups having 1--30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3 [<=] p [<=] 0. Related complexes may be prepared by alkylation of the corresponding dichlorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form cation-like'' species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other [alpha]-olefin polymerization can be effected with very high efficiency and isospecificity. 1 fig.

  2. Performance of selected polymeric materials on LDEF

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.; Stein, Bland A.

    1993-01-01

    The NASA Long Duration Exposure Facility (LDEF) provided a unique environmental exposure of a wide variety of materials for potential advanced spacecraft application. This paper examines the molecular level response of selected polymeric materials which flew onboard this vehicle. Polymers include epolyimide, polysulfone, and polystyrene film and polyimide, polysulfone, and epoxy matrix resin/graphite fiber reinforced composites. Several promising experimental films were also studied. Most specimens received 5.8 years of low Earth orbital (LEO) exposure on LDEF. Several samples received on 10 months of exposure. Chemical characterization techniques included ultraviolet-visible and infrared spectroscopy, thermal analysis, x-ray photoelectron spectroscopy, and selected solution property measurements. Results suggest that many molecular level effects present during the first 10 months of exposure were not present after 5.8 years of exposure for specimens on or near Row 9. Increased AO fluence near the end of the mission likely eroded away much environmentally induced surface phenomena. The objective of this work is to provide fundamental information for use in improving the performance of polymeric materials for LEO application. A secondary objective is to gain an appreciation for the constraints and limitations of results from LDEF polymeric materials experiments.

  3. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, Tobin J.; Eisen, Moris S.; Giardello, Michael A.

    1994-01-01

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C.sub.5 R'.sub.4-x R*.sub.x) A (C.sub.5 R".sub.4-y R'".sub.y) M Q.sub.p, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R', R", R'", and R* represent substituted and unsubstituted alkyl groups having 1-30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3.ltoreq.p.ltoreq.o. Related complexes may be prepared by alkylation of the corresponding dichorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form "cation-like" species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other .alpha.-olefin polymerization can be effected with very high efficiency and isospecificity.

  4. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, Tobin J.; Eisen, Moris S.; Giardello, Michael A.

    1995-01-01

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C.sub.5 R'.sub.4-x R*.sub.x) A (C.sub.5 R".sub.4-y R"'.sub.y) M Q.sub.p, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R', R", R"', and R* represent substituted and unsubstituted alkyl groups having 1-30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3.ltoreq.p.ltoreq.o. Related complexes may be prepared by alkylation of the corresponding dichorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form "cation-like" species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other .alpha.-olefin polymerization can be effected with very high efficiency and isospecificity.

  5. Polymerization initated at sidewalls of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  6. Filling polymersomes with polymers by peroxidase-catalyzed atom transfer radical polymerization.

    PubMed

    Dinu, Maria Valentina; Spulber, Mariana; Renggli, Kasper; Wu, Dalin; Monnier, Christophe A; Petri-Fink, Alke; Bruns, Nico

    2015-03-01

    Polymersomes that encapsulate a hydrophilic polymer are prepared by conducting biocatalytic atom transfer radical polymerization (ATRP) in these hollow nanostructures. To this end, ATRPase horseradish peroxidase (HRP) is encapsulated into vesicles self-assembled from poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PDMS-b-PMOXA) diblock copolymers. The vesicles are turned into nanoreactors by UV-induced permeabilization with a hydroxyalkyl phenone and used to polymerize poly(ethylene glycol) methyl ether acrylate (PEGA) by enzyme-catalyzed ATRP. As the membrane of the polymersomes is only permeable for the reagents of ATRP but not for macromolecules, the polymerization occurs inside of the vesicles and fills the polymersomes with poly(PEGA), as evidenced by (1) H NMR. Dynamic and static light scattering show that the vesicles transform from hollow spheres to filled spheres during polymerization. Transmission electron microscopy (TEM) and cryo-TEM imaging reveal that the polymersomes are stable under the reaction conditions. The polymer-filled nanoreactors mimic the membrane and cytosol of cells and can be useful tools to study enzymatic behavior in crowded macromolecular environments.

  7. Impact of Alkyl Spacer Length on Aggregation Pathways in Kinetically Controlled Supramolecular Polymerization.

    PubMed

    Ogi, Soichiro; Stepanenko, Vladimir; Thein, Johannes; Würthner, Frank

    2016-01-20

    We have investigated the kinetic and thermodynamic supramolecular polymerizations of a series of amide-functionalized perylene bisimide (PBI) organogelator molecules bearing alkyl spacers of varied lengths (ethylene to pentylene chains, PBI-1-C2 to PBI-1-C5) between the amide and PBI imide groups. These amide-functionalized PBIs form one-dimensional fibrous nanostructures as the thermodynamically favored states in solvents of low polarity. Our in-depth studies revealed, however, that the kinetic behavior of their supramolecular polymerization is dependent on the spacer length. Propylene- and pentylene-tethered PBIs follow a similar polymerization process as previously observed for the ethylene-tethered PBI. Thus, the monomers of these PBIs are kinetically trapped in conformationally restricted states through intramolecular hydrogen bonding between the amide and imide groups. In contrast, the intramolecularly hydrogen-bonded monomers of butylene-tethered PBI spontaneously self-assemble into nanoparticles, which constitute an off-pathway aggregate state with regard to the thermodynamically stable fibrous supramolecular polymers obtained. Thus, for this class of π-conjugated system, an unprecedented off-pathway aggregate with high kinetic stability could be realized for the first time by introducing an alkyl linker of optimum length (C4 chain) between the amide and imide groups. Our current system with an energy landscape of two competing nucleated aggregation pathways is applicable to the kinetic control over the supramolecular polymerization by the seeding approach. PMID:26699283

  8. Poly-amido-saccharides: synthesis via anionic polymerization of a β-lactam sugar monomer.

    PubMed

    Dane, Eric L; Grinstaff, Mark W

    2012-10-01

    Enantiopure poly-amido-saccharides (PASs) with a defined molecular weight and narrow dispersity are synthesized using an anionic ring-opening polymerization of a β-lactam sugar monomer. The PASs have a previously unreported main chain structure that is composed of pyranose rings linked through the 1- and 2-positions by an amide with α-stereochemistry. The monomer is synthesized in one-step from benzyl-protected D-glucal and polymerized using mild reaction conditions to give degrees of polymerization ranging from 25 to >120 in high yield. Computational modeling reveals how the monomer's structure and steric bulk affect the thermodynamics and kinetics of polymerization. Protected and deprotected polymers and model compounds are characterized using a variety of methods (NMR, GPC, IR, DLS, etc.). On the basis of circular dichroism, the deprotected polymer possesses a regular secondary structure in aqueous solution, which agrees favorably with the prediction of a helical structure using molecular modeling. Furthermore, we provide evidence suggesting that the polymers bind the lectin concanavalin A at the same site as natural carbohydrates, showing the potential of these polymers to mimic natural polysaccharides. PASs offer the advantages associated with synthetic polymers, such as greater control over structure and derivitization. At the same time, they preserve many of the structural features of natural polysaccharides, such as a stereochemically regular, rigid pyranose backbone, that make natural carbohydrate polymers important materials both for their unique properties and useful applications.

  9. Effects of aeration intensity on formation of phenol-fed aerobic granules and extracellular polymeric substances.

    PubMed

    Adav, Sunil S; Lee, Duu-Jong; Lai, J Y

    2007-11-01

    Effect of air aeration intensities on granule formation and extracellular polymeric substances content in three identical sequential batch reactors were investigated. The excitation-emission-matrix spectra and multiple staining and confocal laser scanning microscope revealed proteins, polysaccharides, lipids, and humic substances in the sludge and granule samples. Seed sludge flocs were compacted at low aeration rate, with produced extracellular polymeric substances of 50.2-76.7 mg g(-1) of proteins, 50.2-77.3 mg g(-1) carbohydrates and 74 mg g(-1) humic substances. High aeration rate accelerated formation of 1.0-1.5 mm granules with smooth outer surface. The corresponding quantities of extracellular polymeric substances were 309-537 mg g(-1) of proteins, 61-109 mg g(-1) carbohydrates, 49-92 mg g(-1) humic substances, and 49-68 mg g(-1) lipids. Intermediate aeration rate produced 3.0-3.5 mm granules with surface filaments. Reactor failure occurred with overgrowth of filaments, probably owing to the deficiency of nutrient in liquid phase. No correlation was noted between extracellular polymeric substances composition and the proliferation of filamentous microorganisms on granule surface.

  10. Facile fabrication of core cross-linked micelles by RAFT polymerization and enzyme-mediated reaction.

    PubMed

    Wu, Yukun; Lai, Quanyong; Lai, Shuqi; Wu, Jing; Wang, Wei; Yuan, Zhi

    2014-06-01

    Polymeric micelles formed in aqueous solution by assembly of amphiphilic block copolymers have been extensively investigated due to their great potential as drug carriers. However, the stability of polymeric assembly is still one of the major challenges in delivering drugs to tissues and cells. Here, we report a facile route to fabricate core cross-linked (CCL) micelles using an enzymatic polymerization as the cross-linking method. We present synthesis of poly(ethylene glycol)-block-poly(N-isopropyl acrylamide-co-N-(4-hydroxyphenethyl) acrylamide) diblock copolymer PEG-b-P(NIPAAm-co-NHPAAm) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The diblock copolymer was then self-assembled into non-cross-linked (NCL) micelles upon heating above the lower critical solution temperature (LCST), and subsequently cross-linked using horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) as enzyme and oxidant. The characterization of the diblock copolymer and micelles were studied by NMR, DLS, UV-vis, and fluorescence spectroscopy. The fluorescence study reveals that the cross-linking process endows the micelles with much lower critical micelle concentration (CMC). In addition, the drug release study shows that the CCL micelles have lower release amount of doxorubicin (DOX) than the NCL micelles due to the enhanced stability of the CCL micelles by core cross-linking process. PMID:24768266

  11. Polymeric nanocomposite proton exchange membranes prepared by radiation-induced polymerization for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Young-Seok; Seo, Kwang-Seok; Choi, Seong-Ho

    2016-01-01

    The vinyl group-modified montmorillonite clay (F-MMT), vinyl group-modified graphene oxide (F-GO), and vinyl group-modified multi-walled carbon nanotube (F-MWNT) were first prepared by ion exchange reaction of 1-[(4-ethylphenyl)methyl]-3-butyl-imidazolium chloride in order to use the materials for protection against methanol cross-over in direct methanol fuel cell (DMFC) membrane. Then polymeric nanocomposite membranes with F-MMT, F-GO, and F-MWNT were prepared by the solvent casting method after radiation-induced polymerization of vinyl monomers in water-methanol mixture solvents. The proton conductivity, water uptake, ion-exchange capacity, methanol permeability, and DMFC performance of the polymeric nanocomposite membranes with F-MMT, F-GO, and F-MWNT were evaluated.

  12. Photothermal determination of thermal diffusivity and polymerization depth profiles of polymerized dental resins

    NASA Astrophysics Data System (ADS)

    Martínez-Torres, P.; Mandelis, A.; Alvarado-Gil, J. J.

    2009-12-01

    The degree and depth of curing due to photopolymerization in a commercial dental resin have been studied using photothermal radiometry. The sample consisted of a thick layer of resin on which a thin metallic gold layer was deposited, thus guaranteeing full opacity. Purely thermal-wave inverse problem techniques without the interference of optical profiles were used. Thermal depth profiles were obtained by heating the gold coating with a modulated laser beam and by performing a frequency scan. Prior to each frequency scan, photopolymerization was induced using a high power blue light emitted diode (LED). Due to the highly light dispersive nature of dental resins, the polymerization process depends strongly on optical absorption of the blue light, thereby inducing a depth dependent thermal diffusivity profile in the sample. A robust depth profilometric method for reconstructing the thermal diffusivity depth dependence on degree and depth of polymerization has been developed. The thermal diffusivity depth profile was linked to the polymerization kinetics.

  13. Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties

    PubMed Central

    2012-01-01

    High-throughput few-layered BN nanosheets have been synthesized through a facile chemical blowing route. They possess large lateral dimensions and high surface area, which are beneficial to fabricate effectively reinforced polymeric composites. The demonstrated composites made of polymethyl methacrylate and BN nanosheets revealed excellent thermal stability, 2.5-fold improved dielectric constant, and 17-fold enhanced thermal conductivity. The results indicate multifunctional practical applications of such polymeric composites in many specific fields, such as thermoconductive insulating long-lifetime packaging for electrical circuits. PMID:23194335

  14. Evaluation of shrinkage polymerization and temperature of different acrylic resins used to splinting transfer copings in indirect impression technique

    NASA Astrophysics Data System (ADS)

    Franco, Ana Paula G. O.; Karam, Leandro Z.; Galvão, José R.; Kalinowski, Hypolito J.

    2015-09-01

    The aim of the present study was evaluate the shrinkage polymerization and temperature of different acrylic resins used to splinting transfer copings in indirect impression technique. Two implants were placed in an artificial bone, with the two transfer copings joined with dental floss and acrylic resins; two dental resins are used. Measurements of deformation and temperature were performed with Fiber Braggs grating sensor for 17 minutes. The results revealed that one type of resin shows greater values of polymerization shrinkage than the other. Pattern resins did not present lower values of shrinkage, as usually reported by the manufacturer.

  15. Spatial control of actin polymerization during neutrophil chemotaxis

    PubMed Central

    Weiner, Orion D.; Servant, Guy; Welch, Matthew D.; Mitchison, Timothy J.; Sedat, John W.; Bourne, Henry R.

    2010-01-01

    Neutrophils respond to chemotactic stimuli by increasing the nucleation and polymerization of actin filaments, but the location and regulation of these processes are not well understood. Here, using a permeabilized-cell assay, we show that chemotactic stimuli cause neutrophils to organize many discrete sites of actin polymerization, the distribution of which is biased by external chemotactic gradients. Furthermore, the Arp2/3 complex, which can nucleate actin polymerization, dynamically redistributes to the region of living neutrophils that receives maximal chemotactic stimulation, and the least-extractable pool of the Arp2/3 complex co-localizes with sites of actin polymerization. Our observations indicate that chemoattractant-stimulated neutrophils may establish discrete foci of actin polymerization that are similar to those generated at the posterior surface of the intracellular bacterium Listeria monocytogenes. We propose that asymmetrical establishment and/or maintenance of sites of actin polymerization produces directional migration of neutrophils in response to chemotactic gradients. PMID:10559877

  16. Uptake of Nitroaromatic Compounds by Polymeric Tubing

    SciTech Connect

    BOUNKEUA, VIENGNGEUN; RODACY, PHILIP J.

    2001-04-01

    The type of polymeric material used in the manufacturing of tubing determines its strength, elasticity, and durability. Tubing made of polymeric material is commonly used for analytical work because it is readily available, inexpensive and can be relatively inert. Polymeric tubing is used in many sampling applications for explosive compounds. A major concern is the uptake of the explosive compounds into or onto the tubing during sampling. Because of the reactive nature of explosives, it is important that as little of the detectable explosive as possible is lost by tubing uptake. It is also important that nothing leaches out of the tubing to interfere with the detection of explosives. High Performance Liquid Chromatography (HPLC) is commonly used for the analysis of trace levels of explosive compounds in the range of parts per billion (ppb) to parts per million (ppm). This study attempts to determine which types of polymers are most conducive to sampling applications where large volumes of dilute explosive solutions are collected through a length of tubing for analysis. This was determined by analyzing the amount of explosive lost from solution per cm{sup 2} of tubing in solution. It was determined that tubing made of polyethylene, teflon, polypropylene, or KYNAR{reg_sign} is recommended for dilute trinitrotoluene (TNT) solution analyses. Tubing made of polypropylene, PHARMED{reg_sign}, KYNAR{reg_sign}, or polyethylene is recommended for analyses involving dilute explosive solutions of RDX. Tubing made from polyurethane, TYGON{reg_sign}, nylon, vinyl, gum rubber, or reinforced PVC are not recommended because they leach contaminants into solution that may interfere with HPLC analysis of explosive peaks.

  17. Light-Driven Polymeric Bimorph Actuators

    NASA Technical Reports Server (NTRS)

    Adamovsky, Gregory; Sarkisov, Sergey S.; Curley, Michael J.

    2009-01-01

    Light-driven polymeric bimorph actuators are being developed as alternatives to prior electrically and optically driven actuators in advanced, highly miniaturized devices and systems exemplified by microelectromechanical systems (MEMS), micro-electro-optical-mechanical systems (MEOMS), and sensor and actuator arrays in smart structures. These light-driven polymeric bimorph actuators are intended to satisfy a need for actuators that (1) in comparison with the prior actuators, are simpler and less power-hungry; (2) can be driven by low-power visible or mid-infrared light delivered through conventional optic fibers; and (3) are suitable for integration with optical sensors and multiple actuators of the same or different type. The immediate predecessors of the present light-driven polymeric bimorph actuators are bimorph actuators that exploit a photorestrictive effect in lead lanthanum zirconate titanate (PLZT) ceramics. The disadvantages of the PLZT-based actuators are that (1) it is difficult to shape the PLZT ceramics, which are hard and brittle; (2) for actuation, it is necessary to use ultraviolet light (wavelengths < 380 nm), which must be generated by use of high-power, high-pressure arc lamps or lasers; (3) it is difficult to deliver sufficient ultraviolet light through conventional optical fibers because of significant losses in the fibers; (4) the response times of the PLZT actuators are of the order of several seconds unacceptably long for typical applications; and (5) the maximum mechanical displacements of the PLZT-based actuators are limited to those characterized by low strains beyond which PLZT ceramics disintegrate because of their brittleness. The basic element of a light-driven bimorph actuator of the present developmental type is a cantilever beam comprising two layers, at least one of which is a polymer that exhibits a photomechanical effect (see figure). The dominant mechanism of the photomechanical effect is a photothermal one: absorption of

  18. Diacetylene mixed Langmuir monolayers for interfacial polymerization.

    PubMed

    Ariza-Carmona, Luisa; Rubia-Payá, Carlos; García-Espejo, G; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2015-05-19

    Polydiacetylene (PDA) and its derivatives are promising materials for applications in a vast number of fields, from organic electronics to biosensing. PDA is obtained through polymerization of diacetylene (DA) monomers, typically using UV irradiation. DA polymerization is a 1-4 addition reaction with both initiation and growth steps with topochemical control, leading to the "blue" polymer form as primary reaction product in bulk and at interfaces. Herein, the diacetylene monomer 10,12-pentacosadiynoic acid (DA) and the amphiphilic cationic N,N'-dioctadecylthiapentacarbocyanine (OTCC) have been used to build a mixed Langmuir monolayer. The presence of OTCC imposes a monolayer supramolecular structure instead of the typical trilayer of pure DA. Surface pressure, Brewster angle microscopy, and UV-vis reflection spectroscopy measurements, as well as computer simulations, have been used to assess in detail the supramolecular structure of the DA:OTCC Langmuir monolayer. Our experimental results indicate that the DA and OTCC molecules are sequentially arranged, with the two OTCC alkyl chains acting as spacing diacetylene units. Despite this configuration is expected to prevent photopolymerization of DA, the polymerization takes place without phase segregation, thus exclusively leading to the red polydiacetylene form. We propose a simple model for the initial formation of the "blue" or "red" PDA forms as a function of the relative orientation of the DA units. The structural insights and the proposed model concerning the supramolecular structure of the "blue" and "red" forms of the PDA are aimed at the understanding of the relation between the molecular and macroscopical features of PDAs.

  19. Fragmentation and Coagulation in Supramolecular (Co)polymerization Kinetics.

    PubMed

    Markvoort, Albert J; Eikelder, Huub M M Ten; Hilbers, Peter A J; de Greef, Tom F A

    2016-04-27

    The self-assembly of molecular building blocks into one-dimensional supramolecular architectures has opened up new frontiers in materials science. Due to the noncovalent interactions between the monomeric units, these architectures are intrinsically dynamic, and understanding their kinetic driving forces is key to rationally programming their morphology and function. To understand the self-assembly dynamics of supramolecular polymerizations (SP), kinetic models based on aggregate growth by sequential monomer association and dissociation have been analyzed. However, fragmentation and coagulation events can also play a role, as evident from studies on peptide self-assembly and the fact that aggregations can be sensitive to mechanical agitations. Here, we analyze how fragmentation and coagulation events influence SP kinetics by theoretical analysis of self-assembling systems of increasing complexity. Our analysis starts with single-component systems in which aggregates are able to grow via an isodesmic or cooperative nucleation-elongation mechanism. Subsequently, equilibration dynamics in cooperative two-component supramolecular copolymerizations are investigated. In the final part, we reveal how aggregate growth in the presence of competing, kinetically controlled pathways is influenced by fragmentation and coagulation reactions and reveal how seed-induced growth can give rise to block copolymers. Our analysis shows how fragmentation and coagulation reactions are able to modulate SP kinetics in ways that are highly system dependent. PMID:27163054

  20. Fragmentation and Coagulation in Supramolecular (Co)polymerization Kinetics

    PubMed Central

    2016-01-01

    The self-assembly of molecular building blocks into one-dimensional supramolecular architectures has opened up new frontiers in materials science. Due to the noncovalent interactions between the monomeric units, these architectures are intrinsically dynamic, and understanding their kinetic driving forces is key to rationally programming their morphology and function. To understand the self-assembly dynamics of supramolecular polymerizations (SP), kinetic models based on aggregate growth by sequential monomer association and dissociation have been analyzed. However, fragmentation and coagulation events can also play a role, as evident from studies on peptide self-assembly and the fact that aggregations can be sensitive to mechanical agitations. Here, we analyze how fragmentation and coagulation events influence SP kinetics by theoretical analysis of self-assembling systems of increasing complexity. Our analysis starts with single-component systems in which aggregates are able to grow via an isodesmic or cooperative nucleation–elongation mechanism. Subsequently, equilibration dynamics in cooperative two-component supramolecular copolymerizations are investigated. In the final part, we reveal how aggregate growth in the presence of competing, kinetically controlled pathways is influenced by fragmentation and coagulation reactions and reveal how seed-induced growth can give rise to block copolymers. Our analysis shows how fragmentation and coagulation reactions are able to modulate SP kinetics in ways that are highly system dependent. PMID:27163054

  1. Studies of molecular properties of polymeric materials

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Long, Sheila Ann T.; Long, Edward R., Jr.

    1990-01-01

    Aerospace environment effects (high energy electrons, thermal cycling, atomic oxygen, and aircraft fluids) on polymeric and composite materials considered for structural use in spacecraft and advanced aircraft are examined. These materials include Mylar, Ultem, and Kapton. In addition to providing information on the behavior of the materials, attempts are made to relate the measurements to the molecular processes occurring in the material. A summary and overview of the technical aspects are given along with a list of the papers that resulted from the studies. The actual papers are included in the appendices and a glossary of technical terms and definitions is included in the front matter.

  2. Space environmental effects on polymeric materials

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.; Orwoll, Robert A.

    1988-01-01

    Polymer-matrix composites have considerable potential for use in the construction of orbiting structures such as the space station and space antennas because of their light weight, high strength, and low thermal expansion. However, they can suffer surface erosion by interaction with atomic oxygen in low-Earth orbit and degradation and/or embrittlement by electrons and ultraviolet radiation especially in geosynchronous orbit. Thus, a study of the effect of these environmental hazards on polymeric materials is an important step in the assessment of such materials for future use in space.

  3. Novel hybrid polymeric materials for barrier coatings

    NASA Astrophysics Data System (ADS)

    Pavlacky, Erin Christine

    Polymer-clay nanocomposites, described as the inclusion of nanometer-sized layered silicates into polymeric materials, have been widely researched due to significant enhancements in material properties with the incorporation of small levels of filler (1--5 wt.%) compared to conventional micro- and macro-composites (20--30 wt.%). One of the most promising applications for polymer-clay nanocomposites is in the field of barrier coatings. The development of UV-curable polymer-clay nanocomposite barrier coatings was explored by employing a novel in situ preparation technique. Unsaturated polyesters were synthesized in the presence of organomodified clays by in situ intercalative polymerization to create highly dispersed clays in a precursor resin. The resulting clay-containing polyesters were crosslinked via UV-irradiation using donor-acceptor chemistry to create polymer-clay nanocomposites which exhibited significantly enhanced barrier properties compared to alternative clay dispersion techniques. The impact of the quaternary alkylammonium organic modifiers, used to increase compatibility between the inorganic clay and organic polymer, was studied to explore influence of the organic modifier structure on the nanocomposite material properties. By incorporating just the organic modifiers, no layered silicates, into the polyester resins, reductions in film mechanical and thermal properties were observed, a strong indicator of film plasticization. An alternative in situ preparation method was explored to further increase the dispersion of organomodified clay within the precursor polyester resins. In stark contrast to traditional in situ polymerization methods, a novel "reverse" in situ preparation method was developed, where unmodified montmorillonite clay was added during polyesterification to a reaction mixture containing the alkylammonium organic modifier. The resulting nanocomposite films exhibited reduced water vapor permeability and increased mechanical properties

  4. Fiberoptic microphone using a polymeric cavity

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Soetanto, William; Gu, Kebin

    2011-04-01

    The fabrication and experimental investigation of a fiberoptic microphone is described. The sensing element is a silicon diaphragm with gold thin film coating that is positioned inside a silicone rubber mold at the end of a single mode optical fiber. Thus, a Fabry-Perot interferometer is formed between the inner fiber and the diaphragm. An acoustic pressure change is detected by using the developed microphone. The polymeric cavity and silicon diaphragm-based system exhibits excellent physicochemical properties with a small, simple, low cost, and lightweight design. The system is also electromagnetic interference / radio frequency interference immunity due to the use of fiberoptics.

  5. Polymeric precursors for fibers and matrices

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1992-01-01

    Candidate polymeric precursors for ceramic fiber and matrix processing are discussed, with a view to the advantages and disadvantages of this approach relative to existing alternatives. The properties of ceramic products thus derived are noted to strongly depend on the molecular weight and structure of the starting polymer; in particular, the ceramic's composition and morphology are dependent on the character and extent of crosslinking, as well as on the path of pyrolysis. While large and complex structural ceramic components may ultimately be obtainable by these means, the polymer-precursor method is still in its developmental infancy.

  6. Polymer microcantilevers fabricated via multiphoton absorption polymerization

    NASA Astrophysics Data System (ADS)

    Bayindir, Z.; Sun, Y.; Naughton, M. J.; LaFratta, C. N.; Baldacchini, T.; Fourkas, J. T.; Stewart, J.; Saleh, B. E. A.; Teich, M. C.

    2005-02-01

    We have used multiphoton absorption polymerization to fabricate a series of microscale polymer cantilevers. Atomic force microscopy has been used to characterize the mechanical properties of microcantilevers with spring constants that were found to span more than four decades. From these data, we extracted a Young's modulus of E =0.44GPa for these microscale cantilevers. The wide stiffness range and relatively low elastic modulus of the microstructures make them attractive candidates for a range of microcantilever applications, including measurements on soft matter.

  7. Polysaccharide-Modified Synthetic Polymeric Biomaterials

    PubMed Central

    Baldwin, Aaron D.; Kiick, Kristi L.

    2010-01-01

    This review presents an overview of polysaccharide-conjugated synthetic polymers and their use in tissue-engineered scaffolds and drug-delivery applications. This topic will be divided into four categories: (1) polymeric materials modified with non-mammalian polysaccharides such as alginate, chitin, and dextran; (2) polymers modified with mammalian polysaccharides such as hyaluronan, chondroitin sulfate, and heparin; (3) multi-polysaccharide-derivatized polymer conjugate systems; and (4) polymers containing polysaccharide-mimetic molecules. Each section will discuss relevant conjugation techniques, analysis, and the impact of these materials as micelles, particles, or hydrogels used in in-vitro and in-vivo biomaterial applications. PMID:20091875

  8. Frontal Polymerization in Microgravity Summary of Research

    NASA Technical Reports Server (NTRS)

    Pojman, John A.

    2002-01-01

    The project began with frontal polymerization (FP). We studied many aspects of FP on the ground and performed two successful weeks of flying on the KC-135. The project evolved into the current flight investigation, Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS), as we recognized that an essential question could best be studied using a non-frontal approach. We present detailed results from our ground-based work on FP, KC-135 results and the background, justification and numerical work for the TIPMPS project.

  9. Functional Lactide Monomers: Methodology and Polymerization

    PubMed Central

    Gerhardt, Warren W.; Noga, David E.; Hardcastle, Kenneth I.; García, Andrés J.; M. Collard, David; Weck, Marcus

    2008-01-01

    Side-chain functionalized lactide analogues have been synthesized from commercially available amino acids and polymerized using stannous octoate as a catalyst. The synthetic strategy presented allows for the incorporation of any protected amino acid for the preparation of functionalized diastereomerically pure lactide monomers. The resulting functionalized cyclic monomers can be homopolymerized, and copolymerized with lactides, then quantitatively deprotected forming new functional poly(lactide)-based materials. This strategy allows for the introduction of functional groups along a poly(lactide) (PLA) backbone that after deprotection can be viewed as chemical handles for further functionalization of PLA, yielding improved biomaterials for a variety of applications. PMID:16768392

  10. Polysaccharide-modified synthetic polymeric biomaterials.

    PubMed

    Baldwin, Aaron D; Kiick, Kristi L

    2010-01-01

    This review presents an overview of polysaccharide-conjugated synthetic polymers and their use in tissue-engineered scaffolds and drug-delivery applications. This topic will be divided into four categories: (1) polymeric materials modified with non-mammalian polysaccharides such as alginate, chitin, and dextran; (2) polymers modified with mammalian polysaccharides such as hyaluronan, chondroitin sulfate, and heparin; (3) multi-polysaccharide-derivatized polymer conjugate systems; and (4) polymers containing polysaccharide-mimetic molecules. Each section will discuss relevant conjugation techniques, analysis, and the impact of these materials as micelles, particles, or hydrogels used in in-vitro and in-vivo biomaterial applications. PMID:20091875

  11. Swelling of plasma-polymerized tetrafluoroethylene films

    SciTech Connect

    Butler, M.A.; Buss, R.J.; Seager, C.H. )

    1991-11-25

    Swelling of micrometer thick-films of plasma-polymerized tetrafluoroethylene has been measured for a range of solvents using an optical-interferometric technique. For low gas-phase concentrations of the solvent, the swelling is found to correlate with the ionization potential of the solvent. Photo-thermal deflection spectroscopy of the films shows optical absorption in the infrared, which changes with exposure to different solvents. Both of these results suggest weak electron transfer from the solvent to the polymer as the dominant interaction mechanism.

  12. Smart Polymeric Nanoparticles for Cancer Gene Delivery

    PubMed Central

    2015-01-01

    The massive amount of human genetic information already available has accelerated the identification of target genes, making gene and nucleic acid therapy the next generation of medicine. Nanoparticle (NP)-based anticancer gene therapy treatment has received significant interest in this evolving field. Recent advances in vector technology have improved gene transfection efficiencies of nonviral vectors to a level similar to viruses. This review serves as an introduction to surface modifications of NPs based on polymeric structural improvements and target moieties. A discussion regarding the future perspective of multifunctional NPs in cancer therapy is also included. PMID:25531409

  13. Multiphoton polymerization using optical trap assisted nanopatterning

    NASA Astrophysics Data System (ADS)

    Leitz, Karl-Heinz; Tsai, Yu-Cheng; Flad, Florian; Schäffer, Eike; Quentin, Ulf; Alexeev, Ilya; Fardel, Romain; Arnold, Craig B.; Schmidt, Michael

    2013-06-01

    In this letter, we show the combination of multiphoton polymerization and optical trap assisted nanopatterning (OTAN) for the additive manufacturing of structures with nanometer resolution. User-defined patterns of polymer nanostructures are deposited on a glass substrate by a 3.5 μm polystyrene sphere focusing IR femtosecond laser pulses, showing minimum feature sizes of λ/10. Feature size depends on the applied laser fluence and the bead surface spacing. A finite element model describes the intensity enhancement in the microbead focus. The results presented suggest that OTAN in combination with multiphoton processing is a viable technique for additive nanomanufacturing with sub-diffraction-limited resolution.

  14. Diffusive transport in modern polymeric materials

    SciTech Connect

    Doering, C.; Bier, M.; Christodoulou, K.

    1996-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Polymers, composites, and synthetic modern materials are replacing traditional materials in many older scientific, engineering, commercial, and military applications. This project sought to focus on the new polymeric materials, deriving and analyzing models that predict their seemingly mysterious transport properties. It sought to identify the dominant physical mechanisms and the pertinent dimensionless parameters, produce viable theoretical models, and devise asymptotic and numerical methods for use in specific problems.

  15. Polymeric micelles as carriers of diagnostic agents.

    PubMed

    Trubetskoy

    1999-04-01

    This review deals with diagnostic applications of polymeric micelles composed of amphiphilic block-copolymers. In aqueous solutions these polymers spontaneously form particles with diameter 20-100 nm. A variety of diagnostic moieties can be incorporated covalently or non-covalently into the particulates with high loads. Resulting particles can be used as particulate agents for diagnostic imaging using three major imaging modalities: gamma-scintigraphy, magnetic resonance imaging and computed tomography. The use of polyethyleneoxide-diacyllipid micelles loaded with chelated (111)In/Gd(3+) as well as iodine-containing amphiphilic copolymer in percutaneous lymphography and blood pool/liver imaging are discussed as specific examples.

  16. A polymeric flame retardant additive for rubbers

    SciTech Connect

    Ghosh, S.N.; Maiti, S.

    1993-12-31

    Synthesis of a polyphosphonate by the interfacial polymerization of bisphenol-A (BPA) and dichloro-phenyl phosphine oxide (DCPO) using cetyltrimethyl ammonium chloride (TMAC) as phase transfer catalyst (PTC) was reported. The polyphosphonate was characterized by elemental analysis, IR, TGA, DSC and 1H-NMR spectroscopy. The flame retardancy of the polymer was done by OI study. The polymer was used as a fire retardant additive to rubbers such as natural rubber (NR), styrene-butadiene rubber(SBR), nitrile rubber (NBR) and chloroprene rubber (CR). The efficiency of the fire retardant property of this additive was determined by LOI measurements of the various rubber samples.

  17. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Lindquist, C.; Milbourne, M.

    2005-11-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. We have begun evaluation of several new UV-screened polycarbonate sheet glazing constructions. This has involved interactions with several major polymer industry companies to obtain improved candidate samples. Proposed absorber materials were tested for UV resistance, and appear adequate for unglazed ICS absorbers.

  18. Preparation of polymeric diacetylene thin films for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O. (Inventor); Mcmanus, Samuel P. (Inventor); Paley, Mark S. (Inventor); Donovan, David N. (Inventor)

    1995-01-01

    A method for producing polymeric diacetylene thin films having desirable nonlinear optical characteristics has been achieved by producing amorphous diacetylene polymeric films by simultaneous polymerization of diacetylene monomers in solution and deposition of polymerized diacetylenes on to the surface of a transparent substrate through which ultraviolet light has been transmitted. These amorphous polydiacetylene films produced by photo-deposition from solution possess very high optical quality and exhibit large third order nonlinear optical susceptibilities, such properties being suitable for nonlinear optical devices such as waveguides and integrated optics.

  19. Sorption of organics from aqueous solution onto polymeric resins

    SciTech Connect

    Gusler, G.M.; Browne, T.E.; Cohen, Y. . Dept. of Chemical Engineering)

    1993-11-01

    The uptake of phenol, toluene, chlorobenzene, and benzoic acid by several polymeric resins and activated carbon was investigated experimentally. Presentation of the sorption data in terms of the number of sorbed monolayers and fractional pore volume filled indicated that, for the polymeric resins, solute uptake cannot be viewed as only a surface adsorption phenomenon. It is suggested that the aqueous phase uptake of phenol, toluene, chlorobenzene, and benzoic acid by the polymeric resins is attributable, in part, to solute absorption. The present study also suggests that solute uptake is affected by the swelling of some of the polymeric resins in water.

  20. Free Radical Polymerization of Styrene: A Radiotracer Experiment

    ERIC Educational Resources Information Center

    Mazza, R. J.

    1975-01-01

    Describes an experiment designed to acquaint the chemistry student with polymerization reactions, vacuum techniques, liquid scintillation counting, gas-liquid chromatography, and the handling of radioactive materials. (MLH)

  1. Nanostructured polymeric systems as nanoreactors for nanoparticle formation

    NASA Astrophysics Data System (ADS)

    Bronstein, Lyudmila M.; Sidorov, Stanislav N.; Valetsky, Petr M.

    2004-05-01

    The review concerns the syntheses of polymeric nanocomposites containing encapsulated nanoparticles formed in nanostructured polymeric systems including block copolymers, dendrimers, nanoporous polymers, polyelectrolyte gel-surfactant complexes and multilayered films. Nanostructures in amphiphilic block copolymers can form spontaneously both in the bulk (block microsegregation) and in solution (block copolymer micelle). In polymeric systems, nanostructures play the role of nanoreactors for the growing nanoparticles. The nanoparticle size, shape and size distribution are controlled by the nanostructure characteristics and synthesis conditions. The catalytic, magnetic and optical properties of these nanostructured polymeric nanocomposites are discussed.

  2. Interfacial polymerization of conductive polymers: Generation of polymeric nanostructures in a 2-D space.

    PubMed

    Dallas, Panagiotis; Georgakilas, Vasilios

    2015-10-01

    In the recent advances in the field of conductive polymers, the fibrillar or needle shaped nanostructures of polyaniline and polypyrrole have attracted significant attention due to the potential advantages of organic conductors that exhibit low-dimensionality, uniform size distribution, high crystallinity and improved physical properties compared to their bulk or spherically shaped counterparts. Carrying the polymerization reaction in a restricted two dimensional space, instead of the three dimensional space of the one phase solution is an efficient method for the synthesis of polymeric nanostructures with narrow size distribution and small diameter. Ultra-thin nanowires and nanofibers, single crystal nanoneedles, nanocomposites with noble metals or carbon nanotubes and layered materials can be efficiently synthesized with high yield and display superior performance in sensors and energy storage applications. In this critical review we will focus not only on the interfacial polymerization methods that leads to polymeric nanostructures and composites and their properties, but also on the mechanism and the physico-chemical processes that govern the diffusion and reactivity of molecules and nanomaterials at an interface. Recent advances for the synthesis of conductive polymer composites with an interfacial method for energy storage applications and future perspectives are presented. PMID:26272721

  3. Radiation-induced graft polymerization of amphiphilic monomers with different polymerization characteristics onto hydrophobic polysilane

    NASA Astrophysics Data System (ADS)

    Tanaka, Hidenori; Iwasaki, Isao; Kunai, Yuichiro; Sato, Nobuhiro; Matsuyama, Tomochika

    2011-08-01

    The structures of poly(methyl-n-propylsilane) (PMPrS) amphiphilically modified through γ-ray-induced graft polymerization were investigated with 1H NMR measurement. By the use of methyl methacrylate (MMA) or diethyl fumarate (DEF) as monomers for the graft polymerization, grafting yield rose with increasing total absorption dose and monomer concentrations, but decreased with increasing dose rate. This result means that grafting yield of modified PMPrS can be controlled by changing irradiation conditions. However, the number of PMMA or PDEF graft chains per PMPrS chain was estimated to be less than 1.0 by analysis of 1H NMR spectra, and this value was lower than that we had expected. To improve graft density, maleic anhydride (MAH), which is known as a non-homopolymerizable monomer in radical polymerization, was used as a monomer for grafting. As a result, high density grafting (one MAH unit for 4.2 silicon atoms) was attained. It demonstrates that the structure of γ-ray-modified polysilane strongly depends on the polymerization characteristics of grafted monomers.

  4. Interfacial polymerization of conductive polymers: Generation of polymeric nanostructures in a 2-D space.

    PubMed

    Dallas, Panagiotis; Georgakilas, Vasilios

    2015-10-01

    In the recent advances in the field of conductive polymers, the fibrillar or needle shaped nanostructures of polyaniline and polypyrrole have attracted significant attention due to the potential advantages of organic conductors that exhibit low-dimensionality, uniform size distribution, high crystallinity and improved physical properties compared to their bulk or spherically shaped counterparts. Carrying the polymerization reaction in a restricted two dimensional space, instead of the three dimensional space of the one phase solution is an efficient method for the synthesis of polymeric nanostructures with narrow size distribution and small diameter. Ultra-thin nanowires and nanofibers, single crystal nanoneedles, nanocomposites with noble metals or carbon nanotubes and layered materials can be efficiently synthesized with high yield and display superior performance in sensors and energy storage applications. In this critical review we will focus not only on the interfacial polymerization methods that leads to polymeric nanostructures and composites and their properties, but also on the mechanism and the physico-chemical processes that govern the diffusion and reactivity of molecules and nanomaterials at an interface. Recent advances for the synthesis of conductive polymer composites with an interfacial method for energy storage applications and future perspectives are presented.

  5. Facile fabrication of hierarchical porous resins via high internal phase emulsion and polymeric porogen

    NASA Astrophysics Data System (ADS)

    Ma, Libin; Luo, Xiaogang; Cai, Ning; Xue, Yanan; Zhu, San; Fu, Zhen; Yu, Faquan

    2014-06-01

    To achieve the dual features of fast oil absorption rate and high oil absorbency for the practical application in emergency treatment of spilled chemical pollutants, hierarchical porous resins were synthesized. The polymerization of high internal phase emulsion was applied to fabricate the porous structure for the purpose of high oil absorbency. Polymeric porogens were proposed to adjust the second-order or interconnected pore structure for fast oil absorption rate. SEM revealed the hierarchical porous structure. Molecular weight and dose of polymeric porogen were investigated for the effect on the formation of porous structure and absorption features. Optimized resins have 31.5 g/g or 17.1 g/g absorbency for chloroform and toluene, respectively, and only 5 min is needed to reach their saturation absorption. Besides, the porous resins demonstrated high oil retention under pressure. The absorption/desorption cycling results revealed the high repeatability of recovered resins. All these tests predicted the potential applications of porous resins of this kind particularly in the emergency treatment of oil and chemical pollution.

  6. Microtubule bundling and nested buckling drive stripe formation in polymerizing tubulin solutions

    PubMed Central

    Liu, Yifeng; Guo, Yongxing; Valles, James M.; Tang, Jay X.

    2006-01-01

    Various mechanisms govern pattern formation in chemical and biological reaction systems, giving rise to structures with distinct morphologies and physical properties. The self-organization of polymerizing microtubules (MTs) is of particular interest because of its implications for biological function. We report a study of the microscopic structure and properties of the striped patterns that spontaneously form in polymerizing tubulin solutions and propose a mechanism driving this assembly. Microscopic observations reveal that the pattern comprises wave-like MT bundles. The retardance of the solution and the fluorescence intensity of labeled MTs vary periodically in space, suggesting a coincident periodic variation in MT alignment and density. This wave-like structure forms through the development and coordinated buckling of initially aligned MT bundles. Both static magnetic fields and convective flow can induce the initial alignment. The nesting of the buckled MT bundles gives rise to density variations that are in quantitative accord with the data. We further propose that the buckling wavelength is selected by a balance between the bending energy of the bundles and the elastic energy of the MT network surrounding them. These studies reveal a unique physical chemical mechanism by which mechanical buckling couples with protein polymerization to produce macroscopic patterns. Self-organization of this type may be important to the formation of certain biological structures. PMID:16818889

  7. Comparative evaluation of polymeric and waxy microspheres for combined colon delivery of ascorbic acid and ketoprofen.

    PubMed

    Maestrelli, F; Zerrouk, N; Cirri, M; Mura, P

    2015-05-15

    The goal of this work was to combine the ketoprofen anti-inflammatory effect with the ascorbic acid antioxidant properties for a more efficient treatment of colonic pathologies. With this aim, microspheres (MS) based on both waxy materials (ceresine, Precirol(®) and Compritol(®)) or hydrophilic biopolymers (pectine, alginate and chitosan) loaded with the two drugs were developed, physicochemically characterized and compared in terms of entrapment efficiency, in vitro release profiles, potential toxicity and drug permeation properties across the Caco-2 cell line. Waxy MS revealed an high encapsulation efficiency of ketoprofen but a not detectable entrapment of ascorbic acid, while polymeric MS showed a good entrapment efficiency of both drugs. All MS need a gastro-resistant coating, to avoid any premature release of the drugs. Ketoprofen release rate from polymeric matrices was clearly higher than from the waxy ones. In contrast, the ASC release rate was higher, due to its high hydro-solubility. Cytotoxicity studies revealed the safety of all the formulations. Transport studies showed that the ketoprofen apparent permeability increased, when formulated with the different MS. In conclusion, only polymeric MS enabled an efficient double encapsulation of both the hydrophilic and lipophilic drugs, and, in addition, presented higher drug release rate and stronger enhancer properties.

  8. Synthesis and Characterization of a Novel Borazine-Type UV Photo-Induced Polymerization of Ceramic Precursors.

    PubMed

    Wei, Dan; Chen, Lixin; Xu, Tingting; He, Weiqi; Wang, Yi

    2016-06-21

    A preceramic polymer of B,B',B''-(dimethyl)ethyl-acrylate-silyloxyethyl-borazine was synthesized by three steps from a molecular single-source precursor and characterized by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectrometry. Six-member borazine rings and acrylate groups were effectively introduced into the preceramic polymer to activate UV photo-induced polymerization. Photo-Differential Scanning Calorimetry (Photo-DSC) and real-time FTIR techniques were adapted to investigate the photo-polymerization process. The results revealed that the borazine derivative exhibited dramatic activity by UV polymerization, the double-bond conversion of which reached a maximum in 40 s. Furthermore, the properties of the pyrogenetic products were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD), which proved the ceramic annealed at 1100 °C retained the amorphous phase.

  9. Controlled atom transfer radical polymerization of MMA onto the surface of high-density functionalized graphene oxide

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Chung, Jin Suk; Hur, Seung Hyun

    2014-07-01

    We report on the grafting of poly(methyl methacrylate) (PMMA) onto the surface of high-density functionalized graphene oxides (GO) through controlled radical polymerization (CRP). To increase the density of surface grafting, GO was first diazotized (DGO), followed by esterification with 2-bromoisobutyryl bromide, which resulted in an atom transfer radical polymerization (ATRP) initiator-functionalized DGO-Br. The functionalized DGO-Br was characterized by X-ray photoelectron spectroscopy (XPS), Raman, and XRD patterns. PMMA chains were then grafted onto the DGO-Br surface through a `grafting from' technique using ATRP. Gel permeation chromatography (GPC) results revealed that polymerization of methyl methacrylate (MMA) follows CRP. Thermal studies show that the resulting graphene-PMMA nanocomposites have higher thermal stability and glass transition temperatures ( T g) than those of pristine PMMA.

  10. Steric Effects of the Initiator Substituent Position on the Externally Initiated Polymerization of 2-Bromo-5-iodo-3-hexylthiophene

    SciTech Connect

    Doubina, Natalia; Paniagua, Sergio A.; Soldatova, Alexandra V.; Jen, Alex K. Y.; Marder, Seth R.; Luscombe, Christine K.

    2011-01-12

    Externally initiated polymerization of 2-bromo-3-hexyl-5-iodothiophene was attempted from four aryl and thiophene based small molecule initiators functionalized with a phosphonate moiety. Initiated poly(3-hexylthiophene) product was obtained in various yields depending on the nature of the initiating molecule. Reaction intermediates for the oxidative addition and the ligand exchange steps were analyzed utilizing both experimental and theoretical methods. It was observed that an ortho substituent plays a crucial role in the outcome of the polymerization mechanism and that aryl based initiators are generally more stable than thiophene based initiators. Density functional theory (DFT) calculations revealed the importance of the steric effects on the success of the externally initiated chain growth polymerization mechanism.

  11. Controlled atom transfer radical polymerization of MMA onto the surface of high-density functionalized graphene oxide

    PubMed Central

    2014-01-01

    We report on the grafting of poly(methyl methacrylate) (PMMA) onto the surface of high-density functionalized graphene oxides (GO) through controlled radical polymerization (CRP). To increase the density of surface grafting, GO was first diazotized (DGO), followed by esterification with 2-bromoisobutyryl bromide, which resulted in an atom transfer radical polymerization (ATRP) initiator-functionalized DGO-Br. The functionalized DGO-Br was characterized by X-ray photoelectron spectroscopy (XPS), Raman, and XRD patterns. PMMA chains were then grafted onto the DGO-Br surface through a ‘grafting from’ technique using ATRP. Gel permeation chromatography (GPC) results revealed that polymerization of methyl methacrylate (MMA) follows CRP. Thermal studies show that the resulting graphene-PMMA nanocomposites have higher thermal stability and glass transition temperatures (Tg) than those of pristine PMMA. PMID:25114639

  12. Fabrication of core-shell structured magnetic nanocellulose base polymeric ionic liquid for effective biosorption of Congo red dye.

    PubMed

    Beyki, Mostafa Hossein; Bayat, Mehrnoosh; Shemirani, Farzaneh

    2016-10-01

    Ionic liquids are considered to be a class of environmentally friendly compounds as combination of them with bioresource polymeric substances such as; cellulose, constitute emerging coating materials. Biosorption by polymeric ionic liquids exhibits an attractive green way that involves low cost and irrespective of toxicity. As a result, a novel polymeric ionic liquid has been developed by the reaction of one step synthesized Fe3O4-cellulose nanohybrid, epichlorohydrin and 1-methylimidazole and employed as a green sorbent for efficient biosorption of Congo red dye. Effective parameters on dye removing as well as their interactions were determined with response surface methodology (RSM). Congo red adsorption showed fast equilibrium time (11min) with maximum uptake of 131mgg(-1). Isotherm study revealed that Langmuir adsorption model can better describe dye adsorption behavior. Regeneration of the sorbent was performed with a mixture of methanol-acetone-NaOH (3.0molL(-1)) solution. PMID:27372013

  13. Dielectric and ultrasonic studies of macromolecular growth during polymerization

    NASA Astrophysics Data System (ADS)

    Parthun, Matthew Giles

    Measurements by dielectric spectroscopy, ultrasonics and calorimetry of several low viscosity monomeric liquids undergoing spontaneous chemical reaction, to form three new, linear chain polymers under isothermal conditions, have been used to determine how the number of covalent bonds formed during the growth of a linear chain affects the dielectric and ultrasonic properties, their respective relaxation times, and their spectral shape. The dielectric properties changed in the following manner. Static permittivity decreased and relaxation time increased towards limiting values. As the number of covalent bonds increased towards the Avogadro number, the change in the complex permittivity as measured for a fixed frequency was phenomenologically similar to that observed on varying the frequency. In both cases the relaxation function could be well described by a stretched exponential or sum of exponentials, characterized by a temperature and system dependent exponent that decreased as the state of the system changed from a monomeric liquid to a fully reacted polymer. At later stages of chemical reaction a second relaxation process at higher frequencies is revealed. The dielectric manifestation of the irreversible process of covalent bond formation is remarkably similar to that observed on supercooling a molecular or polymeric liquid. Longitudinal velocity and attenuation of ultrasonic waves travelling through the three molecular liquids at different temperatures have been measured as its molecules combine irreversibly to form large entities and thereby decrease the diffusivity and increase the configurational restrictions to their dynamics. From these data, the longitudinal modulus and compliance are calculated, and the molecular relaxation time and related properties are deduced and interpreted in terms of the number of covalent bonds formed. This relaxation time increases monotonically with increase in the molecule's size. The complex plane plots of the modulus and

  14. Surface modification of ultra high molecular weight polyethylene fibers via the sequential photoinduced graft polymerization

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Zhang, Wei; Wang, Xinwei; Mai, Yongyi; Zhang, Yumei

    2011-06-01

    In this study, a sequential photoinduced graft polymerization process was proposed to improve the poor interfacial bonding property of ultra high molecular weight polyethylene (UHMWPE) fibers. The polymerization was initiated by dormant semipinacol (SP) groups and carried out in a thin liquid layer. Methacrylic acid (MAA) and acryl amide (AM) were grafted stepwise onto the surface of UHMWPE fibers. Attenuated total reflectance infrared spectroscopy (ATR-IR) and thermo gravimetric analysis (TGA) confirmed the grafting. The analysis result of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) indicated the structure of grafted chains. Scanning electron microscopy (SEM) images and atomic force microscopy (AFM) images revealed the apparent morphology changing, and the grafted layers were observed. Interfacial shear stress (IFSS) test of the modified fibers showed an extensively improved interfacial bonding property. The active groups grafted onto the fibers would supply enough anchor points for the chemical bonding with various resins or further reactions.

  15. Unprecedented inhibition of tubulin polymerization directed by gold nanoparticles inducing cell cycle arrest and apoptosis

    NASA Astrophysics Data System (ADS)

    Choudhury, Diptiman; Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; John, Robin; Dasgupta, Anjan Kumar; Pradeep, Thalappil; Chakrabarti, Gopal

    2013-05-01

    The effect of gold nanoparticles (AuNPs) on the polymerization of tubulin has not been examined till now. We report that interaction of weakly protected AuNPs with microtubules (MTs) could cause inhibition of polymerization and aggregation in the cell free system. We estimate that single citrate capped AuNPs could cause aggregation of ~105 tubulin heterodimers. Investigation of the nature of inhibition of polymerization and aggregation by Raman and Fourier transform-infrared (FTIR) spectroscopies indicated partial conformational changes of tubulin and microtubules, thus revealing that AuNP-induced conformational change is the driving force behind the observed phenomenon. Cell culture experiments were carried out to check whether this can happen inside a cell. Dark field microscopy (DFM) combined with hyperspectral imaging (HSI) along with flow cytometric (FC) and confocal laser scanning microscopic (CLSM) analyses suggested that AuNPs entered the cell, caused aggregation of the MTs of A549 cells, leading to cell cycle arrest at the G0/G1 phase and concomitant apoptosis. Further, Western blot analysis indicated the upregulation of mitochondrial apoptosis proteins such as Bax and p53, down regulation of Bcl-2 and cleavage of poly(ADP-ribose) polymerase (PARP) confirming mitochondrial apoptosis. Western blot run after cold-depolymerization revealed an increase in the aggregated insoluble intracellular tubulin while the control and actin did not aggregate, suggesting microtubule damage induced cell cycle arrest and apoptosis. The observed polymerization inhibition and cytotoxic effects were dependent on the size and concentration of the AuNPs used and also on the incubation time. As microtubules are important cellular structures and target for anti-cancer drugs, this first observation of nanoparticles-induced protein's conformational change-based aggregation of the tubulin-MT system is of high importance, and would be useful in the understanding of cancer therapeutics

  16. A Steric Antagonism of Actin Polymerization by a Salmonella Virulence Protein

    SciTech Connect

    Margarit,S.; Davidson, W.; Frego, L.; Stebbins, F.

    2006-01-01

    Salmonella spp. require the ADP-ribosyltransferase activity of the SpvB protein for intracellular growth and systemic virulence. SpvB covalently modifies actin, causing cytoskeletal disruption and apoptosis. We report here the crystal structure of the catalytic domain of SpvB, and we show by mass spectrometric analysis that SpvB modifies actin at Arg177, inhibiting its ATPase activity. We also describe two crystal structures of SpvB-modified, polymerization-deficient actin. These structures reveal that ADP-ribosylation does not lead to dramatic conformational changes in actin, suggesting a model in which this large family of toxins inhibits actin polymerization primarily through steric disruption of intrafilament contacts.

  17. Silver nanoparticles coated with thioxanthone derivative as hybrid photoinitiating systems for free radical polymerization.

    PubMed

    Nehlig, Emilie; Schneider, Raphaël; Vidal, Loic; Clavier, Gilles; Balan, Lavinia

    2012-12-21

    A new type of photoinitiator for free radical polymerization was synthesized and characterized. 2-(11-Mercaptoundecyloxy)thioxanthone (1) was anchored at the surface of silver nanoparticles (NPs), and the interaction of plasmon field generated in the immediate vicinity of Ag NPs carrying the chromophores was evaluated. The optical features and structure of the silver-initiator nanoassemblies (Ag@1) were characterized by UV-vis and fluorescence spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). TEM and XRD studies revealed the presence of ca. 5-6 nm diameter Ag NPs, and XPS also confirmed the successful anchorage of 1 at their periphery. The nanoassemblies Ag@1 were successfully used as macroinitiator for radical polymerization of acrylate monomers, triggered photochemically, to obtain Ag(0)-polyacrylate nanocomposite materials. The nanocomposite materials synthesized with the use of Ag@1 exhibit attractive possibilities for patterning the surface of thin films. PMID:23231028

  18. Solid state polymerization and crystallography of polyimide precursors. Ph.D. Thesis - Va. Univ.

    NASA Technical Reports Server (NTRS)

    Wakelyn, N. T.

    1974-01-01

    Although the production of crystallinity in a polymeric system has historically led to commerically useful properties, the polyimides, prized for their high temperature characteristics, as customarily synthesized by melt or solution casting, are amorphous. It is shown that polymide containing residual crystallinity can be synthesized by isothermal annealing of crystals of the salt of the diisopropyl ester of pyromellitic acid and phenylene diamine. The reaction is topochemical in that the geometry of the polymer product is dependent upon that of the crystalline precursor. Infrared spectroscopy reveals the presence of imide absorption in the polymer, while powder diffractometry suggests residual crystallinity. Single crystal X-ray analysis of the monomer yields a structure of chains of alternating acid and base suggesting that the monomer is amenable to polymerization with a minimum of geometrical disruption.

  19. Osteoblastic cell response and bone formation of phosphate ion coated on plasma polymerized Ti surface.

    PubMed

    Yang, Seong-Won; Lee, Kang; Kim, Byung-Hoon

    2013-01-01

    This study examined the bone formation ability and cell response on a phosphate (PO3(4-)) ion exchanged amine plasma polymerized titanium (Ti) surface. The enhanced bone-like apatite (hydroxyapatite, HAp)-forming ability was attributed to the PO3(4-) ion exchanged amine plasma polymerized Ti (P/NH2/Ti) surface, which was formed by the reduction of PO3(4-) ions. PO3(4-) ions promote HAp nucleation and growth on Ti in SBF, and PO3(4-) ions improve the crystallinity of the HAp deposited layer. The cell viability tests revealed significantly greater cell viability on the P/NH2/Ti surfaces than on the other surfaces.

  20. Surface functionalization of an osteoconductive filler by plasma polymerization of poly(ε-caprolactone) and poly(acrylic acid) films

    NASA Astrophysics Data System (ADS)

    Petisco-Ferrero, S.; Sánchez-Ilárduya, M. B.; Díez, A.; Martín, L.; Meaurio Arrate, E.; Sarasua, J. R.

    2016-11-01

    One of the major limitations found in the use of nanocomposites based on synthetic hydroxyapatite and polymeric matrix for bone-tissue regeneration lies in the poor interfacial adhesion between the inorganic filler and the polymer matrix. The integrity of the nanocomposite is severely compromised since, on the one hand, high surface fillers tend to form aggregates and on the other, there is no chemical bonding between these two different categories of materials. Thus, customized surface functionalization stands as an effective route to improve the interfacial behaviour between particles and polymeric matrices. Amongst the current state of development of coating technologies, the high film-chemistry controllability offered by plasma polymerization technology enhances the synthesis of polymeric films from virtually any starting organic monomer. In this sense, the work presented here provides strong evidences of surface functionalization achieved by plasma polymerization starting respectively from ε-caprolactone and acrylic acid monomers. The chemistry of the deposited films has been descriptively analysed by XPS demonstrating outstanding retention of monomer functionalities and FTIR spectra of the deposited films revealed a high resemblance to those obtained by conventional synthesis. Results provided thereof are expected to significantly contribute to improve the interfacial behaviour in terms of matrix-reinforcement compatibilization, of crucial importance for bone-tissue engineering applications.

  1. Space environmental effects on polymeric materials

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.; Orwoll, Robert A.

    1988-01-01

    Two of the major environmental hazards in the Geosynchronous Earth Orbit (GEO) are energetic charged particles and ultraviolet radiation. The charged particles, electrons and protons, range in energy from 0.1 to 4 MeV and each have a flux of 10 to the 8th sq cm/sec. Over a 30 year lifetime, materials in the GEO will have an absorbed dose from this radiation of 10 to the 10th rads. The ultraviolet radiation comes uninhibited from the sun with an irradiance of 1.4 kw/sq m. Radiation is known to initiate chain sission and crosslinking in polymeric materials, both of which affect their structural properties. The 30-year dose level from the combined radiation in the GEO exceeds the threshold for measurable damage in most polymer systems studied. Of further concern is possible synergistic effects from the simultaneous irradiation with charged particles and ultraviolet radiation. Most studies on radiation effects on polymeric materials use either electrons or ultraviolet radiation alone, or in a sequential combination.

  2. Impact of Carbon Nanomaterials on Actin Polymerization.

    PubMed

    Dong, Ying; Sun, Haiyan; Li, Xu; Li, Xin; Zhao, Lina

    2016-03-01

    Many nanomaterials have entered people's daily lives and impact the normal process of biological entities consequently. As one kind of the important nanomaterials, carbon based nanomaterials have invoked a lot of concerns from scientific researches because of their unique physicochemical properties. In eukaryotes, actin is the most abundantly distributed protein in both cytoplasm and cell nucleus, and closely controls the cell proliferation and mobility. Recently, many investigations have found some carbon based nanomaterials can affect actin cytoskeleton remarkably, including fullerenes derivatives, carbon nanotubes, graphene and its derivatives. However, these interaction processes are complicated and the underlying mechanism is far from being understood clearly. In this review, we discussed the different mechanisms of carbon nanomaterials impact on actin polymerization into three pathways, as triggering the signaling pathways from carbon nanomaterials outside of cells, increasing the production of reactive oxygen species from carbon nanomaterials inside of cells and direct interaction from carbon nanomaterials inside of cells. As a result, the dimension and size of carbon nanomaterials play a key role in regulation of actin cytoskeleton. Furthermore, we forecasted the possible investigation strategy for meeting the challenges of the future study on this topic. We hope the findings are helpful in understanding the molecular mechanism in carbon nanomaterials regulating actin polymerization, and provide new insight in novel nanomedicine development for inhibition tumor cell migration. PMID:27455649

  3. Predicting polymeric crystal structures by evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Sharma, Vinit; Oganov, Artem R.; Ramprasad, Ramamurthy

    2014-10-01

    The recently developed evolutionary algorithm USPEX proved to be a tool that enables accurate and reliable prediction of structures. Here we extend this method to predict the crystal structure of polymers by constrained evolutionary search, where each monomeric unit is treated as a building block with fixed connectivity. This greatly reduces the search space and allows the initial structure generation with different sequences and packings of these blocks. The new constrained evolutionary algorithm is successfully tested and validated on a diverse range of experimentally known polymers, namely, polyethylene, polyacetylene, poly(glycolic acid), poly(vinyl chloride), poly(oxymethylene), poly(phenylene oxide), and poly (p-phenylene sulfide). By fixing the orientation of polymeric chains, this method can be further extended to predict the structures of complex linear polymers, such as all polymorphs of poly(vinylidene fluoride), nylon-6 and cellulose. The excellent agreement between predicted crystal structures and experimentally known structures assures a major role of this approach in the efficient design of the future polymeric materials.

  4. Stochastic model of profilin-actin polymerization

    NASA Astrophysics Data System (ADS)

    Horan, Brandon; Vavylonis, Dimitrios

    A driving factor in cell motility and other processes that involve changes of cell shape is the rapid polymerization of actin subunits into long filaments. This process is regulated by profilin, a protein which binds to actin subunits and regulates elongation of actin filaments. Whether profilin stimulates polymerization by coupling to hydrolysis of ATP-bound actin is debated. Previous studies have proposed indirect coupling to ATP hydrolysis using rate equations, but did not include the effects of fluctuations that are important near the critical concentration. We developed stochastic simulations using the Gillespie algorithm to study single filament elongation at the barbed end in the presence of profilin. We used recently measured rate constants and estimated the rate of profilin binding to the barbed end such that detailed balance is satisfied. Fast phosphate release at the tip of the filament was accounted for. The elongation rate and length diffusivity as functions of profilin and actin concentration were calculated and used to extract the critical concentrations of free actin and of total actin. We show under what conditions profilin leads to an increase in the critical concentration of total actin but a decrease in the critical concentration of free actin.

  5. Protein encapsulation in polymeric microneedles by photolithography

    PubMed Central

    Kochhar, Jaspreet Singh; Zou, Shui; Chan, Sui Yung; Kang, Lifeng

    2012-01-01

    Background Recent interest in biocompatible polymeric microneedles for the delivery of biomolecules has propelled considerable interest in fabrication of microneedles. It is important that the fabrication process is feasible for drug encapsulation and compatible with the stability of the drug in question. Moreover, drug encapsulation may offer the advantage of higher drug loading compared with other technologies, such as drug coating. Methods and results In this study, we encapsulated a model protein drug, namely, bovine serum albumin, in polymeric microneedles by photolithography. Drug distribution within the microneedle array was found to be uniform. The encapsulated protein retained its primary, secondary, and tertiary structural characteristics. In vitro release of the encapsulated protein showed that almost all of the drug was released into phosphate buffered saline within 6 hours. The in vitro permeation profile of encapsulated bovine serum albumin through rat skin was also tested and shown to resemble the in vitro release profile, with an initial release burst followed by a slow release phase. The cytotoxicity of the microneedles without bovine serum albumin was tested in three different cell lines. High cell viabilities were observed, demonstrating the innocuous nature of the microneedles. Conclusion The microneedle array can potentially serve as a useful drug carrier for proteins, peptides, and vaccines. PMID:22787403

  6. Strong liquid-crystalline polymeric compositions

    DOEpatents

    Dowell, Flonnie

    1993-01-01

    Strong liquid-crystalline polymeric (LCP) compositions of matter. LCP backbones are combined with liquid crystalline (LC) side chains in a manner which maximizes molecular ordering through interdigitation of the side chains, thereby yielding materials which are predicted to have superior mechanical properties over existing LCPs. The theoretical design of LCPs having such characteristics includes consideration of the spacing distance between side chains along the backbone, the need for rigid sections in the backbone and in the side chains, the degree of polymerization, the length of the side chains, the regularity of the spacing of the side chains along the backbone, the interdigitation of side chains in sub-molecular strips, the packing of the side chains on one or two sides of the backbone to which they are attached, the symmetry of the side chains, the points of attachment of the side chains to the backbone, the flexibility and size of the chemical group connecting each side chain to the backbone, the effect of semiflexible sections in the backbone and the side chains, and the choice of types of dipolar and/or hydrogen bonding forces in the backbones and the side chains for easy alignment.

  7. Strong liquid-crystalline polymeric compositions

    DOEpatents

    Dowell, F.

    1993-12-07

    Strong liquid-crystalline polymeric (LCP) compositions of matter are described. LCP backbones are combined with liquid crystalline (LC) side chains in a manner which maximizes molecular ordering through interdigitation of the side chains, thereby yielding materials which are predicted to have superior mechanical properties over existing LCPs. The theoretical design of LCPs having such characteristics includes consideration of the spacing distance between side chains along the backbone, the need for rigid sections in the backbone and in the side chains, the degree of polymerization, the length of the side chains, the regularity of the spacing of the side chains along the backbone, the interdigitation of side chains in sub-molecular strips, the packing of the side chains on one or two sides of the backbone to which they are attached, the symmetry of the side chains, the points of attachment of the side chains to the backbone, the flexibility and size of the chemical group connecting each side chain to the backbone, the effect of semiflexible sections in the backbone and the side chains, and the choice of types of dipolar and/or hydrogen bonding forces in the backbones and the side chains for easy alignment. 27 figures.

  8. Metallophilic interactions in polymeric group 11 thiols

    NASA Astrophysics Data System (ADS)

    Kolari, Kalle; Sahamies, Joona; Kalenius, Elina; Novikov, Alexander S.; Kukushkin, Vadim Yu.; Haukka, Matti

    2016-10-01

    Three polymeric group 11 transition metal polymers featuring metallophilic interactions were obtained directly via self-assembly of metal ions and 4-pyridinethiol ligands. In the cationic [Cu2(S-pyH)4]n2+ with [ZnCl4]n2- counterion (1) and in the neutral [Ag(S-py) (S-pyH)]n (2) 4-pyridinethiol (S-pyH) and its deprotonated form (S-py) are coordinated through the sulfur atom. Both ligands are acting as bridging ligands linking the metal centers together. In the solid state, the gold(I) polymer [Au(S-pyH)2]Cl (3) consists of the repeating cationic [Au(S-pyH)2]+ units held together by aurophilic interactions. Compound 1 is a zig-zag chain, whereas the metal chains in the structures of 2 and 3 are linear. The protonation level of the thiol ligand had an impact on the crystallization of polymers. Both nature of the metal center and reaction conditions affected the polymerization. QTAIM analysis confirmed direct metal-metal contacts only in polymers 1 and 3. In polymer 2, no theoretical evidence of argentophilic contacts was obtained even though the AgṡṡṡAg distance was found to be less than sum of the Bondi's van der Waals radius of silver.

  9. Sulfonated Polymerized Ionic Liquid Block Copolymers.

    PubMed

    Meek, Kelly M; Elabd, Yossef A

    2016-07-01

    The successful synthesis of a new diblock copolymer, referred to as sulfonated polymerized ionic liquid (PIL) block copolymer, poly(SS-Li-b-AEBIm-TFSI), is reported, which contains both sulfonated blocks (sulfonated styrene: SS) and PIL blocks (1-[(2-acryloyloxy)ethyl]-3-butylimidazolium: AEBIm) with both mobile cations (lithium: Li(+) ) and mobile anions (bis(trifluoromethylsulfonyl)imide: TFSI(-) ). Synthesis consists of polymerization via reversible addition-fragmentation chain transfer, followed by post-functionalization reactions to covalently attach the imidazolium cations and sulfonic acid anions to their respective blocks, followed by ion exchange metathesis resulting in mobile Li(+) cations and mobile TFSI(-) anions. Solid-state films containing 1 m Li-TFSI salt dissolved in ionic liquid result in an ion conductivity of >1.5 mS cm(-1) at 70 °C, where small-angle X-ray scattering data indicate a weakly ordered microphase-separated morphology. These results demonstrate a new ion-conducting block copolymer containing both mobile cations and mobile anions. PMID:27125600

  10. Metastable Polymerization of Sickle Hemoglobin in Droplets

    PubMed Central

    Aprelev, Alexey; Weng, Weijun; Zakharov, Mikhail; Rotter, Maria; Yosmanovich, Donna; Kwong, Suzanna; Briehl, Robin W.; Ferrone, Frank A.

    2007-01-01

    Sickle cell disease arises from a genetic mutation of one amino acid in each of the two hemoglobin β chains, leading to the polymerization of hemoglobin in the red cell upon deoxygenation, and is characterized by vascular crises and tissue damage due to the obstruction of small vessels by sickled cells. It has been an untested assumption that, in red cells that sickle, the growing polymer mass would consume monomers until the thermodynamically well-described monomer solubility was reached. By photolyzing droplets of sickle hemoglobin suspended in oil we find that polymerization does not exhaust the available store of monomers, but stops prematurely, leaving the solutions in a supersaturated, metastable state typically 20% above solubility at 37°C, though the particular values depend on the details of the experiment. We propose that polymer growth stops because the growing ends reach the droplet edge, whereas new polymer formation is thwarted by long nucleation times, since the hemoglobin concentration is lowered by depletion of monomers into the polymers that have formed. This finding suggests a new aspect to the pathophysiology of sickle cell disease, namely, that cells deoxygenated in the microcirculation are not merely undeformable, but will actively wedge themselves tightly against the walls of the microvasculature by a ratchet-like mechanism driven by the supersaturated solution. PMID:17493634

  11. Effect of primers on bonding agent polymerization.

    PubMed

    Hotta, M; Kondoh, K; Kamemizu, H

    1998-10-01

    The aim of the present study was to evaluate the effect of primers on the polymerization of bonding agent. We measured the degree of conversion (radical production) and mechanical properties (surface hardness and direct tensile strength) of various adhesives/primers mixed at different ratios and the effect of varying the visible-light curing time. With and without primer treatment, the tensile bond strength of adhesive resin to micacious glass ceramic and human enamel was measured. After the tensile bond test, using the Image Capture System, the failure patterns of adhesive resin bonded to micacious glass-ceramic were analysed. The results show that the mixtures containing the higher amounts of primer yielded a lower degree of conversion and inferior mechanical properties when compared with the mixtures containing a lower proportion of primer, except in the experimental bonding system. The adhesive/primer mixtures inhibited free radical polymerization. The value for the Knoop hardness number and the direct tensile strength of the adhesive/primer mixtures were significantly decreased compared with those of the adhesive bonding agent alone with no primer added. The tensile bond strength of adhesive resin bonded to micacious glass-ceramic or human enamel without primer treatment was significantly greater than that of adhesive resin with primer treatment in certain cases. Most of the fractures of ceramic surfaces were cohesive (within resins) and/or interface (at the ceramic surface) failure.

  12. Capillary wrinkling of thin bilayer polymeric sheets

    NASA Astrophysics Data System (ADS)

    Chang, Jooyoung; Menon, Narayanan; Russell, Thomas

    We have investigated capillary force induced wrinkling on a floated polymeric bilayer thin sheet. The origin of the wrinkle pattern is compressional hoop stress caused by the capillary force of a water droplet placed on the floated polymeric thin sheet afore investigated. Herein, we study the effect of the differences of surface energy arising from the hydrophobicity of Polystyrene (PS Mw: 97 K, Contact Angle: 88 º) and the hydrophilicity of Poly(methylmethacrylate) (PMMA Mw: 99K, Contact Angle: 68 º) on two sides of a bilayer film. We measure the number and the length of the wrinkles by broadly varying the range of thicknesses of top (9 nm to 550 nm) and bottom layer (25 nm to 330 nm). At the same, there is only a small contrast in mechanical properties of the two layers (PS E = 3.4 GPa, and PMMA E = 3 GPa). The number of the wrinkles is not strongly affected by the composition (PS(Top)/PMMA(Bottom) or PMMA(Top)/PS(Bottom)) and the thickness of each and overall bilayer system. However, the length of the wrinkle is governed by the contact angle of the drop on the top layer of bilayer system. We also compare this to the wrinkle pattern obtained in monolayer systems over a wide range of thickness from PS and PMMA (7 nm to 1 μm). W.M. Keck Foundation.

  13. Chemical modification of polymeric microchip devices.

    PubMed

    Muck, Alexander; Svatos, Ales

    2007-12-15

    Analytical polymeric microchips in both fluidic and array formats offer short analysis times, coupling of many sample processing and chemical reaction steps on one platform with minimal sample and reagent consumption, as well as low cost, minimal fabrication times and disposability. However, the invariable bulk properties of most commercial polymers have driven researchers to develop new modification strategies. This article critically reviews the scope and development of chemical modifications of such polymeric chips since 2003. Surface modifications were based on chemical derivatization or activation of surface layers with reagent solutions, reactive gases and irradiation. Bulk modification of polymer chips used newly incorporation of monomers with selective chemical functionalities throughout the bulk polymer material and integrated the chip modification and fabrication into a single step. Such modifications hold a great promise for establishing a true 'lab-on-chip' as can be seen from many novel applications for modulating electroosmosis, suppressing protein adsorption in microchip capillary electrophoretic separations, extraction of analytes and for zone-specific binding of enzymes and other biomolecules. PMID:18371647

  14. Smart Polymeric Nanocarriers of Met-enkephalin.

    PubMed

    Szweda, Roza; Trzebicka, Barbara; Dworak, Andrzej; Otulakowski, Lukasz; Kosowski, Dominik; Hertlein, Justyna; Haladjova, Emi; Rangelov, Stanislav; Szweda, Dawid

    2016-08-01

    This study describes a novel approach to polymeric nanocarriers of the therapeutic peptide met-enkephalin based on the aggregation of thermoresponsive polymers. Thermoresponsive bioconjugate poly((di(ethylene glycol) monomethyl ether methacrylate)-ran-(oligo(ethylene glycol) monomethyl ether methacrylate) is synthesized by AGET ATRP using modified met-enkephalin as a macroinitiator. The abrupt heating of bioconjugate water solution leads to the self-assembly of bioconjugate chains and the formation of mesoglobules of controlled sizes. Mesoglobules formed by bioconjugates are stabilized by coating with cross-linked two-layer shell via nucleated radical polymerization of N-isopropylacrylamide using a degradable cross-linker. The targeting peptide RGD, containing the fluorescence marker carboxyfluorescein, is linked to a nanocarrier during the formation of the outer shell layer. In the presence of glutathione, the whole shell is completely degradable and the met-enkephalin conjugate is released. It is anticipated that precisely engineered nanoparticles protecting their cargo will emerge as the next-generation platform for cancer therapy and many other biomedical applications. PMID:27409457

  15. Functionalized nanoparticle interactions with polymeric membranes

    PubMed Central

    Ladner, D.A.; Steele, M.; Weir, A.; Hristovski, K.; Westerhoff, P.

    2011-01-01

    A series of experiments was performed to measure the retention of a class of functionalized nanoparticles (NPs) onporous (microfiltration and ultrafiltration) membranes. The findings impact engineered water and wastewater treatment using membrane technology, characterization and analytical schemes for NP detection, and the use of NPs in waste treatment scenarios. The NPs studied were composed of silver, titanium dioxide, and gold; had organic coatings to yield either positive or negative surface charge; and were between 2 and 10 nm in diameter. NP solutions were applied to polymeric membranes composed of different materials and pore sizes (ranging from ~2 nm [3 kDa molecular weight cutoff] to 0.2 μm). Greater than 99% rejection was observed of positively charged NPs by negatively charged membranes even though pore diameters were up to 20 times the NP diameter; thus, sorption caused rejection. Negatively charged NPs were less well rejected, but behavior was dependant not only on surface functionality but on NP core material (Ag, TiO2, or Au). NP rejection depended more upon NP properties than membrane properties; all of the negatively charged polymeric membranes behaved similarly. The NP-membrane interaction behavior fell into four categories, which are defined and described here. PMID:22177020

  16. Engineering topochemical polymerizations using block copolymer templates.

    PubMed

    Zhu, Liangliang; Tran, Helen; Beyer, Frederick L; Walck, Scott D; Li, Xin; Agren, Hans; Killops, Kato L; Campos, Luis M

    2014-09-24

    With the aim to achieve rapid and efficient topochemical polymerizations in the solid state, via solution-based processing of thin films, we report the integration of a diphenyldiacetylene monomer and a poly(styrene-b-acrylic acid) block copolymer template for the generation of supramolecular architectural photopolymerizable materials. This strategy takes advantage of non-covalent interactions to template a topochemical photopolymerization that yields a polydiphenyldiacetylene (PDPDA) derivative. In thin films, it was found that hierarchical self-assembly of the diacetylene monomers by microphase segregation of the block copolymer template enhances the topochemical photopolymerization, which is complete within a 20 s exposure to UV light. Moreover, UV-active cross-linkable groups were incorporated within the block copolymer template to create micropatterns of PDPDA by photolithography, in the same step as the polymerization reaction. The materials design and processing may find potential uses in the microfabrication of sensors and other important areas that benefit from solution-based processing of flexible conjugated materials. PMID:25208609

  17. Free radical polymerization of poly(ethylene glycol) diacrylate macromers: impact of macromer hydrophobicity and initiator chemistry on polymerization efficiency.

    PubMed

    Dai, Xiaoshu; Chen, Xi; Yang, Laura; Foster, Sarah; Coury, Arthur J; Jozefiak, Thomas H

    2011-05-01

    A series of poly(ethylene glycol)-co-poly(lactide) diacrylate macromers was synthesized with variable PEG molecular weights (10 or 20 kDa) and lactate contents (0 or 6 lactates per end group). These macromers were polymerized to form hydrogels by free radical polymerization using either redox or photochemical initiators. The extent of polymerization was determined by monitoring the compressive modulus of the resulting hydrogels and by quantitative determination of unreacted acrylate after exhaustive hydrolysis of the gel. Polymerization efficiency was found to depend on the lactate content of the macromer, with higher lactate macromers giving more efficient polymerization. For redox-initiated polymerization using ferrous gluconate/t-butyl hydroperoxide initiator, macromers containing approximately six lactate repeats per end group required lower concentrations of initiator to reach high conversion than lactate-free macromers. Photochemical polymerization with α,α-dimethoxy-α-phenylacetophenone (Irgacure 651(®)) was found to be less efficient than redox polymerization, requiring the addition of N-vinyl-2- pyrrolidone (NVP) as a co-monomer to achieve conversions comparable with redox polymerization. When conditions were optimized to provide near complete conversion for all gels, the presence of lactate repeat units in the hydrogel was generally found to reduce swelling and increase the compressive modulus. Calculated values of molecular weight between cross-links (M(c)) and mesh size using Flory-Rehner theory showed that macromer molecular weight had the greatest impact on the network structure of the gel. PMID:21232638

  18. Water Fluxes in Polymeric Membranes for Desalination via Membrane Distillation

    NASA Astrophysics Data System (ADS)

    Mannella, G. A.; Brucato, V.; La Carrubba, V.

    2010-06-01

    Membrane distillation is an emerging technique for seawater desalination. Hydrophobic polymeric membranes are used to separate the solute-free water vapour from the hot solution. Vapour fluxes of commercial polymeric membranes were measured in various conditions, i.e. natural and forced convection and vacuum. Vapour fluxes were also predicted with models and compared with experimentals. Higher fluxes were recorded in vacuum conditions.

  19. Polymerization of Plant Oils in Carbon Dioxide Medium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lewis acid catalyst, boron trifluoride diethyl etherate (BF3•OEt2), catalyzed polymerization of epoxidized soybean oil (ESO) in liquid carbon dioxide was conducted in an effort to develop useful biodegradable polymers. The ring-opening polymerization was employed at mild conditions, such as at room...

  20. [Applications of polymeric monoliths in separation of bio-macromolecules].

    PubMed

    Bai, Ligai; Niu, Wenjing; Yang, Gengliang

    2013-04-01

    In recent years, the applications of high performance liquid chromatographic polymeric monoliths in the separation of macromolecules have been developed. In the review, the characters and new developments of bio-macromolecules separation by using the polymeric monoliths, combining with the works in our laboratory are summarized. Moreover, related influential reports are referred.