Science.gov

Sample records for radar emitter signals

  1. Online clustering algorithms for radar emitter classification.

    PubMed

    Liu, Jun; Lee, Jim P Y; Senior; Li, Lingjie; Luo, Zhi-Quan; Wong, K Max

    2005-08-01

    Radar emitter classification is a special application of data clustering for classifying unknown radar emitters from received radar pulse samples. The main challenges of this task are the high dimensionality of radar pulse samples, small sample group size, and closely located radar pulse clusters. In this paper, two new online clustering algorithms are developed for radar emitter classification: One is model-based using the Minimum Description Length (MDL) criterion and the other is based on competitive learning. Computational complexity is analyzed for each algorithm and then compared. Simulation results show the superior performance of the model-based algorithm over competitive learning in terms of better classification accuracy, flexibility, and stability.

  2. Robust Radar Emitter Recognition Based on the Three-Dimensional Distribution Feature and Transfer Learning

    PubMed Central

    Yang, Zhutian; Qiu, Wei; Sun, Hongjian; Nallanathan, Arumugam

    2016-01-01

    Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for radar emitter signal recognition. To address this challenge, multi-component radar emitter recognition under a complicated noise environment is studied in this paper. A novel radar emitter recognition approach based on the three-dimensional distribution feature and transfer learning is proposed. The cubic feature for the time-frequency-energy distribution is proposed to describe the intra-pulse modulation information of radar emitters. Furthermore, the feature is reconstructed by using transfer learning in order to obtain the robust feature against signal noise rate (SNR) variation. Last, but not the least, the relevance vector machine is used to classify radar emitter signals. Simulations demonstrate that the approach proposed in this paper has better performances in accuracy and robustness than existing approaches. PMID:26927111

  3. Interception of LPI Radar Signals

    DTIC Science & Technology

    1991-11-01

    AD-A246 315!I! I!! II I’ IIi INTERCEPTION OF LPI RADAR SIGNALS (U) by Jim P.Y. Lee DEFENCE RESEARCH ESTABLISHMENT OTTAWA TECHNICAL NOTE 91-23 Canadd...November 1991Ottawa 92-041269’ 2 2 18 II.2t1111111I 111111! !_ 1+1 efrc nadonds INTERCEPTION OF LPI RADAR SIGNALS (U) by Jim P.Y. Lee Radar E"Sect&ion... radar may employ against current EW receivers. The general conclusion is that it is possible to design a LPI radar which is effective against current

  4. 7. CLOSEUP FRONT VIEW OF RADAR SYSTEM EMITTER/ANTENNA (TYPICAL DEVICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. CLOSE-UP FRONT VIEW OF RADAR SYSTEM EMITTER/ANTENNA (TYPICAL DEVICE PHOTOGRAPH). - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  5. Radar signal categorization using a neural network

    NASA Technical Reports Server (NTRS)

    Anderson, James A.; Gately, Michael T.; Penz, P. Andrew; Collins, Dean R.

    1991-01-01

    Neural networks were used to analyze a complex simulated radar environment which contains noisy radar pulses generated by many different emitters. The neural network used is an energy minimizing network (the BSB model) which forms energy minima - attractors in the network dynamical system - based on learned input data. The system first determines how many emitters are present (the deinterleaving problem). Pulses from individual simulated emitters give rise to separate stable attractors in the network. Once individual emitters are characterized, it is possible to make tentative identifications of them based on their observed parameters. As a test of this idea, a neural network was used to form a small data base that potentially could make emitter identifications.

  6. Optical signal processing of phased array radar

    NASA Astrophysics Data System (ADS)

    Weverka, Robert T.

    This thesis develops optical processors that scale to very high processing speed. Optical signal processing is often promoted on the basis of smaller size, lower weight and lower power consumption as well as higher signal processing speed. While each of these requirements has applications, it is the ones that require processing speed beyond that available in electronics that are most compelling. Thirty years ago, optical processing was the only method fast enough to process Synthetic Aperture Radar (SAR), one of the more demanding signal processing tasks at this time. Since that time electronic processing speed has improved sufficiently to tackle that problem. We have sought out the problems that require significantly higher processing speed and developed optical processors that tackle these more difficult problems. The components that contribute to high signal processing speed are high input signal bandwidth, a large number of parallel input channels each with this high bandwidth, and a large number of parallel operations required on each input channel. Adaptive signal processing for phased array radar has all of these factors. The processors developed for this task scale well in three dimensions, which allows them to maximize parallelism for high speed. This thesis explores an example of a negative feedback adaptive phased array processor and an example of a positive feedback phased array processor. The negative feedback processor uses and array of inputs in up to two dimensions together with the time history of the signal in the third dimension to adapt the array pattern to null out incoming jammer signals. The positive feedback processor uses the incoming signals and assumptions about the radar scene to correct for position errors in a phased array. Discovery and analysis of these new processors are facilitated by an original volume holographic analysis technique developed in the thesis. The thesis includes a new acoustooptic Bragg cell geometry developed with

  7. Packet radar spectrum recovery for physiological signals.

    PubMed

    Yavari, Ehsan; Padasdao, Bryson; Lubecke, Victor; Boric-Lubecke, Olga

    2013-01-01

    Packet Doppler radar is investigated for extracting physiological signals. System on Chip is employed as a signal source in packet mode, and it transmits signals intermittently at 2.405 GHz to save power. Reflected signals are demodulated directly by spectral analysis of received pulses in the baseband. Spectral subtraction, using data from an empty room, is applied to extract the periodic movement. It was experimentally demonstrated that frequency of the periodic motion can be accurately extracted using this technique. Proposed approach reduces the computation complexity of the signal processing part effectively.

  8. 28. Perimeter acquisition radar building room #302, signal process and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Perimeter acquisition radar building room #302, signal process and analog receiver room - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  9. Radar transponder apparatus and signal processing technique

    SciTech Connect

    Axline, R.M. Jr.; Sloan, G.R.; Spalding, R.E.

    1994-12-31

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance tile transponder`s echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag, through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.

  10. Radar transponder apparatus and signal processing technique

    DOEpatents

    Axline, Jr., Robert M.; Sloan, George R.; Spalding, Richard E.

    1996-01-01

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder's echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.

  11. Radar transponder apparatus and signal processing technique

    DOEpatents

    Axline, R.M. Jr.; Sloan, G.R.; Spalding, R.E.

    1996-01-23

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder`s echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR. 4 figs.

  12. Autonomous Non-Linear Classification of LPI Radar Signal Modulations

    DTIC Science & Technology

    2007-09-01

    database of important LPI radar waveform modulations including Frequency Modulation Continuous Waveform ( FMCW ), Phase Shift Keying (PSK), Frequency...important LPI radar waveform modulations including Frequency Modulation Continuous Waveform ( FMCW ), Phase Shift Keying (PSK), Frequency Shift Keying (FSK...LINEAR CLASSIFICATION OF LPI RADAR SIGNAL MODULATIONS by Taylan O. Gulum September 2007 Thesis Co-Advisors: Phillip E. Pace Roberto

  13. Analysis of Low Probability of Intercept (LPI) Radar Signals Using Cyclostationary Processing

    NASA Astrophysics Data System (ADS)

    Lime, Antonio F., Jr.

    2002-09-01

    LPI (Low Probability of Intercept) radar is a class of radar systems that possess certain performance characteristics that make them nearly undetectable by today's digital intercept receivers. This presents a significant tactical problem in the battle space. To detect these types of radar, new digital receivers that use sophisticated signal processing techniques are required This thesis investigates the use of cyclostationary processing to extract the modulation parameters from a variety of continuous-wave (CW) low-probability-of-intercept (LPI) radar waveforms. The cyclostationary detection techniques described exploit the fact that digital signals vary in time with single or multiple periodicities, because they have spectral correlation, namely, non-zero correlation between certain frequency components, at certain frequency shifts. The use of cyclostationary signal processing in a non-cooperative intercept receiver can help identify the particular emitter and can help develop electronic attacks. LPI CW waveforms examined include Frank codes, polyphase codes (Pt through P4), Frequency Modulated CW (FMCW), Costas frequencies as well as several frequency-shift-keying/phase-shift-keying (FSK/PSK) waveforms. It is shown that for signal-to-noise ratios of OdB and -6 dB, the cyclostationary signal processing can extract the modulation parameters necessary in order to distinguish among the various types of LPI modulations.

  14. Auxiliary signal processing system for a multiparameter radar

    NASA Technical Reports Server (NTRS)

    Chandrasekar, V.; Gray, G. R.; Caylor, I. J.

    1993-01-01

    The design of an auxiliary signal processor for a multiparameter radar is described with emphasis on low cost, quick development, and minimum disruption of radar operations. The processor is based around a low-cost digital signal processor card and personal computer controller. With the use of such a concept, an auxiliary processor was implemented for the NCAR CP-2 radar during a 1991 summer field campaign and allowed measurement of additional polarimetric parameters, namely, the differential phase and the copolar cross correlation. Sample data are presented from both the auxiliary and existing radar signal processors.

  15. ELINT Signal Processing on Reconfigurable Computers for Detection and Classification of LPI Emitters

    DTIC Science & Technology

    2006-06-01

    LPI radar and communication systems are one tool that helps to give this edge. LPI stands for Low Probability of intercept and these systems have...reconfigurable computer can accomplish the required real-time processing of LPI radar and communications signals. ELINT (Electronic Intelligence...and a comparison of that implementation to other methods of detecting and classifying LPI radar signals. • This thesis concludes with Chapter VII

  16. Signal to Noise Analysis of iRadar sensors

    SciTech Connect

    Fritzke, A; Top, P

    2009-09-10

    This document follows my process of testing; comparing; and contrasting several iRadars signal to noise ratios for both HH and VV polarization. A brief introduction is given explaining the basics of iRadar technology and what data I was collecting. The process section explains the steps I took to collect my data along with any procedures I followed. The analysis section compares and contrasts five different radars and the two different polarizations. The analysis also details the radars viewing limitations and area. Finally, the report delves into the effects of two radars interfering with each other. A conclusion goes over the success and findings of the project.

  17. Goldstone solar system radar signal processing

    NASA Technical Reports Server (NTRS)

    Jurgens, R. F.; Satorius, E.; Sanchez, O.

    1992-01-01

    A performance analysis of the planetary radar data acquisition system is presented. These results extend previous computer simulation analysis and are facilitated by the development of a simple analytical model that predicts radar system performance over a wide range of operational parameters. The results of this study are useful to both the radar systems designer and the science investigator in establishing operational radar data acquisition parameters which result in the best systems performance for a given set of input conditions.

  18. Goldstone solar system radar signal processing

    NASA Technical Reports Server (NTRS)

    Jurgens, R.; Satorius, E.; Sanchez, O.

    1992-01-01

    A performance analysis of the planetary radar data acquisition system is presented. These results extend previous computer simulation analysis and are facilitated by the development of a simple analytical model that predicts radar system performance over a wide range of operational parameters. The results of this study are useful to both the radar system designer and the science investigator in establishing operational radar data acquisition parameters which result in the best systems performance for a given set of input conditions.

  19. Linear Frequency Modulated Signals VS Orthogonal Frequency Division Multiplexing Signals for Synthetic Aperture Radar Systems

    DTIC Science & Technology

    2014-06-01

    OFDM ) signal versus a linear frequency modulated or chirp signal on simulated synthetic aperture radar (SAR) imagery. Various parameters of the...transmitted signal, such as pulse duration, transmitted signal energy, bandwidth, and (specifically for the OFDM signal) number of subcarriers and...SAR system design cost. 14. SUBJECT TERMS Synthetic aperture radar (SAR), orthogonal frequency division multiplexing ( OFDM ), linear

  20. Signal coverage approach to the detection probability of hypothetical extraterrestrial emitters in the Milky Way.

    PubMed

    Grimaldi, Claudio

    2017-04-12

    The lack of evidence for the existence of extraterrestrial life, even the simplest forms of animal life, makes it is difficult to decide whether the search for extraterrestrial intelligence (SETI) is more a high-risk, high-payoff endeavor than a futile attempt. Here we insist that even if extraterrestrial civilizations do exist and communicate, the likelihood of detecting their signals crucially depends on whether the Earth lies within a region of the galaxy covered by such signals. By considering possible populations of independent emitters in the galaxy, we build a statistical model of the domain covered by hypothetical extraterrestrial signals to derive the detection probability that the Earth is within such a domain. We show that for general distributions of the signal longevity and directionality, the mean number of detectable emitters is less than one even for detection probabilities as large as 50%, regardless of the number of emitters in the galaxy.

  1. Tomographic Processing of Synthetic Aperture Radar Signals for Enhanced Resolution

    DTIC Science & Technology

    1989-11-01

    digital signal processing view of strip-mapping synthetic aperture radar," M.S. thesis , University of Illinois, Urbana, IL,1988." [571 David C. Munson...TOMOGRAPHIC PROCESSING OF 1 SYNTHETIC APERTURE I RADAR SIGNALS FOR ENHANCED RESOLUTION,I * Jerald Lee Bauck DTIC ELECTE JAN2419901D I I UNIVERSITY OF ILLINOIS...NC 27709-2211 ELEMENT NO. NO. NO CCESSION NO. 11i. TITLE (Include Security Classification) TOMOGRAPHIC PROCESSING OF SYNTHETIC APERTURE RADlAR SIGNALS

  2. From Bursts to Back-Projection: Signal Processing Techniques for Earth and Planetary Observing Radars

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2012-01-01

    Discusses: (1) JPL Radar Overview and Historical Perspective (2) Signal Processing Needs in Earth and Planetary Radars (3) Examples of Current Systems and techniques (4) Future Perspectives in signal processing for radar missions

  3. Synthetic aperture radar signal processing: Trends and technologies

    NASA Technical Reports Server (NTRS)

    Curlander, John C.

    1993-01-01

    An overview of synthetic aperture radar (SAR) technology is presented in vugraph form. The following topics are covered: an SAR ground data system; SAR signal processing algorithms; SAR correlator architectures; and current and future trends.

  4. Time-frequency analysis of synthetic aperture radar signals

    SciTech Connect

    Johnston, Brooks

    1996-08-01

    Synthetic aperture radar (SAR) has become an important tool for remote sensing of the environment. SAR is a set of digital signal processing algorithms that are used to focus the signal returned to the radar because radar systems in themselves cannot produce the high resolution images required in remote sensing applications. To reconstruct an image, several parameters must be estimated and the quality of output image depends on the degree of accuracy of these parameters. In this thesis, we derive the fundamental SAR algorithms and concentrate on the estimation of one of its critical parameters. We show that the common technique for estimating this particular parameter can sometimes lead to erroneous results and reduced quality images. We also employ time-frequency analysis techniques to examine variations in the radar signals caused by platform motion and show how these results can be used to improve output image quality.

  5. Integration of radio-frequency transmission and radar in general software for multimodal battlefield signal modeling

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kenneth K.; Reznicek, Nathan J.; Wilson, D. Keith

    2013-05-01

    The Environmental Awareness for Sensor and Emitter Employment (EASEE) software, being developed by the U. S. Army Engineer Research and Development Center (ERDC), provides a general platform for predicting sensor performance and optimizing sensor selection and placement in complex terrain and weather conditions. It incorporates an extensive library of target signatures, signal propagation models, and sensor systems. A flexible object-oriented design supports efficient integration and simulation of diverse signal modalities. This paper describes the integration of modeling capabilities for radio-frequency (RF) transmission and radar systems from the U. S. Navy Electromagnetic Propagation Integrated Resource Environment (EMPIRE), which contains nearly twenty different realistic RF propagation models. The integration utilizes an XML-based interface between EASEE and EMPIRE to set inputs for and run propagation models. To accommodate radars, fundamental improvements to the EASEE software architecture were made to support active-sensing scenarios with forward and backward propagation of the RF signals between the radar and target. Models for reflecting targets were defined to apply a target-specific, directionally dependent reflection coefficient (i.e., scattering cross section) to the incident wavefields.

  6. Predictability of GNSS signal observations in support of Space Situational Awareness using passive radar

    NASA Astrophysics Data System (ADS)

    Mahmud, M. S.; Lambert, A.; Benson, C.

    2015-07-01

    GNSS signals have been proposed as emitters of opportunity to enhance Space Situational Awareness (SSA) by tracking small items of space debris using bistatic radar. Although the scattered GNSS signal levels from small items of space debris are incredibly low, the dynamic disturbances of the observed object are very small, and the phase of the scattered signals is well behaved. It is therefore plausible that coherent integration periods on the order of many minutes could be achieved. However, even with long integration periods, very large receiver arrays with extensive, but probably viable, processing are required to recover the scattered signal. Such large arrays will be expensive, and smaller more affordable arrays will collect insufficient signal power to detect the small objects (relative to wavelength) that are necessary to maintain the necessary phase coherency. The investments necessary to build a large receiver array are unlikely without substantial risk reduction. Pini and Akos have previously reported on use of very large radio telescopes to analyse the short-term modulation performance of GNSS satellite signals. In this work we report on tracking of GPS satellites with a radio-astronomy VLBI antenna system to assess the stability of the observed GPS signal over a time period indicative of that proposed for passive radar. We also confirm some of the processing techniques that may be used in both demonstrations and the final system. We conclude from the limited data set that the signal stability when observed by a high-gain tracking antenna and compared against a high quality, low phase-noise clock is excellent, as expected. We conclude by framing further works to reduce risk for a passive radar SSA capability using GNSS signals. http://www.ignss.org/Conferences/PastConferencePapers/2015ConferencePastPapers/2015PeerReviewedPapers/tabid/147/Default.aspx

  7. Millimeter Wave Radar for detecting the speech signal applications

    NASA Astrophysics Data System (ADS)

    Li, Zong-Wen

    1996-12-01

    MilliMeter Wave (MMW) Doppler Radar with grating structures for the applications of detecting speech signals has been discovered in our laboratory. The operating principle of detection the acoustic wave signals based on the Wave Propagation Theory and Wave Equations of The ElectroMagnetic Wave (EMW) and Acoustic Wave (AW) propagating, scattering, reflecting and interacting has been investigated. The experimental and observation results have been provided to verify that MMW CW 40GHz dielectric integrated radar can detect and identify out exactly the existential speech signals in free space from a person speaking. The received sound signal have been reproduced by the DSP and the reproducer.

  8. Study on De-noising Technology of Radar Life Signal

    NASA Astrophysics Data System (ADS)

    Yang, Xiu-Fang; Wang, Lian-Huan; Ma, Jiang-Fei; Wang, Pei-Pei

    2016-05-01

    Radar detection is a kind of novel life detection technology, which can be applied to medical monitoring, anti-terrorism and disaster relief street fighting, etc. As the radar life signal is very weak, it is often submerged in the noise. Because of non-stationary and randomness of these clutter signals, it is necessary to denoise efficiently before extracting and separating the useful signal. This paper improves the radar life signal's theoretical model of the continuous wave, does de-noising processing by introducing lifting wavelet transform and determine the best threshold function through comparing the de-noising effects of different threshold functions. The result indicates that both SNR and MSE of the signal are better than the traditional ones by introducing lifting wave transform and using a new improved soft threshold function de-noising method..

  9. MIMO-OFDM signal optimization for SAR imaging radar

    NASA Astrophysics Data System (ADS)

    Baudais, J.-Y.; Méric, S.; Riché, V.; Pottier, É.

    2016-12-01

    This paper investigates the optimization of the coded orthogonal frequency division multiplexing (OFDM) transmitted signal in a synthetic aperture radar (SAR) context. We propose to design OFDM signals to achieve range ambiguity mitigation. Indeed, range ambiguities are well known to be a limitation for SAR systems which operates with pulsed transmitted signal. The ambiguous reflected signal corresponding to one pulse is then detected when the radar has already transmitted the next pulse. In this paper, we demonstrate that the range ambiguity mitigation is possible by using orthogonal transmitted wave as OFDM pulses. The coded OFDM signal is optimized through genetic optimization procedures based on radar image quality parameters. Moreover, we propose to design a multiple-input multiple-output (MIMO) configuration to enhance the noise robustness of a radar system and this configuration is mainly efficient in the case of using orthogonal waves as OFDM pulses. The results we obtain show that OFDM signals outperform conventional radar chirps for range ambiguity suppression and for robustness enhancement in 2 ×2 MIMO configuration.

  10. Signal Processing System for the CASA Integrated Project I Radars

    SciTech Connect

    Bharadwaj, Nitin; Chandrasekar, V.; Junyent, Francesc

    2010-09-01

    This paper describes the waveform design space and signal processing system for dual-polarization Doppler weather radar operating at X band. The performance of the waveforms is presented with ground clutter suppression capability and mitigation of range velocity ambiguity. The operational waveform is designed based on operational requirements and system/hardware requirements. A dual Pulse Repetition Frequency (PRF) waveform was developed and implemented for the first generation X-band radars deployed by the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). This paper presents an evaluation of the performance of the waveforms based on simulations and data collected by the first-generation CASA radars during operations.

  11. Windshear detection radar signal processing studies

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.

    1993-01-01

    This final report briefly summarizes research work at Clemson in the Radar Systems Laboratory under the NASA Langley Research Grant NAG-1-928 in support of the Antenna and Microwave Branch, Guidance and Control Division, program to develop airborne sensor technology for the detection of low altitude windshear. A bibliography of all publications generated by Clemson personnel is included. An appendix provides abstracts of all publications.

  12. Criteria and algorithms for spectrum parameterization of MST radar signals

    NASA Technical Reports Server (NTRS)

    Rastogi, P. K.

    1984-01-01

    The power spectra S(f) of MST radar signals contain useful information about the variance of refractivity fluctuations, the mean radial velocity, and the radial velocity variance in the atmosphere. When noise and other contaminating signals are absent, these quantities can be obtained directly from the zeroth, first and second order moments of the spectra. A step-by-step procedure is outlined that can be used effectively to reduce large amounts of MST radar data-averaged periodograms measured in range and time to a parameterized form. The parameters to which a periodogram can be reduced are outlined and the steps in the procedure, that may be followed selectively, to arrive at the final set of reduced parameters are given. Examples of the performance of the procedure are given and its use with other radars are commented on.

  13. Signal Processing Techniques for a Planetary Subsurface Radar Onboard Satellite

    NASA Astrophysics Data System (ADS)

    Yagitani, S.; Ishikawa, T.; Nagano, I.; Kojima, H.; Matsumoto, H.

    2001-12-01

    We are developing a satellite-borne HF ( ~ 10 MHz) radar system to be used to investigate planetary subsurface layered structures. Before deciding the design of a high-performance subsurface radar system, in this study we calculate the propagation and reflection characteristics of various HF radar pulses through subsurface layer models, in order to examine the wave forms and frequencies of the radar pulses suitable to discriminate and pick up weak subsurface echoes buried in stronger surface reflection and scattering echoes. In the numerical calculations the wave form of a transmitted radar pulse is first Fourier-transformed into a number of elementary plane waves having different frequencies, for each of which the propagation and reflection characteristics through subsurface layer models are calculated by a full wave analysis. Then the wave form of the reflected radar echo is constructed by synthesizing all of the elementary plane waves. As the transmitted pulses, we use several different types of wave form modulation to realize the radar pulse compression to improve the signal-to-noise (S/N) ratio and time resolution of the subsurface echoes: the linear FM chirp (conventional), the M (maximal-length) sequence and the complementary sequences. We will discuss the characteristics of these pulse compression techniques, such as the improvement in the S/N ratio and the time resolution to identify the subsurface echoes. We will also present the possibility of applying the Multiple Signal Classification (MUSIC) method to further improve both the S/N ratio and time resolution to extract the weaker subsurface echoes.

  14. Frequency Diverse Array Radar: Signal Characterization and Measurement Accuracy

    DTIC Science & Technology

    2010-03-25

    DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION ...Flight Lieutenant, RAAF 25 March 2010 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT/GE/ENG/10-04 FREQUENCY DIVERSE ARRAY RADAR: SIGNAL...146 7.2.4 Planar and Distributed Aperture Geometries

  15. Signal processing at the Poker Flat MST radar

    NASA Technical Reports Server (NTRS)

    Carter, D. A.

    1983-01-01

    Signal processing for Mesosphere-Stratosphere-Troposphere (MST) radar is carried out by a combination of hardware in high-speed, special-purpose devices and software in a general-purpose, minicomputer/array processor. A block diagram of the signal processing system is presented, and the steps in the processing pathway are described. The current processing capabilities are given, and a system offering greater coherent integration speed is advanced which hinges upon a high speed preprocessor.

  16. Radar antenna pointing for optimized signal to noise ratio.

    SciTech Connect

    Doerry, Armin Walter; Marquette, Brandeis

    2013-01-01

    The Signal-to-Noise Ratio (SNR) of a radar echo signal will vary across a range swath, due to spherical wavefront spreading, atmospheric attenuation, and antenna beam illumination. The antenna beam illumination will depend on antenna pointing. Calculations of geometry are complicated by the curved earth, and atmospheric refraction. This report investigates optimizing antenna pointing to maximize the minimum SNR across the range swath.

  17. Detail view of southeast corner of Signal Corps Radar (S.C.R.) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of southeast corner of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation, showing Signal Corps Radar (S.C.R.) 296 Station 5 Tower concrete pier in background, camera facing north - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  18. Spatial average ambiguity function for array radar with stochastic signals

    NASA Astrophysics Data System (ADS)

    Zha, Guofeng; Wang, Hongqiang; Cheng, Yongqiang; Qin, Yuliang

    2016-03-01

    For analyzing the spatial resolving performance of multi-transmitter single-receiver (MTSR) array radar with stochastic signals, the spatial average ambiguity function (SAAF) is introduced based on the statistical average theory. The analytic expression of SAAF and the corresponding resolutions in vertical range and in horizontal range are derived. Since spatial resolving performance is impacted by many parameters including signal modulation schemes, signal bandwidth, array aperture's size and target's spatial position, comparisons are implemented to analyze these influences. Simulation results are presented to validate the whole analysis.

  19. A test vector generator for a radar signal processor

    NASA Astrophysics Data System (ADS)

    Robins, C. B.

    1991-02-01

    This report documents the test vector generator (TVG) system developed for the purpose of testing a radar signal processor. This system simulates an eight channel radar receiver by providing input data for testing the signal processor test bed. The TVG system outputs 128-bit wide data samples at variable rates up to and including 10 million samples per second. The VTG memory array is one million samples deep. Variably sized output vectors can be addressed within the memory array and the vectors can be concatenated, repeated, and reshuffled in real time under the control of a single board computer. The TVG is seen having applications on a variety of programs. Discussions of adapting and scaling the system to these other applications are presented.

  20. Emitter Location Via Kalman Filtering of Signal Time Difference of Arrival

    DTIC Science & Technology

    1994-09-01

    ABSTRACT (MaxImum 200 words) A relatively simple time domain method is developed to calculate the time of arrival for radar signals. The error present in the...Chairman / Department of Electrical and Computer Engineering ii ABSTRACT A relatively simple time domain method is developed to calculate the time...samples of the pulse are taken and the sampled pulse is a reasonable representation of the original pulse. The sampling is assumed to be triggered by

  1. Detection and Characterization of Phase-Coded Radar Signals

    DTIC Science & Technology

    2007-11-02

    Detection and Characterization of Phase-Coded Radar Signals 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5d. TASK NUMBER 6. AUTHOR( S ) Dr...Ernest R. Adams 5e. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Cranfield University (RMCS) Shrivenham SN6 8LA United...Kingdom 8. PERFORMING ORGANIZATION REPORT NUMBER N/A 10. SPONSOR/MONITOR’S ACRONYM( S ) 9. SPONSORING/MONITORING AGENCY NAME( S ) AND

  2. Quantization Errors in Digital Signal Processors of Radar Systems

    DTIC Science & Technology

    1976-06-01

    QUANTIZATION ERRORS IN DIGITAL SIGNAL PROCESSORS, ~ ~OF RADAR SYSTEMS ) Final Technical Report 00 B v Jerry D. Moore Principal Investigator 0 Brian P...under Grant DAAG29-76-G-0072 THE UNIVERSITY OF ALABAMA ___ BER Report No. 205-125 Approved for Public Release: Distribution Unlimited 47.7 DISCLAIMER...THE FINDINGS OF THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENIT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS

  3. Radar range data signal enhancement tracker

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The design, fabrication, and performance characteristics are described of two digital data signal enhancement filters which are capable of being inserted between the Space Shuttle Navigation Sensor outputs and the guidance computer. Commonality of interfaces has been stressed so that the filters may be evaluated through operation with simulated sensors or with actual prototype sensor hardware. The filters will provide both a smoothed range and range rate output. Different conceptual approaches are utilized for each filter. The first filter is based on a combination low pass nonrecursive filter and a cascaded simple average smoother for range and range rate, respectively. Filter number two is a tracking filter which is capable of following transient data of the type encountered during burn periods. A test simulator was also designed which generates typical shuttle navigation sensor data.

  4. Detection and Classification of Low Probability of Intercept Radar Signals Using Parallel Filter Arrays and Higher Order Statistics

    NASA Astrophysics Data System (ADS)

    Taboada, Fernando L.

    2002-09-01

    Low probability of intercept (LPI) is that property of an emitter that because of its low power, wide bandwidth, frequency variability, or other design attributes, makes it difficult to be detected or identified by means of passive intercept devices such as radar warning, electronic support and electronic intelligence receivers. In order to detect LPI radar waveforms new signal processing techniques are required. This thesis first develops a MATLAB toolbox to generate important types of LPI waveforms based on frequency and phase modulation. The power spectral density and the periodic ambiguity function are examined for each waveforms. These signals are then used to test a novel signal processing technique that detects the waveforms parameters and classifies the intercepted signal in various degrees of noise. The technique is based on the use of parallel filter (sub-band) arrays and higher order statistics (third-order cumulant estimator). Each sub-band signal is treated individually and is followed by the third-order estimator in order to suppress any symmetrical noise that might be present. The significance of this technique is that it separates the LPI waveforms in small frequency bands, providing a detailed time-frequency description of the unknown signal. Finally, the resulting output matrix is processed by a feature extraction routine to detect the waveforms parameters. Identification of the signal is based on the modulation parameters detected.

  5. Digital Radar-Signal Processors Implemented in FPGAs

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew; Andraka, Ray

    2004-01-01

    High-performance digital electronic circuits for onboard processing of return signals in an airborne precipitation- measuring radar system have been implemented in commercially available field-programmable gate arrays (FPGAs). Previously, it was standard practice to downlink the radar-return data to a ground station for postprocessing a costly practice that prevents the nearly-real-time use of the data for automated targeting. In principle, the onboard processing could be performed by a system of about 20 personal- computer-type microprocessors; relative to such a system, the present FPGA-based processor is much smaller and consumes much less power. Alternatively, the onboard processing could be performed by an application-specific integrated circuit (ASIC), but in comparison with an ASIC implementation, the present FPGA implementation offers the advantages of (1) greater flexibility for research applications like the present one and (2) lower cost in the small production volumes typical of research applications. The generation and processing of signals in the airborne precipitation measuring radar system in question involves the following especially notable steps: The system utilizes a total of four channels two carrier frequencies and two polarizations at each frequency. The system uses pulse compression: that is, the transmitted pulse is spread out in time and the received echo of the pulse is processed with a matched filter to despread it. The return signal is band-limited and digitally demodulated to a complex baseband signal that, for each pulse, comprises a large number of samples. Each complex pair of samples (denoted a range gate in radar terminology) is associated with a numerical index that corresponds to a specific time offset from the beginning of the radar pulse, so that each such pair represents the energy reflected from a specific range. This energy and the average echo power are computed. The phase of each range bin is compared to the previous echo

  6. Signal based motion compensation for synthetic aperture radar

    SciTech Connect

    John Kirk

    1999-06-07

    The purpose of the Signal Based Motion Compensation (SBMC) for Synthetic Aperture Radar (SAR) effort is to develop a method to measure and compensate for both down range and cross range motion of the radar in order to provide high quality focused SAR imagery in the absence of precision measurements of the platform motion. Currently SAR systems require very precise navigation sensors for motion compensation. These sensors are very expensive and are often supplied in pairs for reliability. In the case of GPS they can be jammed, further degrading performance. This makes for a potentially very expensive and possibly vulnerable SAR system. SBMC can eliminate or reduce the need for these expensive navigation sensors thus reducing the cost of budget minded SAR systems. The results on this program demonstrated the capability of the SBMC approach.

  7. Introduction to Radar Signal and Data Processing: The Opportunity

    DTIC Science & Technology

    2006-09-01

    Antenna elements Figure 10: The Power and Data Domain Approaches for STAP. Much attention today is put on the so-called reduced-dimension (RD) STAP...radar evolution from the early days up today , taxonomy of radar and radar equation). Subsequently, Section 3 considers the schematic of a modern radar... power micro-wave (µw) magnetron for higher frequency for radar. More details on the radar history can be found in [1] from which the previous notes

  8. Digital Methods of the Optimum Processing of Radar Signals,

    DTIC Science & Technology

    1985-02-07

    Transliteration System ......................... ii *Preface ..................................................... 0................... 3 Chapter 1. Command of...Troops and the Tasks of Processing Radar Signals,........7 *Chapter 2. Arithmetic Operations with the Binary Numbers ...................... 16 Chapter 3 ...kh -%V Zh, zh Q LtaL Ts, ts 3 3 j Z, z H 4. i Ch, ch M A# M,9 b b HNHnH X N, nE, e 0 o 0 0 0,P0 hji 10 1 Yu, yu n fn 17 it P, p A R jr Ya, ya *ye

  9. Advanced Signal Analysis for Forensic Applications of Ground Penetrating Radar

    SciTech Connect

    Steven Koppenjan; Matthew Streeton; Hua Lee; Michael Lee; Sashi Ono

    2004-06-01

    Ground penetrating radar (GPR) systems have traditionally been used to image subsurface objects. The main focus of this paper is to evaluate an advanced signal analysis technique. Instead of compiling spatial data for the analysis, this technique conducts object recognition procedures based on spectral statistics. The identification feature of an object type is formed from the training vectors by a singular-value decomposition procedure. To illustrate its capability, this procedure is applied to experimental data and compared to the performance of the neural-network approach.

  10. Topography adjacent to Signal Corps Radar (S.C.R.) 296 Station 5, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topography adjacent to Signal Corps Radar (S.C.R.) 296 Station 5, showing conditions before construction, May 28, 1943, this drawing shows the Bonita Ridge access road retaining wall and general conditions at Bonita Ridge before the construction of Signal Corps Radar (S.C.R.) 296 Station 5 - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  11. Analysis of Low Probability of Intercept (LPI) Radar Signals Using the Wigner Distribution

    DTIC Science & Technology

    2002-09-01

    INTERCEPT ( LPI ) RADAR SIGNALS USING THE WIGNER DISTRIBUTION by Jen-Yu Gau September 2002 Thesis Advisor: Phillip E. Pace Thesis Co...Master’s Thesis 4. TITLE AND SUBTITLE: Analysis of Low Probability of Intercept ( LPI ) Radar Signals Using The Wigner Distribution 6. AUTHOR (S...distribution is unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT The parameters of Low Probability of Intercept ( LPI ) radar signals are hard to identify by

  12. Characterization of Noise Technology Radar (NTR) Signal Detectability Using a Non-Cooperative Receiver

    DTIC Science & Technology

    2011-03-24

    conventional CW radar . The emerging NTR signals inherently fall into the class of Low Probability of Intercept ( LPI ) signals given that they are...exploitation (desire to minimize LPD/ LPI potential) research. Noise Technology Radar (NTR), Noise Network (NoNET), Quadrature Mirror Filter Banks (QMFB...Characterization of Noise Technology Radar (NTR) Signal Detectability Using a Non-Cooperative Receiver THESIS Daniel V. Atienza, Captain, USAF AFIT

  13. Synthetic aperture radar signal processing on the MPP

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.; Seiler, E. J.

    1987-01-01

    Satellite-borne Synthetic Aperture Radars (SAR) sense areas of several thousand square kilometers in seconds and transmit phase history signal data several tens of megabits per second. The Shuttle Imaging Radar-B (SIR-B) has a variable swath of 20 to 50 km and acquired data over 100 kms along track in about 13 seconds. With the simplification of separability of the reference function, the processing still requires considerable resources; high speed I/O, large memory and fast computation. Processing systems with regular hardware take hours to process one Seasat image and about one hour for a SIR-B image. Bringing this processing time closer to acquisition times requires an end-to-end system solution. For the purpose of demonstration, software was implemented on the present Massively Parallel Processor (MPP) configuration for processing Seasat and SIR-B data. The software takes advantage of the high processing speed offered by the MPP, the large Staging Buffer, and the high speed I/O between the MPP array unit and the Staging Buffer. It was found that with unoptimized Parallel Pascal code, the processing time on the MPP for a 4096 x 4096 sample subset of signal data ranges between 18 and 30.2 seconds depending on options.

  14. Subarray-based FDA radar to counteract deceptive ECM signals

    NASA Astrophysics Data System (ADS)

    Abdalla, Ahmed; Wang, Wen-Qin; Yuan, Zhao; Mohamed, Suhad; Bin, Tang

    2016-12-01

    In recent years, the frequency diverse array (FDA) radar concept has attracted extensive attention, as it may benefit from a small frequency increment, compared to the carrier frequency across the array elements and thereby achieve an array factor that is a function of the angle, the time, and the range which is superior to the conventional phase array radar (PAR). However, limited effort on the subject of FDA in electronic countermeasure scenarios, especially in the presence of mainbeam deceptive jamming, has been published. Basic FDA is not desirable for anti-jamming applications, due to the range-angle coupling response of targets. In this paper, a novel method based on subarrayed FDA signal processing is proposed to counteract deceptive ECM signals. We divide the FDA array into multiple subarrays, each of which employs a distinct frequency increment. As a result, in the subarray-based FDA, the desired target can be distinguished at subarray level in joint range-angle-Doppler domain by utilizing the fact that the jammer generates false targets with the same ranges to each subarray without reparations. The performance assessment shows that the proposed solution is effective for deceptive ECM targets suppression. The effectiveness is verified by simulation results.

  15. Graphical derivations of radar, sonar, and communication signals

    NASA Technical Reports Server (NTRS)

    Altes, R. A.; Titlebaum, E. L.

    1975-01-01

    The designer of a communication system often has knowledge concerning the changes in distance between transmitter and receiver as a function of time. This information can be exploited to reduce multipath interference via proper signal design. A radar or sonar may also have good a priori information about possible target trajectories. Such knowledge can again be used to reduce the receiver's response to clutter (MTI), to enhance signal-to-noise ratio, or to simplify receiver design. There are also situations in which prior knowledge about trajectories is lacking. The system should then utilize a single-filter pair which is insensitive to the effects induced by relative motion between transmitter, receiver, and reflectors. For waveforms with large time-bandwidth products, such as long pulse trains, it is possible to graphically derive signal formats for both situations (trajectory known and unknown). Although the exact form of the signal is sometimes not specified by the graphical procedure, the problem in such cases is reduced to one which has already been solved, i.e., the generation of an impulse equivalent code.

  16. ELINT Signal Processing Using Choi-Williams Distribution on Reconfigurable Computers for Detection and Classification of LPI Emitters

    DTIC Science & Technology

    2008-03-01

    Choi-Williams Distribution, Reconfigurable Computer, Signal Processing. MATLAB programming, C programming, Low Probability of Intercept ( LPI ), Radar ...22 C. CODE VERIFICATION - FMCW ...............................................................22 1. FMCW LPI Signals...Bandwidth FFT Fast Fourier Transform FMCW Frequency Modulated Continuous Wave FPGA Field Programmable Gate Arrays I In Phase Portion of Data LPI Low

  17. Detail view of northwest side of Signal Corps Radar (S.C.R.) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of northwest side of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation, showing portion of concrete gutter drainage system and asphalt floor tiles, camera facing north - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  18. Discrimination against interfering signals at the Poker Flat MST radar

    NASA Technical Reports Server (NTRS)

    Carter, D. A.

    1983-01-01

    Several on line and off line data processing techniques are used to remove interfering signals due to ground clutter, aircraft, instrumental effects, and external transmissions from the desired atmospheric echoes of Mesosphere Stratosphere, Troposphere (MST) radar. The on line, real time techniques are necessarily simple in order to minimize processing delays. This algorithm examines the individual Doppler spectra which are computed every two to four seconds (for oblique antenna beams). The total spectral power in each individual spectrum is computed by summing all the spectral points. If this integrated power increases from one spectrum to the next by a factor greater than a preselected threshold, then that spectrum is not added to the spectral sum. Succeeding spectra are compared to the last acceptable spectrum. Only a certain maximum number of spectra are allowed to be rejected in succession.

  19. Radar/sonar signal design for bounded Doppler shifts

    NASA Astrophysics Data System (ADS)

    Altes, R. A.

    1982-07-01

    In many detection and estimation problems, Doppler frequency shifts are bounded. For clutter or multipath that is uniformly distributed in range and symmetrically distributed in Doppler shift relative to the signal, detectability of a point target or a communication signal is improved by minimizing the weighted volume of the magnitude-squared autoambiguity function. When clutter Doppler shifts are bounded, this volume is in a strip containing the range axis on the range-Doppler plane. For scattering function estimation, e.g., for weather radar, Doppler flow meters, and distributed target classifiers, it is again relevant to minimize ambiguity volume in a strip. Strip volume is minimized by using a pulse train, but such a signal has unacceptably large range sidelobe for most applications. Other waveforms that have relatively small sidelobe level within a strip on the range-Doppler plane, as well as small ambiguity volume in the strip, are obtained. The waveforms are composed of pulse pairs that are phase modulated with Golay complementary codes.

  20. Analysis of Low Probability of Intercept (LPI) Radar Signals Using the Wigner Distribution

    NASA Astrophysics Data System (ADS)

    Gau, Jen-Yu

    2002-09-01

    The parameters of Low Probability of Intercept (LPI) radar signals are hard to identity by using traditional periodogram signal processing techniques. Using the Wigner Distribution (WD), this thesis examines eight types of LPI radar signals. Signal to noise ratios of 0 dB and -6 dB are also investigated. The eight types LPI radar signals examined include Frequency Modulation Continuous Wave (FMCW), Frank code, Pt code, P2 code, P3 code, P4 code, COSTAS frequency hopping and Phase Shift Keying/Frequency Shift Keying (PSK/FSK) signals. Binary Phase Shift Keying (BPSK) signals although not used in modern LPI radars are also examined to further illustrate the principal characteristics of the WD.

  1. System for Automatic Detection and Analysis of Targets in FMICW Radar Signal

    NASA Astrophysics Data System (ADS)

    Rejfek, Luboš; Mošna, Zbyšek; Urbář, Jaroslav; Koucká Knížová, Petra

    2016-01-01

    This paper presents the automatic system for the processing of the signals from the frequency modulated interrupted continuous wave (FMICW) radar and describes methods for the primary signal processing. Further, we present methods for the detection of the targets in strong noise. These methods are tested both on the real and simulated signals. The real signals were measured using the developed at the IAP CAS experimental prototype of FMICW radar with operational frequency 35.4 GHz. The measurement campaign took place at the TU Delft, the Netherlands. The obtained results were used for development of the system for the automatic detection and analysis of the targets measured by the FMICW radar.

  2. Low probability of intercept-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems

    NASA Astrophysics Data System (ADS)

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2016-12-01

    In this paper, we investigate the problem of low probability of intercept (LPI)-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems, where the radar system optimizes the transmitted waveform such that the interference caused to the cellular communication systems is strictly controlled. Assuming that the precise knowledge of the target spectra, the power spectral densities (PSDs) of signal-dependent clutters, the propagation losses of corresponding channels and the communication signals is known by the radar, three different LPI based criteria for radar waveform optimization are proposed to minimize the total transmitted power of the radar system by optimizing the multicarrier radar waveform with a predefined signal-to-interference-plus-noise ratio (SINR) constraint and a minimum required capacity for the cellular communication systems. These criteria differ in the way the communication signals scattered off the target are considered in the radar waveform design: (1) as useful energy, (2) as interference or (3) ignored altogether. The resulting problems are solved analytically and their solutions represent the optimum power allocation for each subcarrier in the multicarrier radar waveform. We show with numerical results that the LPI performance of the radar system can be significantly improved by exploiting the scattered echoes off the target due to cellular communication signals received at the radar receiver.

  3. Low probability of intercept-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems.

    PubMed

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2016-01-01

    In this paper, we investigate the problem of low probability of intercept (LPI)-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems, where the radar system optimizes the transmitted waveform such that the interference caused to the cellular communication systems is strictly controlled. Assuming that the precise knowledge of the target spectra, the power spectral densities (PSDs) of signal-dependent clutters, the propagation losses of corresponding channels and the communication signals is known by the radar, three different LPI based criteria for radar waveform optimization are proposed to minimize the total transmitted power of the radar system by optimizing the multicarrier radar waveform with a predefined signal-to-interference-plus-noise ratio (SINR) constraint and a minimum required capacity for the cellular communication systems. These criteria differ in the way the communication signals scattered off the target are considered in the radar waveform design: (1) as useful energy, (2) as interference or (3) ignored altogether. The resulting problems are solved analytically and their solutions represent the optimum power allocation for each subcarrier in the multicarrier radar waveform. We show with numerical results that the LPI performance of the radar system can be significantly improved by exploiting the scattered echoes off the target due to cellular communication signals received at the radar receiver.

  4. Rapid and stable measurement of respiratory rate from Doppler radar signals using time domain autocorrelation model.

    PubMed

    Sun, Guanghao; Matsui, Takemi

    2015-01-01

    Noncontact measurement of respiratory rate using Doppler radar will play a vital role in future clinical practice. Doppler radar remotely monitors the tiny chest wall movements induced by respiration activity. The most competitive advantage of this technique is to allow users fully unconstrained with no biological electrode attachments. However, the Doppler radar, unlike other contact-type sensors, is easily affected by the random body movements. In this paper, we proposed a time domain autocorrelation model to process the radar signals for rapid and stable estimation of the respiratory rate. We tested the autocorrelation model on 8 subjects in laboratory, and compared the respiratory rates detected by noncontact radar with reference contact-type respiratory effort belt. Autocorrelation model showed the effects of reducing the random body movement noise added to Doppler radar's respiration signals. Moreover, the respiratory rate can be rapidly calculated from the first main peak in the autocorrelation waveform within 10 s.

  5. Non-contact physiological signal detection using continuous wave Doppler radar.

    PubMed

    Qiao, Dengyu; He, Tan; Hu, Boping; Li, Ye

    2014-01-01

    The aim of this work is to show non-contact physiological signal monitoring system based on continuous-wave (CW) Doppler radar, which is becoming highly attractive in the field of health care monitoring of elderly people. Two radar signal processing methods were introduced in this paper: one to extract respiration and heart rates of a single person and the other to separate mixed respiration signals. To verify the validity of the methods, physiological signal is obtained from stationary human subjects using a CW Doppler radar unit. The sensor operating at 24 GHz is located 0.5 meter away from the subject. The simulation results show that the respiration and heart rates are clearly extracted, and the mixed respiration signals are successfully separated. Finally, reference respiration and heart rate signals are measured by an ECG monitor and compared with the results tracked by the CW Doppler radar monitoring system.

  6. Passive Multistatic Radar Imaging using an OFDM Based Signal of Opportunity

    DTIC Science & Technology

    2012-03-22

    is still continuing at this time. This current resurgence includes research in the areas of passive bistatic radar (PBR) and bistatic SAR . This... SAR imaging, bistatic /pas- sive radar, OFDM signals, and phase correction techniques explored throughout the research effort are introduced. Chapter...introduction on bistatic radar and the associated geometry differences to the monostatic case. A discussion of SAR imaging and the algorithm of

  7. Robust Modulo Remaindering and Applications in Radar and Sensor Signal Processing

    DTIC Science & Technology

    2015-08-27

    AFRL-AFOSR-VA-TR-2015-0254 Robust Modulo Remaindering and Applications in Radar and Sensor Signal Processing Xiang-Gen Xia UNIVERSITY OF DELAWARE...Remaindering and Applications in Radar and Sensor Signal Processing 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0055 5c. PROGRAM ELEMENT NUMBER 6...This report describes the main research achievements during the time period cited above on the research project in the area of digital signal processing

  8. Analysis of Low Probability of Intercept (LPI) Radar Signals Using Cyclostationary Processing

    DTIC Science & Technology

    2002-09-01

    1 500 X 30 FMCW F_1_7_500_30_s.mat 1 500 X 30 FMCW Table 49. Test matrix of LPI radar signals analyzed. 156 P1_1_7_16_1_-6.mat 1 1000 1 16 P1...PROBABILITY OF INTERCEPT ( LPI ) RADAR SIGNALS USING CYCLOSTATIONARY PROCESSING by Antonio F. Lima, Jr. September 2002 Thesis Advisor: Phillip E...of Low Probability of Intercept ( LPI ) Radar Signals Using Cyclostationary Processing 6. AUTHOR(S) Antonio F. Lima, Jr. 5. FUNDING NUMBERS 7

  9. Model of human breathing reflected signal received by PN-UWB radar.

    PubMed

    Mabrouk, Mohamed; Rajan, Sreeraman; Bolic, Miodrag; Batkin, Izmail; Dajani, Hilmi R; Groza, Voicu Z

    2014-01-01

    Human detection is an integral component of civilian and military rescue operations, military surveillance and combat operations. Human detection can be achieved through monitoring of vital signs. In this article, a mathematical model of human breathing reflected signal received in PN-UWB radar is proposed. Unlike earlier published works, both chest and abdomen movements are considered for modeling the radar return signal along with the contributions of fundamental breathing frequency and its harmonics. Analyses of recorded reflected signals from three subjects in different postures and at different ranges from the radar indicate that ratios of the amplitudes of the harmonics contain information about posture and posture change.

  10. Radar measurement of L-band signal fluctuations caused by propagation through trees

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Klein, Jeffrey D.; Zebker, Howard A.

    1991-01-01

    Fluctuations of an L-band, horizontally polarized signal that was transmitted from the ground through a coniferous forest canopy to an airborne radar are examined. The azimuth synthetic aperture radar (SAR) impulse response in the presence of the measured magnitude fluctuations shows increased sidelobes over the case with no trees. Statistics of the observed fluctuations are similar to other observations.

  11. Optimal Signal Processing of Frequency-Stepped CW Radar Data

    NASA Technical Reports Server (NTRS)

    Ybarra, Gary A.; Wu, Shawkang M.; Bilbro, Griff L.; Ardalan, Sasan H.; Hearn, Chase P.; Neece, Robert T.

    1995-01-01

    An optimal signal processing algorithm is derived for estimating the time delay and amplitude of each scatterer reflection using a frequency-stepped CW system. The channel is assumed to be composed of abrupt changes in the reflection coefficient profile. The optimization technique is intended to maximize the target range resolution achievable from any set of frequency-stepped CW radar measurements made in such an environment. The algorithm is composed of an iterative two-step procedure. First, the amplitudes of the echoes are optimized by solving an overdetermined least squares set of equations. Then, a nonlinear objective function is scanned in an organized fashion to find its global minimum. The result is a set of echo strengths and time delay estimates. Although this paper addresses the specific problem of resolving the time delay between the first two echoes, the derivation is general in the number of echoes. Performance of the optimization approach is illustrated using measured data obtained from an HP-X510 network analyzer. It is demonstrated that the optimization approach offers a significant resolution enhancement over the standard processing approach that employs an IFFT. Degradation in the performance of the algorithm due to suboptimal model order selection and the effects of additive white Gaussion noise are addressed.

  12. Optimal Signal Processing of Frequency-Stepped CW Radar Data

    NASA Technical Reports Server (NTRS)

    Ybarra, Gary A.; Wu, Shawkang M.; Bilbro, Griff L.; Ardalan, Sasan H.; Hearn, Chase P.; Neece, Robert T.

    1995-01-01

    An optimal signal processing algorithm is derived for estimating the time delay and amplitude of each scatterer reflection using a frequency-stepped CW system. The channel is assumed to be composed of abrupt changes in the reflection coefficient profile. The optimization technique is intended to maximize the target range resolution achievable from any set of frequency-stepped CW radar measurements made in such an environment. The algorithm is composed of an iterative two-step procedure. First, the amplitudes of the echoes are optimized by solving an overdetermined least squares set of equations. Then, a nonlinear objective function is scanned in an organized fashion to find its global minimum. The result is a set of echo strengths and time delay estimates. Although this paper addresses the specific problem of resolving the time delay between the two echoes, the derivation is general in the number of echoes. Performance of the optimization approach is illustrated using measured data obtained from an HP-851O network analyzer. It is demonstrated that the optimization approach offers a significant resolution enhancement over the standard processing approach that employs an IFFT. Degradation in the performance of the algorithm due to suboptimal model order selection and the effects of additive white Gaussion noise are addressed.

  13. Super-resolution techniques for velocity estimation using UWB random noise radar signals

    NASA Astrophysics Data System (ADS)

    Dawood, Muhammad; Quraishi, Nafish; Alejos, Ana V.

    2011-06-01

    The Doppler spread pertaining to the ultrawideband (UWB) radar signals from moving target is directly proportional to the bandwidth of the transmitted signal and the target velocity. Using typical FFT-based methods, the estimation of true velocities pertaining to two targets moving with relatively close velocities within a radar range bin is problematic. In this paper, we extend the Multiple Signal Classification (MUSIC) algorithm to resolve targets moving velocities closer to each other within a given range bin for UWB random noise radar waveforms. Simulated and experimental results are compared for various target velocities using both narrowband (200MHz) and wideband (1GHz) noise radar signals, clearly establishing the unbiased and unambiguous velocity estimations using the MUSIC algorithm.

  14. Signal processing for airborne doppler radar detection of hazardous wind shear as applied to NASA 1991 radar flight experiment data

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.

    1992-01-01

    Radar data collected during the 1991 NASA flight tests have been selectively analyzed to support research directed at developing both improved as well as new algorithms for detecting hazardous low-altitude windshear. Analysis of aircraft attitude data from several flights indicated that platform stability bandwidths were small compared to the data rate bandwidths which should support an assumption that radar returns can be treated as short time stationary. Various approaches at detection of weather returns in the presence of ground clutter are being investigated. Non-coventional clutter rejection through spectrum mode tracking and classification algorithms is a subject of continuing research. Based upon autoregressive modeling of the radar return time sequence, this approach may offer an alternative to overcome errors in conventional pulse-pair estimates. Adaptive filtering is being evaluated as a means of rejecting clutter with emphasis on low signal-to-clutter ratio situations, particularly in the presence of discrete clutter interference. An analysis of out-of-range clutter returns is included to illustrate effects of ground clutter interference due to range aliasing for aircraft on final approach. Data are presented to indicate how aircraft groundspeed might be corrected from the radar data as well as point to an observed problem of groundspeed estimate bias variation with radar antenna scan angle. A description of how recorded clutter return data are mixed with simulated weather returns is included. This enables the researcher to run controlled experiments to test signal processing algorithms. In the summary research efforts involving improved modelling of radar ground clutter returns and a Bayesian approach at hazard factor estimation are mentioned.

  15. Earth curvature and atmospheric refraction effects on radar signal propagation.

    SciTech Connect

    Doerry, Armin Walter

    2013-01-01

    The earth isnt flat, and radar beams dont travel straight. This becomes more noticeable as range increases, particularly at shallow depression/grazing angles. This report explores models for characterizing this behavior.

  16. Prospects in the Application of Wavelet Transforms to Radar Signal Processing,

    DTIC Science & Technology

    2007-11-02

    Developments of signal analysis and wavelet transform from the viewpoint of time-frequency analysis are surveyed, and the superiorities of wavelet ... transform as applied to signal processing are investigated with a focus on the potential applications of wavelet transform to radar signal processing

  17. Theoretical and experimental study of EKB radar ground-scatter signals at nearby frequencies

    NASA Astrophysics Data System (ADS)

    Kutelev, Konstantin; Berngardt, Oleg; Grkovich, Konstantin; Mikhailov, Nikita

    SuperDARN radars have wide possibilities for diagnostics of different motions in the ionosphere. The radars allow studying small-, medium- and large-scale irregularities. The radars have good time resolution (about 1 minute for full scan) and wide territory coverage (azimuthal coverage - 50 degrees, maximal range — 3000 km). EKB radar is the first russian radar of SuperDARN kind, installed by ISTP SB RAS near Ekaterinburg. The radar started its operation in December 2012. Mostly SuperDARN radars are used to investigate irregular structure of the ionosphere. In the work we present original approach that allows diagnose regular ionosphere. The approach is based on sounding at three close frequencies and on analysis of ground-scattered signal properties. As theoretical analysis shows the use of three-frequency sounding technique allows one to estimate following characteristics of the model quasiparabolic F-layer in a middle point of path: its critical frequency, the height of its maximum and layer thickness. For this purpose we use known dependence of a minimal group path of signal on radar frequency. The key problem for the described technique is optimizing the frequency step between sounding signals. From the one side, the frequency step should be large enough. This is necessary for the difference in group delays be larger than radar range resolution (15-60km). From the other side, significant variation of frequency leads to a significant movement of path midpoint. This leads to signifficant errors in estimating ionospheric paramters due to theirs horizontal gradients. To solve this problem we perform a simulation of ground-scattered signal at EKB radar in different geophysical conditions. We use IRI-2007 as a model of the ionosphere. We simulate experiment at different levels of solar activity, in different seasons and daytime. By using geometrooptical ray tracing method we calculate a signal minimal group paths for a set of frequencies. According to these data

  18. Separation of Intercepted Multi-Radar Signals Based on Parameterized Time-Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Lu, W. L.; Xie, J. W.; Wang, H. M.; Sheng, C.

    2016-09-01

    Modern radars use complex waveforms to obtain high detection performance and low probabilities of interception and identification. Signals intercepted from multiple radars overlap considerably in both the time and frequency domains and are difficult to separate with primary time parameters. Time-frequency analysis (TFA), as a key signal-processing tool, can provide better insight into the signal than conventional methods. In particular, among the various types of TFA, parameterized time-frequency analysis (PTFA) has shown great potential to investigate the time-frequency features of such non-stationary signals. In this paper, we propose a procedure for PTFA to separate overlapped radar signals; it includes five steps: initiation, parameterized time-frequency analysis, demodulating the signal of interest, adaptive filtering and recovering the signal. The effectiveness of the method was verified with simulated data and an intercepted radar signal received in a microwave laboratory. The results show that the proposed method has good performance and has potential in electronic reconnaissance applications, such as electronic intelligence, electronic warfare support measures, and radar warning.

  19. Radar signal pre-processing to suppress surface bounce and multipath

    SciTech Connect

    Paglieroni, David W; Mast, Jeffrey E; Beer, N. Reginald

    2013-12-31

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes that return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  20. Detection and Classification of Low Probability of Intercept Radar Signals Using Parallel Filter Arrays and Higher Order Statistics

    DTIC Science & Technology

    2002-09-01

    Resulting Plots for Different LPI Radar Signals (1) FMCW Table 9 shows a FMCW signal with carrier frequency equal to 1 KHz, sampling frequency equal to...REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE: Detection and Classification of LPI Radar Signals using Parallel Filter...In order to detect LPI radar waveforms new signal processing techniques are required. This thesis first develops a MATLAB® toolbox to generate

  1. Cognitive bio-radar: The natural evolution of bio-signals measurement.

    PubMed

    Malafaia, Daniel; Oliveira, Beatriz; Ferreira, Pedro; Varum, Tiago; Vieira, José; Tomé, Ana

    2016-10-01

    In this article we discuss a novel approach to Bio-Radar, contactless measurement of bio-signals, called Cognitive Bio-Radar. This new approach implements the Bio-Radar in a Software Defined Radio (SDR) platform in order to obtain awareness of the environment where it operates. Due to this, the Cognitive Bio-Radar can adapt to its surroundings in order to have an intelligent usage of the radio frequency spectrum to improve its performance. In order to study the feasibility of such implementation, a SDR based Bio-Radar testbench was developed and evaluated. The prototype is shown to be able to acquire the heartbeat activity and the respiratory effort. The acquired data is compared with the acquisitions from a Biopac research data acquisition system, showing coherent results for both heartbeat and breathing rate.

  2. RSRE (Royal Signals and Radar Establishment) 1985 Research Review,

    DTIC Science & Technology

    1985-01-01

    propagation Bass, S.J.; Pickering, C.; Young, M.L. Metal-organic vapour " .*’ " prediction methods applied to airborne microwave equipments, phase...Consideration of the usefulness of Bass, S.J.; Young. M.L. High quality epitaxial InP and 1, microwave propagation prediction methods on air-to-ground...nd echncalServcesLtdMalern Copyight(D CntrolerHMSO Lonon.󈨦S RADAR AND MICROWAVES The UK Radar Scene Today J Clarke An Faiperimental phase-Coded

  3. Generating nonlinear FM chirp radar signals by multiple integrations

    DOEpatents

    Doerry, Armin W [Albuquerque, NM

    2011-02-01

    A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.

  4. Definition and fabrication of an airborne scatterometer radar signal processor

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A hardware/software system which incorporates a microprocessor design and software for the calculation of normalized radar cross section in real time was developed. Interface is provided to decommutate the NASA ADAS data stream for aircraft parameters used in processing and to provide output in the form of strip chart and pcm compatible data recording.

  5. Improved Reconstruction of Radio Holographic Signal for Forward Scatter Radar Imaging.

    PubMed

    Hu, Cheng; Liu, Changjiang; Wang, Rui; Zeng, Tao

    2016-05-07

    Forward scatter radar (FSR), as a specially configured bistatic radar, is provided with the capabilities of target recognition and classification by the Shadow Inverse Synthetic Aperture Radar (SISAR) imaging technology. This paper mainly discusses the reconstruction of radio holographic signal (RHS), which is an important procedure in the signal processing of FSR SISAR imaging. Based on the analysis of signal characteristics, the method for RHS reconstruction is improved in two parts: the segmental Hilbert transformation and the reconstruction of mainlobe RHS. In addition, a quantitative analysis of the method's applicability is presented by distinguishing between the near field and far field in forward scattering. Simulation results validated the method's advantages in improving the accuracy of RHS reconstruction and imaging.

  6. Improved Reconstruction of Radio Holographic Signal for Forward Scatter Radar Imaging

    PubMed Central

    Hu, Cheng; Liu, Changjiang; Wang, Rui; Zeng, Tao

    2016-01-01

    Forward scatter radar (FSR), as a specially configured bistatic radar, is provided with the capabilities of target recognition and classification by the Shadow Inverse Synthetic Aperture Radar (SISAR) imaging technology. This paper mainly discusses the reconstruction of radio holographic signal (RHS), which is an important procedure in the signal processing of FSR SISAR imaging. Based on the analysis of signal characteristics, the method for RHS reconstruction is improved in two parts: the segmental Hilbert transformation and the reconstruction of mainlobe RHS. In addition, a quantitative analysis of the method’s applicability is presented by distinguishing between the near field and far field in forward scattering. Simulation results validated the method’s advantages in improving the accuracy of RHS reconstruction and imaging. PMID:27164114

  7. FPGA based hardware optimized implementation of signal processing system for LFM pulsed radar

    NASA Astrophysics Data System (ADS)

    Azim, Noor ul; Jun, Wang

    2016-11-01

    Signal processing is one of the main parts of any radar system. Different signal processing algorithms are used to extract information about different parameters like range, speed, direction etc, of a target in the field of radar communication. This paper presents LFM (Linear Frequency Modulation) pulsed radar signal processing algorithms which are used to improve target detection, range resolution and to estimate the speed of a target. Firstly, these algorithms are simulated in MATLAB to verify the concept and theory. After the conceptual verification in MATLAB, the simulation is converted into implementation on hardware using Xilinx FPGA. Chosen FPGA is Xilinx Virtex-6 (XC6LVX75T). For hardware implementation pipeline optimization is adopted and also other factors are considered for resources optimization in the process of implementation. Focusing algorithms in this work for improving target detection, range resolution and speed estimation are hardware optimized fast convolution processing based pulse compression and pulse Doppler processing.

  8. Design of an FMCW radar baseband signal processing system for automotive application.

    PubMed

    Lin, Jau-Jr; Li, Yuan-Ping; Hsu, Wei-Chiang; Lee, Ta-Sung

    2016-01-01

    For a typical FMCW automotive radar system, a new design of baseband signal processing architecture and algorithms is proposed to overcome the ghost targets and overlapping problems in the multi-target detection scenario. To satisfy the short measurement time constraint without increasing the RF front-end loading, a three-segment waveform with different slopes is utilized. By introducing a new pairing mechanism and a spatial filter design algorithm, the proposed detection architecture not only provides high accuracy and reliability, but also requires low pairing time and computational loading. This proposed baseband signal processing architecture and algorithms balance the performance and complexity, and are suitable to be implemented in a real automotive radar system. Field measurement results demonstrate that the proposed automotive radar signal processing system can perform well in a realistic application scenario.

  9. A note on the use of coherent integration in periodogram analysis of MST radar signals

    NASA Technical Reports Server (NTRS)

    Rastogi, P. K.

    1983-01-01

    The effect of coherent integration on the periodogram method to estimate the power spectra of MST radar signals is examined. The spectrum estimate usually is biased, even when care is taken to reduce the aliasing effects. Due to this bias, the signal power for Doppler shifted signals is underestimated by as much as 4 dB. The use of coherent integration in reducing the effect of aliased power line harmonics is pointed out.

  10. Quantitative estimation of Tropical Rainfall Mapping Mission precipitation radar signals from ground-based polarimetric radar observations

    NASA Astrophysics Data System (ADS)

    Bolen, Steven M.; Chandrasekar, V.

    2003-06-01

    The Tropical Rainfall Mapping Mission (TRMM) is the first mission dedicated to measuring rainfall from space using radar. The precipitation radar (PR) is one of several instruments aboard the TRMM satellite that is operating in a nearly circular orbit with nominal altitude of 350 km, inclination of 35°, and period of 91.5 min. The PR is a single-frequency Ku-band instrument that is designed to yield information about the vertical storm structure so as to gain insight into the intensity and distribution of rainfall. Attenuation effects on PR measurements, however, can be significant and as high as 10-15 dB. This can seriously impair the accuracy of rain rate retrieval algorithms derived from PR signal returns. Quantitative estimation of PR attenuation is made along the PR beam via ground-based polarimetric observations to validate attenuation correction procedures used by the PR. The reflectivity (Zh) at horizontal polarization and specific differential phase (Kdp) are found along the beam from S-band ground radar measurements, and theoretical modeling is used to determine the expected specific attenuation (k) along the space-Earth path at Ku-band frequency from these measurements. A theoretical k-Kdp relationship is determined for rain when Kdp ≥ 0.5°/km, and a power law relationship, k = a Zhb, is determined for light rain and other types of hydrometers encountered along the path. After alignment and resolution volume matching is made between ground and PR measurements, the two-way path-integrated attenuation (PIA) is calculated along the PR propagation path by integrating the specific attenuation along the path. The PR reflectivity derived after removing the PIA is also compared against ground radar observations.

  11. SHUTTLE IMAGING RADAR: PHYSICAL CONTROLS ON SIGNAL PENETRATION AND SUBSURFACE SCATTERING IN THE EASTERN SAHARA.

    USGS Publications Warehouse

    Schaber, Gerald G.; McCauley, John F.; Breed, Carol S.; Olhoeft, Gary R.

    1986-01-01

    It is found that the Shuttle Imaging Radar A (SIR-A) signal penetration and subsurface backscatter within the upper meter or so of the sediment blanket in the Eastern Sahara of southern Egypt and northern Sudan are enhanced both by radar sensor parameters and by the physical and chemical characteristics of eolian and alluvial materials. The near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include 1) favorable distribution of particle sizes, 2) extremely low moisture content and 3) reduced geometric scattering at the SIR-A frequency (1. 3 GHz). The depth of signal penetration that results in a recorded backscatter, called radar imaging depth, was documented in the field to be a maximum of 1. 5 m, or 0. 25 times the calculated skin depth, for the sediment blanket. The radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials.

  12. Real-time radar signal processing using GPGPU (general-purpose graphic processing unit)

    NASA Astrophysics Data System (ADS)

    Kong, Fanxing; Zhang, Yan Rockee; Cai, Jingxiao; Palmer, Robert D.

    2016-05-01

    This study introduces a practical approach to develop real-time signal processing chain for general phased array radar on NVIDIA GPUs(Graphical Processing Units) using CUDA (Compute Unified Device Architecture) libraries such as cuBlas and cuFFT, which are adopted from open source libraries and optimized for the NVIDIA GPUs. The processed results are rigorously verified against those from the CPUs. Performance benchmarked in computation time with various input data cube sizes are compared across GPUs and CPUs. Through the analysis, it will be demonstrated that GPGPUs (General Purpose GPU) real-time processing of the array radar data is possible with relatively low-cost commercial GPUs.

  13. Optical techniques for signal distribution and control in advanced radar and communication systems

    NASA Astrophysics Data System (ADS)

    Forrest, J. R.

    1985-03-01

    It is concluded that optical techniques offer some advantages for signal distribution and control in advanced radar and communication systems. They are clearly ideal for transporting microwave signals over considerable distances, as in remote positioning of radar receivers, provided high dynamic range is not required and an enclosed transmission path is essential. They are an elegant means of distributing low level r.f. or i.f. signals around an active phased array where these signals are of relatively constant amplitude (as in mixer local oscillator applications). However, there is currently a rather restrictive limit on the size of distribution network possible. Optical techniques are obviously suitable for distributing digital control signals to phased array modules and confer considerable immunity to interference. They are less suitable for high dynamic range signals, such as the received radar returns, either at r.f. or when downcovered to i.f. Future developments in coherent optics or in fast optical A/D technology could, however, influence this conclusion. Currently, the optimum applications for optical techniques appear to be i.f. beamformers for multibeam communication satellite systems and in calibration/monitoring systems for phased arrays.

  14. Photonic generation and independent steering of multiple RF signals for software defined radars.

    PubMed

    Ghelfi, Paolo; Laghezza, Francesco; Scotti, Filippo; Serafino, Giovanni; Pinna, Sergio; Bogoni, Antonella

    2013-09-23

    As the improvement of radar systems claims for digital approaches, photonics is becoming a solution for software defined high frequency and high stability signal generation. We report on our recent activities on the photonic generation of flexible wideband RF signals, extending the proposed architecture to the independent optical beamforming of multiple signals. The scheme has been tested generating two wideband signals at 10 GHz and 40 GHz, and controlling their independent delays at two antenna elements. Thanks to the multiple functionalities, the proposed scheme allows to improve the effectiveness of the photonic approach, reducing its cost and allowing flexibility, extremely wide bandwidth, and high stability.

  15. Development of a real time bistatic radar receiver using signals of opportunity

    NASA Astrophysics Data System (ADS)

    Rainville, Nicholas

    Passive bistatic radar remote sensing offers a novel method of monitoring the Earth's surface by observing reflected signals of opportunity. The Global Positioning System (GPS) has been used as a source of signals for these observations and the scattering properties of GPS signals from rough surfaces are well understood. Recent work has extended GPS signal reflection observations and scattering models to include communications signals such as XM radio signals. However the communication signal reflectometry experiments to date have relied on collecting raw, high data-rate signals which are then post-processed after the end of the experiment. This thesis describes the development of a communication signal bistatic radar receiver which computes a real time correlation waveform, which can be used to retrieve measurements of the Earth's surface. The real time bistatic receiver greatly reduces the quantity of data that must be stored to perform the remote sensing measurements, as well as offering immediate feedback. This expands the applications for the receiver to include space and bandwidth limited platforms such as aircraft and satellites. It also makes possible the adjustment of flight plans to the observed conditions. This real time receiver required the development of an FGPA based signal processor, along with the integration of commercial Satellite Digital Audio Radio System (SDARS) components. The resulting device was tested both in a lab environment as well on NOAA WP-3D and NASA WB-57 aircraft.

  16. A novel radar sensor for the non-contact detection of speech signals.

    PubMed

    Jiao, Mingke; Lu, Guohua; Jing, Xijing; Li, Sheng; Li, Yanfeng; Wang, Jianqi

    2010-01-01

    Different speech detection sensors have been developed over the years but they are limited by the loss of high frequency speech energy, and have restricted non-contact detection due to the lack of penetrability. This paper proposes a novel millimeter microwave radar sensor to detect speech signals. The utilization of a high operating frequency and a superheterodyne receiver contributes to the high sensitivity of the radar sensor for small sound vibrations. In addition, the penetrability of microwaves allows the novel sensor to detect speech signals through nonmetal barriers. Results show that the novel sensor can detect high frequency speech energies and that the speech quality is comparable to traditional microphone speech. Moreover, the novel sensor can detect speech signals through a nonmetal material of a certain thickness between the sensor and the subject. Thus, the novel speech sensor expands traditional speech detection techniques and provides an exciting alternative for broader application prospects.

  17. A Novel Radar Sensor for the Non-Contact Detection of Speech Signals

    PubMed Central

    Jiao, Mingke; Lu, Guohua; Jing, Xijing; Li, Sheng; Li, Yanfeng; Wang, Jianqi

    2010-01-01

    Different speech detection sensors have been developed over the years but they are limited by the loss of high frequency speech energy, and have restricted non-contact detection due to the lack of penetrability. This paper proposes a novel millimeter microwave radar sensor to detect speech signals. The utilization of a high operating frequency and a superheterodyne receiver contributes to the high sensitivity of the radar sensor for small sound vibrations. In addition, the penetrability of microwaves allows the novel sensor to detect speech signals through nonmetal barriers. Results show that the novel sensor can detect high frequency speech energies and that the speech quality is comparable to traditional microphone speech. Moreover, the novel sensor can detect speech signals through a nonmetal material of a certain thickness between the sensor and the subject. Thus, the novel speech sensor expands traditional speech detection techniques and provides an exciting alternative for broader application prospects. PMID:22399895

  18. Synthetic aperture radar signal data compression using block adaptive quantization

    NASA Technical Reports Server (NTRS)

    Kuduvalli, Gopinath; Dutkiewicz, Melanie; Cumming, Ian

    1994-01-01

    This paper describes the design and testing of an on-board SAR signal data compression algorithm for ESA's ENVISAT satellite. The Block Adaptive Quantization (BAQ) algorithm was selected, and optimized for the various operational modes of the ASAR instrument. A flexible BAQ scheme was developed which allows a selection of compression ratio/image quality trade-offs. Test results show the high quality of the SAR images processed from the reconstructed signal data, and the feasibility of on-board implementation using a single ASIC.

  19. Integrated Optic Signal Processors for Wideband Radar Systems.

    DTIC Science & Technology

    1980-05-01

    tion of AO signal processors using integrated optic techniques constitutes one of the most important on-going R and D activities.(1 2 14) The major...Bragg Deflectors and Applications," Invited Papaer, Pro- ceedings of the Society of Photo- Optical Instrumentation Engineers, 90, Acousto - Optics , pp. 69...C S TSAI DASG 6-C-0 2 UNCLASSIFIED 14L JEW EhEmhmhmhEE -Eu----.om 3~6 It1L25 I 1.4~IN . MICROCOPY RI SOtUlION ILSI CHARI INTEGRATED OPTIC SIGNAL

  20. Shuttle Imaging Radar - Physical controls on signal penetration and subsurface scattering in the Eastern Sahara

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.; Mccauley, J. F.; Breed, C. S.; Olhoeft, G. R.

    1986-01-01

    Interpretation of Shuttle Imaging Radar-A (SIR-A) images by McCauley et al. (1982) dramatically changed previous concepts of the role that fluvial processes have played over the past 10,000 to 30 million years in shaping this now extremely flat, featureless, and hyperarid landscape. In the present paper, the near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include (1) favorable distribution of particle sizes, (2) extremely low moisture content and (3) reduced geometric scattering at the SIR-A frequency (1.3 GHz). The depth of signal penetration that results in a recorded backscatter, here called 'radar imaging depth', was documented in the field to be a maximum of 1.5 m, or 0.25 of the calculated 'skin depth', for the sediment blanket. Radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials. Diverse permittivity interfaces and volume scatterers within the shallow subsurface are responsible for most of the observed backscatter not directly attributable to grazing outcrops. Calcium carbonate nodules and rhizoliths concentrated in sandy alluvium of Pleistocene age south of Safsaf oasis in south Egypt provide effective contrast in premittivity and thus act as volume scatterers that enhance SIR-A portrayal of younger inset stream channels.

  1. Cramer-Rao Bound for Gaussian Random Processes and Applications to Radar Processing of Atmospheric Signals

    NASA Technical Reports Server (NTRS)

    Frehlich, Rod

    1993-01-01

    Calculations of the exact Cramer-Rao Bound (CRB) for unbiased estimates of the mean frequency, signal power, and spectral width of Doppler radar/lidar signals (a Gaussian random process) are presented. Approximate CRB's are derived using the Discrete Fourier Transform (DFT). These approximate results are equal to the exact CRB when the DFT coefficients are mutually uncorrelated. Previous high SNR limits for CRB's are shown to be inaccurate because the discrete summations cannot be approximated with integration. The performance of an approximate maximum likelihood estimator for mean frequency approaches the exact CRB for moderate signal to noise ratio and moderate spectral width.

  2. A digital signal processing system for coherent laser radar

    NASA Technical Reports Server (NTRS)

    Hampton, Diana M.; Jones, William D.; Rothermel, Jeffry

    1991-01-01

    A data processing system for use with continuous-wave lidar is described in terms of its configuration and performance during the second survey mission of NASA'a Global Backscatter Experiment. The system is designed to estimate a complete lidar spectrum in real time, record the data from two lidars, and monitor variables related to the lidar operating environment. The PC-based system includes a transient capture board, a digital-signal processing (DSP) board, and a low-speed data-acquisition board. Both unprocessed and processed lidar spectrum data are monitored in real time, and the results are compared to those of a previous non-DSP-based system. Because the DSP-based system is digital it is slower than the surface-acoustic-wave signal processor and collects 2500 spectra/s. However, the DSP-based system provides complete data sets at two wavelengths from the continuous-wave lidars.

  3. Study of the ballistocardiogram signal in life detection system based on radar.

    PubMed

    Guohua, Lu; Jianqi, Wang; Yu, Yue; Xijing, Jing

    2007-01-01

    In this article, our study of non-contact method via radar for monitoring the heart and respiratory rates of human subject is reported. The system is constructed which synchronously detects the electrocardiogram signals by the electrocardiograph and the ballistocardiogram signals by the non-contact life parameter detecting technology. Also, the detected signals are analyzed respectively in the time and frequency domain. The results show that the cycle of the ballistocardiogram is obvious in time domain and that the rhythm of the two kinds of signals keeps consistent. And their characteristic points in frequency domain are also the same. The clinical medicine usefulness of ballistocardiogram detected by the non-contact technology is approved and the credible evidence for the succeeding signal analysis and the clinical application is provided. Furthermore, the characters of the heartbeat signal detected by our system and the reasons for that are also discussed in detail in our paper.

  4. A signal processing view of strip-mapping synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Munson, David C., Jr.; Visentin, Robert L.

    1989-01-01

    The authors derive the fundamental strip-mapping SAR (synthetic aperture radar) imaging equations from first principles. They show that the resolution mechanism relies on the geometry of the imaging situation rather than on the Doppler effect. Both the airborne and spaceborne cases are considered. Range processing is discussed by presenting an analysis of pulse compression and formulating a mathematical model of the radar return signal. This formulation is used to obtain the airborne SAR model. The authors study the resolution mechanism and derive the signal processing relations needed to produce a high-resolution image. They introduce spotlight-mode SAR and briefly indicate how polar-format spotlight processing can be used in strip-mapping SAR. They discuss a number of current and future research directions in SAR imaging.

  5. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    NASA Astrophysics Data System (ADS)

    Handayani, Gunawan

    2015-04-01

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  6. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    SciTech Connect

    Handayani, Gunawan

    2015-04-16

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  7. A novel sequential algorithm for clutter and direct signal cancellation in passive bistatic radars

    NASA Astrophysics Data System (ADS)

    Ansari, Farzad; Taban, Mohammad Reza; Gazor, Saeed

    2016-12-01

    Cancellation of clutter and multipath is an important problem in passive bistatic radars. Some important recent algorithms such as the ECA, the SCA and the ECA-B project the received signals onto a subspace orthogonal to both clutter and pre-detected target subspaces. In this paper, we generalize the SCA algorithm and propose a novel sequential algorithm for clutter and multipath cancellation in the passive radars. This proposed sequential cancellation batch (SCB) algorithm has lower complexity and requires less memory than the mentioned methods. The SCB algorithm can be employed for static and non-static clutter cancellation. The proposed algorithm is evaluated by computer simulation under practical FM radio signals. Simulation results reveal that the SCB provides an admissible performance with lower computational complexity.

  8. Radar signal analysis of ballistic missile with micro-motion based on time-frequency distribution

    NASA Astrophysics Data System (ADS)

    Wang, Jianming; Liu, Lihua; Yu, Hua

    2015-12-01

    The micro-motion of ballistic missile targets induces micro-Doppler modulation on the radar return signal, which is a unique feature for the warhead discrimination during flight. In order to extract the micro-Doppler feature of ballistic missile targets, time-frequency analysis is employed to process the micro-Doppler modulated time-varying radar signal. The images of time-frequency distribution (TFD) reveal the micro-Doppler modulation characteristic very well. However, there are many existing time-frequency analysis methods to generate the time-frequency distribution images, including the short-time Fourier transform (STFT), Wigner distribution (WD) and Cohen class distribution, etc. Under the background of ballistic missile defence, the paper aims at working out an effective time-frequency analysis method for ballistic missile warhead discrimination from the decoys.

  9. Limits to the Extraction of Information from Multi-Hop Skywave Radar Signals

    DTIC Science & Technology

    2005-04-14

    trajec Ech paths ocean 6000 ated coarse the in that t unlike may d maint suppo transif information from radar signals n . Backscatter ionogram showing...ionospheric reflection minate more distant regions, and so on. ure 1 shows a backscatter ionogram in which two- and three-hop echoes are apparent. Ray...visual appearance of the backscatter ionogram presented in figure 6 suggests that the two-hop mode extends the range coverage from the one-hop limit at

  10. Wind-speed inversion from HF radar first-order backscatter signal

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Gurgel, Klaus-Werner; Voulgaris, George; Schlick, Thomas; Stammer, Detlef

    2012-01-01

    Land-based high-frequency (HF) radars have the unique capability of continuously monitoring ocean surface environments at ranges up to 200 km off the coast. They provide reliable data on ocean surface currents and under slightly stricter conditions can also give information on ocean waves. Although extraction of wind direction is possible, estimation of wind speed poses a challenge. Existing methods estimate wind speed indirectly from the radar derived ocean wave spectrum, which is estimated from the second-order sidebands of the radar Doppler spectrum. The latter is extracted at shorter ranges compared with the first-order signal, thus limiting the method to short distances. Given this limitation, we explore the possibility of deriving wind speed from radar first-order backscatter signal. Two new methods are developed and presented that explore the relationship between wind speed and wave generation at the Bragg frequency matching that of the radar. One of the methods utilizes the absolute energy level of the radar first-order peaks while the second method uses the directional spreading of the wind generated waves at the Bragg frequency. For both methods, artificial neural network analysis is performed to derive the interdependence of the relevant parameters with wind speed. The first method is suitable for application only at single locations where in situ data are available and the network has been trained for while the second method can also be used outside of the training location on any point within the radar coverage area. Both methods require two or more radar sites and information on the radio beam direction. The methods are verified with data collected in Fedje, Norway, and the Ligurian Sea, Italy using beam forming HF WEllen RAdar (WERA) systems operated at 27.68 and 12.5 MHz, respectively. The results show that application of either method requires wind speeds above a minimum value (lower limit). This limit is radar frequency dependent and is 2.5 and 4

  11. Matched filtering algorithm based on phase-shifting pursuit for ground-penetrating radar signal enhancement

    NASA Astrophysics Data System (ADS)

    Zhang, Hairu; Ouyang, Shan; Wang, Guofu; Wu, Suolu; Zhang, Faquan

    2014-01-01

    The received signals from ground-penetrating radar (GPR) contain round-trip echoes, clutters, and complex noise signals. These jamming signals seriously affect the interpretation precision of shallow geological subsurface information. In order to dissolve some useless signals in GPR signals, it is necessary to take appropriate measures to repress interference. Based on the electromagnetic field theory, the propagation characteristics of the transmitted GPR signal are analyzed. On this basis, a matched filtering algorithm based on phase-shifting pursuit is proposed to enhance the received GPR signals. At first, the intrinsic component libraries (ICL) can be generated by changing the phase of the transmitted GPR signal. Then, the correlation analysis between the local information of the received GPR signals extracted by sliding window method and each sample in ICL is studied to extract target echo signals. Experiments based on the GPR imaging demonstrate that the proposed algorithm could enhance the target echo signals to a certain extent. The integrated side lobe ratio of the imaging result of the enhanced GPR signals is 6.33 dB lower than the original ones. The resolution of target imaging can be improved.

  12. Testbed for development of a DSP-based signal processing subsystem for an Earth-orbiting radar scatterometer

    NASA Technical Reports Server (NTRS)

    Clark, Douglas J.; Lux, James P.; Shirbacheh, Mike

    2002-01-01

    A testbed for evaluation of general-purpose digital signal processors in earth-orbiting radar scatterometers is discussed. Because general purpose DSP represents a departure from previous radar signal processing techniques used on scatterometers, there was a need to demonstrate key elements of the system to verify feasibility for potential future scatterometer instruments. Construction of the testbed also facilitated identification of an appropriate software development environment and the skills mix necessary to perform the work.

  13. Evaluation of environmental radioxenon isotopical signals from a singular large source emitter

    NASA Astrophysics Data System (ADS)

    Saey, P. R. J.; Bowyer, T. W.; Aldener, M.; Becker, A.; Cooper, M. W.; Elmgren, K.; Faanhof, A.; Hayes, J. C.; Hosticka, B.; Lidey, L. S.

    2009-04-01

    In the framework of the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) the atmospheric background of environmental radioxenon is been studied near areas that could be affected by man-made sources. It was recently shown that radiopharmaceutical facilities (RPF) make a major contribution to the general background of 133Xe and other xenon isotopes both in the northern and southern hemisphere. The daily IMS noble gas measurements around the globe are influenced from such anthropogenic sources that could mask radioxenon signals from a nuclear explosion. To distinguish a nuclear explosion signal from releases from civil nuclear facilities, not only the activity concentration but also the ratio of different radioxenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) plays a crucial role, since the ratios can be used to discriminate source types. Theoretical release and ratio studies were recently published, but no measurements close to radiopharmaceutical facilities have ever been performed. The world's fourth largest radiopharmaceutical facility, NTP Radioisotopes Ltd, is located in Pelindaba, South Africa. Other than a small nuclear power plant, located 1300 km southwest, near Cape Town and a small research reactor in the DR of Congo, located 2700 km northwest, this is the only facility that is known to emit any radioxenon on the African continent south of the Equator. This source is likely very dominant with respect to xenon emission. This makes it a point source, which is a unique situation, as all other worldwide large radiopharmaceutical facilities are situated in regions surrounded by many other nuclear facilities. Between 10 November and 22 December 2008, radioxenon was measured continuously with a radioactive xenon measurement system, at the North-West University, Mafikeng, South Africa, which is situated 250 km northwest of Pelindaba. Fifty-six 12-hour samples were measured with a beta-gamma coincidence detector, of which 55 contained 133Xe with

  14. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing.

    PubMed

    Beck, Steven M; Buck, Joseph R; Buell, Walter F; Dickinson, Richard P; Kozlowski, David A; Marechal, Nicholas J; Wright, Timothy J

    2005-12-10

    The spatial resolution of a conventional imaging laser radar system is constrained by the diffraction limit of the telescope's aperture. We investigate a technique known as synthetic-aperture imaging laser radar (SAIL), which employs aperture synthesis with coherent laser radar to overcome the diffraction limit and achieve fine-resolution, long-range, two-dimensional imaging with modest aperture diameters. We detail our laboratory-scale SAIL testbed, digital signal-processing techniques, and image results. In particular, we report what we believe to be the first optical synthetic-aperture image of a fixed, diffusely scattering target with a moving aperture. A number of fine-resolution, well-focused SAIL images are shown, including both retroreflecting and diffuse scattering targets, with a comparison of resolution between real-aperture imaging and synthetic-aperture imaging. A general digital signal-processing solution to the laser waveform instability problem is described and demonstrated, involving both new algorithms and hardware elements. These algorithms are primarily data driven, without a priori knowledge of waveform and sensor position, representing a crucial step in developing a robust imaging system.

  15. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing

    NASA Astrophysics Data System (ADS)

    Beck, Steven M.; Buck, Joseph R.; Buell, Walter F.; Dickinson, Richard P.; Kozlowski, David A.; Marechal, Nicholas J.; Wright, Timothy J.

    2005-12-01

    The spatial resolution of a conventional imaging laser radar system is constrained by the diffraction limit of the telescope's aperture. We investigate a technique known as synthetic-aperture imaging laser radar (SAIL), which employs aperture synthesis with coherent laser radar to overcome the diffraction limit and achieve fine-resolution, long-range, two-dimensional imaging with modest aperture diameters. We detail our laboratory-scale SAIL testbed, digital signal-processing techniques, and image results. In particular, we report what we believe to be the first optical synthetic-aperture image of a fixed, diffusely scattering target with a moving aperture. A number of fine-resolution, well-focused SAIL images are shown, including both retroreflecting and diffuse scattering targets, with a comparison of resolution between real-aperture imaging and synthetic-aperture imaging. A general digital signal-processing solution to the laser waveform instability problem is described and demonstrated, involving both new algorithms and hardware elements. These algorithms are primarily data driven, without a priori knowledge of waveform and sensor position, representing a crucial step in developing a robust imaging system.

  16. Quantifying the accuracy of snow water equivalent estimates using broadband radar signal phase

    NASA Astrophysics Data System (ADS)

    Deeb, E. J.; Marshall, H. P.; Lamie, N. J.; Arcone, S. A.

    2014-12-01

    Radar wave velocity in dry snow depends solely on density. Consequently, ground-based pulsed systems can be used to accurately measure snow depth and snow water equivalent (SWE) using signal travel-time, along with manual depth-probing for signal velocity calibration. Travel-time measurements require a large bandwidth pulse not possible in airborne/space-borne platforms. In addition, radar backscatter from snow cover is sensitive to grain size and to a lesser extent roughness of layers at current/proposed satellite-based frequencies (~ 8 - 18 GHz), complicating inversion for SWE. Therefore, accurate retrievals of SWE still require local calibration due to this sensitivity to microstructure and layering. Conversely, satellite radar interferometry, which senses the difference in signal phase between acquisitions, has shown a potential relationship with SWE at lower frequencies (~ 1 - 5 GHz) because the phase of the snow-refracted signal is sensitive to depth and dielectric properties of the snowpack, as opposed to its microstructure and stratigraphy. We have constructed a lab-based, experimental test bed to quantify the change in radar phase over a wide range of frequencies for varying depths of dry quartz sand, a material dielectrically similar to dry snow. We use a laboratory grade Vector Network Analyzer (0.01 - 25.6 GHz) and a pair of antennae mounted on a trolley over the test bed to measure amplitude and phase repeatedly/accurately at many frequencies. Using ground-based LiDAR instrumentation, we collect a coordinated high-resolution digital surface model (DSM) of the test bed and subsequent depth surfaces with which to compare the radar record of changes in phase. Our plans to transition this methodology to a field deployment during winter 2014-2015 using precision pan/tilt instrumentation will also be presented, as well as applications to airborne and space-borne platforms toward the estimation of SWE at high spatial resolution (on the order of meters) over

  17. Neural networks for automated classification of ionospheric irregularities in HF radar backscattered signals

    NASA Astrophysics Data System (ADS)

    Wing, S.; Greenwald, R. A.; Meng, C.-I.; Sigillito, V. G.; Hutton, L. V.

    2003-08-01

    The classification of high frequency (HF) radar backscattered signals from the ionospheric irregularities (clutters) into those suitable, or not, for further analysis, is a time-consuming task even by experts in the field. We tested several different feedforward neural networks on this task, investigating the effects of network type (single layer versus multilayer) and number of hidden nodes upon performance. As expected, the multilayer feedforward networks (MLFNs) outperformed the single-layer networks. The MLFNs achieved performance levels of 100% correct on the training set and up to 98% correct on the testing set. Comparable figures for the single-layer networks were 94.5% and 92%, respectively. When measures of sensitivity, specificity, and proportion of variance accounted for by the model are considered, the superiority of the MLFNs over the single-layer networks is much more striking. Our results suggest that such neural networks could aid many HF radar operations such as frequency search, space weather, etc.

  18. Stein’s Method and Its Application in Radar Signal Processing

    DTIC Science & Technology

    2005-07-01

    Inverse Synthetic Aperature Radar . . . . . . . . . . 19 5 Conclusions 21...assess this approximation. 4.3 Speckle Modelling in Inverse Synthetic Aperature Radar Inverse Synthetic Aperature Radar (ISAR) is a useful technique...clutter assumptions. In radar imaging systems such as synthetic aperature radar , some speckle models are also approximately Exponential.

  19. Detection of the Vibration Signal from Human Vocal Folds Using a 94-GHz Millimeter-Wave Radar.

    PubMed

    Chen, Fuming; Li, Sheng; Zhang, Yang; Wang, Jianqi

    2017-03-08

    The detection of the vibration signal from human vocal folds provides essential information for studying human phonation and diagnosing voice disorders. Doppler radar technology has enabled the noncontact measurement of the human-vocal-fold vibration. However, existing systems must be placed in close proximity to the human throat and detailed information may be lost because of the low operating frequency. In this paper, a long-distance detection method, involving the use of a 94-GHz millimeter-wave radar sensor, is proposed for detecting the vibration signals from human vocal folds. An algorithm that combines empirical mode decomposition (EMD) and the auto-correlation function (ACF) method is proposed for detecting the signal. First, the EMD method is employed to suppress the noise of the radar-detected signal. Further, the ratio of the energy and entropy is used to detect voice activity in the radar-detected signal, following which, a short-time ACF is employed to extract the vibration signal of the human vocal folds from the processed signal. For validating the method and assessing the performance of the radar system, a vibration measurement sensor and microphone system are additionally employed for comparison. The experimental results obtained from the spectrograms, the vibration frequency of the vocal folds, and coherence analysis demonstrate that the proposed method can effectively detect the vibration of human vocal folds from a long detection distance.

  20. Detection of the Vibration Signal from Human Vocal Folds Using a 94-GHz Millimeter-Wave Radar

    PubMed Central

    Chen, Fuming; Li, Sheng; Zhang, Yang; Wang, Jianqi

    2017-01-01

    The detection of the vibration signal from human vocal folds provides essential information for studying human phonation and diagnosing voice disorders. Doppler radar technology has enabled the noncontact measurement of the human-vocal-fold vibration. However, existing systems must be placed in close proximity to the human throat and detailed information may be lost because of the low operating frequency. In this paper, a long-distance detection method, involving the use of a 94-GHz millimeter-wave radar sensor, is proposed for detecting the vibration signals from human vocal folds. An algorithm that combines empirical mode decomposition (EMD) and the auto-correlation function (ACF) method is proposed for detecting the signal. First, the EMD method is employed to suppress the noise of the radar-detected signal. Further, the ratio of the energy and entropy is used to detect voice activity in the radar-detected signal, following which, a short-time ACF is employed to extract the vibration signal of the human vocal folds from the processed signal. For validating the method and assessing the performance of the radar system, a vibration measurement sensor and microphone system are additionally employed for comparison. The experimental results obtained from the spectrograms, the vibration frequency of the vocal folds, and coherence analysis demonstrate that the proposed method can effectively detect the vibration of human vocal folds from a long detection distance. PMID:28282892

  1. Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor)

    1992-01-01

    This invention relates to a small particle selective emitter for converting thermal energy into narrow band radiation with high efficiency. The small particle selective emitter is used in combination with a photovoltaic array to provide a thermal to electrical energy conversion device. An energy conversion apparatus of this type is called a thermo-photovoltaic device. In the first embodiment, small diameter particles of a rare earth oxide are suspended in an inert gas enclosed between concentric cylinders. The rare earth oxides are used because they have the desired property of large emittance in a narrow wavelength band and small emittance outside the band. However, it should be emphasized that it is the smallness of the particles that enhances the radiation property. The small particle selective emitter is surrounded by a photovoltaic array. In an alternate embodiment, the small particle gas mixture is circulated through a thermal energy source. This thermal energy source can be a nuclear reactor, solar receiver, or combustor of a fossil fuel.

  2. Selective emitters

    NASA Astrophysics Data System (ADS)

    Chubb, Donald L.

    1992-01-01

    This invention relates to a small particle selective emitter for converting thermal energy into narrow band radiation with high efficiency. The small particle selective emitter is used in combination with a photovoltaic array to provide a thermal to electrical energy conversion device. An energy conversion apparatus of this type is called a thermo-photovoltaic device. In the first embodiment, small diameter particles of a rare earth oxide are suspended in an inert gas enclosed between concentric cylinders. The rare earth oxides are used because they have the desired property of large emittance in a narrow wavelength band and small emittance outside the band. However, it should be emphasized that it is the smallness of the particles that enhances the radiation property. The small particle selective emitter is surrounded by a photovoltaic array. In an alternate embodiment, the small particle gas mixture is circulated through a thermal energy source. This thermal energy source can be a nuclear reactor, solar receiver, or combustor of a fossil fuel.

  3. Solar and Magnetospheric Influence on High-Frequency Radar Signal Propagation

    NASA Astrophysics Data System (ADS)

    Burrell, A. G.; Yeoman, T. K.; Milan, S. E.; Lester, M.; Lawal, H. A.

    2015-12-01

    The polar ionosphere is a dynamic region that readily responds to changes in solar irradiance, solar wind, the magnetosphere, and the neutral atmosphere. The most recent solar minimum brought to light gaps in the current understanding of the relationship between ionospheric structure and solar irradiance. The Super Dual Auroral Radar Network (SuperDARN) observes the high-latitude ionosphere using coherent scatter High Frequency (HF) radars. SuperDARN has been operational over one and a half solar cycles, and so provides an invaluable dataset for studying long-term ionospheric variability at the northern and southern poles. This study explores the influence of solar and magnetospheric forcing on HF ground-backscatter. Ground-backscatter, the backscatter that returns from a reflection point on the ground rather than from an ionospheric irregularity, provides a measure of the ionospheric density along the propagation path of the radar signal. By exploring the conditions that inhibit or enhance the propagation of ground-backscatter, we improve our understanding of the state of the bottomside ionosphere.

  4. RFI emitter location techniques

    NASA Technical Reports Server (NTRS)

    Rao, B. L. J.

    1973-01-01

    The possibility is discussed of using Doppler techniques for determining the location of ground based emitters causing radio frequency interference with low orbiting satellites. An error analysis indicates that it is possible to find the emitter location within an error range of 2 n.mi. The parameters which determine the required satellite receiver characteristic are discussed briefly along with the non-real time signal processing which may by used in obtaining the Doppler curve. Finally, the required characteristics of the satellite antenna are analyzed.

  5. The application of digital signal processing techniques to a teleoperator radar system

    NASA Technical Reports Server (NTRS)

    Pujol, A.

    1982-01-01

    A digital signal processing system was studied for the determination of the spectral frequency distribution of echo signals from a teleoperator radar system. The system consisted of a sample and hold circuit, an analog to digital converter, a digital filter, and a Fast Fourier Transform. The system is interfaced to a 16 bit microprocessor. The microprocessor is programmed to control the complete digital signal processing. The digital filtering and Fast Fourier Transform functions are implemented by a S2815 digital filter/utility peripheral chip and a S2814A Fast Fourier Transform chip. The S2815 initially simulates a low-pass Butterworth filter with later expansion to complete filter circuit (bandpass and highpass) synthesizing.

  6. FFT methods in signal processing of the coal interface detector radar

    NASA Technical Reports Server (NTRS)

    Kajfez, D.

    1980-01-01

    The FM radar for the coal interface detector, operating in the frequency band 2 to 4 GHz, is intended for the display of thicknesses between 2 cm and 20 cm. Because of such a short range, the thickness information is contained in the very few lowest spectral components of the output signal. To overcome this inconvenience, the Fourier series of the output signal was augmented to approximate a Fourier integral. This modification in the signal processing resulted in a higher spectral density, which in turn enabled an easier identification of the interface position in the laboratory. The orientation and spacing of the receiving and transmitting antennas is found to have an important influence on the system performance.

  7. Compressed sensing: Radar signal detection and parameter measurement for EW applications

    NASA Astrophysics Data System (ADS)

    Rao, M. Sreenivasa; Naik, K. Krishna; Reddy, K. Maheshwara

    2016-09-01

    State of the art system development is very much required for UAVs (Unmanned Aerial Vehicle) and other airborne applications, where miniature, lightweight and low-power specifications are essential. Currently, the airborne Electronic Warfare (EW) systems are developed with digital receiver technology using Nyquist sampling. The detection of radar signals and parameter measurement is a necessary requirement in EW digital receivers. The Random Modulator Pre-Integrator (RMPI) can be used for matched detection of signals using smashed filter. RMPI hardware eliminates the high sampling rate analog to digital computer and reduces the number of samples using random sampling and detection of sparse orthonormal basis vectors. RMPI explore the structural and geometrical properties of the signal apart from traditional time and frequency domain analysis for improved detection. The concept has been proved with the help of MATLAB and LabVIEW simulations.

  8. Built-in test equipment of a 3-D radar signal processing

    NASA Astrophysics Data System (ADS)

    Boulin, M.

    The built-in test equipment (BITE) of a digital signal processing in a long-range three-dimensional radar is presented. The main BITE functions are summarized and its principle is described. The latter involves the integration of pseudorandom generation of test data into logic cards and the compression of responses into a signature. The implementation of BITEs using BILBOs (built-in logic block observers) and system BITE implementation are addressed. Software organization and the control of the external signature analyzer are discussed, and performance characteristics are presented.

  9. Thermally enhanced signal strength and SNR improvement of photoacoustic radar module

    PubMed Central

    Wang, Wei; Mandelis, Andreas

    2014-01-01

    A thermally enhanced method for improving photoacoustic imaging depth and signal-to-noise (SNR) ratio is presented in this paper. Experimental results showed that the maximum imaging depth increased by 20% through raising the temperature of absorbing biotissues (ex-vivo beef muscle) uniformly from 37 to 43°C, and the SNR was increased by 8%. The parameters making up the Gruneisen constant were investigated experimentally and theoretically. The studies showed that the Gruneisen constant of biotissues increases with temperature, and the results were found to be consistent with the photoacousitc radar theory. PMID:25136501

  10. Prediction of attenuation of the 28 GHz COMSTAR beacon signal using radar and measured rain drop spectra

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.

    1977-01-01

    Disdrometer measurements and radar reflectivity measurements were injected into a computer program to estimate the path attenuation of the signal. Predicted attenuations when compared with the directly measured ones showed generally good correlation on a case by case basis and very good agreement statistically. The utility of using radar in conjunction with disdrometer measurements for predicting fade events and long term fade distributions associated with earth-satellite telecommunications is demonstrated.

  11. On-Board Fiber-Optic Network Architectures for Radar and Avionics Signal Distribution

    NASA Technical Reports Server (NTRS)

    Alam, Mohammad F.; Atiquzzaman, Mohammed; Duncan, Bradley B.; Nguyen, Hung; Kunath, Richard

    2000-01-01

    Continued progress in both civil and military avionics applications is overstressing the capabilities of existing radio-frequency (RF) communication networks based on coaxial cables on board modem aircrafts. Future avionics systems will require high-bandwidth on- board communication links that are lightweight, immune to electromagnetic interference, and highly reliable. Fiber optic communication technology can meet all these challenges in a cost-effective manner. Recently, digital fiber-optic communication systems, where a fiber-optic network acts like a local area network (LAN) for digital data communications, have become a topic of extensive research and development. Although a fiber-optic system can be designed to transport radio-frequency (RF) signals, the digital fiber-optic systems under development today are not capable of transporting microwave and millimeter-wave RF signals used in radar and avionics systems on board an aircraft. Recent advances in fiber optic technology, especially wavelength division multiplexing (WDM), has opened a number of possibilities for designing on-board fiber optic networks, including all-optical networks for radar and avionics RF signal distribution. In this paper, we investigate a number of different novel approaches for fiber-optic transmission of on-board VHF and UHF RF signals using commercial off-the-shelf (COTS) components. The relative merits and demerits of each architecture are discussed, and the suitability of each architecture for particular applications is pointed out. All-optical approaches show better performance than other traditional approaches in terms of signal-to-noise ratio, power consumption, and weight requirements.

  12. Extended emitter target tracking using GM-PHD filter.

    PubMed

    Zhu, Youqing; Zhou, Shilin; Gao, Gui; Zou, Huanxin; Lei, Lin

    2014-01-01

    If equipped with several radar emitters, a target will produce more than one measurement per time step and is denoted as an extended target. However, due to the requirement of all possible measurement set partitions, the exact probability hypothesis density filter for extended target tracking is computationally intractable. To reduce the computational burden, a fast partitioning algorithm based on hierarchy clustering is proposed in this paper. It combines the two most similar cells to obtain new partitions step by step. The pseudo-likelihoods in the Gaussian-mixture probability hypothesis density filter can then be computed iteratively. Furthermore, considering the additional measurement information from the emitter target, the signal feature is also used in partitioning the measurement set to improve the tracking performance. The simulation results show that the proposed method can perform better with lower computational complexity in scenarios with different clutter densities.

  13. A high-speed digital signal processor for atmospheric radar, part 7.3A

    NASA Technical Reports Server (NTRS)

    Brosnahan, J. W.; Woodard, D. M.

    1984-01-01

    The Model SP-320 device is a monolithic realization of a complex general purpose signal processor, incorporating such features as a 32-bit ALU, a 16-bit x 16-bit combinatorial multiplier, and a 16-bit barrel shifter. The SP-320 is designed to operate as a slave processor to a host general purpose computer in applications such as coherent integration of a radar return signal in multiple ranges, or dedicated FFT processing. Presently available is an I/O module conforming to the Intel Multichannel interface standard; other I/O modules will be designed to meet specific user requirements. The main processor board includes input and output FIFO (First In First Out) memories, both with depths of 4096 W, to permit asynchronous operation between the source of data and the host computer. This design permits burst data rates in excess of 5 MW/s.

  14. Polarimetric Radar Observations of Arctic Clouds: Signal Processing and First Results from the may 2013 Iop

    NASA Astrophysics Data System (ADS)

    Galletti, M.; Oue, M.; Verlinde, J.

    2013-12-01

    The ARM Climate Research Facility site at the North Slope of Alaska in Barrow provides polarimetric radar observations of Arctic clouds at X, Ka and W bands. During the May 2013 Scanning radar Intensive Observation Period, raw I and Q data were acquired with the X-SAPR and the Ka-W SACR for the purpose of validating existing, and testing new signal processing procedures specifically tailored for Arctic observations. The raw I and Q datasets were collected on May 3rd 2013 for the case of low-level boundary layer mixed-phase arctic clouds and on May 6th 2013 for the case of a synoptic low moving in from the west. http://www.arm.gov/campaigns/nsa2013nsasr The present paper describes the impact of signal processing procedures on the data, and establishes dual-polarization radar as a valuable tool for the microphysical characterization of ice clouds. In particular, the X-SAPR operates at STSR mode, making available differential reflectivity ZDR, copolar correlation coefficient ρhv, specific differential phase KDP and Degree of Polarization at Simultaneous Transmit DOPS. Low-level boundary layer mixed-phase Arctic clouds are characterized by layers of supercooled liquid water aloft, which present a stark polarimetric contrast with respect to the associated ice precipitation fallout. The ice particles falling from boundary layer Arctic clouds on May 2nd, 3rd and 4th 2013 (winds were very weak or absent) showed the remarkable property of being composed exclusively by large dendrites - fern-like, stellars, twelve-branched - indicating deposition as the main accretion mechanism. http://www.flickr.com/photos/michele_galletti/sets/72157633422079814/ Boundary Layer mixed-phase Arctic clouds provide an exceptional natural laboratory for the exploration of polarimetric signatures in presence of dendritic ice particles. The first-ever X-band analysis of differential reflectivity ZDR of mixed-phase Arctic clouds is presented in [1]. For the May 6th case, ice particle populations

  15. Radarclinometry - Bootstrapping the radar reflectance function from the image pixel-signal frequency distribution and an altimetry profile

    NASA Technical Reports Server (NTRS)

    Wildey, Robert L.

    1988-01-01

    A method for determining the dependence of radar backscatter on incidence angle that is applicable to the region corresponding to a particular radar image is derived. The method is based on enforcing mathematical consistency between the frequency distribution of the images' pixel signals and a one-dimensional frequency distribution of slope component, which is obtained from a radar or laser altimetry profile in or near the imaged area. To test the resulting algorithm, an arbitrarily selected reflectance function is used to generate an artificial radar image from a digitized topographic map of the Lake Champlain West quadrangle in the Adirondack Mountains, U.S. It is found that, for 99 percent of the data, the maximum error is 1 degree.

  16. Advanced signal processing method for ground penetrating radar feature detection and enhancement

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Venkatachalam, Anbu Selvam; Huston, Dryver; Xia, Tian

    2014-03-01

    This paper focuses on new signal processing algorithms customized for an air coupled Ultra-Wideband (UWB) Ground Penetrating Radar (GPR) system targeting highway pavements and bridge deck inspections. The GPR hardware consists of a high-voltage pulse generator, a high speed 8 GSps real time data acquisition unit, and a customized field-programmable gate array (FPGA) control element. In comparison to most existing GPR system with low survey speeds, this system can survey at normal highway speed (60 mph) with a high horizontal resolution of up to 10 scans per centimeter. Due to the complexity and uncertainty of subsurface media, the GPR signal processing is important but challenging. In this GPR system, an adaptive GPR signal processing algorithm using Curvelet Transform, 2D high pass filtering and exponential scaling is proposed to alleviate noise and clutter while the subsurface features are preserved and enhanced. First, Curvelet Transform is used to remove the environmental and systematic noises while maintain the range resolution of the B-Scan image. Then, mathematical models for cylinder-shaped object and clutter are built. A two-dimension (2D) filter based on these models removes clutter and enhances the hyperbola feature in a B-Scan image. Finally, an exponential scaling method is applied to compensate the signal attenuation in subsurface materials and to improve the desired signal feature. For performance test and validation, rebar detection experiments and subsurface feature inspection in laboratory and field configurations are performed.

  17. Detection capability of a pulsed Ground Penetrating Radar utilizing an oscilloscope and Radargram Fusion Approach for optimal signal quality

    NASA Astrophysics Data System (ADS)

    Seyfried, Daniel; Schoebel, Joerg

    2015-07-01

    In scientific research pulsed radars often employ a digital oscilloscope as sampling unit. The sensitivity of an oscilloscope is determined in general by means of the number of digits of its analog-to-digital converter and the selected full scale vertical setting, i.e., the maximal voltage range displayed. Furthermore oversampling or averaging of the input signal may increase the effective number of digits, hence the sensitivity. Especially for Ground Penetrating Radar applications high sensitivity of the radar system is demanded since reflection amplitudes of buried objects are strongly attenuated in ground. Hence, in order to achieve high detection capability this parameter is one of the most crucial ones. In this paper we analyze the detection capability of our pulsed radar system utilizing a Rohde & Schwarz RTO 1024 oscilloscope as sampling unit for Ground Penetrating Radar applications, such as detection of pipes and cables in the ground. Also effects of averaging and low-noise amplification of the received signal prior to sampling are investigated by means of an appropriate laboratory setup. To underline our findings we then present real-world radar measurements performed on our GPR test site, where we have buried pipes and cables of different types and materials in different depths. The results illustrate the requirement for proper choice of the settings of the oscilloscope for optimal data recording. However, as we show, displaying both strong signal contributions due to e.g., antenna cross-talk and direct ground bounce reflection as well as weak reflections from objects buried deeper in ground requires opposing trends for the oscilloscope's settings. We therefore present our Radargram Fusion Approach. By means of this approach multiple radargrams recorded in parallel, each with an individual optimized setting for a certain type of contribution, can be fused in an appropriate way in order to finally achieve a single radargram which displays all

  18. Radar Information from the Partial Derivatives of the Echo Signal Phase from a Point Scatterer

    DTIC Science & Technology

    1988-02-17

    with the target information from a point scatterer as obtained form the partial derivatives of the echo-signal phase r, a function of freq -xency...report, but not in as direct a manner as that of Lees. I. 1. "A Generalized Theory of Radar Observations," by R. J. Lees, AVIONICS RESEARCH: SATELLITES ...j27r(x/x)u jw(-d+D)u/X -jn(d+D)u/x ! j2wu j2w u ! - -(d+D)/2 -,Jw(d/X)u( jf(Dlx)u -j=(rD/X u) j2w u -jwr(d/x)u = . sin[ir(D/x)u] iTU 37 2d integral

  19. Possibility of using space radar GRAVES signals for uninterrupted monitoring of orbital parameters of space objects in low orbits

    NASA Astrophysics Data System (ADS)

    Bushuev, F. I.; Vorsin, G. V.; Grinchenko, A. A.; Kalyuzhny, N. A.; Shulga, A. V.

    2013-12-01

    The paper shows the possibility to monitor the orbital parameters of space objects using an experimental radio hardware and software complex that receives signals of the space radar GRAVES (France) which are reflected by the monitored objects. The results of comparing the calculated and the measured values of Doppler frequency shift are shown for selected objects and the Moon.

  20. On the extraction of directional sea-wave spectra from synthetic- aperture radar-signal arrays without matched filtering.

    USGS Publications Warehouse

    Wildey, R.L.

    1980-01-01

    An economical method of digitally extracting sea-wave spectra from synthetic-aperture radar-signal records, which can be performed routinely in real or near-real time with the reception of telemetry from Seasat satellites, would be of value to a variety of scientific disciplines. This paper explores techniques for such data extraction and concludes that the mere fact that the desired result is devoid of phase information does not, of itself, lead to a simplification in data processing because of the nature of the modulation performed on the radar pulse by the backscattering surface. -from Author

  1. Experimental evidence of signal-optical noise interferencelike effect in underwater amplitude-modulated laser optical radar systems.

    PubMed

    Bartolini, L; De Dominicis, L; Ferri de Collibus, M; Fornetti, G; Francucci, M; Guarneri, M; Nuvoli, M; Paglia, E; Ricci, R

    2008-11-15

    We report experimental evidence that in an amplitude-modulated laser optical radar system for underwater 3D imaging the observed contrast oscillations as a function of the modulation frequency originate from an interference-like effect between target signal VT and water backscattered radiation VW. The demonstration relies on the ability to perform a direct measurement of VW in a 25 m long test tank. The proposed data processing method enables one to remove the contribution of water backscattering from the detected signal and drastically reduce signal fluctuations due to the medium. Experiments also confirm the possibility to improve the signal to optical noise ratio and contrast by increasing the modulation frequency.

  2. Data processing of ground-penetrating radar signals for the detection of discontinuities using polarization diversity

    NASA Astrophysics Data System (ADS)

    Tebchrany, Elias; Sagnard, Florence; Baltazart, Vincent; Tarel, Jean-Phillippe

    2014-05-01

    In civil engineering, ground penetrating radar (GPR) is used to survey pavement thickness at traffic speed, detect and localize buried objects (pipes, cables, voids, cavities), zones of cracks and discontinuities in concrete or soils. In this work, a ground-coupled radar made of a pair of transmitting and receiving bowtie-slot antennas is moved linearly on the soil surface to detect the reflected waves induced by discontinuities in the subsurface. The GPR system operates in the frequency domain using a step-frequency continuous wave (SFCW) using a Vector Network Analyzer (VNA) in an ultra-wide band [0.3 ; 4] GHz. The detection of targets is usually focused on time imaging. Thus, the targets (limited in size) are usually shown by diffraction hyperbolas on a Bscan image that is an unfocused depiction of the scatterers. The contrast in permittivity and the ratio between the size of the object and the wavelength are important parameters in the detection process. Thus, we have made a first study on the use of polarization diversity to obtain additional information relative to the contrast between the soil and the target and the dielectric characteristics of a target. The two main polarizations configurations of the radar have been considered in the presence of objects having a pipe geometry: the TM (Transverse Magnetic) and TE (Transverse Electric. To interpret the diffraction hyperbolas on a Bscan image, we have used pre-processing techniques are necessary to reduce the clutter signal which can overlap and obscure the target responses, particularly shallow objects. The clutter, which can be composed of the direct coupling between the antennas and the reflected wave from the soil surface, the scattering on the heterogeneities due to the granular nature of the subsurface material, and some additive noise, varies with soil dielectric characteristics and/or surface roughness and leads to uncertainty in the measurements (additive noise). Because of the statistical nature of

  3. The design and development of signal-processing algorithms for an airborne x-band Doppler weather radar

    NASA Technical Reports Server (NTRS)

    Nicholson, Shaun R.

    1994-01-01

    Improved measurements of precipitation will aid our understanding of the role of latent heating on global circulations. Spaceborne meteorological sensors such as the planned precipitation radar and microwave radiometers on the Tropical Rainfall Measurement Mission (TRMM) provide for the first time a comprehensive means of making these global measurements. Pre-TRMM activities include development of precipitation algorithms using existing satellite data, computer simulations, and measurements from limited aircraft campaigns. Since the TRMM radar will be the first spaceborne precipitation radar, there is limited experience with such measurements, and only recently have airborne radars become available that can attempt to address the issue of the limitations of a spaceborne radar. There are many questions regarding how much attenuation occurs in various cloud types and the effect of cloud vertical motions on the estimation of precipitation rates. The EDOP program being developed by NASA GSFC will provide data useful for testing both rain-retrieval algorithms and the importance of vertical motions on the rain measurements. The purpose of this report is to describe the design and development of real-time embedded parallel algorithms used by EDOP to extract reflectivity and Doppler products (velocity, spectrum width, and signal-to-noise ratio) as the first step in the aforementioned goals.

  4. Brownian Emitters

    NASA Astrophysics Data System (ADS)

    Tsekov, Roumen

    2016-06-01

    A Brownian harmonic oscillator, which dissipates energy either by friction or via emission of electromagnetic radiation, is considered. This Brownian emitter is driven by the surrounding thermo-quantum fluctuations, which are theoretically described by the fluctuation-dissipation theorem. It is shown how the Abraham-Lorentz force leads to dependence of the half-width on the peak frequency of the oscillator amplitude spectral density. It is found that for the case of a charged particle moving in vacuum at zero temperature, its root-mean-square velocity fluctuation is a universal constant, equal to roughly 1/18 of the speed of light. The relevant Fokker-Planck and Smoluchowski equations are also derived.

  5. Mapping sea ice using reflected GNSS signals in a bistatic radar system

    NASA Astrophysics Data System (ADS)

    Chew, Clara; Zuffada, Cinzia; Shah, Rashmi; Mannucci, Anthony

    2016-04-01

    Global Navigation Satellite System (GNSS) signals can be used as a kind of bistatic radar, with receivers opportunistically recording ground-reflected signals transmitted by the GNSS satellites themselves. This technique, GNSS-Reflectometry (GNSS-R), has primarily been explored using receivers flown on aircraft or balloons, or in modeling studies. Last year's launch of the TechDemoSat-1 (TDS-1) satellite represents an enormous opportunity to investigate the potential of using spaceborne GNSS receivers to sense changes in the land and ocean surface. Here, we examine the ability of reflected GNSS signals to estimate sea ice extent and sea ice age, as well as comment on the possibility of using GNSS-R to detect leads and polynyas within the ice. In particular, we quantify how the peak power of Delay Doppler Maps (DDMs) generated within the GNSS receiver responds as the satellite flies over the Polar Regions. To compute the effective peak power of each DDM, we first normalize the peak power of the DDM by the noise floor. We also correct for antenna gain, range, and incidence angle. Once these corrections are made, the effective peak power across DDMs may be used as a proxy for changes in surface permittivity and surface roughness. We compare our calculations of reflected power to existing sea ice remote sensing products such as data from the SSMI/S as well as Landsat imagery. Our analysis shows that GNSS reflections are extremely sensitive to the sea ice edge, with increases in reflected power of more than 10 dB relative to reflected power over the open ocean. As the sea ice ages, it thickens and roughens, and reflected power decreases, though it does not decrease below the power over the open ocean. Given the observed sensitivity of GNSS reflections to small features over land and the sensitivity to the sea ice edge, we hypothesize that reflection data could help map the temporal evolution of leads and polynyas.

  6. Analysis and improved design considerations for airborne pulse Doppler radar signal processing in the detection of hazardous windshear

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil

    1990-01-01

    High resolution windspeed profile measurements are needed to provide reliable detection of hazardous low altitude windshear with an airborne pulse Doppler radar. The system phase noise in a Doppler weather radar may degrade the spectrum moment estimation quality and the clutter cancellation capability which are important in windshear detection. Also the bias due to weather return Doppler spectrum skewness may cause large errors in pulse pair spectral parameter estimates. These effects are analyzed for the improvement of an airborne Doppler weather radar signal processing design. A method is presented for the direct measurement of windspeed gradient using low pulse repetition frequency (PRF) radar. This spatial gradient is essential in obtaining the windshear hazard index. As an alternative, the modified Prony method is suggested as a spectrum mode estimator for both the clutter and weather signal. Estimation of Doppler spectrum modes may provide the desired windshear hazard information without the need of any preliminary processing requirement such as clutter filtering. The results obtained by processing a NASA simulation model output support consideration of mode identification as one component of a windshear detection algorithm.

  7. Estimation of the penetration effects of the Ka-band radar signal into the Arctic sea ice snowpack.

    NASA Astrophysics Data System (ADS)

    Guerreiro, Kévin; Fleury, Sara; Kouraev, Alexei; Rémy, Frédérique; Zakharova, Elena; Blumstein, Denis

    2015-04-01

    In the context of quantifying Arctic sea ice volume at global scale, altimetry provides a unique tool to estimate sea ice thickness through the freeboard method that mainly consists in evaluating the thickness of emerged sea ice. Most of the altimeters employed to retrieve sea ice thickness operate at Ku-band frequency (13.6 Ghz). Over Arctic sea ice and at this frequency, the radar signal is only slightly affected by scattering and absorbtion due to the presence of snow over the ice. Therefore, it is commonly admitted that most of the return echo comes from the ice surface. Launched in February 2013, the Saral-AltiKa mission carries a Ka-band (36.5 Ghz) altimeter that is a great opportunity to expand the study of sea ice thickness. However, unlike the Ku-band operating systems, most of the Ka-band signal does not reach the sea ice surface and is scattered by overlying snow layers. For this reason and in order to obtain the best estimate of sea ice thickness with Ka-band radar, it is crucial to evaluate the bias due to penetration of the radar signal into the snowpack at this frequency. We combine both Ku and Ka band radar observations to study the influence of radar penetration into the snow and estimate the extinction coefficient over Arctic sea ice. Our results are of the same order of magnitude of what is found in Antarctica. This research has been done in the framework of CNES TOSCA SICKays and IDEX Transversalité InHERA projects.

  8. Asymmetrical field emitter

    DOEpatents

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  9. Asymmetrical field emitter

    DOEpatents

    Fleming, James G.; Smith, Bradley K.

    1995-01-01

    Providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure.

  10. Estimation of High-Frequency Earth-Space Radio Wave Signals via Ground-Based Polarimetric Radar Observations

    NASA Technical Reports Server (NTRS)

    Bolen, Steve; Chandrasekar, V.

    2002-01-01

    Expanding human presence in space, and enabling the commercialization of this frontier, is part of the strategic goals for NASA's Human Exploration and Development of Space (HEDS) enterprise. Future near-Earth and planetary missions will support the use of high-frequency Earth-space communication systems. Additionally, increased commercial demand on low-frequency Earth-space links in the S- and C-band spectra have led to increased interest in the use of higher frequencies in regions like Ku and Ka-band. Attenuation of high-frequency signals, due to a precipitating medium, can be quite severe and can cause considerable disruptions in a communications link that traverses such a medium. Previously, ground radar measurements were made along the Earth-space path and compared to satellite beacon data that was transmitted to a ground station. In this paper, quantitative estimation of the attenuation along the propagation path is made via inter-comparisons of radar data taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and ground-based polarimetric radar observations. Theoretical relationships between the expected specific attenuation (k) of spaceborne measurements with ground-based measurements of reflectivity (Zh) and differential propagation phase shift (Kdp) are developed for various hydrometeors that could be present along the propagation path, which are used to estimate the two-way path-integrated attenuation (PIA) on the PR return echo. Resolution volume matching and alignment of the radar systems is performed, and a direct comparison of PR return echo with ground radar attenuation estimates is made directly on a beam-by-beam basis. The technique is validated using data collected from the TExas and Florida UNderflights (TEFLUN-B) experiment and the TRMM large Biosphere-Atmosphere experiment in Amazonia (LBA) campaign. Attenuation estimation derived from this method can be used for strategiC planning of communication systems for

  11. Real-time MST radar signal processing using a microcomputer running under FORTH

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A.

    1983-01-01

    Data on power, correlation time, and velocity were obtained at the Urbana radar using microcomputer and a single floppy disk drive. This system includes the following features: (1) measurement of the real and imaginary components of the received signal at 20 altitudes spaced by 1.5 km; (2) coherent integration of these components over a 1/8-s time period; (3) continuous real time display of the height profiles of the two coherently integrated components; (4) real time calculation of the 1 minute averages of the power and autocovariance function up to 6 lags; (5) output of these data to floppy disk once every 2 minutes; (6) display of the 1 minute power profiles while the data are stored to the disk; (7) visual prompting for the operator to change disks when required at the end of each hour of data; and (8) continuous audible indication of the status of the interrupt service routine. Accomplishments were enabled by two developments: the use of a new correlation algorithm and the use of the FORTH language to manage the various low level and high level procedures involved.

  12. The modification of X and L band radar signals by monomolecular sea slicks

    NASA Technical Reports Server (NTRS)

    Huehnerfuss, H.; Alpers, W.; Cross, A.; Garrett, W. D.; Keller, W. C.; Plant, W. J.; Schuler, D. L.; Lange, P. A.; Schlude, F.

    1983-01-01

    One methyl oleate and two oleyl alcohol surface films were produced on the surface of the North Sea under comparable oceanographic and meteorological conditions in order to investigate their influence on X and L band radar backscatter. Signals are backscattered in these bands primarily by surface waves with lengths of about 2 and 12 cm, respectively, and backscattered power levels in both bands were reduced by the slicks. The reduction was larger at X band than at L band, however, indicating that shorter waves are more intensely damped by the surface films. The oleyl alcohol film caused greater attenuation of short gravity waves than the film of methyl oleate, thus demonstrating the importance of the physicochemical properties of films on the damping of wind-generated gravity capillary waves. Finally, these experiments indicate a distinct dependence of the degree of damping on the angle between wind and waves. Wind-generated waves traveling in the wind direction are more intensely damped by surface films than are waves traveling at large angles to the wind.

  13. Development of a ground signal processor for digital synthetic array radar data

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Estes, J. M.

    1981-01-01

    A modified APQ-102 sidelooking array radar (SLAR) in a B-57 aircraft test bed is used, with other optical and infrared sensors, in remote sensing of Earth surface features for various users at NASA Johnson Space Center. The video from the radar is normally recorded on photographic film and subsequently processed photographically into high resolution radar images. Using a high speed sampling (digitizing) system, the two receiver channels of cross-and co-polarized video are recorded on wideband magnetic tape along with radar and platform parameters. These data are subsequently reformatted and processed into digital synthetic aperture radar images with the image data available on magnetic tape for subsequent analysis by investigators. The system design and results obtained are described.

  14. Multi-damage detection with embedded ultrasonic structural radar algorithm using piezoelectric wafer active sensors through advanced signal processing

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Giurgiutiu, Victor

    2005-05-01

    The embedded ultrasonic structural radar (EUSR) algorithm was developed by using piezoelectric wafer active sensor (PWAS) array to detect defects within a large area of a thin-plate specimen. EUSR has been verified to be effective for detecting a single crack either at a broadside or at an offside position. In this research, advanced signal processing techniques were included to enhance inspection image quality and detect multiple damage. The signal processing methods include discrete wavelet transform for signal denoising, short-time Fourier transform and continuous wavelet transform for time-frequency analysis, continuous wavelet transform for frequency filtering, and Hilbert transform for envelope extraction. All these signal processing modules were implemented by developing a graphical user-friendly interface program in LabVIEW. The paper starts with an introduction of embedded ultrasonic structural radar algorithm, followed with the theoretical aspect of the phased array signal processing method. Then, the mathematical algorithms for advanced signal processing are introduced. In the end, laboratory experimental results are presented to show how efficiently the improved EUSR works. The results are analyzed and EUSR is concluded to have been improved by using the advanced signal processing techniques. The improvements include: 1) EUSR is able to provide better image of the specimen under monitoring; 2) it is able to detect multi-damage such as several cracks; 3) it is able to identify different damage types.

  15. New Magnetic Materials and Phenomena for Radar and Microwave Signal Processing Devices - Bulk and Thin Film Ferrites and Metallic Films

    DTIC Science & Technology

    2009-02-15

    methods have been used to produce in-plane c-axis (IPCA) oriented barium ferrite (BaM) films on o-plane (1120) sapphire substrates with low microwave ...New magnetic materials and phenomena for radar and microwave signal processing devices - bulk and thin film ferrites and metallic films 6. AUTHOR(S...excitation properties in delay line structures. (173 words) 14. SUBJECT TERMS Microwave ferrites , yttrium iron garnet, hexagonal ferrites

  16. Hail statistic in Western Europe based on a hyrid cell-tracking algorithm combining radar signals with hailstone observations

    NASA Astrophysics Data System (ADS)

    Fluck, Elody

    2015-04-01

    Hail statistic in Western Europe based on a hybrid cell-tracking algorithm combining radar signals with hailstone observations Elody Fluck¹, Michael Kunz¹ , Peter Geissbühler², Stefan P. Ritz² With hail damage estimated over Billions of Euros for a single event (e.g., hailstorm Andreas on 27/28 July 2013), hail constitute one of the major atmospheric risks in various parts of Europe. The project HAMLET (Hail Model for Europe) in cooperation with the insurance company Tokio Millennium Re aims at estimating hail probability, hail hazard and, combined with vulnerability, hail risk for several European countries (Germany, Switzerland, France, Netherlands, Austria, Belgium and Luxembourg). Hail signals are obtained from radar reflectivity since this proxy is available with a high temporal and spatial resolution using several hail proxies, especially radar data. The focus in the first step is on Germany and France for the periods 2005- 2013 and 1999 - 2013, respectively. In the next step, the methods will be transferred and extended to other regions. A cell-tracking algorithm TRACE2D was adjusted and applied to two dimensional radar reflectivity data from different radars operated by European weather services such as German weather service (DWD) and French weather service (Météo-France). Strong convective cells are detected by considering 3 connected pixels over 45 dBZ (Reflectivity Cores RCs) in a radar scan. Afterwards, the algorithm tries to find the same RCs in the next 5 minute radar scan and, thus, track the RCs centers over time and space. Additional information about hailstone diameters provided by ESWD (European Severe Weather Database) is used to determine hail intensity of the detected hail swaths. Maximum hailstone diameters are interpolated along and close to the individual hail tracks giving an estimation of mean diameters for the detected hail swaths. Furthermore, a stochastic event set is created by randomizing the parameters obtained from the

  17. Complementary code and digital filtering for detection of weak VHF radar signals from the mesoscale

    NASA Astrophysics Data System (ADS)

    Schmidt, G.; Ruster, R.; Czechowsky, P.

    1983-12-01

    The SOUSY-VHF-Radar operates at a frequency of 53.5 MHz in a valley in the Harz mountains, Germany, 90 km from Hanover. The radar controller, which is programmed by a 16-bit computer holds 1024 program steps in core and controls, via 8 channels, the whole radar system: in particular the master oscillator, the transmitter, the transmit-receive-switch, the receiver, the analog to digital converter, and the hardware adder. The high-sensitivity receiver has a dynamic range of 70 dB and a video bandwidth of 1 MHz. Phase coding schemes are applied, in particular for investigations at mesospheric heights, in order to carry out measurements with the maximum duty cycle and the maximum height resolution. The computer takes the data from the adder to store it in magnetic tape or disc. The radar controller is programmed by the computer using simple FORTRAN IV statements. After the program has been loaded and the computer has started the radar controller, it runs automatically, stopping at the program end. In case of errors or failures occurring during the radar operation, the radar controller is shut off caused either by a safety circuit or by a power failure circuit or by a parity check system.

  18. Frequency diversity wideband digital receiver and signal processor for solid-state dual-polarimetric weather radars

    NASA Astrophysics Data System (ADS)

    Mishra, Kumar Vijay

    The recent spate in the use of solid-state transmitters for weather radar systems has unexceptionably revolutionized the research in meteorology. The solid-state transmitters allow transmission of low peak powers without losing the radar range resolution by allowing the use of pulse compression waveforms. In this research, a novel frequency-diversity wideband waveform is proposed and realized to extenuate the low sensitivity of solid-state radars and mitigate the blind range problem tied with the longer pulse compression waveforms. The latest developments in the computing landscape have permitted the design of wideband digital receivers which can process this novel waveform on Field Programmable Gate Array (FPGA) chips. In terms of signal processing, wideband systems are generally characterized by the fact that the bandwidth of the signal of interest is comparable to the sampled bandwidth; that is, a band of frequencies must be selected and filtered out from a comparable spectral window in which the signal might occur. The development of such a wideband digital receiver opens a window for exciting research opportunities for improved estimation of precipitation measurements for higher frequency systems such as X, Ku and Ka bands, satellite-borne radars and other solid-state ground-based radars. This research describes various unique challenges associated with the design of a multi-channel wideband receiver. The receiver consists of twelve channels which simultaneously downconvert and filter the digitized intermediate-frequency (IF) signal for radar data processing. The product processing for the multi-channel digital receiver mandates a software and network architecture which provides for generating and archiving a single meteorological product profile culled from multi-pulse profiles at an increased data date. The multi-channel digital receiver also continuously samples the transmit pulse for calibration of radar receiver gain and transmit power. The multi

  19. Joint DOD/DOA Estimation in MIMO Radar Exploiting Time-Frequency Signal Representations

    DTIC Science & Technology

    2012-05-08

    direction-of-departure (DOD) and direction-of- arrival (DOA) information of maneuvering targets in a bistatic multiple-input multiple-output (MIMO) radar...CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report ( SAR ) 18. NUMBER OF PAGES 21 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b...departure (DOD) and direction-of- arrival (DOA) information of maneuvering targets in a bistatic multiple-input multiple-output (MIMO) radar system

  20. Measurements and simulation of ionospheric scattering on VHF and UHF radar signals: Coherence times, coherence bandwidths, and S4

    NASA Astrophysics Data System (ADS)

    Rogers, Neil C.; Cannon, Paul S.; Groves, Keith M.

    2009-02-01

    Irregularities in the electron density of the ionosphere cause phase and amplitude scintillation on transionospheric VHF and UHF radar signals, particularly at lower radio frequencies. The design of radar and other transionospheric systems requires good estimates of the coherence bandwidth (CB) and coherence time (CT) imposed by a turbulent ionosphere. CB and CT measurements of the equatorial ionosphere, made using the Advanced Research Project Agency Long-range Tracking and Identification Radar 158 MHz and 422 MHz phase coherent radar located on Kwajalein (9.4°N, 167.5°E), are presented as a function of the two-way S4 scintillation index at 422 MHz The log linear regression equations are CT = 1.46 exp(-1.40 S4) s at 158 MHz and CT = 2.31 exp(-1.10 S4) s at 422 MHz. CT also varies by a factor of 2-3 depending on the effective scan velocity through the ionosphere, veff. The CT and CB, as a function of S4, have been compared to those from the Trans-Ionospheric Radio Propagation Simulator, a phase screen model. A close agreement is achieved using appropriate values of veff and midrange values of phase spectral index and outer scale. Validation of CB is, however, limited by insufficient radar chirp bandwidth. Formulating the model in terms of the two-way S4 index (an easily measurable parameter) rather than more fundamental phase screen parameters (which are difficult to obtain), improves its utility for the systems engineer. The frequency dependencies (spectral indices) of S4 and of CT are also presented to allow interpolation and some extrapolation of these results to other frequencies.

  1. Emittance Theory for Thin Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.

    1994-01-01

    Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).

  2. In vessel detection of delayed neutron emitters from clad failure in sodium cooled nuclear reactors: An estimation of the signal

    NASA Astrophysics Data System (ADS)

    Filliatre, P.; Jammes, C.; Chapoutier, N.; Jeannot, J.-P.; Jadot, F.; Batail, R.; Verrier, D.

    2014-04-01

    The detection of clad failures is mandatory in sodium-cooled fast neutron reactors in compliance with the "clean sodium" concept. An in-vessel detection system, sensitive to delayed neutrons from fission products released into the primary coolant by failures, partially tested in SUPERPHENIX, is foreseen in current SFR projects in order to reduce significantly the delay before an alarm is issued. In this paper, an estimation of the signal received by such a system in case of a failure is derived, taking the French project ASTRID as a working example. This failure induced signal is compared to that of the contribution of the neutrons from the core itself. The sensitivity of the system is defined in terms of minimal detectable surface of clad failure. Possible solutions to improve this sensitivity are discussed, involving either the sensor itself, or the hydraulic design of the vessel in the early stage of the reactor conception.

  3. Least square spline decomposition in time-frequency analysis of weather radar signals

    NASA Astrophysics Data System (ADS)

    Shelevytska, K. I.; Semenova, O. S.; Shelevytsky, I. V.; Yanovsky, F. J.

    2011-10-01

    Meteorology plays an important role in aviation, as it enables to predict weather conditions and detect flight dangerous meteorological phenomena. Meteorological radar is used to detect the intensity and possible location of precipitation and dangerous zones in them. Doppler radar systems are able to measure the speed of scatteres that constitute meteorological formations and phenomena. The tasks of measurement accuracy increasing and reliability rise of hazardous meteorological phenomena detection become much more relevant after establishing new flight control system CNS ATM adopted by ICAO - the International Civil Aviation Organization.

  4. FMCW Radar Jamming Techniques and Analysis

    DTIC Science & Technology

    2013-09-01

    discussed. 14. SUBJECT TERMS FMCW Radar , LPI , Jamming, Electronic Warfare 15. NUMBER OF PAGES 103 16. PRICE CODE 17. SECURITY CLASSIFICATION...Among the many variations of LPI radar systems, Frequency-Modulated Continuous Wave ( FMCW ) radar has not only the ability to avoid detection, but... LPI radars and possible electronic protection (EP) mechanisms that may be implemented in the FMCW emitter. The research questions can be summarized

  5. Signal Processing of Ground Penetrating Radar Using Spectral Estimation Techniques to Estimate the Position of Buried Targets

    NASA Astrophysics Data System (ADS)

    Shrestha, Shanker Man; Arai, Ikuo

    2003-12-01

    Super-resolution is very important for the signal processing of GPR (ground penetration radar) to resolve closely buried targets. However, it is not easy to get high resolution as GPR signals are very weak and enveloped by the noise. The MUSIC (multiple signal classification) algorithm, which is well known for its super-resolution capacity, has been implemented for signal and image processing of GPR. In addition, conventional spectral estimation technique, FFT (fast Fourier transform), has also been implemented for high-precision receiving signal level. In this paper, we propose CPM (combined processing method), which combines time domain response of MUSIC algorithm and conventional IFFT (inverse fast Fourier transform) to obtain a super-resolution and high-precision signal level. In order to support the proposal, detailed simulation was performed analyzing SNR (signal-to-noise ratio). Moreover, a field experiment at a research field and a laboratory experiment at the University of Electro-Communications, Tokyo, were also performed for thorough investigation and supported the proposed method. All the simulation and experimental results are presented.

  6. Floating emitter solar cell

    NASA Technical Reports Server (NTRS)

    Chih, Sah (Inventor); Cheng, Li-Jen (Inventor)

    1987-01-01

    A front surface contact floating emitter solar cell transistor is provided in a semiconductor body (n-type), in which floating emitter sections (p-type) are diffused or implanted in the front surface. Between the emitter sections, a further section is diffused or implanted in the front surface, but isolated from the floating emitter sections, for use either as a base contact to the n-type semiconductor body, in which case the section is doped n+, or as a collector for the adjacent emitter sections.

  7. Radarclinometry: Bootstrapping the radar reflectance function from the image pixel-signal frequency distribution and an altimetry profile

    USGS Publications Warehouse

    Wildey, R.L.

    1988-01-01

    A method is derived for determining the dependence of radar backscatter on incidence angle that is applicable to the region corresponding to a particular radar image. The method is based on enforcing mathematical consistency between the frequency distribution of the image's pixel signals (histogram of DN values with suitable normalizations) and a one-dimensional frequency distribution of slope component, as might be obtained from a radar or laser altimetry profile in or near the area imaged. In order to achieve a unique solution, the auxiliary assumption is made that the two-dimensional frequency distribution of slope is isotropic. The backscatter is not derived in absolute units. The method is developed in such a way as to separate the reflectance function from the pixel-signal transfer characteristic. However, these two sources of variation are distinguishable only on the basis of a weak dependence on the azimuthal component of slope; therefore such an approach can be expected to be ill-conditioned unless the revision of the transfer characteristic is limited to the determination of an additive instrumental background level. The altimetry profile does not have to be registered in the image, and the statistical nature of the approach minimizes pixel noise effects and the effects of a disparity between the resolutions of the image and the altimetry profile, except in the wings of the distribution where low-number statistics preclude accuracy anyway. The problem of dealing with unknown slope components perpendicular to the profiling traverse, which besets the one-to-one comparison between individual slope components and pixel-signal values, disappears in the present approach. In order to test the resulting algorithm, an artificial radar image was generated from the digitized topographic map of the Lake Champlain West quadrangle in the Adirondack Mountains, U.S.A., using an arbitrarily selected reflectance function. From the same map, a one-dimensional frequency

  8. A new modified differential evolution algorithm scheme-based linear frequency modulation radar signal de-noising

    NASA Astrophysics Data System (ADS)

    Dawood Al-Dabbagh, Mohanad; Dawoud Al-Dabbagh, Rawaa; Raja Abdullah, R. S. A.; Hashim, F.

    2015-06-01

    The main intention of this study was to investigate the development of a new optimization technique based on the differential evolution (DE) algorithm, for the purpose of linear frequency modulation radar signal de-noising. As the standard DE algorithm is a fixed length optimizer, it is not suitable for solving signal de-noising problems that call for variability. A modified crossover scheme called rand-length crossover was designed to fit the proposed variable-length DE, and the new DE algorithm is referred to as the random variable-length crossover differential evolution (rvlx-DE) algorithm. The measurement results demonstrate a highly efficient capability for target detection in terms of frequency response and peak forming that was isolated from noise distortion. The modified method showed significant improvements in performance over traditional de-noising techniques.

  9. A UWB Radar Signal Processing Platform for Real-Time Human Respiratory Feature Extraction Based on Four-Segment Linear Waveform Model.

    PubMed

    Hsieh, Chi-Hsuan; Chiu, Yu-Fang; Shen, Yi-Hsiang; Chu, Ta-Shun; Huang, Yuan-Hao

    2016-02-01

    This paper presents an ultra-wideband (UWB) impulse-radio radar signal processing platform used to analyze human respiratory features. Conventional radar systems used in human detection only analyze human respiration rates or the response of a target. However, additional respiratory signal information is available that has not been explored using radar detection. The authors previously proposed a modified raised cosine waveform (MRCW) respiration model and an iterative correlation search algorithm that could acquire additional respiratory features such as the inspiration and expiration speeds, respiration intensity, and respiration holding ratio. To realize real-time respiratory feature extraction by using the proposed UWB signal processing platform, this paper proposes a new four-segment linear waveform (FSLW) respiration model. This model offers a superior fit to the measured respiration signal compared with the MRCW model and decreases the computational complexity of feature extraction. In addition, an early-terminated iterative correlation search algorithm is presented, substantially decreasing the computational complexity and yielding negligible performance degradation. These extracted features can be considered the compressed signals used to decrease the amount of data storage required for use in long-term medical monitoring systems and can also be used in clinical diagnosis. The proposed respiratory feature extraction algorithm was designed and implemented using the proposed UWB radar signal processing platform including a radar front-end chip and an FPGA chip. The proposed radar system can detect human respiration rates at 0.1 to 1 Hz and facilitates the real-time analysis of the respiratory features of each respiration period.

  10. Using antennas separated in flight direction to avoid effect of emitter clock drift in geolocation

    DOEpatents

    Ormesher, Richard C.; Bickel, Douglas L

    2012-10-23

    The location of a land-based radio frequency (RF) emitter is determined from an airborne platform. RF signaling is received from the RF emitter via first and second antennas. In response to the received RF signaling, signal samples for both antennas are produced and processed to determine the location of the RF emitter.

  11. Signal analysis by means of time-frequency (Wigner-type) distributions -- Applications to sonar and radar echoes

    SciTech Connect

    Gaunaurd, G.; Strifors, H.C.

    1996-09-01

    Time series data have been traditionally analyzed in either the time or the frequency domains. For signals with a time-varying frequency content, the combined time-frequency (TF) representations, based on the Cohen class of (generalized) Wigner distributions (WD`s) offer a powerful analysis tool. Using them, it is possible to: (1) trace the time-evolution of the resonance features usually present in a standard sonar cross section (SCS), or in a radar cross section (RCS) and (2) extract target information that may be difficult to even notice in an ordinary SCS or RCS. After a brief review of the fundamental properties of the WD, the authors discuss ways to reduce or suppress the cross term interference that appears in the WD of multicomponent systems. These points are illustrated with a variety of three-dimensional (3-D) plots of Wigner and pseudo-Wigner distributions (PWD), in which the strength of the distribution is depicted as the height of a Wigner surface with height scales measured by various color shades or pseudocolors. The authors also review studies they have made of the echoes returned by conducting or dielectric targets in the atmosphere, when they are illuminated by broadband radar pings. A TF domain analysis of these impulse radar returns demonstrates their superior informative content. These plots allow the identification of targets in an easier and clearer fashion than by the conventional RCS of narrowband systems. The authors show computed and measured plots of WD and PWD of various types of aircraft to illustrate the classification advantages of the approach at any aspect angle. They also show analogous results for metallic objects buried underground, in dielectric media, at various depths.

  12. Photonically Engineered Incandescent Emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2005-03-22

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  13. Photonically engineered incandescent emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-08-26

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  14. Sub-nanosecond ranging possibilities of optical radar at various signal levels and transmitted pulse widths

    NASA Technical Reports Server (NTRS)

    Poultney, S. K.

    1971-01-01

    The behavior of the photomultiplier is considered, as well as the method of derivation of the photomultiplier output pulse and its relation to the reflected light pulse width and amplitude, and the calibration of range precision and accuracy. Pulsed laser radars with light pulse widths of 30, 3, and 0.1 nanosec a considered, with the 0.1 nanosec system capable of highest precision in several modes of operation, including a high repetition rate, single photoelectron reception mode. An alternate calibration scheme using a fast, triggerable light pulser is described in detail.

  15. Doppler frequency in interplanetary radar and general relativity

    NASA Technical Reports Server (NTRS)

    Mcvittie, G. C.

    1972-01-01

    The change of frequency of an interplanetary radar signal sent from the earth to another planet or to a space probe is worked out according to general relativity. The Schwarzschild spacetime is employed and its null geodesics control the motion of the signals. Exact Doppler frequency formulas are derived for one-way and two-way radar in terms of an arbitrary Schwarzschild radial coordinate. A reduction to the special relativity case is used to interpret the formulas in terms of the relative radial velocity of emitter and target. The general relativity corrections are worked out approximately for each of three possible Schwarzschild radial coordinates, and a numerical example is given. The amount of the correction is different according as one or the other of the Schwarzschild coordinates is identified with the radius vector deduced from classical celestial mechanics. The identification problem is discussed.

  16. Parameters of optical signals registered with the AZT-33IK telescope in active Radar-Progress space experiment

    NASA Astrophysics Data System (ADS)

    Eselevich, Maksim; Khakhinov, Vitaliy; Klunko, Evgeniy

    2016-09-01

    Images of Progress cargo spacecraft (PCS) and areas around them were captured by the AZT-33IK optical telescope (Sayan Observatory of ISTP SB RAS) during sessions of the active Radar-Progress space experiment. We took images of exhaust and fuel jets when propulsion systems worked and after they were cut off, during fuel system purging. In different sessions of the experiment, PCS had different orientations relative to the telescope, thus allowing us to find some parameters of the observed phenomena. These parameters make it possible to determine instants of engine ignitions, to estimate velocities of the jets, and, if necessary, to control the geometry of the space experiment. The paper reports common features of optical signals from jets measured in these experiments.

  17. Apodized RFI filtering of synthetic aperture radar images

    SciTech Connect

    Doerry, Armin Walter

    2014-02-01

    Fine resolution Synthetic Aperture Radar (SAR) systems necessarily require wide bandwidths that often overlap spectrum utilized by other wireless services. These other emitters pose a source of Radio Frequency Interference (RFI) to the SAR echo signals that degrades SAR image quality. Filtering, or excising, the offending spectral contaminants will mitigate the interference, but at a cost of often degrading the SAR image in other ways, notably by raising offensive sidelobe levels. This report proposes borrowing an idea from nonlinear sidelobe apodization techniques to suppress interference without the attendant increase in sidelobe levels. The simple post-processing technique is termed Apodized RFI Filtering (ARF).

  18. Diamond fiber field emitters

    DOEpatents

    Blanchet-Fincher, Graciela B.; Coates, Don M.; Devlin, David J.; Eaton, David F.; Silzars, Aris K.; Valone, Steven M.

    1996-01-01

    A field emission electron emitter comprising an electrode formed of at least one diamond, diamond-like carbon or glassy carbon composite fiber, said composite fiber having a non-diamond core and a diamond, diamond-like carbon or glassy carbon coating on said non-diamond core, and electronic devices employing such a field emission electron emitter.

  19. Signal Processing Algorithms for the Terminal Doppler Weather Radar: Build 2

    DTIC Science & Technology

    2010-04-30

    This is not a perfect solution, since some of the desired trip signal is inevitably lost during the notching process. The "noise" in the spectrum...periodic replicas of the uncohered signal spectrum. The latter has an advantage in that less of the signal information is lost during the notching ...the axis of antenna rotation to the feed horn ( Michelson et al. 1990). Taking into account positive and negative excursions, we can set the widened

  20. Pulsed hybrid field emitter

    SciTech Connect

    Sampayan, Stephen E.

    1998-01-01

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.

  1. Pulsed hybrid field emitter

    DOEpatents

    Sampayan, S.E.

    1998-03-03

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.

  2. Radar detection of signals with unknown parameters in K-distributed clutter

    NASA Astrophysics Data System (ADS)

    Conte, E.; Longo, M.; Lops, M.; Ullo, S. L.

    1991-04-01

    The detection of signals with unknown parameters in correlated K-distributed noise, using the generalized Neyman-Pearson strategy, is considered. The a priori uncertainty on the signal is removed by performing a maximum likelihood estimate of the unknown parameters. The resulting receivers can be regarded as a generalization of the conventional detector, but for a zero-memory nonlinearity depending on the amplitude probability density function of the noise as well as on the number of integrated pulses. It is shown that the performance for uncorrelated observations is unaffected by the specific signal pattern, but depends only on the signal-to-noise ratio; moreover, the effect of the clutter correlation on the performance can be accounted for simply by a detection gain. A performance assessment, carried out by computer simulation, shows that the proposed receivers significantly out-perform conventional ones as the noise amplitude probability density function markedly deviates from the Rayleigh law.

  3. Planetary radars have announced our presence - Thoughts on short duration signals, verification and responses

    NASA Astrophysics Data System (ADS)

    Boyce, Peter B.

    1991-10-01

    The idea is set forth that criteria are developed to assess whether a particular limited-duration signal is evidence of extraterrestrial intelligence (ETI). The nature of short-duration signals is discussed to set the stage for a description of the NASA Microwave Observing Program. Criteria for evaluating the possibility of ETI origin for a signal include length, strength, band width, and accompaniment by a pseudorandom repetition. SETI is described as an educational document that can be employed to illustrate the real difficulties of interstellar communication. It is concluded that to avoid the negative aspects of SETI activities such as the notion of fashioning a return signal the intergenerational nature of interstellar communication be emphasized for the public.

  4. Planetary radars have announced our presence - Thoughts on short duration signals, verification and responses

    NASA Technical Reports Server (NTRS)

    Boyce, Peter B.

    1991-01-01

    The idea is set forth that criteria are developed to assess whether a particular limited-duration signal is evidence of extraterrestrial intelligence (ETI). The nature of short-duration signals is discussed to set the stage for a description of the NASA Microwave Observing Program. Criteria for evaluating the possibility of ETI origin for a signal include length, strength, band width, and accompaniment by a pseudorandom repetition. SETI is described as an educational document that can be employed to illustrate the real difficulties of interstellar communication. It is concluded that to avoid the negative aspects of SETI activities such as the notion of fashioning a return signal the intergenerational nature of interstellar communication be emphasized for the public.

  5. Range Sidelobe Response from the Use of Polyphase Signals in Spotlight Synthetic Aperture Radar

    DTIC Science & Technology

    2015-12-01

    DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words...effects each of the individual PSK signals sidelobe structure has on SAR imagery. The specific PSK codes studied were the Frank code , P1 code , P2... code , P3 code and P4 code . A mathematical approach was used to define SAR limitations from signal parameters, and simulations were used to investigate

  6. Removal of systematic seasonal atmospheric signal from interferometric synthetic aperture radar ground deformation time series

    NASA Astrophysics Data System (ADS)

    Samsonov, Sergey V.; Trishchenko, Alexander P.; Tiampo, Kristy; González, Pablo J.; Zhang, Yu; Fernández, José

    2014-09-01

    Applying the Multidimensional Small Baseline Subset interferometric synthetic aperture radar algorithm to about 1500 Envisat and RADARSAT-2 interferograms spanning 2003-2013, we computed time series of ground deformation over Naples Bay Area in Italy. Two active volcanoes, Vesuvius and Campi Flegrei, are located in this area in close proximity to the densely populated city of Naples. For the first time, and with remarkable clarity, we observed decade-long elevation-dependent seasonal oscillations of the vertical displacement component with a peak-to-peak amplitude of up to 3.0 cm, substantially larger than the long-term deformation rate (<0.6 cm/yr). Analysis, utilizing surface weather and radiosonde data, linked observed oscillations with seasonal fluctuations of water vapor, air pressure, and temperature in the lower troposphere. The modeled correction is in a good agreement with observed results. The mean, absolute, and RMS differences are 0.014 cm, 0.073 cm, and 0.087 cm, respectively. Atmospherically corrected time series confirmed continuing subsidence at Vesuvius previously observed by geodetic techniques.

  7. DIAMOND SECONDARY EMITTER

    SciTech Connect

    BEN-ZVI, I.; RAO, T.; BURRILL, A.; CHANG, X.; GRIMES, J.; RANK, J.; SEGALOV, Z.; SMEDLEY, J.

    2005-10-09

    We present the design and experimental progress on the diamond secondary emitter as an electron source for high average power injectors. The design criteria for average currents up to 1 A and charge up to 20 nC are established. Secondary Electron Yield (SEY) exceeding 200 in transmission mode and 50 in emission mode have been measured. Preliminary results on the design and fabrication of the self contained capsule with primary electron source and secondary electron emitter will also be presented.

  8. The DIORAMA Neutron Emitter

    SciTech Connect

    Terry, James Russell

    2016-05-05

    Emission of neutrons in a given event is modeled by the DioramaEmitterNeutron object, a subclass of the abstract DioramaEmitterModule object. The GenerateEmission method of this object is the entry point for generation of a neutron population for a given event. Shown in table 1, this method requires a number of parameters to be defined in the event definition.

  9. Modelisation du Signal Radar EN Milieu Stratifie et Evaluation de Techniques de Mesure de L'humidite du Sol

    NASA Astrophysics Data System (ADS)

    Boisvert, Johanne

    La presente etude se penche sur des problemes relies a l'echantillonnage de l'humidite de sol et a l'estimation du signal radar sur sols nus. Le travail se divise en deux volets. Le volet 1 evalue trois techniques de mesure de l'humidite du sol (gravimetrie, reflectometrie temporelle et sonde dielectrique) et deux protocoles d'echantillonnage. Dans le volet 2, un modele de simulation du signal en milieu stratifie est developpe, et les estimes de signal obtenus sont compares aux estimes bases uniquement sur une valeur moyenne d'humidite du sol prise sur une profondeur fixe d'echantillonnage. Les differences entre les deux estimes dependent de la frequence et du choix judicieux de la profondeur d'echantillonnage; elles sont plus importantes aux faibles angles et en polarisation HV, puis VV. Le modele de simulation a aussi ete utilise pour etudier la profondeur de penetration du signal et en deduire la profondeur optimale d'echantillonnage en tenant compte des caracteristiques du signal. Une variation de 25 ^circ de l'angle d'incidence a peu d'effet sur la profondeur de penetration en bande Ku; l'ecart reste inferieur ou egal a 0,5 cm en bande C mais peut atteindre 1,3 cm en bande L. L'impact de la polarisation est nul en bande Ku mais croi t avec l'angle d'incidence en bande C et L. A 50^circ, il est, en moyenne de 1 cm en bande C et de 2 cm en bande L. En polarisation VV, la profondeur croi t avec une augmentation de l'angle alors que l'effet est inverse en polarisation HH. Deux methodes pour estimer la profondeur d'echantillonnage en conditions operationnelles sont presentees. Lorsqu'on inverse un modele pour estimer l'humidite du sol a partir du signal, ces methodes permettent aussi d'estimer l'epaisseur de sol representee par l'humidite ainsi estimee.

  10. Historical sketch: Radar geology

    NASA Technical Reports Server (NTRS)

    Macdonald, H.

    1980-01-01

    A chronological assessment is given of the broad spectra of technology associated with radar geology. Particular attention is given to the most recent developments made in the areas of microwave Earth resources applications and geologic remote sensing from aircraft and satellite. The significance of space derived radar in geologic investigations is discussed and the scientific basis for exploiting the sensitivity of radar signals to various aspects of geologic terrain is given.

  11. A Digital Signal Processor for Doppler Radar Sensing of Vital Signs

    DTIC Science & Technology

    2007-11-02

    It is caused by a small reflux flow of blood back into the aortic valve and coronary vessels. This dicrotic notch in the heart signal is clipped...Bulky analog filters can now be replaced by software implemented algorithms. These technological advances make the construction of a mobile remote...implementation flexibility, filters with closer tolerances, utilizes fewer components and has an overall lower price. DSP software not only replaces

  12. Time-Frequency Analysis of Terahertz Radar Signals for Rapid Heart and Breath Rate Detection

    DTIC Science & Technology

    2008-06-01

    use this to measure biological features such as heart and breath rates. (b) Beam size as a function of distance with a 6 inch aperture. When the...the notes a musician plays change over time [5]. One of the most commonly used methods for signals of non-stationary frequency is the windowed Fourier...monitoring of pulmonary edema and other pathological cardiopulmonary conditions [15]. It has also been used to record apexcardiograms, which indicate

  13. Metamaterial for Radar Frequencies

    DTIC Science & Technology

    2012-09-01

    Circuit Board RAM Radar Absorbing Material RCS Radar Cross Section SNR Signal-to-Noise Ratio SNG Single-Negative SRR Split Ring Resonator...although some can be single-negative ( SNG ). DNG refers to material with simultaneous negative real parts of the permittivity r  and permeability

  14. Electrochemical formation of field emitters

    DOEpatents

    Bernhardt, Anthony F.

    1999-01-01

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area.

  15. Cancer from internal emitters

    SciTech Connect

    Boecker, B.B.; Griffith, W.C. Jr.

    1995-10-01

    Irradiation from internal emitters, or internally deposited radionuclides, is an important component of radiation exposures encountered in the workplace, home, or general environment. Long-term studies of human populations exposed to various internal emitters by different routes of exposure are producing critical information for the protection of workers and members of the general public. The purpose of this report is to examine recent developments and discuss their potential importance for understanding lifetime cancer risks from internal emitters. The major populations of persons being studied for lifetime health effects from internally deposited radionuclides are well known: Lung cancer in underground miners who inhaled Rn progeny, liver cancer from persons injected with the Th-containing radiographic contrast medium Thorotrast, bone cancer from occupational or medical intakes of {sup 226}Ra or medical injections of {sup 224}Ra, and thyroid cancer from exposures to iodine radionuclides in the environment or for medical purposes.

  16. A microprogrammable radar controller

    NASA Technical Reports Server (NTRS)

    Law, D. C.

    1986-01-01

    The Wave Propagation Lab. has completed the design and construction of a microprogrammable radar controller for atmospheric wind profiling. Unlike some radar controllers using state machines or hardwired logic for radar timing, this design is a high speed programmable sequencer with signal processing resources. A block diagram of the device is shown. The device is a single 8 1/2 inch by 10 1/2 inch printed circuit board and consists of three main subsections: (1) the host computer interface; (2) the microprogram sequencer; and (3) the signal processing circuitry. Each of these subsections are described in detail.

  17. Effect of Temperature Gradient on Thick Film Selective Emitter Emittance

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Good, Brian S.; Clark, Eric B.; Chen, Zheng

    1997-01-01

    A temperature gradient across a thick (greater than or equal to .1 mm) film selective emitter will produce a significant reduction in the spectral emittance from the no temperature gradient case. Thick film selective emitters of rare earth doped host materials such as yttrium-aluminum-garnet (YAG) are examples where temperature gradient effects are important. In this paper a model is developed for the spectral emittance assuming a linear temperature gradient across the film. Results of the model indicate that temperature gradients will result in reductions the order of 20% or more in the spectral emittance.

  18. Linear frequency modulation photoacoustic radar: optimal bandwidth and signal-to-noise ratio for frequency-domain imaging of turbid media.

    PubMed

    Lashkari, Bahman; Mandelis, Andreas

    2011-09-01

    The development of the pulse compression photoacoustic (PA) radar using linear frequency modulation (LFM) demonstrated experimentally that spectral matching of the signal to the ultrasonic transducer bandwidth does not necessarily produce the best PA signal-to-noise ratio, and it was shown that the optical and acoustic properties of the absorber will modify the optimal bandwidth. The effects of these factors are investigated in frequency-domain (FD) PA imaging by employing one-dimensional and axisymmetric models of the PA effect, and a Krimholtz-Leedom-Matthaei model for the employed transducers. LFM chirps with various bandwidths were utilized and transducer sensitivity was measured to ensure the accuracy of the model. The theory was compared with experimental results and it was shown that the PA effect can act as a low-pass filter in the signal generation. Furthermore, with the PA radar, the low-frequency behavior of two-dimensional wave generation can appear as a false peak in the cross correlation signal trace. These effects are important in optimizing controllable features of the FD-PA method to improve image quality.

  19. Reappraisal of solid selective emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1990-01-01

    New rare earth oxide emitters show greater efficiency than previous emitters. As a result, based on a simple model the efficiency of these emitters was calculated. Results indicate that the emission band of the selective emitter must be at relatively low energy (less than or equal to .52 eV) to obtain maximum efficiency at moderate emitter temperatures (less than or equal to 1500 K). Thus low bandgap energy PV materials are required to obtain an efficient thermophotovoltaic (TPV) system. Of the 4 specific rare earths (Nd, Ho, Er, Yb) studied Ho has the largest efficiency at moderate temperatures (72 percent at 1500 K). A comparison was made between a selective emitter TPV system and a TPV system that uses a thermal emitter plus a band pass filter to make the thermal emitter behave like a selective emitter. Results of the comparison indicate that only for very optimistic filter and thermal emitter properties will the filter TPV system have a greater efficiency than the selective emitter system.

  20. Environmental awareness for sensor and emitter employment

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kenneth K.; Wilson, D. Keith

    2010-04-01

    Environmental Awareness for Sensor and Emitter Employment (EASEE) is a flexible, object-oriented software design for predicting environmental effects on the performance of battlefield sensors and detectability of signal emitters. Its decision-support framework facilitates many sensor and emitter modalities and can be incorporated into battlespace command and control (C2) systems. Other potential applications include immersive simulation, force-on-force simulation, and virtual prototyping of sensor systems and signal-processing algorithms. By identifying and encoding common characteristics of Army problems involving multimodal signal transmission and sensing into a flexible software architecture in the Java programming language, EASEE seeks to provide an application interface enabling rapid integration of diverse signal-generation, propagation, and sensor models that can be implemented in many client-server environments. Its explicit probabilistic modeling of signals, systematic consideration of many complex environmental and mission-related factors affecting signal generation and propagation, and computation of statistical metrics characterizing sensor performance facilitate a highly flexible approach to signal modeling and simulation. EASEE aims to integrate many disparate statistical formulations for modeling and processing many types of signals, including infrared, acoustic, seismic, radiofrequency, and chemical/biological. EASEE includes objects for representing sensor data, inferences for target detection and/or direction, signal transmission and processing, and state information (such as time and place). Various transmission and processing objects are further grouped into platform objects, which fuse data to make various probabilistic predictions of interest. Objects representing atmospheric and terrain environments with varying degrees of fidelity enable modeling of signal generation and propagation in diverse and complex environments.

  1. Rare Earth Garnet Selective Emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  2. Modeling the Response of a Monopulse Radar to Impulsive Jamming Signals Using the Block Oriented System Simulator (BOSS)

    DTIC Science & Technology

    1989-09-01

    Imbalance 3-22 ETEST > >> TABULAR PLOT SYSTE VI ITERATION AG $ I Baseline OBASELINE > Calibration > _ SSEM Constant Figure 3.13. AGC-Type System Model for...is needed so that the monopulse oullill is dependent upon the angle of the target. not on the target’s r; age or radar cr(,> - section [11:153]. The...RCVR DETECTO Figure 2.6. Block Diagram of Monopulse Processor using AGC [11:1731 are two common types of AG (’ discussed in radar literature

  3. Spaceborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kozu, Toshiaki

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  4. Micropower impulse radar imaging

    SciTech Connect

    Hall, M.S.

    1995-11-01

    From designs developed at the Lawrence Livermore National Laboratory (LLNL) in radar and imaging technologies, there exists the potential for a variety of applications in both public and private sectors. Presently tests are being conducted for the detection of buried mines and the analysis of civil structures. These new systems use a patented ultra-wide band (impulse) radar technology known as Micropower Impulse Radar (GPR) imaging systems. LLNL has also developed signal processing software capable of producing 2-D and 3-D images of objects embedded in materials such as soil, wood and concrete. My assignment while at LLNL has focused on the testing of different radar configurations and applications, as well as assisting in the creation of computer algorithms which enable the radar to scan target areas of different geometeries.

  5. Intelligent radar data processing

    NASA Astrophysics Data System (ADS)

    Holzbaur, Ulrich D.

    The application of artificial intelligence principles to the processing of radar signals is considered theoretically. The main capabilities required are learning and adaptation in a changing environment, processing and modeling information (especially dynamics and uncertainty), and decision-making based on all available information (taking its reliability into account). For the application to combat-aircraft radar systems, the tasks include the combination of data from different types of sensors, reacting to electronic counter-countermeasures, evaluation of how much data should be acquired (energy and radiation management), control of the radar, tracking, and identification. Also discussed are related uses such as monitoring the avionics systems, supporting pilot decisions with respect to the radar system, and general applications in radar-system R&D.

  6. Radar Imaging of Non-Uniformly Rotating Targets via a Novel Approach for Multi-Component AM-FM Signal Parameter Estimation

    PubMed Central

    Wang, Yong

    2015-01-01

    A novel radar imaging approach for non-uniformly rotating targets is proposed in this study. It is assumed that the maneuverability of the non-cooperative target is severe, and the received signal in a range cell can be modeled as multi-component amplitude-modulated and frequency-modulated (AM-FM) signals after motion compensation. Then, the modified version of Chirplet decomposition (MCD) based on the integrated high order ambiguity function (IHAF) is presented for the parameter estimation of AM-FM signals, and the corresponding high quality instantaneous ISAR images can be obtained from the estimated parameters. Compared with the MCD algorithm based on the generalized cubic phase function (GCPF) in the authors’ previous paper, the novel algorithm presented in this paper is more accurate and efficient, and the results with simulated and real data demonstrate the superiority of the proposed method. PMID:25806870

  7. Silanization of inner surfaces of nanoelectrospray ionization emitters for reduced analyte adsorption.

    PubMed

    Choi, Yong Seok; Wood, Troy D

    2008-04-01

    During the course of nanoelectrospray ionization (nanoESI) of substance P, an unusual type of signal reduction was observed with flow rates <10 nL/min. This reduction in signal appears to be induced by the adsorption of positively charged analytes onto negatively charged free silanol groups on the inner surface of emitters; analytes with higher pI values (such as substance P) exhibit greater tendency for adsorption. Support for this hypothesis is demonstrated by the decrease in signal reduction in the presence of concentrated salts or for emitters whose internal silanols have been covalently silanized. Emitters treated with hexamethyldisilazane or 3-aminopropyltriethoxysilane showed higher analyte signals for substance P than untreated emitters, suggesting a reduction of analyte adsorption onto the inner walls of silanized emitters. The efficacy of reduced peptide adsorption was demonstrated for emitters silanized with 3-aminopropyltriethoxysilane using a simple peptide mixture as well as a more complex peptide mixture (a tryptic digest of horse hemoglobin).

  8. Rare earth garnet selective emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approximately equal to 0.74, ((4)l(sub 15/2)) - ( (4)l(sub13/2)), for Er-YAG and epsilon(sub lambda) approximately equal to 0.65, ((5)l(sub 7))-((5)l(sub 8)) for Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.

  9. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    DOEpatents

    Wang, Daojing; Yang, Peidong; Kim, Woong; Fan, Rong

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  10. Technology: Photonics illuminates the future of radar

    NASA Astrophysics Data System (ADS)

    McKinney, Jason D.

    2014-03-01

    The first implementation of a fully photonics-based coherent radar system shows how photonic methods for radio-frequency signal generation and measurement may facilitate the development of software-defined radar systems. See Letter p.341

  11. Obstacle penetrating dynamic radar imaging system

    DOEpatents

    Romero, Carlos E.; Zumstein, James E.; Chang, John T.; Leach, Jr.. Richard R.

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  12. Electrochemical formation of field emitters

    DOEpatents

    Bernhardt, A.F.

    1999-03-16

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays is disclosed. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area. 12 figs.

  13. Amorphous-diamond electron emitter

    DOEpatents

    Falabella, Steven

    2001-01-01

    An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

  14. Broadband frequency-chirped terahertz-wave signal generation using periodically-poled lithium niobate for frequency-modulated continuous-wave radar application

    NASA Astrophysics Data System (ADS)

    Hamazaki, Junichi; Ogawa, Yoh; Sekine, Norihiko; Kasamatsu, Akifumi; Kanno, Atsushi; Yamamoto, Naokatsu; Hosako, Iwao

    2016-02-01

    We have proposed a method by using a nonlinear optical technique to generate frequency-modulated (FM) signals in the terahertz (THz) band with much broader bandwidth. Periodically-poled lithium niobates (PPLNs) are excited by ultrashort pulses, and linearly frequency-chirped THz pulses are obtained by changing the periodicity of the PPLN gradually. The bandwidth achieved is approximately 1 THz at a center frequency of 1.5 THz. Using this wave in a FM continuous (CW) radar system is expected to result in a range resolution of ~150 μm. This FM-THz signal generation technique will thus be useful in or future civil safety applications requiring high-resolution ranging or imaging.

  15. Attenuation of Weather Radar Signals Due to Wetting of the Radome by Rainwater or Incomplete Filling of the Beam Volume

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.; Ward, Jennifer G.

    2000-01-01

    A search of scientific literature, both printed and electronic, was undertaken to provide quantitative estimates of attenuation effects of rainfall on weather radar radomes. The emphasis was on C-band (5 cm) and S-Band (10 cm) wavelengths. An empirical model was developed to estimate two-way wet radome losses as a function of frequency and rainfall rate for both standard and hydrophobic radomes. The model fits most of the published data within +/- 1 dB at both target wavelengths for rain rates from less than ten to more than 200 mm/hr. Rainfall attenuation effects remain under 1 dB at both frequencies regardless of radome type for rainfall rates up to 10 mm/hr. S-Band losses with a hydrophobic radome such as that on the WSR-88D remain under 1 dB up to 100 mm/hr. C-Band losses on standard radomes such as that on the Patrick AFB (Air Force Base) WSR-74C can reach as much as 5 dB at 50 mm/hr. In addition, calculations were performed to determine the reduction in effective reflectivity, Z, when a radar target is smaller than the sampling volume of the radar. Results are presented for both the Patrick Air Force Base WSR-74C and the WSR-88D as a function of target size and range.

  16. Radar and Lidar Radar DEM

    NASA Technical Reports Server (NTRS)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  17. Radar principles

    NASA Technical Reports Server (NTRS)

    Sato, Toru

    1989-01-01

    Discussed here is a kind of radar called atmospheric radar, which has as its target clear air echoes from the earth's atmosphere produced by fluctuations of the atmospheric index of refraction. Topics reviewed include the vertical structure of the atmosphere, the radio refractive index and its fluctuations, the radar equation (a relation between transmitted and received power), radar equations for distributed targets and spectral echoes, near field correction, pulsed waveforms, the Doppler principle, and velocity field measurements.

  18. Analysis, comparison, and modeling of radar interferometry, date of surface deformation signals associated with underground explosions, mine collapses and earthquakes. Phase I: underground explosions, Nevada Test Site

    SciTech Connect

    Foxall, W; Vincent, P; Walter, W

    1999-07-23

    We have previously presented simple elastic deformation modeling results for three classes of seismic events of concern in monitoring the CTBT--underground explosions, mine collapses and earthquakes. Those results explored the theoretical detectability of each event type using synthetic aperture radar interferometry (InSAR) based on commercially available satellite data. In those studies we identified and compared the characteristics of synthetic interferograms that distinguish each event type, as well the ability of the interferograms to constrain source parameters. These idealized modeling results, together with preliminary analysis of InSAR data for the 1995 mb 5.2 Solvay mine collapse in southwestern Wyoming, suggested that InSAR data used in conjunction with regional seismic monitoring holds great potential for CTBT discrimination and seismic source analysis, as well as providing accurate ground truth parameters for regional calibration events. In this paper we further examine the detectability and ''discriminating'' power of InSAR by presenting results from InSAR data processing, analysis and modeling of the surface deformation signals associated with underground explosions. Specifically, we present results of a detailed study of coseismic and postseismic surface deformation signals associated with underground nuclear and chemical explosion tests at the Nevada Test Site (NTS). Several interferograms were formed from raw ERS-1/2 radar data covering different time spans and epochs beginning just prior to the last U.S. nuclear tests in 1992 and ending in 1996. These interferograms have yielded information about the nature and duration of the source processes that produced the surface deformations associated with these events. A critical result of this study is that significant post-event surface deformation associated with underground nuclear explosions detonated at depths in excess of 600 meters can be detected using differential radar interferometry. An

  19. EMITTANCE COMPENSATION FOR MAGNETIZED BEAMS

    SciTech Connect

    KEWISCH,J.; CHANG, X.

    2007-06-25

    Emittance compensation is a well established technique for minimizing the emittance of an electron beam from a RF photo-cathode gun. Longitudinal slices of a bunch have a small emittance, but due to the longitudinal charge distribution of the bunch and time dependent RF fields they are not focused in the same way, so that the direction of their phase ellipses diverges in phase space and the projected emittance is much larger. Emittance compensation reverses the divergence. At the location where the slopes of the phase ellipses coincide the beam is accelerated, so that the space charge forces are reduced. A recipe for emittance compensation is given in. For magnetized beams (where the angular momentum is non-zero) such emittance compensation is not sufficient because variations in the slice radius lead to variations in the angular speed and therefore to an increase of emittance in the rotating game. We describe a method and tools for a compensation that includes the beam magnetization.

  20. Thin-Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.

    1993-01-01

    Direct conversion of thermal energy into electrical energy using a photovoltaic cell is called thermophotovoltaic energy conversion. One way to make this an efficient process is to have the thermal energy source be an efficient selective emitter of radiation. The emission must be near the band-gap energy of the photovoltaic cell. One possible method to achieve an efficient selective emitter is the use of a thin film of rare-earth oxides. The determination of the efficiency of such an emitter requires analysis of the spectral emittance of the thin film including scattering and reflectance at the vacuum-film and film-substrate interfaces. Emitter efficiencies (power emitted in emission band/total emitted power) in the range 0.35-0.7 are predicted. There is an optimum optical depth to obtain maximum efficiency. High emitter efficiencies are attained only for low (less than 0.05) substrate emittance values, both with and without scattering. The low substrate emittance required for high efficiency limits the choice of substrate materials to highly reflective metals or high-transmission materials such as sapphire.

  1. Multispectral imaging radar

    NASA Technical Reports Server (NTRS)

    Porcello, L. J.; Rendleman, R. A.

    1972-01-01

    A side-looking radar, installed in a C-46 aircraft, was modified to provide it with an initial multispectral imaging capability. The radar is capable of radiating at either of two wavelengths, these being approximately 3 cm and 30 cm, with either horizontal or vertical polarization on each wavelength. Both the horizontally- and vertically-polarized components of the reflected signal can be observed for each wavelength/polarization transmitter configuration. At present, two-wavelength observation of a terrain region can be accomplished within the same day, but not with truly simultaneous observation on both wavelengths. A multiplex circuit to permit this simultaneous observation has been designed. A brief description of the modified radar system and its operating parameters is presented. Emphasis is then placed on initial flight test data and preliminary interpretation. Some considerations pertinent to the calibration of such radars are presented in passing.

  2. Emittance compensation in split photoinjectors

    NASA Astrophysics Data System (ADS)

    Floettmann, Klaus

    2017-01-01

    The compensation of correlated emittance contributions is of primary importance to optimize the performance of high brightness photoinjectors. While only extended numerical simulations can capture the complex beam dynamics of space-charge-dominated beams in sufficient detail to optimize a specific injector layout, simplified models are required to gain a deeper understanding of the involved dynamics, to guide the optimization procedure, and to interpret experimental results. In this paper, a slice envelope model for the emittance compensation process in a split photoinjector is presented. The emittance term is included in the analytical solution of the beam envelope in a drift, which is essential to take the emittance contribution due to a beam size mismatch into account. The appearance of two emittance minima in the drift is explained, and the matching into the booster cavity is discussed. A comparison with simulation results points out effects which are not treated in the envelope model, such as overfocusing and field nonlinearities.

  3. Radar applications overview

    NASA Astrophysics Data System (ADS)

    Greenspan, Marshall

    1996-06-01

    During the fifty years since its initial development as a means of providing early warning of airborne attacks against allied countries during World War II, radar systems have developed to the point of being highly mobile and versatile systems capable of supporting a wide variety of remote sensing applications. Instead of being tied to stationary land-based sites, radar systems have found their way into highly mobile land vehicles as well as into aircraft, missiles, and ships of all sizes. Of all these applications, however, the most exciting revolution has occurred in the airborne platform arena where advanced technology radars can be found in all shapes and sizes...ranging from the large AWACS and Joint STARS long range surveillance and targeting systems to small millimeter wave multi-spectral sensors on smart weapons that can detect and identify their targets through the use of highly sophisticated digital signal processing hardware and software. This paper presents an overview of these radar applications with the emphasis on modern airborne sensors that span the RF spectrum. It will identify and describe the factors that influence the parameters of low frequency and ultra wide band radars designed to penetrate ground and dense foliage environments and locate within them buried mines, enemy armor, and other concealed or camouflaged weapons of war. It will similarly examine the factors that lead to the development of airborne radar systems that support long range extended endurance airborne surveillance platforms designed to detect and precision-located both small high speed airborne threats as well as highly mobile time critical moving and stationary surface vehicles. The mission needs and associated radar design impacts will be contrasted with those of radar systems designed for high maneuverability rapid acquisition tactical strike warfare platforms, and shorter range cued air-to-surface weapons with integral smart radar sensors.

  4. Highly directional thermal emitter

    SciTech Connect

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  5. Inverse synthetic aperture radar imaging of targets with complex motions based on modified chirp rate-quadratic chirp rate distribution for cubic phase signal

    NASA Astrophysics Data System (ADS)

    Yanyan, Li; Tao, Su; Jibin, Zheng

    2015-01-01

    For targets with complex motions, the time-varying Doppler frequency deteriorates inverse synthetic aperture radar (ISAR) images. After range alignment and phase adjustment, azimuth echoes in a range cell can be modeled as multicomponent cubic phase signals (CPSs). The chirp rate and the quadratic chirp rate of the CPS are identified as the causes of the time-varying Doppler frequency; thus, it is necessary to estimate these two parameters correctly to obtain a well-focused ISAR image. The parameter-estimation algorithm based on the modified chirp rate-quadratic chirp rate distribution (M-CRQCRD) is proposed for the CPS and applied to the ISAR imaging of targets with complex motions. The computational cost of M-CRQCRD is low, because it can be implemented by the fast Fourier transform (FFT) and the nonuniform FFT easily. Compared to two representative parameter-estimation algorithms, the M-CRQCRD can acquire a higher antinoise performance due to the introduction of an optimal lag-time. Through simulations and analyses for the synthetic radar data, the effectiveness of the M-CRQCRD and the imaging algorithm based on the M-CRQCRD are verified.

  6. Towards graphane field emitters

    PubMed Central

    Ding, Shuyi; Li, Chi; Zhou, Yanhuai; Collins, Clare M.; Kang, Moon H.; Parmee, Richard J.; Zhang, Xiaobing; Milne, William I.; Wang, Baoping

    2015-01-01

    We report on the improved field emission performance of graphene foam (GF) following transient exposure to hydrogen plasma. The enhanced field emission mechanism associated with hydrogenation has been investigated using Fourier transform infrared spectroscopy, plasma spectrophotometry, Raman spectroscopy, and scanning electron microscopy. The observed enhanced electron emissionhas been attributed to an increase in the areal density of lattice defects and the formation of a partially hydrogenated, graphane-like material. The treated GF emitter demonstrated a much reduced macroscopic turn-on field (2.5 V μm–1), with an increased maximum current density from 0.21 mA cm–2 (pristine) to 8.27 mA cm–2 (treated). The treated GFs vertically orientated protrusions, after plasma etching, effectively increased the local electric field resulting in a 2.2-fold reduction in the turn-on electric field. The observed enhancement is further attributed to hydrogenation and the subsequent formation of a partially hydrogenated structured 2D material, which advantageously shifts the emitter work function. Alongside augmentation of the nominal crystallite size of the graphitic superstructure, surface bound species are believed to play a key role in the enhanced emission. The hydrogen plasma treatment was also noted to increase the emission spatial uniformity, with an approximate four times reduction in the per unit area variation in emission current density. Our findings suggest that plasma treatments, and particularly hydrogen and hydrogen-containing precursors, may provide an efficient, simple, and low cost means of realizing enhanced nanocarbon-based field emission devices via the engineered degradation of the nascent lattice, and adjustment of the surface work function. PMID:28066543

  7. Differential emitter geolocation

    DOEpatents

    Mason, John J.; Romero, Louis A.

    2015-08-18

    An unknown location of a transmitter of interest is determined based on wireless signals transmitted by both the transmitter of interest and a reference transmitter positioned at a known location. The transmitted signals are received at a plurality of non-earthbound platforms each moving in a known manner, and phase measurements for each received signal are used to determine the unknown location.

  8. Real-time parallel implementation of Pulse-Doppler radar signal processing chain on a massively parallel machine based on multi-core DSP and Serial RapidIO interconnect

    NASA Astrophysics Data System (ADS)

    Klilou, Abdessamad; Belkouch, Said; Elleaume, Philippe; Le Gall, Philippe; Bourzeix, François; Hassani, Moha M'Rabet

    2014-12-01

    Pulse-Doppler radars require high-computing power. A massively parallel machine has been developed in this paper to implement a Pulse-Doppler radar signal processing chain in real-time fashion. The proposed machine consists of two C6678 digital signal processors (DSPs), each with eight DSP cores, interconnected with Serial RapidIO (SRIO) bus. In this study, each individual core is considered as the basic processing element; hence, the proposed parallel machine contains 16 processing elements. A straightforward model has been adopted to distribute the Pulse-Doppler radar signal processing chain. This model provides low latency, but communication inefficiency limits system performance. This paper proposes several optimizations that greatly reduce the inter-processor communication in a straightforward model and improves the parallel efficiency of the system. A use case of the Pulse-Doppler radar signal processing chain has been used to illustrate and validate the concept of the proposed mapping model. Experimental results show that the parallel efficiency of the proposed parallel machine is about 90%.

  9. Radar operation in a hostile electromagnetic environment

    SciTech Connect

    Doerry, Armin Walter

    2014-03-01

    Radar ISR does not always involve cooperative or even friendly targets. An adversary has numerous techniques available to him to counter the effectiveness of a radar ISR sensor. These generally fall under the banner of jamming, spoofing, or otherwise interfering with the EM signals required by the radar sensor. Consequently mitigation techniques are prudent to retain efficacy of the radar sensor. We discuss in general terms a number of mitigation techniques.

  10. An MSK Waveform for Radar Applications

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Srinivasan, Meera

    2009-01-01

    We introduce a minimum shift keying (MSK) waveform developed for use in radar applications. This waveform is characterized in terms of its spectrum, autocorrelation, and ambiguity function, and is compared with the conventionally used bi-phase coded (BPC) radar signal. It is shown that the MSK waveform has several advantages when compared with the BPC waveform, and is a better candidate for deep-space radar imaging systems such as NASA's Goldstone Solar System Radar.

  11. SAR Ambiguity Study for the Cassini Radar

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Im, Eastwood; Johnson, William T. K.

    1993-01-01

    The Cassini Radar's synthetic aperture radar (SAR) ambiguity analysis is unique with respect to other spaceborne SAR ambiguity analyses owing to the non-orbiting spacecraft trajectory, asymmetric antenna pattern, and burst mode of data collection. By properly varying the pointing, burst mode timing, and radar parameters along the trajectory this study shows that the signal-to-ambiguity ratio of better than 15 dB can be achieved for all images obtained by the Cassini Radar.

  12. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  13. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli; Fabbri, Jason D.; Melosh, Nicholas A.; Hussain, Zahid; Shen, Zhi-Xun

    2013-10-29

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  14. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli [El Cerrito, CA; Fabbri, Jason D [San Francisco, CA; Melosh, Nicholas A [Menlo Park, CA; Hussain, Zahid [Orinda, CA; Shen, Zhi-Xun [Stanford, CA

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  15. Electromagnetic interference impact of the proposed emitters for the High Frequency Active Auroral Research Program (HAARP). Interim report

    SciTech Connect

    Robertshaw, G.A.; Snyder, A.L.; Weiner, M.M.

    1993-05-14

    The proposed HAARP emitters at the Gakona (Alaska) preferred site and at the Clear AFS (Alaska) alternative site are the Ionospheric Research Instrument (IRI), the Incoherent Scatter Radar (ISR), and the Vertical Incidence Sounder(VIS). The electromagnetic interference (EMI) impact of those emitters on receiving systems in the vicinity of the sites is estimated in this study. The results are intended for use as an input to the Air Force Environmental Impact Statement as part of the Environmental Impact Analysis Process.

  16. Visible Spectrum Incandescent Selective Emitter

    SciTech Connect

    Sonsight Inc.

    2004-04-30

    The purpose of the work performed was to demonstrate the feasibility of a novel bi-layer selective emitter. Selective emitters are incandescent radiant bodies with emissivities that are substantially larger in a selected part of the radiation spectrum, thereby significantly shifting their radiated spectral distribution from that of a blackbody radiating at the same temperature. The major research objectives involved answering the following questions: (1) What maximum VIS/NIR radiant power and emissivity ratios can be attained at 2650 K? (2) What is the observed emitter body life and how does its performance vary with time? (3) What are the design tradeoffs for a dual heating approach in which both an internally mounted heating coil and electrical resistance self-heating are used? (4) What are the quantitative improvements to be had from utilizing a bi-layer emitter body with a low emissivity inner layer and a partially transmissive outer layer? Two approaches to obtaining selective emissivity were investigated. The first was to utilize large optical scattering within an emitter material with a spectral optical absorption that is much greater within the visible spectrum than that within the NIR. With this approach, an optically thick emitter can radiate almost as if optically thin because essentially, scattering limits the distance below the surface from which significant amounts of internally generated radiation can emerge. The performance of thin emitters was also investigated (for optically thin emitters, spectral emissivity is proportional to spectral absorptivity). These emitters were fabricated from thin mono-layer emitter rods as well as from bi-layer rods with a thin emitter layer mounted on a substrate core. With an initially estimated energy efficiency of almost three times that of standard incandescent bulbs, a number of energy, economic and environmental benefits such as less energy use and cost, reduced CO{sub 2} emissions, and no mercury contamination

  17. Worldwide Uncertainty Assessments of Ladar and Radar Signal-to-Noise Ratio Performance for Diverse Low Altitude Atmospheric Environments

    DTIC Science & Technology

    2009-05-01

    interrogation. Results are presented in the form of worldwide plots of notional signal to noise ratio. The ladar and 95 GHz system types exhibit similar SNR ...signal to noise ratio. The ladar and 95 GHz system types exhibit similar SNR performance for forward oblique clear air operation. 1.557 µm ladar...good to very good SNR performance for both oblique and vertical paths for both fog and stratus conditions. 1.1 HELEEOS Worldwide Seasonal, Diurnal

  18. Spaceborne radar

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Eckerman, J.; Meneghini, R.; Atlas, D.; Boerner, W. M.; Cherry, S.; Clark, J. F.; Doviak, R. J.; Goldhirsh, J.; Lhermitte, R. M.

    1981-01-01

    The spaceborne radar panel considered how radar could be used to measure precipitation from satellites. The emphasis was on how radar could be used with radiometry (at microwave, visible (VIS), and infrared (IR) wavelengths) to reduce the uncertainties of measuring precipitation with radiometry alone. In addition, the fundamental electromagnetic interactions involved in the measurements were discussed to determine the key work areas for research and development to produce effective instruments. Various approaches to implementing radar systems on satellites were considered for both shared and dedicated instruments. Finally, a research and development strategy was proposed for establishing the parametric relations and retrieval algorithms required for extracting precipitation information from the radar and associated radiometric data.

  19. Reconfigurable L-Band Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  20. Metrics for Emitter Selection for Multistatic Synthetic Aperture Radar

    DTIC Science & Technology

    2013-09-01

    MNRiσ̄0i] (4.22) When using a GLTR approach to combining bistatic images into a multistatic image, the form of the PTCR and DTCR would be PTCRg = maxi ...σti cos (ψaci) ρaiρri + σni + MNRiσ̄0i] maxi [σ0i + σni + MNRiσ̄0i] (4.23) DTCRg = maxi [σ0hi + σni + MNRiσ̄0i] maxi [σ0li + σni + MNRiσ̄0i] (4.24) Note...5,11,15 4,8,12 2077 3,12,15 5,14,18 3,11,19 5,13,15 2016 2,11,17 4,10,22 4,12,22 4,7,8 2078 8,11,12,14 5,12,18 1,10,13 5,15 2017 7,11,16,17 4,7,22 4,12

  1. Imaging synthetic aperture radar

    DOEpatents

    Burns, Bryan L.; Cordaro, J. Thomas

    1997-01-01

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  2. Thermionic converter emitter support arrangement

    DOEpatents

    Allen, Daniel T.

    1990-01-01

    A support is provided for use in a therminonic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housing, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

  3. Thermionic converter emitter support arrangement

    DOEpatents

    Allen, Daniel T.

    1990-01-01

    A support is provided for use in a thermionic converter to support an end an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially at its temperatures changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housng, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

  4. RADAR WARNING SYSTEM,

    DTIC Science & Technology

    RADAR TRACKING, *AIRCRAFT DEFENSE SYSTEMS, RADAR EQUIPMENT, AIR TO AIR, SEARCH RADAR, GUIDED MISSILES, HIGH SPEED BOMBING, EARLY WARNING SYSTEMS, FIRE CONTROL SYSTEM COMPONENTS, AIRCRAFT, TIME, CHINA.

  5. Middle Atmosphere Program. Handbook for MAP. Volume 30: International School on Atmospheric Radar

    NASA Technical Reports Server (NTRS)

    Fukao, Shoichiro (Editor)

    1989-01-01

    Broad, tutorial coverage is given to the technical and scientific aspects of mesosphere stratosphere troposphere (MST) meteorological radar systems. Control issues, signal processing, atmospheric waves, the historical aspects of radar atmospheric dynamics, incoherent scatter radars, radar echoes, radar targets, and gravity waves are among the topics covered.

  6. Combustion powered thermophotovoltaic emitter system

    SciTech Connect

    McHenry, R.S.

    1995-07-01

    The US Naval Academy (USNA) has recently completed an engineering design project for a high temperature thermophotovoltaic (TPV) photon emitter. The final apparatus was to be portable, completely self contained, and was to incorporate cycle efficiency optimization such as exhaust stream recuperation. Through computer modeling and prototype experimentation, a methane fueled emitter system was designed from structural ceramic materials to fulfill the high temperature requirements necessary for high system efficiency. This paper outlines the engineering design process, discusses obstacles and solutions encountered, and presents the final design.

  7. Millimeter radar improves target identification

    NASA Astrophysics Data System (ADS)

    McAulay, Alastair D.

    2011-06-01

    Recently developed millimeter wave radar has advantages for target identification over conventional microwave radar which typically use lower frequencies. We describe the pertinent features involved in the construction of the new millimeter wave radar, the pseudo-optical cavity source and the quasi-optical duplexer. The long wavelength relative to light allows the radar beam to penetrate through most weather because the wavelength is larger than the particle size for dust, drizzle rain, fog. Further the mm wave beam passes through an atmospheric transmission window that provides a dip in attenuation. The higher frequency than conventional radar provides higher Doppler frequencies, for example, than X-band radar. We show by simulation that small characteristic vibrations and slow turns of an aircraft become visible so that the Doppler signature improves identification. The higher frequency also reduces beam width, which increases transmit and receive antenna gains. For the same power the transmit beam extends to farther range and the increase in receive antenna gain increases signal to noise ratio for improved detection and identification. The narrower beam can also reduce clutter and reject other noise more readily. We show by simulation that the radar can be used at lower elevations over the sea than conventional radar.

  8. Gyroklystron-Powered WARLOC Radar

    NASA Astrophysics Data System (ADS)

    Danly, B. G.; Cheung, W. J.; Gregers-Hansen, V.; Linde, G.; Ngo, M.

    2003-12-01

    A high-power, coherent, W-band (94 GHz) millimeter-wave radar has been developed at the Naval Research Laboratory. This radar, named WARLOC, employs a 100 kW peak power, 10 kW average power gyro-klystron as the final power amplifier, an overmoded transmission line system, and a quasi-optical duplexer, together with a high gain antenna, four-channel receiver, and state-of-the-art signal processing. The gyro-amplifiers and the implementation in the WARLOC radar will be described.

  9. All-digital radar architecture

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo A.

    2014-10-01

    All digital radar architecture requires exclude mechanical scan system. The phase antenna array is necessarily large because the array elements must be co-located with very precise dimensions and will need high accuracy phase processing system for aggregate and distribute T/R modules data to/from antenna elements. Even phase array cannot provide wide field of view. New nature inspired all digital radar architecture proposed. The fly's eye consists of multiple angularly spaced sensors giving the fly simultaneously thee wide-area visual coverage it needs to detect and avoid the threats around him. Fly eye radar antenna array consist multiple directional antennas loose distributed along perimeter of ground vehicle or aircraft and coupled with receiving/transmitting front end modules connected by digital interface to central processor. Non-steering antenna array allows creating all-digital radar with extreme flexible architecture. Fly eye radar architecture provides wide possibility of digital modulation and different waveform generation. Simultaneous correlation and integration of thousands signals per second from each point of surveillance area allows not only detecting of low level signals ((low profile targets), but help to recognize and classify signals (targets) by using diversity signals, polarization modulation and intelligent processing. Proposed all digital radar architecture with distributed directional antenna array can provide a 3D space vector to the jammer by verification direction of arrival for signals sources and as result jam/spoof protection not only for radar systems, but for communication systems and any navigation constellation system, for both encrypted or unencrypted signals, for not limited number or close positioned jammers.

  10. Ultra Low Emittance Light Sources

    SciTech Connect

    Bengtsson,J.

    2008-06-23

    This paper outlines the special issues for reaching sub-nm emittance in a storage ring. Effects of damping wigglers, intra-beam scattering and lifetime issues, dynamic aperture optimization, control of optics, and their interrelations are covered in some detail. The unique choices for the NSLS-II are given as one example.

  11. Spaceborne Radar Study

    DTIC Science & Technology

    1974-06-28

    If comm beam contact is lost, the instrumentation data are sent via the omnichannel transmitter on command of the ground station. There are six ways...comm’beam) at all times except when comm beam contact is lost. A two-way omnidirectional (backup) command link is provided for initial stabilization...via either the oomm beam or the omnichannel . Satellite instrumentation data are sent to the ground station following every radar signal transmission

  12. Time-Frequency, Bi-Frequency Detection Analysis of Noise Technology Radar

    DTIC Science & Technology

    2006-09-01

    modulation, a hybrid of both, and noise radar [8]. An example of a frequency modulation LPI waveform is the FMCW radar . The processing gain (or time...Receiver Periodic Ambiguity Results .................................. 26 D. RANDOM SIGNAL RADAR – NOISE FMCW .................................... 29 1...32 5. Receiver Periodic Ambiguity Results .................................. 34 E. RANDOM SIGNAL RADAR – SINE PLUS NOISE FMCW

  13. Radar transponder operation with compensation for distortion due to amplitude modulation

    DOEpatents

    Ormesher, Richard C.; Tise, Bertice L.; Axline, Jr., Robert M.

    2011-01-04

    In radar transponder operation, a variably delayed gating signal is used to gate a received radar pulse and thereby produce a corresponding gated radar pulse for transmission back to the source of the received radar pulse. This compensates for signal distortion due to amplitude modulation on the retransmitted pulse.

  14. Passive bistatic radar analysis

    NASA Astrophysics Data System (ADS)

    O'Hagan, Daniel W.; Kuschel, H.; Schiller, Joachim

    2009-06-01

    Passive Bistatic Radar (PBR) research is at its zenith with several notable PBR systems currently operational, or available for deployment. Such PBRs include the Manastash Ridge Radar (MRR) developed for and by academia; Silent Sentry developed as a commercial concern by Lockheed Martin; and Homeland Alerter (HA100) also a commercial system developed by Thales. However at present, despite the existence of numerous PBR prototypes, take up of commercial passive radar technology remains slow. This is due in part to technology immaturity, in part to politics, and particularly due to the fact that monostatic radars perform so well. If PBRs are to enjoy longevity as a viable technology then it is imperative that they address certain niche application areas, with the aforementioned MRR being one prime example of this. The focus of this paper will be an analysis of a PBR system that utilised FM radio signals of opportunity to detect aircraft targets with an RCS generally not lower than 20 m2. The paper will demonstrate the theoretical detection coverage of an FM based PBR operating in a severe interference environment.

  15. Radar volcano monitoring system in Iceland

    NASA Astrophysics Data System (ADS)

    Arason, Þórður; Yeo, Richard F.; Sigurðsson, Geirfinnur S.; Pálmason, Bolli; von Löwis, Sibylle; Nína Petersen, Guðrún; Bjornsson, Halldór

    2013-04-01

    Weather radars are valuable instruments in monitoring explosive volcanic eruptions. Temporal variations in the eruption strength can be monitored as well as variations in plume and ash dispersal. Strength of the reflected radar signal of a volcanic plume is related to water content and droplet sizes as well as type, shape, amount and the grain size distribution of ash. The Icelandic Meteorological Office (IMO) owns and operates three radars and one more is planned for this radar volcano monitoring system. A fixed position 250 kW C-band weather radar was installed in 1991 in SW-Iceland close to Keflavík International Airport, and upgraded to a doppler radar in 2010. In cooperation with the International Civil Aviation Organization (ICAO), IMO has recently invested in two mobile X-band radars and one fixed position C-band radar. The fixed position 250 kW doppler C-band weather radar was installed in April 2012 at Fljótsdalsheiði, E-Iceland, and in June 2012 IMO received a mobile 65 kW dual-polarization doppler X-band radar. Early in 2013 IMO will acquire another mobile radar of the same type. Explosive volcanic eruptions in Iceland during the past 22 years were monitored by the Keflavík radar: Hekla 1991, Gjálp 1996, Grímsvötn 1998, Hekla 2000, Grímsvötn 2004, Eyjafjallajökull 2010 and Grímsvötn 2011. Additionally, the Grímsvötn 2011 eruption was mointored by a mobile X-band radar on loan from the Italian Civil Protection Authorities. Detailed technical information is presented on the four radars with examples of the information acquired during previous eruptions. This expanded network of radars is expected to give valuable information on future volcanic eruptions in Iceland.

  16. Radar range measurements in the atmosphere.

    SciTech Connect

    Doerry, Armin Walter

    2013-02-01

    The earths atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  17. Large phased-array radars

    SciTech Connect

    Brookner, D.E.

    1988-12-15

    Large phased-array radars can play a very important part in arms control. They can be used to determine the number of RVs being deployed, the type of targeting of the RVs (the same or different targets), the shape of the deployed objects, and possibly the weight and yields of the deployed RVs. They can provide this information at night as well as during the day and during rain and cloud covered conditions. The radar can be on the ground, on a ship, in an airplane, or space-borne. Airborne and space-borne radars can provide high resolution map images of the ground for reconnaissance, of anti-ballistic missile (ABM) ground radar installations, missile launch sites, and tactical targets such as trucks and tanks. The large ground based radars can have microwave carrier frequencies or be at HF (high frequency). For a ground-based HF radar the signal is reflected off the ionosphere so as to provide over-the-horizon (OTH) viewing of targets. OTH radars can potentially be used to monitor stealth targets and missile traffic.

  18. Chemically Etched Open Tubular and Monolithic Emitters for Nanoelectrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Page, Jason S.; Luo, Quanzhou; Moore, Ronald J.; Orton, Daniel J.; Tang, Keqi; Smith, Richard D.

    2006-11-15

    We have developed a new procedure for fabricating fused silica emitters for electrospray ionization-mass spectrometry (ESI-MS) in which the end of a bare fused silica capillary is immersed into aqueous hydrofluoric acid, and water is pumped through the capillary to prevent etching of the interior. Surface tension causes the etchant to climb the capillary exterior, and the etch rate in the resulting meniscus decreases as a function of distance from the bulk solution. Etching continues until the silica touching the hydrofluoric acid reservoir is completely removed, essentially stopping the etch process. The resulting emitters have no internal taper, making them much less prone to clogging compared to e.g. pulled emitters. The high aspect ratios and extremely thin walls at the orifice facilitate very low flow rate operation; stable ESI-MS signals were obtained for model analytes from 5-μm-diameter emitters at a flow rate of 5 nL/min with a high degree of inter-emitter reproducibility. In extensive evaluation, the etched emitters were found to enable approximately four times as many LC-MS analyses of proteomic samples before failing compared with conventional pulled emitters. The fabrication procedure was also employed to taper the ends of polymer monolith-containing silica capillaries for use as ESI emitters. In contrast to previous work, the monolithic material protrudes beyond the fused silica capillaries, improving the monolith-assisted electrospray process.

  19. Carbon nanotubes as field emitter.

    PubMed

    Zou, Rujia; Hu, Junqing; Song, Yuelin; Wang, Na; Chen, Huihui; Chen, Haihua; Wu, Jianghong; Sun, Yangang; Chen, Zhigang

    2010-12-01

    Carbon nanotubes (CNTs) have recently emerged as a promising material of electron field emitters. They exhibit extraordinary field emission properties because of their high electrical conductivity, high aspect ratio "needle like" shape for optimum geometrical field enhancement, and remarkable thermal stability. In this Review, we emphasize the estimation and influencing factors of CNTs' emission properties, and discuss in detail the emission properties of macroscopic CNT cathodes, especially fabricated by transplant methods, and describe recent progress on understanding of CNT field emitters and analyze issues related to applications of CNT based cold cathodes in field emission display (FED). We foresee that CNT-FED will take an important place in display technologies in the near future.

  20. Coded continuous wave meteor radar

    NASA Astrophysics Data System (ADS)

    Vierinen, Juha; Chau, Jorge L.; Pfeffer, Nico; Clahsen, Matthias; Stober, Gunter

    2016-03-01

    The concept of a coded continuous wave specular meteor radar (SMR) is described. The radar uses a continuously transmitted pseudorandom phase-modulated waveform, which has several advantages compared to conventional pulsed SMRs. The coding avoids range and Doppler aliasing, which are in some cases problematic with pulsed radars. Continuous transmissions maximize pulse compression gain, allowing operation at lower peak power than a pulsed system. With continuous coding, the temporal and spectral resolution are not dependent on the transmit waveform and they can be fairly flexibly changed after performing a measurement. The low signal-to-noise ratio before pulse compression, combined with independent pseudorandom transmit waveforms, allows multiple geographically separated transmitters to be used in the same frequency band simultaneously without significantly interfering with each other. Because the same frequency band can be used by multiple transmitters, the same interferometric receiver antennas can be used to receive multiple transmitters at the same time. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large-scale multi-static network of meteor radar transmitters and receivers. Such a system would be useful for increasing the number of meteor detections to obtain improved meteor radar data products.

  1. Planetary radar

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.

    1980-01-01

    The radar astronomy activities supported by the Deep Space Network during June, July, and August 1980 are reported. The planetary bodies observed were Venus, Mercury, and the asteroid Toro. Data were obtained at both S and X band, and the observations were considered successful.

  2. Metal halide perovskite light emitters

    PubMed Central

    Kim, Young-Hoon; Cho, Himchan; Lee, Tae-Woo

    2016-01-01

    Twenty years after layer-type metal halide perovskites were successfully developed, 3D metal halide perovskites (shortly, perovskites) were recently rediscovered and are attracting multidisciplinary interest from physicists, chemists, and material engineers. Perovskites have a crystal structure composed of five atoms per unit cell (ABX3) with cation A positioned at a corner, metal cation B at the center, and halide anion X at the center of six planes and unique optoelectronic properties determined by the crystal structure. Because of very narrow spectra (full width at half-maximum ≤20 nm), which are insensitive to the crystallite/grain/particle dimension and wide wavelength range (400 nm ≤ λ ≤ 780 nm), perovskites are expected to be promising high-color purity light emitters that overcome inherent problems of conventional organic and inorganic quantum dot emitters. Within the last 2 y, perovskites have already demonstrated their great potential in light-emitting diodes by showing high electroluminescence efficiency comparable to those of organic and quantum dot light-emitting diodes. This article reviews the progress of perovskite emitters in two directions of bulk perovskite polycrystalline films and perovskite nanoparticles, describes current challenges, and suggests future research directions for researchers to encourage them to collaborate and to make a synergetic effect in this rapidly emerging multidisciplinary field. PMID:27679844

  3. Alpha particle emitters in medicine

    SciTech Connect

    Fisher, D.R.

    1989-09-01

    Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 ({sup 211}At) and natural bismuth-212 ({sup 212}Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 ({sup 223}Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs.

  4. Approximation of Integrals via Monte Carlo Methods, With an Applications to Calculating Radar Detection Probabilities

    DTIC Science & Technology

    2005-03-01

    the areas of target radar cross section, digital signal processing, inverse synthetic aperature radar and radar detec- tion using both software...Application to Calculating Radar Detection Probabilities Graham V. Weinberg and Ross Kyprianou Electronic Warfare and Radar Division Systems Sciences...Beta functions. A significant ap- plication, in the context of radar detection theory, is based upon the work of [Shnidman 1998]. The latter considers

  5. Transverse Emittance Reduction with Tapered Foil

    SciTech Connect

    Jiao, Yi; Chao, Alex; Cai, Yunhai; /SLAC

    2011-12-09

    The idea of reducing transverse emittance with tapered energy-loss foil is proposed by J.M. Peterson in 1980s and recently by B. Carlsten. In this paper, we present the physical model of tapered energy-loss foil and analyze the emittance reduction using the concept of eigen emittance. The study shows that, to reduce transverse emittance, one should collimate at least 4% of particles which has either much low energy or large transverse divergence. The multiple coulomb scattering is not trivial, leading to a limited emittance reduction ratio. Small transverse emittances are of essential importance for the accelerator facilities generating free electron lasers, especially in hard X-ray region. The idea of reducing transverse emittance with tapered energy-loss foil is recently proposed by B. Carlsten [1], and can be traced back to J.M. Peterson's work in 1980s [2]. Peterson illustrated that a transverse energy gradient can be produced with a tapered energy-loss foil which in turn leads to transverse emittance reduction, and also analyzed the emittance growth from the associated multiple coulomb scattering. However, what Peterson proposed was rather a conceptual than a practical design. In this paper, we build a more complete physical model of the tapered foil based on Ref. [2], including the analysis of the transverse emittance reduction using the concept of eigen emittance and confirming the results by various numerical simulations. The eigen emittance equals to the projected emittance when there is no cross correlation in beam's second order moments matrix [3]. To calculate the eigen emittances, it requires only to know the beam distribution at the foil exit. Thus, the analysis of emittance reduction and the optics design of the subsequent beam line section can be separated. In addition, we can combine the effects of multiple coulomb scattering and transverse energy gradient together in the beam matrix and analyze their net effect. We find that,when applied to an

  6. Generalized Adaptive Radar Signal Processing

    DTIC Science & Technology

    2008-12-01

    bra’ and ‘ket’ symbols for complex row and column vectors (Dirac 1981, Shankar 1994). Using this notation, we introduce the column vector ,q z of...a kind that has been studied extensively in connection with applications of the Rayleigh-Ritz variational principle of quantum mechanics, and also...The Principles of Quantum Mechanics, 4th Edition, Clarendon Press, Oxford England, UK, 1981. Mayhan, J.T., et al, “High resolution 3D “snapshot

  7. Advanced Borehole Radar for Hydrogeology

    NASA Astrophysics Data System (ADS)

    Sato, M.

    2014-12-01

    Ground Penetrating Radar is a useful tool for monitoring the hydrogeological environment. We have developed GPR systems which can be applied to these purposes, and we will demonstrate examples borehole radar measurements. In order to have longer radar detection range, frequency lower than100MHz has been normally adopted in borehole radar. Typical subsurface fractures of our interests have a few mm aperture and radar resolution is much poorer than a few cm in this frequency range. We are proposing and demonstrating to use radar polarimetry to solve this problem. We have demonstrated that a full-polarimetry borehole radar can be used for characterization of subsurface fractures. Together with signal processing for antenna characteristic compensation to equalize the signal by a dipole antenna and slot antennas, we could demonstrate that polarimetric borehole radar can estimate the surface roughness of subsurface fractures, We believe the surface roughness is closely related to water permeability through the fractures. We then developed a directional borehole radar, which uses optical field sensor. A dipole antenna in a borehole has omni-directional radiation pattern, and we cannot get azimuthal information about the scatterers. We use multiple dipole antennas set around the borehole axis, and from the phase differences, we can estimate the 3-diemnational orientation of subsurface structures. We are using optical electric field sensor for receiver of borehole radar. This is a passive sensor and connected only with optical fibers and does not require any electric power supply to operate the receiver. It has two major advantages; the first one is that the receiver can be electrically isolated from other parts, and wave coupling to a logging cable is avoided. Then, secondary, it can operate for a long time, because it does not require battery installed inside the system. It makes it possible to set sensors in fixed positions to monitor the change of environmental

  8. Solar Radar Astronomy with LOFAR

    NASA Astrophysics Data System (ADS)

    Rodriguez, P.

    2003-04-01

    A new approach to the study of the Sun's corona and its dynamical processes is possible with radar investigations in the frequency range of about 10-50 MHz. The range of electron densities of the solar corona is such that radio waves at these frequencies can provide diagnostic radar echoes of large scale phenomena such as coronal mass ejections (CMEs). We expect that the frequency shift imposed on the echo signal by an earthward-moving CME will provide a direct measurement of the velocity, thereby providing a good estimate of the arrival time at Earth. It is known that CMEs are responsible for the largest geomagnetic storms at Earth, which are capable of causing power grid blackouts, satellite electronic upsets, and degradation of radio communications circuits. Thus, having accurate forecasts of potential CME-initiated geomagnetic storms is of practical space weather interest. New high power transmitting arrays are becoming available, along with proposed modifications to existing research facilities, that will allow the use of radio waves to study the solar corona by the radar echo technique. Of particular interest for such solar radar investigations is the bistatic configuration with the Low Frequency Array (LOFAR). The LOFAR facility will have an effective receiving area of about 1 square km at solar radar frequencies. Such large effective area will provide the receiving antenna gain needed for detailed investigations of solar coronal dynamics. Conservative estimates of the signal-to-noise ratio for solar radar echoes as a function of the integration time required to achieve a specified detection level (e.g., ~ 5 dB) indicate that time resolutions of 10s of seconds can be achieved. Thus, we are able to resolve variations in the solar radar cross section on time scales which will provide new information on the plasma dynamical processes associated with the solar corona, such as CMEs. It is the combination of high transmitted power and large effective receiving

  9. Radars in space

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E.

    1990-01-01

    The capabilities of active microwave devices operating from space (typically, radar, scatterometers, interferometers, and altimeters) are discussed. General radar parameters and basic radar principles are explained. Applications of these parameters and principles are also explained. Trends in space radar technology, and where space radars and active microwave sensors in orbit are going are discussed.

  10. Fly eye radar or micro-radar sensor technology

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Asmolova, Olga

    2014-05-01

    To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.

  11. First radar echoes from cumulus clouds

    NASA Technical Reports Server (NTRS)

    Knight, Charles A.; Miller, L. J.

    1993-01-01

    In attempting to use centimeter-wavelength radars to investigate the early stage of precipitation formation in clouds, 'mantle echoes' are rediscovered and shown to come mostly from scattering by small-scale variations in refractive index, a Bragg kind of scattering mechanism. This limits the usefulness of single-wavelength radar for studies of hydrometeor growth, according to data on summer cumulus clouds in North Dakota, Hawaii, and Florida, to values of reflectivity factor above about 10 dBZe with 10-cm radar, 0 dBZe with 5-cm radar, and -10 dBZe with 3-cm radar. These are limits at or above which the backscattered radar signal from the kinds of clouds observed can be assumed to be almost entirely from hydrometeors or (rarely) other particulate material such as insects. Dual-wavelength radar data can provide the desired information about hydrometeors at very low reflectivity levels if assumptions can be made about the inhomogeneities responsible for the Bragg scattering. The Bragg scattering signal itself probably will be a useful way to probe inhomogeneities one-half the radar wavelength in scale for studying cloud entrainment and mixing processes. However, this use is possible only before scattering from hydrometeors dominates the radar return.

  12. A satellite-based radar wind sensor

    NASA Technical Reports Server (NTRS)

    Xin, Weizhuang

    1991-01-01

    The objective is to investigate the application of Doppler radar systems for global wind measurement. A model of the satellite-based radar wind sounder (RAWS) is discussed, and many critical problems in the designing process, such as the antenna scan pattern, tracking the Doppler shift caused by satellite motion, and backscattering of radar signals from different types of clouds, are discussed along with their computer simulations. In addition, algorithms for measuring mean frequency of radar echoes, such as the Fast Fourier Transform (FFT) estimator, the covariance estimator, and the estimators based on autoregressive models, are discussed. Monte Carlo computer simulations were used to compare the performance of these algorithms. Anti-alias methods are discussed for the FFT and the autoregressive methods. Several algorithms for reducing radar ambiguity were studied, such as random phase coding methods and staggered pulse repitition frequncy (PRF) methods. Computer simulations showed that these methods are not applicable to the RAWS because of the broad spectral widths of the radar echoes from clouds. A waveform modulation method using the concept of spread spectrum and correlation detection was developed to solve the radar ambiguity. Radar ambiguity functions were used to analyze the effective signal-to-noise ratios for the waveform modulation method. The results showed that, with suitable bandwidth product and modulation of the waveform, this method can achieve the desired maximum range and maximum frequency of the radar system.

  13. TRMM radar

    NASA Technical Reports Server (NTRS)

    Okamoto, Kenichi

    1993-01-01

    The results of a conceptual design study and the performance of key components of the Bread Board Model (BBM) of the Tropical Rainfall Measuring Mission (TRMM) radar are presented. The radar, which operates at 13.8 GHz and is designed to meet TRMM mission objectives, has a minimum measurable rain rate of 0.5 mm/h with a range resolution of 250 m, a horizontal resolution of about 4 km, and a swath width of 220 km. A 128-element active phased array system is adopted to achieve contiguous scanning within the swath. The basic characteristics of BBM were confirmed by experiments. The development of EM started with the cooperation of NASDA and CRL.

  14. Real-time modeling of transverse emittance growth due to ground motion

    SciTech Connect

    Shiltsev, V.D.; Parkhomchuk, V.V. |

    1993-09-01

    Ground motion noise at frequencies around 1 kHz causes growth of transverse emittance of the Superconducting Super Collider (SSC) collider beams. The effect was quantitatively investigated using real-time signals from seismometers installed at the tunnel depth and on the surface. The SSC beam was modeled as an ensemble of oscillators with a spread of betatron frequencies. The effect of transverse feedback on emittance growth was investigated.

  15. Radar Sounder

    DTIC Science & Technology

    1988-09-01

    over the shorter time period (resulting in a multilook SAR ) with the result that spatial resolution, the usual r~ason for using SAR techniques, degrades...Field - - - ALT 21. Sea Surface Topography - - - SAR , ALT 22. Ocean Waves (sea, swell, surf) V. Good Some V. Good SAR , ALT * with additional lower freq...OLS - Operational Line-scan System radiometer (4-6 GHz?) ALT - Altimeter •* good at low microwave SAR - Synthetic Aperture frequencies Radar + over

  16. Emittance Growth in the NLCTA First Chicane

    SciTech Connect

    Sun, Yipeng; Adolphsen, Chris; /SLAC

    2011-08-19

    In this paper, the emittance growth in the NLCTA (Next Linear Collider Test Accelerator) first chicane region is evaluated by simulation studies. It is demonstrated that the higher order fields of the chicane dipole magnet and the dipole corrector magnet (which is attached on the quadrupoles) are the main contributions for the emittance growth, especially for the case with a large initial emittance ({gamma}{epsilon}{sub 0} = 5 {micro}m for instance). These simulation results agree with the experimental observations.

  17. Eliminating Doppler Effects in Synthetic-Aperture Radar Optical Processors

    NASA Technical Reports Server (NTRS)

    Constantindes, N. J.; Bicknell, T. J.

    1984-01-01

    Pair of photodetectors generates correction signals. Instrument detects Doppler shifts in radar and corrects processing parameters so ambiguities caused by shifts not manifested as double or overlapping images.

  18. An ESS system for ECRIS Emittance Research

    SciTech Connect

    Cao, Y.; Sun, L.T.; He, W.; Ma, L.; Zhang, Z.M.; Zhao, H.Y.; Zhao, H.W.; Zhang, X.Z.; Guo, X.H.; Ma, B.H.; Li, J.; Wang, H.; Li, J.Y.; Li, X.X.; Feng, Y.C.; Lu, W.

    2005-03-15

    An emittance scanner named Electric-Sweep Scanner had been designed and fabricated in IMP. And it has been set up on the LECR3 beam line for the ion beam quality study. With some development, the ESS system has become a relatively dependable and reliable emittance scanner. Its experiment error is about 10 percent. We have done a lot of experiments of emittance measurement on LECR3 ion source, and have researched the relations between ion beam emittance and the major parameters of ECR ion source. The reliability and accuracy test results are presented in this paper. And the performance analysis is also discussed.

  19. Hybrid emitter all back contact solar cell

    DOEpatents

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  20. Chemical regeneration of emitter surface increases thermionic diode life

    NASA Technical Reports Server (NTRS)

    Breiteieser, R.

    1966-01-01

    Chemical regeneration of sublimated emitter electrode increases the operating efficiency and life of thermionic diodes. A gas which forms chemical compounds with the sublimated emitter material is introduced into the space between the emitter and the collector. The compounds migrate to the emitter where they decompose and redeposit the emitter material.

  1. Radar clutter classification

    NASA Astrophysics Data System (ADS)

    Stehwien, Wolfgang

    1989-11-01

    The problem of classifying radar clutter as found on air traffic control radar systems is studied. An algorithm based on Bayes decision theory and the parametric maximum a posteriori probability classifier is developed to perform this classification automatically. This classifier employs a quadratic discriminant function and is optimum for feature vectors that are distributed according to the multivariate normal density. Separable clutter classes are most likely to arise from the analysis of the Doppler spectrum. Specifically, a feature set based on the complex reflection coefficients of the lattice prediction error filter is proposed. The classifier is tested using data recorded from L-band air traffic control radars. The Doppler spectra of these data are examined; the properties of the feature set computed using these data are studied in terms of both the marginal and multivariate statistics. Several strategies involving different numbers of features, class assignments, and data set pretesting according to Doppler frequency and signal to noise ratio were evaluated before settling on a workable algorithm. Final results are presented in terms of experimental misclassification rates and simulated and classified plane position indicator displays.

  2. Airborne Differential Doppler Weather Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  3. Thermophotovoltaic Generators Using Selective Metallic Emitters

    NASA Technical Reports Server (NTRS)

    Fraas, Lewis M.; Samaras, John E.; Avery, James E.; Ewell, Richard

    1995-01-01

    In the literature to date on thermophotovoltaic (TPV) generators, two types of infrared emitter's have been emphasized : gray body emitters and rare earth oxide selective emitters. The gray body emitter is defined as an emitter with a spectral emissivity independent of wavelength whereas the rare earth oxide selective emitter is idealized as a delta function emitter with a high emissivity at a select wavelength and a near zero emissivity at all other wavelengths. Silicon carbide is an example of a gray body emitter and ER-YAG is an example of a selective emitter. The Welsbach mantle in a common lantern is another example of an oxide selective emitter. Herein, we describe an alternative type of selective emitter, a selective metallic emitter. These metallic emitters are characterized by a spectral emissivity curve wherein the emissivity monotonically increases with shorter infrared wavelengths as is shown. The metal of curve "A", tungsten, typifies this class of selective metallic emitter's. In a thermophotovoltaic generator, a photovoltaic cell typically converts infrared radiation to electricity out to some cut-off wavelength. For example, Gallium Antimonide (GaSb) TPV cells respond out to 1.7 microns. The problem with gray body emitters is that they emit at all wavelengths. Therefore, a large fraction of the energy emitted will be outside of the response band of the TPV cell. The argument for the selective emitter is that, ideally, all the emitted energy can be in the cells response band. Unfortunately, rare earth oxide emitters are not ideal. In order to suppress the emissivity toward zero away from the select wavelength, the use of thin fiber's is necessary. This leads to a fragile emitter typical of a lantern mantle. Even given a thin ER-YAG emitter, the measured emissivity at the select wavelength of 1.5 microns has been reported to be 0.6 while the off wavelength background emissivity falls to only 0.2 at 5 microns. This gives a selectivity ratio of only 3

  4. Selective Emitter Pumped Rare Earth Laser

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Patton, Martin O. (Inventor)

    2001-01-01

    A selective emitter pumped rare earth laser provides an additional type of laser for use in many laser applications. Rare earth doped lasers exist which are pumped with flashtubes or laser diodes. The invention uses a rare earth emitter to transform thermal energy input to a spectral band matching the absorption band of a rare earth in the laser in order to produce lasing.

  5. New approach to obtain boron selective emitters

    SciTech Connect

    Moehlecke, A.; Luque, A.

    1994-12-31

    Selective emitters, used in high efficiency solar cells, need a series of oxidations and photolithographic steps that render the process more expensive. In this paper, a new way to make selective emitters using boron is presented. The main feature of this approach is to save oxide growths and photolithographic processes and it is based on the property of boron doped silicon surfaces to be resistant to anisotropic etchings like the one performed during the texturization. Using this characteristic of boron emitter surfaces, the authors can obtain a highly doped emitter under metal grid and simultaneously a shield to avoid texture on these surfaces. First cells were processed and short wavelength response of p{sup +}nn{sup +} solar cells was enhanced by using lightly doped boron emitters in the uncovered area.

  6. TPV Systems with Solar Powered Tungsten Emitters

    SciTech Connect

    Vlasov, A. S.; Khvostikov, V. P.; Khvostikova, O. A.; Gazaryan, P. Y.; Sorokina, S. V.; Andreev, V. M.

    2007-02-22

    A solar TPV generator development and characterization are presented. A double stage sunlight concentrator ensures 4600x concentration ratio. TPV modules based on tungsten emitters and GaSb cells were designed, fabricated and tested at indoor and outdoor conditions. The performance of tungsten emitter under concentrated solar radiation was analyzed. Emitter temperatures in the range of 1400-2000 K were measured, depending on the emitter size. The light distribution in the module has been characterized, 1x1 cm GaSb TPV cells were fabricated with the use of the Zn-diffusion and LPE technologies. The cell efficiency of 19% under illumination by a tungsten emitter (27% under spectra cut-off at {lambda} > 1820 nm) heated up to 1900-2000 K had been derived from experimentally measured PV parameters. The series connection of PV cells was ensured by the use of BeO ceramics. The possibilities of system performance improvement are discussed.

  7. Emittance measurements of the CLIO electron beam

    NASA Astrophysics Data System (ADS)

    Chaput, R.; Devanz, G.; Joly, P.; Kergosien, B.; Lesrel, J.

    1997-02-01

    We have designed a setup to measure the transverse emittance at the CLIO accelerator exit, based on the "3 gradients" method. The beam transverse size is measured simply by scanning it with a steering coil across a fixed jaw and recording the transmitted current, at various quadrupole strengths. A code then performs a complete calculation of the emittance using the transfer matrix of the quadrupole instead of the usual classical lens approximation. We have studied the influence of various parameters on the emittance: Magnetic field on the e-gun and the peak current. We have also improved a little the emittance by replacing a mismatched pipe between the buncher and accelerating section to avoid wake-field effects; The resulting improvements of the emittance have led to an increase in the FEL emitted power.

  8. Negative Ion Beam Extraction and Emittance

    SciTech Connect

    Holmes, Andrew J. T.

    2007-08-10

    The use of magnetic fields to both aid the production of negative ions and suppress the co-extracted electrons causes the emittance and hence the divergence of the negative ion beam to increase significantly due to the plasma non-uniformity from jxB drift. This drift distorts the beam-plasma meniscus and experimental results of the beam emittance are presented, which show that non-uniformity causes the square of the emittance to be proportional to the 2/3 power of the extracted current density. This can cause the divergence of the negative ion beam to be significantly larger than its positive ion counterpart. By comparing results from positive and negative ion beam emittances from the same source, it is also possible to draw conclusions about their vulnerability to magnetic effects. Finally emittances of caesiated and un-caesiated negative ion beams are compared to show how the surface and volume modes of production interact.

  9. Directional emittance surface measurement system and process

    NASA Technical Reports Server (NTRS)

    Puram, Chith K. (Inventor); Daryabeigi, Kamran (Inventor); Wright, Robert (Inventor); Alderfer, David W. (Inventor)

    1994-01-01

    Apparatus and process for measuring the variation of directional emittance of surfaces at various temperatures using a radiometric infrared imaging system. A surface test sample is coated onto a copper target plate provided with selective heating within the desired incremental temperature range to be tested and positioned onto a precision rotator to present selected inclination angles of the sample relative to the fixed positioned and optically aligned infrared imager. A thermal insulator holder maintains the target plate on the precision rotator. A screen display of the temperature obtained by the infrared imager, and inclination readings are provided with computer calculations of directional emittance being performed automatically according to equations provided to convert selected incremental target temperatures and inclination angles to relative target directional emittance values. The directional emittance of flat black lacquer and an epoxy resin measurements obtained are in agreement with the predictions of the electromagnetic theory and with directional emittance data inferred from directional reflectance measurements made on a spectrophotometer.

  10. Signal and Image Processing Algorithms for the U.S. Army Research Laboratory Ultra-wideband (UWB) Synchronous Impulse Reconstruction (SIRE) Radar

    DTIC Science & Technology

    2009-04-01

    8. PERFORMING ORGANIZATION REPORT NUMBER ARL-TR-4784 10 . SPONSOR/MONITOR’S ACRONYM(S) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES...acquisition technique. ...................................8 Figure 10 . The SIRE transmitting pulse in the time-domain and frequency-domain... 10 Figure 11. False color plot of one complete frame of radar data: 16 receiving records using the left transmitter and 16 receiving

  11. DC coupled Doppler radar physiological monitor.

    PubMed

    Zhao, Xi; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    One of the challenges in Doppler radar systems for physiological monitoring is a large DC offset in baseband outputs. Typically, AC coupling is used to eliminate this DC offset. Since the physiological signals of interest include frequency content near DC, it is not desirable to simply use AC coupling on the radar outputs. While AC coupling effectively removes DC offset, it also introduces a large time delay and distortion. This paper presents the first DC coupled IQ demodulator printed circuit board (PCB) design and measurements. The DC coupling is achieved by using a mixer with high LO to RF port isolation, resulting in a very low radar DC offset on the order of mV. The DC coupled signals from the PCB radar system were successfully detected with significant LNA gain without saturation. Compared to the AC coupled results, the DC coupled results show great advantages of less signal distortion and more accurate rate estimation.

  12. Microlensless interdigitated photoconductive terahertz emitters.

    PubMed

    Singh, Abhishek; Prabhu, S S

    2015-01-26

    We report here fabrication of interdigitated photoconductive antenna (iPCA) terahertz (THz) emitters based on plasmonic electrode design. Novel design of this iPCA enables it to work without microlens array focusing, which is otherwise required for photo excitation of selective photoconductive regions to avoid the destructive interference of emitted THz radiation from oppositely biased regions. Benefit of iPCA over single active region PCA is, photo excitation can be done at larger area hence avoiding the saturation effect at higher optical excitation density. The emitted THz radiation power from plasmonic-iPCAs is ~2 times more than the single active region plasmonic PCA at 200 mW optical excitation, which will further increase at higher optical powers. This design is expected to reduce fabrication cost of photoconductive THz sources and detectors.

  13. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, Joanna S.; MacGregor, Robert R.; Wolf, Alfred P.; Langstrom, Bengt

    1990-01-01

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  14. Positron emitter labeled enzyme inhibitors

    SciTech Connect

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-04-03

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  15. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1987-05-22

    This invention involved a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide in activators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  16. Low Emittance Electron Beam Studies

    SciTech Connect

    Tikhoplav, Rodion

    2006-01-01

    We have studied the properties of a low emittance electron beam produced by laser pulses incident onto an rf gun photocathode. The experiments were carried out at the A0 photoinjector at Fermilab. Such beam studies are necessary for fixing the design of new Linear Colliders as well as for the development of Free Electron Lasers. An overview of the A0 photoinjector is given in Chapter 1. In Chapter 2 we describe the A0 photoinjector laser system. A stable laser system is imperative for reliable photoinjector operation. After the recent upgrade, we have been able to reach a new level of stability in the pulse-to-pulse fluctuations of the pulse amplitude, and of the temporal and transverse profiles. In Chapter 3 we present a study of transverse emittance versus the shape of the photo-cathode drive-laser pulse. For that purpose a special temporal profile laser shaping device called a pulse-stacker was developed. In Chapter 4 we discuss longitudinal beam dynamics studies using a two macro-particle bunch; this technique is helpful in analyzing pulse compression in the magnetic chicane, as well as velocity bunching effects in the rf-gun and the 9-cell accelerating cavity. In Chapter 5 we introduce a proposal for laser acceleration of electrons. We have developed a laser functioning on the TEM*01 mode, a mode with a longitudinal electric field component which is suitable for such a process. Using this technique at energies above 40 MeV, one would be able to observe laser-based acceleration.

  17. Portable infrared reflectometer for evaluating emittance

    NASA Astrophysics Data System (ADS)

    Jaworske, Donald A.; Skowronski, Timothy J.

    2000-01-01

    Optical methods are frequently used to evaluate the emittance of candidate spacecraft thermal control materials. One new optical method utilizes a portable infrared reflectometer capable of obtaining spectral reflectance of an opaque surface in the range of 2 to 25 microns using a Michelson-Type FTIR interferometer. This miniature interferometer collects many infrared spectra over a short period of time. It also allows the size of the instrument to be small such that spectra can be collected in the laboratory or in the field. Infrared spectra are averaged and integrated with respect to the room temperature black body spectrum to yield emittance at 300 K. Integrating with respect to other black body spectra yields emittance values at other temperatures. Absorption bands in the spectra may also be used for chemical species identification. The emittance of several samples was evaluated using this portable infrared reflectometer, an old infrared reflectometer equipped with dual rotating black body cavities, and a bench top thermal vacuum chamber. Samples for evaluation were purposely selected such that a range of emittance values and thermal control material types would be represented, including polished aluminum, Kapton®, silvered Teflon®, and the inorganic paint Z-93-P. Results indicate an excellent linear relationship between the room temperature emittance calculated from infrared spectral data and the emittance obtained from the dual rotating black body cavities and thermal vacuum chamber. The prospect of using the infrared spectral data for chemical species identification will also be discussed. .

  18. The preservation of low emittance flat beams

    SciTech Connect

    Raubenheimer, T.O.

    1993-04-01

    Many future linear collider designs require beams with very small transverse emittances and large emittance ratios {epsilon}{sub x} {much_gt} {epsilon}{sub y}. In this paper, we will discuss issues associated with the preservation of these small emittances during the acceleration of the beams. The primary sources of transverse emittance dilution in a high energy linear accelerator are the transverse wakefields, the dispersive errors, RF deflections, and betatron coupling. We will discuss the estimation of these effects and the calculation of tolerances that will limit the emittance dilution with a high degree of confidence. Since the six-dimensional emittance is conserved and only the projected emittances are increased, these dilutions can be corrected if the beam has not filamented (phase mixed). We discuss methods of correcting the dilutions and easing the tolerances with beam-based alignment and steering techniques, and non-local trajectory bumps. Finally, we discuss another important source of luminosity degradation, namely, pulse-to-pulse jitter.

  19. Tangential velocity measurement using interferometric MTI radar

    SciTech Connect

    Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.

    2006-01-03

    Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.

  20. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices

    NASA Astrophysics Data System (ADS)

    Pusch, Andreas; de Luca, Andrea; Oh, Sang S.; Wuestner, Sebastian; Roschuk, Tyler; Chen, Yiguo; Boual, Sophie; Ali, Zeeshan; Phillips, Chris C.; Hong, Minghui; Maier, Stefan A.; Udrea, Florin; Hopper, Richard H.; Hess, Ortwin

    2015-12-01

    The application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff’s law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal plasmon emission, we engineer a tungsten-based thermal emitter, fabricated in an industrial CMOS process, and demonstrate its markedly improved practical use in a prototype non-dispersive infrared (NDIR) gas-sensing device. We show that the emission intensity of the thermal emitter at the CO2 absorption wavelength is enhanced almost 4-fold compared to a standard non-plasmonic emitter, which enables a proportionate increase in the signal-to-noise ratio of the CO2 gas sensor.

  1. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices.

    PubMed

    Pusch, Andreas; De Luca, Andrea; Oh, Sang S; Wuestner, Sebastian; Roschuk, Tyler; Chen, Yiguo; Boual, Sophie; Ali, Zeeshan; Phillips, Chris C; Hong, Minghui; Maier, Stefan A; Udrea, Florin; Hopper, Richard H; Hess, Ortwin

    2015-12-07

    The application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff's law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal plasmon emission, we engineer a tungsten-based thermal emitter, fabricated in an industrial CMOS process, and demonstrate its markedly improved practical use in a prototype non-dispersive infrared (NDIR) gas-sensing device. We show that the emission intensity of the thermal emitter at the CO(2) absorption wavelength is enhanced almost 4-fold compared to a standard non-plasmonic emitter, which enables a proportionate increase in the signal-to-noise ratio of the CO(2) gas sensor.

  2. A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices

    PubMed Central

    Pusch, Andreas; De Luca, Andrea; Oh, Sang S.; Wuestner, Sebastian; Roschuk, Tyler; Chen, Yiguo; Boual, Sophie; Ali, Zeeshan; Phillips, Chris C.; Hong, Minghui; Maier, Stefan A.; Udrea, Florin; Hopper, Richard H.; Hess, Ortwin

    2015-01-01

    The application of plasmonics to thermal emitters is generally assisted by absorptive losses in the metal because Kirchhoff’s law prescribes that only good absorbers make good thermal emitters. Based on a designed plasmonic crystal and exploiting a slow-wave lattice resonance and spontaneous thermal plasmon emission, we engineer a tungsten-based thermal emitter, fabricated in an industrial CMOS process, and demonstrate its markedly improved practical use in a prototype non-dispersive infrared (NDIR) gas-sensing device. We show that the emission intensity of the thermal emitter at the CO2 absorption wavelength is enhanced almost 4-fold compared to a standard non-plasmonic emitter, which enables a proportionate increase in the signal-to-noise ratio of the CO2 gas sensor. PMID:26639902

  3. Multinozzle Emitter Arrays for Nanoelectrospray Mass Spectrometry

    SciTech Connect

    Mao, Pan; Wang, Hung-Ta; Yang, Peidong; Wang, Daojing

    2011-06-16

    Mass spectrometry (MS) is the enabling technology for proteomics and metabolomics. However, dramatic improvements in both sensitivity and throughput are still required to achieve routine MS-based single cell proteomics and metabolomics. Here, we report the silicon-based monolithic multinozzle emitter array (MEA), and demonstrate its proof-of-principle applications in high-sensitivity and high-throughput nanoelectrospray mass spectrometry. Our MEA consists of 96 identical 10-nozzle emitters in a circular array on a 3-inch silicon chip. The geometry and configuration of the emitters, the dimension and number of the nozzles, and the micropillar arrays embedded in the main channel, can be systematically and precisely controlled during the microfabrication process. Combining electrostatic simulation and experimental testing, we demonstrated that sharpened-end geometry at the stem of the individual multinozzle emitter significantly enhanced the electric fields at its protruding nozzle tips, enabling sequential nanoelectrospray for the high-density emitter array. We showed that electrospray current of the multinozzle emitter at a given total flow rate was approximately proportional to the square root of the number of its spraying-nozzles, suggesting the capability of high MS sensitivity for multinozzle emitters. Using a conventional Z-spray mass spectrometer, we demonstrated reproducible MS detection of peptides and proteins for serial MEA emitters, achieving sensitivity and stability comparable to the commercial capillary emitters. Our robust silicon-based MEA chip opens up the possibility of a fully-integrated microfluidic system for ultrahigh-sensitivity and ultrahigh-throughput proteomics and metabolomics.

  4. Multinozzle Emitter Arrays for Nanoelectrospray Mass Spectrometry

    PubMed Central

    Mao, Pan; Wang, Hung-Ta; Yang, Peidong; Wang, Daojing

    2011-01-01

    Mass spectrometry (MS) is the enabling technology for proteomics and metabolomics. However, dramatic improvements in both sensitivity and throughput are still required to achieve routine MS-based single cell proteomics and metabolomics. Here, we report the silicon-based monolithic multinozzle emitter array (MEA), and demonstrate its proof-of-principle applications in high-sensitivity and high-throughput nanoelectrospray mass spectrometry. Our MEA consists of 96 identical 10-nozzle emitters in a circular array on a 3-inch silicon chip. The geometry and configuration of the emitters, the dimension and number of the nozzles, and the micropillar arrays embedded in the main channel, can be systematically and precisely controlled during the microfabrication process. Combining electrostatic simulation and experimental testing, we demonstrated that sharpened-end geometry at the stem of the individual multinozzle emitter significantly enhanced the electric fields at its protruding nozzle tips, enabling sequential nanoelectrospray for the high-density emitter array. We showed that electrospray current of the multinozzle emitter at a given total flow rate was approximately proportional to the square root of the number of its spraying-nozzles, suggesting the capability of high MS sensitivity for multinozzle emitters. Using a conventional Z-spray mass spectrometer, we demonstrated reproducible MS detection of peptides and proteins for serial MEA emitters, achieving sensitivity and stability comparable to the commercial capillary emitters. Our robust silicon-based MEA chip opens up the possibility of a fully-integrated microfluidic system for ultrahigh-sensitivity and ultrahigh-throughput proteomics and metabolomics. PMID:21728281

  5. Modern radar: Theory, operation and maintenance /2nd edition/

    NASA Astrophysics Data System (ADS)

    Safford, E. L., Jr.

    1981-02-01

    A compendium on radar systems and theory is presented. The development of the magnetron and the klystron is reviewed along with the methods used to solve the original radar problems. The early display devices are surveyed with a view to their ongoing evolution. The pulse, Doppler, CW, and pulse-Doppler radar systems are detailed. Target reflectivity, pulse calculations, Doppler clutter, signal processing, and bandwidth are discussed. The uses and basic components are examined of the radar systems utilized in military, intruder detection, avionics, aerospace, police, satellite, and guided missile applications. A coverage of radar frequency components, tracking systems, aircraft signatures, and receivers is provided.

  6. Comet radar explorer

    NASA Astrophysics Data System (ADS)

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    will enjoy significant simplifying benefits compared to using the same instrument for Mars or lunar radar science: (1) The proximity of operations leads to a much higher signal to noise, as much as +30 dB. (2) The lack of an ionosphere simplifies data modeling and analysis. (3) The body is globally illuminated during every data acquisition, minimizing ambiguity or 'clutter' and allowing for tomographic reconstruction. What is novel is the data processing, where instead of a planar radargram approach we coherently process the data into an image of the deep interior. CORE thus uses a MARSIS-SHARAD heritage radar to make coherent reflection sounding measurements, a 'CAT SCAN' of a comet nucleus. What is unique about this mission compared to the Mars radars mentioned above, is that the target is a finite mass of dirty ice in free space, rather than a sheet of dirty ice draped on a planet surface. The depth of penetration (kilometers), attainable resolution (decameters), and the target materials, are more or less the same. This means that the science story is robust, and the radar implementation is robust. The target is comet 10P/Tempel 2, discovered by Wilhelm Tempel in 1873 and observed on most apparitions since. It has been extensively studied, in part because of interest as a CRAF target in the mid-1980s, and much is known about it. Tempel 2 is one of the largest known comet nuclei, 16×8×8 km (about the same size as Halley) [1] and has rotation period 8.9 hours [3,5,6,7,9]. The spin state is evolving with time, spinning up by ˜10 sec per perihelion pass [5,7]. The comet is active, but not exceedingly so, especially given its size. The water production is measured at ˜ 4 × 1028 mol/sec at its peak [2], a factor of 25 lower than comet Halley, and it is active over only ˜2% of its surface. The dust environment is well known, producing a factor of ˜100 less dust than Halley. Comet References: [1] A'Hearn et al., ApJ 347, 1155, 1989 [2] Feldman and Festou, ACM 1991, p

  7. Emittance growth due to Tevatron flying wires

    SciTech Connect

    Syphers, M; Eddy, Nathan

    2004-06-01

    During Tevatron injection, Flying Wires have been used to measure the transverse beam size after each transfer from the Main Injector in order to deduce the transverse emittances of the proton and antiproton beams. This amounts to 36 + 9 = 45 flies of each of 3 wire systems, with an individual wire passing through each beam bunch twice during a single ''fly''. below they estimate the emittance growth induced by the interaction of the wires with the particles during these measurements. Changes of emittance from Flying Wire measurements conducted during three recent stores are compared with the estimations.

  8. Space Radar Image of Long Island Optical/Radar

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This pair of images of the Long Island, New York region is a comparison of an optical photograph (top) and a radar image (bottom), both taken in darkness in April 1994. The photograph at the top was taken by the Endeavour astronauts at about 3 a.m. Eastern time on April 20, 1994. The image at the bottom was acquired at about the same time four days earlier on April 16,1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) system aboard the space shuttle Endeavour. Both images show an area approximately 100 kilometers by 40 kilometers (62 miles by 25 miles) that is centered at 40.7 degrees North latitude and 73.5 degrees West longitude. North is toward the upper right. The optical image is dominated by city lights, which are particularly bright in the densely developed urban areas of New York City located on the left half of the photo. The brightest white zones appear on the island of Manhattan in the left center, and Central Park can be seen as a darker area in the middle of Manhattan. To the northeast (right) of the city, suburban Long Island appears as a less densely illuminated area, with the brightest zones occurring along major transportation and development corridors. Since radar is an active sensing system that provides its own illumination, the radar image shows a great amount of surface detail, despite the night-time acquisition. The colors in the radar image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In this image, the water surface - the Atlantic Ocean along the bottom edge and Long Island Sound shown at the top edge - appears red because small waves at the surface strongly reflect the horizontally transmitted and received L-band radar signal. Networks of highways and railroad lines are clearly

  9. Architecture for a 1-GHz Digital RADAR

    NASA Technical Reports Server (NTRS)

    Mallik, Udayan

    2011-01-01

    An architecture for a Direct RF-digitization Type Digital Mode RADAR was developed at GSFC in 2008. Two variations of a basic architecture were developed for use on RADAR imaging missions using aircraft and spacecraft. Both systems can operate with a pulse repetition rate up to 10 MHz with 8 received RF samples per pulse repetition interval, or at up to 19 kHz with 4K received RF samples per pulse repetition interval. The first design describes a computer architecture for a Continuous Mode RADAR transceiver with a real-time signal processing and display architecture. The architecture can operate at a high pulse repetition rate without interruption for an infinite amount of time. The second design describes a smaller and less costly burst mode RADAR that can transceive high pulse repetition rate RF signals without interruption for up to 37 seconds. The burst-mode RADAR was designed to operate on an off-line signal processing paradigm. The temporal distribution of RF samples acquired and reported to the RADAR processor remains uniform and free of distortion in both proposed architectures. The majority of the RADAR's electronics is implemented in digital CMOS (complementary metal oxide semiconductor), and analog circuits are restricted to signal amplification operations and analog to digital conversion. An implementation of the proposed systems will create a 1-GHz, Direct RF-digitization Type, L-Band Digital RADAR--the highest band achievable for Nyquist Rate, Direct RF-digitization Systems that do not implement an electronic IF downsample stage (after the receiver signal amplification stage), using commercially available off-the-shelf integrated circuits.

  10. Radar Location Equipment Development Program: Phase I

    SciTech Connect

    Sandness, G.A.; Davis, K.C.

    1985-06-01

    The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2/sup 0/, respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1/sup 0/ in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs.

  11. Electric Field Screening by the Proximity of Two Knife-Edge Field Emitters of Finite Width

    NASA Astrophysics Data System (ADS)

    Wong, P.; Tang, W.; Lau, Y. Y.; Hoff, B.

    2015-11-01

    Field emitter arrays have the potential to provide high current density, low voltage operation, and high pulse repetition for radar and communication. It is well known that packing density of the field emitter arrays significantly affect the emission current. Previously we calculated analytically the electric field profile of two-dimensional knife-edge cathodes with arbitrary separation by using a Schwarz-Christoffel transformation. Here we extend this previous work to include the finite width of two identical emitters. From the electric field profile, the field enhancement factor, thereby the severity of the electric field screening, are determined. It is found that for two identical emitters with finite width, the magnitude of the electric field on the knife-edge cathodes depends strongly on the ratio h / a and h / r , where h is the height of the knife-edge cathode, 2a is the distance between the cathodes, and 2 r represents their width. Particle-in-cell simulations are performed to compare with the analytical results on the emission current distribution. P. Y. Wong was supported by a Directed Energy Summer Scholar internship at Air Force Research Laboratory, Kirtland AFB, and by AFRL Award No. FA9451-14-1-0374.

  12. Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

    NASA Technical Reports Server (NTRS)

    Statman, Joseph; Jamnejad, Vahraz; Nguyen, Lee

    2012-01-01

    NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.The DSN is in the process of revamping its documentation to provide analysis of the High Intensity Radiation Fields (HIRF) environment resulting from radio frequency radiation from DSN antennas for comparison to FAA regulations regarding certification of HIRF protection as outlined in the FAA regulations on HIRF protection for aircraft electrical and electronic systems (Title 14, Code of Federal Regulations (14 CFR) [section sign][section sign] 23.1308, 25.1317, 27.1317, and 29.1317).This paper presents work done at JPL, in consultation with the FAA. The work includes analysis of the radiated field structure created by the unique DSN emitters (combination of transmitters and antennas) and comparing it to the fields defined in the environments in the FAA regulations. The paper identifies areas that required special attention, including the implications of the very narrow beam of the DSN emitters and the sidereal rate motion. The paper derives the maximum emitter power allowed without mitigation and the mitigation zones, where required.Finally, the paper presents summary of the results of the analyses of the DSN emitters and the resulting DSN process documentation.

  13. Imaging radar polarimetry - A review

    NASA Technical Reports Server (NTRS)

    Zebker, Howard A.; Van Zyl, Jakob J.

    1991-01-01

    The authors present a tutorial review of the broad sweep of topics relating to imaging radar polarimetry, ranging from mathematical foundations to hardware and from implementation approaches to signal processing and calibration. The authors examine current developments in sensor technology and implementation for recording polarimetric measurements, and describe techniques and areas of application for this form of remotely sensed data. Those aspects of ground signal processing and calibration peculiar to the polarimetric signals are addressed. Several of the currently operating instruments and some of the implementations planned for future use are discussed.

  14. Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems

    PubMed Central

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  15. Detecting and mitigating wind turbine clutter for airspace radar systems.

    PubMed

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  16. Emitters of N-photon bundles.

    PubMed

    Muñoz, C Sánchez; Del Valle, E; Tudela, A González; Müller, K; Lichtmannecker, S; Kaniber, M; Tejedor, C; Finley, J J; Laussy, F P

    2014-07-01

    Controlling the ouput of a light emitter is one of the basic tasks of photonics, with landmarks such as the laser and single-photon sources. The development of quantum applications makes it increasingly important to diversify the available quantum sources. Here, we propose a cavity QED scheme to realize emitters that release their energy in groups, or "bundles" of N photons, for integer N. Close to 100% of two-photon emission and 90% of three-photon emission is shown to be within reach of state of the art samples. The emission can be tuned with system parameters so that the device behaves as a laser or as a N-photon gun. The theoretical formalism to characterize such emitters is developed, with the bundle statistics arising as an extension of the fundamental correlation functions of quantum optics. These emitters will be useful for quantum information processing and for medical applications.

  17. Arc-textured high emittance radiator surfaces

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    1991-01-01

    High emittance radiator surfaces are produced by arc-texturing. This process produces such a surface on a metal by scanning it with a low voltage electric arc from a carbon electrode in an inert environment.

  18. Intrinsic emittance reduction in transmission mode photocathodes

    NASA Astrophysics Data System (ADS)

    Lee, Hyeri; Cultrera, Luca; Bazarov, Ivan

    2016-03-01

    High quantum efficiency (QE) and low emittance electron beams provided by multi-alkali photocathodes make them of great interest for next generation high brightness photoinjectors. Spicer's three-step model well describes the photoemission process; however, some photocathode characteristics such as their thickness have not yet been completely exploited to further improve the brightness of the generated electron beams. In this work, we report on the emittance and QE of a multi-alkali photocathode grown onto a glass substrate operated in transmission and reflection modes at different photon energies. We observed a 20% reduction in the intrinsic emittance from the reflection to the transmission mode operation. This observation can be explained by inelastic electron-phonon scattering during electrons' transit towards the cathode surface. Due to this effect, we predict that thicker photocathode layers will further reduce the intrinsic emittance of electron beams generated by photocathodes operated in transmission mode.

  19. Determination of the Sources of Radar Scattering

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Zoughi, R.

    1984-01-01

    Fine-resolution radar backscattering measurements were proposed to determine the backscattering sources in various vegetation canopies and surface targets. The results were then used to improve the existing theoretical models of terrain scattering, and also to enhance understanding of the radar signal observed by an imaging radar over a vegetated area. Various experiments were performed on targets such as corn, milo, soybeans, grass, asphalt pavements, soil and concrete walkways. Due to the lack of available references on measurements of this type, the obtained results will be used primarily as a foundation or future experiments. The constituent backscattering characteristics of the vegetation canopies was also examined.

  20. The Italian involvement in Cassini radar

    NASA Astrophysics Data System (ADS)

    Nirchio, F.; Pernice, B.; Borgarelli, L.; Dionisio, C.

    1991-12-01

    The Radio Frequency Electronic Subsystem (RFES) of the Cassini radar is described. The requirements of the Cassini radar are summarized. The design parameters taken into consideration in developing the RFES are described. The RFES interfaces with the High Gain Antenna (HGA) for signal transmission and reception. The operational parameters of the Cassini radar are presented. The front end electronics (FEE), microwave receiver (MR), high power amplifier (HPA), frequency generator (FG), digital chip generator (DCG), Chirp Up Converter and Amplifier (CUCA) and power supply of the RFES are described.

  1. Field emission from ZrC films on Si and Mo single emitters and emitter arrays

    SciTech Connect

    Xie, T.; Mackie, W.A.; Davis, P.R.

    1996-05-01

    Field emission from ZrC films deposited on Si and Mo single emitters and field emitter arrays (FEAs) has been studied. For single emitters, the results show dramatic improvements in emitter performance by reducing work functions{emdash}on the order of 1 eV{emdash}and increasing stability. For FEAs, deposition of a ZrC film reduced the operating voltage 30{percent}{endash}50{percent} at an emission current of 1.0 {mu}A/tip and increased the emission stability. {copyright} {ital 1996 American Vacuum Society}

  2. Coaxial inverted geometry transistor having buried emitter

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Cress, S. B.; Dunn, W. R. (Inventor)

    1973-01-01

    The invention relates to an inverted geometry transistor wherein the emitter is buried within the substrate. The transistor can be fabricated as a part of a monolithic integrated circuit and is particularly suited for use in applications where it is desired to employ low actuating voltages. The transistor may employ the same doping levels in the collector and emitter, so these connections can be reversed.

  3. Charge neutrality in heavily doped emitters

    SciTech Connect

    del Alamo, J.A.

    1981-09-01

    The applicability of the quasineutrality approximation to modern emitters of solar cells is analytically reviewed. It is shown that this approximation is fulfilled in more than 80% of the depth of a typical solar-cell emitter, being particularly excellent in the heavily doped regions beneath the surface where most of the heavy doping effects arise. Our conclusions are in conflict with Redfield's recent affirmations.

  4. Alpha-emitters for medical therapy workshop

    SciTech Connect

    Feinendegen, L.E.; McClure, J.J.

    1996-12-31

    A workshop on ``Alpha-Emitters for Medical Therapy`` was held May 30-31, 1996 in Denver Colorado to identify research goals and potential clinical needs for applying alpha-particle emitters and to provide DOE with sufficient information for future planning. The workshop was attended by 36 participants representing radiooncology, nuclear medicine, immunotherapy, radiobiology, molecular biology, biochemistry, radiopharmaceutical chemistry, dosimetry, and physics. This report provides a summary of the key points and recommendations arrived at during the conference.

  5. Energy efficiency of electron plasma emitters

    SciTech Connect

    Zalesski, V. G.

    2011-12-15

    Electron emission influence from gas-discharge plasma on plasma emitter energy parameters is considered. It is shown, that electron emission from plasma is accompanied by energy contribution redistribution in the gas-discharge from plasma emitter supplies sources-the gas-discharge power supply and the accelerating voltage power supply. Some modes of electron emission as a result can be realized: 'a probe measurements mode,' 'a transitive mode,' and 'a full switching mode.'.

  6. The design and implementation of a multi-waveform radar echo simulator.

    PubMed

    Quan, Yinghui; Gao, Xiaoxiao; Li, Yachao; Xing, Mengdao

    2015-10-01

    Radar simulator is an effective tool for performance assessment of radar systems by accurately reproducing echo signals from complicated environment. This paper presents a design of fast multi-waveform radar echo generation based on deconvolution method. First, scene information is retrieved from outfield data based on improved conjugate gradient algorithm. Then, the new radar echoes are generated through convolution of new transmitted signal and restored scene information. A fast and area-efficient field programmable gate array realization is provided to meet the real-time requirement of radar echo simulation. Finally, a series of experiments are performed to evaluate the effectiveness of proposed radar simulation instrument.

  7. Monitoring by holographic radar systems

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Crocco, Lorenzo; Affinito, Antonio; Gennarelli, Gianluca; Soldovieri, Francesco

    2013-04-01

    Nowadays, radar technology represents a significant opportunity to collect useful information for the monitoring and conservation of critical infrastructures. Radar systems exploit the non-invasive interaction between the matter and the electromagnetic waves at microwave frequencies. Such an interaction allows obtaining images of the region under test from which one can infer the presence of potential anomalies such as deformations, cracks, water infiltrations, etc. This information turns out to be of primary importance in practical scenarios where the probed structure is in a poor state of preservation and renovation works must be planned. In this framework, the aim of this contribution is to describe the potentialities of the holographic radar Rascan 4/4000, a holographic radar developed by Remote Sensing Laboratory of Bauman Moscow State Technical University, as a non-destructive diagnostic tool capable to provide, in real-time, high resolution subsurface images of the sounded structure [1]. This radar provides holograms of hidden anomalies from the amplitude of the interference signal arising between the backscattered signal and a reference signal. The performance of the holographic radar is appraised by means of several experiments. Preliminary tests concerning the imaging below the floor and inside wood structures are carried out in controlled conditions at the Electromagnetic Diagnostic Laboratory of IREA-CNR. After, with reference to bridge monitoring for security aim, the results of a measurement campaign performed on the Musmeci bridge are presented [2]. Acknowledgments This research has been performed in the framework of the "Active and Passive Microwaves for Security and Subsurface imaging (AMISS)" EU 7th Framework Marie Curie Actions IRSES project (PIRSES-GA-2010-269157). REFERENCES [1] S. Ivashov, V. Razevig, I. Vasilyev, A. Zhuravlev, T. Bechtel, L. Capineri, The holographic principle in subsurface radar technology, International Symposium to

  8. The proposed flatland radar

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Gage, K. S.; Vanzandt, T. E.; Nastrom, G. D.

    1986-01-01

    A flexible very high frequency (VHF) stratosphere-troposphere (ST) radar configured for meteorological research is to be constructed near Urbana, Illinois. Measurement of small vertical velocities associated with synoptic-scale meteorology can be performed. A large Doppler microwave radar (CHILL) is located a few km from the site of the proposed ST radar. Since the microwave radar can measure the location and velocity of hydrometeors and the VHF ST radar can measure clear (or cloudy) air velocities, simultaneous observations by these two radars of stratiform or convective weather systems would provide valuable meteorological information.

  9. A transceiver module of the Mu radar

    NASA Technical Reports Server (NTRS)

    Kato, S.; Ogawa, T.; Tsuda, T.; Sato, T.; Kimura, I.; Fukao, S.

    1983-01-01

    The transceiver (TR) module of a middle and upper atmospheric radar is described. The TR module used in the radar is mainly composed of two units: a mixer (MIX unit) and a power amplifier (PA unit). The former generates the RF wave for transmission and converts the received echo to the IF signal. A 41.5-MHz local signal fed to mixers passes through a digitally controlled 8-bit phase shifter which can change its value up to 1,000 times in a second, so that the MU radar has the ability to steer its antenna direction quickly and flexibly. The MIX unit also contains a buffer amplifier and a gate for the transmitting signal and preamplifier for the received one whose noise figure is less than 5 dB. The PA unit amplifies the RF signal supplied from the MIX unit up to 63.7 dBm (2350 W), and feeds it to the crossed Yagi antenna.

  10. Radar images analysis for scattering surfaces characterization

    NASA Astrophysics Data System (ADS)

    Piazza, Enrico

    1998-10-01

    According to the different problems and techniques related to the detection and recognition of airplanes and vehicles moving on the Airport surface, the present work mainly deals with the processing of images gathered by a high-resolution radar sensor. The radar images used to test the investigated algorithms are relative to sequence of images obtained in some field experiments carried out by the Electronic Engineering Department of the University of Florence. The radar is the Ka band radar operating in the'Leonardo da Vinci' Airport in Fiumicino (Rome). The images obtained from the radar scan converter are digitized and putted in x, y, (pixel) co- ordinates. For a correct matching of the images, these are corrected in true geometrical co-ordinates (meters) on the basis of fixed points on an airport map. Correlating the airplane 2-D multipoint template with actual radar images, the value of the signal in the points involved in the template can be extracted. Results for a lot of observation show a typical response for the main section of the fuselage and the wings. For the fuselage, the back-scattered echo is low at the prow, became larger near the center on the aircraft and than it decrease again toward the tail. For the wings the signal is growing with a pretty regular slope from the fuselage to the tips, where the signal is the strongest.

  11. A Novel Monopulse Angle Estimation Method for Wideband LFM Radars

    PubMed Central

    Zhang, Yi-Xiong; Liu, Qi-Fan; Hong, Ru-Jia; Pan, Ping-Ping; Deng, Zhen-Miao

    2016-01-01

    Traditional monopulse angle estimations are mainly based on phase comparison and amplitude comparison methods, which are commonly adopted in narrowband radars. In modern radar systems, wideband radars are becoming more and more important, while the angle estimation for wideband signals is little studied in previous works. As noise in wideband radars has larger bandwidth than narrowband radars, the challenge lies in the accumulation of energy from the high resolution range profile (HRRP) of monopulse. In wideband radars, linear frequency modulated (LFM) signals are frequently utilized. In this paper, we investigate the monopulse angle estimation problem for wideband LFM signals. To accumulate the energy of the received echo signals from different scatterers of a target, we propose utilizing a cross-correlation operation, which can achieve a good performance in low signal-to-noise ratio (SNR) conditions. In the proposed algorithm, the problem of angle estimation is converted to estimating the frequency of the cross-correlation function (CCF). Experimental results demonstrate the similar performance of the proposed algorithm compared with the traditional amplitude comparison method. It means that the proposed method for angle estimation can be adopted. When adopting the proposed method, future radars may only need wideband signals for both tracking and imaging, which can greatly increase the data rate and strengthen the capability of anti-jamming. More importantly, the estimated angle will not become ambiguous under an arbitrary angle, which can significantly extend the estimated angle range in wideband radars. PMID:27271629

  12. A Novel Monopulse Angle Estimation Method for Wideband LFM Radars.

    PubMed

    Zhang, Yi-Xiong; Liu, Qi-Fan; Hong, Ru-Jia; Pan, Ping-Ping; Deng, Zhen-Miao

    2016-06-03

    Traditional monopulse angle estimations are mainly based on phase comparison and amplitude comparison methods, which are commonly adopted in narrowband radars. In modern radar systems, wideband radars are becoming more and more important, while the angle estimation for wideband signals is little studied in previous works. As noise in wideband radars has larger bandwidth than narrowband radars, the challenge lies in the accumulation of energy from the high resolution range profile (HRRP) of monopulse. In wideband radars, linear frequency modulated (LFM) signals are frequently utilized. In this paper, we investigate the monopulse angle estimation problem for wideband LFM signals. To accumulate the energy of the received echo signals from different scatterers of a target, we propose utilizing a cross-correlation operation, which can achieve a good performance in low signal-to-noise ratio (SNR) conditions. In the proposed algorithm, the problem of angle estimation is converted to estimating the frequency of the cross-correlation function (CCF). Experimental results demonstrate the similar performance of the proposed algorithm compared with the traditional amplitude comparison method. It means that the proposed method for angle estimation can be adopted. When adopting the proposed method, future radars may only need wideband signals for both tracking and imaging, which can greatly increase the data rate and strengthen the capability of anti-jamming. More importantly, the estimated angle will not become ambiguous under an arbitrary angle, which can significantly extend the estimated angle range in wideband radars.

  13. Phase Calibration Of Polarimetric Radar Images

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony; Sheen, Dan R.; Kasischke, Erik S.

    1992-01-01

    Report addresses problem of calibration of differences between phases (relative to transmitted signals) of signals received in two polarization channels of polarimetric imaging radar system. Causes of various types of errors discussed. Calibration necessary to deduce information about target area - type of terrain, presence of vegetation, and land/water boundaries.

  14. Digital orthogonal receiver for wideband radar based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Digital orthogonal receiver is one of the key techniques in digital receiver of soft radar, and compressed sensing is attracting more and more attention in radar signal processing. In this paper, we propose a CS digital orthogonal receiver for wideband radar which utilizes compressed sampling in the acquisition of radar raw data. In order to reconstruct complex signal from sub-sampled raw data, a novel sparse dictionary is proposed to represent the real-valued radar raw signal sparsely. Using our dictionary and CS algorithm, we can reconstruct the complex-valued radar signal from sub-sampled echoes. Compared with conventional digital orthogonal radar receiver, the architecture of receiver in this paper is more simplified and the sampling frequency of ADC is reduced sharply. At the same time, the range profile can be obtained during the reconstruction, so the matched filtering can be eliminated in the receiver. Some experiments on ISAR imaging based on simulated data prove that the phase information of radar echoes is well reserved in our orthogonal receiver and the whole design is effective for wideband radar.

  15. Radar channel balancing with commutation

    SciTech Connect

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  16. Radar image of Rio Sao Francisco, Brazil

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This radar image acquired by SRTM shows an area south of the Sao Francisco River in Brazil. The area is predominantly scrub forest. Areas such as these are difficult to map by traditional methods because of frequent cloud cover and local inaccessibility. Image brightness differences in this image are caused by differences in vegetation type and density. Tributaries of the Sao Francisco are visible in the upper right. The Sao Francisco River is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, forestation and human influences on ecosystems.

    This radar image was obtained by the Shuttle Radar Topography Mission as part of its mission to map the Earth's topography. The image was acquired by just one of SRTM's two antennas, and consequently does not show topographic data but only the strength of the radar signal reflected from the ground. This signal, known as radar backscatter, provides insight into the nature of the surface, including its roughness, vegetation cover, and urbanization.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

  17. Subaperture clutter filter with CFAR signal detection

    DOEpatents

    Ormesher, Richard C.; Naething, Richard M.

    2016-08-30

    The various technologies presented herein relate to the determination of whether a received signal comprising radar clutter further comprises a communication signal. The communication signal can comprise of a preamble, a data symbol, communication data, etc. A first portion of the radar clutter is analyzed to determine a radar signature of the first portion of the radar clutter. A second portion of the radar clutter can be extracted based on the radar signature of the first portion. Following extraction, any residual signal can be analyzed to retrieve preamble data, etc. The received signal can be based upon a linear frequency modulation (e.g., a chirp modulation) whereby the chirp frequency can be determined and the frequency of transmission of the communication signal can be based accordingly thereon. The duration and/or bandwidth of the communication signal can be a portion of the duration and/or the bandwidth of the radar clutter.

  18. Constraints on drivers for visible light communications emitters based on energy efficiency.

    PubMed

    Del Campo-Jimenez, Guillermo; Perez-Jimenez, Rafael; Lopez-Hernandez, Francisco Jose

    2016-05-02

    In this work we analyze the energy efficiency constraints on drivers for Visible light communication (VLC) emitters. This is the main reason why LED is becoming the main source of illumination. We study the effect of the waveform shape and the modulation techniques on the overall energy efficiency of an LED lamp. For a similar level of illumination, we calculate the emitter energy efficiency ratio η (PLED/PTOTAL) for different signals. We compare switched and sinusoidal signals and analyze the effect of both OOK and OFDM modulation techniques depending on the power supply adjustment, level of illumination and signal amplitude distortion. Switched and OOK signals present higher energy efficiency behaviors (0.86≤η≤0.95) than sinusoidal and OFDM signals (0.53≤η≤0.79).

  19. Multi-platform RF emitter localization using extremum seeking control

    NASA Astrophysics Data System (ADS)

    Al Issa, Huthaifa; Ordóñez, Raúl

    2013-05-01

    In recent years there has been growing interest in Ad-hoc and Wireless Sensor Networks (WSNs) for a variety of indoor applications. Thus, recent developments in communications and RF technology have enabled system concept formulations and designs for low-cost radar systems using state-of-the-art software radio modules. Position-Adaptive radar concepts have been formulated and investigated at the Air Force Research Laboratory (AFRL) within the past few years. Adopting a position-adaptive approach to the design of distributed radar systems shows potential for the development of future radar systems that function under new and challenging environments that contain large clutter discretes and require co-functionality within multi-signal RF environments. In this paper, we present the simulation performance analysis on the application aspect. We apply Extremum Seeking Control (ESC) schemes by using the swarm seeking problem, where the goal is to design a control law for each individual sensor that can minimize the error metric by adapting the sensor positions in real-time based on cross-path loss exponents estimates between sensors, thereby minimizing the unknown estimation error. As a result we achieved source seeking and collision avoidance of the entire group of the sensor positions.

  20. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1982-01-01

    The dual polarization CW radar system which permits simultaneous reception in the same rotational sense of circular polarization as transmitted (i.e., the "SC" sense) and in the opposite ("OC") sense, was used to observe five previously unobserved asteroids: 2 Pallas, 8 Flora, 22 Kalliope, 132 Aethra, and 471 Papagena. Echoes from Pallas and Flora were easily detected in the OC sense on each of several nights. Weighted mean echo power spectra also show marginally significant responses in the SC sense. An approximately 4.5 standard deviation signal was obtained for Aethra. The Doppler shift of the peak is about 10 Hz higher than that predicted from the a priori trial ephemeris. Calculations are performed to determine whether this frequency offset can be reconciled dynamically with optical positions reported for Aethra.

  1. Weather Radar Technology Development

    DTIC Science & Technology

    1990-08-15

    uelocitV WMs ) data processing systems such as NEXRAD to have a reliable technique for removing ambiguities due to velocity aliasing. Performance of many...intended for automated implementation on radar systems such as the NEXt generation weather RADar ( NEXRAD ) system. Several research areas were addressed...with Doppler radar will soon be realized with the deployment of the NEXRAD radar systems. Some of these large scale storms can have devastating wind

  2. Radar: Human Safety Net

    ERIC Educational Resources Information Center

    Ritz, John M.

    2016-01-01

    Radar is a technology that can be used to detect distant objects not visible to the human eye. A predecessor of radar, called the telemobiloscope, was first used to detect ships in the fog in 1904 off the German coast. Many scientists have worked on the development and refinement of radar (Hertz with electromagnetic waves; Popov with determining…

  3. Lunar radar backscatter studies

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.

    1979-01-01

    The lunar surface material in the Plato area is characterized using Earth based visual, infrared, and radar signatures. Radar scattering in the lunar regolith with an existing optical scattering computer program is modeled. Mapping with 1 to 2 km resolution of the Moon using a 70 cm Arecibo radar is presented.

  4. Rapid decrease of radar cross section of meteor head echo observed by the MU radar

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Nishio, M.; Sato, T.; Tsutsumi, S.; Tsuda, T.; Fushimi, K.

    The meteor head echo observation using the MU (Middle and Upper atmosphere) radar (46.5M Hz, 1MW), Shigaraki, Japan, was carried out simultaneously with a high sensitive ICCD (Image-intensified CCD) camera observation in November 2001. The time records were synchronized using GPS satellite signals, in order to compare instantaneous radar and optical meteor magnitudes. 26 faint meteors were successfully observed simultaneously by both equipments. Detailed comparison of the time variation of radar echo intensity and absolute optical magnitude showed that the radar scattering cross section is likely to decrease rapidly by 5 - 20 dB without no corresponding magnitude variation in the optical data. From a simple modeling, we concluded that such decrease of RCS (radar cross section ) is probably due to the transition from overdense head echo to underd ense head echo.

  5. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    PubMed

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results.

  6. Transponder-Aided Joint Calibration and Synchronization Compensation for Distributed Radar Systems

    PubMed Central

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results. PMID:25794158

  7. Passive Synthetic Aperture Radar Imaging Using Commercial OFDM Communication Networks

    DTIC Science & Technology

    2012-09-13

    passive and non-passive radar scenarios, mostly geared towards radar detection and tracking radar functions. The goal of this research is to under- stand...it is this separation that allows extreme remote sensing applications like planetary surface observations using either receiver or transmitter...multicarrier ap- proach is geared towards UWB signals, where slow time differences in the subcarriers 26 phase history are exploitable. Other related work

  8. HF Over-the-Horizon Radar System Performance Analysis

    DTIC Science & Technology

    2007-09-01

    3,500 km at cf = 14.5 MHz. A model of the maximum detection range for the Chinese FMCW OTH backscatter (OTH-B) radar was developed in MATLAB . An...calculation of the maximum usable frequency (MUF), and footprint prediction. Also, radar equation analysis was done in MATLAB to study the signal-to- noise...target detection technique and radar equations are applied. Chapter V uses PROPLAB model simulation to bring in the principle of raytracing and

  9. Applications of high-frequency radar

    NASA Astrophysics Data System (ADS)

    Headrick, J. M.; Thomason, J. F.

    1998-07-01

    Efforts to extend radar range by an order of magnitude with use of the ionosphere as a virtual mirror started after the end of World War II. A number of HF radar programs were pursued, with long-range nuclear burst and missile launch detection demonstrated by 1956. Successful east coast radar aircraft detect and track tests extending across the Atlantic were conducted by 1961. The major obstacles to success, the large target-to-clutter ratio and low signal-to-noise ratio, were overcome with matched filter Doppler processing. To search the areas that a 2000 nautical mile (3700 km) radar can reach, very complex and high dynamic range processing is required. The spectacular advances in digital processing technology have made truly wide-area surveillance possible. Use of the surface attached wave over the oceans can enable HF radar to obtain modest extension of range beyond the horizon. The decameter wavelengths used by both skywave and surface wave radars require large physical antenna apertures, but they have unique capabilities for air and surface targets, many of which are of resonant scattering dimensions. Resonant scattering from the ocean permits sea state and direction estimation. Military and commercial applications of HF radar are in their infancy.

  10. Field-emitter arrays for vacuum microelectronics

    NASA Technical Reports Server (NTRS)

    Spindt, C. A.; Holland, C. E.; Rosengreen, A.; Brodie, Ivor

    1991-01-01

    An ongoing program on microfabricated field-emitter arrays has produced a gated field-emitter tip structure with submicrometer dimensions and techniques for fabricating emitter arrays with tip packaging densities of up to 1.5 x 10 exp 7 tips/sq cm. Arrays have been fabricated over areas varying from a few micrometers up to 13 cm in diameter. Very small overall emitter size, materials selection, and rigorous emitter-tip processing procedures have contributed to reducing the potential required for field emission to tens of volts. Emission current densities of up to 100 A/sq cm have been achieved with small arrays of tips, and 100-mA total emission is commonly produced with arrays 1 mm in diameter containing 10,000 tips. Transconductances of 5.0 micro-S per tip have been demonstrated, indicating that 50 S/sq cm should be achievable with tip densities of 10 exp 7 tips/sq cm. Details of the cathode arrays and a variety of performance characteristics are discussed.

  11. Integrated photonic crystal selective emitter for thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiguang; Yehia, Omar; Bermel, Peter

    2016-01-01

    Converting blackbody thermal radiation to electricity via thermophotovoltaics (TPV) is inherently inefficient. Photon recycling using cold-side filters offers potentially improved performance but requires extremely close spacing between the thermal emitter and the receiver, namely a high view factor. Here, we propose an alternative approach for thermal energy conversion, the use of an integrated photonic crystal selective emitter (IPSE), which combines two-dimensional photonic crystal selective emitters and filters into a single device. Finite difference time domain and current transport simulations show that IPSEs can significantly suppress sub-bandgap photons. This increases heat-to-electricity conversion for photonic crystal based emitters from 35.2 up to 41.8% at 1573 K for a GaSb photovoltaic (PV) diode with matched bandgaps of 0.7 eV. The physical basis of this enhancement is a shift from a perturbative to a nonperturbative regime, which maximized photon recycling. Furthermore, combining IPSEs with nonconductive optical waveguides eliminates a key difficulty associated with TPV: the need for precise alignment between the hot selective emitter and cool PV diode. The physical effects of both the IPSE and waveguide can be quantified in terms of an extension of the concept of an effective view factor.

  12. Emittance control in Laser Wakefield Accelerator

    NASA Astrophysics Data System (ADS)

    Cheshkov, S.; Tajima, T.; Chiu, C.; Breitling, F.

    2001-05-01

    In this paper we summarize our recent effort and results in theoretical study of the emittance issues of multistaged Laser Wakefield Accelerator (LWFA) in TeV energy range. In such an energy regime the luminosity and therefore the emittance requirements become very stringent and tantamount to the success or failure of such an accelerator. The system of such a machine is very sensitive to jitters due to misalignment between the beam and the wakefield. In particular, the effect of jitters in the presence of a strong focusing wakefield and initial longitudinal phase space spread of the beam leads to severe transverse emittance degradation of the beam. To improve the emittance we introduce several methods: a mitigated wakefield focusing by working with a plasma channel, an approximately synchronous acceleration in a superunit setup, the "horn" model based on exactly synchronous acceleration achieved through plasma density variation and lastly an algorithm based on minimization of the final beam emittance to actively control the stage displacement of such an accelerator.

  13. Variable emittance behavior of smart radiative coating

    NASA Astrophysics Data System (ADS)

    Guo, Li; Fan, Desong; Li, Qiang

    2016-02-01

    Smart radiative coating on yttria stabilized zirconia (YSZ) substrate was prepared by the sol-gel La{}1-xSr x MnO3 (x = 0.125, 0.175 and 0.2) nanoparticles and the binder composed of terpineol and ethyl cellulose. The crystallized structure, grain size, chemical compositions, magnetization and the surface morphology were characterized. The thermal radiative properties of coating in the infrared range was evaluated from infrared reflectance spectra at various temperatures. A single perovskite structure is detected in sol-gel nanoparticles with size 200 nm. Magnetization measurement reveals that room temperature phase transition samples can be obtained by appropriate Sr substitution. The influence of surface conditions and sintering temperature on the emittance of coating was observed. For rough coatings with root-mean-square roughness 640 nm (x = 0.125) and 800 nm (x = 0.175) , its emittance increment is 0.24 and 0.26 in in the temperature range of 173-373 K. Increasing sintering temperature to 1673 K, coating emittance variation improves to 0.3 and 0.302 respectively. After mechanical polishing treatment, the emittance increment of coatings are enhanced to 0.31 and 0.3, respectively. The results suggested that the emittance variation can be enhanced by reducing surface roughness and increasing sintering temperature of coating.

  14. Antenna induced range smearing in MST radars

    NASA Technical Reports Server (NTRS)

    Watkins, B. J.; Johnston, P. E.

    1984-01-01

    There is considerable interest in developing stratosphere troposphere (ST) and mesosphere stratosphere troposphere (MST) radars for higher resolution to study small-scale turbulent structures and waves. At present most ST and MST radars have resolutions of 150 meters or larger, and are not able to distinguish the thin (40 - 100 m) turbulent layers that are known to occur in the troposphere and stratosphere, and possibly in the mesosphere. However the antenna beam width and sidelobe level become important considerations for radars with superior height resolution. The objective of this paper is to point out that for radars with range resolutions of about 150 meters or less, there may be significant range smearing of the signals from mesospheric altitudes due to the finite beam width of the radar antenna. At both stratospheric and mesospheric heights the antenna sidelobe level for lear equally spaced phased arrays may also produce range aliased signals. To illustrate this effect the range smearing functions for two vertically directed antennas have been calculated, (1) an array of 32 coaxial-collinear strings each with 48 elements that simulates the vertical beam of the Poker Flat, Glaska, MST radar; and (2) a similar, but smaller, array of 16 coaxial-collinear strings each with 24 elements.

  15. Artificial ionospheric mirrors for radar applications

    SciTech Connect

    Short, R.D.; Wallace, T.; Stewart, C.V.; Lallement, P.; Koert, P.

    1990-10-01

    Recognition of performance limitations associated with traditional skywave over-the-horizon (OTH) high frequency (HF) radars has led a number of investigators to propose the creation of an Artificial Ionospheric Mirror (AIM) in the upper atmosphere, in order to reflect ground-based radar signals for OTH surveillance. The AIM is produced by beaming sufficient electromagnetic Power to the lower ionosphere (around 70 km) to enhance the in situ ionization level to 107 108 electrons/cm3, thereby providing an ionized layer capable of reflecting radar frequencies of 5 - 90 MHz. This paper presents a baseline AIM system concept and an associated performance evaluation, based upon the relevant ionization and propagation physics and in the context of air surveillance for the cruise missile threat. Results of the subject study indicate that a system using this concept would both complement and enhance the performance of the existing skywave OTH radars.

  16. Solid-state single-photon emitters

    NASA Astrophysics Data System (ADS)

    Aharonovich, Igor; Englund, Dirk; Toth, Milos

    2016-10-01

    Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.

  17. Head erosion with emittance growth in PWFA

    SciTech Connect

    Li, S. Z.; Adli, E.; England, R. J.; Frederico, J.; Gessner, S. J.; Hogan, M. J.; Litos, M. D.; Walz, D. R.; Muggli, P.; An, W.; Clayton, C. E.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W.; Vafaei, N.

    2012-12-21

    Head erosion is one of the limiting factors in plasma wakefield acceleration (PWFA). We present a study of head erosion with emittance growth in field-ionized plasma from the PWFA experiments performed at the FACET user facility at SLAC. At FACET, a 20.3 GeV bunch with 1.8 Multiplication-Sign 10{sup 10} electrons is optimized in beam transverse size and combined with a high density lithium plasma for beam-driven plasma wakefield acceleration experiments. A target foil is inserted upstream of the plasma source to increase the bunch emittance through multiple scattering. Its effect on beamplasma interaction is observed with an energy spectrometer after a vertical bend magnet. Results from the first experiments show that increasing the emittance has suppressed vapor field-ionization and plasma wakefields excitation. Plans for the future are presented.

  18. Radar stage uncertainty

    USGS Publications Warehouse

    Fulford, J.M.; Davies, W.J.

    2005-01-01

    The U.S. Geological Survey is investigating the performance of radars used for stage (or water-level) measurement. This paper presents a comparison of estimated uncertainties and data for radar water-level measurements with float, bubbler, and wire weight water-level measurements. The radar sensor was also temperature-tested in a laboratory. The uncertainty estimates indicate that radar measurements are more accurate than uncorrected pressure sensors at higher water stages, but are less accurate than pressure sensors at low stages. Field data at two sites indicate that radar sensors may have a small negative bias. Comparison of field radar measurements with wire weight measurements found that the radar tends to measure slightly lower values as stage increases. Copyright ASCE 2005.

  19. Measurement of transverse emittance and coherence of double-gate field emitter array cathodes.

    PubMed

    Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R J Dwayne

    2016-12-23

    Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence.

  20. Measurement of transverse emittance and coherence of double-gate field emitter array cathodes

    PubMed Central

    Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R.J. Dwayne

    2016-01-01

    Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence. PMID:28008918

  1. Measurement of transverse emittance and coherence of double-gate field emitter array cathodes

    NASA Astrophysics Data System (ADS)

    Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R. J. Dwayne

    2016-12-01

    Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence.

  2. Optimization of radar pulse compression processing

    NASA Astrophysics Data System (ADS)

    Song, Samuel M.; Kim, Woonkyung M.; Lee, Myung-Su

    1997-06-01

    We propose an optimal radar pulse compression technique and evaluate its performance in the presence of Doppler shift. The traditional pulse compression using Barker code increases the signal strength by transmitting a Barker coded long pulse. The received signal is then processed by an appropriate correlation processing. This Barker code radar pulse compression enhances the detection sensitivity while maintaining the range resolution of a single chip of the Barker coded long pulse. But unfortunately, the technique suffers from the addition of range sidelobes which sometimes will mask weak targets in the vicinity of larger targets. Our proposed optimal algorithm completely eliminates the sidelobes at the cost of additional processing.

  3. A MEMS-based thermal infrared emitter for an integrated NDIR spectrometer

    NASA Astrophysics Data System (ADS)

    Calaza, C.; Salleras, M.; Sabaté, N.; Santander, J.; Cané, C.; Fonseca, L.

    2011-06-01

    Micromachined thermal infrared emitters using heavily boron doped silicon as active material have been developed. The proposed fabrication process allows the integration of infrared emitters with arrays of thermopile infrared detectors to achieve integrated non dispersive infrared (NDIR) microspectrometers. A set of emitters with a common radiating silicon slab size (1100x300x8μm3) has been successfully fabricated and characterized. The working temperature of Joule heated radiating elements has been controlled by means of DC or pulsed electric signals, up to temperatures exceeding 800°C. Measured thermal time constants, in the order of 50 ms, enable direct electrical modulation of emitted radiation up to a frequency of 5Hz with full modulation depth. The temperature distribution in the radiating element has been analyzed with infrared thermal imaging.

  4. Coupling single emitters to quantum plasmonic circuits

    NASA Astrophysics Data System (ADS)

    Huck, Alexander; Andersen, Ulrik L.

    2016-09-01

    In recent years, the controlled coupling of single-photon emitters to propagating surface plasmons has been intensely studied, which is fueled by the prospect of a giant photonic nonlinearity on a nanoscaled platform. In this article, we will review the recent progress on coupling single emitters to nanowires towards the construction of a new platform for strong light-matter interaction. The control over such a platform might open new doors for quantum information processing and quantum sensing at the nanoscale and for the study of fundamental physics in the ultrastrong coupling regime.

  5. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1994-05-31

    A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.

  6. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1994-01-01

    A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.

  7. Current Injection Pumping of Organic Light Emitters

    DTIC Science & Technology

    1989-09-28

    MOT-OOO1AF I Current Injection Pumping of Organic Light Emitters Prepared by DI Jeffrey C. Buchholz E L ri: 8 James P. Stec OCT C "t989 Mary C...Schutte Micro -Optics Technologies, Inc. 8608 University Green #5 Middleton, WI 53562 28 September 1989 D,:?UqflON SA2". N’.’ _ Disuibunon Uanu-ted Contract...Title Report Date Current Injection Pumping of Organic Light Emitters 28 September 1989 Authors Jeffrey C. Buchholz, James P. Stec, Mary C. Schutte

  8. Field emitter technologies for nanovision science

    NASA Astrophysics Data System (ADS)

    Mimura, H.; Neo, Y.; Aoki, T.; Nagao, M.; Yoshida, T.; Kanemaru, S.

    2009-10-01

    We have been investigating an ultra fine field emission display (FED) and an ultra fine CdTe X-ray image sensor for creating nanovision science. For an ultra fine FED with a sub-micron pixel, we have developed a volcano-structured double-gated field emitter arrays with a capability of focusing electron beam without serous reduction in emission current. For an ultra fine X-ray image sensor, we have proposed and demonstrated a novel CdTe X-ray sensor consisting of a CdTe diode and field emitter array.

  9. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes... bridge channel piers. Racons are used to mark the centerline of the channel....

  10. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes... bridge channel piers. Racons are used to mark the centerline of the channel....

  11. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes... bridge channel piers. Racons are used to mark the centerline of the channel....

  12. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes... bridge channel piers. Racons are used to mark the centerline of the channel....

  13. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes... bridge channel piers. Racons are used to mark the centerline of the channel....

  14. Instantaneous electron beam emittance measurement system based on the optical transition radiation principle

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Guo; Wang, Yuan; Zhang, Kai-Zhi; Yang, Guo-Jun; Shi, Jin-Shui; Deng, Jian-Jun; Li, Jin

    2014-01-01

    One kind of instantaneous electron beam emittance measurement system based on the optical transition radiation principle and double imaging optical method has been set up. It is mainly adopted in the test for the intense electron-beam produced by a linear induction accelerator. The system features two characteristics. The first one concerns the system synchronization signal triggered by the following edge of the main output waveform from a Blumlein switch. The synchronous precision of about 1 ns between the electron beam and the image capture time can be reached in this way so that the electron beam emittance at the desired time point can be obtained. The other advantage of the system is the ability to obtain the beam spot and beam divergence in one measurement so that the calculated result is the true beam emittance at that time, which can explain the electron beam condition. It provides to be a powerful beam diagnostic method for a 2.5 kA, 18.5 MeV, 90 ns (FWHM) electron beam pulse produced by Dragon I. The ability of the instantaneous measurement is about 3 ns and it can measure the beam emittance at any time point during one beam pulse. A series of beam emittances have been obtained for Dragon I. The typical beam spot is 9.0 mm (FWHM) in diameter and the corresponding beam divergence is about 10.5 mrad.

  15. 2. VIEW SOUTHWEST, prime search radar tower, height finder radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTHWEST, prime search radar tower, height finder radar towards, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  16. Stepped frequency ground penetrating radar

    DOEpatents

    Vadnais, Kenneth G.; Bashforth, Michael B.; Lewallen, Tricia S.; Nammath, Sharyn R.

    1994-01-01

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  17. Determination and error analysis of emittance and spectral emittance measurements by remote sensing

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Kumar, R.

    1977-01-01

    The author has identified the following significant results. From the theory of remote sensing of surface temperatures, an equation of the upper bound of absolute error of emittance was determined. It showed that the absolute error decreased with an increase in contact temperature, whereas, it increased with an increase in environmental integrated radiant flux density. Change in emittance had little effect on the absolute error. A plot of the difference between temperature and band radiance temperature vs. emittance was provided for the wavelength intervals: 4.5 to 5.5 microns, 8 to 13.5 microns, and 10.2 to 12.5 microns.

  18. A lightweight ground penetrating radar

    SciTech Connect

    Koppenjan, S.K.; Allen, C.M.; Gardner, D.; Wong, H.R.

    1998-12-31

    The detection of buried objects, particularly unexploded ordnance (UXO), has gained significant interest in the US in the late 1990s. The desire to remediate the thousands of sites worldwide has become an increasing humanitarian concern. The application of radar to this problem has received renewed attention. Bechtel Nevada, Special Technologies Laboratory (STL) has developed several frequency modulated, continuous wave (FM-CW) ground penetrating radar (GPR) units for the US Department of Energy since 1984. To meet these new technical requirements for high resolution data and UXO detection, STL is moving forward with advances to GPR technology, signal processing, and imaging with the development of an innovative system. The goal is to design and fabricate a lightweight, battery operated unit that does not require surface contact and can be operated by a novice user.

  19. Two terminal micropower radar sensor

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground.

  20. Two terminal micropower radar sensor

    DOEpatents

    McEwan, T.E.

    1995-11-07

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground. 3 figs.

  1. Identification of scintillation signatures on GPS signals originating from plasma structures detected with EISCAT incoherent scatter radar along the same line of sight.

    PubMed

    Forte, Biagio; Coleman, Chris; Skone, Susan; Häggström, Ingemar; Mitchell, Cathryn; Da Dalt, Federico; Panicciari, Tommaso; Kinrade, Joe; Bust, Gary

    2017-01-01

    Ionospheric scintillation originates from the scattering of electromagnetic waves through spatial gradients in the plasma density distribution, drifting across a given propagation direction. Ionospheric scintillation represents a disruptive manifestation of adverse space weather conditions through degradation of the reliability and continuity of satellite telecommunication and navigation systems and services (e.g., European Geostationary Navigation Overlay Service, EGNOS). The purpose of the experiment presented here was to determine the contribution of auroral ionization structures to GPS scintillation. European Incoherent Scatter (EISCAT) measurements were obtained along the same line of sight of a given GPS satellite observed from Tromso and followed by means of the EISCAT UHF radar to causally identify plasma structures that give rise to scintillation on the co-aligned GPS radio link. Large-scale structures associated with the poleward edge of the ionospheric trough, with auroral arcs in the nightside auroral oval and with particle precipitation at the onset of a substorm were indeed identified as responsible for enhanced phase scintillation at L band. For the first time it was observed that the observed large-scale structures did not cascade into smaller-scale structures, leading to enhanced phase scintillation without amplitude scintillation. More measurements and theory are necessary to understand the mechanism responsible for the inhibition of large-scale to small-scale energy cascade and to reproduce the observations. This aspect is fundamental to model the scattering of radio waves propagating through these ionization structures. New insights from this experiment allow a better characterization of the impact that space weather can have on satellite telecommunications and navigation services.

  2. Identification of scintillation signatures on GPS signals originating from plasma structures detected with EISCAT incoherent scatter radar along the same line of sight

    PubMed Central

    Coleman, Chris; Skone, Susan; Häggström, Ingemar; Mitchell, Cathryn; Da Dalt, Federico; Panicciari, Tommaso; Kinrade, Joe; Bust, Gary

    2017-01-01

    Abstract Ionospheric scintillation originates from the scattering of electromagnetic waves through spatial gradients in the plasma density distribution, drifting across a given propagation direction. Ionospheric scintillation represents a disruptive manifestation of adverse space weather conditions through degradation of the reliability and continuity of satellite telecommunication and navigation systems and services (e.g., European Geostationary Navigation Overlay Service, EGNOS). The purpose of the experiment presented here was to determine the contribution of auroral ionization structures to GPS scintillation. European Incoherent Scatter (EISCAT) measurements were obtained along the same line of sight of a given GPS satellite observed from Tromso and followed by means of the EISCAT UHF radar to causally identify plasma structures that give rise to scintillation on the co‐aligned GPS radio link. Large‐scale structures associated with the poleward edge of the ionospheric trough, with auroral arcs in the nightside auroral oval and with particle precipitation at the onset of a substorm were indeed identified as responsible for enhanced phase scintillation at L band. For the first time it was observed that the observed large‐scale structures did not cascade into smaller‐scale structures, leading to enhanced phase scintillation without amplitude scintillation. More measurements and theory are necessary to understand the mechanism responsible for the inhibition of large‐scale to small‐scale energy cascade and to reproduce the observations. This aspect is fundamental to model the scattering of radio waves propagating through these ionization structures. New insights from this experiment allow a better characterization of the impact that space weather can have on satellite telecommunications and navigation services. PMID:28331778

  3. Identification of scintillation signatures on GPS signals originating from plasma structures detected with EISCAT incoherent scatter radar along the same line of sight

    NASA Astrophysics Data System (ADS)

    Forte, Biagio; Coleman, Chris; Skone, Susan; Häggström, Ingemar; Mitchell, Cathryn; Da Dalt, Federico; Panicciari, Tommaso; Kinrade, Joe; Bust, Gary

    2017-01-01

    Ionospheric scintillation originates from the scattering of electromagnetic waves through spatial gradients in the plasma density distribution, drifting across a given propagation direction. Ionospheric scintillation represents a disruptive manifestation of adverse space weather conditions through degradation of the reliability and continuity of satellite telecommunication and navigation systems and services (e.g., European Geostationary Navigation Overlay Service, EGNOS). The purpose of the experiment presented here was to determine the contribution of auroral ionization structures to GPS scintillation. European Incoherent Scatter (EISCAT) measurements were obtained along the same line of sight of a given GPS satellite observed from Tromso and followed by means of the EISCAT UHF radar to causally identify plasma structures that give rise to scintillation on the co-aligned GPS radio link. Large-scale structures associated with the poleward edge of the ionospheric trough, with auroral arcs in the nightside auroral oval and with particle precipitation at the onset of a substorm were indeed identified as responsible for enhanced phase scintillation at L band. For the first time it was observed that the observed large-scale structures did not cascade into smaller-scale structures, leading to enhanced phase scintillation without amplitude scintillation. More measurements and theory are necessary to understand the mechanism responsible for the inhibition of large-scale to small-scale energy cascade and to reproduce the observations. This aspect is fundamental to model the scattering of radio waves propagating through these ionization structures. New insights from this experiment allow a better characterization of the impact that space weather can have on satellite telecommunications and navigation services.

  4. Comments on radar interference sources and mitigation techniques

    NASA Astrophysics Data System (ADS)

    Doerry, A. W.

    2015-05-01

    Radar Intelligence, Surveillance, and Reconnaissance (ISR) does not always involve cooperative or even friendly environments or targets. The environment in general, and an adversary in particular, may offer numerous characteristics and impeding techniques to diminish the effectiveness of a radar ISR sensor. These generally fall under the banner of jamming, spoofing, or otherwise interfering with the Electromagnetic (EM) signals required by the radar sensor. Consequently mitigation techniques are often prudent to retain efficacy of the radar sensor. We discuss in general terms a number of mitigation techniques.

  5. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  6. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  7. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  8. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  9. 47 CFR 15.515 - Technical requirements for vehicular radar systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system...

  10. Emittance Characteristics of High-Brightness H- Ion Sources

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Stockli, M. P.; Keller, R.; Thomae, R. W.; Thomason, J.; Sherman, J.; Alessi, J.

    2002-11-01

    A survey of emittance characteristics from high-brightness, H- ion sources has been undertaken. Representative examples of each important type of H- source for accelerator application are investigated: A magnetron surface plasma source (BNL) a multi-cusp-surface-conversion source (LANL) a Penning source (RAL-ISIS) and a multi-cusp-volume source (LBNL). Presently, comparisons between published emittance values from different ion sources are difficult largely because of different definitions used in reported emittances and the use of different data reduction techniques in analyzing data. Although seldom discussed in the literature, rms-emittance values often depend strongly on the method employed to separate real beam from background. In this work, the problem of data reduction along with software developed for emittance analysis is discussed. Raw emittance data, obtained from the above laboratories, is analyzed using a single technique and normalized rms and 90% area-emittance values are determined along with characteristic emittance versus beam fraction curves.

  11. Alpine radar conversion for LAWR

    NASA Astrophysics Data System (ADS)

    Savina, M.; Burlando, P.

    2012-04-01

    The Local Area Weather Radar (LAWR) is a ship-born weather radar system operating in X-band developed by the DHI Group to detect precipitation in urban areas. To date more than thirty units are installed in different settings around the world. A LAWR was also deployed in the Alps, at 3883 m a.s.l. on the Kl. Matterhorn (Valais, Switzerland). This was the highest LAWR of the world and it led to the development of an Alpine LAWR system that, besides featuring important technological improvements needed to withstand the severe Alpine conditions, required the development of a new Alpine Radar COnversion Model (ARCOM), which is the main focus of this contribution. The LAWR system is equipped with the original FURUNO fan-beam slotted antenna and the original logarithmic receiver, which limits the radar observations to the video signal (L) withour providing the reflectivity (Z). The beam is 0.95 deg wide and 20 deg high. It can detect precipitation to a max range of 60 km. In order to account for the limited availability of raw signal and information and the specific mountain set-up, the conversion model had to be developed differently from the state-of-the-art radar conversion technique used for this class of radars. In particular, the ARCOM is based on a model used to simulate a spatial dependent factor, hereafter called ACF, which is in turn function of parameters that take in account climatological conditions, also used in other conversion methods, but additionally accounting for local radar beam features and for orographic forcings such as the effective sampling power (sP), which is modelled by means of antenna pattern, geometric ground clutter and their interaction. The result is a conversion factor formulated to account for a range correction that is based on the increase of the sampling volume, partial beam blocking and local climatological conditions. The importance of the latter in this study is double with respect to the standard conversion technique for this

  12. Light modulated switches and radio frequency emitters

    DOEpatents

    Wilson, Mahlon T.; Tallerico, Paul J.

    1982-01-01

    The disclosure relates to a light modulated electron beam driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  13. Light modulated electron beam driven radiofrequency emitter

    DOEpatents

    Wilson, M.T.; Tallerico, P.J.

    1979-10-10

    The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  14. Aluminum oxide film thickness and emittance

    SciTech Connect

    Thomas, J.K.; Ondrejcin, R.S.

    1991-11-01

    Aluminum reactor components which are not actively cooled could be subjected to high temperatures due to gamma heating after the core coolant level dropped during the ECS phase of a hypothetical LOCA event. Radiative heat transfer is the dominant heat transfer process in this scenario and therefore the emittance of these components is of interest. Of particular interest are the safety rod thimbles and Mark 60B blanket assemblies; for the K Reactor, these components have been exposed to low temperature (< 55{degrees}C) moderator for about a year. The average moderator temperature was assumed to be 30{degrees}C. The Al oxide film thickness at this temperature, after one year of exposure, is predicted to be 6.4 {mu}m {plus minus} 10%; insensitive to exposure time. Dehydration of the film during the gamma heating accident would result in a film thickness of 6.0 {mu}m {plus minus} 11%. Total hemispherical emittance is predicted to be 0.69 at 96{degrees}C, decreasing to 0.45 at 600{degrees}C. Some phenomena which would tend to yield thicker oxide films in the reactor environment relative to those obtained under experimental conditions were neglected and the predicted film thickness values are therefore conservative. The emittance values predicted for a given film thickness are also conservative. The conservativisms inherent in the predicted emittance are particularly relevant for uncertainty analysis of temperatures generated using these values.

  15. Aluminum oxide film thickness and emittance

    SciTech Connect

    Thomas, J.K.; Ondrejcin, R.S.

    1991-11-01

    Aluminum reactor components which are not actively cooled could be subjected to high temperatures due to gamma heating after the core coolant level dropped during the ECS phase of a hypothetical LOCA event. Radiative heat transfer is the dominant heat transfer process in this scenario and therefore the emittance of these components is of interest. Of particular interest are the safety rod thimbles and Mark 60B blanket assemblies; for the K Reactor, these components have been exposed to low temperature (< 55{degrees}C) moderator for about a year. The average moderator temperature was assumed to be 30{degrees}C. The Al oxide film thickness at this temperature, after one year of exposure, is predicted to be 6.4 {mu}m {plus_minus} 10%; insensitive to exposure time. Dehydration of the film during the gamma heating accident would result in a film thickness of 6.0 {mu}m {plus_minus} 11%. Total hemispherical emittance is predicted to be 0.69 at 96{degrees}C, decreasing to 0.45 at 600{degrees}C. Some phenomena which would tend to yield thicker oxide films in the reactor environment relative to those obtained under experimental conditions were neglected and the predicted film thickness values are therefore conservative. The emittance values predicted for a given film thickness are also conservative. The conservativisms inherent in the predicted emittance are particularly relevant for uncertainty analysis of temperatures generated using these values.

  16. Simple-to-prepare multipoint field emitter

    NASA Astrophysics Data System (ADS)

    Sominskii, G. G.; Taradaev, E. P.; Tumareva, T. A.; Mishin, M. V.; Kornishin, S. Yu.

    2015-07-01

    We investigate multitip field emitters prepared by electroerosion treatment of the surface of molybdenum samples. Their characteristics are determined for operation with a protecting activated fullerene coating. Our experiments indicate that such cathodes are promising for high-voltage electron devices operating in technical vacuum.

  17. Emittance growth from electron beam modulation

    SciTech Connect

    Blaskiewicz, M.

    2009-12-01

    In linac ring colliders like MeRHIC and eRHIC a modulation of the electron bunch can lead to a modulation of the beam beam tune shift and steering errors. These modulations can lead to emittance growth. This note presents simple formulas to estimate these effects which generalize some previous results.

  18. Modern Radar Techniques for Geophysical Applications: Two Examples

    NASA Technical Reports Server (NTRS)

    Arokiasamy, B. J.; Bianchi, C.; Sciacca, U.; Tutone, G.; Zirizzotti, A.; Zuccheretti, E.

    2005-01-01

    The last decade of the evolution of radar was heavily influenced by the rapid increase in the information processing capabilities. Advances in solid state radio HF devices, digital technology, computing architectures and software offered the designers to develop very efficient radars. In designing modern radars the emphasis goes towards the simplification of the system hardware, reduction of overall power, which is compensated by coding and real time signal processing techniques. Radars are commonly employed in geophysical radio soundings like probing the ionosphere; stratosphere-mesosphere measurement, weather forecast, GPR and radio-glaciology etc. In the laboratorio di Geofisica Ambientale of the Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy, we developed two pulse compression radars. The first is a HF radar called AIS-INGV; Advanced Ionospheric Sounder designed both for the purpose of research and for routine service of the HF radio wave propagation forecast. The second is a VHF radar called GLACIORADAR, which will be substituting the high power envelope radar used by the Italian Glaciological group. This will be employed in studying the sub glacial structures of Antarctica, giving information about layering, the bed rock and sub glacial lakes if present. These are low power radars, which heavily rely on advanced hardware and powerful real time signal processing. Additional information is included in the original extended abstract.

  19. Radar systems for a polar mission, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Komen, M. J.; Mccauley, J.; Mcmillan, S. B.; Parashar, S. K.

    1977-01-01

    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources is examined. Synthetic aperture radars form a class of side-looking airborne radar, often referred to as coherent SLAR, which permits fine-resolution radar imagery to be generated at long operating ranges by the use of signal processing techniques. By orienting the antenna beam orthogonal to the motion of the spacecraft carrying the radar, a one-dimensional imagery ray system is converted into a two-dimensional or terrain imaging system. The radar's ability to distinguish - or resolve - closely spaced transverse objects is determined by the length of the pulse. The transmitter components receivers, and the mixer are described in details.

  20. 30. Perimeter acquisition radar building room #318, showing radar control. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Perimeter acquisition radar building room #318, showing radar control. Console and line printers - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  1. 3. VIEW NORTHWEST, height finder radar towers, and radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTHWEST, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  2. Stentor long range ground surveillance radar

    NASA Astrophysics Data System (ADS)

    Stoll, P.

    The Stentor radar is designed to detect, recognize, and locate moving targets such as infantry, ground vehicles, helicopters, low-flying aircraft, and boats. It can be transported without difficulty and operated by unskilled personnel. Stentor's longer range gives both an earlier warning time and a reinforced detection capability at shorter distances, even on very small targets. It is a pulsed radar that eliminates fixed echoes by coherent reception and Doppler filtering. The antenna unit incorporates all the parts necessary for the transmission, reception, and processing of the radar signal. It comprises six distinct subassemblies: a conventional antenna, an antenna-bearing mechanism, a transmitter-receiver unit, a signal-processing unit, a power supply module, and a tripod for mounting the antenna unit.

  3. Optimal radar waveform design for moving target

    NASA Astrophysics Data System (ADS)

    Zhu, Binqi; Gao, Yesheng; Wang, Kaizhi; Liu, Xingzhao

    2016-07-01

    An optimal radar waveform-design method is proposed to detect moving targets in the presence of clutter and noise. The clutter is split into moving and static parts. Radar-moving target/clutter models are introduced and combined with Neyman-Pearson criteria to design optimal waveforms. Results show that optimal waveform for a moving target is different with that for a static target. The combination of simple-frequency signals could produce maximum detectability based on different noise-power spectrum density situations. Simulations show that our algorithm greatly improves signal-to-clutter plus noise ratio of radar system. Therefore, this algorithm may be preferable for moving target detection when prior information on clutter and noise is available.

  4. Planetary radar studies

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Cutts, J. A.

    1981-01-01

    A catalog of lunar and radar anomalies was generated to provide a base for comparison with Venusian radar signatures. The relationships between lunar radar anomalies and regolith processes were investigated, and a consortium was formed to compare lunar and Venusian radar images of craters. Time was scheduled at the Arecibo Observatory to use the 430 MHz radar to obtain high resolution radar maps of six areas of the lunar suface. Data from 1978 observations of Mare Serenitas and Plato are being analyzed on a PDP 11/70 computer to construct the computer program library necessary for the eventual reduction of the May 1981 and subsequent data acquisitions. Papers accepted for publication are presented.

  5. What is so super about super-emitters? Characterizing methane high emitters from natural gas infrastructure

    NASA Astrophysics Data System (ADS)

    Zavala Araiza, D.; Lyon, D. R.; Alvarez, R.; Harriss, R. C.; Palacios, V.; Hamburg, S.

    2015-12-01

    Methane emissions across the natural gas supply chain are dominated at any one time by a few high-emitters (super-emitters or fat-tail of the distribution), often underrepresented in published datasets used to construct emission inventories. Characterization of high-emitters is essential for improving emission estimates based on atmospheric data (top-down) and emission inventories (bottom-up). The population of high-emitters (e.g. 10-20% of sites that account for 80-90% of the emissions) is temporally and spatially dynamic. As a consequence, it is challenging to design sampling methods and construct estimates that accurately represent their frequency and magnitude of emissions. We present new methods to derive facility-specific emission distribution functions that explicitly integrate the influence of the relatively rare super-emitters. These methods were applied in the Barnett Shale region to construct a custom emission inventory that is then compared to top-down emission estimates for the region. We offer a methodological framework relevant to the design of future sampling campaigns, in which these high-emitters are seamlessly incorporated to representative emissions distributions. This framework can be applied to heterogeneous oil and gas production regions across geographies to obtain accurate regional emission estimates. Additionally, we characterize emissions relative to the fraction of a facility's total methane throughput; an effective metric to identify sites with excess emissions resulting from avoidable operating conditions, such as malfunctioning equipment (defined here as functional super-emitters). This work suggests that identifying functional super-emitters and correcting their avoidable operating conditions would result in significant emission reductions. However, due to their spatiotemporal dynamic behavior, achieving and maintaining uniformly low emissions across the entire population of sites will require mitigation steps (e.g. leak detection

  6. Self-powered radiation detector with conductive emitter support

    SciTech Connect

    Bauer, R.F.; Goldstein, N.P.; Playfoot, K.C.

    1981-05-12

    A more reliable self-powered radiation detector structure and method of manufacture is provided by a detector structure in which a relatively ductile centrally disposed conductive emitter wire supports and is in electrical contact with a generally tubular emitter electrode. The detector is fabricated by swaging and the ductile center wire insures that electrical discontinuities of the emitter are minimized.

  7. Facet engineering of high power single emitters

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Levi, Moshe; Shamay, Moshe; Tesler, Renana; Rappaport, Noam; Don, Yaroslav; Karni, Yoram; Schnitzer, Itzhak; Sicron, Noam; Shusterman, Sergey

    2011-03-01

    The ever increasing demand for high-power, high-reliability operation of single emitters at 9xx nm wavelengths requires the development of laser diodes with improved facet regions immune to both catastrophic and wear-out failure modes. In our study, we have evaluated several laser facet definition technologies in application to 90 micron aperture single emitters in asymmetric design (In)GaAs/AlGaAs based material emitting at 915, 925 and 980nm. A common epitaxy and emitter design makes for a straightforward comparison of the facet technologies investigated. Our study corroborates a clear trend of increasing difficulty in obtaining reliable laser operation from 980nm down to 915nm. At 980nm, one can employ dielectric facet passivation with a pre-clean cycle delivering a device lifetime in excess of 3,000 hours at increasing current steps. At 925nm, quantum-well intermixing can be used to define non-absorbing mirrors giving good device reliability, albeit with a large efficiency penalty. Vacuum cleaved emitters have delivered excellent reliability at 915nm, and can be expected to perform just as well at 925 and 980nm. Epitaxial regrowth of laser facets is under development and has yet to demonstrate an appreciable reliability improvement. Only a weak correlation between start-of-life catastrophic optical mirror damage (COMD) levels and reliability was established. The optimized facet design has delivered maximum powers in excess of 19 MW/sq.cm (rollover limited) and product-grade 980nm single emitters with a slope efficiency of >1 W/A and a peak efficiency of >60%. The devices have accumulated over 1,500 hours of CW operation at 11W. A fiber-coupled device emits 10W ex-fiber with 47% efficiency.

  8. Development of a Low-Cost UAV Doppler Radar Data System

    NASA Technical Reports Server (NTRS)

    Knuble, Joseph; Li, Lihua; Heymsfield, Gerry

    2005-01-01

    A viewgraph presentation on the design of a low cost unmanned aerial vehicle (UAV) doppler radar data system is presented. The topics include: 1) Science and Mission Background; 2) Radar Requirements and Specs; 3) Radar Realization: RF System; 4) Processing of RF Signal; 5) Data System Design Process; 6) Can We Remove the DSP? 7) Determining Approximate Speed Requirements; 8) Radar Realization: Data System; 9) Data System Operation; and 10) Results.

  9. Approximation of Integrals Via Monte Carlo Methods, With An Application to Calculating Radar Detection Probabilities

    DTIC Science & Technology

    2005-03-01

    synthetic aperature radar and radar detec- tion using both software modelling and mathematical analysis and techniques. vi DSTO–TR–1692 Contents 1...joined DSTO in 1990, where he has been part of research efforts in the areas of target radar cross section, digital signal processing, inverse ...Approximation of Integrals via Monte Carlo Methods, with an Application to Calculating Radar Detection Probabilities Graham V. Weinberg and Ross

  10. An 11-CM Full-Matrix Polarimetric Radar for Meteorological Research

    DTIC Science & Technology

    1991-06-26

    Geophysics Directorate operates a unique 11-cm (S- band ) coherent polarimetric radar . The radar can transmit signals of alternating orthogonal...of Switchable Circulator Network 8 iv Preface This report describes the 11-cm (S- band ) Doppler radar operated by the Ground Based Remote Sensing...wavelength (S- band ) Doppler radar operated by the Geophysics Directorate in Sudbury, Mass., 1 has been used for several years for investigations of the

  11. Calculation of radar signal delays in the vicinity of the Sun due to the contribution of a Yukawa correction term in the gravitational potential

    NASA Astrophysics Data System (ADS)

    Haranas, Ioannis; Ragos, Omiros

    2011-07-01

    There has been a renewed interest in the recent years in the possibility of deviations from the predictions of Newton's "inverse-square law" of universal gravitation. One of the reasons for renewing this interest lies in various theoretical attempts to construct a unified elementary particle theory, in which there is a natural prediction of new forces over macroscopic distances. Therefore the existence of such a force would only coexist with gravity, and in principle could only be detected as a deviation from the inverse square law, or in the "universality of free fall" experiments. New experimental techniques such that of Sagnac interferometry can help explore the range of the Yukawa correction λ≥1014 m where such forces might be present. It may be, that future space missions might be operating in this range which has been unexplored for very long time. To study the effect of the Yukawa correction to the gravitational potential and its corresponding signal delay in the vicinity of the Sun, we use a spherically symmetric modified space time metric where the Yukawa correction its added to the gravitational potential. Next, the Yukawa correction contribution to the signal delay is evaluated. In the case where the distance of closest approach is much less than the range λ, it results to a signal time delay that satisfies the relation t( b< λ)≅37.7 t( b= λ).

  12. SNS Emittance Scanner, Increasing Sensitivity and Performance through Noise Mitigation ,Design, Implementation and Results

    SciTech Connect

    Pogge, J.

    2006-11-20

    The Spallation Neutron Source (SNS) accelerator systems will deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. The SNS MEBT Emittance Harp consists of 16 X and 16 Y wires, located in close proximity to the RFQ, Source, and MEBT Choppers. Beam Studies for source and LINAC commissioning required an overall increase in sensitivity for halo monitoring and measurement, and at the same time several severe noise sources had to be effectively removed from the harp signals. This paper is an overview of the design approach and techniques used in increasing gain and sensitivity while maintaining a large signal to noise ratio for the emittance scanner device. A brief discussion of the identification of the noise sources, the mechanism for transmission and pick up, how the signals were improved and a summary of results.

  13. Observation and theory of the radar aurora

    SciTech Connect

    Sahr, J.D.

    1990-01-01

    Plasma density irregularities occurring near the Aurora Borealis cause scattering of HF, VHF, and UHF radio waves. Analysis of the resulting radar signal provides great detail about the spatial and temporal characteristics of these auroral E region irregularities. Observations are presented of the radar aurora from recent campaigns in northern Sweden. After reviewing the basic theory and observations of auroral electrojet irregularities, a simple nonlinear fluid theory of electrojet ion-acoustic waves is introduced, and reduced to a form of the three-wave interaction equations. This theory provides a simple mechanism for excitation of linearly stable waves at large aspect and flow angles, as well as a prediction of the power spectra that a coherent scatter radar should observe. In addition, this theory may be able to account for type 3 waves without resorting to ion gyro modes, such as the electrostatic ion-cyclotron wave. During the course of the research a simple new radar transmitting mode and signal processing algorithm was generated which very simply solves a frequency aliasing problem that often occurs in CUPRI auroral radar studies. Several new radar data analysis routines were developed, including the principally cross-beam image and scatter plots of the second versus first moments of the power spectrum of the irregularities. Analysis of vertical interferometer data shows that type 3 waves originate at ordinary electrojet altitudes, not in the upper E region, from which it is concluded that the electrostatic ion-cyclotron mode does not generate type 3 waves. The measured height of type 3 waves and other spectral analyses provide support for the pure ion-acoustic theory of type 3 waves. Suggestions are offered for hardware improvements to the CUPRI radar, new experiments to test new and existing theories.

  14. Generating nonlinear FM chirp waveforms for radar.

    SciTech Connect

    Doerry, Armin Walter

    2006-09-01

    Nonlinear FM waveforms offer a radar matched filter output with inherently low range sidelobes. This yields a 1-2 dB advantage in Signal-to-Noise Ratio over the output of a Linear FM waveform with equivalent sidelobe filtering. This report presents design and implementation techniques for Nonlinear FM waveforms.

  15. Adaptive Illumination Patterns for Radar Applications

    DTIC Science & Technology

    2006-03-01

    Losses . . . . . . . . . . . . . . . . . . . . . . . . . 44 Ri Range to the i th range ring . . . . . . . . . . . . . . . . . 44 R Signal-Dependent...Interval . . . . . . . . . . . . . . . . . . . 23 R /H Range-to-Height Ratio . . . . . . . . . . . . . . . . . . . . 51 RMB Reed Mallet and Brennan Rule...as follows: 16 AIP-TIPD Planar Array Radar Model Extensions I - I l r rr r l t i Space Time Illumination Patterns (STIP) i Ill i ti tt r ( I

  16. Radar tomography of bridge decks

    NASA Astrophysics Data System (ADS)

    Davidson, Nigel C.; Chase, Steven B.

    1998-03-01

    This paper presents the development of ground-penetrating radar bridge deck inspection systems sponsored by the Federal Highway Administration. Two radar systems have been designed and built by Lawrence Livermore National Laboratory. The HERMES bridge inspector (High-speed Electromagnetic Roadway Mapping and Evaluation System) is designed to survey the deck condition during normal traffic flow. Thus the need for traffic control during inspection is eliminated. This system employs a 64 channel antenna array covering 1.9 m in width with a sampling density of 3 cm. To investigate areas of a bridge deck that are of particular interest and require detailed inspection a slower, cart mounted radar has been produced. This system is named PERES (Precision Electromagnetic Roadway Evaluation System). The density of data coverage with PERES is 1 cm and an average or 100 samples is taken at each location to improve the signal to noise ratio. Images of the deck interior are reconstructed from the original data using synthetic aperture tomography. The target of these systems is the location of steel reinforcement, corrosion related delaminations, voids and disbonds. The final objective is for these, and other non-destructive technologies, to provide information on the condition of the nation's bridges so that funds will be spent on the structures in most need of repair.

  17. Spectral and Total Normal Emittance of Reusable Surface Insulation Materials

    NASA Technical Reports Server (NTRS)

    Kantsios, A. G.; Edwards, S. F.; Dicus, D. L.

    1973-01-01

    Measurements of spectral and total normal emittance have been made on three types of reusable external insulation materials proposed for space shuttles. Emittances were measured in the spectral range 1 to 15 micrometer at temperatures of 800 K and 1100 K using a radiometric measurement technique. Results indicated that the total normal emittance of these materials was less than 0.8 between 800 K and 1300 K. The total normal emittance decreased with increasing temperature. The three ceramic coating candidate materials exhibited a similar spectral emittance distribution.

  18. Observation and Theory of the Radar Aurora

    NASA Astrophysics Data System (ADS)

    Sahr, John David

    1990-01-01

    Plasma density irregularities occurring near the Aurora Borealis cause scattering of HF, VHF, and UHF radio waves. The scattering is so strong that a small radar, such a the Cornell University Portable Radar Interferometer (CUPRI), can easily detect this "radar aurora." Analysis of the resulting radar signal provides great detail about the spatial and temporal characteristics of these auroral E region irregularities. We present observations of the radar aurora from recent campaigns in northern Sweden. After reviewing the basic theory and observations of auroral electrojet irregularities, we introduce a simple nonlinear fluid theory of electrojet ion-acoustic waves, and reduce it to a form of the "three-wave interaction" equations. This theory provides a simple mechanism for excitation of linearly stable waves at large aspect and flow angles, as well as a prediction of the power spectra that a coherent scatter radar should observe. In addition, this theory may be able account for "type 3" waves without resorting to ion gyro modes, such as the electrostatic ion-cyclotron wave. During the course of our research we have generated a simple new radar transmitting mode and signal processing algorithm which very simply solves a frequency aliasing problem that often occurs in CUPRI auroral radar studies when a single-pulse spectral mode is used. Several new radar data analysis routines have been developed, including principally the "cross-beam image" and scatter plots of the second versus first moments of the power spectrum of the irregularities. Analysis of vertical interferometer data shows that "type 3" waves originate at ordinary electrojet altitudes, not in the upper E region, from which we conclude that the electrostatic ion-cyclotron mode does not generate "type 3" waves. The measured height of type 3 waves and other spectral analyses provide support for our pure ion -acoustic theory of type 3 waves. In closing, we offer suggestions for hardware improvements to the

  19. Observation and theory of the radar aurora

    NASA Astrophysics Data System (ADS)

    Sahr, John David

    Plasma density irregularities occurring near the Aurora Borealis cause scattering of HF, VHF, and UHF radio waves. The scattering is so strong that a small radar, such as the Cornell University Portable Radar Interferometer (CUPRI), can easily detect this radar aurora. Analysis of the resulting radar signal provides great detail about the spatial and temporal characteristics of these auroral E region irregularities. Observations are presented of the radar aurora from recent campaigns in northern Sweden. After reviewing the basic theory and observations of auroral electrojet irregularities, a simple nonlinear fluid theory of electrojet ion-acoustic waves is introduced, and reduced to a form of the three-wave interaction equations. This theory provides a simple mechanism for excitation of linearly stable waves at large aspect and flow angles, as well as a prediction of the power spectra that a coherent scatter radar should observe. In addition, this theory may be able to account for type 3 waves without resorting to ion gyro modes, such as the electrostatic ion-cyclotron wave. During the course of the research a simple new radar transmitting mode and signal processing algorithm was generated which very simply solves a frequency aliasing problem that often occurs in CUPRI auroral radar studies when a single-pulse spectral mode is used. Several new radar data analysis routines were developed, including the principally cross-beam image and scatter plots of the second versus first moments of the power spectrum of the irregularities. Analysis of vertical interferometer data shows that type 3 waves originate at ordinary electrojet altitudes, not in the upper E region, from which it is concluded that the electrostatic ion-cyclotron mode does not generate type 3 waves. The measured height of type 3 waves and other spectral analyses provide support for the pure ion-acoustic theory of type 3 waves. Suggestions are offered for hardware improvements to the CUPRI radar, new

  20. UAS-Based Radar Sounding of Ice

    NASA Astrophysics Data System (ADS)

    Hale, R. D.; Keshmiri, S.; Leuschen, C.; Ewing, M.; Yan, J. B.; Rodriguez-Morales, F.; Gogineni, S.

    2014-12-01

    The University of Kansas Center for Remote Sensing of Ice Sheets developed two Unmanned Aerial Systems (UASs) to support polar research. We developed a mid-range UAS, called the Meridian, for operating a radar depth sounder/imager at 195 MHz with an eight-element antenna array. The Meridian weighs 1,100 lbs, has a 26-foot wingspan, and a range of 950 nm at its full payload capacity of 120 lbs. Ice-penetrating radar performance drove the configuration design, though additional payloads and sensors were considered to ensure adaptation to multi-mission science payloads. We also developed a short range UAS called the G1X for operating a low-frequency radar sounder that operates at 14 and 35 MHz. The G1X weighs 85 lbs, has a 17-foot wingspan, and a range of about 60 nm per gallon of fuel. The dual-frequency HF/VHF radar depth sounder transmits at 100 W peak power at a pulse repetition frequency of 10 KHz and weighs approximately 4.5 lbs. We conducted flight tests of the G1X integrated with the radar at the Sub-glacial Lake Whillans ice stream and the WISSARD drill site. The tests included pilot-controlled and fully autonomous flights to collect data over closely-spaced lines to synthesize a 2-D aperture. We obtained clear bed echoes with a signal-to-noise (S/N) ratio of more than 50 dB at this location. These are the first-ever successful soundings of glacial ice with a UAS-based radar. Although ice attenuation losses in this location are low in comparison to more challenging targets, in-field performance improvements to the UAS and HF/VHF radar system enabled significant gains in the signal-to-noise ratio, such that the system can now be demonstrated on more challenging outlet glaciers. We are upgrading the G1X UAS and radar system for further tests and data collection in Greenland. We are reducing the weight and volume of the radar, which, when coupled with further reductions in airframe and avionics weight and a larger fuel bladder, will offer extended range. Finally

  1. Phase noise effects on turbulent weather radar spectrum parameter estimation

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil; Baxa, Ernest G., Jr.

    1990-01-01

    Accurate weather spectrum moment estimation is important in the use of weather radar for hazardous windshear detection. The effect of the stable local oscillator (STALO) instability (jitter) on the spectrum moment estimation algorithm is investigated. Uncertainty in the stable local oscillator will affect both the transmitted signal and the received signal since the STALO provides transmitted and reference carriers. The proposed approach models STALO phase jitter as it affects the complex autocorrelation of the radar return. The results can therefore by interpreted in terms of any source of system phase jitter for which the model is appropriate and, in particular, may be considered as a cumulative effect of all radar system sources.

  2. DEVELOPMENT OF EMITTANCE ANALYSIS SOFTWARE FOR ION BEAM CHARACTERIZATION

    SciTech Connect

    Padilla, M. J.; Liu, Y.

    2007-01-01

    Transverse beam emittance is a crucial property of charged particle beams that describes their angular and spatial spread. It is a fi gure of merit frequently used to determine the quality of ion beams, the compatibility of an ion beam with a given beam transport system, and the ability to suppress neighboring isotopes at on-line mass separator facilities. Generally a high quality beam is characterized by a small emittance. In order to determine and improve the quality of ion beams used at the Holifi eld Radioactive Ion beam Facility (HRIBF) for nuclear physics and nuclear astrophysics research, the emittances of the ion beams are measured at the off-line Ion Source Test Facilities. In this project, emittance analysis software was developed to perform various data processing tasks for noise reduction, to evaluate root-mean-square emittance, Twiss parameters, and area emittance of different beam fractions. The software also provides 2D and 3D graphical views of the emittance data, beam profi les, emittance contours, and RMS. Noise exclusion is essential for accurate determination of beam emittance values. A Self-Consistent, Unbiased Elliptical Exclusion (SCUBEEx) method is employed. Numerical data analysis techniques such as interpolation and nonlinear fi tting are also incorporated into the software. The software will provide a simplifi ed, fast tool for comprehensive emittance analysis. The main functions of the software package have been completed. In preliminary tests with experimental emittance data, the analysis results using the software were shown to be accurate.

  3. Edge enhancement control in linear arrays of ungated field emitters

    NASA Astrophysics Data System (ADS)

    Harris, J. R.; Jensen, K. L.; Shiffler, D. A.

    2016-01-01

    In arrays of ungated field emitters, the field enhancement factor of each emitter decreases as the distance between the emitters decreases, an effect known as screening. At the edge of these arrays, emitters experience reduced screening, leading to higher field enhancement factors than emitters at the array center, causing nonuniform emission across the array. Here, we consider this effect in linear arrays of ungated field emitters spaced at distances comparable to their heights, which is the regime that generally maximizes their average current density. A Line Charge Model is used to assess the degree to which these edge effects propagate into the array interior, and to study the impact of varying the height, location, and tip radius of emitters at the ends of an array on the edge enhancement. It is shown that each of these techniques can accomplish this edge enhancement control, but each has advantages and disadvantages that will be discussed.

  4. Extracting radar micro-Doppler signatures of helicopter rotating rotor blades using K-band radars

    NASA Astrophysics Data System (ADS)

    Chen, Rachel; Liu, Baokun

    2014-06-01

    Helicopter identification has been an attractive topic. In this paper, we applied radar micro-Doppler signatures to identify helicopter. For identifying the type of a helicopter, besides its shape and size, the number of blades, the length of the blade, and the rotation rate of the rotor are important features, which can be estimated from radar micro-Doppler signatures of the helicopter's rotating rotor blades. In our study, K-band CW/FMCW radars are used for collecting returned signals from helicopters. By analyzing radar micro-Doppler signatures, we can estimate the number of blades, the length of the blade, the angular rotation rate of the rotating blade, and other necessary parameters for identifying the type of a helicopter.

  5. Optimal frequency range for medical radar measurements of human heartbeats using body-contact radar.

    PubMed

    Brovoll, Sverre; Aardal, Øyvind; Paichard, Yoann; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik

    2013-01-01

    In this paper the optimal frequency range for heartbeat measurements using body-contact radar is experimentally evaluated. A Body-contact radar senses electromagnetic waves that have penetrated the human body, but the range of frequencies that can be used are limited by the electric properties of the human tissue. The optimal frequency range is an important property needed for the design of body-contact radar systems for heartbeat measurements. In this study heartbeats are measured using three different antennas at discrete frequencies from 0.1 - 10 GHz, and the strength of the received heartbeat signal is calculated. To characterize the antennas, when in contact with the body, two port S-parameters(†) are measured for the antennas using a pork rib as a phantom for the human body. The results shows that frequencies up to 2.5 GHz can be used for heartbeat measurements with body-contact radar.

  6. Gold-Coated Nanoelectrospray Emitters Fabricated by Gravity-Assisted Etching Self-Termination and Electroless Deposition.

    PubMed

    Zhu, Xudong; Liang, Yu; Weng, Yejing; Chen, Yuanbo; Jiang, Hao; Zhang, Lihua; Liang, Zhen; Zhang, Yukui

    2016-12-06

    To improve the stability and sensitivity of nanoelectrospray for liquid chromatography-mass spectroscopy (LC-MS) analysis, we present a new method to fabricate gold-coated emitters. Via gravity-assisted etching self-termination, the emitter with a tapered outer surface and a straight inner surface is prepared with good reproducibility, without the need of fluid introduced to protect internal surface during etching. Followed by electroless deposition, the emitter is further coated with gold film homogeneously, by which the relative standard deviation (RSD) value of total ion current in 160 h is <5%, showing good stability. Compared to that obtained by a commercial emitter, the identified protein number from 2 μg HeLa cell digests is increased over 10%, contributed by the stable electrospray and improved signal intensity of peptides. Furthermore, the integrated gold-coated emitter is prepared at the end of the ultranarrow-bore packed column (inner diameter of 25 μm), and 218 proteins are identified from 2 ng HeLa cell digests. All of these results demonstrate the great promise of such emitters for use in ultrasensitive proteome analysis.

  7. Radar illusion via metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Wei Xiang; Cui, Tie Jun

    2011-02-01

    An optical illusion is an image of a real target perceived by the eye that is deceptive or misleading due to a physiological illusion or a specific visual trick. The recently developed metamaterials provide efficient approaches to generate a perfect optical illusion. However, all existing research on metamaterial illusions has been limited to theory and numerical simulations. Here, we propose the concept of a radar illusion, which can make the electromagnetic (EM) image of a target gathered by radar look like a different target, and we realize a radar illusion device experimentally to change the radar image of a metallic target into a dielectric target with predesigned size and material parameters. It is well known that the radar signatures of metallic and dielectric objects are significantly different. However, when a metallic target is enclosed by the proposed illusion device, its EM scattering characteristics will be identical to that of a predesigned dielectric object under the illumination of radar waves. Such an illusion device will confuse the radar, and hence the real EM properties of the metallic target cannot be perceived. We designed and fabricated the radar illusion device using artificial metamaterials in the microwave frequency, and good illusion performances are observed in the experimental results.

  8. Synchronization in multistatic radar

    NASA Astrophysics Data System (ADS)

    Jubrink, H. G.

    1993-08-01

    This report gives a summary of multistatic radar principles and synchronization methods. Different methods are described using direct and indirect synchronization. The report also presents a general review of synchronization methods for the future. Two LORAN C receivers have been analyzed for use as local reference oscillators in multistatic radar.

  9. The PROUST radar

    NASA Technical Reports Server (NTRS)

    Bertin, F.; Glass, M.; Ney, R.; Petitdidier, M.

    1986-01-01

    The Stratosphere-Troposphere (ST) radar called PROUST works at 935 MHz using the same klystron and antenna as the coherent-scatter radar. The use of this equipment for ST work has required some important modifications of the transmitting system and the development of receiving, data processing and acquisition (1984,1985) equipment. The modifications are discussed.

  10. Noncooperative rendezvous radar system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A fire control radar system was developed, assembled, and modified. The baseline system and modified angle tracking system are described along with the performance characteristics of the baseline and modified systems. Proposed changes to provide additional techniques for radar evaluation are presented along with flight test data.

  11. Polarization Radar Processing Technology

    DTIC Science & Technology

    1989-10-01

    Oi"C FILE ( J qII RADC-TR-89-144 In-House Report October 1989 AD-A215 242 POLARIZATION RADAR PROCESSING TECHNOLOGY Kenneth C. Stiefvater, Russell D...NO. NO. NO. ACCESSION NO. 62702F 4506 11 58 11. TITLE (Include Security Classification) POLARIZATION RADAR PROCESSING TECHNOLOGY 12. PERSONAL AUTHOR(S

  12. Determination of radar MTF

    SciTech Connect

    Chambers, D.

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  13. Java Radar Analysis Tool

    NASA Technical Reports Server (NTRS)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  14. FIrpic: archetypal blue phosphorescent emitter for electroluminescence.

    PubMed

    Baranoff, Etienne; Curchod, Basile F E

    2015-05-14

    FIrpic is the most investigated bis-cyclometallated iridium complex in particular in the context of organic light emitting diodes (OLEDs) because of its attractive sky-blue emission, high emission efficiency, and suitable energy levels. In this Perspective we review the synthesis, structural characterisations, and key properties of this emitter. We also survey the theoretical studies and summarise a series of selected monochromatic electroluminescent devices using FIrpic as the emitting dopant. Finally we highlight important shortcomings of FIrpic as an emitter for OLEDs. Despite the large body of work dedicated to this material, it is manifest that the understanding of photophysical and electrochemical processes are only broadly understood mainly because of the different environment in which these properties are measured, i.e., isolated molecules in solvent vs. device.

  15. Photonic Crystal Emitters for Thermophotovoltaic Energy Conversion

    NASA Astrophysics Data System (ADS)

    Stelmakh, Veronika; Chan, Walker R.; Ghebrebrhan, Michael; Soljacic, Marin; Joannopoulos, John D.; Celanovic, Ivan

    2015-12-01

    This paper reports the design, fabrication, and characterization of 2D photonic crystal (PhC) thermal emitters for a millimeter-scale hydrocarbon TPV microgenerator as a possible replacement for batteries in portable microelectronics, robotics, etc. In our TPV system, combustion heats a PhC emitter to incandescence and the resulting radiation is converted by a low-bandgap TPV cell. The PhC tailors the photonic density of states to produce spectrally confined thermal emission that matches the bandgap of the TPV cell, enabling high heat-to-electricity conversion efficiency. The work builds on a previously developed fabrication process to produce a square array of cylindrical cavities in a metal substrate. We will present ongoing incremental improvements in the optical and thermo-mechanical properties, the fabrication process, and the system integration, as recently combined with fabrication using novel materials, such as sputtered coatings, to enable a monolithic system.

  16. Computing Eigen-Emittances from Tracking Data

    SciTech Connect

    Alexahin, Y.

    2014-09-18

    In a strongly nonlinear system the particle distribution in the phase space may develop long tails which contribution to the covariance (sigma) matrix should be suppressed for a correct estimate of the beam emittance. A method is offered based on Gaussian approximation of the original particle distribution in the phase space (Klimontovich distribution) which leads to an equation for the sigma matrix which provides efficient suppression of the tails and cannot be obtained by introducing weights. This equation is easily solved by iterations in the multi-dimensional case. It is also shown how the eigen-emittances and coupled optics functions can be retrieved from the sigma matrix in a strongly coupled system. Finally, the developed algorithm is applied to 6D ionization cooling of muons in HFOFO channel.

  17. Front contact solar cell with formed emitter

    DOEpatents

    Cousins, Peter John [Menlo Park, CA

    2012-07-17

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  18. Front contact solar cell with formed emitter

    DOEpatents

    Cousins, Peter John

    2014-11-04

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  19. Is there life after thermal emitters?

    NASA Astrophysics Data System (ADS)

    Malyutenko, V.

    2007-04-01

    In this report, we examine whether photonic IR emitters are able to compete with advanced thermal microemitter technology in testing and stimulating IR sensors, including forward-looking IR missile warning systems, IR search-and-track devices, and missile seekers. We consider fundamentals, technology, and parameters of photonic devices as well as their pros and cons in respect to thermal emitters. In particular, we show that photonic devices can from platform for next generation of multi-spectral and hyper-spectral dynamic scene simulation devices operating inside MWIR and LWIR bands with high spectral output density and able to simulate dynamically cold scenes (without cryogenic cooling) and low observable with very high frame rate.

  20. Reverse Emittance Exchange for Muon Colliders

    SciTech Connect

    V. Ivanov, A. Afanasev, C.M. Ankenbrandt, R.P. Johnson, G.M. Wang, S.A. Bogacz, Y.S. Derbenev

    2009-05-01

    Muon collider luminosity depends on the number of muons in the storage ring and on the transverse size of the beams in collision. Ionization cooling as it is currently envisioned will not cool the beam sizes sufficiently well to provide adequate luminosity without large muon intensities. Six-dimensional cooling schemes will reduce the longitudinal emittance of a muon beam so that smaller high frequency RF cavities can be used for later stages of cooling and for acceleration. However, the bunch length at collision energy is then shorter than needed to match the interaction region beta function. New ideas to shrink transverse beam dimensions by lengthening each bunch will help achieve high luminosity in muon colliders. Analytic expressions for the reverse emittance exchange mechanism were derived, including a new resonant method of beam focusing.

  1. Automated Terrestrial EMI Emitter Detection, Classification, and Localization

    NASA Astrophysics Data System (ADS)

    Stottler, R.; Bowman, C.; Bhopale, A.

    2016-09-01

    Clear operating spectrum at ground station antenna locations is critically important for communicating with, commanding, controlling, and maintaining the health of satellites. Electro Magnetic Interference (EMI) can interfere with these communications so tracking down the source of EMI is extremely important to prevent it from occurring in the future. The Terrestrial RFI-locating Automation with CasE based Reasoning (TRACER) system is designed to automate terrestrial EMI emitter localization and identification, providing improved space situational awareness, realizing significant manpower savings, dramatically shortening EMI response time, providing capabilities for the system to evolve without programmer involvement, and offering increased support for adversarial scenarios (e.g. jamming). TRACER has been prototyped and tested with real data (amplitudes versus frequency over time) for both satellite communication antennas and sweeping Direction Finding (DF) antennas located near them. TRACER monitors the satellite communication and DF antenna signals to detect and classify EMI using neural network technology trained on past cases of both normal communications and EMI events. Based on details of the signal (its classification, its direction and strength, etc.) one or more cases of EMI investigation methodologies are retrieved, represented as graphical behavior transition networks (BTNs), which very naturally represent the flowchart-like process often followed by experts in time pressured situations, are intuitive to SMEs, and easily edited by them. The appropriate actions, as determined by the BTN are executed and the resulting data processed by Bayesian Networks to update the probabilities of the various possible platforms and source types of the EMI. Bearing sweep of the EMI is used to determine if the EMI's platform is aerial, a ground vehicle or ship, or stationary. If moving, the Friis transmission equation is used to plot the emitter's location and compare it

  2. Equatorial MU Radar project

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mamoru; Hashiguchi, H.; Tsuda, Toshitaka; Yamamoto, Masayuki

    Research Institute for Sustainable Humanosphere, Kyoto University (RISH) has been studying the atmosphere by using radars. The first big facility was the MU (Middle and Upper atmosphere) radar installed in Shiga, Japan in 1984. This is one of the most powerful and multi-functional radar, and is successful of revealing importance of atmospheric waves for the dynamical vertical coupling processes. The next big radar was the Equatorial Atmosphere Radar (EAR) installed at Kototabang, West Sumatra, Indonesia in 2001. The EAR was operated under close collaboration with LAPAN (Indonesia National Institute for Aeronautics and Space), and conducted the long-term continuous observations of the equatorial atmosphere/ionosphere for more than 10 years. The MU radar and the EAR are both utilized for inter-university and international collaborative research program for long time. National Institute for Polar Research (NIPR) joined EISCAT Scientific Association together with Nagoya University, and developed the PANSY radar at Syowa base in Antarctica as a joint project with University of Tokyo. These are the efforts of radar study of the atmosphere/ionosphere in the polar region. Now we can find that Japan holds a global network of big atmospheric/ionospheric radars. The EAR has the limitation of lower sensitivity compared with the other big radars shown above. RISH now proposes a plan of Equatorial MU Radar (EMU) that is to establish the MU-radar class radar next to the EAR. The EMU will have an active phased array antenna with the 163m diameter and 1055 cross-element Yagis. Total output power of the EMU will be more than 500kW. The EMU can detect turbulent echoes from the mesosphere (60-80km). In the ionosphere incoherent-scatter observations of plasma density, drift, and temperature would be possible. Multi-channel receivers will realize radar-imaging observations. The EMU is one of the key facilities in the project "Study of coupling processes in the solar-terrestrial system

  3. Complementary methods of transverse emittance measurement

    SciTech Connect

    Zagel, James; Hu, Martin; Jansson, Andreas; Thurman-Keup, Randy; Yan, Ming-Jen; /Fermilab

    2008-05-01

    Several complementary transverse emittance monitors have been developed and used at the Fermilab accelerator complex. These include Ionization profile Monitors (IPM), Flying Wires, Schottky detectors and a Synchrotron Light Monitor (Synchlite). Mechanical scrapers have also been used for calibration purposes. This paper describes the various measurement devices by examining their basic features, calibration requirements, systematic uncertainties, and applications to collider operation. A comparison of results from different kinds of measurements is also presented.

  4. Emittance of a Field Emission Electron Source

    DTIC Science & Technology

    2010-01-05

    mode within the wiggler in order for the laser threshold to be reached. The mode is characterized by a waist radius w and a divergence , the product...the field line red or curved compared to a massive particle trajectory blue or straight. The field lines originate on the surface at s ,zs and...emitter surface s ,zs and along the evalu- ation plane h ,zh. The equivalent sphere characterized by a , is also shown. The red curved line

  5. Optically isolated signal coupler with linear response

    DOEpatents

    Kronberg, James W.

    1994-01-01

    An optocoupler for isolating electrical signals that translates an electrical input signal linearly to an electrical output signal. The optocoupler comprises a light emitter, a light receiver, and a light transmitting medium. The light emitter, preferably a blue, silicon carbide LED, is of the type that provides linear, electro-optical conversion of electrical signals within a narrow wavelength range. Correspondingly, the light receiver, which converts light signals to electrical signals and is preferably a cadmium sulfide photoconductor, is linearly responsive to light signals within substantially the same wavelength range as the blue LED.

  6. Calculation of day and night emittance values

    NASA Technical Reports Server (NTRS)

    Kahle, Anne B.

    1986-01-01

    In July 1983, the Thermal Infrared Multispectral Scanner (TIMS) was flown over Death Valley, California on both a midday and predawn flight within a two-day period. The availability of calibrated digital data permitted the calculation of day and night surface temperature and surface spectral emittance. Image processing of the data included panorama correction and calibration to radiance using the on-board black bodies and the measured spectral response of each channel. Scene-dependent isolated-point noise due to bit drops, was located by its relatively discontinuous values and replaced by the average of the surrounding data values. A method was developed in order to separate the spectral and temperature information contained in the TIMS data. Night and day data sets were processed. The TIMS is unique in allowing collection of both spectral emittance and thermal information in digital format with the same airborne scanner. For the first time it was possible to produce day and night emittance images of the same area, coregistered. These data add to an understanding of the physical basis for the discrimination of difference in surface materials afforded by TIMS.

  7. Goldstone Solar System Radar Waveform Generator

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    Due to distances and relative motions among the transmitter, target object, and receiver, the time-base between any transmitted and received signal will undergo distortion. Pre-distortion of the transmitted signal to compensate for this time-base distortion allows reception of an undistorted signal. In most radar applications, an arbitrary waveform generator (AWG) would be used to store the pre-calculated waveform and then play back this waveform during transmission. The Goldstone Solar System Radar (GSSR), however, has transmission durations that exceed the available memory storage of such a device. A waveform generator capable of real-time pre-distortion of a radar waveform to a given time-base distortion function is needed. To pre-distort the transmitted signal, both the baseband radar waveform and the RF carrier must be modified. In the GSSR, this occurs at the up-conversion mixing stage to an intermediate frequency (IF). A programmable oscillator (PO) is used to generate the IF along with a time-varying phase component that matches the time-base distortion of the RF carrier. This serves as the IF input to the waveform generator where it is mixed with a baseband radar waveform whose time-base has been distorted to match the given time-base distortion function producing the modulated IF output. An error control feedback loop is used to precisely control the time-base distortion of the baseband waveform, allowing its real-time generation. The waveform generator produces IF modulated radar waveforms whose time-base has been pre-distorted to match a given arbitrary function. The following waveforms are supported: continuous wave (CW), frequency hopped (FH), binary phase code (BPC), and linear frequency modulation (LFM). The waveform generator takes as input an IF with a time varying phase component that matches the time-base distortion of the carrier. The waveform generator supports interconnection with deep-space network (DSN) timing and frequency standards, and

  8. A dual-threshold radar detection system

    NASA Astrophysics Data System (ADS)

    Hammerle, K. J.

    It is known that the beam agility of a phased-array radar can be utilized to enhance target detection capability as compared to a radar which has the same power but which radiates its energy uniformly over the solid angle being surveilled. A dual-threshold approach for realizing this enhancement is examined. Quantitative results are presented parametrically for four signal fluctuation models. The study also identifies the optimum combination of dual-threshold design parameters for each target model under a wide range of imposed system constraints such as the allowed number of false alarms per beam position. It is shown that under certain imposed constraints, no enhancement is possible.

  9. Synthetic aperture radar in geosynchronous orbit

    NASA Technical Reports Server (NTRS)

    Tomiyasu, K.

    1978-01-01

    Radar images of the earth were taken with a synthetic aperture radar (SAR) from geosynchronous orbital ranges by utilizing satellite motion relative to a geostationary position. A suitable satellite motion was obtained by having an orbit plane inclined relative to the equatorial plane and by having an eccentric orbit. Potential applications of these SAR images are topography, water resource management and soil moisture determination. Preliminary calculations show that the United States can be mapped with 100 m resolution cells in about 4 hours. With the use of microwave signals the mapping can be performed day or night, through clouds and during adverse weather.

  10. Noise sources in laser radar systems.

    PubMed

    Letalick, D; Renhorn, I; Steinvall, O; Shapiro, J H

    1989-07-01

    To understand the fundamental limit of performance with a given laser radar system, the phase noise of a testbed laser radar has been investigated. Apart from the phase noise in the transmitter laser and the local oscillator laser, additional phase noise was introduced by vibrations caused by fans in power supplies and cooling systems. The stability of the mechanical structure of the platform was also found to be of great importance. Furthermore, a model for the signal variations from diffuse targets has been developed. This model takes into account the stray light, the speckle decorrelation, and Doppler shift due to moving targets.

  11. Millimeter Wave Radar Applications to Weapons Systems

    DTIC Science & Technology

    1976-06-01

    Georgia In3titute of Technology for the U.S. Army Signal Corps. TABLE III UNITED AIRCRAFT CO., NORDEN DIV., 70-GHz RADAR Power, SO0 watts peak, 0.25 watts... Georgia Institute of Technology, iI Atlanta, GA Cross Section Measurement Instrumentation Radar, RATSCAT Air Force Special Weapons Command, Holloman AFB...Branch Mr. R. Iliguera Box 15 Dr. .J. Battles • !FPO New York, NY 09510 Code b014 China Lake , CA 93555 .1 " ~123 Li . I" DISTRIBUI’ION LlbT A No. of No

  12. Can Compressed Sensing Be Applied To Dual-Polarimetric Weather Radars?

    NASA Astrophysics Data System (ADS)

    Mishra, K.; Kruger, A.; Krajewski, W. F.

    2013-12-01

    The recovery of sparsely-sampled signals has long attracted considerable research interest in various fields such as reflection seismology, microscopy, and astronomy. Recently, such recovery techniques have been formalized as a sampling method called compressed sensing (CS) which uses few linear and non-adaptive measurements to reconstruct a signal that is sparse in a known domain. Many radar and remote sensing applications require efficient and rapid data acquisition. CS techniques have, therefore, enormous potential in dramatically changing the way the radar samples and processes data. A number of recent studies have investigated CS for radar applications with emphasis on point target radars, and synthetic aperture radar (SAR) imaging. CS radar holds the promise of compressing-while-sampling, and may yield simpler receiver hardware which uses low-rate ADCs and eliminates pulse compression/matched filter. The need of fewer measurements also implies that a CS radar may need smaller dwell times without significant loss of information. Finally, CS radar data could be used for improving the quality of low-resolution radar observations. In this study, we explore the feasibility of using CS for dual-polarimetric weather radars. In order to recover a signal in CS framework, two conditions must be satisfied: sparsity and incoherence. The sparsity of weather radar measurements can be modeled in several domains such as time, frequency, joint time-frequency domain, or polarimetric measurement domains. The condition of incoherence relates to the measurement process which, in a radar scenario, would imply designing an incoherent transmit waveform or an equivalent scanning strategy with an existing waveform. In this study, we formulate a sparse signal model for precipitation targets as observed by a polarimetric weather radar. The applicability of CS for such a signal model is then examined through simulations of incoherent measurements along with real weather data obtained

  13. 4. VIEW NORTHEAST, radar tower (unknown function), prime search radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW NORTHEAST, radar tower (unknown function), prime search radar tower, emergency power building, and height finder radar tower - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  14. 5. VIEW EAST, height finder radar towers, radar tower (unknown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW EAST, height finder radar towers, radar tower (unknown function), prime search radar tower, operations building, and central heating plant - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  15. High-resolution three-dimensional imaging radar

    NASA Technical Reports Server (NTRS)

    Cooper, Ken B. (Inventor); Chattopadhyay, Goutam (Inventor); Siegel, Peter H. (Inventor); Dengler, Robert J. (Inventor); Schlecht, Erich T. (Inventor); Mehdi, Imran (Inventor); Skalare, Anders J. (Inventor)

    2010-01-01

    A three-dimensional imaging radar operating at high frequency e.g., 670 GHz, is disclosed. The active target illumination inherent in radar solves the problem of low signal power and narrow-band detection by using submillimeter heterodyne mixer receivers. A submillimeter imaging radar may use low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform. Three-dimensional images are generated through range information derived for each pixel scanned over a target. A peak finding algorithm may be used in processing for each pixel to differentiate material layers of the target. Improved focusing is achieved through a compensation signal sampled from a point source calibration target and applied to received signals from active targets prior to FFT-based range compression to extract and display high-resolution target images. Such an imaging radar has particular application in detecting concealed weapons or contraband.

  16. Emissivity Tuned Emitter for RTPV Power Sources

    SciTech Connect

    Carl M. Stoots; Robert C. O'Brien; Troy M. Howe

    2012-03-01

    Every mission launched by NASA to the outer planets has produced unexpected results. The Voyager I and II, Galileo, and Cassini missions produced images and collected scientific data that totally revolutionized our understanding of the solar system and the formation of the planetary systems. These missions were enabled by the use of nuclear power. Because of the distances from the Sun, electrical power was produced using the radioactive decay of a plutonium isotope. Radioisotopic Thermoelectric Generators (RTGs) used in the past and currently used Multi-Mission RTGs (MMRTGs) provide power for space missions. Unfortunately, RTGs rely on thermocouples to convert heat to electricity and are inherently inefficient ({approx} 3-7% thermal to electric efficiency). A Radioisotope Thermal Photovoltaic (RTPV) power source has the potential to reduce the specific mass of the onboard power supply by increasing the efficiency of thermal to electric conversion. In an RTPV, a radioisotope heats an emitter, which emits light to a photovoltaic (PV) cell, which converts the light into electricity. Developing an emitter tuned to the desired wavelength of the photovoltaic is a key part in increasing overall performance. Researchers at the NASA Glenn Research Center (GRC) have built a Thermal Photovoltaic (TPV) system, that utilizes a simulated General Purpose Heat Source (GPHS) from a MMRTG to heat a tantalum emitter. The GPHS is a block of graphite roughly 10 cm by 10 cm by 5 cm. A fully loaded GPHS produces 250 w of thermal power and weighs 1.6 kgs. The GRC system relies on the GPHS unit radiating at 1200 K to a tantalum emitter that, in turn, radiates light to a GaInAs photo-voltaic cell. The GRC claims system efficiency of conversion of 15%. The specific mass is around 167 kg/kWe. A RTPV power source that utilized a ceramic or ceramic-metal (cermet) matrix would allow for the combination of the heat source, canister, and emitter into one compact unit, and allow variation in size

  17. Research on technology of ROF using in radar

    NASA Astrophysics Data System (ADS)

    Bi, Xiaowen; Zhang, Huiyong; Liu, Caibin

    2017-01-01

    The technology of Radio over Fiber (ROF) not only has broad prospects in the field of communications, but also has great potential in the field of radar. ROF technology will be able to change the traditional structure of radar and radar network, improve their performance. The radar can be reduced to a system that has only transmitter, receiver, transmission line and antenna. Other equipment can be concentrated to the command center. The command center will be not only a data processing center, but also a signal processing center. At first, this paper analyzed the factors that influence the phase stability of microwave signal in fiber. For a short fiber, the stress in the fiber direction is the major point that influence the phase stability, other factors can be neglected. For a long fiber, all factors should be considered. And then, this paper analyzed the technical requirements of radar signal transmission, concluded that the phase stability of ROF system is the most important factor for radar, and chosen the method of phase compensation to solve this problem. At last, this paper designed a ROF link for RF transmission of radar.

  18. Radar remote sensing in biology

    USGS Publications Warehouse

    Moore, Richard K.; Simonett, David S.

    1967-01-01

    The present status of research on discrimination of natural and cultivated vegetation using radar imaging systems is sketched. The value of multiple polarization radar in improved discrimination of vegetation types over monoscopic radars is also documented. Possible future use of multi-frequency, multi-polarization radar systems for all weather agricultural survey is noted.

  19. Radar Interferometric Observations of Destabilized Rockglaciers

    NASA Astrophysics Data System (ADS)

    Strozzi, Tazio; Delaloye, Reynald; Raetzo, Hugo; Wegmuller, Urs

    2010-03-01

    Analysis of ERS-1/2 Tandem SAR interferograms for inventorying mass wasting in the periglacial belt of the Valais Alps (Switzerland) has evidenced - what was not expected before - that at least 10 rockglaciers were affected by very rapid movements of about 1 cm/day in 1995-1999. Currently, the detection of the state of activity of these very rapidly moving rockglaciers is hardly feasible with satellite SAR data, because of signal decorrelation after the 35, 46 and 11 days repeat intervals of the ENVISAT, ALOS and TerraSAR-X satellites, respectively. The role of space-borne radar interferometry as an element in a warning system is thus insignificant for these very rapid landslides, but an in- situ radar imaging system can overcome some of the limitations of satellite systems. In this contribution we present results from terrestrial radar interferometric measurements of two destabilized rockglaciers performed in August 2009.

  20. Phased-array radar for airborne systems

    NASA Astrophysics Data System (ADS)

    Tahim, Raghbir S.; Foshee, James J.; Chang, Kai

    2003-09-01

    Phased array antenna systems, which support high pulse rates and high transmit power, are well suited for radar and large-scale surveillance. Sensors and communication systems can function as the eyes and ears for ballistic missile defense applications, providing early warning of attack, target detection and identification, target tracking, and countermeasure decision. In such applications, active array radar systems that contain solid-state transmitter sources and low-noise preamplifiers for transmission and reception are preferred over the conventional radar antennas, because the phased array radar offers the advantages of power management and efficiency, reliability, signal reception, beam steering target detection. The current phased array radar designs are very large, complex and expensive and less efficient because of high RF losses in the phase control circuits used for beam scan. Several thousands of phase shifters and drivers may be required for a single system thus making the system very complex and expensive. This paper describes the phased array radar system based on high power T/R modules, wide-band radiating planar antenna elements and very low loss wide-band phase control circuits (requiring reduced power levels) for beam scan. The phase shifter design is based on micro-strip feed lines perturbed by the proximity of voltage controlled piezoelectric transducer (PET). Measured results have shown an added insertion loss of less than 1 dB for a phase shift of 450 degrees from 2 to 20 GHz. The new wideband phased array radar design provides significant reduction in size cost and weight. Compared to the conventional phased array systems, the cost saving is more than 15 to 1.

  1. Spaceborne meteorological radar studies

    NASA Technical Reports Server (NTRS)

    Meneghini, R.

    1988-01-01

    Various radar designs and methods are studied for the estimation of rainfall parameters from space. An immediate goal is to support the development of the spaceborne radar that has been proposed for the Tropical Rain Measuring Mission (TRMM). The effort is divided into two activities: a cooperative airborne rain measuring experiment with the Radio Research Laboratory of Japan (RRL), and the modelling of spaceborne weather radars. An airborne rain measuring experiment was conducted at Wallops Flight Facility in 1985 to 1986 using the dual-wavelength radar/radiometer developed by RRL. The data are presently being used to test a number of methods that are relevant to spaceborne weather radars. An example is shown of path-averaged rain rates as estimated from three methods: the standard reflectivity rain rate method (Z-R), a dual-wavelength method, and a surface reference method. The results from the experiment shows for the first time the feasibility of using attenuation methods from space. The purposes of the modelling are twofold: to understand in a quantitative manner the relationships between a particular radar design and its capability for estimating precipitation parameters and to help devise and test new methods. The models are being used to study the impact of various TRMM radar designs on the accuracy of rain rate estimation as well as to test the performance of range-profiling algorithms, the mirror-image method, and some recently devised graphical methods for the estimation of the drop size distribution.

  2. Wavelength locking of single emitters and multi-emitter modules: simulation and experiments

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Rappaport, Noam; Peleg, Ophir; Berk, Yuri; Dahan, Nir; Klumel, Genady; Baskin, Ilya; Levy, Moshe

    2016-03-01

    Wavelength-stabilized high-brightness single emitters are commonly used in fiber-coupled laser diode modules for pumping Yb-doped lasers at 976 nm, and Nd-doped ones at 808 nm. We investigate the spectral behavior of single emitters under wavelength-selective feedback from a volume Bragg (or hologram) grating (VBG) in a multi-emitter module. By integrating a full VBG model as a multi-layer thin film structure with commercial raytracing software, we simulated wavelength locking conditions as a function of beam divergence and angular alignment tolerances. Good correlation between the simulated VBG feedback strength and experimentally measured locking ranges, in both VBG misalignment angle and laser temperature, is demonstrated. The challenges of assembling multi-emitter modules based on beam-stacked optical architectures are specifically addressed, where the wavelength locking conditions must be achieved simultaneously with high fiber coupling efficiency for each emitter in the module. It is shown that angular misorientation between fast and slow-axis collimating optics can have a dramatic effect on the spectral and power performance of the module. We report the development of our NEON-S wavelength-stabilized fiber laser pump module, which uses a VBG to provide wavelength-selective optical feedback in the collimated portion of the beam. Powered by our purpose-developed high-brightness single emitters, the module delivers 47 W output at 11 A from an 0.15 NA fiber and a 0.3 nm linewidth at 976 nm. Preliminary wavelength-locking results at 808 nm are also presented.

  3. 22 W coherent GaAlAs amplifier array with 400 emitters

    NASA Technical Reports Server (NTRS)

    Krebs, D.; Herrick, R.; No, K.; Harting, W.; Struemph, F.

    1991-01-01

    Greater than 22 W of optical power has been demonstrated from a multiple-emitter, traveling-wave semiconductor amplifier, with approximately 87 percent of the output at the frequency of the injection source. The device integrates, in AlGaAs graded-index separate-confinement heterostructure single quantum well (GRINSCH-SQW) epitaxy, 400 ridge waveguide amplifiers with a coherent optical signal distribution circuit on a 12 x 6 mm chip.

  4. Filters for stochastic cooling of longitudinal beam emittance

    SciTech Connect

    Kramer, S.L.; Konecny, R.; Simpson, J.; Wright, A.J.

    1983-03-01

    The shorted stub filter (SSF) has been used extensively to provide the electronics gain shaping for stochastic cooling of longitudinal beam emittance. The repetitive notch of this filter results from the cancellation of the incident signal by the reflected signal at frequencies where the cable electrical length equals an integer number of half wavelengths. Variations in notch depth of the SSF have been approximately compensated by a rather complicated system. Dispersion of the notch frequency resulting from variation of the phase velocity can also be approximately corrected using tuned imperfections in the shorted cable. Dispersion due to imperfections in the coaxial cable can be quite significant and can only be compensated for by costly construction techniques. This paper describes another type of notch filter. Although this filter has been mentioned previously, this analysis demonstrates the advantages of this filter in providing small notch dispersion and other properties necessary for stochastic cooling systems. Because this filter uses only forward signals, it is quite insensitive to imperfections in cables and components, and can therefore be constructed from commercially available components.

  5. Radar frequency radiation

    NASA Astrophysics Data System (ADS)

    Malowicki, E.

    1981-11-01

    A method is presented for the determination of radar frequency radiation power densities that the PAVE PAWS radar system could produce in its air and ground environment. The effort was prompted by the concern of the people in the vicinity of OTIS AFB MA and BEALE AFB CA about the possible radar frequency radiation hazard of the PAVE PAWS radar. The method is based on the following main assumptions that: (a) the total field can be computed as the vector summation of the individual fields due to each antenna element; (b) the individual field can be calculated using distances for which the field point is in the far field of the antenna element. An RFR computer program was coded for the RADC HE 6180 digital computer and exercised to calculate the radiation levels in the air and ground space for the present baseline and the possible Six DB and 10 DB growth systems of the PAVE PAWS radar system at OTIS AFB MA. The average radiation levels due to the surveillance fence were computed for three regions: in the air space in front of the radar, at the radar hazard fence at OTIS AFB MA and at representative ground points in the OTIS AFB vicinity. It was concluded that the radar frequency radiation of PAVE PAWS does not present a hazard to personnel provided there is no entry to the air hazard zone or to the area within the hazard fence. The method developed offers a cost effective way to determine radiation levels from a phased array radar especially in the near field and transition regions.

  6. Delay modeling of bipolar ECL/EFL (Emitter-Coupled Logic/Emitter-Follower-Logic) circuits

    NASA Astrophysics Data System (ADS)

    Yang, Andrew T.

    1986-08-01

    This report deals with the development of a delay-time model for timing simulation of large circuits consisting of Bipolar ECL(Emitter-Coupled Logic) and EFL (Emitter-Follower-Logic) networks. This model can provide adequate information on the performance of the circuits with a minimum expenditure of computation time. This goal is achieved by the use of proper circuit transient models on which analytical delay expressions can be derived with accurate results. The delay-model developed in this report is general enough to handle complex digital circuits with multiple inputs or/and multiple levels. The important effects of input slew rate are also included in the model.

  7. SOURCESCAT - A very fine resolution radar scatterometer

    NASA Astrophysics Data System (ADS)

    Zoughi, R.; Wu, L. K.; Moore, R. K.

    1985-11-01

    A short-range, high resolution FM-CW radar system has been used to investigate the sources of backscatter in various types of crops, trees, surfaces and man-made targets. A transmitted signal bandwidth of 2.0 GHz at 10.0 GHz center frequency provides a range resolution of 11 cm. A focused parabolic antenna, providing narrow effective antenna beamwidths in both the azimuth and the elevation directions, gives a 16 cm illumination area diameter at a target range of 4.0 m. Amplitude weighting of the received signal is implemented to reduce range sidelobe levels due to the internal system reflections and leakage signals from the transmitter into the receiver. Due to this amplitude weighting, the range resolution is 11.0 cm, rather than the 6.6 cm possible with 2 GHz bandwidth. This report discusses the design steps taken in construction of their radar system.

  8. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1981-01-01

    Efforts were focused on: (1) acquisition of radar data at Arecibo; (2) examination of raw data; (3) reduction of the unmodulated data to background-free, calibrated spectra; (4) integration and coherent analyses of the phase-coded data; and (5) calculation of Doppler shifts and preliminary values for echo limb-to-limb bandwidths, radar cross sections, and circular polarization ratios. Asteroids observed to data have radar properties distinct from those of the rocky terrestrial planets and those of the icy Galilean satellites.

  9. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1981-01-01

    Software to support all stages of asteroid radar observation and data analysis is developed. First-order analysis of all data in hand is complete. Estimates of radar cross sections, circular polarization ratios, and limb-to-limb echo spectral bandwidths for asteroids 7 Iris, 16 Psyche, 97 Klotho, 1862 Apollo, and 1915 Quetzalcoatl are reported. Radar observations of two previously unobserved asteroids were conducted. An Aten asteroid, 2100 Ra-Shalom, with the smallest known semimajor axis (0.83) was detected. Preliminary data reduction indicates a circular polarization ratio comparable to those of Apollo, Quetzalcoatl, and Toro.

  10. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1984-01-01

    The initial radar observations of the mainbelt asteroids 9 Metis, 27 Euterpe, and 60 Echo are examined. For each target, data are taken simultaneously in the same sense of circular polarization as transmitted as well as in the opposite (OC) sense. Estimates of the radar cross sections provide estimates of the circular polarization ratio, and the normalized OC radar cross section. The circular polarization ratio, is comparable to values measured for other large S type asteroids and for a few much smaller, Earth approaching objects, most of the echo is due to single reflection backscattering from smooth surface elements.

  11. Radar investigation of asteroids

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    1981-11-01

    Software to support all stages of asteroid radar observation and data analysis is developed. First-order analysis of all data in hand is complete. Estimates of radar cross sections, circular polarization ratios, and limb-to-limb echo spectral bandwidths for asteroids 7 Iris, 16 Psyche, 97 Klotho, 1862 Apollo, and 1915 Quetzalcoatl are reported. Radar observations of two previously unobserved asteroids were conducted. An Aten asteroid, 2100 Ra-Shalom, with the smallest known semimajor axis (0.83) was detected. Preliminary data reduction indicates a circular polarization ratio comparable to those of Apollo, Quetzalcoatl, and Toro.

  12. Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  13. Ground penetrating radar for asparagus detection

    NASA Astrophysics Data System (ADS)

    Seyfried, Daniel; Schoebel, Joerg

    2016-03-01

    Ground penetrating radar is a promising technique for detection of buried objects. Recently, radar has more and more been identified to provide benefits for a plurality of applications, where it can increase efficiency of operation. One of these fields is the industrial automatic harvesting process of asparagus, which is performed so far by cutting the soil ridge at a certain height including all the asparagus spears and subsequently sieving the latter out of the soil. However, the height where the soil is cut is a critical parameter, since a wrong value leads to either damage of the roots of the asparagus plants or to a reduced crop yield as a consequence of too much biomass remaining in the soil. In this paper we present a new approach which utilizes ground penetrating radar for non-invasive sensing in order to obtain information on the optimal height for cutting the soil. Hence, asparagus spears of maximal length can be obtained, while keeping the roots at the same time undamaged. We describe our radar system as well as the subsequent digital signal processing steps utilized for extracting the information required from the recorded radar data, which then can be fed into some harvesting unit for setting up the optimal cutting height.

  14. Rendezvous radar for the orbital maneuvering vehicle

    NASA Technical Reports Server (NTRS)

    Locke, John W.; Olds, Keith; Parks, Howard

    1991-01-01

    This paper describes the development of the Rendezvous Radar Set (RRS) for the Orbital Maneuvering Vehicle (OMV) for the National Aeronautics and Space Administration (NASA). The RRS was to be used to locate, and then provide vectoring information to, target satellites (or Shuttle or Space Station) to aid the OMV in making a minimum-fuel-consumption approach and rendezvous. The RRS design is that of an X-Band, all solid-state, monopulse tracking, frequency hopping, pulse-Doppler radar system. The development of the radar was terminated when the OMV prime contract to TRW was terminated by NASA. At the time of the termination, the development was in the circuit design stage. The system design was virtually completed, the PDR had been held. The RRS design was based on Motorola's experiences, both in the design and production of radar systems for the US Army and in the design and production of hi-rel communications systems for NASA space programs. Experience in these fields was combined with the latest digital signal processor and micro-processor technology to design a light-weight, low-power, spaceborne radar. The antenna and antenna positioner (gimbals) technology developed for the RRS is now being used in the satellite-to-satellite communication link design for Motorola's Iridium telecommunications system.

  15. SuperDARN scalar radar equations

    NASA Astrophysics Data System (ADS)

    Berngardt, O. I.; Kutelev, K. A.; Potekhin, A. P.

    2016-10-01

    The quadratic scalar radar equations are obtained for Super Dual Auroral Radar Network (SuperDARN) radars that are suitable for the analysis and interpretation of experimental data. The paper is based on a unified approach to obtaining the radar equations for the monostatic and bistatic sounding with the use of Hamiltonian optics and ray representation of scalar Green's function and without taking into account the polarization effects. The radar equation obtained is the sum of several terms corresponding to the propagation and scattering over the different kinds of trajectories, depending on their smoothness and the possibility of reflection from the ionosphere. It is shown that the monostatic sounding in the media with significant refraction, unlike the case of refraction-free media, should be analyzed as a combination of monostatic and bistatic scattering. This leads to strong dependence of scattering amplitude on background ionospheric density due to focusing mechanism and appearance of new (bistatic) areas of effective scattering with significant distortion of the scattered signal spectrum. Selective properties of the scattering have been demonstrated as well.

  16. Synthetic range profiling in ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Pawel; Lapiński, Marian; Silko, Dariusz

    2009-06-01

    The paper describes stepped frequency continuous wave (SFCW) ground penetrating radar (GPR), where signal's frequency is discretely increased in N linear steps, each separated by a fixed ▵f increment from the previous one. SFCW radar determines distance from phase shift in a reflected signal, by constructing synthetic range profile in spatial time domain using the IFFT. Each quadrature sample is termed a range bin, as it represents the signal from a range window of length cτ/2, where τ is duration of single frequency segment. IFFT of those data samples resolves the range bin in into fine range bins of c/2N▵f width, thus creating the synthetic range profile in a GPR - a time domain approximation of the frequency response of a combination of the medium through which electromagnetic waves propagates (soil) and any targets or dielectric interfaces (water, air, other types of soil) present in the beam width of the radar. In the paper, certain practical measurements done by a monostatic SFCW GPR were presented. Due to complex nature of signal source, E5062A VNA made by Agilent was used as a signal generator, allowing number of frequency steps N to go as high as 1601, with generated frequency ranging from 300kHz to 3 GHz.

  17. KU-Band rendezvous radar performance computer simulation model

    NASA Technical Reports Server (NTRS)

    Griffin, J. W.

    1980-01-01

    The preparation of a real time computer simulation model of the KU band rendezvous radar to be integrated into the shuttle mission simulator (SMS), the shuttle engineering simulator (SES), and the shuttle avionics integration laboratory (SAIL) simulator is described. To meet crew training requirements a radar tracking performance model, and a target modeling method were developed. The parent simulation/radar simulation interface requirements, and the method selected to model target scattering properties, including an application of this method to the SPAS spacecraft are described. The radar search and acquisition mode performance model and the radar track mode signal processor model are examined and analyzed. The angle, angle rate, range, and range rate tracking loops are also discussed.

  18. Rainfall Measurement with a Ground Based Dual Frequency Radar

    NASA Technical Reports Server (NTRS)

    Takahashi, Nobuhiro; Horie, Hiroaki; Meneghini, Robert

    1997-01-01

    Dual frequency methods are one of the most useful ways to estimate precise rainfall rates. However, there are some difficulties in applying this method to ground based radars because of the existence of a blind zone and possible error in the radar calibration. Because of these problems, supplemental observations such as rain gauges or satellite link estimates of path integrated attenuation (PIA) are needed. This study shows how to estimate rainfall rate with a ground based dual frequency radar with rain gauge and satellite link data. Applications of this method to stratiform rainfall is also shown. This method is compared with single wavelength method. Data were obtained from a dual frequency (10 GHz and 35 GHz) multiparameter radar radiometer built by the Communications Research Laboratory (CRL), Japan, and located at NASA/GSFC during the spring of 1997. Optical rain gauge (ORG) data and broadcasting satellite signal data near the radar t location were also utilized for the calculation.

  19. Studies on Radar Sensor Networks

    DTIC Science & Technology

    2007-08-08

    through-foliage target detection using UWB radar sensor network based on real-world data; 2. Foliage clutter modeling using UWB radars; 3. Outdoor UWB...channel modeling based on field data; 4. Multi-target detection using radar sensor networks (theoretical studies); 5. SVD-QR and graph theory for MIMO...Superimposed code based channel assignment in multi-radio multi-channel wireless mesh networks. 15. SUBJECT TERMS Radar Sensor Network, UWB Radar, Sense

  20. Emittance measurements of Space Shuttle orbiter reinforced carbon-carbon

    NASA Technical Reports Server (NTRS)

    Caram, Jose M.; Bouslog, Stanley A.; Cunnington, George R., Jr.

    1992-01-01

    The spectral and total normal emittance of the Reinforced Carbon-Carbon (RCC) used on Space Shuttle nose cap and wing leading edges has been measured at room temperature and at surface temperatures of 1200 to 2100 K. These measurements were made on virgin and two flown RCC samples. Room temperature directional emittance data were also obtained and were used to determine the total hemispherical emittance of RCC as a function of temperature. Results of the total normal emittance for the virgin samples showed good agreement with the current RCC emittance design curve; however, the data from the flown samples showed an increase in the emittance at high temperature possibly due to exposure from flight environments.

  1. The Quantum Efficiency and Thermal Emittance of Metal Photocathodes

    SciTech Connect

    Dowell, David H.; Schmerge, John F.; /SLAC

    2009-03-04

    Modern electron beams have demonstrated the brilliance needed to drive free electron lasers at x-ray wavelengths, with the principle improvements occurring since the invention of the photocathode gun. The state-of-the-art normalized emittance electron beams are now becoming limited by the thermal emittance of the cathode. In both DC and RF photocathode guns, details of the cathode emission physics strongly influence the quantum efficiency and the thermal emittance. Therefore improving cathode performance is essential to increasing the brightness of beams. It is especially important to understand the fundamentals of cathode quantum efficiency and thermal emittance. This paper investigates the relationship between the quantum efficiency and the thermal emittance of metal cathodes using the Fermi-Dirac model for the electron distribution. We derive the thermal emittance and its relationship to the quantum efficiency, and compare our results to those of others.

  2. Characterization of radiant emitters used in food processing.

    PubMed

    Lloyd, B J; Farkas, B E; Keener, K M

    2003-01-01

    Radiant emissions from short, medium, and long wavelength thermal radiant emitter systems typically used for food processing applications were quantified. Measurements included heat flux intensity, emitter surface temperature, and spectral wavelength distribution. Heat flux measurements were found highly dependent on the incident angle and the distance from the emitter facing. The maximum flux measured was 5.4 W/cm2. Emitter surface temperature measurements showed that short wavelength radiant systems had the highest surface temperature and greatest thermal efficiency. The emitter spectral distributions showed that radiant emitter systems had large amounts of far infrared energy emission greater than 3 microm when compared to theoretical blackbody curves. The longer wavelength energy would likely cause increased surface heating for most high moisture content food materials.

  3. Rare Earth Doped Yttrium Aluminum Garnet (YAG) Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie T.; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study presents a spectral emittance model for films and cylinders of rare earth doped yttrium aluminum garnets. Good agreement between experimental and theoretical film spectral emittances was found for erbium and holmium aluminum garnets. Spectral emittances of films are sensitive to temperature differences across the film. For operating conditions of interest, the film emitter experiences a linear temperature variation whereas the cylinder emitter has a more advantageous uniform temperature. Emitter efficiency is also a sensitive function of temperature. For holminum aluminum garnet film the efficiency is 0.35 at 1446K but only 0.27 at 1270 K.

  4. Ultra-wideband short-pulse radar with range accuracy for short range detection

    SciTech Connect

    Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

    2014-10-07

    An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

  5. Properties of Lya Emitters Around the Radio Galaxy MRC 0316-257

    SciTech Connect

    Venemans, B; Rottgering, H; Miley, G; Kurk, J; De Breuck, C; van Breugel, W; Carilli, C; Ford, H; Heckman, T; Pentericci, L; McCarthy, P

    2004-08-12

    Observations of the radio galaxy MRC 0316-257 at z = 3.13 and the surrounding field are presented. Using narrow- and broad-band imaging obtained with the VLT*, 92 candidate Ly{alpha} emitters with a rest-frame equivalent width of > 15 AngstromS were selected in a {approx} 7{prime} x 7{prime} field around the radio galaxy. Spectroscopy of 40 candidate emitters resulted in the discovery of 33 emission line galaxies of which 31 are Ly{alpha} emitters with redshifts similar to that of the radio galaxy, while the remaining two galaxies turned out to be [{omicron} II] emitters. The Ly{alpha} profiles had widths (FWHM) corresponding to 120-800 kms{sup -1},with a median of 260 kms{sup -1}. Where the signal-to-noise spectra was large enough, the Ly{alpha} profiles are found to be asymmetric, with apparent absorption troughs blueward of the profile peaks, indicative of absorption along the line of sight of an {Eta}{Iota} mass of 1-5000 {mu}{circle_dot}. Besides that of the radio galaxy and one of the emitters that is an QSO, the continuum of the emitters is faint, with luminosities ranging from 1.3 L{sub *} to < 0.03 L{sub *}.The colors of the confirmed emitters are, on average, very blue. The median UV continuum slope is {beta}=-1.65, bluer than the average slope of LBGs with Ly{alpha} emitters is 2.6 {Mu}{circle_dot}{sup -1} as measured by the Ly{alpha} emission line or < 3.9 {Mu}{circle_dot}{sup -1} as measured by the UV continuum. The properties of the Ly{alpha} galaxies (faint, blue and small) are consistent with young star forming galaxies which are nearly dust free. The density of Ly{alpha} emitting galaxies in the field around MRC 0316-257 is a factor of 3.3{sup +0.5}{sub -0.4} larger compared with the density of Ly{alpha} emitters at that redshift. The velocity distribution of the spectroscopically confirmed emitters has a dispersion of 640 km s{sup -1}, corresponding to a FWHM of 1510 km s{sup -1}, which is substantially smaller than the width of the narrow

  6. Active spacecraft potential control: An ion emitter experiment. [Cluster mission

    NASA Technical Reports Server (NTRS)

    Riedler, W.; Goldstein, R.; Hamelin, M.; Maehlum, B. N.; Troim, J.; Olsen, R. C.; Pedersen, A.; Grard, R. J. L.; Schmidt, R.; Rudenauer, F.

    1988-01-01

    The cluster spacecraft are instrumented with ion emitters for charge neutralization. The emitters produce indium ions at 6 keV. The ion current is adjusted in a feedback loop with instruments measuring the spacecraft potential. The system is based on the evaporation of indium in the apex field of a needle. The design of the active spacecraft potential control instruments, and the ion emitters is presented.

  7. Separation of temperature and emittance in remotely sensed radiance measurements

    NASA Technical Reports Server (NTRS)

    Kahle, Anne B.; Alley, Ronald E.

    1992-01-01

    The remote determination of surface temperature and surface spectral emittance by use of airborne or satellite-borne thermal infrared instruments is not straightforward. The radiance measured is a function of surface temperature, the unknown surface spectral emittance, and absorption and emission in the intervening atmosphere. With a single measurement, the solution for temperature and spectral emittance is undedetermined. This article reviews two of the early approximate methods which have been fairly widely used to approach this problem.

  8. Sub-nm emittance lattice design for CANDLE storage ring

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Zanyan, G.; Sahakyan, V.; Tsakanov, V.

    2016-10-01

    The most effective way to increase the brilliance of synchrotron light sources is the reduction of beam emittance. Following the recent developments in low emittance lattice design, a new sub-nm emittance lattice based on implementation of multi-band achromat concept and application of longitudinal gradient bending magnets was developed for CANDLE storage ring. The paper presents the main design considerations, linear and non-linear beam dynamics aspects of the new lattice proposed.

  9. Thermal emittance measurements of a cesium potassium antimonide photocathode

    NASA Astrophysics Data System (ADS)

    Bazarov, Ivan; Cultrera, Luca; Bartnik, Adam; Dunham, Bruce; Karkare, Siddharth; Li, Yulin; Liu, Xianghong; Maxson, Jared; Roussel, William

    2011-05-01

    Thermal emittance measurements of a CsK2Sb photocathode at several laser wavelengths are presented. The emittance is obtained with a solenoid scan technique using a high voltage dc photoemission gun. The thermal emittance is 0.56±0.03 mm mrad/mm(rms) at 532 nm wavelength. The results are compared with a simple photoemission model and found to be in a good agreement.

  10. Emittance calculations for the Stanford Linear Collider injector

    SciTech Connect

    Sheppard, J.C.; Clendenin, J.E.; Helm, R.H.; Lee, M.J.; Miller, R.H.; Blocker, C.A.

    1983-03-01

    A series of measurements have been performed to determine the emittance of the high intensity, single bunch beam that is to be injected into the Stanford Linear Collider. On-line computer programs were used to control the Linac for the purpose of data acquisition and to fit the data to a model in order to deduce the beam emittance. This paper will describe the method of emittance calculation and present some of the measurement results.

  11. Customizable Digital Receivers for Radar

    NASA Technical Reports Server (NTRS)

    Moller, Delwyn; Heavey, Brandon; Sadowy, Gregory

    2008-01-01

    Compact, highly customizable digital receivers are being developed for the system described in 'Radar Interferometer for Topographic Mapping of Glaciers and Ice Sheets' (NPO-43962), NASA Tech Briefs, Vol. 31, No. 7 (August 2007), page 72. The receivers are required to operate in unison, sampling radar returns received by the antenna elements in a digital beam-forming (DBF) mode. The design of these receivers could also be adapted to commercial radar systems. At the time of reporting the information for this article, there were no commercially available digital receivers capable of satisfying all of the operational requirements and compact enough to be mounted directly on the antenna elements. A provided figure depicts the overall system of which the digital receivers are parts. Each digital receiver includes an analog-to-digital converter (ADC), a demultiplexer (DMUX), and a field-programmable gate array (FPGA). The ADC effects 10-bit band-pass sampling of input signals having frequencies up to 3.5 GHz. The input samples are demultiplexed at a user-selectable rate of 1:2 or 1:4, then buffered in part of the FPGA that functions as a first-in/first-out (FIFO) memory. Another part of the FPGA serves as a controller for the ADC, DMUX, and FIFO memory and as an interface between (1) the rest of the receiver and (2) a front-panel data port (FPDP) bus, which is an industry-standard parallel data bus that has a high data-rate capability and multichannel configuration suitable for DBF. Still other parts of the FPGA in each receiver perform signal-processing functions. The digital receivers can be configured to operate in a stand-alone mode, or in a multichannel mode as needed for DBF. The customizability of the receiver makes it applicable to a broad range of system architectures. The capability for operation of receivers in either a stand-alone or a DBF mode enables the use of the receivers in an unprecedentedly wide variety of radar systems.

  12. Infrared spectral normal emittance/emissivity comparison

    NASA Astrophysics Data System (ADS)

    Hanssen, L.; Wilthan, B.; Filtz, J.-R.; Hameury, J.; Girard, F.; Battuello, M.; Ishii, J.; Hollandt, J.; Monte, C.

    2016-01-01

    The National Measurement Institutes (NMIs) of the United States, Germany, France, Italy and Japan, have joined in an inter-laboratory comparison of their infrared spectral emittance scales. This action is part of a series of supplementary inter-laboratory comparisons (including thermal conductivity and thermal diffusivity) sponsored by the Consultative Committee on Thermometry (CCT) Task Group on Thermophysical Quantities (TG-ThQ). The objective of this collaborative work is to strengthen the major operative National Measurement Institutes' infrared spectral emittance scales and consequently the consistency of radiative properties measurements carried out worldwide. The comparison has been performed over a spectral range of 2 μm to 14 μm, and a temperature range from 23 °C to 800 °C. Artefacts included in the comparison are potential standards: oxidized Inconel, boron nitride, and silicon carbide. The measurement instrumentation and techniques used for emittance scales are unique for each NMI, including the temperature ranges covered as well as the artefact sizes required. For example, all three common types of spectral instruments are represented: dispersive grating monochromator, Fourier transform and filter-based spectrometers. More than 2000 data points (combinations of material, wavelength and temperature) were compared. Ninety-eight percent (98%) of the data points were in agreement, with differences to weighted mean values less than the expanded uncertainties calculated from the individual NMI uncertainties and uncertainties related to the comparison process. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  13. Radar detection of ultra high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Myers, Isaac J.

    TARA (Telescope Array Radar) is a cosmic ray radar detection experiment co-located with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, UT. The TARA detector combines a 40 kW transmitter and high gain transmitting antenna which broadcasts the radar carrier over the SD array and in the FD field of view to a 250 MS/s DAQ receiver. Data collection began in August, 2013. TARA stands apart from other cosmic ray radar experiments in that radar data is directly compared with conventional cosmic ray detector events. The transmitter is also directly controlled by TARA researchers. Waveforms from the FD-triggered data stream are time-matched with TA events and searched for signal using a novel signal search technique in which the expected (simulated) radar echo of a particular air shower is used as a matched filter template and compared to radio waveforms. This technique is used to calculate the radar cross-section (RCS) upper-limit on all triggers that correspond to well-reconstructed TA FD monocular events. Our lowest cosmic ray RCS upper-limit is 42 cm2 for an 11 EeV event. An introduction to cosmic rays is presented with the evolution of detection and the necessity of new detection techniques, of which radar detection is a candidate. The software simulation of radar scattering from cosmic rays follows. The TARA detector, including transmitter and receiver systems, are discussed in detail. Our search algorithm and methodology for calculating RCS is presented for the purpose of being repeatable. Search results are explained in context of the usefulness and future of cosmic ray radar detection.

  14. Laser Radar Animation

    NASA Video Gallery

    Laser and radar instruments aboard NASA aircraft provide measurements of the snow and ice surface and down to the bedrock under the ice. Lasers, with a shorter wavelength, measure the surface eleva...

  15. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1983-01-01

    For 80 Sappho, 356 Liguria, 694 Ekard, and 2340 Hathor, data were taken simultaneously in the same sense of circular polarization as transmitted (SC) as well as in the opposite (OC) sense. Graphs show the average OC and SC radar echo power spectra soothed to a resolution of EFB Hz and plotted against Doppler frequency. Radar observations of the peculiar object 2201 Oljato reveal an unusual set of echo power spectra. The albedo and polarization ratio remain fairly constant but the bandwidths range from approximately 0.8 Hz to 1.4 Hz and the spectral shapes vary dramatically. Echo characteristics within any one date's approximately 2.5-hr observation period do not fluctuate very much. Laboratory measurements of the radar frequency electrical properties of particulate metal-plus-silicate mixtures can be combined with radar albedo estimates to constrain the bulk density and metal weight, fraction in a hypothetical asteroid regolith having the same particle size distribution as lab samples.

  16. Emittance growth from transient coherent synchrotron radiation

    SciTech Connect

    Bohn, C.L.; Li, R.; Bisognano, J.J.

    1996-10-01

    If the energies of individual particles in a bunch change as the bunch traverses a bending system, even if it is achromatic, betatron oscillations can be excited. Consequently, the transverse emittance of the bunch will grow as it moves downstream. Short bunches may be particularly susceptible to emission of coherent synchrotron radiation which can act back on the particles to change their energies and trajectories. Because a bend spans a well-defined length and angle, the bunch-excited wakefield and its effect back on the bunch are inherently transient. We outline a recently developed theory of this effect and apply it to example bending systems.

  17. Multi-channel polarized thermal emitter

    DOEpatents

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P

    2013-07-16

    A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.

  18. High efficiency quasi-monochromatic infrared emitter

    NASA Astrophysics Data System (ADS)

    Brucoli, Giovanni; Bouchon, Patrick; Haïdar, Riad; Besbes, Mondher; Benisty, Henri; Greffet, Jean-Jacques

    2014-02-01

    Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

  19. High efficiency quasi-monochromatic infrared emitter

    SciTech Connect

    Brucoli, Giovanni; Besbes, Mondher; Benisty, Henri Greffet, Jean-Jacques; Bouchon, Patrick; Haïdar, Riad

    2014-02-24

    Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

  20. Monitoring airborne alpha-emitter contamination

    SciTech Connect

    Kerr, P.L.; Koster, J.E.; Conaway, J.G.; Bounds, J.A.; Whitley, C.W.; Steadman, P.A.

    1998-02-01

    Facilities that may produce airborne alpha emitter contamination require a continuous air monitoring (CAM) system. However, these traditional CAMs have difficulty in environments with large quantities of non-radioactive particulates such as dust and salt. Los Alamos has developed an airborne plutonium sensor (APS) for the REBOUND experiment at the Nevada Test Site which detects alpha contamination directly in the air, and so is less vulnerable to the problems associated with counting activity on a filter. In addition, radon compensation is built into the detector by the use of two measurement chambers.