Measuring snow water equivalent from common-offset GPR records through migration velocity analysis
NASA Astrophysics Data System (ADS)
St. Clair, James; Holbrook, W. Steven
2017-12-01
Many mountainous regions depend on seasonal snowfall for their water resources. Current methods of predicting the availability of water resources rely on long-term relationships between stream discharge and snowpack monitoring at isolated locations, which are less reliable during abnormal snow years. Ground-penetrating radar (GPR) has been shown to be an effective tool for measuring snow water equivalent (SWE) because of the close relationship between snow density and radar velocity. However, the standard methods of measuring radar velocity can be time-consuming. Here we apply a migration focusing method originally developed for extracting velocity information from diffracted energy observed in zero-offset seismic sections to the problem of estimating radar velocities in seasonal snow from common-offset GPR data. Diffractions are isolated by plane-wave-destruction (PWD) filtering and the optimal migration velocity is chosen based on the varimax norm of the migrated image. We then use the radar velocity to estimate snow density, depth, and SWE. The GPR-derived SWE estimates are within 6 % of manual SWE measurements when the GPR antenna is coupled to the snow surface and 3-21 % of the manual measurements when the antenna is mounted on the front of a snowmobile ˜ 0.5 m above the snow surface.
Use of ground-penetrating radar techniques in archaeological investigations
NASA Technical Reports Server (NTRS)
Doolittle, James A.; Miller, W. Frank
1991-01-01
Ground-penetrating radar (GPR) techniques are increasingly being used to aid reconnaissance and pre-excavation surveys at many archaeological sites. As a 'remote sensing' tool, GPR provides a high resolution graphic profile of the subsurface. Radar profiles are used to detect, identify, and locate buried artifacts. Ground-penetrating radar provides a rapid, cost effective, and nondestructive method for identification and location analyses. The GPR can be used to facilitate excavation strategies, provide greater areal coverage per unit time and cost, minimize the number of unsuccessful exploratory excavations, and reduce unnecessary or unproductive expenditures of time and effort.
NASA Technical Reports Server (NTRS)
Tilley, roger; Dowla, Farid; Nekoogar, Faranak; Sadjadpour, Hamid
2012-01-01
Conventional use of Ground Penetrating Radar (GPR) is hampered by variations in background environmental conditions, such as water content in soil, resulting in poor repeatability of results over long periods of time when the radar pulse characteristics are kept the same. Target objects types might include voids, tunnels, unexploded ordinance, etc. The long-term objective of this work is to develop methods that would extend the use of GPR under various environmental and soil conditions provided an optimal set of radar parameters (such as frequency, bandwidth, and sensor configuration) are adaptively employed based on the ground conditions. Towards that objective, developing Finite Difference Time Domain (FDTD) GPR models, verified by experimental results, would allow us to develop analytical and experimental techniques to control radar parameters to obtain consistent GPR images with changing ground conditions. Reported here is an attempt at developing 20 and 3D FDTD models of buried targets verified by two different radar systems capable of operating over different soil conditions. Experimental radar data employed were from a custom designed high-frequency (200 MHz) multi-static sensor platform capable of producing 3-D images, and longer wavelength (25 MHz) COTS radar (Pulse EKKO 100) capable of producing 2-D images. Our results indicate different types of radar can produce consistent images.
Civil Engineering Applications of Ground Penetrating Radar in Finland
NASA Astrophysics Data System (ADS)
Pellinen, Terhi; Huuskonen-Snicker, Eeva; Olkkonen, Martta-Kaisa; Eskelinen, Pekka
2014-05-01
Ground penetrating radar (GPR) has been used in Finland since 1980's for civil engineering applications. First applications in this field were road surveys and dam inspections. Common GPR applications in road surveys include the thickness evaluation of the pavement, subgrade soil evaluation and evaluation of the soil moisture and frost susceptibility. Since the 1990's, GPR has been used in combination with other non-destructive testing (NDT) methods in road surveys. Recently, more GPR applications have been adopted, such as evaluating bridges, tunnels, railways and concrete elements. Nowadays, compared with other countries GPR is relatively widely used in Finland for road surveys. Quite many companies, universities and research centers in Finland have their own GPR equipment and are involved in the teaching and research of the GPR method. However, further research and promotion of the GPR techniques are still needed since GPR could be used more routinely. GPR has been used to evaluate the air void content of asphalt pavements for years. Air void content is an important quality measure of pavement condition for both the new and old asphalt pavements. The first Finnish guideline was released in 1999 for the method. Air void content is obtained from the GPR data by measuring the dielectric value as continuous record. To obtain air void content data, few pavement cores must be taken for calibration. Accuracy of the method is however questioned because there are other factors that affect the dielectric value of the asphalt layer, in addition to the air void content. Therefore, a research project is currently carried out at Aalto University in Finland. The overall objective is to investigate if the existing GPR technique used in Finland is accurate enough to be used as QC/QA tool in assessing the compaction of asphalt pavements. The project is funded by the Finnish Transport Agency. Further research interests at Aalto University include developing new microwave asphalt radar for the thickness evaluation of thin asphalt layers. This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".
Radar Cuts Subsoil Survey Costs
NASA Technical Reports Server (NTRS)
Johnson, R.; Glaccum, R.
1984-01-01
Soil features located with minimum time and labor. Ground-penetrating radar (GPR) system supplements manual and mechanical methods in performing subsurface soil survey. Mobile system obtains graphic profile of soil discontinuities and interfaces as function of depth. One or two test borings necessary to substantiate soil profile. GPR proves useful as reconnaissance tool.
Geophysical Surveys for Locating Buried Utilities, Lake Pontchartrain Levees, New Orleans
2014-06-01
4 Figure 3. GPR concepts...this study. Electromagnetic (EM) induction, magnetic, and ground penetrating radar ( GPR ) geophysical methods were evaluated to determine which...surveys GPR is a ground-based geophysical instrument that transmits high- frequency EM pulses into the subsurface. The GPR system consists of a
The Use of Ground Penetrating Radar to Exploring Sedimentary Ore In North-Central Saudi Arabia
NASA Astrophysics Data System (ADS)
Almutairi, Yasir; Almutair, Muteb
2015-04-01
Ground Penetrating Radar (GPR) is a non-destructive geophysical method that provides a continuous subsurface profile, without drilling. This geophysical technique has great potential in delineating the extension of bauxites ore in north-central Saudi Arabia. Bauxite is from types sedimentary ores. This study aim to evaluate the effectiveness of Ground Penetrating Radar (GPR) to illustrate the subsurface feature of the Bauxite deposits at some selected mining areas north-central Saudi Arabia. Bauxite is a heterogeneous material that consists of complex metals such as alumina and aluminum. An efficient and cost-effect exploration method for bauxite mine in Saudi Arabia is required. Ground penetrating radar (GPR) measurements have been carrying out along outcrop in order to assess the potential of GPR data for imaging and characterising different lithological facies. To do so, we have tested different antenna frequencies to acquire the electromagnetic signals along a 90 m profile using the IDS system. This system equipped with a 25 MHz antenna that allows investigating the Bauxite layer at shallow depths where the clay layers may existed. Therefore, the 25 MHz frequency antenna has been used in this study insure better resolution of the subsurface and to get more penetration to image the Bauxite layer. After the GPR data acquisition, this data must be processed in order to be more easily visualized and interpreted. Data processing was done using Reflex 6.0 software. A series of tests were carried out in frequency filtering on a sample of radar sections, which was considered to better represent the entire set of data. Our results indicated that the GPR profiling has a very good agreement for mapping the bauxite layer depth at range of 7 m to 11 m. This study has emphasized that the high-resolution GPR method is the robust and cost-effect technique to map the Bauxite layer. The exploration of Bauxite resource using the GPR technique could reduce the number of holes to be strategically placed in the most promising zones.
Use of high-resolution ground-penetrating radar in kimberlite delineation
Kruger, J.M.; Martinez, A.; Berendsen, P.
1997-01-01
High-resolution ground-penetrating radar (GPR) was used to image the near-surface extent of two exposed Late Cretaceous kimberlites intruded into lower Permian limestone and dolomite host rocks in northeast Kansas. Six parallel GPR profiles identify the margin of the Randolph 1 kimberlite by the up-bending and termination of limestone reflectors. Five radially-intersecting GPR profiles identify the elliptical margin of the Randolph 2 kimberlite by the termination of dolomite reflectors near or below the kimberlite's mushroom-shaped cap. These results suggest GPR may augment magnetic methods for the delineation of kimberlites or other forceful intrusions in a layered host rock where thick, conductive soil or shale is not present at the surface.
Barr, G.L.
1993-01-01
Ground-penetrating radar (GPR) is useful as a surface geophysical method for exploring geology and subsurface features in karst settings. Interpretation of GPR data was used to infer lithology and hydrogeologic conditions in west-central Florida. This study demonstrates how GPR methods can be used to investigate the hydrogeology of an area. GPR transmits radio- frequency electromagnetic waves into the ground and receives reflected energy waves from subsurface interfaces. Subsurface profiles showing sediment thickness, depth to water table and clay beds, karst development, buried objects, and lake-bottom structure were produced from GPR traverses obtained during December 1987 and March 1990 in Pinellas, Hillsborough, and Hardee Counties in west-central Florida. Performance of the GPR method is site specific, and data collected are principally affected by the sediment and pore fluids, conductances and dielectric constants. Effective exploration depths of the GPR surveys through predominately unsaturated and saturated sand and clay sediments at five study sites ranged from a few feet to greater than 50 feet below land surface. Exploration depths were limited when high conductivity clay was encountered, whereas greater exploration depths were possible in material composed of sand. Application of GPR is useful in profiling subsurface conditions, but proper interpretation depends upon the user's knowledge of the equipment and the local hydrogeological setting, as well as the ability to interpret the graphic profile.
NASA Astrophysics Data System (ADS)
Scanlan, K. M.; Hendry, M. T.; Martin, C. D.; Schmitt, D. R.
2016-12-01
As fine-grained particles accumulate within railway ballast, it becomes more susceptible to differential deformations, which leads to the loss of proper track alignment and an increased risk for car derailment. Methods for estimating the ballast degradation level from low-frequency (<1 GHz) ground-penetrating radar (GPR) measurements exist, but their applicability in a wide range of track foundation conditions has yet to be evaluated. This analysis, based on simulated GPR data, evaluates the sensitivity of these methods to changing ballast moisture contents, ballast thicknesses and subballast material types. The results highlight that small changes to the track foundation, indepedent of the concentration of degraded ballast, significantly alter the attenuation and reflectivity characteristics of the simualted GPR measurements. As such, ballast degraded to a certain level will manifest with different attenuation and reflectivity characteristics, limiting the ability to accurately and reliably detect these changes using GPR. Radar propagation velocities within the ballast are less influenced by changes in ballast depth and subballast material type. However, ambiguous propagation velocities are observed for certain ballast moisture contents and degradation levels; furthermore, velocities can only be calculated when the ballast thickness is known. These results suggest that while under certain circumstances, with additional information on the track foundation conditons, ballast degradation levels can be estimated from GPR data; in general, the complicated nature of GPR signals makes the quantificaion of ballast degradation levels difficult.
NASA Astrophysics Data System (ADS)
Kilic, Gokhan; Eren, Levent
2018-04-01
This paper reports on the fundamental role played by Ground Penetrating Radar (GPR), alongside advanced processing and presentation methods, during the tunnel boring project at a Dam and Hydro-Electric Power Station. It identifies from collected GPR data such issues as incomplete grouting and the presence of karst conduits and voids and provides full details of the procedures adopted. In particular, the application of collected GPR data to the Neural Network (NN) method is discussed.
Ground penetrating radar evaluation and implementation.
DOT National Transportation Integrated Search
2014-07-01
Six commercial ground penetrating radar (GPR) : systems were evaluated to determine the state-of-the-art of GPR technologies for railroad track : substructure inspection. : Phase 1 evaluated GPR ballast inspection : techniques by performing testing a...
X. Comas; N. Terry; M. Warren; R. Kolka; A. Kristiyono; N. Sudiana; D. Nurjaman; T. Darusman
2015-01-01
Current estimates of carbon (C) storage in peatland systems worldwide indicate that tropical peatlands comprise about 15% of the global peat carbon pool. Such estimates are uncertain due to data gaps regarding organic peat soil thickness, volume and C content. We combined a set of indirect geophysical methods (ground-penetrating radar, GPR, and electrical resistivity...
Sun, Hongbin; Pashoutani, Sepehr; Zhu, Jinying
2018-06-16
Delamanintions and reinforcement corrosion are two common problems in concrete bridge decks. No single nondestructive testing method (NDT) is able to provide comprehensive characterization of these defects. In this work, two NDT methods, acoustic scanning and Ground Penetrating Radar (GPR), were used to image a straight concrete bridge deck and a curved intersection ramp bridge. An acoustic scanning system has been developed for rapid delamination mapping. The system consists of metal-ball excitation sources, air-coupled sensors, and a GPS positioning system. The acoustic scanning results are presented as a two-dimensional image that is based on the energy map in the frequency range of 0.5⁻5 kHz. The GPR scanning results are expressed as the GPR signal attenuation map to characterize concrete deterioration and reinforcement corrosion. Signal processing algorithms for both methods are discussed. Delamination maps from the acoustic scanning are compared with deterioration maps from the GPR scanning on both bridges. The results demonstrate that combining the acoustic and GPR scanning results will provide a complementary and comprehensive evaluation of concrete bridge decks.
Ground penetrating radar (GPR) analysis : Phase I.
DOT National Transportation Integrated Search
2009-11-01
"The objective of this work is to evaluate the feasibility of expanding the MDT's Ground Penetrating : Radar (GPR) program to a broader range of pavement evaluation activities. Currently, MDT uses GPR in : conjunction with its Falling Weight Deflecto...
Dielectric characterization of hot-mix asphalt at the smart road using GPR
NASA Astrophysics Data System (ADS)
Al-Qadi, Imad L.; Loulizi, A.; Lahouar, S.
2000-04-01
To better interpret collected ground penetrating radar (GPR) data, a project is currently underway at the Virginia Smart Road. Twelve different flexible pavement sections and a continuously reinforced concrete rigid pavement section are incorporated in the road design. Thirty-five copper plates were placed at different layer interfaces throughout the pavement sections. The copper plates serve as a reflecting material and thus allow the determination of layers' dielectric constant over the GPR frequency range. An initial development of a method to calculate the complex dielectric constant of hot-mix asphalt over the frequency range of 750 to 1750 MHz using an air-coupled GPR system is presented. Utilizing GPR data, this method will be used to predict changes of the dielectric properties of the different SuperPaveTM mixes used at the Smart Road over time. The method is based on equating the overall reflection coefficient as obtained from the radar measurements with the calculated reflection coefficient using electromagnetic theory. The measured overall reflection coefficient is obtained by dividing the reflected frequency spectrum over the incident one. The theoretical overall reflection coefficient is obtained using the multiple reflection model. A Gauss-Newton method is then used to solve for the complex dielectric constant.
GPR-Based Water Leak Models in Water Distribution Systems
Ayala-Cabrera, David; Herrera, Manuel; Izquierdo, Joaquín; Ocaña-Levario, Silvia J.; Pérez-García, Rafael
2013-01-01
This paper addresses the problem of leakage in water distribution systems through the use of ground penetrating radar (GPR) as a nondestructive method. Laboratory tests are performed to extract features of water leakage from the obtained GPR images. Moreover, a test in a real-world urban system under real conditions is performed. Feature extraction is performed by interpreting GPR images with the support of a pre-processing methodology based on an appropriate combination of statistical methods and multi-agent systems. The results of these tests are presented, interpreted, analyzed and discussed in this paper.
NASA Astrophysics Data System (ADS)
Lambot, S.; Minet, J.; Slob, E.; Vereecken, H.; Vanclooster, M.
2008-12-01
Measuring soil surface water content is essential in hydrology and agriculture as this variable controls important key processes of the hydrological cycle such as infiltration, runoff, evaporation, and energy exchanges between the earth and the atmosphere. We present a ground-penetrating radar (GPR) method for automated, high-resolution, real-time mapping of soil surface dielectric permittivity and correlated water content at the field scale. Field scale characterization and monitoring is not only necessary for field scale management applications, but also for unravelling upscaling issues in hydrology and bridging the scale gap between local measurements and remote sensing. In particular, such methods are necessary to validate and improve remote sensing data products. The radar system consists of a vector network analyzer combined with an off-ground, ultra-wideband monostatic horn antenna, thereby setting up a continuous-wave steeped-frequency GPR. Radar signal analysis is based on three-dimensional electromagnetic inverse modelling. The forward model accounts for all antenna effects, antenna-soil interactions, and wave propagation in three-dimensional multilayered media. A fast procedure was developed to evaluate the involved Green's function, resulting from a singular, complex integral. Radar data inversion is focused on the surface reflection in the time domain. The method presents considerable advantages compared to the current surface characterization methods using GPR, namely, the ground wave and common reflection methods. Theoretical analyses were performed, dealing with the effects of electric conductivity on the surface reflection when non-negligible, and on near-surface layering, which may lead to unrealistic values for the surface dielectric permittivity if not properly accounted for. Inversion strategies are proposed. In particular the combination of GPR with electromagnetic induction data appears to be promising to deal with highly conductive soils. Finally, we present laboratory and field results where the GPR measurements are compared to ground-truth gravimetric and time domain reflectometry data. An example of high resolution surface soil moisture map is presented and discussed. The proposed method appears to be an appropriate solution in any applications where soil surface water content must be known at the field scale.
Dong, Zehua; Ye, Shengbo; Gao, Yunze; Fang, Guangyou; Zhang, Xiaojuan; Xue, Zhongjun; Zhang, Tao
2016-01-01
The thickness estimation of the top surface layer and surface layer, as well as the detection of road defects, are of great importance to the quality conditions of asphalt pavement. Although ground penetrating radar (GPR) methods have been widely used in non-destructive detection of pavements, the thickness estimation of the thin top surface layer is still a difficult problem due to the limitations of GPR resolution and the similar permittivity of asphalt sub-layers. Besides, the detection of some road defects, including inadequate compaction and delamination at interfaces, require further practical study. In this paper, a newly-developed vehicle-mounted GPR detection system is introduced. We used a horizontal high-pass filter and a modified layer localization method to extract the underground layers. Besides, according to lab experiments and simulation analysis, we proposed theoretical methods for detecting the degree of compaction and delamination at the interface, respectively. Moreover, a field test was carried out and the estimated results showed a satisfactory accuracy of the system and methods. PMID:27929409
Dong, Zehua; Ye, Shengbo; Gao, Yunze; Fang, Guangyou; Zhang, Xiaojuan; Xue, Zhongjun; Zhang, Tao
2016-12-06
The thickness estimation of the top surface layer and surface layer, as well as the detection of road defects, are of great importance to the quality conditions of asphalt pavement. Although ground penetrating radar (GPR) methods have been widely used in non-destructive detection of pavements, the thickness estimation of the thin top surface layer is still a difficult problem due to the limitations of GPR resolution and the similar permittivity of asphalt sub-layers. Besides, the detection of some road defects, including inadequate compaction and delamination at interfaces, require further practical study. In this paper, a newly-developed vehicle-mounted GPR detection system is introduced. We used a horizontal high-pass filter and a modified layer localization method to extract the underground layers. Besides, according to lab experiments and simulation analysis, we proposed theoretical methods for detecting the degree of compaction and delamination at the interface, respectively. Moreover, a field test was carried out and the estimated results showed a satisfactory accuracy of the system and methods.
Ground Penetrating Radar Survey at Yoros Fortesss,Istanbul
NASA Astrophysics Data System (ADS)
Kucukdemirci, M.; Yalçın, A. B.
2016-12-01
Geophysical methods are effective tool to detect the archaeological remains and materials, which were hidden under the ground. One of the most frequently used methods for archaeological prospection is Ground Penetrating Radar (GPR). This paper illustrates the small scale GPR survey to determine the buried archaeological features around the Yoros Fortress, located on shores of the Bosporus strait in Istanbul, during the archaeological excavations. The survey was carried out with a GSSI SIR 3000 system, using 400 Mhz center frequency bistatic antenna with the configuration of 16 bits dynamic range and 512 samples per scan. The data were collected along parallel profiles with an interval of 0.50 meters with zigzag profile configuration on the survey grids. The GPR data were processed by GPR-Slice V.7 (Ground Penetrating Radar Imaging Software). As a result, in the first shallow depths, some scattered anomalies were detected. These can be related to a small portion of archaeological ruins close to the surface. In the deeper levels, the geometry of the anomalies related to the possible archaeological ruins, looks clearer. Two horizontal and parallel anomalies were detected, with the direction NS in the depth of 1.45 meters, possibly related to the ancient channels.
NASA Astrophysics Data System (ADS)
Lauro, S. E.; Mattei, E.; Cosciotti, B.; Di Paolo, F.; Arcone, S. A.; Viccaro, M.; Pettinelli, E.
2017-07-01
Ground-penetrating radar (GPR) is a well-established geophysical terrestrial exploration method and has recently become one of the most promising for planetary subsurface exploration. Several future landing vehicles like EXOMARS, 2020 NASA ROVER, and Chang'e-4, to mention a few, will host GPR. A GPR survey has been conducted on volcanic deposits on Mount Etna (Italy), considered a good analogue for Martian and Lunar volcanic terrains, to test a novel methodology for subsoil dielectric properties estimation. The stratigraphy of the volcanic deposits was investigated using 500 MHz and 1 GHz antennas in two different configurations: transverse electric and transverse magnetic. Sloping discontinuities have been used to estimate the loss tangents of the upper layer of such deposits by applying the amplitude-decay and frequency shift methods and approximating the GPR transmitted signal by Gaussian and Ricker wavelets. The loss tangent values, estimated using these two methodologies, were compared and validated with those retrieved from time domain reflectometry measurements acquired along the radar profiles. The results show that the proposed analysis, together with typical GPR methods for the estimation of the real part of permittivity, can be successfully used to characterize the electrical properties of planetary subsurface and to define some constraints on its lithology of the subsurface.
Comparing ground-penetrating radar (GPR) techniques in 18th-century yard spaces
NASA Astrophysics Data System (ADS)
Carducci, Christiane M.
Yards surrounding historical homesteads are the liminal space between private houses and public space, and contain artifactural and structural remains that help us understand how the residents interfaced with the world. Comparing different yards means collecting reliable evidence, and what is missing is just as important as what is found. Excavations can rely on randomly placed 50-cm shovel test pits to locate features, but this can miss important features. Shallow geophysics, in particular ground-penetrating radar (GPR), can be used to identify features and reliably and efficiently collect evidence. GPR is becoming more integrated into archaeological investigations due to the potential to quickly and nondestructively identify archaeological features and to recent advancements in processing software that make these methods more user-friendly. The most efficacious GPR surveys must take into consideration what is expected to be below the surface, what features look like in GPR outputs, the best methods for detecting features, and the limitations of GPR surveys. Man-made landscape features are expected to have existed within yard spaces, and the alteration of these features shows how the domestic economy of the residence changed through time. This study creates an inventory of these features. By producing a standardized sampling method for GPR in yard spaces, archaeologists can quickly map subsurface features and carry out broad comparisons between yards. To determine the most effective sampling method, several GPR surveys were conducted at the 18th-century Durant-Kenrick House in Newton, Massachusetts, using varied line spacing, line direction, and bin size. Examples of the GPR signatures of features, obtained using GPR-Slice software, from the Durant-Kenrick House and similar sites were analyzed. The efficacy of each method was determined based on the number of features distinguished, clarity of the results, and the time involved. The survey at Newton showed that ground surface conditions are extremely important when using GPR. Furthermore, GPR and archaeological excavations together provide the most complete interpretation because GPR has the ability to detect large-scale features that might be missed with test units, while excavation provides more detailed information, finds small-scale objects, and can be used to test false negatives seen in GPR surveys.
Subsurface polarimetric migration imaging for full polarimetric ground-penetrating radar
NASA Astrophysics Data System (ADS)
Feng, Xuan; Yu, Yue; Liu, Cai; Fehler, Michael
2015-08-01
Polarization is a property of electromagnetic wave that generally refers to the locus of the electric field vector, which can be used to characterize surface properties by polarimetric radar. However, its use has been less common in the ground-penetrating radar (GPR) community. Full polarimetric GPR data include scattering matrices, by which the polarization properties can be extracted, at each survey point. Different components of the measured scattering matrix are sensitive to different types of subsurface objects, which offers a potential improvement in the detection ability of GPR. This paper develops a polarimetric migration imaging method. By merging the Pauli polarimetric decomposition technique with the Krichhoff migration equation, we develop a polarimetric migration algorithm, which can extract three migrated coefficients that are sensitive to different types of objects. Then fusing the three migrated coefficients, we can obtain subsurface colour-coded reconstructed object images, which can be employed to interpret both the geometrical information and the scattering mechanism of the subsurface objects. A 3-D full polarimetric GPR data set was acquired in a laboratory experiment and was used to test the method. In the laboratory experiment, four objects-a scatterer, a ball, a plate and a dihedral target-were buried in homogeneous dry sand under a flat ground surface. By merging the reconstructed image with polarization properties, we enhanced the subsurface image and improved the classification ability of GPR.
Effect of Cold Temperature on the Dielectric Constant of Soil
2012-04-01
explosive device (IED) threats is ground-penetrating radar ( GPR ). Proper development of GPR technology for this application requires a unique...success or failure of GPR as a detection technique. One soil property of interest to radar engineers is the dielectric constant. Previous...results to temperatures, moisture levels, and frequencies relevant to GPR systems. 2. Dielectric Constant and the Ring-resonator Concept The two
NASA Astrophysics Data System (ADS)
Fiedler, Sabine; Illich, Bernhard; Berger, Jochen; Graw, Matthias
2009-07-01
Ground-penetration radar (GPR) is a geophysical method that is commonly used in archaeological and forensic investigations, including the determination of the exact location of graves. Whilst the method is rapid and does not involve disturbance of the graves, the interpretation of GPR profiles is nevertheless difficult and often leads to incorrect results. Incorrect identifications could hinder criminal investigations and complicate burials in cemeteries that have no information on the location of previously existing graves. In order to increase the number of unmarked graves that are identified, the GPR results need to be verified by comparing them with the soil and vegetation properties of the sites examined. We used a modern cemetery to assess the results obtained with GPR which we then compared with previously obtained tachymetric data and with an excavation of the graves where doubt existed. Certain soil conditions tended to make the application of GPR difficult on occasions, but a rough estimation of the location of the graves was always possible. The two different methods, GPR survey and tachymetry, both proved suitable for correctly determining the exact location of the majority of graves. The present study thus shows that GPR is a reliable method for determining the exact location of unmarked graves in modern cemeteries. However, the method did not allow statements to be made on the stage of decay of the bodies. Such information would assist in deciding what should be done with graves where ineffective degradation creates a problem for reusing graves following the standard resting time of 25 years.
NASA Astrophysics Data System (ADS)
Gelmini, A.; Gottardi, G.; Moriyama, T.
2017-10-01
This work presents an innovative computational approach for the inversion of wideband ground penetrating radar (GPR) data. The retrieval of the dielectric characteristics of sparse scatterers buried in a lossy soil is performed by combining a multi-task Bayesian compressive sensing (MT-BCS) solver and a frequency hopping (FH) strategy. The developed methodology is able to benefit from the regularization capabilities of the MT-BCS as well as to exploit the multi-chromatic informative content of GPR measurements. A set of numerical results is reported in order to assess the effectiveness of the proposed GPR inverse scattering technique, as well as to compare it to a simpler single-task implementation.
NASA Astrophysics Data System (ADS)
Pajewski, Lara; Solla, Mercedes; Fontul, Simona
2017-04-01
This work aims at presenting the main results achieved by Working Group (WG) 4 "Different applications of GPR and other NDT technologies in civil engineering" of the COST (European COoperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.GPRadar.eu, www.cost.eu). The main objective of the Action TU1208, started in April 2013 and ending in October 2017, is to exchange and increase scientific-technical knowledge and experience of Ground Penetrating Radar (GPR) techniques in civil engineering, whilst promoting in Europe the effective use of this safe non-destructive technique. The Action involves more than 150 Institutions from 28 COST Countries, a Cooperating State, 6 Near Neighbour Countries and 6 International Partner Countries. WG4 deals with the use of GPR outside from the civil engineering area, namely in archaeological prospecting and cultural heritage diagnostics, agriculture and management of water resources, investigation of polluted industrial sites, non-destructive testing of living tree trunks, planetary exploration, demining, localization of people buried under avalanches and debris, and more. Furthermore, this WG studies the integration of GPR with other Non-Destructive Testing (NDT) methods. The most relevant achievements stemming from WG4 will be presented during the 2017 EGU GA. These are: (i) The collection of thorough information on the state-of-the-art, ongoing studies, problems and future research needs on the topics of interest for this WG; (ii) The performance of a plethora of interesting case studies in important sites all over Europe, including well-known historical places such as Stonehenge (United Kingdom), Carnuntum (Austria), the Wawel Cathedral (Cracow, Poland), the Tholos Tomb of Acharnon (Athens, Greece), the Łazienki Royal Palace (Warsaw, Poland), and more; (iii) WG4 contributed to the TU1208 Education Pack, an open educational package conceived to teach GPR in University courses. Additionally, WG4 was very active in offering training activities. In cooperation with the other WGs, the following courses were successfully organised: Training School (TS) "Civil engineering applications of Ground Penetrating Radar" (Pisa, Italy, September 2014), TS "Applications of Ground Penetrating Radar in urban areas: the sensitive case of historical cities" (Cracow, Poland, May 2015), TS "Applications of GPR to civil engineering and archaeology" (Valletta, Malta, January 2016), and TS "Non-destructive testing techniques for civil engineering" (Barcelona, Spain, March 2016). Finally, WG4 contributed to the organization of a series of national events devoted to fostering the interaction of Action Members with stakeholders, new potential GPR end-users, and interested citizens. During such events, participants could discover what is Ground Penetrating Radar (GPR) and how this technique can be effectively used in civil engineering works as well as in different fields ("TU1208 GPR Road Show"). Acknowledgement: The Authors are deeply grateful to COST (European Cooperation in Science and Technology, www.cost.eu), for funding and supporting the COST Action TU1208 "Civil engineering applications of Ground Penetrating Radar" (www.GPRadar.eu).
Subsurface Investigation using 2D Resistivity and Ground Penetrating Radar at Teluk Kumbar, Penang
NASA Astrophysics Data System (ADS)
Teoh, YJ; Bruka, MA; Idris, NM; Ismail, NA; Muztaza, NM
2018-04-01
The objective of this study is to determine the structure and condition of the subsurface by using 2D resistivity and Ground Penetrating Radar (GPR) methods. The study was conducted at SK Sungai Batu, Teluk Kumbar, Penang Island. For 2D resistivity method, Wenner-Schlumberger array was used while for GPR, 250 MHz antenna was used at the site. The survey consists of 200m length survey line. GPR result shows that there is high intensity of EM. 2D resistivity result shows that the low resistivity region (200 Ωm to 340 Ωm) appears to be at the centre of the survey line from depth 7 m to 13 m. Meanwhile, the higher resistivity region (4000 Ωm to 6000 Ωm) may indicate the bedrock structure of the subsurface, which is the granitic rock. This region is bedrock which rested at depth 14 m and below. In conclusion, data obtained from GPR and 2D resistivity methods can be easily correlated to determine the features of the subsurface.
NASA Astrophysics Data System (ADS)
Matsumoto, M.; Yoshimura, M.; Naoki, K.; Cho, K.; Wakabayashi, H.
2018-04-01
Observation of sea ice thickness is one of key issues to understand regional effect of global warming. One of approaches to monitor sea ice in large area is microwave remote sensing data analysis. However, ground truth must be necessary to discuss the effectivity of this kind of approach. The conventional method to acquire ground truth of ice thickness is drilling ice layer and directly measuring the thickness by a ruler. However, this method is destructive, time-consuming and limited spatial resolution. Although there are several methods to acquire ice thickness in non-destructive way, ground penetrating radar (GPR) can be effective solution because it can discriminate snow-ice and ice-sea water interface. In this paper, we carried out GPR measurement in Lake Saroma for relatively large area (200 m by 300 m, approximately) aiming to obtain grand truth for remote sensing data. GPR survey was conducted at 5 locations in the area. The direct measurement was also conducted simultaneously in order to calibrate GPR data for thickness estimation and to validate the result. Although GPR Bscan image obtained from 600MHz contains the reflection which may come from a structure under snow, the origin of the reflection is not obvious. Therefore, further analysis and interpretation of the GPR image, such as numerical simulation, additional signal processing and use of 200 MHz antenna, are required to move on thickness estimation.
Overview and comparative study of GPR international standards and guidelines - COST Action TU1208
NASA Astrophysics Data System (ADS)
Pajewski, Lara; Marciniak, Marian; Benedetto, Andrea; Tosti, Fabio
2016-04-01
Ground Penetrating Radar (GPR) can be effectively used for non-destructive testing of composite structures and diagnostics affecting the whole life-cycle of civil engineering works. Nevertheless, few recognised international standards exist in this field and inhomogeneous recommendations are present in different countries. Moreover, the levels of knowledge, awareness and experience regarding the use of GPR in civil engineering vary strongly across different European areas. The COST Action TU1208 is working hard on leveraging these differences, by sharing and disseminating knowledge and experience, as well as by developing guidelines and protocols for a safe and effective use of GPR in civil engineering. GPR users need to know which is the best way to conduct GPR measurements and what the quality level for the results should be. The TU1208 guidelines will ensure a higher efficiency and quality of GPR services and they will constitute a scientific basis for the introduction of European Standards on the application of GPR in civil engineering. The aim of this contribution is to present an in-depth overview and critical analysis of the existing GPR international and national standards and guidelines. The main documents considered in our work are listed and briefly described in the following. Three standards are provided by the American Society for Testing and Materials (ASTM), to guide the GPR use for subsurface investigation, evaluation of asphalt-covered concrete bridge decks, and determination of pavement-layer thickness: 1. ASTM D6432-11, Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation, ASTM International, West Conshohocken, PA, 2011, www.astm.org, DOI: 10.1520/D6432-11. 2. ASTM D6087-08, Standard Test Method for Evaluating Asphalt-Covered Concrete Bridge Decks Using Ground Penetrating Radar, ASTM International, West Conshohocken, PA, 2008, www.astm.org, DOI: 10.1520/D6087-08. 3. ASTM D4748-10, Standard Test Method for Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar, ASTM International, West Conshohocken, PA, 2010, www.astm.org, DOI: 10.1520/D4748-10. Further ASTM standards exist, not focused on GPR but including useful information (details are not provided here, for brevity reasons). There are no standards in Europe, instead, guiding the GPR use for subsurface prospecting and regulating the numerous applications of this non-destructive technique. The following Radio and Telecommunications Terminal Equipment (R&TTE) directive applies to GPR equipment and allows the placing of a GPR product on the European (EU) market for sale: Directive 1999/5/EC of the European Parliament and of the Council of 9 March 1999, on radio equipment and telecommunications terminal equipment and the mutual recognition of their conformity. Official Journal of the European Union, L 91, 7.4.1999, open access on ec.europa.eu. This document will be repealed, since 13 June 2016, by the following R&TTE directive: Directive 2014/53/EU of the European Parliament and of the Council of 16 April 2014, on the harmonisation of the laws of the Member States relating to the making available on the market of radio equipment, repealing Directive 1999/5/EC. Official Journal of the European Union, L 153, 22.5.2014, open access on ec.europa. Although conformance to the R&TTE directive allows the placing of a GPR product on the market for sale, it does not give authority for its use. In order to use the equipment, in the majority of EU member countries, a license is required. The license is controlled and issued by the radio administration in each of the member countries. The Electronic Communications Committee (ECC) of the European Conference of Postal and Telecommunications Administrations (CEPT) considers and develops policies on electronic communications activities in European context, taking account of European and international legislations and regulations. There are 48 European countries involved in the CEPT, which cooperate to regulate posts, radio spectrum and communications networks in Europe. The ECC agreed to the decision ECC/DEC/(06)08, specifically referred to GPR and Wall Penetrating Radar (WPR) systems: ECC Decision of 1 December 2006 on the conditions for use of the radio spectrum by Ground- and Wall- Probing Radar (GPR/WPR) imaging systems, 14 December 2006, open access on www.cept.org. This is not legally binding on member countries. It is currently implemented by 25 and partly implemented by 2 of the 48 administrations; 5 further administration are considering and studying the decision. Outside Europe, different approaches exist, ranging from very formal technical approval and licensing conditions to no specific rules. A series of standards and codes, introduced by the European Telecommunications Standards Institute (ETSI), regulate the GPR use and its emissions of electromagnetic radiation in Europe: 1. ETSI EN 301 489-1 v1.9.2, Electromagnetic compatibility and Radio spectrum Matters (ERM); ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 1: Common technical requirements, Sept. 2011, open access on www.etsi.org, Ref. DEN/ERM-EMC-230-32, 45 pp. [7]. This document is a Harmonized European Standard. 2. ETSI EN 301 489-32 v1.1.1, Electromagnetic compatibility and Radio spectrum Matters (ERM); ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 32: Specific conditions for Ground and Wall Probing Radar applications, Sept. 2009, open access on www.etsi.org, Ref. DEN/ERM-EMC-230-32, 12 pp. [8]. This document is currently (May 2015) a Candidate Harmonized European Standard (Telecommunication Series). 3. ETSI EN 302/066-1 v1.2.1, Electromagnetic compatibility and Radio spectrum Matters (ERM); Ground- and Wall- Probing Radar applications (GPR/WPR) imaging systems; Part 1: Technical characteristics and test methods, Dec. 2007, open access on www.etsi.org, Ref. REN/ERM-TG31A-0113-1, 25 pp. [9]. This document is a Harmonized European Standard (Telecommunications series). 4. ETSI EN 302/066-2 v1.2.1, Electromagnetic compatibility and Radio spectrum Matters (ERM); Ground- and Wall- Probing Radar applications (GPR/WPR) imaging systems; Part 2: Harmonized EN covering essential requirements of article 3.2 of the R&TTE Directive, Dec. 2007, open access on www.etsi.org, Ref. REN/ERM-TG31A-0113-2, 12 pp. [10]. This document is a Harmonized European Standard (Telecommunications series). 5. ETSI EG 202 730 v1.1.1, Electromagnetic compatibility and Radio spectrum Matters (ERM); Code of Practice in respect of the control, use and application of Ground Probing Radar (GPR) and Wall Probing Radar (WPR) systems and equipment, Sept. 2009, open access on www.etsi.org, Ref. DEG/ERM-TGUWB-010, 11 pp. [11]. This document is currently (May 2015) an ETSI guide. Few National GPR Guidelines and Standards exist in Europe. In France, the National standard NF S 70-003, Parts 1-3, is concerned with the use of GPR to detect buried utilities. Still in France, Cerema/Ifsttar produced protocols for road inspection. In Germany, the DGZfP e.V. (German Society for Non-Destructive Testing) published a fact sheet called "Merkblatt B10" on the radar method for non-destructive testing in civil engineering (2008). Still in Germany, there is a BASt (Federal Highway Administration) instruction sheet on the use of GPR to gain inventory data of road structure (2003). In Poland, the national regulation of September 24, 1998 (Dz.U. Nr 126 poz. 839) cites 'georadar testing' as a method to investigate the soil structure. In Scandinavia, recommendations for guidelines were developed during the MARA NORD Project (2010-2012) on the use of GPR in asphalt air voids content measurements, in road construction quality control, in bridge deck surveys, in road rehabilitation projects and in site investigations. Acknowledgement This work stems from the research activities of COST (European COoperation in Science and Technology) Action TU1208 "Civil engineering applications of Ground Penetrating Radar." The Authors thank COST (www.cost.eu) for funding the Action TU1208 (www.GPRadar.eu). Part of this work was carried out during the Short-Term Scientific Mission STSM-TU1208-24656 "Comparative study of GPR international standards and guidelines" (Dr Lara Pajewski, Italy, visiting Prof Marian Marciniak, Poland).
Ground penetrating radar prospections in Romania. Mariuta la Movila Necropolis, a case study
NASA Astrophysics Data System (ADS)
Lazãr, C.; Ene, D.; Parnic, V.; Popovici, D. N.; Florea, M.
In the last decades, ground-penetrating radar (GPR) has been successfully used in archaeological and forensic anthropological applications to locate relatively shallow features, even though the technique can also probe deeper into the ground. GPR is a non-destructive method based on the propagation of electromagnetic waves in soil, rocks or other media. This prospection method has rarely been used previously in Romanian archaeology and never for a necropolis. GPR surveys of the Măriuța - La Movilă necropolis (Călăraşi county, southeastern Romania) led to the identification of several new structures: a prehistoric pit belonging to the Kodjadermen-Gumelnița-Karanovo VI culture (Complex 1/2008), a grave from the IVth century A.D. (Complex 2/2009) and a modern burrowing pit (Complex 1/2009).
GPR Image and Signal Processing for Pavement and Road Monitoring on Android Smartphones and Tablets
NASA Astrophysics Data System (ADS)
Benedetto, Francesco; Benedetto, Andrea; Tedeschi, Antonio
2014-05-01
Ground Penetrating Radar (GPR) is a geophysical method that uses radar pulses to image the subsurface. This non-destructive method uses electromagnetic radiation and detects the reflected signals from subsurface structures. It can detect objects, changes in material, and voids and cracks. GPR has many applications in a number of fields. In the field of civil engineering one of the most advanced technologies used for road pavement monitoring is based on the deployment of advanced GPR systems. One of the most relevant causes of road pavement damage is often referable to water intrusion in structural layers. In this context, GPR has been recently proposed as a method to estimate moisture content in a porous medium without preventive calibration. Hence, the development of methods to obtain an estimate of the moisture content is a crucial research field involving economic, social and strategic aspects in road safety for a great number of public and private Agencies. In particular, a recent new approach was proposed to estimate moisture content in a porous medium basing on the theory of Rayleigh scattering, showing a shift of the frequency peak of the GPR spectrum towards lower frequencies as the moisture content increases in the soil. Addressing some of these issues, this work proposes a mobile application, for smartphones and tablets, for GPR image and signal processing. Our application has been designed for the Android mobile operating system, since it is open source and android mobile platforms are selling the most smartphones in the world (2013). The GPR map can be displayed in black/white or color and the user can zoom and navigate into the image. The map can be loaded in two different ways: from the local memory of the portable device or from a remote server. This latter possibility can be very useful for real-time and mobile monitoring of road and pavement inspection. In addition, the application allows analyzing the GPR data also in the frequency domain. It is possible to visualize the GPR spectrum, and the application returns the (abscissa of the) frequency peak of the GPR spectrum. It is also possible to visualize more GPR spectra on the same figure, in order to understand if a frequency shift (related to moisture content) has been observed. Finally, the GPR spectra can be exported as a JPEG file. This application has a strategic and innovative potentiality for all the Agencies involved in roads and highway management in order to improve the onsite efficiency and effectiveness of the works. ACKNOWLEDGMENT This work is a contribution to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar."
Lane, J.W.; Buursink, M.L.; Haeni, F.P.; Versteeg, R.J.
2000-01-01
The suitability of common-offset ground-penetrating radar (GPR) to detect free-phase hydrocarbons in bedrock fractures was evaluated using numerical modeling and physical experiments. The results of one- and two-dimensional numerical modeling at 100 megahertz indicate that GPR reflection amplitudes are relatively insensitive to fracture apertures ranging from 1 to 4 mm. The numerical modeling and physical experiments indicate that differences in the fluids that fill fractures significantly affect the amplitude and the polarity of electromagnetic waves reflected by subhorizontal fractures. Air-filled and hydrocarbon-filled fractures generate low-amplitude reflections that are in-phase with the transmitted pulse. Water-filled fractures create reflections with greater amplitude and opposite polarity than those reflections created by air-filled or hydrocarbon-filled fractures. The results from the numerical modeling and physical experiments demonstrate it is possible to distinguish water-filled fracture reflections from air- or hydrocarbon-filled fracture reflections, nevertheless subsurface heterogeneity, antenna coupling changes, and other sources of noise will likely make it difficult to observe these changes in GPR field data. This indicates that the routine application of common-offset GPR reflection methods for detection of hydrocarbon-filled fractures will be problematic. Ideal cases will require appropriately processed, high-quality GPR data, ground-truth information, and detailed knowledge of subsurface physical properties. Conversely, the sensitivity of GPR methods to changes in subsurface physical properties as demonstrated by the numerical and experimental results suggests the potential of using GPR methods as a monitoring tool. GPR methods may be suited for monitoring pumping and tracer tests, changes in site hydrologic conditions, and remediation activities.The suitability of common-offset ground-penetrating radar (GPR) to detect free-phase hydrocarbons in bedrock fractures was evaluated using numerical modeling and physical experiments. The results of one- and two-dimensional numerical modeling at 100 megahertz indicate that GPR reflection amplitudes are relatively insensitive to fracture apertures ranging from 1 to 4 mm. The numerical modeling and physical experiments indicate that differences in the fluids that fill fractures significantly affect the amplitude and the polarity of electromagnetic waves reflected by subhorizontal fractures. Air-filled and hydrocarbon-filled fractures generate low-amplitude reflections that are in-phase with the transmitted pulse. Water-filled fractures create reflections with greater amplitude and opposite polarity than those reflections created by air-filled or hydrocarbon-filled fractures. The results from the numerical modeling and physical experiments demonstrate it is possible to distinguish water-filled fracture reflections from air- or hydrocarbon-filled fracture reflections, nevertheless subsurface heterogeneity, antenna coupling changes, and other sources of noise will likely make it difficult to observe these changes in GPR field data. This indicates that the routine application of common-offset GPR reflection methods for detection of hydrocarbon-filled fractures will be problematic. Ideal cases will require appropriately processed, high-quality GPR data, ground-truth information, and detailed knowledge of subsurface physical properties. Conversely, the sensitivity of GPR methods to changes in subsurface physical properties as demonstrated by the numerical and experimental results suggests the potential of using GPR methods as a monitoring tool. GPR methods may be suited for monitoring pumping and tracer tests, changes in site hydrologic conditions, and remediation activities.
Mapping soil water content on golf course greens with GPR
USDA-ARS?s Scientific Manuscript database
Ground-penetrating radar (GPR) can be an effective and efficient method for high-resolution mapping of volumetric water content in the sand layer directly beneath the ground surface at a golf course green. This information could potentially be very useful to golf course superintendents for determi...
Visual Inspection of Water Leakage from Ground Penetrating Radar Radargram
NASA Astrophysics Data System (ADS)
Halimshah, N. N.; Yusup, A.; Mat Amin, Z.; Ghazalli, M. D.
2015-10-01
Water loss in town and suburban is currently a significant issue which reflect the performance of water supply management in Malaysia. Consequently, water supply distribution system has to be maintained in order to prevent shortage of water supply in an area. Various techniques for detecting a mains water leaks are available but mostly are time-consuming, disruptive and expensive. In this paper, the potential of Ground Penetrating Radar (GPR) as a non-destructive method to correctly and efficiently detect mains water leaks has been examined. Several experiments were designed and conducted to prove that GPR can be used as tool for water leakage detection. These include instrument validation test and soil compaction test to clarify the maximum dry density (MDD) of soil and simulation studies on water leakage at a test bed consisting of PVC pipe burying in sand to a depth of 40 cm. Data from GPR detection are processed using the Reflex 2D software. Identification of water leakage was visually inspected from the anomalies in the radargram based on GPR reflection coefficients. The results have ascertained the capability and effectiveness of the GPR in detecting water leakage which could help avoiding difficulties with other leak detection methods.
NASA Astrophysics Data System (ADS)
Pajewski, Lara; Benedetto, Andrea; D'Amico, Sebastiano; Ferrara, Vincenzo; Frezza, Fabrizio; Persico, Raffaele; Tosti, Fabio
2017-04-01
This work aims at presenting the main results achieved by Working Group (WG) 1 "Novel Ground Penetrating Radar instrumentation" of the COST (European COoperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.cost.eu, www.GPRadar.eu). The principal goal of the Action, which started in April 2013 and is ending in October 2017, is to exchange and increase scientific-technical knowledge and experience of Ground Penetrating Radar techniques in civil engineering, whilst promoting throughout Europe the effective use of this safe non-destructive technique. The Action involves more than 300 Members from 28 COST Countries, a Cooperating State, 6 Near Neighbour Countries and 6 International Partner Countries. The most interesting achievements of WG1 include: 1. The state of the art on GPR systems and antennas was composed; merits and limits of current GPR systems in civil engineering applications were highlighted and open issues were identified. 2. The Action investigated the new challenge of inferring mechanical (strength and deformation) properties of flexible pavement from electromagnetic data. A semi-empirical method was developed by an Italian research team and tested over an Italian test site: a good agreement was found between the values measured by using a light falling weight deflectometer (LFWD) and the values estimated by using the proposed semi-empirical method, thereby showing great promises for large-scale mechanical inspections of pavements using GPR. Subsequently, the method was tested on a real scale, on an Italian road in the countryside: again, a good agreement between LFWD and GPR data was achieved. As a third step, the method was tested at larger scale, over three different road sections within the districts of Madrid and Guadalajara, in Spain: GPR surveys were carried out at the speed of traffic for a total of 39 kilometers, approximately; results were collected by using different GPR antennas provided by the Italian company IDS Ingegneria dei Sistemi; in cooperation with the Spanish company Euroconsult, an instrumented lorry equipped with a curviameter was used in the same road sections. Curviameter and GPR results were compared, with very good agreement. 3. A reconfigurable stepped-frequency GPR prototype was improved and widely tested. The original version of this prototype was designed and realised in Italy, in 2008. In June 2014, with the support of the Action TU1208 (and in particular by exploiting the Short Term Scientific Mission (STSM) networking tool), this prototype was brought to Norway: tests were carried out in laboratory, on roads and archaelogical sites; results were compared with those obtained by using a commercial system manufactured by the Norwegian manufacturer 3d-radar. As a result of this work, it was possible to understand how to improve the Italian prototype. Changes to the hardware were implemented in cooperation with the company Florence Engineering. In the improved version of the prototype, a more advanced technique is used for the reconfiguration of the integration times. In July 2015, by exploiting again the STSM tool, the prototype was brought to Malta: tests were carried out in buildings, churches, archaeological and geological sites; results were compared with those obtained by using a commercial pulsed system manufactured by IDS Ingegneria dei Sistemi. It is worth pointing out that this was the first time GPR measurements were carried out in Malta, where no GPR systems are available. Finally, in January 2016 the improved prototype was again brought to Malta in order to be used during the experimental sessions of a TU1208 Training School. This is an excellent example of a successful scientific activity where STSM and TS COST networking tools were effectively exploited, the cooperation with industry was of central importance, and a less research-intensive Country was deliberately chosen, to test the improved system. 4. A cheap frequency-modulated continuous-wave GPR prototype was designed and realized by an Italian research team; detailled instructions, describing how to build this radar step-by-step, will be available by the end of the Action. The idea behind this initiative is to support and encourage institutes in less research-intensive Countries, who cannot afford a commercial system, to build their own prototype for training purposes and to start familiarizing with the GPR technique. 5. A new stepped-frequency ground-coupled multi-antenna GPR system for road and bridge inspection was developed by 3d-radar (manufacturer based in Norway) and presented during the GPR 2014 conference as a contribution to COST Action TU1208. The starting point was an analogous commercial system, with air-coupled antennas. For road inspection, air-coupled antennas offer practical advantages over ground-coupled antennas (mainly, the possibility to carry out measurements at higher speeds); moreover, they allow enhanced detection of shallow layers inside the road structure. On the other hand, data from ground-coupled array contain much more details from individual scatterers, making them more suitable to image the granularity of the road base materials and for bridge deck inspection, where reinforcement rebar has to be imaged. Ground-coupled GPR systems also provide higher penetrating depth due to a stronger coupling of energy into the ground. The novel stepped-frequency ground-coupled GPR exploits an array of boomerang-shaped monopole elements. 6. Recommendations for the safety of people and equipment during GPR prospecting were produced. Despite the increasing demand of GPR surveys all over the world, safety matters are rarely considered. The Action put efforts into debating them, with scientists and professionals performing GPR surveys. As an outcome of this activity, a book was published where a series of recommendations are provided. These include general hints, recommendations for surveys carried out in challenging environmental situations, description of risks associated to specific applications, instructions for first medical aid, information about GPR electromagnetic emissions and associated risks, and finally suggestions for a safe use of the equipment and for a respectful interaction with the environment. 7. WG1 contributed to the TU1208 Education Pack, an open-access educational package conceived to teach GPR in University courses. 8. Three Training Schools were organised on radar systems and antennas, in cooperation with the European School of Antennas (ESoA): two editions of the Training School "Future Radar Systems: Radar2020" and a Training School on "UWB Antennas, Technologies and Applications". These courses were held in the Karlsruhe Institute of Technology, in Karlsruhe, Germany. Acknowledgement: The Authors are deeply grateful to COST (European Cooperation in Science and Technology, www.cost.eu), for funding and supporting the COST Action TU1208 "Civil engineering applications of Ground Penetrating Radar" (www.GPRadar.eu).
Ground penetrating radar (GPR) detects fine roots of agricultural crops in the field
Xiuwei Liu; Xuejun Dong; Qingwu Xue; Daniel I. Leskovar; John Jifon; John R. Butnor; Thomas Marek
2018-01-01
Aim Ground penetrating radar (GPR) as a non-invasive technique is widely used in coarse root detection. However, the applicability of the technique to detect fine roots of agricultural crops is unknown. The objective of this study was to assess the feasibility of utilizing GPR to detect fine roots in the field.
NASA Astrophysics Data System (ADS)
Pajewski, Lara; Giannopoulos, Antonios; Sesnic, Silvestar; Randazzo, Andrea; Lambot, Sébastien; Benedetto, Francesco; Economou, Nikos
2017-04-01
This work aims at presenting the main results achieved by Working Group (WG) 3 "Electromagnetic methods for near-field scattering problems by buried structures; data processing techniques" of the COST (European COoperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.GPRadar.eu, www.cost.eu). The main objective of the Action, started in April 2013 and ending in October 2017, is to exchange and increase scientific-technical knowledge and experience of Ground Penetrating Radar (GPR) techniques in civil engineering, whilst promoting in Europe the effective use of this safe non-destructive technique. The Action involves more than 150 Institutions from 28 COST Countries, a Cooperating State, 6 Near Neighbour Countries and 6 International Partner Countries. Among the most interesting achievements of WG3, we wish to mention the following ones: (i) A new open-source version of the finite-difference time-domain simulator gprMax was developed and released. The new gprMax is written in Python and includes many advanced features such as anisotropic and dispersive-material modelling, building of realistic heterogeneous objects with rough surfaces, built-in libraries of antenna models, optimisation of parameters based on Taguchi's method - and more. (ii) A new freeware CAD was developed and released, for the construction of two-dimensional gprMax models. This tool also includes scripts easing the execution of gprMax on multi-core machines or network of computers and scripts for a basic plotting of gprMax results. (iii) A series of interesting freeware codes were developed will be released by the end of the Action, implementing differential and integral forward-scattering methods, for the solution of simple electromagnetic problems by buried objects. (iv) An open database of synthetic and experimental GPR radargrams was created, in cooperation with WG2. The idea behind this initiative is to give researchers the opportunity of testing and validating, against reliable data, their electromagnetic-modelling, inversion, imaging and processing algorithms. One of the most interesting dataset comes from the IFSTTAR Geophysical Test Site, in Nantes (France): this is an open-air laboratory including a large and deep area, filled with various materials arranged in horizontal compacted slices, separated by vertical interfaces and water-tighted in surface; several objects as pipes, polystyrene hollows, boulders and masonry are embedded in the field. Data were collected by using nine different GPR systems and at different frequencies ranging from 200 MHz to 1 GHz. Moreover, some sections of this test site were modelled by using gprMax and the commercial software CST Microwave Studio. Hence, both experimental and synthetic data are available. Further interesting datasets were collected on roads, bridges, concrete cells, columns - and more. (v) WG3 contributed to the TU1208 Education Pack, an open educational package conceived to teach GPR in University courses. (vi) WG3 was very active in offering training activities. The following courses were successfully organised: Training School (TS) "Microwave Imaging and Diagnostics" (in cooperation with the European School of Antennas; 1st edition: Madonna di Campiglio, Italy, March 2014, 2nd edition: Taormina, Italy, October 2016); TS "Numerical modelling of Ground Penetrating Radar using gprMax" (Thessaloniki, Greece, November 2015); TS "Electromagnetic Modelling Techniques for Ground Penetrating Radar" (Split, Croatia, November 2016). Moreover, WG3 organized a workshop on "Electromagnetic modelling with the Finite-Difference Time-Domain technique" (Nantes, France, February 2014) and a workshop on "Electromagnetic modelling and inversion techniques for GPR" (Davos, Switzerland, April 2016) within the 2016 European Conference on Antennas and Propagation (EuCAP). Acknowledgement: The Authors are deeply grateful to COST (European COoperation in Science and Technology, www.cost.eu), for funding and supporting the COST Action TU1208 "Civil engineering applications of Ground Penetrating Radar" (www.GPRadar.eu).
Cave detection with GPR and seismic methods
NASA Astrophysics Data System (ADS)
Neducza, B.; Hermann, L.; Pattantyus-Abraham, M.
2003-04-01
In the last few years building sites extended extraordinarily on the hilly part of Budapest, where protected caves can be found. New buildings are being built on the unbuilt areas, and existing houses are being enlarged. If we close the swallers we stop the growth of voids and stalagmites. It’s important to know the size, position and depth of natural voids and cavities before building or reconstruction. We used Ground Penetrating Radar (GPR) and shallow seismic measurements to detect these objects. The presentation shows the physical bases and some typical radar and shallow seismic sections. It illustrates the use of these methods with 4 case histories: 1 GPR measurement above a known cave system on Budapest, 2 3D measurement above an unknown cave in a limestone mine, 3 Searching the continuity of a known cave from the surface, 4 Detecting the continuity of a karstic system, which has underground lakes.
Laboratory simulation of high-frequency GPR responses of damaged tunnel liners
NASA Astrophysics Data System (ADS)
Siggins, A. F.; Whiteley, Robert J.
2000-04-01
Concrete lined tunnels and pipelines commonly suffer from damage due to subsidence or poor drainage in the surrounding soils, corrosion of reinforcement if present, and acid vapor leaching of the lining. There is a need to conduct tunnel condition monitoring using non-destructive testing methods (NDT) on a regular basis in many buried installations, for example sewers and storm water drains. A wide variety of NDT methods have been employed in the past to monitor these linings including closed circuit TV (CCTV) inspection, magnetic and various electromagnetic and seismic methods. Ground penetrating radar, GPR, is a promising technique for this application, however there are few systems currently available that can provide the high resolution imaging needed to test the lining. A recently developed Australian GPR system operating at 1400 MHz offers the potential to overcome many of these limitations while maintaining adequate resolution to the rear of the linings which are typically less than 0.5 meters thick. The new high frequency GPR has a nominal resolution of 0.03 m at the center of the pulse band-width. This is a significant improvement over existing radars with the possible exception of some horn based systems. This paper describes the results of a laboratory study on a model tunnel lining using the new 1.4 GHz radar. The model simulated a concrete lining with various degrees of damage including, heavily leached sections, voids and corroded reinforcing. The test results established that the new GPR was capable of imaging subtle variations in the concrete structure and that simulated damage could be detected throughout the liner depth. Furthermore, resolution was found to exceed 0.02 m which was significantly better than expected.
Ground Penetrating Radar : Pavement Layer Thickness Evaluation
DOT National Transportation Integrated Search
2003-12-01
The following report demonstrates the accuracy of using Ground Penetrating Radar (GPR) to determine both the surface layer thickness for asphalt, and concrete pavements. In addition tests were conducted to identify GPR's repeatability on dry pavement...
Ground penetrating radar, pavement layer thickness evaluation
DOT National Transportation Integrated Search
2002-12-01
The following report demonstrates the accuracy of using Ground Penetrating Radar (GPR) to determine both the surface layer thickness for asphalt, and concrete pavements. In addition tests were conducted to identify GPR's repeatability on dry pavement...
Ground Penetrating Radar : Pavement Layer Thickness Evaluation
DOT National Transportation Integrated Search
2002-12-01
The following report demonstrates the accuracy of using Ground Penetrating Radar (GPR) to determine both the surface layer thickness for asphalt, and concrete pavements. In addition tests were conducted to identify GPR's repeatability on dry pavement...
NASA Astrophysics Data System (ADS)
Teoh, YJ; Bruka, MA; Idris, NM; Ismail, NA; Muztaza, NM
2018-04-01
Ground penetrating radar (GPR) are non-invasive geophysical techniques that enhance studies of the shallow subsurface. The purposes of this work are to study the subsurface composition of Balik Pulau area in Penang Island and to identify shallow subsurface geology features. Data acquisition for GPR is by using 250 MHz antenna to cover 200m survey line at Jalan Tun Sardon, Balik Pulau. GPR survey was divided into ten sections at 20 m each. Results from GPR shows that there is low EM reflection along the first 40 m of the survey line. Intense EM reflections were recorded along the distance 40 m to 100 m. Less noticeable radar reflections recorded along 100 m to 200 m distance of the survey line. As a conclusion, clear signal of radar wave reflection indicates dry region of the subsurface. Meanwhile, low signal of radar wave reflection indicates highly weathered granitic soil or clay of the subsurface.
Estimating soil water content from ground penetrating radar coarse root reflections
NASA Astrophysics Data System (ADS)
Liu, X.; Cui, X.; Chen, J.; Li, W.; Cao, X.
2016-12-01
Soil water content (SWC) is an indispensable variable for understanding the organization of natural ecosystems and biodiversity. Especially in semiarid and arid regions, soil moisture is the plants primary source of water and largely determine their strategies for growth and survival, such as root depth, distribution and competition between them. Ground penetrating radar (GPR), a kind of noninvasive geophysical technique, has been regarded as an accurate tool for measuring soil water content at intermediate scale in past decades. For soil water content estimation with surface GPR, fixed antenna offset reflection method has been considered to have potential to obtain average soil water content between land surface and reflectors, and provide high resolution and few measurement time. In this study, 900MHz surface GPR antenna was used to estimate SWC with fixed offset reflection method; plant coarse roots (with diameters greater than 5 mm) were regarded as reflectors; a kind of advanced GPR data interpretation method, HADA (hyperbola automatic detection algorithm), was introduced to automatically obtain average velocity by recognizing coarse root hyperbolic reflection signals on GPR radargrams during estimating SWC. In addition, a formula was deduced to determine interval average SWC between two roots at different depths as well. We examined the performance of proposed method on a dataset simulated under different scenarios. Results showed that HADA could provide a reasonable average velocity to estimate SWC without knowledge of root depth and interval average SWC also be determined. When the proposed method was applied to estimation of SWC on a real-field measurement dataset, a very small soil water content vertical variation gradient about 0.006 with depth was captured as well. Therefore, the proposed method could be used to estimate average soil water content from ground penetrating radar coarse root reflections and obtain interval average SWC between two roots at different depths. It is very promising for measuring root-zone-soil-moisture and mapping soil moisture distribution around a shrub or even in field plot scale.
Assessment of highway pavements using GPR
NASA Astrophysics Data System (ADS)
Plati, Christina; Loizos, Andreas
2015-04-01
Highway infrastructure is a prerequisite for a functioning economy and social life. Highways, often prone to congestion and disruption, are one of the aspects of a modern transport network that require maximum efficiency if an integrated transport network, and sustainable mobility, is to be achieved. Assessing the condition of highway structures, to plan subsequent maintenance, is essential to allow the long-term functioning of a road network. Optimizing the methods used for such assessment will lead to better information being obtained about the road and underlying ground conditions. The condition of highway structures will be affected by a number of factors, including the properties of the highway pavement, the supporting sub-base and the subgrade (natural ground), and the ability to obtain good information about the entire road structure, from pavement to subgrade, allows appropriate maintenance programs to be planned. The maintenance of highway pavements causes considerable cost and in many cases obstruction to traffic flow. In this situation, methods that provide information on the present condition of pavement structure non-destructively and economically are of great interest. It has been shown that Ground-Penetrating-Radar (GPR), which is a Non Destructive Technique (NDT), can deliver information that is useful for the planning of pavement maintenance activities. More specifically GPR is used by pavement engineers in order to determine physical properties and characteristics of the pavement structure, information that is valuable for the assessment of pavement condition. This work gives an overview on the practical application of GPR using examples from highway asphalt pavements monitoring. The presented individual applications of GPR pavement diagnostics concern structure homogeneity, thickness of pavement layers, dielectric properties of asphalt materials etc. It is worthwhile mentioning that a number of applications are standard procedures, either separately or in combination with other NDT methods, but even for them there is still a room for improvement and there is still need to set stricter regulations Comparisons between radar results and ground truth data produce evidence in support of the statement that the accuracy and reliability of radar results is sufficient for facing many issues related to the evaluation of asphalt pavements. Thus, benefits and limits of this method are shown and recommendations for GPR inspections are presented. Acknowledgments: This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar."
Ground penetrating radar study--phase I : technology review and evaluation.
DOT National Transportation Integrated Search
2006-08-01
In December 2005 Mississippi Department of Transportation (MDOT) initiated State Study No. 182 on review : and evaluation of ground penetrating radar (GPR) technology. This Phase I study has reviewed GPR equipment : and data interpretation methodolog...
Performance of ground-penetrating radar on granitic regoliths with different mineral composition
Breiner, J.M.; Doolittle, James A.; Horton, Radley M.; Graham, R.C.
2011-01-01
Although ground-penetrating radar (GPR) is extensively used to characterize the regolith, few studies have addressed the effects of chemical and mineralogical compositions of soils and bedrock on its performance. This investigation evaluated the performance of GPR on two different granitic regoliths of somewhat different mineralogical composition in the San Jacinto Mountains of southern California. Radar records collected at a site where soils are Alfisols were more depth restricted than the radar record obtained at a site where soils are Entisols. Although the Alfisols contain an argillic horizon, and the Entisols have no such horizon of clay accumulation, the main impact on GPR effectiveness is related to mineralogy. The bedrock at the Alfisol site, which contains more mafic minerals (5% hornblende and 20% biotite), is more attenuating to GPR than the bedrock at the Entisol site, where mafic mineral content is less (<1% hornblende and 10% biotite). Thus, a relatively minor variation in bedrock mineralogy, specifically the increased biotite content, severely restricts the performance of GPR. Copyright ?? 2011 by Lippincott Williams & Wilkins.
E2GPR - Edit your geometry, Execute GprMax2D and Plot the Results!
NASA Astrophysics Data System (ADS)
Pirrone, Daniele; Pajewski, Lara
2015-04-01
In order to predict correctly the Ground Penetrating Radar (GPR) response from a particular scenario, Maxwell's equations have to be solved, subject to the physical and geometrical properties of the considered problem and to its initial conditions. Several techniques have been developed in computational electromagnetics, for the solution of Maxwell's equations. These methods can be classified into two main categories: differential and integral equation solvers, which can be implemented in the time or spectral domain. All of the different methods present compromises between computational efficiency, stability, and the ability to model complex geometries. The Finite-Difference Time-Domain (FDTD) technique has several advantages over alternative approaches: it has inherent simplicity, efficiency and conditional stability; it is suitable to treat impulsive behavior of the electromagnetic field and can provide either ultra-wideband temporal waveforms or the sinusoidal steady-state response at any frequency within the excitation spectrum; it is accurate and highly versatile; and it has become a mature and well-researched technique. Moreover, the FDTD technique is suitable to be executed on parallel-processing CPU-based computers and to exploit the modern computer visualisation capabilities. GprMax [1] is a very well-known and largely validated FDTD software tool, implemented by A. Giannopoulos and available for free public download on www.gprmax.com, together with examples and a detailled user guide. The tool includes two electromagnetic wave simulators, GprMax2D and GprMax3D, for the full-wave simulation of two-dimensional and three-dimensional GPR models. In GprMax, everything can be done with the aid of simple commands that are used to define the model parameters and results to be calculated. These commands need to be entered in a simple ASCII text file. GprMax output files can be stored in ASCII or binary format. The software is provided with MATLAB functions, which can be employed to import synthetic data created by GprMax using the binary-format option into MATLAB, in order to be processed and/or visualized. Further MATLAB procedures for the visualization of GprMax synthetic data have been developed within the COST Action TU1208 [2] and are available for free public download on www.GPRadar.eu. The current version of GprMax3D is compiled with OpenMP, supporting multi-platform shared memory multiprocessing which allows GprMax3D to take advantage of multiple cores/CPUs. GprMax2D, instead, exploits a single core when executed. E2GPR is a new software tool, available free of charge for both academic and commercial use, conceived to: 1) assist in the creation, modification and analysis of GprMax2D models, through a Computer-Aided Design (CAD) system; 2) allow parallel and/or distributed computing with GprMax2D, on a network of computers; 3) automatically plot A-scans and B-scans generated by GprMax2D. The CAD and plotter parts of the tool are implemented in Java and can run on any Java Virtual Machine (JVM) regardless of computer architecture. The part of the tool devoted to supporting parallel and/or distributed computing, instead, requires the set up of a Web-Service (on a server emulator or server); in fact, it is currently configured only for Windows Server and Internet Information Services (IIS). In this work, E2GPR is presented and examples are provided which demonstrate its use. The tool can be currently obtained by contacting the authors. It will soon be possible to download it from www.GPRadar.eu. Acknowledgement This work is a contribution to the COST Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar.' The authors thank COST for funding the Action TU1208. References [1] A. Giannopoulos, 'Modelling ground penetrating radar by GprMax,' Construction and Building Materials, vol. 19, pp. 755-762, 2005. [2] L. Pajewski, A. Benedetto, X. Dérobert, A. Giannopoulos, A. Loizos, G. Manacorda, M. Marciniak, C. Plati, G. Schettini, I. Trinks, "Applications of Ground Penetrating Radar in Civil Engineering - COST Action TU1208," Proc. 7th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), 2-5 July 2013, Nantes, France, pp. 1-6.
Wijewardana, Y N S; Shilpadi, A T; Mowjood, M I M; Kawamoto, K; Galagedara, L W
2017-02-01
The assessment of polluted areas and municipal solid waste (MSW) sites using non-destructive geophysical methods is timely and much needed in the field of environmental monitoring and management. The objectives of this study are (i) to evaluate the ground-penetrating radar (GPR) wave responses as a result of different electrical conductivity (EC) in groundwater and (ii) to conduct MSW stratification using a controlled lysimeter and modeling approach. A GPR wave simulation was carried out using GprMax2D software, and the field test was done on two lysimeters that were filled with sand (Lysimeter-1) and MSW (Lysimeter-2). A Pulse EKKO-Pro GPR system with 200- and 500-MHz center frequency antennae was used to collect GPR field data. Amplitudes of GPR-reflected waves (sub-surface reflectors and water table) were studied under different EC levels injected to the water table. Modeling results revealed that the signal strength of the reflected wave decreases with increasing EC levels and the disappearance of the subsurface reflection and wave amplitude reaching zero at higher EC levels (when EC >0.28 S/m). Further, when the EC level was high, the plume thickness did not have a significant effect on the amplitude of the reflected wave. However, it was also found that reflected signal strength decreases with increasing plume thickness at a given EC level. 2D GPR profile images under wet conditions showed stratification of the waste layers and relative thickness, but it was difficult to resolve the waste layers under dry conditions. These results show that the GPR as a non-destructive method with a relatively larger sample volume can be used to identify highly polluted areas with inorganic contaminants in groundwater and waste stratification. The current methods of MSW dumpsite investigation are tedious, destructive, time consuming, costly, and provide only point-scale measurements. However, further research is needed to verify the results under heterogeneous aquifer conditions and complex dumpsite conditions.
Quantitative analysis of ground penetrating radar data in the Mu Us Sandland
NASA Astrophysics Data System (ADS)
Fu, Tianyang; Tan, Lihua; Wu, Yongqiu; Wen, Yanglei; Li, Dawei; Duan, Jinlong
2018-06-01
Ground penetrating radar (GPR), which can reveal the sedimentary structure and development process of dunes, is widely used to evaluate aeolian landforms. The interpretations for GPR profiles are mostly based on qualitative descriptions of geometric features of the radar reflections. This research quantitatively analyzed the waveform parameter characteristics of different radar units by extracting the amplitude and time interval parameters of GPR data in the Mu Us Sandland in China, and then identified and interpreted different sedimentary structures. The results showed that different types of radar units had specific waveform parameter characteristics. The main waveform parameter characteristics of sand dune radar facies and sandstone radar facies included low amplitudes and wide ranges of time intervals, ranging from 0 to 0.25 and 4 to 33 ns respectively, and the mean amplitudes changed gradually with time intervals. The amplitude distribution curves of various sand dune radar facies were similar as unimodal distributions. The radar surfaces showed high amplitudes with time intervals concentrated in high-value areas, ranging from 0.08 to 0.61 and 9 to 34 ns respectively, and the mean amplitudes changed drastically with time intervals. The amplitude and time interval values of lacustrine radar facies were between that of sand dune radar facies and radar surfaces, ranging from 0.08 to 0.29 and 11 to 30 ns respectively, and the mean amplitude and time interval curve was approximately trapezoidal. The quantitative extraction and analysis of GPR reflections could help distinguish various radar units and provide evidence for identifying sedimentary structure in aeolian landforms.
NASA Astrophysics Data System (ADS)
Dogan, M.; Moysey, S. M.; Murdoch, L. C.; Denison, J. L. S.; Ahmadian, M.
2017-12-01
We have used ground penetrating radar (GPR) to image fractures formed in shallow sediments as a result of high-pressure injection. Understanding fracture formation and behavior is important for a variety of reasons, ranging from validating fracture formation theories to characterizing fracture networks induced for enhancing recovery schemes in low permeability rocks. GPR is a high resolution geophysical method that is sensitive to electromagnetic property changes in the subsurface. The resolution of GPR is, however, typically on the order of ¼ of the wavelength, which for the 900MHz GPR data is on the order of 2-5cm. Thus it was not clear prior to the experiment whether it would be possible for GPR to image the fractures formed during the injection. We found that the GPR was indeed able to image the fractures very well as they evolved through time. Over the course of the experiment, we were able to collect pseudo-3D data that allowed us to monitor the growth of the fracture over time. The experiment was also repeated for different injection materials to examine how the fill in the fractures impacts the GPR signal. From the GPR data we are able to reconstruct the approximate three-dimensional shape of the facture over time. At the end of the experiment, the experimental cells were trenched so that the actual fracture distribution could be mapped. Overall, the GPR interpretation showed reasonable agreement with what we could observed in the trenches. The experimental results suggest that GPR characterization of fractures is feasible.
DOT National Transportation Integrated Search
2008-05-01
Center for Advanced Transportation Infrastructure (CAIT) of Rutgers University is mandated to conduct Ground Penetrating Radar (GPR) surveys to update the NJDOT's pavement management system with GPR measured pavement layer thicknesses. Based on the r...
NASA Astrophysics Data System (ADS)
Pajewski, Lara; Benedetto, Andrea; Derobert, Xavier; Fontul, Simona; Govedarica, Miro; Gregoire, Colette; Loizos, Andreas; Perez-Gracia, Vega; Plati, Christina; Ristic, Aleksandar; Tosti, Fabio; Van Geem, Carl
2017-04-01
This work aims at presenting the main results achieved by Working Group (WG) 2 "GPR surveying of pavements, bridges, tunnels and buildings; underground utility and void sensing" of the COST (European COoperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.GPRadar.eu, www.cost.eu). The principal goal of the Action, started in April 2013 and ending in October 2017, is to exchange and increase scientific-technical knowledge and experience of Ground Penetrating Radar (GPR) techniques in civil engineering, whilst promoting throughout Europe the effective use of this safe non-destructive technique. The Action involves more than 300 Members from 28 COST Countries, a Cooperating State, 6 Near Neighbour Countries and 6 International Partner Countries. The most interesting achievements of WG2 include: 1. The state of the art on the use of GPR in civil engineering was composed and open issues were identified. The few existing international/national guidelines/protocols for GPR inspection in civil engineering were reviewed and discussed. Academic end-users, private companies and stakeholders presented their point of view and needs. 2. Guidelines for investigating flexible pavement by using GPR were prepared, with particular regard to layer-thickness assessment, moisture-content sensing, pavement-damage detection and classification, and other main GPR-based investigations in pavement engineering. 3. Guidelines for GPR sensing and mapping of underground utilities and voids were prepared, with a main focus on urban areas. 4. Guidelines for GPR assessment of concrete structures, with particular regard to inspections in bridges and tunnels, were prepared. 5. A report was composed, including a series of practical suggestions and very useful information to guide GPR users during building inspection. 6. WG2 Members carried out a plethora of case studies where GPR was used to survey roads, highways, airport runways, car parkings, road tunnels, underground concrete tunnels, bridges, railways, buildings. GPR was also employed to detect cables and pipes, as well as to inspect road construction materials, joints, concrete and wood. A selection of the most interesting results will be presented during the 2017 EGU GA. 7. WG2 contributed to the TU1208 Education Pack, an open-access educational package conceived to teach GPR in University courses. 8. In cooperation with the other Working Groups, WG2 organized Tutorials on Ground Penetrating Radar (Brussels, Belgium, July 2014, and London, United Kingdom, March 2015), as well as Training Schools on "Civil engineering applications of Ground Penetrating Radar" (Pisa, Italy, September 2014), "Applications of Ground Penetrating Radar in urban areas: the sensitive case of historical cities" (Cracow, Poland, May 2015), "Ground Penetrating Radar for road pavement assessment and detection of buried utilities" (London, United Kingdom, October 2015), "Applications of GPR to civil engineering and archaeology" (Valletta, Malta, January 2016), "Non-destructive testing techniques for civil engineering" (Barcelona, Spain, March 2016), and finally "Ground Penetrating Radar for the assessment of transport infrastructure" (Osijek, Croatia, March 2017). 9. In cooperation with the other Working Groups, WG2 organized a series of national events devoted to fostering the interaction with stakeholders, new potential GPR end-users, and interested citizens. During such events, participants could discover what is GPR and how this technique can be effectively used in civil engineering works as well as in different fields ("TU1208 GPR Road Show"). Acknowledgement: The Authors are deeply grateful to COST (European Cooperation in Science and Technology, www.cost.eu), for funding and supporting the COST Action TU1208 "Civil engineering applications of Ground Penetrating Radar" (www.GPRadar.eu).
Ground penetrating radar (GPR) analysis : Phase II field evaluation.
DOT National Transportation Integrated Search
2011-10-01
"The objective of this work was to evaluate the feasibility and value of expanding the MDT's Ground : Penetrating Radar (GPR) program to pavement design and rehabilitation, and to network level : evaluation. Phase I of this project concluded that in ...
NASA Astrophysics Data System (ADS)
Volkomirskaya, Liudmila; Gulevich, Oxana; Musalev, Dmitri
2013-04-01
The potentialities of ground-penetrating radar in the engineering geology using the radars GROT-12 and GROT-12E L.B. Volkomirskaya(1,2), O.A. Gulevich(1,2), D.N. Musalev(3) 1. IZMIRAN, 142190, Russia, Moscow, Troitsk, Kalugskoe 4 2. ZAO Timer, 142190, Russia, Moscow, Troitsk, Lesnaya str. 4B 3. OAO Belgorchemprom, Republic of Belarus, Minsk, Masherov str. 17 The article presents the potentialities of ground-penetrating radar in the engineering geology on the basis of the latest modifications of the GPR "GROT": the low-frequency GPR GROT-12 and the high-frequency GPR GROT-12E. The article gives technical specifications of the GPRs GROT-12 and GROT-12E and their particular characteristics that define them from analogues. The solutions of direct problems of ground penetrating radar on the basis of Maxwell's equations in general formulation with given wide-band signal source are confronted to experimental data received from different fields of the engineering geology, for example: 1. To secure mining in salt mines the method was adapted to locate in the working layers the investigating boreholes, fault lines, borders of displacement and blowout of productive layers, as well as working pits without access. 2. To monitor the reinforced concrete structures of airport runways the technology was worked out to collect and process GPR data so as to locate communications under the runways and examine basement condition. 3. To carry out the reconstruction of buildings and pre-project engineering geological works the GPR shooting technology was improved to process the examinations of the bearing capacity of soils and to locate lost communications. 4. To perform ecological monitoring of abandoned mines the technology of the GPR data collecting and processing was developed to assess the conditions of stowage materials in mouths of destroyed vertical mine shafts, the location of inclined mine shafts, the determination of hollow spaces and thinning zones, the localization of ground and mining waters, as well as the state of dumps (spoil tips). The dependence was investigated between the resolution, the exploration depth and the characteristics of GPR: the power and pulse length of transmitter, the digit capacity and frequency of the receiver, the construction of antennas. The article includes examples of usage of GROT-12 and GROT-12E in research at the depth 100 m and deeper in the salt mines in Starobinsk deposit, in the Sheremetyevo airport in Moscow, in the mining fields of Kuznetsk Basin, Donets Basin and Australia. The article presents a study of the required characteristics of ground-penetrating radars considering the given parameters of the exploration depth and digit capacity.
Qiao, Lihong; Qin, Yao; Ren, Xiaozhen; Wang, Qifu
2015-01-01
It is necessary to detect the target reflections in ground penetrating radar (GPR) images, so that surface metal targets can be identified successfully. In order to accurately locate buried metal objects, a novel method called the Multiresolution Monogenic Signal Analysis (MMSA) system is applied in ground penetrating radar (GPR) images. This process includes four steps. First the image is decomposed by the MMSA to extract the amplitude component of the B-scan image. The amplitude component enhances the target reflection and suppresses the direct wave and reflective wave to a large extent. Then we use the region of interest extraction method to locate the genuine target reflections from spurious reflections by calculating the normalized variance of the amplitude component. To find the apexes of the targets, a Hough transform is used in the restricted area. Finally, we estimate the horizontal and vertical position of the target. In terms of buried object detection, the proposed system exhibits promising performance, as shown in the experimental results. PMID:26690146
Detection of underground voids in Tahura Japan Cave Bandung using ground penetrating radar
NASA Astrophysics Data System (ADS)
Azimmah, Azizatun; Widodo
2017-07-01
The detection of underground voids is important due to their effects on subsidence higher risk. Ground Penetrating Radar is one of geophysical electromagnetic methods that has been proven to be able to detect and locate any void beneath the surface effectively at a shallow depth. This method uses the contrasts of dielectric properties, resistivity and magnetic permeability to investigate and map what lies beneath the surface. Hence, this research focused on how GPR could be applied for detecting underground voids at the site of investigation, The Japan Cave in Taman Hutan Raya located in Dago, Bandung, Indonesia. A 100 MHz GPR shielded antenna frequency were used to measure three >80 meters long measurement lines. These three GPR profiles were positioned on the surface above the Japan Cave. The radargram results showed existences of different amplitude regions proven to be the air-filled cavities, at a depth of <10 meters, and interfaces between the underneath layers.
Influence of Clay Content, Mineralogy and Fabric On Radar Frequency Response of Aquifer Materials
NASA Astrophysics Data System (ADS)
West, L. J.; Handley, K.
High frequency electromagnetic methods such as ground penetrating radar (GPR) and time domain reflectometry (TDR) are widely employed to measure water saturation in the vadose zone and water filled porosity in the saturated zone. However, previous work has shown that radar frequency dielectric properties are strongly influenced by clay as well as by water content. They have also shown that that the dielectric response of clay minerals is strongly frequency dependent, and that even a small proportion of clay such as that present in many sandstone aquifers can have a large effect at typi- cal GPR frequencies (around 100MHz). Hence accurate water content/porosity deter- mination requires clay type and content to be taken into account. Reported here are dielectric measurements on clay-sand mixtures, aimed at investigating the influence of clay mineralogy, particle shape, and the geometrical arrangement of the mixture constituents on GPR and TDR response. Dielectric permittivity (at 50-1000MHz) was measured for mixtures of Ottawa Sand and various clay minerals or clay size quartz rock flour, using a specially constructed dielectric cell. Both homogeneous and layered mixtures were tested. The influence of pore water salinity, clay type, and particle arrangement on the dielectric response is interpreted in terms of dielectric dispersion mechanisms. The appropriateness of var- ious dielectric mixing rules such as the Complex Refractive Index Method (CRIM) for determination of water content or porosity from field GPR and TDR data are dis- cussed.
Target detection in GPR data using joint low-rank and sparsity constraints
NASA Astrophysics Data System (ADS)
Bouzerdoum, Abdesselam; Tivive, Fok Hing Chi; Abeynayake, Canicious
2016-05-01
In ground penetrating radars, background clutter, which comprises the signals backscattered from the rough, uneven ground surface and the background noise, impairs the visualization of buried objects and subsurface inspections. In this paper, a clutter mitigation method is proposed for target detection. The removal of background clutter is formulated as a constrained optimization problem to obtain a low-rank matrix and a sparse matrix. The low-rank matrix captures the ground surface reflections and the background noise, whereas the sparse matrix contains the target reflections. An optimization method based on split-Bregman algorithm is developed to estimate these two matrices from the input GPR data. Evaluated on real radar data, the proposed method achieves promising results in removing the background clutter and enhancing the target signature.
USDA-ARS?s Scientific Manuscript database
The four geophysical methods predominantly used for agricultural purposes are resistivity, electromagnetic induction, ground penetrating radar (GPR), and time domain reflectometry (TDR). Resistivity and electromagnetic induction methods are typically employed to map lateral variations of apparent so...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafarov, E. E.; Parsekian, A. D.; Schaefer, K.
Ground penetrating radar (GPR) has emerged as an effective tool for estimating active layer thickness (ALT) and volumetric water content (VWC) within the active layer. In August 2013, we conducted a series of GPR and probing surveys using a 500 MHz antenna and metallic probe around Barrow, Alaska. Here, we collected about 15 km of GPR data and 1.5 km of probing data. We describe the GPR data processing workflow from raw GPR data to the estimated ALT and VWC. We then include the corresponding uncertainties for each measured and estimated parameter. The estimated average GPR-derived ALT was 41 cm,more » with a standard deviation of 9 cm. The average probed ALT was 40 cm, with a standard deviation of 12 cm. The average GPR-derived VWC was 0.65, with a standard deviation of 0.14.« less
Jafarov, E. E.; Parsekian, A. D.; Schaefer, K.; ...
2018-01-09
Ground penetrating radar (GPR) has emerged as an effective tool for estimating active layer thickness (ALT) and volumetric water content (VWC) within the active layer. In August 2013, we conducted a series of GPR and probing surveys using a 500 MHz antenna and metallic probe around Barrow, Alaska. Here, we collected about 15 km of GPR data and 1.5 km of probing data. We describe the GPR data processing workflow from raw GPR data to the estimated ALT and VWC. We then include the corresponding uncertainties for each measured and estimated parameter. The estimated average GPR-derived ALT was 41 cm,more » with a standard deviation of 9 cm. The average probed ALT was 40 cm, with a standard deviation of 12 cm. The average GPR-derived VWC was 0.65, with a standard deviation of 0.14.« less
NASA Astrophysics Data System (ADS)
Zhang, Yu; Orfeo, Dan; Burns, Dylan; Miller, Jonathan; Huston, Dryver; Xia, Tian
2017-04-01
Ground penetrating radar (GPR) has been shown to be an effective device for detecting buried objects that have little or no metal content, such as plastic, ceramic, and concrete pipes. In this paper, buried non-metallic object detection is evaluated for different antenna elevation angles and heights using a bistatic air-launched GPR. Due to the large standoff distance between antennas and the ground surface, the air-launched GPR has larger spreading loss than the hand-held GPR and vehicle-mounted GPR. Moreover, nonmetallic objects may have similar dielectric property to the buried medium, which results in further difficulty for accurate detection using air-launched GPR. To study such effects, both GPR simulations and GPR laboratory experiments are performed with various setups where antennas are placed at different heights and angles. In the experiments, the test surface areas are configured with and without rocks in order to examine surface clutter effect. The experimental results evaluate the feasibility and effectiveness of bistatic air-launched GPR for detecting buried nonmetallic objects, which provide valuable insights for subsurface scanning with unmanned aerial vehicle (UAV) mounted GPR.
DOT National Transportation Integrated Search
2015-01-01
Recently Maryland State Highway Administration (SHA) started to explore use of Ground Penetrating Radar : (GPR) technology to provide quantitative information for improved decision making and reduced operating : costs. To take full advantage of the G...
DOT National Transportation Integrated Search
2008-09-01
This report tests the application of Ground Penetrating Radar (GPR) as a non-destructive tool for highway infrastructure assessment. Multiple antennas with different frequency ranges were used on a variety infrastructure projects. This report highlig...
2-D and 3-D Difraction Stake Migration Method Using GPR: A Case Study in Canakkale (Turkey)
NASA Astrophysics Data System (ADS)
Çaǧlar Yalçiner, Cahit
In this study, ground-penetrating radar (GPR) method was applied for Clandestine cemetery detection in Ηanakkale (Dardanelles), west Turkey. Investigated area was a historical area which was used as tent hospitals during the World War I. The study area was also used to bury soldiers who died during the treatment process in tent hospitals. Because of agricultural activity grave stones were used by local people, thus, most of the graves were lost in the field. 45 GPR profiles were applied with a GPR system (RAMAC) equipped with 250 MHz central frequency shielded antenna. After main processing steps on raw data, migration was applied to improve section resolution and develop the realism of the subsurface images. Although the GPR in results before migration the anomalous zones are visible, after migration the results became much more visible both in the profiles and 3D illustrations, thus, migrated GPR data were preferred to locate the buried martyrdoms.
Ground Penetrating Radar Technologies in Ukraine
NASA Astrophysics Data System (ADS)
Pochanin, Gennadiy P.; Masalov, Sergey A.
2014-05-01
Transient electromagnetic fields are of great interest in Ukraine. The following topics are studied by research teams, with high-level achievements all over the world: (i) Ultra-Wide Band/Short-pulse radar techniques (IRE and LLC "Transient Technologies", for more information please visit http://applied.ire.kharkov.ua/radar%20systems_their%20components%20and%20relevant%20technologies_e.html and http://viy.ua); (ii) Ground Penetrating Radar (GPR) with stepped frequency sounding signals (IRE); (iii) Continuous-Wave (CW) radar with phase-shift keying signals (IRE); and (iv) Radio-wave interference investigation (Scientific and Technical Centre of The Subsurface Investigation, http://geophysics.ua). GPR applications are mainly in search works, for example GPR is often used to search for treasures. It is also used to identify leaks and diffusion of petroleum in soil, in storage areas, as well as for fault location of pipelines. Furthermore, GPR is used for the localization of underground utilities and for diagnostics of the technical state of hydro dams. Deeper GPR probing was performed to identify landslides in Crimea. Rescue radar with CW signal was designed in IRE to search for living people trapped under the rubble of collapsed buildings. The fourth version of this radar has been recently created, showing higher stability and noise immunity. Radio-wave interference investigation allows studying the soil down to tens of meters. It is possible to identify areas with increased conductivity (moisture) of the soil. LLC "Transient Technologies" is currently working with Shevchenko Kyiv University on a cooperation program in which the construction of a test site is one of the planned tasks. In the framework of this program, a GPR with a 300 MHz antenna was handed to the geological Faculty of the University. Employees of "Transient Technologies" held introductory lectures with a practical demonstration for students majoring in geophysics. The authors participated to GPR projects on the delineation of a diamond deposit in Karelia, on the localisation of unauthorized penetrations in product pipelines, and others. Since 2007, in close cooperation with researchers from V. N. Karazin Kharkiv National University (www.univer.kharkov.ua/en) and Kharkiv National Automobile and Highway University (www.khadi.kharkov.ua), we have been developing a GPR to monitor road conditions. The main objective is the creation of an equipment suitable to determine the strength characteristics of pavements. A GPR allowing to measure thicknesses of asphalt pavement layers with an accuracy better than 3 mm has already been created; it was transferred to services responsible for maintaining roads in good condition. Specific standards and guidelines for the use of GPR has not been adopted in Ukraine, yet. GPRs are rarely used by public services. Nevertheless, recently the Ukrainian government has funded several projects on GPR technologies. Ukrainians seek to maintain old and to establish new relationships with colleagues around the world. We were partners of the Ultrawideband Radar Working Group, which developed the standard "IEEE P1672 TM Ultrawideband Radar Definitions." LLC "Transient Technologies" has cooperation agreements with more than a dozen of GPR companies all over the world. A group of scientists from IRE is working in cooperation with researchers from Italy, Holland, Turkey, Brazil, Russia and Ukraine on the project of FP-7-PEOPLE-2010-IRSES no 269157 "Active and Passive Microwaves for Security and Subsurface Imaging" (for more details, please visit www.irea.cnr.it/en/index.php?option=com_k2&view=item&id=342:progetto-amiss&Itemid=165). In recent years, many representative companies have appeared, offering GPRs of foreign production on the market of Ukraine. The authors acknowledge COST for funding Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar," supporting this work.
DOT National Transportation Integrated Search
2015-01-01
Recently Maryland State Highway Administration (SHA) started to explore use of Ground : Penetrating Radar (GPR) technology to provide quantitative information for improved : decision making and reduced operating costs. To take full advantage of the G...
GPR random noise reduction using BPD and EMD
NASA Astrophysics Data System (ADS)
Ostoori, Roya; Goudarzi, Alireza; Oskooi, Behrooz
2018-04-01
Ground-penetrating radar (GPR) exploration is a new high-frequency technology that explores near-surface objects and structures accurately. The high-frequency antenna of the GPR system makes it a high-resolution method compared to other geophysical methods. The frequency range of recorded GPR is so wide that random noise recording is inevitable due to acquisition. This kind of noise comes from unknown sources and its correlation to the adjacent traces is nearly zero. This characteristic of random noise along with the higher accuracy of GPR system makes denoising very important for interpretable results. The main objective of this paper is to reduce GPR random noise based on pursuing denoising using empirical mode decomposition. Our results showed that empirical mode decomposition in combination with basis pursuit denoising (BPD) provides satisfactory outputs due to the sifting process compared to the time-domain implementation of the BPD method on both synthetic and real examples. Our results demonstrate that because of the high computational costs, the BPD-empirical mode decomposition technique should only be used for heavily noisy signals.
Wideband radar for airborne minefield detection
NASA Astrophysics Data System (ADS)
Clark, William W.; Burns, Brian; Dorff, Gary; Plasky, Brian; Moussally, George; Soumekh, Mehrdad
2006-05-01
Ground Penetrating Radar (GPR) has been applied for several years to the problem of detecting both antipersonnel and anti-tank landmines. RDECOM CERDEC NVESD is developing an airborne wideband GPR sensor for the detection of minefields including surface and buried mines. In this paper, we describe the as-built system, data and image processing techniques to generate imagery, and current issues with this type of radar. Further, we will display images from a recent field test.
GPR application on construction foundation study
NASA Astrophysics Data System (ADS)
Amran, T. S. T.; Ismail, M. P.; Ismail, M. A.; Amin, M. S. M.; Ahmad, M. R.; Basri, N. S. M.
2017-11-01
Extensive researches and studies have been carried on radar system for commercialisation of ground penetrating radar (GPR) technology pioneered in construction, and thus claimed its rightful place in the vision of future. The application of ground penetrating radar in construction study is briefly reviewed. Based on previous experimentation and studies, this paper is focus on reinforcement bar (rebar) investigation on construction. The various data through previous references used to discuss and analyse the capability of ground penetrating radar for further improvement in construction projects especially in rebar placement in works.
NASA Astrophysics Data System (ADS)
Yusof, Azim Hilmy Mohamad; Azman, Muhamad Iqbal Mubarak Faharul; Ismail, Nur Azwin; Ismail, Noer El Hidayah
2017-07-01
Infiltration of water into the soil mostly happens in area near to the ocean or area where rain occurred frequently. This paper explains about the water infiltration process that occurred vertically and horizontally at the subsurface layer. Infiltration act as an indicator of the soil's ability to allow water movement into and through the soil profile. This research takes place at Teluk Kumbar, Pulau Pinang, area that located near to the sea. Thus, infiltration process occurs actively. The study area consists of unconsolidated marine clay, sand and gravel deposits. Furthermore, the methods used for this research is 2-D Resistivity Imaging by using Wenner-Schlumberger array with 2.5 m minimum electrode spacing, and the second method is Ground Penetrating Radar (GPR) with antenna frequency of 250MHz. 2-D Resistivity Imaging is used to investigate the subsurface layer of the soil. Other than that, this method can also be used to investigate the water infiltration that happens horizontally. GPR is used to investigate shallow subsurface layer and to investigate the water infiltration from above. The results of inversion model of 2-D Resistivity Imaging shows that the subsurface layer at distance of 0 m to 20 m are suspected to be salt water intrusion zone due to the resistivity value of 0 Ω.m to 1 Ω.m. As for the radargram results from the GPR, the anomaly seems to be blurry and unclear, and EM waves signal can only penetrate up to 1.5 m depth. This feature shows that the subsurface layer is saturated with salt water. Applying 2-D resistivity imaging and GPR method were implemented to each other in identifying infiltration of water in the ground surface.
Forde, Arnell S.; Smith, Christopher G.; Reynolds, Billy J.
2016-03-18
From April 13 to 20, 2013, scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) conducted geophysical and sediment sampling surveys on Dauphin Island, Alabama, as part of Field Activity 13BIM01. The objectives of the study were to quantify inorganic and organic accretion rates in back-barrier and mainland marsh and estuarine environments. Various field and laboratory methods were used to achieve these objectives, including subsurface imaging using Ground Penetrating Radar (GPR), sediment sampling, lithologic and microfossil analyses, and geochronology techniques to produce barrier island stratigraphic cross sections to help interpret the recent (last 2000 years) geologic evolution of the island.This data series report is an archive of GPR and associated Global Positioning System (GPS) data collected in April 2013 from Dauphin Island and adjacent barrier-island environments. In addition to GPR data, marsh core and vibracore data were also collected collected but are not reported (or included) in the current report. Data products, including elevation-corrected subsurface profile images of the processed GPR data, unprocessed digital GPR trace data, post-processed GPS data, Geographic Information System (GIS) files and accompanying Federal Geographic Data Committee (FGDC) metadata, can be downloaded from the Data Downloads page.
Utility of Ground-Penetrating Radar as a Root Biomass Survey Tool in Forest Systems
John R. Butnor; J.A. Doolittle; Kurt H. Johnsen; L. Samuelson; T. Stokes; L. Kress
2003-01-01
Traditional methods of measuring tree root biomass are labor intensive and destructive in nature. We studied the utility of ground-penetrating radar (GPR) to measure tree root biomass in situ within a replicated, intensive culture forestry experiment planted with loblolly pine (Pinus taeda L.). The study site was located in Decatur County, Georgia,...
Assessing the Ability of Ground-Penetrating Radar to Detect Fungal Decay in Douglas-Fir Beams
Christopher Adam Senalik; James Wacker; Xiping Wang; F. Jalinoos
2016-01-01
This paper describes the testing plan and current progress for assessing the efficacy of using ground-penetrating radar (GPR) to detect fungal decay within Douglas-fir beams. Initially, the beams were assessed using a variety of physical, mechanical, and nondestructive evaluation (NDE) test methods including micro-resistance drilling, Janka hardness, ultrasonic...
State-of-the-art and trends of Ground-Penetrating Radar antenna arrays
NASA Astrophysics Data System (ADS)
Vescovo, Roberto; Pajewski, Lara; Tosti, Fabio
2016-04-01
The aim of this contribution is to offer an overview on the antenna arrays for GPR systems, current trends and open issues. Antennas are a critical hardware component of a radar system, dictating its performance in terms of capability to detect targets. Nevertheless, most of the research efforts in the Ground-Penetrating Radar (GPR) area focus on the use of this imaging technique in a plethora of different applications and on the improvement of modelling/inversion/processing techniques, whereas a limited number of studies deal with technological issues related to the design of novel systems, including the synthesis, optimisation and characterisation of advanced antennas. Even fewer are the research activities carried out to develop innovative antenna arrays. GPR antennas operate in a strongly demanding environment and should satisfy a number of requirements, somehow unique and very different than those of conventional radar antennas. The same applies to GPR antenna arrays. The first requirement is an ultra-wide frequency band: the radar has to transmit and receive short-duration time-domain waveforms, in the order of a few nanoseconds, the time-duration of the emitted pulses being a trade-off between the desired radar resolution and penetration depth. Furthermore, GPR antennas should have a linear phase characteristic over the whole operational frequency range, predictable polarisation and gain. Due to the fact that a subsurface imaging system is essentially a short-range radar, the coupling between transmitting and receiving antennas has to be low and short in time. GPR antennas should have quick ring-down characteristics, in order to prevent masking of targets and guarantee a good resolution. The radiation patterns should ensure minimal interference with unwanted objects, usually present in the complex operational environment; to this aim, antennas should provide high directivity and concentrate the electromagnetic energy into a narrow solid angle. As GPR antennas work very close to the matter or even in contact with it, changes in electrical properties of the matter should not affect strongly the antenna performance, so that a wide applicability of the radar system can be achieved. Moreover, antennas should provide stable performance at different elevation levels. For an efficient coupling of electromagnetic waves into the ground/investigated structure, good impedance matching is necessary at the antenna/matter interface. Another important requirement concerns the weight and size of the antennas: for ease of utilisation and to allow a wide applicability, the antennas shall be light and compact. Array of antennas can be used in GPR systems to enable a faster data collection by increasing the extension of investigated area per time unit. This can be a significant advantage in archaeological prospection, road and bridge inspection, mine detection, as well as in several other civil-engineering and geoscience applications where the collection of data requires the execution of a large number of profiles. Moreover, antenna arrays allow collecting multi-offset measurements simultaneously, thereby providing additional information for a more effective imaging and characterisation of the natural or manmade scenario under test. Two approaches are possible to GPR array design. The simplest and most common is to conceive the array as a multi-channel radar system composed of single-channel radars. Much more can be achieved, if array-design techniques are employed to synthesise the whole system. This second approach is just beginning in the GPR field and is definitely promising, as it gives the possibility to fully exploit the potentiality of arrays. Another important issue, when using GPR systems on irregular surfaces, is that the position of array elements has to be recorded during the surveys, by using suitable high-precision positioning systems. Current research activities on the design of GPR arrays are progressing in various directions, including the synthesis of arrays with a high directivity achieved by using simple elements, arrays with the capability of a steerable beam as in smart antennas, arrays composed of adaptive antennas with electronic control of characteristics to adapt to different soils and materials, and application-specific arrays. Acknowledgement This abstract is a contribution to COST (European COoperation in Science and Technology) Action TU1208 "Civil engineering applications of Ground Penetrating Radar" (www.GPRadar.eu). The Authors thank COST for funding the Action TU1208.
Measuring flood discharge in unstable stream channels using ground-penetrating radar
Spicer, K.R.; Costa, J.E.; Placzek, G.
1997-01-01
Field experiments were conducted to test the ability of ground-penetrating radar (GPR) to measure stream-channel cross sections at high flows without the necessity of placing instruments in the water. Experiments were conducted at four U.S. Geological Survey gaging stations in southwest Washington State. With the GPR antenna suspended above the water surface from a bridge or cableway, traverses were made across stream channels to collect radar profile plots of the streambed. Subsequent measurements of water depth were made using conventional depth-measuring equipment (weight and tape) and were used to calculate radar signal velocities. Other streamflow-parameter data were collected to examine their relation to radar signal velocity and to claritv of streambed definition. These initial tests indicate that GPR is capable of producing a reasonably accurate (??20%) stream-channel profile and discharge far more quickly than conventional stream-gaging procedures, while avoiding the problems and hazards associated with placing instruments in the water.
NASA Astrophysics Data System (ADS)
Pajewski, Lara; Giannopoulos, Antonis; van der Kruk, Jan
2015-04-01
This work aims at presenting the ongoing research activities carried out in Working Group 3 (WG3) 'EM methods for near-field scattering problems by buried structures; data processing techniques' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. WG3 is structured in four Projects. Project 3.1 deals with 'Electromagnetic modelling for GPR applications.' Project 3.2 is concerned with 'Inversion and imaging techniques for GPR applications.' The topic of Project 3.3 is the 'Development of intrinsic models for describing near-field antenna effects, including antenna-medium coupling, for improved radar data processing using full-wave inversion.' Project 3.4 focuses on 'Advanced GPR data-processing algorithms.' Electromagnetic modeling tools that are being developed and improved include the Finite-Difference Time-Domain (FDTD) technique and the spectral domain Cylindrical-Wave Approach (CWA). One of the well-known freeware and versatile FDTD simulators is GprMax that enables an improved realistic representation of the soil/material hosting the sought structures and of the GPR antennas. Here, input/output tools are being developed to ease the definition of scenarios and the visualisation of numerical results. The CWA expresses the field scattered by subsurface two-dimensional targets with arbitrary cross-section as a sum of cylindrical waves. In this way, the interaction is taken into account of multiple scattered fields within the medium hosting the sought targets. Recently, the method has been extended to deal with through-the-wall scenarios. One of the inversion techniques currently being improved is Full-Waveform Inversion (FWI) for on-ground, off-ground, and crosshole GPR configurations. In contrast to conventional inversion tools which are often based on approximations and use only part of the available data, FWI uses the complete measured data and detailed modeling tools to obtain an improved estimation of medium properties. During the first year of the Action, information was collected and shared about state-of-the-art of the available modelling, imaging, inversion, and data-processing methods. Advancements achieved by WG3 Members were presented during the TU1208 Second General Meeting (April 30 - May 2, 2014, Vienna, Austria) and the 15th International Conference on Ground Penetrating Radar (June 30 - July 4, 2014, Brussels, Belgium). Currently, a database of numerical and experimental GPR responses from natural and manmade structures is being designed. A geometrical and physical description of the scenarios, together with the available synthetic and experimental data, will be at the disposal of the scientific community. Researchers will thus have a further opportunity of testing and validating, against reliable data, their electromagnetic forward- and inverse-scattering techniques, imaging methods and data-processing algorithms. The motivation to start this database came out during TU1208 meetings and takes inspiration by successful past initiatives carried out in different areas, as the Ipswich and Fresnel databases in the field of free-space electromagnetic scattering, and the Marmousi database in seismic science. Acknowledgement The Authors thank COST, for funding the Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar.'
NASA Astrophysics Data System (ADS)
Al-Shukri, H.; Eyuboglu, S.; Mahdi, H.
2005-12-01
Many geophysical techniques have been suggested as candidates for detecting water leakage in water distribution system, including ground penetrating radar (GPR), acoustic devices, and gas sampling devices. A series of laboratory experiments were conducted to determine the validity and effectiveness of GPR in detecting water leakage in metal and plastic PVC pipes. The goal was to derive a practical and robust procedure for detecting such leakage. Initially, prototype laboratory experiments were designed to simulate leaks in both PVC and metal pipe. The experiments were very well controlled and results obtained indicate that GPR is effective in detecting subsurface water leaks. This was followed by an outdoor life size experiments. 50 feet by 30 feet by 5 feet test bed was constructed using local soil and commercial water distribution pipes. A 400 MHz antenna was used to collect three-dimensional GPR data as a function of time for a number of experiments using different type of pipes. Advanced imaging and visualization technology was used to further analyze the data. The UALR Virtual Reality Center CAVE facilities were utilized to accomplish this test. Results obtained indicate that GPR is effective in detecting subsurface water leaks in both pipes. Synthetic models of the GPR signals based on Finite Difference Time Domain Method (FDTD) were built to help select an appropriate equipment configuration (frequency band, type of antenna, and real-time imaging software) prior to data acquisition. The simulation software was used to determine the near-field radiation characteristics of the GPR antenna. Different experimental models were adapted for which observational GPR data was previously collected. Matlab regression analysis was used to generate the incident waves for each model to ensure highly accurate and controlled experiments.
Mapping Subsurface Structure at Guar Kepah by using Ground Penetrating Radar
NASA Astrophysics Data System (ADS)
Mansor, Hafizuddin; Rosli, Najmiah; Ismail, N. A.; Saidin, M.; Masnan, S. S. K.
2018-04-01
A Ground Penetrating Radar (GPR) survey was conducted at Guar Kepah to detect buried object before commencement of archaeological gallery construction. The study area covered around 20 m length and 14 m width. 15 GPR lines were constructed from north to south with 20 m length, 1 m spacing and parallel to each other. The 500 MHz closed antenna had been used in this study. The surface findings were noticed before started GPR survey. The data was analysed and interpreted by using Groundvision software and several filters were applied to radargrams to enhance the data. Based on the result, several anomalies were detected. The surface findings also detected by GPR which cause hyperbolic curve in radargrams. The subsurface layer was detected by GPR survey. The anomalies are assigned to several classes based on the pattern of signals obtained in radargrams.
Assessment of waterfront location in hardened concrete by GPR within COST Action TU1208
NASA Astrophysics Data System (ADS)
Rodríguez-Abad, Isabel; Klysz, Gilles; Balayssac, Jean Paul; Pajewski, Lara
2016-04-01
This work focuses on the analysis of the capability of Ground-Penetrating radar (GPR) technique for evaluating how the water penetrates into concrete samples by means of the assessment of the waterfront advance. Research activities have been carried out during a Short-Term Scientific Missions (STSMs) funded by the COST (European Cooperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" in November 2015. The evaluation of water penetrability is crucial in most building materials, such us concrete, since, water and aggressive chemical agents dissolved therein contribute to the deterioration of the material. A number of techniques have been developed to measure their advance in concrete. Although the most common method for measuring water content is the gravimetric method by observing the change in mass, this method has a large number of disadvantages. In this context, non-destructive techniques as GPR play an interesting role. In particular, the application of GPR in the building materials area is providing very promising and interesting results regarding the building materials characterization and especially concrete deterioration evaluation [1-3]. In addition, recent experimental studies highlight the strong relation between wave propagation parameters (velocity and energy level) and water content advance [4-5]. Water content has a decisive influence on dielectric properties and those might be assessed by the study of the wave properties that are derived by using GPR. Therefore, the waterfront advance will result in a change on wave parameters. In line with this, this research is focused on the development of specific processing algorithms necessary to understand how the water penetrates and how the wave parameters will be affected regarding the location of the antenna in reference to the water absorption direction. For this purpose, concrete samples were manufactured, which after curing (90 days) and oven drying were immersed into water for a certain time. Then, GPR measurements, with a 2 GHz central frequency antenna, were performed at specific time intervals, placing the antenna on the same side of the concrete samples that was immersed into water. After conducting GPR measurements, concrete samples were broken in two pieces to perform the visual analysis of the waterfront advance. After processing the GPR records velocity increments ware calculated and analyzed. Very accurate adjustments were found between the velocity increments and the waterfront depth, regardless the wave peaks of the direct and reflected wave used to calculate velocity increments. These results are of quite importance, because even if we are not able to locate the waterfront reflection or if it is overlapped with the direct wave signal, we might predict the waterfront position with high reliability. Acknowledgement The Authors are grateful to COST - European Cooperation in Science and Technology (www.cost.eu) for funding the Action TU1208 "Civil engineering applications of Ground Penetrating Radar" (www.GPRadar.eu). References 1. W. Lai, S. Kou, W. Tsang, C. Poon, "Characterization of concrete properties from dielectric properties using ground penetrating radar," Cement and Concrete Research, Vol. 39, pp. 687-695, 2009. 2. W. Chen, P. Shen, Z. Shui, "Determination of water content in fresh concrete mix based on relative dielectric constant measurement," Construction and Building Materials, Vol. 34, pp. 306-312, 2012. 3. S. Senin, R. Hamid, "Ground penetrating radar wave attenuation models for estimation of moisture and chloride content in concrete slab," Construction and Building Materials, Vol. 106, pp. 659-669, 2016. 4.I. Rodríguez-Abad , R. Martínez-Sala, J. Mené Aparicio, G. Klysz, "Water penetrability in hardened concrete by GPR," Proceedings of the 15th International Conference on Ground Penetrating Radar, Brussels, Belgium, 2014. 5.I. Rodríguez-Abad, G. Klysz, R. Martínez-Sala, J.P. Balayssac, J. Mené Aparicio, "Waterfront depth analysis in hardened concrete by means of the nondestructive Ground-penetrating radar technique," IEEE Journal of Selected Topics In Applied Earth Observations and Remote Sensing. Digital Object Identifier 10.1109/JSTARS.2015.2449737, 2015.
Improving GPR image resolution in lossy ground using dispersive migration
Oden, C.P.; Powers, M.H.; Wright, D.L.; Olhoeft, G.R.
2007-01-01
As a compact wave packet travels through a dispersive medium, it becomes dilated and distorted. As a result, ground-penetrating radar (GPR) surveys over conductive and/or lossy soils often result in poor image resolution. A dispersive migration method is presented that combines an inverse dispersion filter with frequency-domain migration. The method requires a fully characterized GPR system including the antenna response, which is a function of the local soil properties for ground-coupled antennas. The GPR system response spectrum is used to stabilize the inverse dispersion filter. Dispersive migration restores attenuated spectral components when the signal-to-noise ratio is adequate. Applying the algorithm to simulated data shows that the improved spatial resolution is significant when data are acquired with a GPR system having 120 dB or more of dynamic range, and when the medium has a loss tangent of 0.3 or more. Results also show that dispersive migration provides no significant advantage over conventional migration when the loss tangent is less than 0.3, or when using a GPR system with a small dynamic range. ?? 2007 IEEE.
Soil moisture content estimation using ground-penetrating radar reflection data
NASA Astrophysics Data System (ADS)
Lunt, I. A.; Hubbard, S. S.; Rubin, Y.
2005-06-01
Ground-penetrating radar (GPR) reflection travel time data were used to estimate changes in soil water content under a range of soil saturation conditions throughout the growing season at a California winery. Data were collected during three data acquisition campaigns over an 80 by 180 m area using 100 MHz surface GPR antennas. GPR reflections were associated with a thin, low permeability clay layer located 0.8-1.3 m below the ground surface that was identified from borehole information and mapped across the study area. Field infiltration tests and neutron probe logs suggest that the thin clay layer inhibited vertical water flow, and was coincident with high volumetric water content (VWC) values. The GPR reflection two-way travel time and the depth of the reflector at the borehole locations were used to calculate an average dielectric constant for soils above the reflector. A site-specific relationship between the dielectric constant and VWC was then used to estimate the depth-averaged VWC of the soils above the reflector. Compared to average VWC measurements from calibrated neutron probe logs over the same depth interval, the average VWC estimates obtained from GPR reflections had an RMS error of 0.018 m 3 m -3. These results suggested that the two-way travel time to a GPR reflection associated with a geological surface could be used under natural conditions to obtain estimates of average water content when borehole control is available and the reflection strength is sufficient. The GPR reflection method therefore, has potential for monitoring soil water content over large areas and under variable hydrological conditions.
NASA Astrophysics Data System (ADS)
Cassidy, Nigel J.; Eddies, Rod; Dods, Sam
2011-08-01
Ground-penetrating radar (GPR) and ultrasonic 'pulse echo' techniques are well-established methods for the imaging, investigation and analysis of steel reinforced concrete structures and are important civil engineering survey tools. GPR is, arguably, the more widely-used technique as it is suitable for a greater range of problem scenarios (i.e., from rebar mapping to moisture content determination). Ultrasonic techniques are traditionally associated with the engineering-based, non-destructive testing of concrete structures and their integrity analyses (e.g., flaw detection, shear/longitudinal velocity determination, etc). However, when used in an appropriate manner, both techniques can be considered complementary and provide a unique way of imaging the sub-surface that is suited to a range of geotechnical problems. In this paper, we present a comparative study between mid-to-high frequency GPR (450 MHz and 900 MHz) and array-based, shear wave, pulse-echo ultrasonic surveys using proprietary instruments and conventional GPR data processing and visualisation techniques. Our focus is the practical detection of sub-metre scale voids located under steel reinforced concrete sections in realistic survey conditions (e.g., a capped, relict mine shaft or vent). Representative two-dimensional (2D) sections are presented for both methods illustrating the similarities/differences in signal response and the temporal-spatial target resolutions achieved with each technique. The use of three-dimensional data volumes and time slices (or 'C-scans') for advanced interpretation is also demonstrated, which although common in GPR applications is under-utilised as a technique in general ultrasonic surveys. The results show that ultrasonic methods can perform as well as GPR for this specific investigation scenario and that they have the potential of overcoming some of the inherent limitations of GPR investigations (i.e., the need for careful antenna frequency selection and survey design in order to image through the rebar meshes). More importantly, we show that standard GPR data collection, processing and visualisation techniques can be used with both types of data without users needing to change existing operational protocols or survey criteria.
Detecting and characterizing unroofed caves by ground penetrating radar
NASA Astrophysics Data System (ADS)
Čeru, Teja; Šegina, Ela; Knez, Martin; Benac, Čedomir; Gosar, Andrej
2018-02-01
The bare karst surface in the southeastern part of Krk Island (Croatia) is characterized by different surface karst features, such as valley-like shallow linear depressions and partially or fully sediment-filled depressions of various shapes and sizes. They were noticed due to locally increased thickness of sediment and enhanced vegetation but had not yet been systematically studied and defined. Considering only the geometry of the investigated surface features and the rare traces of cave environments detected by field surveys, it was unclear which processes (surface karstification and/or speleogenesis) contributed most to their formation. The low-frequency ground penetrating radar (GPR) method using a special 50 MHz RTA antenna was applied to study and describe these karst features. Three study sites were chosen and 5 km of GPR profiles were positioned to include various surface features. The results obtained from the GPR investigation lead to the following conclusions: (1) an increased thickness of sediment was detected in all the investigated depressions indicating their considerable depth; (2) areas between different depressions expressed as attenuated zones in GPR images reveal their interconnection; (3) transitions between surface and underground features are characterized by a collapsed passage visible in the GPR data; and (4) an underground continuation of surface valley-like depressions was detected, proving the speleogenetic origin of such features. Subsurface information obtained using GPR indicates that the valley-like depressions, irregular depressions completely or partially filled with sediment, and some dolines are associated with a nearly 4 km-long unroofed cave and developed as a result of karst denudation. In the regional context, these results suggest long-lasting karstification processes in the area, in contrast to the pre-karstic fluvial phase previously assumed to have occurred here. This research is the first application of the GPR method to survey unroofed caves worldwide and the first detailed study of such karst features in Croatia. The low-frequency GPR proved to be an efficient method not only for detecting underground continuations but also for distinguishing and identifying surface features and transition zones between surface and subsurface segments of unroofed caves and can therefore be used for recognizing similar geomorphological features.
ALOS2-Indonesia REDD+ Experiment (AIREX): Soil Pool Carbon Application
NASA Astrophysics Data System (ADS)
Raimadoya, M.; Kristijono, A.; Sudiana, N.; Sumawinata, B.; Suwardi; Santoso, E.; Mahargo, D.; Sudarman, S.; Mattikainen, M.
2015-04-01
The bilateral REDD+ agreement between Indonesia and Norway [1] has scheduled that performance based result phase will be started in 2014. Therefore, a transparent and reliable Monitoring, Reporting and V erification (MRV) system for the following carbon pools: (1) biomass, (2) dead organic matter (DOM), and (3) soil, is required to be ready prior to the performance based phase. While the biomass pool could be acquired by space-borne radar (SAR) application i.e. SAR Interferometry (In-SAR) and Polarimetric SAR Interferometry (Pol-InSAR), the method for soil pool is still needed to be developed.A study was implemented in a test site located in the pulp plantation concession of Teluk Meranti Estate, Riau Andalan Pulp and Paper (RAPP), Pelalawan District, Riau Province, Indonesia. The study was intended to evaluate the possibility to estimate soil pool carbon with radar technology. For this purpose, a combination of spaceborne SAR (ALOS/PALSAR) and Ground Penetrating Radar (200 MHz IDS 200 MHz IDS GPR) were used in this exercise.The initial result this study provides a promising outcome for improved soil pool carbon estimation in tropical peat forest condition. The volume estimation of peat soil could be measured from the combination of spaceborne SAR and GPR. Based on this volume, total carbon content can be generated. However, the application of this approach has several limitation such as: (1) GPR survey can only be implemented during the dry season, (2) Rugged Terrain Antenna (RTA) type of GPR should be used for smooth GPR survey in the surface of peat soil which covered by DOM, and (3) the map of peat soil extent by spaceborne SAR need to be improved.
Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handayani, Gunawan
The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. Thismore » paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.« less
NASA Astrophysics Data System (ADS)
Cabolova, Anastasija
Peatlands cover a total area of approximately 3 million square kilometers and are one of the largest natural sources of atmospheric methane ( CH4) and carbon dioxide (CO 2). Most traditional methods used to estimate biogenic gas dynamics are invasive and provide little or no information about lateral distribution of gas. In contrast, Ground Penetrating Radar (GPR) is an emerging technique for non-invasive investigation of gas dynamics in peat soils. This thesis establishes a direct comparison between gas dynamics (i.e. build-up and release) of four different types of peat soil using GPR. Peat soil blocks were collected at peatlands with contrasting latitudes, including the Everglades, Maine and Minnesota. A unique two-antenna GPR setup was used to monitor biogenic gas buildup and ebullition events over a period of 4.5 months, constraining GPR data with surface deformation measurements and direct CH 4 and CO2 concentration measurements. The effect of atmospheric pressure was also investigated. This study has implications for better understanding global gas dynamics and carbon cycling in peat soils and its role in climate change.
NASA Astrophysics Data System (ADS)
Omolaiye, Gabriel Efomeh; Ayolabi, Elijah A.
2010-09-01
A ground penetrating radar (GPR) survey was conducted on the Lekki Peninsula, Lagos State, Nigeria. The primary target of the survey was the delineation of underground septic tanks (ST). A total of four GPR profiles were acquired on the survey site using Ramac X3M GPR equipment with a 250MHz antenna, chosen based on the depth of interest and resolution. An interpretable depth of penetration of 4.5m below the surface was achieved after processing. The method accurately delineated five underground ST. The tops of the ST were easily identified on the radargram based on the strong-amplitude anomalies, the length and the depths to the base of the ST were estimated with 99 and 73 percent confidence respectively. The continuous vertical profiles provide uninterrupted subsurface data along the lines of traverse, while the non-intrusive nature makes it an ideal tool for the accurate mapping and delineation of underground utilities.
Detecting defects in conifers with ground penetrating radar: applications and challenges
J.R. Butnor; M.L. Pruyn; D.C. Shaw; M.E. Harmon; A.N. Mucciardi; M.G. Ryan
2009-01-01
Our objective was to test ground penetrating radar (GPR) to non-destructively estimate decay volumes in living coniferous trees. GPR is geophysical tool which uses an antenna to propagate short bursts of electromagnetic energy in solid materials and measure the two-way travel time and amplitude of reflected signals. We compared estimates hof bole decay from data...
Evaluation of clay content in soils for pavement engineering applications using GPR
NASA Astrophysics Data System (ADS)
Tosti, Fabio; Patriarca, Claudio; Benedetto, Andrea; Slob, Evert C.; Lambot, Sébastien
2013-04-01
Clay content significantly influences the mechanical behavior of soils, thereby playing an important role in many fields of applications such as civil engineering, geology and agriculture. In the area of pavement engineering, clay content in structural bearing courses of pavement frequently causes damages and defects, such as transversal and longitudinal cracks, or other faults. The main consequence is a lowering of both the road safety and operability, with the number of expected accidents increasing. In this study, ground-penetrating radar (GPR) laboratory tests were carried out to predict the clay amount in pavement structural layers under different clay and moisture conditions. GPR data processing is performed using two different methods. The first method is based on the Fresnel theory and focuses on the Rayleigh scattering of the radar waves. The approach is based on a different scattering of the various components of the frequency spectrum, mostly depending on both the soil texture and variation in soil moisture content. For the application of this method, we used a pulse radar with ground-coupled, 500 MHz centre-frequency antennas in a common offset, bistatic configuration. The transmitter and receiver were linked by optic fiber electronic modules. The second method is based on full-waveform inversion of the ultra wideband radar data. In particular, a specific radar-antenna electromagnetic model is used to filter out antenna effects and antenna-medium interactions from the raw radar data and retrieve the response of the soil only, expressed in terms of a layered medium Green's function. To estimate the medium geometrical and electrical values, an optimization inverse problem is formulated. For the application of that second method, we used a vector network analyzer (VNA) as continuous-wave stepped-frequency radar system to acquire data in the 500-3000 MHz frequency range. A doubled-ridged broadband horn antenna operating in far-field conditions was used as transmitter and receiver, and was connected to the radar using a high-quality coaxial cable. Typical road materials for subgrade and sub-base courses were used. In particular, three types of soils classified, respectively, as A1,A2,A3 by AASHTO were used and adequately compacted in electrically and hydraulically isolated boxes. A copper sheet was laid at the bottom of the experimental boxes to control the bottom boundary conditions in the electromagnetic model. Basically, two significant cases were considered for each soil type, taking into account the 0% and the 25% by weight of bentonite clay, respectively. Water was gradually added and GPR measurements were carried out for all moisture steps until the maximum saturation level was reached. Concerning the Rayleigh scattering method, analyses show a high consistency of the results with respect to our expectations. A negative correlation between the shift of the frequency spectrum peaks and the clay amount was demonstrated, by virtue of its strong hygroscopic properties. Similarly, the full-waveform inversion technique allowed to measure reliable electric parameters. Generally, different responses (e.g. electric conductivity and permittivity) of the 0% clay-member cases compared to those of the analogous clayey soil samples highlight the large potentiality of both methods for the detection of clay.
NASA Astrophysics Data System (ADS)
Maas, Christian; Schmalzl, Jörg
2013-08-01
Ground Penetrating Radar (GPR) is used for the localization of supply lines, land mines, pipes and many other buried objects. These objects can be recognized in the recorded data as reflection hyperbolas with a typical shape depending on depth and material of the object and the surrounding material. To obtain the parameters, the shape of the hyperbola has to be fitted. In the last years several methods were developed to automate this task during post-processing. In this paper we show another approach for the automated localization of reflection hyperbolas in GPR data by solving a pattern recognition problem in grayscale images. In contrast to other methods our detection program is also able to immediately mark potential objects in real-time. For this task we use a version of the Viola-Jones learning algorithm, which is part of the open source library "OpenCV". This algorithm was initially developed for face recognition, but can be adapted to any other simple shape. In our program it is used to narrow down the location of reflection hyperbolas to certain areas in the GPR data. In order to extract the exact location and the velocity of the hyperbolas we apply a simple Hough Transform for hyperbolas. Because the Viola-Jones Algorithm reduces the input for the computational expensive Hough Transform dramatically the detection system can also be implemented on normal field computers, so on-site application is possible. The developed detection system shows promising results and detection rates in unprocessed radargrams. In order to improve the detection results and apply the program to noisy radar images more data of different GPR systems as input for the learning algorithm is necessary.
Performance of hybrid and single-frequency impulse GPR antennas on USGA sporting greens
USDA-ARS?s Scientific Manuscript database
The utility of employing ground-penetrating radar (GPR) technologies for environmental surveys can vary, depending upon the physical properties of the site. Environmental conditions can fluctuate, altering soil properties. Operator proficiency and survey methodology will also influence GPR findings....
Munroe, Jeffrey S.; Doolittle, James A.; Kanevskiy, Mikhail; Hinkel, Kenneth M.; Nelson, Frederick E.; Jones, Benjamin M.; Shur, Yuri; Kimble, John M.
2007-01-01
Three-dimensional ground-penetrating radar (3D GPR) was used to investigate the subsurface structure of ice-wedge polygons and other features of the frozen active layer and near-surface permafrost near Barrow, Alaska. Surveys were conducted at three sites located on landscapes of different geomorphic age. At each site, sediment cores were collected and characterised to aid interpretation of GPR data. At two sites, 3D GPR was able to delineate subsurface ice-wedge networks with high fidelity. Three-dimensional GPR data also revealed a fundamental difference in ice-wedge morphology between these two sites that is consistent with differences in landscape age. At a third site, the combination of two-dimensional and 3D GPR revealed the location of an active frost boil with ataxitic cryostructure. When supplemented by analysis of soil cores, 3D GPR offers considerable potential for imaging, interpreting and 3D mapping of near-surface soil and ice structures in permafrost environments.
Application of GPR for the shape and integrity of Chu tombs
NASA Astrophysics Data System (ADS)
Li, Daxin; Peng, Gelin
2000-04-01
The shape and integrity of the ancient tombs is valuable data to archaeological excavation. The synthetic survey methods of ground penetrating radar, mercurometric survey and drilling with Luoyang shovels were used for the shape and integrity investigation of four Chu-tombs, which were buried in Northwest Hunan Province two thousands years ago. Firstly the holes dug by a Luoyang shovel with manpower were for gravel passage searching. Then parallel and vertical profiles to the passage were surveyed with GPR and soil mercury over the gravel pit. The reflective radar arrivals of the radargrams were used for the hollow and pit outlining of the tombs. High soil mercury anomaly and horizontal discontinuous traces indicated destroyed tombs with robbed holes.
Attenuation analysis of real GPR wavelets: The equivalent amplitude spectrum (EAS)
NASA Astrophysics Data System (ADS)
Economou, Nikos; Kritikakis, George
2016-03-01
Absorption of a Ground Penetrating Radar (GPR) pulse is a frequency dependent attenuation mechanism which causes a spectral shift on the dominant frequency of GPR data. Both energy variation of GPR amplitude spectrum and spectral shift were used for the estimation of Quality Factor (Q*) and subsequently the characterization of the subsurface material properties. The variation of the amplitude spectrum energy has been studied by Spectral Ratio (SR) method and the frequency shift by the estimation of the Frequency Centroid Shift (FCS) or the Frequency Peak Shift (FPS) methods. The FPS method is more automatic, less robust. This work aims to increase the robustness of the FPS method by fitting a part of the amplitude spectrum of GPR data with Ricker, Gaussian, Sigmoid-Gaussian or Ricker-Gaussian functions. These functions fit different parts of the spectrum of a GPR reference wavelet and the Equivalent Amplitude Spectrum (EAS) is selected, reproducing Q* values used in forward Q* modeling analysis. Then, only the peak frequencies and the time differences between the reference wavelet and the subsequent reflected wavelets are used to estimate Q*. As long as the EAS is estimated, it is used for Q* evaluation in all the GPR section, under the assumption that the selected reference wavelet is representative. De-phasing and constant phase shift, for obtaining symmetrical wavelets, proved useful in the sufficiency of the horizons picking. Synthetic, experimental and real GPR data were examined in order to demonstrate the effectiveness of the proposed methodology.
Quantification of Reflection Patterns in Ground-Penetrating Radar Data
NASA Astrophysics Data System (ADS)
Moysey, S.; Knight, R. J.; Jol, H. M.; Allen-King, R. M.; Gaylord, D. R.
2005-12-01
Radar facies analysis provides a way of interpreting the large-scale structure of the subsurface from ground-penetrating radar (GPR) data. Radar facies are often distinguished from each other by the presence of patterns, such as flat-lying, dipping, or chaotic reflections, in different regions of a radar image. When these patterns can be associated with radar facies in a repeated and predictable manner we refer to them as `radar textures'. While it is often possible to qualitatively differentiate between radar textures visually, pattern recognition tools, like neural networks, require a quantitative measure to discriminate between them. We investigate whether currently available tools, such as instantaneous attributes or metrics adapted from standard texture analysis techniques, can be used to improve the classification of radar facies. To this end, we use a neural network to perform cross-validation tests that assess the efficacy of different textural measures for classifying radar facies in GPR data collected from the William River delta, Saskatchewan, Canada. We found that the highest classification accuracies (>93%) were obtained for measures of texture that preserve information about the spatial arrangement of reflections in the radar image, e.g., spatial covariance. Lower accuracy (87%) was obtained for classifications based directly on windows of amplitude data extracted from the radar image. Measures that did not account for the spatial arrangement of reflections in the image, e.g., instantaneous attributes and amplitude variance, yielded classification accuracies of less than 65%. Optimal classifications were obtained for textural measures that extracted sufficient information from the radar data to discriminate between radar facies but were insensitive to other facies specific characteristics. For example, the rotationally invariant Fourier-Mellin transform delivered better classification results than the spatial covariance because dip angle of the reflections, but not dip direction, was an important discriminator between radar facies at the William River delta. To extend the use of radar texture beyond the identification of radar facies to sedimentary facies we are investigating how sedimentary features are encoded in GPR data at Borden, Ontario, Canada. At this site, we have collected extensive sedimentary and hydrologic data over the area imaged by GPR. Analysis of this data coupled with synthetic modeling of the radar signal has allowed us to develop insight into the generation of radar texture in complex geologic environments.
Sensing underground coal gasification by ground penetrating radar
NASA Astrophysics Data System (ADS)
Kotyrba, Andrzej; Stańczyk, Krzysztof
2017-12-01
The paper describes the results of research on the applicability of the ground penetrating radar (GPR) method for remote sensing and monitoring of the underground coal gasification (UCG) processes. The gasification of coal in a bed entails various technological problems and poses risks to the environment. Therefore, in parallel with research on coal gasification technologies, it is necessary to develop techniques for remote sensing of the process environment. One such technique may be the radar method, which allows imaging of regions of mass loss (voids, fissures) in coal during and after carrying out a gasification process in the bed. The paper describes two research experiments. The first one was carried out on a large-scale model constructed on the surface. It simulated a coal seam in natural geological conditions. A second experiment was performed in a shallow coal deposit maintained in a disused mine and kept accessible for research purposes. Tests performed in the laboratory and in situ conditions showed that the method provides valuable data for assessing and monitoring gasification surfaces in the UCG processes. The advantage of the GPR method is its high resolution and the possibility of determining the spatial shape of various zones and forms created in the coal by the gasification process.
NASA Astrophysics Data System (ADS)
Liu, Xiang; serhir, mohammed; kameni, abelin; lambert, marc; pichon, lionel
2016-04-01
For a company like Electricity De France (EDF), being able to detect accurately using non-destructive methods the position of the buried junction between two underground cables is a crucial issue. The junction is the linking part where most maintenance operations are carried out. The challenge of this work is to conduct a feasibility study to confirm or deny the relevance of Ground Penetrating Radar (GPR) to detect these buried junctions in their actual environment against clutter. Indeed, the cables are buried in inhomogeneous medium at around 80cm deep. To do this, the study is conducted in a numerical environment. We use the 3D simulation software CST MWS to model a GPR scenario. In this simulation, we place the already optimized bowtie antennas operating in the frequency band [0.5 GHz - 3 GHz] in front of wet soil (dispersive) and dry soil where the underground cable is placed at 80cm deep. We collect the amplitude and phase of the reflected waves in order to detect the contrast provoked by the geometric dimensions variation of the cable [1] (diameter of the cable is 48mm and the diameter of the junction 74mm). The use of an ultra-wideband antenna is necessary to reconcile resolution and penetration of electromagnetic waves in the medium to be characterized. We focus on the performance of the GPR method according to the characteristics of the surrounding medium in which the electric cables are buried, the polarization of the Tx and Rx antennas. The experimental measurement collected in the EDF site will be presented. The measured data are processed using the clutter reduction method based on digital filtering [2]. We aim at showing that using the developed bowtie antennas that the GPR technique is well adapted for the cable junction localization even in cluttered environment. References [1] D. J. Daniels, "Surface-Penetrating Radar", London, IEE 1996. [2] Potin, D.; Duflos, E.; Vanheeghe, P., "Landmines Ground-Penetrating Radar Signal Enhancement by Digital Filtering," in Geoscience and Remote Sensing, IEEE Transactions on , vol.44, no.9, pp.2393-2406, Sept. 2006 .
GPR use and activities in the Czech Republic
NASA Astrophysics Data System (ADS)
Stryk, Josef; Matula, Radek
2014-05-01
In the field of civil engineering applications in the Czech Republic, Ground Penetrating Radar (GPR) is used particularly for the diagnostics of roads and bridges. There is no producer of GPR in the Czech Republic, sets of different producers are used, particularly Geophysical Survey Systems, Inc. (USA) and MALÅ GeoScience (Sweden). The measurement results are mostly processed by software Radan, Road Doctor Pro, ReflexW and RadEx. The only technical specification in the Czech Republic is TP 233 issued by the Ministry of Transport, which describes the diagnostics of roads by GPR. Apart from a basic description of the method and a measurement system, it mentions possible applications. The only application where accuracy is mentioned is the locating of dowels and tie bars in concrete road pavements, which states that if calibration is performed, the expected depth accuracy is up to 1.0 cm. The following R&D project is currently in progress: New diagnostics methods as a supporting decision tool for maintenance and repair of road pavements - their contribution and ways of their usage (2012-2014) The project aims to test possible non-destructive methods (particularly GPR and laser scanning), make recommendations when and how to use specific methods for individual applications and for changes in technical specifications. The following R&D projects have been recently completed: Position of dowels and tie bars in rigid pavements and importance of their correct placement to pavement performance and service life (2012-2013) The project included an analysis of individual NDT methods used for the location of dowels and tie bars and for testing of their accuracy - GPR, MIT-scan and GPR in combination with a metal detector. Multichannel ground penetrating radar as a tool for monitoring of road and bridge structures (2009-2011) The project included detection of hollow spaces under non-reinforced concrete pavements, detection of excessive amount of water in road construction layers, and measuring of crack depths in road pavements. The concrete structure diagnostics development through the use of WPR (Wall Penetrating Radar) scanner (2008-2010) The project was focused on the development of WPR for non-destructive diagnostics of concrete structures, as an accurate and reliable device for diagnostic survey, even at less easily accessible places. The results of road diagnostics by GPR are still not stored in the Road Database. In 2013, CDV designed a method how to perform assessment of the position of dowels and tie bars in concrete road pavements and the way how to register the measurement results of road layer thicknesses in the Road Database. The comparative measurements of devices used for the measurements of variable parameters of roads are performed according to technical specification of the Ministry of Transport TP 207: Accuracy Experiment. The specification deals with devices measuring surface properties and deflections of road pavements. GPR is not included there. In 2013, CDV designed a method how to perform this experiment for continual measurements of pavement layer thicknesses by GPR on reference road sections. The designed method is based on the first realized comparison measurement of pavement layer thicknesses at two-kilometre asphalt motorway section. 6 Czech companies participated in the comparative measurement. Wider use of GPR method will allow to clarify measurement accuracy for individual applications. The performance of comparative measurements together with issuing of authorization for measurement will guarantee that the measurements on Czech road network are only performed by companies with required knowledge and experience. This work is a contribution to COST Action TU1208, which is supported by the project of Technology Agency of the Czech Republic No. TE01020168: Centre for Effective and Sustainable Transport Infrastructure.
Integrity inspection of main access tunnel using ground penetrating radar
NASA Astrophysics Data System (ADS)
Ismail, M. A.; Abas, A. A.; Arifin, M. H.; Ismail, M. N.; Othman, N. A.; Setu, A.; Ahmad, M. R.; Shah, M. K.; Amin, S.; Sarah, T.
2017-11-01
This paper discusses the Ground Penetrating Radar (GPR) survey performed to determine the integrity of wall of tunnel at a hydroelectric power generation facility. GPR utilises electromagnetic waves that are transmitted into the medium of survey. Any reflectors in the medium will reflect the transmitted waves and picked up by the GPR antenna. The survey was done using MALA GeoScience RAMAC CUII with 250MHz antenna. Survey was done on the left, the crown and the right walls of the underground tunnels. Distance was measured using wheel encoders. The results of the survey is discussed in this paper.
NASA Astrophysics Data System (ADS)
André, Frédéric; Jonard, Mathieu; Jonard, François; Lambot, Sébastien
2015-04-01
Decomposing litter accumulated at the soil surface in forest ecosystems play a major role in a series of ecosystem processes (soil carbon sequestration, nutrient release through decomposition, water retention, buffering of soil temperature variations, tree regeneration, population dynamics of ground vegetation and soil fauna, ...). Besides, the presence of litter is acknowledged to influence remote sensing radar data over forested areas and accurate quantification of litter radiative properties is essential for proper processing of these data. In these respects, ground-penetrating radar (GPR) presents particular interests, potentially allowing for fast and non-invasive characterization of organic layers with fine spatial and/or temporal resolutions as well as for providing detailed information on litter electrical properties which are required for modeling either active or passive microwave remote sensing data. We designed an experiment in order to analyze the backscattering from forest litter horizons and to investigate the potentialities of GPR for retrieving the physical properties of these horizons. For that purpose, we used an ultrawide band radar system connected to a transmitting and receiving horn antenna. The GPR data were processed resorting to full-wave inversion of the signal, through which antenna effects are accounted for. In a first step, GPR data were acquired over artificially reconstructed layers of three different beech litter types (i.e., (i) recently fallen litter with easily discernible plant organs (OL layer), (ii) fragmented litter in partial decomposition without entire plant organs (OF layer) and (iii) combination of OL and OF litter layers) and considering in each case a range of layer thicknesses. In a second step, so as to validate the adopted methodology in real natural conditions, GPR measurements were performed in situ along a transect crossing a wide range of litter properties in terms of thickness and composition through stands of various tree species. Results from the controlled experiment demonstrated the ability of GPR to reconstruct litter horizons, showing close correspondence between inversely estimated and measured litter layer thicknesses and providing reliable estimates of litter electromagnetic properties. This experiment also highlighted the necessity of considering scattering and dielectric losses occurring within litter for proper modeling of the GPR signal, which was accounted for through frequency dependence of an effective electrical conductivity of the litter. Similar findings emerged from the in situ experiment, though somewhat lower agreement was observed between estimated and reference layer thickness values. These results show great promise for the use of GPR for non-invasive characterization of forest litter. Index Terms: Ground-penetrating radar (GPR), forest litter, frequency dependence, scattering Reference: André F., Jonard M., Lambot S., 2015. Non-invasive forest litter characterization using full-wave inversion of microwave radar data, IEEE Transactions on Geoscience and Remote Sensing, 53(2), 828-840.
Use of GPR Surveys in Historical Archaeology Studies at Gainesville, Mississippi (22HA600)
NASA Technical Reports Server (NTRS)
Goodwin, Ben; Giardino, Marco; Spruce, Joseph P.
2002-01-01
Ground Penetrating Radar (GPR) is used to study the underground remains of historic structures on the grounds of Stennis Space Center (SSC) in this viewgraph presentation. The main goal of the project described is to research, develop, and validate Remote Sensing (RS) and Geographic Information System (GIS) methods for aiding cultural resource assessments within SSC. The project georeferences historic imagery and maps to assist archaeological RS, field surveys, and excavations.
Groundwater protection vs. extractable soil resource usage - approaching the problem with GPR-survey
NASA Astrophysics Data System (ADS)
Kupila, J.
2012-04-01
Finland is fully self-sufficient in clean groundwater and even has a capacity of exportation: there are more than 6000 groundwater areas, a total yield of those is 5.4 million m3/day and only 10% of this is in use. Even so, nowadays the protection of groundwater has come more and more important. One of the reasons is effects of extractable soil resource usage, because the most valuable and remarkable resources of groundwater as well as sand and gravel aggregates appear in the same areas. Also in densely populated areas there is lack of aggregate products. Using the best available techniques and methods which take into account sustainable development, the outcomes of this protection vs. usage -dilemma will be beneficent. Ground penetrating radar (GPR) -survey is an efficient tool for examination of areas of groundwater and soil resources. Briefly, GPR is a geophysical method that uses radar pulses to image the subsurface. It uses electromagnetic radiation in the microwave band (UHF/VHF frequencies) of the radio spectrum and detects the reflected signals from subsurface structures. Usually groundwater and soil aggregates appear in areas where the structure of soil layers improves the efficiency of GPR , so an exact image of subsurface layers can be outlined. Also the conditions of groundwater can be interpreted from GPR-data. Results from GPR-survey can be effective in making guidelines for extractable soil resource usage to avoid risks and to address secured sites for both groundwater and soil usage. Geological Survey of Finland has executed many co-operated projects related to these kind of problems, for example in Kainuu area, eastern Finland, 20 areas were studied with over 30 kilometers of GPR-profile. Detailed information from these researches support local authorities and actors in land use planning in future and furthermore assure safe balance in groundwater and soil resource usage.
NASA Astrophysics Data System (ADS)
Martinez, I. A.; Eisenmann, D.
2012-12-01
Ground Penetrating Radar (GPR) has been used for many years in successful subsurface detection of conductive and non-conductive objects in all types of material including different soils and concrete. Typical defect detection is based on subjective examination of processed scans using data collection and analysis software to acquire and analyze the data, often requiring a developed expertise or an awareness of how a GPR works while collecting data. Processing programs, such as GSSI's RADAN analysis software are then used to validate the collected information. Iowa State University's Center for Nondestructive Evaluation (CNDE) has built a test site, resembling a typical levee used near rivers, which contains known sub-surface targets of varying size, depth, and conductivity. Scientist at CNDE have developed software with the enhanced capabilities, to decipher a hyperbola's magnitude and amplitude for GPR signal processing. With this enhanced capability, the signal processing and defect detection capabilities for GPR have the potential to be greatly enhanced. This study will examine the effects of test parameters, antenna frequency (400MHz), data manipulation methods (which include data filters and restricting the range of depth in which the chosen antenna's signal can reach), and real-world conditions using this test site (such as varying weather conditions) , with the goal of improving GPR tests sensitivity for differing soil conditions.
GPR Imaging of Prehistoric Animal Bone-beds
NASA Astrophysics Data System (ADS)
Schneider, Blair Benson
This research investigates the detection capabilities of Ground-penetrating radar for imaging prehistoric animal bone-beds. The first step of this investigation was to determine the dielectric properties of modern animal bone as a proxy for applying non-invasive ground-penetrating radar (GPR) for detecting prehistoric animal remains. Over 90 thin section samples were cut from four different modern faunal skeleton remains: bison, cow, deer, and elk. One sample of prehistoric mammoth core was also analyzed. Sample dielectric properties (relative permittivity, loss factor, and loss-tangent values) were measured with an impedance analyzer over frequencies ranging from 10 MHz to 1 GHz. The results reveal statistically significant dielectric-property differences among different animal fauna, as well as variation as a function of frequency. The measured sample permittivity values were then compared to modeled sample permittivity values using common dielectric-mixing models. The dielectric mixing models were used to report out new reported values of dry bone mineral of 3-5 in the frequency range of 10 MHz to 1 GHz. The second half of this research collected controlled GPR experiments over a sandbox containing buried bison bone elements to evaluate GPR detection capabilities of buried animal bone. The results of the controlled GPR sandbox tests were then compared to numerical models in order to predict the ability of GPR to detect buried animal bone given a variety of different depositional factors, the size and orientation of the bone target and the degree of bone weathering. The radar profiles show that GPR is an effective method for imaging the horizontal and vertical extent of buried animal bone. However, increased bone weathering and increased bone dip were both found to affect GPR reflection signal strength. Finally, the controlled sandbox experiments were also utilized to investigate the impact of survey design for imaging buried animal bone. In particular, the effects of GPR antenna orientation relative to the survey line (broad-side mode versus end-fire mode) and polarization effects of the buried bone targets were investigated. The results reveal that animal bone does exhibit polarization effects. However, the polarization results are greatly affected by the irregular shape and size of the bone, which ultimately limits the potential usefulness of trying to utilize polarization data to determine the orientation of buried bone targets. In regard to antenna orientation, end-fire mode was found to have little difference in amplitude response as compared to the more commonly used broad-side mode and in fact sometimes outperformed the broad-side mode. Future GPR investigations should consider utilizing multiple antenna orientations during data collection.
NASA Astrophysics Data System (ADS)
Sold, L.; Huss, M.; Eichler, A.; Schwikowski, M.; Hoelzle, M.
2015-05-01
The spatial representation of accumulation measurements is a major limitation for current glacier mass balance monitoring approaches. Here, we present a method for estimating annual accumulation rates on a temperate Alpine glacier based on the interpretation of internal reflection horizons (IRHs) in helicopter-borne ground-penetrating radar (GPR) data. For each individual GPR measurement, the signal travel time is combined with a simple model for firn densification and refreezing of meltwater. The model is calibrated at locations where GPR repeat measurements are available in two subsequent years and the densification can be tracked over time. Two 10.5 m long firn cores provide a reference for the density and chronology of firn layers. Thereby, IRHs correspond to density maxima, but not exclusively to former summer glacier surfaces. Along GPR profile sections from across the accumulation area we obtain the water equivalent (w.e.) of several annual firn layers. Because deeper IRHs could be tracked over shorter distances, the total length of analysed profile sections varies from 7.3 km for the uppermost accumulation layer (2011) to 0.1 km for the deepest (i.e. oldest) layer (2006). According to model results, refreezing accounts for 10% of the density increase over time and depth, and for 2% of the water equivalent. The strongest limitation to our method is the dependence on layer chronology assumptions. We show that GPR can be used not only to complement existing mass balance monitoring programmes on temperate glaciers but also to retrospectively extend newly initiated time series.
Effect of elevated CO2 on coarse-root biomass in Florida scrub detected by ground-penetrating radar
Daniel B. Stover; Frank P. Day; John R Butnor; Bert G. Drake
2007-01-01
Growth and distribution of coarse roots in time and space represent a gap in our understanding of belowground ecology. Large roots may play a critical role in carbon sequestration belowground. Using ground-penetrating radar (GPR), we quantified coarseroot biomass from an open-top chamber experiment in a scrub-oak ecosystem at Kennedy Space Center, Florida, USA. GPR...
Geophysical Imaging of Sea-level Proxies in Beach-Ridge Deposits
NASA Astrophysics Data System (ADS)
Nielsen, L.; Emerich Souza, P.; Meldgaard, A.; Bendixen, M.; Kroon, A.; Clemmensen, L. B.
2017-12-01
We show ground-penetrating radar (GPR) reflection data collected over modern and fossil beach deposits from different localities along coastlines in meso-tidal regimes of Greenland and micro-tidal regimes of Denmark. The acquired reflection GPR sections show several similar characteristics but also some differences. A similar characteristic is the presence of downlapping reflections, where the downlap point is interpreted to mark the transition from upper shoreface to beachface deposits and, thus, be a marker of a level close to or at sea-level at the time of deposition. Differences in grain size of the investigated beach ridge system result in different scattering characteristics of the acquired GPR data. These differences call for tailored, careful processing of the GPR data for optimal imaging of internal beach ridge architecture. We outline elements of the GPR data processing of particular importance for optimal imaging. Moreover, we discuss advantages and challenges related to using GPR-based proxies of sea-level as compared to other methods traditionally used for establishment of curves of past sea-level variation.
Ground-penetrating radar methods used in surface-water discharge measurements
Haeni, F.P.; Buursink, Marc L.; Costa, John E.; Melcher, Nick B.; Cheng, Ralph T.; Plant, William J.
2000-01-01
In 1999, an experiment was conducted to see if a combination of complementary radar methods could be used to calculate the discharge of a river without having any of the measuring equipment in the water. The cross-sectional area of the 183-meter wide Skagit River in Washington State was measured using a ground-penetrating radar (GPR) system with a single 100-MHz antenna. A van-mounted, side-looking pulsed-Doppler radar system was used to collect water-surface velocity data across the same section of the river. The combined radar data sets were used to calculate the river discharge and the results compared closely to the discharge measurement made by using the standard in-water measurement techniques.
Air-launched GPR evaluation for rapid assessment of MoDOT bridge decks.
DOT National Transportation Integrated Search
2015-03-01
This study demonstrated the utility of the air-launched ground penetrating radar (GPR) tool in terms of : evaluating the condition of MoDOT bridge decks. The objective was to confirm that the air-launched GPR : tool can be implemented as a part of a ...
The application research of microwave nondestructive testing and imaging based on ω-k algorithm
NASA Astrophysics Data System (ADS)
Qi, Shengxiang; Ren, Jian; Gu, Lihua; Xu, Hui; Wang, Yuanbo
2017-07-01
The Bridges had collapsed accidents in recent years due to bridges quality problems. Therefore, concretes nondestructive testing are particularly important. At present, most applications are Ground Penetrating Radar (GPR) technology in the detection of reinforced concretes structure. GPR are used the pulse method which alongside with definitive advantages, but the testing of the internal structure of the small thickness concretes has very low resolution by this method. In this paper, it's the first time to use the ultra-wideband (UWB) stepped frequency conversion radar above problems. We use vector network analyzer and double ridged horn antenna microwave imaging system to test the reinforced concretes block. The internal structure of the concretes is reconstructed with a method of synthetic aperture of ω-k algorithm. By this method, the depth of the steel bar with the diameter of 1cm is shown exactly in the depth of 450mm×400mm×500mm and the depth error do not exceed 1cm.
NASA Astrophysics Data System (ADS)
Molon, Michelle; Boyce, Joseph I.; Arain, M. Altaf
2017-01-01
Coarse root biomass was estimated in a temperate pine forest using high-resolution (1 GHz) 3-D ground-penetrating radar (GPR). GPR survey grids were acquired across a 400 m2 area with varying line spacing (12.5 and 25 cm). Root volume and biomass were estimated directly from the 3-D radar volume by using isometric surfaces calculated with the marching cubes algorithm. Empirical relations between GPR reflection amplitude and root diameter were determined for 14 root segments (0.1-10 cm diameter) reburied in a 6 m2 experimental test plot and surveyed at 5-25 cm line spacing under dry and wet soil conditions. Reburied roots >1.4 cm diameter were detectable as continuous root structures with 5 cm line separation. Reflection amplitudes were strongly controlled by soil moisture and decreased by 40% with a twofold increase in soil moisture. GPR line intervals of 12.5 and 25 cm produced discontinuous mapping of roots, and GPR coarse root biomass estimates (0.92 kgC m-2) were lower than those obtained previously with a site-specific allometric equation due to nondetection of vertical roots and roots <1.5 cm diameter. The results show that coarse root volume and biomass can be estimated directly from interpolated 3-D GPR volumes by using a marching cubes approach, but mapping of roots as continuous structures requires high inline sampling and line density (<5 cm). The results demonstrate that 3-D GPR is viable approach for estimating belowground carbon and for mapping tree root architecture. This methodology can be applied more broadly in other disciplines (e.g., archaeology and civil engineering) for imaging buried structures.
Inertial and GPS data integration for positioning and tracking of GPR
NASA Astrophysics Data System (ADS)
Chicarella, Simone; D'Alvano, Alessandro; Ferrara, Vincenzo; Frezza, Fabrizio; Pajewski, Lara
2015-04-01
Nowadays many applications and studies use a Global Positioning System (GPS) to integrate Ground-Penetrating Radar (GPR) data [1-2]. The aim is the production of detailed detection maps that are geo-referenced and superimposable on geographic maps themes. GPS provides data to determine static positioning, and to track the mobile detection system path on the land. A low-cost standard GPS, like GPS-622R by RF Solutions Ltd, allows accuracy around 2.5 m CEP (Circular Error Probability), and a maximum update rate of 10 Hz. These accuracy and update rate are satisfying values when we evaluate positioning datum, but they are unsuitable for precision tracking of a speedy-mobile GPR system. In order to determine the relative displacements with respect to an initial position on the territory, an Inertial Measurement Unit (IMU) can be used. Some inertial-system applications for GPR tracking have been presented in recent studies [3-4]. The integration of both GPS and IMU systems is the aim of our work, in order to increase GPR applicability, e.g. the case of a GPR mounted on an unmanned aerial vehicle for the detection of people buried under avalanches [5]. In this work, we will present the design, realization and experimental characterization of our electronic board that includes GPS-622R and AltIMU-10 v3 by Pololu. The latter comprises an inertial-measurement unit and an altimeter. In particular, the IMU adopts L3GD20 gyro and LSM303D accelerometer and magnetometer; the digital barometer LPS331AP provides data for altitude evaluation. The prototype of our system for GPR positioning and tracking is based on an Arduino microcontroller board. Acknowledgement This work benefited from networking activities carried out within the EU funded COST Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar. ' References [1] M. Solla, X. Núñez-Nieto, M. Varela-González, J. Martínez-Sánchez, and P. Arias, 'GPR for Road Inspection: georeferencing and efficient approach to data processing and visualization,' Proceedings of 15th IEEE International Conference on Ground Penetrating Radar - GPR 2014, Brussels, Belgium, June 30 - July 4, 2014, pp. 913-918. [2] S. Urbini, L. Vittuari, and S. Gandolfi, 'GPR and GPS data integration: examples of application in Antarctica,' Annali di Geofisica, Vol. 44, No. 4, August 2001, pp. 687-702. [3] V. Prokhorenko, V. Ivashchuk, S. Korsun, and O. Dykovska, 'An Inertial Measurement Unit Application for a GPR Tracking and Positioning,' Proceedings of the 12th International Conference on Ground Penetrating Radar, June 15-19, 2008, Birmingham, UK, pp. 19-24. [4] M. Pasternak, W. Miluski, W. Czarnecki, and J. Pietrasinski, 'An optoelectronic-inertial system for handheld GPR positioning,' Proceedings of the 15th IEEE International Radar Symposium (IRS), Gdansk, Poland, June 16-18, 2014, pp. 1-4. [5] L. Crocco and V. Ferrara, 'A Review on Ground Penetrating Radar Technology for the Detection of Buried or Trapped Victims,' Proceedings of the IEEE 2nd International Workshop on Collaborations in Emergency Response and Disaster Management (ERDM 2014) as part of 2014 International Conference on Collaboration Technologies and Systems (CTS 2014) - Minneapolis (Minnesota, USA), May 19-23, 2014, pp. 535-540.
NASA Astrophysics Data System (ADS)
Nabelek, Daniel P.; Ho, K. C.
2013-06-01
The detection of shallow buried low-metal content objects using ground penetrating radar (GPR) is a challenging task. This is because these targets are right underneath the ground and the ground bounce reflection interferes with their detections. They do not create distinctive hyperbolic signatures as required by most existing GPR detection algorithms due to their special geometric shapes and low metal content. This paper proposes the use of the Autoregressive (AR) modeling method for the detection of these targets. We fit an A-scan of the GPR data to an AR model. It is found that the fitting error will be small when such a target is present and large when it is absent. The ratio of the energy in an Ascan before and after AR model fitting is used as the confidence value for detection. We also apply AR model fitting over scans and utilize the fitting residual energies over several scans to form a feature vector for improving the detections. Using the data collected from a government test site, the proposed method can improve the detection of this kind of targets by 30% compared to the pre-screener, at a false alarm rate of 0.002/m2.
NASA Astrophysics Data System (ADS)
Ferry, Matthieu; Meghraoui, Mustapha; Girard, Jean-François; Rockwell, Thomas K.; Kozaci, Özgur; Akyuz, Serdar; Barka, Aykut
2004-01-01
We analyze ground-penetrating radar (GPR) profiles made across and parallel to the August 1999 earthquake ruptures of the North Anatolian fault in Turkey. The profiles document cumulative right-lateral offset of stream channels and the successive faulting of a medieval (Ottoman) canal. The dominance of fine sand to coarse gravel in the sections imaged allows for reasonably deep penetration, and processed radar signals clearly image visible reflectors within the uppermost 5 m. Near Köseköy, buried fluvial-channel deposits, exposed in some trenches dug to determine paleoseismicity, are also visible on profiles and show a maximum 6.7 7.4 m of lateral displacement. Younger channel units display 4.5 4.9 m of right-lateral displacement at 2 3 m depth and show that the penultimate rupture along the Izmit segment produced a similar amount of displacement as in 1999. At the Ottoman canal site, GPR profiles complement a trench study and provide consistent results showing the occurrence of three faulting events after A.D. 1591, the date of canal construction. This study demonstrates that the use of GPR method in paleoseismology contributes to better identification of cumulative slip along active faults.
A novel method to remove GPR background noise based on the similarity of non-neighboring regions
NASA Astrophysics Data System (ADS)
Montiel-Zafra, V.; Canadas-Quesada, F. J.; Vera-Candeas, P.; Ruiz-Reyes, N.; Rey, J.; Martinez, J.
2017-09-01
Ground penetrating radar (GPR) is a non-destructive technique that has been widely used in many areas of research, such as landmine detection or subsurface anomalies, where it is required to locate targets embedded within a background medium. One of the major challenges in the research of GPR data remains the improvement of the image quality of stone materials by means of detection of true anisotropies since most of the errors are caused by an incorrect interpretation by the users. However, it is complicated due to the interference of the horizontal background noise, e.g., the air-ground interface, that reduces the high-resolution quality of radargrams. Thus, weak or deep anisotropies are often masked by this type of noise. In order to remove the background noise obtained by GPR, this work proposes a novel background removal method assuming that the horizontal noise shows repetitive two-dimensional regions along the movement of the GPR antenna. Specifically, the proposed method, based on the non-local similarity of regions over the distance, computes similarities between different regions of the same depth in order to identify most repetitive regions using a criterion to avoid closer regions. Evaluations are performed using a set of synthetic and real GPR data. Experimental results show that the proposed method obtains promising results compared to the classic background removal techniques and the most recently published background removal methods.
Electromagnetic simulators for Ground Penetrating Radar applications developed in COST Action TU1208
NASA Astrophysics Data System (ADS)
Pajewski, Lara; Giannopoulos, Antonios; Warren, Craig; Antonijevic, Sinisa; Doric, Vicko; Poljak, Dragan
2017-04-01
Founded in 1971, COST (European COoperation in Science and Technology) is the first and widest European framework for the transnational coordination of research activities. It operates through Actions, science and technology networks with a duration of four years. The main objective of the COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (4 April 2013 - 3 October 2017) is to exchange and increase knowledge and experience on Ground-Penetrating Radar (GPR) techniques in civil engineering, whilst promoting in Europe a wider use of this technique. Research activities carried out in TU1208 include all aspects of the GPR technology and methodology: design, realization and testing of radar systems and antennas; development and testing of surveying procedures for the monitoring and inspection of structures; integration of GPR with other non-destructive testing approaches; advancement of electromagnetic-modelling, inversion and data-processing techniques for radargram analysis and interpretation. GPR radargrams often have no resemblance to the subsurface or structures over which the profiles were recorded. Various factors, including the innate design of the survey equipment and the complexity of electromagnetic propagation in composite scenarios, can disguise complex structures recorded on reflection profiles. Electromagnetic simulators can help to understand how target structures get translated into radargrams. They can show the limitations of GPR technique, highlight its capabilities, and support the user in understanding where and in what environment GPR can be effectively used. Furthermore, electromagnetic modelling can aid the choice of the most proper GPR equipment for a survey, facilitate the interpretation of complex datasets and be used for the design of new antennas. Electromagnetic simulators can be employed to produce synthetic radargrams with the purposes of testing new data-processing, imaging and inversion algorithms, or assess the effectiveness of existing ones. A fast and accurate forward solver can also be used as part of an inverse solver. This contribution aims at presenting two electromagnetic simulators based on the Finite-Difference Time Domain (FDTD) technique and Boundary Element Method (BEM), for Ground Penetrating Radar applications. These tools have been developed by Members of the COST Action TU1208. The first simulator is the new open-source version of the software gprMax (www.GPRadar.eu), which employs Yee's algorithm to solve Maxwell's equations by using the FDTD method and includes advanced features allowing the accurate analysis of realistic scenarios. For example, a library of antennas is available and these can be directly included in the models. Moreover, it is possible to build heterogeneous media using fractals, as well as objects with rough surfaces. Anisotropic media can be defined and this allows materials such as wood and fibre-reinforced concrete to be accurately modelled. Media with arbitrary frequency-dispersive properties can be also defined and this paves the way to the use of gprMax in new areas, such as the modelling of human tissues. Optimisation of parameters based on Taguchi's method can be performed: this feature can be useful to optimise material properties based on experimental data, or to design new antennas. Additionally, a freeware and very useful CAD package was developed, conceived to ease the use of gprMax: such tool assists in the creation, modification and analysis of two-dimensional gprMax models and can also be used to plot results. The second simulator is TWiNS-II: this is free software for the analysis of multiple thin wires in the presence of two media, implementing the Galerkin-Bubnov Indirect BEM; calculations can be undertaken in the frequency or time domain. The time-domain code is focused on the assessment of current distributions along thin wire structures. The configuration that can be analyzed is a set of parallel thin wires placed in free space above a perfect ground, or above a dielectric lossless half-space. The wire array resides in a plane parallel to the interface. Within this basic geometry, the user is allowed to arbitrarily change the number, size and position of wires, their excitation characteristics and the dielectric constant of the half-space. The frequency-domain code can be used for the frequency analysis of the same wire configuration as in the time domain counterpart. In addition, the effects of losses in the ground can be taken into account. Acknowledgement: The Authors are deeply grateful to COST (European Cooperation in Science and Technology, www.cost.eu), for funding and supporting the COST Action TU1208 "Civil engineering applications of Ground Penetrating Radar" (www.GPRadar.eu).
NASA Astrophysics Data System (ADS)
Pajewski, Lara; Plati, Christina; Derobert, Xavier
2015-04-01
This work aims at presenting the ongoing research activities carried out in Working Group 2 'GPR surveying of pavements, bridges, tunnels and buildings; underground utility and void sensing' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of Ground Penetrating Radar (GPR) techniques in civil engineering, whilst simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Four Working Groups (WGs) carry out the research activities. WG1 focuses on the development of innovative GPR equipment dedicated for civil engineering applications. WG2 deals with the development of guidelines and protocols for the surveying, through the use of a GPR system, of transport infrastructure and buildings, as well as for the sensing of utilities and voids. WG3 deals with the development of electromagnetic forward and inverse scattering methods, for the characterization of GPR scenarios, as well as with data- processing algorithms for the elaboration of the data collected during GPR surveys. WG4 is concerned with the use of GPR in fields different from the civil engineering, as well as with the integration of GPR with other non-destructive testing techniques. Each WG includes several Projects. WG2 includes five Projects. Project 2.1 focuses on outlining 'Innovative inspection procedures for effective GPR surveying of critical transport infrastructures (pavements, bridges and tunnels).' Project 2.2 is concerned with the development of 'Innovative inspection procedures for effective GPR surveying of buildings.' Project 2.3 deals with identifying 'Innovative inspection procedures for effective GPR sensing and mapping of underground utilities and voids, with a focus to urban areas.' Project 2.4 focuses on the development of 'Innovative procedures for effective GPR inspection of construction materials and structures.' The WG2 also includes Project 2.5 on the 'Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil,' this is a topic of great interest in civil engineering, as water infiltration is often a relevant cause of degradation of structures, such as roads of bridges, and of rebar corrosion. During the first year of the Action, information was collected and shared about state-of-the-art, ongoing studies, problems and future research needs, in the topics covered by the five above-mentioned Projects [1-3]. Based on the experience and knowledge gained from the in-depth review work carried out by WG2, several case studies were then conducted; they were presented during the Second General Meeting and the GPR 2014 conference [5, 6]. Furthermore, the extension of GPR application to railways track ballast assessment was demonstrated [7]. The WG2 identified reference test-sites, suitable to compare inspection procedures or to test GPR equipment. The IFSTTAR geophysical test site is an open-air laboratory including a large and deep area, filled with various materials arranged in horisontal compacted slices, separated by vertical interfaces and water-tighted in surface; several objects as pipes, polystyrene hollows, boulders and masonry are embedded in the field [4]. The IFSTTAR full-scale APT facility is an outdoor circular carousel dedicated to full-scale pavement experiments, consisting of a central tower and four long arms equipped with wheels, running on a circular test track [4]. Furthermore, the WG2 is building a database of available experimental results, which are at the disposal of WG3 Members to test their electromagnetic modeling/inversion/data-processing methods. Another interesting and promising WG2 initiative that has to be mentioned is the development of a Catalogue of European test sites and laboratories for the testing of GPR equipment, methodology and procedures, that is being coordinated by France and Italy. The catalogue will represent a useful tool for the GPR community and it will contribute to identifying new cooperation possibilities among research groups, to clarifying which are the missing testing facilities in the various European regions, and to addressing current or future research needs. Acknowledgement The Authors thank COST, for funding the COST Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar.' References [1] Proc. First Action's General Meeting (Rome, Italy, 22-24 July 2013), 1st edition, COST Action TU1208, L. Pajewski, A. Benedetto, Eds., ISBN 978-88-548-6191-6 (Aracne, 2013). [2] Civil Engineering Applications of Ground Penetrating Radar, A. Benedetto, L. Pajewski, Eds., ISBN 978-3-319-04812-3 (Springer, 2015). [3] A. Benedetto, 'State of the Art of GPR Applications and New Trends in Transportation Infrastructures,' Future Trends in Civil Engineering, A. Ceric, S. Lakusic, Eds., ISBN 978-953-6272-65-5 (2014). [4] Proc. 2013 Working Group Progress Meeting (Nantes, France, 24-25 February 2014), COST Action TU1208, L. Pajewski, X. Derobert, Eds., ISBN 978-88-548-7223-3 (Aracne, 2014). [5] Proc. 15th International Conference on Ground Penetrating Radar - GPR2014, S. Lambot, A. Giannopoulos, L. Pajewski, F. De André, E. Slob, C. Craeye, Eds., IEEE Conf. Number 35163 (IEEE, 2014). [6] Proc. Second Action's General Meeting (Vienna, Austria, 30 April-2 May 2014), COST Action TU1208, L. Pajewski, A. Benedetto, Eds., ISBN 978-88-548-7224-0 (Aracne, 2014). [7] S. Fontul, F. De Chiara, E. Fortunato, A. Lopes, 'Evaluation of ballast condition using Ground Penetrating Radar,' The Ninth Intl. Conf. on Engineering Computational Technology (2014).
Autonomous Rover for Polar GPR Surveys
NASA Astrophysics Data System (ADS)
Ray, L.; Lever, J. H.; Courville, Z.; Walker, B.; Arcone, S. A.
2015-12-01
We deployed Yeti, an 80-kg, 4WD battery-powered rover to conduct ground-penetrating radar (GPR) surveys over crevasse-ridden ice sheets in Antarctica and Greenland. The rover navigated using GPS waypoint following and had 3 - 4 hr endurance at 5 km/hr while towing 60 - 70 kg of GPR equipment. Yeti's low ground pressure allowed it to cross thinly bridged crevasses without interrupting a survey. In Feb - Mar 2014, Yeti executed 23 autonomous GPR surveys covering 94 km of terrain on the ice transition to the main ice sheet in northwest Greenland. This was the first robotic effort directly to support manual crevasse surveys to map a safe route for vehicle travel, in this case a resupply traverse to Summit Station. Yeti towed a radar controller, 400 MHz antenna, GPS receiver and battery pack. Radar scan rate was 16 scans/m and pulse timing allowed good spatial resolution to about 20-m depth. The resulting data allowed us to map hundreds of subsurface crevasses and provide the results nightly to the manual survey team to compliment its efforts. We met our objectives: (a) to enhance operational efficiency of the concurrent manual surveys, and (b) to create a geo-referenced database of crevasse signatures to validate aerial- and satellite-based crevasse-mapping platforms. In Oct - Nov 2014, we deployed Yeti in Antarctica to conduct systematic GPR surveys across a crevasse-ridden section of the shear margin between the Ross and McMurdo ice shelves and thereby gain insight into its state of fracture and long-term stability. Yeti flawlessly executed a total of 613 km of autonomous GPR surveys at temperatures as low as - 33ºC. The rover towed a a radar controlling a 400 MHz and a 200 MHz antenna, the latter added to profile 160 m through the ice sheet. The main survey grid covered 5.7 km x 5.0 km, with survey lines at 50-m spacing oriented west-east across the Shear Zone (575 km total length). Yeti's tracks normally deviated only 1 - 2 m from a straight line between the two end waypoints. Interpreted features include crevasses up to 16 m wide with snowbridges up to 10 m thick and at least the upper 16 m of stratified marine basal ice. These autonomous GPR surveys could not have been conducted safely using manual methods owing to the numerous, thinly bridged crevasses. Such systematic, repetitious measurements can enhance other Polar research projects.
Inspection of a large concrete block containing embedded defects using ground penetrating radar
NASA Astrophysics Data System (ADS)
Eisenmann, David; Margetan, Frank J.; Koester, Lucas; Clayton, Dwight
2016-02-01
Ground penetrating radar (GPR), also known as impulse response radar, was used to examine a thick concrete block containing reinforcing steel bars (rebar) and embedded defects. The block was located at the University of Minnesota, measured approximately 7 feet tall by 7 feet wide by 40 inches deep, and was intended to simulate certain aspects of a concrete containment wall at a nuclear power plant. This paper describes the measurements that were made and various analyses of the data. We begin with a description of the block itself and the GPR equipment and methods used in our inspections. The methods include the application of synthetic aperture focusing techniques (SAFT). We then present and discuss GPR images of the block's interior made using 1600-MHz, 900-MHz, and 400-MHz antennas operating in pulse/echo mode. A number of the embedded defects can be seen, and we discuss how their relative detectability can be quantified by comparison to the response from nearby rebar. We next discuss through-transmission measurements made using pairs of 1600-MHz and 900-MHz antennas, and the analysis of that data to deduce the average electromagnetic (EM) wave speed and attenuation of the concrete. Through the 40-inch thickness, attenuation rises approximately linearly with frequency at a rate near 0.7 dB/inch/GHz. However, there is evidence that EM properties vary with depth in the block. We conclude with a brief summary and a discussion of possible future work.
Continuity of Permian Mengkareng formation through GPR interpretation in Merangin Geopark
NASA Astrophysics Data System (ADS)
Hanif, F.; Syahputra, R.; Kristyanto, T. H. W.; Tempessy, A. S.; Rokhmatuloh
2017-07-01
The Permian Mengkarang Formation was a part of the continental margin (Gondwana Land) which separated in the Devon Period. In this period, Gondwana Land experienced glaciation at the Paleo South Pole. However, the fossils found in Mengkarang Formation were tropical flora, had made the Merangin to be certified as one of the national geoparks. It also shows that the geological process (stratigraphy and tectonic) in the Merangin has occurred before the Indonesian archipelago was formed: namely the Permian to Triassic period. Ground Penetrating Radar (GPR) was chosen as an effective geophysical method to study shallow subsurface geology. GPR and seismic reflection method have the same common principle to identify the facies and sub-sequence stratigraphy but they are different in implementation. Therefore, this study aims to deliver the vertical continuity of the Permian Mengkarang Formation in high resolution unit. The GPR result showing the subsurface image is based on dielectric of the rock layers. The GPR sections show the absence of the unconformity delivered in the intercalation between mudstone, sandstone, and tuff. Thus, it can be concluded that the Permian Mengkareng Formation continues up to 20 m depth.
NASA Astrophysics Data System (ADS)
Pellicer, X. M.; Linares, R.; Gutiérrez, F.; Comas, X.; Roqué, C.; Carbonel, D.; Zarroca, M.; Rodríguez, J. A. P.
2014-02-01
The Isona tufa mound complex (ITMC), associated with artesian springs of the Areny-Montsec aquifer, Spanish Pyrenees, is a potential analog for water constructed landforms on Mars. We used Ground Penetrating Radar (GPR), trenching, sedimentological description of exposures, and radiocarbon and U-series dating methods for the geological characterization of the ITMC. Preliminary geomorphological mapping combined with sedimentological analyses permitted the recognition of the different facies and their spatial distribution. GPR surveys conducted next to an outcrop and a trench provided electromagnetic wave velocity in tufas (0.09 and 0.11 m ns-1) and determined the correspondence of the radar signatures with facies types. This was used to reconstruct the tufas internal structure and the depositional stages for two different contexts: (1) an upper unit representing the morpho-stratigraphic record of paleosprings - Tufa 1 - composed of relict tufa mounds older than 350 ka BP; and (2) a lower unit - Tufa 3 - associated with groundwater aquifer outlets (Basturs Lakes). The GPR data allowed depicting the signatures for the vent, pool, rimstone, palustrine, dam, cascade and slope facies. A relationship was inferred between the age of the tufas and the radar signature, in terms of relative amplitude and signal attenuation. Older dry tufas with advanced diagenesis and karstification are characterized by well-defined GPR reflectors and lower attenuation than younger tufas, associated with aquifer discharge and shallower water tables. U-series and radiocarbon ages obtained from the Basturs Lakes tufas indicate that these have been active since 106 ka BP during both cold and mild Marine Isotopic Stages (MIS). We hypothesize that tufas related to the deep-seated Areny-Montsec confined karst aquifer were insensitive to climate variations. Landforms reminiscent of the ITMC have been detected during the last decade on Mars. Since GPR will be part of the ExoMars Rover of the European Space Agency (ESA) mission projected for 2018, we anticipate that our results may be able to constrain the interpretation of landforms possibly related to water on Mars.
A guidelines handbook for GPR surveys in tunnels: a COST Action TU1208 contribution
NASA Astrophysics Data System (ADS)
Bianchini Ciampoli, Luca; Alani, Amir M.; Pajewski, Lara; Benedetto, Andrea; Loizos, Andreas; Tosti, Fabio
2016-04-01
A significant open issue concerning the reliability of geophysical methods and in particular of ground penetrating radar (GPR), both in research and professional context, is a general lack of international standards. This is a major problem to be faced, in order to gain scientific strictness for the GPR practices, and to easily extend to the international community the results achieved within the area of single virtuous countries. Producing international guidelines can represent an important step forward, in this sense. In the memorandum of understanding of the COST Action TU1208 is clearly stated that one of the main purposes of the Action is the "development of innovative protocols and guidelines which will be published in a handbook and constitute a basis for European Standards, for an effective GPR application in CE tasks; safety, economic and financial criteria will be integrated within the protocols". Of course this is not a simple task to be accomplished. Firstly, survey procedures are highly dependent on the objective of the survey itself. On the basis of the objective of each geophysical test, the GPR system, the antenna configuration, and even the processing procedures may change. Besides, these procedures are also influenced by the environmental conditions in which the tests are performed. This affects several aspects spanning from hardware to software, but including, for instance, also safety issues. Due to these reasons, one of the main goal of the COST Action TU1208 is the development of several guidelines related to the main applications of GPR in the field of civil engineering. In this work, the structure of a guidelines handbook for GPR activities in tunnels is outlined. In the first sections, the principal references in the field are provided, and the most common GPR equipment and complementary technologies are described. Subsequently, the survey methodologies are explained. Particular attention is paid to the preliminary activities to be carried out prior to the GPR surveys, which can cover an important role in such a complex environment. Lastly, the main applications of GPR technology in tunnels are discussed. Acknowledgement The Authors thank COST, for funding the Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar."
Cai, J.; McMechan, G.A.; Fisher, M.A.
1996-01-01
In many geologic environments, ground-penetrating radar (GPR) provides high-resolution images of near-surface Earth structure. GPR data collection is nondestructive and very economical. The scale of features detected by GPR lies between those imaged by high-resolution seismic reflection surveys and those exposed in trenches and is therefore potentially complementary to traditional techniques for fault location and mapping. Sixty-two GPR profiles were collected at 12 sites in the San Francisco Bay region. Results show that GPR data correlate with large-scale features in existing trench observations, can be used to locate faults where they are buried or where their positions are not well known, and can identify previously unknown fault segments. The best data acquired were on a profile across the San Andreas fault, traversing Pleistocene terrace deposits south of Olema in Marin County; this profile shows a complicated multi-branched fault system from the ground surface down to about 40 m, the maximum depth for which data were recorded.
NASA Astrophysics Data System (ADS)
Amran, T. S. T.; Ismail, M. P.; Ahmad, M. R.; Amin, M. S. M.; Ismail, M. A.; Sani, S.; Masenwat, N. A.; Basri, N. S. M.
2018-01-01
Water is the most treasure natural resources, however, a huge amount of water are lost during its distribution that leads to water leakage problem. The leaks meant the waste of money and created more economic loss to treat and fix the damaged pipe. Researchers and engineers have put tremendous attempts and effort, to solve the water leakage problem especially in water leakage of buried pipeline. An advanced technology of ground penetrating radar (GPR) has been established as one of the non-destructive testing (NDT) method to detect the underground water pipe leaking. This paper focuses on the ability of GPR in water utility field especially on detection of water leaks in the underground pipeline distribution. A series of laboratory experiments were carried out using 800-MHz antenna, where the performance of GPR on detecting underground pipeline and locating water leakage was investigated and validated. A prototype to recreate water-leaking system was constructed using a 4-inch PVC pipe. Different diameter of holes, i.e. ¼ inch, ½ inch, and ¾ inch, were drilled into the pipe to simulate the water leaking. The PVC pipe was buried at the depth of 60 cm into the test bed that was filled with dry sand. 15 litres of water was injected into the PVC pipe. The water leakage patterns in term of radargram data were gathered. The effectiveness of the GPR in locating the underground water leakage was ascertained, after the results were collected and verified.
Time-frequency analysis of GPR data to investigate the damage of monumental buildings
NASA Astrophysics Data System (ADS)
Leucci, Giovanni; Masini, Nicola; Persico, Raffaele
2012-08-01
The presence of particular microclimatic conditions inside monumental buildings is responsible for bio-deterioration processes. In many cases, efflorescence and moulds are visible on the facades of several monuments of historical importance. In many other cases, the effects of decay processes are not visible, thus making difficult the diagnosis and the consequent setup of effective rehabilitation and preservation interventions, especially in the presence of a complex geometry and/or a large variability of construction materials. In such cases, a valuable contribution could be provided by geophysical methods (such as electrical resistivity, electromagnetic conductivity, ground-penetrating radar (GPR), etc), which have been proved to be successful tools for sub-surface investigation and characterization of historical buildings. In old monumental buildings, the masonry structures frequently exhibit cracks, voids, detachments and high moisture contrasts that can give rise to reflection events in radar signals. However, the complexity of the geometry and the structural heterogeneity that characterize these old structures often make the GPR results difficult to analyse and interpret. In particular, the spatial variation in GPR signal attenuation can provide important information about the electrical properties of the investigated materials that, in turn, can be used to assess the physical parameters associated with damage. In this paper, we propose an approach that analyses the data in the form of ‘frequency maps’ to evidence absorption losses probably linked to higher moisture content. Two real case histories back up the proposed method.
Salsarola, Dominic; Poppa, Pasquale; Amadasi, Alberto; Mazzarelli, Debora; Gibelli, Daniele; Zanotti, Emma; Porta, Davide; Cattaneo, Cristina
2015-08-01
In the field of forensic investigation burial is a relatively common method of hiding a corpse. The location of clandestine graves is, however, a particularly difficult task in which multiple forensic disciplines such as anthropology, botany or archaeology can provide valuable assistance. The use of GPR (ground-penetrating radar) has recently been introduced as a method in the detection of these graves, but what is the true potential of this tool in an operative search scenario? In this study a total of 11 pig carcasses were buried in two wooded areas, each presenting a similar soil composition. The animals were subsequently exhumed at regular intervals, ranging from 2 to 111 weeks, using systematic GPR analysis of the burial sites and archaeological recovery of the subjects that were then autopsied. GPR proved to be useful in recognizing anomalies at the chosen depths of burial and appeared to be dependent on the state of decay of the samples, producing only slight anomalous readings in the presence of skeletal remains: at 92 weeks from burial the difference in signal was weak and at 111 weeks GPR survey offered no helpful information as to burial location. The experiment, in this particular context, determined the technique as being successful in the presence of recent burials, highlighting the need for a multidisciplinary approach in the operative search for buried human remains. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xie, Xiongyao; Liu, Yujian; Huang, Hongwei; Du, Jun; Zhang, Fengshou; Liu, Lanbo
2007-09-01
For shield tunnelling construction in soft soil areas, the coverage uniformity and quality of consolidation of the injected grout mortar behind the prefabricated tunnel segment is the main concern for tunnel safety and ground settlement. In this paper, ground-penetrating radar (GPR) was applied to evaluate the grout behind the tunnel lining segments in Shanghai, China. The dielectric permittivity of the grout material in Shanghai Metro tunnelling construction was measured in the laboratory. Combining physical modelling results with finite different time domain numerical modelling results, we suggest that the antenna with frequency 200 MHz is well suited to penetrate the reinforced steel bar network of the tunnel lining segment and testing grout patterns behind the segment. The electromagnetic velocity of the grout behind the segment of the tunnel is 0.1 m ns-1 by the analysis of field common-middle point data. A wave-translated method was put forward to process the GPR images. Furthermore, combining the information acquired by GPR with experience data, a GPR non-destructive test standard for the grout mortar evaluation in Shanghai Metro tunnel construction was brought forward. The grout behind the tunnel lining segment is classified into three types: uncompensated grout mortar with a thickness less than 10 cm, normal grout mortar with a thickness between 10 cm and 30 cm and overcompensated grout mortar, which is more than 30 cm thick. The classified method is easily put into practice.
A new 3-D thin-skinned rock glacier model based on helicopter GPR results from the Swiss Alps
NASA Astrophysics Data System (ADS)
Merz, Kaspar; Green, Alan G.; Buchli, Thomas; Springman, Sarah M.; Maurer, Hansruedi
2015-06-01
Mountainous locations and steep rugged surfaces covered by boulders and other loose debris are the main reasons why rock glaciers are among the most challenging geological features to investigate using ground-based geophysical methods. Consequently, geophysical surveys of rock glaciers have only ever involved recording data along sparse lines. To address this issue, we acquired quasi-3-D ground-penetrating radar (GPR) data across a rock glacier in the Swiss Alps using a helicopter-mounted system. Our interpretation of the derived GPR images constrained by borehole information results in a novel "thin-skinned" rock glacier model that explains a concentration of deformation across a principal shear zone (décollement) and faults across which rock glacier lobes are juxtaposed. The new model may be applicable to many rock glaciers worldwide. We suggest that the helicopter GPR method may be useful for 3-D surveying numerous other difficult-to-access mountainous terrains.
NASA Astrophysics Data System (ADS)
Pinar, Anthony; Masarik, Matthew; Havens, Timothy C.; Burns, Joseph; Thelen, Brian; Becker, John
2015-05-01
This paper explores the effectiveness of an anomaly detection algorithm for downward-looking ground penetrating radar (GPR) and electromagnetic inductance (EMI) data. Threat detection with GPR is challenged by high responses to non-target/clutter objects, leading to a large number of false alarms (FAs), and since the responses of target and clutter signatures are so similar, classifier design is not trivial. We suggest a method based on a Run Packing (RP) algorithm to fuse GPR and EMI data into a composite confidence map to improve detection as measured by the area-under-ROC (NAUC) metric. We examine the value of a multiple kernel learning (MKL) support vector machine (SVM) classifier using image features such as histogram of oriented gradients (HOG), local binary patterns (LBP), and local statistics. Experimental results on government furnished data show that use of our proposed fusion and classification methods improves the NAUC when compared with the results from individual sensors and a single kernel SVM classifier.
Quantifying reinforced concrete bridge deck deterioration using ground penetrating radar
NASA Astrophysics Data System (ADS)
Martino, Nicole Marie
Bridge decks are deteriorating at an alarming rate due to corrosion of the reinforcing steel, requiring billions of dollars to repair and replace them. Furthermore, the techniques used to assess the decks don't provide enough quantitative information. In recent years, ground penetrating radar (GPR) has been used to quantify deterioration by comparing the rebar reflection amplitudes to technologies serving as ground truth, because there is not an available amplitude threshold to distinguish healthy from corroded areas using only GPR. The goal of this research is to understand the relationship between GPR and deck deterioration, and develop a model to determine deterioration quantities with GPR alone. The beginning of this research determines that not only is the relationship between GPR and rebar corrosion stronger than the relationship between GPR and delaminations, but that the two are exceptionally correlated (90.2% and 86.6%). Next, multiple bridge decks were assessed with GPR and half-cell potential (HCP). Statistical parameters like the mean and skewness were computed for the GPR amplitudes of each deck, and coupled with actual corrosion quantities based on the HCP measurements to form a future bridge deck model that can be used to assess any deck with GPR alone. Finally, in order to understand exactly which component of rebar corrosion (rust, cracking or chloride) attenuates the GPR data, computational modeling was carried out to isolate each variable. The results indicate that chloride is the major contributor to the rebar reflection attenuation, and that computational modeling can be used to accurately simulate GPR attenuation due to chloride.
Zaremba, Nicholas J.; Bernier, Julie C.; Forde, Arnell S.; Smith, Christopher G.
2016-06-08
This report serves as an archive of GPR and DGPS data collected from Assateague Island in October 2014. Data products, including raw GPR and processed DGPS data, elevation corrected GPR profiles, and accompanying Federal Geographic Data Committee metadata can be downloaded from the Data Downloads page.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMechan, G.A.; Soegaard, K.
1998-05-25
An integrated sedimentologic and GPR investigation has been carried out on a fluvial channel sandstone in the mid-Cretaceous Ferron Sandstone at Coyote Basin along the southwestern flank of the San Rafael Uplift in east-central Utah. This near-surface study, which covers a area of 40 {times} 16.5 meters to a depth of 15 meters, integrates detailed stratigraphic data from outcrop sections and facies maps with multi-frequency 3-D GPR surveys. The objectives of this investigation are two-fold: (1) to develop new ground-penetrating radar (GPR) technology for imaging shallow subsurface sandstone bodies, and (2) to construct an empirical three-dimensional sandstone reservoir model suitablemore » for hydrocarbon flow-simulation by imaging near-surface sandstone reservoir analogs with the use of GPR. The sedimentological data base consists of a geologic map of the survey area and a detailed facies map of the cliff face immediately adjacent to the survey area. Five vertical sections were measured along the cliff face adjacent to the survey area. In addition, four wells were cored within the survey area from which logs were recorded. In the sections and well logs primary sedimentary structures were documented along with textural information and permeability data. Gamma-ray profiles were also obtained for all sections and core logs. The sedimentologic and stratigraphic information serves as the basis from which much of the processing and interpretation of the GPR data was made. Three 3-D GPR data sets were collected over the survey area at frequencies of 50 MHZ, 100 MHZ, and 200 MHZ.« less
Use of Ground Penetrating Radar to Study Gradient Media
NASA Astrophysics Data System (ADS)
Titov, A.
2016-12-01
Nowadays Ground Penetrating Radar (GPR) is often used to solve different problems of applied geophysics including the hydrological ones. This work was motivated by detection of weak reflections in the body of water observed during the surveys on the freshwater lakes using GPR. The same reflections were first analyzed by John Bradford in 2007. These reflections can arise from the thermal gradient layer or thermocline due to different dielectric permittivity of cold and warm water. We employed physical and mathematical modeling to identify the properties of such thermoclines. We have constructed a special GPR stand to study the gradient media in our laboratory. The stand consists of a water-filled plastic tank and plastic tubes, which gather the cold water under the warm water. Our stand allows for changing parameters of the gradient layer, such as limits of dielectric permittivity and the thickness of the gradient layer. GPR antenna was placed slightly under the water surface to remove the parasitic reflections. To visualize the thermal distribution, an infrared camera and thermal sensors were used. Analysis of the GPR traces after physical modeling, performed in the MATLAB environment, allows us to locate the weak reflection from the gradient layer. We observed that (i) the change of the gradient boundary values alters the amplitude of the signal, (ii) the arrival time of the impulse reflected from the gradient layer corresponds to the arrival time of the impulse reflected from the top boundary of this layer, and (iii) the shape of the signal reflected from the gradient layer coincides with the shape of the signal reflected from the non-gradient boundary between two bodies. The quantitative properties of thermocline can be determined using amplitude analysis of GPR signals. Finally, the developed methods were successfully applied to real field data.
Determining the depth of hydro demolition using Lidar methods.
DOT National Transportation Integrated Search
2014-02-01
Missouri S&T was contracted to conduct research on the effectiveness of using ground-penetrating radar (GPR) to assess several : highway bridges in rural Missouri. The assessment was to be based on the principle that sound concrete has a different de...
Exploiting spectral content for image segmentation in GPR data
NASA Astrophysics Data System (ADS)
Wang, Patrick K.; Morton, Kenneth D., Jr.; Collins, Leslie M.; Torrione, Peter A.
2011-06-01
Ground-penetrating radar (GPR) sensors provide an effective means for detecting changes in the sub-surface electrical properties of soils, such as changes indicative of landmines or other buried threats. However, most GPR-based pre-screening algorithms only localize target responses along the surface of the earth, and do not provide information regarding an object's position in depth. As a result, feature extraction algorithms are forced to process data from entire cubes of data around pre-screener alarms, which can reduce feature fidelity and hamper performance. In this work, spectral analysis is investigated as a method for locating subsurface anomalies in GPR data. In particular, a 2-D spatial/frequency decomposition is applied to pre-screener flagged GPR B-scans. Analysis of these spatial/frequency regions suggests that aspects (e.g. moments, maxima, mode) of the frequency distribution of GPR energy can be indicative of the presence of target responses. After translating a GPR image to a function of the spatial/frequency distributions at each pixel, several image segmentation approaches can be applied to perform segmentation in this new transformed feature space. To illustrate the efficacy of the approach, a performance comparison between feature processing with and without the image segmentation algorithm is provided.
NASA Astrophysics Data System (ADS)
Reichman, Daniël.; Collins, Leslie M.; Malof, Jordan M.
2018-04-01
This work focuses on the development of automatic buried threat detection (BTD) algorithms using ground penetrating radar (GPR) data. Buried threats tend to exhibit unique characteristics in GPR imagery, such as high energy hyperbolic shapes, which can be leveraged for detection. Many recent BTD algorithms are supervised, and therefore they require training with exemplars of GPR data collected over non-threat locations and threat locations, respectively. Frequently, data from non-threat GPR examples will exhibit high energy hyperbolic patterns, similar to those observed from a buried threat. Is it still useful therefore, to include such examples during algorithm training, and encourage an algorithm to label such data as a non-threat? Similarly, some true buried threat examples exhibit very little distinctive threat-like patterns. We investigate whether it is beneficial to treat such GPR data examples as mislabeled, and either (i) relabel them, or (ii) remove them from training. We study this problem using two algorithms to automatically identify mislabeled examples, if they are present, and examine the impact of removing or relabeling them for training. We conduct these experiments on a large collection of GPR data with several state-of-the-art GPR-based BTD algorithms.
PAVECHECK : integrating deflection and GPR for network condition surveys.
DOT National Transportation Integrated Search
2009-01-01
The PAVECHECK data integration and analysis system was developed to merge Falling Weight : Deflectometer (FWD) and Ground Penetrating Radar (GPR) data together with digital video images of : surface conditions. In this study Global Positioning System...
Zaremba, Nicholas J.; Smith, Kathryn E.L.; Bishop, James M.; Smith, Christopher G.
2016-08-04
Scientists from the United States Geological Survey, St. Petersburg Coastal and Marine Science Center, U.S. Geological Survey Pacific Coastal and Marine Science Center, and students from the University of Hawaii at Manoa collected sediment cores, sediment surface grab samples, ground-penetrating radar (GPR) and Differential Global Positioning System (DGPS) data from within the Edwin B. Forsythe National Wildlife Refuge–Holgate Unit located on the southern end of Long Beach Island, New Jersey, in April 2015 (FAN 2015-611-FA). The study’s objective was to identify washover deposits in the stratigraphic record to aid in understanding barrier island evolution. This report is an archive of GPR and DGPS data collected from Long Beach Island in 2015. Data products, including raw GPR and processed DGPS data, elevation corrected GPR profiles, and accompanying Federal Geographic Data Committee metadata can be downloaded from the Data Downloads page.
Exploring the Martian Highlands using a Rover-Deployed Ground Penetrating Radar
NASA Technical Reports Server (NTRS)
Grant, J. A.; Schutz, A. E.; Campbell, B. A.
2001-01-01
The Martian highlands record a long and often complex history of geologic activity that has shaped the planet over time. Results of geologic mapping and new data from the Mars Global Surveyor spacecraft reveal layered surfaces created by multiple processes that are often mantled by eolian deposits. Knowledge of the near-surface stratigraphy as it relates to evolution of surface morphology will provide critical context for interpreting rover/lander remote sensing data and for defining the geologic setting of a highland lander. Rover-deployed ground penetrating radar (GPR) can directly measure the range and character of in situ radar properties, thereby helping to constrain near-surface geology and structure. As is the case for most remote sensing instruments, a GPR may not detect water unambiguously on Mars. Nevertheless, any local, near-surface occurrence of liquid water will lead to large, easily detected dielectric contrasts. Moreover, definition of stratigraphy and setting will help in evaluating the history of aqueous activity and where any water might occur and be accessible. GPR data can also be used to infer the degree of any post-depositional pedogenic alteration or weathering, thereby enabling assessment of pristine versus secondary morphology. Most importantly perhaps, GPR can provide critical context for other rover and orbital instruments/data sets. Hence, rover-deployment of a GPR deployment should enable 3-D mapping of local stratigraphy and could guide subsurface sampling.
Johnson, R.H.; Poeter, E.P.
2005-01-01
Ground-penetrating radar (GPR) is used to track a dense non-aqueous phase liquid (DNAPL) injection in a laboratory sand tank. Before modeling, the GPR data provide a qualitative image of DNAPL saturation and movement. One-dimensional (1D) GPR modeling provides a quantitative interpretation of DNAPL volume within a given thickness during and after the injection. DNAPL saturation in sublayers of a specified thickness could not be quantified because calibration of the 1D GPR model is nonunique when both permittivity and depth of multiple layers are unknown. One-dimensional GPR modeling of the sand tank indicates geometric interferences in a small portion of the tank. These influences are removed from the interpretation using an alternate matching target. Two-dimensional (2D) GPR modeling provides a qualitative interpretation of the DNAPL distribution through pattern matching and tests for possible 2D influences that are not accounted for in the 1D GPR modeling. Accurate quantitative interpretation of DNAPL volumes using GPR modeling requires (1) identification of a suitable target that produces a strong reflection and is not subject to any geometric interference; (2) knowledge of the exact depth of that target; and (3) use of two-way radar-wave travel times through the medium to the target to determine the permittivity of the intervening material, which eliminates reliance on signal amplitude. With geologic conditions that are suitable for GPR surveys (i.e., shallow depths, low electrical conductivities, and a known reflective target), the procedures in this laboratory study can be adapted to a field site to delineate shallow DNAPL source zones.
Ground penetrating radar imaging of cap rock, caliche and carbonate strata
Kruse, S.E.; Schneider, J.C.; Campagna, D.J.; Inman, J.A.; Hickey, T.D.
2000-01-01
Field experiments show ground penetrating radar (GPR) can be used to image shallow carbonate stratigraphy effectively in a variety of settings. In south Florida, the position and structure of cap rock cover on limestone can be an important control on surface water flow and vegetation, but larger scale outcrops (tens of meters) of cap rock are sparse. GPR mapping through south Florida prairie, cypress swamp and hardwood hammock resolves variations in thickness and structure of cap rock to ~3 m and holds the potential to test theories for cap rock-vegetation relationships. In other settings, carbonate strata are mapped to test models for the formation of local structural anomalies. A test of GPR imaging capabilities on an arid caliche (calcrete) horizon in southeastern Nevada shows depth penetration to ~2 m with resolution of the base of caliche. GPR profiling also succeeds in resolving more deeply buried (~5 m) limestone discontinuity surfaces that record subaerial exposure in south Florida. (C) 2000 Elsevier Science B.V. All rights reserved.Field experiments show ground penetrating radar (GPR) can be used to image shallow carbonate stratigraphy effectively in a variety of settings. In south Florida, the position and structure of cap rock cover on limestone can be an important control on surface water flow and vegetation, but larger scale outcrops (tens of meters) of cap rock are sparse. GPR mapping through south Florida prairie, cypress swamp and hardwood hammock resolves variations in thickness and structure of cap rock to approx. 3 m and holds the potential to test theories for cap rock-vegetation relationships. In other settings, carbonate strata are mapped to test models for the formation of local structural anomalies. A test of GPR imaging capabilities on an arid caliche (calcrete) horizon in southeastern Nevada shows depth penetration to approx. 2 m with resolution of the base of caliche. GPR profiling also succeeds in resolving more deeply buried (approx. 5 m) limestone discontinuity surfaces that record subaerial exposure in south Florida.
Use of Ground Penetrating Radar at the FAA's National Airport Pavement Test Facility
NASA Astrophysics Data System (ADS)
Injun, Song
2015-04-01
The Federal Aviation Administration (FAA) in the United States has used a ground-coupled Ground Penetrating Radar (GPR) at the National Airport Pavement Test Facility (NAPTF) since 2005. One of the primary objectives of the testing at the facility is to provide full-scale pavement response and failure information for use in airplane landing gear design and configuration studies. During the traffic testing at the facility, a GSSI GPR system was used to develop new procedures for monitoring Hot Mix Asphalt (HMA) pavement density changes that is directly related to pavement failure. After reviewing current setups for data acquisition software and procedures for identifying different pavement layers, dielectric constant and pavement thickness were selected as dominant parameters controlling HMA properties provided by GPR. A new methodology showing HMA density changes in terms of dielectric constant variations, called dielectric sweep test, was developed and applied in full-scale pavement test. The dielectric constant changes were successfully monitored with increasing airplane traffic numbers. The changes were compared to pavement performance data (permanent deformation). The measured dielectric constants based on the known HMA thicknesses were also compared with computed dielectric constants using an equation from ASTM D4748-98 Standard Test Method for Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar. Six inches diameter cylindrical cores were taken after construction and traffic testing for the HMA layer bulk specific gravity. The measured bulk specific gravity was also compared to monitor HMA density changes caused by aircraft traffic conditions. Additionally this presentation will review the applications of the FAA's ground-coupled GPR on embedded rebar identification in concrete pavement, sewer pipes in soil, and gage identifications in 3D plots.
NASA Astrophysics Data System (ADS)
Guo, Li; Chen, Jin; Lin, Henry
2014-12-01
Subsurface lateral preferential flow (LPF) has been observed to contribute substantially to hillslope and catchment runoff. However, the complex nature of LPF and the lack of an appropriate investigation method have hindered direct LPF observation in the field. Thus, the initiation, persistence, and dynamics of LPF networks remain poorly understood. This study explored the application of time-lapse ground-penetrating radar (GPR) together with an artificial infiltration to shed light on the nature of LPF and its dynamics in a hillslope. Based on our enhanced field experimental setup and carefully refined GPR data postprocessing algorithms, we developed a new protocol to reconstruct LPF networks with centimeter resolution. This is the first time that a detailed LPF network and its dynamics have been revealed noninvasively along a hillslope. Real-time soil water monitoring and field soil investigation confirmed the locations of LPF mapped by time-lapse GPR surveys. Our results indicated the following: (1) Increased spatial variations of radar signals after infiltration suggested heterogeneous soil water changes within the studied soil, which reflected the generation and dynamics of LPF; (2) Two types of LPF networks were identified, the network at the location of soil permeability contrasts and that formed via a series of connected preferential flow paths; and (3) The formation and distribution of LPF networks were influenced by antecedent soil water condition. Overall, this study demonstrates clearly that carefully designed time-lapse GPR surveys with enhanced data postprocessing offer a practical and nondestructive way of mapping LPF networks in the field, thereby providing a potentially significant enhancement in our ability to study complex subsurface flow processes across the landscape.
Effective implementation of GPR for condition assessment and monitoring - Phase 2.
DOT National Transportation Integrated Search
2016-10-01
The Maryland Department of Transportation State Highway Administration (SHA) is currently using Ground : Penetrating Radar (GPR) for assessing the condition of bridge decks (such as surface condition, rebar cover depth : and location, and deck thickn...
Estimating the potential safety benefits of intelligent transportation systems : working paper
DOT National Transportation Integrated Search
2000-01-01
Highway agencies and contractors now have a new tool for estimating the remaining service life of pavements and selecting the appropriate maintenance and rehabilitation activities?ground-penetrating radar (GPR). GPR systems collect pavement layer thi...
Zaremba, Nicholas; Smith, Christopher G.; Bernier, Julie C.; Forde, Arnell S.
2016-01-01
A combination of ground penetrating radar (GPR) data, core data, and aerial photographs were analyzed to better understand the evolution of two portions of Assateague Island, Maryland. The focus of the study was to investigate the applicability of using GPR data to image washover deposits in the stratigraphic record. High amplitude reflections observed in two shore-perpendicular GPR profiles were correlated to shallow (<1 m) lithologic contacts observed in sediment cores. At these contacts, deposits consisting primarily of quartz sand overlie sediments with organic matter that include degraded plant root or stem material. The underlying organic matter likely represents the vegetated portion of the barrier island that was buried by washover fans deposited during hurricanes Irene (2011) and Sandy (2012), as indicated in high-resolution aerial photographs. The GPR data were able to delineate the washover deposits from the underlying stratigraphic unit; however, the radar data did not resolve finer structures necessary to definitively differentiate washover facies from other sand-rich deposits (e.g., flood-tide deltas and dunes). Other GPR profiles contain reflections that likely correlate to geomorphic features like tidal channels and vegetated zones observed in historical aerial imagery. Burial of these features by overwash fluxes were observed in the aerial imagery and thus the resulting radar sequence is largely interpreted as washover deposits. Deeper, channel-like features that have been infilled were also observed in shore-parallel profiles and these features coincide with scour channels observed in the 1966 aerial photography. Additional sedimentological data are required to determine what role overwash played in the in-filling of these features.
NASA Astrophysics Data System (ADS)
Pajewski, Lara; Benedetto, Andrea; Loizos, Andreas; Slob, Evert; Tosti, Fabio
2015-04-01
This work aims at presenting the ongoing activities and mid-term results of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar.' Almost three hundreds experts are participating to the Action, from 28 COST Countries (Austria, Belgium, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Ireland, Italy, Latvia, Malta, Macedonia, The Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom), and from Albania, Armenia, Australia, Egypt, Hong Kong, Jordan, Israel, Philippines, Russia, Rwanda, Ukraine, and United States of America. In September 2014, TU1208 has been praised among the running Actions as 'COST Success Story' ('The Cities of Tomorrow: The Challenges of Horizon 2020,' September 17-19, 2014, Torino, IT - A COST strategic workshop on the development and needs of the European cities). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, whilst simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Moreover, the Action is oriented to the following specific objectives and expected deliverables: (i) coordinating European scientists to highlight problems, merits and limits of current GPR systems; (ii) developing innovative protocols and guidelines, which will be published in a handbook and constitute a basis for European standards, for an effective GPR application in civil- engineering tasks; safety, economic and financial criteria will be integrated within the protocols; (iii) integrating competences for the improvement and merging of electromagnetic scattering techniques and of data- processing techniques; this will lead to a novel freeware tool for the localization of buried objects, shape-reconstruction and estimation of geophysical parameters useful for civil engineering needs; (iv) networking for the design, realization and optimization of innovative GPR equipment; (v) comparing GPR with different NDT techniques, such as ultrasonic, radiographic, liquid-penetrant, magnetic-particle, acoustic-emission and eddy-current testing; (vi) comparing GPR technology and methodology used in civil engineering with those used in other fields; (vii) promotion of a more widespread, advanced and efficient use of GPR in civil engineering; and (viii) organization of a high-level modular training program for GPR European users. Four Working Groups (WGs) carry out the research activities. WG 1 focuses on the design of innovative GPR equipment, on the building of prototypes and on the testing and optimisation of new systems. WG 2 focuses on the GPR surveying of pavement, bridges, tunnels and buildings, as well as on the sensing of underground utilities and voids. WG 3 deals with the development of electromagnetic forward and inverse scattering methods, for the characterization of GPR scenarios, as well as with data- processing algorithms for the elaboration of the data collected during GPR surveys. WG 4 works on the use of GPR in fields different from the civil engineering, as well as on the integration of GPR with other non-destructive testing techniques. Each WG includes several Projects. COST Action TU1208 is active through a range of networking tools: meetings, workshops, conferences, training schools, short-term scientific missions, dissemination activities. The Action is still open to the participation of new parties and it is possible to include, in the scientific work plan, new perspectives and activities. Scientists and scientific institutions willing to join are encouraged to contact the Chair of the Action and to follow the procedure described at http://www.cost.eu/participate/join_action. For more information on COST Action TU1208, please visit www.GPRadar.eu. Acknowledgement The Authors thank COST, for funding the Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." References [1] L. Pajewski, A. Benedetto, X. Dérobert, A. Giannopoulos, A. Loizos, G. Manacorda, M. Marciniak, C. Plati, G. Schettini, I. Trinks, "Applications of Ground Penetrating Radar in Civil Engineering - COST Action TU1208," Proc. 7th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), 2-5 July 2013, Nantes, France, pp. 1-6 (INVITED). ISBN 978-1-4799-0937-7, doi:10.1109/ IWAGPR.2013.6601528). [2] L. Pajewski, A. Benedetto, "Advanced Ground Penetrating Radar: open issues and new research opportunities in Europe," Proc. 10th European Radar Conference (EuRad), 2013 European Microwave Week (EuMW), 6-11 October 2013, Nuremberg, Germany, pp. 1847-1850. [3] 'Proceedings of the First Action's General Meeting - Rome, Italy, July 2013' 1st edition, COST Action TU1208, Aracne, L. Pajewski and A. Benedetto, Eds., Rome, Italy, July 2013, ISBN 978-88-548-6191-6, available online at www.GPRadar.eu. [4] 'Booklet of Participants and Institutions,' 1st edition, COST Action TU1208, Aracne, L. Pajewski and A. Benedetto, Eds., Rome, Italy, July 2013, ISBN 978-88-548-6192-3, available online at www.GPRadar.eu. [5] 'Proceedings of the 2014 Working Group Progress Meeting - Nantes, France, February 2014,' COST Action TU1208, Aracne, L. Pajewski and X. Derobert, Eds., Rome, Italy, May 2014, ISBN 978-88-548-7223-3, available online at www.GPRadar.eu. [6] 'Proceedings of the Second Action's General Meeting - Vienna, Austria, April-May 2014,' COST Action TU1208, Aracne, L. Pajewski and A. Benedetto, Eds., Rome, Italy, 2014, ISBN 978-88-548-7224-0. [7] 'Short Term Scientific Missions and Training Schools - Year 1,' COST Action TU1208, Aracne, L. Pajewski and M. Marciniak, Eds., Rome, Italy, 2014, ISBN 978-88-548-7225-7. [8] 'Civil Engineering Applications of Ground Penetrating Radar,' A. Benedetto and L. Pajewski Eds., Springer, July 2015, ISBN 978-3-319-04812-3 (in press). [9] 'Proceedings of the 15th International Conference on Ground Penetrating Radar - GPR2014, June 30 - July 4, 2014, Bruxelles, Belgium,' S. Lambot, A. Giannopoulos, L. Pajewski, F. De André, E. Slob, and C. Craeye, Eds., IEEE Conference Record Number: 35163, ISBN: 978-1-4799-6789-6, IEEE Part Number: CFP14538-ART, October 2014. [10] 'Near Surface Geophysics' Special Issue on 'Civil and Environmental Engineering Applications of Ground Penetrating Radar,' A. Benedetto, A. Loizos, L. Pajewski, and F. Tosti, Guest Eds., publication planned for Spring 2015. [11] IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (JSTARS) Special Issue on 'Ground Penetrating Radar', S. Lambot, A. Giannopoulos, L. Pajewski, E. Slob, Guest Eds., publication planned for December 2015.
Tang, Xinjian; Sun, Tao; Tang, Zhijie; Zhou, Zenghui; Wei, Baoming
2011-06-01
Tonglushan old mine site located in Huangshi City, China, is very famous in the world. However, some of the ruins had suffered from geological disasters such as local deformation, surface cracking, in recent years. Structural abnormalities of rock-mass in deep underground were surveyed with borehole ground penetrating radar (GPR) to find out whether there were any mined galleries or mined-out areas below the ruins. With both the multiresolution analysis and sub-band directional of Curvelet transform, the feature information of targets' GPR signals were studied on Curvelet transform domain. Heterogeneity of geotechnical media and clutter jamming of complicated background of GPR signals could be conquered well, and the singularity characteristic information of typical rock mass signals could be extracted. Random noise had be removed by thresholding combined with Curvelet and the statistical characteristics of wanted signals and the noise, then direct wave suppression and the spatial distribution feature extraction could obtain a better result by making use of Curvelet transform directional. GprMax numerical modeling and analyzing of the sample data have verified the feasibility and effectiveness of our method. It is important and applicable for the analyzing of the geological structure and the disaster development about the Tonglushan old mine site. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Global Research Patterns on Ground Penetrating Radar (GPR)
NASA Astrophysics Data System (ADS)
Gizzi, Fabrizio Terenzio; Leucci, Giovanni
2018-05-01
The article deals with the analysis of worldwide research patterns concerning ground penetrating radar (GPR) during 1995-2014. To do this, the Thomson Reuters' Science Citation Index Expanded (SCI-EXPANDED) and the Social Sciences Citation Index accessed via the Web of Science Core Collection were the two bibliographic databases taken as a reference. We pay attention to the document typology and language, the publication trend and citations, the subject categories and journals, the collaborations between authors, the productivity of the authors, the most cited articles, the countries and the institutions involved, and other hot issues. Concerning the main research subfields involving GPR use, there were five, physical-mathematical, sedimentological-stratigraphical, civil engineering/engineering geology/cultural heritage, hydrological (HD), and glaciological (GL), subfields.
NAPL detection with ground-penetrating radar (Invited)
NASA Astrophysics Data System (ADS)
Bradford, J. H.
2013-12-01
Non-polar organic compounds are common contaminants and are collectively referred to as nonaqueous-phase liquids (NAPLs). NAPL contamination problems occur in virtually every environment on or near the earth's surface and therefore a robust suite of geophysical tools is required to accurately characterize NAPL spills and monitor their remediation. NAPLs typically have low dielectric permittivity and low electric conductivity relative to water. Thus a zone of anomalous electrical properties often occurs when NAPL displaces water in the subsurface pore space. Such electric property anomalies make it possible to detect NAPL in the subsurface using electrical or electromagnetic geophysical methods including ground-penetrating radar (GPR). The GPR signature associated with the presence of NAPL is manifest in essentially three ways. First, the decrease in dielectric permittivity results in increased EM propagation velocity. Second, the decrease in permittivity can significantly change reflectivity. Finally, electric conductivity anomalies lead to anomalous GPR signal attenuation. The conductivity anomaly may be either high or low depending on the state of NAPL degradation, but with either high or low conductivity, GPR attenuation analysis can be a useful tool for identifying contaminated-zones. Over the past 15 years I have conducted numerous modeling, laboratory, and field tests to investigate the ability to use GPR to measure NAPL induced anomalies. The emphasis of this work has been on quantitative analysis to characterize critical source zone parameters such as NAPL concentration. Often, the contaminated zones are below the conventional resolution of the GPR signal and require thin layer analysis. Through a series of field examples, I demonstrate 5 key GPR analysis tools that can help identify and quantify NAPL contaminants. These tools include 1) GPR velocity inversion from multi-fold data, 2) amplitude vs offset analysis, 3) spectral decomposition, 4) frequency dependent attenuation analysis, and 5) reflectivity inversion. Examples are taken from a variety of applications that include oil spills on the ocean, oil spills on and under sea ice, and both LNAPL and DNAPL contaminated groundwater systems. Many factors conspire to complicate field data analysis, yet careful analysis and integration of multiple techniques has proven robust. Use of these methods in practical application has been slow to take root. Nonetheless, a best practices working model integrates geophysics from the outset and mirrors the approach utilized in hydrocarbon exploration. This model ultimately minimizes site characterization and remediation costs.
NASA Astrophysics Data System (ADS)
Pajewski, Lara; Benedetto, Andrea; Loizos, Andreas; Tosti, Fabio
2016-04-01
This work aims at disseminating the ongoing research activities and third-year results of the COST (European COoperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." About 350 experts are participating to the Action, from 28 COST Countries (Austria, Belgium, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Ireland, Italy, Latvia, Malta, Macedonia, The Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom), and from Albania, Armenia, Australia, Colombia, Egypt, Hong Kong, Jordan, Israel, Philippines, Russia, Rwanda, Ukraine, and United States of America. In September 2014, TU1208 has been recognised among the running Actions as "COST Success Story" ("The Cities of Tomorrow: The Challenges of Horizon 2020," September 17-19, 2014, Torino, IT - A COST strategic workshop on the development and needs of the European cities). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, whilst simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Moreover, the Action is oriented to the following specific objectives and expected deliverables: (i) coordinating European scientists to highlight problems, merits and limits of current GPR systems; (ii) developing innovative protocols and guidelines, which will be published in a handbook and constitute a basis for European standards, for an effective GPR application in civil- engineering tasks; safety, economic and financial criteria will be integrated within the protocols; (iii) integrating competences for the improvement and merging of electromagnetic scattering techniques and of data- processing techniques; this will lead to a novel freeware tool for the localization of buried objects, shape-reconstruction and estimation of geophysical parameters useful for civil engineering needs; (iv) networking for the design, realization and optimization of innovative GPR equipment; (v) comparing GPR with different NDT techniques, such as ultrasonic, radiographic, liquid-penetrant, magnetic-particle, acoustic-emission and eddy-current testing; (vi) comparing GPR technology and methodology used in civil engineering with those used in other fields; (vii) promotion of a more widespread, advanced and efficient use of GPR in civil engineering; and (viii) organization of a high-level modular training program for GPR European users. Four Working Groups (WGs) carry out the research activities. WG 1 focuses on the design of innovative GPR equipment, on the building of prototypes and on the testing and optimisation of new systems. WG 2 focuses on the GPR surveying of pavement, bridges, tunnels and buildings, as well as on the sensing of underground utilities and voids. WG 3 deals with the development of electromagnetic forward and inverse scattering methods, for the characterization of GPR scenarios, as well as with data-processing algorithms for the elaboration of the data collected during GPR surveys. WG 4 works on the use of GPR in fields different from the civil engineering, as well as on the integration of GPR with other non-destructive testing techniques. Each WG includes several Projects. COST Action TU1208 is active through a range of networking tools: meetings, workshops, conferences, training schools, short-term scientific missions, dissemination activities. For more information on COST Action TU1208, please visit www.GPRadar.eu and www.cost.eu. Acknowledgement The Authors wish to thank COST, for funding the COST Action TU1208 "Civil engineering applications of Ground Penetrating Radar."
Plug identification in drainage system using electromagnetic wave
NASA Astrophysics Data System (ADS)
Hijriani, Arifa; Utama, Aji Surya; Boas, Andrianus; Mukti, M. Ridho; Widodo
2017-07-01
The evaluation of drainage system's performance is an important thing to do to prevent flooding. Conventionally the Government evaluates the drainage system by opening one by one the lid of drainage and detects the plug manually. This method is not effective and efficient because this method need many people, much time and relatively expensive. The purpose of this paper is to identify plugs in drainage system in G St. at Bandung Institute of Technology by using electromagnetic wave. Ground Penetrating Radar (GPR) is one of geophysics method that using electromagnetic wave with high frequency. GPR is a non-destructive method with high resolution imaging for shallow depth (˜100m) and relatively cheap. We could identify the plug without opening the lid manually so that we could save much time. GPR's sensitivity is depends on resistivity, magnetic permeability, and permittivity of an object. The result of this research is we could identify the plug on the radargram that observed by a build-up amplitude anomaly.
Effective implementation of GPR for condition assessment and monitoring - phase 2 : final report.
DOT National Transportation Integrated Search
2016-10-01
The Maryland Department of Transportation State Highway Administration (SHA) is currently using Ground Penetrating Radar (GPR) for assessing the condition of bridge decks (such as surface condition, rebar cover depth and location, and deck thickness)...
This paper presents some of the results of five of the techniques: cross borehole complex resistivity (CR) also referred to as spectral induced polarization (SIP), cross borehole high resolution seismic (HRS), borehole self potential (SP), surface ground penetration radar (GPR), ...
Current uses of ground penetrating radar in groundwater-dependent ecosystems research.
Paz, Catarina; Alcalá, Francisco J; Carvalho, Jorge M; Ribeiro, Luís
2017-10-01
Ground penetrating radar (GPR) is a high-resolution technique widely used in shallow groundwater prospecting. This makes GPR ideal to characterize the hydrogeological functioning of groundwater-dependent ecosystems (GDE). This paper reviews current uses of GPR in GDE research through the construction of a database comprising 91 worldwide GPR case studies selected from the literature and classified according to (1) geological environments favouring GDE; (2) hydrogeological research interests; and (3) field technical and (4) hydrogeological conditions of the survey. The database analysis showed that inland alluvial, colluvial, and glacial formations were the most widely covered geological environments. Water-table depth was the most repeated research interest. By contrast, weathered-marl and crystalline-rock environments as well as the delineation of salinity interfaces in coastal and inland areas were less studied. Despite that shallow groundwater propitiated GDE in almost all the GPR case studies compiled, only one case expressly addressed GDE research. Common ranges of prospecting depth, water-table depth, and volumetric water content deduced by GPR and other techniques were identified. Antenna frequency of 100MHz and the common offset acquisition technique predominated in the database. Most of GPR case studies were in 30-50° N temperate latitudes, mainly in Europe and North America. Eight original radargrams were selected from several GPR profiles performed in 2014 and 2015 to document database classes and identified gaps, as well as to define experimental ranges of operability in GDE environments. The results contribute to the design of proper GPR surveys in GDE research. Copyright © 2017 Elsevier B.V. All rights reserved.
Hwang, Yong Keun; Endres, Anthony L; Piggott, Scott D; Parker, Beth L
2008-04-04
An earlier field experiment at Canadian Forces Base Borden by Brewster and Annan [Geophysics 59 (1994) 1211] clearly demonstrated the capability of ground penetrating radar (GPR) reflection profiling to detect and monitor the formation of DNAPL layers in the subsurface. Their experiment involved a large volume release (770 L) of tetrachloroethylene into a portion of the sand aquifer that was hydraulically isolated from groundwater flow by sheet pile walls. In this study, we evaluated the ability of GPR profiling to detect and monitor much smaller volume releases (50 L). No subsurface confining structure was used in this experiment; hence, the DNAPL impacted zone was subjected to the natural groundwater flow regime. This condition allowed us to geophysically monitor the DNAPL mass loss over a 66 month period. Reflectivity variations on the GPR profiles were used to infer the presence and evolution of the solvent layers. GPR imaging found significant reflectivity increases due to solvent layer formation during the two week period immediately after the release. These results demonstrated the capacity of GPR profiling for the detection and monitoring of lesser volume DNAPL releases that are more representative of small-scale industrial spills. The GPR imaged solvent layers subsequently reduced in both areal extent and reflectivity after 29 months and almost completely disappeared by the end of the 66 month monitoring period. Total DNAPL mass estimates based on GPR profiling data indicated that the solvent mass was reduced to 34%-36% of its maximum value after 29 months; only 4%-9% of the solvent mass remained in the study area after 66 months. These results are consistent with independent hydrogeological estimates of remaining DNAPL mass based on the downgradient monitoring of the dissolved solvent phase. Hence, we have concluded that the long-term GPR reflectivity changes of the DNAPL layers are likely the result from the dissolution of chlorinated solvents residing in those layers. The long-term monitoring results demonstrated that GPR profiling is a promising non-invasive method for use at DNAPL contaminated sites in sandy aquifers where temporal information about immiscible contaminant mass depletion due to either natural flow or remediation is needed. However, our results also indicated that the GPR signature of older DNAPL impacted zones may not differ greatly from the uncontaminated background if significant mass reduction due to dissolution has occurred.
Geophysical detection of on-site wastewater plumes in the North Carolina Coastal Plain, USA
NASA Astrophysics Data System (ADS)
Smith, Matthew
Nonpoint source pollution (NPS) continues to be the leading cause of water quality degradation in the United States. On-site wastewater systems (OWS) contribute to NPS; however, due to the range of system designs and complexity of the subsurface, OWS contributions to groundwater pollution are not well understood. As the population of coastal North Carolina continues to increase, better methods to locate and characterize wastewater impacted groundwater are needed. Previous studies have demonstrated the ability of non-intrusive geophysical methods to provide high resolution information on various contaminants in different geologic settings. The goals of this study were to evaluate the utility of ground penetrating radar (GPR) and capacitively coupled resistivity (CCR) for detecting OWS components, delineating associated wastewater plumes, and monitoring temporal variations in groundwater quality. Cross-sectional and three dimensional (3D) geophysical surveys were conducted periodically over a one year period (February 2011--January 2012) at two schools utilizing OWS in the lower Neuse River Basin (NRB) in the North Carolina Coastal Plain (NCCP). Cores were collected at both study sites; as well as monthly groundwater depth, temperature, and specific conductivity measurements to better constrain the geophysical interpretations. Additionally, dissolved inorganic nitrogen (DIN) and Cl concentrations were monitored bi-monthly to assess nutrient transport at the sites. The 3D GPR surveys effectively located the wastewater drainage trenches at both sites, in close agreement with locations described in as-built OWS blueprints. Regression analysis of resistivity versus groundwater specific conductivity revealed an inverse relationship, suggesting resistivity ≤ 250 ohm.m was indicative of wastewater impacted groundwater at both sites. The 3D resistivity models identified regions of low resistivity beneath the drainfields relative to background values. Regression analysis of GPR signal absolute peak amplitude (APA) versus groundwater specific conductivity revealed a decrease in APA indicative of radar signal attenuation at locations where groundwater specific conductivity was elevated. The 3D GPR models identified regions of attenuated radar signal beneath the drainfields relative to background locations. Comparisons of groundwater specific conductivity, GPR, and CCR lateral wastewater plume estimates indicated similar dimensions at both sites. The sensitivity of resistivity measurements tended to decline with increased water-table depth; although, differences in resistivity associated with seasonal water-table depth changes were noticeable. Overall, results of this study suggest that GPR and CCR surveys combined with sediment, hydrologic, and water quality data may provide reliable information on the location of OWS components and extent of associated wastewater plumes. The GPR surveys successfully located the wastewater drainage trenches and helped image the uppermost surface of the wastewater plumes. The CCR surveys delineated the lateral wastewater plume dimensions and revealed temporal changes in groundwater quality associated with differences in groundwater recharge.
Applications of Surface Penetrating Radar for Mars Exploration
NASA Astrophysics Data System (ADS)
Li, H.; Li, C.; Ran, S.; Feng, J.; Zuo, W.
2015-12-01
Surface Penetrating Radar (SPR) is a geophysical method that uses electromagnetic field probe the interior structure and lithological variations of a lossy dielectric materials, it performs quite well in dry, icy and shallow-soil environments. The first radar sounding of the subsurface of planet was carried out by Apollo Lunar Sounder Experiment (ALSE) of the Apollo 17 in 1972. ALSE provided very precise information about the moon's topography and revealed structures beneath the surface in both Mare Crisium and Mare Serenitatis. Russian Mars'92 was the first Mars exploration mission that tried to use SPR to explore martian surface, subsurface and ionosphere. Although Mars'96 launch failed in 1996, Russia(Mars'98, cancelled in 1998; Phobos-Grunt, launch failed in 2011), ESA(Mars Express, succeeded in 2003; Netlander, cancelled in 2003; ExoMars 2018) and NASA(MRO, succeeded in 2005; MARS 2020) have been making great effects to send SPR to Mars, trying to search for the existence of groundwater and life in the past 20 years. So far, no Ground Penetrating Radar(GPR) has yet provided in situ observations on the surface of Mars. In December 2013, China's CE-3 lunar rover (Yuto) equipped with a GPR made the first direct measurement of the structure and depth of the lunar soil, and investigation of the lunar crust structure along the rover path. China's Mars Exploration Program also plans to carry the orbiting radar sounder and rover GPR to characterize the nature of subsurface water or ices and the layered structure of shallow subsurface of Mars. SPR can provide diversity of applications for Mars exploration , that are: to map the distribution of solid and liquid water in the upper portions of the Mars' crust; to characterize the subsurface geologic environment; to investigate the planet's subsurface to better understand the evolution and habitability of Mars; to perform the martain ionosphere sounding. Based on SPR's history and achievements, combined with the development of radar technology, SPR's technological trends applied in moon and deep space exploration are summarized in the following: Technological convergence in SPR and SAR(Synthetic Aperture Radar); Muliti-frequency and Multi-polarization; Bistatic or multistatic SPRs for geophysical network; Tomography.
Crevasse detection with GPR across the Ross Ice Shelf, Antarctica
NASA Astrophysics Data System (ADS)
Delaney, A.; Arcone, S.
2005-12-01
We have used 400-MHz ground penetrating radar (GPR) to detect crevasses within a shear zone on the Ross Ice Shelf, Antarctica, to support traverse operations. The transducer was attached to a 6.5-m boom and pushed ahead of an enclosed tracked vehicle. Profile speeds of 4.8-11.3 km / hr allowed real-time crevasse image display and a quick, safe stop when required. Thirty-two crevasses were located with radar along the 4.8 km crossing. Generally, crevasse radar images were characterized by dipping reflections above the voids, high-amplitude reflections originating from ice layers at the base of the snow-bridges, and slanting, diffracting reflections from near-vertical crevasse walls. New cracks and narrow crevasses (<50 cm width) show no distinct snow bridge structure, few diffractions, and a distinct band where pulse reflections are absent. Wide (0.5-5.0 m), vertical wall crevasses show distinct dipping snow bridge layering and intense diffractions from ice layers near the base of the snow bridge. Pulse reflections are absent from voids beneath the snow bridges. Old, wide (3.0-8.0 m) and complexly shaped crevasses show well-developed, broad, dipping snow-bridge layers and a high-amplitude, complex, diffraction pattern. The crevasse mitigation process, which included hot-water drilling, destroying the bridges with dynamite, and back-filling with bulldozed snow, afforded an opportunity to ground-truth GPR interpretations by comparing void size and snow-bridge geometry with the radar images. While second and third season radar profiles collected along the identical flagged route confirmed stability of the filled crevasses, those profiles also identified several new cracks opened by ice extension. Our experiments demonstrate capability of high-frequency GPR in a cold-snow environment for both defining snow layers and locating voids.
NASA Astrophysics Data System (ADS)
Baghdasaryan, Hovik V.; Knyazyan, Tamara M.; Hovhannisyan, Tamara. T.; Marciniak, Marian; Pajewski, Lara
2016-04-01
As is well know, Ground Penetrating Radar (GPR) is an electromagnetic technique for the detection and imaging of buried objects, with resolution ranging from centimeters to few meters [1, 2]. Though this technique is mature enough and different types of GPR devices are already in use, some problems are still waiting for their solution [3]. One of them is to achieve a better matching of transmitting GPR antenna to the ground, that will increase the signal penetration depth and the signal/noise ratio at the receiving end. In the current work, a full-wave electromagnetic modelling of the interaction of a plane wave with a chirped multilayered structure on the ground is performed, via numerical simulation. The method of single expression is used, which is a suitable technique for multi-boundary problems solution [4, 5]. The considered multilayer consists of two different dielectric slabs of low and high permittivity, where the highest value of permittivity doesn't exceed the permittivity of the ground. The losses in the ground are suitably taken into account. Two types of multilayers are analysed. Numerical results are obtained for the reflectance from the structure, as well as for the distributions of electric field components and power flow density in both the considered structures and the ground. The obtained results indicate that, for a better matching with the ground, the layer closer to the ground should be the high-permittivity one. Acknowledgement This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.GPRadar.eu, www.cost.eu). Part of this work was developed during the Short-Term Scientific Mission COST-STSM-TU1208-25016, carried out by Prof. Baghdasaryan in the National Institute of Telecommunications in Warsaw, Poland. References [1] H. M. Jol. Ground Penetrating Radar: Theory and Applications. Elsevier, 2009. 509 pp. [2] R. Persico. Introduction to Ground Penetrating Radar. IEEE Press, Wiley, 2014. 368 pp. [3] A. Benedetto, L. Pajewski. Civil Engineering Applications of Ground Penetrating Radar. Springer, 2015. 371 pp. [4] H.V. Baghdasaryan, T.M. Knyazyan, "Problem of Plane EM-Wave Self-action in Multilayer Structure: an Exact Solution", Optical and Quantum Electronics, vol. 31, 1999, pp. 1059-1072. [5] H.V. Baghdasaryan, "Basics of the Method of Single Expression: New Approach for Solving Boundary Problems in Classical Electrodynamics", Yerevan, Chartaraget, 2013.
NASA Astrophysics Data System (ADS)
Pajewski, Lara; Manacorda, Guido; Persico, Raffaele
2015-04-01
This work aims at presenting the ongoing research activities carried out in Working Group 1 'Novel GPR instrumentation' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). The principal goal of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Working Group 1 (WG1) of the Action focuses on the development of innovative GPR equipment dedicated for civil engineering applications. It includes three Projects. Project 1.1 is focused on the 'Design, realisation and optimisation of innovative GPR equipment for the monitoring of critical transport infrastructures and buildings, and for the sensing of underground utilities and voids.' Project 1.2 is concerned with the 'Development and definition of advanced testing, calibration and stability procedures and protocols, for GPR equipment.' Project 1.3 deals with the 'Design, modelling and optimisation of GPR antennas.' During the first year of the Action, WG1 Members coordinated between themselves to address the state of the art and open problems in the scientific fields identified by the above-mentioned Projects [1, 2]. In carrying our this work, the WG1 strongly benefited from the participation of IDS Ingegneria dei Sistemi, one of the biggest GPR manufacturers, as well as from the contribution of external experts as David J. Daniels and Erica Utsi, sharing with the Action Members their wide experience on GPR technology and methodology (First General Meeting, July 2013). The synergy with WG2 and WG4 of the Action was useful for a deep understanding of the problems, merits and limits of available GPR equipment, as well as to discuss how to quantify the reliability of GPR results. An innovative reconfigurable ground-coupled stepped-frequency GPR is being studied and optimised by a group of WG1 Members; it was designed in Italy and is equipped with two bow-tie antennas, with a series of switches along their arms, so that their size can be varied. The system was tested in several sites, both indoor and outdoor, in comparison with a commercial ground-coupled pulsed system [1, 3, 4]. Subsequently, within a COST Short-Term Scientific Mission (STSM), the prototype device was sent to Norway and compared with a commercial ground-coupled stepped-frequency radar [5]. These experimental activities were fundamental to gain a deepen knowledge of the reconfigurable GPR prototype and to plan its improvement. Another innovative system being designed within the Action and proposed by Italian Members, will allow investigating the mechanical properties of pavement, in addition to its geometrical and electromagnetic properties. Cooperation with the COST Action IC1102 'Versatile, Integrated, and Signal-aware Technologies for Antennas (VISTA)' has been established, concerning the design of GPR antennas. At least two more WG1 activities need to be mentioned, as they are very interesting and promising. The first one, coordinated by Italy and involving Members and external experts from Germany, United Kingdom, Japan and United States, is the development of a protocol providing recommendations for the safety of people and instruments in near surface geophysical prospecting, with a particular focus to the use of GPR. The second initiative is called GPR4Everyone, it was proposed by Italy and consists in creating a virtual store of GPR equipment at the disposal of Members from inclusiveness Countries: some Institutes have GPR systems and complementary NDT equipment no longer used, while there are Institutes who cannot afford to buy a GPR; thus, the idea is to cense the unused equipment and make it available to be given for free to researchers from less research-intensive countries, as a small step to counterbalance research communities' unequal access to funding and resources distribution. Acknowledgement The Authors thank COST, for funding the COST Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar.' References [1] Proceedings of the First Action's General Meeting (Rome, Italy, 22-24 July 2013), 1st edition, COST Action TU1208, L. Pajewski, A. Benedetto, Eds., ISBN 978-88-548-6191-6 (Aracne, 2013). [2] Civil Engineering Applications of Ground Penetrating Radar, A. Benedetto, L. Pajewski, Eds., ISBN 978-3-319-04812-3 (Springer, 2015, in press). [3] Proceedings of the 15th International Conference on Ground Penetrating Radar - GPR 2014, S. Lambot, A. Giannopoulos, L. Pajewski, F. De André, E. Slob, C. Craeye, Eds., IEEE Conf. Number 35163 (IEEE, 2014). [4] Proceedings of the Second Action's General Meeting (Vienna, Austria, 30 April-2 May 2014), COST Action TU1208, L. Pajewski, A. Benedetto, Eds., ISBN 978-88-548-7224-0 (Aracne, 2014).
NASA Astrophysics Data System (ADS)
Hengari, Gideon M.; Hall, Carlton R.; Kozusko, Tim J.; Bostater, Charles R.
2013-10-01
Sustainable use and management of natural resources require strategic responses using non-destructive tools to provide spatial and temporal data for decision making. Experiments conducted at John F. Kennedy Space Center (KSC) demonstrate ground penetrating radar (GPR) can provide high-resolution images showing depth to water tables. GPR data at KSC were acquired using a MALÅ Rough Terrain 100 MHz Antenna. Data indicate strong correlation (R2=0.80) between measured water table depth (shallow monitoring wells and soil auger) and GPR estimated depth. The study demonstrated the use of GPR to detect Holocene and Pleistocene depositional environments such as Anastasia Formation that consists of admixtures of sand, shell and coquinoid limestone at a depth of 20-25 ft. This corresponds well with the relatively strong reflections from 7.5 to 13 m (125-215 ns) in GPR images. Interpretations derived from radar data coupled with other non-GPR data (wells data and soil auger data) will aid in the understanding of climate change impacts due to sea level rise on the scrub vegetation composition at KSC. Climate change is believed to have a potentially significant impact potential on near coastal ground water levels and associated water table depth. Understanding the impacts of ground water levels changes will, in turn, lead to improved conceptual conservation efforts and identifications of climate change adaptation concepts related to the recovery of the Florida scrub jay (Aphelocoma coerulescens) and other endangered or threatened species which are directly dependent on a healthy near coastal scrub habitat. Transfer of this inexpensive and non-destructive technology to other areas at KSC, Florida, and to other countries, may prove useful in the development of future conservation programs.
Resolution of lava tubes with ground penetrating radar: preliminary results from the TubeX project
NASA Astrophysics Data System (ADS)
Esmaeili, S.; Kruse, S.; Garry, W. B.; Whelley, P.; Young, K.; Jazayeri, S.; Bell, E.; Paylor, R.
2017-12-01
As early as the mid 1970's it was postulated that planetary tubes or caves on other planetary bodies (i.e., the Moon or Mars) could provide safe havens for human crews, protect life and shield equipment from harmful radiation, rapidly fluctuating surface temperatures, and even meteorite impacts. What is not clear, however, are the exploration methods necessary to evaluate a potential tube-rich environment to locate suitable tubes suitable for human habitation. We seek to address this knowledge gap using a suite of instruments to detect and document tubes in a terrestrial analog study at Lava Beds National Monument, California, USA. Here we describe the results of ground penetrating radar (GPR) profiles and light detection and ranging (LiDAR) scans. Surveys were conducted from the surface and within four lava tubes (Hercules Leg, Skull, Valentine and, Indian Well Caves) with varying flow composition, shape, and complexity. Results are shown across segments of these tubes where the tubes are <1 m to ranging > 10 m in height and the ceilings are 1 - 10 m below the surface. The GPR profiles over the tubes are, as expected, complex, due to scattering from fractures in roof material and three-dimensional heterogeneities. Point clouds derived from the LiDAR scans of both the interior and exterior of the lava tubes provide precise positioning of the tube geometry and depth of the ceiling and floor with respect to the surface topography. GPR profiles over LiDAR-mapped tube cross-sections are presented and compared against synthetic models of radar response to the measured geometry. This comparison will help to better understand the origins of characteristic features in the radar profiles. We seek to identify the optimal data processing and migration approaches to aid lava tube exploration of planetary surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nobes, D.C.; Armstrong, M.J.; Broadbent, M.
1994-12-31
Leachate plumes are often more electrically conductive than the surrounding host pore waters, and thus can be detected using shallow electromagnetic (EM) methods. The depth of penetration of ground penetrating radar (GPR) is controlled to a large extent by the electrical conductivity. Conductive leachate plumes will appear as ``blank`` areas in the radar profiles, because the radar energy is more severely attenuated in the region of the leachate plume. The authors present here the results of EM and GPR Surveys carried out in an area adjacent to a landfill site. Previous resistivity surveys indicated the presence of a leachate plumemore » originating from an early stage of the landfill operation. The shallow EM and GPR surveys were carried out, in part, to confirm and refine the resistivity results, and to delineate the spatial extent of the plume. The surficial sediments are coastal sands, and the dune topography has an effect on the EM results, even though the variations in elevation are, in general, no more than 3 m. Besides the leachate plume, numerous conductivity highs and lows are present, which are at least coarsely correlated with topographic lows and highs. Following the empirical procedure outlined by Monier-Williams et al. (1990), the topographic effects have been removed, and the plume is better isolated and delineated. A possible second, weaker leachate plume has been identified, emanating from the current landfill operation. The second plume may follow a channel that was masked by the overlying dune sands. The leading edge of the primary leachate plume is moving to the south-southeast at a rate of 14 to 15 m/yr.« less
NASA Astrophysics Data System (ADS)
Santos Assuncao, Sonia; De Smedt, Philippe; Giannakis, Iraklis; Matera, Loredana; Pinel, Nicolas; Dimitriadis, Klisthenis; Giannopoulos, Antonios; Sala, Jacopo; Lambot, Sébastien; Trinks, Immo; Marciniak, Marian; Pajewski, Lara
2015-04-01
This work aims at presenting the scientific results stemming from six Short-Term Scientific Missions (STSMs) funded by the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (Action Chair: Lara Pajewski, STSM Manager: Marian Marciniak). STSMs are important means to develop linkages and scientific collaborations between participating institutions involved in a COST Action. Scientists have the possibility to go to an institution abroad, in order to undertake joint research and share techniques/equipment/infrastructures that may not be available in their own institution. STSMs are particularly intended for Early Stage Researchers (ESRs), i.e., young scientists who obtained their PhD since no more than 8 years when they started to be involved in the Action. Duration of a standard STSM can be from 5 to 90 days and the research activities carried out during this short stay shall specifically contribute to the achievement of the scientific objectives of the supporting COST Action. The first STSM was carried out by Lara Pajewski, visiting Antonis Giannopoulos at The University of Edinburgh (United Kingdom). The research activities focused on the electromagnetic modelling of Ground Penetrating Radar (GPR) responses to complex targets. A set of test scenarios was defined, to be used by research groups participating to Working Group 3 of COST Action TU1208, to test and compare different electromagnetic forward- and inverse-scattering methods; these scenarios were modelled by using the well-known finite-difference time-domain simulator GprMax. New Matlab procedures for the processing and visualization of GprMax output data were developed. During the second STSM, Iraklis Giannakis visited Lara Pajewski at Roma Tre University (Italy). The study was concerned with the numerical modelling of horn antennas for GPR. An air-coupled horn antenna was implemented in GprMax and tested in a realistically modelled pavement scenario; moreover, the horn was compared with a previously-implemented ground-coupled bowtie antenna. The numerical results indicate that air-coupled antennas receive clear reflections from distinct layers within the pavement but they are incapable in the considered setting to detect cracks filled with air. On the other hand, by using ground-coupled antennas it is easier to interpret hyperbolic responses from the buried cracks. The developed modelling framework is a powerful tool in evaluating the performance of high-frequency GPR transducers in realistic situations and this approach can lead to better design of GPR antennas. The third STSM was carried out by Sonia Santos Assunçao visiting Klisthenis Dimitriadis at Geoservice (Greece). They worked at the non-destructive inspection of the Tholos Tomb of Acharnon. The unknown thickness of the Tomb walls was determined by using a GPR. Data were plotted in impressive circular radargrams. Discontinuities in the measured data were identified and associated to fissures or voids, indicating internal and superficial damages of the Tomb. A combination of GPR with electrical resistivity tomography allowed a more accurate data interpretation. Vibrations in the Tomb were quantified by using seismic measurements and endoscopy was used to confirm the thickness of the walls. During the fourth STSM, Philippe De Smedt visited Immo Trinks at the Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology. The research activities regarded the reconstruction of prehistoric environments at Stonehenge, by means of multiple electromagnetic survey methods. Different datasets were processed, analysed and compared: data from a multi-receiver electromagnetic induction survey (collected by the ORBit research group from Ghent University, Belgium), and data from a 3D GPR survey (collected by the Ludwig Boltzmann Institute for Virtual Archaeology and Archaeological Prospection, Austria). The aim was that of creating a robust methodological foundation for the combined analysis of electromagnetic-induction and GPR data. The fifth STSM was carried out by Loredana Matera, who visited Jacopo Sala at 3d-radar (Norway). They tested an innovative reconfigurable stepped-frequency GPR, designed and realised in Italy. The prototype was compared with commercial equipment produced in Norway. Through laboratory experiments as well as outdoor campaigns in urban scenarios with archaeological remarks, a deeper knowledge of the Italian prototype was achieved and plans were made to improve it. Finally, Nicolas Pinel visited Sébastien Lambot at the Université catholique de Louvain (UCL); the last STSM presented in this abstract, was devoted to investigating how to model the effect of soil roughness in the inversion of ultra wide-band off-ground monostatic GPR signals. The aim of this research is the noninvasive quantification of soil properties through the use of GPR. The work focused on incorporating the improved asymptotic forward electromagnetic model developed by Pinel et al. in the multilayer Green function code developed at UCL. Acknowledgement The Authors thank COST, for funding the Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar,' supporting these STSMs.
The research on the buried public monumental complexes of Lupiae (Lecce) by geophysical prospecting
NASA Astrophysics Data System (ADS)
Leucci, Giovanni; De Giorgi, Lara; Di Giacomo, Giacomo; Ditaranto, Imma; Miccoli, Ilaria; Scardozzi, Giuseppe
2017-10-01
Ongoing and extensive urbanisation may threaten important archaeological structures that are still buried in urban areas. The ground penetrating radar (GPR) method is the most promising alternative for resolving buried archaeological structures in urban territories. This paper presents a case study that involves a geophysical survey employing the surface three-dimensional (3D) GPR techniques, in order to archaeologically characterise the investigated areas. The site is located in the south-western sector of the historical centre of Lecce (Apulia, Italy), where the modern city overlaps the main public monuments of the Roman municipium of Lupiae, only partially preserved or excavated: the amphitheatre, the theatre, the baths and maybe also the Forum. GPR measurements, integrated with the results of archaeological excavations and the topographical surveys of the preserved remains, were carried out in several areas regarding sectors of the ancient roman city. The GPR data were collected along a dense network of parallel profiles. The GPR sections were processed applying specific filters to the data in order to enhance their information content. The GPR images significantly contributed in reconstructing the complex subsurface properties in these modern urban areas. Strong GPR reflections features were correlated with possible ancient structures and they were integrated in the digital archaeological map of the city.
Surface-based GPR underestimates below-stump root biomass
John R. Butnor; Lisa J. Samuelson; Thomas A. Stokes; Kurt H. Johnsen; Peter H. Anderson; Carlos A. Gonzalez-Benecke
2016-01-01
Aims While lateral root mass is readily detectable with ground penetrating radar (GPR), the roots beneath a tree (below-stump) and overlapping lateral roots near large trees are problematic for surface-based antennas operated in reflection mode. We sought to determine if tree size (DBH) effects GPR root detection proximal to longleaf pine (Pinus palustris Mill) and if...
NASA Technical Reports Server (NTRS)
Grant, J. A.; Schultz, P. H.
1993-01-01
In spite of the highly successful nature of recent planetary missions to the terrestrial planets and outer satellites a number of questions concerning the evolution of their surfaces remain unresolved. For example, knowledge of many characteristics of the stratigraphy and soils comprising the near-surface on Mars remains largely unknown, but is crucial in order to accurately define the history of surface processes and near-surface sedimentary record. Similar statements can be made regarding our understanding of near-surface stratigraphy and processes on other extraterrestrial planetary bodies. Ground penetrating radar (GPR) is a proven and standard instrument capable of imaging the subsurface at high resolution to 10's of meters depth in a variety of terrestrial environments. Moreover, GPR is portable and easily modified for rover deployment. Data collected with a rover mounted GPR could resolve a number of issues related to planetary surface evolution by defining shallow stratigraphic records and would provide context for interpreting results of other surface analyses (e.g. elemental or mineralogical). A discussion of existing GPR capabilities is followed first by examples of how GPR might be used to better define surface evolution on Mars and then by a brief description of possible GPR applications to the Moon and other planetary surfaces.
Through the looking glass: Applications of ground-penetrating radar in archaeology
NASA Astrophysics Data System (ADS)
Stamos, Antonia
The focus of this dissertation is to present the results of four years' worth of geophysical surveying at four major archaeological sites in Greece and the benefits to the archaeological community. The ground penetrating radar offers an inexpensive, non-destructive solution to the problem of deciding how much of a site is worth excavating and which areas would yield the most promising results. An introduction to the ground penetrating radar, or GPR, the equipment necessary to conduct a geophysical survey in the field, and the methods of data collection and subsequent data processing are all addressed. The benefits to the archeological community are many, and future excavations will incorporate such an important tool for a greater understanding of the site. The history of GPR work in the archaeological field has grown at an astounding rate from its beginnings as a simple tool for petroleum and mining services in the beginning of the twentieth century. By mid-century, the GPR was first applied to archaeological sites rather than its common use by utility companies in locating pipes, cables, tunnels, and shafts. Although the preliminary surveys were little more than a search to locate buried walls, the success of these initial surveys paved the ground for future surveys at other archaeological sites, many testing the radar's efficacy with a myriad of soil conditions and properties. The four sites in which geophysical surveys with a ground penetrating radar were conducted are Azorias on the island of Crete, Kolonna on the island of Aegina, Mochlos Island and Coastal Mochlos on the island of Crete, and Mycenae in the Peloponnese on mainland Greece. These case studies are first presented in terms of their geographical location, their mythology and etymology, where applicable, along with a brief history of excavation and occupation of the site. Additional survey methods were used at Mycenae, including aerial photography and ERDAS Imagine, a silo locating program now applied for "surface surveying." Each survey site is introduced via geographical location and proximity to known features, as well as with a comprehensive breakdown of the data into real-time depth, or depth-slices, for better identification of features.
Estimating water content in an active landfill with the aid of GPR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yochim, April, E-mail: ayochim@regionofwaterloo.ca; Zytner, Richard G., E-mail: rzytner@uoguelph.ca; McBean, Edward A., E-mail: emcbean@uoguelph.ca
Highlights: • Limited information in the literature on the use of GPR to measure in situ water content in a landfill. • Developed GPR method allows measurement of in situ water content in a landfill. • Developed GPR method is appealing to waste management professionals operating landfills. - Abstract: Landfill gas (LFG) receives a great deal of attention due to both negative and positive environmental impacts, global warming and a green energy source, respectively. However, predicting the quantity of LFG generated at a given landfill, whether active or closed is difficult due to the heterogeneities present in waste, and themore » lack of accurate in situ waste parameters like water content. Accordingly, ground penetrating radar (GPR) was evaluated as a tool for estimating in situ water content. Due to the large degree of subsurface heterogeneity and the electrically conductive clay cap covering landfills, both of which affect the transmission of the electromagnetic pulses, there is much scepticism concerning the use of GPR to quantify in situ water content within a municipal landfill. Two landfills were studied. The first landfill was used to develop the measurement protocols, while the second landfill provided a means of confirming these protocols. GPR measurements were initially completed using the surface GPR approach, but the lack of success led to the use of borehole (BH) GPR. Both zero offset profiling (ZOP) and multiple offset gathers (MOG) modes were tried, with the results indicating that BH GPR using the ZOP mode is the most simple and efficient method to measure in situ water content. The best results were obtained at a separation distance of 2 m, where higher the water content, smaller the effective separation distance. However, an increase in water content did appear to increase the accuracy of the GPR measurements. For the effective separation distance of 2 m at both landfills, the difference between GPR and lab measured water contents were reasonable at 33.9% for the drier landfill and 18.1% for the wetter landfill. Infiltration experiments also showed the potential to measure small increases in water content.« less
NASA Astrophysics Data System (ADS)
Langhammer, L.; Rabenstein, L.; Schmid, L.; Bauder, A.; Schaer, P.; Maurer, H.
2017-12-01
Glacier mass estimations are crucial for future run-off projections in the Swiss Alps. Traditionally, ice thickness modeling approaches and ground-based radar transects have been the tools of choice for estimating glacier volume in high mountain areas, but these methods either contain high uncertainties or are logistically expensive and offer mostly only sparse subsurface information. We have developed a helicopter-borne dual-polarization ground-penetrating radar (GPR) system, which enhances operational feasibility in rough, high-elevation terrain and increases the data output per acquisition campaign significantly. Our system employs a prototype pulseEKKO device with two broadside 25-MHz antenna pairs fixed to a helicopter-towed wooden frame. Additionally attached to the system are a laser altimeter for measuring the flight height above ground, three GPS receivers for accurate positioning and a GoPro camera for obtaining visual images of the surface. Previous investigations have shown the significant impact of the antenna dipole orientation on the detectability of the bedrock reflection. For optimal results, the dipoles of the GPR should be aligned parallel to the strike direction of the surrounding mountain walls. In areas with a generally unknown bedrock topography, such as saddle areas or diverging zones, a dual-polarization system is particularly useful. This could be demonstrated with helicopter-borne GPR profiles acquired on more than 25 glaciers in the Swiss Alps. We observed significant differences in ice-bedrock interface visibility depending on the orientation of the antennas.
Monostatic ultra-wideband GPR antenna for through wall detection
NASA Astrophysics Data System (ADS)
Ali, Jawad; Abdullah, Noorsaliza; Yahya, Roshayati; Naeem, Taimoor
2017-11-01
The aim of this paper is to present a monostatic arc-shaped ultra-wideband (UWB) printed monopole antenna system with 3-16 GHz frequency bandwidth suitable for through-wall detection. Ground penetrating radar (GPR) technique is used for detection with the gain of 6.2 dB achieved for the proposed antenna using defected ground structure (DGS) method. To serve the purpose, a simulation experiment of through-wall detection model is constructed which consists of a monostatic antenna act as transmitter and receiver, concrete wall and human skin model. The time domain reflection of obtained result is then analysed for target detection.
NASA Astrophysics Data System (ADS)
Sold, L.; Huss, M.; Eichler, A.; Schwikowski, M.; Hoelzle, M.
2014-08-01
The spatial representation of accumulation measurements is a major limitation for current glacier mass balance monitoring approaches. Here, we present a new method for estimating annual accumulation rates on a temperate alpine glacier based on the interpretation of internal reflection horizons (IRH) in helicopter-borne ground-penetrating radar (GPR) data. For each individual GPR measurement, the signal traveltime is combined with a simple model for firn densification and refreezing of meltwater. The model is calibrated at locations where GPR profiles intersect in two subsequent years and the densification can be tracked over time. Two 10.5 m long firn cores provide a reference for the density and chronology of firn layers. Thereby, IRH correspond to density maxima, but not exclusively to former summer glacier surfaces. From GPR profiles across the accumulation area, we obtain spatial distributions of water equivalent for at least four annual firn layers, reaching a mean density of 0.74 g cm-3. Refreezing accounts for 9% of the density increase over time and depth. The strongest limitation to our method is the dependence on layer chronology assumptions. The uncertainties inherent to the modelling approach itself are in the same order of conventional point measurements in snow pits. We show that GPR can be used to complement existing mass balance monitoring programs on temperate alpine glaciers, but also to retrospectively extend newly initiated time series.
Multi-offset GPR methods for hyporheic zone investigations
Brosten, T.R.; Bradford, J.H.; McNamara, J.P.; Gooseff, M.N.; Zarnetske, J.P.; Bowden, W.B.; Johnston, M.E.
2009-01-01
Porosity of stream sediments has a direct effect on hyporheic exchange patterns and rates. Improved estimates of porosity heterogeneity will yield enhanced simulation of hyporheic exchange processes. Ground-penetrating radar (GPR) velocity measurements are strongly controlled by water content thus accurate measures of GPR velocity in saturated sediments provides estimates of porosity beneath stream channels using petrophysical relationships. Imaging the substream system using surface based reflection measurements is particularly challenging due to large velocity gradients that occur at the transition from open water to saturated sediments. The continuous multi-offset method improves the quality of subsurface images through stacking and provides measurements of vertical and lateral velocity distributions. We applied the continuous multi-offset method to stream sites on the North Slope, Alaska and the Sawtooth Mountains near Boise, Idaho, USA. From the continuous multi-offset data, we measure velocity using reflection tomography then estimate water content and porosity using the Topp equation. These values provide detailed measurements for improved stream channel hydraulic and thermal modelling. ?? 2009 European Association of Geoscientists & Engineers.
NASA Astrophysics Data System (ADS)
Lynne, Bridget Y.; Heasler, Henry; Jaworowski, Cheryl; Smith, Gary J.; Smith, Isaac J.; Foley, Duncan
2018-04-01
In April 2015, Ground Penetrating Radar (GPR) was used to characterize the shallow subsurface (< 5 m depth) of the western sinter slope immediately adjacent to Old Faithful Geyser and near the north side of an inferred geyser cavity. A series of time-sequence images were collected between two eruptions of Old Faithful Geyser. Each set of time-sequence GPR recordings consisted of four transects aligned to provide coverage near the potential location of the inferred 15 m deep geyser chamber. However, the deepest penetration we could achieve with a 200 MHz GPR antennae was 5 m. Seven time-sequence events were collected over a 48-minute interval to image changes in the near-surface, during pre- and post-eruptive cycles. Time-sequence GPR images revealed a series of possible micro-fractures in a highly porous siliceous sinter in the near-surface that fill and drain repetitively, immediately after an eruption and during the recharge period prior to the next main eruptive event.
Identification of buried victims in natural disaster with GPR method
NASA Astrophysics Data System (ADS)
Dewi, Rianty Kusuma; Kurniawan, Adityo; Taqwantara, Reyhan Fariz; Iskandar, Farras M.; Naufal, Taufiq Ziyan; Widodo
2017-07-01
Indonesian is one of the most seismically active regions in the world and has very complicated plate convergence because there is meeting point of several tectonic plates. The complexity of tectonic features causes a lot of natural disasters such as landslides, tsunamis, earth quakes, volcanoes eruption, etc. Sometimes, the disasters occurs in high populated area and causing thousands to millions of victim been buried under the rumble. Unfortunately, the evacuation still uses the conventional method such using rescue dogs whereas the sensitivity of smell is decrease when the victims buried under the level of the ground. The purpose of this study is to detect buried bodies using GPR method, so it can enhance the effectiveness and the efficiency in looking for the disaster victims. GPR method is used because it can investigate things under the ground. A detailed GPR research has been done in Cikutra Graveyard, Bandung, with corpse buried two week until two years before the research. The radar profiles from this research showed amplitude contras anomaly between the new corpse and the old ones. We obtained the amplitude contras at 1.2-1.4 meters under the surface. This method proved to be effective but still need more attention on undulated surface and non-soil areas.
Improving ground-penetrating radar data in sedimentary rocks using deterministic deconvolution
Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.; Byrnes, A.P.
2003-01-01
Resolution is key to confidently identifying unique geologic features using ground-penetrating radar (GPR) data. Source wavelet "ringing" (related to bandwidth) in a GPR section limits resolution because of wavelet interference, and can smear reflections in time and/or space. The resultant potential for misinterpretation limits the usefulness of GPR. Deconvolution offers the ability to compress the source wavelet and improve temporal resolution. Unlike statistical deconvolution, deterministic deconvolution is mathematically simple and stable while providing the highest possible resolution because it uses the source wavelet unique to the specific radar equipment. Source wavelets generated in, transmitted through and acquired from air allow successful application of deterministic approaches to wavelet suppression. We demonstrate the validity of using a source wavelet acquired in air as the operator for deterministic deconvolution in a field application using "400-MHz" antennas at a quarry site characterized by interbedded carbonates with shale partings. We collected GPR data on a bench adjacent to cleanly exposed quarry faces in which we placed conductive rods to provide conclusive groundtruth for this approach to deconvolution. The best deconvolution results, which are confirmed by the conductive rods for the 400-MHz antenna tests, were observed for wavelets acquired when the transmitter and receiver were separated by 0.3 m. Applying deterministic deconvolution to GPR data collected in sedimentary strata at our study site resulted in an improvement in resolution (50%) and improved spatial location (0.10-0.15 m) of geologic features compared to the same data processed without deterministic deconvolution. The effectiveness of deterministic deconvolution for increased resolution and spatial accuracy of specific geologic features is further demonstrated by comparing results of deconvolved data with nondeconvolved data acquired along a 30-m transect immediately adjacent to a fresh quarry face. The results at this site support using deterministic deconvolution, which incorporates the GPR instrument's unique source wavelet, as a standard part of routine GPR data processing. ?? 2003 Elsevier B.V. All rights reserved.
Two-way WKB Approximation Applied to GPR - COST Action TU1208
NASA Astrophysics Data System (ADS)
Prokopovich, Igor; Popov, Alexei; Marciniak, Marian; Pajewski, Lara
2016-04-01
The main goal of subsurface radio wave probing consists in reconstruction of the shape and the electrical properties of buried objects in material media. For this purpose the knowledge of the laws of EM pulse excitation and propagation in non-uniform subsurface medium is required, as well as the methods and algorithms of solving the inverse problem. Two ways of treating this problem exist. On the one hand, one can describe EM wave propagation by solving the Maxwell's equations with finite difference methods implemented in computer codes. However, when solving inverse problems, pure numerical algorithms require huge amount of calculation and, as a consequence, long calculation time. In this respect, more promising are analytical approaches. Here, we apply couple wave theory ("two-way WKB" approximation) to the problem of subsurface wave propagation. The derived formulas can be used in GPR design and for fast data processing of the experimental data. We start from the 1D model problem of GPR probing. Classical WKB method [1] allows one to describe wave propagation through non-uniform media with slowly varying dielectric permittivity. A principal shortcoming of this approximation is that it does not take into account backward reflection from permittivity gradients. Consequently, WKB method as such can not be used for the purposes of GPR sounding. An extension of this approximation consists in solving two coupled WKB-type equations by iterations. This approach properly describes backward reflections and provides good accuracy in a wide frequency range [2]. In our previous work [3] a time-domain counterpart of the Bremmer-Brekhovkikh approximation has been derived and applied to a 1D inverse problem of subsurface medium probing by an ultra-wide band EM pulse. In order to convert this approach into a practical GPR algorithm, a more realistic model is required: 2D or 3D propagation from a localized source with the effects of wave divergence and refraction taken into account. In this work we study bistatic EM pulse probing of a horizontally layered medium in a 2D case. Coupled WKB equations set describing both forward and backward waves are derived and solved analytically. The comparison of our semi-analytical solutions with numerical calculations by gprMax software [4] demonstrates a good agreement, being hundreds of times faster than the letter. Our numerical results explain the protracted return pulses in the low-frequency GPR data. As an example, we discuss the experimental data obtained during the GPR mission in search of a big fragment of Chelyabinsk meteorite under a thick silt layer at the bottom of Chebarcul' Lake [5]. Acknowledgement The Authors are grateful to the European Cooperation in Science and Technology (www.cost.eu) facilitating this work by a Short-Term Scientific Missions (STSM) within the framework of the Action TU1208 "Civil engineering applications of Ground Penetrating Radar" (www.GPRadar.eu). References 1. H. Bremmer "Propagation of electromagnetic waves", in Handbuch der Physik, S. Flugge, Ed. Berlin-Goettingen-Heidelberg: Springer, 1958, pp. 423-639 2. L.M. Brekhovskikh, Waves in Stratified Media (in Russian). Moscow: USSR Academy of Sciences, 1957. 3. V.A.Vinogradov, V.V. Kopeikin, A.V. Popov, "An Approximate Solution of 1D Inverse Problem", in Proc. 10th Internat. Conf. on GPR, 21-24 June, 2004, Delft, The Netherlands 4. A. Giannopoulos, "Modelling ground penetrating radar by GprMax", Construction and Building Materials, vol. 19, no. 10, pp. 755-762, 2005, doi: 10.1016/j.conbuildmat.2005.06.007 5. V. V. Kopeikin , V. D. Kuznetsov, P. A. Morozov, A. V. Popov et al., "Ground penetrating radar investigation of the supposed fall site of a fragment of the Chelyabinsk meteorite in Lake Chebarkul'", Geochemistry International, vol. 51, no. 7, pp. 575-582, 2013, doi: 10.1134/S0016702913070112
NASA Astrophysics Data System (ADS)
Ren, Qianci
2018-04-01
Full waveform inversion (FWI) of ground penetrating radar (GPR) is a promising technique to quantitatively evaluate the permittivity and conductivity of near subsurface. However, these two parameters are simultaneously inverted in the GPR FWI, increasing the difficulty to obtain accurate inversion results for both parameters. In this study, I present a structural constrained GPR FWI procedure to jointly invert the two parameters, aiming to force a structural relationship between permittivity and conductivity in the process of model reconstruction. The structural constraint is enforced by a cross-gradient function. In this procedure, the permittivity and conductivity models are inverted alternately at each iteration and updated with hierarchical frequency components in the frequency domain. The joint inverse problem is solved by the truncated Newton method which considering the effect of Hessian operator and using the approximated solution of Newton equation to be the perturbation model in the updating process. The joint inversion procedure is tested by three synthetic examples. The results show that jointly inverting permittivity and conductivity in GPR FWI effectively increases the structural similarities between the two parameters, corrects the structures of parameter models, and significantly improves the accuracy of conductivity model, resulting in a better inversion result than the individual inversion.
Automated pavement analysis in Missouri using ground penetrating radar
DOT National Transportation Integrated Search
2003-02-01
Current geotechnical procedures for monitoring the condition of roadways are time consuming and can be disruptive to traffic, often requiring extensive invasive procedures (e.g., coring). Ground penetrating radar (GPR) technology offers a methodology...
NASA Astrophysics Data System (ADS)
Booth, Adam D.; Pringle, Jamie K.
2016-02-01
Ground penetrating radar (GPR) surveys have proven useful for locating clandestine graves in a number of forensic searches. There has been extensive research into the geophysical monitoring of simulated clandestine graves in different burial scenarios and ground conditions. Whilst these studies have been used to suggest optimum dominant radar frequencies, the data themselves have not been quantitatively analysed to-date. This study uses a common-offset configuration of semblance analysis, both to characterise velocity trends from GPR diffraction hyperbolae and, since the magnitude of a semblance response is proportional to signal-to-noise ratio, to quantify the strength of a forensic GPR response. 2D GPR profiles were acquired over a simulated clandestine burial, with a wrapped-pig cadaver monitored at three-month intervals between 2008 and 2013 with GPR antennas of three different centre-frequencies (110, 225 and 450 MHz). The GPR response to the cadaver was a strong diffraction hyperbola. Results show, in contrast to resistivity surveys, that semblance analysis have little sensitivity to changes attributable to decomposition, and only a subtle influence from seasonality: velocity increases (0.01-0.02 m/ns) were observed in summer, associated with a decrease (5-10%) in peak semblance magnitude, SM, and potentially in the reflectivity of the cadaver. The lowest-frequency antennas consistently gave the highest signal-to-noise ratio although the grave was nonetheless detectable by all frequencies trialled. These observations suggest that forensic GPR surveys could be undertaken with little seasonal hindrance. Whilst GPR analysis cannot currently provide a quantitative diagnostic proxy for time-since-burial, the consistency of responses suggests that graves will remain detectable beyond the five years shown here.
Characterisation and optimisation of Ground Penetrating Radar antennas
NASA Astrophysics Data System (ADS)
Warren, Craig; Giannopoulos, Antonios
2014-05-01
Research on the characterisation and optimisation of Ground Penetrating Radar (GPR) antennas will be presented as part of COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar". This work falls within the remit of Working Group 1 - "Novel GPR instrumentation" which focuses on the design of innovative GPR equipment for Civil Engineering (CE) applications, on the building of prototypes and on the testing and optimisation of new systems. The diversity of applications of GPR has meant there are a number of different GPR antenna designs available to the end-user as well as those being used in the research community. The type and size of a GPR antenna is usually dependent on the application, e.g. low frequency antennas, which are physically larger, are used where significant depth of penetration is important, whereas high frequency antennas, which are physically smaller, are used where less penetration and better resolution are required. Understanding how energy is transmitted and received by a particular GPR antenna has many benefits: it could lead to more informed usage of the antenna in GPR surveys; improvements in antenna design; and better interpretation of GPR signal returns from the ground/structure. The radiation characteristics of a particular antenna are usually investigated by studying the radiation patterns and directivity. For GPR antennas it is also important to study these characteristics when the antenna is in different environments that would typically be encountered in GPR surveys. In this work Finite-Difference Time-Domain (FDTD) numerical models of GPR antennas have been developed. These antenna models replicate all the detailed geometry and main components of the real antennas. The models are representative of typical high-frequency, high-resolution GPR antennas primarily used in CE for the evaluation of structural features in concrete: the location of rebar, conduits, and post-tensioned cables, as well as the estimation of material thickness on bridge decks and pavements. Radiation patterns obtained using the antenna models as well as physical measurements have been used to investigate the radiation characteristics of high-frequency GPR antennas. Studies were conducted with homogeneous materials of different dielectric constants (Er=3, 10, 30, & 72) and at a range of observation distances. The first objective was to compare, using the FDTD antenna model, 'traditional' transmitted field patterns with field patterns obtained using responses from a target spaced at regular intervals around the circumference of a circle, i.e. received energy. Our initial results show, for the same dielectric and observation distance, E- and H-field patterns obtained using the received energy approach have a significantly narrower main lobe than the traditional transmitted patterns. This raises the question of which approach is more beneficial for the characterisation of GPR antennas, and hence better interpretation of GPR responses. The second objective was to compare modelled field patterns with measured patterns obtained from a commercial high-frequency GPR antenna using the received energy approach. The measurements were made in different oil-in-water emulsions which were used to simulate materials with different permittivities and conductivities. Initial comparisons of the measured and modelled data show a very good correlation, which validates use of the antenna model for further studies.
NASA Astrophysics Data System (ADS)
Tanajewski, Dariusz; Bakuła, Mieczysław
2016-08-01
This paper analyses the possibility of using integrated GPS (Global Positioning System) surveys and ground penetrating radar surveys to precisely locate damages to levees, particularly due to the activity of small fossorial mammals. The technology of intercommunication between ground penetrating radar (GPR) and an RTK (Real-Time Kinematic) survey unit, and the method of data combination, are presented. The errors which may appear during the survey work are also characterized. The procedure for processing the data so that the final results have a spatial character and are ready to be implemented in digital maps and geographic information systems (GIS) is also described.
Using ground-penetrating radar and sidescan sonar to compare lake bottom geology in New England
NASA Astrophysics Data System (ADS)
Nesbitt, I. M.; Campbell, S. W.; Arcone, S. A.; Smith, S. M.
2017-12-01
Post-Laurentide Ice Sheet erosion and re-deposition has had a significant influence on the geomorphology of New England. Anthropogenic activities such as forestry, farming, and construction of infrastructure such as dams and associated lake reservoirs, has further contributed to near surface changes. Unfortunately, these surface dynamics are difficult to constrain, both in space and time. One analog that can be used to estimate erosion and deposition, lake basin sedimentation, is typically derived from lake bottom sediment core samples. Reliance on core records assumes that derived sedimentation rates are representative of the broader watershed, despite being only a single point measurement. Geophysical surveys suggest that this assumption can be highly erroneous and unrepresentative of an entire lake basin. Herein, we conducted ground-penetrating radar (GPR) and side-scan sonar (SSS) surveys of multiple lakes in Maine, New Hampshire, and Vermont which are representative of different basin types to estimate sedimentation rates since Laurentide retreat. Subsequent age constraints from cores on multiple GPR-imaged horizons could be used to refine estimates of sedimentation rate change caused by evolving physical, biological, and chemical processes that control erosion, transport, and re-deposition. This presentation will provide a summary of GPR and SSS data collection methods, assumptions and limitations, structural and surficial interpretations, and key findings from multiple lake basins in New England. Results show that GPR and SSS are efficient, cost effective, and relatively accurate tools for helping to constrain lake erosion and deposition processes.
NASA Astrophysics Data System (ADS)
McClellan, M. D.; Comas, X.; Wright, W. J.; Mount, G. J.
2014-12-01
Peat soils store a large fraction of the global carbon (C) in soil. It is estimated that 95% of carbon in peatlands is stored in the peat soil, while less than 5% occurs in the vegetation. The majority of studies related to C stocks in peatlands have taken place in northern latitudes leaving the tropical and subtropical latitudes clearly understudied. In this study we use a combination of indirect non-invasive geophysical methods (mainly ground penetrating radar, GPR) as well as direct measurements (direct coring) to calculate total C stocks within subtropical depressional wetlands in the Disney Wilderness Preserve (DWP, Orlando, FL). A set of three-dimensional (3D) GPR surveys were used to detect variability of the peat layer thickness and the underlying peat-sand mix layer across several depressional wetlands. Direct samples collected at selected locations were used to confirm depth of each interface and to estimate C content in the laboratory. Layer thickness estimated from GPR and direct C content were used to estimate total peat volume and C content for the entire depressional wetland. Through the use of aerial photos a relationship between surface area along the depressional wetlands and total peat thickness (and thus C content) was established for the depressions surveyed and applied throughout the entire preserve. This work shows the importance of depressional wetlands as critical contributors of the C budget at the DWP.
NASA Astrophysics Data System (ADS)
Ferrara, C.; Barone, P. M.; Pajewski, L.; Pettinelli, E.; Rossi, G.
2012-04-01
The traditional excavation tools applied to Archaeology (i.e. trowels, shovels, bulldozers, etc.) produce, generally, a fast and invasive reconstruction of the ancient past. The geophysical instruments, instead, seem to go in the opposite direction giving, rapidly and non-destructively, geo-archaeological information. Moreover, the economic aspect should not be underestimated: where the former invest a lot of money in order to carry out an excavation or restoration, the latter spend much less to manage a geophysical survey, locating precisely the targets. Survey information gathered using non-invasive methods contributes to the creation of site strategies, conservation, preservation and, if necessary, accurate location of excavation and restoration units, without destructive testing methods, also in well-known archaeological sites [1]-[3]. In particular, Ground Penetrating Radar (GPR) has, recently, become the most important physical technique in archaeological investigations, allowing the detection of targets with both very high vertical and horizontal resolution, and has been successfully applied both to archaeological and diagnostic purposes in historical and monumental sites [4]. GPR configuration, antenna frequency and survey modality can be different, depending on the scope of the measurements, the nature of the site or the type of targets. Two-dimensional (2D) time/depth slices and radargrams should be generated and integrated with information obtained from other buried or similar artifacts to provide age, structure and context of the surveyed sites. In the present work, we present three case-histories on well-known Roman archaeological sites in Rome, in which GPR technique has been successfully used. To obtain 2D maps of the explored area, a bistatic GPR (250MHz and 500MHz antennas) was applied, acquiring data along several parallel profiles. The GPR results reveal the presence of similar circular anomalies in all the investigated archaeological sites. In particular, in the Domus Aurea, in the Domitian Stadium, and in the San Cesario in Palatio church, the processing of the GPR data highlights not only the presence of Roman circular bases/insoles of pillars not yet brought to the light, but also their structural disposition and geometry. These three examples show that GPR technique is a valid support which, in exhaustive way, can underline the unexpected presence of ancient structures beneath the soil, also in well-known archaeological sites.
Evaluation of landslide hazards with ground-penetrating radar, Lake Michigan coast
Barnhardt, Walter A.; Jaffe, Bruce E.; Kayen, Robert
1999-01-01
Ground-penetrating radar (GPR) and boreholes were used to investigate a landslide-prone bluff at Sleeping Bear Dunes National Lakeshore on the northeastern coast of Lake Michigan. Based on borehole observations, sediment underlying the area is homogeneous, consisting of well-sorted, medium to coarse sand. GPR penetrated up to 20 m deep in these sediments, revealing the late Quaternary stratigraphy in great detail. We define four units, or radar facies, based on criteria similar to those used in seismic stratigraphy. Directly beneath a landslide at Sleeping Bear Point (and nowhere else in this survey) is a deeply incised, channel-fill deposit that intersects the shoreline at a high angle. The buried channel is at least 10 m deep and 400 m wide, and it might be a subglacially carved feature of Pleistocene age. A prominent, planar unconformity marks the upper surface of the channel deposit, which is overlain by stratified beach and dune material. Several crosshole GPR surveys were performed in the vicinity of the landslide: 1) a constant offset profile (COP), 2) a multiple offset gather (MOG), and 3) a vertical radar profile (VRP). Tomographic analysis of these data determined the velocity structure of sandy sediment that underlie the failed bluff. Because GPR velocity is dependent on electrical properties, we use it as a proxy for geotechnical properties of the soils. Our working hypothesis is that the hidden channel may act as a conduit for pore water flow between upland regions and Lake Michigan, and thereby locally reduce soil strength and promote slope failure.
NASA Astrophysics Data System (ADS)
Pinar, Anthony; Havens, Timothy C.; Rice, Joseph; Masarik, Matthew; Burns, Joseph; Thelen, Brian
2016-05-01
Explosive hazards are a deadly threat in modern conflicts; hence, detecting them before they cause injury or death is of paramount importance. One method of buried explosive hazard discovery relies on data collected from ground penetrating radar (GPR) sensors. Threat detection with downward looking GPR is challenging due to large returns from non-target objects and clutter. This leads to a large number of false alarms (FAs), and since the responses of clutter and targets can form very similar signatures, classifier design is not trivial. One approach to combat these issues uses robust principal component analysis (RPCA) to enhance target signatures while suppressing clutter and background responses, though there are many versions of RPCA. This work applies some of these RPCA techniques to GPR sensor data and evaluates their merit using the peak signal-to-clutter ratio (SCR) of the RPCA-processed B-scans. Experimental results on government furnished data show that while some of the RPCA methods yield similar results, there are indeed some methods that outperform others. Furthermore, we show that the computation time required by the different RPCA methods varies widely, and the selection of tuning parameters in the RPCA algorithms has a major effect on the peak SCR.
NASA Astrophysics Data System (ADS)
Bowling, R. D.; Laya, J. C.; Everett, M. E.
2018-07-01
The study of exposed carbonate platforms provides observational constraints on regional tectonics and sea-level history. In this work Miocene-aged carbonate platform units of the Seroe Domi Formation are investigated on the island of Bonaire, located in the Southern Caribbean. Ground penetrating radar (GPR) was used to probe near-surface structural geometries associated with these lithologies. The single cross-island transect described herein allowed for continuous mapping of geologic structures on kilometre length scales. Numerical analysis was applied to the data in the form of k-means clustering of structure-parallel vectors derived from image structure tensors. This methodology enables radar facies along the survey transect to be semi-automatically mapped. The results provide subsurface evidence to support previous surficial and outcrop observations, and reveal complex stratigraphy within the platform. From the GPR data analysis, progradational clinoform geometries were observed on the northeast side of the island which support the tectonics and depositional trends of the region. Furthermore, several leeward-side radar facies are identified which correlate to environments of deposition conducive to dolomitization via reflux mechanisms.
NASA Astrophysics Data System (ADS)
Bowling, R. D.; Laya, J. C.; Everett, M. E.
2018-05-01
The study of exposed carbonate platforms provides observational constraints on regional tectonics and sea-level history. In this work Miocene-aged carbonate platform units of the Seroe Domi Formation are investigated, on the island of Bonaire, located in the Southern Caribbean. Ground penetrating radar (GPR) was used to probe near-surface structural geometries associated with these lithologies. The single cross-island transect described herein allowed for continuous mapping of geologic structures on kilometer length scales. Numerical analysis was applied to the data in the form of k-means clustering of structure-parallel vectors derived from image structure tensors. This methodology enables radar facies along the survey transect to be semi-automatically mapped. The results provide subsurface evidence to support previous surficial and outcrop observations, and reveal complex stratigraphy within the platform. From the GPR data analysis, progradational clinoform geometries were observed on the northeast side of the island which supports the tectonics and depositional trends of the region. Furthermore, several leeward-side radar facies are identified which correlate to environments of deposition conducive to dolomitization via reflux mechanisms.
Ground penetrating radar evaluation of new pavement density.
DOT National Transportation Integrated Search
2015-02-01
The objective of this project was to map pavement surface density variations using dielectric : measurements from ground penetrating radar (GPR). The work was carried out as part of an : Asphalt Intelligent Compaction demonstration project on SR 539 ...
NASA Astrophysics Data System (ADS)
Shaaban, Fathy A.; Abbas, Abbas M.; Atya, Magdy A.; Hafez, Mahfouz A.
2009-06-01
A Valley of Mummies was discovered recently by an Egyptian team at Bahariya Oasis, located about 380 km west of the pyramids. Four tombs were excavated, and inside them were found one hundred and five mummies (105), many of them beautifully gilded. These mummies, many sumptuously decorated with religious scenes, are the very best Roman-Period mummies ever found in Egypt. These remains are around 2000 years old, but they are in remarkable condition. A Ground-Penetrating Radar (GPR) had proved successful in detecting the cavities in resistive soil in which the mummies were found. The GPR survey conducted near the earlier-discovered tombs at Kilo-6 El-Bahariya to Farafra Oasis road is the focus of this paper. The GPR survey was conducted using the SIR-2000 attached to a 200 MHz monostatic antenna. The two areas to be surveyed were selected by the archaeologists in situ. Area one was 40 m × 40 m and Area two was 30 m × 15 m. A grid pattern survey in one direction; with one-meter profile spacing was done to both areas. In addition, a focusing survey was undertaken over the entire Area one. In addition, twenty long GPR profiles were conducted in an attempt to determine the outer, expected limits of the burial area. After the data acquisition, Reflex software was used for data processing and presentation. The final results of the radar survey: in the form of 2D radar records, time slices and 3D block diagrams; were used to guide the archaeologists during the excavation process. The excavation processes have been completed by the archaeologists, and many tombs and mummies were discovered. It is worthy to mention that, the excavations and location of tombs and cavities matched strongly with the GPR results.
NASA Astrophysics Data System (ADS)
Volkomirskaya, L. B.; Gulevich, O. A.; Reznikov, A. E.
2017-03-01
The dielectric permittivity of fiery spoil tips (Shakhty town, Rostov Region) is studied with the use of a GROT 12E remote-controlled ground-penetrating radar (GPR). An anomalous zone in a combustion source is shown to be clearly pronounced in GPR data due to the temperature dependence of the dielectric permittivity of these spoil tips. To substantiate this statement, the GPR data are compared with direct measurements of soil temperatures at depths from 1.5 to 2.5 m. The experimental results are compared with the variable spectral range of a GPR sounding pulse. GPR is shown to be a promising tool for the mapping of temperature-contrast underground objects.
Synthetic range profiling in ground penetrating radar
NASA Astrophysics Data System (ADS)
Kaczmarek, Pawel; Lapiński, Marian; Silko, Dariusz
2009-06-01
The paper describes stepped frequency continuous wave (SFCW) ground penetrating radar (GPR), where signal's frequency is discretely increased in N linear steps, each separated by a fixed ▵f increment from the previous one. SFCW radar determines distance from phase shift in a reflected signal, by constructing synthetic range profile in spatial time domain using the IFFT. Each quadrature sample is termed a range bin, as it represents the signal from a range window of length cτ/2, where τ is duration of single frequency segment. IFFT of those data samples resolves the range bin in into fine range bins of c/2N▵f width, thus creating the synthetic range profile in a GPR - a time domain approximation of the frequency response of a combination of the medium through which electromagnetic waves propagates (soil) and any targets or dielectric interfaces (water, air, other types of soil) present in the beam width of the radar. In the paper, certain practical measurements done by a monostatic SFCW GPR were presented. Due to complex nature of signal source, E5062A VNA made by Agilent was used as a signal generator, allowing number of frequency steps N to go as high as 1601, with generated frequency ranging from 300kHz to 3 GHz.
Comparing the GPR responses of real experiment and simulation of cavity
NASA Astrophysics Data System (ADS)
Yu, H.; Nam, M. J.; Kim, C.; Lee, D. K.
2017-12-01
Seoul, capital city of South Korea, has been suffering from ground subsidence mainly caused by cavities beneath the road. Urban subsidence usually brings serious social problems such as damages of human life, properties and so on. To prevent ground subsidence, Korea government embark much money in developing techniques to detect cavities in advance. Ground penetrating radar (GPR) is known as the most effective method among geophysical surveys in exploring underground cavitied but shallow ones only. For the study of GPR responses for underground cavities, real scale physical models have been made and GPR surveys are conducted. In simulating cavities with various sizes at various depths, spheres of polystyrene have been used since the electric permittivity of polystyrene has a similar value to that of the air. However, the real scale experiments only used simple shapes of cavities due to its expensive construction cost and further changing in shapes of cavities is limited once they are built. For not only comparison between field responses for the physical model and numerical responses but also for analyzing GPR responses for more various cavity shapes in numerous environments, we conducted numerical simulation of GPR responses using three-dimensional (3D) finite difference time domain (FDTD) GPR modeling algorithm employing staggered grid. We first construct numerical modeling for models similar to the physical models to confirm considering radiation pattern in numerical modeling of GPR responses which is critical to generate similar responses to field GPR data. Further, GPR responses computed for various shapes of cavities in several different environments determine not only additional construction of the physical cavities but also analyze the characteristics of GPR responses.
NASA Astrophysics Data System (ADS)
Doolittle, J.; Lin, H.; Jenkinson, B.; Zhou, X.
2006-05-01
The USDA-NRCS and its cooperators use ground-penetrating radar (GPR) and electromagnetic induction (EMI) as rapid, noninvasive tools to support soil surveys at different scales and levels of resolution. The effective use of GPR is site-specific and generally restricted to soils having low electrical conductivity (e.g., soils with low clay and soluble salt contents). In suitable soils, GPR provides high resolution data, which are used to estimate depths to soil horizons and geologic layers that restrict, redirect, and/or concentrate the flow of water through landscapes. In areas of coarse-textured soils, GPR has been used to map spatiotemporal variations in water-table depths and local ground-water flow patterns. Compared with GPR, EMI can be effectively used across a broader spectrum of soils and spatial scales, but provides lower resolution of subsurface features. EMI is used to refine and improve soil maps prepared with traditional soil survey methods. Differences in apparent conductivity (ECa) are associated with different soils and soil properties (e.g., clay, moisture and soluble salt contents). Apparent conductivity maps provide an additional layer of information, which directs soil sampling, aids the identification and delineation of some soil polygons, and enhances the quality of soil maps. More recently, these tools were used to characterize the hydropedological character of a small, steeply sloping, forested watershed. Within the watershed, EMI was used to characterize the principal soil-landscape components, and GPR was used to provide high resolution data on soil depth and layering within colluvial deposits located in swales and depressional areas.
SPRUCE S1 Bog Peat Depth Determined by Push Probe and GPR: 2009-2010
Slater, L. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hook, L. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2012-01-01
This data set reports the thickness of peat for the S1 Bog measured directly with manual push probes on September 21 and 22, 2009, and measured by ground penetrating radar (GPR) across transects from January 26 to February 2, 2010 and June 2 to June 9, 2010. Also included are interpolated values of peat depth from both probe and GPR data for the S1 Bog at 1 meter square horizontal resolution.
GP Workbench Manual: Technical Manual, User's Guide, and Software Guide
Oden, Charles P.; Moulton, Craig W.
2006-01-01
GP Workbench is an open-source general-purpose geophysical data processing software package written primarily for ground penetrating radar (GPR) data. It also includes support for several USGS prototype electromagnetic instruments such as the VETEM and ALLTEM. The two main programs in the package are GP Workbench and GP Wave Utilities. GP Workbench has routines for filtering, gridding, and migrating GPR data; as well as an inversion routine for characterizing UXO (unexploded ordinance) using ALLTEM data. GP Workbench provides two-dimensional (section view) and three-dimensional (plan view or time slice view) processing for GPR data. GP Workbench can produce high-quality graphics for reports when Surfer 8 or higher (Golden Software) is installed. GP Wave Utilities provides a wide range of processing algorithms for single waveforms, such as filtering, correlation, deconvolution, and calculating GPR waveforms. GP Wave Utilities is used primarily for calibrating radar systems and processing individual traces. Both programs also contain research features related to the calibration of GPR systems and calculating subsurface waveforms. The software is written to run on the Windows operating systems. GP Workbench can import GPR data file formats used by major commercial instrument manufacturers including Sensors and Software, GSSI, and Mala. The GP Workbench native file format is SU (Seismic Unix), and subsequently, files generated by GP Workbench can be read by Seismic Unix as well as many other data processing packages.
Forward-Looking IED Detector Ground Penetrating Radar
NASA Technical Reports Server (NTRS)
Kim, Soon Sam; Carnes, Steven R.; Ulmer, Christopher T.
2013-01-01
There have been many developments of mine or metal detectors based on ground penetrating radar techniques, usually in hand-held or rover-mounted devices. In most mine or metal detector applications, conditions are in a stationary mode and detection speed is not an important factor. A novel, forward-looking, stepped-frequency ground penetrating radar (GPR) has been developed with a capability to detect improvised explosive devices (IEDs) at vehicular speeds of 15 to 20 mph (24 to 32 km/h), 10 to 20 m ahead of the vehicle, to ensure adequate time for response. The GPR system employs two horn antennas (1.7 to 2.6 GHz, 20 dBi) as transmit and receive. The detector system features a user-friendly instantaneous display on a laptop PC and is a low-power-consumption (3 W) compact system with minimal impact on vehicle operations. In practice, the whole GPR system and a laptop PC can be powered by plugging into a cigarette lighter of a vehicle. The stepped-frequency continuous-wave (CW) radar scans frequency from 1.7 to 2.6 GHz in 1,000 steps of 0.9 MHz, with the full frequency scan in 60 ms. The GPR uses a bi-static configuration with one horn antenna used as a transmitter and the other used as a receiver so that isolation between transmitter and receiver is improved. Since the horn antennas (20 dBi) are mounted on the roof of a vehicle at a shallow inclination angle (15 to 25 with respect to horizontal), there is a first-order reduction in ground reflection so that a significant amount of the total reflected power received by the GPR comes from the scattering of RF energy off of buried objects. The stepped-frequency technique works by transmitting a tone at a particular frequency, while the received signal is mixed with the transmitted tone. As a result, the output of the mixer produces a signal that indicates the strength of the received signal and the extent to which it is in phase or out of phase with the transmitted tone. By taking measurements of the phase relationship between the transmitted and received signals over a wide frequency range, an interference pattern is produced showing all target reflections. When a Fourier transform is performed on this pattern, the result is a time-domain representation of targets. Among the advantages of this technique over impulse radar is the ability to transmit and receive much more total energy, and to use non-damped, highly focused horn antennas. The novelty of the IED detector GPR has been achieved by miniaturization of GPR electronics (single electronics board, 10x5x2 cm), low power consumption (3 W), faster signal processing capability, and minimal impact on vehicle operations.
NASA Astrophysics Data System (ADS)
Salucci, Marco; Tenuti, Lorenza; Nardin, Cristina; Oliveri, Giacomo; Viani, Federico; Rocca, Paolo; Massa, Andrea
2014-05-01
The application of non-destructive testing and evaluation (NDT/NDE) methodologies in civil engineering has raised a growing interest during the last years because of its potential impact in several different scenarios. As a consequence, Ground Penetrating Radar (GPR) technologies have been widely adopted as an instrument for the inspection of the structural stability of buildings and for the detection of cracks and voids. In this framework, the development and validation of GPR algorithms and methodologies represents one of the most active research areas within the ELEDIA Research Center of the University of Trento. More in detail, great efforts have been devoted towards the development of inversion techniques based on the integration of deterministic and stochastic search algorithms with multi-focusing strategies. These approaches proved to be effective in mitigating the effects of both nonlinearity and ill-posedness of microwave imaging problems, which represent the well-known issues arising in GPR inverse scattering formulations. More in detail, a regularized multi-resolution approach based on the Inexact Newton Method (INM) has been recently applied to subsurface prospecting, showing a remarkable advantage over a single-resolution implementation [1]. Moreover, the use of multi-frequency or frequency-hopping strategies to exploit the information coming from GPR data collected in time domain and transformed into its frequency components has been proposed as well. In this framework, the effectiveness of the multi-resolution multi-frequency techniques has been proven on synthetic data generated with numerical models such as GprMax [2]. The application of inversion algorithms based on Bayesian Compressive Sampling (BCS) [3][4] to GPR is currently under investigation, as well, in order to exploit their capability to provide satisfactory reconstructions in presence of single and multiple sparse scatterers [3][4]. Furthermore, multi-scaling approaches exploiting level-set-based optimization have been developed for the qualitative reconstruction of multiple and disconnected homogeneous scatterers [5]. Finally, the real-time detection and classification of subsurface scatterers has been investigated by means of learning-by-examples (LBE) techniques, such as Support Vector Machines (SVM) [6]. Acknowledgment - This work was partially supported by COST Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' References [1] M. Salucci, D. Sartori, N. Anselmi, A. Randazzo, G. Oliveri, and A. Massa, 'Imaging Buried Objects within the Second-Order Born Approximation through a Multiresolution Regularized Inexact-Newton Method', 2013 International Symposium on Electromagnetic Theory (EMTS), (Hiroshima, Japan), May 20-24 2013 (invited). [2] A. Giannopoulos, 'Modelling ground penetrating radar by GprMax', Construct. Build. Mater., vol. 19, no. 10, pp.755 -762 2005 [3] L. Poli, G. Oliveri, P. Rocca, and A. Massa, "Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illumination," IEEE Trans. Geosci. Remote Sensing, vol. 51, no. 5, pp. 2920-2936, May. 2013. [4] L. Poli, G. Oliveri, and A. Massa, "Imaging sparse metallic cylinders through a Local Shape Function Bayesian Compressive Sensing approach," Journal of Optical Society of America A, vol. 30, no. 6, pp. 1261-1272, 2013. [5] M. Benedetti, D. Lesselier, M. Lambert, and A. Massa, "Multiple shapes reconstruction by means of multi-region level sets," IEEE Trans. Geosci. Remote Sensing, vol. 48, no. 5, pp. 2330-2342, May 2010. [6] L. Lizzi, F. Viani, P. Rocca, G. Oliveri, M. Benedetti and A. Massa, "Three-dimensional real-time localization of subsurface objects - From theory to experimental validation," 2009 IEEE International Geoscience and Remote Sensing Symposium, vol. 2, pp. II-121-II-124, 12-17 July 2009.
3D Monitoring under the Keciova Mosque (Casbah-Algier, Algeria) with Ground Penetrating Radar Method
NASA Astrophysics Data System (ADS)
Kadioglu, Selma; Kagan Kadioglu, Yusuf; Deniz, Kiymet; Akin Akyol, Ali
2014-05-01
Keciova (Ketchaoua) Mosque, in Casbah-Algiers, the capital of Algeria, is a UNESCO World Heritage Site. Keciova Mosque was originally built in 1612 by the Ottoman Empire. A RAMAC CU II GPR system and a 250 MHz shielded antenna have been employed inside of the Mosque including the Cathedral and inside of the burial chambers under the Cathedral Site on parallel profiles spaced approximately 0.30 m apart to measure data. After applying standard two-dimensional (2D) and three dimensional (3D) imaging techniques, transparent 3D imaging techniques have been used to photograph the foundational infrastructures, buried remains and safety problems of the Mosque. The results showed that we obtained 3D GPR visualization until 12.0 m in depth. Firstly we imaged the base floor including corridors. Then we monitored buried remains under the first ground level between 5.0-7.0 m in depths. Finally we indicated 3D GPR photographs a spectacular protected buried old mosque structures under the second ground level between 9.0-12.0 m in depths. This project has been supported by Republic of Turkey Prime Ministry Turkish Cooperation and Coordination Agency (TIKA). This study is a contribution to the EU funded COST action TU1208, "Civil Engineering Applications of Ground penetrating Radar".
High resolution aquifer characterization using crosshole GPR full-waveform tomography
NASA Astrophysics Data System (ADS)
Gueting, N.; Vienken, T.; Klotzsche, A.; Van Der Kruk, J.; Vanderborght, J.; Caers, J.; Vereecken, H.; Englert, A.
2016-12-01
Limited knowledge about the spatial distribution of aquifer properties typically constrains our ability to predict subsurface flow and transport. Here, we investigate the value of using high resolution full-waveform inversion of cross-borehole ground penetrating radar (GPR) data for aquifer characterization. By stitching together GPR tomograms from multiple adjacent crosshole planes, we are able to image, with a decimeter scale resolution, the dielectric permittivity and electrical conductivity of an alluvial aquifer along cross-sections of 50 m length and 10 m depth. A logistic regression model is employed to predict the spatial distribution of lithological facies on the basis of the GPR results. Vertical profiles of porosity and hydraulic conductivity from direct-push, flowmeter and grain size data suggest that the GPR predicted facies classification is meaningful with regard to porosity and hydraulic conductivity, even though the distributions of individual facies show some overlap and the absolute hydraulic conductivities from the different methods (direct-push, flowmeter, grain size) differ up to approximately one order of magnitude. Comparison of the GPR predicted facies architecture with tracer test data suggests that the plume splitting observed in a tracer experiment was caused by a hydraulically low-conductive sand layer with a thickness of only a few decimeters. Because this sand layer is identified by GPR full-waveform inversion but not by conventional GPR ray-based inversion we conclude that the improvement in spatial resolution due to full-waveform inversion is crucial to detect small-scale aquifer structures that are highly relevant for solute transport.
Vision-Based Georeferencing of GPR in Urban Areas
Barzaghi, Riccardo; Cazzaniga, Noemi Emanuela; Pagliari, Diana; Pinto, Livio
2016-01-01
Ground Penetrating Radar (GPR) surveying is widely used to gather accurate knowledge about the geometry and position of underground utilities. The sensor arrays need to be coupled to an accurate positioning system, like a geodetic-grade Global Navigation Satellite System (GNSS) device. However, in urban areas this approach is not always feasible because GNSS accuracy can be substantially degraded due to the presence of buildings, trees, tunnels, etc. In this work, a photogrammetric (vision-based) method for GPR georeferencing is presented. The method can be summarized in three main steps: tie point extraction from the images acquired during the survey, computation of approximate camera extrinsic parameters and finally a refinement of the parameter estimation using a rigorous implementation of the collinearity equations. A test under operational conditions is described, where accuracy of a few centimeters has been achieved. The results demonstrate that the solution was robust enough for recovering vehicle trajectories even in critical situations, such as poorly textured framed surfaces, short baselines, and low intersection angles. PMID:26805842
GPR Investigations in the Port of Erythrai (İzmir) Archaeological Site
NASA Astrophysics Data System (ADS)
Timur, Emre; Sarı, Coşkun; Erhan, Zülfikar; Gül Akalın Orbay, Ayşe
2016-04-01
Archaeology and the cultural heritage field can greatly benefit from reliable and non-destructive geophysical methods to map areas and structures present in the subsoil without the need for excavation. The GPR method provides coherent and interpretable images of the subsurface structures due to good signal penetration. Erythrai archaeological site is located in Çeşme district of city of İzmir (Turkey). The site has been excavated since 1960's and a great demand appeared nowadays for exploring unexcavated parts, according to improving touristic potential. Ground Penetrating Radar (GPR) measurements were carried out at the ancient port of the site. Study area was splitted into 4 parts and data were collected along 130 profiles with a profile interval of 1 m and varying lengths between 20 and 30 m. Data were interpreted and presented as 2-D vertical radargrams, horizontal time slices and 3-D models. As a result, possible ruins of shipment or fisherman shelters were determined and excavation areas were recommended.
Analyses of GPR signals for characterization of ground conditions in urban areas
NASA Astrophysics Data System (ADS)
Hong, Won-Taek; Kang, Seonghun; Lee, Sung Jin; Lee, Jong-Sub
2018-05-01
Ground penetrating radar (GPR) is applied for the characterization of the ground conditions in urban areas. In addition, time domain reflectometry (TDR) and dynamic cone penetrometer (DCP) tests are conducted for the accurate analyses of the GPR images. The GPR images are acquired near a ground excavation site, where a ground subsidence occurred and was repaired. Moreover, the relative permittivity and dynamic cone penetration index (DCPI) are profiled through the TDR and DCP tests, respectively. As the ground in the urban area is kept under a low-moisture condition, the relative permittivity, which is inversely related to the electromagnetic impedance, is mainly affected by the dry density and is inversely proportional to the DCPI value. Because the first strong signal in the GPR image is shifted 180° from the emitted signal, the polarity of the electromagnetic wave reflected at the dense layer, where the reflection coefficient is negative, is identical to that of the first strong signal. The temporal-scaled GPR images can be accurately converted into the spatial-scaled GPR images using the relative permittivity determined by the TDR test. The distribution of the loose layer can be accurately estimated by using the spatial-scaled GPR images and reflection characteristics of the electromagnetic wave. Note that the loose layer distribution estimated in this study matches well with the DCPI profile and is visually verified from the endoscopic images. This study demonstrates that the GPR survey complemented by the TDR and DCP tests, may be an effective method for the characterization of ground conditions in an urban area.
NASA Astrophysics Data System (ADS)
Slater, Lee; Niemi, Tina M.
2003-06-01
Ground-penetrating radar (GPR) was used in an effort to locate a major active fault that traverses Aqaba City, Jordan. Measurements over an exposed (trenched) cross fault outside of the city identify a radar signature consisting of linear events and horizontal offset/flexured reflectors both showing a geometric correlation with two known faults at a control site. The asymmetric linear events are consistent with dipping planar reflectors matching the known direction of dip of the faults. However, other observations regarding this radar signature render the mechanism generating these events more complex and uncertain. GPR measurements in Aqaba City were limited to vacant lots. Seven GPR profiles were conducted approximately perpendicular to the assumed strike of the fault zone, based on regional geological evidence. A radar response very similar to that obtained over the cross fault was observed on five of the profiles in Aqaba City, although the response is weaker than that obtained at the control site. The positions of the identified responses form a near straight line with a strike of 45°. Although subsurface verification of the fault by trenching within the city is needed, the geophysical evidence for fault zone location is strong. The location of the interpreted fault zone relative to emergency services, military bases, commercial properties, and residential areas is defined to within a few meters. This study has significant implications for seismic hazard analysis in this tectonically active and heavily populated region.
NASA Astrophysics Data System (ADS)
Scullion, T.; Saarenketo, T.
2002-07-01
This report will present several case studies describing the use of ground penetrating radar (GPR) technology for site investigations. Two types of GPR will be described-the air-launched and ground-coupled systems. The use of air-launched radar is well established within the Texas Department of Transportation (TxDOT). The limitation of this technology is its depth of penetration. While providing very useful information on the surface and base layers, it provides little information on the sub-grade soils. The use of low-frequency ground-coupled radar systems will provide little useful near-surface information but it can provide data on sub-grade properties and how they vary along a project. Combining both radar types can potentially provide a comprehensive subsurface investigative tool for both new pavement construction and for major pavement rehabilitation projects. In this report a brief description will be provided of the different systems together with the software used to process the GPR signals. Air-launched data are processed with the COLORMAP system developed by the Texas Transportation Institute. The ground-coupled data are processed using the Road Doctor system developed by Roadscanners, Inc. of Finland. The case studies presented were collected on actual TxDOT evaluation projects mainly in the Bryan District. They range from near-surface applications where the goal was to identify changes in pavement structure which were not available in construction records to identifying the areas beneath the pavement subsidence associated with strip mining activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, Frank P.
2015-02-06
Coarse roots play a significant role in belowground carbon cycling and will likely play an increasingly crucial role in belowground carbon sequestration as atmospheric CO 2 levels continue to rise, yet they are one of the most difficult ecosystem parameters to quantify. Despite promising results with ground-penetrating radar (GPR) as a nondestructive method of quantifying biomass of coarse roots, this application of GPR is in its infancy and neither the complete potential nor limitations of the technology have been fully evaluated. The primary goals and questions of this study fell into four groups: (1) GPR methods: Can GPR detect changemore » in root biomass over time, differentiate live roots from dead roots, differentiate between coarse roots, fine roots bundled together, and a fine root mat, remain effective with varied soil moisture, and detect shadowed roots (roots hidden below larger roots); (2) CO 2 enrichment study at Kennedy Space Center in Brevard County, Florida: Are there post-fire legacy effects of CO 2 fertilization on plant carbon pools following the end of CO 2application ? (3) Disney Wilderness Study: What is the overall coarse root biomass and potential for belowground carbon storage in a restored longleaf pine flatwoods system? Can GPR effectively quantify coarse roots in soils that are wetter than the previous sites and that have a high percentage of saw palmetto rhizomes present? (4) Can GPR accurately represent root architecture in a three-dimensional model? When the user is familiar with the equipment and software in a setting that minimizes unsuitable conditions, GPR is a relatively precise, non-destructive, useful tool for estimating coarse root biomass. However, there are a number of cautions and guidelines that should be followed to minimize inaccuracies or situations that are untenable for GPR use. GPR appears to be precise as it routinely predicts highly similar values for a given area across multiple scanning events; however, it appears to lack sufficient accuracy at small scales. Knowledge of soil conditions and their effects on GPR wave propagation and reception are paramount for the collection of useful data. Strong familiarity with the software and equipment is both important and necessary for GPR use in estimating coarse root biomass. GPR must be utilized at low soil moisture levels in order to accurately represent existing coarse root structures. Our results from Disney Wilderness Preserve highlight the need for a strong understanding of the limitations of GPR, specifically knowledge of root structures (saw palmetto rhizomes) or environmental factors (low moisture content) that may hinder its application within a given system. The 3D modeling of course roots with GPR appears quite promising, as it has become more accurate and precise as the software has advanced and become more robust, but there is still a need for more precision before it will likely be able to model anything more than simple root systems comprised mostly of large diameter roots. Our results from Kennedy Space Center suggest that there are legacy effects from CO 2 fertilization in the form of more root mass providing a greater capacity for aboveground plant regrowth following fire, even 7 years after treatment ended.« less
The Use of Ground Penetrating Radar to extend the Results of Archaeological Excavation
NASA Astrophysics Data System (ADS)
Utsi, E.
2009-04-01
The condition of the Romano-British archaeological site in Wortley, Gloucestershire, UK is typical of sites of the period in that it has been heavily robbed out since it first fell into disuse. Building materials taken from the site have been re-used over the centuries to construct other local buildings. This makes both preservation of the extant remains and interpretation of the excavation problematic. Following the accidental discovery of the site in the 1980s, a programme of excavation was set in place. This excavation was run as a practical archaeological training school and, as a result, a wide range of archaeological and geophysical techniques were applied to the site. This included the introduction of Ground Penetrating Radar (GPR). The preliminary results of the first GPR used on site were not entirely satisfactory which led to the development of a new radar in the early 1990s, specifically developed for use on archaeological sites. The excavation and GPR results were published in a series of excavation reports [1] [2]. It was not possible to excavate fully for two reasons. Firstly the site crossed present day ownership boundaries and secondly the ownership of the excavation area changed. At this point the excavation was summarily terminated. In 2007, permission was given by the owner of an adjacent property to carry out a GPR survey over their land in order to derive additional information, if possible. An area survey was carried out in May 2007 with reduced transect spacing [3]. The radar data showed similar patterning to that of the original investigation i.e. substantial remains which had been subject to a high degree of post-occupational attrition. Time slices from the radar survey were matched to the principal excavation plans. It proved possible to deduce the full extent of certain partially excavated features, notably the courtyard and bath house. It was also possible to demonstrate that one part of the adjacent property did not contain similar archaeological material. The GPR survey has added significantly to the excavation results and hence to the potential interpretation of the site. Since it will not be possible either to continue the former excavation or to investigate the adjacent land, the information provided by the radar provides a unique insight. [1] Utsi, V (1988) "Ground Radar" in ‘Excavation of a Romano-British Villa at Wortley, Gloucs.' University of Keele Department of Adult & Continuing Education, Keele, 4th interim report. [2] Utsi, V & Utsi, E (1989) "Ground radar survey" in ‘Excavation of a Romano-British Villa at Wortley, Gloucs.' University of Keele, Department of Adult & Continuing Education, Keele, 5th interim report. [3] Utsi Electronics Ltd (2007) "Ground Penetrating Radar Survey of Part of Wortley Romano-British Villa" report to David Wilson, Director, Archaeological Excavation Training School, Cambridge UK.
Measuring the electrical properties of soil using a calibrated ground-coupled GPR system
Oden, C.P.; Olhoeft, G.R.; Wright, D.L.; Powers, M.H.
2008-01-01
Traditional methods for estimating vadose zone soil properties using ground penetrating radar (GPR) include measuring travel time, fitting diffraction hyperbolae, and other methods exploiting geometry. Additional processing techniques for estimating soil properties are possible with properly calibrated GPR systems. Such calibration using ground-coupled antennas must account for the effects of the shallow soil on the antenna's response, because changing soil properties result in a changing antenna response. A prototype GPR system using ground-coupled antennas was calibrated using laboratory measurements and numerical simulations of the GPR components. Two methods for estimating subsurface properties that utilize the calibrated response were developed. First, a new nonlinear inversion algorithm to estimate shallow soil properties under ground-coupled antennas was evaluated. Tests with synthetic data showed that the inversion algorithm is well behaved across the allowed range of soil properties. A preliminary field test gave encouraging results, with estimated soil property uncertainties (????) of ??1.9 and ??4.4 mS/m for the relative dielectric permittivity and the electrical conductivity, respectively. Next, a deconvolution method for estimating the properties of subsurface reflectors with known shapes (e.g., pipes or planar interfaces) was developed. This method uses scattering matrices to account for the response of subsurface reflectors. The deconvolution method was evaluated for use with noisy data using synthetic data. Results indicate that the deconvolution method requires reflected waves with a signal/noise ratio of about 10:1 or greater. When applied to field data with a signal/noise ratio of 2:1, the method was able to estimate the reflection coefficient and relative permittivity, but the large uncertainty in this estimate precluded inversion for conductivity. ?? Soil Science Society of America.
NASA Astrophysics Data System (ADS)
Ruiz Vera, U. M.; Larson, T. H.; Mwakanyamale, K. E.; Grennan, A. K.; Souza, A. P.; Ort, D. R.; Balikian, R. J.
2017-12-01
Agriculture needs a new technological revolution to be able to meet the food demands, to overcome weather and natural hazards events, and to monitor better crop productivity. Advanced technologies used in other fields have recently been applied in agriculture. Thus, imagine instrumentation has been applied to phenotype above-ground biomass and predict yield. However, the capability to monitor belowground biomass is still limited. There are some existing technologies available, for example the ground penetrating radar (GPR) which has been used widely in the area of geology and civil engineering to detect different kind of formations under the ground without the disruption of the soil. GPR technology has been used also to monitor tree roots but as yet not crop roots. Some limitation are that the GPR cannot discern roots smaller than 2 cm in diameter, but it make it feasible for application in tuber crops like Cassava since harvest diameter is greater than 4 cm. The objective of this research is to test the availability to use GPR technology to monitor the growth of cassava roots by testing this technique in the greenhouse and in the field. So far, results from the greenhouse suggest that GPR can detect mature roots of cassava and this data could be used to predict biomass.
Ground penetrating radar applied to rebar corrosion inspection
NASA Astrophysics Data System (ADS)
Eisenmann, David; Margetan, Frank; Chiou, Chien-Ping T.; Roberts, Ron; Wendt, Scott
2013-01-01
In this paper we investigate the use of ground penetrating radar (GPR) to detect corrosion-induced thinning of rebar in concrete bridge structures. We consider a simple pulse/echo amplitude-based inspection, positing that the backscattered response from a thinned rebar will be smaller than the similar response from a fully-intact rebar. Using a commercial 1600-MHz GPR system we demonstrate that, for laboratory specimens, backscattered amplitude measurements can detect a thinning loss of 50% in rebar diameter over a short length. GPR inspections on a highway bridge then identify several rebar with unexpectedly low amplitudes, possibly signaling thinning. To field a practical amplitude-based system for detecting thinned rebar, one must be able to quantify and assess the many factors that can potentially contribute to GPR signal amplitude variations. These include variability arising from the rebar itself (e.g., thinning) and from other factors (concrete properties, antenna orientation and liftoff, etc.). We report on early efforts to model the GPR instrument and the inspection process so as to assess such variability and to optimize inspections. This includes efforts to map the antenna radiation pattern, to predict how backscattered responses will vary with rebar size and location, and to assess detectability improvements via synthetic aperture focusing techniques (SAFT).
Design of a low cost miniaturized SFCW GPR with initial results
NASA Astrophysics Data System (ADS)
Duggal, Swati; Sinha, Piyush; Gupta, Manish; Patel, Anand; Vedam, V. V.; Mevada, Pratik; Chavda, Rajesh; Shah, Amita; Putrevu, Deepak
2016-05-01
This paper discusses about the design &developmental of Ground Penetrating Radar (GPR), various scientific and commercial applications of GPR along with the testing and results of GPR at Antarctica for Ice thickness measurement. GPR instruments are categorised as per their frequency of operation, which is inversely proportional to the depth of penetration. GPRs are also categorized as per method of operation which is time-domain or frequency-domain. Indian market is presently procuring GPRs from only foreign suppliers. Space Applications Centre (SAC) had taken up GPR as R&D Technological development with a view to benchmark the technology which may be transferred to local industry for mass production of instrument at a relatively cheaper cost (~20 times cheaper). Hence, this instrument presents a viable indigenous alternative. Also, the design and configuration was targeted for terrestrial as well as future interplanetary (Lander/Rover) missions of ISRO to map subsurface features. The developed GPR has a very large bandwidth (100%, i.e. bandwidth of 500MHz with centre-frequency of 500MHz) and high dynamic range along with the advantage of being highly portable (<10kg). The system was configured as a Stepped-Frequency-Continuous-Wave (SFCW) GPR which is a frequency domain GPR with the aim to increase the detection capabilities with respect to current systems. In order to achieve this goal, innovative electronic equipment have been designed and developed. Three prototypes were developed and two of them have been delivered for Indian Scientific Expedition to Antarctica (ISEA) in 2013 and 2014-15, respectively and promising results have been obtained. The results from the same closely compare with that from commercial GPR too.
NASA Astrophysics Data System (ADS)
Angelis, Dimitrios; Tsourlos, Panagiotis; Tsokas, Gregory; Vargemezis, George; Zacharopoulou, Georgia; Power, Christopher
2018-05-01
Non-destructive investigation of monuments can be an extremely valuable tool to evaluate potential structural defects and assist in developing any restoration plans. In this work, both Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) techniques were applied to a tower wall of the Heptapyrgion fortress located in Thessaloniki, Greece, which was facing significant moisture problems. GPR cross sections, mainly obtained with a 500 MHz centre frequency antenna, and ERT profiles were collected along the same survey grid on the tower wall. The gprMax numerical solver was used for the GPR forward modelling. In addition, an auxiliary program was used to design and import into gprMax complicated structures and this allowed to simulate more realistically the wall defects and moisture. The GPR simulator was used to assess and optimize the field data acquisition and processing parameters, and to assist in interpreting the GPR cross sections. The ERT sections were inverted as individual 2D lines and also, as a full 3D dataset. The final GPR and ERT data were jointly interpreted in view of the studied problem as results of both methods are highly correlated. A high moisture content area at the eastern part of the wall was identified in both GPR and ERT data, along with the interface between different phases of construction. Through the GPR data we were also able to delineate possible structural defects (cracks, small voids) which was not possible with just using the ERT data. Furthermore, a very good matching was evident between the simulated GPR modelling results incorporating field-interpreted features, and the actual field GPR results, thereby validating the proposed data interpretation. The overall survey and modelling approach produces results that are in a very good agreement between them and proved very useful in accessing the wall structure.
Numerical Modelling of Ground Penetrating Radar Antennas
NASA Astrophysics Data System (ADS)
Giannakis, Iraklis; Giannopoulos, Antonios; Pajewski, Lara
2014-05-01
Numerical methods are needed in order to solve Maxwell's equations in complicated and realistic problems. Over the years a number of numerical methods have been developed to do so. Amongst them the most popular are the finite element, finite difference implicit techniques, frequency domain solution of Helmontz equation, the method of moments, transmission line matrix method. However, the finite-difference time-domain method (FDTD) is considered to be one of the most attractive choice basically because of its simplicity, speed and accuracy. FDTD first introduced in 1966 by Kane Yee. Since then, FDTD has been established and developed to be a very rigorous and well defined numerical method for solving Maxwell's equations. The order characteristics, accuracy and limitations are rigorously and mathematically defined. This makes FDTD reliable and easy to use. Numerical modelling of Ground Penetrating Radar (GPR) is a very useful tool which can be used in order to give us insight into the scattering mechanisms and can also be used as an alternative approach to aid data interpretation. Numerical modelling has been used in a wide range of GPR applications including archeology, geophysics, forensic, landmine detection etc. In engineering, some applications of numerical modelling include the estimation of the effectiveness of GPR to detect voids in bridges, to detect metal bars in concrete, to estimate shielding effectiveness etc. The main challenges in numerical modelling of GPR for engineering applications are A) the implementation of the dielectric properties of the media (soils, concrete etc.) in a realistic way, B) the implementation of the geometry of the media (soils inhomogeneities, rough surface, vegetation, concrete features like fractures and rock fragments etc.) and C) the detailed modelling of the antenna units. The main focus of this work (which is part of the COST Action TU1208) is the accurate and realistic implementation of GPR antenna units into the FDTD model. Accurate models based on general characteristics of the commercial antennas GSSI 1.5 GHz and MALA 1.2 GHz have been already incorporated in GprMax, a free software which solves Maxwell's equation using a second order in space and time FDTD algorithm. This work presents the implementation of horn antennas with different parameters as well as ridged horn antennas into this FDTD model and their effectiveness is tested in realistic modelled situations. Accurate models of soils and concrete are used to test and compare different antenna units. Stochastic methods are used in order to realistically simulate the geometrical characteristics of the medium. Regarding the dielectric properties, Debye approximations are incorporated in order to simulate realistically the dielectric properties of the medium on the frequency range of interest.
Spot restoration for GPR image post-processing
Paglieroni, David W; Beer, N. Reginald
2014-05-20
A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.
Buried object detection in GPR images
Paglieroni, David W; Chambers, David H; Bond, Steven W; Beer, W. Reginald
2014-04-29
A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.
NASA Astrophysics Data System (ADS)
Kuroda, Seiichiro; Ishii, Nobuyuki; Morii, Toshihiro
2017-04-01
Recently capillary barriers have been known as a method to protect subsurface regions against infiltration from soil surface. It has essentially non-uniform structure of permeability or soil physical property. To identify the function of the capillary barrier, the site-characterization technique for non-uniform soil moisture distribution and infiltration process is needed. We built a sand box in which a thin high-permeable gravel layer was embedded and conducted a infiltration test, including non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed soundings with multi-frequency antenna and transmission measurements like one using cross-borehole radar. Finally we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. This work has partially supported by JSPS Grant-in-aid Scientific Research program, No.16H02580.
Permittivity and conductivity parameter estimations using full waveform inversion
NASA Astrophysics Data System (ADS)
Serrano, Jheyston O.; Ramirez, Ana B.; Abreo, Sergio A.; Sadler, Brian M.
2018-04-01
Full waveform inversion of Ground Penetrating Radar (GPR) data is a promising strategy to estimate quantitative characteristics of the subsurface such as permittivity and conductivity. In this paper, we propose a methodology that uses Full Waveform Inversion (FWI) in time domain of 2D GPR data to obtain highly resolved images of the permittivity and conductivity parameters of the subsurface. FWI is an iterative method that requires a cost function to measure the misfit between observed and modeled data, a wave propagator to compute the modeled data and an initial velocity model that is updated at each iteration until an acceptable decrease of the cost function is reached. The use of FWI with GPR are expensive computationally because it is based on the computation of the electromagnetic full wave propagation. Also, the commercially available acquisition systems use only one transmitter and one receiver antenna at zero offset, requiring a large number of shots to scan a single line.
McClellan, Matthew; Comas, Xavier; Hinkle, Ross; Sumner, David M.
2017-01-01
Peat soils store a large fraction of the global soil carbon (C) pool and comprise 95% of wetland C stocks. While isolated freshwater wetlands in temperate and tropical biomes account for more than 20% of the global peatland C stock, most studies of wetland soil C have occurred in expansive peatlands in northern boreal and subarctic biomes. Furthermore, the contribution of small depressional wetlands in comparison to larger wetland systems in these environments is very uncertain. Given the fact that these wetlands are numerous and variable in terms of their internal geometry, innovative methods are needed for properly estimating belowground C stocks and their overall C contribution to the landscape. In this study, we use a combination of ground penetrating radar (GPR), aerial imagery, and direct measurements (coring) in conjunction with C core analysis to develop a relation between C stock and surface area, and estimate the contribution of subtropical depressional wetlands to the total C stock of pine flatwoods at the Disney Wilderness Preserve (DWP), Florida. Additionally, GPR surveys were able to image collapse structures underneath the peat basin of depressional wetlands, depicting lithological controls on the formation of depressional wetlands at the DWP. Results indicate the importance of depressional wetlands as critical contributors to the landscape C budget at the DWP and the potential of GPR-based approaches for (1) rapidly and noninvasively estimating the contribution of depressional wetlands to regional C stocks and (2) evaluating the formational processes of depressional wetlands.
Moisture evaluation of wood material using GPR with WARR method - COST Action TU1208
NASA Astrophysics Data System (ADS)
Reci, Hamza; Sbart'i, Zoubir Mehdi; Pajewski, Lara; Marciniak, Marian
2016-04-01
This work deals with the study of the sensitivity of GPR electromagnetic waves to moisture variation in wood material in relation with the direction of fibers and polarization of Electromagnetic field. The relations between relative permittivity and moisture content and the amplitude attenuation with distance was a target study using the direct waves in Wide Angle Radar Reflection (WARR) configuration. Comparison of results measured with reflected waves and direct waves was of main importance since they have different behavior in relation with moisture variation, due to different path of propagation. This research activity has been carried out during one Short-Term Scientific Missions (STSM) funded by the COST (European Cooperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" in November-December 2015. In context of durability evaluation of construction materials, several studies have been carried out by the I2M team, University of Bordeaux, using direct and reflected waves for the evaluation of water content on concrete and wood materials [1-3]. As related to the wood material there is one study carried out using the reflected waves on wood for different humidity and different wood samples, in all the direction of polarization using GPR technique ground coupled antenna at 1.5 GHz [3]. This work continued with different moisture content in order to study the behavior of direct waves as function of moisture. Results taken from those measurements are compared with them from Fixed Offset (reflected method) with one antenna (1.5GHz or 2.6GHz), realized from the previous studies from the I2M and already published [1-3]. The results taken from this work from the reflected waves, show that the effect of wood anisotropy is significant on the variation of relative permittivity with moisture content on wood sample and that is in good agreement with the previous results [3-6]. As related to the direct waves, a small change in the dielectric constants exists between transversal and parallel directions. The dielectric constant shows values that coincide with the case of radial polarization of the EM field. This can be explained from the propagation path of direct waves. Since the EM field of direct waves, propagates in the upper part of the sample, the effect of polarization is almost the same in both directions as it is the case of radial polarization when the reflected method was used. During future STSMs we foresee to do further experimental work with the direct wave method (WARR) on different wood samples, in order to confirm the effect of wood anisotropy and moisture content on GPR direct wave propagation. Acknowledgement The Authors are grateful to COST - European Cooperation in Science and Technology (www.cost.eu) for funding the Action TU1208 "Civil engineering applications of Ground Penetrating Radar" (www.GPRadar.eu). Many thanks to the I2M, University of Bordeaux, for the valuable collaboration and hospitality during this STSM. References 1. Sbartai ZM, Laurens S, Balayssac JP, Ballivy G and Arliguie G (2006a) Effect of concrete moisture on radar signal amplitude. ACI Materials Journal 103 (6): 419-426. 2. Sbartai ZM, Laurens S, Balayssac JP, Arliguie G, Ballivy G (2006b) Ability of the direct wave of radar ground-coupled antenna for NDT of concrete structures. NDT & E International 39 (5): 400-407. 3. Tien Chinh Mai, Stephen Razafindratsima, Zoubir Mehdi Sbartaï, François Demontoux, Frédéric Bos (2015) Non-destructive evaluation of moisture content of wood material at GPR frequency. Construction and Building Materials 77 (2015) 213-217 4. Rodríguez-Abad I, Martínez-Sala R, CapuzLladró R, Díez Barra R and García-García F (2011) Assessment of the variation of the moisture content in the Pinuspinaster Ait. using the non destructive GPR technique. Materiales de Construcción 61(301): 143-156. 5. Martínez-Sala R, Rodríguez-Abad I, del Val I (2013) Effect of penetration of water under pressure in hardened concrete on GPR signals Proceedings of the 7th International Workshop on Advanced Ground-Penetrating Radar, Nantes, France. 6. Rodríguez-Abad I., Martínez-Sala R, Mené-Aparicio J (2015). Use of the direct wave amplitude to analyse timber grain at different frequencies. Universitat Politècnica de València Escuela Técnica Superior de Ingeniería de Edificación.
A Comprehensive Analysis of Swiss Alpine Glaciers Using Helicopter-Borne Ground-Penetrating-Radar
NASA Astrophysics Data System (ADS)
Rabenstein, L.; Maurer, H.; Bauder, A.; Langhammer, L.; Lucas, C.; Rutishauser, A.; Lathion, P.
2014-12-01
Detailed information exists on the surface area of glaciers in Switzerland and long-term mass balance observations are available but because glacial thickness remains elusive and so only a rough estimate of the present ice volume is available. After the successful recording of approximately 1000 km of helicopter ground penetrating radar (GPR) profiles on Swiss glaciers during the last three years, the Swiss Competence Center for Energy Research (SCCER) and the Swiss Geophysical Commission (SGPK) began an initiative to obtain for the first time an accurate estimate of the total ice volume located in the Swiss Alps. Steps towards this goal include the delineation of 3D bedrock topography beneath glacerized regions. The final ice volume estimation will comprise an ice flux computation model constrained by a dense network of helicopter-borne GPR profiles. Different systems that have been recently tested for acquiring helicopter GPR data in the Swiss Alps include towed systems (the HERA-G+ and the BGR-P30) and rigidly mounted systems of standard commercial GPR ground units (the GSSI and PulsEkko), all operating in the frequency range of 30 to 70 Mhz. Some measurements were ground-truthed using the same GPR antenna systems. Analyses of these data sets revealed a wealth of useful information on the glacier bed topography and some internal structures. For instance, at depths between 30 and 60 m, we often observe zones of low backscattering followed by a more reflective zone. In the glacial accumulation areas these features are interpreted as firn layers, in which the water percolates down to its base. The same test flights also provided useful technical information on the radar installation. For towed systems it is difficult to maintain a constant orientation of the antennas during the flight. In contrast, the rigidly mounted systems do not suffer from the orientation problem, but ringing effects are pronounced. We applied an SVD-based (singular value decomposition) multi-channel filter, which enabled this "system ringing" to be removed. Mostly, ground GPR surveys on coincident lines produce better quality GPR images of the glacier bed. However, it turned out that the orientation of the antennas relative to the glacier may be more important to retrieve good quality GPR data, than the surveying mode (airborne or ground).
DOT National Transportation Integrated Search
1996-09-01
The purpose of this study was to evaluate the use of infrared (IR) thermography and ground penetrating radar (GPR) to find subsurface anomalies, delaminations and de-bonding, on asphalt concrete overlaid concrete bridge decks. The traditional "chaini...
NASA Astrophysics Data System (ADS)
Pochanin, Gennadiy P.; Poyedinchuk, Anatoliy Y.; Varianytsia-Roshchupkina, Liudmyla A.; Pochanina, Iryna Ye.
2016-04-01
Results of this research are intended to use at GPR investigations of layered media (for example, at roads' inspection) for the processing of collected data and reconstruction of dependence of permittivity on the depth. Recently, an antenna system with a vertical differential configuration of receiving module (Patent UA81652) for GPR was suggested and developed The main advantage of the differential antennas in comparison with bistatic antennas is a high electromagnetic decoupling between the transmitting and receiving modules. The new vertical differential configuration has an additional advantage because it allows collecting GPR data reflected by layered media without any losses of information about these layers [1] and, potentially, it is a more accurate instrument for the layers thickness measurements [2]. The developed antenna system is tested in practice with the GPR at asphalt thickness measurements [3] and shown an accuracy which is better than 0.5 cm. Since this antenna system is good for sounding from above the surface (air coupled technique), the mobile laboratory was equipped with the developed GPR [3]. In order to process big set of GPR data that collected during probing at long routes of the roads, for the data processing it was tested new algorithm of the inverse problem solution. It uses a fast algorithm for calculation of electromagnetic wave diffraction by non-uniform anisotropic layers [4]. The algorithm is based on constructing a special case solution to the Riccati equation for the Cauchy problem and enables a qualitative description of the wave diffraction by the electromagnetic structure of the type within a unitary framework. At this stage as initial data we used synthetic GPR data that were obtained as results of the FDTD simulation of the problem of UWB electromagnetic impulse diffraction on layered media. Differential and bistatic antenna configurations were tested at several different profiles of permittivity. Meanings of permittivity of each of layers were reconstructed successfully. Corresponding results are given in the presentation. Acknowledgement The authors acknowledge COST for funding Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar", supporting this work. References 1. L. Gurel, and U. Oguz, "Three-Dimensional FDTD modeling of a ground penetrating radar" IEEE Trans. Geosci. Remote Sensing, vol. 38, no. 4, pp. 1513-1521, 2000. 2. L. Varianytsia-Roshchupkina, Pochanin G., Pochanina I., Masalov Proc. of the 8th Int. Workshop on Advanced Ground Penetrating Radar (IWAGPR 15), Florence, Italy, July 2015. 3. Pochanin, G. P., Ruban, V. P., Kholod, P. V., Shuba, A. A., Pochanin, A. G., Orlenko, A.A., Batrakov, D. O., and Batrakova, A. G. GPR for pavement monitoring., Journal of Radio Electronics. No.1. 2013, Moscow, http://jre.cplire.ru/alt/jan13/8/text.pdf. 4. A. V. Brovenko, P. N. Melezhik, A. Y. Poyedinchuk A numerical analytical method for solving problems of electromagnetic wave diffraction by non-uniform anisotropic layers. Radiophysics and Electronics, Vol.19, No. 4. 2014. pp.12-20.
Ground-penetrating radar: A tool for monitoring bridge scour
Anderson, N.L.; Ismael, A.M.; Thitimakorn, T.
2007-01-01
Ground-penetrating radar (GPR) data were acquired across shallow streams and/or drainage ditches at 10 bridge sites in Missouri by maneuvering the antennae across the surface of the water and riverbank from the bridge deck, manually or by boat. The acquired two-dimensional and three-dimensional data sets accurately image the channel bottom, demonstrating that the GPR tool can be used to estimate and/or monitor water depths in shallow fluvial environments. The study results demonstrate that the GPR tool is a safe and effective tool for measuring and/or monitoring scour in proximity to bridges. The technique can be used to safely monitor scour at assigned time intervals during peak flood stages, thereby enabling owners to take preventative action prior to potential failure. The GPR tool can also be used to investigate depositional and erosional patterns over time, thereby elucidating these processes on a local scale. In certain instances, in-filled scour features can also be imaged and mapped. This information may be critically important to those engaged in bridge design. GPR has advantages over other tools commonly employed for monitoring bridge scour (reflection seismic profiling, echo sounding, and electrical conductivity probing). The tool doesn't need to be coupled to the water, can be moved rapidly across (or above) the surface of a stream, and provides an accurate depth-structure model of the channel bottom and subchannel bottom sediments. The GPR profiles can be extended across emerged sand bars or onto the shore.
The Integration of GPR, GIS, and GPS for 3D Soil Morphologic Models
NASA Astrophysics Data System (ADS)
Tischler, M.; Collins, M. E.
2005-05-01
Ground-Penetrating Radar (GPR) has become a useful and efficient instrument for gathering information about subsurface diagnostic horizons in Florida soils. Geographic Information Systems (GIS) are a popular and valuable tool for spatial data analysis of real world features in a digital environment. Ground-Penetrating Radar can be linked to GIS by using Global Positioning Systems (GPS). By combining GPR, GPS, and GIS technologies, a more detailed geophysical survey can be completed for an area of interest by integratinghydrologic, pedologic, and geologic data. Thus, the objectives of this research were to identify subsurface soil layers using GPR and their geographic position with a highly accurate GPS; to develop a procedure to import GPR data into a popular software package, such as ArcGIS, and; to create 3D subsurface models based on the imported GPR data. The site for this study was the Plant Science Research and Education Center in Marion County, Florida. The soils are characterized by Recent-Pleistocene-age sand over the clayey, marine deposited Plio-Miocene-age Hawthorn Formation which drapes the Eocene-age Ocala Limestone. Consequently, soils in the research area vary from deep quartz sands (Typic Quartzipsamments) to shallow outcrops of the Hawthorn Formation (Arenic Hapludalfs). A GPR survey was performed on a 160 m x 320 m grid to gather data for processing. Four subsurface models estimating the depth to argillic horizon were created using a variety of specialized GPR data filters and geostatistical data analyses. The models were compared with ground-truth points that measured the depth to argillic horizon to validate each model and calculate error metrics. These models may assist research station personnel to determine best management practices (including experimental plot placement, irrigation management, fertilizer treatment, and pesticide applications). In addition, the developed methodology exploits the potential of combining GPR and GIS.
NASA Astrophysics Data System (ADS)
Eckes, S. W.; Shepherd, S. L.
2017-12-01
Accurately characterizing subsurface structure and function of remediated floodplains is indispensable in understanding the success of stream restoration projects. Although many of these projects are designed to address increased storm water runoff due to urbanization, long term monitoring and assessment are often limited in scope and methodology. Common monitoring practices include geomorphic surveys, stream discharge, and suspended sediment loads. These data are comprehensive for stream monitoring but they do not address floodplain function in terms of infiltration and through flow. Developing noninvasive methods for monitoring floodplain moisture transfer and distribution will aid in current and future stream restoration endeavors. Ground penetrating radar (GPR) has been successfully used in other physiographic regions for noninvasive and continuous monitoring of (1) natural geomorphic environments including subsurface structure and landform change and (2) soil and turf management to monitor subsurface moisture content. We are testing the viability of these existing methods to expand upon the broad capabilities of GPR. Determining suitability will be done in three parts using GPR to (1) find known buried objects of typical materials used in remediation at measured depths, (2) understand GPR functionality in varying soil moisture content thresholds on turf plots, and (3) model reference, remediated, and impacted floodplains in a case study in the D'Olive Creek watershed located in Baldwin County, Alabama. We hypothesize that these methods will allow us to characterize moisture transfer from precipitation and runoff to the floodplain which is a direct function of floodplain health. The need for a methodology to monitor floodplains is widespread and with increased resolution and mobility, expanding GPR applications may help streamline remediation and monitoring practices.
Numerical modelling of GPR electromagnetic fields for locating burial sites
NASA Astrophysics Data System (ADS)
Carcione, José M.; Karczewski, Jerzy; Mazurkiewicz, Ewelina; Tadeusiewicz, Ryszard; Tomecka-Suchoń, Sylwia
2017-11-01
Ground-penetrating radar (GPR) is commonly used for locating burial sites. In this article, we acquired radargrams at a site where a domestic pig cadaver was buried. The measurements were conducted with the ProEx System GPR manufactured by the Swedish company Mala Geoscience with an antenna of 500MHz. The event corresponding to the pig can be clearly seen in the measurements. In order to improve the interpretation, the electromagnetic field is compared to numerical simulations computed with the pseudo-spectral Fourier method. A geological model has been defined on the basis of assumed electromagnetic properties (permittivity, conductivity and magnetic permeability). The results, when compared with the GPR measurements, show a dissimilar amplitude behaviour, with a stronger reflection event from the bottom of the pit. We have therefore performed another simulation by decreasing the electrical conductivity of the body very close to that of air. The comparison improved, showing more reflections, which could be an indication that the body contains air or has been degraded to a certain extent that the electrical resistivity has greatly increased.
NASA Astrophysics Data System (ADS)
Mesbah, Hany S.; Morsy, Essam A.; Soliman, Mamdouh M.; Kabeel, Khamis
2017-06-01
This paper presents the results of the application of the Geoelectrical Resistivity Sounding (GRS) and Ground Penetrating Radar (GPR) for outlining and investigating of surface springing out (flow) of groundwater to the base of an service building site, and determining the reason(s) for the zone of maximum degree of saturation; in addition to provide stratigraphic information for this site. The studied economic building is constructed lower than the ground surface by about 7 m. A Vertical Electrical Sounding (VES) survey was performed at 12 points around the studied building in order to investigate the vertical and lateral extent of the subsurface sequence, three VES's were conducted at each side of the building at discrete distances. And a total of 9 GPR profiles with 100- and 200-MHz antennae were conducted, with the objective of evaluating the depth and the degree of saturation of the subsurface layers. The qualitative and quantitative interpretation of the acquired VES's showed easily the levels of saturations close to and around the studied building. From the interpretation of GPR profiles, it was possible to locate and determine the saturated layers. The radar signals are penetrated and enabled the identification of the subsurface reflectors. The results of GPR and VES showed a good agreement and the integrated interpretations were supported by local geology. Finally, the new constructed geoelectrical resistivity cross-sections (in contoured-form), are easily clarifying the direction of groundwater flow toward the studied building.
Ayotte, Joseph D.; Dorgan, Tracy H.
1995-01-01
Geophysical investigations were done near a former waste-disposal site in Nashua, New Hampshire to determine the thickness and infer hydraulic characteristics of the glacial sediments that underlie the area. Approximately 5 miles of ground- penetrating radar (GPR) data were collected in the study area by use of dual-80 Megahertz antennas. Three distinct radar-reflection signatures were evident from the data and are interpreted to represent (1) glacial lake-bottom sediments, (2) coarse sand and gravel and (or) sandy glacial till, and (3) bedrock. The GPR signal penetrated as much as 70 feet of sediment in coarse-grained areas, but penetration depth was generally less than 40 feet in extensive areas of fine-grained deposits. Geologic features were evident in many of the profiles. Glacial-lake-bottom sediments were the most common features identified. Other features include deltas deposited in glacial Lake Nashua and lobate fans of sediment deposited subaqueously at the distal end of deltaic sediments. Cross-bedded sands were often identifiable in the deltaic sediments. Seismic-refraction data were also collected at five of the GPR data sites. In most cases, depths to the water table and to the till and (or) bedrock surface indicated by the seismic-refraction data compared favorably with depths calculated from the GPR data. Test holes were drilled at three locations to determine the true depths to radar reflectors and to determine the types of geologic material represented by the various reflectors.
NASA Astrophysics Data System (ADS)
Pajewski, Lara; Benedetto, Andrea; Loizos, Andreas; Slob, Evert; Tosti, Fabio
2014-05-01
This work aims at presenting the first-year activities and results of COST (European COoperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar". This Action was launched in April 2013 and will last four years. The principal aim of COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, whilst simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Moreover, the Action is oriented to the following specific objectives and expected deliverables: (i) coordinating European scientists to highlight problems, merits and limits of current GPR systems; (ii) developing innovative protocols and guidelines, which will be published in a handbook and constitute a basis for European standards, for an effective GPR application in civil- engineering tasks; safety, economic and financial criteria will be integrated within the protocols; (iii) integrating competences for the improvement and merging of electromagnetic scattering techniques and of data- processing techniques; this will lead to a novel freeware tool for the localization of buried objects, shape-reconstruction and estimation of geophysical parameters useful for civil engineering needs; (iv) networking for the design, realization and optimization of innovative GPR equipment; (v) comparing GPR with different NDT techniques, such as ultrasonic, radiographic, liquid-penetrant, magnetic-particle, acoustic-emission and eddy-current testing; (vi) comparing GPR technology and methodology used in civil engineering with those used in other fields; (vii) promotion of a more widespread, advanced and efficient use of GPR in civil engineering; and (viii) organization of a high-level modular training program for GPR European users. Four Working Groups (WGs) carry out the research activities. The first WG focuses on the design of innovative GPR equipment, on the building of prototypes and on the testing and optimisation of new systems. The second WG focuses on the GPR surveying of pavement, bridges, tunnels and buildings, as well as on the sensing of underground utilities and voids. The third WG deals with the development of electromagnetic forward and inverse scattering methods, for the characterization of GPR scenarios, as well as with data- processing algorithms for the elaboration of the data collected during GPR surveys. The fourth WG works on the use of GPR in fields different from the civil engineering, as well as on the integration of GPR with other non-destructive testing techniques. Each WG includes several Projects. COST Action TU1208 is active through a range of networking tools: meetings, workshops, conferences, training schools, short-term scientific missions, dissemination activities. During the first year of activities, a First General Meeting was organized in Rome, in July 2013, a second meeting took place in Nantes, in February 2014, and the Second General Meeting is being held jointly with the 2014 EGU General Assembly. A training school on "Microwave Imaging and Diagnostics: Theory, Techniques, and Applications", held in March 2014, was co-organised with the European School of Antennas. Four Short-Term Scientific Missions were funded, allowing young researchers to spend a period of time in an institution abroad, in order to carry out a research project contributing to the scientific objectives of the Action. The Action's activities were disseminated in international conferences [1]-[4], as well as in further workshops and meetings. Two volumes were published [5]-[6], and several scientific papers on peer-reviewed journals. A Springer book presenting the state of the art on civil engineering applications of Ground Penetrating Radar is being prepared and is going to be published in summer 2014. A COST Action is a wide bottom-up interdisciplinary science and technology network, open to researchers from universities, public and private research institutions, as well as to NGOs, industry and SMEs. At present, About 100 Institutions from 24 COST Member Countries (Austria, Belgium, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Italy, Latvia, Malta, Macedonia, The Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Switzerland, Turkey, United Kingdom) have already joined the Action, together with an Institution from Armenia (Near Neighbour Country, NNC). Beyond European borders, six Institutions from U.S.A., one from Rwanda and one from Australia have joined the Action. Further applications from two NNCs (Egypt and Ukraine) and International Partner Countries (Hong Kong and Japan) are under examination. COST Action TU1208 is still open to the participation of new parties and it is possible to include, in the scientific work plan, new perspectives and activities. Scientists and scientific institutions willing to join COST Action TU1208 are encouraged to contact the Chair of the Action and to follow the procedure described at http://www.cost.eu/participate/join_action. For more information on COST Action TU1208, please visit www.GPRadar.eu. ----------------------------- Acknowledgement The Authors thanks COST for funding COST Action TU1208. References [1] L. Pajewski, A. Benedetto, A. Loizos, E. Slob, F. Tosti, "Civil Engineering Applications of Ground Penetrating Radar: Research Perspectives in COST Action TU1208," Geophysical Research Abstracts, European Geosciences Union (EGU) General Assembly 2013, 7-12 April 2013, Vienna, Austria, article ID EGU2013-13941. [2] L. Pajewski, A. Benedetto, G. Schettini, F. Soldovieri, "Applications of GPR in archaeological prospecting and cultural heritage diagnostics: Research Perspectives in COST Action TU1208," Geophysical Research Abstracts, European Geosciences Union (EGU) General Assembly 2013, 7-12 April 2013, Vienna, Austria, article ID EGU2013-14010. [3] L. Pajewski, A. Benedetto, X. Dérobert, A. Giannopoulos, A. Loizos, G. Manacorda, M. Marciniak, C. Plati, G. Schettini, I. Trinks, "Applications of Ground Penetrating Radar in Civil Engineering - COST Action TU1208," Proc. 7th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), 2-5 July 2013, Nantes, France, pp. 1-6 (INVITED). ISBN 978-1-4799-0937-7, doi:10.1109/ IWAGPR.2013.6601528). [4] L. Pajewski, A. Benedetto, "Advanced Ground Penetrating Radar: open issues and new research opportunities in Europe," Proc. 10th European Radar Conference (EuRad), 2013 European Microwave Week (EuMW), 6-11 October 2013, Nuremberg, Germany, pp. 1847-1850. [5] Proceedings of the First Action's General Meeting (Editors: L. Pajewski and A. Benedetto; Publishing House: Aracne; Rome, July 2013; 194 pp.; ISBN 978-88-548-6191-6; o.o. 978-88-548-6190-9) - available as free download on www.GPRadar.eu [6] Booklet of Participants and Institutions (Editors: L. Pajewski and A. Benedetto; Publishing House: Aracne; Rome, July 2013; 127 pp.; ISBN 978-88-548-6192-3; o.o. 978-88-548-6190-9) - available as free download on www.GPRadar.eu
NASA Astrophysics Data System (ADS)
Gueting, Nils; Vienken, Thomas; Klotzsche, Anja; van der Kruk, Jan; Vanderborght, Jan; Caers, Jef; Vereecken, Harry; Englert, Andreas
2017-01-01
Limited knowledge about the spatial distribution of aquifer properties typically constrains our ability to predict subsurface flow and transport. Here we investigate the value of using high resolution full-waveform inversion of cross-borehole ground penetrating radar (GPR) data for aquifer characterization. By stitching together GPR tomograms from multiple adjacent crosshole planes, we are able to image, with a decimeter scale resolution, the dielectric permittivity and electrical conductivity of an alluvial aquifer along cross sections of 50 m length and 10 m depth. A logistic regression model is employed to predict the spatial distribution of lithological facies on the basis of the GPR results. Vertical profiles of porosity and hydraulic conductivity from direct-push, flowmeter and grain size data suggest that the GPR predicted facies classification is meaningful with regard to porosity and hydraulic conductivity, even though the distributions of individual facies show some overlap and the absolute hydraulic conductivities from the different methods (direct-push, flowmeter, grain size) differ up to approximately one order of magnitude. Comparison of the GPR predicted facies architecture with tracer test data suggests that the plume splitting observed in a tracer experiment was caused by a hydraulically low-conductive sand layer with a thickness of only a few decimeters. Because this sand layer is identified by GPR full-waveform inversion but not by conventional GPR ray-based inversion we conclude that the improvement in spatial resolution due to full-waveform inversion is crucial to detect small-scale aquifer structures that are highly relevant for solute transport.
Sneddon, Kristen W.; Powers, Michael H.; Johnson, Raymond H.; Poeter, Eileen P.
2002-01-01
Dense nonaqueous phase liquids (DNAPLs) are a pervasive and persistent category of groundwater contamination. In an effort to better understand their unique subsurface behavior, a controlled and carefully monitored injection of PCE (perchloroethylene), a typical DNAPL, was performed in conjunction with the University of Waterloo at Canadian Forces Base Borden in 1991. Of the various geophysical methods used to monitor the migration of injected PCE, the U.S. Geological Survey collected 500-MHz ground penetrating radar (GPR) data. These data are used in determining calibration parameters for a multiphase flow simulation. GPR data were acquired over time on a fixed two-dimensional surficial grid as the DNAPL was injected into the subsurface. Emphasis is on the method of determining DNAPL saturation values from this time-lapse GPR data set. Interactive full-waveform GPR modeling of regularized field traces resolves relative dielectric permittivity versus depth profiles for pre-injection and later-time data. Modeled values are end members in recursive calculations of the Bruggeman-Hanai-Sen (BHS) mixing formula, yielding interpreted pre-injection porosity and post-injection DNAPL saturation values. The resulting interpreted physical properties of porosity and DNAPL saturation of the Borden test cell, defined on a grid spacing of 50 cm with 1-cm depth resolution, are used as observations for calibration of a 3-D multiphase flow simulation. Calculated values of DNAPL saturation in the subsurface at 14 and 22 hours after the start of injection, from both the GPR and the multiphase flow modeling, are interpolated volumetrically and presented for visual comparison.
The Application of Depth Migration for Processing GPR Data
NASA Astrophysics Data System (ADS)
Hoai Trung, Dang; Van Giang, Nguyen; Thanh Van, Nguyen
2018-03-01
Migration methods play a significant role in processing ground penetrating radar data. Beside recovering the true image of subsurface structures from the prior designed velocity model and the raw GPR data, the migration algorithm could be an effective tool in bulding real environmental velocity model. In this paper, we have proposed one technique using energy diagram extracted from migrated data as a criterion of looking for the correct velocity. Split Step Fourier migration, a depth migration, is chosen for facing the challenge where the velocity varies laterally and vertically. Some results verified on field data on Vietnam show that migrated sections with calculated velocity from energy diagram have the best quality.
Magnetic and GPR surveys of a former munitions foundry site at the Denver Federal Center
Campbell, David L.; Beanland, Shay; Lucius, Jeffrey E.; Powers, Michael H.
2000-01-01
We made magnetometer and ground penetrating radar (GPR) surveys over part of the foundation of a World War II-era foundry located on the Denver Federal Center. The site contains a number of highly magnetic source bodies, concrete foundation walls, and underground openings, buried under a clay cap. The cap is several feet thick and has a conductivity of about 35 mS/m, making the features underneath it a poor target for conventional GPR. Indeed, the raw data look unlike typical GPR data, but rather show reverberation (?) bands under sidewalks and other shallow buried sources. Using a newly-written computer package, we made plan maps of the GPR response at different time slices. The sliced GPR data did not outline buried foundry foundations, as we had hoped it might. The resulting plan maps of the sliced data show sidewalks and other blobby features, some of which correspond to magnetometer highs.
Use of GPR Surveys in Historical Archaeology Studies at Gainesville Mississippi
NASA Technical Reports Server (NTRS)
Goodwin, Ben; Giardino, Marco; Spruce, Joe
2002-01-01
Ground Penetrating Radar (GPR) was used in recent surveys to acquire subsurface geophysical data for historic sites at Gainesville, Mississippi, a town abandoned in 1962 with the building of the John C. Stennis Space Center. Prior to GPR data collection, a 20- by 20-meter grid was established using UTM map projection and GPS for locating cell corners. Lines of GPR data were then collected every 25 centimeters. The images were then processed, and coregistered to georeferenced aerial and satellite imagery. This procedure is enabling analysts to assess the GPR imagery more effectively in a geospatial context. Field validation of anomalies created by known subsurface features from both recent and historic sources is allowing soil attributes, such as variations in Relative Dielectric Permittivity, to be tested more accurately. Additional work is assessing how GPR data can be effectively combined with other forms of remote sensing to direct archaeological surveys and excavations.
Combination of GPR with other NDT techniques in different fields of application - COST Action TU1208
NASA Astrophysics Data System (ADS)
Solla, Mercedes; Pérez-Gracia, Vega; Fontul, Simona; Santos-Assunçao, Sonia; Kucukdemirci, Melda
2017-04-01
During the last decades, there has been a continuous increase in the use of non-destructive testing (NDT) applied to many aspects related to civil engineering and other fields such as geology or sedimentology, archaeology and either monument or cultural heritage. This is principally due to the fact that most NDT methods work remotely, that is, without direct contact, while adding information of non-visible areas. Particularly, geophysics has significantly benefited the procedures for inspection and also, successfully solved some of the limitations of traditional methods such as a lack of objectiveness, destructive testing, loss of safety during infrastructure inspection, and also, low rates of production. The different geophysical methodologies are based on the measurement of physical properties of media. However, all geophysical methods are sensitive to different physical parameters and the success of these methods is related to the nature of the buried features themselves, in terms of their physical and geometric properties, soil conditions, operational factors such as the sensitivity of equipment and etc. Consequently, taking into account all of these factors, to obtain reliable and complementary results, multiple geophysical methods rather than single method and moreover data integration approaches are recommended to provide accurate interpretations. This work presents some examples of combination of Ground-Penetrating Radar (GPR) with other NDT techniques in different fields of application (pavements/railways, archaeological sites, monuments, and stratigraphy in beaches and bathymetries). An example of combination of GPR and Falling Weight Deflectometer (FWD) to assess the bearing capacity of flexible pavement is described as the most efficient structural evaluation of pavements and one of the most commonly applications of the methods on civil engineering inspections. Results of archaeogeophysical field surveys in Turkey are also included by combining the most common geophysical methods used for archaeological prospection (GPR and magnetometry). Regarding cultural heritage, an example in Barcelona (Spain) of the assessment of masonry structural elements, with embedded metallic targets, is included. Seismic tomography and 3D GPR imaging are applied, both supported with endoscopy. The results highlight the most affected areas of the structure and the existence of corroded metallic elements as consequence of humidity. Finally, two case studies support the importance of combining data in geological applications. Firstly, GPR and Electrical Resistivity Tomography (ERT) were combined for the analysis of the littoral drift and the tidal range affecting the transport of sediments in costal environments, and more particularly in O Adro Beach, in Vigo (Spain) that had been subjected to extension activities during the last decades. Secondly, the combination Multibeam Sonar and GPR data is presented for the study of a lake, which is an abandoned kaolin mine. Thus, it was possible to analyze the column of water in all the extension of the lake, while differentiating layers of lacustrine deposits and kaolin rock formations in subsurface. This work represents a contribution to the COST (European Cooperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar". The authors thank COST for funding the Action TU1208.
Ground Penetrating Radar, a Method for Exploration and Monitoring of Coal Fires in China
NASA Astrophysics Data System (ADS)
Gundelach, Volker
2010-05-01
Due to the climate change it is a global task to fight against gas emission of coal fires. In China exists many burning coal seams which should be extinguished. A Chinese-German initiative tries to find new technologies and solutions to control these fires. Most of the fires are close to the surface in arid areas. In that case GPR is a possible geophysical method to get detailed information about the structure of the soil. Mining activities and the burning coal are leaving voids which collapse or still exist as dangerous areas. With GPR it is possible to detect voids and clefts. Crevices are potential paths for oxygen transport from the surface to the fire. The knowledge of these structures would help to extinguish the fire. The heat of the burning coal changes the permittivity and the conductivity of the rock. This affects the radar signal and makes it possible to separate burning zones from intact zones. Monitoring of the burning zones helps to find optimal solutions for fire extinguishing strategies. Several field campaigns were made in China. One campaign was in the province Xinjiang with a 50 MHz system from Mala on a steep dipping coal seam. Other campaigns were in the Inner Mongolia with 40 MHz to 200 MHz antennae from GSSI on shallow dipping coal seams. The experiences from these measurements will be shown. The surveys were collected in rough terrain. The data from the unshielded antennae contained a lot of effects coming through the air. The limits of detecting crevices with GPR will be demonstrated. Some parts of the measurements over burning coal were influenced by strong anomalies of the magnetization. Modeling of the radar signal helps at the interpretation. Parts of the interpretation from the surveys can be validated by the outcrop of the investigated structures. A spatial visualization of the results is the basis for discussions.
Possibilities of ground penetrating radar usage within acceptance tests of rigid pavements
NASA Astrophysics Data System (ADS)
Stryk, Josef; Matula, Radek; Pospisil, Karel
2013-10-01
Within the road pavement acceptance tests, destructive as well as non-destructive tests of individual road layers are performed to verify the standard requirements. The article describes a method for providing quick, effective and sufficiently accurate measurements of both dowel and tie bar positions in concrete pavements, using a two-channel ground penetrating radar (GPR). Measurements were carried out in laboratory and in-situ conditions. A special hand cart for field measurements, set for the testing requirements, was designed. It was verified that following the correct measuring and assessment method, it is possible to reach accuracy of determining the in-built rebar up to 1 cm in vertical direction and up to 1.5 cm per 11.5 m of measured length in horizontal direction. In the in-situ tests, GPR identification of possible anomalies due to the phase of concrete pavement laying was presented. In the conclusion, a measurement report is mentioned. The standard requirements for the position of dowels and tie bars cover maximum possible deviation of the rebar position from the project documentation in vertical and horizontal direction, maximum deflection of rebar ends to each other, and maximum translation of rebar in the direction of its longitudinal axis.
Progress in quantitative GPR development at CNDE
NASA Astrophysics Data System (ADS)
Eisenmann, David; Margetan, F. J.; Chiou, C.-P.; Roberts, Ron; Wendt, Scott
2014-02-01
Ground penetrating radar (GPR) uses electromagnetic (EM) radiation pulses to locate and map embedded objects. Commercial GPR instruments are generally geared toward producing images showing the location and extent of buried objects, and often do not make full use of available absolute amplitude information. At the Center for Nondestructive Evaluation (CNDE) at Iowa State University efforts are underway to develop a more quantitative approach to GPR inspections in which absolute amplitudes and spectra of measured signals play a key role. Guided by analogous work in ultrasonic inspection, there are three main thrusts to the effort. These focus, respectively, on the development of tools for: (1) analyzing raw GPR data; (2) measuring the EM properties of soils and other embedding media; and (3) simulating GPR inspections. This paper reviews progress in each category. The ultimate goal of the work is to develop model-based simulation tools that can be used assess the usefulness of GPR for a given inspection scenario, to optimize inspection choices, and to determine inspection reliability.
GPR data processing computer software for the PC
Lucius, Jeffrey E.; Powers, Michael H.
2002-01-01
The computer software described in this report is designed for processing ground penetrating radar (GPR) data on Intel-compatible personal computers running the MS-DOS operating system or MS Windows 3.x/95/98/ME/2000. The earliest versions of these programs were written starting in 1990. At that time, commercially available GPR software did not meet the processing and display requirements of the USGS. Over the years, the programs were refined and new features and programs were added. The collection of computer programs presented here can perform all basic processing of GPR data, including velocity analysis and generation of CMP stacked sections and data volumes, as well as create publication quality data images.
NASA Astrophysics Data System (ADS)
Eisen, O.; Bohleber, P.; Drews, R.; Heilig, A.; Hofstede, C.
2009-04-01
The cold alpine saddle Colle Gnifetti, Monte Rosa, Swiss-Italian Alps resembles very much polar and subpolar ice masses in terms of glaciological conditions. It has been the site for several ice-core drilling campaigns over more than 20 years to determine paleoclimatological and glaciological conditions. To investigate the feasibility of geophysical methods for improved characterization of ice masses surrounding borehole and ice-core sites, a combined active reflection seismic and ground-penetrating radar pilot study has been carried out in summer 2008. Aims are the characterization of density, internal layering, seismic and radar wave speed and attenuation, identification of anisotropic features (like crystal orientation or bubble content and shape). Here we present the overall setup and first results. Seismic and GPR profiles were centered on an existing borehole location covering the full ice thickness of 62 m. Active seismics was carried out with 24-channel 3-m spacing recording, using a Seismic Impulse Source System (SISSY) along two profiles parallel and perpendicular to the ice-flow direction. The same profiles were complemented with GPR measurements utilizing 250, 500 MHz frequencies. Additionally, circular profiles with 250, 500 and 800 MHz were carried out circumferencing the borehole to detect anisotropic features.
GPR Technologies and Methodologies in Italy: A Review
NASA Astrophysics Data System (ADS)
Benedetto, Andrea; Frezza, Fabrizio; Manacorda, Guido; Massa, Andrea; Pajewski, Lara
2014-05-01
GPR techniques and technologies have been subject of intense research activities at the Italian level in the last 15 years because of their potential applications specifically to civil engineering. More in detail, several innovative approaches and models have been developed to inspect road pavements to measure the thickness of their layers as well as to diagnose or prevent damage. Moreover, new frontiers in bridge inspection as well as in geotechnical applications such as slides and flows have been investigated using GPR. From the methodological viewpoint, innovative techniques have been developed to solve GPR forward-scattering problems, as well to locate and classify subsurface targets in real-time and to retrieve their properties through multi-resolution strategies, and linear and non-linear methodologies. Furthermore, the application of GPR and other non-destructive testing methods in archaeological prospecting, cultural heritage diagnostics, and in the localization and detection of vital signs of trapped people has been widely investigated. More recently, new theoretical and empirical paradigms regarding water moisture evaluation in various porous media and soil characterization have been published as the results of long terms research activities. Pioneer studies are also currently under development with the scope to correlate GPR measurement with mechanical characteristics of bound and unbound construction materials. In such a framework, this abstract will be aimed at reviewing some of the most recent advances of GPR techniques and technologies within the Italian industrial and academic communities [also including their application within international projects such as FP7 ISTIMES (http://www.istimes.eu)], and at envisaging some of the most promising research trends currently under development. Acknowledgment - This work was supported by COST Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' References [1] M. Balsi, S. Esposito, F. Frezza, P. Nocito, L. Porrini, L. Pajewski, G. Schettini e C. Twizere, 'FDTD Simulation of GPR Measurements in a Laboratory Sandbox for Landmine Detection', Proc. IWAGPR 2009, Granada, Spagna, 27-29 maggio 2009, pp. 45-49. [2] M. Balsi, S. Esposito, F. Frezza, P. Nocito, P. M. Barone, S. E. Lauro, E. Mattei, E. Pettinelli, G. Schettini e C. Twizere, 'GPR Measurements and FDTD Simulations for Landmine Detection', Proc. XIII International Conference on Ground Penetrating Radar, 21-25 giugno 2010, Lecce, pp. 865-869. [3] M. Balsi, P. M. Barone, S. Esposito, F. Frezza, S. E. Lauro, P. Nocito, E. Pettinelli, G. Schettini e C. Twizere, 'FDTD Simulations and GPR Measurements for Land Mine Detection in a Controlled Environment', Atti XVIII Riunione Nazionale di Elettromagnetismo, Benevento, 6-10 settembre 2010, pp. 59-65. [4] M. Salucci, D. Sartori, N. Anselmi, A. Randazzo, G. Oliveri, and A. Massa, 'Imaging buried objects within the second-order born approximation through a multiresolution regularized Inexact-Newton method', 2013 International Symposium on Electromagnetic Theory (EMTS), (Hiroshima, Japan), May 20-24 2013. [5] L. Lizzi, F. Viani, P. Rocca, G. Oliveri, M. Benedetti and A. Massa, 'Three-dimensional real-time localization of subsurface objects - From theory to experimental validation,' 2009 IEEE International Geoscience and Remote Sensing Symposium, vol. 2, pp. II-121-II-124, 12-17 July 2009. [6] S. Meschino, L. Pajewski, M. Pastorino, A. Randazzo, and G. Schettini, 'Detection of Subsurface Metallic Utilities by Means of a SAP Technique: Comparing MUSIC- and SVM-Based Approaches', J. Appl. Geophy., vol. 97, pp. 60-68, Oct. 2013. [7] M. Pastorino, and A. Randazzo, 'Buried object detection by an Inexact-Newton applied to nonlinear inverse scattering', Int. J. of Microwave Sci. Technol., vol. 2012, Article ID 637301, 7 pages, 2012. [8] F. Soldovieri and L. Crocco, "Electromagnetic Tomography", in Subsurface Sensing, A. S. Turk, K. A. Hocaoglu, A. A. Vertiy ed., Wiley Series in Microwave and Optical Engineering (Volume 1), Sept. 2011, John Wiley & Sons, NY. [9] I. Catapano, L. Crocco, Y. Krellmann, G. Triltzsch, F. Soldovieri, "A Tomographic Approach for Helicopter-Borne Ground Penetrating Radar Imaging", IEEE Geosci. Rem. Sensing Lett., vol. 9, p. 378-382, 2012.
Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.
2004-01-01
We successfully applied deterministic deconvolution to real ground-penetrating radar (GPR) data by using the source wavelet that was generated in and transmitted through air as the operator. The GPR data were collected with 400-MHz antennas on a bench adjacent to a cleanly exposed quarry face. The quarry site is characterized by horizontally bedded carbonate strata with shale partings. In order to provide groundtruth for this deconvolution approach, 23 conductive rods were drilled into the quarry face at key locations. The steel rods provided critical information for: (1) correlation between reflections on GPR data and geologic features exposed in the quarry face, (2) GPR resolution limits, (3) accuracy of velocities calculated from common midpoint data and (4) identifying any multiples. Comparing the results of deconvolved data with non-deconvolved data demonstrates the effectiveness of deterministic deconvolution in low dielectric-loss media for increased accuracy of velocity models (improved at least 10-15% in our study after deterministic deconvolution), increased vertical and horizontal resolution of specific geologic features and more accurate representation of geologic features as confirmed from detailed study of the adjacent quarry wall. ?? 2004 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Al-Khersan, Emad H.; Al-Ani, Jassim M. T.; Abrahem, Salah N.
2016-03-01
Uruk archaeological site, which located in Al-Muthanna Governorate southern Iraq, was investigated by integrated geophysical methods, ground penetration radar (GPR) and electric resistivity tomography (ERT) to image the historical buried structures. The GPR images show large radar attributes characterized by its continuous reflections having different widths. GPR attributes at shallower depth are mainly representing the upper part of Babylonian Houses that can often be found throughout the study area. In addition, radargrams characterized objects such as buried items, buried trenches and pits which were mainly concentrated near the surface. The ERT results show the presence of several anomalies at different depths generally having low resistivities. It is clear that the first upper zone can be found throughout the whole area and it may represent the top zone of the Babylonian houses. This zone is characterized by its dry clay and sandy soil containing surface broken bricks and slag mixed with core boulders. The second one underneath the top shows a prominent lower resistivity zone. It is probably caused by the moisture content that reduces the resistivity. The thickness of this zone is not equal at all parts of the site. The third deeper zone typically represents the archaeological walls. Most of the main anomalies perhaps referred to the buried clay brick walls. The map of the archaeological anomalies distribution and 3D view of the foundations at the study area using GPR and ERT techniques clearly show the characteristics of the Babylonian remains. A contour map and 3D view of Uruk show that the archaeological anomalies are concentrated mainly at the NE part of the district with higher values of wall height that range between 6 and 8 m and reach to more than 10 m. At the other directions, there are fewer walls with lower heights of 4-6 m and reach in some places the wall foot.
NASA Astrophysics Data System (ADS)
El Khammari, Kamal; Najine, Abdessamad; Jaffal, Mohammed; Aïfa, Tahar; Himi, Mahjoub; Vásquez, Diego; Casas, Albert; Andrieux, Pierre
2007-06-01
The basement of the Zaouit Ech Cheikh city shelters a dense network of underground cavities. These sub-surface voids make many buildings or infrastructures unstable or cause them to collapse. To test the efficiency of geophysical methods in detecting cavities, 2D electrical tomography and ground-penetrating radar (GPR) studies were carried out along the main streets of the city. The obtained results reveal the existence of a large number of underground cavities throughout the investigated area. They also show the interest of such combined geophysical methods as tools for mapping underground holes in an urban area.
Spatially assisted down-track median filter for GPR image post-processing
Paglieroni, David W; Beer, N Reginald
2014-10-07
A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.
Spatially adaptive migration tomography for multistatic GPR imaging
Paglieroni, David W; Beer, N. Reginald
2013-08-13
A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.
Zero source insertion technique to account for undersampling in GPR imaging
Chambers, David H; Mast, Jeffrey E; Paglieroni, David W
2014-02-25
A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.
Real-time system for imaging and object detection with a multistatic GPR array
Paglieroni, David W; Beer, N Reginald; Bond, Steven W; Top, Philip L; Chambers, David H; Mast, Jeffrey E; Donetti, John G; Mason, Blake C; Jones, Steven M
2014-10-07
A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.
NASA Astrophysics Data System (ADS)
Liu, Hao; Birken, Ralf; Wang, Ming L.
2017-04-01
This paper presents the detections of the subsurface features and distresses in roadways and bridge decks from ground penetrating radar (GPR) data collected at traffic speed. This GPR system is operated at 2 GHz with a penetration depth of 60 cm in common road materials. The system can collect 1000 traces a second, has a large dynamic range and compact packaging. Using a four channel GPR array, dense spatial coverage can be achieved in both longitudinal and transversal directions. The GPR data contains significant information about subsurface features and distresses resulting from dielectric difference, such as distinguishing new and old asphalt, identification of the asphalt-reinforced concrete (RC) interface, and detection of rebar in bridge decks. For roadways, the new and old asphalt layers are distinguished from the dielectric and thickness discontinuities. The results are complemented by surface images of the roads taken by a video camera. For bridge decks, the asphalt-RC interface is automatically detected by a cross correlation and Hilbert transform algorithms, and the layer properties (e.g., dielectric constant and thickness) can be identified. Moreover, the rebar hyperbolas can be visualized from the GPR B-scan images. In addition, the reflection amplitude from steel rebar can be extracted. It is possible to estimate the rebar corrosion level in concrete from the distribution of the rebar reflection amplitudes.
NASA Astrophysics Data System (ADS)
Mount, G. J.; Comas, X.; Wright, W. J.; McClellan, M. D.
2014-12-01
Hydrogeologic characterization of karst limestone aquifers is difficult due to the variability in the spatial distribution of porosity and dissolution features. Typical methods for aquifer investigation, such as drilling and pump testing, are limited by the scale or spatial extent of the measurement. Hydrogeophysical techniques such as ground penetrating radar (GPR) can provide indirect measurements of aquifer properties and be expanded spatially beyond typical point measures. This investigation used a multiscale approach to identify and quantify porosity distribution in the Miami Limestone, the lithostratigraphic unit that composes the uppermost portions of the Biscayne Aquifer in Miami Dade County, Florida. At the meter scale, laboratory measures of porosity and dielectric permittivity were made on blocks of Miami Limestone using zero offset GPR, laboratory and digital image techniques. Results show good correspondence between GPR and analytical porosity estimates and show variability between 22 and 66 %. GPR measurements at the field scale 10-1000 m investigated the bulk porosity of the limestone based on the assumption that a directly measured water table would remain at a consistent depth in the GPR reflection record. Porosity variability determined from the changes in the depth to water table resulted in porosity values that ranged from 33 to 61 %, with the greatest porosity variability being attributed to the presence of dissolution features. At the larger field scales, 100 - 1000 m, fitting of hyperbolic diffractions in GPR common offsets determined the vertical and horizontal variability of porosity in the saturated subsurface. Results indicate that porosity can vary between 23 and 41 %, and delineate potential areas of enhanced recharge or groundwater / surface water interactions. This study shows porosity variability in the Miami Limestone can range from 22 to 66 % within 1.5 m distances, with areas of high macroporosity or karst dissolution features occupying the higher end of the range. Spatial variability in porosity distribution may affect ground water recharge, allowing zones of high porosity and thus enhanced infiltration to concentrate contaminants into the aquifer and may play a role in small and regional scale aquifer models.
Near surface water content estimation using GPR data: investigations within California vineyards
NASA Astrophysics Data System (ADS)
Hubbard, S.; Grote, K.; Lunt, I.; Rubin, Y.
2003-04-01
Detailed estimates of water content are necessary for variety of hydrogeological investigations. In viticulture applications, this information is particularly useful for assisting the design of both vineyard layout and efficient irrigation/agrochemical application. However, it is difficult to obtain sufficient information about the spatial variation of water content within the root zone using conventional point or wellbore measurements. We have investigated the applicability of ground penetrating radar (GPR) methods to estimate near surface water content within two California vineyard study sites: the Robert Mondavi Vineyard in Napa County and the Dehlinger Vineyard within Sonoma County. Our research at the winery study sites involves assessing the feasibility of obtaining accurate, non-invasive and dense estimates of water content and the changes in water content over space and time using both groundwave and reflected GPR events. We will present the spatial and temporal estimates of water content obtained from the GPR data at both sites. We will compare our estimates with conventional measurements of water content (obtained using gravimetric, TDR, and neutron probe techniques) as well as with soil texture and plant vigor measurements. Through these comparisons, we will illustrate the potential of GPR for providing reliable and spatially dense water content estimates and the linkages between water content, soil properties and ecosystem responses at the two study sites.
Analyses and Measures of GPR Signal with Superimposed Noise
NASA Astrophysics Data System (ADS)
Chicarella, Simone; Ferrara, Vincenzo; D'Atanasio, Paolo; Frezza, Fabrizio; Pajewski, Lara; Pavoncello, Settimio; Prontera, Santo; Tedeschi, Nicola; Zambotti, Alessandro
2014-05-01
The influence of EM noises and environmental hard conditions on the GPR surveys has been examined analytically [1]. In the case of pulse radar GPR, many unwanted signals as stationary clutter, non-stationary clutter, random noise, and time jitter, influence the measurement signal. When GPR is motionless, stationary clutter is the most dominant signal component due to the reflections of static objects different from the investigated target, and to the direct antenna coupling. Moving objects like e.g. persons and vehicles, and the swaying of tree crown, produce non-stationary clutter. Device internal noise and narrowband jamming are e.g. two potential sources of random noises. Finally, trigger instabilities generate random jitter. In order to estimate the effective influence of these noise signal components, we organized some experimental setup of measurement. At first, we evaluated for the case of a GPR basic detection, simpler image processing of radargram. In the future, we foresee experimental measurements for detection of the Doppler frequency changes induced by movements of targets (like physiological movements of survivors under debris). We obtain image processing of radargram by using of GSSI SIR® 2000 GPR system together with the UWB UHF GPR-antenna (SUB-ECHO HBD 300, a model manufactured by Radarteam company). Our work includes both characterization of GPR signal without (or almost without) a superimposed noise, and the effect of jamming originated from the coexistence of a different radio signal. For characterizing GPR signal, we organized a measurement setup that includes the following instruments: mod. FSP 30 spectrum analyser by Rohde & Schwarz which operates in the frequency range 9 KHz - 30 GHz, mod. Sucoflex 104 cable by Huber Suhner (10 MHz - 18 GHz), and HL050 antenna by Rohde & Schwarz (bandwidth: from 850 MHz to 26.5 GHz). The next analysis of superimposed jamming will examine two different signal sources: by a cellular phone and by a transmitter operating in the Instrumental Scientific Medical (ISM) band (around 2.4 GHz). In the first case, signal of cellular phone is considered as an actual noise, and the measure should provide guidance on its electromagnetic compatibility, in the sense of operating limits of the GPR conditioning from the presence of signal transmitted by a cellular phone. Whereas, the analysis of superimposed signals in the ISM band is oriented to the implementation of a mobile GPR system that includes a transceiver, such as XBee, for transmitting results of localization (e.g. of buried people) to a remote station. This work is a contribution to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." J. Sachs, M. Helbig, R. Herrmann, M. Kmec, K. Schilling, E. Zaikov, and P. Rauschenbach, 'Trapped victim detection by pseudo-noise radar,' in Proc. ACWR '11 1st International Conference on Wireless Technologies for Humanitarian Relief, Amritapuri, Kollam, Kerala, India, 2011, pp. 265-272
Kayen, Robert E.; Barnhardt, Walter A.; Ashford, Scott; Rollins, Kyle
2000-01-01
A ground penetrating radar (GPR) experiment at the Treasure Island Test Site [TILT] was performed to non-destructively image the soil column for changes in density prior to, and following, a liquefaction event. The intervening liquefaction was achieved by controlled blasting. A geotechnical borehole radar technique was used to acquire high-resolution 2-D radar velocity data. This method of non-destructive site characterization uses radar trans-illumination surveys through the soil column and tomographic data manipulation techniques to construct radar velocity tomograms, from which averaged void ratios can be derived at 0.25 - 0.5m pixel footprints. Tomograms of void ratio were constructed through the relation between soil porosity and dielectric constant. Both pre- and post-blast tomograms were collected and indicate that liquefaction related densification occurred at the site. Volumetric strains estimated from the tomograms correlate well with the observed settlement at the site. The 2-D imagery of void ratio can serve as high-resolution data layers for numerical site response analysis.
NASA Astrophysics Data System (ADS)
Booth, A.; Carless, D.; Kulessa, B.
2014-12-01
Ground penetrating radar (GPR) is widely applied to qualitative and quantitative interpretation of near-surface targets. Surface deployments of GPR most widely characterise physical properties in terms of some measure of GPR wavelet velocity. Wavelet amplitude is less-often considered, potentially due to difficulties in measuring this quantity: amplitudes are distorted by the anisotropic radiation pattern of antennas, and the ringy GPR wavelet can make successive events difficult to isolate. However, amplitude loss attributes could provide a useful means of estimating the physical properties of a target. GPR energy loss is described by the bandwidth-limited quality factor Q* which, for low-loss media, is proportional to the ratio of dielectric permittivity, ɛ, and electrical conductivity, σ. Comparing the frequency content of two arrivals yields an estimate of interval Q*, but only if they are sufficiently distinct. There may be sufficient separation between a primary reflection and its long-path multiple (i.e. a 'repeat path' of the primary reflection) therefore a dataset that is rich in multiples may be suitable for robust Q* analysis. The Q* between a primary and multiple arrival describes all frequency-dependent loss mechanisms in the interval between the free-surface and the multiple-generating horizon: assuming that all reflectivity is frequency-independent, Q* can be used to estimate ɛ and/or σ. We measure Q* according to the spectral ratio method, for synthetic and real GPR datasets. Our simulations are performed using the finite-difference algorithm GprMax, and represent our example data of GPR acquisitions over peat bogs. These data are a series of 100 MHz GPR acquisitions over sites in the Brecon Beacons National Park of South Wales. The base of the bogs (the basal peat/mineral soil contact) is often a strong multiple-generating horizon. As an example, data from Waun Ddu bog show these events lagging by ~75 ns: GPR velocity is measured here at 0.034 m/ns (relative ɛ of 77.9) and spectral ratios suggest Q* of 19.9 [-6.6 +19.4]. This Q* implies that the bulk σ of the bog is 21.7 [-10.7 +10.8] mS/m. Our measurements require in situ verification (e.g. comparison with co-located electrical resistivity profiles) but our method provides a promising addition to the suite of GPR analysis tools.
Integrated Approaches On Archaeo-Geophysical Data
NASA Astrophysics Data System (ADS)
Kucukdemirci, M.; Piro, S.; Zamuner, D.; Ozer, E.
2015-12-01
Key words: Ground Penetrating Radar (GPR), Magnetometry, Geophysical Data Integration, Principal Component Analyse (PCA), Aizanoi Archaeological Site An application of geophysical integration methods which often appealed are divided into two classes as qualitative and quantitative approaches. This work focused on the application of quantitative integration approaches, which involve the mathematical and statistical integration techniques, on the archaeo-geophysical data obtained in Aizanoi Archaeological Site,Turkey. Two geophysical methods were applied as Ground Penetrating Radar (GPR) and Magnetometry for archaeological prospection on the selected archaeological site. After basic data processing of each geophysical method, the mathematical approaches of Sums and Products and the statistical approach of Principal Component Analysis (PCA) have been applied for the integration. These integration approches were first tested on synthetic digital images before application to field data. Then the same approaches were applied to 2D magnetic maps and 2D GPR time slices which were obtained on the same unit grids in the archaeological site. Initially, the geophysical data were examined individually by referencing with archeological maps and informations obtained from archaeologists and some important structures as possible walls, roads and relics were determined. The results of all integration approaches provided very important and different details about the anomalies related to archaeological features. By using all those applications, integrated images can provide complementary informations as well about the archaeological relics under the ground. Acknowledgements The authors would like to thanks to Scientific and Technological Research Council of Turkey (TUBITAK), Fellowship for Visiting Scientists Programme for their support, Istanbul University Scientific Research Project Fund, (Project.No:12302) and archaeologist team of Aizanoi Archaeological site for their support during the field work.
Subsurface investigation with ground penetrating radar
USDA-ARS?s Scientific Manuscript database
Ground penetrating radar (GPR) data was collected on a small test plot at the OTF/OSU Turfgrass Research & Education Facility in Columbus, Ohio. This test plot was built to USGA standards for a golf course green, with a constructed sand layer just beneath the surface overlying a gravel layer, that i...
Microwave tomography for an effective imaging in GPR on UAV/airborne observational platforms
NASA Astrophysics Data System (ADS)
Soldovieri, Francesco; Catapano, Ilaria; Ludeno, Giovanni
2017-04-01
GPR was originally thought as a non-invasive diagnostics technique working in contact with the underground or structure to be investigated. On the other hand, in the recent years several challenging necessities and opportunities entail the necessity to work with antenna not in contact with the structure to be investigated. This necessity arises for example in the case of landmine detection but also for cultural heritage diagnostics. Other field of application regards the forward-looking GPR aiming at shallower hidden targets forward the platfrom (vehicle) carrying the GPR [1]. Finally, a recent application is concerned with the deployment of airborne/UAV GPR, able to ensure several advantages in terms of large scale surveys and "freedom" of logistics constraint [2]. For all the above mentioned cases, the interest is towards the development of effective data processing able to make imaging task in real time. The presentation will show different data processing strategies, based on microwave tomography [1,2], for a reliable and real time imaging in the case of GPR platforms far from the interface of the structure/underground to be investigated. [1] I. Catapano, A. Affinito, A. Del Moro,.G. Alli, and F. Soldovieri, "Forward-Looking Ground-Penetrating Radar via a Linear Inverse Scattering Approach," IEEE Transactions on Geoscience and Remote Sensing, vol. 53, pp. 5624 - 5633, Oct. 2015. [2] I. Catapano, L. Crocco, Y. Krellmann, G. Triltzsch, and F. Soldovieri, "A tomographic approach for helicopter-borne ground penetrating radar imaging," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 3, pp. 378-382, May 2012.
NASA Astrophysics Data System (ADS)
Bano, Maksim; Loeffler, Olivier; Girard, Jean-François
2009-10-01
Ground penetrating radar (GPR) is a non-destructive method which, over the past 10 years, has been successfully used not only to estimate the water content of soil, but also to detect and monitor the infiltration of pollutants on sites contaminated by light non-aqueous phase liquids (LNAPL). We represented a model water table aquifer (72 cm depth) by injecting water into a sandbox that also contains several buried objects. The GPR measurements were carried out with shielded antennae of 900 and 1200 MHz, respectively, for common mid point (CMP) and constant offset (CO) profiles. We extended the work reported by Loeffler and Bano by injecting 100 L of diesel fuel (LNAPL) from the top of the sandbox. We used the same acquisition procedure and the same profile configuration as before fuel injection. The GPR data acquired on the polluted sand did not show any clear reflections from the plume pollution; nevertheless, travel times are very strongly affected by the presence of the fuel and the main changes are on the velocity anomalies. We can notice that the reflection from the bottom of the sandbox, which is recorded at a constant time when no fuel is present, is deformed by the pollution. The area close to the fuel injection point is characterized by a higher velocity than the area situated further away. The area farther away from the injection point shows a low velocity anomaly which indicates an increase in travel time. It seems that pore water has been replaced by fuel as a result of a lateral flow. We also use finite-difference time-domain (FDTD) numerical GPR modelling in combination with dielectric property mixing models to estimate the volume and the physical characteristics of the contaminated sand.
NASA Astrophysics Data System (ADS)
Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon; Um, Evan Schankee
2017-06-01
Secure disposal or storage of nuclear waste within stable geologic environments hinges on the effectiveness of artificial and natural radiation barriers. Fractures in the bedrock are viewed as the most likely passage for the transport of radioactive waste away from a disposal site. We utilize ground penetrating radar (GPR) to map fractures in the tunnel walls of an underground research tunnel at the Korea Atomic Energy Research Institute (KAERI). GPR experiments within the KAERI Underground Research Tunnel (KURT) were carried out by using 200 MHz, 500 MHz, and 1000 MHz antennas. By using the high-frequency antennas, we were able to identify small-scale fractures, which were previously unidentified during the tunnel excavation process. Then, through 3-D visualization of the grid survey data, we reconstructed the spatial distribution and interconnectivity of the multi-scale fractures within the wall. We found that a multi-frequency GPR approach provided more details of the complex fracture network, including deep structures. Furthermore, temporal changes in reflection polarity between the GPR surveys enabled us to infer the hydraulic characteristics of the discrete fracture network developed behind the surveyed wall. We hypothesized that the fractures exhibiting polarity change may be due to a combination of air-filled and mineralogical boundaries. Simulated GPR scans for the considered case were consistent with the observed GPR data. If our assumption is correct, the groundwater flow into these near-surface fractures may form the water-filled fractures along the existing air-filled ones and hence cause the changes in reflection polarity over the given time interval (i.e., 7 days). Our results show that the GPR survey is an efficient tool to determine fractures at various scales. Time-lapse GPR data may be essential to characterize the hydraulic behavior of discrete fracture networks in underground disposal facilities.
NASA Astrophysics Data System (ADS)
Switzer, A.; Gouramanis, C.; Bristow, C. S.; Jankaew, K.; Rubin, C. M.; Pham, D. T.; Ildefonso, S. R.; Lee, Y. S.
2013-12-01
The common techniques for investigating the impact, recovery and recurrence interval in coastal systems are point source augering or pitting and/or excavations. These techniques are time and cost intensive. Ground Penetrating Radar (GPR) presents a rapid, non-invasive, spatially-continuous technique for identifying subsurface stratigraphy. Although GPR facies are not diagnostic of a particular sedimentary characteristic, when combined with satellite imagery, they provide an avenue for reconstructing the impact and the post event recovery, or to help constrain the spatial extent of sandy deposits in the subsurface. Here, we present results from two GPR survey campaigns at Phra Thong Island, Thailand. The first campaign targeted the large scale recovery of the coast following the 2004 Indian ocean tsunami using 200 MHz antennae and the second campaign focused on a thin-bed approach aimed at imaging thin (<15 cm) sandy tsunami deposits and their associated structures using high-frequency 500 and 1000 MHz GPR antennae complemented by auger cores. The tsunami impact and recovery was reconciled by three 100 MHz GPR profiles and quasi-yearly satellite imagery. The GPR revealed the depth and extent of tsunami scour along with the sedimentary history of post tsunami coastal aggradation and recovery. The second GPR campaign captured several distinct palaeotsunami deposits as discreet thin sand layers preserved within a swale. The base of the swale and the contacts between the sandy and muddy layers are clearly imaged, although these reflectors are less consistent across the profile, suggesting that the contacts between thin sand and mud units can be accurately imaged provided the units are thicker than ca. 10cm. Our investigations show that GPR can be used to rapidly and non-invasively assess post event recovery and to image sandy washover events in muddy swales that are the result of tsunamis or storms.
Soil hydraulic material properties and layered architecture from time-lapse GPR
NASA Astrophysics Data System (ADS)
Jaumann, Stefan; Roth, Kurt
2018-04-01
Quantitative knowledge of the subsurface material distribution and its effective soil hydraulic material properties is essential to predict soil water movement. Ground-penetrating radar (GPR) is a noninvasive and nondestructive geophysical measurement method that is suitable to monitor hydraulic processes. Previous studies showed that the GPR signal from a fluctuating groundwater table is sensitive to the soil water characteristic and the hydraulic conductivity function. In this work, we show that the GPR signal originating from both the subsurface architecture and the fluctuating groundwater table is suitable to estimate the position of layers within the subsurface architecture together with the associated effective soil hydraulic material properties with inversion methods. To that end, we parameterize the subsurface architecture, solve the Richards equation, convert the resulting water content to relative permittivity with the complex refractive index model (CRIM), and solve Maxwell's equations numerically. In order to analyze the GPR signal, we implemented a new heuristic algorithm that detects relevant signals in the radargram (events) and extracts the corresponding signal travel time and amplitude. This algorithm is applied to simulated as well as measured radargrams and the detected events are associated automatically. Using events instead of the full wave regularizes the inversion focussing on the relevant measurement signal. For optimization, we use a global-local approach with preconditioning. Starting from an ensemble of initial parameter sets drawn with a Latin hypercube algorithm, we sequentially couple a simulated annealing algorithm with a Levenberg-Marquardt algorithm. The method is applied to synthetic as well as measured data from the ASSESS test site. We show that the method yields reasonable estimates for the position of the layers as well as for the soil hydraulic material properties by comparing the results to references derived from ground truth data as well as from time domain reflectometry (TDR).
NASA Astrophysics Data System (ADS)
Lochbühler, T.; Linde, N.
2012-04-01
Geophysical methods are widely used for aquifer characterization, but they usually fail to directly provide models of hydraulic conductivity. Here, a method is presented to jointly invert crosshole ground-penetrating radar (GPR) travel times and hydrological data to estimate the 2-D distribution of both GPR velocities and hydraulic conductivities. The hydrological data are the first temporal moments of tracer breakthrough curves measured at different depths (i.e., the mean arrival times of the tracer at the given locations). Structural resemblance between the geophysical and the hydrological model is enforced by strongly penalizing models for which the cross products of the model gradients are non-zero. The proposed method was first tested on a synthetic categorical facies model. The high resolution of the GPR velocity model markedly improves the hydraulic conductivity model by adding small-scale structures that remain unresolved by the individual inversion of the hydrological data. The method was then applied to field data acquired within a gravel aquifer located close to the Thur River, northeastern Switzerland. The hydrological data used were derived from transfer functions obtained by deconvolving groundwater electrical conductivity time series with electrical conductivity variations of the river water. These data were recorded over several years at three depth levels in three boreholes aligned along the main groundwater flow direction. The transfer functions are interpreted as breakthrough curves of a pulse injection in the river from which we retrieve the first temporal moments. These data were complemented with crosshole GPR data acquired between the three boreholes. Both the individual and joint inversion models provide a smooth hydraulic conductivity model that retrieves the same general trend as EM flowmeter data, but does not resolve small-scale variability.
NASA Astrophysics Data System (ADS)
Moysey, S. M.
2011-12-01
Multi-channel ground-penetrating radar systems have recently become widely available, thereby opening new possibilities for shallow imaging of the subsurface. One advantage of these systems is that they can significantly reduce survey times by simultaneously collecting multiple lines of GPR reflection data. As a result, it is becoming more practical to complete 3D surveys - particularly in situations where the subsurface undergoes rapid changes, e.g., when monitoring infiltration and redistribution of water in soils. While 3D and 4D surveys can provide a degree of clarity that significantly improves interpretation of the subsurface, an even more powerful feature of the new multi-channel systems for hydrologists is their ability to collect data using multiple antenna offsets. Central mid-point (CMP) surveys have been widely used to estimate radar wave velocities, which can be related to water contents, by sequentially increasing the distance, i.e., offset, between the source and receiver antennas. This process is highly labor intensive using single-channel systems and therefore such surveys are often only performed at a few locations at any given site. In contrast, with multi-channel GPR systems it is possible to physically arrange an array of antennas at different offsets, such that a CMP-style survey is performed at every point along a radar transect. It is then possible to process this data to obtain detailed maps of wave velocity with a horizontal resolution on the order of centimeters. In this talk I review concepts underlying multi-channel GPR imaging with an emphasis on multi-offset profiling for water content estimation. Numerical simulations are used to provide examples that illustrate situations where multi-offset GPR profiling is likely to be successful, with an emphasis on considering how issues like noise, soil heterogeneity, vertical variations in water content and weak reflection returns affect algorithms for automated analysis of the data. Overall, the ideal situation occurs when distinct, strong reflections are obtained from flat lying interfaces. To evaluate this idea in the field, data were collected from an agricultural field in the Clemson Experimental Forest in South Carolina and a restored floodplain at the East Branch Pecatonica River Restoration Observatory in Wisconsin using a pulseEKKO Pro GPR with 12 channels containing 500MHz antennas with offsets between 0.2-1.5m. The GPR data collection was found to be extremely efficient, allowing for an equivalent of over 12km of data to be collected within a day. While the two sites are significantly different, with contrasts ranging from soil structure to attenuation characteristics, the results illustrate that it is possible to obtain meaningful information about soil variability using multi-offset GPR profiling even at sites with non-ideal conditions.
NASA Astrophysics Data System (ADS)
Kniess, Rudolf; Martin, Tina
2015-04-01
Two abandoned small waste dumps in the west of the Harz mountains (Germany) were analysed using ground penetrating radar (GPR) and electrical resistivity tomography (ERT). Aim of the project (ROBEHA, funded by the German Federal Ministry of Education and Research (033R105)) is the assessment of the recycling potential of the mining residues taking into account environmental risks of reworking the dump site. One task of the geophysical prospection is the investigation of the inner structure of the mining dump. This is important for the estimation of the approximate volume of potentially reusable mining deposits within the waste dump. The two investigated dump sites are different in age and therefore differ in their structure. The older residues (< 1930) consist of ore processing waste from density separation (stamp mill sand). The younger dump site descends from comprises slag dump waste. The layer of fine grained residues at the first dump site is less than 6 m thick and the slag layer is less than 2 m thick. Both sites are partially overlain by forest or grassland vegetation and characterized by topographical irregularities. Due to the inhomogeneity of the sites we applied electrical resistivity tomography (ERT) and ground penetrating radar (GPR) for detailed investigation. Using ERT we could distinguish various layers within the mining dumps. The resistivities of the dumped material differ from the bedrock resistivities at both sites. The GPR measurements show near surface layer boundaries down to 3 - 4 m. In consecutive campaigns 100 MHz and 200 MHz antennas were used. The GPR results (layer boundaries) were included into the ERT inversion algorithm to enable more precise and stable resistivity models. This needs some special preprocessing steps. The 3D-Position of every electrode from ERT measurement and the GPR antenna position on the surface require an accuracy of less than 1cm. At some points, the layer boundaries and radar wave velocities can be calibrated with borehole stratigraphic data from a mineralogical drilling campaign. This is important for a precise time-depth conversion of reflectors from GPR measurement. This reflectors were taken from radargram and have been adopted as resistivity boundary in the start model of the geoelectric inversion algorithm.
GPR survey to detect buried prehistorical remains at North Ballachulish Moss (Scotland).
NASA Astrophysics Data System (ADS)
Soldovieri, F.; Persico, R.; Utsi, E.
2009-04-01
This work deals with the Ground Penetrating Radar (GPR) exploitation to map the underlying topography of North Ballachulish Moss as part of an archaeological evaluation of the area that was under threat of development. The aim of the survey has been to reconstruct peat depth and detect and locate buried localised targets [1]. During the survey many radar anomalies have been detected and the reliability of the radar survey has been confirmed by ground-truthing under the form of sediment coring, test-pitting and trial excavations. Sediment coring and test-pitting provided corroborative evidence for the peat depths as defined by the radar survey. Trial trenching revealed that a suite of radar anomalies, identified during the course of the survey, are related to a buried prehistoric surface with an associated abundance of man-made artefacts (wooden stakes). The data interpretation has benefited of the representation of the GPR results under the format of horizontal time-slices that well pointed out the depth of the peat and the localization and the shape of the buried localised targets. In particular, the series of time-slices show the development of discrete surfaces and their relationship to an adjacent headland. The orientation of the site and its proximity to the location of a buried prehistoric wooden figure suggest ritual importance. Finally, the measurements have been processed by a novel data processing approach based on the microwave tomography [3-4]; the results of this data processing have been compared with the ones of the standard data processing and have confirmed the above said outcomes of the standard data processing. [1] C.M. Clarke, E.Utsi, V. Utsi, "Ground penetrating radar investigations at North Ballachulish Moss, Highland, Scotland", Archaeological Prospection, vol. 6, no. 2, pp. 107-121-75 , 1999 [2] E. Utsi, "Ground-penetrating radar time-slices from North Ballachulish Moss", Archaeological Prospection, vol. 11, no. 2, pp. 65-75, 2004. [3] F. Soldovieri, R. Persico, G. Leone, A Microwave Tomographic Imaging Approach for Multibistatic Configuration: The Choice of the Frequency Step", IEEE Transactions on Instrumentation and Measurement, Vol. 55, Issue 6, pp. 1926 - 1934, Dec. 2006. [4] F. Soldovieri, R. Bernini, I. Catapano, and L. Crocco, "The integration of novel diagnostics techniques for multi-scale monitoring of large civil infrastructures", Advances in Geosciences, Geophysical monitoring of the near-surface by electromagnetic and other geophysical methods (L. Eppelbaum and F. Soldovieri, Editors), vol. 19, pp. 67-74 , Nov. 2008
Martin, Gilles; Goavec-Mérou, Gwenhael; Rabus, David; Alzuaga, Sébastien; Arapan, Lilia; Sagnard, Marianne; Carry, Émile
2018-01-01
Passive wireless transducers are used as sensors, probed by a RADAR system. A simple way to separate the returning signal from the clutter is to delay the response, so that the clutter decays before the echoes are received. This can be achieved by introducing a fixed delay in the sensor design. Acoustic wave transducers are ideally suited as cooperative targets for passive, wireless sensing. The incoming electromagnetic pulse is converted into an acoustic wave, propagated on the sensor substrate surface, and reflected as an electromagnetic echo. According to a known law, the acoustic wave propagation velocity depends on the physical quantity under investigation, which is then measured as an echo delay. Both conversions between electromagnetic and acoustic waves are based on the piezoelectric property of the substrate of which the sensor is made. Investigating underground sensing, we address the problems of using GPR (Ground-Penetrating RADAR) for probing cooperative targets. The GPR is a good candidate for this application because it provides an electromagnetic source and receiver, as well as echo recording tools. Instead of designing dedicated electronics, we choose a commercially available, reliable and rugged instrument. The measurement range depends on parameters like antenna radiation pattern, radio spectrum matching between GPR and the target, antenna-sensor impedance matching and the transfer function of the target. We demonstrate measurements at depths ranging from centimeters to circa 1 m in a sandbox. In our application, clutter rejection requires delays between the emitted pulse and echoes to be longer than in the regular use of the GPR for geophysical measurements. This delay, and the accuracy needed for sensing, challenge the GPR internal time base. In the GPR units we used, the drift turns out to be incompatible with the targeted application. The available documentation of other models and brands suggests that this is a rather general limitation. We solved the problem by replacing the analog ramp generator defining the time base with a fully digital solution, whose time accuracy and stability relies on a quartz oscillator. The resulting stability is acceptable for sub-surface cooperative sensor measurement. PMID:29337914
Friedt, Jean-Michel; Martin, Gilles; Goavec-Mérou, Gwenhael; Rabus, David; Alzuaga, Sébastien; Arapan, Lilia; Sagnard, Marianne; Carry, Émile
2018-01-16
Passive wireless transducers are used as sensors, probed by a RADAR system. A simple way to separate the returning signal from the clutter is to delay the response, so that the clutter decays before the echoes are received. This can be achieved by introducing a fixed delay in the sensor design. Acoustic wave transducers are ideally suited as cooperative targets for passive, wireless sensing. The incoming electromagnetic pulse is converted into an acoustic wave, propagated on the sensor substrate surface, and reflected as an electromagnetic echo. According to a known law, the acoustic wave propagation velocity depends on the physical quantity under investigation, which is then measured as an echo delay. Both conversions between electromagnetic and acoustic waves are based on the piezoelectric property of the substrate of which the sensor is made. Investigating underground sensing, we address the problems of using GPR (Ground-Penetrating RADAR) for probing cooperative targets. The GPR is a good candidate for this application because it provides an electromagnetic source and receiver, as well as echo recording tools. Instead of designing dedicated electronics, we choose a commercially available, reliable and rugged instrument. The measurement range depends on parameters like antenna radiation pattern, radio spectrum matching between GPR and the target, antenna-sensor impedance matching and the transfer function of the target. We demonstrate measurements at depths ranging from centimeters to circa 1 m in a sandbox. In our application, clutter rejection requires delays between the emitted pulse and echoes to be longer than in the regular use of the GPR for geophysical measurements. This delay, and the accuracy needed for sensing, challenge the GPR internal time base. In the GPR units we used, the drift turns out to be incompatible with the targeted application. The available documentation of other models and brands suggests that this is a rather general limitation. We solved the problem by replacing the analog ramp generator defining the time base with a fully digital solution, whose time accuracy and stability relies on a quartz oscillator. The resulting stability is acceptable for sub-surface cooperative sensor measurement.
NASA Astrophysics Data System (ADS)
Hays, D. B.; Delgado, A.; Bruton, R.; Dobreva, I. D.; Teare, B.; Jessup, R.; Rajan, N.; Bishop, M. P.; Lacey, R.; Neely, H.; Hons, F.; Novo, A.
2016-12-01
Selection of the ideal high biomass energy feedstock and crop cultivars for our national energy and production needs should consider not only the value of the harvested above ground feedstock, but also the local and global environmental services it provides in terms of terrestrial carbon (C) phyto-sequestration and improved soil organic matter enrichment. Selection of ideal crops cultivars is mature, while biofuel feedstock is well under way. What is lacking, however, is high throughput phenotyping (HTP) and integrated real-time data analysis technologies for selecting ideal genotypes within these crops that also confer recalcitrant high biomass or perennial root systems not only for C phyto-sequestration, but also for adaptation to conservation agro-ecosystems, increasing soil organic matter and soil water holding capacity. In no-till systems, significant studies have shown that increasing soil organic carbon is derived primarily from root and not above ground biomass. As such, efforts to increase plant soil phyto-sequestration will require a focus on developing optimal root systems within cultivated crops. We propose to achieve a significant advancement in the use of ground penetrating radar (GPR) as one approach to phenotype root biomass and 3D architecture, and to quantify soil carbon sequestration. In this context, GPR can be used for genotypic selection in breeding nurseries and unadapted germplasm with favorable root architectures, and for assessing management and nutrient practices that promote root growth. GPR has been used for over a decade to successfully map coarse woody roots. Only few have evaluated its efficacy for imaging finer fibrous roots found in grasses, or tap root species. The objectives of this project is to: i) Empirically define the optimal ground penetrating radar (GPR)-antenna array for 3D root and soil organic carbon imaging and quantification in high biomass grass systems; and ii) Develop novel 3- and 4-dimensional data analysis methodologies for using GPR for non-invasive crop root and soil C phyto-sequestration 3-D imaging and quantification within a spatially variable soil matrix. Current results and future directions will be presented and discussed.
Investigating Temporal and Spatial Variations in Near Surface Water Content using GPR
NASA Astrophysics Data System (ADS)
Hubbard, S. S.; Grote, K.; Kowalsky, M. B.; Rubin, Y.
2001-12-01
Using only conventional point or well logging measurements, it is difficult to obtain information about water content with sufficient spatial resolution and coverage to be useful for near surface applications such as for input to vadose zone predictive models or for assisting with precision crop management. Prompted by successful results of a controlled ground penetrating radar (GPR) pilot study, we are investigating the applicability of GPR methods to estimate near surface water content at a study site within the Robert Mondavi vineyards in Napa County, California. Detailed information about soil variability and water content within vineyards could assist in estimation of plantable acreage, in the design of vineyard layout and in the design of an efficient irrigation/agrochemical application procedure. Our research at the winery study site involves investigation of optimal GPR acquisition and processing techniques, modeling of GPR attributes, and inversion of the attributes for water content information over space and time. A secondary goal of our project is to compare water content information obtained from the GPR data with information available from other types of measurements that are being used to assist in precision crop management. This talk will focus on point and spatial correlation estimation of water content obtained using GPR groundwave information only, and comparison of those estimates with information obtained from analysis of soils, TDR, neutron probe and remote sensing data sets. This comparison will enable us to 1) understand the potential of GPR for providing water content information in the very shallow subsurface, and to 2) investigate the interrelationships between the different types of measurements (and associated measurement scales) that are being utilized to characterize the shallow subsurface water content over space and time.
Soil Moisture Content Estimation using GPR Reflection Travel Time
NASA Astrophysics Data System (ADS)
Lunt, I. A.; Hubbard, S. S.; Rubin, Y.
2003-12-01
Ground-penetrating radar (GPR) reflection travel time data were used to estimate changes in soil water content under a range of soil saturation conditions throughout the growing season at a California winery. Data were collected during four data acquisition campaigns over an 80 by 180 m area using 100 MHz surface GPR antennae. GPR reflections were associated with a thin, low permeability clay layer located between 0.8 to 1.3 m below the ground surface that was calibrated with borehole information and mapped across the study area. Field infiltration tests and neutron probe logs suggest that the thin clay layer inhibited vertical water flow, and was coincident with high volumetric water content (VWC) values. The GPR reflection two-way travel time and the depth of the reflector at borehole locations were used to calculate an average dielectric constant for soils above the reflector. A site-specific relationship between the dielectric constant and VWC was then used to estimate the depth-averaged VWC of the soils above the reflector. Compared to average VWC measurements from calibrated neutron probe logs over the same depth interval, the average VWC estimates obtained from GPR reflections had an RMS error of 2 percent. We also investigated the estimation of VWC using reflections associated with an advancing water front, and found that estimates of average VWC to the water front could be obtained with similar accuracy. These results suggested that the two-way travel time to a GPR reflection associated with a geological surface or wetting front can be used under natural conditions to obtain estimates of average water content when borehole control is available. The GPR reflection method therefore has potential for monitoring soil water content over large areas and under variable hydrological conditions.
NASA Astrophysics Data System (ADS)
Chinh Maï, Tien; Reci, Hamza; Sbartaï, Zoubir Mehdi; Pajewski, Lara; Marciniak, Marian
2017-04-01
This work deals with the potential of GPR method in the evaluation of wood structure in relation with density of wood (different wood species), the orientation of fibers and water content (Maï et al., 2015; Reci et al., 2016). The system of measurements is the georadar type (GPR-ground penetrating radar) composed of an electromagnetic signal generator (SIR 3000 of GSSI), and one couple of antennas, one Transmitter (T) and a Receiver (R) of 1.5GHz center frequency, located in the same box in a fixed distance of 6cm. Six wood samples are tested, three samples of Epicea and three samples of Pine. To compare and analyze the results of dielectric constants, we have used the data on three principal directions (Transvesal, Longitudinal and Radial). We note that the dielectric constant of wood increases with the moisture by mass as a consequence of increasing polarization and the conduction phenomena. This effect is more distinguished when the electric field is polarized parallel to the fibers than in perpendicular direction. The smallest contrasts are observed in the radial direction. We conclude that is more appropriate to evaluate the water content along the parallel direction of fibers. In this case we observe the maximum of contrasts of dielectric contrasts between dry and humidity states. Differences on dielectric constant, spectras and amplitudes are taken between different wood samples. Knowing that the dielectric constant is related to the capacity of polarizing (dependent on the water quantity), the increasing of water content could explain the difference of values obtained for the dielectric constants between two kinds of wood. Acknowledgement The Authors are grateful to COST - European Cooperation in Science and Technology (www.cost.eu) for funding the Action TU1208 "Civil engineering applications of Ground Penetrating Radar" (www.GPRadar.eu). We acknowledge also the French National Research Agency (ANR) for supporting this study through the Xylo-plate project, Equipex XYLOFOREST. References Reci, H., Maï, T. C., Sbartaï, Z.M., Pajewski, L., Kiri, E.: Non-destructive evaluation of moisture content in wood using ground-penetrating radar. Geosci. Instrum. Method. Data Syst., 5, 575-581, 2016. doi:10.5194/gi-5-575-2016. Maï, T. C., Razafindratsima, S., Sbartaï, Z.M., Demontoux, D., Frédéric Bos, F.: Non-destructive evaluation of moisture content of wood material at GPR frequency. Construction and Building Materials 77: 213-217, 2015.
NASA Astrophysics Data System (ADS)
Brandes, Christian; Igel, Jan; Loewer, Markus; Tanner, David C.; Lang, Jörg; Müller, Katharina; Winsemann, Jutta
2018-05-01
Deformation bands in unconsolidated sediments are of great value for paleoseismological studies in sedimentary archives. Using ground-penetrating radar (GPR), we investigated an array of shear-deformation bands that developed in unconsolidated Pleistocene glacifluvial Gilbert-type delta sediments. A dense grid (spacing 0.6 m) of GPR profiles was measured on top of a 20 m-long outcrop that exposes shear-deformation bands. Features in the radargrams could be directly tied to the exposure. The shear-deformation bands are partly represented by inclined reflectors and partly by the offset of reflections at delta clinoforms. 3-D interpretation of the 2-D radar sections shows that the bands have near-planar geometries that can be traced throughout the entire sediment volume. Thin sections of sediment samples show that the analysed shear-deformation bands have a denser grain packing than the host sediment. Thus they have a lower porosity and smaller pore sizes and therefore, in the vadose zone, the deformation bands have a higher water content due to enhanced capillary forces. This, together with the partially-developed weak calcite cementation and the distinct offset along the bands, are likely the main reasons for the clear and unambiguous expression of the shear-deformation bands in the radar survey. The study shows that deformation-band arrays can clearly be detected using GPR and quickly mapped over larger sediment volumes. With the 3-D analysis, it is further possible to derive the orientation and geometry of the bands. This allows correlation of the bands with the regional fault trend. Studying deformation bands in unconsolidated sediments with GPR is therefore a powerful approach in paleoseismological studies. Based on our data, we postulate that the outcrop is part of a dextral strike-slip zone that was reactivated by glacial isostatic adjustment.
NASA Astrophysics Data System (ADS)
Cyples, N.; Ielpi, A.; Dirszowsky, R.
2017-12-01
The Kicking Horse River is a gravel-bed stream originating from glacial meltwater supplied by the Wapta Icefields in south-eastern British Columbia. An alluvial tract extends for 7 km through Field, BC, where the trunk channel undergoes diurnal and seasonal fluctuations in flow as a result of varying glacial-meltwater supply and runoff recharge. Prior studies erected the Kicking Horse River as a reference for proximal braided systems, and documented bar formation and sediment distribution patterns from ground observations. However, a consistent model of planform evolution and related stratigraphic signature is lacking. Specific objectives of this study are to examine the morphodynamic evolution and stratigraphic signature of channel-bar complexes using high-resolution satellite imagery, sedimentologic and discharge observations, and ground-penetrating radar (GPR). Remote sensing highlights rates of lateral channel migration of as much as 270 meters over eight years ( 34 meters/year), and demonstrates how flood stages are associated with stepwise episodes of channel braiding and anabranching. GPR analysis aided in the identification of five distinct radar facies, including: discontinuous, inclined, planar, trough-shaped, and mounded reflectors, which were respectively related to specific architectural elements and fluvial processes responsible for bar evolution. Across-stream GPR transects demonstrated higher heterogeneity in facies distribution, while downstream-oriented transects yielded a more monotonous distribution in radar facies. Notably, large-scale inclined reflectors related to step-wise bar accretion are depicted only in downstream-oriented transects, while discontinuous reflectors related to bedform stacking appear to be dominant in along-stream transects. Integration of sedimentological data with remote sensing, gauging records, and GPR analysis allows for high-resolution modelling of stepwise changes in alluvial morphology. Conceptual models stemming from such analyses can be employed to understand the depositional history and stratigraphic signature of proximal and coarse-grained fluvial systems.
A semi-empirical model for the prediction of fouling in railway ballast using GPR
NASA Astrophysics Data System (ADS)
Bianchini Ciampoli, Luca; Tosti, Fabio; Benedetto, Andrea; Alani, Amir M.; Loizos, Andreas; D'Amico, Fabrizio; Calvi, Alessandro
2016-04-01
The first step in the planning for a renewal of a railway network consists in gathering information, as effectively as possible, about the state of the railway tracks. Nowadays, this activity is mostly carried out by digging trenches at regular intervals along the whole network, to evaluate both geometrical and geotechnical properties of the railway track bed. This involves issues, mainly concerning the invasiveness of the operations, the impacts on the rail traffic, the high costs, and the low levels of significance concerning such discrete data set. Ground-penetrating radar (GPR) can represent a useful technique for overstepping these issues, as it can be directly mounted onto a train crossing the railway, and collect continuous information along the network. This study is aimed at defining an empirical model for the prediction of fouling in railway ballast, by using GPR. With this purpose, a thorough laboratory campaign was implemented within the facilities of Roma Tre University. In more details, a 1.47 m long × 1.47 m wide × 0.48 m height plexiglass framework, accounting for the domain of investigation, was laid over a perfect electric conductor, and filled up with several configuration of railway ballast and fouling material (clayey sand), thereby representing different levels of fouling. Then, the set of fouling configurations was surveyed with several GPR systems. In particular, a ground-coupled multi-channel radar (600 MHz and 1600 MHz center frequency antennas) and three air-launched radar systems (1000 MHz and 2000 MHz center frequency antennas) were employed for surveying the materials. By observing the results both in terms of time and frequency domains, interesting insights are highlighted and an empirical model, relating in particular the shape of the frequency spectrum of the signal and the percentage of fouling characterizing the surveyed material, is finally proposed. Acknowledgement The Authors thank COST, for funding the Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar."
Observing of tree trunks and other cylindrical objects using GPR
NASA Astrophysics Data System (ADS)
Jezova, Jana; Lambot, Sebastien
2016-04-01
Trees are a part of our everyday life, hence it is important to prevent their collapse to protect people and urban infrastructures. It is also important to characterize tree wood properties for usages in construction. In order to investigate internal parts of tree trunks non-invasively, ground-penetrating radar (GPR), or in this case, ultra-wideband microwave radar as a general tool, appears to be a very promising technology. Nevertheless, tree trunk tomography using microwave radar is a complicated task due to the circular shape of the trunk and the very complex (heterogeneous and anisotropic) internal structures of the trunk. Microwave sensing of tree trunks is also complicated due to the electromagnetic properties of living wood, which strongly depend on water content, density and temperature of wood. The objective of this study is to describe tree trunk radar cross sections including specific features originating from the particular circumferential data acquisition geometry. In that respect, three experiments were performed: (1) numerical simulations using a finite-difference time-domain software, namely, gprMax 2D, (2) measurements on a simplified laboratory trunk model including plastic and cardboard pipes, sand and air, and (3) measurements over a real tree trunk. The analysis was further deepened by considering: (1) common zero-offset reflection imaging, (2) imaging with a planar perfect electrical conductor (PEC) at the opposite side of the trunk, and (3) imaging with a PEC arc at the opposite side of the trunk. Furthermore, the shape of the reflection curve of a cylindrical target was analytically derived based on the straight-ray propagation approximation. Subsequently, the total internal reflection (TIR) phenomenon occurring in cylindrical objects was observed and analytically described. Both the straight-ray reflection curve and TIR were well observed on the simulated and laboratory radar data. A comparison between all experiments and radar configurations is presented. Future research will focus on the design of an adapted radar antenna for that application to optimize living tree trunk tomography. This research is funded by the Fonds de la Recherche Scientifique (FNRS, Belgium) and benefits from networking activities carried out within the EU COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".
NASA Technical Reports Server (NTRS)
Horz, F.; Heggy, E.; Fong, T.; Kring, D.; Deans, M.; Anglade, A.; Mahiouz, K.; Bualat, M.; Lee, P.; Bluethmann, W.
2009-01-01
Probing radars have been widely recognized by the science community to be an efficient tool to explore lunar subsurface providing a unique capability to address several scientific and operational issues. A wideband (200 to 1200 MHz) Ground Penetrating Radar (GPR) mounted on a surface rover can provide high vertical resolution and probing depth from few tens of centimeters to few tens of meters depending on the sounding frequency and the ground conductivity. This in term can provide a better understand regolith thickness, elemental iron concentration (including ilmenite), volatile presence, structural anomalies and fracturing. All those objectives are of important significance for understanding the local geology and potential sustainable resources for future landing sites in particular exploring the thickness, structural heterogeneity and potential volatiles presence in the lunar regolith. While the operation and data collection of GPR is a straightforward case for most terrestrial surveys, it is a challenging task for remote planetary study especially on robotic platforms due to the complexity of remote operation in rough terrains and the data collection constrains imposed by the mechanical motion of the rover and limitation in data transfer. Nevertheless, Rover mounted GPR can be of great support to perform systematic subsurface surveys for a given landing site as it can provide scientific and operational support in exploring subsurface resources and sample collections which can increase the efficiency of the EVA activities for potential human crews as part of the NASA Constellation Program. In this study we attempt to explore the operational challenges and their impact on the EVA scientific return for operating a rover mounted GPR in support of potential human activity on the moon. In this first field study, we mainly focused on the ability of GPR to support subsurface sample collection and explore shallow subsurface volatiles.
NASA Astrophysics Data System (ADS)
Paillou, P.; Grandjean, G.; Heggy, E.; Farr, T.
2004-05-01
For several years, we have conducted a quantitative study of radar penetration performances in various desert arid environments. This study combines both SAR (Synthetic Aperture Radar) imaging from orbital and airborne platforms and in situ GPR (Ground Penetrating Radar) measurements. Laboratory characterization of various minerals and rocks are used as input to electromagnetic models such as IEM (Integral Equation Model) and FDTD (Finite Difference Time Domain) that describe the subsurface scattering process for inversion purposes. Several test sites were explored, mainly the Sahara. Our first experiment was realized in Republic of Djibouti, an arid volcanic area which is a good analog to Mars. We observed a very little radar penetration there because of the presence of iron oxides and salts in the subsurface that make the soil conductive [Paillou et al., GRL, 2001]. A more favorable site for radar penetration was then explored in southern Egypt: the Bir Safsaf area where buried river channels were discovered using orbital SAR images. We showed how to combine SAR and GPR in order to obtain a complete description of subsurface geology down to several meters [Paillou et al., IEEE TGRS, 2003]. Such field experiments were the basis for more systematic laboratory measurements of the electromagnetic properties of various rocks and minerals which were used in numerical models in order to simulate the performances of future Martian radars, e.g. MARSIS and NETLANDER low frequency radars [Heggy et al., Icarus, 2001; Berthelier et al., JGR, 2003; Heggy et al., JGR, 2003]. More recently, new explorations were conducted in Mauritania in order to demonstrate radar capacities for geologic mapping [Grandjean et al., Coll. Afr. Geol., 2004] and in Libya where radar discovered a double impact crater in the southern desert [Paillou et al., C.R. Geoscience, 2003]. More local radar experiments were also conducted on a test site located in France, the Pyla sand dune, where we observed and modeled a radar signature of subsurface water [Grandjean et al., IEEE TGRS, 2001; Paillou et al., IGARSS'03, 2003]. All of these results shall be used in the context of "terrestrial analogs to Mars" studies in order to prepare for future Mars exploration using radars [Farr et al., Planet. Dec. Study, 2002; Paillou et al., 35th LPSC, 2004]: it concerns both GPR instruments onboard rovers and landers devoted to the exploration of the deep subsurface [Berthelier at al., ESA Pasteur, 2003] and SAR imaging systems onboard orbital platforms for global mapping of the shallow subsurface geology [Paillou et al., Conf. Water Mars, 2001].
Extracting Archaeological Feautres from GPR Surveys Conducted with Variable Soil Moisture Conditions
NASA Astrophysics Data System (ADS)
Morris, I. M.; Glisic, B.; Gonciar, A.
2017-12-01
As a common tool for subsurface archaeological prospection, ground penetrating radar (GPR) is a useful method for increasing the efficiency of archaeological excavations. Archaeological sites are often temporally and financially constrained, therefore having limited ability to reschedule surveys compromised by weather. Furthermore, electromagnetic GPR surveys are especially sensitive to variations in water content, soil type, and site-specific interference. In this work, GPR scans of a partially excavated Roman villa consisting of different construction materials and phases (limestone, andesite, brick) in central Romania are compared. Surveys were conducted with a 500 MHz GPR antenna in both dry (pre-rain event) and wet (post-rain event) conditions. Especially in time or depth slices, wet surveys present additional archaeological features that are not present or clear in the standard dry conditions, while simultaneously masking the clutter present in those scans. When dry, the limestone has a similar dielectric constant to the soil and does not provide enough contrast in electromagnetic properties for strong reflections despite the significant difference in their physical properties. Following precipitation, however, the electromagnetic properties of these two materials is dominated by their respective water content and the contrast is enhanced. For this reason, the wet surveys are particularly necessary for revealing reflections from the limestone features often invisible in dry surveys. GPR surveys conducted in variable environmental conditions provide unique archaeological information, with potential near-surface geophysical applications in nondestructive material characterization and identification.
Adaptive Gaussian mixture models for pre-screening in GPR data
NASA Astrophysics Data System (ADS)
Torrione, Peter; Morton, Kenneth, Jr.; Besaw, Lance E.
2011-06-01
Due to the large amount of data generated by vehicle-mounted ground penetrating radar (GPR) antennae arrays, advanced feature extraction and classification can only be performed on a small subset of data during real-time operation. As a result, most GPR based landmine detection systems implement "pre-screening" algorithms to processes all of the data generated by the antennae array and identify locations with anomalous signatures for more advanced processing. These pre-screening algorithms must be computationally efficient and obtain high probability of detection, but can permit a false alarm rate which might be higher than the total system requirements. Many approaches to prescreening have previously been proposed, including linear prediction coefficients, the LMS algorithm, and CFAR-based approaches. Similar pre-screening techniques have also been developed in the field of video processing to identify anomalous behavior or anomalous objects. One such algorithm, an online k-means approximation to an adaptive Gaussian mixture model (GMM), is particularly well-suited to application for pre-screening in GPR data due to its computational efficiency, non-linear nature, and relevance of the logic underlying the algorithm to GPR processing. In this work we explore the application of an adaptive GMM-based approach for anomaly detection from the video processing literature to pre-screening in GPR data. Results with the ARA Nemesis landmine detection system demonstrate significant pre-screening performance improvements compared to alternative approaches, and indicate that the proposed algorithm is a complimentary technique to existing methods.
EXTRACTING A RADAR REFLECTION FROM A CLUTTERED ENVIRONMENT USING 3-D INTERPRETATION
A 3-D Ground Penetrating Radar (GPR) survey at 50 MHz center frequency was conducted at Hill Air Force Base, Utah, to define the topography of the base of a shallow aquifer. The site for the survey was Chemical Disposal Pit #2 where there are many man-made features that generate ...
DOT National Transportation Integrated Search
2005-01-01
A ground-penetrating radar (GPR) system was used to collect data over the different pavement sections of the Virginia Smart Road from June 1999 until December 2002. Three antennae at different frequencies were used for this research. The collected da...
NASA Astrophysics Data System (ADS)
Seyfried, Daniel; Jansen, Ronald; Schoebel, Joerg
2014-12-01
In civil engineering Ground Penetrating Radar becomes more and more a considerable tool for nondestructive testing and exploration of the underground. For example, the detection of existence of utilization pipe networks prior to construction works or detection of damaged spot beneath a paved street is a highly advantageous application. However, different surface conditions as well as ground bounce reflection and antenna cross-talk may seriously affect the detection capability of the entire radar system. Therefore, proper antenna design is an essential part in order to obtain radar data of high quality. In this paper we redesign a given loaded bowtie antenna in order to reduce strong and unwanted signal contributions such as ground bounce reflection and antenna cross-talk. During the optimization process we also review all parameters of our existing antenna in order to maximize energy transfer into ground. The entire process incorporating appropriate simulations along with running measurements on our GPR test site where we buried different types of pipes and cables for testing and developing radar hardware and software algorithms under quasi-real conditions is described in this paper.
Orbital SAR and Ground-Penetrating Radar for Mars: Complementary Tools in the Search for Water
NASA Technical Reports Server (NTRS)
Campbell, B. A.; Grant, J. A.
2000-01-01
The physical structure and compositional variability of the upper martian crust is poorly understood. Optical and infrared measurements probe at most the top few cm of the surface layer and indicate the presence of layered volcanics and sediments, but it is likely that permafrost, hydrothermal deposits, and transient liquid water pockets occur at depths of meters to kilometers within the crust. An orbital synthetic aperture radar (SAR) can provide constraints on surface roughness, the depth of fine-grained aeolian or volcanic deposits, and the presence of strongly absorbing near-surface deposits such as carbonates. This information is crucial to the successful landing and operation of any rover designed to search for subsurface water. A rover-based ground-penetrating radar (GPR) can reveal layering in the upper crust, the presence of erosional or other subsurface horizons, depth to a permafrost layer, and direct detection of near-surface transient liquid water. We detail here the radar design parameters likely to provide the best information for Mars, based on experience with SAR and GPR in analogous terrestrial or planetary environments.
GPR Diagnostics of columns in archaeological contexts
NASA Astrophysics Data System (ADS)
Soldovieri, Francesco; Masini, Nicola; Persico, Raffaele; Catapano, Ilaria
2017-04-01
In the last decade the use of Ground Penetrating radar (GPR) applied to cultural heritage has been strongly increasing thanks to both technological development of sensors and softwares for data processing and cultural reasons such as the increasing awareness of conservators and archaeologist of the benefits of this method in terms of reduction of costs and time and risk associated with restoration works. This made GPR a mature technique for investigating different types of works of art and building elements of historical interest, including masonry structures, frescoes, mosaics [1-3], in the context of scientific projects, decision support activities aimed at the diagnosis of decay pathologies, and educational activities. One of the most complex building elements to be investigated by GPR are the columns both for the geometry of the object and for the several expected features to be detected including fractures, dishomogeneities and metallic connection elements. The work deals with the Ground Penetrating Radar diagnostic surveys at the prestigious archaeological site of Pompei. In particular, GPR surveys were carried out in two different areas, Palestra Grande and Tempio di Giove. The first campaign was carried out also as educational activity of the "International School "GEOPHYSICS AND REMOTE SENSING FOR ARCHAEOLOGY". The School aimed at giving the opportunity to scholars, PhD students, researchers and specialists in Geophysics, Remote Sensing and Archaeology to deepen their knowledge and expertise with geophysical and remote sensing techniques for archaeology and cultural heritage documentation and management. This survey was carried on two kinds of columns, with circular and rectangular section in order to detect possible hidden defects affecting their integrity. The second survey was carried out at Tempio di Giove, on request of the Soprintendenza Pompei, in order to gain information about the presence of reinforcement structures, which may be put inside the columns during a previous work carried out about thirty years ago and whose memory documentation was lost. Both the GPR surveys were carried out by using the K2-RIS IDS system equipped with a high frequency antenna, working at the central frequency of 2GHz. Moreover, the imaging results have been obtained by processing the raw data by means of the end-user friendly software interface designed at the Institute for Electromagnetic Sensing of the Environment - National Research Council of Italy. This interface was some years ago to make possible a simple management of 2D and 3D microwave tomographic approaches based on the Born approximation [4-6].The GPR surveys have confirmed the presence of metallic elements inside few of the investigated columns. [1] Masini N., Nuzzo L., Rizzo E. 2007, GPR investigations for the study and the restoration of the Rose Window of Troia Cathedral (Southern Italy), Near Surface Geophysics, 5 (5), pp. 287-300, doi: 10.3997/1873-0604.2007010 [2] Leucci G., Masini N., Persico R., Soldovieri F. 2011. GPR and sonic tomography for structural restoration: the case of the cathedral of Tricarico, Journal of Geophysics and Engineering, 8 (3), 76-92, doi: 10.1088/1742-2132/8/3/S08 [3] Masini N., Persico R., Rizzo E., Calia A., Giannotta M.T., Quarta G., Pagliuca A. 2010, Integrated Techniques for Analysis and Monitoring of Historical Monuments: the case of S.Giovanni al Sepolcro in Brindisi (Southern Italy), Near Surface Geophysics, 8(5), 423-432, doi:10.3997/1873-0604.2010012 [4] F. Soldovieri, J. Hugenschmidt, R. Persico, G. Leone, A linear inverse scattering algorithm for realistic GPR applications. Near Surf. Geophys. 5(1), 29-42 (2007) [5] I. Catapano, A. Affinito, G. Gennarelli, F.di Maio, A. Loperte, F. Soldovieri, "Full three-dimensional imaging via ground penetrating radar: assessment in controlled conditions and on field for archaeological prospecting", Appl. Phys. A, 2013 [6] I. Catapano, A. Affinito, F. Soldovieri, A user friendly interface for microwave tomography enhanced GPR surveys", EGU General Assembly 2013, vol. 15.
An interpretation model of GPR point data in tunnel geological prediction
NASA Astrophysics Data System (ADS)
He, Yu-yao; Li, Bao-qi; Guo, Yuan-shu; Wang, Teng-na; Zhu, Ya
2017-02-01
GPR (Ground Penetrating Radar) point data plays an absolutely necessary role in the tunnel geological prediction. However, the research work on the GPR point data is very little and the results does not meet the actual requirements of the project. In this paper, a GPR point data interpretation model which is based on WD (Wigner distribution) and deep CNN (convolutional neural network) is proposed. Firstly, the GPR point data is transformed by WD to get the map of time-frequency joint distribution; Secondly, the joint distribution maps are classified by deep CNN. The approximate location of geological target is determined by observing the time frequency map in parallel; Finally, the GPR point data is interpreted according to the classification results and position information from the map. The simulation results show that classification accuracy of the test dataset (include 1200 GPR point data) is 91.83% at the 200 iteration. Our model has the advantages of high accuracy and fast training speed, and can provide a scientific basis for the development of tunnel construction and excavation plan.
Ground Penetrating Radar For Estimating Root Biomass Through Empirical Analysis
NASA Astrophysics Data System (ADS)
Wolfe, M.; Dobreva, I. D.; Delgado, A.; Hays, D. B.; Bishop, M. P.; Huo, D.; Wang, X.; Teare, B. L.; Burris, S.
2017-12-01
Variability in soil carbon storage due to agricultural practices is an important component of the carbon cycle. Enhancing soil organic content is a means for restoring degraded soils and for improving soil quality, but also for carbon sequestration. In particular, accurate estimates of soil organic content are essential for quantifying carbon sequestration capabilities of agricultural systems. This project aims to advance the technological and analytical capabilities of Ground Penetrating Radar (GPR) for diagnoses of the soil carbon storage occurring due to the perennial grasses which are often utilized as biofuels. A new GPR processing workflow applied via a prototype software was tested on simulated GPR data of roots with different densities and depths to determine the sensitivity and capability of this technology to quantify these parameters. Field experiments were also conducted in long-term trials of different genotypes of perennial grasses over field sites in Texas to determine the application in authentic environments. GPR scans and soil samples were collected, and root dry biomass was obtained. Evaluation of pre-processing techniques was conducted to provide optimal resolution for assessment. The novel backscatter spatial structure workflow was implemented, and empirical relationships between root biomass and GPR derived observations were developed. Preliminary results suggest that the backscatter spatial structure changes in the presence of high density root biomass conditions, and these variations are indicative of root zone depth and density. Our results illustrate promising applications in root detection, and therefore, the soil organic content accumulation that is pertinent to a healthy soil system.
Examination of soil effect upon GPR detectability of landmine with different orientations
NASA Astrophysics Data System (ADS)
Ebrahim, Shereen M.; Medhat, N. I.; Mansour, Khamis K.; Gaber, A.
2018-06-01
Landmines represent a serious environmental problem for several countries as it causes severe injured and many victims. In this paper, the response of GPR from different parameters of the landmine targets has been shown and the data is correlated with observed field experiment made in 2012 at Miami Crandon Park test site. The ability of GPR for detecting non-metallic mines with different orientations was revealed and soil effect upon the GPR signal was examined putting into consideration the soil parameters in different locations in Egypt such as in Sinai and El Alamein. The simulation results showed that PMN-2 landmine was detected at 5 cm and 15 cm depths, even at the minimum radar cross section vertical orientation. The B-Scan (2D GPR profiles) of PMN-2 target at 15 cm depth figured out high reflectivity for Wadi deposits due to large contrast between PMN-2 landmine material and soil of sand dunes.
Advanced GPR imaging of sedimentary features: integrated attribute analysis applied to sand dunes
NASA Astrophysics Data System (ADS)
Zhao, Wenke; Forte, Emanuele; Fontolan, Giorgio; Pipan, Michele
2018-04-01
We evaluate the applicability and the effectiveness of integrated GPR attribute analysis to image the internal sedimentary features of the Piscinas Dunes, SW Sardinia, Italy. The main objective is to explore the limits of GPR techniques to study sediment-bodies geometry and to provide a non-invasive high-resolution characterization of the different subsurface domains of dune architecture. On such purpose, we exploit the high-quality Piscinas data-set to extract and test different attributes of the GPR trace. Composite displays of multi-attributes related to amplitude, frequency, similarity and textural features are displayed with overlays and RGB mixed models. A multi-attribute comparative analysis is used to characterize different radar facies to better understand the characteristics of internal reflection patterns. The results demonstrate that the proposed integrated GPR attribute analysis can provide enhanced information about the spatial distribution of sediment bodies, allowing an enhanced and more constrained data interpretation.
Ground Penetrating Radar as a Contextual Sensor for Multi-Sensor Radiological Characterisation
Ukaegbu, Ikechukwu K.; Gamage, Kelum A. A.
2017-01-01
Radioactive sources exist in environments or contexts that influence how they are detected and localised. For instance, the context of a moving source is different from a stationary source because of the effects of motion. The need to incorporate this contextual information in the radiation detection and localisation process has necessitated the integration of radiological and contextual sensors. The benefits of the successful integration of both types of sensors is well known and widely reported in fields such as medical imaging. However, the integration of both types of sensors has also led to innovative solutions to challenges in characterising radioactive sources in non-medical applications. This paper presents a review of such recent applications. It also identifies that these applications mostly use visual sensors as contextual sensors for characterising radiation sources. However, visual sensors cannot retrieve contextual information about radioactive wastes located in opaque environments encountered at nuclear sites, e.g., underground contamination. Consequently, this paper also examines ground-penetrating radar (GPR) as a contextual sensor for characterising this category of wastes and proposes several ways of integrating data from GPR and radiological sensors. Finally, it demonstrates combined GPR and radiation imaging for three-dimensional localisation of contamination in underground pipes using radiation transport and GPR simulations. PMID:28387706
NASA Astrophysics Data System (ADS)
Ferry, M.; Meghraoui, M.; Rockwell, T. K.; Kozaci, Ö.; Akyuz, S.; Girard, J.-F.; Barka, A.
2003-04-01
The 1999 Ms 7.4 Izmit earthquake produced more than 110 km of surface rupture along the North Anatolian fault. We present here ground-penetrating radar (GPR) profiles surveyed across and parallel to the 1999 Izmit earthquake ruptures at two sites along the Izmit-Sapanca segment. Fine sandy and coarse gravels favor the penetration depth and processed radar profiles image clearly visible reflectors within the uppermost 10 m. In Köseköy, they document cumulative right-lateral offset of a stream channel by the fault. Old fluvial channel deposits also visible in trenches show a maximum 13.5 to 14 m lateral displacement. Younger channel units display 4 m of right-lateral displacement at 2.5 m depth and correlation with dated trench units yields an average slip rate of 15 mm/yr. At site 2, GPR profiles display the successive faulting of a medieval Ottoman Canal which excavation probably took place in 1591 A.D.. GPR profiles image the corresponding surface as well as numerous faults that affect it. A following trench study confirmed these results as they provide consistent results with the occurrence of three faulting events post-1591 A.D., one of which probably as large as the 1999 Izmit earthquake.
NASA Astrophysics Data System (ADS)
Rodríguez-Abad, Isabel; Klysz, Gilles; Martínez-Sala, Rosa; Balayssac, Jean Paul; Mené-Aparicio, Jesús
2016-12-01
The long-term performance of concrete structures is directly tied to two factors: concrete durability and strength. When assessing the durability of concrete structures, the study of the water penetration is paramount, because almost all reactions like corrosion, alkali-silica, sulfate, etc., which produce their deterioration, require the presence of water. Ground-penetrating radar (GPR) has shown to be very sensitive to water variations. On this basis, the objective of this experimental study is, firstly, to analyze the correlation between the water penetration depth in concrete samples and the GPR wave parameters. To do this, the samples were immersed into water for different time intervals and the wave parameters were obtained from signals registered when the antenna was placed on the immersed surface of the samples. Secondly, a procedure has been developed to be able to determine, from those signals, the reliability in the detection and location of waterfront depths. The results have revealed that GPR may have an enormous potential in this field, because excellent agreements were found between the correlated variables. In addition, when comparing the waterfront depths calculated from GPR measurements and those visually registered after breaking the samples, we observed that they totally agreed when the waterfront was more than 4 cm depth.
Application of ground-penetrating radar at McMurdo Station, Antarctica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefano, J.E.
1992-05-01
Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be producedmore » with GPR over most of McMurdo Station.« less
Application of ground-penetrating radar at McMurdo Station, Antarctica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefano, J.E.
1992-01-01
Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be producedmore » with GPR over most of McMurdo Station.« less
NASA Astrophysics Data System (ADS)
Mount, Gregory J.; Comas, Xavier; Cunningham, Kevin J.
2014-07-01
The karst Biscayne aquifer is characterized by a heterogeneous spatial arrangement of porosity and hydraulic conductivity, making conceptualization difficult. The Biscayne aquifer is the primary source of drinking water for millions of people in south Florida; thus, information concerning the distribution of karst features that concentrate the groundwater flow and affect contaminant transport is critical. The principal purpose of the study was to investigate the ability of two-dimensional ground penetrating radar (GPR) to rapidly characterize porosity variability in the karst Biscayne aquifer in south Florida. An 800-m-long GPR transect of a previously investigated area at the Long Pine Key Nature Trail in Everglades National Park, collected in fast acquisition common offset mode, shows hundreds of diffraction hyperbolae. The distribution of diffraction hyperbolae was used to estimate electromagnetic (EM) wave velocity at each diffraction location and to assess both horizontal and vertical changes in velocity within the transect. A petrophysical model (complex refractive index model or CRIM) was used to estimate total bulk porosity. A set of common midpoint surveys at selected locations distributed along the common-offset transect also were collected for comparison with the common offsets and were used to constrain one-dimensional (1-D) distributions of porosity with depth. Porosity values for the saturated Miami Limestone ranged between 25% and 41% for common offset GPR surveys, and between 23% and 39% for common midpoint GPR surveys. Laboratory measurements of porosity in five whole-core samples from the saturated part of the aquifer in the study area ranged between 7.1% and 41.8%. GPR estimates of porosity were found to be valid only under saturated conditions; other limitations are related to the vertical resolution of the GPR signal and the volume of the material considered by the measurement methodology. Overall, good correspondence between GPR estimates and the direct porosity values from the whole-core samples confirms the ability of GPR common offset surveys to provide rapid characterization of porosity variability in the Biscayne aquifer. The common offset survey method has several advantages: (1) improved time efficiency in comparison to other GPR acquisition modes such as common midpoints; and (2) enhanced lateral continuity of porosity estimates, particularly when compared to porosity measurements on 1-D samples such as rock cores. The results also support the presence of areas of low EM wave velocity or high porosity under saturated conditions, causing velocity pull-down areas and apparent sag features in the reflection record. This study shows that GPR can be a useful tool for improving understanding of the petrophysical properties of highly heterogeneous systems such as karst aquifers, and thus may assist with the development of more accurate groundwater flow models, such as those used for restoration efforts in the Everglades.
Mountain, Gregory S.; Cunningham, Kevin J.; Comas, Xavier
2014-01-01
The karst Biscayne aquifer is characterized by a heterogeneous spatial arrangement of porosity and hydraulic conductivity, making conceptualization difficult. The Biscayne aquifer is the primary source of drinking water for millions of people in south Florida; thus, information concerning the distribution of karst features that concentrate the groundwater flow and affect contaminant transport is critical. The principal purpose of the study was to investigate the ability of two-dimensional ground penetrating radar (GPR) to rapidly characterize porosity variability in the karst Biscayne aquifer in south Florida. An 800-m-long GPR transect of a previously investigated area at the Long Pine Key Nature Trail in Everglades National Park, collected in fast acquisition common offset mode, shows hundreds of diffraction hyperbolae. The distribution of diffraction hyperbolae was used to estimate electromagnetic (EM) wave velocity at each diffraction location and to assess both horizontal and vertical changes in velocity within the transect. A petrophysical model (complex refractive index model or CRIM) was used to estimate total bulk porosity. A set of common midpoint surveys at selected locations distributed along the common-offset transect also were collected for comparison with the common offsets and were used to constrain one-dimensional (1-D) distributions of porosity with depth. Porosity values for the saturated Miami Limestone ranged between 25% and 41% for common offset GPR surveys, and between 23% and 39% for common midpoint GPR surveys. Laboratory measurements of porosity in five whole-core samples from the saturated part of the aquifer in the study area ranged between 7.1% and 41.8%. GPR estimates of porosity were found to be valid only under saturated conditions; other limitations are related to the vertical resolution of the GPR signal and the volume of the material considered by the measurement methodology. Overall, good correspondence between GPR estimates and the direct porosity values from the whole-core samples confirms the ability of GPR common offset surveys to provide rapid characterization of porosity variability in the Biscayne aquifer.The common offset survey method has several advantages: (1) improved time efficiency in comparison to other GPR acquisition modes such as common midpoints; and (2) enhanced lateral continuity of porosity estimates, particularly when compared to porosity measurements on 1-D samples such as rock cores. The results also support the presence of areas of low EM wave velocity or high porosity under saturated conditions, causing velocity pull-down areas and apparent sag features in the reflection record. This study shows that GPR can be a useful tool for improving understanding of the petrophysical properties of highly heterogeneous systems such as karst aquifers, and thus may assist with the development of more accurate groundwater flow models, such as those used for restoration efforts in the Everglades.
NASA Astrophysics Data System (ADS)
López-Rodríguez, Flor; Velasco-Herrera, Víctor M.; Álvarez-Béjar, Román; Gómez-Chávez, Sergio; Gazzola, Julie
2016-11-01
The ground penetrating radar (GPR) -a non-invasive method based on the emission of electromagnetic waves and the reception of their reflections at the dielectric constant and electrical conductivity discontinuities of the materials surveyed- may be applied instead of the destructive and invasive methods used to find water in celestial bodies. As multichannel equipment is increasingly used, we developed two algorithms for multivariable wavelet analysis of GPR signals -multi-cross wavelet (MCW) and Fourier multi-cross function (FMC)- and applied them to analyze raw GPR traces of archeological subsurface strata. The traces were from the tunnel located beneath the Temple of the Feathered Serpent (The Citadel, Teotihuacan, Mexico), believed to represent the underworld, an outstanding region of the Mesoamerican mythology, home of telluric forces emanating from deities, where life was constantly created and recreated. GPR profiles obtained with 100 MHz antennas suggested the tunnel is 12-14 m deep and 100-120 m long with three chambers at its end, interpretations that were confirmed by excavations in 2014. Archeologists believe that due to the tunnel's sacredness and importance, one of the chambers may be the tomb of a ruler of the ancient city. The MCW and FMC algorithms determined the periods of subsurface strata of the tunnel. GPR traces inside-and-outside the tunnel/chamber, outside the tunnel/chamber and inside the tunnel/chamber analyzed with the MCW and filtered FMC algorithms determined the periods of the tunnel and chamber fillings, clay and matrix (limestone-clay compound). The tunnel filling period obtained by MCW analysis (14.37 ns) reflects the mixed limestone-clay compound of this stratum since its value is close to that of the period of the matrix (15.22 ns); periods of the chamber filling (11.40 ± 0.40 ns) and the matrix (11.40 ± 1.00 ns) were almost identical. FMC analysis of the tunnel obtained a period (5.08 ± 1.08 ns) close to that of the chamber (4.27 ± 0.82 ns), suggesting the tunnel and chamber are filled with similar materials. The use of both algorithms allows a deeper analysis since the similarities of the tunnel and chamber filling periods could not have been determined with the MCW algorithm alone. The successful application of the new multi-cross algorithms to archeological GPR data suggests they may also be used to search water and other resources in celestial bodies.
Surface geophysical methods for characterising frozen ground in transitional permafrost landscapes
Briggs, Martin A.; Campbell, Seth; Nolan, Jay; Walvoord, Michelle Ann; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Lane, John W.
2017-01-01
The distribution of shallow frozen ground is paramount to research in cold regions, and is subject to temporal and spatial changes influenced by climate, landscape disturbance and ecosystem succession. Remote sensing from airborne and satellite platforms is increasing our understanding of landscape-scale permafrost distribution, but typically lacks the resolution to characterise finer-scale processes and phenomena, which are better captured by integrated surface geophysical methods. Here, we demonstrate the use of electrical resistivity imaging (ERI), electromagnetic induction (EMI), ground penetrating radar (GPR) and infrared imaging over multiple summer field seasons around the highly dynamic Twelvemile Lake, Yukon Flats, central Alaska, USA. Twelvemile Lake has generally receded in the past 30 yr, allowing permafrost aggradation in the receded margins, resulting in a mosaic of transient frozen ground adjacent to thick, older permafrost outside the original lakebed. ERI and EMI best evaluated the thickness of shallow, thin permafrost aggradation, which was not clear from frost probing or GPR surveys. GPR most precisely estimated the depth of the active layer, which forward electrical resistivity modelling indicated to be a difficult target for electrical methods, but could be more tractable in time-lapse mode. Infrared imaging of freshly dug soil pit walls captured active-layer thermal gradients at unprecedented resolution, which may be useful in calibrating emerging numerical models. GPR and EMI were able to cover landscape scales (several kilometres) efficiently, and new analysis software showcased here yields calibrated EMI data that reveal the complicated distribution of shallow permafrost in a transitional landscape.
GPR survey, as one of the best geophysical methods for social and industrial needs
NASA Astrophysics Data System (ADS)
Chernov, Anatolii
2016-04-01
This paper is about ways and methods of applying non-invasive geophysical method - Ground penetrating radar (GPR) survey in different spheres of science, industry, social life and culture. Author would like to show that geological methods could be widely used for solving great variety of industrial, human safety and other problems. In that article, we take GPR survey as an example of such useful geophysical methods. It is a fact that investigation of near surface underground medium is important process, which influence on development of different spheres of science and social life: investigation of near surface geology (layering, spreading of rock types, identification of voids, etc.), hydrogeology (depth to water horizons, their thickness), preparation step for construction of roads and buildings (civil geology, engineering geology), investigation of cultural heritage (burial places, building remains,...), ecological investigations (land slides, variation in underground water level, etc.), glaciology. These tasks can be solved by geological methods, but as usual, geophysical survey takes a lot of time and energy (especially electric current and resistivity methods, seismic survey). Author claims that GPR survey can be performed faster than other geophysical surveys and results of GPR survey are informative enough to make proper conclusions. Some problems even cannot be solved without GPR. For example, identification of burial place (one of author's research objects): results of magnetic and electric resistivity tomography survey do not contain enough information to identify burial place, but according to anomalies on GPR survey radarograms, presence of burial place can be proven. Identification of voids and non-magnetic objects also hardly can be done by another non-invasive geophysics surveys and GPR is applicable for that purpose. GPR can be applied for monitoring of dangerous processes in geological medium under roads, buildings, parks and other places of human activity. Monitoring of such hazards as landslides, underground erosion, variation in ground water level can help prevent dangerous processes with destructive consequences, which can result in peoples' injuries and even death. Moreover, GPR can be used in other spheres of life, where investigation of hidden (under or behind conductive for electromagnetic wave material) objects is needed: rescue operations (finding of people after natural and human-made disasters under snow, under debris of building material); military purpose (security systems, identification of people presence through walls, doors, ground etc.). Author work on algorithms (first of all for VIY GPRs (http://viy.ua/)), which will help more precisely find objects of interest on radarograms and even solve inverse problem of geophysics. According to information in that article, geophysical methods can be widely used to solve great variety of tasks and help to investigate humans' past (researches of cultural heritage) and provide information to create safe and comfortable future (preventing of natural hazards and better planning of construction).
NASA Astrophysics Data System (ADS)
Tosti, Fabio; Slob, Evert
2015-04-01
This work will endeavour to review the current status of research activities carried out in Working Project 2.5 'Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil' within the framework of Working Group 2 'GPR surveying of pavements, bridges, tunnels and buildings; underground utility and void sensing' of the COST (European COoperation in Science and Technology) Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar' (www.GPRadar.eu). Overall, the Project includes 55 Participants from over 21 countries representing 33 Institutions. By considering the type of Institution, a percentage of 64% (35 units) comes from the academic world, while Research Centres and Companies include, respectively, the 27% (15 units) and 9% (5 units) of Institutions. Geographically speaking, Europe is the continent most represented with 18 out of 21 countries, followed by Africa (2 countries) and Asia (1 country). In more details and according to the Europe sub-regions classification provided by the United Nations, Southern Europe includes 39% of countries, Western Europe 27%, while Northern and Eastern Europe are equally present with 17% of countries each. Relying on the main purpose of Working Project 2.5, namely, the ground-penetrating radar-based evaluation of volumetric water content in structures, substructures , foundations, and soils, four main issues have been overall addressed over the first two years of activities. The first one, has been related to provide a comprehensive state of the art on the topic, due to the wide-ranging applications covered in the main disciplines of civil engineering, differently demanding. In this regard, two main publications reviewing the state of the art have been produced [1,2]. Secondly, discussions among Working Group Chairs and other Working Project Leaders have been undertaken and encouraged to avoid the risk of overlapping amongst similar topics from other Working Projects which directly could have dealt with moisture evaluation. As a result, independent and complementary targets have been singled out. To cite a few, interesting exchange of views took place in both the First and Second Action General Meetings of Rome and Vienna, respectively, in July 2013 and May 2014. In addition, a questionnaire with a relevant list of topics together with the identification of test scenarios for advanced comparison of inspection procedures have gathered invaluable information on the main expertises, fields of application, and equipments managed by the Project participants. The heterogeneous scenario outlined consequently, has indeed represented the third main issue to address. According to the Participants responses, roads were found to be the main target investigated (53%) so far, followed by soil materials (21%). In line with this, asphalt and compacted loose materials gathered the main interest among the main constituent materials with, respectively, 39% and 22%, as well as organic soils (22%). In this framework, the intermediate scale of investigation s, i.e., 0.01 m2 < s < 100 m2, was found to be the most used for surveying. Finally, the fourth issue has been focused at avoiding the research to get blocked by ensuring a continuous updating of the latest results in moisture assessment using ground-penetrating radar achieved by Project 2.5 Participants [3-9]. Acknowledgements The authors would like to thank COST, for funding the COST Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar'. References [1] Tosti, F., Determination, by using GPR, of the volumetric water content in structures, substructures, foundations and soil. State of the art and open issues. Proceedings of the 1st COST Action General Meeting TU1208, Rome, Italy, 22-24 July 2013, pp. 99-105. ISBN: 978-88-548-6190-9. [2] Tosti, F., Slob, E.C., Determination, by using GPR, of the volumetric water content in structures, substructures, foundations and soil. In. 'Civil Engineering applications of Ground Penetrating Radar', Springer ed., 2015. [3] De Coster A., Tran A.P. and Lambot S. Information content in frequency-dependent, multi-offset GPR data for layered media reconstruction using full-wave inversion, EGU Conference, 2014, Vienna, Austria. [4] De Coster A., Tran A.P. and Lambot S. Impact of the antenna offset and the number of frequencies on layered media reconstruction using full-wave inversion in near-field conditions, GPR Conference, 2014, Brussels, Belgium. [5] De Pue J., Van Meirvenne M. and Cornelis W. Simultaneous measurement of surface and subsoil water content with air-coupled GPR, GPR Conference, 2014, Brussels, Belgium. [6] Fernandes J.M. and Pais J. Assessment of moisture in road pavements, GPR Conference, 2014, Brussels, Belgium. [7] Hugenschmidt J., Wenk F.and Brühwiler E. GPR chloride inspection of a RC bridge deck slab followed by an examination of the results, GPR Conference, 2014, Brussels, Belgium [8] Mourmeaux N., Meunier F., Tran A.P. and Lambot S. High-resolution monitoring of root water uptake dynamics in laboratory conditions using full-wave inversion of near-field radar data, EGU Conference, 2014, Vienna, Austria. [9] Mourmeaux N., Tran A.P. and Lambot S. Soil permittivity and conductivity characterization by full-wave inversion of near-field GPR data, GPR Conference, 2014, Brussels, Belgium.
NASA Astrophysics Data System (ADS)
Nimnate, P.; Thitimakorn, T.; Choowong, M.; Hisada, K.
2017-12-01
The Khorat Plateau from northeast Thailand, the upstream part of the Mun River flows through clastic sedimentary rocks. A massive amount of sand was transported. We aimed to understand the evolution of fluvial system and to discuss the advantages of two shallow geophysical methods for describing subsurface morphology of modern and paleo-channels. We applied Electrical Resistivity Tomography (ERT) and Ground Penetrating Radar (GPR) to characterize the lateral, vertical morphological and sedimentary structures of paleo-channels, floodplain and recent point bars. Both methods were interpreted together with on-sites boreholes to describe the physical properties of subsurface sediments. As a result, we concluded that four radar reflection patterns including reflection free, shingled, inclined and hummocky reflections were appropriated to apply as criteria to characterize lateral accretion, the meandering rivers with channel-filled sequence and floodplain were detected from ERT profiles. The changes in resistivity correspond well with differences in particle size and show relationship with ERT lithological classes. Clay, silt, sand, loam and bedrock were classified by the resistivity data. Geometry of paleo-channel embayment and lithological differences can be detected by ERT, whereas GPR provides detail subsurface facies for describing point bar sand deposit better than ERT.
Comparison of air-coupled GPR data analysis results determined by multiple analysts
NASA Astrophysics Data System (ADS)
Martino, Nicole; Maser, Ken
2016-04-01
Current bridge deck condition assessments using ground penetrating radar (GPR) requires a trained analyst to manually interpret substructure layering information from B-scan images in order to proceed with an intended analysis (pavement thickness, concrete cover, effects of rebar corrosion, etc.) For example, a recently developed method to rapidly and accurately analyze air-coupled GPR data based on the effects of rebar corrosion, requires that a user "picks" a layer of rebar reflections in each B-scan image collected along the length of the deck. These "picks" have information like signal amplitude and two way travel time. When a deck is new, or has little rebar corrosion, the resulting layer of rebar reflections is readily evident and there is little room for subjectivity. However, when a deck is severely deteriorated, the rebar layer may be difficult to identify, and different analysts may make different interpretations of the appropriate layer to analyze. One highly corroded bridge deck, was assessed with a number of nondestructive evaluation techniques including 2GHz air-coupled GPR. Two trained analysts separately selected the rebar layer in each B-scan image, choosing as much information as possible, even in areas of significant deterioration. The post processing of the selected data points was then completed and the results from each analyst were contour plotted to observe any discrepancies. The paper describes the differences between ground coupled and air-coupled GPR systems, the data collection and analysis methods used by two different analysts for one case study, and the results of the two different analyses.
Radar Detection of Layering in Ice: Experiments on a Constructed Layered Ice Sheet
NASA Astrophysics Data System (ADS)
Carter, L. M.; Koenig, L.; Courville, Z.; Ghent, R. R.; Koutnik, M. R.
2016-12-01
The polar caps and glaciers of both Earth and Mars display internal layering that preserves a record of past climate. These layers are apparent both in optical datasets (high resolution images, core samples) and in ground penetrating radar (GPR) data. On Mars, the SHARAD (Shallow Radar) radar on the Mars Reconnaissance Orbiter shows fine layering that changes spatially and with depth across the polar caps. This internal layering has been attributed to changes in fractional dust contamination due to obliquity-induced climate variations, but there are other processes that can lead to internal layers visible in radar data. In particular, terrestrial sounding of ice sheets compared with core samples have revealed that ice density and composition differences account for the majority of the radar reflectors. The large cold rooms and ice laboratory facility at the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) provide us a unique opportunity to construct experimental ice sheets in a controlled setting and measure them with radar. In a CRREL laboratory, we constructed a layered ice sheet that is 3-m deep with a various snow and ice layers with known dust concentrations (using JSC Mars-1 basaltic simulant) and density differences. These ice sheets were profiled using a commercial GPR, at frequencies of 200, 400 and 900 MHz, to determine how the radar profile changes due to systematic and known changes in snow and ice layers, including layers with sub-wavelength spacing. We will report results from these experiments and implications for interpreting radar-detected layering in ice on Earth and Mars.
NASA Astrophysics Data System (ADS)
Chernov, Anatolii; Dziubacki, Dariusz; Cogoni, Martina; Bądescu, Alexandru
2018-03-01
The article presents results of a ground penetrating radar (GPR) investigation carried out in the Church of the Assumption of the Blessed Virgin Mary in Kłodzko, Poland, dating from the 14th to 16th centuries. Due to the 20th century wars, the current state of knowledge about the history of the church is still poor. Under the floor of the Catholic temple, unknown structures might exist. To verify the presence of underground structures such as crypts and tombs, a GPR survey was carried out in chapels and aisles with 500 and 800 MHz GPR shielded antennas. Numerous anomalies were detected. It was concluded that those under the chapels were caused by the presence of crypts beneath the floor.
A study was conducted (1) to assess the capability of groundpenetrating radar (GPR) to identify natural subsurface features, detect man-made objects burled in the soil, and both detect and define the extent of contaminated soil or ground water due to a toxic spill, and (2) to det...
John Bain; Frank Day; John Butnor
2017-01-01
Accurate quantification of coarse roots without disturbance represents a gap in our understanding of belowground ecology. Ground penetrating radar (GPR) has shown significant promise for coarse root detection and measurement, however root orientation relative to scanning transect direction, the difficulty identifying dead root mass, and the effects of root shadowing...
NASA Astrophysics Data System (ADS)
Kuroda, S.; Ishii, N.; Morii, T.
2017-12-01
Capillary barriers have been known as the method to protect subsurface regions against infiltration from soil surface. It is caused by essentially heterogeneous structure in permeability or soil physical property and produce non-uniform infiltration process then, in order to estimate the actual situation of the capillary barrier effect, the site-characterization with imaging technique like geophysical prospecting is effective. In this study, we examine the applicability of GPR to characterization for capillary barriers. We built a sand box with 90x340x90cm in which a thin high-permeable gravel layer was embedded as a capillary barrier. We conducted an infiltration test in the sand box using porous tube array for irrigation. It is expected to lead to non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed common offset profiling (COP) with multi- frequency antenna and transmission measurements like cross-borehole radar. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur or not. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil.
NASA Astrophysics Data System (ADS)
Yeboah-Forson, Albert; Comas, Xavier; Whitman, Dean
2014-07-01
The limestone composing the Biscayne Aquifer in southeast Florida is characterized by cavities and solution features that are difficult to detect and quantify accurately because of their heterogeneous spatial distribution. Such heterogeneities have been shown by previous studies to exert a strong influence in the direction of groundwater flow. In this study we use an integrated array of geophysical methods to detect the lateral extent and distribution of solution features as indicative of anisotropy in the Biscayne Aquifer. Geophysical methods included azimuthal resistivity measurements, electrical resistivity imaging (ERI) and ground penetrating radar (GPR) and were constrained with direct borehole information from nearby wells. The geophysical measurements suggest the presence of a zone of low electrical resistivity (from ERI) and low electromagnetic wave velocity (from GPR) below the water table at depths of 4-9 m that corresponds to the depth of solution conduits seen in digital borehole images. Azimuthal electrical measurements at the site reported coefficients of electrical anisotropy as high as 1.36 suggesting the presence of an area of high porosity (most likely comprising different types of porosity) oriented in the E-W direction. This study shows how integrated geophysical methods can help detect the presence of areas of enhanced porosity which may influence the direction of groundwater flow in a complex anisotropic and heterogeneous karst system like the Biscayne Aquifer.
Accounting for Hydrologic State in Ground-Penetrating Radar Classification Systems
2014-04-22
water content as a result of infiltration processes. • Demonstrated that effective medium approximations (one-dimensional flow and ray theory...280 290 300 310 320 330 340 -5 0 5 10 15 20 (a) (b) (c) Page 8 of 32 Figure 6: a) Conceptual model of flow experiment and GPR rays showing... ray theory for GPR) for characterizing the hydrologic state of the subsurface under arbitrary water content conditions. Figure 7: Comparison of
Exploitation of Microdoppler and Multiple Scattering Phenomena for Radar Target Recognition
2006-08-24
is tested with measurement data. The resulting GPR images demonstrate the effectiveness of the proposed algorithm. INTRODUCTION Subsurface imaging to...utilizes the fast Fourier . transform (FFT) to expedite the imaging GPR. Recently, we re- .... ported a fast and effective SAR-based subsurface ... imaging tech- nique that can provide good resolutions in both the range and cross-range domains I111. Our algorithm differs from Witten’s [91 and Hansen’s
NASA Astrophysics Data System (ADS)
Zaki, N. F. M.; Ismail, M. A. M.; Hazreek Zainal Abidin, Mohd; Madun, Aziman
2018-04-01
Tunnel construction in typical karst topography face the risk which unknown geological condition such as abundant rainwater, ground water and cavities. Construction of tunnel in karst limestone frequently lead to potentially over-break of rock formation and cause failure to affected area. Physical character of limestone which consists large cavity prone to sudden failure and become worsen due to misinterpretation of rock quality by engineer and geologists during analysis stage and improper method adopted in construction stage. Consideration for execution of laboratory and field testing in rock limestone should be well planned and arranged in tunnel construction project. Several tests including Ground Penetration Radar (GPR) and geological face mapping were studied in this research to investigate the performances of limestone rock in tunnel construction, measured in term of rock mass quality that used for risk assessment. The objective of this study is to focus on the prediction of geological condition ahead of tunnel face using short range method (GPR) and verified by geological face mapping method to determine the consistency of actual geological condition on site. Q-Value as the main indicator for rock mass classification was obtained from geological face mapping method. The scope of this study is covering for tunnelling construction along 756 meters in karst limestone area which located at Timah Tasoh Tunnel, Bukit Tebing Tinggi, Perlis. For this case study, 15% of GPR results was identified as inaccurate for rock mass classification in which certain chainage along this tunnel with 34 out of 224 data from GPR was identified as incompatible with actual face mapping.
NASA Astrophysics Data System (ADS)
Schmäck, J.; Klotzsche, A.; Van Der Kruk, J.; Vereecken, H.; Bechtold, M.
2017-12-01
The characterization of peatlands is of particular interest, since areas with peat soils represent global hotspots for the exchange of greenhouse gases. Their effect on global warming depends on several parameters, like mean annual water level and land use. Models of greenhouse gas emissions and carbon accumulation in peatlands can be improved by including small-scale soil properties that e.g. act as gas traps and periodically release gases to the atmosphere during ebullition events. Ground penetrating radar (GPR) is well suited to non- or minimal invasively characterize and improve our understanding of dynamic processes that take place in the critical zone. It uses high frequency electromagnetic waves to image and characterize the dielectric permittivity and electrical conductivity of the critical zone, which can be related to hydrogeological properties like porosity, soil water content, salinity and clay content. In the last decade, the full-waveform inversion of crosshole GPR data has proved to be a powerful tool to improve the image resolution compared to standard ray-based methods. This approach was successfully applied to several different aquifers and was able to provide decimeter-scale resolution images including small-scale high contrast layers that can be related to zones of high porosity, zones of preferential flow or clay lenses. The comparison to independently measured e.g. logging data proved the reliability of the method. Here, for the first time crosshole GPR full-waveform inversion is used to image three peatland plots with different land use that are part of the "Ahlen-Falkenberger Moor peat bog complex" in northwestern Germany. The full-waveform inversion of the acquired data returned higher resolution images than standard ray-based GPR methods, and, is able to improve our understanding of subsurface structures. The comparison of the different plots is expected to provide new insights into gas content and gas trapping structures across different land uses. Additionally, season-related changes of peatland soil properties are investigated. The crosshole GPR full-waveform inversion was successfully applied to several datasets and the results show the utility and credibility of GPR FWI to analyze peatland properties.
NASA Astrophysics Data System (ADS)
Okazaki, Hiroko; Kwak, Youngjoo; Tamura, Toru
2015-07-01
We conducted a ground-penetrating radar (GPR) survey of gravelly braid bars in the Abe River, central Japan, to clarify the three-dimensional (3D) variations in their depositional facies under various geomorphologic conditions. In September 2011, a ten-year return-period flood in the study area reworked and deposited braid bars. After the flood, we surveyed three bars with different geomorphologies using a GPR system with a 250-MHz antenna and identified seven fundamental radar depositional facies: Inclined reflections (facies Ia and Ib), horizontal to subhorizontal reflections (facies IIa and IIb), discontinuous reflections (facies IIIa and IIIb), and facies assemblage with a large-scale channel-shaped lower boundary (facies IV). Combinations of these facies indicate bar formation processes: channel filling, lateral aggradation, and lateral and downstream accretion. In the Abe River, aerial photographs and airborne laser scanning data were obtained before and after the flood. The observed changes of the surface topography are consistent with the subsurface results seen in the GPR sections. This study demonstrated that the erosional and depositional architecture observed among bars with different channel styles was related to river width and represented depositional processes for high-sediment discharge. The quantitative characterizations of the sedimentary architecture will be useful for interpreting gravelly fluvial deposits in the rock record.
Analysis of the Emitted Wavelet of High-Resolution Bowtie GPR Antennas
Rial, Fernando I.; Lorenzo, Henrique; Pereira, Manuel; Armesto, Julia
2009-01-01
Most Ground Penetrating Radars (GPR) cover a wide frequency range by emitting very short time wavelets. In this work, we study in detail the wavelet emitted by two bowtie GPR antennas with nominal frequencies of 800 MHz and 1 GHz. Knowledge of this emitted wavelet allows us to extract as much information as possible from recorded signals, using advanced processing techniques and computer simulations. Following previously published methodology used by Rial et al. [1], which ensures system stability and reliability in data acquisition, a thorough analysis of the wavelet in both time and frequency domain is performed. Most of tests were carried out with air as propagation medium, allowing a proper analysis of the geometrical attenuation factor. Furthermore, we attempt to determine, for each antenna, a time zero in the records to allow us to correctly assign a position to the reflectors detected by the radar. Obtained results indicate that the time zero is not a constant value for the evaluated antennas, but instead depends on the characteristics of the material in contact with the antenna. PMID:22408523
NASA Astrophysics Data System (ADS)
Tosti, Fabio; Benedetto, Andrea; Pajewski, Lara; Alani, Amir M.
2017-04-01
Ground-penetrating radar (GPR) is one of the most acknowledged and established non-destructive testing (NDT) techniques within the context of the health monitoring and assessment of transportation infrastructures. GPR is being increasingly used for the effective management of infrastructural assets as it weakens the case for using other destructive monitoring methods, such as digging holes, and allows for rapid and reliable detection of many causes of the subsurface damage. Thereby, its usage favours the optimisation of the economical expenditure for the effective maintenance of great infrastructures as well as it improves the public safety by preventing or not raising the risk of accidents. GPR has been used in highway, railway and airfield engineering as well as for the monitoring of critical infrastructures, such as bridges and tunnels. It has found established use in the assessment of the geometric properties of the subsurface, such as in the case of the evaluation of the pavement layer thicknesses, or the size of the rebars in concrete-made structural components. Major physical-based investigations have been focused on the evaluation of the moisture ingress in flexible road pavements and in concrete structures, as well as on the detection of the rebars corrosion caused by the ingress of chloride. The majority of these parameters are evaluated using methods of signal analysis and data processing based on the signal in the time domain. The sophistication of the hardware and software of the GPR systems over the last few years as well as the recent advances achieved in the research have contributed to raise the high potential of this non-destructive technique and paved the way towards new application areas in transportation engineering. In particular, GPR is nowadays finding major application when used with complementary non-destructive testing techniques, although it has still proved to provide reliable results in various self-standing applications. This work aims at presenting the recent advances and the new perspectives in the application of GPR to transportation engineering. This study reports on new experimental-based and theoretical models for the assessment of the physical (i.e., clay and water content in subgrade soils, railway ballast fouling) and the mechanical (i.e., the Young's modulus of elasticity) properties that are critical in maintaining the structural stability and the bearing capacity of the major transport infrastructures, such as highways, railways and airfields. With regard to the physical parameters, the electromagnetic behaviour related to the clay content in the load-bearing layers of flexible pavements as well as in subgrade soils has been analysed and modelled in both dry and wet conditions. Furthermore, it is discussed a new simulation-based methodology for the detection of the fouling content in railway ballast. Concerning the mechanical parameters, experimental based methods are presented for the assessment of the strength and deformation properties of the soils and the top-bounded layers of flexible pavements. Furthermore, unique case studies in terms of the methodology proposed, the survey planning and the site procedures in rather complex operations, are discussed in the case of bridges and tunnels inspections. Acknowledgements The Authors are grateful to the GI Division President Dr. Francesco Soldovieri and the relevant Award Committee in the context of the "GI Division Outstanding Early Career Scientists Award" of the European Geosciences Union. We also acknowledge the COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" for providing networking and discussion opportunities throughout its activity and operation as well as facilitating prospect for publishing research outputs.
Inversion of Attributes and Full Waveforms of Ground Penetrating Radar Data Using PEST
NASA Astrophysics Data System (ADS)
Jazayeri, S.; Kruse, S.; Esmaeili, S.
2015-12-01
We seek to establish a method, based on freely available software, for inverting GPR signals for the underlying physical properties (electrical permittivity, magnetic permeability, target geometries). Such a procedure should be useful for classroom instruction and for analyzing surface GPR surveys over simple targets. We explore the applicability of the PEST parameter estimation software package for GPR inversion (www.pesthomepage.org). PEST is designed to invert data sets with large numbers of parameters, and offers a variety of inversion methods. Although primarily used in hydrogeology, the code has been applied to a wide variety of physical problems. The PEST code requires forward model input; the forward model of the GPR signal is done with the GPRMax package (www.gprmax.com). The problem of extracting the physical characteristics of a subsurface anomaly from the GPR data is highly nonlinear. For synthetic models of simple targets in homogeneous backgrounds, we find PEST's nonlinear Gauss-Marquardt-Levenberg algorithm is preferred. This method requires an initial model, for which the weighted differences between model-generated data and those of the "true" synthetic model (the objective function) are calculated. In order to do this, the Jacobian matrix and the derivatives of the observation data in respect to the model parameters are computed using a finite differences method. Next, the iterative process of building new models by updating the initial values starts in order to minimize the objective function. Another measure of the goodness of the final acceptable model is the correlation coefficient which is calculated based on the method of Cooley and Naff. An accepted final model satisfies both of these conditions. Models to date show that physical properties of simple isolated targets against homogeneous backgrounds can be obtained from multiple traces from common-offset surface surveys. Ongoing work examines the inversion capabilities with more complex target geometries and heterogeneous soils.
NASA Astrophysics Data System (ADS)
Xiao Yong, Zhao; Xin, Ji Yong; Shuang Ying, Zuo
2018-03-01
In order to effectively classify the surrounding rock types of tunnels, a multi-factor tunnel surrounding rock classification method based on GPR and probability theory is proposed. Geological radar was used to identify the geology of the surrounding rock in front of the face and to evaluate the quality of the rock face. According to the previous survey data, the rock uniaxial compressive strength, integrity index, fissure and groundwater were selected for classification. The related theories combine them into a multi-factor classification method, and divide the surrounding rocks according to the great probability. Using this method to classify the surrounding rock of the Ma’anshan tunnel, the surrounding rock types obtained are basically the same as those of the actual surrounding rock, which proves that this method is a simple, efficient and practical rock classification method, which can be used for tunnel construction.
Study of a rehabilitated road using GPR and FWD
NASA Astrophysics Data System (ADS)
Marecos, Vania; Fontul, Simona; de Lurdes Antunes, Maria; Solla, Mercedes; Pajewski, Lara
2017-04-01
This work focus on the structural evaluation of a rehabilitated road after the conclusion of the first phase of the improvement works. The activities developed in the study comprised the characterization of the pavement layers condition (before the application of the asphalt surface layer) and the prediction of the pavement bearing capacity (taking into account the contribution of the wearing course, to be placed in accordance with the project specifications). For this study two non-destructive tests (NDT) were combined: Falling Weight Deflectometer (FWD) and Ground Penetrating Radar (GPR). The original pavement was essentially composed by a granular layer treated with a bituminous emulsion. The main objectives of the rehabilitation works were the enlargement of the road platform in selected locations, with the construction of a new pavement, and also the reinforcement of the existing pavement to increase its bearing capacity. The FWD tests were performed to assess the bearing capacity of the pavement and were conducted along the outer wheel path, in both directions. The spacing between measurement points was 75 m and the applied impulse load was 50 kN. The results showed a great variability of the deflections measured along the section under study. A preliminary zonation of the pavement was carried out, and was latter adjusted based on the results of the GPR. To determine the thickness of the pavement layers a GPR survey was carried out using a 1.8 GHz antenna and a radar control unit SIR-20, both from GSSI. The GPR tests were performed continuously along the same line as the FWD tests. The GPR tests allowed for the identification of the different structures of the pavement, corresponding to the zones with the new pavement and the existing pavement with reinforcement. Some cores were extracted to calibrate the thickness of the GPR bituminous layers, to verify the conditions of adhesion between layers and also to perform laboratory tests to characterize the bituminous mixtures. Test pits were also carried out to calibrate the GPR thickness for the granular layers. It was concluded that the areas with higher deflections coincided with the new pavement areas. The GPR results showed that in the existing reinforced pavement zones the total thickness of the reinforcement layers were higher than design values. On the other hand, for the new pavement zones, it was observed lower thicknesses for the base and sub-base layers and also for the binder layer, in comparison with the design values. The results of the laboratory tests carried out on samples of the bituminous mixtures showed that, in general, those mixtures had percentages of bitumen and porosities above the expected values. Based on the tests carried out, pavement response models were established and their predictable load capacity was estimated. This abstract is a contribution to COST Action TU1208 Civil Engineering Applications of Ground Penetrating Radar.
Ground Penetrating Radar technique for railway track characterization in Portugal
NASA Astrophysics Data System (ADS)
De Chiara, Francesca; Fontul, Simona; Fortunato, Eduardo; D'Andrea, Antonio
2013-04-01
Maintenance actions are significant for transport infrastructures but, today, costs have to be necessary limited. A proper quality control since the construction phase is a key factor for a long life cycle and for a good economy policy. For this reason, suitable techniques have to be chosen and non-destructive tests represent an efficient solution, as they allow to evaluate infrastructure characteristics in a continuous or quasi-continuous way, saving time and costs, enabling to make changes if tests results do not comply with the project requirements. Ground Penetrating Radar (GPR) is a quick and effective technique to evaluate infrastructure condition in a continuous manner, replacing or reducing the use of traditional drilling method. GPR application to railways infrastructures, during construction and monitoring phase, is relatively recent. It is based on the measuring of layers thicknesses and detection of structural changes. It also enables the assessment of materials properties that constitute the infrastructure and the evaluation of the different types of defects such as ballast pockets, fouled ballast, poor drainage, subgrade settlement and transitions problems. These deteriorations are generally the causes of vertical deviations in track geometry and they cannot be detected by the common monitoring procedures, namely the measurements of track geometry. Moreover, the development of new GPR systems with higher antenna frequencies, better data acquisition systems, more user friendly software and new algorithms for calculation of materials properties can lead to a regular use of GPR. Therefore, it represents a reliable technique to assess track geometry problems and consequently to improve maintenance planning. In Portugal, rail inspection is performed with Plasser & Theurer EM120 equipment and recently 400 MHz IDS antennas were installed on it. GPR tests were performed on the Portuguese rail network and, as case study in this paper, a renewed track was considered. The aim was to detect, along the track, changes of the layers in terms of both thicknesses and materials characteristics by using specific software, Railwaydoctor. Different test campaigns were studied in order to determine and compare the materials dielectric constants that can be influenced by water content values, due to measurements performed in different seasons.
NASA Astrophysics Data System (ADS)
Mount, Gregory J.; Comas, Xavier
2014-10-01
Subsurface water flow in South Florida is largely controlled by the heterogeneous nature of the karst limestone in the Biscayne aquifer and its upper formation, the Miami Limestone. These heterogeneities are amplified by dissolution structures that induce changes in the aquifer's material and physical properties (i.e., porosity and dielectric permittivity) and create preferential flow paths. Understanding such patterns are critical for the development of realistic groundwater flow models, particularly in the Everglades, where restoration of hydrological conditions is intended. In this work, we used noninvasive ground penetrating radar (GPR) to estimate the spatial variability in porosity and the dielectric permittivity of the solid phase of the limestone at centimeter-scale resolution to evaluate the potential for field-based GPR studies. A laboratory setup that included high-frequency GPR measurements under completely unsaturated and saturated conditions was used to estimate changes in electromagnetic wave velocity through Miami Limestone samples. The Complex Refractive Index Model was used to derive estimates of porosity and dielectric permittivity of the solid phase of the limestone. Porosity estimates of the samples ranged between 45.2 and 66.0% and showed good correspondence with estimates of porosity using analytical and digital image techniques. Solid dielectric permittivity values ranged between 7.0 and 13.0. This study shows the ability of GPR to image the spatial variability of porosity and dielectric permittivity in the Miami Limestone and shows potential for expanding these results to larger scales and other karst aquifers.
NASA Astrophysics Data System (ADS)
Santos, Vinicius Rafael N.; Teixeira, Fernando L.
2017-04-01
Ground penetrating radar (GPR) is a useful sensing modality for mapping and identification of underground infrastructure networks, such as metal and concrete pipes (gas, water or sewer), phone conduits or cables, and other buried objects. Due to the polarization-dependent response of typical targets, it is of interest to investigate the optimum antenna arrangement and/or combination of arrangements that maximize the detection and classification capabilities of polarimetric GPR imaging systems. Here, we provide a preliminary study of time-reversal-based techniques applied to target detection by GPR utilizing different relative orientations of linear-polarized antenna elements (with respect to each other, as well as to the targets). We modeled three different pipe materials (metallic, plastic and concrete) and GPR systems operating at center frequencies of 100 MHz and 200 MHz. Full-wave numerical simulations are adopted to account for mutual coupling between targets. This type of assessment study may contribute to the improvement of GPR data interpretation of infrastructure networks in urban area surveys and in other engineering studies.
NASA Astrophysics Data System (ADS)
Thao, S. J.; Plattner, A.
2015-12-01
Farming in the San Joaquin Valley in central California is often impeded by a shallow rock-hard layer of consolidated soil commonly referred to as hardpan. To be able to successfully farm, this layer, if too shallow, needs to be removed either with explosives or heavy equipment. It is therefore of great value to obtain information about depth and presence of such a layer prior to agricultural operations. We tested the applicability of electrical resistivity tomography and ground penetrating radar in hardpan detection. On our test site of known hardpan depth (from trenching) and local absence (prior dynamiting to plant trees), we successfully recovered the known edge of a hardpan layer with both methods, ERT and GPR. The clay-rich soil significantly reduced the GPR penetration depth but we still managed to map the edges at a known gap where prior dynamiting had removed the hardpan. Electrical resistivity tomography with a dipole-dipole electrode configuration showed a clear conductive layer at expected depths with a clearly visible gap at the correct location. In our data analysis and representation we only used either freely available or in-house written software.
John Butnor; Brian Roth; Kurt Johnsen
2005-01-01
Tree root systems are commonly evaluated via labor intensive, destructive, time-consuming excavations. Ground-penetrating radar (GPR) can be used to detect and monitor roots if there is sufficient electromagnetic contrast with the surrounding soil matrix. This methodology is commonly used in civil engineering for non-destructive testing of concrete as well as road and...
Use of ground-penetrating radar to study tree roots in the southeastern United States
John R. Butnor; J.A. Doolittle; L. Kress; Susan Cohen; Kurt H. Johnsen
2001-01-01
Summary: The objectives of our study were to assess the feasibility of using ground-penetrating radar (GPR) to study roots over a broad range of soil conditions in the southeastern United States. Study sites were located in the Southern Piedmont, Carolina Sandhills and Atlantic Coast Flatwoods. At each site, we tested for selection of the appropriate...
Three-dimensional radar imaging techniques and systems for near-field applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.
2016-05-12
The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar cross-section (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, through-barrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.
NASA Astrophysics Data System (ADS)
Fernández-Álvarez, José-Paulino; Rubio-Melendi, David; Quirós Castillo, Juan Antonio; González-Quirós, Andrés; Cimadevilla-Fuente, David
2017-09-01
Ground-penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) have been fruitfully employed for archaeological purposes. An area at the Pancorbo medieval site in Burgos (Spain) has been jointly explored by GPR and ERT in the search for the buried remains of the Pancorbo medieval village. After data collection, quality control and merging, a shallow depth of interest was identified and studied in detail. 3D resistivity simulation, considering sensible geometrical structures of the targets helped discover anomalies present in the area. On the other hand, visual GPR inspection was considerably enhanced by trace energy attribute analysis which provided a plan view of the existing anomalies. Two posterior archaeological excavations have a very good correlation between the identified anomalies and the excavated remains. The survey also provides hints for the continuation of the excavation.
GPR applications in Civil Engineering in Spain - state-of-the-art
NASA Astrophysics Data System (ADS)
Pérez Gracia, Vega; Solla, Mercedes; Santos-Assunçao, Sonia; Lorenzo, Henrique
2014-05-01
GPR was introduced in Spain in 1990, and the first significant work was the PhD thesis of H. Lorenzo in 1994. Due to its versatile applicability, the employ has been increased and actually, GPR is extensively used in detection of pipes, wiring and urban services mainly. During the last years, this method was also widely utilized in the detection of graves from the civil war and in forensic studies, with irregular results. It was also commonly applied in archaeology. Actually exists more than 20 private companies offering geotechnical services by means of GPR. Also, several public institutions as Universities and Research Institutes base part of their research in GPR or in GPR applications. Notwithstanding, no training courses of specific formation on GPR is offered, but in several doctorate programs it is possible to work with GPR. Also, in many schools, GPR is part of the geophysical formation of graduate students. However, no national guidelines and rules exist, and each company defines the investigation protocols. Nevertheless, one of the aims of the Comisión Española de Geodesia y Geofísica (Spanish Committee for Geodesy and Geophysics) is to define guidelines for the GPR studies. Probably, the existence of national guidelines or perhaps European guidelines could be the most effective way to promote the responsible use of GPR in different domains. On the other hand, perhaps recommendations on the use of combined methodologies could be a practical way to persuade in the application of geophysical non-destructive technologies. The CEDEX, Centro de Estudios y Experimentación de Obras Públicas (Center for Studies and Experimentation in Civil Engineering), which is a civil engineering research agency in Spain, offers different test sites to calibrate and evaluate the method. It is an autonomous organization, organically ascribed at present to the Ministry of Fomento, and functionally ascribed to the Ministries of Fomento and Medioambiente of Spain, giving assistance to various administrations, public institutions and private companies. What is more, some of the existing private companies have also minor test sites to analyze the behavior of the signal and its propagation depending on the type of asphalt concrete. GPR is used mainly in detection of pipes and urban services and various private companies are specialized in these tasks. Another widespread application is archaeological survey; one private company is also specialized in archaeology evaluations, using GPR combined with magnetometer. Forensic examinations are also common applications in Spain. Other less common applications are: regular inspection of roads, bridges and tunnels, cultural heritage buildings assessment, shallow geology studies and quality control in civil engineering. Acknowledgment The study is a contribution to the EU funded COST Action TU1208, "Civil Engineering Applications of Ground Penetrating Radar".
GPR image analysis to locate water leaks from buried pipes by applying variance filters
NASA Astrophysics Data System (ADS)
Ocaña-Levario, Silvia J.; Carreño-Alvarado, Elizabeth P.; Ayala-Cabrera, David; Izquierdo, Joaquín
2018-05-01
Nowadays, there is growing interest in controlling and reducing the amount of water lost through leakage in water supply systems (WSSs). Leakage is, in fact, one of the biggest problems faced by the managers of these utilities. This work addresses the problem of leakage in WSSs by using GPR (Ground Penetrating Radar) as a non-destructive method. The main objective is to identify and extract features from GPR images such as leaks and components in a controlled laboratory condition by a methodology based on second order statistical parameters and, using the obtained features, to create 3D models that allows quick visualization of components and leaks in WSSs from GPR image analysis and subsequent interpretation. This methodology has been used before in other fields and provided promising results. The results obtained with the proposed methodology are presented, analyzed, interpreted and compared with the results obtained by using a well-established multi-agent based methodology. These results show that the variance filter is capable of highlighting the characteristics of components and anomalies, in an intuitive manner, which can be identified by non-highly qualified personnel, using the 3D models we develop. This research intends to pave the way towards future intelligent detection systems that enable the automatic detection of leaks in WSSs.
NASA Astrophysics Data System (ADS)
Nordiana, A. N.; Nordiana, M. M.; Jia, Teoh Ying; Hisham, Hazrul; Sulaiman, Nabila; Maslinda, Umi; Taqiuddin, Z. M.; Nur Amalina, M. K. A.; Afiq Saharudin, Muhamad
2017-04-01
The study location was at Bukit Kukus, Kuala Ketil, Kedah, Malaysia where the geological outcrop of this Semanggol Formation comprises of chert, mudstone, and volcanic tuff. The study was conducted using two geophysical methods, which are 2-D Resistivity and Ground Penetrating Radar (GPR). The objectives of the study are to correlate both of the geophysical methods through the value of conductivity and to identify the physical properties of rocks through the value of porosity and permeability. The data acquisition for both methods was conducted on the same line. For 2-D Resistivity method, the length of the line is 60 m with 1.5 m electrode spacing and the array used was Wenner-Schlumberger. For GPR method, the survey line was on top of the resistivity line, and the frequency of the antenna used is 250 MHz. A good correlation exists between both of the GPR signature and contour maps for resistivity from the surfer 10 software with the outcrop feature. Conductivity value from both GPR and Resistivity method was compared and the range value of conductivity obtained from GPR method almost equivalent with Resistivity method based on derivation and calculation for the sedimentary rocks, which are 0.037 to 0.574 miliSiemens per metre (mS/m) for chert and 0.186 to 10.142 miliSiemens per metre (mS/m) for mudstone. Two types of rock samples were taken, and several geotechnical tests were conducted, but only the value of permeability, K and porosity, ɸ of chert can be calculated, which are 1.95E-22 m2 (original condition) and 2.27E-22 m2 (dry condition) and 3 percent respectively as the sample of mudstone was damaged. The parameter of the 2-D resistivity method derived from Archie’s law was used to calculate the porosity, ɸf value using the Formation Factor equation. The range values of porosity, ɸf for chert mostly in the range of 5 to 25 percent, which is 6.26 to 13.36 percent but slightly out of range for mudstone, which is 14.12 to 36.02 percent.
NASA Technical Reports Server (NTRS)
Mcgill, J. W.; Glass, C. E.; Sternberg, B. K.
1990-01-01
The ultimate goal is to create an extraterrestrial unmanned system for subsurface mapping and exploration. Neural networks are to be used to recognize anomalies in the profiles that correspond to potentially exploitable subsurface features. The ground penetrating radar (GPR) techniques are likewise identical. Hence, the preliminary research focus on GPR systems will be directly applicable to seismic systems once such systems can be designed for continuous operation. The original GPR profile may be very complex due to electrical behavior of the background, targets, and antennas, much as the seismic record is made complex by multiple reflections, ghosting, and ringing. Because the format of the GPR data is similar to the format of seismic data, seismic processing software may be applied to GPR data to help enhance the data. A neural network may then be trained to more accurately identify anomalies from the processed record than from the original record.
Looking to the Future: Non-contact Methods for Measuring Streamflow
Costa, J.E.; Cheng, R.T.; Haeni, F.P.; Melcher, N.B.; Spicer, K.R.; Plant, J.; Keller, W.C.; Hayes, K.; Wahl, T.L.; Pugh, C.A.; Oberg, K.A.; Vermeyen, T.B.
2002-01-01
We have conducted a series of proof-of-concept experiments to demonstrate whether it is possible to make completely non-contact open-channel discharge measurements. After an extensive evaluation of potential technologies, we concluded a combination of high-frequency (microwave) radar (for measuring surface velocity) and low-frequency radar (ground-penetrating radar) for measuring channel cross-section, had the best chance for success. The first experiment in 1999 on the Skagit River, Washington, using non-contact methods, produced a discharge value nearly exactly the same as from an ADCP and current meter. Surface-velocity data were converted to mean velocity based on measurements of the velocity profile (multiplied by 0.85), and radar signal speed in impure fresh water was measured to be 0.11-0.12 ft/ns. The weak link was thought to be the requirement to suspend the GPR antenna over the water, which required a bridge or cableway. Two contractors, expert with radar, were unsuccessful in field experiments to measure channel cross-section from the riverbank. Another series of experiments were designed to demonstrate whether both radar systems could be mounted on a helicopter, flown back and forth across a river, and provide data to compute flow. In Sept. 2000 and May 2001, a series of helicopter flights with mounted radar systems successfully measured surface velocity and channel cross-section of the Cowlitz River, Washington.
Applications of ground penetrating radar (GPR) in bridge deck monitoring and assessment
NASA Astrophysics Data System (ADS)
Alani, Amir M.; Aboutalebi, Morteza; Kilic, Gokhan
2013-10-01
This paper presents the essence of two case studies by the authors on two major bridges in the UK. The first case study reports on the applications of GPR and associated work carried out on the Forth Road Bridge near Edinburgh, Scotland, with the main objective of identifying possible structural defects including damaged rebar and moisture ingress at specific locations of the bridge deck. The second case study focuses on a full assessment of the Pentagon Road Bridge, in Chatham, Kent, England with particular emphasis on the identification of possible defects including structural cracks within the deck structure and establishing the layout of the upper and lower rebar positions throughout the bridge. These studies present interesting results in terms of locations of rebar and an accurate estimate of concrete cover condition as well as reporting on a remarkable similarity in the processed data concerning areas affected by ingress of moisture within the deck structures of the two bridges under investigation. It is believed that this paper will be of particular interest to bridge engineers and structural engineering practitioners with enthusiasm for adopting non-destructive testing methods such as GPR in the health monitoring and assessment of bridge structures. The observed similarities in the processed data between the two reported case studies present an interesting concept within the general context of the interpretation of GPR data, with the potential for use in many other forthcoming cases. The paper also reports on the adopted method for the GPR survey with emphasis on difficulties and challenges encountered during the actual survey. The presented results benefit from advanced processing and presentation techniques.
NASA Astrophysics Data System (ADS)
Kruse, S. E.; McNiff, C. M.; Marshall, A. M.; Courtland, L. M.; Connor, C.; Charbonnier, S. J.; Abdollahzadeh, M.; Connor, L.; Farrell, A. K.; Harburger, A.; Kiflu, H. G.; Malservisi, R.; Njoroge, M.; Nushart, N.; Richardson, J. A.; Rookey, K.
2013-12-01
Numerous recent studies have demonstrated that detailed investigation of scoria cone and maar morphology can reveal rich details the eruptive and erosion histories of these volcanoes. A suite of geophysical surveys were conducted to images Rattlesnake Crater in the San Francisco Volcanic Field, AZ, US. We report here the results of ~3.4 km of ground penetrating radar (GPR) surveys that target the processes of deposition and erosion on the pair of cinder cones that overprint the southeast edge of Rattlesnake crater and on the tuff ring that forms the crater rim. Data were collected with 500, 250, 100, and 50 MHz antennas. The profiles were run in a radial direction down the northeast flanks of the cones (~1 km diameter, ~120 meters height) , and on the inner and outer margins of the oblong maar rim (~20-80 meters height). A maximum depth of penetration of GPR signal of ~15m was achieved high on the flanks of scoria cones. A minimum depth of essentially zero penetration occurred in the central crater. We speculate that maximum penetration occurs near the peaks of the cones and crater rim because ongoing erosion limits new soil formation. Soil formation would tend to increase surface conductivity and hence decrease GPR penetration. Soil is probably better developed within the crater, precluding significant radar penetration there. On the northeast side of the gently flattened rim of the easternmost scoria cone, the GPR profile shows internal layering that dips ~20 degrees northeast relative to the current ground surface. This clearly indicates that the current gently dipping surface is not a stratigraphic horizon, but reflects instead an erosive surface into cone strata that formed close to the angle of repose. Along much of the cone flanks GPR profiles show strata dipping ~4-5 degrees more steeply than the current surface, suggesting erosion has occurred over most of the height of the cone. An abrupt change in strata attitude is observed at the gradual slope diminishment at the base of the scoria cone, where the dip of GPR reflectors changes from radially out from the cone to horizontal or radially inward toward the cone. These changes suggest that grain avalanche packages thin at the base of the slope or that cone strata terminate against the pre-existing surface. We do not identify continuous tephra fall deposits extending from the base of the cone, which would be indicative of violent strombolian activity. On one profile strong diffractors at the base of the cone suggest the presence of now-buried ballistics that rolled to the bottom of the slope. A major question to be addressed with the GPR data is whether the scoria cone erosion by downslope granular flow can be modeled using the diffusion-advection equation with constant diffusivity and advection terms, and in contrast, how much of the profile is explained by downslope movement at the time of the eruption. GPR reflecting horizons on the maar rim are smoother in appearance than those on the scoria cone, perhaps indicating finer-grained material and the absence of diffracting blocks. On the west rim layers suggest indicated a paleo-rim with a flat top ~50 meters wide, surrounded on both sides by strata dipping more steeply than the current surface. Radar stratgraphy outside the northeastern maar rim is much more complex.
NASA Astrophysics Data System (ADS)
McClellan, Matthew; Comas, Xavier; Benscoter, Brian; Hinkle, Ross; Sumner, David
2017-11-01
Peat soils store a large fraction of the global soil carbon (C) pool and comprise 95% of wetland C stocks. While isolated freshwater wetlands in temperate and tropical biomes account for more than 20% of the global peatland C stock, most studies of wetland soil C have occurred in expansive peatlands in northern boreal and subarctic biomes. Furthermore, the contribution of small depressional wetlands in comparison to larger wetland systems in these environments is very uncertain. Given the fact that these wetlands are numerous and variable in terms of their internal geometry, innovative methods are needed for properly estimating belowground C stocks and their overall C contribution to the landscape. In this study, we use a combination of ground penetrating radar (GPR), aerial imagery, and direct measurements (coring) in conjunction with C core analysis to develop a relation between C stock and surface area, and estimate the contribution of subtropical depressional wetlands to the total C stock of pine flatwoods at the Disney Wilderness Preserve (DWP), Florida. Additionally, GPR surveys were able to image collapse structures underneath the peat basin of depressional wetlands, depicting lithological controls on the formation of depressional wetlands at the DWP. Results indicate the importance of depressional wetlands as critical contributors to the landscape C budget at the DWP and the potential of GPR-based approaches for (1) rapidly and noninvasively estimating the contribution of depressional wetlands to regional C stocks and (2) evaluating the formational processes of depressional wetlands.
Attribute-driven transfer learning for detecting novel buried threats with ground-penetrating radar
NASA Astrophysics Data System (ADS)
Colwell, Kenneth A.; Collins, Leslie M.
2016-05-01
Ground-penetrating radar (GPR) technology is an effective method of detecting buried explosive threats. The system uses a binary classifier to distinguish "targets", or buried threats, from "nontargets" arising from system prescreener false alarms; this classifier is trained on a dataset of previously-observed buried threat types. However, the threat environment is not static, and new threat types that appear must be effectively detected even if they are not highly similar to every previously-observed type. Gathering a new dataset that includes a new threat type is expensive and time-consuming; minimizing the amount of new data required to effectively detect the new type is therefore valuable. This research aims to reduce the number of training examples needed to effectively detect new types using transfer learning, which leverages previous learning tasks to accelerate and improve new ones. Further, new types have attribute data, such as composition, components, construction, and size, which can be observed without GPR and typically are not explicitly included in the learning process. Since attribute tags for buried threats determine many aspects of their GPR representation, a new threat type's attributes can be highly relevant to the transfer-learning process. In this work, attribute data is used to drive transfer learning, both by using attributes to select relevant dataset examples for classifier fusion, and by extending a relevance vector machine (RVM) model to perform intelligent attribute clustering and selection. Classification performance results for both the attribute-only case and the low-data case are presented, using a dataset containing a variety of threat types.
Investigation of HMA compactability using GPR technique
NASA Astrophysics Data System (ADS)
Plati, Christina; Georgiou, Panos; Loizos, Andreas
2014-05-01
In-situ field density is often regarded as one of the most important controls used to ensure that an asphalt pavement being placed is of high quality. The achieved density results from the effectiveness of the applied compaction mode on the Hot Mix Asphalt (HMA) layer. It is worthwhile mentioning that the proper compaction of HMA increases pavement fatigue life, decreases the amount of permanent deformation or rutting, reduces the amount of oxidation or aging, decreases moisture damage or stripping, increases strength and internal stability, and may decrease slightly the amount of low-temperature cracking that may occur in the mix. Conventionally, the HMA density in the field is assessed by direct destructive methods, including through the cutting of samples or drilling cores. These methods are characterized by a high accuracy, although they are intrusive and time consuming. In addition, they provide local information, i.e. information only for the exact test location. To overcome these limitations, the use of non-intrusive techniques is often recommended. The Ground Penetrating Radar (GPR) technique is an example of a non-intrusive technique that has been increasingly used for pavement investigations over the years. GPR technology is practical and application-oriented with the overall design concept, as well as the hardware, usually dependent on the target type and the material composing the target and its surroundings. As the sophistication of operating practices increases, the technology matures and GPR becomes an intelligent sensor system. The intelligent sensing deals with the expanded range of GPR applications in pavements such as determining layer thickness, detecting subsurface distresses, estimating moisture content, detecting voids and others. In addition, the practice of using GPR to predict in-situ field density of compacted asphalt mixture material is still under development and research; however the related research findings seem to be promising. Actually, the prediction is not regulated by any standards or specifications, although the practice is considered to be workable. In view of the above, an extensive experiment was carried out in both the laboratory and the field based on a trial asphalt pavement section under construction. In the laboratory, the study focused on the estimation of the density of HMA specimens achieved through three different roller compaction modes (static, vibratory and a combination of both) targeted to simulate field compaction and assess the asphalt mix compactability. In the field, the different compaction modes were successively implemented on three subsections of the trial pavement section. Along each subsection, GPR data was collected in order to determine the new material's dielectric properties and based on that, to predict its density using proper algorithm. Thus, cores were extracted to be used as ground truth data. The comparison of the new asphalt material compactability as obtained from the laboratory specimens, the predictions based on GPR data and the field cores provided useful information that facilitated the selection of the most effective compaction mode yielding the proper compaction degree in the field. This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar."
Yang, Xiuhao; Henderson, Gregg; Mao, Lixin; Evans, Ahmad
2009-08-01
A ground penetrating radar (GPR) technique was used to detect Formosan subterranean termite (Coptotermes formosanus) and red imported fire ant (Solenopsis invicta) hazards and risks (targets) in a soil levee at the London Avenue Canal in New Orleans, LA. To make this assessment, GPR signal scans were examined for features produced by termite or ant activities and potential sources of food and shelter such as nests, tree roots, and voids (tunnels). The total scanned length of the soil levee was 4,125 m. The average velocity and effective depth of the radar penetration was 0.080 m/ns and 0.61 m, respectively. Four hundred twenty-seven targets were identified. Tree roots (38), voids (31), fire ant nests (209), and metal objects (149) were detected, but no Formosan termite carton nests were identified. The lack of identified termite nests may be related to drowning events at the time to the flood. Based on the target density (TD), the two new floodwall and levee sections that were rebuilt or reinforced after they were destroyed by Hurricane Katrina in 2005 were determined to be at low potential risk from termites and ants. A merging target density (MTD) method indicated a high potential risk near one of the breached sections still remains. Foraging and nesting activity of Formosan subterranean termites and red imported fire ants may be a contributory factor to the levee failure at the London Avenue Canal.
A1297 GPR vs. hydro video clip.
DOT National Transportation Integrated Search
2014-03-01
This research has examined the use of nondestructive techniques for concrete bridge deck condition assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research was ground-coupled ground penetrating radar (G...
NASA Astrophysics Data System (ADS)
Vilumaa, Kadri; Tõnisson, Hannes; Orviku, Kaarel
2014-05-01
Ground Penetrating Radar (GPR) is mainly used for scientific research in coastal geology in the Institute of Ecology at Tallinn University. We currently use SIR-3000 radar with 100, 270 , 300 and 500 MHz antennae. Our main targets have been detecting the thickness of soil and sand layers and finding out the layers in coastal sediments which reflect extreme storm events. Our GPR studies in various settings have suggested that the internal structures of the ridge-dune complexes are dominated by numerous layers dipping in various directions. Such information helps us to reconstruct and understand prevailing processes during their formation (e.g. seaward dipping lamination in coastal ridge-dune complexes indicating cross-shore and wave-induced transport of the sediments). Currently, we are trying to elaborate methodology for distinguishing the differences between aeolian and wave transported sediments by using GPR. However, paludified landscapes (often covered by water), very rough surface (numerous bushes and soft surface), moderate micro topography has slowed this process significantly. Moreover, we have been able to use GPR during the winter period (applied on ice or snow) and compare the quality of our results with the measurements taken during the summer period. We have found that smooth surface (in winter) helps detecting very strong signal differences (border between different sediment types - sand, peat, silt, etc.) but reduces the quality of the signal to the level where the detection of sedimentation patterns within one material (e.g. tilted layers in sand) is difficult. We have carried out several other science-related studies using GPR. These studies include determining the thickness of peat layer in bogs (to calculate the volume of accumulated peat or to find most suitable locations for coring), measuring the thickness of mud and gyttja layer in lakes (to find most suitable locations for coring, reconstructing initial water level of the lake or calculating the volume of stored carbon in the lake). Additionally, we have done several archaeology-related research including the search of buried city walls and caves (Tallinn old town), buried Viking ship (Saaremaa Island) and several other archaeological objects. We have also done some applied studies including the search of underground power cables, heating pipes, melioration systems, ammunition warehouses (from World War II) and buried ammunition from the military training fields. Aknowledgement: The authors acknowledge COST for funding Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar', supporting part of this work.
NASA Astrophysics Data System (ADS)
Tabarro, P. G.; Pouliot, J.; Fortier, R.; Losier, L.-M.
2017-10-01
For the planning and sustainable development of large cities, it is critical to accurately locate and map, in 3D, existing underground utility networks (UUN) such as pipelines, cables, ducts, and channels. An emerging non-invasive instrument for collecting underground data such as UUN is the ground-penetrating radar (GPR). Although its capabilities, handling GPR and extracting relevant information from its data are not trivial tasks. For instance, both GPR and its complimentary software stack provide very few capabilities to co-visualize GPR collected data and other sources of spatial data such as orthophotography, DEM or road maps. Furthermore, the GPR interface lacks functionalities for adding annotation, editing geometric objects or querying attributes. A new approach to support GPR survey is proposed in this paper. This approach is based on the integration of multiple sources of geospatial datasets and the use of a Web-GIS system and relevant functionalities adapted to interoperable GPR data acquisition. The Web-GIS is developed as an improved module in an existing platform called GVX. The GVX-GPR module provides an interactive visualization of multiple layers of structured spatial data, including GPR profiles. This module offers new features when compared to traditional GPR surveys such as geo-annotated points of interest for identifying spatial clues in the GPR profiles, integration of city contextual data, high definition drone and satellite pictures, as-built, and more. The paper explains the engineering approach used to design and develop the Web GIS and tests for this survey approach, mapping and recording UUN as part of 3D city model.
NASA Astrophysics Data System (ADS)
Craig, M. S.; Kundariya, N.; Hayashi, K.; Srinivas, A.; Burnham, M.; Oikawa, P.
2017-12-01
Near surface geophysical surveys were conducted in the Sacramento-San Joaquin Delta for earthquake hazard assessment and to provide estimates of peat thickness for use in carbon models. Delta islands have experienced 3-8 meters of subsidence during the past century due to oxidation and compaction of peat. Projected sea level rise over the next century will contribute to an ongoing landward shift of the freshwater-saltwater interface, and increase the risk of flooding due to levee failure or overtopping. Seismic shear wave velocity (VS) was measured in the upper 30 meters to determine Uniform Building Code (UBC)/ National Earthquake Hazard Reduction Program (NEHRP) site class. Both seismic and ground penetrating radar (GPR) methods were employed to estimate peat thickness. Seismic surface wave surveys were conducted at eight sites on three islands and GPR surveys were conducted at two of the sites. Combined with sites surveyed in 2015, the new work brings the total number of sites surveyed in the Delta to twenty.Soil boreholes were made at several locations using a hand auger, and peat thickness ranged from 2.1 to 5.5 meters. Seismic surveys were conducted using the multichannel analysis of surface wave (MASW) method and the microtremor array method (MAM). On Bouldin Island, VS of the surficial peat layer was 32 m/s at a site with pure peat and 63 m/s at a site peat with higher clay and silt content. Velocities at these sites reached a similar value, about 125 m/s, at a depth of 10 m. GPR surveys were performed at two sites on Sherman Island using 100 MHz antennas, and indicated the base of the peat layer at a depth of about 4 meters, consistent with nearby auger holes.The results of this work include VS depth profiles and UBC/NEHRP site classifications. Seismic and GPR methods may be used in a complementary fashion to estimate peat thickness. The seismic surface wave method is a relatively robust method and more effective than GPR in many areas with high clay content or where surface sediments have been disturbed by human activities. GPR does however provide significantly higher resolution and better depth control in areas with suitable recording conditions.
NASA Astrophysics Data System (ADS)
Akinpelu, Oluwatosin Caleb
The growing need for better definition of flow units and depositional heterogeneities in petroleum reservoirs and aquifers has stimulated a renewed interest in outcrop studies as reservoir analogues in the last two decades. Despite this surge in interest, outcrop studies remain largely two-dimensional; a major limitation to direct application of outcrop knowledge to the three dimensional heterogeneous world of subsurface reservoirs. Behind-outcrop Ground Penetrating Radar (GPR) imaging provides high-resolution geophysical data, which when combined with two dimensional architectural outcrop observation, becomes a powerful interpretation tool. Due to the high resolution, non-destructive and non-invasive nature of the GPR signal, as well as its reflection-amplitude sensitivity to shaly lithologies, three-dimensional outcrop studies combining two dimensional architectural element data and behind-outcrop GPR imaging hold significant promise with the potential to revolutionize outcrop studies the way seismic imaging changed basin analysis. Earlier attempts at GPR imaging on ancient clastic deposits were fraught with difficulties resulting from inappropriate field techniques and subsequent poorly-informed data processing steps. This project documents advances in GPR field methodology, recommends appropriate data collection and processing procedures and validates the value of integrating outcrop-based architectural-element mapping with GPR imaging to obtain three dimensional architectural data from outcrops. Case studies from a variety of clastic deposits: Whirlpool Formation (Niagara Escarpment), Navajo Sandstone (Moab, Utah), Dunvegan Formation (Pink Mountain, British Columbia), Chinle Formation (Southern Utah) and St. Mary River Formation (Alberta) demonstrate the usefulness of this approach for better interpretation of outcrop scale ancient depositional processes and ultimately as a tool for refining existing facies models, as well as a predictive tool for subsurface reservoir modelling. While this approach is quite promising for detailed three-dimensional outcrop studies, it is not an all-purpose panacea; thick overburden, poor antenna-ground coupling in rough terrains typical of outcrops, low penetration and rapid signal attenuation in mudstone and diagenetic clay- rich deposits often limit the prospects of this novel technique.
Ground-penetrating radar evidence of refrozen meltwater in the firn column of Larsen C Ice Shelf
NASA Astrophysics Data System (ADS)
Hubbard, B. P.; Booth, A. D.; Sevestre, H.; Kulessa, B.; Bevan, S. L.; Luckman, A. J.; Kuipers Munneke, P.; Buzzard, S. C.; Ashmore, D. W.; O'Leary, M.
2017-12-01
Firn densification, which has been strongly implicated in ice shelf collapse, can occur rapidly by the percolation and refreezing of surface meltwater. This process reduces the permeability of the firn column, potentially establishing a positive feedback between densification and the occurrence of surface meltwater ponds, and may ultimately facilitate fracturing associated with shelf collapse. Meltwater ponds on Larsen C's Cabinet (CI) and Whirlwind (WI) inlets form where foehn winds reach and influence the shelf surface. While associated zones of refrozen meltwater are strongly evidenced in borehole optical televiewing (OPTV) and seismic refraction data, the sparsity of these observations limits insight into the dimensions of these zones. Here, we present highlights from an 800-km archive of ground-penetrating radar (GPR) profiles acquired by the MIDAS project on CI and WI during November-December 2015. In the upstream reaches of CI and WI, stratified firn layers are abruptly truncated by zones of diminished GPR reflectivity. These initiate 5 m beneath the surface and extend to a depth of 30 m. Volumes appear to exceed 6 km3 (CI) and 1 km3 (WI); these are underestimates, established only where there is GPR control. The horizontal distribution of these zones correlates with the pattern of reduced backscatter in SAR images, supporting their association with meltwater ponds. GPR reflectivity models, derived from OPTV density trends, suggest reduced GPR wavespeeds (as do GPR velocity analyses) and dielectric contrasts consistent with homogenised and densified firn. A firn density model supports the ability of meltwater ponds to form periodically in Cabinet Inlet and subsequently homogenise the density of the firn column. Our observations suggest that ice shelves affected by surface melt and ponding can contain spatially extensive bodies of ice that are warmer and denser than assumed so far, with significant implications for ice shelf flow and fracturing.
Dogan, M.; Van Dam, R. L.; Bohling, Geoffrey C.; Butler, J.J.; Hyndman, D.W.
2011-01-01
Full-resolution 3D Ground-Penetrating Radar (GPR) data were combined with high-resolution hydraulic conductivity (K) data from vertical Direct-Push (DP) profiles to characterize a portion of the highly heterogeneous MAcro Dispersion Experiment (MADE) site. This is an important first step to better understand the influence of aquifer heterogeneities on observed anomalous transport. Statistical evaluation of DP data indicates non-normal distributions that have much higher similarity within each GPR facies than between facies. The analysis of GPR and DP data provides high-resolution estimates of the 3D geometry of hydrostratigraphic zones, which can then be populated with stochastic K fields. The lack of such estimates has been a significant limitation for testing and parameterizing a range of novel transport theories at sites where the traditional advection-dispersion model has proven inadequate. ?? 2011 by the American Geophysical Union.
GPR-derived architecture of a lahar-generated fan at Cotopaxi volcano, Ecuador
NASA Astrophysics Data System (ADS)
Ettinger, Susanne; Manville, Vern; Kruse, Sarah; Paris, Raphaël
2014-05-01
The internal geometry of volcaniclastic fans produced by aggradation during lahar events is difficult to examine in modern settings because of the frequent lack of three-dimensional exposures. This makes it challenging to (i) reconstruct the spatial and temporal evolution of such fans; and (ii) interpret observed facies stratigraphy in the context of lahar flow dynamics from proximal to distal fan reaches. This research therefore presents the results of a ground penetrating radar (GPR) survey of the Rumipamba fan at the mouth of the Burrohuaycu quebrada on the southwestern flank of Cotopaxi volcano. A survey grid consisting of 50 individual GPR profiles representing a total length of 19.4 km was constructed covering most of the 4-km2 large fan surface. All GPR profiles were collected using a PulseEKKO 100 with a 400 V transmitter. Fan sediments consist of sandy and gravelly lahar deposits, alternating with volcanic fallout including ash and pumice lapilli, at times reworked by fluvial processes. Deposits could be ground-truthed to a depth of ~3 m, whereas GPR penetration depth reaches 15 m. Data interpretation was based on classification into 15 distinct radar facies characterized by the nature of their bounding surfaces and/or internal features, cross-referenced where possible with shallow exposures. Three main facies were identified: parallel, irregular, and clinoform. Erosional contacts were distinguished from aggradational ones (vertical, channel fill, and lateral accretion). Flow parallel versus flow transverse and proximal-distal variations in deposit architecture were featured. The results of this study confirm the existence of two major channel systems in the northern and southern extremities of the fan and the more recent formation of a smaller central fan channel system. Deposit architecture is complex and facies chronologies illustrate that lahars have affected the entire survey area.
NASA Astrophysics Data System (ADS)
Jernsletten, J. A.; Heggy, E.
2004-05-01
INTRODUCTION: This study compares the use of (diffusive) Transient Electromagnetics (TEM) for sounding of subsurface water in conductive Mars analog environments to the use of (propagative) Ground-Penetrating Radar (GPR) for the same purpose. We show data from three field studies: 1) Radar sounding data (GPR) from the Nubian aquifer, Bahria Oasis, Egypt; 2) Diffusive sounding data (TEM) from Pima County, Arizona; and 3) Shallower sounding data using the Fast-Turnoff TEM method from Peña de Hierro in the Rio Tinto area, Spain. The latter is data from work conducted under the auspices of the Mars Analog Research and Technology Experiment (MARTE). POTENTIAL OF TEM: A TEM survey was carried out in Pima County, Arizona, in January 2003. Data was collected using 100 m Tx loops, a ferrite-cored magnetic coil Rx antenna, and a sounding frequency of 16 Hz. The dataset has ~500 m depth of investigation, shows a ~120 m depth to the water table (confirmed by several USGS test wells in the area), and a conductive (~20-40 Ω m) clay-rich soil above the water table. The Rio Tinto Fast-Turnoff TEM data was collected using 40 m Tx loops, 10 m Rx loops, and a 32 Hz sounding frequency. Note ~200 m depth of investigation and a conductive high at ~80 m depth (interpreted as water table). Data was also collected using 20 m Tx loops (10 m Rx loops) in other parts of the area. Note ~50 m depth of investigation and a conductive high at ~15 m depth (interpreted as subsurface water flow under mine tailings matching surface flows seen coming out from under the tailings, and shown on maps). Both of these interpretations were roughly confirmed by preliminary results from the MARTE ground truth drilling campaign carried out in September and October 2003. POTENTIAL OF GPR: A GPR experiment was carried out in February 2003 in the Bahria Oasis in the western Egyptian desert, using a 2 MHz monostatic GPR, mapping the Nubian Aquifer at depths of 100-900 m, beneath a thick layer of homogenous marine sedimentary quaternary and tertiary structures constituted mainly of highly resistive dry porous dolomite, illinite, limestone and sandstone, given a reasonable knowledge of the local geoelectrical properties of the crust. The GPR was able to map the first interface between the dolomitic limestone and the gravel, while the detection of the deep subsurface water table remains uncertain due to the uncertainties arising from some instrumentational and geoelectrical problems. In locations were the water table was at shallower depths (less then 200 m), but with the presence of very thin layers (less than 0.5 m) of reddish dry clays, the technique failed to probe the moist interface and to map any significant stratigraphy. CONCLUSIONS: GPR excels in resolution, productivity (logistical efficiency) and is well suited for the shallower applications, but is more sensitive to highly conductive layers (result of wave propagation and higher frequencies), and achieves considerably smaller depths of investigation than TEM. The (diffusive) TEM method uses roughly two orders of magnitude lower sounding frequencies than GPR, is less sensitive to highly conductive layers, achieves considerably deeper depths of investigation, and is more suitable for sounding very deep subsurface water. Compared with GPR, TEM suffers for very shallow applications in terms of resolution and logistical efficiency. Fast-Turnoff TEM, with its very early measured time windows, achieves higher resolution than conventional TEM in shallow applications, and somewhat bridges the gap between GPR and TEM in terms of depths of investigation and suitable applications.
Spectral analysis of ground penetrating radar signals in concrete, metallic and plastic targets
NASA Astrophysics Data System (ADS)
Santos, Vinicius Rafael N. dos; Al-Nuaimy, Waleed; Porsani, Jorge Luís; Hirata, Nina S. Tomita; Alzubi, Hamzah S.
2014-01-01
The accuracy of detecting buried targets using ground penetrating radar (GPR) depends mainly on features that are extracted from the data. The objective of this study is to test three spectral features and evaluate the quality to provide a good discrimination among three types of materials (concrete, metallic and plastic) using the 200 MHz GPR system. The spectral features which were selected to check the interaction of the electromagnetic wave with the type of material are: the power spectral density (PSD), short-time Fourier transform (STFT) and the Wigner-Ville distribution (WVD). The analyses were performed with simulated data varying the sizes of the targets and the electrical properties (relative dielectric permittivity and electrical conductivity) of the soil. To check if the simulated data are in accordance with the real data, the same approach was applied on the data obtained in the IAG/USP test site. A noticeable difference was found in the amplitude of the studies' features in the frequency domain and these results show the strength of the signal processing to try to differentiate buried materials using GPR, and so can be used in urban planning and geotechnical studies.
Detection of bulk explosives using the GPR only portion of the HSTAMIDS system
NASA Astrophysics Data System (ADS)
Tabony, Joshua; Carlson, Douglas O.; Duvoisin, Herbert A., III; Torres-Rosario, Juan
2010-04-01
The legacy AN/PSS-14 (Army-Navy Portable Special Search-14) Handheld Mine Detecting Set (also called HSTAMIDS for Handheld Standoff Mine Detection System) has proven itself over the last 7 years as the state-of-the-art in land mine detection, both for the US Army and for Humanitarian Demining groups. Its dual GPR (Ground Penetrating Radar) and MD (Metal Detection) sensor has provided receiver operating characteristic curves (probability of detection or Pd versus false alarm rate or FAR) that routinely set the mark for such devices. Since its inception and type-classification in 2003 as the US (United States) Army standard, the desire for use of the AN/PSS-14 against alternate threats - such as bulk explosives - has recently become paramount. To this end, L-3 CyTerra has developed and tested bulk explosive detection and discrimination algorithms using only the Stepped Frequency Continuous Wave (SFCW) Ground Penetrating Radar (GPR) portion of the system, versus the fused version that is used to optimally detect land mines. Performance of the new bulk explosive algorithm against representative zero-metal bulk explosive target and clutter emplacements is depicted, with the utility to the operator also described.
Finite-difference time-domain simulation of GPR data
NASA Astrophysics Data System (ADS)
Chen, How-Wei; Huang, Tai-Min
1998-10-01
Simulation of digital ground penetrating radar (GPR) wave propagation in two-dimensional (2-D) media is developed, tested, implemented, and applied using a time-domain staggered-grid finite-difference (FD) numerical method. Three types of numerical algorithms for constructing synthetic common-shot, constant-offset radar profiles based on an actual transmitter-to-receiver configuration and based on the exploding reflector concept are demonstrated to mimic different types of radar survey geometries. Frequency-dependent attenuation is also incorporated to account for amplitude decay and time shift in the recorded responses. The algorithms are based on an explicit FD solution to Maxwell's curl equations. In addition, the first-order TE mode responses of wave propagation phenomena are considered due to the operating frequency of current GPR instruments. The staggered-grid technique is used to sample the fields and approximate the spatial derivatives with fourth-order FDs. The temporal derivatives are approximated by an explicit second-order difference time-marching scheme. By combining paraxial approximation of the one-way wave equation ( A2) and the damping mechanisms (sponge filter), we propose a new composite absorbing boundary conditions (ABC) algorithm that effectively absorb both incoming and outgoing waves. To overcome the angle- and frequency-dependent characteristic of the absorbing behaviors, each ABC has two types of absorption mechanism. The first ABC uses a modified Clayton and Enquist's A2 condition. Moreover, a fixed and a floating A2 ABC that operates at one grid point is proposed. The second ABC uses a damping mechanism. By superimposing artificial damping and by alternating the physical attenuation properties and impedance contrast of the media within the absorbing region, those waves impinging on the boundary can be effectively attenuated and can prevent waves from reflecting back into the grid. The frequency-dependent characteristic of the damping mechanism can be used to adjust the width of the absorbing zone around the computational domain. By applying any combination of absorbing mechanism, non-physical reflections from the computation domain boundary can be effectively minimized. The algorithm enables us to use very thin absorbing boundaries. The model can be parameterized through velocity, relative electrical permittivity (dielectric constants), electrical conductivity, magnetic permeability, loss tangent, Q values, and attenuation. According to this scheme, widely varying electrical properties of near-surface earth materials can be modeled. The capability of simulating common-source, constant-offset and zero-offset gathers is also demonstrated through various synthetic examples. The synthetic cases for typical GPR applications include buried objects such as pipes of different materials, AVO analysis for ground water exploration, archaeological site investigation, and stratigraphy studies. The algorithms are also applied to iterative modeling of GPR data acquired over a gymnasium construction site on the NCCU campus.
Ground-penetrating radar: use and misuse
NASA Astrophysics Data System (ADS)
Olhoeft, Gary R.
1999-10-01
Ground penetrating radar (GPR) has been used to explore the subsurface of the earth since 1929. Over the past 70 years, it has been widely used, misused and abused. Use includes agriculture, archaeology, environmental and geotechnical site characterization, minerals, groundwater and permafrost exploration, tunnel, utility, and unexploded ordnance location, dam inspection, and much more. Misuse includes mistaking above ground reflections for subsurface events or mapping things from off to the side as if they were directly below, synthetic aperture processing of dispersive data, minimum phase deconvolution, locating objects smaller than resolution limits of the wavelength in the ground, ignoring Fresnel zone limitations in mapping subsurface structure, processing radar data through seismic software packages without allowing for the differences, mapping the bottom of metal pipes from the top, claiming to see through thousands of feet of sediments, and more. GPR is also being abused as the regulatory environment changes and the radiofrequency spectrum is becoming more crowded by cellular phones, pagers, garage door openers, wireless computer networks, and the like. It is often thought to be a source of interference (though it never is) and it is increasingly interfered with by other radiofrequency transmitters.
Investigation of Underground Hydrocarbon Leakage using Ground Penetrating Radar
NASA Astrophysics Data System (ADS)
Srigutomo, Wahyu; Trimadona; Agustine, Eleonora
2016-08-01
Ground Penetrating Radar (GPR) survey was carried out in several petroleum plants to investigate hydrocarbon contamination beneath the surface. The hydrocarbon spills are generally recognized as Light Non-Aqueous Phase Liquids (LNAPL) if the plume of leakage is distributed in the capillary fringe above the water table and as Dense Non-Aqueous Phase Liquids (DNAPL) if it is below the water table. GPR antennas of 200 MHz and 400 MHz were deployed to obtain clear radargrams until 4 m deep. In general, the interpreted radargram sections indicate the presence of surface concrete layer, the compacted silty soill followed by sand layer and the original clayey soil as well as the water table. The presence of hydrocarbon plumes are identified as shadow zones (radar velocity and intensity contrasts) in the radargram that blur the layering pattern with different intensity of reflected signal. Based on our results, the characteristic of the shadow zones in the radargram is controlled by several factors: types of hydrocarbon (fresh or bio-degraded), water moisture in the soil, and clay content which contribute variation in electrical conductivity and dielectric constants of the soil.
Electromagnetic modelling of Ground Penetrating Radar responses to complex targets
NASA Astrophysics Data System (ADS)
Pajewski, Lara; Giannopoulos, Antonis
2014-05-01
This work deals with the electromagnetic modelling of composite structures for Ground Penetrating Radar (GPR) applications. It was developed within the Short-Term Scientific Mission ECOST-STSM-TU1208-211013-035660, funded by COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar". The Authors define a set of test concrete structures, hereinafter called cells. The size of each cell is 60 x 100 x 18 cm and the content varies with growing complexity, from a simple cell with few rebars of different diameters embedded in concrete at increasing depths, to a final cell with a quite complicated pattern, including a layer of tendons between two overlying meshes of rebars. Other cells, of intermediate complexity, contain pvc ducts (air filled or hosting rebars), steel objects commonly used in civil engineering (as a pipe, an angle bar, a box section and an u-channel), as well as void and honeycombing defects. One of the cells has a steel mesh embedded in it, overlying two rebars placed diagonally across the comers of the structure. Two cells include a couple of rebars bent into a right angle and placed on top of each other, with a square/round circle lying at the base of the concrete slab. Inspiration for some of these cells is taken from the very interesting experimental work presented in Ref. [1]. For each cell, a subset of models with growing complexity is defined, starting from a simple representation of the cell and ending with a more realistic one. In particular, the model's complexity increases from the geometrical point of view, as well as in terms of how the constitutive parameters of involved media and GPR antennas are described. Some cells can be simulated in both two and three dimensions; the concrete slab can be approximated as a finite-thickness layer having infinite extension on the transverse plane, thus neglecting how edges affect radargrams, or else its finite size can be fully taken into account. The permittivity of concrete can be defined through a constant real value, or else its frequency-dispersion properties can be taken into account by incorporating into the model Debye approximations. The electromagnetic source can be represented as a simple line of current (in the case of two-dimensional models), a Hertzian dipole, a bow tie antenna, or else, the realistic description of a commercial antenna can be included in the model [2]. Preliminary results for some of the proposed cells are presented, obtained by using GprMax [3], a freeware tool which solves Maxwell's equations by using a second order in space and time Finite-Difference Time-Domain algorithm. B-Scans and A-Scans are calculated at 1.5 GHz, for the total electric field and for the field back-scattered by targets embedded in the cells. A detailed description of the structures, together with the relevant numerical results obtained to date, are available for the scientific community on the website of COST Action TU1208, www.GPRadar.eu. Research groups working on the development of electromagnetic forward- and inverse-scattering techniques, as well as on imaging methods, might test and compare the accuracy and applicability of their approaches on the proposed set of scenarios. The aim of this initiative is not that of identifying the best methods, but more properly to indicate the range of reliability of each approach, highlighting its advantages and drawbacks. In the future, the realisation of the proposed concrete cells and the acquisition of GPR experimental data would allow a very effective benchmark for forward and inverse scattering methods. References [1] R. Yelf, A. Ward, "Nine steps to concrete wisdom." Proc. 13th International Conference on Ground Penetrating Radar, Lecce, Italy, 21-25 June 2010, pp. 1-8. [2] C. Warren, A. Giannopoulos, "Creating FDTD models of commercial GPR antennas using Taguchi's optimisation method." Geophysics (2011), 76, article ID G37. [3] A. Giannopoulos, "Modelling ground penetrating radar by GPRMAX." Construction and Building Materials (2005), 19, pp. 755-762.
Ground penetrating radar (GPR) for pavement evaluation.
DOT National Transportation Integrated Search
2012-12-01
In the near future the Arkansas State Highway and Transportation Department Pavement Management System (PMS) will utilize a : Falling Weight Deflectometer (FWD) to collect network level pavement structural data to aid in predicting performance of pav...
Moore, L.J.; Jol, H.M.; Kruse, S.; Vanderburgh, S.; Kaminsky, G.M.
2004-01-01
The southwest Washington coastline has experienced extremely high rates of progradation during the late Holocene. Subsurface stratigraphy, preserved because of progradation and interpreted using ground-penetrating radar (GPR), has previously been used successfully to document coastal response to prehistoric storm and earthquake events. New GPR data collected at Ocean Shores, Washington, suggest that the historic stratigraphy of the coastal barrier in this area represents a higher resolution record of coastal behavior than previously thought. GPR records for this location at 200 MHz reveal a series of gently sloping, seaward-dipping reflections with slopes similar to the modern beach and spacings on the order of 20-45 cm. Field evidence and model results suggest that thin (1-10 cm), possibly magnetite-rich, heavy-mineral lags or low-porosity layers left by winter storms and separated by thick (20-40 cm) summer progradational sequences are responsible for generating the GPR reflections. These results indicate that a record of annual progradation is preserved in the subsurface of the prograding barrier and can be quantified using GPR. Such records of annual coastal behavior, where available, will be invaluable in understanding past coastal response to climatic and tectonic forcing. ?? 2004.
NASA Astrophysics Data System (ADS)
Comas, Xavier; Wright, William
2014-08-01
The spatial and temporal variability in accumulation and release of greenhouse gases (mainly methane and carbon dioxide) to the atmosphere from peat soils remains very uncertain. The use of near-surface geophysical methods such as ground penetrating radar (GPR) has proven useful during the last decade to expand scales of measurement as related to in situ gas distribution and dynamics beyond traditional methods (i.e., gas chambers). However, this approach has focused exclusively on boreal peatlands, while no studies in subtropical systems like the Everglades using these techniques exist. In this paper GPR is combined with gas traps, time-lapse cameras, gas chromatography, and surface deformation measurements to explore biogenic gas dynamics (mainly gas buildup and release) in two locations in the Everglades. Similar to previous studies in northern peatlands, our data in the Everglades show a statistically significant correlation between the following: (1) GPR-estimated gas content and gas fluxes, (2) GPR-estimated gas content and surface deformation, and (3) atmospheric pressure and both GPR-estimated gas content and gas flux. From these results several gas-releasing events ranging between 33.8 and 718.8 mg CH4 m-2 d-1 were detected as identified by the following: (1) decreases in GPR-estimated gas content within the peat matrix, (2) increases in gas fluxes captured by gas traps and time-lapse cameras, and (3) decreases in surface deformation. Furthermore, gas-releasing events corresponded to periods of high atmospheric pressure. Changes in gas accumulation and release were attributed to differences in seasonality and peat soil type between sites. These results suggest that biogenic gas releases in the Everglades are spatially and temporarily variable. For example, flux events measured at hourly scales were up to threefold larger when compared to daily fluxes, therefore suggesting that flux measurements decline when averaged over longer time spans. This research therefore questions what the appropriate spatial and temporal scale of measurement is necessary to properly capture the dynamics of biogenic gas release in subtropical peat soils.
NASA Astrophysics Data System (ADS)
Baydar, Bora; Akar, Gözde Bozdaǧi.; Yüksel, Seniha E.; Öztürk, Serhat
2016-05-01
In this paper, a decision level fusion using multiple pre-screener algorithms is proposed for the detection of buried landmines from Ground Penetrating Radar (GPR) data. The Kernel Least Mean Square (KLMS) and the Blob Filter pre-screeners are fused together to work in real time with less false alarms and higher true detection rates. The effect of the kernel variance is investigated for the KLMS algorithm. Also, the results of the KLMS and KLMS+Blob filter algorithms are compared to the LMS method in terms of processing time and false alarm rates. Proposed algorithm is tested on both simulated data and real data collected at the field of IPA Defence at METU, Ankara, Turkey.
NASA Astrophysics Data System (ADS)
Amran, Tengku Sarah Tengku; Ismail, Mohamad Pauzi; Ahmad, Mohamad Ridzuan; Amin, Mohamad Syafiq Mohd; Sani, Suhairy; Masenwat, Noor Azreen; Ismail, Mohd Azmi; Hamid, Shu-Hazri Abdul
2017-01-01
A water pipe is any pipe or tubes designed to transport and deliver water or treated drinking with appropriate quality, quantity and pressure to consumers. The varieties include large diameter main pipes, which supply entire towns, smaller branch lines that supply a street or group of buildings or small diameter pipes located within individual buildings. This distribution system (underground) is used to describe collectively the facilities used to supply water from its source to the point of usage. Therefore, a leaking in the underground water distribution piping system increases the likelihood of safe water leaving the source or treatment facility becoming contaminated before reaching the consumer. Most importantly, leaking can result in wastage of water which is precious natural resources. Furthermore, they create substantial damage to the transportation system and structure within urban and suburban environments. This paper presents a study on the possibility of using ground penetrating radar (GPR) with frequency of 1GHz to detect pipes and leakages in underground water distribution piping system. Series of laboratory experiment was designed to investigate the capability and efficiency of GPR in detecting underground pipes (metal and PVC) and water leakages. The data was divided into two parts: 1. detecting/locating underground water pipe, 2. detecting leakage of underground water pipe. Despite its simplicity, the attained data is proved to generate a satisfactory result indicating GPR is capable and efficient, in which it is able to detect the underground pipe and presence of leak of the underground pipe.
Bistatic GPR Measurements in the Egyptian Western Desert - Measured and Simulated data
NASA Astrophysics Data System (ADS)
Ciarletti, V.; Le Gall, A.; Berthelier, J.; Ney, R.; Corbel, C.; Dolon, F.
2006-12-01
The TAPIR (Terrestrial And Planetary Investigation Radar) instrument has been designed at CETP (Centre d'etude des Environnements Terrestre et Planetaires) to explore the deep Martian subsurface (down to a few kilometers) and to detect liquid water reservoirs. TAPIR is an impulse ground penetrating radar operating at central frequencies ranging from 2 to 4 MHz operating from the surface. In November 2005, an updated version of the instrument working either in monostatic or in bi-static mode was tested in the Egyptian Western Desert. The work presented here focuses on the bi-static measurements performed on the Abou Saied plateau which shows a horizontally layered sub-surface. The electromagnetic signal was transmitted using one of the two orthogonal 70 m loaded electrical dipole antennas of the transmitting GPR. A second GPR, 50 or 100 meters apart, was dedicated to the signal reception. The received waves were characterized by a set of 5 measurements performed on the receiving GPR : the two horizontal components of the electric field and the three composants of the magnetic field. They were used to compute the direction of arrival of the incoming waves and to retrieve more accurately their propagation path and especially to discriminate between waves due to some sub-surface reflecting structure and those due to interaction with the surface clutter. A very efficient synchronization between the two radars enabled us to perform coherent additions up to 2^{31} which improves dramatically the obtained signal to noise ratio. Complementary electromagnetic measurements were conducted on the same site by the LPI (Lunar and Planetary Institute) and the SwRI (Southwest Research Institute). They provided independent information which helped the interpretation of the TAPIR data. Accurate simulations obtained by FDTD taking into account the information available are presented and used for both the interpretation of the measured data and the validation of the instrument.
Microwave tomography enhanced GPR surveys in Centaur’s Domus, Regio VI of Pompeii, Italy
NASA Astrophysics Data System (ADS)
Catapano, I.; Crocco, L.; Di Napoli, R.; Soldovieri, F.; Brancaccio, A.; Pesando, F.; Aiello, A.
2012-08-01
The archaeological area of Pompeii (Naples, Italy) is known worldwide as one of the most remarkable examples of a Roman Empire town, but its origins are prior to the Roman age and there is a huge archeological interest in discovering the history of the forma urbis. With respect to this framework, the paper presents results from microwave tomography enhanced ground penetrating radar (GPR) surveys carried out in the Centaur’s Domus, Regio VI, one of the most ancient housing areas of Pompeii. The GPR prospections aimed at addressing and driving the archeological excavation campaign performed in this area in October 2010. The results of stratigraphic assays are used to assess the reliability of the tomographic images obtained.
Development of FWIGPR, an open-source package for full-waveform inversion of common-offset GPR data
NASA Astrophysics Data System (ADS)
Jazayeri, S.; Kruse, S.
2017-12-01
We introduce a package for full-waveform inversion (FWI) of Ground Penetrating Radar (GPR) data based on a combination of open-source programs. The FWI requires a good starting model, based on direct knowledge of field conditions or on traditional ray-based inversion methods. With a good starting model, the FWI can improve resolution of selected subsurface features. The package will be made available for general use in educational and research activities. The FWIGPR package consists of four main components: 3D to 2D data conversion, source wavelet estimation, forward modeling, and inversion. (These four components additionally require the development, by the user, of a good starting model.) A major challenge with GPR data is the unknown form of the waveform emitted by the transmitter held close to the ground surface. We apply a blind deconvolution method to estimate the source wavelet, based on a sparsity assumption about the reflectivity series of the subsurface model (Gholami and Sacchi 2012). The estimated wavelet is deconvolved from the data and the sparsest reflectivity series with fewest reflectors. The gprMax code (www.gprmax.com) is used as the forward modeling tool and the PEST parameter estimation package (www.pesthomepage.com) for the inversion. To reduce computation time, the field data are converted to an effective 2D equivalent, and the gprMax code can be run in 2D mode. In the first step, the user must create a good starting model of the data, presumably using ray-based methods. This estimated model will be introduced to the FWI process as an initial model. Next, the 3D data is converted to 2D, then the user estimates the source wavelet that best fits the observed data by sparsity assumption of the earth's response. Last, PEST runs gprMax with the initial model and calculates the misfit between the synthetic and observed data, and using an iterative algorithm calling gprMax several times ineach iteration, finds successive models that better fit the data. To gauge whether the iterative process has arrived at a local or global minima, the process can be repeated with a range of starting models. Tests have shown that this package can successfully improve estimates of selected subsurface model parameters for simple synthetic and real data. Ongoing research will focus on FWI of more complex scenarios.
NASA Astrophysics Data System (ADS)
Lamparski, Piotr
2014-05-01
The paper present results of investigations, which have made on a biogenic plain in the north-east part of the vicinity of the Czechowskie Lake. The basin of Lake Czechowskie occupies a deep depression located in the immediate hinterland of the maximum range of the Pomeranian Phase ice sheet in the northern part of Poland (Błaszkiewicz 2005). Drillings carried out within the peat plain in the western part of the lake basin indicate that there are relatively diversified lake sediments of up to 12 m in thickness. The ground penetrating radar profiling method (GPR) was used to determine a thickness of biogenic sediments. To tests was used GSS'I SIR SYSTEM-2000™ radar device with two antennae - the high resolution 400 MHz central frequency - for shallow prospecting of the subsurface layers and the low resolution 35 MHz - for determining the shape of the mineral bedrock. Overall, 33 GPR profiles was made all in all more than 3000 meters along and crosswise the longer axis of the biogenic plain. The range of radar penetration was set to 200 ns for 400 MHz antenna and 600 ns for the 35 MHz one, what is the equivalent respectively 4 m and 12,5 m in depth of biogenic sediments thickness. Horizontal scaling was made by GSSI survey wheel device. The thickness of biogenic sediments recognized by GPR reaches 10 meters only using 35 MHz antenna. In the case of the 400 MHz antenna, relatively high conductivity water-saturated peat and gyttia did not allow for the achievement of greater thickness than 3-4 meters testing. In a large part of the profiles was able to see the shape of the mineral bedrock in the form of a former lake basin. Also observed elevations and thresholds in the bedrock. Depth of the mineral deposits forming former lake bottom was confirmed by drillings. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association. References: Błaszkiewicz M, 2005. Późnoglacjalna i wczesnoholoceńska ewolucja obniżeń jeziornych na Pojezierzu Kociewskim (wschodnia część Pomorza). (Late Glacial and early Holocene evolution of the lake basins in the Kociewskie Lakeland - eastern part of the Pomeranian Lakeland). Prace Geograficzne, 201.
NASA Astrophysics Data System (ADS)
Rey, Isabel; Martínez, Julián; Cortada, Unai; Hildago, Mª Carmen
2017-04-01
Slope movements are one of the natural hazards that most affect linear projects, becoming an important waste of money and time for building companies. Thus, studies to identify the processes that provoke these movements, as well as to characterise the landslides are necessary. For this purpose, geophysical prospecting techniques as Ground Penetrating Radar (GPR) and Electrical Resistivity Imaging (ERI) could become useful. However, the effectiveness of these techniques in slope movement characterisation is affected by many factors, like soil humidity, grain size or failure plane depth. Therefore, studies that determine the usefulness of these techniques in different kind of soils and slope movements are required. In this study, GPR and ERI techniques efficiency for the analysis of slope movements in Upper Miocene expansive marls was evaluated. In particular, two landslides in an old regional road in the province of Jaen (Spain) were studied. A total of 53 GPR profiles were made, 31 with a 250 MHz frequency antenna and 22 with an 800 MHz frequency antenna. Marl facies rapidly attenuated the signal of the electromagnetic waves, which means that this technique only provided information of the first two meters of the subsoil. In spite of this low depth of penetration, it is necessary to point out the precision and detail undertaken. Thus, both GPR antennas gave information of the thicknesses and quality-continuity of the different soil layers. In addition, several restoration phases of the linear work were detected. Therefore, this technique was useful to detect the current state and history of the structure, even though it could not detect the shear surface of the slope movement. On the other hand, two profiles of electrical tomography were made, one in each studied sector. The profiles were configured with a total length of 189 m, with 64 electrodes and a spacing of 3 m. This allowed investigating up to 35 m depth. This penetration capability enabled to detect the depth of the shear surfaces and therefore the minimum depth at which the possible piles should be placed in the design of the restoration structures. Thus, this method was more effective than the GPR for the detection of slope surfaces in uniform expansive marls. Nevertheless, the GPR was efficient for the analysis of the previous restoration phases, which was helpful to determine any relation between them and the causes that provoked the slope movements.
NASA Astrophysics Data System (ADS)
Cortada, Unai; Martínez, Julián; Hidalgo, Mª Carmen; Rey, Javier
2017-04-01
Evaluation of 3D Ground Penetrating Radar Efficiency for Abandoned Tailings Pond Internal Structure Analysis and Risk Assessment Abandoned tailings ponds constitute a severe environmental problem in old Pb mining districts due to their high contents in metallic and semi-metallic elements. In most of the cases, there is a lack of information about the construction procedures and the previous environmental situation, which hinders the environmental risk evaluation. In these cases, Ground Penetrating Radar (GPR) could be an interesting technique to analyze the internal structure of the tailings ponds and detect vulnerable zones for leaching processes. Consequently, the GPR could help in the abandoned tailings ponds environmental risk assessment. In this study, a GPR 3D campaign was carried out with a 250 MHz frequency antenna in order to evaluate the efficiency of this technique in both the analysis of internal structures and the environmental risk assessment. Subsequently, 2D and 3D models were undertaken to represent graphically the obtained results. The studied tailings pond is located in the Guadiel river bank, a water course draining the mining district of Linares, Spain. The dam is 150 m length and 80 m width. The GPR 3D was done in a selected area near the central part of the pond. The analyzed grid was 25x50 m and the spacing of the slides was 1 m. The study revealed that the contact between the tailings and the substratum is located at 2.5 m. No intermediate layer was found, which means that the tailings pond was heightened on the fluvial terrace without any insulation system. Inside the first meter of the pond, a cross stratification was identified. The orientation of those laminations changed with the depth, which means that the stockpiling was performed from the different sides of the tailings pond. Furthermore, the direction of these stratifications is slightly concentric to the middle of the dam which could be associated with a central drainage system. Therefore, the internal zone of the tailings pond appears to be the most vulnerable for leaching processes that could contaminate the groundwater. Thus, this technique gave detailed information of the internal structure at the first meters despite the rapid attenuation of the GPR signal. In consequence, the GPR 3D with 250 MHz antenna appears to be effective for the detection of the tailings ponds cross stratification and the tailings-soil contact in dams with less than 5 meters of thickness.
Johnson, Carole D.; Lane, John W.; Brandon, William C.; Williams, Christine A.P.; White, Eric A.
2010-01-01
A suite of complementary, non‐invasive surface geophysical methods was used to assess their utility for site characterization in a pilot investigation at a former defense site in North Kingstown, Rhode Island. The methods included frequency‐domain electromagnetics (FDEM), ground‐penetrating radar (GPR), electrical resistivity tomography (ERT), and multi‐channel analysis of surface‐wave (MASW) seismic. The results of each method were compared to each other and to drive‐point data from the site. FDEM was used as a reconnaissance method to assess buried utilities and anthropogenic structures; to identify near‐surface changes in water chemistry related to conductive leachate from road‐salt storage; and to investigate a resistive signature possibly caused by groundwater discharge. Shallow anomalies observed in the GPR and ERT data were caused by near‐surface infrastructure and were consistent with anomalies observed in the FDEM data. Several parabolic reflectors were observed in the upper part of the GPR profiles, and a fairly continuous reflector that was interpreted as bedrock could be traced across the lower part of the profiles. MASW seismic data showed a sharp break in shear wave velocity at depth, which was interpreted as the overburden/bedrock interface. The MASW profile indicates the presence of a trough in the bedrock surface in the same location where the ERT data indicate lateral variations in resistivity. Depths to bedrock interpreted from the ERT, MASW, and GPR profiles were similar and consistent with the depths of refusal identified in the direct‐push wells. The interpretations of data collected using the individual methods yielded non‐unique solutions with considerable uncertainty. Integrated interpretation of the electrical, electromagnetic, and seismic geophysical profiles produced a more consistent and unique estimation of depth to bedrock that is consistent with ground‐truth data at the site. This test case shows that using complementary techniques that measure different properties can be more effective for site characterization than a single‐method investigation.
GPR studies at the Nuvuk burial site at Point Barrow, Alaska
NASA Astrophysics Data System (ADS)
Herman, R. B.; Palmer, J.
2011-12-01
Ground penetrating radar was used to study a portion of the Nuvuk (Thule people) prehistoric burial site and to search for a buried prehistoric strand line at Point Barrow. GPR operating at 500MHz resolved features up to 2.5m deep in this area and were used to aid in search and recovery efforts. These scans imaged areas of recent disturbance that required shovel testing to confirm the lack of burials. This survey was able to rule out burials in several areas. Scans determined at least one area where a burial was found that would have been too deep for normal shovel tests to detect. A nearby area was scanned to trace the path of a prehistoric strand line whose initial presence had been revealed by exposure on the bluff adjacent to the Beaufort Sea. The GPR data revealed the path of that strand line along with a number of others. Final GPR images and GPS maps of the survey areas and the strand lines will be presented. The results of follow-up excavations will be discussed, along with the GPR parameters that gave the best results.
GPRsurvey as a part of land-use planning in Levi, Finnish Lapland
NASA Astrophysics Data System (ADS)
Kupila, Juho
2010-05-01
The need for detailed information regarding overlying soil layers in townplanning areas has become an important issue, especially in certain areas of Finnish Lapland where the lack of usable soil materials is obvious. Use of ground penetrating radar (GPR) is a fast and cost-effective method of determining the structure of subsurface layers and quantity of soil material above the bedrock surface. This environmental project was carried out by the Geological Survey of Finland together with local enterprises, environmental authorities and an EU structural fund. One of the goals of the project was to use GPR to determine the thickness of soil layers and the differences in material above the bedrock level in certain target areas of the project. The study area is located in the municipality of Kittilä, in the center of the Levi ski resort. The study area (total size of 28 hectares) and surroundings are under fast townplanning and there are, for example, plans for a hotel, apartments and underground garages and service routes, thus it is very important to determine the volume of quarrying. As well, the quality and quantity of existing soil is valid data for the reuse of materials and upcoming construction. One drilling program has already been executed in the area (11 boreholes), so GPR profiles were planned based on this drilling data, soil mapping data and data collected from the townplanning map of the area. According to these earlier drillings and soil mapping, most of the soil in the study area was morainic, so the antenna for the GPR-survey was set at 100 MHz. The positioning method used in this project was VRS-GPS (Virtual Reference Station Global Positioning System), which is a very accurate positioning system to use. Accuracy can be as good as a few centimeters. After the GPR-survey, secondary drilling program was carried out according to the GPR-profiles, thus the total amount of collected data from the planning area was 23 boreholes and 3500 meters of GPR-profiles. In the second phase of the project, all the collected data was used as a reference to build a 3D-model of the planning area. Interpreted GPR-profiles, surface soil map and borehole data formed a database from which an exact model of the study area subsurface was created using GISsoftware. Acquired results show the feasibility of this method to help local actors and authorities in planning and constructing of the area, in present and upcoming projects.
An automated system for rail transit infrastructure inspection.
DOT National Transportation Integrated Search
2015-03-01
This project applied commercial remote sensing and spatial information (CRS&SI) : technologies such as Ground Penetrating Radar (GPR), laser, GIS, and GPS to passenger rail : inspections. An integrated rail inspection system that can be mounted on hi...
NASA Astrophysics Data System (ADS)
Jackisch, Conrad; Angermann, Lisa; Allroggen, Niklas; Sprenger, Matthias; Blume, Theresa; Tronicke, Jens; Zehe, Erwin
2017-07-01
The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR) methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR trenches
. We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study) and the hydrological processes (companion study Angermann et al., 2017, this issue).
Unmanned Ground Vehicle for Autonomous Non-Destructive Testing of FRP Bridge Decks
NASA Astrophysics Data System (ADS)
Klinkhachorn, P.; Mercer, A. Scott; Halabe, Udaya B.; GangaRao, Hota V. S.
2007-03-01
Current non-destructive techniques for defect analysis of FRP bridge decks have a narrow scope. These techniques are very good at detecting certain types of defects but are not robust enough to detect all defects by themselves. For example, infrared thermography (IRT) can detect air filled defects and Ground Penetrating Radar (GPR) is good at detecting water filled ones. These technologies can be combined to create a more robust defect detection scheme. To accomplish this, an Unmanned Ground Vehicle (UGV) has been designed that incorporates both IR and GPR analysis to create a comprehensive defect map of a bridge deck. The UGV autonomously surveys the deck surface and acquires data. The UGV has two 1.5 GHz ground coupled GPR antennas that are mounted on the front of the UGV to collect GPR data. It also incorporates an active heating source and a radiometric IR camera to capture IR images of the deck, even in less than ideal weather scenarios such as cold cloudy days. The UGV is designed so that it can collect data in an assembly line fashion. It moves in 1 foot increments. When moving, it collects GPR data from the two antennas. When it stops it heats a section of the deck. The next time it stops to heat a section, the IR camera is analyzing the preheated deck section while preparing for the next section. Because the data is being continually collected using this method, the UGV can survey the entire deck in an efficient and timely manner.
Exploring inner structure of Titan's dunes from Cassini Radar observations
NASA Astrophysics Data System (ADS)
Sharma, P.; Heggy, E.; Farr, T. G.
2013-12-01
Linear dunes discovered in the equatorial regions of Titan by the Cassini-Huygens mission are morphologically very similar to many terrestrial linear dune fields. These features have been compared with terrestrial longitudinal dune fields like the ones in Namib desert in western Africa. This comparison is based on the overall parallel orientation of Titan's dunes to the predominant wind direction on Titan, their superposition on other geomorphological features and the way they wrap around topographic obstacles. Studying the internal layering of dunes has strong implications in understanding the hypothesis for their origin and evolution. In Titan's case, although the morphology of the dunes has been studied from Cassini Synthetic Aperture Radar (SAR) images, it has not been possible to investigate their internal structure in detail as of yet. Since no radar sounding data is available for studying Titan's subsurface yet, we have developed another technique to examine the inner layering of the dunes. In this study, we utilize multiple complementary radar datasets, including radar imaging data for Titan's and Earth's dunes and Ground Penetrating Radar (GPR)/radar sounding data for terrestrial dunes. Based on dielectric mixing models, we suggest that the Cassini Ku-band microwaves should be able to penetrate up to ~ 3 m through Titan's dunes, indicating that the returned radar backscatter signal would include contributions from both surface and shallow subsurface echoes. This implies that the shallow subsurface properties can be retrieved from the observed radar backscatter (σ0). In our analysis, the variation of the radar backscatter as a function of dune height is used to provide an insight into the layering in Titan's dunes. We compare the variation of radar backscatter with elevation over individual dunes on Titan and analogous terrestrial dunes in three sites (Great Sand Sea, Siwa dunes and Qattaniya dunes) in the Egyptian Sahara. We observe a strong, positive correlation between the backscatter and elevation along dune profile for the larger, older dunes in the Great Sand Sea in south-western Egypt and Siwa dune field in north-western Egypt, as opposed to the weak negative correlation exhibited by the smaller, younger Qattaniya dunes in north-eastern Egypt. This result is reinforced by our GPR survey on a large dune in the Siwa dune field and a smaller dune in the Qattaniya dune field. Our GPR data suggest the internal structure of larger dunes to consist of greater number of layers/cross-strata than smaller ones in the first 8 meters of the subsurface, which corresponds to the radar penetration depth at (0.8-1.2) GHz. Dunes on Titan exhibit backscatter-height dependency similar to the smaller Qattaniya dunes. In particular, the Shangri-La and Belet dunes on Titan exhibit a significantly stronger, negative correlation for the backscatter-height dependency compared to the Fensal and Aztlan dunes, suggesting a difference in the internal layering, relative ages and formation history of these dunes on Titan.
Delgado, Alfredo; Hays, Dirk B; Bruton, Richard K; Ceballos, Hernán; Novo, Alexandre; Boi, Enrico; Selvaraj, Michael Gomez
2017-01-01
Understanding root traits is a necessary research front for selection of favorable genotypes or cultivation practices. Root and tuber crops having most of their economic potential stored below ground are favorable candidates for such studies. The ability to image and quantify subsurface root structure would allow breeders to classify root traits for rapid selection and allow agronomist the ability to derive effective cultivation practices. In spite of the huge role of Cassava ( Manihot esculenta Crantz), for food security and industrial uses, little progress has been made in understanding the onset and rate of the root-bulking process and the factors that influence it. The objective of this research was to determine the capability of ground penetrating radar (GPR) to predict root-bulking rates through the detection of total root biomass during its growth cycle. Our research provides the first application of GPR for detecting below ground biomass in cassava. Through an empirical study, linear regressions were derived to model cassava bulking rates. The linear equations derived suggest that GPR is a suitable measure of root biomass ( r = .79). The regression analysis developed accounts for 63% of the variability in cassava biomass below ground. When modeling is performed at the variety level, it is evident that the variety models for SM 1219-9 and TMS 60444 outperform the HMC-1 variety model (r 2 = .77, .63 and .51 respectively). Using current modeling methods, it is possible to predict below ground biomass and estimate root bulking rates for selection of early root bulking in cassava. Results of this approach suggested that the general model was over predicting at early growth stages but became more precise in later root development.
NASA Astrophysics Data System (ADS)
McClellan, M. D.; Wright, W. J.; Job, M. J.; Comas, X.
2015-12-01
Peatlands have the capability to produce and release significant amounts of free phase biogenic gasses (CO2, CH4) into the atmosphere and are thus regarded as key contributors of greenhouse gases into the atmosphere. Many studies throughout the past two decades have investigated gas flux dynamics in peat soils; however a high resolution temporal understanding in the variability of these fluxes (particularly at the matrix scale) is still lacking. This study implements an array of hydrogeophysical methods to investigate the temporal variability in biogenic gas accumulation and release in high resolution for a large 0.073 m3 peat monolith from the Blue Cypress Preserve in central Florida. An autonomous rail system was constructed in order to estimate gas content variability (i.e. build-up and release) within the peat matrix using a series of continuous, uninterrupted ground penetrating radar (GPR) transects along the sample. This system ran non-stop implementing a 0.01 m shot interval using high frequency (1.2 GHz) antennas. GPR measurements were constrained with an array of 6 gas traps fitted with time-lapse cameras in order to capture gas releases at 15 minute intervals. A gas chromatograph was used to determine CH4 and CO2 content of the gas collected in the gas traps. The aim of this study is to investigate the temporal variability in the accumulation and release of biogenic gases in subtropical peat soils at the lab scale at a high resolution. This work has implications for better understanding carbon dynamics in subtropical freshwater peatlands and how climate change may alter such dynamics.
NASA Astrophysics Data System (ADS)
Gómez-Ortiz, David; Montesinos, Fuensanta G.; Martín-Crespo, Tomás; Solla, Mercedes; Arnoso, José; Vélez, Emilio
2014-10-01
Timanfaya National Park is a volcanic area located in the southwest of Lanzarote Island (Canary Islands, Spain). Several lava tubes have been found in the lava flows but many others remain unknown. Its location and identification are important to mitigate collapse hazards in this touristic area. We present a new study about the location of recent lava tubes by the analysis and joint interpretation of ground penetrating radar (GPR), microgravity and electromagnetic induction (EMI) data along the same profile over an area not previously surveyed. GPR data display a complex pattern of reflections up to ~ 10 m depth. The strongest hyperbolic reflections can be grouped in four different areas. Visual inspections carried out in the field allow confirming the occurrence of lava tubes at two of them. These reflections have been interpreted as the effect of the roof and bottom interfaces of several lava tubes. The microgravity survey defines a wide gravity low with several over-imposed minor highs and lows. Using the GPR data, a 2.5D gravity model has been obtained revealing four lava tubes. EMI data have been used to obtain an inverted resistivity model that displays four high resistivity areas that closely match the locations of the lava tubes derived from the previous methods. This resistivity model exhibits the lower resolution although reaches a deeper investigation depth (~ 20 m). The comparison of the results has revealed that joint interpretation of GPR, microgravity and EMI methods provides reliable models useful for the detection of unknown shallow lava tubes.
Dune advance into a coastal forest, equatorial Brazil: A subsurface perspective
NASA Astrophysics Data System (ADS)
Buynevich, Ilya V.; Filho, Pedro Walfir M. Souza; Asp, Nils E.
2010-06-01
A large active parabolic dune along the coast of Pará State, northern Brazil, was analyzed using aerial photography and imaged with high-resolution ground-penetrating radar (GPR) to map the subsurface facies architecture and point-source anomalies. Most high-amplitude (8-10 dB) subsurface anomalies are correlated with partially buried mangrove trees along the leading edge (slipface) of the advancing dune. Profiles along a 200-m long basal stoss side of the dune reveal 66 targets, most of which lie below the water table and are thus inaccessible by other methods. Signal amplitudes of point-source anomalies are substantially higher than those associated with the reflections from continuous subsurface features (water table, sedimentary layers). When complemented with exposures and excavations, GPR provides the best means of rapid continuous imaging of the geological record of complex interactions between vegetation and aeolian deposition.
NASA Astrophysics Data System (ADS)
Vargemezis, George; Diamanti, Nectaria; Tsourlos, Panagiotis; Fikos, Ilias
2014-05-01
A geophysical survey was carried out in the Petrified Forest of Evros, the northernmost regional unit of Greece. This collection of petrified wood has an age of approximately 35 million years and it is the oldest in Greece (i.e., older than the well-known Petrified Forest of Lesvos island located in the North Aegean Sea and which is possibly the largest of the petrified forests worldwide). Protection, development and maintenance projects still need to be carried out at the area despite all fears regarding the forest's fate since many petrified logs remain exposed both in weather conditions - leading to erosion - and to the public. This survey was conducted as part of a more extensive framework regarding the development and protection of this natural monument. Geophysical surveying has been chosen as a non-destructive investigation method since the area of application is both a natural ecosystem and part of cultural heritage. Along with electrical resistivity tomography (ERT), ground penetrating radar (GPR) surveys have been carried out for investigating possible locations of buried fossilized tree trunks. The geoelectrical sections derived from ERT data in combination with the GPR profiles provided a broad view of the subsurface. Two and three dimensional subsurface geophysical images of the surveyed area have been constructed, pointing out probable locations of petrified logs. Regarding ERT, petrified trunks have been detected as high resistive bodies, while lower resistivity values were more related to the surrounding geological materials. GPR surveying has also indicated buried petrified log locations. As these two geophysical methods are affected in different ways by the subsurface conditions, the combined use of both techniques enhanced our ability to produce more reliable interpretations of the subsurface. After the completion of the geophysical investigations of this first stage, petrified trunks were revealed after a subsequent excavation at indicated locations. Moreover, we identified possible buried petrified targets at locations yet to be excavated.
2016-08-01
damaging thaw settlement, which could help site and design in- frastructure in permafrost terrains. We used GPR pulses centered near 100, 150, and 320 MHz...polyethylene (ε = 2.4) platform. The actual center frequency of pulses received was closer to 150 MHz. The Model 5103 “400 MHz” unit is of identical design ...although much work has been done with airborne systems. The term “road radar” generally refers to GPR surveys of pavement con- struction and uses high
NASA Astrophysics Data System (ADS)
Forster, R. R.; Miege, C.; Box, J. E.; McConnell, J.; Spikes, V. B.; Burgess, E. W.
2010-12-01
The Greenland Ice Sheet plays an important role in Earth’s climate system evolution. The snow accumulation rate is the largest single mass budget term. With only 14% of the ice sheet area, Southeast Greenland contains the highest accumulation rates, accounting for one third of the total snow accumulation and annual variability. The high accumulation rates have made the region less desirable for long climate record ice cores and therefore, contain relatively very few in situ measurements to constrain the ice sheet mass budget. We present annual snow accumulation rates from the Arctic Circle Traverse 2010 (ACT-10). During April and May 2010 we acquired three 50 m firn cores connected by surface-based 400 MHz ground penetrating radar (GPR) in Southeast Greenland. The traverse repeated and extended the original Arctic Circle Traverse in 2004 (Spikes et al., 2004). Dating is achieved using geochemical analysis of the cores to identify isochronal layers detected by the GPR yielding annual accumulation estimates along the traverse between the core sites. The 300 km ACT-10 GPR snowmobile traverse extended the ACT-04 path 80 km to the lowest elevation core site at 1776 m. Meanwhile, airborne radars, operating as part of NASA’s Operation IceBridge also acquired data over the full length of the ACT-10 path, simultaneously with a portion of the traverse and within days for the remaining segments. The IceBridge and ACT-10 data are to be combined in a calibration effort such that snow accumulation rates may be mapped elsewhere in Greenland and even in Antarctica.
NASA Astrophysics Data System (ADS)
Hermance, J. F.; Bohidar, R. N.
2002-05-01
Hydrologists universally recognize the importance of antecedent soil moisture conditions for predicting the response of catchments to storm events. We describe a pilot study involving a series of repeat geophysical measurements over a 5 month period to determine the water content of the subsurface immediately before a sequence of precipitation events. We correlate the resultant streamflow "response" of the local catchment to each event with the antecedent soil moisture at our reference site using a metric commonly employed by hydrologists: the ratio Qef/W, referred to here as the "short term runoff efficiency", which is simply the time-integrated volume of event flow (Qef) at the catchment's outflow point normalized by the volume of total precipitation (W) over its area. To determine the volumetric water content (Cw) of soils, past studies suggest the effectiveness of pulsed radio frequency methods, such as time domain reflectometry (TDR), or ground-penetrating radar (GPR). To first order, for typical field conditions and procedures, the velocity of a radio pulse in the subsurface is inversely proportional to the square root of the bulk dielectric constant, which in turn is proportional to the soil's water content. For this study, the advantage of GPR over conventional TDR measurements is that the GPR procedure determines average velocities from two-way traveltimes to an interface at depth, resulting in estimates of average physical properties over much larger volumes of the subsurface than would TDR. Our hydrologic data are USGS daily averaged discharges from the Ten Mile River (watershed area = 138 km2; 53.2 mi2) in southern New England. Daily values of precipitation were provided by personnel from the Seekonk Water District Office (MA) adjacent to the field site. Our hydrograph separation was facilitated by the observation that the event flow seems to be adequately represented by a simple composite cascaded linear reservoir model. The GPR data involved a series of repeated wide-angle reflection "soundings" on a typical stratified glacial drift deposit, with velocities determined using both hand-picks and normal moveout velocity scans. In addition, on each day soil samples were collected and analyzed in the lab for volumetric water. GPR velocities were reduced to estimates of soil water concentrations using published mixing relations; of these we elected the conventional Topp relation as our provisional standard. A preliminary comparison of soil water content derived from our GPR data with analyses of field samples in the lab using the gravimetric method yields a correlation coefficient of R2 ~ 0.97. Selecting 5 cases during the early spring and summer of 2000, when storm events occurred within a few days following each respective measurement, a simple regression provides a relation whereby short term runoff efficiencies over the range of 0.03 (3%) to 0.25 (25%), respectively, appear to be linearly related to soil moisture contents over the range of 0.13 (13%) to 0.22 (22%) through a relation of the form Qef/W = 2.42Cw - 0.284, with a correlation coefficient of R2 ~ 0.95. Thus, estimates of soil moisture based on estimates from GPR velocities is promising for predicting runoff from small catchments - it is imperative, however, that such studies be paralleled by careful attention to the acquisition, conditioning and analysis of GPR data, as well as by knowledge of the subsurface stratigraphy of the field area.
Detecting buried explosive hazards with handheld GPR and deep learning
NASA Astrophysics Data System (ADS)
Besaw, Lance E.
2016-05-01
Buried explosive hazards (BEHs), including traditional landmines and homemade improvised explosives, have proven difficult to detect and defeat during and after conflicts around the world. Despite their various sizes, shapes and construction material, ground penetrating radar (GPR) is an excellent phenomenology for detecting BEHs due to its ability to sense localized differences in electromagnetic properties. Handheld GPR detectors are common equipment for detecting BEHs because of their flexibility (in part due to the human operator) and effectiveness in cluttered environments. With modern digital electronics and positioning systems, handheld GPR sensors can sense and map variation in electromagnetic properties while searching for BEHs. Additionally, large-scale computers have demonstrated an insatiable appetite for ingesting massive datasets and extracting meaningful relationships. This is no more evident than the maturation of deep learning artificial neural networks (ANNs) for image and speech recognition now commonplace in industry and academia. This confluence of sensing, computing and pattern recognition technologies offers great potential to develop automatic target recognition techniques to assist GPR operators searching for BEHs. In this work deep learning ANNs are used to detect BEHs and discriminate them from harmless clutter. We apply these techniques to a multi-antennae, handheld GPR with centimeter-accurate positioning system that was used to collect data over prepared lanes containing a wide range of BEHs. This work demonstrates that deep learning ANNs can automatically extract meaningful information from complex GPR signatures, complementing existing GPR anomaly detection and classification techniques.
TPADANA 2.0: draft user's manual of TPAD data analysis software.
DOT National Transportation Integrated Search
2016-08-01
The Total Pavement Acceptance Device (TPAD) is a continuous pavement deflection test : device. Since the device is designed for total acceptance of pavements, the researchers have : combined the deflection testing with Ground Penetrating Radar (GPR),...
Migration of dispersive GPR data
Powers, M.H.; Oden, C.P.; ,
2004-01-01
Electrical conductivity and dielectric and magnetic relaxation phenomena cause electromagnetic propagation to be dispersive in earth materials. Both velocity and attenuation may vary with frequency, depending on the frequency content of the propagating energy and the nature of the relaxation phenomena. A minor amount of velocity dispersion is associated with high attenuation. For this reason, measuring effects of velocity dispersion in ground penetrating radar (GPR) data is difficult. With a dispersive forward model, GPR responses to propagation through materials with known frequency-dependent properties have been created. These responses are used as test data for migration algorithms that have been modified to handle specific aspects of dispersive media. When either Stolt or Gazdag migration methods are modified to correct for just velocity dispersion, the results are little changed from standard migration. For nondispersive propagating wavefield data, like deep seismic, ensuring correct phase summation in a migration algorithm is more important than correctly handling amplitude. However, the results of migrating model responses to dispersive media with modified algorithms indicate that, in this case, correcting for frequency-dependent amplitude loss has a much greater effect on the result than correcting for proper phase summation. A modified migration is only effective when it includes attenuation recovery, performing deconvolution and migration simultaneously.
Detection of Leaks in Water Distribution System using Non-Destructive Techniques
NASA Astrophysics Data System (ADS)
Aslam, H.; Kaur, M.; Sasi, S.; Mortula, Md M.; Yehia, S.; Ali, T.
2018-05-01
Water is scarce and needs to be conserved. A considerable amount of water which flows in the water distribution systems was found to be lost due to pipe leaks. Consequently, innovations in methods of pipe leakage detections for early recognition and repair of these leaks is vital to ensure minimum wastage of water in distribution systems. A major component of detection of pipe leaks is the ability to accurately locate the leak location in pipes through minimum invasion. Therefore, this paper studies the leak detection abilities of the three NDT’s: Ground Penetration Radar (GPR) and spectrometer and aims at determining whether these instruments are effective in identifying the leak. An experimental setup was constructed to simulate the underground conditions of water distribution systems. After analysing the experimental data, it was concluded that both the GPR and the spectrometer were effective in detecting leaks in the pipes. However, the results obtained from the spectrometer were not very differentiating in terms of observing the leaks in comparison to the results obtained from the GPR. In addition to this, it was concluded that both instruments could not be used if the water from the leaks had reached on the surface, resulting in surface ponding.
Attribute classification for generating GPR facies models
NASA Astrophysics Data System (ADS)
Tronicke, Jens; Allroggen, Niklas
2017-04-01
Ground-penetrating radar (GPR) is an established geophysical tool to explore near-surface sedimentary environments. It has been successfully used, for example, to reconstruct past depositional environments, to investigate sedimentary processes, to aid hydrogeological investigations, and to assist in hydrocarbon reservoir analog studies. Interpreting such 2D/3D GPR data, usually relies on concepts known as GPR facies analysis, in which GPR facies are defined as units composed of characteristic reflection patterns (in terms of reflection amplitude, continuity, geometry, and internal configuration). The resulting facies models are then interpreted in terms of depositional processes, sedimentary environments, litho-, and hydrofacies. Typically, such GPR facies analyses are implemented in a manual workflow being laborious and rather inefficient especially for 3D data sets. In addition, such a subjective strategy bears the potential of inconsistency because the outcome depends on the expertise and experience of the interpreter. In this presentation, we investigate the feasibility of delineating GPR facies in an objective and largely automated manner. Our proposed workflow relies on a three-step procedure. First, we calculate a variety of geometrical and physical attributes from processed 2D and 3D GPR data sets. Then, we analyze and evaluate this attribute data base (e.g., using statistical tools such as principal component analysis) to reduce its dimensionality and to avoid redundant information, respectively. Finally, we integrate the reduced data base using tools such as composite imaging, cluster analysis, and neural networks. Using field examples that have been acquired across different depositional environments, we demonstrate that the resulting 2D/3D facies models ease and improve the interpretation of GPR data. We conclude that our interpretation strategy allows to generate GPR facies models in a consistent and largely automated manner and might be helpful in variety near-surface applications.
Improvement of the energetic properties of the GPR
NASA Astrophysics Data System (ADS)
Pochanin, Gennadiy P.; Ruban, Vadim P.; Kholod, Pavlo V.; Shuba, Alexander A.; Pochanin, Alexander G.; Orlenko, Alexander A.
2014-05-01
The necessary condition for the expansion of the impulse Ground Penetrating Radar (GPR) applications is to improve the GPR energy performance for the detection of signals on the background of noise. Digital signal processing techniques allow suppressing the noise largely, but they work only when the GPR is able to register the reflected signals. The majority of the modern GPRs use sampling receivers. They allow recording signals of a very short du- ration. However, very large energy losses are inherent to this method. To improve the signal to noise ratio it is possible to increase the power of the probing signal and to de- crease the noise level of the receiver. In GPR, the transmitting and receiving antennas are usually electrodynamically coupled because they are situated quite close to each other. The sensitive input circuit of the receiver does not allow the excess of the signal amplitude typically more than 1 V. Thus, the increase of the intensity of the probing signal is possible only up to a certain level. To overcome this limitation, it was proposed to design an antenna in such a way that the coupling between the transmitting and receiving sections was absent or minimal. A special method that provided the decoupling below -64 dB was invented (theoretically the isolation is absolute and frequency independent). In order to register as short as possible signals, researchers strive to make sample duration of the sampling converter as short as possible. However, the shorter the sample duration, the smaller the energy of the signal that can be received and the larger the noise. Due to the dispersive absorption of electromagnetic waves in the ground, the high-frequency part of the signal spectrum is attenuated faster than the low-frequency part. It makes no sense to expect the arrival of very short pulses from deep reflectors. Thus, it is possible to increase the duration of the samples at reception of the signals from the deep objects. The authors proposed to increase the duration of the samples with the distance. In this way, a smoothing of the noise and an increase of the recorded energy at each subsequent sampling were achieved. The next opportunity to improve the signal to noise ratio is the coherent accumulation of the signal that can be carried out both in digital and analog forms. Due to the fast ADC, it became possible to accumulate a large number of signals in an acceptable survey period. In practice, the amount of accumulated signals is limited by jitter. Thus, to achieve accumulation and re- ception of signals without distortion the authors have suggested and implemented GPR improvements allowing to get the instability of sampling below 3.5 ps. Owing to increase of the pulse-repetition frequency up to 1 MHz and data transmission via Ethernet, it was also possible to provide a fast GPR survey. ----------------------------------------------------------------------------------------- This research has been performed partly owing to EU 7th Framework Marie Curie Actions IRSES project (PIRSES-GA-2010-269157) "Active and Passive Microwaves for Security and Subsurface imaging (AMISS)." The Authors thank COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" for its networking activities.
Mitigation of narrowband interferences by means of a reconfigurable stepped frequency GPR system
NASA Astrophysics Data System (ADS)
Persico, Raffaele; Dei, Devis; Parrini, Filippo; Matera, Loredana
2016-08-01
This paper proposes a new technique for the mitigation of narrowband interferences by making use of an innovative stepped frequency Ground Penetrating Radar (GPR) system, based on the modulation of the integration time of the harmonic components of the signal. This can allow a good rejection of the interference signal without filtering out part of the band of the useful signal (which would involve a loss of information) and without increasing the power of the transmitted signal (which might saturate the receiver and make illegal the level of transmitted power). The price paid for this is an extension of the time needed in order to perform the measurements. We will show that this necessary drawback can be contained by making use of a prototypal reconfigurable stepped frequency GPR system.
Large-scale, high-definition Ground Penetrating Radar prospection in archaeology
NASA Astrophysics Data System (ADS)
Trinks, I.; Kucera, M.; Hinterleitner, A.; Löcker, K.; Nau, E.; Neubauer, W.; Zitz, T.
2012-04-01
The future demands on professional archaeological prospection will be its ability to cover large areas in a time and cost efficient manner with very high spatial resolution and accuracy. The objective of the 2010 in Vienna established Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology (LBI ArchPro) in collaboration with its eight European partner organisations is the advancement of state-of-the-art archaeological sciences. The application and specific further development of remote sensing, geophysical prospection and virtual reality applications, as well as of novel integrated interpretation approaches dedicated to non-invasive spatial archaeology combining near-surface prospection methods with advanced computer science is crucial for modern archaeology. Within the institute's research programme different areas for distinct case studies in Austria, Germany, Norway, Sweden and the UK have been selected as basis for the development and testing of new concepts for efficient and universally applicable tools for spatial, non-invasive archaeology. In terms of geophysical prospection the investigation of entire archaeological landscapes for the exploration and protection of Europe's buried cultural heritage requires new measurement devices, which are fast, accurate and precise. Therefore the further development of motorized, multichannel survey systems and advanced navigation solutions is required. The use of motorized measurement devices for archaeological prospection implicates several technological and methodological challenges. Latest multichannel Ground Penetrating Radar (GPR) arrays mounted in front off, or towed behind motorized survey vehicles permit large-scale GPR prospection surveys with unprecedented spatial resolution. In particular the motorized 16 channel 400 MHz MALÅ Imaging Radar Array (MIRA) used by the LBI ArchPro in combination with latest automatic data positioning and navigation solutions permits the reliable high-definition survey of two to three hectares per day with eight centimetres GPR trace spacing, both inline and cross-line. Exact real time positioning of the motorized multichannel arrays with centimetre accuracy is of paramount importance for data quality and subsequent imaging, analysis and interpretation. Whereas traditional surveys are conducted along straight lines fixed on the ground, motorized survey systems require the use of more efficient data positioning and navigation solutions. A promising approach can be realized using real-time kinematic positioning technology based on GPS systems and robotic total-stations with centimetre accuracy. Due to the huge amount and complexity of the data unique software solutions for efficient, appropriate processing and data visualization have been developed permitting the generation of geo-referenced depth-slice images covering up to 70 hectares each. While our focus is on archaeological sites, the presented novel GPR technology and methodology are likewise applicable to Civil Engineering Applications.
NASA Astrophysics Data System (ADS)
Afiq Saharudin, Muhamad; Maslinda, Umi; Hisham, Hazrul; Taqiuddin, Z. M.; Nur Amalina, M. K. A.; Nawawi, Nordiana Ahmad; Sulaiman, Nabila; Nordiana, M. M.; Azwin, I. N.
2017-04-01
The research was conducted using Resistivity and Ground Penetrating Radar (GPR) methods in detecting in-filled cavities and air-filled cavities. The importance of this study is to see the difference in conductivity value of the in-filled and air-filled cavity. The first study location in which the known target is air-cavity located at School of Language, Literacies, and Translation (SoLLAT). The next study location is at Desasiswa Bakti Permai, which the known target is a bunker with both were located at Universiti Sains Malaysia, Penang and the last location is at Gua Musang, Kelantan with suspected in-filled cavity. The result from Gua Musang is compared with both of the results that have been done at Universiti Sains Malaysia. The resistivity value of the first location that indicates the possible tunnel is about 500 Ωm to 800 Ωm and the conductivity value is about 0.0017 S/m. The resistivity value for the second location located at Desasiswa Bakti Permai that indicates the bunker is about 50 Ωm to 250 Ωm and the conductivity value is about 0.1104 S/m. The resistivity value from Gua Musang is about 50 Ωm to 100 Ωm and the conductivity value is about 0.0101 S/m. The velocity of the in-filled cavities is much lower compared with the velocity of the air-filled cavities. Based on the characteristics, Gua Musang area was dominated with in-filled cavities.
NASA Astrophysics Data System (ADS)
Rhodes, N.; Hurtado, J. M.
2013-05-01
Features such as the Home Plate plateau on Mars, a suspected remnant of a phreatomagmatic eruption, can reveal important information about paleohydrologic conditions. The types and sizes of pyroclastic rocks produced by a phreatomagmatic eruption are indicative of the behavior of the explosion and the characteristics of the groundwater reservoir. Analysis of the pyroclast size distribution can be used to determine magma volatile content. We conduct an analysis of pyroclast size distribution using Ground Penetrating Radar (GPR) to make a quantitative estimate of the presence of past groundwater at Kilbourne Hole, a well-known phreatomagmatic crater located in southern Dona Ana County, New Mexico. As basaltic magma intruded the groundwater reservoir in the mid-Pleistocene, the water vaporized and caused a phreatomagmatic explosion that excavated the 2-km wide and 200-m deep depression. The pyroclastic units produced during a phreatomagmatic explosion are proportional to the size and the duration of the explosion and the size of the groundwater reservoir such that the wetter the eruption, the stronger the explosion. In a violent volcanic eruption, magma changes from a liquid into solid fragments and the explosion releases kinetic energy (Ek) by ejecting liquid water, vapor water (with mass Mw) and solid fragments (with mass Mf) at an ejection velocity (Ve). In order to determine Mw, we must know Ve. The relationship between Ve and the distance from center of the eruption (R) is such that Ve exponentially decreases with time (t) and R. A numerical model relating pyroclast size and Ve for material ejected in Hawaiian and Plinian eruptions shows that clast size also exponentially decreases with decreasing Ve. Based on these relationships, we use GPR to map the ejected clast size distribution as a function of distance from the edge of Kilbourne Hole in an effort to determine Ve and Mw. GPR surveys were performed in January 2012 and January 2013 using a Noggins 250 MHz radar system. We designed the surveys to detect volcanic bombs in the shallow subsurface and to map radial variations in their sizes. Six GPR lines were extended radially in each cardinal direction from the rim of Kilbourne Hole, and, as a control, fifteen short GPR lines were performed along an accessible cliff where visible volcanic bombs and blocks are exposed. We are able to visualize 58 bombs and blocks along one of the six GPR lines within the maximum penetration depth of 2.4-3.2 m. From the resulting GPR profiles, we measured the width and the length of the bombs. The largest dimension of each bomb was plotted against distance from crater rim, and the obtained exponential relationship between bomb size and distance will be applied to a numerical model of ejecta dispersal from transient volcanic explosions to solve for Ve and Mw. This case study at Kilbourne Hole serves as a planetary analog for similar surveys that could be done on Mars and on the Moon.
Nondestructive tests for railway monitoring. European Experience in COST Action TU1208
NASA Astrophysics Data System (ADS)
Fontul, Simona; Solla, Mercedes; Loizos, Andreas
2016-04-01
The railway monitoring is an important issue for a proper maintenance planning. With the increase in loads and travel speed, it is important to be able to diagnose the track defects and to plan the proper maintenance without interfering with the users. Traditionally, the maintenance actions are planned based on the geometric level parameters assessed without contact with the line, at traffic speed, by dedicated inspection vehicles. Nevertheless, the geometric condition of the line does not provide information on the defects causes. In order to complements the information on the causes, geophysics measurements can be performed in a nondestructive way. Among these later methods, Ground Penetrating Radar (GPR) is a quick and effective technique to evaluate infrastructure condition in a continuous manner, replacing or reducing the use of traditional drilling method. GPR application to railways infrastructures, during construction and monitoring phase, is relatively recent. It is based on the measuring of layers thicknesses and detection of structural changes. It also enables the assessment of materials properties that constitute the infrastructure and the evaluation of the different types of defects such as ballast pockets, fouled ballast, poor drainage, subgrade settlement and transitions problems. These deteriorations are generally the causes of vertical deviations in track geometry. Moreover, the development of new GPR systems with higher antenna frequencies, better data acquisition systems, more user friendly software and new algorithms for calculation of materials properties can lead to a regular use of GPR. A resume of the European experience in COST Action TU1208 of the application of GPR for railway monitoring and the measurement interpretation is presented in this paper. Also complementary nondestructive tests and other geophysical methods are referred, together with case studies of their application. The main troubleshooting and the needs for data analysis tools that can improve the processing of the measurements are highlighted. Future approaches of combined application of geophysical methods, load tests and track geometry measurements are addressed. A possible methodology of joint interpretation and examples of maintenance measurements adequate to the deterioration causes are presented.
NASA Astrophysics Data System (ADS)
Karabulut, S.; Cengiz Cinku, M.; Tezel, O.
2016-12-01
The aim of this study is to investigate the prospecting standarts in sinkhole and cave characterization comparing it with the present standarts given by the American Society for Testing and Materials (ASTM) and the British Standart (BSI). Cave and sinkholes which are important geological occurences could cause hazard and collapse of the ground where residental areas could be under risk. The depth of sinkholes could reach up to hundreds of meters and their width to tens of meters. Most caves which are under conserve and characterized as a natural protected area, a non-destructive investigation is required which is only undertaken by geophysical applications. Two different type of standarts are given in the literature to investigate this kind of geological occurences. The first is the ASTM (1999) standart which offers to use Gravity/Microgravity, Ground Penetrating Radar (GPR) and Electromagnetic, while the BSI standart (1999) depends on the initial application of GPR, Electromagnetic, Electrical Resistivity and Crosshole Seismic. In Turkey however, there are limited studies in cave/sinkhole detection and no standartization in prospecting is presented. For this purpose, we applied a geophysical study in the Yarımburgaz cave, Istanbul/Turkey. In the scope of this study, Microgravity, Electric Tomography, Tomography of Seismic Refraction and Surface Wave Analysis, GPR and Microtremor methods are applied on four different profiles. It has been shown that the outputs of the methods differ as a result of the climatic conditions, properties of the geological environment and the depth/size/shape of the sinkhole/cave. Besides this, the area of application which is either inside the city center, steep valley or on the sea/streamside show also discrepancy in the order of preference of the geophysical application methods when considering the anomalies on different mediums. The results obtained from GPR are deep in relation with the thickness of the clayey unit, the water content of the medium and the thickness of the cave/sinkhole. Microgravity, GPR and Microtremor measurements were applied successfull and easily in the inner-city, while Electric Tomography, Seismic Refraction and MASW Methods showed reliable results which are obtained rapidly.
Stakeholder needs for ground penetrating radar utility location
NASA Astrophysics Data System (ADS)
Thomas, A. M.; Rogers, C. D. F.; Chapman, D. N.; Metje, N.; Castle, J.
2009-04-01
In the UK alone there are millions of miles of underground utilities with often inaccurate, incomplete, or non-existent location records that cause significant health and safety problems for maintenance personnel, together with the potential for large, unnecessary, social and financial costs for their upkeep and repair. This has led to increasing use of Ground Penetrating Radar (GPR) for utility location, but without detailed consideration of the degree of location accuracy required by stakeholders — i.e. all those directly involved in streetworks ranging from utility owners to contractors and surveyors and government departments. In order to ensure that stakeholder requirements are incorporated into a major new UK study, entitled Mapping the Underworld, a questionnaire has been used to determine the current and future utility location accuracy requirements. The resulting data indicate that stakeholders generally require location tolerances better than 100 mm at depths usually extending down to 3 m, and more occasionally to 5 m, below surface level, providing significant challenges to GPR if their needs are to be met in all ground conditions. As well as providing much useful data on stakeholder needs, these data are also providing a methodology for assessment of GPR utility location in terms of the factor most important to them — the degree to which the equipment provides location within their own accuracy requirements.
Using ground penetrating radar in levee assessment to detect small scale animal burrows
NASA Astrophysics Data System (ADS)
Chlaib, Hussein K.; Mahdi, Hanan; Al-Shukri, Haydar; Su, Mehmet M.; Catakli, Aycan; Abd, Najah
2014-04-01
Levees are civil engineering structures built to protect human lives, property, and agricultural lands during flood events. To keep these important structures in a safe condition, continuous monitoring must be performed regularly and thoroughly. Small rodent burrows are one of the major defects within levees; however, their early detection and repair helps in protecting levees during flooding events. A set of laboratory experiments was conducted to analyze the polarity change in GPR signals in the presence of subsurface voids and water-filled cavities. Ground Penetrating Radar (GPR) surveys using multi frequency antennas (400 MHz and 900 MHz) were conducted along an 875 meter section of the Lollie Levee near Conway, Arkansas, USA, to assess the levee's structural integrity. Many subsurface animal burrows, water-filled cavities, clay clasts, and metallic objects were investigated and identified. These anomalies were located at different depths and have different sizes. To ground truth the observations, hand dug trenches were excavated to confirm several anomalies. Results show an excellent match between GPR interpreted anomalies and the observed features. In-situ dielectric constant measurements were used to calculate the feature depths. The results of this research show that the 900 MHz antenna has more advantages over the 400 MHz antenna.
NASA Astrophysics Data System (ADS)
Stephens, Mark
1994-05-01
A well exposed outcrop in the Kayenta Formation (Lower Jurassic) in southwestern Colorado was examined in order to delineate the stratigraphy in the subsurface and test the usefulness of ground-probing radar (GPR) in three-dimensional architectural studies. Two fluvial styles are present within the Kayenta Formation. Sandbodies within the lower third of the outcrop are characterized by parallel laminations that can be followed in the cliff-face for well over 300 m. These sandbodies are sheet-like in appearance, and represent high-energy flood deposits that most likely resulted from episodic floods. The remainder of the outcrop is characterized by concave-up channel deposits with bank-attached and mid-channel macroforms. Their presence suggests a multiple channel river system. The GPR data collected on the cliff-top, together with sedimentological data, provided a partial three-dimensional picture of the paleo-river system within the Kayenta Formation. The 3-D picture consists of stacked channel-bar lenses approximately 50 m in diameter. The GPR technique offers a very effective means of delineating the subsurface stratigraphy. Its high resolution capabilities, easy mobility, and rapid rate of data collection make it a useful tool. Its shallow penetration depth and limitation to low-conductivity environments are its only drawbacks.
O' Connell bridge inspection by means of Ground Penetrating Radar
NASA Astrophysics Data System (ADS)
Santos Assuncao, Sonia, ,, Dr
2016-04-01
Ground Penetrating Radar (GPR) is a well-known technique successfully applied in different areas. In structural inspection the methodology may expose information about structural arrangement and pathologies. GPR emits high frequency electromagnetic impulses allowing to detect changes on the electromagnetic properties: electrical conductivity, dielectric constant and magnetic permeability. The central frequency of the each antenna is characterized by a specific resolution and penetration depth. Therefore, different scales of structures can be analysed. High frequency antennas output high resolution images/signals about the shallowest elements such as rebar and the thickness of the first layer. On the other hand, intermediate or lower frequency antennas locate deeper structures, such as the thickness of the arch. The compilation of distinct frequencies gives a better understanding and a more accurate detection of elements in the inner structure. O'Connell Bridge (1877) is one of 24 bridges along River Liffey and one the most famous historical structures in Dublin. It is composed by sandstones and granite and covered by asphalt which represents a suitable structure to evaluate by means of GPR. The lack of inner structural information, especially the thickness of the layer, presence of reinforcement or other metallic elements of support required, at least, a dual frequency analysis of the bridge. In this case, it was applied the (200 MHz and 600 MHz) Multi-Channel Stream EM combined with 1.6 GHz GSSI high frequency antenna. The inspection of bridges by means of GPR may provide not exclusively interesting structural data but historical information and the state of conservation.
Mapping Fractures in KAERI Underground Research Tunnel using Ground Penetrating Radar
NASA Astrophysics Data System (ADS)
Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon
2016-04-01
The proportion of nuclear power in the Republic of Korea occupies about 40 percent of the entire electricity production. Processing or disposing nuclear wastes, however, remains one of biggest social issues. Although low- and intermediate-level nuclear wastes are stored temporarily inside nuclear power plants, these temporary storages can last only up to 2020. Among various proposed methods for nuclear waste disposal, a long-term storage using geologic disposal facilities appears to be most highly feasible. Geological disposal of nuclear wastes requires a nuclear waste repository situated deep within a stable geologic environment. However, the presence of small-scale fractures in bedrocks can cause serious damage to durability of such disposal facilities because fractures can become efficient pathways for underground waters and radioactive wastes. Thus, it is important to find and characterize multi-scale fractures in bedrocks hosting geologic disposal facilities. In this study, we aim to map small-scale fractures inside the KAERI Underground Research Tunnel (KURT) using ground penetrating radar (GPR). The KURT is situated in the Korea Atomic Energy Research Institute (KAERI). The survey target is a section of wall cut by a diamond grinder, which preserves diverse geologic features such as dykes. We conducted grid surveys on the wall using 500 MHz and 1000 MHz pulseEKKO PRO sensors. The observed GPR signals in both frequencies show strong reflections, which are consistent to form sloping planes. We interpret such planar features as fractures present in the wall. Such fractures were also mapped visually during the development of the KURT. We confirmed their continuity into the wall from the 3D GPR images. In addition, the spatial distribution and connectivity of these fractures are identified from 3D subsurface images. Thus, we can utilize GPR to detect multi-scale fractures in bedrocks, during and after developing underground disposal facilities. This study was supported by Korea National Research Foundation (NRF) grants NRF-2012M2A8A5007440 and NRF-2013R1A1A1076071 funded by the Ministry of Science, ICT & Future Planning, Korea.
Semi-empirical model for the assessment of railway ballast using GPR
NASA Astrophysics Data System (ADS)
Giulia Brancadoro, Maria; Benedetto, Andrea
2017-04-01
Over time, railways have become a very competitive mean of transportation, especially for long distances. In order to ensure high level of safety, comfort and regularity of transportation, an efficient maintenance of the railway track-bed is crucial. In fact, the cyclic loads passing on the rails produce a progressive deterioration of railway ballast beneath the sleepers, and a breakdown of its particles that causes a general decrease of railway performances. This work aims at proposing a semi-empirical model for the characterisation of railway ballast grading, through the spectral analysis of Ground-Penetrating Radar (GPR) signal. To this effect, a theoretical study has been preliminary conducted to investigate the propagation and scattering phenomena of the electromagnetic waves within a ballast layer. To confirm the theoretical assumptions, high-frequency GPR signals have been both collected in laboratory and virtual environment. Concerning the latter, progressively more complex numerical domains have been designed and subjected to synthetic GPR test, by a Finite Different Time Domain (FTDT) procedure, run in GPR Max 2D simulator. As first simulation steps, ballast aggregates simplified through circles have been accounted for, with increasing values of radius. Subsequently, real-scale scenarios characterized by multi-size ballast particles, consistent with three different grain size distribution from railway network standards, have been reproduced by the employment of Random Sequential Adsorption - RSA algorithm. As far as the laboratory procedures, real GPR tests have been carried out on an experimental framework purposely set up, and composed of a methacrylate tank filled up with limestone-derived railway ballast. The ballast aggregates grading has been retrieved by means of an automatic image analysis algorithm, run on the lateral sight of the transparent tank. Through their spectral analysis, an empirical relationship between the position of the amplitude peak in the spectra, and the size of ballast particles was retrieved. As a result, this work opens new perspectives in railway track-bed maintenance. Indeed, it allows at monitoring the progressive evolution of ballast fragmentation and pollution phenomena, non-destructively and without need for any calibration. Acknowledgements The Authors thank COST, for funding the Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar"
NASA Astrophysics Data System (ADS)
Dal Bo, I.; Klotzsche, A.; Schaller, M.; Ehlers, T. A.; Vereecken, H.; Van Der Kruk, J.
2017-12-01
Understanding how weathering processes act is non-trivial. Direct methods are spatially restricted, time consuming, and expensive. Here, we show how to upscale and extend the point-scale layering information from dug pits deploying a multi-scale geophysical approach. Many studies have recently shown the potential of geophysics in bridging the gap between scales, although limited to specific environments. We applied Electromagnetic Induction (EMI), Ground Penetrating Radar (GPR), and Electrical Resistivity Tomography (ERT) in four study areas separated by 1600 km in the Chilean Coastal Cordillera, and ranging from the arid Atacama Desert in the north and temperate forests in the south. The main goals were to understand how the soil profile and the weathering front vary: 1) from north to south along these gradients, 2) in north- and south-facing hillslopes, and 3) within a single hillslope. We measured at the large-scale (EMI), at the profile scale (EMI, ERT, and GPR), and at the point-scale (GPR). The total length of the EMI, GPR and ERT measurements was 28.95 km, 3.67 km, and 0.27 km. GPR wide angle reflection and refraction measurements were the link between ground-truth data and geophysics. The low electrical conductivity (EC) regime limited the applicability of the EMI and ERT. However, still relative patterns of apparent electrical conductivity (ECa) from EMI could be used. Generally, ECa increased moving uphill and from north to south. Due to the low EC values in the study areas, GPR could image several reflections up to 8 m depth partially confirmed by the pit layering. Thicker layers on GPR profiles were present going from north to south and in the bottom-mid part of the hillslopes, as confirmed by ground-truth data. The main recognizable feature in the GPR profiles was the transition between B and C horizon. Here, hyperbolic-shape signatures were observed that probably were related to the presence of heterogeneities. The soil pits showed deeper layers in more vegetated south-facing hillslopes, which could be correlated with increased signal penetration and reflection depths in the GPR profiles. Soil depths and their interaction with biota in soil-mantled landscapes will be better characterized by combining geophysics with more environmental parameters within the interdisciplinary EarthShape project.
A validation study of the simulation software gprMax by varying antenna stand-off height
NASA Astrophysics Data System (ADS)
Wilkinson, Josh; Davidson, Nigel
2018-04-01
The design and subsequent testing of suitable antennas and of complete ground-penetrating radar (GPR) systems can be both time consuming and expensive, with the need to understand the performance of a system in realistic environments of great importance to the end user. Through the use of suitably validated simulations, these costs could be significantly reduced, allowing an economical capability to be built which can accurately predict the performance of novel GPR antennas and existing commercial-off-the-shelf (COTS) systems in a user defined environment. This paper focuses on a preliminary validation of the open source software gprMax1 which features the ability to custom define antennas, targets, clutter objects and realistic heterogeneous soils. As an initial step in the assessment of the software, a comparison of the modelled response of targets buried in sand to experimental data has been undertaken, with the variation in response with antenna stand-off height investigated. This was conducted for both a simple bespoke bow-tie antenna design as well as for a Geophysical Survey Systems, Inc. (GSSI) commercial system,2 building upon previous work3 which explored the fidelity of gprMax in reproducing the S11 of simple antenna designs.
UAV-based Radar Sounding of Antarctic Ice
NASA Astrophysics Data System (ADS)
Leuschen, Carl; Yan, Jie-Bang; Mahmood, Ali; Rodriguez-Morales, Fernando; Hale, Rick; Camps-Raga, Bruno; Metz, Lynsey; Wang, Zongbo; Paden, John; Bowman, Alec; Keshmiri, Shahriar; Gogineni, Sivaprasad
2014-05-01
We developed a compact radar for use on a small UAV to conduct measurements over the ice sheets in Greenland and Antarctica. It operates at center frequencies of 14 and 35 MHz with bandwidths of 1 MHz and 4 MHz, respectively. The radar weighs about 2 kgs and is housed in a box with dimensions of 20.3 cm x 15.2 cm x 13.2 cm. It transmits a signal power of 100 W at a pulse repletion frequency of 10 kHz and requires average power of about 20 W. The antennas for operating the radar are integrated into the wings and airframe of a small UAV with a wingspan of 5.3 m. We selected the frequencies of 14 and 35 MHz based on previous successful soundings of temperate ice in Alaska with a 12.5 MHz impulse radar [Arcone, 2002] and temperate glaciers in Patagonia with a 30 MHz monocycle radar [Blindow et al., 2012]. We developed the radar-equipped UAV to perform surveys over a 2-D grid, which allows us to synthesize a large two-dimensional aperture and obtain fine resolution in both the along- and cross-track directions. Low-frequency, high-sensitivity radars with 2-D aperture synthesis capability are needed to overcome the surface and volume scatter that masks weak echoes from the ice-bed interface of fast-flowing glaciers. We collected data with the radar-equipped UAV on sub-glacial ice near Lake Whillans at both 14 and 35 MHz. We acquired data to evaluate the concept of 2-D aperture synthesis and successfully demonstrated the first successful sounding of ice with a radar on an UAV. We are planning to build multiple radar-equipped UAVs for collecting fine-resolution data near the grounding lines of fast-flowing glaciers. In this presentation we will provide a brief overview of the radar and UAV, as well as present results obtained at both 14 and 35 MHz. Arcone, S. 2002. Airborne-radar stratigraphy and electrical structure of temperate firn: Bagley Ice Field, Alaska, U.S.A. Journal of Glaciology, 48, 317-334. Blindow, N., C. Salat, and G. Casassa. 2012. Airborne GPR sounding of deep temperate glaciers—examples from the Northern Patagonian Icefield, 14th International Conference on Ground Penetrating Radar (GPR) June 4-8, 2012, Shanghai, China, ISBN 978-1-4673-2663-6.
Identification of Karstic Features in Lateritic Soil by an Integrated Geophysical Approach
NASA Astrophysics Data System (ADS)
Anbazhagan, P.; Rohit, Divyesh; Prabhakaran, Athul; Vidyaranya, B.
2018-06-01
Lateritic soils are widely spread across the southern and central parts of India. Lateritic formations usually have soft sediments, entrapped between hard to medium soft lateritic rock, which are leached due to the ingress of water during rainy seasons creating hollow sections or cavities which span over large lengths. Laterites are highly heterogeneous and prone to cavitation due to its weathering process; a sound knowledge of the subsurface condition is required before starting any construction. This study presents the application of integrated geophysical investigation for the identification of cavities at a mega construction site in Kerala State, India. Geophysical survey methods, namely ground penetrating radar (GPR) and multichannel analysis of surface waves (MASWs) techniques, are used to identify the heterogeneities in lateritic soils and localized cavities. The survey areas identified are critical sections of a mega construction project subjected to heavy dynamic and static loads. The preliminary GPR survey is carried out across the study areas at specific interval spacing to identify probable heterogeneities. Confirmative survey or detailed GPR and MASW surveys are carried out at the locations identified in the preliminary survey at close intervals to confirm the presence of an anomaly and identify its location. The anomalies in the GPR radargram are identified by visual inspection and trace amplitude approach. Using MASW survey, a 2D shear wave velocity profile is generated to identify low shear wave velocity zones which confirm the presence of an anomaly. On comparing the data from both GPR and MASW survey techniques, the underground cavities were successfully identified at multiple locations with further crosschecking with borings. The study further provided details on subsurface lithology at survey locations.
DOT National Transportation Integrated Search
2013-11-11
Subsurface drainage features are routinely incorporated in the design of pavement systems as they are believed to increase pavement service life provided that they are installed correctly and maintained. Maintenance, however, is challenging in that l...
NASA Astrophysics Data System (ADS)
Switzer, Adam D.; Pile, Jeremy; Soria, Janneli Lea A.; Siringan, Fernando; Daag, Arturo; Brill, Dominik
2016-04-01
The Philippine archipelago lies in the path of seasonal tropical cyclones, and much of the coast is prone to periodic inundation and overwash during storm surges. On example is typhoon Durian a category 3 storm that made landfall on the 30th November 2006, in Bicol province, on the east central Philippine coast. Satellite imagery from May 2007 reveal that Durian breached a sandy spit that runs southeast from the mouth of the Quinale River at Bay-Bay village towards Tabaco City. The imagery also showed that, although the breach site showed signs of partial recovery, geomorphological evidence of the inundation event associated with typhoon Durian still remains. In 2012 we mapped the geomorphological features of Durian. In June 2013 we returned to conduct Ground Penetrating Radar (GPR) surveys on the Bay-Bay spit to investigate potential subsurface evidence of previous storm events. The GPR surveys comprised five, 1.5 km, longshore profiles and 12 cross-shore profiles, of 50 m - 200 m in length. The GPR system used for this study was a Sensors and Software Noggin with 100 Mhz antennas. Near surface velocities were determine using Hyperbolae matching in order to estimate depth. Topographic and positional data were collected using a dGPS system. After minimal processing depth of penetration during the survey varied from 2 - 8 m. The cross-shore GPR profiles reveal at least two erosional events prior to 2006 typhoon Durian, with approximately 10 m of recovery and progradation between each erosion surface. The GPR profiles that captured the erosional features were revisited in September 2013 for trial pitting, stratigraphic description, and sediment sampling. Sediment cores were taken horizontally from the trench walls and vertically from the trench bases to date sediments using Optically Stimulated Luminescence (OSL), which eventually could constrain the timing of the erosional surfaces.
Preprocessing of A-scan GPR data based on energy features
NASA Astrophysics Data System (ADS)
Dogan, Mesut; Turhan-Sayan, Gonul
2016-05-01
There is an increasing demand for noninvasive real-time detection and classification of buried objects in various civil and military applications. The problem of detection and annihilation of landmines is particularly important due to strong safety concerns. The requirement for a fast real-time decision process is as important as the requirements for high detection rates and low false alarm rates. In this paper, we introduce and demonstrate a computationally simple, timeefficient, energy-based preprocessing approach that can be used in ground penetrating radar (GPR) applications to eliminate reflections from the air-ground boundary and to locate the buried objects, simultaneously, at one easy step. The instantaneous power signals, the total energy values and the cumulative energy curves are extracted from the A-scan GPR data. The cumulative energy curves, in particular, are shown to be useful to detect the presence and location of buried objects in a fast and simple way while preserving the spectral content of the original A-scan data for further steps of physics-based target classification. The proposed method is demonstrated using the GPR data collected at the facilities of IPA Defense, Ankara at outdoor test lanes. Cylindrically shaped plastic containers were buried in fine-medium sand to simulate buried landmines. These plastic containers were half-filled by ammonium nitrate including metal pins. Results of this pilot study are demonstrated to be highly promising to motivate further research for the use of energy-based preprocessing features in landmine detection problem.
NASA Astrophysics Data System (ADS)
Wright, William; Comas, Xavier
2016-04-01
The spatial and temporal variability in production and release of greenhouse gases (such as methane) in peat soils remains uncertain, particularly for low-latitude peatlands like the Everglades. Ground penetrating radar (GPR) is a hydrogeophysical tool that has been successfully used in the last decade to noninvasively investigate carbon dynamics in peat soils; however, application in subtropical systems is almost non-existent. This study is based on four field sites in the Florida Everglades, where changes in gas content within the soil are monitored using time-lapse GPR measurements and gas releases are monitored using gas traps. A weekly methane gas production rate is estimated using a mass balance approach, considering gas content estimated from GPR, gas release from gas traps and incorporating rates of diffusion, and methanotrophic consumption from previous studies. Resulting production rates range between 0.02 and 0.47 g CH4 m-2 d-1, falling within the range reported in literature. This study shows the potential of combining GPR with gas traps to monitor gas dynamics in peat soils of the Everglades and estimate methane gas production. We also show the enhanced ability of certain peat soils to store gas when compared to others, suggesting that physical properties control biogenic gas storage in the Everglades peat soils. Better understanding biogenic methane gas dynamics in peat soils has implications regarding the role of wetlands in the global carbon cycle, particularly under a climate change scenario.
NASA Astrophysics Data System (ADS)
Barrile, V.; Bilotta, G.; Meduri, G. M.; De Carlo, D.; Nunnari, A.
2017-11-01
In this study, using technologies such as laser scanner and GPR it was desired to see their potential in the cultural heritage. Also with regard to the processing part we are compared the results obtained by the various commercial software and algorithms developed and implemented in Matlab. Moreover, Virtual Reality and Augmented Reality allow integrating the real world with historical-artistic information, laser scanners and georadar (GPR) data and virtual objects, virtually enriching it with multimedia elements, graphic and textual information accessible through smartphones and tablets.
NASA Astrophysics Data System (ADS)
Premasiri, Ranjith; Styles, Peter; Shrira, Victor; Cassidy, Nigel; Schwenninger, Jean-Luc
2015-12-01
To evaluate and mitigate tsunami hazard, as long as possible records of inundations and dates of past events are needed. Coastal sediments deposited by tsunamis (tsunamites) can potentially provide this information. However, of the three key elements needed for reconstruction of palaeotsunamis (identification of sediments, dating and finding the inundation distance) the latter remains the most difficult. The existing methods for estimating the extent of a palaeotsunami inundation rely on extensive excavation, which is not always possible. Here, by analysing tsunamites from Sri Lanka identified using sedimentological and paleontological characteristics, we show that their internal dielectric properties differ significantly from surrounding sediments. The significant difference in the value of dielectric constant of the otherwise almost indistinguishable sediments is due to higher water content of tsunamites. The contrasts were found to be sharp and not to erode over thousands of years; they cause sizeable electromagnetic wave reflections from tsunamite sediments, which permit the use of ground-penetrating radar (GPR) to trace their extent and morphology. In this study of the 2004 Boxing Day Indian Ocean tsunami, we use GPR in two locations in Sri Lanka to trace four identified major palaeotsunami deposits for at least 400 m inland (investigation inland was constrained by inaccessible security zones). The subsurface extent of tsunamites (not available without extensive excavation) provides a good proxy for inundation. The deposits were dated using the established method of optically stimulated luminescence (OSL). This dating, partly corroborated by available historical records and independent studies, contributes to the global picture of tsunami hazard in the Indian Ocean. The proposed method of combined GPR/OSL-based reconstruction of palaeotsunami deposits enables estimates of inundation, recurrence and, therefore, tsunami hazard for any sandy coast with identifiable tsunamite deposits. The method could be also used for anchoring and synchronizing chronologies of ancient civilisations adjacent to the ocean shores.
NASA Astrophysics Data System (ADS)
Arcone, S. A.
2014-12-01
Road Radar generally refers to ground-penetrating radar (GPR) surveys intended to investigate pavement construction using pulses centered above 1 GHz. In interior Alaska thick sand and gravel grading and its frozen state by late winter generally afford up to 10 m of signal penetration at lower frequencies. Consequently, this penetration potentially allows identification of pavement issues involving frost heave and thaw settlement, while the smooth surface allows assessment of GPR performance in permafrost areas under ideal survey conditions. Here I discuss profiles using pulse center frequencies from 50 to 360 MHz, recorded over sections of the Steese and Elliott Highways within and just north of Fairbanks, respectively, and of the Tok Highway near Glennallen. Construction fill is easily recognized by its stratification; where marginally present along the Elliott it is replaced by steeply dipping horizons from the underlying schist. The frost depth and water table horizons are recognized by phase attributes of the reflected pulse, as dictated by the contrasts present in dielectric permittivity, their relative depths, and their continuity. Undulating stratification in the sand and gravel fill indicates thaw settlement, as caused by the melting of buried massive ice. The Tok section reveals the top and likely the bottom of massive ice. Generally, signal penetration is greatly reduced beneath the water table and so the highest resolution, at 360 MHz, covers all horizons. There is rare evidence of a permafrost table because it is most likely masked or nearly coincident with the water table. Permafrost penetration in frozen silts is a long-standing problem for GPR, for which I discuss a possible cause related to Maxwell-Wagner dielectric relaxation losses associated with unfrozen water.
Van Heteren, S.; FitzGerald, D.M.; Barber, D.C.; Kelley, J.T.; Belknap, D.F.
1996-01-01
Ground-penetrating-radar (GPR) profiles calibrated with core data allow accurate assessments of coastal barrier volumes. We applied this procedure successfully to the barrier system along Saco Bay, Maine (USA), as part of a sediment-budget study that focused on present-day sand volumes in various coastal, shoreface, and inner-shelf lith-osomes, and on sand fluxes that have affected the volume or distribution of sand in these sediment bodies through time. On GPR profiles, the components of the barrier lithosome are readily differentiated from other facies, except where the radar signal is attenuated by brackish or salty groundwater. Significant differences between dielectric properties of the barrier lithosome and other units commonly result in strong boundary reflectors. The mostly sandy barrier sediments allow deep penetration of GPR waves, in contrast to finer-grained strata and till-covered bedrock. Within the Saco Bay barrier system, 22 ??3 x 106 m3 of sediment are unevenly distributed. Two-thirds of the total barrier volume is contained within the northern and southern ends of the study area, in the Pine Point spit and the Ferry Beach/Goosefare complex, respectively. The central area around Old Orchard Beach is locally covered by only a thin veneer of barrier sand, averaging <3 m, that unconformably overlies shallow pre-Holocene facies. The prominence of barrier-spit facies and the distribution pattern of back-barrier sediments indicate that a high degree of segmentation, governed by antecedent topography, has affected the development of the Saco Bay barrier system. The present-day configuration of the barrier and back-barrier region along Saco Bay, however, conceals much of its early compartmentalized character.
GPR measurements and estimation for road subgrade damage caused by neighboring train vibration load
NASA Astrophysics Data System (ADS)
Zhao, Yonghui; Lu, Gang; Ge, Shuangcheng
2015-04-01
Generally, road can be simplified as a three-layer structure, including subgrade, subbase and pavement. Subgrade is the native material underneath a constructed road. It is commonly compacted before the road construction, and sometimes stabilized by the addition of asphalt, lime or other modifiers. As the mainly supporting structure, subgrade damage would lead in pavement settlement, displacement and crack. Assessment and monitoring of the subgrade condition currently involves trial pitting and subgrade sampling. However there is a practical limit on spatial density at which trail pits and cores can be taken. Ground penetrating radar (GPR) has been widely used to characterize highway pavement profiling, concrete structure inspection and railroad track ballast estimation. GPR can improve the economics of road maintenance. Long-term train vibration load might seriously influence the stability of the subgrade of neighboring road. Pavement settlement and obvious cracks have been found at a municipal road cross-under a railway with culvert box method. GPR test was conducted to estimate the subgrade and soil within 2.0 m depth for the further road maintenance. Two survey lines were designed in each lane, and total 12 GPR sections have been implemented. Considering both the penetrating range and the resolution, a antenna with a 500 MHz central frequency was chosen for on-site GPR data collection. For data acquisition, we used the default operating environment and scanning parameters for the RAMAC system: 60kHz transmission rate, 50 ns time window, 1024 samples per scan and 0.1 m step-size. Continuous operation was used; the antenna was placed on the road surface and slowly moved along the road. The strong surrounding disturbance related to railroad and attachments, might decrease the reliability of interpretation results. Some routine process methods (including the background removing, filtering) have been applied to suppress the background noise. Additionally, attribute analysis is an important tool that focused on the multi-properties of the signal. Here, cross-correlation attribute analysis has been applied for GPR profile interpretation. It compares one trace with surrounding traces to determine degrees of similar, and improves the difference between the reflected wave from detection target and its surrounding mediums, which makes it easy to detect the anomaly that couldn't be found in original GPR time profile. It's possible to identify sections of subgrade in good or worse condition, which may require specific maintenance or trail pitting investigation.
Assessment of highway condition using combined geophysical surveys
NASA Astrophysics Data System (ADS)
Dera, Abdallah Alhadi
Four pavement sections were investigated using ground penetrating radar (GPR) and Ultrasonic Surface Wave (USW). The objective of this research was to compare the effectiveness of two non-destructive geophysical tools, GPR and the PSPA, in assessing the condition of the pavements, composed of different construction materials. The GPR data were acquired using a 1.5 GHz antenna along five traverses spaced at two ft. intervals approximately 1000 ft. long. On the other hand, the PSPA data were acquired at the stations spaced at 1000 ft. along the five GPR traverses. Core samples were collected at each site to constrain the interpretation of the acquired geophysical data. The sites include section US 63 about three miles north of Rolla, US 54 in Camdenton County, MO 179 in Jefferson City, and HWY U in Dent County. The types of pavement in these sites were, asphalt concrete overlaying portland cement concrete (AC/PCC), and full-depth asphalt concrete (AC) pavements or full depth bituminous mix (BM). Based on the acquired and analyzed data of the GPR and PSPA, the data of both tools correlated reasonably well. The PSPA technique successfully measured the elastic modulus and the thickness of pavement and detected horizontal flaws (e.g. debonding and delaminations). Similarly, the GPR technique successfully measured the thickness of pavement and detected horizontal flaws (e.g. debonding and delaminations) within the pavement. The research demonstrated that both non-destructive geophysical tools (GPR and PSPA) are effective in assessing the condition of different types of pavement.
NASA Astrophysics Data System (ADS)
Ringgaard, Jørgen; Wisén, Roger
2014-05-01
The Ramboll Group is a large (10.000 employees worldwide) engineering and consultancy company, with offices in 21 countries. Ramboll has been working with geophysics for about 20 years and at the time of writing there are about 25 geophysicist employed in the group, 20 of these are employed in Ramboll Denmark. Ramboll offers an extensive range of geophysical methods: different types of seismic, borehole wireline logging, electric and electromagnetic surveys, magnetic resonance soundings and well as marine geophysical and hydrographic surveys. The geophysical group at Ramboll operates in different industries comprising: Infrastructure, environmental assessments, mineral exploration, energy and offshore constructions. In the recent years our GPR activities has increased significantly. Today Ramboll Denmark owns three separate GPR systems: One GSSI SIR-3000 with antennas ranging from 16MHz to 2GHz, One Mala geoscience ProEx system with a 100MHz RTA antenna and one 3D-radar Geoscope MKIV system with two DX antennas of different size. The main services are geological mapping with our ProEx system from Malå Geoscience, road mapping with a GSSI system and different shallow mapping with our 3D system from 3D Radar. With our 2D systems we have performed mapping of peat in different places in Norway, mapping of sediments at various places in the Nordic countries and mapping of glacier thickness in Greenland. In this type of investigations we often combine GPR with resistivity imaging (CVES) and refraction seismic to ensure a more reliable interpretation. We have performed occasional utility or UXO surveys where GPR has been used together with EM or magnetic measurements. The mapping on roads with the GSSI system is performed by our RST (Road Surface Testing) department in Malmö, Sweden. The measurements on roads are often combined with laser scanning and photo registration of the surface. Various software have been developed to automatize the interpretation. The RST group has contributed to aninternational collaboration between several countries about preparation of guidelines for application of GPR on roads, the Mara Nord Project. Our 3D system is used for various types of surveys. In airports mapping has been performed both on runways, taxiways and aprons with the aim of mapping layer thicknesses and delamination for planning of maintenance work. Acquisition has also been done on roads for control of asphalt works and mapping of the road bed. On bridges mapping of rebars and structure has been performed. The 3D system is also used for determination of space behind frost insulation walls in tunnels in Norway. This work is based on a pilot project made by SINTEF in Norway. This abstract is a contribution to COST Action TU1208.
NASA Astrophysics Data System (ADS)
Van De Vijver, Ellen; Van Meirvenne, Marc; Saey, Timothy; De Smedt, Philippe; Delefortrie, Samuël; Seuntjens, Piet
2014-05-01
Industrial sites pose specific challenges to the conventional way of characterizing soil and groundwater properties through borehole drilling and well monitoring. The subsurface of old industrial sites typically exhibits a large heterogeneity resulting from various anthropogenic interventions, such as the dumping of construction and demolition debris and industrial waste. Also larger buried structures such as foundations, utility infrastructure and underground storage tanks are frequently present. Spills and leaks from industrial activities and leaching of buried waste may have caused additional soil and groundwater contamination. Trying to characterize such a spatially heterogeneous medium with a limited number of localized observations is often problematic. The deployment of mobile proximal soil sensors may be a useful tool to fill up the gaps in between the conventional observations, as these enable measuring soil properties in a non-destructive way. However, because the output of most soil sensors is affected by more than one soil property, the application of only one sensor is generally insufficient to discriminate between all contributing factors. To test a multi-sensor approach, we selected a study area which was part of a former manufactured gas plant site located in one of the seaport areas of Belgium. It has a surface area of 3400 m² and was the location of a phosphate production unit that was demolished at the end of the 1980s. Considering the long and complex history of the site we expected to find a typical "industrial" soil. Furthermore, the studied area was located between buildings of the present industry, entailing additional practical challenges such as the presence of active utilities and aboveground obstacles. The area was surveyed using two proximal soil sensors based on two different geophysical methods: ground penetrating radar (GPR), to image contrasts in dielectric permittivity, and electromagnetic induction (EMI), to measure the apparent soil electrical conductivity (ECa) and magnetic susceptibility (MSa). For both methods one of the latest-generation instruments was used. GPR data were collected using a 3d-Radar stepped-frequency system with multi-channel antenna design. For EMI, this was the multi-receiver DUALEM-21S sensor. This sensor contains four different transmitter-receiver coil pair configurations, which allows to record the ECa and MSa for four different soil volumes at the same time, thereby providing information about the vertical variation of these soil properties. Both the EMI and GPR survey were performed in a mobile set-up with real-time georeferencing to obtain a high-resolution coverage of the area. The results of both surveys were validated with conventional site characterization that was conducted for a soil contamination investigation, and ancillary information such as aerial photographs and utility maps. Both methods were compared on their performance in detecting different types of anomalies. We report on the successes and failures with this multi-sensor approach. The authors acknowledge funding by COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar"
Geophysical prospection of the Roman city of Pollentia, Alcúdia (Mallorca, Balearic Islands, Spain)
NASA Astrophysics Data System (ADS)
Ranieri, G.; Godio, A.; Loddo, F.; Stocco, S.; Casas, A.; Capizzi, P.; Messina, P.; Orfila, M.; Cau, M. A.; Chávez, Mª. E.
2016-11-01
We present the results of the geophysical investigation carried out in the Roman city of Pollentia, in the island of Mallorca. The ancient city was identified in the 19th century. Old and new archaeological excavations have helped to uncover a residential area, a theatre, the forum, several necropolises and other remains of the city, but a large unexplored area has still to be investigated. For instance, the limits of the ancient town and the presence of harbour structures are still unknown. The geophysical survey has covered an area of more than 20.000 m2 by integrating magnetic, electromagnetic, electrical and ground penetrating radar (GPR) methods. Many unseen archaeological features were clearly revealed by the interpretation of the resistivity maps and GPR time slices. A new method for the visualisation of the geophysical evidence based on VRML (Virtual Reality Markup Language) 3D data representation provides promising results to drive future excavations. The VRML shows a great potentiality for the digital visualization of the site aimed at its exploitation and usability even without the archaeological excavation.
DOT National Transportation Integrated Search
2016-06-30
The overarching objective of this research is the development of a systematic methodology of employing GPR, including instruments, subsequent data processing and interpretation that can be used regularly as part of a roadway pavement and bridge evalu...
DOT National Transportation Integrated Search
2016-10-01
This University of Maryland (UMD) project, in cooperation with Starodub Inc, : had the following objectives: : 1) Provide data analysis support for 40 bridge decks; : 2) Develop the analysis pipeline for producing structural reports according to the ...
Electromagnetic Simulations of Ground-Penetrating Radar Propagation near Lunar Pits and Lava Tubes
NASA Technical Reports Server (NTRS)
Zimmerman, M. I.; Carter, L. M.; Farrell, W. M.; Bleacher, J. E.; Petro, N. E.
2013-01-01
Placing an Orion capsule at the Earth-Moon L2 point (EML2) would potentially enable telerobotic operation of a rover on the lunar surface. The Human Exploration Virtual Institute (HEVI) is proposing that rover operations be carried out near one of the recently discovered lunar pits, which may provide radiation shielding for long duration human stays as well as a cross-disciplinary, science-rich target for nearer-term telerobotic exploration. Ground penetrating radar (GPR) instrumentation included onboard a rover has the potential to reveal many details of underground geologic structures near a pit, as well as characteristics of the pit itself. In the present work we employ the full-wave electromagnetic code MEEP to simulate such GPR reflections from a lunar pit and other subsurface features including lava tubes. These simulations will feed forward to mission concepts requiring knowledge of where to hide from harmful radiation and other environmental hazards such as plama charging and extreme diurnal temperatures.
Ground Penetrating Radar Investigations in the Noble Hall of São Carlos Theater in Lisbon, Portugal
NASA Astrophysics Data System (ADS)
Fontul, S.; Solla, M.; Cruz, H.; Machado, J. S.; Pajewski, L.
2018-05-01
This paper describes a study conducted by the National Laboratory for Civil Engineering of Portugal (LNEC), in cooperation with the Defense University Center at the Spanish Naval Academy and "La Sapienza," University of Rome, to assess the health and safety conditions of the Noble Hall floor in the São Carlos National Theater (Lisbon, Portugal). In a multidisciplinary approach, extensive fieldwork was carried out. The survey included the location and characterization of beams in the various areas of the floor by using two ground penetrating radar (GPR) systems equipped with two different ground- or air-coupled antennas, local inspection openings to visually assess the geometry, timber species and conservation state of structural members, and an assessment of the conservation state of the timber beam ends using drilling equipment. All the tests performed and the results obtained are presented. The potential of using non-destructive tests for the inspection of timber cultural heritage structures, particularly GPR, is discussed, and some practical recommendations are made.
The shifting zoom: new possibilities for inverse scattering on electrically large domains
NASA Astrophysics Data System (ADS)
Persico, Raffaele; Ludeno, Giovanni; Soldovieri, Francesco; De Coster, Alberic; Lambot, Sebastien
2017-04-01
Inverse scattering is a subject of great interest in diagnostic problems, which are in their turn of interest for many applicative problems as investigation of cultural heritage, characterization of foundations or subservices, identification of unexploded ordnances and so on [1-4]. In particular, GPR data are usually focused by means of migration algorithms, essentially based on a linear approximation of the scattering phenomenon. Migration algorithms are popular because they are computationally efficient and do not require the inversion of a matrix, neither the calculation of the elements of a matrix. In fact, they are essentially based on the adjoint of the linearised scattering operator, which allows in the end to write the inversion formula as a suitably weighted integral of the data [5]. In particular, this makes a migration algorithm more suitable than a linear microwave tomography inversion algorithm for the reconstruction of an electrically large investigation domain. However, this computational challenge can be overcome by making use of investigation domains joined side by side, as proposed e.g. in ref. [3]. This allows to apply a microwave tomography algorithm even to large investigation domains. However, the joining side by side of sequential investigation domains introduces a problem of limited (and asymmetric) maximum view angle with regard to the targets occurring close to the edges between two adjacent domains, or possibly crossing these edges. The shifting zoom is a method that allows to overcome this difficulty by means of overlapped investigation and observation domains [6-7]. It requires more sequential inversion with respect to adjacent investigation domains, but the really required extra-time is minimal because the matrix to be inverted is calculated ones and for all, as well as its singular value decomposition: what is repeated more time is only a fast matrix-vector multiplication. References [1] M. Pieraccini, L. Noferini, D. Mecatti, C. Atzeni, R. Persico, F. Soldovieri, Advanced Processing Techniques for Step-frequency Continuous-Wave Penetrating Radar: the Case Study of "Palazzo Vecchio" Walls (Firenze, Italy), Research on Nondestructive Evaluation, vol. 17, pp. 71-83, 2006. [2] N. Masini, R. Persico, E. Rizzo, A. Calia, M. T. Giannotta, G. Quarta, A. Pagliuca, "Integrated Techniques for Analysis and Monitoring of Historical Monuments: the case of S.Giovanni al Sepolcro in Brindisi (Southern Italy)." Near Surface Geophysics, vol. 8 (5), pp. 423-432, 2010. [3] E. Pettinelli, A. Di Matteo, E. Mattei, L. Crocco, F. Soldovieri, J. D. Redman, and A. P. Annan, "GPR response from buried pipes: Measurement on field site and tomographic reconstructions", IEEE Transactions on Geoscience and Remote Sensing, vol. 47, n. 8, 2639-2645, Aug. 2009. [4] O. Lopera, E. C. Slob, N. Milisavljevic and S. Lambot, "Filtering soil surface and antenna effects from GPR data to enhance landmine detection", IEEE Transactions on Geoscience and Remote Sensing, vol. 45, n. 3, pp.707-717, 2007. [5] R. Persico, "Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing". Wiley, 2014. [6] R. Persico, J. Sala, "The problem of the investigation domain subdivision in 2D linear inversions for large scale GPR data", IEEE Geoscience and Remote Sensing Letters, vol. 11, n. 7, pp. 1215-1219, doi 10.1109/LGRS.2013.2290008, July 2014. [7] R. Persico, F. Soldovieri, S. Lambot, Shifting zoom in 2D linear inversions performed on GPR data gathered along an electrically large investigation domain, Proc. 16th International Conference on Ground Penetrating Radar GPR2016, Honk-Kong, June 13-16, 2016
An effective approach for road asset management through the FDTD simulation of the GPR signal
NASA Astrophysics Data System (ADS)
Benedetto, Andrea; Pajewski, Lara; Adabi, Saba; Kusayanagi, Wolfgang; Tosti, Fabio
2015-04-01
Ground-penetrating radar is a non-destructive tool widely used in many fields of application including pavement engineering surveys. Over the last decade, the need for further breakthroughs capable to assist end-users and practitioners as decision-support systems in more effective road asset management is increasing. In more details and despite the high potential and the consolidated results obtained over years by this non-destructive tool, pavement distress manuals are still based on visual inspections, so that only the effects and not the causes of faults are generally taken into account. In this framework, the use of simulation can represent an effective solution for supporting engineers and decision-makers in understanding the deep responses of both revealed and unrevealed damages. In this study, the potential of using finite-difference time-domain simulation of the ground-penetrating radar signal is analyzed by simulating several types of flexible pavement at different center frequencies of investigation typically used for road surveys. For these purposes, the numerical simulator GprMax2D, implementing the finite-difference time-domain method, was used, proving to be a highly effective tool for detecting road faults. In more details, comparisons with simplified undisturbed modelled pavement sections were carried out showing promising agreements with theoretical expectations, and good chances for detecting the shape of damages are demonstrated. Therefore, electromagnetic modelling has proved to represent a valuable support system in diagnosing the causes of damages, even for early or unrevealed faults. Further perspectives of this research will be focused on the modelling of more complex scenarios capable to represent more accurately the real boundary conditions of road cross-sections. Acknowledgements - This work has benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".
Identification of sewage leaks by active remote-sensing methods
NASA Astrophysics Data System (ADS)
Goldshleger, Naftaly; Basson, Uri
2016-04-01
The increasing length of sewage pipelines, and concomitant risk of leaks due to urban and industrial growth and development is exposing the surrounding land to contamination risk and environmental harm. It is therefore important to locate such leaks in a timely manner, to minimize the damage. Advances in active remote sensing Ground Penetrating Radar (GPR) and Frequency Domain Electromagnetic (FDEM) technologies was used to identify leaking potentially responsible for pollution and to identify minor spills before they cause widespread damage. This study focused on the development of these electromagnetic methods to replace conventional acoustic methods for the identification of leaks along sewage pipes. Electromagnetic methods provide an additional advantage in that they allow mapping of the fluid-transport system in the subsurface. Leak-detection systems using GPR and FDEM are not limited to large amounts of water, but enable detecting leaks of tens of liters per hour, because they can locate increases in environmental moisture content of only a few percentage along the pipes. The importance and uniqueness of this research lies in the development of practical tools to provide a snapshot and monitoring of the spatial changes in soil moisture content up to depths of about 3-4 m, in open and paved areas, at relatively low cost, in real time or close to real time. Spatial measurements performed using GPR and FDEM systems allow monitoring many tens of thousands of measurement points per hectare, thus providing a picture of the spatial situation along pipelines and the surrounding. The main purpose of this study was to develop a method for detecting sewage leaks using the above-proposed geophysical methods, since their contaminants can severely affect public health. We focused on identifying, locating and characterizing such leaks in sewage pipes in residential and industrial areas.
NASA Astrophysics Data System (ADS)
Fankhauser, Kerstin; Guzman, Daisy R. Lucas; Oggier, Nicole; Maurer, Hansruedi; Springman, Sarah M.
2015-04-01
Various types of mass movements cause extensive natural hazards in populated mountain regions. They need to be quantified, and possibly predicted, for implementing effective mitigation and protection measures. The Meretschibach catchment in the Valais area, Switzerland, is a source region for such events. Various forms of instabilities occur on the steep slopes. They manifest themselves in form of smaller rock falls and rock slides on the open scree slopes. Moreover, large sediment volumes of channelized stream deposits can evolve into debris flows, with a substantial run-out along the Meretschibach. Geophysical methods, such as electrical resistivity tomography (ERT) and ground-penetrating-radar (GPR) have been proven to be powerful tools for characterizing mass movements and slope instabilities. They complement other remote sensing techniques and in-situ geotechnical experiments. Ground-based and helicopter-borne GPR measurements were carried out at the Meretschibach test site, to determine the depth to the bedrock. The results indicate that the bedrock is generally shallow, ranging from a few centimetres to about 5 metres vertically below the surface. A particularly interesting aspect of the GPR investigations was the observation that bedrock depth could be resolved by both, ground-based and helicopter-borne GPR data. Ground-based GPR surveying proved to be extremely challenging on the steep slopes, and some areas were even inaccessible due to safety concerns. It is therefore encouraging for future projects that helicopter-borne GPR acquisition offers a promising alternative. The spatial distribution of the soil moisture content and the temporal variations were determined with repeated ERT measurements. The resulting tomograms allowed a conductive soil layer and more resistive bedrock to be distinguished clearly. The ERT results were in good agreement with in-situ geotechnical measurements in a nearby test pit, and the depth of the soil-bedrock interface was broadly consistent with the GPR results. A comparison of tomograms obtained during the relatively dry month of June 2014, with those acquired after heavy rainfall in July 2014, showed significant changes of the shallow subsurface resistivities. These changes could be attributed in a quantitative fashion to variations of the soil water Saturation.
Deep convolutional neural networks for classifying GPR B-scans
NASA Astrophysics Data System (ADS)
Besaw, Lance E.; Stimac, Philip J.
2015-05-01
Symmetric and asymmetric buried explosive hazards (BEHs) present real, persistent, deadly threats on the modern battlefield. Current approaches to mitigate these threats rely on highly trained operatives to reliably detect BEHs with reasonable false alarm rates using handheld Ground Penetrating Radar (GPR) and metal detectors. As computers become smaller, faster and more efficient, there exists greater potential for automated threat detection based on state-of-the-art machine learning approaches, reducing the burden on the field operatives. Recent advancements in machine learning, specifically deep learning artificial neural networks, have led to significantly improved performance in pattern recognition tasks, such as object classification in digital images. Deep convolutional neural networks (CNNs) are used in this work to extract meaningful signatures from 2-dimensional (2-D) GPR B-scans and classify threats. The CNNs skip the traditional "feature engineering" step often associated with machine learning, and instead learn the feature representations directly from the 2-D data. A multi-antennae, handheld GPR with centimeter-accurate positioning data was used to collect shallow subsurface data over prepared lanes containing a wide range of BEHs. Several heuristics were used to prevent over-training, including cross validation, network weight regularization, and "dropout." Our results show that CNNs can extract meaningful features and accurately classify complex signatures contained in GPR B-scans, complementing existing GPR feature extraction and classification techniques.
NASA Astrophysics Data System (ADS)
Gouramanis, Chris; Switzer, Adam D.; Polivka, Peter M.; Bristow, Charles S.; Jankaew, Kruawun; Dat, Pham T.; Pile, Jeremy; Rubin, Charles M.; Yingsin, Lee; Ildefonso, Sorvigenaleon R.; Jol, Harry M.
2015-11-01
Coastal overwash deposits from tsunamis and storms have been identified and characterised from many coastal environments. To date, these investigations have utilised ad-hoc time, energy and cost intensive invasive techniques, such as, pits and trenches or taking core samples. Here, we present the application of high-frequency ground penetrating radar (GPR) to identify and characterise the 2004 Indian Ocean Tsunami (IOT) and palaeotsunami deposits from Phra Thong Island, Thailand. This site is one of the most intensively studied palaeotsunami sites globally and preserves a series of late-Holocene stacked sandy tsunami deposits within an organic, muddy low-energy backbeach environment. Using 100, 500 and 1000 MHz GPR antennas, 29 reflection profiles were collected from two swales (X and Y) inland of the modern beach, and two common mid-point (CMP) profiles using the 200 MHz antennas were collected from Swale Y. Detailed examination of the CMPs allowed accurate velocity estimates to be applied to each profile. The reflection profiles included across-swale profiles and a high-resolution grid in Swale X, and were collected to investigate the feasibility of GPR to image the palaeotsunami deposits, and two profiles from Swale Y where the tsunami deposits are poorly known. The 500 MHz antennas provided the best stratigraphic resolution which was independently validated from the stratigraphy and sedimentology recovered from 17 auger cores collected along the profiles. It is clear from the augers and GPR data, that the different dielectric properties of the individual layers allow the identification of the IOT and earlier tsunami deposits on Phra Thong Island. Although applied in a coastal setting here, this technique can be applied to other environments where thin sand beds are preserved, in order to prioritise sites for detailed examination.
Adapting Ground Penetrating Radar for Non-Destructive In-Situ Root and Tuber Assessment
NASA Astrophysics Data System (ADS)
Teare, B. L.; Hays, D. B.; Delgado, A.; Dobreva, I. D.; Bishop, M. P.; Lacey, R.; Huo, D.; Wang, X.
2017-12-01
Ground penetrating radar (GPR) is a rapidly evolving technology extensively used in geoscience, civil science, archeology, and military, and has become a novel application in agricultural systems. One promising application of GPR is for root and tuber detection and measurement. Current commercial GPR systems have been used for detection of large roots, but few studies have attempted to detect agronomic roots, and even fewer have attempted to measure and quantify the total root mass. The ability to monitor and measure root and tuber mass and architecture in an agricultural setting would have far-reaching effects. A few of these include the potential for breeding higher yielding root and tuber crops, rapid bulking roots, discovery of crops with greater carbon sequestration, discovery of plant varieties which have greater ability to stabilize slopes against erosion and slope failure, and drought tolerant varieties. Despite the possible benefits and the current maturity of GPR technology, several challenges remain in the attempt to optimize its use for root and tuber detection. These challenges center on three categories: spatial resolution, data processing, and field-deployable hardware configuration. This study is centered around tuber measurement and its objectives are to i) identify ideal antenna array configurations, frequency, and pulse density; ii) develop novel processing techniques which leverage powerful computer technologies to provide highly accurate measurements of detected features; and iii) develop a cart system which is appropriate for agricultural fields and non-destructive sampling. Already, a 2 GHz multiarray antenna has been identified as an optimal system for tuber detection. Software and processing algorithm development is ongoing, but has already shown improvement over current software offerings. Recent field activity suggest that carts should be width adjustable and sport independent suspension systems to maintain antenna orientation.
NASA Astrophysics Data System (ADS)
Del Gobbo, Costanza; Colucci, Renato R.; Forte, Emanuele; Triglav Čekada, Michaela; Zorn, Matija
2016-08-01
It is well known that small glaciers of mid latitudes and especially those located at low altitude respond suddenly to climate changes both on local and global scale. For this reason their monitoring as well as evaluation of their extension and volume is essential. We present a ground penetrating radar (GPR) dataset acquired on September 23 and 24, 2013 on the Triglav glacier to identify layers with different characteristics (snow, firn, ice, debris) within the glacier and to define the extension and volume of the actual ice. Computing integrated and interpolated 3D using the whole GPR dataset, we estimate that at the moment of data acquisition the ice area was 3800 m2 and the ice volume 7400 m3. Its average thickness was 1.95 m while its maximum thickness was slightly more than 5 m. Here we compare the results with a previous GPR survey acquired in 2000. A critical review of the historical data to find the general trend and to forecast a possible evolution is also presented. Between 2000 and 2013, we observed relevant changes in the internal distribution of the different units (snow, firn, ice) and the ice volume reduced from about 35,000 m3 to about 7400 m3. Such result can be achieved only using multiple GPR surveys, which allow not only to assess the volume occupied by a glacial body, but also to image its internal structure and the actual ice volume. In fact, by applying one of the widely used empirical volume-area relations to infer the geometrical parameters of the glacier, a relevant underestimation of ice-loss would be achieved.
Tary, A.K.; Duncan, M. FitzGerald; Weddle, T.K.
2007-01-01
In eastern coastal Maine, many flat-topped landforms, often identified as glacial-marine deltas, are cultivated for blueberry production. These agriculturally valuable features are not exploited for aggregate resources, severely limiting stratigraphic exposure. Coring is often forbidden; where permissible, coarse-grained surficial sediments make coring and sediment retrieval difficult. Ground penetrating radar (GPR) has become an invaluable tool in an ongoing study of the otherwise inaccessible subsurface morphology in this region and provides a means of detailing the large-scale sedimentary structures comprising these features. GPR studies allow us to reassess previous depositional interpretations and to develop alternative developmental models. The work presented here focuses on Pineo Ridge, a large, flat-topped ice-marginal glacial-marine delta complex with a strong linear trend and two distinct landform zones, informally termed East Pineo and West Pineo. Previous workers have described each zone separately due to local morphological variation. Our GPR work further substantiates this geomorphic differentiation. East Pineo developed as a series of deltaic lobes prograding southward from an ice-contact margin during the local marine highstand. GPR data do not suggest postdepositional modification by ice-margin re-advance. We suggest that West Pineo has a more complex, two-stage depositional history. The southern section of the feature consists of southward-prograding deltaic lobes deposited during retreat of the Laurentide ice margin, with later erosional modification during marine regression. The northern section of West Pineo formed as a series of northward-prograd- ing deltaic lobes as sediment-laden meltwater may have been diverted by the existing deposits of the southern section of West Pineo. ?? 2007 The Geological Society of America. All rights reserved.
Investigating the nature of the GPR antenna orientation effect on temperate glaciers
NASA Astrophysics Data System (ADS)
Langhammer, Lisbeth; Rabenstein, Lasse; Bauder, Andreas; Lathion, Patrick; Maurer, Hansruedi
2015-04-01
In the recent years the bedrock topography of the Swiss Alpine Glaciers has been mapped by ground-based and helicopter-borne GPR (Ground Penetrating Radar) as part of an ongoing comprehensive inventory initiated by the ETH Zürich, the Swiss Competence Center for Energy Research (SCCER) and the Swiss Geophysical Commission (SGPK). Our recorded GPR data of glacier bedrock topography highlights the need of a better understanding of the interaction between GPR systems and the glacierized subsurface in high mountain terrain. The Otemma glacier in the Pennine Alps, Valais, has been subject to repeated profiling with commercial GPR ground units (pulseEKKO and GSSI) operating at frequencies ranging from 15-67 MHz deployed at the surface and mounted on a helicopter. Our data shows significant quality differences between similar GPR profiles, which could not be explained by system failure or technical discrepancies. To investigate the issue, we conducted antenna rotation experiments at several locations on the glacier surface. The results indicate a strong relationship between the orientation of the bistatic antennas and the flow direction of the glacier. Possible explanation for our observations range from anisotropy effects in glacier ice, the influence of directional characteristics of the GPR antennas or distinctive features of the bedrock topography. To explain our results, we perform 3D GPR modeling of the glacier body with the FDTD electromagnetic simulator gprMax. A basic homogenous three-dimensional model of the glacier will be replaced by varying bedrock topography along a transect. Internal structures such as water layers and inclusion will be imbedded in the simulations. Currently ground based GPR surveys produce higher quality data with respect to the visibility of glacier bed reflections. We intent to enhance our operating system and antenna installation on the helicopter based on the results of the simulations to achieve similar quality standards. The objective is to successfully map the bedrock topography of the Swiss glaciers in the next three years.
Design and validation of inert homemade explosive simulants for ground penetrating radar
NASA Astrophysics Data System (ADS)
VanderGaast, Brian W.; McFee, John E.; Russell, Kevin L.; Faust, Anthony A.
2015-05-01
The Canadian Armed Forces (CAF) identified a requirement for inert simulants to act as improvised, or homemade, explosives (IEs) when training on, or evaluating, ground penetrating radar (GPR) systems commonly used in the detection of buried landmines and improvised explosive devices (IEDs). In response, Defence R and D Canada (DRDC) initiated a project to develop IE simulant formulations using commonly available inert materials. These simulants are intended to approximate the expected GPR response of common ammonium nitrate-based IEs, in particular ammonium nitrate/fuel oil (ANFO) and ammonium nitrate/aluminum (ANAl). The complex permittivity over the range of electromagnetic frequencies relevant to standard GPR systems was measured for bulk quantities of these three IEs that had been fabricated at DRDC Suffield Research Centre. Following these measurements, published literature was examined to find benign materials with both a similar complex permittivity, as well as other physical properties deemed desirable - such as low-toxicity, thermal stability, and commercial availability - in order to select candidates for subsequent simulant formulation. Suitable simulant formulations were identified for ANFO, with resulting complex permittivities measured to be within acceptable limits of target values. These IE formulations will now undergo end-user trials with CAF operators in order to confirm their utility. Investigations into ANAl simulants continues. This progress report outlines the development program, simulant design, and current validation results.
Synthesis of amplitude-versus-offset variations in ground-penetrating radar data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, X.; McMechan, G.A.; Xu, T.
2000-02-01
To evaluate the importance of amplitude-versus-offset information in the interpretation of ground-penetrating radar (GPR) data, GPR reflections are synthesized as a function of antenna separation using a 2.5-D Finite-difference solution of Maxwell's equations. The conductivity, the complex dielectric permittivity,and the complex magnetic permeability are varied systematically in nine suites of horizontally layered models. The source used is a horizontal transverse-electric dipole situated at the air-earth interface. Cole-Cole relaxation mechanisms define the frequency dependence of the media. Reflection magnitudes and their variations with antenna separation differ substantially, depending on the contrast in electromagnetic properties that caused the reflection. The spectral charactermore » of the dielectric and magnetic relaxations produces only second-order variations in reflection coefficients compared with those associated with contrasts in permittivity, conductivity, and permeability, so they may not be separable even when they are detected. In typical earth materials, attenuation of propagating GPR waves is influenced most strongly by conductivity, followed by dielectric relaxation, followed by magnetic relaxation. A pervasive feature of the simulated responses is locally high amplitude associated with the critical incident angle at the air-earth interface in the antenna radiation pattern. Full wavefield simulations of two field data sets from a fluvial/eolian environment are able to reproduce the main amplitude behaviors observed in the data.« less
NASA Astrophysics Data System (ADS)
Dorizon, S.; Ciarletti, V.; Clifford, S. M.; Plettemeier, D.
2013-12-01
The Water Ice Subsurface Deposits Observation on Mars (WISDOM) Ground Penetrating Radar (GPR) has been selected as part of the Pasteur payload for the European Space Agency (ESA) ExoMars 2018 mission. The main scientific objectives of the mission are to search for evidence of past or present life and to characterize the water/geochemical environment as a function of depth in the shallow subsurface. A rover equipped with a 2 meters capacity drill and a suite of instruments will land on Mars in 2018, collect and analyze samples from outcrops and at depth. The WISDOM GPR will support these activities by sounding the subsurface and provide understanding of the geologic context and evolution of the local environment. When operated on the ExoMars rover, WISDOM will offer the possibility to understand the 3D geology in terms of stratigraphy and structure, spatial heterogeneities as well as the compositional and electromagnetic properties of the subsurface. According to these scientific objectives, this radar has been designed as a polarimetric step frequency GPR, operating from 0.5 GHz to 3GHz, which allows the sounding of the first 3 meters of the subsurface with a vertical resolution of a few centimeters. The importance of this GPR is particularly enhanced by its ability to investigate the water content, state (ice or liquid) and distribution in the subsurface, which are crucial clues to constrain the possibility of life traces evidence. In addition, WISDOM will be operated at a distance of 30 cm above the ground. This configuration allows the monitoring of potential transient liquid water that could appear on Mars surface. Results from several laboratory tests and a campaign in alpine ice caves in Austria are consistent with the expected performances of WISDOM regarding the question of water characterization. The specific configuration of the antennas allows the retrieval of the first layer permittivity value from the surface echo, which is related to the water content. The differentiation between segregated ice and other medium is done using a textural approach, and the determinations of stratum thickness are inferred from the permittivity values estimations. We double check and validate this approach with a 2D model simulating WISDOM in interaction with different environments. Perspectives are numerous to take the best from this instrument, starting with processing and modeling improvement, added on other field and laboratory tests to validate our methods. Radargrams from measurements with WISDOM in Alpine ice caves, Dachstein, Austria. a) at high frequencies; b) at low frequencies
DOT National Transportation Integrated Search
2010-03-01
Both Ground Penetrating Radar (GPR) surveys and Hydro-Geochemical Water Testing (HGWT) have been performed at the Cumberland Gap Tunnel to determine why the reinforced concrete pavement has settled in various areas throughout both tunnels. To date, a...
NASA Astrophysics Data System (ADS)
Bianchini Ciampoli, Luca; Giulia Brancadoro, Maria; Benedetto, Andrea; D'Amico, Fabrizio; Calvi, Alessandro; Alani, Amir M.; Tosti, Fabio
2017-04-01
This study deals with a case report about the planning and the performance of GPR surveys carried out in the town of Amatrice, in the district of Rieti, Italy. As sadly known, the town has been hit by a 6.9 magnitude earthquake in the nighttime of August 24th 2016. The strength of the seism, along with the age and the deterioration rate of the structural asset, have caused the razing to the ground and the critical damaging of the majority of the buildings within the "red zone area", corresponding to the historical town center. In the early recovery phase taking place afterwards, the strong seismic swarm subsequent the main shake has sensitively slowed down the rescue and rehabilitation operations. Moreover, the main issue was related to the unsafety operational conditions of volunteers and firemen. To this effect, the geotechnical stability of the roads and the large operational areas represented critical issues, as up to 40 tons crane trucks were needed to put in safety the highest buildings, such as three-floor buildings and historical towers. In this framework, ground-penetrating radar (GPR) provided a valuable help in preliminary assessing the stability of the areas where the crane trucks were planned to operate as well as to be parked over. The main objective of the GPR tests was to verify the absence of possible cavities beneath the ground surface that could undermine the strength of the surface under heavy loadings. To that effect, a multi-frequency ground-coupled GPR system was used. This radar system can simultaneously collect data at both the frequencies of 600 MHz and 1600 MHz. Four different sites were surveyed, namely, two sections of the main road passed on by the cranes, and two machinery depot areas down by the towers. In the former case, the surveys were performed by parallel longitudinal scans, due to the significant longitudinal length of the sections, whereas in the latter, two grids with differing sizes were realized and scanned for producing horizontal tomographic maps. In both the cases, useful insights have been pointed out, and relevant critical areas of possible weaknesses in the soil strength, where to focus further and more specialist analyses, have been detected. It is important to emphasize on the details provided about the working procedures in such a complex environment. Acknowledgement The authors acknowledge the COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" for providing networking and discussion opportunities throughout its activity and operation as well as facilitating prospect for publishing research outputs.
GPR measurements of attenuation in concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenmann, David, E-mail: djeisen@cnde.iastate.edu; Margetan, Frank J., E-mail: djeisen@cnde.iastate.edu; Pavel, Brittney, E-mail: djeisen@cnde.iastate.edu
2015-03-31
Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena,more » and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.« less
Seasonal GPR Signal Changes in Two Contrasting Soils in the Shale Hills Catchment
NASA Astrophysics Data System (ADS)
Lin, H.; Zhang, J.; Doolittle, J. A.
2011-12-01
Repeated GPR surveys in different seasons, combined with real-time soil water monitoring, provide a useful methodology to reveal subsurface hydrologic processes and their underlying mechanisms in different soils and hillslopes. This was demonstrated in the Shale Hills Critical Zone Observatory using two contrasting soils over several dry and wet seasons. Our results showed that 1) the radar reflection in the BC-C horizon interface in the deep Rushtown soil became clearer as soil became wetter, which was linked to lateral flow above this horizon interface that increased the contrast, and 2) the reflection in the soil-bedrock interface and the weathered-unweathered rock interface in the shallow Weikert soil become intermittent as soil became wetter, which was attributed to non-uniform distribution of water in bedrock fractures that created locally strong contrast, leading to point scatter of GPR reflection. This study shows the optimal time for using GPR to detect soil horizon interfaces, the value of nondestructive mapping of soil-rock moisture distribution patterns, and the possibility of identifying preferential flow pathways in the subsurface.
GPR measurements of attenuation in concrete
NASA Astrophysics Data System (ADS)
Eisenmann, David; Margetan, Frank J.; Pavel, Brittney
2015-03-01
Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.
Interpreting Electromagnetic Reflections In Glaciology
NASA Astrophysics Data System (ADS)
Eisen, O.; Nixdorf, U.; Wilhelms, F.; Steinhage, D.; Miller, H.
Electromagnetic reflection (EMR) measurements are active remote sensing methods that have become a major tool for glaciological investigations. Although the basic pro- cesses are well understood, the unambiguous interpretation of EMR data, especially internal layering, still requires further information. The Antacrtic ice sheet provides a unique setting for investigating the relation between physicalchemical properties of ice and EMR data. Cold ice, smooth surface topography, and low accumulation facilitates matters to use low energy ground penetrating radar (GPR) devices to pene- trate several tens to hundreds of meters of ice, covering several thousands of years of snow deposition history. Thus, sufficient internal layers, primarily of volcanic origin, are recorded to enable studies on a local and regional scale. Based on dated ice core records, GPR measurements at various frequencies, and airborne radio-echo sound- ing (RES) from Dronning Maud Land (DML), Antarctica, combined with numerical modeling techniques, we investigate the influence of internal layering characteristics and properties of the propagating electromagnetic wave on EMR data.
GPR Use and Activities in Denmark
NASA Astrophysics Data System (ADS)
Ringgaard, Jørgen; Wisén, Roger
2014-05-01
Academic work on GPR in Denmark is performed both by the Technical University of Denmark (DTU) and the University of Copenhagen (KU). The work at DTU includes development of antennas and systems, e.g. an airborne ice-sounder GPR system (POLARIS) that today is in frequent use for monitoring of ice thickness in Greenland. DTU often collaborates with ESA (European Space Agency) regarding electromagnetic development projects. At KU there is an ongoing work with GPR applied to water resources. The main objective is to study flux of water and matter across different hydrological domains. There are several recent publications from KU describing research for data analysis and modelling as well as hydro geophysical applications. Also the Geological Survey of Denmark and Greenland (GEUS) performs frequent geological mapping with GPR. There have been mainly two actors on the Danish commercial market for several years: FalkGeo and Ramboll. Falkgeo has been active for many years acquiring data for several different applications such as archeology, utilities and roads. Their equipment pool comprises both a multichannel Terravision system form GSSI and a 2D system from Mala Geoscience with a comprehensive range of antennas. Ramboll has performed GPR surveys for two decades mainly with 2D systems from GSSI. In recent years Ramboll has also obtained a system with RTA antennas from Mala Geoscience and a multichannel system from 3D-Radar. These systems have opened markets both for deeper geological mapping and for shallow mapping. The geological mapping with the Mala system has often been combined with resistivity imaging (CVES) and refraction seismic. The 3D system has been applied in airports and on road for mapping of layer thicknesses, delamination and for control of asphalt works. Other areas comprise bridge deck evaluation and utility mapping. Ramboll also acts as client advisor for BaneDanmark, a state owned company who operates and develops the Danish state railway network. For this Ramboll has written a guideline for application of GPR on BaneDanmark railways. There are no national guidelines or test sites in Denmark. The use of GPR on roads is very limited in Denmark compared to our neighboring countries. This is possibly due to conservatism in the industry and due to the fact that Denmark decided not to participate in a collaboration between some of our neighboring countries about preparation of guidelines for application of GPR on roads, the Mara Nord Project. An improvement in accuracy and more automatized routines for mapping of delamination and stripping would also widen the market for application of GPR in airports and on roads. International guidelines for application of GPR in several fields would also help to make authorities recognize it as a valid complement and alternative to other established methods. This abstract is a contribution to COST Action TU1208.
NASA Astrophysics Data System (ADS)
Kamp, Nicole; Russ, Stefan; Sass, Oliver; Tiefengraber, Georg; Tiefengraber, Susanne
2014-05-01
Strettweg is a small community located in Upper Styria in the valley of the Mur. It is seen as one of the most outstanding prehistoric archaeological sites in Austria. In 1851 the "Strettweger Opferwagen" (~ 600 BC) was discovered and is considered one of the most important Hallstatt find of Austria. More than 160 years later Airborne LiDAR and modern geophysical methods like Ground Penetrating Radar (GPR) and/or Magnetics have made it possible to find additional burial mounds and map the largest prehistoric settlement in the southeastern Alps (Falkenberg). These modern techniques have provided an auxiliary tool for the archaeological team's project "Hallstattzeitlicher Fürstensitz Falkenberg/Strettweg". GPR allows for a fast and non-invasive surveying of structures and anomalies of the sub surface, by using electromagnetic radiation in the microwave range. The active remote sensing technique LiDAR (Light Detection and Ranging, also known as Laser Scanning), measures the runtime of discrete light pulses in order to map objects and structures on the surface of the earth. In the course of this archaeological project GPR (Mala ProEx - 500 MHz antenna) and terrestrial LiDAR (Riegl LMS Z620) were applied by the University of Graz, Department of Geography and Regional Science, ALADYN work group (Univ.-Prof. Dr. Oliver Sass) to collect data of a testing site with 2500 m². The existence of archaeological structures was crucial for choosing this area. The area is surrounded by fine sediments, which originated by fluviatile transportation, making the remnants of these archaeological structures easier to detect. A standard GPR-processing-workflow does not allow for a 3-dimensional visualisation of the results and complicates the detection of archaeological structures. Unlike, LiDAR which does allow for a 3-dimensional visualisation. A fusion of both techniques, by using Python scripts and the software packages REFLEXW - Sandmeier Scientific Software and LASTools - rapidlasso, applies the advantages and specialities of LiDAR and GPR, and allows to get a high-resolution 3-dimensional pointcloud. This simplifies the identification of ancient man-made near-surface structures, which enables both in the field and lab quick post-processing. The LiDAR pointcloud, when coupled with the GPR pointcloud, act as reference datasets and improve the accuracy, classification, and filtering of the GPR data.
NASA Astrophysics Data System (ADS)
Miskiewicz, M.; Lachowicz, J.; Tysiac, P.; Jaskula, P.; Wilde, K.
2018-05-01
The article presents the possibility of using non-destructive methods of road pavement diagnostics as an alternative to traditional means to assess the reasons for premature cracks adjacent to bridge objects. Two scanning methods were used: laser scanning to measure geometric surface deformation and ground penetrating radar (GPR) inspection to assess the road pavement condition. With the use of a laser scanner, an effective tool for road deformation assessment several approach pavement surfaces next to the bridges were scanned. As the result, a point cloud was obtained including spatial information about the pavement deformation. The data accuracy was about 3 mm, the deformations were presented in the form of deviation maps between the reference surface and the actual surface. Moreover characteristic pavement surface cross-sections were presented. The in situ measurements of the GPR method were performed and analysed in order to detect non-homogeneity in the density of structural layers of the pavement. Due to the analysis of the permittivity of individual layers, it was possible to detect non-homogeneity areas. The performed GPR measurements were verified by standard invasive tests carried out by drilling boreholes and taking cores from the pavement and testing the compaction and air voids content in asphalt layers. As a result of the measurements made by both methods significant differences in layer compacting factor values were diagnosed. The factor was much smaller in the area directly next to the bridgehead and much larger in the zone located a few meters away. The research showed the occurrence of both design and erection errors as well as those related to the maintenance of engineering structures.
Investigation of the detection of shallow tunnels using electromagnetic and seismic waves
NASA Astrophysics Data System (ADS)
Counts, Tegan; Larson, Gregg; Gürbüz, Ali Cafer; McClellan, James H.; Scott, Waymond R., Jr.
2007-04-01
Multimodal detection of subsurface targets such as tunnels, pipes, reinforcement bars, and structures has been investigated using both ground-penetrating radar (GPR) and seismic sensors with signal processing techniques to enhance localization capabilities. Both systems have been tested in bi-static configurations but the GPR has been expanded to a multi-static configuration for improved performance. The use of two compatible sensors that sense different phenomena (GPR detects changes in electrical properties while the seismic system measures mechanical properties) increases the overall system's effectiveness in a wider range of soils and conditions. Two experimental scenarios have been investigated in a laboratory model with nearly homogeneous sand. Images formed from the raw data have been enhanced using beamforming inversion techniques and Hough Transform techniques to specifically address the detection of linear targets. The processed data clearly indicate the locations of the buried targets of various sizes at a range of depths.
Development of SAP-DoA techniques for GPR data processing within COST Action TU1208
NASA Astrophysics Data System (ADS)
Meschino, Simone; Pajewski, Lara; Marciniak, Marian
2016-04-01
This work focuses on the use of Sub-Array Processing (SAP) and Direction of Arrival (DoA) approaches for the processing of Ground-Penetrating Radar data, with the purpose of locating metal scatterers embedded in concrete or buried in the ground. Research activities have been carried out during two Short-Term Scientific Missions (STSMs) funded by the COST (European COoperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" in May 2015 and January 2016. In applications involving smart antennas and in the presence of several transmitters operating simultaneously, it is important for a receiving array to be able to estimate the Direction of Arrival (DoA) of the incoming signals, in order to decipher how many emitters are present and predict their positions. A number of methods have been devised for DoA estimation: the MUltiple SIgnal Classification (MUSIC) and Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT) are amongst the most popular ones [1]. In the scenario considered by us, the electromagnetic sources are the currents induced on metal elements embedded in concrete or buried in the ground. GPR radargrams are processed, to estimate the DoAs of the electric field back-scattered by the sought targets. In order to work in near-field conditions, a sub-array processing (SAP) approach is adopted: the radargram is partitioned in sub-radargrams composed of few A-scans each, the dominant DoA is predicted for each sub-radargram. The estimated angles are triangulated, obtaining a set of crossings with intersections condensed around object locations. This pattern is filtered, in order to remove a noisy background of unwanted crossings, and is processed by applying the statistical procedure described in [2]. We tested our approach on synthetic GPR radargrams, obtained by using the freeware simulator gprMax implementing the Finite-Difference Time-Domain method [3]. In particular, we worked with the reference data of TU1208 Concrete Cells 1.1-1.3 [4]. Preliminary results and a description of the method have been presented in [5]. Further results have been obtained by processing radargrams obtained in the presence of modified versions of the TU1208 Concrete Cells, where we changed the positions of the reinforcing elements. As expected, we achieved better results when the distance between the scatterers was larger and their interaction weaker. By analysing in depth the results obtained for the enlarged versions of Cells 1.1-1.3, we could assess in a comprehensive way the accuracy and limits of our approach in the presence of multiple scatterers, versus their relative distance. During future STSMs, we look forward to testing our approach on experimental data. We also plan to improve the method, in order to exploit in a more advanced way the multi-frequency information enclosed in the GPR data. A final STSM will be devoted to implementing a graphical-user interface and writing a user manual, as we intend to release our codes for free public download by the end of the Action.
NASA Astrophysics Data System (ADS)
Scott, M. L.; Gagarin, N.; Mekemson, J. R.; Chintakunta, S. R.
2011-06-01
Until recently, civil engineering material calibration data could only be obtained from material sample cores or via time consuming, stationary calibration measurements in a limited number of locations. Calibration data are used to determine material propagation velocities of electromagnetic waves in test materials for use in layer thickness measurements and subsurface imaging. Limitations these calibration methods impose have been a significant impediment to broader use of nondestructive evaluation methods such as ground-penetrating radar (GPR). In 2006, a new rapid, continuous calibration approach was designed using simulation software to address these measurement limitations during a Federal Highway Administration (FHWA) research and development effort. This continuous calibration method combines a digitally-synthesized step-frequency (SF)-GPR array and a data collection protocol sequence for the common midpoint (CMP) method. Modeling and laboratory test results for various data collection protocols and materials are presented in this paper. The continuous-CMP concept was finally implemented for FHWA in a prototype demonstration system called the Advanced Pavement Evaluation (APE) system in 2009. Data from the continuous-CMP protocol is processed using a semblance/coherency analysis to determine material propagation velocities. Continuously calibrated pavement thicknesses measured with the APE system in 2009 are presented. This method is efficient, accurate, and cost-effective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, M. L.; Gagarin, N.; Mekemson, J. R.
Until recently, civil engineering material calibration data could only be obtained from material sample cores or via time consuming, stationary calibration measurements in a limited number of locations. Calibration data are used to determine material propagation velocities of electromagnetic waves in test materials for use in layer thickness measurements and subsurface imaging. Limitations these calibration methods impose have been a significant impediment to broader use of nondestructive evaluation methods such as ground-penetrating radar (GPR). In 2006, a new rapid, continuous calibration approach was designed using simulation software to address these measurement limitations during a Federal Highway Administration (FHWA) research andmore » development effort. This continuous calibration method combines a digitally-synthesized step-frequency (SF)-GPR array and a data collection protocol sequence for the common midpoint (CMP) method. Modeling and laboratory test results for various data collection protocols and materials are presented in this paper. The continuous-CMP concept was finally implemented for FHWA in a prototype demonstration system called the Advanced Pavement Evaluation (APE) system in 2009. Data from the continuous-CMP protocol is processed using a semblance/coherency analysis to determine material propagation velocities. Continuously calibrated pavement thicknesses measured with the APE system in 2009 are presented. This method is efficient, accurate, and cost-effective.« less
Relaxation of water infiltration pulses observed with GPR
NASA Astrophysics Data System (ADS)
Hantschel, Lisa; Hemmer, Benedikt; Roth, Kurt
2017-04-01
We observe the relaxation of infiltration pulses in sandy soil with ground-penetrating radar (GPR). The spatial distribution of water in the infiltration area and its temporal evolution is represented by ordinary reflections at layer boundaries as well as multiple reflections at the wetting front and the pulse boundaries. The structure of these highly resolved signals are reproduced by numerical simulations of electromagnetic wave propagation. The temporally highly resolved electrical fields reveal the origin also of complex reflection signals. The usage of these more complex signals might allow a more detailed representation of the infiltration process by direct analysis as well as in combination with inversion techniques.
NASA Astrophysics Data System (ADS)
Che-Alota, V.; Atekwana, E. A.; Sauck, W. A.; Nolan, J. T.; Slater, L. D.
2007-12-01
Previous geophysical investigations (1996, 1997, 2003, and 2004) conducted at the decommissioned Wurtsmith Air Force Base former Fire Training Cell (FT-02) showed a clearly defined high conductivity anomaly associated with hydrocarbon contaminants in the vadose zone and ground water near the source area. The source of the geophysical anomalies was attributed to biogeochemical modifications of the contaminated zone resulting from intrinsic bioremediation. During these previous surveys, ground penetrating radar (GPR) data showed a zone of attenuated GPR reflections extending from the vadose zone to below the water table. Self potential data (SP) data defined a positive anomaly coincident with the hydrochemically defined plume, while electrical resistivity data showed anomalously high conductivity within the zone of impact. In 2007, another integrated geophysical study of the site was conducted. GPR, SP, electrical resistivity, and induced polarization surveys were conducted with expectations of achieving similar results as the past surveys. However, preliminary assessment of the data shows a marked decrease in electrical conductivity and SP response over the plume. GPR data still showed the attenuated signals, but the zone of attenuation was only observed below the water table. We attribute the attenuation of the observed geophysical anomalies to ongoing soil vapor extraction initiated in 2003. Significant removal of the contaminant mass by the vapor extraction system has altered the subsurface biogeochemical conditions and these changes were documented by the 2007 geophysical and geochemical data. The results of this study show that the attenuation of the contaminant plume is detectable with geophysical methods.
NASA Astrophysics Data System (ADS)
Fabregat, Ivan; Gutiérrez, Francisco; Roqué, Carles; Comas, Xavier; Zarroca, Mario; Carbonel, Domingo; Guerrero, Jesús; Linares, Rogelio
2017-05-01
The approaches aimed at characterising specific damaging sinkholes have received limited attention compared with other ground instability phenomena (e.g. landslides). Moreover, the practicality of the trenching technique in combination with numerical dating and retro-deformation analysis for sinkhole site-investigations has been barely explored. This work illustrates the advantages of combining geomorphic mapping, electrical resistivity imaging (ERI), ground penetrating radar (GPR) and trenching for sinkhole characterisation and shows how the trenching technique contributes to fill significant gaps that neither geomorphic nor geophysical methods can address. Two large sinkholes (> 200 m long) related to the interstratal karstification of evaporites and generated by contrasting subsidence mechanisms (sagging, collapse) were investigated in the Fluvia Valley, NE Spain. Although GPR data may provide high resolution information on subsidence-related stratigraphic and structural features at shallow depth, the profiles acquired in the investigated sites with 100 MHz shielded and 40 MHz unshielded antennae provided limited insight into the internal geometry of the sinkholes due to reduced signal penetration related to the presence of conductive clayey material. The ERI sections satisfactorily imaged the general geometry of the sagging and collapse subsidence structures up to depths higher than 100 m and clearly captured the basal contact of the low-resistivity sinkhole fill in the sections with adequate layout and resolution. The trenches, despite their limited depth (ca. 5 m) allowed us to obtain valuable objective information on several key aspects of the subsidence phenomenon: (1) mechanisms (deformation style) and kinematics (progressive versus episodic); (2) limits of ground deformation; (3) temporal evolution (expansion versus contraction); (4) chronology and timing of most recent deformation phase; (5) rates of subsidence and sedimentation; and (6) the role played by subsidence in the development of lacustrine environments and the associated sedimentation patterns.
NASA Astrophysics Data System (ADS)
García, Francisco; Ramirez, Manuel; Benlloch, Javier; Valls, Ana
2015-04-01
This paper describes the decision-making process for the timber beam inner reinforcement of the building The Lonja de la Seda de Valencia (15th c.), Spain. This research was based on the study of 13 timber beams for their diagnosis and the characterization before decision-making in structural reinforcement. For this purpose, we integrated the results of analysis of historical documentation, in situ visual inspection and ground penetrating radar (GPR). The rehabilitation project considered the substitution of the upper-storey floor (The Consulate of the Sea Hall) for another one that complied with the original. This room was closed due to the instability of the timber beams. For the flooring renovation it was necessary to increase the rigidity of the timber floor framing. Preliminary conclusions, which derived from the historical documentation and in situ visual inspection of the timber coffered ceiling were: (a) timber beams supported inside masonry walls could suffer moisture and xylophage attacks, (b) timber beams were significantly damaged (splits, ring shakes, failure of beam section that reduced its bearing capacity), (c) substantial timber beam warping. So the main objectives of this GPR study were: to detect splits, to identify failure of section due to biological attacks, to pinpoint epoxy resin reconstructions and to assess the severity of the damages observed on surface. A GPR survey was carried out in timber coffered-ceiling beams of The Consulate of the Sea Hall. Radar measurements were carried out using a SIR-10H system (GSSI) and a 1.6 GHz ground coupled antenna, due to the timber beam dimensions (0.45 x 0.45 x 8.75 m. A total of 37 longitudinal profiles were collected in the centre of all the beam accessible sides. After radragram processing steps, a number of anomalies were detected in the records, which were analysed. The outcomes derived from this GPR study were taken into account when it came to make decisions in the final restoration project of the timber coffered ceiling elements: timber beams, wooden latticework and floor. The results obtained in this survey are a good example of GPR application in Civil Engineering for timber beam inner reinforcement of a building, establishing technical criteria.
NASA Astrophysics Data System (ADS)
Mount, Gregory J.
The karst Biscayne aquifer is characterized by a heterogeneous spatial arrangement of porosity, making hydrogeological characterization difficult. In this dissertation, I investigate the use of ground penetrating radar (GPR), for understanding the spatial distribution of porosity variability in the Miami Limestone presented as a compilation of studies where scale of measurement is progressively increased to account for varying dimensions of dissolution features. In Chapter 2, GPR in zero offset acquisition mode is used to investigate the 2-D distribution of porosity and dielectric permittivity in a block of Miami Limestone at the laboratory scale (< 1.0 m). Petrophysical models based on fully saturated and unsaturated water conditions are used to estimate porosity and solid dielectric permittivity of the limestone. Results show a good correspondence between analytical and GPR-based porosity estimates and show variability between 22.0-66.0 %. In Chapter 3, GPR in common offset and common midpoint acquisition mode are used to estimate bulk porosity of the unsaturated Miami Limestone at the field scale (10.0-100.0 m). Estimates of porosity are based on the assumption that the directly measured water table reflector is flat and that any deviation is attributed to changes in velocity due to porosity variability. Results show sharp changes in porosity ranging between 33.2-60.9 % attributed to dissolution areas. In Chapter 4, GPR in common offset mode is used to characterize porosity variability in the saturated Biscayne aquifer at 100-1000 m field scales. The presence of numerous diffraction hyperbolae are used to estimate electromagnetic wave velocity and asses both horizontal and vertical changes in porosity after application of a petrophysical model. Results show porosity variability between 23.0-41.0 % and confirm the presence of isolated areas that could serve as enhanced infiltration or recharge. This research allows for the identification and delineation areas of macroporosity areas at 0.01 m lateral resolution and shows variability of porosity at different scales, reaching 37.0 % within 1.3 m, associated with areas of enhanced dissolution. Such improved resolution of porosity estimates can benefit water management efforts and transport modelling and help to better understand small scale relationships between ground water and surface water interactions.
NASA Astrophysics Data System (ADS)
Koyadan Koroth, Ajith; Bhattacharya, Amitabha
2017-04-01
Antennas are key components of Ground Penetrating Radar (GPR) instrumentation. A carefully designed antenna can improve the detectability and imaging capability of a GPR to a great extent without changing the other instrumentations. In this work, we propose four different types of antennas for GPR. They are modifications of a conventional bowtie antenna with great improvement in performance parameters. The designed antennas has also been tested in a stepped frequency type GPR and two dimensional scan images of various targets are presented. Bowtie antennas have been traditionally employed in GPR for its wide impedance bandwidth and radiation properties. The researchers proposed resistive loading to improve the bandwidth of the bowtie antenna and for low ringing pulse radiation. But this method was detrimental for antenna gain and efficiency. Bowtie antennas have a very wide impedance bandwidth. But the useful bandwidth of the antenna has been limited by the radiation pattern bandwidth. The boresight gain of bowtie antennas are found to be unstable beyond a 4:1 bandwidth. In this work, these problems have been addressed and maximum usable bandwidth for the bowtie antennas has been achieved. In this work, four antennas have been designed: namely, 1.) RC loaded bowtie antennas, 2.) RC loaded bowtie with metamaterial lens, 3.) Loop loaded bowtie, 4.) Loop loaded bowtie with directors. The designed antennas were characterized for different parameters like impedance bandwidth, radiation pattern and, gain. In antenna 1, a combined resistive-capacitive loading has been applied by periodic slot cut on the arms of the bowtie and pasting a planar graphite sheet over it. Graphite having a less conductance compared to copper acts as resistive loading. This would minimize the losses compared to lumped resistive loading. The antenna had a 10:1 impedance bandwidth and, a 5:1 pattern bandwidth. In antenna 2, a metamaterial lens has been designed to augment the antenna 1, to improve the forward gain. This antenna had the same impedance bandwidth of 10:1 while pattern bandwidth has been raised to 7:1. In antenna 3, a loop loaded bowtie antenna has been designed. This antenna do not employ any kind of resistive loading, yet achieves an impedance bandwidth of 11:1 and also a usable bandwidth of 11:1. The antenna 4 employs concentric offset loops which acts as directors to improve the directivity. This antenna achieved an impedance bandwidth and a pattern bandwidth of 13:1. All the antennas have a maximum size of about 0.3λ at lowest operating frequency. An experimental stepped frequency type GPR has been constructed to study the suitability of the fabricated antennas in detecting buried targets. Four experiments have been conducted viz. 1.) To detect a metallic pipe of 1in diameter, 2.) To detect a metallic pipe of 2in diameter 3.) To detect dry bamboo, 3.) To detect rebar in concrete. The detectability and imaging capability of GPR has been found to be improving from antenna 1 to 4.
Non-destructive assessment of the Ancient 'Tholos Acharnon' Tomb building geometry
NASA Astrophysics Data System (ADS)
Santos-Assunçao, Sonia; Dimitriadis, Klisthenis; Konstantakis, Yiannis; Pérez-Gracia, Vega; Anagnostopoulou, Eirini; Solla, Mercedes; Lorenzo, Henrique
2014-05-01
Ancient Greek Monuments are considered glorious buildings that still remain on the modern times. Tombs were specifically built according to the architecture of respective epoch. Hence, the main function was to royal families in Greece and other countries. The lack of systematic preservation could promote the damage of the structure. Therefore, a correct maintenance can diminish the impact of the main causes of pathologies. Schist, limestone and sandstone have been the main geological building materials of the Greek Ancient tombs. In order to preserve several of these monumental tombs, in depth non-destructive evaluation by means of Ground-penetrating radar (GPR) is proposed in a scientific mission with partners from Greece and Spain surveying with the 1 GHz and 2.3 GHz antennas. High frequency antennas are able to identify small size cracks or voids. Grandjean et al. [1] used the 300 MHz and 900 MHz antennas, obtaining 2 cm and 5 cm of resolution. Later on, Faize et al. [2] employed a 2.3 GHz antenna to detect anomalies and create a pathological model. The structure of this Mycenaean Tomb (14th - 13th c. BC) is composed by a corridor which is supported by irregular stones and the inner is 8.74 m high and 8.35 m diameter. The surface of the wall is composed by diverse geological materials of irregular shapes that enhance the GPR acquisition difficulty: 1) Passing the GPR antenna in a waved surface may randomly change the directivity of the emission. 2) The roof of the tomb is described by a pseudo-conical form with a decreasing radio for higher levels, with a particular beehive. If the roof of the Tomb is defined by a decreasing radius, innovative processes must be carried out with GPR to non constant radius structures. With GPR, the objective is to define the wall thickness, voids and/or cracks detection as well as other structural heterogeneities. Therefore, the aim is to create a three dimensional model based in the interpolation of the circular profiles. Three dimensional interpolations of the circular profiles according to cylindrical coordinates and the decreasing ratio may be able to map with accuracy the wall structure and to create in a second step a structural dynamic model for the sustainable preservation of the Monument. Acknowledgements The authors acknowledge cost for funding action TU1208 "Civil Engineering application of Ground Penetrating radar" supporting part of this work, to the Second Ephorate of Prehistoric and Classical Antiquities, Greece. References [1] Grandjean, G. and Gourry, J.C., 1996. GPR data processing for 3D fracture mapping in a marble quarry (Thassos, Greece). Applied Geophysics., Vol. 36 (1), pp.19-30. [2] Faize, A. and Driouach, A., 2012. "The Use of Ground Penetrating Radar for the Detection and Study of a Buried Marble and in Situ Location of Possible Cracks". International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622. Vol. 2, (4), pp.1036-1039.
Numerical GPR Imaging through Directional Antenna Systems in Complex Scenarios
NASA Astrophysics Data System (ADS)
Comite, Davide; Murgia, Federica; Barbara, Martina; Catapano, Ilaria; Soldovieri, Francesco; Galli, Alessandro
2017-04-01
The capability of imaging hidden targets and interfaces in non-accessible and complex scenarios is a topic of increasing interest for several practical applications, such as civil engineering, geophysics, and planetary explorations [1]. In this frame, Ground Penetrating Radar (GPR) has been proven as an efficient and reliable technique, also thanks to the development of effective imaging procedures based on linear modeling of the scattering phenomenon, which is usually considered as activated by ideal sources [1],[2]. Actually, such modeling simplifications are rarely verified in typical operative scenarios, when a number of heterogeneous targets can interact each other and with the surrounding environment, producing undesired contributions such as clutter and ghosts targets. From a physical viewpoint, these phenomena are mainly due to multipath contributions at the receiving antenna system, and different solutions have been proposed to mitigate these effects on the final image reconstruction (see, e.g., [2] and references therein). In this work we investigate on the possible improvements achievable when the directional features of the transmitting antenna system are taken into account in the imaging algorithm. Following and extending the recent investigations illustrated in [2] and [3], we consider in particular arrays of antennas, made by arbitrary types of elements, as activating the scattering phenomenon: hence, the effects of neglecting or accounting for the inherent directional radiation of the considered array are investigated as regards the accuracy of the final reconstruction of targets. Taking into account the resolution losses linked to the relevant synthetic aperture, we analyze the possibility of improving the quality of imaging, mitigating the presence of spurious contributions. By implementing a 'synthetic setup' that analyzes the scenarios under test through different electromagnetic CAD tools (mainly CST Microwave Studio and gprMax), it has been possible to simulate numerically the spatial distribution of the incident and scattered fields for both ideal and realistic sources, gathered in a suitable grid of points in two-dimensional or three-dimensional regions of interest. In such environments, a number of reference tests have been performed, emphasizing the improvements achievable by the proposed advanced numerical procedure. Various reconstruction cases are presented and discussed in detail, considering examples of GPR systems placed on a ground interface to detect different buried scatterers in challenging operative conditions (e.g., target size comparable to the operative GPR wavelengths, antennas placed in near-field conditions, presence of ground roughness, etc.). [1] R. Persico, Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing. IEEE Press, 2014. [2] G. Gennarelli and F. Soldovieri, "Multipath ghosts in radar imaging: Physical insight and mitigation strategies," IEEE J. Selec. Topics Appl. Earth Observ. Remote Sens., 8(3), pp. 1078-1086, 2015. [3] D. Comite, A. Galli, I. Catapano, and F. Soldovieri, "The role of the antenna radiation pattern in the performance of a microwave tomographic approach for GPR imaging," IEEE J. Selec. Topics Appl. Earth Observ. Remote Sens., doi 10.1109/JSTARS.2016.2636833, 11 pp., 2017.
Use of radars to monitor stream discharge by noncontact methods
Costa, J.E.; Cheng, R.T.; Haeni, F.P.; Melcher, N.; Spicer, K.R.; Hayes, E.; Plant, W.; Hayes, K.; Teague, C.; Barrick, D.
2006-01-01
Conventional measurements of river flows are costly, time‐consuming, and frequently dangerous. This report evaluates the use of a continuous wave microwave radar, a monostatic UHF Doppler radar, a pulsed Doppler microwave radar, and a ground‐penetrating radar to measure river flows continuously over long periods and without touching the water with any instruments. The experiments duplicate the flow records from conventional stream gauging stations on the San Joaquin River in California and the Cowlitz River in Washington. The purpose of the experiments was to directly measure the parameters necessary to compute flow: surface velocity (converted to mean velocity) and cross‐sectional area, thereby avoiding the uncertainty, complexity, and cost of maintaining rating curves. River channel cross sections were measured by ground‐penetrating radar suspended above the river. River surface water velocity was obtained by Bragg scattering of microwave and UHF Doppler radars, and the surface velocity data were converted to mean velocity on the basis of detailed velocity profiles measured by current meters and hydroacoustic instruments. Experiments using these radars to acquire a continuous record of flow were conducted for 4 weeks on the San Joaquin River and for 16 weeks on the Cowlitz River. At the San Joaquin River the radar noncontact measurements produced discharges more than 20% higher than the other independent measurements in the early part of the experiment. After the first 3 days, the noncontact radar discharge measurements were within 5% of the rating values. On the Cowlitz River at Castle Rock, correlation coefficients between the USGS stream gauging station rating curve discharge and discharge computed from three different Doppler radar systems and GPR data over the 16 week experiment were 0.883, 0.969, and 0.992. Noncontact radar results were within a few percent of discharge values obtained by gauging station, current meter, and hydroacoustic methods. Time series of surface velocity obtained by different radars in the Cowlitz River experiment also show small‐amplitude pulsations not found in stage records that reflect tidal energy at the gauging station. Noncontact discharge measurements made during a flood on 30 January 2004 agreed with the rated discharge to within 5%. Measurement at both field sites confirm that lognormal velocity profiles exist for a wide range of flows in these rivers, and mean velocity is approximately 0.85 times measured surface velocity. Noncontact methods of flow measurement appear to (1) be as accurate as conventional methods, (2) obtain data when standard contact methods are dangerous or cannot be obtained, and (3) provide insight into flow dynamics not available from detailed stage records alone.
Recent accumulation rates of an Alpine glacier derived from repeated airborne GPR and firn cores
NASA Astrophysics Data System (ADS)
Sold, Leo; Huss, Matthias; Eichler, Anja; Schwikowski, Margit; Hoelzle, Martin
2014-05-01
The topmost areas of glaciers contain a valuable record of their past accumulation rates. The water equivalent of annual firn layers can be used to initiate or extend existing time series of local mass balance and, ultimately, to consolidate the knowledge on the response of glaciers to changing climatic conditions. Measurements of the thickness and density of firn layers typically involve drilling in remote areas and core analysis and are thus expensive in terms of time and effort. Here, we discuss measurements from 2012 on Findelengletscher, Switzerland, a large Alpine valley glacier, using two in-situ firn cores and airborne Ground-Penetrating Radar (GPR). The firn cores were analysed regarding their density, major ions and deuterium concentration. The ammonium (NH4+) concentration is known to show seasonality due to a higher source activity and pronounced vertical transportation in the atmosphere in summer. The deuterium concentration serves as a proxy for air temperature during precipitation formation. Together, they provide depth and dating of annual summer surfaces. GPR has previously been used for a non-destructive assessment of internal layers in snow, firn and ice. Signal reflections indicate changes in the dielectric properties of the material, e.g. density changes at former summer surfaces. Airborne surveys allow measurements to be taken in remote and inaccessible areas. However, to transfer information from the GPR pulse travel time to the depth domain, the dielectric permittivity of the material is required, that changes with density of the firn. We observed a good agreement of the GPR signal with pronounced changes in the density profile, ice layers and peak contents of major ions. This underlines the high potential of GPR for detecting firn layers. However, not all peak-densities and thick ice layers represent a former glacier summer surface but can also be due to melting and refreezing during winter. We show that up to four years of annual accumulation on Findelengletscher can be reconstructed from repeated GPR measurements alone. A simple transient spatial model for firn compaction is calibrated based on a comparison with GPR data of 2013 at positions were profiles intersect. Density and water equivalent of firn layers can then be extracted along the measured GPR profiles. However, if no in-situ information from firn cores is available, the dating of reflectors as former annual summer surfaces must be verified by external information such as modelled mass balance to avoid misinterpretations. We show that helicopter-borne GPR is an effective method to derive several years of past accumulation rates of mountain glaciers. It benefits but does not depend exclusively on the time-matched availability of firn cores when overlapping profiles are mapped in subsequent years.
Hydrogeophysical monitoring of water infiltration processes
NASA Astrophysics Data System (ADS)
Bevilacqua, Ivan; Cassiani, Giorgio; Deiana, Rita; Canone, Davide; Previati, Maurizio
2010-05-01
Non-invasive subsurface monitoring is growing in the last years. Techniques like ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) can be useful in soil water content monitoring (e.g., Vereecken et al., 2006). Some problems remain (e.g. spatial resolution), but the scale is consistent with many applications and hydrological models. The research has to to provide even more quantitative tools, without remaining in the qualitative realm. This is a very crucial step in the way to provide data useful for hydrological modeling. In this work a controlled field infiltration experiment has been done in August 2009 in the experimental site of Grugliasco, close to the Agricultural Faculty of the University of Torino, Italy. The infiltration has been monitored in time lapse by ERT, GPR, and TDR (Time Domain Reflectometry). The sandy soil characteristics of the site has been already described in another experiment [Cassiani et al. 2009a].The ERT was èperformed in dipole-dipole configuration, while the GPR had 100 MHz and 500 MHz antennas in WARR configuration. The TDR gages had different lengths. The amount of water which was sprinkled was also monitored in time.Irrigation intensity has been always smaller than infiltration capacity, in order not toh ave any surface ponding. Spectral induced polarization has been used to infer constitutive parameters from soil samples [Cassiani et al. 2009b]. 2D Richards equation model (Manzini and Ferraris, 2004) has been then calibrated with the measurements. References. Cassiani, G., S. Ferraris, M. Giustiniani, R. Deiana and C.Strobbia, 2009a, Time-lapse surface-to-surface GPR measurements to monitor a controlled infiltration experiment, in press, Bollettino di Geofisica Teorica ed Applicata, Vol. 50, 2 Marzo 2009, pp. 209-226. Cassiani, G., A. Kemna, A.Villa, and E. Zimmermann, 2009b, Spectral induced polarization for the characterization of free-phase hydrocarbon contamination in sediments with low clay content, Near Surface Geophysics, special issue on Hydrogeophysics, p. 547-562. Manzini G., and Ferraris S. 2004. Mass-conservative finite-volume methods on 2-D unstructured grids for the Richards equation, 'Advances in Water Resources' 27(12):1199-1215, 2004. content with ground penetrating radar: A review. Vadose Zone Journal 2, 476-491. Vereecken H., Binley A., Cassiani G., Kharkhordin I., Revil A. and Titov K. 2006. Applied Hydrogeophysics. Springer-Verlag.
Broadband Ground Penetrating Radar with conformal antennas for subsurface imaging from a rover
NASA Astrophysics Data System (ADS)
Stillman, D. E.; Oden, C. P.; Grimm, R. E.; Ragusa, M.
2015-12-01
Ground-Penetrating Radar (GPR) allows subsurface imaging to provide geologic context and will be flown on the next two martian rovers (WISDOM on ExoMars and RIMFAX on Mars 2020). The motivation of our research is to minimize the engineering challenges of mounting a GPR antenna to a spacecraft, while maximizing the scientific capabilities of the GPR. The scientific capabilities increase with the bandwidth as it controls the resolution. Furthermore, ultra-wide bandwidth surveys allow certain mineralogies and rock units to be discriminated based on their frequency-dependent EM or scattering properties. We have designed and field-tested a prototype GPR that utilizes bi-static circularly polarized spiral antennas. Each antenna has a physical size of 61 x 61 x 4 cm, therefore two antennas could be mounted to the underbelly of a MSL-class rover. Spiral antennas were chosen because they have an inherent broadband response and provide a better low frequency response compared with similarly sized linearly polarized antennas. A horizontal spiral radiator emits energy both upward and downward directions. After the radiator is mounted to a metal surface (i.e. the underside of a rover), a cavity is formed that causes the upward traveling energy to reverberate and cause unwanted interference. This interference is minimized by 1) using a high metallization ratio on the spiral to reduce cavity emissions, and 2) placing absorbing material inside the cavity. The resulting antennas provide high gain (0 to 8 dBi) from 200 to 1000 MHz. The low frequency response can be improved by increasing the antenna thickness (i.e., cavity depth). In an initial field test, the antennas were combined with impulse GPR electronics that had ~140 dB of dynamic range (not including antennas) and a sand/clay interface 7 feet deep was detected. To utilize the full bandwidth the antennas, a gated Frequency Modulated Continuous Waveform system will be developed - similar to RIMFAX. The goal is to reach a total system dynamic range of 180 dB in order to provide significant penetration.
NASA Astrophysics Data System (ADS)
Schultz, John J.; Walter, Brittany S.; Healy, Carrie
2016-09-01
Geophysical techniques such as ground-penetrating radar (GPR) have been successfully used for forensic searches to locate clandestine graves and physical evidence. However, additional controlled research is needed to fully understand the applicability of this technology when searching for clandestine graves in various environments, soil types, and for longer periods of time post-burial. The purpose of this study was to determine the applicability of GPR for detecting controlled graves in a Spodosol representing multiple burial scenarios for Years 2 and 3 of a three-year monitoring period. Objectives included determining how different burial scenarios are factors in producing a distinctive anomalous response; determining how different GPR imagery options (2D reflection profiles and horizontal time slices) can provide increased visibility of the burials; and comparing GPR imagery between 500 MHz and 250 MHz dominant frequency antennae. The research site contained a grid with eight graves representing common forensic burial scenarios in a Spodosol, a common soil type of Florida, with six graves containing a pig carcass (Sus scrofa). Burial scenarios with grave items (a deep grave with a layer of rocks over the carcass and a carcass wrapped in a tarpaulin) produced a more distinctive response with clearer target reflections over the duration of the monitoring period compared to naked carcasses. Months with increased precipitation were also found to produce clearer target reflections than drier months, particularly during Year 3 when many grave scenarios that were not previously visible became visible after increased seasonal rainfall. Overall, the 250 MHz dominant frequency antenna imagery was more favorable than the 500 MHz. While detection of a simulated grave may be difficult to detect over time, long term detection of a grave in a Spodosol may be possible if the disturbed spodic horizon is detected. Furthermore, while grave visibility increased with the 2D reflection profiles, particularly with the 250 MHz antenna, the combination of both imagery options is recommended when evaluating GPR data during a search for a clandestine grave.
NASA Astrophysics Data System (ADS)
Koch, Franziska; Schmid, Lino; Prasch, Monika; Heilig, Achim; Eisen, Olaf; Schweizer, Jürg; Mauser, Wolfram
2015-04-01
The temporal evolution of Alpine snowpacks is important for assessing water supply, hydropower generation, flood predictions and avalanche forecasts. Especially in high mountain regions with an extremely varying topography, it is until now often difficult to derive continuous and non-destructive information on snow parameters. Since autumn 2012, we are running a new low-cost GPS (Global Positioning System) snow measurement experiment at the high alpine study site Weissfluhjoch (2450 m a.s.l.) in Switzerland. The globally and freely broadcasted GPS L1-band (1.57542 GHz) was continuously recorded with GPS antennas, which are installed at the ground surface underneath the snowpack. GPS raw data, containing carrier-to-noise power density ratio (C/N0) as well as elevation and azimuth angle information for each time step of 1 s, was stored and analyzed for all 32 GPS satellites. Since the dielectric permittivity of an overlying wet snowpack influences microwave radiation, the bulk volumetric liquid water content as well as daily melt-freeze cycles can be derived non-destructively from GPS signal strength losses and external snow height information. This liquid water content information is qualitatively in good accordance with meteorological and snow-hydrological data and quantitatively highly agrees with continuous data derived from an upward-looking ground-penetrating radar (upGPR) working in a similar frequency range. As a promising novelty, we combined the GPS signal strength data with upGPR travel-time information of active impulse radar rays to the snow surface and back from underneath the snow cover. This combination allows determining liquid water content, snow height and snow water equivalent from beneath the snow cover without using any other external information. The snow parameters derived by combining upGPR and GPS data are in good agreement with conventional sensors as e.g. laser distance gauges or snow pillows. As the GPS sensors are cheap, they can easily be installed in parallel with further upGPR systems or as sensor networks to monitor the snowpack evolution in avalanche paths or at a larger scale in an entire hydrological basin to derive distributed melt-water runoff information.
Non-destructive testing for the structures and civil infrastructures characterization
NASA Astrophysics Data System (ADS)
Capozzoli, L.; Rizzo, E.
2012-04-01
This work evaluates the ability of non-conventional NDT techniques such as GPR, geoelectrical method and conventional ones such as infrared thermography (IRT) and sonic test for the characterization of building structures in laboratory and in-situ. Moreover, the integration of the different techniques were evaluated in order to reduce the degree of uncertainties associated. The presence of electromagnetic, resistivity or thermal anomalies in the behavior may be related to the presence of defects, crack, decay or moisture. The research was conducted in two phases: the first phase was performed in laboratory and the second one mainly in the field work. The laboratory experiments proceeded to calibrate the geophysical techniques GPR and geoelectrical method on building structures. A multi-layer structure was reconstructed in laboratory, in order to simulate a back-bridge: asphalt, reinforced concrete, sand and gravel layers. In the deep sandy layer, PVC, aluminum and steel pipes were introduced. This structure has also been brought to crack in a predetermined area and hidden internal fractures were investigated. GPR has allowed to characterize the panel in a non-invasive mode; radar maps were developed using various algorithms during post-process about 2D maps and 3D models with aerial acquisition of 400 MHz, 900MHz, 1500MHz, 2000MHz. Geoelectrical testing was performed with a network of 25 electrodes spaced at mutual distance of 5 cm. Two different configurations were used dipole-dipole and pole-dipole approaches. In the second phase, we proceeded to the analysis of pre-tensioned concrete in order to detect the possible presence of criticality in the structure. For this purpose by GPR 2GHz antenna, a '70 years precast bridge characterized by a high state of decay was studied; then were also analyzed a pillar and a beam of recent production directly into the processing plant. Moreover, results obtained using GPR were compared with those obtained through the use of infrared thermography and sonic testing. Finally, we investigated a radiant floor by GPR (900 MHz to 2000 MHz antennas) and long-wave infrared camera. Non-destructive diagnostic techniques allow to investigate a building structure in reinforced concrete or masonry without altering the characteristics of the element investigated. For this reason, geo-electrical and electromagnetic surveys of masonry are a suitable non-destructive tool for the diagnosis of a deteriorated concrete structure. Moreover, the integration of different NDT techniques (conventional and no-conventional) is a very powerful to maximize the capabilities and to compensate for the limitations of each method.
Ground-penetrating radar research in Belgium: from developments to applications
NASA Astrophysics Data System (ADS)
Lambot, Sébastien; Van Meirvenne, Marc; Craeye, Christophe
2014-05-01
Ground-penetrating radar research in Belgium spans a series of developments and applications, including mainly ultra wideband radar antenna design and optimization, non-destructive testing for the characterization of the electrical properties of soils and materials, and high-resolution subsurface imaging in agricultural engineering, archeology and transport infrastructures (e.g., road inspection and pipe detection). Security applications have also been the topic of active research for several years (i.e., landmine detection) and developments in forestry have recently been initiated (i.e., for root zone and tree trunk imaging and characterization). In particular, longstanding research has been devoted to the intrinsic modeling of antenna-medium systems for full-wave inversion, thereby providing an effective way for retrieving the electrical properties of soils and materials. Full-wave modeling is a prerequisite for benefiting from the full information contained in the radar data and is necessary to provide robust and accurate estimates of the properties of interest. Nevertheless, this has remained a major challenge in geophysics and electromagnetics for many years, mainly due to the complex interactions between the antennas and the media as well as to the significant computing resources that are usually required. Efforts have also been dedicated to the development of specific inversion strategies to cope with the complexity of the inverse problems usually dealt with as well as ill-posedness issues that arise from a lack of information in the radar data. To circumvent this last limitation, antenna arrays have been developed and modeled in order to provide additional information. Moreover, data fusion ways have been investigated, by mainly combining GPR data with electromagnetic induction complementary information in joint interpretation analyses and inversion procedures. Finally, inversions have been regularized by combining electromagnetics models together with soil hydrodynamic models in mechanistic data assimilation frameworks, assuming process knowledge as information as well. Acknowledgement: GPR research in Belgium benefits from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".
Mapping Bedrock Topography of Taku Glacier with Low Frequency Ground Penetrating RADAR
NASA Astrophysics Data System (ADS)
Westhaver, T.; Towell, A. R.; Lois, A.; Kaluzienski, L. M.; Fredrickson, K.; Riverman, K. L.; Kellerman, B.; Otto, D.; Stewart, A.
2017-12-01
Taku Glacier is the thickest and deepest temperate glacier so far measured in the world. However, the maximum depth has never been determined and the bed is estimated to be at least 600 meters below sea level. Understanding the shape of the bed topography is essential for predicting how the glacier will respond to climate change and how this will affect the future shoreline of Southeast Alaska. We collected both transverse and longitudinal transects of Taku Glacier using ground penetrating radar (GPR) operating at a frequency of 5 MHz, as well as similar profiles from several tributary glaciers including Demorest Glacier, Matthes Glacier and the Northwest Branch of Taku Glacier. We combined previously collected seismic data, digital elevation models (DEMs), and gravimetric data with in situ GPR profiles to produce a bedrock topography model using ArcGIS and Python. Here we present a bedrock topography model of the retreating Taku Glacier that approximates the future shoreline of Southeast Alaska. This modeled shoreline would have profound implications for local community development, ecology and regional hydrology given current climate warming trends.
Urban Underground Pipelines Mapping Using Ground Penetrating Radar
NASA Astrophysics Data System (ADS)
Jaw, S. W.; M, Hashim
2014-02-01
Underground spaces are now being given attention to exploit for transportation, utilities, and public usage. The underground has become a spider's web of utility networks. Mapping of underground utility pipelines has become a challenging and difficult task. As such, mapping of underground utility pipelines is a "hit-and-miss" affair, and results in many catastrophic damages, particularly in urban areas. Therefore, this study was conducted to extract locational information of the urban underground utility pipeline using trenchless measuring tool, namely ground penetrating radar (GPR). The focus of this study was to conduct underground utility pipeline mapping for retrieval of geometry properties of the pipelines, using GPR. In doing this, a series of tests were first conducted at the preferred test site and real-life experiment, followed by modeling of field-based model using Finite-Difference Time-Domain (FDTD). Results provide the locational information of underground utility pipelines associated with its mapping accuracy. Eventually, this locational information of the underground utility pipelines is beneficial to civil infrastructure management and maintenance which in the long term is time-saving and critically important for the development of metropolitan areas.
NASA Astrophysics Data System (ADS)
Nuzzo, L.; Calia, A.; Liberatore, D.; Masini, N.; Rizzo, E.
2010-04-01
The integration of high-resolution, non-invasive geophysical techniques (such as ground-penetrating radar or GPR) with emerging sensing techniques (acoustics, thermography) can complement limited destructive tests to provide a suitable methodology for a multi-scale assessment of the state of preservation, material and construction components of monuments. This paper presents the results of the application of GPR, infrared thermography (IRT) and ultrasonic tests to the 13th century rose window of Troia Cathedral (Apulia, Italy), affected by widespread decay and instability problems caused by the 1731 earthquake and reactivated by recent seismic activity. This integrated approach provided a wide amount of complementary information at different scales, ranging from the sub-centimetre size of the metallic joints between the various architectural elements, narrow fractures and thin mortar fillings, up to the sub-metre scale of the internal masonry structure of the circular ashlar curb linking the rose window to the façade, which was essential to understand the original building technique and to design an effective restoration strategy.
NASA Astrophysics Data System (ADS)
Mendes, Manuela; Caldeira, Bento; Borges, José
2017-04-01
This work describes a case study concerning a prehistoric buried tomb (around 3000 years B.C.) located near Évora (Portugal). This monument is a tomb completely buried with only five visible irregular small stones distributed in a circle of 3 meter in diameter. A multi-approach combining 3D seismic tomography and ground-penetrating radar (GPR) have been applied to identify hidden elements and arrangement of the stones, required prior to any excavation work. The methodology for the 3D seismic data acquisition involves a total of 24 shots recorded by four lines, with twelve fixed receivers each one. For the GPR survey was used a 400 MHz antenna which moves along parallel lines with 50 cm separation, over a 30x30 m2 area that contains the buried tomb; the GPR unit was configured to a horizontal rate of 50 scans per meter (1024 samples/scan) and a time window of 60 ns. This multi-approach procedure allowed defining: (i) the housing of the tomb in the basement structure; (ii) the presence of a hidden corridor; (iii) the description of the internal structure of the walls of the tomb; (iv) the state of preservation of the monument. Acknowledgements: This work is co-financed by the European Union through the European Regional Development Fund under COMPETE 2020 (Operational Program for Competitiveness and Internationalization) through the ICT project (UID / GEO / 04683/2013) under the reference POCI-01-0145 -FEDER-007690.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, D.; Guerrier, J.; Martinez, M.
1994-01-04
In situ and near real-time measurements of coal seam thickness have been identified by industry as a highly desirable component of robotic mining systems. With it, a continuous mining machine can be guided close to the varying boundary of the seam while the cutting operation is underway. This provides the mining operation the ability to leave behind the high-sulfur, high-particulate coal which is concentrated near the seam boundary. The result is near total recovery of high quality coal resources, an increase in mining efficiency, and opportunities for improved safety through reduction in personnel in the most hazardous coal cutting areas.more » In situ, real-time coal seam measurements using the Special Technologies Laboratory (STL) ground penetrating radar (GPR) technology were shown feasible by a demonstration in a Utah coal mine on April 21, 1994. This report describes the October 18, 1994 in situ GPR measurements of coal seam thickness at the US Bureau of Mines (USBM) robotic mining testing laboratory. In this report, an overview of the measurements at the USBM Laboratory is given. It is followed by a description of the technical aspects of the STL frequency modulated-continuous wave (FM-CW) GPR system. Section 4 provides a detailed description of the USBM Laboratory measurements and the conditions under which they were taken. Section 5 offers conclusions and possibilities for future communications.« less
High-Resolution Time-Lapse Monitoring of Unsaturated Flow using Automated GPR Data Collection
NASA Astrophysics Data System (ADS)
Mangel, A. R.; Moysey, S. M.; Lytle, B. A.; Bradford, J. H.
2015-12-01
High-resolution ground-penetrating radar (GPR) data provide the detailed information required to image subsurface structures. Recent advances in GPR monitoring now also make it possible to study transient hydrologic processes, but high-speed data acquisition is critical for this application. We therefore highlight the capabilities of our automated system to acquire time-lapse, high-resolution multifold GPR data during infiltration of water into soils. The system design allows for fast acquisition of constant-offset (COP) and common-midpoint profiles (CMP) to monitor unsaturated flow at multiple locations. Qualitative interpretation of the unprocessed COPs can provide substantial information regarding the hydrologic response of the system, such as the complexities of patterns associated with the wetting of the soil and geophysical evidence of non-uniform propagation of a wetting front. While we find that unprocessed images are informative, we show that the spatial variability of velocity introduced by infiltration events can complicate the images and that migration of the data is an effective tool to improve interpretability of the time-lapse images. The ability of the system to collect high density CMP data also introduces the potential for improving the velocity model along with the image via reflection tomography in the post-migrated domain. We show that for both simulated and empirical time-lapse GPR profiles we can resolve a propagating wetting front in the soil that is in good agreement with the response of in-situ soil moisture measurements. The data from these experiments illustrate the importance of high-speed, high-resolution GPR data acquisition for obtaining insight about the dynamics of hydrologic events. Continuing research is aimed at improving the quantitative analysis of surface-based GPR monitoring data for identifying preferential flow in soils.
NASA Astrophysics Data System (ADS)
Curioni, Giulio; Chapman, David N.; Metje, Nicole
2017-06-01
The electromagnetic (EM) soil properties are dynamic variables that can change considerably over time, and they fundamentally affect the performance of Ground Penetrating Radar (GPR). However, long-term field studies are remarkably rare and records of the EM soil properties and their seasonal variation are largely absent from the literature. This research explores the extent of the seasonal variation of the apparent permittivity (Ka) and bulk electrical conductivity (BEC) measured by Time Domain Reflectometry (TDR) and their impact on GPR results, with a particularly important application to utility detection. A bespoke TDR field monitoring station was specifically developed and installed in an anthropogenic sandy soil in the UK for 22 months. The relationship between the temporal variation of the EM soil properties and GPR performance has been qualitatively assessed, highlighting notably degradation of the GPR images during wet periods and a few days after significant rainfall events following dry periods. Significantly, it was shown that by assuming arbitrary average values (i.e. not extreme values) of Ka and BEC which do not often reflect the typical conditions of the soil, it can lead to significant inaccuracies in the estimation of the depth of buried targets, with errors potentially up to approximately 30% even over a depth of 0.50 m (where GPR is expected to be most accurate). It is therefore recommended to measure or assess the soil conditions during GPR surveys, and if this is not possible to use typical wet and dry Ka values reported in the literature for the soil expected at the site, to improve confidence in estimations of target depths.
NASA Astrophysics Data System (ADS)
Guo, L.; Lin, H.; Nyquist, J.; Toran, L.; Mount, G.
2017-12-01
Linking subsurface structures to their functions in determining hydrologic processes, such as soil moisture dynamics, subsurface flow patterns, and discharge behaviours, is a key to understanding and modelling hydrological systems. Geophysical techniques provide a non-invasive approach to investigate this form-function dualism of subsurface hydrology at the field scale, because they are effective in visualizing subsurface structure and monitoring the distribution of water. In this study, we used time-lapse ground-penetrating radar (GPR) to compare the hydrologic responses of two contrasting soils in the Shale Hills Critical Zone Observatory. By integrating time-lapse GPR with artificial water injection, we observed distinct flow patterns in the two soils: 1) in the deep Rushtown soil (over 1.5 m depth to bedrock) located in a concave hillslope, a lateral preferential flow network extending as far as 2 m downslope was identified above a less permeable layer and via a series of connected macropores; whereas 2) in the shallow Weikert soil ( 0.3 m depth to saprock) located in a planar hillslope, vertical infiltration into the permeable fractured shale dominated the flow field, while the development of lateral preferential flow along the hillslope was restrained. At the Weikert soil site, the addition of brilliant blue dye to the water injection followed by in situ excavation supported GPR interpretation that only limited lateral preferential flow formed along the soil-saprock interface. Moreover, seasonally repeated GPR surveys indicated different patterns of profile moisture distribution in the two soils that in comparison with the dry season, a dense layer within the BC horizon in the deep Rushtown soil prevented vertical infiltration in the wet season, leading to the accumulation of soil moisture above this layer; whereas, in the shallow Weikert soil, water infiltrated into saprock in wet seasons, building up water storage within the fractured bedrock (i.e., the rock moisture). Results of this study demonstrated the strong interplay between soil structures and subsurface hydrologic behaviors, and time-lapse GPR is an effective method to establish such a relationship under the field conditions.
In-situ GPR test for three-dimensional mapping of the dielectric constant in a rock mass
NASA Astrophysics Data System (ADS)
Elkarmoty, Mohamed; Colla, Camilla; Gabrielli, Elena; Papeschi, Paolo; Bonduà, Stefano; Bruno, Roberto
2017-11-01
The Ground Penetrating Radar (GPR) is used to detect subsurface anomalies in several applications. The more the velocity of propagation or the dielectric constant is estimated accurately, the more the detection of anomalies at true subsurface depth can be accurately obtained. Since many GPR applications are performed in rock mass with non-homogeneous discontinuous nature, errors in estimating a bulk velocity of propagation or dielectric constant are possible. This paper presents a new in-situ GPR test for mapping the dielectric constant variability in a rock mass. The main aim is to investigate to what extent the dielectric constant is variable in the micro and macro scale of a typical rock mass and to give attention to GPR users in rock mass mediums. The methodology of this research is based on the insertion of steel rods in a rock mass, thus acting as reflectors. The velocity of propagation can be then modeled, from hyperbolic reflections, in the form of velocity pathways from antenna positions to a buried rod. Each pathway is characterized by discrete points which are assumed in three dimensions as centers of micro cubic rock mass. This allows converting the velocity of propagation into a dielectric constant for mapping and modeling the dielectric constant in a volumetric rock mass using a volumetric data visualization software program (Voxler). In a case study, 6 steel drilling rods were diagonally inserted in a vertical face of a bench in a sandstone quarry. Five equally spaced parallel lines, almost perpendicular to the orientations of the rods, were surveyed by a dual frequency GPR antenna of 200 and 600 MHz. The results show that the dielectric constant is randomly varied within the micro and macro scale either in single radargrams or in the volumetric rock mass. The proposed method can be useful if considered in signal processing software programs, particularly in presence of subsurface utilities with known geometry and dimension, allowing converting double travel time, through portions of a radargram, into more reliable depths using discrete dielectric constant values instead of one value for a whole radargram.
NASA Astrophysics Data System (ADS)
North, Ryan Elliot
Common near-surface geophysical methods such as time domain electromagnetic induction (TDEM) metal detectors and ground penetrating radar (GPR) suffer performance degradation as a function of site specific complex electromagnetic soil properties (permittivity, permeability and conductivity). Knowledge of these soil properties from the kHz to the GHz frequency range can be used to predict and improve sensor performance. A prototype permittivity probe was used to measure the complex permittivity and conductivity of the soil and calculate the GPR velocity and attenuation of the from the in-situ measurements. The prototype probe was capable of accurately predicting the GPR velocities when compared with the GPR measurement and could easily predict the attenuation which is difficult to determine from actual GPR data. Unfortunately the prototype probe here has one primarily deficiency which is the assumption that the soils where it is used are non-magnetic. To illustrate the problems with using this probe in magnetic soils I made soil analogues from commercially available magnetite and crushed silica powder then measured them using a common open ended coaxial probe followed by measurements with coaxial air- line fixture which can also calculate magnetic properties. The calculated permittivities are up to twice as high when measured with the coaxial probe as they are when measured with a coaxial airline fixture which will lead to incorrect estimates of GPR velocity and attenuation. To address the performance issues of metal detectors in magnetically viscous soils I created a magnetically viscous soil analogue that could be used in mine detection training lanes instead of importing soil from sites exhibiting magnetic viscosity. Five commercially available iron oxide nano-powders were tested as additives to create the soil analogues by measuring the magnetic viscosity of these iron oxides with a new prototype instrument and compared them to samples of magnetically viscous soils collected at sites around the world. Three of the iron oxides exhibited comparable magnetic viscosities to the naturally occurring soil samples. One was selected to make a soil analogue by mixing it with crushed silica. The resulting magnetic susceptibilities compared favorably with those of the natural soil samples.
Mobile geophysical study of peat deposits in Fuhrberger Field, Germany
NASA Astrophysics Data System (ADS)
Wunderlich, T.; Petersen, H.; Hagrey, S. A. al; Rabbel, W.
2012-04-01
In the water protection area of Fuhrberger Field, north of Hanover, geophysical techniques were applied to study the stakeholder problem of the source detection for nitrate accumulations in the ground water. We used our mobile multisensor platform to conduct measurements using Ground Penetrating Radar (GPR, 200 MHz antenna) and Electromagnetic Induction (EMI, EM31). This aims to study the subsurface occurrences of peat deposits (surplus of organic carbon) supposed to be a source of nitrate emissions due to the aeration and the drawdown of groundwater levels (e.g. by pumping, drainage etc.). Resulting EMI and GPR signals show high data quality. Measured apparent electrical conductivity shows very low values (<10 mS/m) due to the mainly sandy subsurface. For this medium, both methods are expected to penetrate down to 3-5 m depth. GPR radargrams, time slices of GPR reflection energy and EMI apparent electrical conductivities are plotted on aerial photographs and compared to each other's and with vegetation intensity. We could separate areas characterized by low reflection energy and high conductivity, and vice versa. Briefly, organic rich sediments such as peats are assumed to have a relative high conductivity and thus low GPR reflectivity. Some areas of local conductivity increase correspond to a deep reflection interface (as seen in the radargrams), which even vanishes due to the high attenuation caused by the high conductivity. This implies that the upper layer is more conductive than the lower layer. Several local areas with these characteristics are found at the study sites. We recommend shallow drillings at representative points to deliver the necessary confirmation with ground truth information. Acknowledgments: iSOIL (Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping) is a Collaborative Project (Grant Agreement number 211386) co-funded by the Research DG of the European Commission within the RTD activities of the FP7 Thematic Priority Environment.
GPR detectability of rocks in a Martian-like shallow subsoil: A numerical approach
NASA Astrophysics Data System (ADS)
Valerio, Guido; Galli, Alessandro; Matteo Barone, Pier; Lauro, Sebastian E.; Mattei, Elisabetta; Pettinelli, Elena
2012-03-01
In this work, the ability of Ground Penetrating Radar (GPR) to detect rocks buried in composite soil is studied in connection with the planned ExoMars mission, as GPR will be used during this mission to scan the Martian subsurface to help define feasible sites for shallow drilling. A realistic model of the operating environment is implemented through a full-wave electromagnetic simulator, taking into account the antenna system and the signal features. The flexibility and efficiency of this numerical approach has allowed for the analysis of a great variety of configurations. The regolith is modeled based on data from recent explorations, while various kinds of embedded rocks are considered that have different geometrical and physical characteristics. The simulated results are compared with ad hoc GPR measurements performed on basalts buried in a mixture of glass beads, as an analogue of a dry sandy Martian soil. A very good agreement between theoretical and experimental results is found, thus validating the proposed numerical approach. This research has defined useful and reliable information concerning the prediction of scattering effects from buried objects in the environment where the ExoMars rover will operate.
Sensor fusion approaches for EMI and GPR-based subsurface threat identification
NASA Astrophysics Data System (ADS)
Torrione, Peter; Morton, Kenneth, Jr.; Besaw, Lance E.
2011-06-01
Despite advances in both electromagnetic induction (EMI) and ground penetrating radar (GPR) sensing and related signal processing, neither sensor alone provides a perfect tool for detecting the myriad of possible buried objects that threaten the lives of Soldiers and civilians. However, while neither GPR nor EMI sensing alone can provide optimal detection across all target types, the two approaches are highly complementary. As a result, many landmine systems seek to make use of both sensing modalities simultaneously and fuse the results from both sensors to improve detection performance for targets with widely varying metal content and GPR responses. Despite this, little work has focused on large-scale comparisons of different approaches to sensor fusion and machine learning for combining data from these highly orthogonal phenomenologies. In this work we explore a wide array of pattern recognition techniques for algorithm development and sensor fusion. Results with the ARA Nemesis landmine detection system suggest that nonlinear and non-parametric classification algorithms provide significant performance benefits for single-sensor algorithm development, and that fusion of multiple algorithms can be performed satisfactorily using basic parametric approaches, such as logistic discriminant classification, for the targets under consideration in our data sets.
NASA Astrophysics Data System (ADS)
Azimmah, Azizatun; Widodo
2017-04-01
Underground cavities or voids detection is essential especially when it comes to building construction. By knowing the presence of void lying underground, one could consider whether the subsidence is likely to be prevented or not. Ground penetrating radar is a high-frequency electromagnetic sounding technique that has been developed to investigate the shallow subsurface using the contrast of dielectric properties. This geophysical method is suitable to be used to detect and locate voids beneath the surface especially those that lie in shallow depth. This research focused on how GPR could be implemented as void detector using model simulation or forward modelling. The models applied in the forward modelling process are to be made as similar as the real condition in the case study location which took place in Tahura Japan Cave, Bandung, Indonesia. Forward modelling needs to be done so in the future, we might use the modelling results as the references in measuring real GPR data in the location. We used three models that we considered fairly representative to prove that GPR is capable of detecting and locating voids underneath the ground. This research resulted in the different amplitude region around the considerably homogeneous region. The different amplitude region is characterized having an arc shape and is considered to be air which is known as the key component of voids.
Study of Mobile GIS Application on the Field of GPR in the Road Disease Detection
NASA Astrophysics Data System (ADS)
Liao, Q.; Yang, F.
2013-12-01
With the reflection principle of pulsed electromagnetic waves, ground penetrating radar (GPR) is available to measure depth of the pavement layer, reflecting different hidden danger underground. Currently, GPR has been widely used in road engineering with the constantly improved ability of detection and diagnosis to road diseases. The sum of road disease data of a region, a city, and even a wider range will be a very informative database, so we need a more convenient way to achieve data query intuitively. As mobile internet develops continuously, application of mobile terminal device plays a more important role in information platform. Mobile GIS, with smartphone as its terminal, is supported by the mobile Internet, GPS or base station as its positioning method. In this article, based on Android Platform and using C/S pattern, the LBS application of road diseases information which integrates Baidu Map API and database technology was discussed. After testing, it can display and query the real-time and historical road diseases data, the classification of data on a phone intuitively and easily. Because of the location technique and high portability of smart phone, the spot investigations of road diseases become easier. Though, the system needs further improvement, especially with the improving of the mobile phone performance, the system can also add the function of analysis to the disease data, thus forming a set of service system with more applicable.
NASA Astrophysics Data System (ADS)
Pajewski, Lara; Benedetto, Andrea; Loizos, Andreas; Slob, Evert; Tosti, Fabio
2013-04-01
Ground Penetrating Radar (GPR) is a safe, non-destructive and non-invasive imaging technique that can be effectively used for advanced inspection of composite structures and for diagnostics affecting the whole life-cycle of civil engineering works. GPR provides high resolution images of structures and subsurface through wide-band electromagnetic waves. It can be employed for the surveying of roads, pavements, bridges, tunnels, for detecting underground cavities and voids, for utility sensing, for the inspection of buildings, reinforced concrete and pre-cast concrete structures, for geotechnical investigation, in foundation design, as well as for several other purposes. Penetration and resolution of GPR depend primarily on the transmitting frequency of the equipment, the antenna characteristics, the electrical properties of the ground or of the surveyed material, and the contrasting electrical properties of the targets with respect to the surrounding medium. Generally there is a direct relationship between the transmitter frequency and the resolution that can be obtained; conversely there is an inverse relationship between frequency and penetration depth. GPR works best in dry ground environments, but can also give good results in wet, saturated materials; it does not work well in saline conditions, in high-conductivity media and through dense clays which limit signal penetration. Different approaches can be employed in the processing of collected GPR data. Once data have been processed, they still have to be analysed. This is a challenging problem, since interpretation of GPR radargrams is typically non-intuitive and considerable expertise is needed. In the presence of a complex scenario, an accurate electromagnetic forward solver is a fundamental tool for the validation of data interpretation. It can be employed for the characterization of scenarios, as a preliminary step that precedes a survey, or to gain a posteriori a better understanding of measured data. It can be used by GPR operators to identify the signatures generated by uncommon targets or by composite structures. Repeated evaluations of the electromagnetic field scattered by known targets can be performed by a forward solver, in order to estimate - through comparison with measured data - the physics and geometry of the region investigated by the GPR. It is possible to identify three main areas, in the GPR field, that have to be addressed in order to promote the use of this technology in the civil engineering. These are: a) increase of the system sensitivity to enable the usability in a wider range of conditions; b) research novel data processing algorithms/analysis tools for the interpretation of GPR results; c) contribute to the development of new standards and guidelines and to training of end users, that will also help to increase the awareness of operators. In this framework, the COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar", proposed by Lara Pajewski, "Roma Tre" University, Rome, Italy, has been approved in November 2012 and is going to start in April 2013. It is a 4-years ambitious project already involving 17 European Countries (AT, BE, CH, CZ, DE, EL, ES, FI, FR, HR, IT, NL, NO, PL, PT, TR, UK), as well as Australia and U.S.A. The project will be developed within the frame of a unique approach based on the integrated contribution of University researchers, software developers, geophysics experts, Non-Destructive Testing equipment designers and producers, end users from private companies and public agencies. The main objective of the COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, whilst promoting the effective use of this safe and non-destructive technique in the monitoring of systems. In this interdisciplinary Action, advantages and limitations of GPR will be highlighted, leading to the identification of gaps in knowledge and technology. Protocols and guidelines for European Standards will be developed, for an effective application of GPR in civil engineering. A novel GPR will be designed and realized: a multi-static system, with dedicated software and calibration procedures, able to construct real-time lane three-dimensional high resolution images of investigated areas. Advanced electromagnetic-scattering and data-processing techniques will be developed. The understanding of relationships between geophysical parameters and civil-engineering needs will be improved. Freeware software will be released, for inspection and monitoring of structures and infrastructures, buried-object localization, shape reconstruction and estimation of useful parameters. A high level training program will be organized. Mobility of early career researchers will be encouraged. The scientific work-plan of the Action is open, to ensure that experts all over the world, who did not participate in the preparation of the proposal but are interested in the project, may join the Action and participate in its activities. More information about the project can be found at http://www.cost.eu/domains_actions/tud/Actions/TU1208.
NASA Astrophysics Data System (ADS)
Dougherty, A. J.; Choi, J. H.; Turney, C. S.; Dosseto, A.
2017-12-01
Records of past sea levels, storms, sediment supply and their impacts on the coastline are crucial for projecting likely shoreline changes resulting from anthropogenic warming. High-resolution geophysics, geochronology, and remote sensing techniques offer an optimal way to extract these records and decipher shoreline evolution. These methods include Light Detection and Ranging (LiDAR for imaging barrier morphologies in three dimensions), Ground Penetrating Radar (GPR for detecting paleo-dune, beach and nearshore stratigraphy) and Optically Stimulated Luminescence (OSL for dating deposition of sand grains along paleoshorelines). Each of these teqniques have been applied to coastal research over the decades since they were first introduced. Recently there has been a rapid increase their use since LiDAR became more available, GPR more user-friendly, and OSL more accessible. These methods have the potential to produce both detailed and voluminous datasets that can overwhelm or obscure significant features, such that discrepancies in analysis and/or presentation may lead to erroneous interpretations. In contrast, when utilized correctly on prograded barriers these methods (independently or in various combinations) have produced storm records, constructed sea-level curves, quantified sediment budgets, and deciphered coastal evolution. Therefore, combining the application of GPR, OSL, and LiDAR (GOaL) on one prograded barrier has the potential to generate detailed records of storms, sea level, and sediment supply for that coastline. Obtaining this GOaL hat-trick can provide valuable insights into how these three factors influenced past and future barrier evolution. Here we argue that systematically achieving GOaL hat-tricks on some of the 300+ prograded barriers worldwide would allow us to disentangle local patterns of sediment supply from regional effects of storms or global changes in sea level, allowing direct comparison to climate proxy records. To fully realize this aim requires standardization of methods to optimize results. The impetus for this initiative is to establish a framework for consistent data analysis that maximizes the potential of GOaL to contribute to climate change research and assist coastal communities in mitigating future impacts of global warming.
NASA Astrophysics Data System (ADS)
Arcone, S. A.; Ray, L.; Lever, J.; Koons, P. O.; Kaluzienski, L. M.
2017-12-01
Shearing along ice shelf margins threatens shelf stability if crevassing results throughout the ice. We are investigating a 28 km2 section of the McMurdo Shear Zone (MSZ), which lies between the Ross Ice Shelf (RIS) and the McMurdo Ice Shelf (MIS). Our gridded transects are east-west, ice flow is nearly due north and the RIS compresses against the MIS from east to west. We find nearly synchronized firn and marine ice crevassing; the marine ice is stratified. However, the lack of any radar evidence for crevassing or fracture within the intermediate 120 m of meteoric ice is so far, enigmatic. The marine ice crevassing is interpreted from ground-penetrating radar (GPR) trace signatures within 100 m swaths of the interface between the meteoric and marine ice; thus the GPR performs like side-looking radar. Symmetric and deformed diffraction hyperbolas indicate crevasses oriented at 43-76 degrees relative to ice flow, as seen in the firn. Those near 45 degrees are interpreted as recently formed while those at greater angles are likely older and rotated. Many traces indicate crevasse warping, lateral faulting, and down-faulting. Traces nearly perpendicular to flow indicate possible wing cracks that grew from the tips of crevasses into the direction of compression from the RIS. We interpret the marine crevasses to have originated at the meteoric-marine interface, and to have extended to the shelf bottom because they appear filled with unstratified frozen seawater. In view of these observations, and that the intermediate meteoric ice must be under similar although not exactly the same stresses, the lack of fracturing within the meteoric ice may imply that suturing following brittle and ductile shear deformation provides stability for the MSZ and may result from this east-west compression of the RIS against the MIS.
NASA Astrophysics Data System (ADS)
Dogan, Mesut; Yesilyurt, Omer; Turhan-Sayan, Gonul
2018-04-01
Ground penetrating radar (GPR) is an ultra-wideband electromagnetic sensor used not only for subsurface sensing but also for the detection of objects which may be hidden behind a wall or inserted within the wall. Such applications of the GPR technology are used in both military and civilian operations such as mine or IED (improvised explosive device) detection, rescue missions after earthquakes and investigation of archeological sites. Detection of concealed objects with low metal content is known to be a challenging problem in general. Use of A-scan, B-scan and C-scan GPR data in combination provides valuable information for target recognition in such applications. In this paper, we study the problem of target detection for potentially explosive objects embedded inside a wall. GPR data is numerically simulated by using an FDTD-based numerical computation tool when dielectric targets and targets with low metal content are inserted into different types of walls. A small size plastic bottle filled with trinitrotoluene (TNT) is used as the target with and without a metal fuse in it. The targets are buried into two different types of wall; a homogeneous brick wall and an inhomogeneous wall constructed by bricks having periodically located air holes in it. Effects of using an inhomogeneous wall structure with internal boundaries are investigated as a challenging scenario, paying special attention to preprocessing.
NASA Astrophysics Data System (ADS)
Plettemeier, D.; Statz, C.; Hahnel, R.; Benedix, W. S.; Hamran, S. E.; Ciarletti, V.
2016-12-01
The "Water Ice Subsurface Deposition on Mars" Experiment (WISDOM) is a Ground Penetrating Radar (GPR) and part of the 2020 ExoMars Rover payload. It will be the first GPR operating on a planetary rover and the first fully polarimetric radar tasked at probing the subsurface of Mars. WISDOM operates at frequencies between 500 MHz and 3 GHz yielding a centimetric resolution and a penetration depth of about 3 meters in Martian soil. Its prime scientific objective is the detailed characterization of the material distribution within the first few meters of the Martian subsurface as a contribution to the search for evidence of past life. For the first time, WISDOM will give access to the geological structure, electromagnetic nature, and hydrological state of the shallow subsurface by retrieving the layering and properties of the buried reflectors at an unprecedented resolution and, due to the fully polarimetric measurements, amount of information. Furthermore, a "real time" subsurface analysis will support the drill operations by identifying locations of high scientific interest and low risk. Key element in the WISDOM data analysis is the fast and reliable classification and correct localization of subsurface scatterers and layers. The fully polarimetric nature of the WISDOM measurements allows the use of the entropy-alpha decomposition (H-alpha). This method enables the classification of reconstructed images of the subsurface (obtained by inverse imaging algorithms, e.g. f-k migration) with regard to the main scattering mechanisms of geological features present in the image of the subsurface. It is, for example, possible to differentiate smooth surfaces, rough surfaces, isolated spherical scatterers, double- and bounce scattering, anisotropic scatterers, clouds of small scatterers of similar shape as well as layers of oblate spheroids. Preliminary tests under laboratory conditions suggest the feasibility and value of the approach for the classification of geological features in the Martian subsurface in the context of WISDOM data processing and operations. It is a fast and reliable tool leveraging the whole amount of information provided by the fully polarimetric WISDOM Radar.
Mapping and predicting sinkholes by integration of remote sensing and spectroscopy methods
NASA Astrophysics Data System (ADS)
Goldshleger, N.; Basson, U.; Azaria, I.
2013-08-01
The Dead Sea coastal area is exposed to the destructive process of sinkhole collapse. The increase in sinkhole activity in the last two decades has been substantial, resulting from the continuous decrease in the Dead Sea's level, with more than 1,000 sinkholes developing as a result of upper layer collapse. Large sinkholes can reach 25 m in diameter. They are concentrated mainly in clusters in several dozens of sites with different characteristics. In this research, methods for mapping, monitoring and predicting sinkholes were developed using active and passive remote-sensing methods: field spectrometer, geophysical ground penetration radar (GPR) and a frequency domain electromagnetic instrument (FDEM). The research was conducted in three stages: 1) literature review and data collection; 2) mapping regions abundant with sinkholes in various stages and regions vulnerable to sinkholes; 3) analyzing the data and translating it into cognitive and accessible scientific information. Field spectrometry enabled a comparison between the spectral signatures of soil samples collected near active or progressing sinkholes, and those collected in regions with no visual sign of sinkhole occurrence. FDEM and GPR investigations showed that electrical conductivity and soil moisture are higher in regions affected by sinkholes. Measurements taken at different time points over several seasons allowed monitoring the progress of an 'embryonic' sinkhole.
Advancements and challenges in crosshole GPR full-waveform inversion for hydrological applications
NASA Astrophysics Data System (ADS)
Klotzsche, A.; Van Der Kruk, J.; Vereecken, H.
2016-12-01
Crosshole ground penetrating radar (GPR) full-waveform inversion (FWI) demonstrated over the last decade a high potential to detect, map, and resolve decimeter-small-scale structures within aquifers. GPR FWI uses Maxwell's equations to find a model that fits the measurements with the entire measured waveform. One big advantage is that by applying one method, we can derive two soil properties: dielectric permittivity and electrical conductivity. Both parameters are sensitive to different soil properties such as soil water content and porosity, or, clay content. Hence, an improved characterization of the critical zone is possible. The application of the FWI to aquifers in Germany, Switzerland, Denmark, and USA showed for all sites improved and higher resolution images than standard ray-based methods and provided new insights in the aquifers' structures. Furthermore, small-scale high contrast layers caused by changes in porosity were characterize and enhanced our understanding of the electromagnetic wave propagation related to these features. However, to obtain reliable and accurate inversion results from experimental data and hence porosity estimates, many detailed steps in acquiring the data, pre-processing and inverting the data need to be carefully followed. Here, we provide an overview of recent developments and advancements of the 2D crosshole GPR FWI that provide improved inversion results for permittivity and electrical conductivity. In addition, we will provide guidelines and point out important challenges and pitfalls that can occur during the inversion of experimental data. We will illustrate the necessary steps that are required to achieve reliable FWI results, which are indicated by e.g. a good fit of the measured and modelled traces, and, absence of a remaining gradient for the final models. Important requirements for a successful application are an accurate time zero correction, good starting models for the FWI, and, a well-estimated source wavelet.
NASA Astrophysics Data System (ADS)
Gizzi, Fabrizio; Leucci, Giovanni; Masini, Nicola; Persico, Raffaele; Quarta, Giovanni
2015-04-01
The paper shows the results of a diagnostics survey, based on the ground penetrating radar (GPR), seismic tomography and microtremor horizontal-to-vertical ratio (HVSR) method, to understand the causes of some static instability problems affecting the Church of San Francesco della Scarpa in Lecce (Apulia region, Southern Italy). The prospecting falls within the more general framework of a diagnostic investigation campaign for the restoration of the monument. This study case points out the great effectiveness of the employed diagnostic methods, when used in an integrated way, for detecting cracks and inhomogeneities in the inner structure of masonry building elements [1-2]. With regard to GPR prospecting, in order to better evidence the micro-fracture, a new algorithm, based on a clutter removal technique, has been used. In particular, it removes various unwanted signals such as cross talk, initial ground reflection and antenna ringing. Moreover, seismic tomographies provided complementary information on the mediocre state of conservation of some load bearing structures of the church. Finally, HVSR method allowed to study the relationship between decay patterns, instability problems and seismic response of the monument. Reference [1] Leucci G., Masini N., Persico R., Soldovieri F. 2011. GPR and sonic tomography for structural restoration: the case of the cathedral of Tricarico, Journal of Geophysics and Engineering, 8 (3), 76-92, doi:10.1088/1742-2132/8/3/S08. [2] Calia A., Leucci G., Masini N., Matera L., Persico R., Sileo M., 2012. Integrated prospecting in the Crypt of the Basilica of Saint Nicholas in Bari, Italy. Journal of Geophysics and Engineering, 9(3), 271-281, doi:10.1088/1742-2132/9/3/271.
NASA Astrophysics Data System (ADS)
Smith, T. D.; Jacob, R. W.
2013-12-01
Authors Tracey Smith^1, Rob Jacob^1, Jeffrey Trop^1, Keith Williams^2 and Craig Kochel^1 Bucknell University, Geology and Environmental Geoscience Department, Lewisburg, PA UNAVCO, 6350 Nautilus Dr., Boulder, CO 80301 Icy debris fans have recently been described as deglaciation features on Earth and similar features have been observed on Mars, however, the subsurface characteristics remain unknown. We used ground penetrating radar (GPR) to non-invasively investigate the subsurface characteristics of icy debris fans near McCarthy, Alaska, USA. The three fans investigated in Alaska are the East, West, and Middle fans which are between the Nabesna ice cap and the McCarthy Glacier. Icy debris fans in general are a largely unexplored suite of paraglacial landforms and processes in alpine regions. Recent field studies focused on direct observations and depositional processes. The results showed that each fan's composition is primarily influenced by the type and frequency of mass wasting processes that supply the fan. Photographic studies show that the East fan receives far more ice and snow avalanches whereas the Middle and West fan receive fewer mass wasting events but more clastic debris is deposited on the Middle and West fan from rock falls and icy debris flows. GPR profiles and WARR surveys consisting of both, common mid-point (CMP), and common shot-point (CSP) surveys investigated the subsurface geometry of the fans and the McCarthy Glacier.All GPR surveys were collected in 2013 with 100MHz bi-static antennas. Four axial profiles and three cross-fan profiles were done on the West and Middle fans as well as the McCarthy Glacier in order to investigate the relationship between the three features. Terrestrial laser surveying of the surface and real-time kinematic GPS provided the surface elevation used to correct the GPR data for topographic changes. GPR profiles yielded reflectors that were continuous for 10+ m and hyperbolic reflections in the subsurface. The WARR surveys provided the GPR signal velocity through the subsurface material and allowed transformation of two-way traveltimes (TWTT) in GPR profiles to be converted to depth. In addition, the eight WARR surveys spaced on the fans and on the glacier provide information on variability of subsurface velocities. The profiles of the Middle and West fan have more energy returning to the surface and therefore many more reflections than profiles done on the McCarthy Glacier. Based on the WARR surveys, we interpret the lower energy return in the glacier to be caused by two reasons. 1) The increased attenuation due to wet ice versus drier ice and on the fan with GPR velocities >0.15m/ns. 2) Lack of interfaces in the glacier compared to those in the fans which are produced by the events depositing material to an ablated icy debris fan surface. The GPR profiles on the West and Middle fans show multiple point scatters at TWTT of less than 200ns. The Middle fan is distinguished from the West fan by its multiple point scatters at TWTT greater than 200ns, clearly showing the Middle fan with a greater thickness. The observations from the GPR profiles correlate with the photographic evidence for types of processes and the composition of their deposits on each fan respectively.
Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods
Wainwright, Haruko M.; Liljedahl, Anna K.; Dafflon, Baptiste; ...
2017-04-03
This paper compares and integrates different strategies to characterize the variability of end-of-winter snow depth and its relationship to topography in ice-wedge polygon tundra of Arctic Alaska. Snow depth was measured using in situ snow depth probes and estimated using ground-penetrating radar (GPR) surveys and the photogrammetric detection and ranging (phodar) technique with an unmanned aerial system (UAS). We found that GPR data provided high-precision estimates of snow depth (RMSE=2.9cm), with a spatial sampling of 10cm along transects. Phodar-based approaches provided snow depth estimates in a less laborious manner compared to GPR and probing, while yielding a high precision (RMSE=6.0cm) andmore » a fine spatial sampling (4cm×4cm). We then investigated the spatial variability of snow depth and its correlation to micro- and macrotopography using the snow-free lidar digital elevation map (DEM) and the wavelet approach. We found that the end-of-winter snow depth was highly variable over short (several meter) distances, and the variability was correlated with microtopography. Microtopographic lows (i.e., troughs and centers of low-centered polygons) were filled in with snow, which resulted in a smooth and even snow surface following macrotopography. We developed and implemented a Bayesian approach to integrate the snow-free lidar DEM and multiscale measurements (probe and GPR) as well as the topographic correlation for estimating snow depth over the landscape. Our approach led to high-precision estimates of snow depth (RMSE=6.0cm), at 0.5m resolution and over the lidar domain (750m×700m).« less
Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wainwright, Haruko M.; Liljedahl, Anna K.; Dafflon, Baptiste
This paper compares and integrates different strategies to characterize the variability of end-of-winter snow depth and its relationship to topography in ice-wedge polygon tundra of Arctic Alaska. Snow depth was measured using in situ snow depth probes and estimated using ground-penetrating radar (GPR) surveys and the photogrammetric detection and ranging (phodar) technique with an unmanned aerial system (UAS). We found that GPR data provided high-precision estimates of snow depth (RMSE=2.9cm), with a spatial sampling of 10cm along transects. Phodar-based approaches provided snow depth estimates in a less laborious manner compared to GPR and probing, while yielding a high precision (RMSE=6.0cm) andmore » a fine spatial sampling (4cm×4cm). We then investigated the spatial variability of snow depth and its correlation to micro- and macrotopography using the snow-free lidar digital elevation map (DEM) and the wavelet approach. We found that the end-of-winter snow depth was highly variable over short (several meter) distances, and the variability was correlated with microtopography. Microtopographic lows (i.e., troughs and centers of low-centered polygons) were filled in with snow, which resulted in a smooth and even snow surface following macrotopography. We developed and implemented a Bayesian approach to integrate the snow-free lidar DEM and multiscale measurements (probe and GPR) as well as the topographic correlation for estimating snow depth over the landscape. Our approach led to high-precision estimates of snow depth (RMSE=6.0cm), at 0.5m resolution and over the lidar domain (750m×700m).« less
NASA Astrophysics Data System (ADS)
Antoine, R.; Fauchard, C.
2012-04-01
In the last decades, public institutions have shown an increased interest in heritage conservation and monuments protection. Geophysical methods have been used for 20 years as powerful tools to assist in the curation of buildings. Ancient masonry bridges usually exhibit a complex structure/geometry. This complexity makes the use of combined geophysical methods highly necessary to obtain a meaningful model of the internal structure of such constructions and their environment. A high resolution geophysical survey was carried out at a stone arch bridge called Pont de Coq and located near Menerval, Normandy (France) in 2011. This decameter-sized bridge was built 400 years ago and crosses the Epte river, which is a tributary of the Seine river. The main objective of this work was to evaluate the structural state of the bridge and its vicinities. Two complementary methods were used : Electrical Resistivity tomography (ERT) and Ground Penetrating radar (GPR). Several profiles were realized along the road crossing the bridge and transversally to the construction, as well as on the two banks of the Epte river. High resolution electrical resistivity data were obtained both in the horizontal and vertical direction up to 8 meter-depth by two ERT methods (Wenner/Schlumberger and dipole-dipole). The GPR was used with shielded antennas at three different frequencies (200 MHz, 400 MHz and 1.5 GHz). This approach lead to the investigation of the subsurface up to approximately 6 meters-depth, with a resolution in the range of 0.04 m-0.40m. An excellent correlation is obtained between the ERT and the GPR methods, allowing us to propose a precise structural model of the Pont de Coq and to characterize the soil under the building. Several anomalies are observed within the roadway of the bridge at 50 cm-depth, as well as within the vaulting, corresponding to the presence of voids and a root network which lead to the slow destruction of the structure.
Empirical prediction of mechanical properties of flexible pavement through GPR
NASA Astrophysics Data System (ADS)
Bianchini Ciampoli, Luca; Benedetto, Andrea
2017-04-01
To date, it is well known that the frequency of accidental events recorded on a road, is related to the deterioration rate of its pavement. In this sense, the monitoring of the pavement health over a road network is a crucial task for the administrations, to define a priority scale for maintenance works, and accordingly to lower the risk of accidents. Several studies suggest the possibility to employ Ground-penetrating Radar (GPR) to overcome the limits of traditional bearing tests, which due to their low productivity and high costs, can only give a discrete knowledge about the strength of the pavement. This work presents a GPR-based empirical model for the prediction of the bearing capacity of a road pavement, expressed as Young's Modulus. The model exploits the GPR to extract information on the thickness of the base course and the clay content, by referring to the signal velocity and attenuation, respectively. To test the effectiveness of the model, experimental activities have been accounted for. In particular, multi-frequency GPR tests have been performed along road sections of rural roads, composed of a flexible pavement, for a total of 45 Km. As ground-truth, light falling weight deflectometer (LFWD) and Curviameter have been employed. Both the electromagnetic and the mechanical datasets have been properly processed, in order to reduce misinterpretations and to raise the statistical significance of the procedure. Hence, the calibration of the parameters composing the model was run in a subsection, equal to 8% of the total length, randomly selected within the surveyed track. Finally, as validation, the model has been applied to the whole analysed dataset. As a result, the empirical model showed a good effectiveness in predicting the mechanical response of the pavement, with a normalised root mean squared deviation equal to 0.27. Finally, by averaging the measured and predicted mechanical data every 50 m and sorting the results into strength classes, a qualitative approach useful for a visual detection of low-resistance areas has been also proposed. This study demonstrates the efficiency and reliability of GPR in mechanical assessment of flexible pavements. This empirical approach can represent a useful tool for administrations and companies managing road assets, for a non-destructive detection of the areas interested by early stage deterioration processes, and the definition of a priority-based scheduling of maintenance works. Acknowledgements The Authors thank COST, for funding the Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar."
Modern Radar Techniques for Geophysical Applications: Two Examples
NASA Technical Reports Server (NTRS)
Arokiasamy, B. J.; Bianchi, C.; Sciacca, U.; Tutone, G.; Zirizzotti, A.; Zuccheretti, E.
2005-01-01
The last decade of the evolution of radar was heavily influenced by the rapid increase in the information processing capabilities. Advances in solid state radio HF devices, digital technology, computing architectures and software offered the designers to develop very efficient radars. In designing modern radars the emphasis goes towards the simplification of the system hardware, reduction of overall power, which is compensated by coding and real time signal processing techniques. Radars are commonly employed in geophysical radio soundings like probing the ionosphere; stratosphere-mesosphere measurement, weather forecast, GPR and radio-glaciology etc. In the laboratorio di Geofisica Ambientale of the Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy, we developed two pulse compression radars. The first is a HF radar called AIS-INGV; Advanced Ionospheric Sounder designed both for the purpose of research and for routine service of the HF radio wave propagation forecast. The second is a VHF radar called GLACIORADAR, which will be substituting the high power envelope radar used by the Italian Glaciological group. This will be employed in studying the sub glacial structures of Antarctica, giving information about layering, the bed rock and sub glacial lakes if present. These are low power radars, which heavily rely on advanced hardware and powerful real time signal processing. Additional information is included in the original extended abstract.
Detection of buried objects by fusing dual-band infrared images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, G.A.; Sengupta, S.K.; Sherwood, R.J.
1993-11-01
We have conducted experiments to demonstrate the enhanced detectability of buried land mines using sensor fusion techniques. Multiple sensors, including visible imagery, infrared imagery, and ground penetrating radar (GPR), have been used to acquire data on a number of buried mines and mine surrogates. Because the visible wavelength and GPR data are currently incomplete. This paper focuses on the fusion of two-band infrared images. We use feature-level fusion and supervised learning with the probabilistic neural network (PNN) to evaluate detection performance. The novelty of the work lies in the application of advanced target recognition algorithms, the fusion of dual-band infraredmore » images and evaluation of the techniques using two real data sets.« less
Olson, C.G.; Doolittle, J.A.
1985-01-01
Two techniques were assessed for their capabilities in reconnaissance studies of soil characteristics: depth to the water table and depth to bedrock beneath surficial deposits in mountainous terrain. Ground-penetrating radar had the best near-surface resolution in the upper 2 m of the profile and provided continuous interpretable imagery of soil profiles and bedrock surfaces. Where thick colluvium blankets side slopes, the GPR could not consistently define the bedrock interface. In areas with clayey or shaley sediments, the GPR is also more limited in defining depth and is less reliable. Seismic refraction proved useful in determining the elevation of the water table and depth to bedrock, regardless of thickness of overlying material, but could not distinguish soil-profile characteristics.-from Authors
Evaluation of a Mobile Platform for Proof-of-Concept Autonomous Site Selection and Preparation
NASA Astrophysics Data System (ADS)
Gammell, Jonathan
A mobile robotic platform for Autonomous Site Selection and Preparation (ASSP) was developed for an analogue deployment to Mauna Kea, Hawai`i. A team of rovers performed an autonomous Ground Penetrating Radar (GPR) survey and constructed a level landing pad. They used interchangeable payloads that allowed the GPR and blade to be easily exchanged. Autonomy was accomplished by integrating the individual hardware devices with software based on the ArgoSoft framework previously developed at UTIAS. The rovers were controlled by an on-board netbook. The successes and failures of the devices and software modules are evaluated within. Recommendations are presented to address problems discovered during the deployment and to guide future research on the platform.
NASA Astrophysics Data System (ADS)
Khan, Shuhab D.; Fathy, Mohamed S.; Abdelazeem, Maha
2014-02-01
The Western Desert covers two-thirds of the land area of Egypt and occupies one of the driest regions of the Sahara. Seven depressions within the desert - Siwa, Qattara, Fayum, Bahariya, Farafra, Dakhla, and Kharga - may represent parts of old drainage systems with deflation, extensive erosion, and possibly, some tectonic activity. Oases with freshwater exist in these depressions. Geological and geophysical investigations in the Qattara Depression indicate the presence of buried fluvial channels with southeast to northwest flow directions from the highland areas. The origin of these fluvial systems, as well as the origin of the depressions themselves, is still unresolved, and many ideas have been suggested. Moghra Lake at the northeastern tip of the Qattara basin may be a remnant of a larger paleolake, including the mouth of a paleo-river. We present here the results of our recent work in this area using ALOS PALSAR radar remote sensing data, which indicated the presence of buried channels that may have fed the larger Moghra paleolake. Ground penetrating radar (GPR) data along 2D profiles were acquired; the migrated GPR sections identified a major paleochannel with numerous minor channels at its margins. GPR interpretations are verified by field observations, trenching, and stratigraphic information from outcrop data. Potential field analyses identify possible aquifers that are controlled by regional structures. Density contrasts within the sedimentary units, physical boundaries of uplifted basement blocks and depths to causative sources were also identified. This work contributes to the reconstruction of paleodrainage of this region and helps in understanding processes involved in the formation of the Qattara Depression.
NASA Astrophysics Data System (ADS)
Mount, G. J.; Comas, X.
2015-12-01
Subsurface water flow within the Biscayne aquifer is controlled by the heterogeneous distribution of porosity and permeability in the karst Miami Limestone and the presence of numerous dissolution and mega-porous features. The dissolution features and other high porosity areas can create preferential flow paths and direct recharge to the aquifer, which may not be accurately conceptualized in groundwater flow models. As hydrologic conditions are undergoing restoration in the Everglades, understanding the distribution of these high porosity areas within the subsurface would create a better understanding of subsurface flow. This research utilizes ground penetrating radar to estimate the spatial variability of porosity and dielectric permittivity of the Miami Limestone at centimeter scale resolution at the laboratory scale. High frequency GPR antennas were used to measure changes in electromagnetic wave velocity through limestone samples under varying volumetric water contents. The Complex Refractive Index Model (CRIM) was then applied in order to estimate porosity and dielectric permittivity of the solid phase of the limestone. Porosity estimates ranged from 45.2-66.0% from the CRIM model and correspond well with estimates of porosity from analytical and digital image techniques. Dielectric permittivity values of the limestone solid phase ranged from 7.0 and 13.0, which are similar to values in the literature. This research demonstrates the ability of GPR to identify the cm scale spatial variability of aquifer properties that influence subsurface water flow which could have implications for groundwater flow models in the Biscayne and potentially other shallow karst aquifers.
NASA Astrophysics Data System (ADS)
Chromčák, Jakub; Grinč, Michal; Pánisová, Jaroslava; Vajda, Peter; Kubová, Anna
2016-03-01
We test here the feasibility of ground-penetrating radar (GPR) and microgravity methods in identifying underground voids, such as cellars, tunnels, abandoned mine-workings, etc., in complex urban conditions. For this purpose, we selected a cellar located under a private lot in a residential quarter of the town of Senec in Western Slovakia, which was discovered by chance when a small sinkhole developed on the yard just two meters away from the house. The size of our survey area was limited 1) by the presence of a technical room built at the back of the yard with a staircase leading to the garden, and 2) by the small width of the lot. Therefore the geophysical survey was carried out only in the backyard of the lot as we were not permitted to measure on neighbouring estates. The results from the GPR measurements obtained by the GSSI SIR-3000 system with 400 MHz antenna were visualized in the form of 2D radargrams with the corresponding transformed velocity model of studied cross-sections. Only the profiles running over the pavement next to the house yielded interpretable data because the local geological situation and the regular watering of the lawn covering prevailingly the backyard caused significant attenuation of the emitted GPR signal. The Bouguer gravity map is dominated by a distinctive negative anomaly indicating the presence of a shallow underground void. The quantitative interpretation by means of Euler deconvolution was utilized to validate the depth of the center and location of the cellar. Comparison with the gravitational effect of the cellar model calculated in the in-house program Polygrav shows a quite good correlation between the modelled and observed fields. Only a part of the aerial extent of the anomaly could be traced by the used geophysical methods due to accessibility issues. Nevertheless, the test cellar was successfully detected and interpreted by both methods, thus confirming their applicability in similar environmental and geotechnical applications, even in complex urban conditions.
GPR study of a prehistoric archaeological site near Point Barrow, Alaska
NASA Astrophysics Data System (ADS)
Herman, R. B.; Jensen, A. M.
2012-12-01
A ground penetrating radar (GPR) study was performed on the prehistoric Thule cemetery site near Point Barrow, Alaska. The goals of this study were (a) to test this technology in this type of polar environment, and (b) to search for burials and other archaeological features in a location in imminent danger from ocean erosion. The Nuvuk site is currently eroding at an average rate measured at over 6 m/year. Prior archaeological work at the site had recovered over 80 burials with nearly 100 individuals represented, all of which were less than 1 m below surface, and detectable with small test pits. In addition, the first coastal Ipiutak occupation known north of Point Hope had been recently discovered, at a depth of nearly 2m below surface, in the erosion face. The occupation appeared to have been terminated by a large storm which overwashed the site, leaving a strandline immediately superimposed on the living surface. After that, approximately 1.5 m of sterile gravels had been deposited before the surface on which the Thule people were living formed. Both occupations are of considerable scientific interest. The matrix at the site consists of unconsolidated beach gravels, which necessitates opening large surface areas or use of shoring to test even small units to the depths of the Ipiutak deposit (approximately 8m x 8m at the surface to test 1m x 1m at 2m depth). Such excavations promote erosion, and are very costly in terms of time and labor, so a means to detect features buried at depths greater than those exposed by shovel test pits was desirable. GPR seemed a likely candidate, but it had not been used in such conditions before, and thus it was necessary to test it thoroughly prior to relying on GPR to eliminate areas from physical testing. The GPR imaged the subsurface to a depth of 3 meters at a frequency of 500MHz. Meter-deep test pits were placed at 2-meter intervals in the survey area in a grid pattern since the efficacy of the technology had yet to be shown. The results of the test pits and the GPR were in agreement. It was anticipated that there might be few or no remaining burials in this location since the number of burials had been declining with distance from the center of the larger site. Thus it was surprising when the GPR detected an anomaly that turned out to be the deepest burial in the whole site. In fact, it was so deeply buried that the standard shovel test pitting method might not have detected it. It proved to be a very well-preserved individual, with fairly intact garments. In addition to the burial site, the GPR was used to image a number of "strandlines" as well as other deep (>1m) features in this area. These correspond in depth and orientation to two partial Ipiutak features which have been exposed and recorded in the erosion face in two separate field seasons. It was not possible to test to that depth, but subsequent coastal erosion has exposed additional strandline debris at the depth and location predicted by the GPR data. Two- and three-dimensional images of these features will be presented, along with a detailed technical description of the GPR methods used in this environment.