Science.gov

Sample records for radar signal analysis

  1. Multitaper spectral analysis of atmospheric radar signals

    NASA Astrophysics Data System (ADS)

    Anandan, V.; Pan, C.; Rajalakshmi, T.; Ramachandra Reddy, G.

    2004-11-01

    Multitaper spectral analysis using sinusoidal taper has been carried out on the backscattered signals received from the troposphere and lower stratosphere by the Gadanki Mesosphere-Stratosphere-Troposphere (MST) radar under various conditions of the signal-to-noise ratio. Comparison of study is made with sinusoidal taper of the order of three and single tapers of Hanning and rectangular tapers, to understand the relative merits of processing under the scheme. Power spectra plots show that echoes are better identified in the case of multitaper estimation, especially in the region of a weak signal-to-noise ratio. Further analysis is carried out to obtain three lower order moments from three estimation techniques. The results show that multitaper analysis gives a better signal-to-noise ratio or higher detectability. The spectral analysis through multitaper and single tapers is subjected to study of consistency in measurements. Results show that the multitaper estimate is better consistent in Doppler measurements compared to single taper estimates. Doppler width measurements with different approaches were studied and the results show that the estimation was better in the multitaper technique in terms of temporal resolution and estimation accuracy.

  2. Separation of Intercepted Multi-Radar Signals Based on Parameterized Time-Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Lu, W. L.; Xie, J. W.; Wang, H. M.; Sheng, C.

    2016-09-01

    Modern radars use complex waveforms to obtain high detection performance and low probabilities of interception and identification. Signals intercepted from multiple radars overlap considerably in both the time and frequency domains and are difficult to separate with primary time parameters. Time-frequency analysis (TFA), as a key signal-processing tool, can provide better insight into the signal than conventional methods. In particular, among the various types of TFA, parameterized time-frequency analysis (PTFA) has shown great potential to investigate the time-frequency features of such non-stationary signals. In this paper, we propose a procedure for PTFA to separate overlapped radar signals; it includes five steps: initiation, parameterized time-frequency analysis, demodulating the signal of interest, adaptive filtering and recovering the signal. The effectiveness of the method was verified with simulated data and an intercepted radar signal received in a microwave laboratory. The results show that the proposed method has good performance and has potential in electronic reconnaissance applications, such as electronic intelligence, electronic warfare support measures, and radar warning.

  3. Time-frequency analysis of backscattered signals from diffuse radar targets

    NASA Astrophysics Data System (ADS)

    Kenny, O. P.; Boashash, B.

    1993-06-01

    The need for analysis of time-varying signals has led to the formulation of a class of joint time-frequency distributions (TFDs). One of these TFDs, the Wigner-Ville distribution (WVD), has useful properties which can be applied to radar imaging. The authors discuss time-frequency representation of the backscattered signal from a diffuse radar target. It is then shown that for point scatterers which are statistically dependent or for which the reflectivity coefficient has a nonzero mean value, reconstruction using time of flight positron emission tomography on time-frequency images is effective for estimating the scattering function of the target.

  4. Spectrum analysis of radar life signal in the three kinds of theoretical models

    NASA Astrophysics Data System (ADS)

    Yang, X. F.; Ma, J. F.; Wang, D.

    2017-02-01

    In the single frequency continuous wave radar life detection system, based on the Doppler effect, the theory model of radar life signal is expressed by the real function, and there is a phenomenon that can't be confirmed by the experiment. When the phase generated by the distance between the measured object and the radar measuring head is л of integer times, the main frequency spectrum of life signal (respiration and heartbeat) is not existed in radar life signal. If this phase is л/2 of odd times, the main frequency spectrum of breath and heartbeat frequency is the strongest. In this paper, we use the Doppler effect as the basic theory, using three different mathematical expressions——real function, complex exponential function and Bessel's function expansion form. They are used to establish the theoretical model of radar life signal. Simulation analysis revealed that the Bessel expansion form theoretical model solve the problem of real function form. Compared with the theoretical model of the complex exponential function, the derived spectral line is greatly reduced in the theoretical model of Bessel expansion form, which is more consistent with the actual situation.

  5. An overview of data acquisition, signal coding and data analysis techniques for MST radars

    NASA Technical Reports Server (NTRS)

    Rastogi, P. K.

    1986-01-01

    An overview is given of the data acquisition, signal processing, and data analysis techniques that are currently in use with high power MST/ST (mesosphere stratosphere troposphere/stratosphere troposphere) radars. This review supplements the works of Rastogi (1983) and Farley (1984) presented at previous MAP workshops. A general description is given of data acquisition and signal processing operations and they are characterized on the basis of their disparate time scales. Then signal coding, a brief description of frequently used codes, and their limitations are discussed, and finally, several aspects of statistical data processing such as signal statistics, power spectrum and autocovariance analysis, outlier removal techniques are discussed.

  6. Synthetic Aperture Radar Signals: Formulations and Approaches for Data Analysis

    DTIC Science & Technology

    1975-05-01

    discussion of the nature of SAR signals, error sources, phase history correlation, and the status of SAR hardware;(2) to produce a document that is...preserving phase, thus forming a phase history of the received echoes. When all the returns from a given range interval have been accumulated, they...the functional form of their resolution, the storage of raw data (phase histories ) on film, the linear FM signal and two-dimensional holograms

  7. Lunar regolith stratigraphy analysis based on the simulation of lunar penetrating radar signals

    NASA Astrophysics Data System (ADS)

    Lai, Jialong; Xu, Yi; Zhang, Xiaoping; Tang, Zesheng

    2017-11-01

    The thickness of lunar regolith is an important index of evaluating the quantity of lunar resources such as 3He and relative geologic ages. Lunar penetrating radar (LPR) experiment of Chang'E-3 mission provided an opportunity of in situ lunar subsurface structure measurement in the northern mare imbrium area. However, prior work on analyzing LPR data obtained quite different conclusions of lunar regolith structure mainly because of the missing of clear interface reflectors in radar image. In this paper, we utilized finite-difference time-domain (FDTD) method and three models of regolith structures with different rock density, number of layers, shapes of interfaces, and etc. to simulate the LPR signals for the interpretation of radar image. The simulation results demonstrate that the scattering signals caused by numerous buried rocks in the regolith can mask the horizontal reflectors, and the die-out of radar echo does not indicate the bottom of lunar regolith layer and data processing such as migration method could recover some of the subsurface information but also result in fake signals. Based on analysis of simulation results, we conclude that LPR results uncover the subsurface layered structure containing the rework zone with multiple ejecta blankets of small crater, the ejecta blanket of Chang'E-3 crater, and the transition zone and estimate the thickness of the detected layer is about 3.25 m.

  8. Radar signal analysis of ballistic missile with micro-motion based on time-frequency distribution

    NASA Astrophysics Data System (ADS)

    Wang, Jianming; Liu, Lihua; Yu, Hua

    2015-12-01

    The micro-motion of ballistic missile targets induces micro-Doppler modulation on the radar return signal, which is a unique feature for the warhead discrimination during flight. In order to extract the micro-Doppler feature of ballistic missile targets, time-frequency analysis is employed to process the micro-Doppler modulated time-varying radar signal. The images of time-frequency distribution (TFD) reveal the micro-Doppler modulation characteristic very well. However, there are many existing time-frequency analysis methods to generate the time-frequency distribution images, including the short-time Fourier transform (STFT), Wigner distribution (WD) and Cohen class distribution, etc. Under the background of ballistic missile defence, the paper aims at working out an effective time-frequency analysis method for ballistic missile warhead discrimination from the decoys.

  9. Signal-processing analysis of the MC2823 radar fuze: an addendum concerning clutter effects

    SciTech Connect

    Jelinek, D.A.

    1978-07-01

    A detailed analysis of the signal processing of the MC2823 radar fuze was published by Thompson in 1976 which enabled the computation of dud probability versus signal-to-noise ratio where the noise was receiver noise. An addendum to Thompson's work was published by Williams in 1978 that modified the weighting function used by Thompson. The analysis presented herein extends the work of Thompson to include the effects of clutter (the non-signal portion of the echo from a terrain) using the new weighting function. This extension enables computation of dud probability versus signal-to-total-noise ratio where total noise is the sum of themore » receiver-noise power and the clutter power.« less

  10. Interception of LPI radar signals

    NASA Astrophysics Data System (ADS)

    Lee, Jim P.

    1991-11-01

    Most current radars are designed to transmit short duration pulses with relatively high peak power. These radars can be detected easily by the use of relatively modest EW intercept receivers. Three radar functions (search, anti-ship missile (ASM) seeker, and navigation) are examined to evaluate the effectiveness of potential low probability of intercept (LPI) techniques, such as waveform coding, antenna profile control, and power management that a radar may employ against current Electronic Warfare (EW) receivers. The general conclusion is that it is possible to design a LPI radar which is effective against current intercept EW receivers. LPI operation is most easily achieved at close ranges and against a target with a large radar cross section. The general system sensitivity requirement for the detection of current and projected LPI radars is found to be on the order of -100 dBmi which cannot be met by current EW receivers. Finally, three potential LPI receiver architectures, using channelized, superhet, and acousto-optic receivers with narrow RF and video bandwidths are discussed. They have shown some potential in terms of providing the sensitivity and capability in an environment where both conventional and LPI signals are present.

  11. Passive bistatic radar analysis

    NASA Astrophysics Data System (ADS)

    O'Hagan, Daniel W.; Kuschel, H.; Schiller, Joachim

    2009-06-01

    Passive Bistatic Radar (PBR) research is at its zenith with several notable PBR systems currently operational, or available for deployment. Such PBRs include the Manastash Ridge Radar (MRR) developed for and by academia; Silent Sentry developed as a commercial concern by Lockheed Martin; and Homeland Alerter (HA100) also a commercial system developed by Thales. However at present, despite the existence of numerous PBR prototypes, take up of commercial passive radar technology remains slow. This is due in part to technology immaturity, in part to politics, and particularly due to the fact that monostatic radars perform so well. If PBRs are to enjoy longevity as a viable technology then it is imperative that they address certain niche application areas, with the aforementioned MRR being one prime example of this. The focus of this paper will be an analysis of a PBR system that utilised FM radio signals of opportunity to detect aircraft targets with an RCS generally not lower than 20 m2. The paper will demonstrate the theoretical detection coverage of an FM based PBR operating in a severe interference environment.

  12. Java Radar Analysis Tool

    NASA Technical Reports Server (NTRS)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  13. Spectral analysis of ground penetrating radar signals in concrete, metallic and plastic targets

    NASA Astrophysics Data System (ADS)

    Santos, Vinicius Rafael N. dos; Al-Nuaimy, Waleed; Porsani, Jorge Luís; Hirata, Nina S. Tomita; Alzubi, Hamzah S.

    2014-01-01

    The accuracy of detecting buried targets using ground penetrating radar (GPR) depends mainly on features that are extracted from the data. The objective of this study is to test three spectral features and evaluate the quality to provide a good discrimination among three types of materials (concrete, metallic and plastic) using the 200 MHz GPR system. The spectral features which were selected to check the interaction of the electromagnetic wave with the type of material are: the power spectral density (PSD), short-time Fourier transform (STFT) and the Wigner-Ville distribution (WVD). The analyses were performed with simulated data varying the sizes of the targets and the electrical properties (relative dielectric permittivity and electrical conductivity) of the soil. To check if the simulated data are in accordance with the real data, the same approach was applied on the data obtained in the IAG/USP test site. A noticeable difference was found in the amplitude of the studies' features in the frequency domain and these results show the strength of the signal processing to try to differentiate buried materials using GPR, and so can be used in urban planning and geotechnical studies.

  14. Signal analysis by means of time-frequency (Wigner-type) distributions -- Applications to sonar and radar echoes

    SciTech Connect

    Gaunaurd, G.; Strifors, H.C.

    1996-09-01

    Time series data have been traditionally analyzed in either the time or the frequency domains. For signals with a time-varying frequency content, the combined time-frequency (TF) representations, based on the Cohen class of (generalized) Wigner distributions (WD`s) offer a powerful analysis tool. Using them, it is possible to: (1) trace the time-evolution of the resonance features usually present in a standard sonar cross section (SCS), or in a radar cross section (RCS) and (2) extract target information that may be difficult to even notice in an ordinary SCS or RCS. After a brief review of the fundamental properties of themore » WD, the authors discuss ways to reduce or suppress the cross term interference that appears in the WD of multicomponent systems. These points are illustrated with a variety of three-dimensional (3-D) plots of Wigner and pseudo-Wigner distributions (PWD), in which the strength of the distribution is depicted as the height of a Wigner surface with height scales measured by various color shades or pseudocolors. The authors also review studies they have made of the echoes returned by conducting or dielectric targets in the atmosphere, when they are illuminated by broadband radar pings. A TF domain analysis of these impulse radar returns demonstrates their superior informative content. These plots allow the identification of targets in an easier and clearer fashion than by the conventional RCS of narrowband systems. The authors show computed and measured plots of WD and PWD of various types of aircraft to illustrate the classification advantages of the approach at any aspect angle. They also show analogous results for metallic objects buried underground, in dielectric media, at various depths.« less

  15. Introduction to Radar Signal and Data Processing: The Opportunity

    DTIC Science & Technology

    2006-09-01

    SpA) Director of Analysis of Integrated Systems Group Via Tiburtina Km. 12.400 00131 Rome ITALY e.mail: afarina@selex-si.com Key words: radar...signal processing, data processing, adaptivity, space-time adaptive processing, knowledge based systems , CFAR. 1. SUMMARY This paper introduces to...the lecture series dedicated to the knowledge-based radar signal and data processing. Knowledge-based expert system (KBS) is in the realm of

  16. Analysis and improved design considerations for airborne pulse Doppler radar signal processing in the detection of hazardous windshear

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil

    1990-01-01

    High resolution windspeed profile measurements are needed to provide reliable detection of hazardous low altitude windshear with an airborne pulse Doppler radar. The system phase noise in a Doppler weather radar may degrade the spectrum moment estimation quality and the clutter cancellation capability which are important in windshear detection. Also the bias due to weather return Doppler spectrum skewness may cause large errors in pulse pair spectral parameter estimates. These effects are analyzed for the improvement of an airborne Doppler weather radar signal processing design. A method is presented for the direct measurement of windspeed gradient using low pulse repetition frequency (PRF) radar. This spatial gradient is essential in obtaining the windshear hazard index. As an alternative, the modified Prony method is suggested as a spectrum mode estimator for both the clutter and weather signal. Estimation of Doppler spectrum modes may provide the desired windshear hazard information without the need of any preliminary processing requirement such as clutter filtering. The results obtained by processing a NASA simulation model output support consideration of mode identification as one component of a windshear detection algorithm.

  17. Radar data processing and analysis

    NASA Technical Reports Server (NTRS)

    Ausherman, D.; Larson, R.; Liskow, C.

    1976-01-01

    Digitized four-channel radar images corresponding to particular areas from the Phoenix and Huntington test sites were generated in conjunction with prior experiments performed to collect X- and L-band synthetic aperture radar imagery of these two areas. The methods for generating this imagery are documented. A secondary objective was the investigation of digital processing techniques for extraction of information from the multiband radar image data. Following the digitization, the remaining resources permitted a preliminary machine analysis to be performed on portions of the radar image data. The results, although necessarily limited, are reported.

  18. Radar transponder apparatus and signal processing technique

    DOEpatents

    Axline, Jr., Robert M.; Sloan, George R.; Spalding, Richard E.

    1996-01-01

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder's echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.

  19. Radar transponder apparatus and signal processing technique

    DOEpatents

    Axline, R.M. Jr.; Sloan, G.R.; Spalding, R.E.

    1996-01-23

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder`s echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR. 4 figs.

  20. Radar Image Interpretability Analysis.

    DTIC Science & Technology

    1981-01-01

    the measured image properties with respect to image utility changed with image application. This study has provided useful information as to how...Eneea.d) ABSTRACT The utility of radar images with respect to trained image inter - preter ability to identify, classify and detect specific terrain... changed with image applica- tion. This study has provided useful information as to how certain image characteristics relate to radar image utility as

  1. Analysis, comparison, and modeling of radar interferometry, date of surface deformation signals associated with underground explosions, mine collapses and earthquakes. Phase I: underground explosions, Nevada Test Site

    SciTech Connect

    Foxall, W; Vincent, P; Walter, W

    1999-07-23

    We have previously presented simple elastic deformation modeling results for three classes of seismic events of concern in monitoring the CTBT--underground explosions, mine collapses and earthquakes. Those results explored the theoretical detectability of each event type using synthetic aperture radar interferometry (InSAR) based on commercially available satellite data. In those studies we identified and compared the characteristics of synthetic interferograms that distinguish each event type, as well the ability of the interferograms to constrain source parameters. These idealized modeling results, together with preliminary analysis of InSAR data for the 1995 mb 5.2 Solvay mine collapse in southwestern Wyoming, suggested thatmore » InSAR data used in conjunction with regional seismic monitoring holds great potential for CTBT discrimination and seismic source analysis, as well as providing accurate ground truth parameters for regional calibration events. In this paper we further examine the detectability and ''discriminating'' power of InSAR by presenting results from InSAR data processing, analysis and modeling of the surface deformation signals associated with underground explosions. Specifically, we present results of a detailed study of coseismic and postseismic surface deformation signals associated with underground nuclear and chemical explosion tests at the Nevada Test Site (NTS). Several interferograms were formed from raw ERS-1/2 radar data covering different time spans and epochs beginning just prior to the last U.S. nuclear tests in 1992 and ending in 1996. These interferograms have yielded information about the nature and duration of the source processes that produced the surface deformations associated with these events. A critical result of this study is that significant post-event surface deformation associated with underground nuclear explosions detonated at depths in excess of 600 meters can be detected using differential radar interferometry

  2. Shuttle orbiter radar cross-sectional analysis

    NASA Technical Reports Server (NTRS)

    Cooper, D. W.; James, R.

    1979-01-01

    Theoretical and model simulation studies on signal to noise levels and shuttle radar cross section are described. Pre-mission system calibrations, system configuration, and postmission system calibration of the tracking radars are described. Conversion of target range, azimuth, and elevation into radar centered east north vertical position coordinates are evaluated. The location of the impinging rf energy with respect to the target vehicles body axis triad is calculated. Cross section correlation between the two radars is presented.

  3. Theory and Measurement of Signal-to-Noise Ratio in Continuous-Wave Noise Radar.

    PubMed

    Stec, Bronisław; Susek, Waldemar

    2018-05-06

    Determination of the signal power-to-noise power ratio on the input and output of reception systems is essential to the estimation of their quality and signal reception capability. This issue is especially important in the case when both signal and noise have the same characteristic as Gaussian white noise. This article considers the problem of how a signal-to-noise ratio is changed as a result of signal processing in the correlation receiver of a noise radar in order to determine the ability to detect weak features in the presence of strong clutter-type interference. These studies concern both theoretical analysis and practical measurements of a noise radar with a digital correlation receiver for 9.2 GHz bandwidth. Firstly, signals participating individually in the correlation process are defined and the terms signal and interference are ascribed to them. Further studies show that it is possible to distinguish a signal and a noise on the input and output of a correlation receiver, respectively, when all the considered noises are in the form of white noise. Considering the above, a measurement system is designed in which it is possible to represent the actual conditions of noise radar operation and power measurement of a useful noise signal and interference noise signals—in particular the power of an internal leakage signal between a transmitter and a receiver of the noise radar. The proposed measurement stands and the obtained results show that it is possible to optimize with the use of the equipment and not with the complex processing of a noise signal. The radar parameters depend on its prospective application, such as short- and medium-range radar, ground-penetrating radar, and through-the-wall detection radar.

  4. Study on De-noising Technology of Radar Life Signal

    NASA Astrophysics Data System (ADS)

    Yang, Xiu-Fang; Wang, Lian-Huan; Ma, Jiang-Fei; Wang, Pei-Pei

    2016-05-01

    Radar detection is a kind of novel life detection technology, which can be applied to medical monitoring, anti-terrorism and disaster relief street fighting, etc. As the radar life signal is very weak, it is often submerged in the noise. Because of non-stationary and randomness of these clutter signals, it is necessary to denoise efficiently before extracting and separating the useful signal. This paper improves the radar life signal's theoretical model of the continuous wave, does de-noising processing by introducing lifting wavelet transform and determine the best threshold function through comparing the de-noising effects of different threshold functions. The result indicates that both SNR and MSE of the signal are better than the traditional ones by introducing lifting wave transform and using a new improved soft threshold function de-noising method..

  5. FMCW Radar Jamming Techniques and Analysis

    DTIC Science & Technology

    2013-09-01

    an education system that is compacted with various radar capabilities, the circuitry does not provide the full functionality of each type of radar as...example of a typical FMCW architecture. The hardware components and their functionalities are explained individually in the order of the signal processing...drawn. Chapter IV presents a MATLAB model that emulates the functionality of the homodyne FMCW radar discussed in Chapter II. The model design and

  6. MIMO-OFDM signal optimization for SAR imaging radar

    NASA Astrophysics Data System (ADS)

    Baudais, J.-Y.; Méric, S.; Riché, V.; Pottier, É.

    2016-12-01

    This paper investigates the optimization of the coded orthogonal frequency division multiplexing (OFDM) transmitted signal in a synthetic aperture radar (SAR) context. We propose to design OFDM signals to achieve range ambiguity mitigation. Indeed, range ambiguities are well known to be a limitation for SAR systems which operates with pulsed transmitted signal. The ambiguous reflected signal corresponding to one pulse is then detected when the radar has already transmitted the next pulse. In this paper, we demonstrate that the range ambiguity mitigation is possible by using orthogonal transmitted wave as OFDM pulses. The coded OFDM signal is optimized through genetic optimization procedures based on radar image quality parameters. Moreover, we propose to design a multiple-input multiple-output (MIMO) configuration to enhance the noise robustness of a radar system and this configuration is mainly efficient in the case of using orthogonal waves as OFDM pulses. The results we obtain show that OFDM signals outperform conventional radar chirps for range ambiguity suppression and for robustness enhancement in 2 ×2 MIMO configuration.

  7. Doppler radar with multiphase modulation of transmitted and reflected signal

    NASA Technical Reports Server (NTRS)

    Shores, Paul W. (Inventor); Griffin, John W. (Inventor); Kobayashi, Herbert S. (Inventor)

    1989-01-01

    A microwave radar signal is generated and split by a circulator. A phase shifter introduces a series of phase shifts into a first part of the split signal which is then transmitted by antenna. A like number of phase shifts is introduced by the phase shifter into the return signal from the target. The circulator delivers the phase shifted return signal and the leakage signal from the circulator to a mixer which generates an IF signal output at the Doppler frequency. The IF signal is amplified, filtered, counted per unit of time, and the result displayed to provide indications of target sense and range rate. An oscillator controls rate of phase shift in the transmitted and received radar signals and provides a time base for the counter. The phase shift magnitude increases may be continuous and linear or discrete functions of time.

  8. Radar signal categorization using a neural network

    NASA Technical Reports Server (NTRS)

    Anderson, James A.; Gately, Michael T.; Penz, P. Andrew; Collins, Dean R.

    1991-01-01

    Neural networks were used to analyze a complex simulated radar environment which contains noisy radar pulses generated by many different emitters. The neural network used is an energy minimizing network (the BSB model) which forms energy minima - attractors in the network dynamical system - based on learned input data. The system first determines how many emitters are present (the deinterleaving problem). Pulses from individual simulated emitters give rise to separate stable attractors in the network. Once individual emitters are characterized, it is possible to make tentative identifications of them based on their observed parameters. As a test of this idea, a neural network was used to form a small data base that potentially could make emitter identifications.

  9. Windshear detection radar signal processing studies

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.

    1993-01-01

    This final report briefly summarizes research work at Clemson in the Radar Systems Laboratory under the NASA Langley Research Grant NAG-1-928 in support of the Antenna and Microwave Branch, Guidance and Control Division, program to develop airborne sensor technology for the detection of low altitude windshear. A bibliography of all publications generated by Clemson personnel is included. An appendix provides abstracts of all publications.

  10. Radar signal transmission and switching over optical networks

    NASA Astrophysics Data System (ADS)

    Esmail, Maged A.; Ragheb, Amr; Seleem, Hussein; Fathallah, Habib; Alshebeili, Saleh

    2018-03-01

    In this paper, we experimentally demonstrate a radar signal distribution over optical networks. The use of fiber enables us to distribute radar signals to distant sites with a low power loss. Moreover, fiber networks can reduce the radar system cost, by sharing precise and expensive radar signal generation and processing equipment. In order to overcome the bandwidth challenges in electrical switches, a semiconductor optical amplifier (SOA) is used as an all-optical device for wavelength conversion to the desired port (or channel) of a wavelength division multiplexing (WDM) network. Moreover, the effect of chromatic dispersion in double sideband (DSB) signals is combated by generating optical single sideband (OSSB) signals. The optimal values of the SOA device parameters required to generate an OSSB with a high sideband suppression ratio (SSR) are determined. We considered various parameters such as injection current, pump power, and probe power. In addition, the effect of signal wavelength conversion and transmission over fiber are studied in terms of signal dynamic range.

  11. Informational analysis for compressive sampling in radar imaging.

    PubMed

    Zhang, Jingxiong; Yang, Ke

    2015-03-24

    Compressive sampling or compressed sensing (CS) works on the assumption of the sparsity or compressibility of the underlying signal, relies on the trans-informational capability of the measurement matrix employed and the resultant measurements, operates with optimization-based algorithms for signal reconstruction and is thus able to complete data compression, while acquiring data, leading to sub-Nyquist sampling strategies that promote efficiency in data acquisition, while ensuring certain accuracy criteria. Information theory provides a framework complementary to classic CS theory for analyzing information mechanisms and for determining the necessary number of measurements in a CS environment, such as CS-radar, a radar sensor conceptualized or designed with CS principles and techniques. Despite increasing awareness of information-theoretic perspectives on CS-radar, reported research has been rare. This paper seeks to bridge the gap in the interdisciplinary area of CS, radar and information theory by analyzing information flows in CS-radar from sparse scenes to measurements and determining sub-Nyquist sampling rates necessary for scene reconstruction within certain distortion thresholds, given differing scene sparsity and average per-sample signal-to-noise ratios (SNRs). Simulated studies were performed to complement and validate the information-theoretic analysis. The combined strategy proposed in this paper is valuable for information-theoretic orientated CS-radar system analysis and performance evaluation.

  12. Synchrosqueezing an effective method for analyzing Doppler radar physiological signals.

    PubMed

    Yavari, Ehsan; Rahman, Ashikur; Jia Xu; Mandic, Danilo P; Boric-Lubecke, Olga

    2016-08-01

    Doppler radar can monitor vital sign wirelessly. Respiratory and heart rate have time-varying behavior. Capturing the rate variability provides crucial physiological information. However, the common time-frequency methods fail to detect key information. We investigate Synchrosqueezing method to extract oscillatory components of the signal with time varying spectrum. Simulation and experimental result shows the potential of the proposed method for analyzing signals with complex time-frequency behavior like physiological signals. Respiration and heart signals and their components are extracted with higher resolution and without any pre-filtering and signal conditioning.

  13. Improved Reconstruction of Radio Holographic Signal for Forward Scatter Radar Imaging

    PubMed Central

    Hu, Cheng; Liu, Changjiang; Wang, Rui; Zeng, Tao

    2016-01-01

    Forward scatter radar (FSR), as a specially configured bistatic radar, is provided with the capabilities of target recognition and classification by the Shadow Inverse Synthetic Aperture Radar (SISAR) imaging technology. This paper mainly discusses the reconstruction of radio holographic signal (RHS), which is an important procedure in the signal processing of FSR SISAR imaging. Based on the analysis of signal characteristics, the method for RHS reconstruction is improved in two parts: the segmental Hilbert transformation and the reconstruction of mainlobe RHS. In addition, a quantitative analysis of the method’s applicability is presented by distinguishing between the near field and far field in forward scattering. Simulation results validated the method’s advantages in improving the accuracy of RHS reconstruction and imaging. PMID:27164114

  14. Simulating Radar Signals for Detection Performance Evaluation.

    DTIC Science & Technology

    1981-02-01

    defined by g = e-(aO/e 3dB) 2 (70) where a = 1.6651 and 0 3dB Is the one-way half-power heamwidth, we note that from (60) and (68) a=( 03dB) 2 , ( 71 ...8217erform;ice of Some Nonparametric Rank Tests and an Alpplication to Radar," JEEE ’’ra.. Information Theory , Vol. IT-16, pp 309- 318 (c!;pecjally Section...V1 1 1 C . fl I V IC ’A It N FI (.LLTrif -I~d P’LE (,%I I CiRCS-SE CT IC& AREA C vu I$1 i rKI I %1 : 111. C I -PjI Ik ~I G%ft- 71 -Y: I I LAl. I J10F

  15. Location plan for Signal Corps Radar (S.C.R.) 296 Station 5, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Location plan for Signal Corps Radar (S.C.R.) 296 Station 5, October 8, 1943 - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  16. Radar antenna pointing for optimized signal to noise ratio.

    SciTech Connect

    Doerry, Armin Walter; Marquette, Brandeis

    2013-01-01

    The Signal-to-Noise Ratio (SNR) of a radar echo signal will vary across a range swath, due to spherical wavefront spreading, atmospheric attenuation, and antenna beam illumination. The antenna beam illumination will depend on antenna pointing. Calculations of geometry are complicated by the curved earth, and atmospheric refraction. This report investigates optimizing antenna pointing to maximize the minimum SNR across the range swath.

  17. RSRE (Royal Signals and Radar Establishment) 1985 Research Review,

    DTIC Science & Technology

    1985-01-01

    together with a 4-pulse canceller having signal processing allows adequate height time varied weighting . Temporal threshold accuracy and performance in...figure of 10 dB systems and is included within the Contraves achieved. Signal processing and target Seaguard defence system. It is a declaration are...6). This array is Taylor weighted by the t strip-line feed network to produce -29 dB Naval/Marine Radar first azimuthal sidelobe. The cosec2 low

  18. Vector neural network signal integration for radar application

    NASA Astrophysics Data System (ADS)

    Bierman, Gregory S.

    1994-07-01

    The Litton Data Systems Vector Neural Network (VNN) is a unique multi-scan integration algorithm currently in development. The target of interest is a low-flying cruise missile. Current tactical radar cannot detect and track the missile in ground clutter at tactically useful ranges. The VNN solves this problem by integrating the energy from multiple frames to effectively increase the target's signal-to-noise ratio. The implementation plan is addressing the APG-63 radar. Real-time results will be available by March 1994.

  19. Radar images analysis for scattering surfaces characterization

    NASA Astrophysics Data System (ADS)

    Piazza, Enrico

    1998-10-01

    According to the different problems and techniques related to the detection and recognition of airplanes and vehicles moving on the Airport surface, the present work mainly deals with the processing of images gathered by a high-resolution radar sensor. The radar images used to test the investigated algorithms are relative to sequence of images obtained in some field experiments carried out by the Electronic Engineering Department of the University of Florence. The radar is the Ka band radar operating in the'Leonardo da Vinci' Airport in Fiumicino (Rome). The images obtained from the radar scan converter are digitized and putted in x, y, (pixel) co- ordinates. For a correct matching of the images, these are corrected in true geometrical co-ordinates (meters) on the basis of fixed points on an airport map. Correlating the airplane 2-D multipoint template with actual radar images, the value of the signal in the points involved in the template can be extracted. Results for a lot of observation show a typical response for the main section of the fuselage and the wings. For the fuselage, the back-scattered echo is low at the prow, became larger near the center on the aircraft and than it decrease again toward the tail. For the wings the signal is growing with a pretty regular slope from the fuselage to the tips, where the signal is the strongest.

  20. Detail view of southeast corner of Signal Corps Radar (S.C.R.) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of southeast corner of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation, showing Signal Corps Radar (S.C.R.) 296 Station 5 Tower concrete pier in background, camera facing north - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  1. Characterization of Radar Signals Using Neural Networks

    DTIC Science & Technology

    1990-12-01

    e***e*e*eeeeeeeeeeeesseeeeeese*eee*e*e************s /* Function Name: load.input.ptterns Number: 4.1 /* Description: This function determines wether ...XSE.last.layer Number: 8.5 */ /* Description: The function determines wether to backpropate the *f /* parameter by the sigmoidal or linear update...Sigmoidal Function," Mathematics of Control, Signals and Systems, 2:303-314 (March 1989). 6. Dayhoff, Judith E. Neural Network Architectures. New York: Van

  2. Radar range data signal enhancement tracker

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The design, fabrication, and performance characteristics are described of two digital data signal enhancement filters which are capable of being inserted between the Space Shuttle Navigation Sensor outputs and the guidance computer. Commonality of interfaces has been stressed so that the filters may be evaluated through operation with simulated sensors or with actual prototype sensor hardware. The filters will provide both a smoothed range and range rate output. Different conceptual approaches are utilized for each filter. The first filter is based on a combination low pass nonrecursive filter and a cascaded simple average smoother for range and range rate, respectively. Filter number two is a tracking filter which is capable of following transient data of the type encountered during burn periods. A test simulator was also designed which generates typical shuttle navigation sensor data.

  3. Real-time radar signal processing using GPGPU (general-purpose graphic processing unit)

    NASA Astrophysics Data System (ADS)

    Kong, Fanxing; Zhang, Yan Rockee; Cai, Jingxiao; Palmer, Robert D.

    2016-05-01

    This study introduces a practical approach to develop real-time signal processing chain for general phased array radar on NVIDIA GPUs(Graphical Processing Units) using CUDA (Compute Unified Device Architecture) libraries such as cuBlas and cuFFT, which are adopted from open source libraries and optimized for the NVIDIA GPUs. The processed results are rigorously verified against those from the CPUs. Performance benchmarked in computation time with various input data cube sizes are compared across GPUs and CPUs. Through the analysis, it will be demonstrated that GPGPUs (General Purpose GPU) real-time processing of the array radar data is possible with relatively low-cost commercial GPUs.

  4. Passive Multistatic Radar Imaging using an OFDM Based Signal of Opportunity

    DTIC Science & Technology

    2012-03-22

    PASSIVE MULTISTATIC RADAR IMAGING USING AN OFDM BASED SIGNAL OF OPPORTUNITY THESIS Matthew B.P. Rapson, Flight Lieutenant, Royal Australian Air Force...PASSIVE MULTISTATIC RADAR IMAGING USING AN OFDM BASED SIGNAL OF OPPORTUNITY THESIS Presented to the Faculty Department of Electrical and Computer...for use in radar ap- plications such as synthetic aperture radar (SAR). The orthogonal frequency divi- sion multiplexing ( OFDM ) specific Worldwide

  5. Digital Radar-Signal Processors Implemented in FPGAs

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew; Andraka, Ray

    2004-01-01

    High-performance digital electronic circuits for onboard processing of return signals in an airborne precipitation- measuring radar system have been implemented in commercially available field-programmable gate arrays (FPGAs). Previously, it was standard practice to downlink the radar-return data to a ground station for postprocessing a costly practice that prevents the nearly-real-time use of the data for automated targeting. In principle, the onboard processing could be performed by a system of about 20 personal- computer-type microprocessors; relative to such a system, the present FPGA-based processor is much smaller and consumes much less power. Alternatively, the onboard processing could be performed by an application-specific integrated circuit (ASIC), but in comparison with an ASIC implementation, the present FPGA implementation offers the advantages of (1) greater flexibility for research applications like the present one and (2) lower cost in the small production volumes typical of research applications. The generation and processing of signals in the airborne precipitation measuring radar system in question involves the following especially notable steps: The system utilizes a total of four channels two carrier frequencies and two polarizations at each frequency. The system uses pulse compression: that is, the transmitted pulse is spread out in time and the received echo of the pulse is processed with a matched filter to despread it. The return signal is band-limited and digitally demodulated to a complex baseband signal that, for each pulse, comprises a large number of samples. Each complex pair of samples (denoted a range gate in radar terminology) is associated with a numerical index that corresponds to a specific time offset from the beginning of the radar pulse, so that each such pair represents the energy reflected from a specific range. This energy and the average echo power are computed. The phase of each range bin is compared to the previous echo

  6. Signal Separation of Helicopter Radar Returns Using Wavelet-Based Sparse Signal Optimisation

    DTIC Science & Technology

    2016-10-01

    RR–0436 ABSTRACT A novel wavelet-based sparse signal representation technique is used to separate the main and tail rotor blade components of a...helicopter from the composite radar returns. The received signal consists of returns from the rotating main and tail rotor blades , the helicopter body...component signal com- prising of returns from the main body, the main and tail rotor hubs and blades . Temporal and Doppler characteristics of these

  7. Analysis of Doppler radar windshear data

    NASA Technical Reports Server (NTRS)

    Williams, F.; Mckinney, P.; Ozmen, F.

    1989-01-01

    The objective of this analysis is to process Lincoln Laboratory Doppler radar data obtained during FLOWS testing at Huntsville, Alabama, in the summer of 1986, to characterize windshear events. The processing includes plotting velocity and F-factor profiles, histogram analysis to summarize statistics, and correlation analysis to demonstrate any correlation between different data fields.

  8. Optimal sampling and quantization of synthetic aperture radar signals

    NASA Technical Reports Server (NTRS)

    Wu, C.

    1978-01-01

    Some theoretical and experimental results on optimal sampling and quantization of synthetic aperture radar (SAR) signals are presented. It includes a description of a derived theoretical relationship between the pixel signal to noise ratio of processed SAR images and the number of quantization bits per sampled signal, assuming homogeneous extended targets. With this relationship known, a solution may be realized for the problem of optimal allocation of a fixed data bit-volume (for specified surface area and resolution criterion) between the number of samples and the number of bits per sample. The results indicate that to achieve the best possible image quality for a fixed bit rate and a given resolution criterion, one should quantize individual samples coarsely and thereby maximize the number of multiple looks. The theoretical results are then compared with simulation results obtained by processing aircraft SAR data.

  9. Frequency Diverse Array Radar: Signal Characterization and Measurement Accuracy

    DTIC Science & Technology

    2010-03-25

    W knN (C.14) and f [n] = N−1∑ k=0 F [k]W− knN (C.15) where f [n] = f(t)|t=nTs F [k] = F (ω)|ω=k∆ω WN = exp(−j2π/N) Ts = f −1 s ∆ω = 2π NTs , fs is the...Properties of the MIMO radar ambiguity function”. Proceedings 2008 International Conference on Acoustics, Speech and Signal Processing, 2309–2312. April 2008

  10. Topography adjacent to Signal Corps Radar (S.C.R.) 296 Station 5, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topography adjacent to Signal Corps Radar (S.C.R.) 296 Station 5, showing conditions before construction, May 28, 1943, this drawing shows the Bonita Ridge access road retaining wall and general conditions at Bonita Ridge before the construction of Signal Corps Radar (S.C.R.) 296 Station 5 - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  11. Subarray-based FDA radar to counteract deceptive ECM signals

    NASA Astrophysics Data System (ADS)

    Abdalla, Ahmed; Wang, Wen-Qin; Yuan, Zhao; Mohamed, Suhad; Bin, Tang

    2016-12-01

    In recent years, the frequency diverse array (FDA) radar concept has attracted extensive attention, as it may benefit from a small frequency increment, compared to the carrier frequency across the array elements and thereby achieve an array factor that is a function of the angle, the time, and the range which is superior to the conventional phase array radar (PAR). However, limited effort on the subject of FDA in electronic countermeasure scenarios, especially in the presence of mainbeam deceptive jamming, has been published. Basic FDA is not desirable for anti-jamming applications, due to the range-angle coupling response of targets. In this paper, a novel method based on subarrayed FDA signal processing is proposed to counteract deceptive ECM signals. We divide the FDA array into multiple subarrays, each of which employs a distinct frequency increment. As a result, in the subarray-based FDA, the desired target can be distinguished at subarray level in joint range-angle-Doppler domain by utilizing the fact that the jammer generates false targets with the same ranges to each subarray without reparations. The performance assessment shows that the proposed solution is effective for deceptive ECM targets suppression. The effectiveness is verified by simulation results.

  12. Radar fall detection using principal component analysis

    NASA Astrophysics Data System (ADS)

    Jokanovic, Branka; Amin, Moeness; Ahmad, Fauzia; Boashash, Boualem

    2016-05-01

    Falls are a major cause of fatal and nonfatal injuries in people aged 65 years and older. Radar has the potential to become one of the leading technologies for fall detection, thereby enabling the elderly to live independently. Existing techniques for fall detection using radar are based on manual feature extraction and require significant parameter tuning in order to provide successful detections. In this paper, we employ principal component analysis for fall detection, wherein eigen images of observed motions are employed for classification. Using real data, we demonstrate that the PCA based technique provides performance improvement over the conventional feature extraction methods.

  13. Detection of the Vibration Signal from Human Vocal Folds Using a 94-GHz Millimeter-Wave Radar

    PubMed Central

    Chen, Fuming; Li, Sheng; Zhang, Yang; Wang, Jianqi

    2017-01-01

    The detection of the vibration signal from human vocal folds provides essential information for studying human phonation and diagnosing voice disorders. Doppler radar technology has enabled the noncontact measurement of the human-vocal-fold vibration. However, existing systems must be placed in close proximity to the human throat and detailed information may be lost because of the low operating frequency. In this paper, a long-distance detection method, involving the use of a 94-GHz millimeter-wave radar sensor, is proposed for detecting the vibration signals from human vocal folds. An algorithm that combines empirical mode decomposition (EMD) and the auto-correlation function (ACF) method is proposed for detecting the signal. First, the EMD method is employed to suppress the noise of the radar-detected signal. Further, the ratio of the energy and entropy is used to detect voice activity in the radar-detected signal, following which, a short-time ACF is employed to extract the vibration signal of the human vocal folds from the processed signal. For validating the method and assessing the performance of the radar system, a vibration measurement sensor and microphone system are additionally employed for comparison. The experimental results obtained from the spectrograms, the vibration frequency of the vocal folds, and coherence analysis demonstrate that the proposed method can effectively detect the vibration of human vocal folds from a long detection distance. PMID:28282892

  14. Radar polarimetry - Analysis tools and applications

    NASA Technical Reports Server (NTRS)

    Evans, Diane L.; Farr, Tom G.; Van Zyl, Jakob J.; Zebker, Howard A.

    1988-01-01

    The authors have developed several techniques to analyze polarimetric radar data from the NASA/JPL airborne SAR for earth science applications. The techniques determine the heterogeneity of scatterers with subregions, optimize the return power from these areas, and identify probable scattering mechanisms for each pixel in a radar image. These techniques are applied to the discrimination and characterization of geologic surfaces and vegetation cover, and it is found that their utility varies depending on the terrain type. It is concluded that there are several classes of problems amenable to single-frequency polarimetric data analysis, including characterization of surface roughness and vegetation structure, and estimation of vegetation density. Polarimetric radar remote sensing can thus be a useful tool for monitoring a set of earth science parameters.

  15. Spectral and correlation analysis with applications to middle-atmosphere radars

    NASA Technical Reports Server (NTRS)

    Rastogi, Prabhat K.

    1989-01-01

    The correlation and spectral analysis methods for uniformly sampled stationary random signals, estimation of their spectral moments, and problems arising due to nonstationary are reviewed. Some of these methods are already in routine use in atmospheric radar experiments. Other methods based on the maximum entropy principle and time series models have been used in analyzing data, but are just beginning to receive attention in the analysis of radar signals. These methods are also briefly discussed.

  16. Comparative of signal processing techniques for micro-Doppler signature extraction with automotive radar systems

    NASA Astrophysics Data System (ADS)

    Rodriguez-Hervas, Berta; Maile, Michael; Flores, Benjamin C.

    2014-05-01

    In recent years, the automotive industry has experienced an evolution toward more powerful driver assistance systems that provide enhanced vehicle safety. These systems typically operate in the optical and microwave regions of the electromagnetic spectrum and have demonstrated high efficiency in collision and risk avoidance. Microwave radar systems are particularly relevant due to their operational robustness under adverse weather or illumination conditions. Our objective is to study different signal processing techniques suitable for extraction of accurate micro-Doppler signatures of slow moving objects in dense urban environments. Selection of the appropriate signal processing technique is crucial for the extraction of accurate micro-Doppler signatures that will lead to better results in a radar classifier system. For this purpose, we perform simulations of typical radar detection responses in common driving situations and conduct the analysis with several signal processing algorithms, including short time Fourier Transform, continuous wavelet or Kernel based analysis methods. We take into account factors such as the relative movement between the host vehicle and the target, and the non-stationary nature of the target's movement. A comparison of results reveals that short time Fourier Transform would be the best approach for detection and tracking purposes, while the continuous wavelet would be the best suited for classification purposes.

  17. Signal processing techniques for damage detection with piezoelectric wafer active sensors and embedded ultrasonic structural radar

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Bao, Jingjing; Giurgiutiu, Victor

    2004-07-01

    Embedded ultrasonic structural radar (EUSR) algorithm is developed for using piezoelectric wafer active sensor (PWAS) array to detect defects within a large area of a thin-plate specimen. Signal processing techniques are used to extract the time of flight of the wave packages, and thereby to determine the location of the defects with the EUSR algorithm. In our research, the transient tone-burst wave propagation signals are generated and collected by the embedded PWAS. Then, with signal processing, the frequency contents of the signals and the time of flight of individual frequencies are determined. This paper starts with an introduction of embedded ultrasonic structural radar algorithm. Then we will describe the signal processing methods used to extract the time of flight of the wave packages. The signal processing methods being used include the wavelet denoising, the cross correlation, and Hilbert transform. Though hardware device can provide averaging function to eliminate the noise coming from the signal collection process, wavelet denoising is included to ensure better signal quality for the application in real severe environment. For better recognition of time of flight, cross correlation method is used. Hilbert transform is applied to the signals after cross correlation in order to extract the envelope of the signals. Signal processing and EUSR are both implemented by developing a graphical user-friendly interface program in LabView. We conclude with a description of our vision for applying EUSR signal analysis to structural health monitoring and embedded nondestructive evaluation. To this end, we envisage an automatic damage detection application utilizing embedded PWAS, EUSR, and advanced signal processing.

  18. Graphical derivations of radar, sonar, and communication signals

    NASA Technical Reports Server (NTRS)

    Altes, R. A.; Titlebaum, E. L.

    1975-01-01

    The designer of a communication system often has knowledge concerning the changes in distance between transmitter and receiver as a function of time. This information can be exploited to reduce multipath interference via proper signal design. A radar or sonar may also have good a priori information about possible target trajectories. Such knowledge can again be used to reduce the receiver's response to clutter (MTI), to enhance signal-to-noise ratio, or to simplify receiver design. There are also situations in which prior knowledge about trajectories is lacking. The system should then utilize a single-filter pair which is insensitive to the effects induced by relative motion between transmitter, receiver, and reflectors. For waveforms with large time-bandwidth products, such as long pulse trains, it is possible to graphically derive signal formats for both situations (trajectory known and unknown). Although the exact form of the signal is sometimes not specified by the graphical procedure, the problem in such cases is reduced to one which has already been solved, i.e., the generation of an impulse equivalent code.

  19. Analysis of ALTAIR 1998 Meteor Radar Data

    NASA Technical Reports Server (NTRS)

    Zinn, J.; Close, S.; Colestock, P. L.; MacDonell, A.; Loveland, R.

    2011-01-01

    We describe a new analysis of a set of 32 UHF meteor radar traces recorded with the 422 MHz ALTAIR radar facility in November 1998. Emphasis is on the velocity measurements, and on inferences that can be drawn from them regarding the meteor masses and mass densities. We find that the velocity vs altitude data can be fitted as quadratic functions of the path integrals of the atmospheric densities vs distance, and deceleration rates derived from those fits all show the expected behavior of increasing with decreasing altitude. We also describe a computer model of the coupled processes of collisional heating, radiative cooling, evaporative cooling and ablation, and deceleration - for meteors composed of defined mixtures of mineral constituents. For each of the cases in the data set we ran the model starting with the measured initial velocity and trajectory inclination, and with various trial values of the quantity mPs 2 (the initial mass times the mass density squared), and then compared the computed deceleration vs altitude curves vs the measured ones. In this way we arrived at the best-fit values of the mPs 2 for each of the measured meteor traces. Then further, assuming various trial values of the density Ps, we compared the computed mass vs altitude curves with similar curves for the same set of meteors determined previously from the measured radar cross sections and an electrostatic scattering model. In this way we arrived at estimates of the best-fit mass densities Ps for each of the cases. Keywords meteor ALTAIR radar analysis 1 Introduction This paper describes a new analysis of a set of 422 MHz meteor scatter radar data recorded with the ALTAIR High-Power-Large-Aperture radar facility at Kwajalein Atoll on 18 November 1998. The exceptional accuracy/precision of the ALTAIR tracking data allow us to determine quite accurate meteor trajectories, velocities and deceleration rates. The measurements and velocity/deceleration data analysis are described in Sections

  20. Detail view of northwest side of Signal Corps Radar (S.C.R.) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of northwest side of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation, showing portion of concrete gutter drainage system and asphalt floor tiles, camera facing north - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  1. View of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation, showing Fire Control Stations (Buildings 621 and 622) and concrete stairway (top left) camera facing southwest - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  2. Ground-penetrating radar calibration at the Virginia Smart Road and signal analysis to improve prediction of flexible pavement layer thicknesses.

    DOT National Transportation Integrated Search

    2005-01-01

    A ground-penetrating radar (GPR) system was used to collect data over the different pavement sections of the Virginia Smart Road from June 1999 until December 2002. Three antennae at different frequencies were used for this research. The collected da...

  3. Spaceborne synthetic aperture radar signal processing using FPGAs

    NASA Astrophysics Data System (ADS)

    Sugimoto, Yohei; Ozawa, Satoru; Inaba, Noriyasu

    2017-10-01

    Synthetic Aperture Radar (SAR) imagery requires image reproduction through successive signal processing of received data before browsing images and extracting information. The received signal data records of the ALOS-2/PALSAR-2 are stored in the onboard mission data storage and transmitted to the ground. In order to compensate the storage usage and the capacity of transmission data through the mission date communication networks, the operation duty of the PALSAR-2 is limited. This balance strongly relies on the network availability. The observation operations of the present spaceborne SAR systems are rigorously planned by simulating the mission data balance, given conflicting user demands. This problem should be solved such that we do not have to compromise the operations and the potential of the next-generation spaceborne SAR systems. One of the solutions is to compress the SAR data through onboard image reproduction and information extraction from the reproduced images. This is also beneficial for fast delivery of information products and event-driven observations by constellation. The Emergence Studio (Sōhatsu kōbō in Japanese) with Japan Aerospace Exploration Agency is developing evaluation models of FPGA-based signal processing system for onboard SAR image reproduction. The model, namely, "Fast L1 Processor (FLIP)" developed in 2016 can reproduce a 10m-resolution single look complex image (Level 1.1) from ALOS/PALSAR raw signal data (Level 1.0). The processing speed of the FLIP at 200 MHz results in twice faster than CPU-based computing at 3.7 GHz. The image processed by the FLIP is no way inferior to the image processed with 32-bit computing in MATLAB.

  4. Rapid and stable measurement of respiratory rate from Doppler radar signals using time domain autocorrelation model.

    PubMed

    Sun, Guanghao; Matsui, Takemi

    2015-01-01

    Noncontact measurement of respiratory rate using Doppler radar will play a vital role in future clinical practice. Doppler radar remotely monitors the tiny chest wall movements induced by respiration activity. The most competitive advantage of this technique is to allow users fully unconstrained with no biological electrode attachments. However, the Doppler radar, unlike other contact-type sensors, is easily affected by the random body movements. In this paper, we proposed a time domain autocorrelation model to process the radar signals for rapid and stable estimation of the respiratory rate. We tested the autocorrelation model on 8 subjects in laboratory, and compared the respiratory rates detected by noncontact radar with reference contact-type respiratory effort belt. Autocorrelation model showed the effects of reducing the random body movement noise added to Doppler radar's respiration signals. Moreover, the respiratory rate can be rapidly calculated from the first main peak in the autocorrelation waveform within 10 s.

  5. Non-contact physiological signal detection using continuous wave Doppler radar.

    PubMed

    Qiao, Dengyu; He, Tan; Hu, Boping; Li, Ye

    2014-01-01

    The aim of this work is to show non-contact physiological signal monitoring system based on continuous-wave (CW) Doppler radar, which is becoming highly attractive in the field of health care monitoring of elderly people. Two radar signal processing methods were introduced in this paper: one to extract respiration and heart rates of a single person and the other to separate mixed respiration signals. To verify the validity of the methods, physiological signal is obtained from stationary human subjects using a CW Doppler radar unit. The sensor operating at 24 GHz is located 0.5 meter away from the subject. The simulation results show that the respiration and heart rates are clearly extracted, and the mixed respiration signals are successfully separated. Finally, reference respiration and heart rate signals are measured by an ECG monitor and compared with the results tracked by the CW Doppler radar monitoring system.

  6. Joint Waveform Optimization and Adaptive Processing for Random-Phase Radar Signals

    DTIC Science & Technology

    2014-01-01

    extended targets,” IEEE Journal of Selected Topics in Signal Processing, vol. 1, no. 1, pp. 42– 55, June 2007. [2] S. Sen and A. Nehorai, “ OFDM mimo ...radar compared to traditional waveforms. I. INTRODUCTION There has been much recent interest in waveform design for multiple-input, multiple-output ( MIMO ...amplitude. When the resolution capability of the MIMO radar system is of interest, the transmit waveform can be designed to sharpen the radar ambiguity

  7. Radar measurement of L-band signal fluctuations caused by propagation through trees

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Klein, Jeffrey D.; Zebker, Howard A.

    1991-01-01

    Fluctuations of an L-band, horizontally polarized signal that was transmitted from the ground through a coniferous forest canopy to an airborne radar are examined. The azimuth synthetic aperture radar (SAR) impulse response in the presence of the measured magnitude fluctuations shows increased sidelobes over the case with no trees. Statistics of the observed fluctuations are similar to other observations.

  8. Precession missile feature extraction using sparse component analysis of radar measurements

    NASA Astrophysics Data System (ADS)

    Liu, Lihua; Du, Xiaoyong; Ghogho, Mounir; Hu, Weidong; McLernon, Des

    2012-12-01

    According to the working mode of the ballistic missile warning radar (BMWR), the radar return from the BMWR is usually sparse. To recognize and identify the warhead, it is necessary to extract the precession frequency and the locations of the scattering centers of the missile. This article first analyzes the radar signal model of the precessing conical missile during flight and develops the sparse dictionary which is parameterized by the unknown precession frequency. Based on the sparse dictionary, the sparse signal model is then established. A nonlinear least square estimation is first applied to roughly extract the precession frequency in the sparse dictionary. Based on the time segmented radar signal, a sparse component analysis method using the orthogonal matching pursuit algorithm is then proposed to jointly estimate the precession frequency and the scattering centers of the missile. Simulation results illustrate the validity of the proposed method.

  9. A Simple Signal Processing Architecture for Instantaneous Radar Polarimetry

    DTIC Science & Technology

    2006-11-01

    Stephen D. Howard, A. Robert Calderbank, Fellow, IEEE, and William Moran, Member, IEEE Abstract—This paper describes a new radar primitive that en...Skolnik, Introduction to Radar Systems, 3rd ed. New York: Mc- Graw -Hill, 2001. [14] S. Alamouti, “A simple transmit diversity technique for wireless

  10. Optimal Signal Processing of Frequency-Stepped CW Radar Data

    NASA Technical Reports Server (NTRS)

    Ybarra, Gary A.; Wu, Shawkang M.; Bilbro, Griff L.; Ardalan, Sasan H.; Hearn, Chase P.; Neece, Robert T.

    1995-01-01

    An optimal signal processing algorithm is derived for estimating the time delay and amplitude of each scatterer reflection using a frequency-stepped CW system. The channel is assumed to be composed of abrupt changes in the reflection coefficient profile. The optimization technique is intended to maximize the target range resolution achievable from any set of frequency-stepped CW radar measurements made in such an environment. The algorithm is composed of an iterative two-step procedure. First, the amplitudes of the echoes are optimized by solving an overdetermined least squares set of equations. Then, a nonlinear objective function is scanned in an organized fashion to find its global minimum. The result is a set of echo strengths and time delay estimates. Although this paper addresses the specific problem of resolving the time delay between the first two echoes, the derivation is general in the number of echoes. Performance of the optimization approach is illustrated using measured data obtained from an HP-X510 network analyzer. It is demonstrated that the optimization approach offers a significant resolution enhancement over the standard processing approach that employs an IFFT. Degradation in the performance of the algorithm due to suboptimal model order selection and the effects of additive white Gaussion noise are addressed.

  11. Optimal Signal Processing of Frequency-Stepped CW Radar Data

    NASA Technical Reports Server (NTRS)

    Ybarra, Gary A.; Wu, Shawkang M.; Bilbro, Griff L.; Ardalan, Sasan H.; Hearn, Chase P.; Neece, Robert T.

    1995-01-01

    An optimal signal processing algorithm is derived for estimating the time delay and amplitude of each scatterer reflection using a frequency-stepped CW system. The channel is assumed to be composed of abrupt changes in the reflection coefficient profile. The optimization technique is intended to maximize the target range resolution achievable from any set of frequency-stepped CW radar measurements made in such an environment. The algorithm is composed of an iterative two-step procedure. First, the amplitudes of the echoes are optimized by solving an overdetermined least squares set of equations. Then, a nonlinear objective function is scanned in an organized fashion to find its global minimum. The result is a set of echo strengths and time delay estimates. Although this paper addresses the specific problem of resolving the time delay between the two echoes, the derivation is general in the number of echoes. Performance of the optimization approach is illustrated using measured data obtained from an HP-851O network analyzer. It is demonstrated that the optimization approach offers a significant resolution enhancement over the standard processing approach that employs an IFFT. Degradation in the performance of the algorithm due to suboptimal model order selection and the effects of additive white Gaussion noise are addressed.

  12. Analysis of Ion Composition Estimation Accuracy for Incoherent Scatter Radars

    NASA Astrophysics Data System (ADS)

    Martínez Ledesma, M.; Diaz, M. A.

    2017-12-01

    The Incoherent Scatter Radar (ISR) is one of the most powerful sounding methods developed to estimate the Ionosphere. This radar system determines the plasma parameters by sending powerful electromagnetic pulses to the Ionosphere and analyzing the received backscatter. This analysis provides information about parameters such as electron and ion temperatures, electron densities, ion composition, and ion drift velocities. Nevertheless in some cases the ISR analysis has ambiguities in the determination of the plasma characteristics. It is of particular relevance the ion composition and temperature ambiguity obtained between the F1 and the lower F2 layers. In this case very similar signals are obtained with different mixtures of molecular ions (NO2+ and O2+) and atomic oxygen ions (O+), and consequently it is not possible to completely discriminate between them. The most common solution to solve this problem is the use of empirical or theoretical models of the ionosphere in the fitting of ambiguous data. More recent works take use of parameters estimated from the Plasma Line band of the radar to reduce the number of parameters to determine. In this work we propose to determine the error estimation of the ion composition ambiguity when using Plasma Line electron density measurements. The sensibility of the ion composition estimation has been also calculated depending on the accuracy of the ionospheric model, showing that the correct estimation is highly dependent on the capacity of the model to approximate the real values. Monte Carlo simulations of data fitting at different signal to noise (SNR) ratios have been done to obtain valid and invalid estimation probability curves. This analysis provides a method to determine the probability of erroneous estimation for different signal fluctuations. Also it can be used as an empirical method to compare the efficiency of the different algorithms and methods on when solving the ion composition ambiguity.

  13. Mathematical analysis study for radar data processing and enhancement. Part 1: Radar data analysis

    NASA Technical Reports Server (NTRS)

    James, R.; Brownlow, J. D.

    1985-01-01

    A study is performed under NASA contract to evaluate data from an AN/FPS-16 radar installed for support of flight programs at Dryden Flight Research Facility of NASA Ames Research Center. The purpose of this study is to provide information necessary for improving post-flight data reduction and knowledge of accuracy of derived radar quantities. Tracking data from six flights are analyzed. Noise and bias errors in raw tracking data are determined for each of the flights. A discussion of an altiude bias error during all of the tracking missions is included. This bias error is defined by utilizing pressure altitude measurements made during survey flights. Four separate filtering methods, representative of the most widely used optimal estimation techniques for enhancement of radar tracking data, are analyzed for suitability in processing both real-time and post-mission data. Additional information regarding the radar and its measurements, including typical noise and bias errors in the range and angle measurements, is also presented. This is in two parts. This is part 1, an analysis of radar data.

  14. Compressed sensing: Radar signal detection and parameter measurement for EW applications

    NASA Astrophysics Data System (ADS)

    Rao, M. Sreenivasa; Naik, K. Krishna; Reddy, K. Maheshwara

    2016-09-01

    State of the art system development is very much required for UAVs (Unmanned Aerial Vehicle) and other airborne applications, where miniature, lightweight and low-power specifications are essential. Currently, the airborne Electronic Warfare (EW) systems are developed with digital receiver technology using Nyquist sampling. The detection of radar signals and parameter measurement is a necessary requirement in EW digital receivers. The Random Modulator Pre-Integrator (RMPI) can be used for matched detection of signals using smashed filter. RMPI hardware eliminates the high sampling rate analog to digital computer and reduces the number of samples using random sampling and detection of sparse orthonormal basis vectors. RMPI explore the structural and geometrical properties of the signal apart from traditional time and frequency domain analysis for improved detection. The concept has been proved with the help of MATLAB and LabVIEW simulations.

  15. Ku-band radar threshold analysis

    NASA Technical Reports Server (NTRS)

    Weber, C. L.; Polydoros, A.

    1979-01-01

    The statistics of the CFAR threshold for the Ku-band radar was determined. Exact analytical results were developed for both the mean and standard deviations in the designated search mode. The mean value is compared to the results of a previously reported simulation. The analytical results are more optimistic than the simulation results, for which no explanation is offered. The normalized standard deviation is shown to be very sensitive to signal-to-noise ratio and very insensitive to the noise correlation present in the range gates of the designated search mode. The substantial variation in the CFAR threshold is dominant at large values of SNR where the normalized standard deviation is greater than 0.3. Whether or not this significantly affects the resulting probability of detection is a matter which deserves additional attention.

  16. Reconfigurable signal processor designs for advanced digital array radar systems

    NASA Astrophysics Data System (ADS)

    Suarez, Hernan; Zhang, Yan (Rockee); Yu, Xining

    2017-05-01

    The new challenges originated from Digital Array Radar (DAR) demands a new generation of reconfigurable backend processor in the system. The new FPGA devices can support much higher speed, more bandwidth and processing capabilities for the need of digital Line Replaceable Unit (LRU). This study focuses on using the latest Altera and Xilinx devices in an adaptive beamforming processor. The field reprogrammable RF devices from Analog Devices are used as analog front end transceivers. Different from other existing Software-Defined Radio transceivers on the market, this processor is designed for distributed adaptive beamforming in a networked environment. The following aspects of the novel radar processor will be presented: (1) A new system-on-chip architecture based on Altera's devices and adaptive processing module, especially for the adaptive beamforming and pulse compression, will be introduced, (2) Successful implementation of generation 2 serial RapidIO data links on FPGA, which supports VITA-49 radio packet format for large distributed DAR processing. (3) Demonstration of the feasibility and capabilities of the processor in a Micro-TCA based, SRIO switching backplane to support multichannel beamforming in real-time. (4) Application of this processor in ongoing radar system development projects, including OU's dual-polarized digital array radar, the planned new cylindrical array radars, and future airborne radars.

  17. Collection and analysis of specific ELINT Signal Parameters

    NASA Technical Reports Server (NTRS)

    Wilson, Lonnie A.

    1985-01-01

    This report was a followup to, Collection and Analysis of Specific ELINT Signal Parameters, DTIC A166507, 23 June 1985. The programs and hardware assembled for the above mentioned report were used to analyze two types of radar, the PPS-6 and the HOOD radars. The typical ELINT parameters of frequency, pulse width, and pulse repetition rate were collected and analyzed.

  18. Collection and analysis of specific ELINT Signal Parameters

    NASA Astrophysics Data System (ADS)

    Wilson, Lonnie A.

    1985-12-01

    This report was a followup to, Collection and Analysis of Specific ELINT Signal Parameters, DTIC A166507, 23 June 1985. The programs and hardware assembled for the above mentioned report were used to analyze two types of radar, the PPS-6 and the HOOD radars. The typical ELINT parameters of frequency, pulse width, and pulse repetition rate were collected and analyzed.

  19. Radar signal pre-processing to suppress surface bounce and multipath

    DOEpatents

    Paglieroni, David W; Mast, Jeffrey E; Beer, N. Reginald

    2013-12-31

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes that return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  20. A quantitative analysis of the impact of wind turbines on operational Doppler weather radar data

    NASA Astrophysics Data System (ADS)

    Norin, L.

    2015-02-01

    In many countries wind turbines are rapidly growing in numbers as the demand for energy from renewable sources increases. The continued deployment of wind turbines can, however, be problematic for many radar systems, which are easily disturbed by turbines located in the radar line of sight. Wind turbines situated in the vicinity of Doppler weather radars can lead to erroneous precipitation estimates as well as to inaccurate wind and turbulence measurements. This paper presents a quantitative analysis of the impact of a wind farm, located in southeastern Sweden, on measurements from a nearby Doppler weather radar. The analysis is based on 6 years of operational radar data. In order to evaluate the impact of the wind farm, average values of all three spectral moments (the radar reflectivity factor, absolute radial velocity, and spectrum width) of the nearby Doppler weather radar were calculated, using data before and after the construction of the wind farm. It is shown that all spectral moments, from a large area at and downrange from the wind farm, were impacted by the wind turbines. It was also found that data from radar cells far above the wind farm (near 3 km altitude) were affected by the wind farm. It is shown that this in part can be explained by detection by the radar sidelobes and by scattering off increased levels of dust and turbulence. In a detailed analysis, using data from a single radar cell, frequency distributions of all spectral moments were used to study the competition between the weather signal and wind turbine clutter. It is shown that, when weather echoes give rise to higher reflectivity values than those of the wind farm, the negative impact of the wind turbines is greatly reduced for all spectral moments.

  1. A quantitative analysis of the impact of wind turbines on operational Doppler weather radar data

    NASA Astrophysics Data System (ADS)

    Norin, L.

    2014-08-01

    In many countries wind turbines are rapidly growing in numbers as the demand for energy from renewable sources increases. The continued deployment of wind turbines can, however, be problematic for many radar systems, which are easily disturbed by turbines located in radar line-of-sight. Wind turbines situated in the vicinity of Doppler weather radars can lead to erroneous precipitation estimates as well as to inaccurate wind- and turbulence measurements. This paper presents a quantitative analysis of the impact of a wind farm, located in southeastern Sweden, on measurements from a nearby Doppler weather radar. The analysis is based on six years of operational radar data. In order to evaluate the impact of the wind farm, average values of all three spectral moments (the radar reflectivity factor, absolute radial velocity, and spectrum width) of the nearby Doppler weather radar were calculated, using data before and after the construction of the wind farm. It is shown that all spectral moments, from a large area at and downrange from the wind farm, were impacted by the wind turbines. It was also found that data from radar cells far above the wind farm (near 3 km altitude) were affected by the wind farm. We show that this is partly explained by changes in the atmospheric refractive index, bending the radar beams closer to the ground. In a detailed analysis, using data from a single radar cell, frequency distributions of all spectral moments were used to study the competition between the weather signal and wind turbine clutter. We show that when weather echoes give rise to higher reflectivity values than that of the wind farm, the negative impact of the wind turbines disappears for all spectral moments.

  2. Cognitive bio-radar: The natural evolution of bio-signals measurement.

    PubMed

    Malafaia, Daniel; Oliveira, Beatriz; Ferreira, Pedro; Varum, Tiago; Vieira, José; Tomé, Ana

    2016-10-01

    In this article we discuss a novel approach to Bio-Radar, contactless measurement of bio-signals, called Cognitive Bio-Radar. This new approach implements the Bio-Radar in a Software Defined Radio (SDR) platform in order to obtain awareness of the environment where it operates. Due to this, the Cognitive Bio-Radar can adapt to its surroundings in order to have an intelligent usage of the radio frequency spectrum to improve its performance. In order to study the feasibility of such implementation, a SDR based Bio-Radar testbench was developed and evaluated. The prototype is shown to be able to acquire the heartbeat activity and the respiratory effort. The acquired data is compared with the acquisitions from a Biopac research data acquisition system, showing coherent results for both heartbeat and breathing rate.

  3. Development and characterization analysis of a radar polarimeter

    NASA Technical Reports Server (NTRS)

    Bong, S.; Blanchard, A. J.

    1983-01-01

    The interaction of electromagnetic waves with natural earth surface was of interest for many years. A particular area of interest in controlled remote sensing experiments is the phenomena of depolarization. The development stages of the radar system are documented. Also included are the laboratory procedures which provides some information about the specifications of the system. The radar system developed is termed the Radar Polarimeter System. A better insight of the operation of the RPS in terms of the newly developed technique--synthetic aperture radar system is provided. System performance in tems of radar cross section, in terms of power, and in terms of signal to noise ratio are also provided. In summary, an overview of the RPS in terms of its operation and design as well as how it will perform in the field is provided.

  4. Demonstration of Sparse Signal Reconstruction for Radar Imaging of Ice Sheets

    NASA Astrophysics Data System (ADS)

    Heister, Anton; Scheiber, Rolf

    2017-04-01

    Conventional processing of ice-sounder data produces 2-D images of the ice sheet and bed, where the two dimensions are along-track and depth, while the across-track direction is fixed to nadir. The 2-D images contain information about the topography and radar reflectivity of the ice sheet's surface, bed, and internal layers in the along-track direction. Having multiple antenna phase centers in the across-track direction enables the production of 3-D images of the ice sheet and bed. Compared to conventional 2-D images, these contain additional information about the surface and bed topography, and orientation of the internal layers over a swath in the across-track direction. We apply a 3-D SAR tomographic ice-sounding method based on sparse signal reconstruction [1] to the data collected by Center for Remote Sensing of Ice Sheets (CReSIS) in 2008 in Greenland [2] using their multichannel coherent radar depth sounder (MCoRDS). The MCoRDS data have 16 effective phase centers which allows us to better understand the performance of the method. Lastly we offer sparsity improvement by including wavelet dictionaries into the reconstruction.The results show improved scene feature resolvability in across-track direction compared to MVDR beamformer. References: [1] A. Heister, R. Scheiber, "First Analysis of Sparse Signal Reconstruction for Radar Imaging of Ice Sheets". In: Proceedings of EUSAR, pp. 788-791, June 2016. [2] X. Wu, K. C. Jezek, E. Rodriguez, S. Gogineni, F. Rodriguez-Morales, and A. Freeman, "Ice sheet bed mapping with airborne SAR tomography". IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 10 Part 1, pp. 3791-3802, 2011.

  5. Textural features for radar image analysis

    NASA Technical Reports Server (NTRS)

    Shanmugan, K. S.; Narayanan, V.; Frost, V. S.; Stiles, J. A.; Holtzman, J. C.

    1981-01-01

    Texture is seen as an important spatial feature useful for identifying objects or regions of interest in an image. While textural features have been widely used in analyzing a variety of photographic images, they have not been used in processing radar images. A procedure for extracting a set of textural features for characterizing small areas in radar images is presented, and it is shown that these features can be used in classifying segments of radar images corresponding to different geological formations.

  6. Design and Processing of a Novel Chaos-Based Stepped Frequency Synthesized Wideband Radar Signal.

    PubMed

    Zeng, Tao; Chang, Shaoqiang; Fan, Huayu; Liu, Quanhua

    2018-03-26

    The linear stepped frequency and linear frequency shift keying (FSK) signal has been widely used in radar systems. However, such linear modulation signals suffer from the range-Doppler coupling that degrades radar multi-target resolution. Moreover, the fixed frequency-hopping or frequency-coded sequence can be easily predicted by the interception receiver in the electronic countermeasures (ECM) environments, which limits radar anti-jamming performance. In addition, the single FSK modulation reduces the radar low probability of intercept (LPI) performance, for it cannot achieve a large time-bandwidth product. To solve such problems, we propose a novel chaos-based stepped frequency (CSF) synthesized wideband signal in this paper. The signal introduces chaotic frequency hopping between the coherent stepped frequency pulses, and adopts a chaotic frequency shift keying (CFSK) and phase shift keying (PSK) composited coded modulation in a subpulse, called CSF-CFSK/PSK. Correspondingly, the processing method for the signal has been proposed. According to our theoretical analyses and the simulations, the proposed signal and processing method achieve better multi-target resolution and LPI performance. Furthermore, flexible modulation is able to increase the robustness against identification of the interception receiver and improve the anti-jamming performance of the radar.

  7. Definition and fabrication of an airborne scatterometer radar signal processor

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A hardware/software system which incorporates a microprocessor design and software for the calculation of normalized radar cross section in real time was developed. Interface is provided to decommutate the NASA ADAS data stream for aircraft parameters used in processing and to provide output in the form of strip chart and pcm compatible data recording.

  8. Generating nonlinear FM chirp radar signals by multiple integrations

    DOEpatents

    Doerry, Armin W [Albuquerque, NM

    2011-02-01

    A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.

  9. Joint Filter and Waveform Design for Radar STAP in Signal Dependent Interference (Preprint)

    DTIC Science & Technology

    2015-10-01

    scheduling for extended targets in radar using information theoretic measures , tracking etc can be seen in [45]–[50], [51]–[56], and the references...range gate, the measured snapshot vector consists of the target returns and the undesired returns, i.e. clutter returns, interference and noise. The...D. Cochran, S. Suvorova, S. Howard, and W. Moran, “Waveform libraries: Measures of effectiveness for radar scheduling,” IEEE Signal Processing

  10. Preliminary Limited Surveillance Radar (LSR) Cost/Benefit Analysis

    DOT National Transportation Integrated Search

    1977-10-01

    This report presents the findings of a cost/benefit analysis of the deployment of a new Limited Surveillance Radar (LSR). An LSR is an inexpensive, single channel, short-range (about 20 miles), primary radar for use at approach control facilities whi...

  11. Quantitative Analysis of Radar Returns from Insects

    NASA Technical Reports Server (NTRS)

    Riley, J. R.

    1979-01-01

    When a number of flying insects is low enough to permit their resolution as individual radar targets, quantitative estimates of their aerial density are developed. Accurate measurements of heading distribution using a rotating polarization radar to enhance the wingbeat frequency method of identification are presented.

  12. Signal Processing for Radar Target Tracking and Identification

    DTIC Science & Technology

    1996-12-01

    Computes the likelihood for various potential jump moves. 12. matrix_mult.m: Parallel implementation of linear algebra ... Elementary Lineary Algebra with Applications, John Wiley k Sons, Inc., New York, 1987. [9] A. K. Bhattacharyya, and D. L. Sengupta, Radar Cross...Miller, ’Target Tracking and Recognition Using Jump-Diffusion Processes," ARO’s 11th Army Conf. on Applied Mathemat- ics and Computing, June 8-11

  13. Design of an FMCW radar baseband signal processing system for automotive application.

    PubMed

    Lin, Jau-Jr; Li, Yuan-Ping; Hsu, Wei-Chiang; Lee, Ta-Sung

    2016-01-01

    For a typical FMCW automotive radar system, a new design of baseband signal processing architecture and algorithms is proposed to overcome the ghost targets and overlapping problems in the multi-target detection scenario. To satisfy the short measurement time constraint without increasing the RF front-end loading, a three-segment waveform with different slopes is utilized. By introducing a new pairing mechanism and a spatial filter design algorithm, the proposed detection architecture not only provides high accuracy and reliability, but also requires low pairing time and computational loading. This proposed baseband signal processing architecture and algorithms balance the performance and complexity, and are suitable to be implemented in a real automotive radar system. Field measurement results demonstrate that the proposed automotive radar signal processing system can perform well in a realistic application scenario.

  14. FPGA based hardware optimized implementation of signal processing system for LFM pulsed radar

    NASA Astrophysics Data System (ADS)

    Azim, Noor ul; Jun, Wang

    2016-11-01

    Signal processing is one of the main parts of any radar system. Different signal processing algorithms are used to extract information about different parameters like range, speed, direction etc, of a target in the field of radar communication. This paper presents LFM (Linear Frequency Modulation) pulsed radar signal processing algorithms which are used to improve target detection, range resolution and to estimate the speed of a target. Firstly, these algorithms are simulated in MATLAB to verify the concept and theory. After the conceptual verification in MATLAB, the simulation is converted into implementation on hardware using Xilinx FPGA. Chosen FPGA is Xilinx Virtex-6 (XC6LVX75T). For hardware implementation pipeline optimization is adopted and also other factors are considered for resources optimization in the process of implementation. Focusing algorithms in this work for improving target detection, range resolution and speed estimation are hardware optimized fast convolution processing based pulse compression and pulse Doppler processing.

  15. Design and Efficiency Analysis of Operational Scenarios for Space Situational Awareness Radar System

    NASA Astrophysics Data System (ADS)

    Choi, E. J.; Cho, S.; Jo, J. H.; Park, J.; Chung, T.; Park, J.; Jeon, H.; Yun, A.; Lee, Y.

    In order to perform the surveillance and tracking of space objects, optical and radar sensors are the technical components for space situational awareness system. Especially, space situational awareness radar system in combination with optical sensors network plays an outstanding role for space situational awareness. At present, OWL-Net(Optical Wide Field patrol Network) optical system, which is the only infra structures for tracking of space objects in Korea is very limited in all-weather and observation time. Therefore, the development of radar system capable of continuous operation is becoming an essential space situational awareness element. Therefore, for an efficient space situational awareness at the current state, the strategy of the space situational awareness radar development should be considered. The purpose of this paper is to analyze the efficiency of radar system for detection and tracking of space objects. The detection capabilities are limited to an altitude of 2,000 km with debris size of 1 m2 in radar cross section (RCS) for the radar operating frequencies of L, S, C, X, and Ku-band. The power budget analysis results showed that the maximum detection range of 2,000km can be achieved with the transmitted power of 900 kW, transmit and receive antenna gains of 40 dB and 43 dB, respectively, pulse width of 2 ms, and a signal processing gain of 13.3dB, at frequency of 1.3GHz. The required signal-to-noise ratio (SNR) was assumed to be 12.6 dB for probability of detection of 80% with false alarm rate 10-6. Through the efficiency analysis and trade-off study, the key parameters of the radar system are designed. As a result, this research will provide the guideline for the conceptual design of space situational awareness system.

  16. Development of a ground signal processor for digital synthetic array radar data

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Estes, J. M.

    1981-01-01

    A modified APQ-102 sidelooking array radar (SLAR) in a B-57 aircraft test bed is used, with other optical and infrared sensors, in remote sensing of Earth surface features for various users at NASA Johnson Space Center. The video from the radar is normally recorded on photographic film and subsequently processed photographically into high resolution radar images. Using a high speed sampling (digitizing) system, the two receiver channels of cross-and co-polarized video are recorded on wideband magnetic tape along with radar and platform parameters. These data are subsequently reformatted and processed into digital synthetic aperture radar images with the image data available on magnetic tape for subsequent analysis by investigators. The system design and results obtained are described.

  17. Ground penetrating radar (GPR) analysis : Phase I.

    DOT National Transportation Integrated Search

    2009-11-01

    "The objective of this work is to evaluate the feasibility of expanding the MDT's Ground Penetrating : Radar (GPR) program to a broader range of pavement evaluation activities. Currently, MDT uses GPR in : conjunction with its Falling Weight Deflecto...

  18. On Adaptive Cell-Averaging CFAR (Constant False-Alarm Rate) Radar Signal Detection

    DTIC Science & Technology

    1987-10-01

    SIICILE COPY 4 F FInI Tedwill Rlmrt to October 197 00 C\\JT ON ADAPTIVE CELL-AVERA81NG CFAR I RADAR SIGNAL DETECTION Syracuse University Mourud krket...NY 13441-5700 ELEMENT NO. NO. NO ACCESSION NO. 11. TITLE (Include Security Classification) 61102F 2’ 05 J8 PD - ON ADAPTIVE CELL-AVERAGING CFAR RADAR... CFAR ). One approach to adaptive detection in nonstationary noise and clutter background is to compare the processed target signal to an adaptive

  19. Tracking radar advanced signal processing and computing for Kwajalein Atoll (KA) application

    NASA Astrophysics Data System (ADS)

    Cottrill, Stanley D.

    1992-11-01

    Two means are examined whereby the operations of KMR during mission execution may be improved through the introduction of advanced signal processing techniques. In the first approach, the addition of real time coherent signal processing technology to the FPQ-19 radar is considered. In the second approach, the incorporation of the MMW radar, with its very fine range precision, to the MMS system is considered. The former appears very attractive and a Phase 2 SBIR has been proposed. The latter does not appear promising enough to warrant further development.

  20. Quantitative estimation of Tropical Rainfall Mapping Mission precipitation radar signals from ground-based polarimetric radar observations

    NASA Astrophysics Data System (ADS)

    Bolen, Steven M.; Chandrasekar, V.

    2003-06-01

    The Tropical Rainfall Mapping Mission (TRMM) is the first mission dedicated to measuring rainfall from space using radar. The precipitation radar (PR) is one of several instruments aboard the TRMM satellite that is operating in a nearly circular orbit with nominal altitude of 350 km, inclination of 35°, and period of 91.5 min. The PR is a single-frequency Ku-band instrument that is designed to yield information about the vertical storm structure so as to gain insight into the intensity and distribution of rainfall. Attenuation effects on PR measurements, however, can be significant and as high as 10-15 dB. This can seriously impair the accuracy of rain rate retrieval algorithms derived from PR signal returns. Quantitative estimation of PR attenuation is made along the PR beam via ground-based polarimetric observations to validate attenuation correction procedures used by the PR. The reflectivity (Zh) at horizontal polarization and specific differential phase (Kdp) are found along the beam from S-band ground radar measurements, and theoretical modeling is used to determine the expected specific attenuation (k) along the space-Earth path at Ku-band frequency from these measurements. A theoretical k-Kdp relationship is determined for rain when Kdp ≥ 0.5°/km, and a power law relationship, k = a Zhb, is determined for light rain and other types of hydrometers encountered along the path. After alignment and resolution volume matching is made between ground and PR measurements, the two-way path-integrated attenuation (PIA) is calculated along the PR propagation path by integrating the specific attenuation along the path. The PR reflectivity derived after removing the PIA is also compared against ground radar observations.

  1. SHUTTLE IMAGING RADAR: PHYSICAL CONTROLS ON SIGNAL PENETRATION AND SUBSURFACE SCATTERING IN THE EASTERN SAHARA.

    USGS Publications Warehouse

    Schaber, Gerald G.; McCauley, John F.; Breed, Carol S.; Olhoeft, Gary R.

    1986-01-01

    It is found that the Shuttle Imaging Radar A (SIR-A) signal penetration and subsurface backscatter within the upper meter or so of the sediment blanket in the Eastern Sahara of southern Egypt and northern Sudan are enhanced both by radar sensor parameters and by the physical and chemical characteristics of eolian and alluvial materials. The near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include 1) favorable distribution of particle sizes, 2) extremely low moisture content and 3) reduced geometric scattering at the SIR-A frequency (1. 3 GHz). The depth of signal penetration that results in a recorded backscatter, called radar imaging depth, was documented in the field to be a maximum of 1. 5 m, or 0. 25 times the calculated skin depth, for the sediment blanket. The radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials.

  2. Radar Polarimetry: Theory, Analysis, and Applications

    NASA Astrophysics Data System (ADS)

    Hubbert, John Clark

    The fields of radar polarimetry and optical polarimetry are compared. The mathematics of optic polarimetry are formulated such that a local right handed coordinate system is always used to describe the polarization states. This is not done in radar polarimetry. Radar optimum polarization theory is redeveloped within the framework of optical polarimetry. The radar optimum polarizations and optic eigenvalues of common scatterers are compared. In addition a novel definition of an eigenpolarization state is given and the accompanying mathematics is developed. The polarization response calculated using optic, radar and novel definitions is presented for a variety of scatterers. Polarimetric transformation provides a means to characterize scatters in more than one polarization basis. Polarimetric transformation for an ensemble of scatters is obtained via two methods: (1) the covariance method and (2) the instantaneous scattering matrix (ISM) method. The covariance method is used to relate the mean radar parameters of a +/-45^circ linear polarization basis to those of a horizontal and vertical polarization basis. In contrast the ISM method transforms the individual time samples. Algorithms are developed for transforming the time series from fully polarimetric radars that switch between orthogonal states. The transformed time series are then used to calculate the mean radar parameters of interest. It is also shown that propagation effects do not need to be removed from the ISM's before transformation. The techniques are demonstrated using data collected by POLDIRAD, the German Aerospace Research Establishment's fully polarimetric C-band radar. The differential phase observed between two copolar states, Psi_{CO}, is composed of two phases: (1) differential propagation phase, phi_{DP}, and (2) differential backscatter phase, delta. The slope of phi_{DP } with range is an estimate of the specific differential phase, K_{DP}. The process of estimating K_{DP} is complicated when

  3. Basic gait analysis based on continuous wave radar.

    PubMed

    Zhang, Jun

    2012-09-01

    A gait analysis method based on continuous wave (CW) radar is proposed in this paper. Time-frequency analysis is used to analyze the radar micro-Doppler echo from walking humans, and the relationships between the time-frequency spectrogram and human biological gait are discussed. The methods for extracting the gait parameters from the spectrogram are studied in depth and experiments on more than twenty subjects have been performed to acquire the radar gait data. The gait parameters are calculated and compared. The gait difference between men and women are presented based on the experimental data and extracted features. Gait analysis based on CW radar will provide a new method for clinical diagnosis and therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Analysis of a digital RF memory in a signal-delay application

    SciTech Connect

    Jelinek, D.A.

    1992-03-01

    Laboratory simulation of the approach of a radar fuze towards a target is an important factor in our ability to accurately measure the radar`s performance. This simulation is achieved, in part, by dynamically delaying and attenuating the radar`s transmitted pulse and sending the result back to the radar`s receiver. Historically, the device used to perform the dynamic delay has been a limiting factor in the evaluation of a radar`s performance and characteristics. A new device has been proposed that appears to have more capability than previous dynamic delay devices. This device is the digital RF memory. This report presents themore » results of an analysis of a digital RF memory used in a signal-delay application. 2 refs.« less

  5. Coherent radar imaging: Signal processing and statistical properties

    NASA Astrophysics Data System (ADS)

    Woodman, Ronald F.

    1997-11-01

    The recently developed technique for imaging radar scattering irregularities has opened a great scientific potential for ionospheric and atmospheric coherent radars. These images are obtained by processing the diffraction pattern of the backscattered electromagnetic field at a finite number of sampling points on the ground. In this paper, we review the mathematical relationship between the statistical covariance of these samples, (? ?†), and that of the radiating object field to be imaged, (??†), in a self-contained and comprehensive way. It is shown that these matrices are related in a linear way by (??†) = aM(FF†)M†a*, where M is a discrete Fourier transform operator and a is a matrix operator representing the discrete and limited sampling of the field. The image, or brightness distribution, is the diagonal of (FF†). The equation can be linearly inverted only in special cases. In most cases, inversion algorithms which make use of a priori information or maximum entropy constraints must be used. A naive (biased) "image" can be estimated in a manner analogous to an optical camera by simply applying an inverse DFT operator to the sampled field ? and evaluating the average power of the elements of the resulting vector ?. Such a transformation can be obtained either digitally or in an analog way. For the latter we can use a Butler matrix consisting of properly interconnected transmission lines. The case of radar targets in the near field is included as a new contribution. This case involves an additional matrix operator b, which is an analog of an optical lens used to compensate for the curvature of the phase fronts of the backscattered field. This "focusing" can be done after the statistics have been obtained. The formalism is derived for brightness distributions representing total powers. However, the derived expressions have been extended to include "color" images for each of the frequency components of the sampled time series. The frequency filtering

  6. Preliminary Analysis of X-Band and Ka-Band Radar for Use in the Detection of Icing Conditions Aloft

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Koenig, George G.

    2004-01-01

    NASA and the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) have an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. Radar has been identified as a strong tool for this work. However, since the remote detection of icing conditions with the intent to identify areas of icing hazard is a new and evolving capability, there are no set requirements for radar sensitivity. This work is an initial attempt to quantify, through analysis, the sensitivity requirements for an icing remote sensing radar. The primary radar of interest for cloud measurements is Ka-band, however, since NASA is currently using an X-band unit, this frequency is also examined. Several aspects of radar signal analysis were examined. Cloud reflectivity was calculated for several forms of cloud using two different techniques. The Air Force Geophysical Laboratory (AFGL) cloud models, with different drop spectra represented by a modified gamma distribution, were utilized to examine several categories of cloud formation. Also a fundamental methods approach was used to allow manipulation of the cloud droplet size spectra. And an analytical icing radar simulator was developed to examine the complete radar system response to a configurable multi-layer cloud environment. Also discussed is the NASA vertical pointing X-band radar. The radar and its data system are described, and several summer weather events are reviewed.

  7. A high powered radar interference mitigation technique for communications signal recovery with fpga implementation

    DTIC Science & Technology

    2017-03-01

    2016.7485263.] 14. SUBJECT TERMS parameter estimation; matched- filter detection; QPSK; radar; interference; LSE, cyber, electronic warfare 15. NUMBER OF...signal is routed through a maximum-likelihood detector (MLD), which is a bank of four filters matched to the four symbols of the QPSK constellation... filters matched for each of the QPSK symbols is used to demodulate the signal after cancellation. The matched filters are defined as the complex

  8. Signal and noise level estimation for narrow spectral width returns observed by the Indian MST radar

    NASA Astrophysics Data System (ADS)

    Hooper, D. A.

    1999-07-01

    Use is made of five sets of multibeam observations of the lower atmosphere made by the Indian mesosphere-stratosphere-troposphere (MST) radar. Two aspects of signal processing which can lead to serious underestimates of the signal-to-noise ratio are considered. First, a comparison is made of the effects of different data weighting windows applied to the inphase and quadrature components of the radar return samples prior to Fourier transformation. The relatively high degree of spectral leakage associated with the rectangular and Hamming windows can give rise to overestimates of the noise levels by up to 28 dB for the strongest signals. Use of the Hanning window is found to be the most appropriate for these particular data. Second, a technique for removing systematic dc biases from the data in the time domain is compared with the more well-known practice of correction in the frequency domain. The latter technique, which is often used to remove the effects of ground clutter, is shown to be particularly inappropriate for the characteristically narrow spectral width signals observed by the Indian MST radar. For cases of near-zero Doppler shift it can remove up to 30 dB of signal information. The consequences of noise and signal level discrepancies for studies of refractivity structures are discussed. It is shown that neither problem has a significant effect on Doppler shift or spectral width estimates.

  9. Close-range radar rainfall estimation and error analysis

    NASA Astrophysics Data System (ADS)

    van de Beek, C. Z.; Leijnse, H.; Hazenberg, P.; Uijlenhoet, R.

    2016-08-01

    Quantitative precipitation estimation (QPE) using ground-based weather radar is affected by many sources of error. The most important of these are (1) radar calibration, (2) ground clutter, (3) wet-radome attenuation, (4) rain-induced attenuation, (5) vertical variability in rain drop size distribution (DSD), (6) non-uniform beam filling and (7) variations in DSD. This study presents an attempt to separate and quantify these sources of error in flat terrain very close to the radar (1-2 km), where (4), (5) and (6) only play a minor role. Other important errors exist, like beam blockage, WLAN interferences and hail contamination and are briefly mentioned, but not considered in the analysis. A 3-day rainfall event (25-27 August 2010) that produced more than 50 mm of precipitation in De Bilt, the Netherlands, is analyzed using radar, rain gauge and disdrometer data. Without any correction, it is found that the radar severely underestimates the total rain amount (by more than 50 %). The calibration of the radar receiver is operationally monitored by analyzing the received power from the sun. This turns out to cause a 1 dB underestimation. The operational clutter filter applied by KNMI is found to incorrectly identify precipitation as clutter, especially at near-zero Doppler velocities. An alternative simple clutter removal scheme using a clear sky clutter map improves the rainfall estimation slightly. To investigate the effect of wet-radome attenuation, stable returns from buildings close to the radar are analyzed. It is shown that this may have caused an underestimation of up to 4 dB. Finally, a disdrometer is used to derive event and intra-event specific Z-R relations due to variations in the observed DSDs. Such variations may result in errors when applying the operational Marshall-Palmer Z-R relation. Correcting for all of these effects has a large positive impact on the radar-derived precipitation estimates and yields a good match between radar QPE and gauge

  10. Preliminary radar systems analysis for Venus orbiter missions

    NASA Technical Reports Server (NTRS)

    Brandenburg, R. K.; Spadoni, D. J.

    1971-01-01

    A short, preliminary analysis is presented of the problems involved in mapping the surface of Venus with radar from an orbiting spacecraft. Two types of radar, the noncoherent sidelooking and the focused synthetic aperture systems, are sized to fulfill two assumed levels of Venus exploration. The two exploration levels, regional and local, assumed for this study are based on previous Astro Sciences work (Klopp 1969). The regional level is defined as 1 to 3 kilometer spatial and 0.5 to 1 km vertical resolution of 100 percent 0 of the planet's surface. The local level is defined as 100 to 200 meter spatial and 50-10 m vertical resolution of about 100 percent of the surfAce (based on the regional survey). A 10cm operating frequency was chosen for both radar systems in order to minimize the antenna size and maximize the apparent radar cross section of the surface.

  11. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar

    PubMed Central

    Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam

    2016-01-01

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system’s capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications. PMID:27690051

  12. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar.

    PubMed

    Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam

    2016-09-29

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system's capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications.

  13. Development of a real time bistatic radar receiver using signals of opportunity

    NASA Astrophysics Data System (ADS)

    Rainville, Nicholas

    Passive bistatic radar remote sensing offers a novel method of monitoring the Earth's surface by observing reflected signals of opportunity. The Global Positioning System (GPS) has been used as a source of signals for these observations and the scattering properties of GPS signals from rough surfaces are well understood. Recent work has extended GPS signal reflection observations and scattering models to include communications signals such as XM radio signals. However the communication signal reflectometry experiments to date have relied on collecting raw, high data-rate signals which are then post-processed after the end of the experiment. This thesis describes the development of a communication signal bistatic radar receiver which computes a real time correlation waveform, which can be used to retrieve measurements of the Earth's surface. The real time bistatic receiver greatly reduces the quantity of data that must be stored to perform the remote sensing measurements, as well as offering immediate feedback. This expands the applications for the receiver to include space and bandwidth limited platforms such as aircraft and satellites. It also makes possible the adjustment of flight plans to the observed conditions. This real time receiver required the development of an FGPA based signal processor, along with the integration of commercial Satellite Digital Audio Radio System (SDARS) components. The resulting device was tested both in a lab environment as well on NOAA WP-3D and NASA WB-57 aircraft.

  14. Stacked Autoencoders for Outlier Detection in Over-the-Horizon Radar Signals

    PubMed Central

    Protopapadakis, Eftychios; Doulamis, Anastasios; Doulamis, Nikolaos; Dres, Dimitrios; Bimpas, Matthaios

    2017-01-01

    Detection of outliers in radar signals is a considerable challenge in maritime surveillance applications. High-Frequency Surface-Wave (HFSW) radars have attracted significant interest as potential tools for long-range target identification and outlier detection at over-the-horizon (OTH) distances. However, a number of disadvantages, such as their low spatial resolution and presence of clutter, have a negative impact on their accuracy. In this paper, we explore the applicability of deep learning techniques for detecting deviations from the norm in behavioral patterns of vessels (outliers) as they are tracked from an OTH radar. The proposed methodology exploits the nonlinear mapping capabilities of deep stacked autoencoders in combination with density-based clustering. A comparative experimental evaluation of the approach shows promising results in terms of the proposed methodology's performance. PMID:29312449

  15. A novel radar sensor for the non-contact detection of speech signals.

    PubMed

    Jiao, Mingke; Lu, Guohua; Jing, Xijing; Li, Sheng; Li, Yanfeng; Wang, Jianqi

    2010-01-01

    Different speech detection sensors have been developed over the years but they are limited by the loss of high frequency speech energy, and have restricted non-contact detection due to the lack of penetrability. This paper proposes a novel millimeter microwave radar sensor to detect speech signals. The utilization of a high operating frequency and a superheterodyne receiver contributes to the high sensitivity of the radar sensor for small sound vibrations. In addition, the penetrability of microwaves allows the novel sensor to detect speech signals through nonmetal barriers. Results show that the novel sensor can detect high frequency speech energies and that the speech quality is comparable to traditional microphone speech. Moreover, the novel sensor can detect speech signals through a nonmetal material of a certain thickness between the sensor and the subject. Thus, the novel speech sensor expands traditional speech detection techniques and provides an exciting alternative for broader application prospects.

  16. A Novel Radar Sensor for the Non-Contact Detection of Speech Signals

    PubMed Central

    Jiao, Mingke; Lu, Guohua; Jing, Xijing; Li, Sheng; Li, Yanfeng; Wang, Jianqi

    2010-01-01

    Different speech detection sensors have been developed over the years but they are limited by the loss of high frequency speech energy, and have restricted non-contact detection due to the lack of penetrability. This paper proposes a novel millimeter microwave radar sensor to detect speech signals. The utilization of a high operating frequency and a superheterodyne receiver contributes to the high sensitivity of the radar sensor for small sound vibrations. In addition, the penetrability of microwaves allows the novel sensor to detect speech signals through nonmetal barriers. Results show that the novel sensor can detect high frequency speech energies and that the speech quality is comparable to traditional microphone speech. Moreover, the novel sensor can detect speech signals through a nonmetal material of a certain thickness between the sensor and the subject. Thus, the novel speech sensor expands traditional speech detection techniques and provides an exciting alternative for broader application prospects. PMID:22399895

  17. Synthetic aperture radar signal data compression using block adaptive quantization

    NASA Technical Reports Server (NTRS)

    Kuduvalli, Gopinath; Dutkiewicz, Melanie; Cumming, Ian

    1994-01-01

    This paper describes the design and testing of an on-board SAR signal data compression algorithm for ESA's ENVISAT satellite. The Block Adaptive Quantization (BAQ) algorithm was selected, and optimized for the various operational modes of the ASAR instrument. A flexible BAQ scheme was developed which allows a selection of compression ratio/image quality trade-offs. Test results show the high quality of the SAR images processed from the reconstructed signal data, and the feasibility of on-board implementation using a single ASIC.

  18. Signal processing techniques for the U.S. Army Research Laboratory stepped frequency ultra-wideband radar

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam

    2017-05-01

    The U.S. Army Research Laboratory (ARL) recently designed and tested a new prototype radar, the Spectrally Agile Frequency-Incrementing Reconfigurable (SAFIRE) radar system, based on a stepped-frequency architecture to address issues associated with our previous impulse-based radars. This is a low-frequency ultra-wideband (UWB) radar with frequencies spanning from 300 to 2000 MHz. Mounted on a vehicle, the radar can be configured in either sidelooking or forward-looking synthetic aperture radar (SAR) mode. We recently conducted our first experiment at Yuma Proving Grounds (YPG). This paper summarizes the radar configurations, parameters, and SAR geometry. The radar data and other noise sources, to include the self-interference signals and radio-frequency interference (RFI) noise sources, are presented and characterized in both the raw (pre-focus) and SAR imagery domains. This paper also describes our signal processing techniques for extracting noise from radar data, as well as the SAR imaging algorithms for forming SAR imagery in both forward- and side-looking modes. Finally, this paper demonstrates our spectral recovery technique and results for a radar operating in a spectrally restricted environment.

  19. Ultrawideband radar clutter measurements and analysis

    NASA Astrophysics Data System (ADS)

    Tuley, Michael T.; Sheen, David M.; Collins, H. D.; Sager, Earl V.; Schultheis, A. C.

    1993-05-01

    This paper reports the results of ultrawideband radar clutter measurements made by Battelle- Pacific Northwest Laboratories and the System Planning Corporation near Sequim, WA. The measurement area is a mountainous coniferous forest with occasional roads and clear-cut areas. Local grazing angles range from near zero to approximately 40 degree(s). Very limited data are also presented from measurements made in a desert-type terrain near Richland, WA. Two ultrawideband radar systems were employed in the data collection. An impulse system providing an approximate one nanosecond monocycle pulse (bandwidth of 300 MHz - 1000 MHz) acquired data over a 0.7 km2 area (121,000 resolution cells). A step chirp radar with the same total bandwidth as the impulse system collected data over a 6.2 km2 area (780,000 resolution cells), including the area sampled by the impulse system. Wideband TEM horn antennas (log-periodic antennas for the step chirp system) deployed on a 19 m horizontally scanned aperture were used for transmission and reception, providing a 1.5 degree(s) azimuth resolution at 300 MHz for both systems.

  20. Predictability of GNSS signal observations in support of Space Situational Awareness using passive radar

    NASA Astrophysics Data System (ADS)

    Mahmud, M. S.; Lambert, A.; Benson, C.

    2015-07-01

    GNSS signals have been proposed as emitters of opportunity to enhance Space Situational Awareness (SSA) by tracking small items of space debris using bistatic radar. Although the scattered GNSS signal levels from small items of space debris are incredibly low, the dynamic disturbances of the observed object are very small, and the phase of the scattered signals is well behaved. It is therefore plausible that coherent integration periods on the order of many minutes could be achieved. However, even with long integration periods, very large receiver arrays with extensive, but probably viable, processing are required to recover the scattered signal. Such large arrays will be expensive, and smaller more affordable arrays will collect insufficient signal power to detect the small objects (relative to wavelength) that are necessary to maintain the necessary phase coherency. The investments necessary to build a large receiver array are unlikely without substantial risk reduction. Pini and Akos have previously reported on use of very large radio telescopes to analyse the short-term modulation performance of GNSS satellite signals. In this work we report on tracking of GPS satellites with a radio-astronomy VLBI antenna system to assess the stability of the observed GPS signal over a time period indicative of that proposed for passive radar. We also confirm some of the processing techniques that may be used in both demonstrations and the final system. We conclude from the limited data set that the signal stability when observed by a high-gain tracking antenna and compared against a high quality, low phase-noise clock is excellent, as expected. We conclude by framing further works to reduce risk for a passive radar SSA capability using GNSS signals. http://www.ignss.org/Conferences/PastConferencePapers/2015ConferencePastPapers/2015PeerReviewedPapers/tabid/147/Default.aspx

  1. Shuttle Imaging Radar - Physical controls on signal penetration and subsurface scattering in the Eastern Sahara

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.; Mccauley, J. F.; Breed, C. S.; Olhoeft, G. R.

    1986-01-01

    Interpretation of Shuttle Imaging Radar-A (SIR-A) images by McCauley et al. (1982) dramatically changed previous concepts of the role that fluvial processes have played over the past 10,000 to 30 million years in shaping this now extremely flat, featureless, and hyperarid landscape. In the present paper, the near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include (1) favorable distribution of particle sizes, (2) extremely low moisture content and (3) reduced geometric scattering at the SIR-A frequency (1.3 GHz). The depth of signal penetration that results in a recorded backscatter, here called 'radar imaging depth', was documented in the field to be a maximum of 1.5 m, or 0.25 of the calculated 'skin depth', for the sediment blanket. Radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials. Diverse permittivity interfaces and volume scatterers within the shallow subsurface are responsible for most of the observed backscatter not directly attributable to grazing outcrops. Calcium carbonate nodules and rhizoliths concentrated in sandy alluvium of Pleistocene age south of Safsaf oasis in south Egypt provide effective contrast in premittivity and thus act as volume scatterers that enhance SIR-A portrayal of younger inset stream channels.

  2. Analysis of Human's Motions Based on Local Mean Decomposition in Through-wall Radar Detection

    NASA Astrophysics Data System (ADS)

    Lu, Qi; Liu, Cai; Zeng, Zhaofa; Li, Jing; Zhang, Xuebing

    2016-04-01

    Observation of human motions through a wall is an important issue in security applications and search-and rescue. Radar has advantages in looking through walls where other sensors give low performance or cannot be used at all. Ultrawideband (UWB) radar has high spatial resolution as a result of employment of ultranarrow pulses. It has abilities to distinguish the closely positioned targets and provide time-lapse information of targets. Moreover, the UWB radar shows good performance in wall penetration when the inherently short pulses spread their energy over a broad frequency range. Human's motions show periodic features including respiration, swing arms and legs, fluctuations of the torso. Detection of human targets is based on the fact that there is always periodic motion due to breathing or other body movements like walking. The radar can gain the reflections from each human body parts and add the reflections at each time sample. The periodic movements will cause micro-Doppler modulation in the reflected radar signals. Time-frequency analysis methods are consider as the effective tools to analysis and extract micro-Doppler effects caused by the periodic movements in the reflected radar signal, such as short-time Fourier transform (STFT), wavelet transform (WT), and Hilbert-Huang transform (HHT).The local mean decomposition (LMD), initially developed by Smith (2005), is to decomposed amplitude and frequency modulated signals into a small set of product functions (PFs), each of which is the product of an envelope signal and a frequency modulated signal from which a time-vary instantaneous phase and instantaneous frequency can be derived. As bypassing the Hilbert transform, the LMD has no demodulation error coming from window effect and involves no negative frequency without physical sense. Also, the instantaneous attributes obtained by LMD are more stable and precise than those obtained by the empirical mode decomposition (EMD) because LMD uses smoothed local

  3. A digital signal processing system for coherent laser radar

    NASA Technical Reports Server (NTRS)

    Hampton, Diana M.; Jones, William D.; Rothermel, Jeffry

    1991-01-01

    A data processing system for use with continuous-wave lidar is described in terms of its configuration and performance during the second survey mission of NASA'a Global Backscatter Experiment. The system is designed to estimate a complete lidar spectrum in real time, record the data from two lidars, and monitor variables related to the lidar operating environment. The PC-based system includes a transient capture board, a digital-signal processing (DSP) board, and a low-speed data-acquisition board. Both unprocessed and processed lidar spectrum data are monitored in real time, and the results are compared to those of a previous non-DSP-based system. Because the DSP-based system is digital it is slower than the surface-acoustic-wave signal processor and collects 2500 spectra/s. However, the DSP-based system provides complete data sets at two wavelengths from the continuous-wave lidars.

  4. Time-Frequency Distribution Analyses of Ku-Band Radar Doppler Echo Signals

    NASA Astrophysics Data System (ADS)

    Bujaković, Dimitrije; Andrić, Milenko; Bondžulić, Boban; Mitrović, Srđan; Simić, Slobodan

    2015-03-01

    Real radar echo signals of a pedestrian, vehicle and group of helicopters are analyzed in order to maximize signal energy around central Doppler frequency in time-frequency plane. An optimization, preserving this concentration, is suggested based on three well-known concentration measures. Various window functions and time-frequency distributions were optimization inputs. Conducted experiments on an analytic and three real signals have shown that energy concentration significantly depends on used time-frequency distribution and window function, for all three used criteria.

  5. Cramer-Rao Bound for Gaussian Random Processes and Applications to Radar Processing of Atmospheric Signals

    NASA Technical Reports Server (NTRS)

    Frehlich, Rod

    1993-01-01

    Calculations of the exact Cramer-Rao Bound (CRB) for unbiased estimates of the mean frequency, signal power, and spectral width of Doppler radar/lidar signals (a Gaussian random process) are presented. Approximate CRB's are derived using the Discrete Fourier Transform (DFT). These approximate results are equal to the exact CRB when the DFT coefficients are mutually uncorrelated. Previous high SNR limits for CRB's are shown to be inaccurate because the discrete summations cannot be approximated with integration. The performance of an approximate maximum likelihood estimator for mean frequency approaches the exact CRB for moderate signal to noise ratio and moderate spectral width.

  6. A UWB Radar Signal Processing Platform for Real-Time Human Respiratory Feature Extraction Based on Four-Segment Linear Waveform Model.

    PubMed

    Hsieh, Chi-Hsuan; Chiu, Yu-Fang; Shen, Yi-Hsiang; Chu, Ta-Shun; Huang, Yuan-Hao

    2016-02-01

    This paper presents an ultra-wideband (UWB) impulse-radio radar signal processing platform used to analyze human respiratory features. Conventional radar systems used in human detection only analyze human respiration rates or the response of a target. However, additional respiratory signal information is available that has not been explored using radar detection. The authors previously proposed a modified raised cosine waveform (MRCW) respiration model and an iterative correlation search algorithm that could acquire additional respiratory features such as the inspiration and expiration speeds, respiration intensity, and respiration holding ratio. To realize real-time respiratory feature extraction by using the proposed UWB signal processing platform, this paper proposes a new four-segment linear waveform (FSLW) respiration model. This model offers a superior fit to the measured respiration signal compared with the MRCW model and decreases the computational complexity of feature extraction. In addition, an early-terminated iterative correlation search algorithm is presented, substantially decreasing the computational complexity and yielding negligible performance degradation. These extracted features can be considered the compressed signals used to decrease the amount of data storage required for use in long-term medical monitoring systems and can also be used in clinical diagnosis. The proposed respiratory feature extraction algorithm was designed and implemented using the proposed UWB radar signal processing platform including a radar front-end chip and an FPGA chip. The proposed radar system can detect human respiration rates at 0.1 to 1 Hz and facilitates the real-time analysis of the respiratory features of each respiration period.

  7. Runoff Analysis Considering Orographical Features Using Dual Polarization Radar Rainfall

    NASA Astrophysics Data System (ADS)

    Noh, Hui-seong; Shin, Hyun-seok; Kang, Na-rae; Lee, Choong-Ke; Kim, Hung-soo

    2013-04-01

    Recently, the necessity for rainfall estimation and forecasting using the radar is being highlighted, due to the frequent occurrence of torrential rainfall resulting from abnormal changes of weather. Radar rainfall data represents temporal and spatial distributions properly and replace the existing rain gauge networks. It is also frequently applied in many hydrologic field researches. However, the radar rainfall data has an accuracy limitation since it estimates rainfall, by monitoring clouds and precipitation particles formed around the surface of the earth(1.5-3km above the surface) or the atmosphere. In a condition like Korea where nearly 70% of the land is covered by mountainous areas, there are lots of restrictions to use rainfall radar, because of the occurrence of beam blocking areas by topography. This study is aiming at analyzing runoff and examining the applicability of (R(Z), R(ZDR) and R(KDP)) provided by the Han River Flood Control Office(HRFCO) based on the basin elevation of Nakdong river watershed. For this purpose, the amount of radar rainfall of each rainfall event was estimated according to three sub-basins of Nakdong river watershed with the average basin elevation above 400m which are Namgang dam, Andong dam and Hapcheon dam and also another three sub-basins with the average basin elevation below 150m which are Waegwan, Changryeong and Goryeong. After runoff analysis using a distribution model, Vflo model, the results were reviewed and compared with the observed runoff. This study estimated the rainfall by using the radar-rainfall transform formulas, (R(Z), R(Z,ZDR) and R(Z,ZDR,KDP) for four stormwater events and compared the results with the point rainfall of the rain gauge. As the result, it was overestimated or underestimated, depending on rainfall events. Also, calculation indicates that the values from R(Z,ZDR) and R(Z,ZDR,KDP) relatively showed the most similar results. Moreover the runoff analysis using the estimated radar rainfall is

  8. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    SciTech Connect

    Handayani, Gunawan

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. Thismore » paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.« less

  9. Signal Processing, Analysis, & Display

    SciTech Connect

    Lager, Darrell; Azevado, Stephen

    1986-06-01

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time- and frequency-domain signalsmore » including operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments,commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less

  10. GEOS-2 C-band radar system project. Spectral analysis as related to C-band radar data analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Work performed on spectral analysis of data from the C-band radars tracking GEOS-2 and on the development of a data compaction method for the GEOS-2 C-band radar data is described. The purposes of the spectral analysis study were to determine the optimum data recording and sampling rates for C-band radar data and to determine the optimum method of filtering and smoothing the data. The optimum data recording and sampling rate is defined as the rate which includes an optimum compromise between serial correlation and the effects of frequency folding. The goal in development of a data compaction method was to reduce to a minimum the amount of data stored, while maintaining all of the statistical information content of the non-compacted data. A digital computer program for computing estimates of the power spectral density function of sampled data was used to perform the spectral analysis study.

  11. Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing.

    PubMed

    Zhang, Fangzheng; Guo, Qingshui; Pan, Shilong

    2017-10-23

    Real-time and high-resolution target detection is highly desirable in modern radar applications. Electronic techniques have encountered grave difficulties in the development of such radars, which strictly rely on a large instantaneous bandwidth. In this article, a photonics-based real-time high-range-resolution radar is proposed with optical generation and processing of broadband linear frequency modulation (LFM) signals. A broadband LFM signal is generated in the transmitter by photonic frequency quadrupling, and the received echo is de-chirped to a low frequency signal by photonic frequency mixing. The system can operate at a high frequency and a large bandwidth while enabling real-time processing by low-speed analog-to-digital conversion and digital signal processing. A conceptual radar is established. Real-time processing of an 8-GHz LFM signal is achieved with a sampling rate of 500 MSa/s. Accurate distance measurement is implemented with a maximum error of 4 mm within a range of ~3.5 meters. Detection of two targets is demonstrated with a range-resolution as high as 1.875 cm. We believe the proposed radar architecture is a reliable solution to overcome the limitations of current radar on operation bandwidth and processing speed, and it is hopefully to be used in future radars for real-time and high-resolution target detection and imaging.

  12. See-through Detection and 3D Reconstruction Using Terahertz Leaky-Wave Radar Based on Sparse Signal Processing

    NASA Astrophysics Data System (ADS)

    Murata, Koji; Murano, Kosuke; Watanabe, Issei; Kasamatsu, Akifumi; Tanaka, Toshiyuki; Monnai, Yasuaki

    2018-02-01

    We experimentally demonstrate see-through detection and 3D reconstruction using terahertz leaky-wave radar based on sparse signal processing. The application of terahertz waves to radar has received increasing attention in recent years for its potential to high-resolution and see-through detection. Among others, the implementation using a leaky-wave antenna is promising for compact system integration with beam steering capability based on frequency sweep. However, the use of a leaky-wave antenna poses a challenge on signal processing. Since a leaky-wave antenna combines the entire signal captured by each part of the aperture into a single output, the conventional array signal processing assuming access to a respective antenna element is not applicable. In this paper, we apply an iterative recovery algorithm "CoSaMP" to signals acquired with terahertz leaky-wave radar for clutter mitigation and aperture synthesis. We firstly demonstrate see-through detection of target location even when the radar is covered with an opaque screen, and therefore, the radar signal is disturbed by clutter. Furthermore, leveraging the robustness of the algorithm against noise, we also demonstrate 3D reconstruction of distributed targets by synthesizing signals collected from different orientations. The proposed approach will contribute to the smart implementation of terahertz leaky-wave radar.

  13. A HWIL test facility of infrared imaging laser radar using direct signal injection

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Lu, Wei; Wang, Chunhui; Wang, Qi

    2005-01-01

    Laser radar has been widely used these years and the hardware-in-the-loop (HWIL) testing of laser radar become important because of its low cost and high fidelity compare with On-the-Fly testing and whole digital simulation separately. Scene generation and projection two key technologies of hardware-in-the-loop testing of laser radar and is a complicated problem because the 3D images result from time delay. The scene generation process begins with the definition of the target geometry and reflectivity and range. The real-time 3D scene generation computer is a PC based hardware and the 3D target models were modeled using 3dsMAX. The scene generation software was written in C and OpenGL and is executed to extract the Z-buffer from the bit planes to main memory as range image. These pixels contain each target position x, y, z and its respective intensity and range value. Expensive optical injection technologies of scene projection such as LDP array, VCSEL array, DMD and associated scene generation is ongoing. But the optical scene projection is complicated and always unaffordable. In this paper a cheaper test facility was described that uses direct electronic injection to provide rang images for laser radar testing. The electronic delay and pulse shaping circuits inject the scenes directly into the seeker's signal processing unit.

  14. Accident investigation: Analysis of aircraft motions from ATC radar recordings

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1976-01-01

    A technique was developed for deriving time histories of an aircraft's motion from air traffic control (ATC) radar records. This technique uses the radar range and azimuth data, along with the downlinked altitude data (from an onboard Mode-C transponder), to derive an expanded set of data which includes airspeed, lift, thrust-drag, attitude angles (pitch, roll, and heading), etc. This method of analyzing aircraft motions was evaluated through flight experiments which used the CV-990 research aircraft and recordings from both the enroute and terminal ATC radar systems. The results indicate that the values derived from the ATC radar records are for the most part in good agreement with the corresponding values obtained from airborne measurements. In an actual accident, this analysis of ATC radar records can complement the flight-data recorders, now onboard airliners, and provide a source of recorded information for other types of aircraft that are equipped with Mode-C transponders but not with onboard recorders.

  15. Terrain-analysis procedures for modeling radar backscatter

    USGS Publications Warehouse

    Schaber, Gerald G.; Pike, Richard J.; Berlin, Graydon Lennis

    1978-01-01

    The collection and analysis of detailed information on the surface of natural terrain are important aspects of radar-backscattering modeling. Radar is especially sensitive to surface-relief changes in the millimeter- to-decimeter scale four conventional K-band (~1-cm wavelength) to L-band (~25-cm wavelength) radar systems. Surface roughness statistics that characterize these changes in detail have been generated by a comprehensive set of seven programmed calculations for radar-backscatter modeling from sets of field measurements. The seven programs are 1) formatting of data in readable form for subsequent topographic analysis program; 2) relief analysis; 3) power spectral analysis; 4) power spectrum plots; 5) slope angle between slope reversals; 6) slope angle against slope interval plots; and 7) base length slope angle and curvature. This complete Fortran IV software package, 'Terrain Analysis', is here presented for the first time. It was originally developed a decade ago for investigations of lunar morphology and surface trafficability for the Apollo Lunar Roving Vehicle.

  16. Analysis of scattering behavior and radar penetration in AIRSAR data

    NASA Technical Reports Server (NTRS)

    Rignot, Eric; Van Zyl, Jakob

    1992-01-01

    A technique is presented to physically characterize changes in radar backscatter with frequency in multifrequency single polarization radar images that can be used as a first step in the analysis of the data and the retrieval of geophysical parameters. The technique is automatic, relatively independent of the incidence angle, and only requires a good calibration accuracy between the different frequencies. The technique reveals large areas where scattering changes significantly with frequency and whether the surface has the characteristics of a smooth, slightly rough, rough, or very rough surface.

  17. Advances in directional borehole radar data analysis and visualization

    USGS Publications Warehouse

    Smith, D.V.G.; Brown, P.J.

    2002-01-01

    The U.S. Geological Survey is developing a directional borehole radar (DBOR) tool for mapping fractures, lithologic changes, and underground utility and void detection. An important part of the development of the DBOR tool is data analysis and visualization, with the aim of making the software graphical user interface (GUI) intuitive and easy to use. The DBOR software system consists of a suite of signal and image processing routines written in Research Systems' Interactive Data Language (IDL). The software also serves as a front-end to many widely accepted Colorado School of Mines Center for Wave Phenomena (CWP) Seismic UNIX (SU) algorithms (Cohen and Stockwell, 2001). Although the SU collection runs natively in a UNIX environment, our system seamlessly emulates a UNIX session within a widely used PC operating system (MicroSoft Windows) using GNU tools (Noer, 1998). Examples are presented of laboratory data acquired with the prototype tool from two different experimental settings. The first experiment imaged plastic pipes in a macro-scale sand tank. The second experiment monitored the progress of an invasion front resulting from oil injection. Finally, challenges to further development and planned future work are discussed.

  18. Formulation and Analysis of the Quantum Radar Cross Section

    NASA Astrophysics Data System (ADS)

    Brandsema, Matthew J.

    In radar, the amount of returns that an object sends back to the receiver after being struck by an electromagnetic wave is characterized by what is known as the radar cross section, denoted by sigma typically. There are many mechanisms that affect how much radiation is reflected back in the receiver direction, such as reflectivity, physical contours and dimensions, attenuation properties of the materials, projected cross sectional area and so on. All of these characteristics are lumped together in a single value of sigma, which has units of m2. Stealth aircrafts for example are designed to minimize its radar cross section and return the smallest amount of radiation possible in the receiver direction. A new concept has been introduced called quantum radar, that uses correlated quantum states of photons as well as the unique properties of quantum mechanics to ascertain information on a target at a distance. At the time of writing this dissertation, quantum radar is very much in its infancy. There still exist fundamental questions about the feasibility of its implementation, especially in the microwave spectrum. However, what has been theoretically determined, is that quantum radar has a fundamental advantage over classical radar in terms of resolution and returns in certain regimes. Analogous to the classical radar cross section (CRCS), the concept of the quantum radar cross section (QRCS) has been introduced. This quantity measures how an object looks to a quantum radar be describing how a single photon, or small cluster of photons scatter off of a macroscopic target. Preliminary simulations of the basic quantum radar cross section equation have yielded promising results showing an advantage in sidelobe response in comparison to the classical RCS. This document expands upon this idea by providing insight as to where this advantage originates, as well as developing more rigorous simulation analysis, and greatly expanding upon the theory. The expanded theory presented

  19. Quantifying the accuracy of snow water equivalent estimates using broadband radar signal phase

    NASA Astrophysics Data System (ADS)

    Deeb, E. J.; Marshall, H. P.; Lamie, N. J.; Arcone, S. A.

    2014-12-01

    Radar wave velocity in dry snow depends solely on density. Consequently, ground-based pulsed systems can be used to accurately measure snow depth and snow water equivalent (SWE) using signal travel-time, along with manual depth-probing for signal velocity calibration. Travel-time measurements require a large bandwidth pulse not possible in airborne/space-borne platforms. In addition, radar backscatter from snow cover is sensitive to grain size and to a lesser extent roughness of layers at current/proposed satellite-based frequencies (~ 8 - 18 GHz), complicating inversion for SWE. Therefore, accurate retrievals of SWE still require local calibration due to this sensitivity to microstructure and layering. Conversely, satellite radar interferometry, which senses the difference in signal phase between acquisitions, has shown a potential relationship with SWE at lower frequencies (~ 1 - 5 GHz) because the phase of the snow-refracted signal is sensitive to depth and dielectric properties of the snowpack, as opposed to its microstructure and stratigraphy. We have constructed a lab-based, experimental test bed to quantify the change in radar phase over a wide range of frequencies for varying depths of dry quartz sand, a material dielectrically similar to dry snow. We use a laboratory grade Vector Network Analyzer (0.01 - 25.6 GHz) and a pair of antennae mounted on a trolley over the test bed to measure amplitude and phase repeatedly/accurately at many frequencies. Using ground-based LiDAR instrumentation, we collect a coordinated high-resolution digital surface model (DSM) of the test bed and subsequent depth surfaces with which to compare the radar record of changes in phase. Our plans to transition this methodology to a field deployment during winter 2014-2015 using precision pan/tilt instrumentation will also be presented, as well as applications to airborne and space-borne platforms toward the estimation of SWE at high spatial resolution (on the order of meters) over

  20. Linear Frequency Modulated Signals VS Orthogonal Frequency Division Multiplexing Signals for Synthetic Aperture Radar Systems

    DTIC Science & Technology

    2014-06-01

    antenna beamwidth and R is the range distance. Antenna beam width  is proportional to the real aperture size and is given as antennaL ...18) where  is the wavelength and antennaL is the physical length of the radar antenna; therefore, cross-range resolution for a real aperture... antennaL R  (20) A value of 50 meters for cross-range resolution is rather high and signifies poor resolution. Under these conditions, obtaining

  1. A Statistical Analysis of the Output Signals of an Acousto-Optic Spectrum Analyzer for CW (Continuous-Wave) Signals

    DTIC Science & Technology

    1988-10-01

    A statistical analysis on the output signals of an acousto - optic spectrum analyzer (AOSA) is performed for the case when the input signal is a...processing, Electronic warfare, Radar countermeasures, Acousto - optic , Spectrum analyzer, Statistical analysis, Detection, Estimation, Canada, Modelling.

  2. Analysis of F-16 radar discrepancies

    NASA Astrophysics Data System (ADS)

    Riche, K. A.

    1982-12-01

    One hundred and eight aircraft were randomly selected from three USAF F-16 bases and examined. These aircraft included 63 single-seat F-16As and 45 two-seat F-16Bs and encompassed 8,525 sorties and 748 radar system write-ups. Programs supported by the Statistical Package for the Social Sciences (SPSS) were run on the data. Of the 748 discrepancies, over one-third of them occurred within three sorties of each other and half within six sorties. Sixteen percent of all aircraft which had a discrepancy within three sorties had another write-up within the next three sorties. Designated repeat/recurring write-ups represented one-third of all the instances in which the write-up separation interval was three sorties or less. This is an indication that maintenance is unable to correct equipment failures as they occur, most likely because the false alarm rate is too high and maintenance is unable to duplicate the error conditions on the ground for correct error diagnosis.

  3. Analysis of polarization radar returns from ice clouds

    NASA Astrophysics Data System (ADS)

    Battaglia, A.; Sturniolo, O.; Prodi, F.

    Using a modified T-matrix code, some polarimetric single-scattering radar parameters ( Zh,v, LDR h,v, ρhv, ZDR and δhv) from populations of ice crystals in ice phase at 94 GHz, modeled with axisymmetric prolate and oblate spheroidal shapes for a Γ-size distribution with different α parameter ( α=0, 1, 2) and characteristic dimension Lm varying from 0.1 to 1.8 mm, have been computed. Some of the results for different radar elevation angles and different orientation distribution for fixed water content are shown. Deeper analysis has been carried out for pure extensive radar polarimetric variables; all of them are strongly dependent on the shapes (characterised by the aspect ratio), the canting angle and the radar elevation angle. Quantities like ZDR or δhv at side incidence or LDR h and ρhv at vertical incidence can be used to investigate the preferred orientation of the particles and, in some cases, their habits. We analyze scatterplots using couples of pure extensive variables. The scatterplots with the most evident clustering properties for the different habits seem to be those in the ( ZDR [ χ=0°], δhv [ χ=0°]), in the ( ZDR [ χ=0°], LDR h [ χ=90°]) and in the ( ZDR [ χ=0°], ρhv [ χ=90°]) plane. Among these, the most appealing one seems to be that involving ZDR and ρhv variables. To avoid the problem of having simultaneous measurements with a side and a vertical-looking radar, we believe that measurements of these two extensive variables using a radar with an elevation angle around 45° can be an effective instrument to identify different habits. In particular, this general idea can be useful for future space-borne polarimetric radars involved in the studies of high ice clouds. It is also believed that these results can be used in next challenge of developing probabilistic and expert methods for identifying hydrometeor types by W-band radars.

  4. The application of digital signal processing techniques to a teleoperator radar system

    NASA Technical Reports Server (NTRS)

    Pujol, A.

    1982-01-01

    A digital signal processing system was studied for the determination of the spectral frequency distribution of echo signals from a teleoperator radar system. The system consisted of a sample and hold circuit, an analog to digital converter, a digital filter, and a Fast Fourier Transform. The system is interfaced to a 16 bit microprocessor. The microprocessor is programmed to control the complete digital signal processing. The digital filtering and Fast Fourier Transform functions are implemented by a S2815 digital filter/utility peripheral chip and a S2814A Fast Fourier Transform chip. The S2815 initially simulates a low-pass Butterworth filter with later expansion to complete filter circuit (bandpass and highpass) synthesizing.

  5. Thermally enhanced signal strength and SNR improvement of photoacoustic radar module

    PubMed Central

    Wang, Wei; Mandelis, Andreas

    2014-01-01

    A thermally enhanced method for improving photoacoustic imaging depth and signal-to-noise (SNR) ratio is presented in this paper. Experimental results showed that the maximum imaging depth increased by 20% through raising the temperature of absorbing biotissues (ex-vivo beef muscle) uniformly from 37 to 43°C, and the SNR was increased by 8%. The parameters making up the Gruneisen constant were investigated experimentally and theoretically. The studies showed that the Gruneisen constant of biotissues increases with temperature, and the results were found to be consistent with the photoacousitc radar theory. PMID:25136501

  6. Prediction of attenuation of the 28 GHz COMSTAR beacon signal using radar and measured rain drop spectra

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.

    1977-01-01

    Disdrometer measurements and radar reflectivity measurements were injected into a computer program to estimate the path attenuation of the signal. Predicted attenuations when compared with the directly measured ones showed generally good correlation on a case by case basis and very good agreement statistically. The utility of using radar in conjunction with disdrometer measurements for predicting fade events and long term fade distributions associated with earth-satellite telecommunications is demonstrated.

  7. Through Wall Radar Classification of Human Micro-Doppler Using Singular Value Decomposition Analysis.

    PubMed

    Ritchie, Matthew; Ash, Matthew; Chen, Qingchao; Chetty, Kevin

    2016-08-31

    The ability to detect the presence as well as classify the activities of individuals behind visually obscuring structures is of significant benefit to police, security and emergency services in many situations. This paper presents the analysis from a series of experimental results generated using a through-the-wall (TTW) Frequency Modulated Continuous Wave (FMCW) C-Band radar system named Soprano. The objective of this analysis was to classify whether an individual was carrying an item in both hands or not using micro-Doppler information from a FMCW sensor. The radar was deployed at a standoff distance, of approximately 0.5 m, outside a residential building and used to detect multiple people walking within a room. Through the application of digital filtering, it was shown that significant suppression of the primary wall reflection is possible, significantly enhancing the target signal to clutter ratio. Singular Value Decomposition (SVD) signal processing techniques were then applied to the micro-Doppler signatures from different individuals. Features from the SVD information have been used to classify whether the person was carrying an item or walking free handed. Excellent performance of the classifier was achieved in this challenging scenario with accuracies up to 94%, suggesting that future through wall radar sensors may have the ability to reliably recognize many different types of activities in TTW scenarios using these techniques.

  8. Through Wall Radar Classification of Human Micro-Doppler Using Singular Value Decomposition Analysis

    PubMed Central

    Ritchie, Matthew; Ash, Matthew; Chen, Qingchao; Chetty, Kevin

    2016-01-01

    The ability to detect the presence as well as classify the activities of individuals behind visually obscuring structures is of significant benefit to police, security and emergency services in many situations. This paper presents the analysis from a series of experimental results generated using a through-the-wall (TTW) Frequency Modulated Continuous Wave (FMCW) C-Band radar system named Soprano. The objective of this analysis was to classify whether an individual was carrying an item in both hands or not using micro-Doppler information from a FMCW sensor. The radar was deployed at a standoff distance, of approximately 0.5 m, outside a residential building and used to detect multiple people walking within a room. Through the application of digital filtering, it was shown that significant suppression of the primary wall reflection is possible, significantly enhancing the target signal to clutter ratio. Singular Value Decomposition (SVD) signal processing techniques were then applied to the micro-Doppler signatures from different individuals. Features from the SVD information have been used to classify whether the person was carrying an item or walking free handed. Excellent performance of the classifier was achieved in this challenging scenario with accuracies up to 94%, suggesting that future through wall radar sensors may have the ability to reliably recognize many different types of activities in TTW scenarios using these techniques. PMID:27589760

  9. SAR Ambiguity Study for the Cassini Radar

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Im, Eastwood; Johnson, William T. K.

    1993-01-01

    The Cassini Radar's synthetic aperture radar (SAR) ambiguity analysis is unique with respect to other spaceborne SAR ambiguity analyses owing to the non-orbiting spacecraft trajectory, asymmetric antenna pattern, and burst mode of data collection. By properly varying the pointing, burst mode timing, and radar parameters along the trajectory this study shows that the signal-to-ambiguity ratio of better than 15 dB can be achieved for all images obtained by the Cassini Radar.

  10. On-Board Fiber-Optic Network Architectures for Radar and Avionics Signal Distribution

    NASA Technical Reports Server (NTRS)

    Alam, Mohammad F.; Atiquzzaman, Mohammed; Duncan, Bradley B.; Nguyen, Hung; Kunath, Richard

    2000-01-01

    Continued progress in both civil and military avionics applications is overstressing the capabilities of existing radio-frequency (RF) communication networks based on coaxial cables on board modem aircrafts. Future avionics systems will require high-bandwidth on- board communication links that are lightweight, immune to electromagnetic interference, and highly reliable. Fiber optic communication technology can meet all these challenges in a cost-effective manner. Recently, digital fiber-optic communication systems, where a fiber-optic network acts like a local area network (LAN) for digital data communications, have become a topic of extensive research and development. Although a fiber-optic system can be designed to transport radio-frequency (RF) signals, the digital fiber-optic systems under development today are not capable of transporting microwave and millimeter-wave RF signals used in radar and avionics systems on board an aircraft. Recent advances in fiber optic technology, especially wavelength division multiplexing (WDM), has opened a number of possibilities for designing on-board fiber optic networks, including all-optical networks for radar and avionics RF signal distribution. In this paper, we investigate a number of different novel approaches for fiber-optic transmission of on-board VHF and UHF RF signals using commercial off-the-shelf (COTS) components. The relative merits and demerits of each architecture are discussed, and the suitability of each architecture for particular applications is pointed out. All-optical approaches show better performance than other traditional approaches in terms of signal-to-noise ratio, power consumption, and weight requirements.

  11. Analysis of the Radar Reflectivity of Aircraft Vortex Wakes

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Wray, Alan; Yan, Jerry (Technical Monitor)

    2000-01-01

    Radar has been proposed as a way to track wake vortices to reduce aircraft spacing and tests have revealed radar echoes from aircraft wakes in clear air. The results are always interpreted qualitatively using Tatarski's theory of weak scattering by isotropic atmospheric turbulence. The goal of the present work was to predict the value of the radar cross-section (RCS) using simpler models. This is accomplished in two steps. First, the refractive index is obtained. Since the structure of the aircraft wakes is different from atmospheric turbulence, three simple mechanisms specific to vortex wakes are considered: (1) Radial density gradient in a two-dimensional vortex, (2) three-dimensional fluctuations in the vortex cores, and (3) Adiabatic transport of the atmospheric fluid in a two-dimensional oval surrounding the pair of vortices. The index of refraction is obtained more precisely for the two-dimensional mechanisms than for the three-dimensional ones. In the second step, knowing the index of refraction, a scattering analysis is performed. Tatarski's weak scattering approximation is kept but the usual assumptions of a far-field and a uniform incident wave are dropped. Neither assumption is generally valid for a wake that is coherent across the radar beam. For analytical insight, a simpler approximation that invokes, in addition to weak scattering, the far-field and wide cylindrical beam assumptions, is also developed and compared with the more general analysis. The predicted RCS values for the oval surround the vortices (mechanism C) agree with the experiments of Bilson conducted over a wide range of frequencies. However, the predictions have a cut-off away from normal incidence which is not present in the measurements. Estimates suggest that this is due to turbulence in the baroclinic vorticity generated at the boundary of the oval. The reflectivity of a vortex itself (mechanism A) is comparable to that of the oval (mechanism C) but cuts-off at frequencies lower

  12. A high-speed digital signal processor for atmospheric radar, part 7.3A

    NASA Technical Reports Server (NTRS)

    Brosnahan, J. W.; Woodard, D. M.

    1984-01-01

    The Model SP-320 device is a monolithic realization of a complex general purpose signal processor, incorporating such features as a 32-bit ALU, a 16-bit x 16-bit combinatorial multiplier, and a 16-bit barrel shifter. The SP-320 is designed to operate as a slave processor to a host general purpose computer in applications such as coherent integration of a radar return signal in multiple ranges, or dedicated FFT processing. Presently available is an I/O module conforming to the Intel Multichannel interface standard; other I/O modules will be designed to meet specific user requirements. The main processor board includes input and output FIFO (First In First Out) memories, both with depths of 4096 W, to permit asynchronous operation between the source of data and the host computer. This design permits burst data rates in excess of 5 MW/s.

  13. Generalized Wideband Harmonic Imaging of Nonlinearly Loaded Scatterers: Theory, Analysis, and Application for Forward-Looking Radar Target Detection

    DTIC Science & Technology

    2014-09-01

    signal) operations; it is general enough so that it can accommodate high - power (large-signal) sensing as well—which may be needed to detect targets... Generalized Wideband Harmonic Imaging of Nonlinearly Loaded Scatterers: Theory, Analysis, and Application for Forward-Looking Radar Target...Research Laboratory Adelphi, MD 20783-1138 ARL-TR-7121 September 2014 Generalized Wideband Harmonic Imaging of Nonlinearly Loaded

  14. Radar/Sonar and Time Series Analysis

    DTIC Science & Technology

    1991-04-08

    Fourier and Likelihood Analysis in NMR Spectroscopy .......... David Brillinger and Reinhold Kaiser Resampling Techniques for Stationary Time-series... Meyer The parabolic Fock theory foi a convex dielectric Georgia Tech. scatterer Abstract. This talk deals with a high frequency as) mptotic m~thod for...Malesky Inst. of Physics, Moscow Jun 11 - Jun 15 Victor P. Maslov MIEIM, USSR May 29 - Jun 15 Robert P. Meyer University of Wisconsin Jun 11 - Jun 15

  15. Radar/Sonar and Time Series Analysis

    DTIC Science & Technology

    1991-06-27

    Davis, William Dunsmuir Fourier and Likelihood Analysis in NMR Spectroscopy .......... David Brillinger and Reinhold Kaiser Resampling Techniques for...Zubelli. 2:30 pm Gunter Meyer The parabolic Fock theory for a convex dielectric Georgia Tech. scatterer Abstract: This talk deals with a high frequency...Lincoln Laboratory, MIT Jun 18 - Jun 29 Gunter Meyer Georgia Institute of Technology Jun 25 - Jun 29 Willard Miller University of Minnesota Ruth Miniowitz

  16. Noise analysis for near-field 3D FM-CW radar imaging systems

    NASA Astrophysics Data System (ADS)

    Sheen, David M.

    2015-05-01

    Near field radar imaging systems are used for demanding security applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit performance in several ways. Practical imaging systems can employ arrays with low gain antennas and relatively large signal distribution networks that have substantial losses which limit transmit power and increase the effective noise figure of the receiver chain, resulting in substantial thermal noise. Phase noise can also limit system performance. The signal coupled from transmitter to receiver is much larger than expected target signals. Phase noise from this coupled signal can set the system noise floor if the oscillator is too noisy. Frequency modulated continuous wave (FM-CW) radar transceivers used in short range systems are relatively immune to the effects of the coupled phase noise due to range correlation effects. This effect can reduce the phase-noise floor such that it is below the thermal noise floor for moderate performance oscillators. Phase noise is also manifested in the range response around bright targets, and can cause smaller targets to be obscured. Noise in synthetic aperture imaging systems is mitigated by the processing gain of the system. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  17. Radar signal return from near-shore surface and shallow subsurface features, Darien Province, Panama

    NASA Technical Reports Server (NTRS)

    Hanson, B. C.; Dellwig, L. F.

    1973-01-01

    The AN/APQ-97 radar imagery over eastern Panama is analyzed. The imagery was directed toward extraction of geologic and engineering data and the establishment of operational parameters. Subsequent investigations emphasized landform identification and vegetation distribution. The parameters affecting the observed return signal strength from such features are considered. Near-shore ocean phenomena were analyzed. Tidal zone features such as mud flats and reefs were identified in the near range, but were not detectable in the far range. Surface roughness dictated the nature of reflected energy (specular or diffuse). In surf zones, changes in wave train orientation relative to look direction, the slope of the surface, and the physical character of the wave must be considered. It is concluded that the establishment of the areal extent of the tidal flats, distributary channels, and reefs is practical only in the near to intermediate range under minimal low tide conditions.

  18. Radar analysis of free oscillations of rail for diagnostics defects

    NASA Astrophysics Data System (ADS)

    Shaydurov, G. Y.; Kudinov, D. S.; Kokhonkova, E. A.; Potylitsyn, V. S.

    2018-05-01

    One of the tasks of developing and implementing defectoscopy devices is the minimal influence of the human factor in their exploitation. At present, rail inspection systems do not have sufficient depth of rail research, and ultrasonic diagnostics systems need to contact the sensor with the surface being studied, which leads to low productivity. The article gives a comparative analysis of existing noncontact methods of flaw detection, offers a contactless method of diagnostics by excitation of acoustic waves and extraction of information about defects from the frequency of free rail oscillations using the radar method.

  19. Detection capability of a pulsed Ground Penetrating Radar utilizing an oscilloscope and Radargram Fusion Approach for optimal signal quality

    NASA Astrophysics Data System (ADS)

    Seyfried, Daniel; Schoebel, Joerg

    2015-07-01

    In scientific research pulsed radars often employ a digital oscilloscope as sampling unit. The sensitivity of an oscilloscope is determined in general by means of the number of digits of its analog-to-digital converter and the selected full scale vertical setting, i.e., the maximal voltage range displayed. Furthermore oversampling or averaging of the input signal may increase the effective number of digits, hence the sensitivity. Especially for Ground Penetrating Radar applications high sensitivity of the radar system is demanded since reflection amplitudes of buried objects are strongly attenuated in ground. Hence, in order to achieve high detection capability this parameter is one of the most crucial ones. In this paper we analyze the detection capability of our pulsed radar system utilizing a Rohde & Schwarz RTO 1024 oscilloscope as sampling unit for Ground Penetrating Radar applications, such as detection of pipes and cables in the ground. Also effects of averaging and low-noise amplification of the received signal prior to sampling are investigated by means of an appropriate laboratory setup. To underline our findings we then present real-world radar measurements performed on our GPR test site, where we have buried pipes and cables of different types and materials in different depths. The results illustrate the requirement for proper choice of the settings of the oscilloscope for optimal data recording. However, as we show, displaying both strong signal contributions due to e.g., antenna cross-talk and direct ground bounce reflection as well as weak reflections from objects buried deeper in ground requires opposing trends for the oscilloscope's settings. We therefore present our Radargram Fusion Approach. By means of this approach multiple radargrams recorded in parallel, each with an individual optimized setting for a certain type of contribution, can be fused in an appropriate way in order to finally achieve a single radargram which displays all

  20. Consistency analysis and correction of ground-based radar observations using space-borne radar

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Zhu, Yiqing; Wang, Zhenhui; Wang, Yadong

    2018-04-01

    The lack of an accurate determination of radar constant can introduce biases in ground-based radar (GR) reflectivity factor data, and lead to poor consistency of radar observations. The geometry-matching method was applied to carry out spatial matching of radar data from the Precipitation Radar (PR) on board the Tropical Rainfall Measuring Mission (TRMM) satellite to observations from a GR deployed at Nanjing, China, in their effective sampling volume, with 250 match-up cases obtained from January 2008 to October 2013. The consistency of the GR was evaluated with reference to the TRMM PR, whose stability is established. The results show that the below-bright-band-height data of the Nanjing radar can be split into three periods: Period I from January 2008 to March 2010, Period II from March 2010 to May 2013, and Period III from May 2013 to October 2013. There are distinct differences in overall reflectivity factor between the three periods, and the overall reflectivity factor in period II is smaller by a factor of over 3 dB than in periods I and III, although the overall reflectivity within each period remains relatively stable. Further investigation shows that in period II the difference between the GR and PR observations changed with echo intensity. A best-fit relation between the two radar reflectivity factors provides a linear correction that is applied to the reflectivity of the Nanjing radar, and which is effective in improving its consistency. Rain-gauge data were used to verify the correction, and the estimated precipitation based on the corrected GR reflectivity data was closer to the rain-gauge observations than that without correction.

  1. Spaceborne radar observations: A guide for Magellan radar-image analysis

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Blom, R. G.; Crisp, J. A.; Elachi, Charles; Farr, T. G.; Saunders, R. Stephen; Theilig, E. E.; Wall, S. D.; Yewell, S. B.

    1989-01-01

    Geologic analyses of spaceborne radar images of Earth are reviewed and summarized with respect to detecting, mapping, and interpreting impact craters, volcanic landforms, eolian and subsurface features, and tectonic landforms. Interpretations are illustrated mostly with Seasat synthetic aperture radar and shuttle-imaging-radar images. Analogies are drawn for the potential interpretation of radar images of Venus, with emphasis on the effects of variation in Magellan look angle with Venusian latitude. In each landform category, differences in feature perception and interpretive capability are related to variations in imaging geometry, spatial resolution, and wavelength of the imaging radar systems. Impact craters and other radially symmetrical features may show apparent bilateral symmetry parallel to the illumination vector at low look angles. The styles of eruption and the emplacement of major and minor volcanic constructs can be interpreted from morphological features observed in images. Radar responses that are governed by small-scale surface roughness may serve to distinguish flow types, but do not provide unambiguous information. Imaging of sand dunes is rigorously constrained by specific angular relations between the illumination vector and the orientation and angle of repose of the dune faces, but is independent of radar wavelength. With a single look angle, conditions that enable shallow subsurface imaging to occur do not provide the information necessary to determine whether the radar has recorded surface or subsurface features. The topographic linearity of many tectonic landforms is enhanced on images at regional and local scales, but the detection of structural detail is a strong function of illumination direction. Nontopographic tectonic lineaments may appear in response to contrasts in small-surface roughness or dielectric constant. The breakpoint for rough surfaces will vary by about 25 percent through the Magellan viewing geometries from low to high

  2. Improved MIMO radar GMTI via cyclic-shift transmission of orthogonal frequency division signals

    NASA Astrophysics Data System (ADS)

    Li, Fuyou; He, Feng; Dong, Zhen; Wu, Manqing

    2018-05-01

    Minimum detectable velocity (MDV) and maximum detectable velocity are both important in ground moving target indication (GMTI) systems. Smaller MDV can be achieved by longer baseline via multiple-input multiple-output (MIMO) radar. Maximum detectable velocity is decided by blind velocities associated with carrier frequencies, and blind velocities can be mitigated by orthogonal frequency division signals. However, the scattering echoes from different carrier frequencies are independent, which is not good for improving MDV performance. An improved cyclic-shift transmission is applied in MIMO GMTI system in this paper. MDV performance is improved due to the longer baseline, and maximum detectable velocity performance is improved due to the mitigation of blind velocities via multiple carrier frequencies. The signal model for this mode is established, the principle of mitigating blind velocities with orthogonal frequency division signals is presented; the performance of different MIMO GMTI waveforms is analysed; and the performance of different array configurations is analysed. Simulation results by space-time-frequency adaptive processing proves that our proposed method is a valid way to improve GMTI performance.

  3. A novel non-contact radar sensor for affective and interactive analysis.

    PubMed

    Lin, Hong-Dun; Lee, Yen-Shien; Shih, Hsiang-Lan; Chuang, Bor-Nian

    2013-01-01

    Currently, many physiological signal sensing techniques have been applied for affective analysis in Human-Computer Interaction applications. Most known maturely developed sensing methods (EEG/ECG/EMG/Temperature/BP etc. al.) replied on contact way to obtain desired physiological information for further data analysis. However, those methods might cause some inconvenient and uncomfortable problems, and not easy to be used for affective analysis in interactive performing. To improve this issue, a novel technology based on low power radar technology (Nanosecond Pulse Near-field Sensing, NPNS) with 300 MHz radio-frequency was proposed to detect humans' pulse signal by the non-contact way for heartbeat signal extraction. In this paper, a modified nonlinear HRV calculated algorithm was also developed and applied on analyzing affective status using extracted Peak-to-Peak Interval (PPI) information from detected pulse signal. The proposed new affective analysis method is designed to continuously collect the humans' physiological signal, and validated in a preliminary experiment with sound, light and motion interactive performance. As a result, the mean bias between PPI (from NPNS) and RRI (from ECG) shows less than 1ms, and the correlation is over than 0.88, respectively.

  4. Signal Analysis for Aerosat.

    DOT National Transportation Integrated Search

    1972-08-01

    The report addresses signal design for the AEROSAT system. Candidate data and surveillance modems are analyzed for L-Band avionics. Detailed theoretical analyses are presented of the effects of the oceanic satellite-aircraft channel on data modem per...

  5. On the extraction of directional sea-wave spectra from synthetic- aperture radar-signal arrays without matched filtering.

    USGS Publications Warehouse

    Wildey, R.L.

    1980-01-01

    An economical method of digitally extracting sea-wave spectra from synthetic-aperture radar-signal records, which can be performed routinely in real or near-real time with the reception of telemetry from Seasat satellites, would be of value to a variety of scientific disciplines. This paper explores techniques for such data extraction and concludes that the mere fact that the desired result is devoid of phase information does not, of itself, lead to a simplification in data processing because of the nature of the modulation performed on the radar pulse by the backscattering surface. -from Author

  6. Optimization of neural network architecture for classification of radar jamming FM signals

    NASA Astrophysics Data System (ADS)

    Soto, Alberto; Mendoza, Ariadna; Flores, Benjamin C.

    2017-05-01

    The purpose of this study is to investigate several artificial Neural Network (NN) architectures in order to design a cognitive radar system capable of optimally distinguishing linear Frequency-Modulated (FM) signals from bandlimited Additive White Gaussian Noise (AWGN). The goal is to create a theoretical framework to determine an optimal NN architecture to achieve a Probability of Detection (PD) of 95% or higher and a Probability of False Alarm (PFA) of 1.5% or lower at 5 dB Signal to Noise Ratio (SNR). Literature research reveals that the frequency-domain power spectral densities characterize a signal more efficiently than its time-domain counterparts. Therefore, the input data is preprocessed by calculating the magnitude square of the Discrete Fourier Transform of the digitally sampled bandlimited AWGN and linear FM signals to populate a matrix containing N number of samples and M number of spectra. This matrix is used as input for the NN, and the spectra are divided as follows: 70% for training, 15% for validation, and 15% for testing. The study begins by experimentally deducing the optimal number of hidden neurons (1-40 neurons), then the optimal number of hidden layers (1-5 layers), and lastly, the most efficient learning algorithm. The training algorithms examined are: Resilient Backpropagation, Scaled Conjugate Gradient, Conjugate Gradient with Powell/Beale Restarts, Polak-Ribiére Conjugate Gradient, and Variable Learning Rate Backpropagation. We determine that an architecture with ten hidden neurons (or higher), one hidden layer, and a Scaled Conjugate Gradient for training algorithm encapsulates an optimal architecture for our application.

  7. The design and development of signal-processing algorithms for an airborne x-band Doppler weather radar

    NASA Technical Reports Server (NTRS)

    Nicholson, Shaun R.

    1994-01-01

    Improved measurements of precipitation will aid our understanding of the role of latent heating on global circulations. Spaceborne meteorological sensors such as the planned precipitation radar and microwave radiometers on the Tropical Rainfall Measurement Mission (TRMM) provide for the first time a comprehensive means of making these global measurements. Pre-TRMM activities include development of precipitation algorithms using existing satellite data, computer simulations, and measurements from limited aircraft campaigns. Since the TRMM radar will be the first spaceborne precipitation radar, there is limited experience with such measurements, and only recently have airborne radars become available that can attempt to address the issue of the limitations of a spaceborne radar. There are many questions regarding how much attenuation occurs in various cloud types and the effect of cloud vertical motions on the estimation of precipitation rates. The EDOP program being developed by NASA GSFC will provide data useful for testing both rain-retrieval algorithms and the importance of vertical motions on the rain measurements. The purpose of this report is to describe the design and development of real-time embedded parallel algorithms used by EDOP to extract reflectivity and Doppler products (velocity, spectrum width, and signal-to-noise ratio) as the first step in the aforementioned goals.

  8. Application of vector analysis on study of illuminated area and Doppler characteristics of airborne pulse radar

    NASA Astrophysics Data System (ADS)

    Wang, Haijiang; Yang, Ling

    2014-12-01

    In this paper, the application of vector analysis tool in the illuminated area and the Doppler frequency distribution research for the airborne pulse radar is studied. An important feature of vector analysis is that it can closely combine the geometric ideas with algebraic calculations. Through coordinate transform, the relationship between the frame of radar antenna and the ground, under aircraft motion attitude, is derived. Under the time-space analysis, the overlap area between the footprint of radar beam and the pulse-illuminated zone is obtained. Furthermore, the Doppler frequency expression is successfully deduced. In addition, the Doppler frequency distribution is plotted finally. Using the time-space analysis results, some important parameters of a specified airborne radar system are obtained. Simultaneously, the results are applied to correct the phase error brought by attitude change in airborne synthetic aperture radar (SAR) imaging.

  9. Optimization of radar imaging system parameters for geological analysis

    NASA Technical Reports Server (NTRS)

    Waite, W. P.; Macdonald, H. C.; Kaupp, V. H.

    1981-01-01

    The use of radar image simulation to model terrain variation and determine optimum sensor parameters for geological analysis is described. Optimum incidence angle is determined by the simulation, which evaluates separately the discrimination of surface features possible due to terrain geometry and that due to terrain scattering. Depending on the relative relief, slope, and scattering cross section, optimum incidence angle may vary from 20 to 80 degrees. Large incident angle imagery (more than 60 deg) is best for the widest range of geological applications, but in many cases these large angles cannot be achieved by satellite systems. Low relief regions require low incidence angles (less than 30 deg), so a satellite system serving a broad range of applications should have at least two selectable angles of incidence.

  10. Archetypal TRMM Radar Profiles Identified Through Cluster Analysis

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.

    2003-01-01

    It is widely held that identifiable 'convective regimes' exist in nature, although precise definitions of these are elusive. Examples include land / Ocean distinctions, break / monsoon beahvior, seasonal differences in the Amazon (SON vs DJF), etc. These regimes are often described by differences in the realized local convective spectra, and measured by various metrics of convective intensity, depth, areal coverage and rainfall amount. Objective regime identification may be valuable in several ways: regimes may serve as natural 'branch points' in satellite retrieval algorithms or data assimilation efforts; one example might be objective identification of regions that 'should' share a similar 2-R relationship. Similarly, objectively defined regimes may provide guidance on optimal siting of ground validation efforts. Objectively defined regimes could also serve as natural (rather than arbitrary geographic) domain 'controls' in studies of convective response to environmental forcing. Quantification of convective vertical structure has traditionally involved parametric study of prescribed quantities thought to be important to convective dynamics: maximum radar reflectivity, cloud top height, 30-35 dBZ echo top height, rain rate, etc. Individually, these parameters are somewhat deficient as their interpretation is often nonunique (the same metric value may signify different physics in different storm realizations). Individual metrics also fail to capture the coherence and interrelationships between vertical levels available in full 3-D radar datasets. An alternative approach is discovery of natural partitions of vertical structure in a globally representative dataset, or 'archetypal' reflectivity profiles. In this study, this is accomplished through cluster analysis of a very large sample (0[107) of TRMM-PR reflectivity columns. Once achieved, the rainconditional and unconditional 'mix' of archetypal profile types in a given location and/or season provides a description

  11. Analysis of a digital RF memory in a signal-delay application

    SciTech Connect

    Jelinek, D.A.

    1992-03-01

    Laboratory simulation of the approach of a radar fuze towards a target is an important factor in our ability to accurately measure the radar's performance. This simulation is achieved, in part, by dynamically delaying and attenuating the radar's transmitted pulse and sending the result back to the radar's receiver. Historically, the device used to perform the dynamic delay has been a limiting factor in the evaluation of a radar's performance and characteristics. A new device has been proposed that appears to have more capability than previous dynamic delay devices. This device is the digital RF memory. This report presents themore » results of an analysis of a digital RF memory used in a signal-delay application. 2 refs.« less

  12. Real-time MST radar signal processing using a microcomputer running under FORTH

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A.

    1983-01-01

    Data on power, correlation time, and velocity were obtained at the Urbana radar using microcomputer and a single floppy disk drive. This system includes the following features: (1) measurement of the real and imaginary components of the received signal at 20 altitudes spaced by 1.5 km; (2) coherent integration of these components over a 1/8-s time period; (3) continuous real time display of the height profiles of the two coherently integrated components; (4) real time calculation of the 1 minute averages of the power and autocovariance function up to 6 lags; (5) output of these data to floppy disk once every 2 minutes; (6) display of the 1 minute power profiles while the data are stored to the disk; (7) visual prompting for the operator to change disks when required at the end of each hour of data; and (8) continuous audible indication of the status of the interrupt service routine. Accomplishments were enabled by two developments: the use of a new correlation algorithm and the use of the FORTH language to manage the various low level and high level procedures involved.

  13. The modification of X and L band radar signals by monomolecular sea slicks

    NASA Technical Reports Server (NTRS)

    Huehnerfuss, H.; Alpers, W.; Cross, A.; Garrett, W. D.; Keller, W. C.; Plant, W. J.; Schuler, D. L.; Lange, P. A.; Schlude, F.

    1983-01-01

    One methyl oleate and two oleyl alcohol surface films were produced on the surface of the North Sea under comparable oceanographic and meteorological conditions in order to investigate their influence on X and L band radar backscatter. Signals are backscattered in these bands primarily by surface waves with lengths of about 2 and 12 cm, respectively, and backscattered power levels in both bands were reduced by the slicks. The reduction was larger at X band than at L band, however, indicating that shorter waves are more intensely damped by the surface films. The oleyl alcohol film caused greater attenuation of short gravity waves than the film of methyl oleate, thus demonstrating the importance of the physicochemical properties of films on the damping of wind-generated gravity capillary waves. Finally, these experiments indicate a distinct dependence of the degree of damping on the angle between wind and waves. Wind-generated waves traveling in the wind direction are more intensely damped by surface films than are waves traveling at large angles to the wind.

  14. Quantitative analysis of ground penetrating radar data in the Mu Us Sandland

    NASA Astrophysics Data System (ADS)

    Fu, Tianyang; Tan, Lihua; Wu, Yongqiu; Wen, Yanglei; Li, Dawei; Duan, Jinlong

    2018-06-01

    Ground penetrating radar (GPR), which can reveal the sedimentary structure and development process of dunes, is widely used to evaluate aeolian landforms. The interpretations for GPR profiles are mostly based on qualitative descriptions of geometric features of the radar reflections. This research quantitatively analyzed the waveform parameter characteristics of different radar units by extracting the amplitude and time interval parameters of GPR data in the Mu Us Sandland in China, and then identified and interpreted different sedimentary structures. The results showed that different types of radar units had specific waveform parameter characteristics. The main waveform parameter characteristics of sand dune radar facies and sandstone radar facies included low amplitudes and wide ranges of time intervals, ranging from 0 to 0.25 and 4 to 33 ns respectively, and the mean amplitudes changed gradually with time intervals. The amplitude distribution curves of various sand dune radar facies were similar as unimodal distributions. The radar surfaces showed high amplitudes with time intervals concentrated in high-value areas, ranging from 0.08 to 0.61 and 9 to 34 ns respectively, and the mean amplitudes changed drastically with time intervals. The amplitude and time interval values of lacustrine radar facies were between that of sand dune radar facies and radar surfaces, ranging from 0.08 to 0.29 and 11 to 30 ns respectively, and the mean amplitude and time interval curve was approximately trapezoidal. The quantitative extraction and analysis of GPR reflections could help distinguish various radar units and provide evidence for identifying sedimentary structure in aeolian landforms.

  15. Estimation of High-Frequency Earth-Space Radio Wave Signals via Ground-Based Polarimetric Radar Observations

    NASA Technical Reports Server (NTRS)

    Bolen, Steve; Chandrasekar, V.

    2002-01-01

    Expanding human presence in space, and enabling the commercialization of this frontier, is part of the strategic goals for NASA's Human Exploration and Development of Space (HEDS) enterprise. Future near-Earth and planetary missions will support the use of high-frequency Earth-space communication systems. Additionally, increased commercial demand on low-frequency Earth-space links in the S- and C-band spectra have led to increased interest in the use of higher frequencies in regions like Ku and Ka-band. Attenuation of high-frequency signals, due to a precipitating medium, can be quite severe and can cause considerable disruptions in a communications link that traverses such a medium. Previously, ground radar measurements were made along the Earth-space path and compared to satellite beacon data that was transmitted to a ground station. In this paper, quantitative estimation of the attenuation along the propagation path is made via inter-comparisons of radar data taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and ground-based polarimetric radar observations. Theoretical relationships between the expected specific attenuation (k) of spaceborne measurements with ground-based measurements of reflectivity (Zh) and differential propagation phase shift (Kdp) are developed for various hydrometeors that could be present along the propagation path, which are used to estimate the two-way path-integrated attenuation (PIA) on the PR return echo. Resolution volume matching and alignment of the radar systems is performed, and a direct comparison of PR return echo with ground radar attenuation estimates is made directly on a beam-by-beam basis. The technique is validated using data collected from the TExas and Florida UNderflights (TEFLUN-B) experiment and the TRMM large Biosphere-Atmosphere experiment in Amazonia (LBA) campaign. Attenuation estimation derived from this method can be used for strategiC planning of communication systems for

  16. DURIP: Integrated Sensing and Computation for Passive Covert Radar, Signals Intelligence, and Other Applications Driven by Moore’s Law

    DTIC Science & Technology

    2005-12-31

    spectrum. 20060405003 AIRCRAFT ... ..... ... .... . ./ / "... ...... - - RECEIVER Passive radars are fundmentally bistatic (or multistatic), in nature... principle investigator has his main office, will not let us put any research equipment on their roof.) The 5th floor of Van Leer is also the home of Profs...signal already.) These splitters introduce losses that must be taken into account in system performance modeling. We must use both the 105 MHz and the

  17. Social Radar

    DTIC Science & Technology

    2012-01-01

    RTA HFM-201/RSM PAPER 3 - 1 © 2012 The MITRE Corporation. All Rights Reserved. Social Radar Barry Costa and John Boiney MITRE Corporation...defenders require an integrated set of capabilities that we refer to as a “ social radar.” Such a system would support strategic- to operational-level...situation awareness, alerting, course of action analysis, and measures of effectiveness for each action undertaken. Success of a social radar

  18. Hail statistic in Western Europe based on a hyrid cell-tracking algorithm combining radar signals with hailstone observations

    NASA Astrophysics Data System (ADS)

    Fluck, Elody

    2015-04-01

    Hail statistic in Western Europe based on a hybrid cell-tracking algorithm combining radar signals with hailstone observations Elody Fluck¹, Michael Kunz¹ , Peter Geissbühler², Stefan P. Ritz² With hail damage estimated over Billions of Euros for a single event (e.g., hailstorm Andreas on 27/28 July 2013), hail constitute one of the major atmospheric risks in various parts of Europe. The project HAMLET (Hail Model for Europe) in cooperation with the insurance company Tokio Millennium Re aims at estimating hail probability, hail hazard and, combined with vulnerability, hail risk for several European countries (Germany, Switzerland, France, Netherlands, Austria, Belgium and Luxembourg). Hail signals are obtained from radar reflectivity since this proxy is available with a high temporal and spatial resolution using several hail proxies, especially radar data. The focus in the first step is on Germany and France for the periods 2005- 2013 and 1999 - 2013, respectively. In the next step, the methods will be transferred and extended to other regions. A cell-tracking algorithm TRACE2D was adjusted and applied to two dimensional radar reflectivity data from different radars operated by European weather services such as German weather service (DWD) and French weather service (Météo-France). Strong convective cells are detected by considering 3 connected pixels over 45 dBZ (Reflectivity Cores RCs) in a radar scan. Afterwards, the algorithm tries to find the same RCs in the next 5 minute radar scan and, thus, track the RCs centers over time and space. Additional information about hailstone diameters provided by ESWD (European Severe Weather Database) is used to determine hail intensity of the detected hail swaths. Maximum hailstone diameters are interpolated along and close to the individual hail tracks giving an estimation of mean diameters for the detected hail swaths. Furthermore, a stochastic event set is created by randomizing the parameters obtained from the

  19. A Review of Sparsity-Based Methods for Analysing Radar Returns from Helicopter Rotor Blades

    DTIC Science & Technology

    2016-09-01

    UNCLASSIFIED A Review of Sparsity-Based Methods for Analysing Radar Returns from Helicopter Rotor Blades Ngoc Hung Nguyen 1, Hai-Tan Tran 2, Kutluyıl...TR–3292 ABSTRACT Radar imaging of rotating blade -like objects, such as helicopter rotors, using narrowband radar has lately been of significant...Methods for Analysing Radar Returns from Helicopter Rotor Blades Executive Summary Signal analysis and radar imaging of fast-rotating objects such as

  20. SIG. Signal Processing, Analysis, & Display

    SciTech Connect

    Hernandez, J.; Lager, D.; Azevedo, S.

    1992-01-22

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG; a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time and frequency-domain signals includingmore » operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments, commenting lines, defining commands, and automatic execution for each item in a `repeat` sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less

  1. SIG. Signal Processing, Analysis, & Display

    SciTech Connect

    Hernandez, J.; Lager, D.; Azevedo, S.

    1992-01-22

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time-and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time and frequency-domain signals includingmore » operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments, commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less

  2. Combining millimeter-wave radar and communication paradigms for automotive applications : a signal processing approach.

    DOT National Transportation Integrated Search

    2016-05-01

    As driving becomes more automated, vehicles are being equipped with more sensors generating even higher data rates. Radars (RAdio Detection and Ranging) are used for object detection, visual cameras as virtual mirrors, and LIDARs (LIght Detection and...

  3. Ground penetrating radar (GPR) analysis : Phase II field evaluation.

    DOT National Transportation Integrated Search

    2011-10-01

    "The objective of this work was to evaluate the feasibility and value of expanding the MDT's Ground : Penetrating Radar (GPR) program to pavement design and rehabilitation, and to network level : evaluation. Phase I of this project concluded that in ...

  4. Automated pavement analysis in Missouri using ground penetrating radar

    DOT National Transportation Integrated Search

    2003-02-01

    Current geotechnical procedures for monitoring the condition of roadways are time consuming and can be disruptive to traffic, often requiring extensive invasive procedures (e.g., coring). Ground penetrating radar (GPR) technology offers a methodology...

  5. Error Analysis for RADAR Neighbor Matching Localization in Linear Logarithmic Strength Varying Wi-Fi Environment

    PubMed Central

    Tian, Zengshan; Xu, Kunjie; Yu, Xiang

    2014-01-01

    This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs) in logarithmic received signal strength (RSS) varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs) as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future. PMID:24683349

  6. Error analysis for RADAR neighbor matching localization in linear logarithmic strength varying Wi-Fi environment.

    PubMed

    Zhou, Mu; Tian, Zengshan; Xu, Kunjie; Yu, Xiang; Wu, Haibo

    2014-01-01

    This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs) in logarithmic received signal strength (RSS) varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs) as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future.

  7. Analysis of synthetic aperture radar data acquired over a variety of land cover

    NASA Technical Reports Server (NTRS)

    Wu, S.-T.

    1984-01-01

    The results of Synthetic Aperture Radar (SAR) measurements over Kershaw County, South Carolina, using HH, HV, and VV polarization and two-incidence angle X-band airborne SAR system and over Baldwin County, Alabama, using HH polarization L-band Shuttle Imaging Radar (SIR-A) are presented. The X-band data indicate higher HH than VV radar return for cypress forest with standing water. Multipolarization (HH, HV, and VV) data help delineate several land-cover types that are difficult to delineate by the single polarization (HH) data. The L-band data indicate that radar return signal strength is highly correlated with tree height or age for three types of pine forest. It is found that delineation of urban/residential from deciduous forest is significantly improved by the inclusion of Landsat multispectral scanner data.

  8. SIG. Signal Processing, Analysis, & Display

    SciTech Connect

    Hernandez, J.; Lager, D.; Azevedo, S.

    1992-01-22

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time- and frequency-domain signalsmore » including operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments,commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less

  9. Earth resources shuttle imaging radar. [systems analysis and design analysis of pulse radar for earth resources information system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A report is presented on a preliminary design of a Synthetic Array Radar (SAR) intended for experimental use with the space shuttle program. The radar is called Earth Resources Shuttle Imaging Radar (ERSIR). Its primary purpose is to determine the usefulness of SAR in monitoring and managing earth resources. The design of the ERSIR, along with tradeoffs made during its evolution is discussed. The ERSIR consists of a flight sensor for collecting the raw radar data and a ground sensor used both for reducing these radar data to images and for extracting earth resources information from the data. The flight sensor consists of two high powered coherent, pulse radars, one that operates at L and the other at X-band. Radar data, recorded on tape can be either transmitted via a digital data link to a ground terminal or the tape can be delivered to the ground station after the shuttle lands. A description of data processing equipment and display devices is given.

  10. Radar mechanocardiography: a novel analysis of the mechanical behavior of the heart.

    PubMed

    Tavakolian, Kouhyar; Zadeh, Faranak M; Chuo, Yindar; Siu, Tiffany; Vaseghi, Ali; Kaminska, Bozena

    2008-01-01

    In this paper a novel system for detection of the mechanical movement of heart, mechanocardiography (MCG), with no connection to the subject's body is presented. This signal is based on radar technology. The acquired signal is highly correlated to the acceleration-based ballistocardiograph signal (BCG) recorded directly from the sternum. It is shown that the heart and breathing rates can be reliably detected using this system.

  11. An Analysis of TRACON (Terminal Radar Approach Control) Controller-Pilot Voice Communication

    DOT National Transportation Integrated Search

    1996-06-01

    The purpose of this analysis was to examine pilot-controller communication practices in the TRACONI (Terminal Radar Approach : Control) environment. Forty-eight hours of communications recorded on the voice tapes from eight TRACONs were analyzed. : T...

  12. Research on the range side lobe suppression method for modulated stepped frequency radar signals

    NASA Astrophysics Data System (ADS)

    Liu, Yinkai; Shan, Tao; Feng, Yuan

    2018-05-01

    The magnitude of time-domain range sidelobe of modulated stepped frequency radar affects the imaging quality of inverse synthetic aperture radar (ISAR). In this paper, the cause of high sidelobe in modulated stepped frequency radar imaging is analyzed first in real environment. Then, the chaos particle swarm optimization (CPSO) is used to select the amplitude and phase compensation factors according to the minimum sidelobe criterion. Finally, the compensated one-dimensional range images are obtained. Experimental results show that the amplitude-phase compensation method based on CPSO algorithm can effectively reduce the sidelobe peak value of one-dimensional range images, which outperforms the common sidelobe suppression methods and avoids the coverage of weak scattering points by strong scattering points due to the high sidelobes.

  13. Wallops waveform analysis of SEASAT-1 radar altimeter data

    NASA Technical Reports Server (NTRS)

    Hayne, G. S.

    1980-01-01

    Fitting a six parameter model waveform to over ocean experimental data from the waveform samplers in the SEASAT-1 radar altimeter is described. The fitted parameters include a waveform risetime, skewness, and track point; from these can be obtained estimates of the ocean surface significant waveheight, the surface skewness, and a correction to the altimeter's on board altitude measurement, respectively. Among the difficulties encountered are waveform sampler gains differing from calibration mode data, and incorporating the actual SEASAT-1 sampled point target response in the fitted wave form. There are problems in using the spacecraft derived attitude angle estimates, and a different attitude estimator is developed. Points raised in this report have consequences for the SEASAT-1 radar altimeter's ocean surface measurements are for the design and calibration of radar altimeters in future oceanographic satellites.

  14. Radar rainfall estimation in the context of post-event analysis of flash-flood events

    NASA Astrophysics Data System (ADS)

    Delrieu, G.; Bouilloud, L.; Boudevillain, B.; Kirstetter, P.-E.; Borga, M.

    2009-09-01

    This communication is about a methodology for radar rainfall estimation in the context of post-event analysis of flash-flood events developed within the HYDRATE project. For such extreme events, some raingauge observations (operational, amateur) are available at the event time scale, while few raingauge time series are generally available at the hydrologic time steps. Radar data is therefore the only way to access to the rainfall space-time organization, but the quality of the radar data may be highly variable as a function of (1) the relative locations of the event and the radar(s) and (2) the radar operating protocol(s) and maintenance. A positive point: heavy rainfall is associated with convection implying better visibility and lesser bright band contamination compared with more current situations. In parallel with the development of a regionalized and adaptive radar data processing system (TRADHy; Delrieu et al. 2009), a pragmatic approach is proposed here to make best use of the available radar and raingauge data for a given flash-flood event by: (1) Identifying and removing residual ground clutter, (2) Applying the "hydrologic visibility" concept (Pellarin et al. 2002) to correct for range-dependent errors (screening and VPR effects for non-attenuating wavelengths, (3) Estimating an effective Z-R relationship through a radar-raingauge optimization approach to remove the mean field bias (Dinku et al. 2002) A sensitivity study, based on the high-quality volume radar datasets collected during two intense rainfall events of the Bollène 2002 experiment (Delrieu et al. 2009), is first proposed. Then the method is implemented for two other historical events occurred in France (Avène 1997 and Aude 1999) with datasets of lesser quality. References: Delrieu, G., B. Boudevillain, J. Nicol, B. Chapon, P.-E. Kirstetter, H. Andrieu, and D. Faure, 2009: Bollène 2002 experiment: radar rainfall estimation in the Cévennes-Vivarais region, France. Journal of Applied

  15. Bisonar Signal Perception and Analysis.

    DTIC Science & Technology

    1986-02-14

    DC 2033-6448 ELEMENT NO. NO. NO. No. It. TITLE tlfteiude &ca.iI Caiiesionp10--- 61102F I(j7 A4 . Biosonar sig~nal percention and analysis _______J...SUPPLEMENTARY NOTATION. 1.COSATI CODIES 111 ISusi UCT RMS (Con. tue an rverse it moe,~r ai entift by" ftaR -FliL .FlOUP I SUB. on. fiOA4c biosonar ...anatomica *7orrelates of the biosonar system of bats. lie have used a simulated flight system to record signal emissions and to analyze the response

  16. High-range resolution spectral analysis of precipitation through range imaging of the Chung-Li VHF radar

    NASA Astrophysics Data System (ADS)

    Tsai, Shih-Chiao; Chen, Jenn-Shyong; Chu, Yen-Hsyang; Su, Ching-Lun; Chen, Jui-Hsiang

    2018-01-01

    Multi-frequency range imaging (RIM) has been operated in the Chung-Li very high-frequency (VHF) radar, located on the campus of National Central University, Taiwan, since 2008. RIM processes the echo signals with a group of closely spaced transmitting frequencies through appropriate inversion methods to obtain high-resolution distribution of echo power in the range direction. This is beneficial to the investigation of the small-scale structure embedded in dynamic atmosphere. Five transmitting frequencies were employed in the radar experiment for observation of the precipitating atmosphere during the period between 21 and 23 August 2013. Using the Capon and Fourier methods, the radar echoes were synthesized to retrieve the temporal signals at a smaller range step than the original range resolution defined by the pulse width, and such retrieved temporal signals were then processed in the Doppler frequency domain to identify the atmosphere and precipitation echoes. An analysis called conditional averaging was further executed for echo power, Doppler velocity, and spectral width to verify the potential capabilities of the retrieval processing in resolving small-scale precipitation and atmosphere structures. Point-by-point correction of range delay combined with compensation of range-weighting function effect has been performed during the retrieval of temporal signals to improve the continuity of power spectra at gate boundaries, making the small-scale structures in the power spectra more natural and reasonable. We examined stratiform and convective precipitation and demonstrated their different structured characteristics by means of the Capon-processed results. The new element in this study is the implementation of RIM on spectral analysis, especially for precipitation echoes.

  17. Design of radar receivers

    NASA Astrophysics Data System (ADS)

    Sokolov, M. A.

    This handbook treats the design and analysis of of pulsed radar receivers, with emphasis on elements (especially IC elements) that implement optimal and suboptimal algorithms. The design methodology is developed from the viewpoint of statistical communications theory. Particular consideration is given to the synthesis of single-channel and multichannel detectors, the design of analog and digital signal-processing devices, and the analysis of IF amplifiers.

  18. Uncertainty Analysis of Radar and Gauge Rainfall Estimates in the Russian River Basin

    NASA Astrophysics Data System (ADS)

    Cifelli, R.; Chen, H.; Willie, D.; Reynolds, D.; Campbell, C.; Sukovich, E.

    2013-12-01

    Radar Quantitative Precipitation Estimation (QPE) has been a very important application of weather radar since it was introduced and made widely available after World War II. Although great progress has been made over the last two decades, it is still a challenging process especially in regions of complex terrain such as the western U.S. It is also extremely difficult to make direct use of radar precipitation data in quantitative hydrologic forecasting models. To improve the understanding of rainfall estimation and distributions in the NOAA Hydrometeorology Testbed in northern California (HMT-West), extensive evaluation of radar and gauge QPE products has been performed using a set of independent rain gauge data. This study focuses on the rainfall evaluation in the Russian River Basin. The statistical properties of the different gridded QPE products will be compared quantitatively. The main emphasis of this study will be on the analysis of uncertainties of the radar and gauge rainfall products that are subject to various sources of error. The spatial variation analysis of the radar estimates is performed by measuring the statistical distribution of the radar base data such as reflectivity and by the comparison with a rain gauge cluster. The application of mean field bias values to the radar rainfall data will also be described. The uncertainty analysis of the gauge rainfall will be focused on the comparison of traditional kriging and conditional bias penalized kriging (Seo 2012) methods. This comparison is performed with the retrospective Multisensor Precipitation Estimator (MPE) system installed at the NOAA Earth System Research Laboratory. The independent gauge set will again be used as the verification tool for the newly generated rainfall products.

  19. Radarclinometry: Bootstrapping the radar reflectance function from the image pixel-signal frequency distribution and an altimetry profile

    USGS Publications Warehouse

    Wildey, R.L.

    1988-01-01

    A method is derived for determining the dependence of radar backscatter on incidence angle that is applicable to the region corresponding to a particular radar image. The method is based on enforcing mathematical consistency between the frequency distribution of the image's pixel signals (histogram of DN values with suitable normalizations) and a one-dimensional frequency distribution of slope component, as might be obtained from a radar or laser altimetry profile in or near the area imaged. In order to achieve a unique solution, the auxiliary assumption is made that the two-dimensional frequency distribution of slope is isotropic. The backscatter is not derived in absolute units. The method is developed in such a way as to separate the reflectance function from the pixel-signal transfer characteristic. However, these two sources of variation are distinguishable only on the basis of a weak dependence on the azimuthal component of slope; therefore such an approach can be expected to be ill-conditioned unless the revision of the transfer characteristic is limited to the determination of an additive instrumental background level. The altimetry profile does not have to be registered in the image, and the statistical nature of the approach minimizes pixel noise effects and the effects of a disparity between the resolutions of the image and the altimetry profile, except in the wings of the distribution where low-number statistics preclude accuracy anyway. The problem of dealing with unknown slope components perpendicular to the profiling traverse, which besets the one-to-one comparison between individual slope components and pixel-signal values, disappears in the present approach. In order to test the resulting algorithm, an artificial radar image was generated from the digitized topographic map of the Lake Champlain West quadrangle in the Adirondack Mountains, U.S.A., using an arbitrarily selected reflectance function. From the same map, a one-dimensional frequency

  20. Micro-Doppler analysis of multiple frequency continuous wave radar signatures

    NASA Astrophysics Data System (ADS)

    Anderson, Michael G.; Rogers, Robert L.

    2007-04-01

    Micro-Doppler refers to Doppler scattering returns produced by non rigid-body motion. Micro-Doppler gives rise to many detailed radar image features in addition to those associated with bulk target motion. Targets of different classes (for example, humans, animals, and vehicles) produce micro-Doppler images that are often distinguishable even by nonexpert observers. Micro-Doppler features have great potential for use in automatic target classification algorithms. Although the potential benefit of using micro-Doppler in classification algorithms is high, relatively little experimental (non-synthetic) micro-Doppler data exists. Much of the existing experimental data comes from highly cooperative targets (human or vehicle targets directly approaching the radar). This research involved field data collection and analysis of micro-Doppler radar signatures from non-cooperative targets. The data was collected using a low cost Xband multiple frequency continuous wave (MFCW) radar with three transmit frequencies. The collected MFCW radar signatures contain data from humans, vehicles, and animals. The presented data includes micro-Doppler signatures previously unavailable in the literature such as crawling humans and various animal species. The animal micro-Doppler signatures include deer, dog, and goat datasets. This research focuses on the analysis of micro-Doppler from noncooperative targets approaching the radar at various angles, maneuvers, and postures.

  1. Radar and Lidar Radar DEM

    NASA Technical Reports Server (NTRS)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  2. Analysis of Borehole-Radar Reflection Data from Machiasport, Maine, December 2003

    USGS Publications Warehouse

    Johnson, Carole D.; Joesten, Peter K.

    2005-01-01

    -reflection data. There are several steeply dipping reflectors with orientations similar to the fracture patterns observed with borehole imaging techniques and in outcrops. The radar-reflection data showed that the vitrophyre in borehole MW09 was more highly fractured than the underlying gabbroic unit. The velocities of radar waves in the bedrock surrounding the boreholes were determined using single-hole vertical radar profiling. Velocities of 114 and 125 meters per microsecond were used to determine the distance to reflectors, the radial depth of penetration, and the dip of reflectors. The bimodal volcanic units appear to be ideal for radar-wave propagation. For the radar surveys collected at this site, radar reflections were detected up to 40 m into the rock from the borehole. These results indicate that boreholes could conservatively be spaced about 15-20 m apart for hole-to-hole radar methods to be effective for imaging between the boreholes and monitoring remediation. Integrated analysis of drilling and borehole-geophysical logs indicates the vitrophyric formation is more fractured than the more mafic gabbroic units in these boreholes. There does not, however, appear to be a quantifiable difference in the radar-wave penetration in these two rock units.

  3. Distributed Arrays and Signal Processing for the TechSat21 Space-Based Radar

    DTIC Science & Technology

    2009-04-01

    lIlustrating the derivation of minimum aperture size and coherent integration time ............. 25 B 4. Global coordinate system and satellite-based...work of Dr. Robert Mailloux. Dr. Peter Franchi . and Dr. Scott Santarelli. VII Summary The TechSat2l space-based radar concept, suggested by AFRUVS...Linearization for small motions around a reference point in a global circular orbit leads to the Hill equations, derived in 1878, and alternatively named

  4. Analysis of general-aviation accidents using ATC radar records

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.; Bach, R. E., Jr.

    1982-01-01

    It is pointed out that general aviation aircraft usually do not carry flight recorders, and in accident investigations the only available data may come from the Air Traffic Control (ATC) records. A description is presented of a technique for deriving time-histories of aircraft motions from ATC radar records. The employed procedure involves a smoothing of the raw radar data. The smoothed results, in combination with other available information (meteorological data and aircraft aerodynamic data) are used to derive the expanded set of motion time-histories. Applications of the considered analytical methods are related to different types of aircraft, such as light piston-props, executive jets, and commuter turboprops, as well as different accident situations, such as takeoff, climb-out, icing, and deep stall.

  5. Environmental Impact Analysis Process. Saipan (PACBAR) Radar Mitigation Status Report

    DTIC Science & Technology

    1990-08-31

    velocity, seeded and planted vegetation are utilized. In cooperation with the Department of Natural Resources (DNR), one scenic viewpoint and one...radar building • Waste oil tank • Water-potable, other • Wildfire • Wildlife area planting • Work limits 78, 79, 90, 91, 92, 93, 94, 95...amended, extends legal protection to plants and animals listed as endangered or threatened by the U.S. Fish and Wildlife Service (USFWS) and the National

  6. Complementary code and digital filtering for detection of weak VHF radar signals from the mesoscale. [SOUSY-VHF radar, Harz Mountains, Germany

    NASA Technical Reports Server (NTRS)

    Schmidt, G.; Ruster, R.; Czechowsky, P.

    1983-01-01

    The SOUSY-VHF-Radar operates at a frequency of 53.5 MHz in a valley in the Harz mountains, Germany, 90 km from Hanover. The radar controller, which is programmed by a 16-bit computer holds 1024 program steps in core and controls, via 8 channels, the whole radar system: in particular the master oscillator, the transmitter, the transmit-receive-switch, the receiver, the analog to digital converter, and the hardware adder. The high-sensitivity receiver has a dynamic range of 70 dB and a video bandwidth of 1 MHz. Phase coding schemes are applied, in particular for investigations at mesospheric heights, in order to carry out measurements with the maximum duty cycle and the maximum height resolution. The computer takes the data from the adder to store it in magnetic tape or disc. The radar controller is programmed by the computer using simple FORTRAN IV statements. After the program has been loaded and the computer has started the radar controller, it runs automatically, stopping at the program end. In case of errors or failures occurring during the radar operation, the radar controller is shut off caused either by a safety circuit or by a power failure circuit or by a parity check system.

  7. Sub-nanosecond ranging possibilities of optical radar at various signal levels and transmitted pulse widths

    NASA Technical Reports Server (NTRS)

    Poultney, S. K.

    1971-01-01

    The behavior of the photomultiplier is considered, as well as the method of derivation of the photomultiplier output pulse and its relation to the reflected light pulse width and amplitude, and the calibration of range precision and accuracy. Pulsed laser radars with light pulse widths of 30, 3, and 0.1 nanosec a considered, with the 0.1 nanosec system capable of highest precision in several modes of operation, including a high repetition rate, single photoelectron reception mode. An alternate calibration scheme using a fast, triggerable light pulser is described in detail.

  8. Results and Analysis of the ESA SSA Radar Tracking Campaigns

    NASA Astrophysics Data System (ADS)

    Fontdecaba Baig, Jordi; Martinerie, Francis; Sutter, Moise; Martinot, Vincent; Ameline, Patrick; Blazejczak, Eric; Fletcher, Emmet

    2013-08-01

    Following the decision at the Ministerial Council 2008 to initiate a Preparatory Programme on Space Situational Awareness (SSA), the European Space Agency started a series of activities together with industry, implementing both classical design approaches: bottom-up and top-down. For the Space Surveillance and Tracking segment of the programme, the bottom-up approach was initially addressed through various activities to evaluate the potential performance of contemporary European resources. One element of this investigation was the assessment of the existing European assets that can be used to generate tracking data on Earth orbiting objects at all altitudes between LEO and the GEO graveyard orbits. The study addressed both the technical performances of the assets and the identification of the operational constraints characteristic for each sensor. In this context, a paper was presented at the 2011 European Space Surveillance Conference in Madrid, Spain that discussed the results obtained using two existing European radars: EISCAT and Chilbolton. The emphasis of this new paper is to analyse the results obtained from a third asset: the BEM Monge, a measurement and test vessel of the French Navy operated for the French Direction Générale de l'Armement (DGA). The Monge's three primary radars were designed with the specific mission to detect and characterise the trajectory of missiles as part of France's national missile defence programme, however the radar on-board the Monge are also able to detect and track Earth-orbiting objects. Even though this role is not the primary one for the system, the achieved accuracy of the orbital tracks and resulting orbit determination is several orders of magnitude better than radars that have been developed for other uses. The evaluation carried out in the frame of the SSA programme helped demonstrate that the systems provided by the Monge are able to perform orbital tracking within the performance requirements of a federated SSA

  9. Analysis of NOAA/ALASKAN MST Radar Data.

    DTIC Science & Technology

    1982-11-01

    optimum interpolation. SMu. 26 AM., IQZ, 1I23񓗄 . Carlson, H.C., Jr. and N. Sundararaman, 1982: Real-time jetatreau tracking : National benefit from an...interpolation of forecast error fields. JL. At=a. g;L., 2, 809-815. Sato, T. and S. Fukao, 1982: Altitude smearing due to instrumental resolution in HST radar...8217 I SO 60 70 8O 0 goO io 0 50 70 eo 90 0c JULIAN DAY Figu.re 7 -25. .. . . MAR i - APRIL 1, 1979 24 No. Avm. RAwtNsoNm WINm vS. Citissuw Awm.xs is (R

  10. On the Statistical Analysis of the Radar Signature of the MQM-34D

    DTIC Science & Technology

    1975-01-31

    target drone for aspect angles near normal to the roll axis for a vertically polarized measurements system. The radar cross section and glint are... drone . The raw data from RATSCAT are reported in graphical form in an AFSWC three-volume report.. The results reported here are a statistical analysis of...Ta1get Drones , AFSWC-rR.74-0l, January 1974. 2James W. Wright, On the Statistical Analysis of the Radar Signature of the MQM-34D, Interim Report

  11. 3D And 4D Cloud Lifecycle Investigations Using Innovative Scanning Radar Analysis Methods. Final report

    SciTech Connect

    Kollias, Pavlos

    2017-04-23

    With the vast upgrades to the ARM program radar measurement capabilities in 2010 and beyond, our ability to probe the 3D structure of clouds and associated precipitation has increased dramatically. This project build on the PI's and co-I's expertisein the analysis of radar observations. The first research thrust aims to document the 3D morphological (as depicted by the radar reflectivity structure) and 3D dynamical (cloud$-$scale eddies) structure of boundary layer clouds. Unraveling the 3D dynamical structure of stratocumulus and shallow cumulus clouds requires decomposition of the environmental wind contribution and particle sedimentation velocity from the observed radial Doppler velocity. Themore » second thrust proposes to unravel the mechanism of cumulus entrainment (location, scales) and its impact on microphysics utilizing radar measurements from the vertically pointing and new scanning radars at the ARM sites. The third research thrust requires the development of a cloud$-$tracking algorithm that monitors the properties of cloud.« less

  12. A geologic analysis of the Side-Looking Airborne Radar imagery of southern New England

    USGS Publications Warehouse

    Banks, Paul T.

    1975-01-01

    Analysis of the side looking airborn radar imagery of Massachusetts, Connecticut and Rhode Island indicates that radar shows the topography in great detail. Since bedrock geologic features are frequently expressed in the topography the radar lends itself to geologic interpretation. The radar was studied by comparisons with field mapped geologic data first at a scale of approximately 1:125,000 and then at a scale of 1:500,000. The larger scale comparison revealed that faults, minor faults, joint sets, bedding and foliation attitudes, lithology and lithologic contacts all have a topographic expression interpretable on the imagery. Surficial geologic features were far less visible on the imagery over most of the area studied. The smaller scale comparisons revealed a pervasive, near orthogonal fracture set cutting all types and ages of rock and trending roughly N40?E and N30?W. In certain places the strike of bedding and foliation attitudes and some lithologic Contacts were visible in addition to the fractures. Fracturing in southern New England is apparently far more important than has been previously recognized. This new information, together with the visibility of many bedding and foliation attitudes and lithologic contacts, indicates the importance of radar imagery in improving the geologic interpretation of an area.

  13. A Digital Signal Processor for Doppler Radar Sensing of Vital Signs

    DTIC Science & Technology

    2001-10-25

    shows a small spike halfway each heartbeat. This is known as the dicrotic notch , which signifies a sudden drop in pressure after systolic contraction...It is caused by a small reflux flow of blood back into the aortic valve and coronary vessels. This dicrotic notch in the heart signal is clipped...signal, and amax was the maximum amplitude of the signal in the specified window. The user could set the factor k, and it determined the threshold at

  14. Ground penetrating radar antenna system analysis for prediction of earth material properties

    USGS Publications Warehouse

    Oden, C.P.; Wright, D.L.; Powers, M.H.; Olhoeft, G.

    2005-01-01

    The electrical properties of the ground directly beneath a ground penetrating radar (GPR) antenna very close to the earth's surface (ground-coupled) must be known in order to predict the antenna response. In order to investigate changing antenna response with varying ground properties, a series of finite difference time domain (FDTD) simulations were made for a bi-static (fixed horizontal offset between transmitting and receiving antennas) antenna array over a homogeneous ground. We examine the viability of using an inversion algorithm based on the simulated received waveforms to estimate the material properties of the earth near the antennas. Our analysis shows that, for a constant antenna height above the earth, the amplitude of certain frequencies in the received signal can be used to invert for the permittivity and conductivity of the ground. Once the antenna response is known, then the wave field near the antenna can be determined and sharper images of the subsurface near the antenna can be made. ?? 2005 IEEE.

  15. Modeling the response of a monopulse radar to impulsive jamming signals using the Block Oriented System Simulator (BOSS)

    NASA Astrophysics Data System (ADS)

    Long, Jeffrey K.

    1989-09-01

    This theses developed computer models of two types of amplitude comparison monopulse processors using the Block Oriented System Simulation (BOSS) software package and to determine the response to these models to impulsive input signals. This study was an effort to determine the susceptibility of monopulse tracking radars to impulsing jamming signals. Two types of amplitude comparison monopulse receivers were modeled, one using logarithmic amplifiers and the other using automatic gain control for signal normalization. Simulations of both types of systems were run under various conditions of gain or frequency imbalance between the two receiver channels. The resulting errors from the imbalanced simulations were compared to the outputs of similar, baseline simulations which had no electrical imbalances. The accuracy of both types of processors was directly affected by gain or frequency imbalances in their receiver channels. In most cases, it was possible to generate both positive and negative angular errors, dependent upon the type and degree of mismatch between the channels. The system most susceptible to induced errors was a frequency imbalanced processor which used AGC circuitry. Any errors introduced will be a function of the degree of mismatch between the channels and therefore would be difficult to exploit reliably.

  16. Database for LDV Signal Processor Performance Analysis

    NASA Technical Reports Server (NTRS)

    Baker, Glenn D.; Murphy, R. Jay; Meyers, James F.

    1989-01-01

    A comparative and quantitative analysis of various laser velocimeter signal processors is difficult because standards for characterizing signal bursts have not been established. This leaves the researcher to select a signal processor based only on manufacturers' claims without the benefit of direct comparison. The present paper proposes the use of a database of digitized signal bursts obtained from a laser velocimeter under various configurations as a method for directly comparing signal processors.

  17. Identification of Buried Objects in GPR Using Amplitude Modulated Signals Extracted from Multiresolution Monogenic Signal Analysis

    PubMed Central

    Qiao, Lihong; Qin, Yao; Ren, Xiaozhen; Wang, Qifu

    2015-01-01

    It is necessary to detect the target reflections in ground penetrating radar (GPR) images, so that surface metal targets can be identified successfully. In order to accurately locate buried metal objects, a novel method called the Multiresolution Monogenic Signal Analysis (MMSA) system is applied in ground penetrating radar (GPR) images. This process includes four steps. First the image is decomposed by the MMSA to extract the amplitude component of the B-scan image. The amplitude component enhances the target reflection and suppresses the direct wave and reflective wave to a large extent. Then we use the region of interest extraction method to locate the genuine target reflections from spurious reflections by calculating the normalized variance of the amplitude component. To find the apexes of the targets, a Hough transform is used in the restricted area. Finally, we estimate the horizontal and vertical position of the target. In terms of buried object detection, the proposed system exhibits promising performance, as shown in the experimental results. PMID:26690146

  18. The Coplane Analysis Technique for Three-Dimensional Wind Retrieval Using the HIWRAP Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Didlake, Anthony C., Jr.; Heymsfield, Gerald M.; Tian, Lin; Guimond, Stephen R.

    2015-01-01

    The coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward pointing and conically scanning beams. The coplane technique interpolates radar measurements to a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared to a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily.

  19. [The error analysis and experimental verification of laser radar spectrum detection and terahertz time domain spectroscopy].

    PubMed

    Liu, Wen-Tao; Li, Jing-Wen; Sun, Zhi-Hui

    2010-03-01

    Terahertz waves (THz, T-ray) lie between far-infrared and microwave in electromagnetic spectrum with frequency from 0.1 to 10 THz. Many chemical agent explosives show characteristic spectral features in the terahertz. Compared with conventional methods of detecting a variety of threats, such as weapons and chemical agent, THz radiation is low frequency and non-ionizing, and does not give rise to safety concerns. The present paper summarizes the latest progress in the application of terahertz time domain spectroscopy (THz-TDS) to chemical agent explosives. A kind of device on laser radar detecting and real time spectrum measuring was designed which measures the laser spectrum on the bases of Fourier optics and optical signal processing. Wedge interferometer was used as the beam splitter to wipe off the background light and detect the laser and measure the spectrum. The result indicates that 10 ns laser radar pulse can be detected and many factors affecting experiments are also introduced. The combination of laser radar spectrum detecting, THz-TDS, modern pattern recognition and signal processing technology is the developing trend of remote detection for chemical agent explosives.

  20. Surface properties and surficial deposits on Venus: New results from Magellan radar altimeter data analysis

    NASA Astrophysics Data System (ADS)

    Bondarenko, Nataliya V.; Kreslavsky, Mikhail A.

    2018-07-01

    Microwave remote sensing data acquired with Magellan Venus orbiter are the main source of information about the surface of the planet. We analyze variability of the backscattering function (dependence of radar cross-section on incidence angle) for steep incidence angles 0.25°-4.75° in the 75°N-55°S latitude zone with data from the Magellan radar altimeter at 12.6 cm wavelength. We show that all variability of the backscattering function can be described by three parameters, describing (1) surface reflectivity, (2) relative proportion of horizontal facets, and (3) general roughness. Analysis of maps of these parameters revealed that surficial deposits, for example, microdune fields, are abundant on Venus even in places, where they are not readily seen in the synthetic aperture radar images. Properties of surficial deposits rather than original volcanic flow roughness define the shape of the backscattering function on the majority of regional plains. A large radar-dark flow in Bereghinia Planitia has anomalously high proportion of horizontal facets, which is consistent with it being formed by a relatively recent plain-forming volcanic episode. Some crater-associated radar-dark diffuse features and splotches are also characterized by increased proportion of horizontal faces, which indicate the presence of mantles deposited from fluidized granular material. The backscattering functions of the anomalous radar-bright material of mountaintops are more consistent with the strong internal scattering hypothesis rather than the exotic surficial material hypothesis. Obtained maps can be useful for planning future lander missions to sites with access to surface material with known provenance.

  1. Range Sidelobe Response from the Use of Polyphase Signals in Spotlight Synthetic Aperture Radar

    DTIC Science & Technology

    2015-12-01

    come to closure. I also want to thank my mother for raising me and instilling in me the work ethic and values that have propelled me through life. I...to describe the poly-phase signals at baseband. IQ notation is preferred for complex waveforms because it allows for an easy mathematical...variables. 15 Once the Frank-coded phase vector is created, the IQ signal generation discussed in Chapter II was used to generate a Frank-code phase

  2. Detection of shallow buried objects using an autoregressive model on the ground penetrating radar signal

    NASA Astrophysics Data System (ADS)

    Nabelek, Daniel P.; Ho, K. C.

    2013-06-01

    The detection of shallow buried low-metal content objects using ground penetrating radar (GPR) is a challenging task. This is because these targets are right underneath the ground and the ground bounce reflection interferes with their detections. They do not create distinctive hyperbolic signatures as required by most existing GPR detection algorithms due to their special geometric shapes and low metal content. This paper proposes the use of the Autoregressive (AR) modeling method for the detection of these targets. We fit an A-scan of the GPR data to an AR model. It is found that the fitting error will be small when such a target is present and large when it is absent. The ratio of the energy in an Ascan before and after AR model fitting is used as the confidence value for detection. We also apply AR model fitting over scans and utilize the fitting residual energies over several scans to form a feature vector for improving the detections. Using the data collected from a government test site, the proposed method can improve the detection of this kind of targets by 30% compared to the pre-screener, at a false alarm rate of 0.002/m2.

  3. Mobile high-performance computing (HPC) for synthetic aperture radar signal processing

    NASA Astrophysics Data System (ADS)

    Misko, Joshua; Kim, Youngsoo; Qi, Chenchen; Sirkeci, Birsen

    2018-04-01

    The importance of mobile high-performance computing has emerged in numerous battlespace applications at the tactical edge in hostile environments. Energy efficient computing power is a key enabler for diverse areas ranging from real-time big data analytics and atmospheric science to network science. However, the design of tactical mobile data centers is dominated by power, thermal, and physical constraints. Presently, it is very unlikely to achieve required computing processing power by aggregating emerging heterogeneous many-core processing platforms consisting of CPU, Field Programmable Gate Arrays and Graphic Processor cores constrained by power and performance. To address these challenges, we performed a Synthetic Aperture Radar case study for Automatic Target Recognition (ATR) using Deep Neural Networks (DNNs). However, these DNN models are typically trained using GPUs with gigabytes of external memories and massively used 32-bit floating point operations. As a result, DNNs do not run efficiently on hardware appropriate for low power or mobile applications. To address this limitation, we proposed for compressing DNN models for ATR suited to deployment on resource constrained hardware. This proposed compression framework utilizes promising DNN compression techniques including pruning and weight quantization while also focusing on processor features common to modern low-power devices. Following this methodology as a guideline produced a DNN for ATR tuned to maximize classification throughput, minimize power consumption, and minimize memory footprint on a low-power device.

  4. Ground Penetrating Radar For Estimating Root Biomass Through Empirical Analysis

    NASA Astrophysics Data System (ADS)

    Wolfe, M.; Dobreva, I. D.; Delgado, A.; Hays, D. B.; Bishop, M. P.; Huo, D.; Wang, X.; Teare, B. L.; Burris, S.

    2017-12-01

    Variability in soil carbon storage due to agricultural practices is an important component of the carbon cycle. Enhancing soil organic content is a means for restoring degraded soils and for improving soil quality, but also for carbon sequestration. In particular, accurate estimates of soil organic content are essential for quantifying carbon sequestration capabilities of agricultural systems. This project aims to advance the technological and analytical capabilities of Ground Penetrating Radar (GPR) for diagnoses of the soil carbon storage occurring due to the perennial grasses which are often utilized as biofuels. A new GPR processing workflow applied via a prototype software was tested on simulated GPR data of roots with different densities and depths to determine the sensitivity and capability of this technology to quantify these parameters. Field experiments were also conducted in long-term trials of different genotypes of perennial grasses over field sites in Texas to determine the application in authentic environments. GPR scans and soil samples were collected, and root dry biomass was obtained. Evaluation of pre-processing techniques was conducted to provide optimal resolution for assessment. The novel backscatter spatial structure workflow was implemented, and empirical relationships between root biomass and GPR derived observations were developed. Preliminary results suggest that the backscatter spatial structure changes in the presence of high density root biomass conditions, and these variations are indicative of root zone depth and density. Our results illustrate promising applications in root detection, and therefore, the soil organic content accumulation that is pertinent to a healthy soil system.

  5. Radar transponder antenna pattern analysis for the space shuttle

    NASA Technical Reports Server (NTRS)

    Radcliff, Roger

    1989-01-01

    In order to improve tracking capability, radar transponder antennas will soon be mounted on the Shuttle solid rocket boosters (SRB). These four antennas, each being identical cavity-backed helices operating at 5.765 GHz, will be mounted near the top of the SRB's, adjacent to the intertank portion of the external tank. The purpose is to calculate the roll-plane pattern (the plane perpendicular to the SRB axes and containing the antennas) in the presence of this complex electromagnetic environment. The large electrical size of this problem mandates an optical (asymptotic) approach. Development of a specific code for this application is beyond the scope of a summer fellowship; thus a general purpose code, the Numerical Electromagnetics Code - Basic Scattering Code, was chosen as the computational tool. This code is based on the modern Geometrical Theory of Diffraction, and allows computation of scattering of bodies composed of canonical problems such as plates and elliptic cylinders. Apertures mounted on a curved surface (the SRB) cannot be accomplished by the code, so an antenna model consisting of wires excited by a method of moments current input was devised that approximated the actual performance of the antennas. The improvised antenna model matched well with measurements taken at the MSFC range. The SRB's, the external tank, and the shuttle nose were modeled as circular cylinders, and the code was able to produce what is thought to be a reasonable roll-plane pattern.

  6. Assimilation of radar quantitative precipitation estimations in the Canadian Precipitation Analysis (CaPA)

    NASA Astrophysics Data System (ADS)

    Fortin, Vincent; Roy, Guy; Donaldson, Norman; Mahidjiba, Ahmed

    2015-12-01

    The Canadian Precipitation Analysis (CaPA) is a data analysis system used operationally at the Canadian Meteorological Center (CMC) since April 2011 to produce gridded 6-h and 24-h precipitation accumulations in near real-time on a regular grid covering all of North America. The current resolution of the product is 10-km. Due to the low density of the observational network in most of Canada, the system relies on a background field provided by the Regional Deterministic Prediction System (RDPS) of Environment Canada, which is a short-term weather forecasting system for North America. For this reason, the North American configuration of CaPA is known as the Regional Deterministic Precipitation Analysis (RDPA). Early in the development of the CaPA system, weather radar reflectivity was identified as a very promising additional data source for the precipitation analysis, but necessary quality control procedures and bias-correction algorithms were lacking for the radar data. After three years of development and testing, a new version of CaPA-RDPA system was implemented in November 2014 at CMC. This version is able to assimilate radar quantitative precipitation estimates (QPEs) from all 31 operational Canadian weather radars. The radar QPE is used as an observation source and not as a background field, and is subject to a strict quality control procedure, like any other observation source. The November 2014 upgrade to CaPA-RDPA was implemented at the same time as an upgrade to the RDPS system, which brought minor changes to the skill and bias of CaPA-RDPA. This paper uses the frequency bias indicator (FBI), the equitable threat score (ETS) and the departure from the partial mean (DPM) in order to assess the improvements to CaPA-RDPA brought by the assimilation of radar QPE. Verification focuses on the 6-h accumulations, and is done against a network of 65 synoptic stations (approximately two stations per radar) that were withheld from the station data assimilated by Ca

  7. Sensitivity of Spaceborne and Ground Radar Comparison Results to Data Analysis Methods and Constraints

    NASA Technical Reports Server (NTRS)

    Morris, Kenneth R.; Schwaller, Mathew

    2011-01-01

    With the availability of active weather radar observations from space from the Precipitation Radar (PR) on board the Tropical Rainfall Measuring Mission (TR.MM) satellite, numerous studies have been performed comparing PR reflectivity and derived rain rates to similar observations from ground-based weather radars (GR). These studies have used a variety of algorithms to compute matching PR and GR volumes for comparison. Most studies have used a fixed 3-dimensional Cartesian grid centered on the ground radar, onto which the PR and GR data are interpolated using a proprietary approach and/or commonly available GR analysis software (e.g., SPRINT, REORDER). Other studies have focused on the intersection of the PR and GR viewing geometries either explicitly or using a hybrid of the fixed grid and PR/GR common fields of view. For the Dual-Frequency Precipitation Radar (DPR) of the upcoming Global Precipitation Measurement (GPM) mission, a prototype DPR/GR comparison algorithm based on similar TRMM PR data has been developed that defines the common volumes in terms of the geometric intersection of PR and GR rays, where smoothing of the PR and GR data are minimized and no interpolation is performed. The PR and GR volume-averaged reflectivity values of each sample volume are accompanied by descriptive metadata, for attributes including the variability and maximum of the reflectivity within the sample volume, and the fraction of range gates in the sample average having reflectivity values above an adjustable detection threshold (typically taken to be 18 dBZ for the PR). Sample volumes are further characterized by rain type (Stratiform or Convective), proximity to the melting layer, underlying surface (land/water/mixed), and the time difference between the PR and GR observations. The mean reflectivity differences between the PR and GR can differ between data sets produced by the different analysis methods; and for the GPM prototype, by the type of constraints and

  8. Naval Signal and Image Analysis Conference Report

    DTIC Science & Technology

    1998-02-26

    Arlington Hilton Hotel in Arlington, Virginia. The meeting was by invitation only and consisted of investigators in the ONR Signal and Image Analysis Program...in signal and image analysis . The conference provided an opportunity for technical interaction between academic researchers and Naval scientists and...plan future directions for the ONR Signal and Image Analysis Program as well as informal recommendations to the Program Officer.

  9. Precursory strong-signal characteristics of the convective clouds of the Central Tibetan Plateau detected by radar echoes with respect to the evolutionary processes of an eastward-moving heavy rainstorm belt in the Yangtze River Basin

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Xu, Xiangde; Ruan, Zheng; Chen, Bin; Wang, Fang

    2018-03-01

    The integrated analysis of the data from a C-band frequency-modulated continuous-wave (C-FMCW) radar site in Naqu obtained during a rainstorm over the middle and lower reaches of the Yangtze River and the data concerning the three-dimensional structure of the circulation of the precipitation system that occurred over the lower reaches of the Yangtze River Basin during the Third Tibetan Plateau (TP) Atmospheric Experiment from August 15th to 19th, 2014, was carried out. The changes in the echo intensity at the C-FMCW radar site in Naqu were of regional indicative significance for the characteristics of the whole-layer apparent heat source Q1 in local areas and the region of the adjacent river source area, including the Yangtze River, Yellow River, and Lancang River (hereinafter referred to as the "source area of three rivers"), as well as to the vertical speeds due to the development of convection. This study indicates that the C-FMCW radar echo intensity of the plateau convection zone and the related power structures of the coupled dipole circulations in the middle layer of the atmosphere, as well as in the upper atmospheric level divergence and lower atmospheric level convergence, are important stimuli for convective clouds in this region. Furthermore, these radar data provided a physical image of the development and maintenance mechanisms of an eastward-moving heavy rainstorm belt. This study also shows that changes in the echo intensities at the C-FMCW radar site of Naqu can provide strong signals related to heavy rainstorm processes in the upper reaches of the Yangtze River.

  10. Analysis of Interferometric Radar Data in a Queensland, Australia Tropical Rain Forest

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Rodriquez, Ernesto; Chapin, Elaine; Accad, Arnon

    1999-01-01

    The radar flies at 8000 m (24000 ft) above the ground and collects data in swath about 10 km wide. The radar simultaneously collects data from multiple frequencies and is capable of making interferometric radar measurements.

  11. Signal Processing Algorithms for the Terminal Doppler Weather Radar: Build 2

    DTIC Science & Technology

    2010-04-30

    the various TDWR base data quality issues, range-velocity (RV) ambiguity was deemed to be the most severe challenge nationwide. Compared to S - band ... power is computed as PN = median(|5«| 2)/(ln 2), where s is the complex I&Q signal, k is the range gate number, and / is the pulse time index. The...frequencies to the ground-clutter band around zero, the clutter filtering also removes power from the aliased frequencies and distorts the phase response

  12. A Modular Mixed Signal VLSI Design Approach for Digital Radar Applications

    DTIC Science & Technology

    2007-03-01

    convenience, denote e−j 2π N nk by WN , so equation (2.2) becomes: X(k) = N−1∑ n=0 x(n)W knN , k = 0, 1, 2, ..., N − 1 (2.3) which can be expanded into... Speech , and Signal Processing, 1994. ICASSP-94., 1994 IEEE International Conference on, 3, 1994. 18. Soliman, Samir S. and Mandyam D. Srinath

  13. Using phase for radar scatterer classification

    NASA Astrophysics Data System (ADS)

    Moore, Linda J.; Rigling, Brian D.; Penno, Robert P.; Zelnio, Edmund G.

    2017-04-01

    Traditional synthetic aperture radar (SAR) systems tend to discard phase information of formed complex radar imagery prior to automatic target recognition (ATR). This practice has historically been driven by available hardware storage, processing capabilities, and data link capacity. Recent advances in high performance computing (HPC) have enabled extremely dense storage and processing solutions. Therefore, previous motives for discarding radar phase information in ATR applications have been mitigated. First, we characterize the value of phase in one-dimensional (1-D) radar range profiles with respect to the ability to correctly estimate target features, which are currently employed in ATR algorithms for target discrimination. These features correspond to physical characteristics of targets through radio frequency (RF) scattering phenomenology. Physics-based electromagnetic scattering models developed from the geometrical theory of diffraction are utilized for the information analysis presented here. Information is quantified by the error of target parameter estimates from noisy radar signals when phase is either retained or discarded. Operating conditions (OCs) of signal-tonoise ratio (SNR) and bandwidth are considered. Second, we investigate the value of phase in 1-D radar returns with respect to the ability to correctly classify canonical targets. Classification performance is evaluated via logistic regression for three targets (sphere, plate, tophat). Phase information is demonstrated to improve radar target classification rates, particularly at low SNRs and low bandwidths.

  14. Radar Imaging Using The Wigner-Ville Distribution

    NASA Astrophysics Data System (ADS)

    Boashash, Boualem; Kenny, Owen P.; Whitehouse, Harper J.

    1989-12-01

    The need for analysis of time-varying signals has led to the formulation of a class of joint time-frequency distributions (TFDs). One of these TFDs, the Wigner-Ville distribution (WVD), has useful properties which can be applied to radar imaging. This paper first discusses the radar equation in terms of the time-frequency representation of the signal received from a radar system. It then presents a method of tomographic reconstruction for time-frequency images to estimate the scattering function of the aircraft. An optical archi-tecture is then discussed for the real-time implementation of the analysis method based on the WVD.

  15. Ambiguity Function Analysis for UMTS-Based Passive Multistatic Radar

    DTIC Science & Technology

    2014-04-16

    Sandeep Gogineni, Member, IEEE, Muralidhar Rangaswamy, Fellow, IEEE, Brian D . Rigling, Senior Member, IEEE, and Arye Nehorai, Fellow, IEEE Abstract—There...muralidhar.rangaswamy@us.af. mil). B. D . Rigling is with the Department of Electrical Engineering, Wright State University, Dayton, OH 45435 USA (e-mail...ieeexplore.ieee.org. Digital Object Identifier 10.1109/TSP.2014.2318135 [1]–[9] and audio broadcast signals and FM radio [10], [11], satellite-based [12], and

  16. Digital Data Acquisition for Laser Radar for Vibration Analysis

    DTIC Science & Technology

    1998-06-01

    and the resulting signal is a function of the relative phase of the two waves , which changes as the target vibrates. The relative phase is inversely...light crosses the medium in a direction perpendicular to the acoustic waves , a modulated optical wave front will result. A standing acoustic wave in the...mean that the frequency can be up or down-shifted, depending on the orientation of the AOM, or the direction of the traveling acoustic waves . An

  17. Frankfurt, Germany: 1030/1090 MegaHertz Signal Analysis

    DOT National Transportation Integrated Search

    1996-07-01

    The Data Link Test Analysis System (DATAS) was used in the Frankfort, Germany : to collect data in the frequency band used by Air Traffic Control Radar : Beacon (ATCRBS), Mode Select (Mode S), and Traffic Alert and Collision : Avoidance (TCAS). Data ...

  18. Time-Frequency, Bi-Frequency Detection Analysis of Noise Technology Radar

    DTIC Science & Technology

    2006-09-01

    it is helpful to use the UWB guidelines . These guidelines are that as the fractional bandwidth of the radar is greater than 0.25 with no...Figure 3 below, the transmitted noise is between 1 to 2 GHz. The first bandpass filter ( BPF ) is centered at 1.5 GHz with a bandwidth of 1 GHz. The...now centered on and filtered around 160 MHz at the IF BPF . Continuing on, the received signal of interest continues down the PD3 (power divider 3

  19. Analysis of Metrics for Human Detection behind Walls Using Experimental 3-D Synthetic Aperture Radar Imagery

    DTIC Science & Technology

    2014-12-01

    Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale, 2014 Abstract …….. Defence Research and Development... International Symposium on Phased Array Systems and Technology, 551-558 (2010). [10] Chetty, K., Smith, G. E., Woodbridge, K., “Through-the-wall sensing of...radar,” IEEE International Conference on Communications and Signal Processing, 579-583 (2011). [13] Sévigny, P., DiFilippo, D., Laneve, T., Chan, B

  20. An analysis of short pulse and dual frequency radar techniques for measuring ocean wave spectra from satellites

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1980-01-01

    Scanning beam microwave radars were used to measure ocean wave directional spectra from satellites. In principle, surface wave spectral resolution in wave number can be obtained using either short pulse (SP) or dual frequency (DF) techniques; in either case, directional resolution obtains naturally as a consequence of a Bragg-like wave front matching. A four frequency moment characterization of backscatter from the near vertical using physical optics in the high frequency limit was applied to an analysis of the SP and DF measurement techniques. The intrinsic electromagnetic modulation spectrum was to the first order in wave steepness proportional to the large wave directional slope spectrum. Harmonic distortion was small and was a minimum near 10 deg incidence. NonGaussian wave statistics can have an effect comparable to that in the second order of scattering from a normally distributed sea surface. The SP technique is superior to the DF technique in terms of measurement signal to noise ratio and contrast ratio.

  1. Intelligent signal analysis and recognition

    NASA Technical Reports Server (NTRS)

    Levinson, Robert; Helman, Daniel; Oswalt, Edward

    1987-01-01

    Progress in the research and development of self-organizing database system that can support the identification and characterization of signals in an RF environment is described. As the radio frequency spectrum becomes more crowded, there are a number of situations that require a characterization of the RF environment. This database system is designed to be practical in applications where communications and other instruments encounter a time varying and complex RF environment. The primary application of this system is the guidance and control of NASA's SETI Microwave Observing Project. Other possible applications include selection of telemety bands for communication with spacecraft, and the scheduling of antenna for radio astronomy are two examples where characterization of the RF environment is required. In these applications, the RF environment is constantly changing, and even experienced operators cannot quickly identify the multitude of signals that can be encountered. Some of these signals are repetitive, others appear to occur sporadically.

  2. Signals Intelligence - Processing - Analysis - Classification

    DTIC Science & Technology

    2009-10-01

    Example: Language identification from audio signals. In a certain mission, a set of languages seems important beforehand. These languages will – with a...Uebler, Ulla (2003) The Visualisation of Diverse Intelligence. In Proceedings NATO (Research and Technology Agency) conference on “Military Data

  3. Analysis of SIR-B radar illumination of geometry for depth of penetration and surface feature and vegetation detection, Nevada and California

    NASA Technical Reports Server (NTRS)

    Taranik, J. V.; Slemmons, D. B.; Bell, E. J.; Borengasser, M.; Lugaski, T. P.; Vreeland, H.; Vreeland, P.; Kleiner, E.; Peterson, F. F.; Kleiforth, H.

    1984-01-01

    The measurement capability provided by the Shuttle Imaging Radar (SIR-B) was used to determine: (1) the relationships between radar illumination geometry and depth of penetration in different climatic and physiographic environments in Nevada; and, (2) the relationships between radar illumination geometry and detection and analysis of structural features in different climatic and physiographic environments in Nevada.

  4. Metamaterial for Radar Frequencies

    DTIC Science & Technology

    2012-09-01

    Circuit Board RAM Radar Absorbing Material RCS Radar Cross Section SNR Signal-to-Noise Ratio SNG Single-Negative SRR Split Ring Resonator...although some can be single-negative ( SNG ). DNG refers to material with simultaneous negative real parts of the permittivity r  and permeability

  5. Noise analysis for near field 3-D FM-CW radar imaging systems

    SciTech Connect

    Sheen, David M.

    2015-06-19

    Near field radar imaging systems are used for several applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit the performance in several ways including reduction in system sensitivity and reduction of image dynamic range. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of thesemore » noise sources on a fast-chirping FM-CW system.« less

  6. Microphysical Analysis of a Warm Front Using and Linking Radar and In-Situ Data.

    NASA Astrophysics Data System (ADS)

    Keppas, S.

    2017-12-01

    The northward movement of the Azores anticyclone over the ENE coast of Canada on 20th January 2009 caused the formation of a well-organized low pressure system in North Atlantic Ocean. That system was followed by a trough which approached the UK from the WNW on 21st January 2009. The corresponding warm front affected the UK with multiple rainbands. We present an analysis of the microphysical properties of the afore-mentioned situation using radar and in-situ data. The ground-based radars are located in Chilbolton (South England) and operate at 3 and 35 GHz frequency. Chilbolton's radar high resolution (0.4 Km in vertical and 0.3 Km in horizontal dimension) and dual-polarization technology offers a view of the different features of the hydrometeors over large scales. The in-situ measurements have been taken during a flight over the SW England in the framework of the APPRAISE Clouds project, funded by the Natural Environment Research Council (NERC). The data from microphysical probes (CDP, 2D-S, CIP15, CIP100) provide a complete picture of hydrometeor properties (cloud droplets, ice particles and snow) are used for the microphysical analysis of this well- defined warm front. Using these datasets, features we try to identify and analyse regions, within mixed-phase clouds, of embedded convection, long ice fall streaks and the warm conveyor belt. We also try to explain the way that the warm conveyor belt affects the ice multiplication processes and the formation of some particular ice-particles, which we called ice-lollies due to their similarities in shape. The main goals of this work are: a. the identification and interpretation of areas with specific ice crystal habits by comparing radar and in-situ observations and b. the determination of the polarimetric and microphysical characteristics of a warm front.

  7. Limits to the Extraction of Information from Multi-Hop Skywave Radar Signals

    DTIC Science & Technology

    2005-04-14

    equations to compute the eikonal rays gh a model ionosphere, plotting the resulting tories in the range-height plane. oes received via these multi...kilometres. This extensive database is ideally suited to the sta- tistical analysis of the directional, diurnal, seasonal 0 0 500 1000 1500 2000 2500

  8. Data Transmission Signal Design and Analysis

    NASA Technical Reports Server (NTRS)

    Moore, J. D.

    1972-01-01

    The error performances of several digital signaling methods are determined as a function of a specified signal-to-noise ratio. Results are obtained for Gaussian noise and impulse noise. Performance of a receiver for differentially encoded biphase signaling is obtained by extending the results of differential phase shift keying. The analysis presented obtains a closed-form answer through the use of some simplifying assumptions. The results give an insight into the analysis problem, however, the actual error performance may show a degradation because of the assumptions made in the analysis. Bipolar signaling decision-threshold selection is investigated. The optimum threshold depends on the signal-to-noise ratio and requires the use of an adaptive receiver.

  9. Accuracy aspects of stereo side-looking radar. [analysis of its visual perception and binocular vision

    NASA Technical Reports Server (NTRS)

    Leberl, F. W.

    1979-01-01

    The geometry of the radar stereo model and factors affecting visual radar stereo perception are reviewed. Limits to the vertical exaggeration factor of stereo radar are defined. Radar stereo model accuracies are analyzed with respect to coordinate errors caused by errors of radar sensor position and of range, and with respect to errors of coordinate differences, i.e., cross-track distances and height differences.

  10. Geostatistical analysis of ground-penetrating radar data: A means of describing spatial variation in the subsurface

    NASA Astrophysics Data System (ADS)

    Rea, Jane; Knight, Rosemary

    1998-03-01

    We have investigated the use of ground-penetrating radar (GFR) as a means of characterizing the heterogeneity of the subsurface. Radar data were collected at several sites in southwestern British Columbia underlain by glaciodeltaic sediments. A cliff face study was conducted in which geostatistical analysis of a digitized photograph of the face and the radar image of the face showed excellent agreement in the maximum correlation direction and the correlation length determined from these two data sets. Other two-dimensional (2-D) sections of radar data were divided into sedimentary architectural elements on the basis of the distinct radar appearance of these sedimentary units. Examples of four sedimentary units were used to obtain semivariograms from the radar data and resulted in maximum correlation lengths between 0.5 and 4.8 m. A 3-D radar survey, collected over a package of gravel and sand foresets, was analyzed to determine the paleoflow direction; a correlation length of 4 m was found in that direction.

  11. Quantification of Reflection Patterns in Ground-Penetrating Radar Data

    NASA Astrophysics Data System (ADS)

    Moysey, S.; Knight, R. J.; Jol, H. M.; Allen-King, R. M.; Gaylord, D. R.

    2005-12-01

    reflections, but not dip direction, was an important discriminator between radar facies at the William River delta. To extend the use of radar texture beyond the identification of radar facies to sedimentary facies we are investigating how sedimentary features are encoded in GPR data at Borden, Ontario, Canada. At this site, we have collected extensive sedimentary and hydrologic data over the area imaged by GPR. Analysis of this data coupled with synthetic modeling of the radar signal has allowed us to develop insight into the generation of radar texture in complex geologic environments.

  12. Analysis of Airborne Radar Altimetry Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.

    1994-01-01

    This dissertation presents an analysis of airborne altimetry measurements taken over the Greenland ice sheet with the 13.9 GHz Advanced Application Flight Experiment (AAFE) pulse compression radar altimeter. This Ku-band instrument was refurbished in 1990 by the Microwave Remote Sensing Laboratory at the University of Massachusetts to obtain high-resolution altitude measurements and to improve the tracking, speed, storage and display capabilities of the radar. In 1991 and 1993, the AAFE altimeter took part in the NASA Multisensor Airborne Altimetry Experiments over Greenland, along with two NASA laser altimeters. Altitude results from both experiments are presented along with comparisons to the laser altimeter and calibration passes over the Sondrestroem runway in Greenland. Although it is too early to make a conclusion about the growth or decay of the ice sheet, these results show that the instrument is capable of measuring small-scale surface changes to within 14 centimeters. In addition, results from these experiments reveal that the radar is sensitive to the different diagenetic regions of the ice sheet. Return waveforms from the wet- snow, percolation and dry-snow zones show varying effects of both surface scattering and sub-surface or volume scattering. Models of each of the diagenetic regions of Greenland are presented along with parameters such as rms surface roughness, rms surface slope and attenuation coefficient of the snow pack obtained by fitting the models to actual return waveforms.

  13. Investigation of lunar maria structure from cross-analysis of GRAIL gravity and Kaguya radar data

    NASA Astrophysics Data System (ADS)

    Zuber, M. T.; Ermakov, A.; Smith, D. E.; Mastroguiseppe, M.; Raguso, M.

    2016-12-01

    The Lunar Radar Sounder (LRS) on JAXA's Kaguya spacecraft investigated the subsurface structure of the Moon to a depth of a few km. GRAIL gravity models are potentially sensitive to subsurface structure at such depths. GRAIL gravity and LRS radar data are complementary since both are sensitive to density/compositional heterogeneities. Cross-correlation of GRAIL and LRS data has the potential to produce new constraints on the structure and evolution of the lunar maria. Originally, subsurface reflections within the lunar maria were detected with Lunar Sounder Experiment aboard Apollo 17. Subsurface layering was attributed to multiple episodes of volcanism. Later, Kaguya's LRS produced similar measurements but with global-scale coverage. Laboratory measurements show that density variations among mare basalts can be up to 200 kg m-3 or 7%. The LRS measurements have detected subsurface reflection in the upper 1 km of the crust. Combining these two estimates and using the Bouguer slab approximation, we estimate that anomalies of order 1-10 mGal are expected due to potentially varying density of surface and/or subsurface horizons. This accuracy is achievable with the latest GRAIL gravity models. The LRS surface backscattering power is indicative of surface and near sub-surface dielectric properties, which are sensitive to target density and roughness. We investigate the northwestern part of the Procellarum basin because it is the region with the strongest signal-to-noise ratios in gravity models within maria. To examine shallow subsurface structure, we map the surface received power by tracking the first return of radar echoes and compare it with gravity gradients, which are particularly sensitive to small-scale structures.

  14. A microprogrammable radar controller

    NASA Technical Reports Server (NTRS)

    Law, D. C.

    1986-01-01

    The Wave Propagation Lab. has completed the design and construction of a microprogrammable radar controller for atmospheric wind profiling. Unlike some radar controllers using state machines or hardwired logic for radar timing, this design is a high speed programmable sequencer with signal processing resources. A block diagram of the device is shown. The device is a single 8 1/2 inch by 10 1/2 inch printed circuit board and consists of three main subsections: (1) the host computer interface; (2) the microprogram sequencer; and (3) the signal processing circuitry. Each of these subsections are described in detail.

  15. Analysis of laser radar measurements of the asteroid 433 Eros

    NASA Astrophysics Data System (ADS)

    Cole, Timothy D.; Zuber, Maria T.; Neuman, Greg; Cheng, Andrew F.; Reiter, R. Alan; Guo, Yanping; Smith, David E.

    2001-09-01

    After a 5-year mission, a 4-year transit followed by a one-year mission orbiting the asteroid 433 Eros, the Near-Earth Asteroid Rendezvous-Shoemaker (NEAR) spacecraft made a controlled landing onto the asteroid's surface on 12 February 2001. Onboard the spacecraft, the NEAR Laser Rangefinder (NLR) facility instrument had gathered over 11 million measurements, providing a spatially dense, high-resolution, topographical map of Eros. This topographic data, combined with Doppler tracking data for the spacecraft, enabled the determination of the asteroid's shape, mass, and density thereby contributing to understanding the internal structure and collisional evolution of Eros. NLR data indicate that Eros is a consolidated body with a complex shape dominated by collisions. The offset between the asteroid's center of mass and center of figure indicates a small deviation from a homogeneous internal structure that is most simply explained by variations in mechanical structure. Regional-scale relief and slope distributions show evidence for control of some topography by a competent substrate. It was found that pulse dilation was the major source of uncertainty in single-shot range measurements from the NLR, and that this uncertainty remains consistent with the overall 6-m range measurement system accuracy for NEAR. Analysis of NLR data fully quantified the geodynamic nature of this planetesimal, ergo, illustrating the utility of laser altimetry for remote sensing.

  16. Analysis of Fully Polarimetric Laboratory Measurements Performed with the WISDOM Radar

    NASA Astrophysics Data System (ADS)

    Plettemeier, D.; Ciarletti, V.; Cais, P.; Benedix, W.-S.; Zhang, H.; Hamran, S.-E.; Clifford, S.

    2012-04-01

    algorithms were applied to reduce the interference from radiation coupling and cross-talk between transmitting and receiving antenna. The analysis of the laboratory measurement will show features of the fully polarimetric radar system and quantify most of the important performance parameters. Synthetic aperture processing is implemented to increase the azimuth resolution of radar. The three dimensional reconstruction of the positioning of an arrangement of discrete objects will be shown.

  17. Structural analysis of lunar subsurface with Chang'E-3 lunar penetrating radar

    NASA Astrophysics Data System (ADS)

    Lai, Jialong; Xu, Yi; Zhang, Xiaoping; Tang, Zesheng

    2016-01-01

    Geological structure of the subsurface of the Moon provides valuable information on lunar evolution. Recently, Chang'E-3 has utilized lunar penetrating radar (LPR), which is equipped on the lunar rover named as Yutu, to detect the lunar geological structure in Northern Imbrium (44.1260N, 19.5014W) for the first time. As an in situ detector, Chang'E-3 LPR has relative higher horizontal and vertical resolution and less clutter impact compared to spaceborne radars and earth-based radars. In this work, we analyze the LPR data at 500 MHz transmission frequency to obtain the shallow subsurface structure of the landing area of Chang'E-3 in Mare Imbrium. Filter method and amplitude recovery algorithms are utilized to alleviate the adverse effects of environment and system noises and compensate the amplitude losses during signal propagation. Based on the processed radar image, we observe numerous diffraction hyperbolae, which may be caused by discrete reflectors beneath the lunar surface. Hyperbolae fitting method is utilized to reverse the average dielectric constant to certain depth (ε bar). Overall, the estimated ε bar increases with the depth and ε bar could be classified into three categories. Average ε bar of each category is 2.47, 3.40 and 6.16, respectively. Because of the large gap between the values of ε bar of neighboring categories, we speculate a three-layered structure of the shallow surface of LPR exploration region. One possible geological picture of the speculated three-layered structure is presented as follows. The top layer is weathered layer of ejecta blanket with its average thickness and bound on error is 0.95±0.02 m. The second layer is the ejecta blanket of the nearby impact crater, and the corresponding average thickness is about 2.30±0.07 m, which is in good agreement with the two primary models of ejecta blanket thickness as a function of distance from the crater center. The third layer is regarded as a mixture of stones and soil. The

  18. Quantitative Analysis of Venus Radar Backscatter Data in ArcGIS

    NASA Technical Reports Server (NTRS)

    Long, S. M.; Grosfils, E. B.

    2005-01-01

    Ongoing mapping of the Ganiki Planitia (V14) quadrangle of Venus and definition of material units has involved an integrated but qualitative analysis of Magellan radar backscatter images and topography using standard geomorphological mapping techniques. However, such analyses do not take full advantage of the quantitative information contained within the images. Analysis of the backscatter coefficient allows a much more rigorous statistical comparison between mapped units, permitting first order selfsimilarity tests of geographically separated materials assigned identical geomorphological labels. Such analyses cannot be performed directly on pixel (DN) values from Magellan backscatter images, because the pixels are scaled to the Muhleman law for radar echoes on Venus and are not corrected for latitudinal variations in incidence angle. Therefore, DN values must be converted based on pixel latitude back to their backscatter coefficient values before accurate statistical analysis can occur. Here we present a method for performing the conversions and analysis of Magellan backscatter data using commonly available ArcGIS software and illustrate the advantages of the process for geological mapping.

  19. Book: Marine Bioacoustic Signal Processing and Analysis

    DTIC Science & Technology

    2011-09-30

    physicists , and mathematicians . However, more and more biologists and psychologists are starting to use advanced signal processing techniques and...Book: Marine Bioacoustic Signal Processing and Analysis 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT ...chapters than it should be, since the project must be finished by Dec. 31. I have started setting aside 2 hours of uninterrupted per workday to work

  20. Reconstruction of the sea surface elevation from the analysis of the data collected by a wave radar system

    NASA Astrophysics Data System (ADS)

    Ludeno, Giovanni; Soldovieri, Francesco; Serafino, Francesco; Lugni, Claudio; Fucile, Fabio; Bulian, Gabriele

    2016-04-01

    Concordia Ship Wreck. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(7). [3]Nieto Borge, J., Rodriguez, G.R., Hessner, K., González, P.I., (2004). Inversion of Marine Radar Images for Surface Wave Analysis. J. Atmos. Oceanic Technol. 21, 1291-1300. [4] Fucile, F., Ludeno, G., Serafino, F.,Bulian, G., Soldovieri, F., Lugni, C. "Some challenges in recovering wave features from a wave radar system". Paper submitted to the International Ocean and Polar Engineering Conference, ISOPE, Rhodes 2016

  1. New Magnetic Materials and Phenomena for Radar and Microwave Signal Processing Devices - Bulk and Thin Film Ferrites and Metallic Films

    DTIC Science & Technology

    2009-02-15

    Magnon scattered light generally experiences a 90° rotation in polarization from the incident beam. The wave- vector selective BLS measurements...filters, phase locked microwave pulse sources, microwave and millimeter wave devices such as isolators, circulators, phase shifters, secure signal...Wave vector selective Brillouin light scattering measurements and analysis, " C. L. Ordofiez-Romero, B. A. Kalinikos, P. Krivosik, Wei Tong, P

  2. Radar Imaging of Non-Uniformly Rotating Targets via a Novel Approach for Multi-Component AM-FM Signal Parameter Estimation

    PubMed Central

    Wang, Yong

    2015-01-01

    A novel radar imaging approach for non-uniformly rotating targets is proposed in this study. It is assumed that the maneuverability of the non-cooperative target is severe, and the received signal in a range cell can be modeled as multi-component amplitude-modulated and frequency-modulated (AM-FM) signals after motion compensation. Then, the modified version of Chirplet decomposition (MCD) based on the integrated high order ambiguity function (IHAF) is presented for the parameter estimation of AM-FM signals, and the corresponding high quality instantaneous ISAR images can be obtained from the estimated parameters. Compared with the MCD algorithm based on the generalized cubic phase function (GCPF) in the authors’ previous paper, the novel algorithm presented in this paper is more accurate and efficient, and the results with simulated and real data demonstrate the superiority of the proposed method. PMID:25806870

  3. Advanced Differential Radar Interferometry (A-DInSAR) as integrative tool for a structural geological analysis

    NASA Astrophysics Data System (ADS)

    Crippa, B.; Calcagni, L.; Rossi, G.; Sternai, P.

    2009-04-01

    Advanced Differential SAR interferometry (A-DInSAR) is a technique monitoring large-coverage surface deformations using a stack of interferograms generated from several complex SLC SAR images, acquired over the same target area at different times. In this work are described the results of a procedure to calculate terrain motion velocity on highly correlated pixels (E. Biescas, M. Crosetto, M. Agudo, O. Monserrat e B. Crippa: Two Radar Interferometric Approaches to Monitor Slow and Fast Land Deformation, 2007) in two area Gemona - Friuli, Northern Italy, Pollino - Calabria, Southern Italy, and, furthermore, are presented some consideration, based on successful examples of the present analysis. The choice of these pixels whose displacement velocity is calculated depends on the dispersion index value (DA) or using coherence values along the stack interferograms. A-DInSAR technique allows to obtain highly reliable velocity values of the vertical displacement. These values concern the movement of minimum surfaces of about 80m2 at the maximum resolution and the minimum velocity that can be recognized is of the order of mm/y. Because of the high versatility of the technology, because of the large dimensions of the area that can be analyzed (of about 10000Km2) and because of the high precision and reliability of the results obtained, we think it is possible to exploit radar interferometry to obtain some important information about the structural context of the studied area, otherwise very difficult to recognize. Therefore we propose radar interferometry as a valid investigation tool whose results must be considered as an important integration of the data collected in fieldworks.

  4. Study to investigate and evaluate means of optimizing the radar function for the space shuttle

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A detailed analysis of the spiral scan was performed for antenna sizes ranging from 20 inches to 36 inches in diameter and for search angles characteristic of both the radar and the communication acquisition modes. The power budgets for passive target radar detection were calculated for antenna diameters ranging from 20 to 36 inches. Dwell times commensurate with spiral scan were used for these budget calculations. The signal design for the candidate pulse Doppler system is summarized. Ground return analysis carried out for the passive target radar mode is examined, and the details are presented. A concluding description of the proposed candidate radar/communication system configuration is given.

  5. Nonstationary signal analysis in episodic memory retrieval

    NASA Astrophysics Data System (ADS)

    Ku, Y. G.; Kawasumi, Masashi; Saito, Masao

    2004-04-01

    The problem of blind source separation from a mixture that has nonstationarity can be seen in signal processing, speech processing, spectral analysis and so on. This study analyzed EEG signal during episodic memory retrieval using ICA and TVAR. This paper proposes a method which combines ICA and TVAR. The signal from the brain not only exhibits the nonstationary behavior, but also contain artifacts. EEG data at the frontal lobe (F3) from the scalp is collected during the episodic memory retrieval task. The method is applied to EEG data for analysis. The artifact (eye movement) is removed by ICA, and a single burst (around 6Hz) is obtained by TVAR, suggesting that the single burst is related to the brain activity during the episodic memory retrieval.

  6. An Analysis of MARSIS Radar Flash Memory Data from Lunae Planum, Mars: Searching for Subsurface Structures.

    NASA Astrophysics Data System (ADS)

    Caprarelli, G.; Orosei, R.; Mastrogiuseppe, M.; Cartacci, M.

    2017-12-01

    Lunae Planum is a Martian plain measuring approximately 1000 km in width and 2000 km in length, centered at coordinates 294°E-11°N. MOLA elevations range from +2500 m to +500 m in the south, gently sloping northward to -500 m. The plain is part of a belt of terrains located between the southern highlands and the northern lowlands, that are transitional in character (e.g., by elevation, age and morphology). These transitional terrains are poorly understood, in part because of their relative lack of major geomorphological features. They record however a very significant part of Mars's geologic history. The most evident features on Lunae Planum's Hesperian surface are regularly spaced, longitudinally striking, wrinkle ridges. These indicate the presence of blind thrust faults cutting through thick stacks of layers of volcanic or sedimentary rocks. The presence of fluidized ejecta craters scattered all over the region suggests also the presence of ice or volatiles in the subsurface. In a preliminary study of Lunae Planum's subsurface we used the Mars Express ground penetrating radar MARSIS dataset [1], in order to detect reflectors that could indicate the presence of fault planes or layering. Standard radargrams however, provided no evidence of changes in value of dielectric constant that could indicate possible geologic discontinuities or stratification of physically diverse materials. We thus started a new investigation based on processing of raw MARSIS data. Here we report on the preliminary results of this study. We searched the MARSIS archive for raw data stored in flash memory. When operating with flash storage, the radar collects 2 frequency bands along-track covering a distance = 100-250 km, depending on the orbiter altitude [2]. We found flash memory data from 24 orbits over the area. We processed the data focusing radar returns in off-nadir directions, to maximize the likelihood of detecting sloping subsurface structures, including those striking parallel

  7. On safe ground? Analysis of European urban geohazards using satellite radar interferometry

    NASA Astrophysics Data System (ADS)

    Capes, Renalt; Teeuw, Richard

    2017-06-01

    Urban geological hazards involving ground instability can be costly, dangerous, and affect many people, yet there is little information about the extent or distribution of geohazards within Europe's urban areas. A reason for this is the impracticality of measuring ground instability associated with the many geohazard processes that are often hidden beneath buildings and are imperceptible to conventional geological survey detection techniques. Satellite radar interferometry, or InSAR, offers a remote sensing technique to map mm-scale ground deformation over wide areas given an archive of suitable multi-temporal data. The EC FP7 Space project named PanGeo (2011-2014), used InSAR to map areas of unstable ground in 52 of Europe's cities, representing ∼15% of the EU population. In partnership with Europe's national geological surveys, the PanGeo project developed a standardised geohazard-mapping methodology and recorded 1286 instances of 19 types of geohazard covering 18,000 km2. Presented here is an analysis of the results of the PanGeo-project output data, which provides insights into the distribution of European urban geohazards, their frequency and probability of occurrence. Merging PanGeo data with Eurostat's GeoStat data provides a systematic estimate of population exposures. Satellite radar interferometry is shown to be as a valuable tool for the systematic detection and mapping of urban geohazard phenomena.

  8. Volumetric analysis of a New England barrier system using ground-penetrating-radar and coring techniques

    USGS Publications Warehouse

    Van Heteren, S.; FitzGerald, D.M.; Barber, D.C.; Kelley, J.T.; Belknap, D.F.

    1996-01-01

    Ground-penetrating-radar (GPR) profiles calibrated with core data allow accurate assessments of coastal barrier volumes. We applied this procedure successfully to the barrier system along Saco Bay, Maine (USA), as part of a sediment-budget study that focused on present-day sand volumes in various coastal, shoreface, and inner-shelf lith-osomes, and on sand fluxes that have affected the volume or distribution of sand in these sediment bodies through time. On GPR profiles, the components of the barrier lithosome are readily differentiated from other facies, except where the radar signal is attenuated by brackish or salty groundwater. Significant differences between dielectric properties of the barrier lithosome and other units commonly result in strong boundary reflectors. The mostly sandy barrier sediments allow deep penetration of GPR waves, in contrast to finer-grained strata and till-covered bedrock. Within the Saco Bay barrier system, 22 ??3 x 106 m3 of sediment are unevenly distributed. Two-thirds of the total barrier volume is contained within the northern and southern ends of the study area, in the Pine Point spit and the Ferry Beach/Goosefare complex, respectively. The central area around Old Orchard Beach is locally covered by only a thin veneer of barrier sand, averaging <3 m, that unconformably overlies shallow pre-Holocene facies. The prominence of barrier-spit facies and the distribution pattern of back-barrier sediments indicate that a high degree of segmentation, governed by antecedent topography, has affected the development of the Saco Bay barrier system. The present-day configuration of the barrier and back-barrier region along Saco Bay, however, conceals much of its early compartmentalized character.

  9. Obstacle penetrating dynamic radar imaging system

    DOEpatents

    Romero, Carlos E [Livermore, CA; Zumstein, James E [Livermore, CA; Chang, John T [Danville, CA; Leach, Jr Richard R. [Castro Valley, CA

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  10. Regional tectonic analysis of Venus equatorial highlands and comparison with Earth-based Magellan radar images

    NASA Technical Reports Server (NTRS)

    Williams, David R.; Wetherill, George

    1993-01-01

    Research on regional tectonic analysis of Venus equatorial highlands and comparison with earth-based and Magellan radar images is presented. Over the past two years, the tectonic analysis of Venus performed centered on global properties of the planet, in order to understand fundamental aspects of the dynamics of the mantle and lithosphere of Venus. These include studies pertaining to the original constitutive and thermal character of the planet, as well as the evolution of Venus through time, and the present day tectonics. Parameterized convection models of the Earth and Venus were developed. The parameterized convection code was reformulated to model Venus with an initially hydrous mantle to determine how the cold-trap could affect the evolution of the planet.

  11. A space-time multifractal analysis on radar rainfall sequences from central Poland

    NASA Astrophysics Data System (ADS)

    Licznar, Paweł; Deidda, Roberto

    2014-05-01

    Rainfall downscaling belongs to most important tasks of modern hydrology. Especially from the perspective of urban hydrology there is real need for development of practical tools for possible rainfall scenarios generation. Rainfall scenarios of fine temporal scale reaching single minutes are indispensable as inputs for hydrological models. Assumption of probabilistic philosophy of drainage systems design and functioning leads to widespread application of hydrodynamic models in engineering practice. However models like these covering large areas could not be supplied with only uncorrelated point-rainfall time series. They should be rather supplied with space time rainfall scenarios displaying statistical properties of local natural rainfall fields. Implementation of a Space-Time Rainfall (STRAIN) model for hydrometeorological applications in Polish conditions, such as rainfall downscaling from the large scales of meteorological models to the scale of interest for rainfall-runoff processes is the long-distance aim of our research. As an introduction part of our study we verify the veracity of the following STRAIN model assumptions: rainfall fields are isotropic and statistically homogeneous in space; self-similarity holds (so that, after having rescaled the time by the advection velocity, rainfall is a fully homogeneous and isotropic process in the space-time domain); statistical properties of rainfall are characterized by an "a priori" known multifractal behavior. We conduct a space-time multifractal analysis on radar rainfall sequences selected from the Polish national radar system POLRAD. Radar rainfall sequences covering the area of 256 km x 256 km of original 2 km x 2 km spatial resolution and 15 minutes temporal resolution are used as study material. Attention is mainly focused on most severe summer convective rainfalls. It is shown that space-time rainfall can be considered with a good approximation to be a self-similar multifractal process. Multifractal

  12. Genomic signal analysis of pathogen variability

    NASA Astrophysics Data System (ADS)

    Cristea, Paul Dan

    2006-02-01

    The paper presents results in the study of pathogen variability by using genomic signals. The conversion of symbolic nucleotide sequences into digital signals offers the possibility to apply signal processing methods to the analysis of genomic data. The method is particularly well suited to characterize small size genomic sequences, such as those found in viruses and bacteria, being a promising tool in tracking the variability of pathogens, especially in the context of developing drug resistance. The paper is based on data downloaded from GenBank [32], and comprises results on the variability of the eight segments of the influenza type A, subtype H5N1, virus genome, and of the Hemagglutinin (HA) gene, for the H1, H2, H3, H4, H5 and H16 types. Data from human and avian virus isolates are used.

  13. Graph Frequency Analysis of Brain Signals

    PubMed Central

    Huang, Weiyu; Goldsberry, Leah; Wymbs, Nicholas F.; Grafton, Scott T.; Bassett, Danielle S.; Ribeiro, Alejandro

    2016-01-01

    This paper presents methods to analyze functional brain networks and signals from graph spectral perspectives. The notion of frequency and filters traditionally defined for signals supported on regular domains such as discrete time and image grids has been recently generalized to irregular graph domains, and defines brain graph frequencies associated with different levels of spatial smoothness across the brain regions. Brain network frequency also enables the decomposition of brain signals into pieces corresponding to smooth or rapid variations. We relate graph frequency with principal component analysis when the networks of interest denote functional connectivity. The methods are utilized to analyze brain networks and signals as subjects master a simple motor skill. We observe that brain signals corresponding to different graph frequencies exhibit different levels of adaptability throughout learning. Further, we notice a strong association between graph spectral properties of brain networks and the level of exposure to tasks performed, and recognize the most contributing and important frequency signatures at different levels of task familiarity. PMID:28439325

  14. Analysis of long term trends of precipitation estimates acquired using radar network in Turkey

    NASA Astrophysics Data System (ADS)

    Tugrul Yilmaz, M.; Yucel, Ismail; Kamil Yilmaz, Koray

    2016-04-01

    Precipitation estimates, a vital input in many hydrological and agricultural studies, can be obtained using many different platforms (ground station-, radar-, model-, satellite-based). Satellite- and model-based estimates are spatially continuous datasets, however they lack the high resolution information many applications often require. Station-based values are actual precipitation observations, however they suffer from their nature that they are point data. These datasets may be interpolated however such end-products may have large errors over remote locations with different climate/topography/etc than the areas stations are installed. Radars have the particular advantage of having high spatial resolution information over land even though accuracy of radar-based precipitation estimates depends on the Z-R relationship, mountain blockage, target distance from the radar, spurious echoes resulting from anomalous propagation of the radar beam, bright band contamination and ground clutter. A viable method to obtain spatially and temporally high resolution consistent precipitation information is merging radar and station data to take advantage of each retrieval platform. An optimally merged product is particularly important in Turkey where complex topography exerts strong controls on the precipitation regime and in turn hampers observation efforts. There are currently 10 (additional 7 are planned) weather radars over Turkey obtaining precipitation information since 2007. This study aims to optimally merge radar precipitation data with station based observations to introduce a station-radar blended precipitation product. This study was supported by TUBITAK fund # 114Y676.

  15. Mathematical morphology for automated analysis of remotely sensed objects in radar images

    NASA Technical Reports Server (NTRS)

    Daida, Jason M.; Vesecky, John F.

    1991-01-01

    A symbiosis of pyramidal segmentation and morphological transmission is described. The pyramidal segmentation portion of the symbiosis has resulted in low (2.6 percent) misclassification error rate for a one-look simulation. Other simulations indicate lower error rates (1.8 percent for a four-look image). The morphological transformation portion has resulted in meaningful partitions with a minimal loss of fractal boundary information. An unpublished version of Thicken, suitable for watersheds transformations of fractal objects, is also presented. It is demonstrated that the proposed symbiosis works with SAR (synthetic aperture radar) images: in this case, a four-look Seasat image of sea ice. It is concluded that the symbiotic forms of both segmentation and morphological transformation seem well suited for unsupervised geophysical analysis.

  16. Distribution entropy analysis of epileptic EEG signals.

    PubMed

    Li, Peng; Yan, Chang; Karmakar, Chandan; Liu, Changchun

    2015-01-01

    It is an open-ended challenge to accurately detect the epileptic seizures through electroencephalogram (EEG) signals. Recently published studies have made elaborate attempts to distinguish between the normal and epileptic EEG signals by advanced nonlinear entropy methods, such as the approximate entropy, sample entropy, fuzzy entropy, and permutation entropy, etc. Most recently, a novel distribution entropy (DistEn) has been reported to have superior performance compared with the conventional entropy methods for especially short length data. We thus aimed, in the present study, to show the potential of DistEn in the analysis of epileptic EEG signals. The publicly-accessible Bonn database which consisted of normal, interictal, and ictal EEG signals was used in this study. Three different measurement protocols were set for better understanding the performance of DistEn, which are: i) calculate the DistEn of a specific EEG signal using the full recording; ii) calculate the DistEn by averaging the results for all its possible non-overlapped 5 second segments; and iii) calculate it by averaging the DistEn values for all the possible non-overlapped segments of 1 second length, respectively. Results for all three protocols indicated a statistically significantly increased DistEn for the ictal class compared with both the normal and interictal classes. Besides, the results obtained under the third protocol, which only used very short segments (1 s) of EEG recordings showed a significantly (p <; 0.05) increased DistEn for the interictal class in compassion with the normal class, whereas both analyses using relatively long EEG signals failed in tracking this difference between them, which may be due to a nonstationarity effect on entropy algorithm. The capability of discriminating between the normal and interictal EEG signals is of great clinical relevance since it may provide helpful tools for the detection of a seizure onset. Therefore, our study suggests that the Dist

  17. Evaluation of 3D Ground Penetrating Radar Efficiency for Abandoned Tailings Pond Internal Structure Analysis and Risk Assessment

    NASA Astrophysics Data System (ADS)

    Cortada, Unai; Martínez, Julián; Hidalgo, Mª Carmen; Rey, Javier

    2017-04-01

    Evaluation of 3D Ground Penetrating Radar Efficiency for Abandoned Tailings Pond Internal Structure Analysis and Risk Assessment Abandoned tailings ponds constitute a severe environmental problem in old Pb mining districts due to their high contents in metallic and semi-metallic elements. In most of the cases, there is a lack of information about the construction procedures and the previous environmental situation, which hinders the environmental risk evaluation. In these cases, Ground Penetrating Radar (GPR) could be an interesting technique to analyze the internal structure of the tailings ponds and detect vulnerable zones for leaching processes. Consequently, the GPR could help in the abandoned tailings ponds environmental risk assessment. In this study, a GPR 3D campaign was carried out with a 250 MHz frequency antenna in order to evaluate the efficiency of this technique in both the analysis of internal structures and the environmental risk assessment. Subsequently, 2D and 3D models were undertaken to represent graphically the obtained results. The studied tailings pond is located in the Guadiel river bank, a water course draining the mining district of Linares, Spain. The dam is 150 m length and 80 m width. The GPR 3D was done in a selected area near the central part of the pond. The analyzed grid was 25x50 m and the spacing of the slides was 1 m. The study revealed that the contact between the tailings and the substratum is located at 2.5 m. No intermediate layer was found, which means that the tailings pond was heightened on the fluvial terrace without any insulation system. Inside the first meter of the pond, a cross stratification was identified. The orientation of those laminations changed with the depth, which means that the stockpiling was performed from the different sides of the tailings pond. Furthermore, the direction of these stratifications is slightly concentric to the middle of the dam which could be associated with a central drainage system

  18. Change detection for synthetic aperture radar images based on pattern and intensity distinctiveness analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Gao, Feng; Dong, Junyu; Qi, Qiang

    2018-04-01

    Synthetic aperture radar (SAR) image is independent on atmospheric conditions, and it is the ideal image source for change detection. Existing methods directly analysis all the regions in the speckle noise contaminated difference image. The performance of these methods is easily affected by small noisy regions. In this paper, we proposed a novel change detection framework for saliency-guided change detection based on pattern and intensity distinctiveness analysis. The saliency analysis step can remove small noisy regions, and therefore makes the proposed method more robust to the speckle noise. In the proposed method, the log-ratio operator is first utilized to obtain a difference image (DI). Then, the saliency detection method based on pattern and intensity distinctiveness analysis is utilized to obtain the changed region candidates. Finally, principal component analysis and k-means clustering are employed to analysis pixels in the changed region candidates. Thus, the final change map can be obtained by classifying these pixels into changed or unchanged class. The experiment results on two real SAR images datasets have demonstrated the effectiveness of the proposed method.

  19. Optical signal processing

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1978-01-01

    The article discusses several optical configurations used for signal processing. Electronic-to-optical transducers are outlined, noting fixed window transducers and moving window acousto-optic transducers. Folded spectrum techniques are considered, with reference to wideband RF signal analysis, fetal electroencephalogram analysis, engine vibration analysis, signal buried in noise, and spatial filtering. Various methods for radar signal processing are described, such as phased-array antennas, the optical processing of phased-array data, pulsed Doppler and FM radar systems, a multichannel one-dimensional optical correlator, correlations with long coded waveforms, and Doppler signal processing. Means for noncoherent optical signal processing are noted, including an optical correlator for speech recognition and a noncoherent optical correlator.

  20. Constraining Greenland basal water extent and drainage morphology from radar reflectivity and specularity analysis

    NASA Astrophysics Data System (ADS)

    Chu, W.; Schroeder, D. M.; Seroussi, H. L.; Creyts, T. T.; Bell, R. E.; Paden, J. D.

    2017-12-01

    Subglacial water has been observed and theorized to cause changes in basal sliding. Across Greenland, water drainage can produce massive speed-ups, or conversely, very little responses from the ice sheet. While distinct modes of subglacial drainage have been proposed to cause these different responses, the absence of Greenland-wide hydrological observations makes it difficult to examine where shifts in drainage occur and what controls them. By using routing models and the reflectivity and specularity of radar bed echoes from NASA IceBridge, we provide insight into the character of the subglacial water systems and their variability across Greenland. Specifically, we examine Russell Glacier as a southern Greenland example and Petermann Glacier as a northern example. In the south at Russell Glacier, the distribution of subglacial water varies seasonally depending on the surface melt supply. In winter, water is stored on bedrock ridges but is absent in the sediment-filled troughs. In the summer, water drains to the troughs that focus this water, flooding the bed to intensify sliding locally. The topography and material properties of the bed strongly determine the degree to which subglacial drainage focuses at Russell. Conversely, the drainage systems in northern Greenland are vastly different. In Petermann, radar reflectivity indicates a persistent water distribution beneath the fast moving ice trunk. We observe a widespread water distribution with only a weak drainage focusing along the shear margin. Contrasted to Russell, topography and bed materials exert minor roles in determining Petermann's drainage behavior. Instead, local heat production and heat transfer with the neighboring glaciers strongly determine the water distribution in Petermann. We also interpret the radar reflectivity and routing model results in the context of basal roughness and drainage morphology, which we estimate from a more detailed analysis of the specularity of the bed echoes. Together, our

  1. Weather Radar Studies

    DTIC Science & Technology

    1988-03-31

    radar operation and data - collection activities, a large data -analysis effort has been under way in support of automatic wind-shear detection algorithm ...REDUCTION AND ALGORITHM DEVELOPMENT 49 A. General-Purpose Software 49 B. Concurrent Computer Systems 49 C. Sun Workstations 51 D. Radar Data Analysis 52...1. Algorithm Verification 52 2. Other Studies 53 3. Translations 54 4. Outside Distributions 55 E. Mesonet/LLWAS Data Analysis 55 1. 1985 Data 55 2

  2. Time series analysis of Mexico City subsidence constrained by radar interferometry

    NASA Astrophysics Data System (ADS)

    López-Quiroz, Penélope; Doin, Marie-Pierre; Tupin, Florence; Briole, Pierre; Nicolas, Jean-Marie

    2009-09-01

    In Mexico City, subsidence rates reach up to 40 cm/yr mainly due to soil compaction led by the over exploitation of the Mexico Basin aquifer. In this paper, we map the spatial and temporal patterns of the Mexico City subsidence by differential radar interferometry, using 38 ENVISAT images acquired between end of 2002 and beginning of 2007. We present the severe interferogram unwrapping problems partly due to the coherence loss but mostly due to the high fringe rates. These difficulties are overcome by designing a new methodology that helps the unwrapping step. Our approach is based on the fact that the deformation shape is stable for similar time intervals during the studied period. As a result, a stack of the five best interferograms can be used to compute an average deformation rate for a fixed time interval. Before unwrapping, the number of fringes is then decreased in wrapped interferograms using a scaled version of the stack together with the estimation of the atmospheric phase contribution related with the troposphere vertical stratification. The residual phase, containing less fringes, is more easily unwrapped than the original interferogram. The unwrapping procedure is applied in three iterative steps. The 71 small baseline unwrapped interferograms are inverted to obtain increments of radar propagation delays between the 38 acquisition dates. Based on the redundancy of the interferometric data base, we quantify the unwrapping errors and show that they are strongly decreased by iterations in the unwrapping process. A map of the RMS interferometric system misclosure allows to define the unwrapping reliability for each pixel. Finally, we present a new algorithm for time series analysis that differs from classical SVD decomposition and is best suited to the present data base. Accurate deformation time series are then derived over the metropolitan area of the city with a spatial resolution of 30 × 30 m.

  3. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1981-01-01

    Software to support all stages of asteroid radar observation and data analysis is developed. First-order analysis of all data in hand is complete. Estimates of radar cross sections, circular polarization ratios, and limb-to-limb echo spectral bandwidths for asteroids 7 Iris, 16 Psyche, 97 Klotho, 1862 Apollo, and 1915 Quetzalcoatl are reported. Radar observations of two previously unobserved asteroids were conducted. An Aten asteroid, 2100 Ra-Shalom, with the smallest known semimajor axis (0.83) was detected. Preliminary data reduction indicates a circular polarization ratio comparable to those of Apollo, Quetzalcoatl, and Toro.

  4. Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) Cost-Benefit Analysis

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2008-01-01

    Lightning Launch Commit Criteria (LLCC) are designed to prevent space launch vehicles from flight through environments conducive to natural or triggered lightning and are used for all U.S. government and commercial launches at government and civilian ranges. They are maintained by a committee known as the NASA/USAF Lightning Advisory Panel (LAP). The previous LLCC for anvil cloud, meant to avoid triggered lightning, have been shown to be overly restrictive. Some of these rules have had such high safety margins that they prohibited flight under conditions that are now thought to be safe 90% of the time, leading to costly launch delays and scrubs. The LLCC for anvil clouds was upgraded in the summer of 2005 to incorporate results from the Airborne Field Mill (ABFM) experiment at the Eastern Range (ER). Numerous combinations of parameters were considered to develop the best correlation of operational weather observations to in-cloud electric fields capable of rocket triggered lightning in anvil clouds. The Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) was the best metric found. Dr. Harry Koons of Aerospace Corporation conducted a risk analysis of the VAHIRR product. The results indicated that the LLCC based on the VAHIRR product would pose a negligible risk of flying through hazardous electric fields. Based on these findings, the Kennedy Space Center Weather Office is considering seeking funding for development of an automated VAHIRR algorithm for the new ER 45th Weather Squadron (45 WS) RadTec 431250 weather radar and Weather Surveillance Radar-1988 Doppler (WSR-88D) radars. Before developing an automated algorithm, the Applied Meteorology Unit (AMU) was tasked to determine the frequency with which VAHIRR would have allowed a launch to safely proceed during weather conditions otherwise deemed "red" by the Launch Weather Officer. To do this, the AMU manually calculated VAHIRR values based on candidate cases from past launches with known anvil cloud

  5. Cellular signaling identifiability analysis: a case study.

    PubMed

    Roper, Ryan T; Pia Saccomani, Maria; Vicini, Paolo

    2010-05-21

    Two primary purposes for mathematical modeling in cell biology are (1) simulation for making predictions of experimental outcomes and (2) parameter estimation for drawing inferences from experimental data about unobserved aspects of biological systems. While the former purpose has become common in the biological sciences, the latter is less common, particularly when studying cellular and subcellular phenomena such as signaling-the focus of the current study. Data are difficult to obtain at this level. Therefore, even models of only modest complexity can contain parameters for which the available data are insufficient for estimation. In the present study, we use a set of published cellular signaling models to address issues related to global parameter identifiability. That is, we address the following question: assuming known time courses for some model variables, which parameters is it theoretically impossible to estimate, even with continuous, noise-free data? Following an introduction to this problem and its relevance, we perform a full identifiability analysis on a set of cellular signaling models using DAISY (Differential Algebra for the Identifiability of SYstems). We use our analysis to bring to light important issues related to parameter identifiability in ordinary differential equation (ODE) models. We contend that this is, as of yet, an under-appreciated issue in biological modeling and, more particularly, cell biology. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  6. Toward Exploring the Synergy Between Cloud Radar Polarimetry and Doppler Spectral Analysis in Deep Cold Precipitating Systems in the Arctic

    SciTech Connect

    Oue, Mariko; Kollias, Pavlos; Ryzhkov, Alexander

    The study of Arctic ice and mixed-phase clouds, which are characterized by a variety of ice particle types in the same cloudy volume, is challenging research. This study illustrates a new approach to qualitative and quantitative analysis of the complexity of ice and mixed-phase microphysical processes in Arctic deep precipitating systems using the combination of Ka-band zenith-pointing radar Doppler spectra and quasi-vertical profiles of polarimetric radar variables measured by a Ka/W-band scanning radar. The results illustrate the frequent occurrence of multimodal Doppler spectra in the dendritic/planar growth layer, where locally generated, slower-falling particle populations are well separated from faster-falling populationsmore » in terms of Doppler velocity. The slower-falling particle populations contribute to an increase of differential reflectivity (Z DR), while an enhanced specific differential phase (K DP) in this dendritic growth temperature range is caused by both the slower and faster-falling particle populations. Another area with frequent occurrence of multimodal Doppler spectra is in mixed-phase layers, where both populations produce Z DR and K DP values close to 0, suggesting the occurrence of a riming process. A Joint analysis of the Doppler spectra and the polarimetric radar variables provides important insight into the microphysics of snow formation and allows the separation of the contributions of ice of different habits to the values of reflectivity and Z DR.« less

  7. Toward Exploring the Synergy Between Cloud Radar Polarimetry and Doppler Spectral Analysis in Deep Cold Precipitating Systems in the Arctic

    DOE PAGES

    Oue, Mariko; Kollias, Pavlos; Ryzhkov, Alexander; ...

    2018-03-16

    The study of Arctic ice and mixed-phase clouds, which are characterized by a variety of ice particle types in the same cloudy volume, is challenging research. This study illustrates a new approach to qualitative and quantitative analysis of the complexity of ice and mixed-phase microphysical processes in Arctic deep precipitating systems using the combination of Ka-band zenith-pointing radar Doppler spectra and quasi-vertical profiles of polarimetric radar variables measured by a Ka/W-band scanning radar. The results illustrate the frequent occurrence of multimodal Doppler spectra in the dendritic/planar growth layer, where locally generated, slower-falling particle populations are well separated from faster-falling populationsmore » in terms of Doppler velocity. The slower-falling particle populations contribute to an increase of differential reflectivity (Z DR), while an enhanced specific differential phase (K DP) in this dendritic growth temperature range is caused by both the slower and faster-falling particle populations. Another area with frequent occurrence of multimodal Doppler spectra is in mixed-phase layers, where both populations produce Z DR and K DP values close to 0, suggesting the occurrence of a riming process. A Joint analysis of the Doppler spectra and the polarimetric radar variables provides important insight into the microphysics of snow formation and allows the separation of the contributions of ice of different habits to the values of reflectivity and Z DR.« less

  8. Toward Exploring the Synergy Between Cloud Radar Polarimetry and Doppler Spectral Analysis in Deep Cold Precipitating Systems in the Arctic

    NASA Astrophysics Data System (ADS)

    Oue, Mariko; Kollias, Pavlos; Ryzhkov, Alexander; Luke, Edward P.

    2018-03-01

    The study of Arctic ice and mixed-phase clouds, which are characterized by a variety of ice particle types in the same cloudy volume, is challenging research. This study illustrates a new approach to qualitative and quantitative analysis of the complexity of ice and mixed-phase microphysical processes in Arctic deep precipitating systems using the combination of Ka-band zenith-pointing radar Doppler spectra and quasi-vertical profiles of polarimetric radar variables measured by a Ka/W-band scanning radar. The results illustrate the frequent occurrence of multimodal Doppler spectra in the dendritic/planar growth layer, where locally generated, slower-falling particle populations are well separated from faster-falling populations in terms of Doppler velocity. The slower-falling particle populations contribute to an increase of differential reflectivity (ZDR), while an enhanced specific differential phase (KDP) in this dendritic growth temperature range is caused by both the slower and faster-falling particle populations. Another area with frequent occurrence of multimodal Doppler spectra is in mixed-phase layers, where both populations produce ZDR and KDP values close to 0, suggesting the occurrence of a riming process. Joint analysis of the Doppler spectra and the polarimetric radar variables provides important insight into the microphysics of snow formation and allows the separation of the contributions of ice of different habits to the values of reflectivity and ZDR.

  9. Ultrawideband radar; Proceedings of the Meeting, Los Angeles, CA, Jan. 22, 23, 1992

    NASA Astrophysics Data System (ADS)

    Lahaie, Ivan J.

    1992-05-01

    The present conference discusses a canonical representation of the radar range equation in the time domain, two-way beam patterns fron ultrawideband arrays, modeling of ultrawideband sea clutter, the analysis of time-domain ultrawideband radar signals, a frequency-agile ultrawideband microwave source, and the performance of ultrawideband antennas. Also discussed are the diffraction of ultrawideband radar pulses, sea-clutter measurements with an ultrawideband X-band radar having variable resolution, results from a VHF-impulse SAR, an ultrawideband differential radar, the development of 2D target images from ultrawideband radar systems, ultrawideband generators, and the radiated waveform of a monolithic photoconductive GaAs pulser. (For individual items see A93-28202 to A93-28223)

  10. Feasibility of heart rate variability measurement from quadrature Doppler radar using arctangent demodulation with DC offset compensation.

    PubMed

    Massagram, Wansuree; Hafner, Noah M; Park, Byung-Kwan; Lubecke, Victor M; Host-Madsen, Anders; Boric-Lubecke, Olga

    2007-01-01

    This paper describes the experimental results of the beat-to-beat interval measurement from a quadrature Doppler radar system utilizing arctangent demodulation with DC offset compensation techniques. The comparison in SDNN and in RMSDD of both signals demonstrates the potential of using quadrature Doppler radar for HRV analysis.

  11. Radar observations of individual rain drops in the free atmosphere.

    PubMed

    Schmidt, Jerome M; Flatau, Piotr J; Harasti, Paul R; Yates, Robert D; Littleton, Ricky; Pritchard, Michael S; Fischer, Jody M; Fischer, Erin J; Kohri, William J; Vetter, Jerome R; Richman, Scott; Baranowski, Dariusz B; Anderson, Mark J; Fletcher, Ed; Lando, David W

    2012-06-12

    Atmospheric remote sensing has played a pivotal role in the increasingly sophisticated representation of clouds in the numerical models used to assess global and regional climate change. This has been accomplished because the underlying bulk cloud properties can be derived from a statistical analysis of the returned microwave signals scattered by a diverse ensemble comprised of numerous cloud hydrometeors. A new Doppler radar, previously used to track small debris particles shed from the NASA space shuttle during launch, is shown to also have the capacity to detect individual cloud hydrometeors in the free atmosphere. Similar to the traces left behind on film by subatomic particles, larger cloud particles were observed to leave a well-defined radar signature (or streak), which could be analyzed to infer the underlying particle properties. We examine the unique radar and environmental conditions leading to the formation of the radar streaks and develop a theoretical framework which reveals the regulating role of the background radar reflectivity on their observed characteristics. This main expectation from theory is examined through an analysis of the drop properties inferred from radar and in situ aircraft measurements obtained in two contrasting regions of an observed multicellular storm system. The observations are placed in context of the parent storm circulation through the use of the radar's unique high-resolution waveforms, which allow the bulk and individual hydrometeor properties to be inferred at the same time.

  12. National Radar Conference, Los Angeles, CA, March 12, 13, 1986, Proceedings

    NASA Astrophysics Data System (ADS)

    The topics discussed include radar systems, radar subsystems, and radar signal processing. Papers are presented on millimeter wave radar for proximity fuzing of smart munitions, a solid state low pulse power ground surveillance radar, and the Radarsat prototype synthetic-aperture radar signal processor. Consideration is also given to automatic track quality assessment in ADT radar systems instrumentation of RCS measurements of modulation spectra of aircraft blades.

  13. Steam injection pilot study in a contaminated fractured limestone (Maine, USA): Modeling and analysis of borehole radar reflection data

    USGS Publications Warehouse

    Gregoire, C.; Lane, J.W.; Joesten, P.K.

    2005-01-01

    Steam-enhanced remediation (SER) has been successfully used to remove DNAPL and LNAPL contaminants in porous media. Between August and November 2002, SER was tested in fractured limestone at the former Loring Air Force Base, in Maine, USA. During the SER investigation, the U.S. Geological Survey conducted a series of borehole radar surveys to evaluate the effectiveness of radar methods for monitoring the movement of steam and heat through the fractured limestone. The data were collected before steam injection, 10 days after the beginning of injection, and at the end of injection. In this paper, reflection-mode borehole radar data from wells JBW-7816 and JBW-7817A are presented and discussed. Theoretical modeling was performed to predict the variation of fracture reflectivity owed to heating, to show displacement of water and to assess the effect of SER at the site. Analysis of the radar profile data indicates some variations resulting from heating (increase of continuity of reflectors, attenuation of deeper reflections) but no substantial variation of traveltimes. Spectral content analysis of several individual reflections surrounding the boreholes was used to investigate the replacement of water by steam in the fractures. Observed decrease in radar reflectivity was too small to be explained by a replacement of water by steam, except for two high-amplitude reflectors, which disappeared near the end of the injection; moreover, no change of polarity, consistent with steam replacing water, was observed. The decrease of amplitude was greater for reflectors near well JBW-7817A and is explained by a greater heating around this well.

  14. Analysis of the Gran Desierto, Pinacte Region, Sonora, Mexico, via shuttle imaging radar

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Christensen, P. R.; Mchone, J. F.; Asmerom, Y.; Zimbelman, J. R.

    1984-01-01

    The radar discriminability of geolian features and their geological setting as imaged by the SIR-A experiment is examined. The Gran Desierto and Pincate volcanio field of Sonora, Mexico was used to analyze the radar characteristics of the interplay of aeolian features and volcano terrain. The area in the Gran Desierto covers 4000 sq. km. and contains sand dunes of several forms. The Pincate volcanio field covers more than 2.000 sq. km. and consists primarily of basaltic lavas. Margins of the field, especially on the western and northern sides, include several maar and maar-like craters; thus obtaining information on their radar characteristics for comparison with impact craters.

  15. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  16. Applications of Bayesian Procrustes shape analysis to ensemble radar reflectivity nowcast verification

    NASA Astrophysics Data System (ADS)

    Fox, Neil I.; Micheas, Athanasios C.; Peng, Yuqiang

    2016-07-01

    This paper introduces the use of Bayesian full Procrustes shape analysis in object-oriented meteorological applications. In particular, the Procrustes methodology is used to generate mean forecast precipitation fields from a set of ensemble forecasts. This approach has advantages over other ensemble averaging techniques in that it can produce a forecast that retains the morphological features of the precipitation structures and present the range of forecast outcomes represented by the ensemble. The production of the ensemble mean avoids the problems of smoothing that result from simple pixel or cell averaging, while producing credible sets that retain information on ensemble spread. Also in this paper, the full Bayesian Procrustes scheme is used as an object verification tool for precipitation forecasts. This is an extension of a previously presented Procrustes shape analysis based verification approach into a full Bayesian format designed to handle the verification of precipitation forecasts that match objects from an ensemble of forecast fields to a single truth image. The methodology is tested on radar reflectivity nowcasts produced in the Warning Decision Support System - Integrated Information (WDSS-II) by varying parameters in the K-means cluster tracking scheme.

  17. Breath Activity Monitoring With Wearable UWB Radars: Measurement and Analysis of the Pulses Reflected by the Human Body.

    PubMed

    Pittella, Erika; Pisa, Stefano; Cavagnaro, Marta

    2016-07-01

    Measurements of ultrawideband (UWB) pulses reflected by the human body are conducted to evidence the differences in the received signal time behaviors due to respiration phases, and to experimentally verify previously obtained numerical results on the body's organs responsible for pulse reflection. Two experimental setups are used. The first one is based on a commercially available impulse radar system integrated on a single chip, while the second one implements an indirect time-domain reflectometry technique using a vector network analyzer controlled by a LabVIEW virtual instrument running on a laptop. When the UWB source is placed close to the human body, a small reflection due to the lung boundaries is present in the received pulse well distanced in time from the reflection due to the air-skin interface; this reflection proved to be linked to the different respiration phases. The changes in the reflected pulse could be used to detect, through wearable radar systems, lung movements associated with the breath activity. The development of a wearable radar system is of great importance because it allows the breath activity sensing without interfering with the subject daily activities.

  18. Methods of quantitative and qualitative analysis of bird migration with a tracking radar

    NASA Technical Reports Server (NTRS)

    Bruderer, B.; Steidinger, P.

    1972-01-01

    Methods of analyzing bird migration by using tracking radar are discussed. The procedure for assessing the rate of bird passage is described. Three topics are presented concerning the grouping of nocturnal migrants, the velocity of migratory flight, and identification of species by radar echoes. The height and volume of migration under different weather conditions are examined. The methods for studying the directions of migration and the correlation between winds and the height and direction of migrating birds are presented.

  19. Adaptations and Analysis of the AFIT Noise Radar Network for Indoor Navigation

    DTIC Science & Technology

    2013-03-01

    capable of producing bistatic/multistatic radar images. NTR is unique because it utilizes amplified random thermal noise as its transmission waveform...structure and operation of NTR is described. A minutia of the EM theory describing the various phenomenon found when operating RF devices in indoor...construction of NTR is simple in comparison to other CW radars. The system begins with a commercial thermal noise source, which produces a uniform

  20. Analysis of Active Lava Flows on Kilauea Volcano, Hawaii, Using SIR-C Radar Correlation Measurements

    NASA Technical Reports Server (NTRS)

    Zebker, H. A.; Rosen, P.; Hensley, S.; Mouginis-Mark, P. J.

    1995-01-01

    Precise eruption rates of active pahoehoe lava flows on Kilauea volcano, Hawaii, have been determined using spaceborne radar data acquired by the Space Shuttle Imaging Radar-C (SIR-C). Measurement of the rate of lava flow advance, and the determination of the volume of new material erupted in a given period of time, are among the most important observations that can be made when studying a volcano.

  1. Meteorite Fall Detection and Analysis via Weather Radar: Worldwide Potential for Citizen Science

    NASA Astrophysics Data System (ADS)

    Fries, M.; Bresky, C.; Laird, C.; Reddy, V.; Hankey, M.

    2017-12-01

    Meteorite falls can be detected using weather radars, facilitating rapid recovery of meteorites to minimize terrestrial alteration. Imagery from the US NEXRAD radar network reveals over two dozen meteorite falls where meteorites have been recovered, and about another dozen that remain unrecovered. Discovery of new meteorite falls is well suited to "citizen science" and similar outreach activities, as well as automation of computational components into internet-based search tools. Also, there are many more weather radars employed worldwide than those in the US NEXRAD system. Utilization of weather radars worldwide for meteorite recovery can not only expand citizen science opportunities but can also lead to significant improvement in the number of freshly-fallen meteorites available for research. We will discuss the methodologies behind locating and analyzing meteorite falls using weather radar, and how to make them available for citizen science efforts. An important example is the Aquarius Project, a Chicago-area consortium recently formed with the goal of recovering meteorites from Lake Michigan. This project has extensive student involvement geared toward development of actual hardware for recovering meteorites from the lake floor. Those meteorites were identified in weather radar imagery as they fell into the lake from a large meteor on 06 Feb 2017. Another example of public interaction is the meteor detection systems operated by the American Meteor Society (AMS). The AMS website has been developed to allow public reporting of meteors, effectively enabling citizen science to locate and describe significant meteor events worldwide.

  2. 35-GHz radar sensor for automotive collision avoidance

    NASA Astrophysics Data System (ADS)

    Zhang, Jun

    1999-07-01

    This paper describes the development of a radar sensor system used for automotive collision avoidance. Because the heavy truck may have great larger radar cross section than a motorcyclist has, the radar receiver may have a large dynamic range. And multi-targets at different speed may confuse the echo spectrum causing the ambiguity between range and speed of target. To get more information about target and background and to adapt to the large dynamic range and multi-targets, a frequency modulated and pseudo- random binary sequences phase modulated continuous wave radar system is described. The analysis of this double- modulation system is given. A high-speed signal processing and data processing component are used to process and combine the data and information from echo at different direction and at every moment.

  3. Data processing techniques used with MST radars: A review

    NASA Technical Reports Server (NTRS)

    Rastogi, P. K.

    1983-01-01

    The data processing methods used in high power radar probing of the middle atmosphere are examined. The radar acts as a spatial filter on the small scale refractivity fluctuations in the medium. The characteristics of the received signals are related to the statistical properties of these fluctuations. A functional outline of the components of a radar system is given. Most computation intensive tasks are carried out by the processor. The processor computes a statistical function of the received signals, simultaneously for a large number of ranges. The slow fading of atmospheric signals is used to reduce the data input rate to the processor by coherent integration. The inherent range resolution of the radar experiments can be improved significant with the use of pseudonoise phase codes to modulate the transmitted pulses and a corresponding decoding operation on the received signals. Commutability of the decoding and coherent integration operations is used to obtain a significant reduction in computations. The limitations of the processors are outlined. At the next level of data reduction, the measured function is parameterized by a few spectral moments that can be related to physical processes in the medium. The problems encountered in estimating the spectral moments in the presence of strong ground clutter, external interference, and noise are discussed. The graphical and statistical analysis of the inferred parameters are outlined. The requirements for special purpose processors for MST radars are discussed.

  4. Surface deformation analysis over Vrancea seismogenic area through radar and GPS geospatial data

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Serban, Florin S.; Teleaga, Delia M.; Mateciuc, Doru N.

    2017-10-01

    Time series analysis of GPS (Global Positioning Systems) and InSAR (Interferometric Synthetic Aperture Radar) data are important tools for Earth's surface deformation assessment, which can result from a wide range of geological phenomena like as earthquakes, landslides or ground water level changes. The aim of this paper was to identify several types of earthquake precursors that might be observed from geospatial data in Vrancea seismogenic region in Romania. Continuous GPS Romanian network stations and few field campaigns data recorded between 2005-2012 years revealed a displacement of about 5 or 6 millimeters per year in horizontal direction relative motion, and a few millimeters per year in vertical direction. In order to assess possible deformations due to earthquakes and respectively for possible slow deformations, have been used also time series Sentinel 1 satellite data available for Vrancea zone during October 2014 till October 2016 to generate two types of interferograms (short-term and medium- term). During investigated period were not recorded medium or strong earthquakes, so interferograms over test area revealed small displacements on vertical direction (subsidence or uplifts) of 5-10 millimeters per year. Based on GPS continuous network data and satellite Sentinel 1 results, different possible tectonic scenarios were developed. The localization of horizontal and vertical motions, fault slip, and surface deformation of the continental blocks provides new information, in support of different geodynamic models for Vrancea tectonic active region in Romania and Europe.

  5. Spectrum Modal Analysis for the Detection of Low-Altitude Windshear with Airborne Doppler Radar

    NASA Technical Reports Server (NTRS)

    Kunkel, Matthew W.

    1992-01-01

    A major obstacle in the estimation of windspeed patterns associated with low-altitude windshear with an airborne pulsed Doppler radar system is the presence of strong levels of ground clutter which can strongly bias a windspeed estimate. Typical solutions attempt to remove the clutter energy from the return through clutter rejection filtering. Proposed is a method whereby both the weather and clutter modes present in a return spectrum can be identified to yield an unbiased estimate of the weather mode without the need for clutter rejection filtering. An attempt will be made to show that modeling through a second order extended Prony approach is sufficient for the identification of the weather mode. A pattern recognition approach to windspeed estimation from the identified modes is derived and applied to both simulated and actual flight data. Comparisons between windspeed estimates derived from modal analysis and the pulse-pair estimator are included as well as associated hazard factors. Also included is a computationally attractive method for estimating windspeeds directly from the coefficients of a second-order autoregressive model. Extensions and recommendations for further study are included.

  6. Transmitter and receiver antenna gain analysis for laser radar and communication systems

    NASA Technical Reports Server (NTRS)

    Klein, B. J.; Degnan, J. J.

    1973-01-01

    A comprehensive and fairly self-contained study of centrally obscured optical transmitting and receiving antennas is presented and is intended for use by the laser radar and communication systems designer. The material is presented in a format which allows the rapid and accurate evaluation of antenna gain. The Fresnel approximation to scalar wave theory is reviewed and the antenna analysis proceeds in terms of the power gain. Conventional range equations may then be used to calculate the power budget. The transmitter calculations, resulting in near and far field antenna gain patterns, assumes the antenna is illuminated by a laser operating in the fundamental cavity mode. A simple equation is derived for matching the incident source distribution to a general antenna configuration for maximum on-axis gain. An interpretation of the resultant gain curves allows a number of auxiliary design curves to be drawn which display the losses in antenna gain due to pointing errors and the cone angle of the outgoing beam as a function of antenna size and central obscuration. The use of telescope defocusing as an approach to spreading the beam for target acquisition is compared to some alternate methods.

  7. Safety and Performance Analysis of the Non-Radar Oceanic/Remote Airspace In-Trail Procedure

    NASA Technical Reports Server (NTRS)

    Carreno, Victor A.; Munoz, Cesar A.

    2007-01-01

    This document presents a safety and performance analysis of the nominal case for the In-Trail Procedure (ITP) in a non-radar oceanic/remote airspace. The analysis estimates the risk of collision between the aircraft performing the ITP and a reference aircraft. The risk of collision is only estimated for the ITP maneuver and it is based on nominal operating conditions. The analysis does not consider human error, communication error conditions, or the normal risk of flight present in current operations. The hazards associated with human error and communication errors are evaluated in an Operational Hazards Analysis presented elsewhere.

  8. Characterizing the Precipitation Processes in Hurricane Karl (2010) Through Analysis of Airborne Doppler Radar Data and Numerical Simulations

    NASA Astrophysics Data System (ADS)

    DeHart, J.; Houze, R.

    2016-12-01

    Airborne radar data and numerical simulations are employed to investigate the structure of Hurricane Karl (2010). Karl peaked in intensity as a major hurricane in the Gulf of Mexico before making landfall on the mountainous coast of Veracruz, Mexico. Multiple aircraft extensively sampled Karl during the NASA GRIP campaign, including NASA's DC-8 aircraft instrumented with the Advanced Precipitation Radar 2 (APR-2), which is a high-resolution, dual-frequency Doppler radar. Data from APR-2 provide a unique opportunity to characterize the precipitation structure of Karl as it underwent orographic modification. As Karl made landfall on 17 September 2010, the vertical structure of the precipitation echo varied spatially around the Mexican terrain. The precipitation variation was linked to several factors: landfall, orientation of flow relative to the topographic features, and differing characteristics inherent to the eyewall and rainbands. Despite the differences in the reflectivity intensity across the storm, we show that low-level reflectivity enhancement occurred only where upslope flow was favorable. The radar data indicate that the processes initially contributing to the reflectivity enhancement were warm-cloud processes, either through collection of orographically-generated cloud water or shallow convection. But as Karl weakened, the low-level enhancement processes were overshadowed by deep convection that developed along the terrain. Analysis of the radar data is complemented by a series of numerical simulations, which reasonably reproduce the track, intensity and structure of Karl. The simulated thermodynamic and kinematic patterns provide a holistic view of Karl's evolution during landfall. We use terrain modification experiments to examine the sensitivity of the orographic enhancement processes to the three-dimensional terrain and land surface characteristics. Consistent with the radar analysis, warm-cloud enhancement processes are visible in the spatial

  9. Advances in Ice Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Paden, J. D.

    2016-12-01

    Radars have been employed for ice remote sensing since the mid-twentieth century. The original application in radioglaciology was to obtain ice thickness: an essential parameter in ice flux calculations and boundary condition in ice flow models. Later, radars were used to estimate basal conditions and track laterally persistent features in the ice. The Center for Remote Sensing of Ice Sheet's recent hardware advances include multichannel systems and radar suites covering the usable frequency spectrum. These advances coupled with increased interest in the polar regions result in a concomitant exponential growth in data. We focus on a few results that have come from these changes. Multichannel radar systems improved clutter rejection and enabled 3D imaging. Using computer vision algorithms, we have automated the process of extracting the ice bottom surface in 3D imagery for complex topographies including narrow glacier channels where the ice surface and ice bottom merge together within the 3D images. We present results of wide swath imaging which have enabled narrow, 2-3 km wide, glacier channels to be fully imaged in a single pass. When radar data are available across the frequency spectrum, we have the ability to enhance target detection and measure frequency dependent properties. For example, we can couple HF sounder measurements in warmer ice where scattering attenuates and hides the signal of interest with VHF sounder measurements in cooler ice which have much improved resolution from a single flight line. We present examples of improved bed detection with coupled HF and VHF imagery in a temperate to cold ice transition that show the strong frequency dependence of englacial scattering. To handle the increased data rate, we developed a standard processing chain and data product for CReSIS radar systems, including legacy systems. Application specific GIS tools are an essential part and enable us to merge other data products during data analysis. By using imagery

  10. Threat radar system simulations

    NASA Astrophysics Data System (ADS)

    Miller, L.

    The capabilities, requirements, and goals of radar emitter simulators are discussed. Simulators are used to evaluate competing receiver designs, to quantify the performance envelope of a radar system, and to model the characteristics of a transmitted signal waveform. A database of candidate threat systems is developed and, in concert with intelligence data on a given weapons system, permits upgrading simulators to new projected threat capabilities. Four currently available simulation techniques are summarized, noting the usefulness of developing modular software for fast controlled-cost upgrades of simulation capabilities.

  11. Synthetic aperture radar target simulator

    NASA Technical Reports Server (NTRS)

    Zebker, H. A.; Held, D. N.; Goldstein, R. M.; Bickler, T. C.

    1984-01-01

    A simulator for simulating the radar return, or echo, from a target seen by a SAR antenna mounted on a platform moving with respect to the target is described. It includes a first-in first-out memory which has digital information clocked in at a rate related to the frequency of a transmitted radar signal and digital information clocked out with a fixed delay defining range between the SAR and the simulated target, and at a rate related to the frequency of the return signal. An RF input signal having a frequency similar to that utilized by a synthetic aperture array radar is mixed with a local oscillator signal to provide a first baseband signal having a frequency considerably lower than that of the RF input signal.

  12. Synchronized Radar-Target Simulator

    NASA Technical Reports Server (NTRS)

    Chin, B. C.

    1985-01-01

    Apparatus for testing radar system generates signals that simulate amplitude and phase characteristics of target returns and their variation with antenna-pointing direction. Antenna movement causes equipment to alter test signal in imitation of behavior of real signal received during tracking.

  13. Signal Feature Analysis Using Neural Networks & Psychoacoustics

    DTIC Science & Technology

    1993-05-01

    large class file on the DAT recording . This processing produced signals which ranged in length from 13200 and 39650 points. The extractions produced ... recorded . This signal set, denoted as "Air" signals , lacked the parameter of angle but added the parameter of striker (metal, plastic, and wood...the subjects were recorded . These became r.4 w data for confusion matrices which described how often a subject confused the class of a signal

  14. Reconfigurable L-Band Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  15. Radar-raingauge data combination techniques: a revision and analysis of their suitability for urban hydrology.

    PubMed

    Wang, Li-Pen; Ochoa-Rodríguez, Susana; Simões, Nuno Eduardo; Onof, Christian; Maksimović, Cedo

    2013-01-01

    The applicability of the operational radar and raingauge networks for urban hydrology is insufficient. Radar rainfall estimates provide a good description of the spatiotemporal variability of rainfall; however, their accuracy is in general insufficient. It is therefore necessary to adjust radar measurements using raingauge data, which provide accurate point rainfall information. Several gauge-based radar rainfall adjustment techniques have been developed and mainly applied at coarser spatial and temporal scales; however, their suitability for small-scale urban hydrology is seldom explored. In this paper a review of gauge-based adjustment techniques is first provided. After that, two techniques, respectively based upon the ideas of mean bias reduction and error variance minimisation, were selected and tested using as case study an urban catchment (∼8.65 km(2)) in North-East London. The radar rainfall estimates of four historical events (2010-2012) were adjusted using in situ raingauge estimates and the adjusted rainfall fields were applied to the hydraulic model of the study area. The results show that both techniques can effectively reduce mean bias; however, the technique based upon error variance minimisation can in general better reproduce the spatial and temporal variability of rainfall, which proved to have a significant impact on the subsequent hydraulic outputs. This suggests that error variance minimisation based methods may be more appropriate for urban-scale hydrological applications.

  16. RADAR study: protocol for an observational cohort study to identify early warning signals on the pathways to alcohol use disorder.

    PubMed

    Slade, Tim; Swift, Wendy; Mewton, Louise; Kypri, Kypros; Lynskey, Michael T; Butterworth, Peter; Tibbetts, Joel; McCraw, Stacey; Upton, Emily

    2017-08-21

    Harmful alcohol consumption, particularly alcohol use disorder (AUD), is a worldwide health priority, contributing substantially to global morbidity and mortality. The peak age of onset of AUD is 18-24, thus a deeper understanding of the young adult experience is vital if we are to identify modifiable risk factors and intervene early in the developmental course of this disabling disorder. Critical unanswered questions include: How soon after drinking initiation do AUD symptoms begin to emerge? Which symptoms come first? Do the symptoms unfold in a predictable pattern? In what ways do the emerging symptoms interact with individual, peer, family and environmental risk factors to impact on the transition to disorder? The proposed RADAR study will examine the prospective development of AUD symptoms over the young adulthood (18-24) years. We will capitalise on an existing cohort of 1911 community-based adolescents who were recruited at age 13 and have completed a baseline and five annual follow-up assessments as part of an observational cohort study. We will interview these adolescents every 6 months between the ages of 19 and 23 to derive monthly histories of both alcohol use and AUD symptomatology, along with a comprehensive battery of risk and protective factor scales hypothesised to predict the emergence and course of AUD. The results of this study will inform the natural history of AUD and will be used to identify specific targets for prevention and early intervention of AUD. Ethical approval has already been granted for the study (UNSW HREC 10144). We will disseminate the results of the study through published manuscripts, conferences and seminar presentations. Data used in published manuscripts will be made available through a suitable online repository (eg, Dryad-datadryad.org). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly

  17. An analysis of the economic impact of the AN/APS-134 FLAR (Forward Looking Airborne Radar) retrofit on Coast Guard HC-130 aircraft

    NASA Astrophysics Data System (ADS)

    Dunn, R. E.

    1984-12-01

    Concern over the growing drug smuggling problem and improved national defense capability are manifest in the need for a new forward looking airborne radar (FLAR) for Coast Guard HC-130 aircraft, with a capability of detecting a target of 1 square meter radar cross section. This thesis reexamines the analysis that selected the AN/APS-134 FLAR over other contenders based on mission need, radar performance and life cycle cost criteria. This thesis presents a better understanding of the resulting HC-130 force structure based on the impact of FLAR technology.

  18. Simultaneous optical and meteor head echo measurements using the Middle Atmosphere Alomar Radar System (MAARSY): Data collection and preliminary analysis

    NASA Astrophysics Data System (ADS)

    Brown, P.; Stober, G.; Schult, C.; Krzeminski, Z.; Cooke, W.; Chau, J. L.

    2017-07-01

    The initial results of a two year simultaneous optical-radar meteor campaign are described. Analysis of 105 double-station optical meteors having plane of sky intersection angles greater than 5° and trail lengths in excess of 2 km also detected by the Middle Atmosphere Alomar Radar System (MAARSY) as head echoes was performed. These events show a median deviation in radiants between radar and optical determinations of 1.5°, with 1/3 of events having radiant agreement to less than one degree. MAARSY tends to record average speeds roughly 0.5 km/s and 1.3 km higher than optical records, in part due to the higher sensitivity of MAARSY as compared to the optical instruments. More than 98% of all head echoes are not detected with the optical system. Using this non-detection ratio and the known limiting sensitivity of the cameras, we estimate that the limiting meteoroid detection mass of MAARSY is in the 10-9-10-10 kg (astronomical limiting meteor magnitudes of +11 to +12) appropriate to speeds from 30 to 60 km/s. There is a clear trend of higher peak RCS for brighter meteors between 35 and -30 dBsm. For meteors with similar magnitudes, the MAARSY head echo radar cross-section is larger at higher speeds. Brighter meteors at fixed heights and similar speeds have consistently, on average, larger RCS values, in accordance with established scattering theory. However, our data show RCS ∝ v/2, much weaker than the normally assumed RCS ∝ v3, a consequence of our requiring head echoes to also be detectable optically. Most events show a smooth variation of RCS with height broadly following the light production behavior. A significant minority of meteors show large variations in RCS relative to the optical light curve over common height intervals, reflecting fragmentation or possibly differential ablation. No optically detected meteor occurring in the main radar beam and at times when the radar was collecting head echo data went unrecorded by MAARSY. Thus there does not

  19. The effect of radar azimuth angle on cultural data. [urban scene analysis and land use studies

    NASA Technical Reports Server (NTRS)

    Bryan, M. L.

    1979-01-01

    Emphasis is placed on the role that the orientation of observed features has on the grey tone of the resulting positive image. As an example it is shown that in the Los Angeles urbanized region, large areas have significantly lower grey tones than adjacent areas having similar land cover. It is determined that this effect is the result of the angle difference between the radar azimuth and the street pattern and especially the orientation of the walls of the structures imaged. Therefore, knowledge of this information is essential in order to ensure accurate interpretation of radar imagery. It is concluded that for radar systems operated from platforms which have fixed azimuth angles (e.g., satellite systems such as Seasat-A), an interpretation methodology, which considers street patterns, is considered especially critical for proper and accurate SAR imagery.

  20. Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals.

    PubMed

    Batres-Mendoza, Patricia; Montoro-Sanjose, Carlos R; Guerra-Hernandez, Erick I; Almanza-Ojeda, Dora L; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene J; Ibarra-Manzano, Mario A

    2016-03-05

    Quaternions can be used as an alternative to model the fundamental patterns of electroencephalographic (EEG) signals in the time domain. Thus, this article presents a new quaternion-based technique known as quaternion-based signal analysis (QSA) to represent EEG signals obtained using a brain-computer interface (BCI) device to detect and interpret cognitive activity. This quaternion-based signal analysis technique can extract features to represent brain activity related to motor imagery accurately in various mental states. Experimental tests in which users where shown visual graphical cues related to left and right movements were used to collect BCI-recorded signals. These signals were then classified using decision trees (DT), support vector machine (SVM) and k-nearest neighbor (KNN) techniques. The quantitative analysis of the classifiers demonstrates that this technique can be used as an alternative in the EEG-signal modeling phase to identify mental states.

  1. Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals

    PubMed Central

    Batres-Mendoza, Patricia; Montoro-Sanjose, Carlos R.; Guerra-Hernandez, Erick I.; Almanza-Ojeda, Dora L.; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene J.; Ibarra-Manzano, Mario A.

    2016-01-01

    Quaternions can be used as an alternative to model the fundamental patterns of electroencephalographic (EEG) signals in the time domain. Thus, this article presents a new quaternion-based technique known as quaternion-based signal analysis (QSA) to represent EEG signals obtained using a brain-computer interface (BCI) device to detect and interpret cognitive activity. This quaternion-based signal analysis technique can extract features to represent brain activity related to motor imagery accurately in various mental states. Experimental tests in which users where shown visual graphical cues related to left and right movements were used to collect BCI-recorded signals. These signals were then classified using decision trees (DT), support vector machine (SVM) and k-nearest neighbor (KNN) techniques. The quantitative analysis of the classifiers demonstrates that this technique can be used as an alternative in the EEG-signal modeling phase to identify mental states. PMID:26959029

  2. Radar-aeolian roughness project

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Dobrovolskis, A.; Gaddis, L.; Iversen, J. D.; Lancaster, N.; Leach, Rodman N.; Rasnussen, K.; Saunders, S.; Vanzyl, J.; Wall, S.

    1991-01-01

    The objective is to establish an empirical relationship between measurements of radar, aeolian, and surface roughness on a variety of natural surfaces and to understand the underlying physical causes. This relationship will form the basis for developing a predictive equation to derive aeolian roughness from radar backscatter. Results are given from investigations carried out in 1989 on the principal elements of the project, with separate sections on field studies, radar data analysis, laboratory simulations, and development of theory for planetary applications.

  3. An Analysis of Drop Outs and Unusual Behavior from Primary and Secondary Radar

    NASA Astrophysics Data System (ADS)

    Allen, Nicholas J.

    An evaluation of the radar systems in the Red River Valley of North Dakota (ND) and its surrounding areas for its ability to provide Detect and Avoid (DAA) capabilities for manned and unmanned aircraft systems (UAS) was performed. Additionally, the data was analyzed for its feasibility to be used in autonomous Air Traffic Control (ATC) systems in the future. With the almost certain increase in airspace congestion over the coming years, the need for a robust and accurate radar system is crucial. This study focused on the Airport Surveillance Radar (ASR) at Fargo, ND and the Air Route Surveillance Radar at Finley, ND. Each of these radar sites contain primary and secondary radars. It was found that both locations exhibit data anomalies, such as: drop outs, altitude outliers, prolonged altitude failures, repeated data, and multiple aircraft with the same identification number (ID) number. Four weeks of data provided by Harris Corporation throughout the year were analyzed using a MATLAB algorithm developed to identify the data anomalies. The results showed Fargo intercepts on average 450 aircraft, while Finley intercepts 1274 aircraft. Of these aircraft an average of 34% experienced drop outs at Fargo and 69% at Finley. With the average drop out at Fargo of 23.58 seconds and 42.45 seconds at Finley, and several lasting more than several minutes, it shows these data anomalies can occur for an extended period of time. Between 1% to 26% aircraft experienced the other data anomalies, depending on the type of data anomaly and location. When aircraft were near airports or the edge of the effective radar radius, the largest proportion of data anomalies were experienced. It was also discovered that drop outs, altitude outliers, andrepeated data are radar induced errors, while prolonged altitude failures and multiple aircraft with the same ID are transponder induced errors. The risk associated with each data anomaly, by looking at the severity of the event and the occurrence

  4. Analysis of satellite altimeter signal characteristics and investigation of sea-truth data requirements

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Results are presented of analysis of satellite signal characteristics as influenced by ocean surface roughness and an investigation of sea truth data requirements. The first subject treated is that of postflight waveform reconstruction for the Skylab S-193 radar altimeter. Sea state estimation accuracies are derived based on analytical and hybrid computer simulation techniques. An analysis of near-normal incidence, microwave backscattering from the ocean's surface is accomplished in order to obtain the minimum sea truth data necessary for good agreement between theoretical and experimental scattering results. Sea state bias is examined from the point of view of designing an experiment which will lead to a resolution of the problem. A discussion is given of some deficiencies which were found in the theory underlying the Stilwell technique for spectral measurements.

  5. A Mediterranean nocturnal heavy rainfall and tornadic event. Part I: Overview, damage survey and radar analysis

    NASA Astrophysics Data System (ADS)

    Bech, Joan; Pineda, Nicolau; Rigo, Tomeu; Aran, Montserrat; Amaro, Jéssica; Gayà, Miquel; Arús, Joan; Montanyà, Joan; der Velde, Oscar van

    2011-06-01

    This study presents an analysis of a severe weather case that took place during the early morning of the 2nd of November 2008, when intense convective activity associated with a rapidly evolving low pressure system affected the southern coast of Catalonia (NE Spain). The synoptic framework was dominated by an upper level trough and an associated cold front extending from Gibraltar along the Mediterranean coast of the Iberian Peninsula to SE France, which moved north-eastward. South easterly winds in the north of the Balearic Islands and the coast of Catalonia favoured high values of 0-3 km storm relative helicity which combined with moderate MLCAPE values and high shear favoured the conditions for organized convection. A number of multicell storms and others exhibiting supercell features, as indicated by Doppler radar observations, clustered later in a mesoscale convective system, and moved north-eastwards across Catalonia. They produced ground-level strong damaging wind gusts, an F2 tornado, hail and heavy rainfall. Total lightning activity (intra-cloud and cloud to ground flashes) was also relevant, exhibiting several classical features such as a sudden increased rate before ground level severe damage, as discussed in a companion study. Remarkable surface observations of this event include 24 h precipitation accumulations exceeding 100 mm in four different observatories and 30 minute rainfall amounts up to 40 mm which caused local flash floods. As the convective system evolved northward later that day it also affected SE France causing large hail, ground level damaging wind gusts and heavy rainfall.

  6. Synthetic Aperture Radar Interferometry Analysis of Ground Deformation within the Coso Geothermal Site, California

    NASA Astrophysics Data System (ADS)

    Brawner, Erik

    Earth's surface movement may cause as a potential hazard to infrastructure and people. Associated earthquake hazards pose a potential side effect of geothermal activity. Modern remote sensing techniques known as Interferometric Synthetic Aperture Radar (InSAR) can measure surface change with a high degree of precision to mm scale movements. Previous work has identified a deformation anomaly within the Coso Geothermal site in eastern California. Surface changes have not been analyzed since the 1990s, allowing a decade of geothermal production impact to occur since previously assessed. In this study, InSAR data was acquired and analyzed between the years 2005 and 2010. Acquired by the ENVISAT satellite from both ascending and descending modes. This provides an independent dataset from previous work. Incorporating data generated from a new sensor covering a more modern temporal study period. Analysis of this time period revealed a subsidence anomaly in correlation with the extents of the geothermal production area under current operation. Maximum subsidence rates in the region reached approximately 3.8 cm/yr. A similar rate assessed from previous work throughout the 1990s. The correlation of subsidence patterns suggests a linear source of deformation from measurements spanning multiple decades. Regions of subsidence branch out from the main anomaly to the North-Northeast and to the South where additional significant peaks of subsidence occurring. The extents of the deformation anomaly directly correlate with the dispersal of geothermal production well site locations. Depressurization within the geothermal system provides a leading cause to surface subsidence from excessive extraction of hydrothermal fluids. As a result of minimal reinjection of production fluids.

  7. Precipitation Estimate Using NEXRAD Ground-Based Radar Images: Validation, Calibration and Spatial Analysis

    SciTech Connect

    Zhang, Xuesong

    2012-12-17

    Precipitation is an important input variable for hydrologic and ecological modeling and analysis. Next Generation Radar (NEXRAD) can provide precipitation products that cover most of the continental United States with a high resolution display of approximately 4 × 4 km2. Two major issues concerning the applications of NEXRAD data are (1) lack of a NEXRAD geo-processing and geo-referencing program and (2) bias correction of NEXRAD estimates. In this chapter, a geographic information system (GIS) based software that can automatically support processing of NEXRAD data for hydrologic and ecological models is presented. Some geostatistical approaches to calibrating NEXRAD data using rainmore » gauge data are introduced, and two case studies on evaluating accuracy of NEXRAD Multisensor Precipitation Estimator (MPE) and calibrating MPE with rain-gauge data are presented. The first case study examines the performance of MPE in mountainous region versus south plains and cold season versus warm season, as well as the effect of sub-grid variability and temporal scale on NEXRAD performance. From the results of the first case study, performance of MPE was found to be influenced by complex terrain, frozen precipitation, sub-grid variability, and temporal scale. Overall, the assessment of MPE indicates the importance of removing bias of the MPE precipitation product before its application, especially in the complex mountainous region. The second case study examines the performance of three MPE calibration methods using rain gauge observations in the Little River Experimental Watershed in Georgia. The comparison results show that no one method can perform better than the others in terms of all evaluation coefficients and for all time steps. For practical estimation of precipitation distribution, implementation of multiple methods to predict spatial precipitation is suggested.« less

  8. Synthesis, Analysis, and Processing of Fractal Signals

    DTIC Science & Technology

    1991-10-01

    coordinator in hockey, squash, volleyball, and softball, but also for reminding me periodically that 1/f noise can exist outside a computer. More...similar signals as Fourier-based representations are for stationary and periodic signals. Furthermore, because wave- let transformations can be...and periodic signals. Furthermore, just as the discovery of fast Fourier transform (FFT) algorithms dramatically increased the viability the Fourier

  9. Radar observations of individual rain drops in the free atmosphere

    PubMed Central

    Schmidt, Jerome M.; Flatau, Piotr J.; Harasti, Paul R.; Yates, Robert D.; Littleton, Ricky; Pritchard, Michael S.; Fischer, Jody M.; Fischer, Erin J.; Kohri, William J.; Vetter, Jerome R.; Richman, Scott; Baranowski, Dariusz B.; Anderson, Mark J.; Fletcher, Ed; Lando, David W.

    2012-01-01

    Atmospheric remote sensing has played a pivotal role in the increasingly sophisticated representation of clouds in the numerical models used to assess global and regional climate change. This has been accomplished because the underlying bulk cloud properties can be derived from a statistical analysis of the returned microwave signals scattered by a diverse ensemble comprised of numerous cloud hydrometeors. A new Doppler radar, previously used to track small debris particles shed from the NASA space shuttle during launch, is shown to also have the capacity to detect individual cloud hydrometeors in the free atmosphere. Similar to the traces left behind on film by subatomic particles, larger cloud particles were observed to leave a well-defined radar signature (or streak), which could be analyzed to infer the underlying particle properties. We examine the unique radar and environmental conditions leading to the formation of the radar streaks and develop a theoretical framework which reveals the regulating role of the background radar reflectivity on their observed characteristics. This main expectation from theory is examined through an analysis of the drop properties inferred from radar and in situ aircraft measurements obtained in two contrasting regions of an observed multicellular storm system. The observations are placed in context of the parent storm circulation through the use of the radar’s unique high-resolution waveforms, which allow the bulk and individual hydrometeor properties to be inferred at the same time. PMID:22652569

  10. Imaging synthetic aperture radar

    DOEpatents

    Burns, Bryan L.; Cordaro, J. Thomas

    1997-01-01

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  11. Description, characteristics and testing of the NASA airborne radar

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Altiz, O.; Schaffner, P.; Schrader, J. H.; Blume, H. J. C.

    1991-01-01

    Presented here is a description of a coherent radar scattermeter and its associated signal processing hardware, which have been specifically designed to detect microbursts and record their radar characteristics. Radar parameters, signal processing techniques and detection algorithms, all under computer control, combine to sense and process reflectivity, clutter, and microburst data. Also presented is the system's high density, high data rate recording system. This digital system is capable of recording many minutes of the in-phase and quadrature components and corresponding receiver gains of the scattered returns for selected spatial regions, as well as other aircraft and hardware related parameters of interest for post-flight analysis. Information is given in viewgraph form.

  12. Macro-motion detection using ultra-wideband impulse radar.

    PubMed

    Xin Li; Dengyu Qiao; Ye Li

    2014-01-01

    Radar has the advantage of being able to detect hidden individuals, which can be used in homeland security, disaster rescue, and healthcare monitoring-related applications. Human macro-motion detection using ultra-wideband impulse radar is studied in this paper. First, a frequency domain analysis is carried out to show that the macro-motion yields a bandpass signal in slow-time. Second, the FTFW (fast-time frequency windowing), which has the advantage of avoiding the measuring range reduction, and the HLF (high-pass linear-phase filter), which can preserve the motion signal effectively, are proposed to preprocess the radar echo. Last, a threshold decision method, based on the energy detector structure, is presented.

  13. THz impulse radar for biomedical sensing: nonlinear system behavior

    NASA Astrophysics Data System (ADS)

    Brown, E. R.; Sung, Shijun; Grundfest, W. S.; Taylor, Z. D.

    2014-03-01

    The THz impulse radar is an "RF-inspired" sensor system that has performed remarkably well since its initial development nearly six years ago. It was developed for ex vivo skin-burn imaging, and has since shown great promise in the sensitive detection of hydration levels in soft tissues of several types, such as in vivo corneal and burn samples. An intriguing aspect of the impulse radar is its hybrid architecture which combines the high-peak-power of photoconductive switches with the high-responsivity and -bandwidth (RF and video) of Schottky-diode rectifiers. The result is a very sensitive sensor system in which the post-detection signal-to-noise ratio depends super-linearly on average signal power up to a point where the diode is "turned on" in the forward direction, and then behaves quasi-linearly beyond that point. This paper reports the first nonlinear systems analysis done on the impulse radar using MATLAB.

  14. Exploring stability of entropy analysis for signal with different trends

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Li, Jin; Wang, Jun

    2017-03-01

    Considering the effects of environment disturbances and instrument systems, the actual detecting signals always are carrying different trends, which result in that it is difficult to accurately catch signals complexity. So choosing steady and effective analysis methods is very important. In this paper, we applied entropy measures-the base-scale entropy and approximate entropy to analyze signal complexity, and studied the effect of trends on the ideal signal and the heart rate variability (HRV) signals, that is, linear, periodic, and power-law trends which are likely to occur in actual signals. The results show that approximate entropy is unsteady when we embed different trends into the signals, so it is not suitable to analyze signal with trends. However, the base-scale entropy has preferable stability and accuracy for signal with different trends. So the base-scale entropy is an effective method to analyze the actual signals.

  15. Mathematical analysis study for radar data processing and enchancement. Part 2: Modeling of propagation path errors

    NASA Technical Reports Server (NTRS)

    James, R.; Brownlow, J. D.

    1985-01-01

    A study is performed under NASA contract to evaluate data from an AN/FPS-16 radar installed for support of flight programs at Dryden Flight Research Facility of NASA Ames Research Center. The purpose of this study is to provide information necessary for improving post-flight data reduction and knowledge of accuracy of derived radar quantities. Tracking data from six flights are analyzed. Noise and bias errors in raw tracking data are determined for each of the flights. A discussion of an altitude bias error during all of the tracking missions is included. This bias error is defined by utilizing pressure altitude measurements made during survey flights. Four separate filtering methods, representative of the most widely used optimal estimation techniques for enhancement of radar tracking data, are analyzed for suitability in processing both real-time and post-mission data. Additional information regarding the radar and its measurements, including typical noise and bias errors in the range and angle measurements, is also presented. This report is in two parts. This is part 2, a discussion of the modeling of propagation path errors.

  16. Analysis of 35 GHz Cloud Radar polarimetric variables to identify stratiform and convective precipitation.

    NASA Astrophysics Data System (ADS)

    Fontaine, Emmanuel; Illingworth, Anthony, J.; Stein, Thorwald

    2017-04-01

    This study is performed using vertical profiles of radar measurements at 35GHz, for the period going from 29th of February to 1rst October 2016, at the Chilbolton observatory in United Kingdom. During this period, more than 40 days with precipitation events are investigated. The investigation uses the synergy of radar reflectivity factors, vertical velocity, Doppler spectrum width, and linear depolarization ratio (LDR) to differentiate between stratiform and convective rain events. The depth of the layer with Doppler spectrum width values greater than 0.5 m s-1 is shown to be a suitable proxy to distinguish between convective and stratiform events. Using LDR to detect the radar bright band, bright band characteristics such as depth of the layer and maximum LDR are shown to vary with the amount of turbulence aloft. Profiles of radar measurements are also compared to rain gauge measurements to study the contribution of convective and stratiform rainfall to total rain duration and amount. To conclude, this study points out differences between convective and stratiform rains and quantifies their contributions over a precipitation event, highlighting that convective and stratiform rainfall should be considered as a continuum rather than a dichotomy.

  17. Raindrop Size Distribution in Different Climatic Regimes from Disdrometer and Dual-Polarized Radar Analysis.

    NASA Astrophysics Data System (ADS)

    Bringi, V. N.; Chandrasekar, V.; Hubbert, J.; Gorgucci, E.; Randeu, W. L.; Schoenhuber, M.

    2003-01-01

    The application of polarimetric radar data to the retrieval of raindrop size distribution parameters and rain rate in samples of convective and stratiform rain types is presented. Data from the Colorado State University (CSU), CHILL, NCAR S-band polarimetric (S-Pol), and NASA Kwajalein radars are analyzed for the statistics and functional relation of these parameters with rain rate. Surface drop size distribution measurements using two different disdrometers (2D video and RD-69) from a number of climatic regimes are analyzed and compared with the radar retrievals in a statistical and functional approach. The composite statistics based on disdrometer and radar retrievals suggest that, on average, the two parameters (generalized intercept and median volume diameter) for stratiform rain distributions lie on a straight line with negative slope, which appears to be consistent with variations in the microphysics of stratiform precipitation (melting of larger, dry snow particles versus smaller, rimed ice particles). In convective rain, `maritime-like' and `continental-like' clusters could be identified in the same two-parameter space that are consistent with the different multiplicative coefficients in the Z = aR1.5 relations quoted in the literature for maritime and continental regimes.

  18. A polarimetric radar analysis of convection observed during NAME and TiMREX

    NASA Astrophysics Data System (ADS)

    Rowe, Angela Kay

    2011-12-01

    The mountainous regions of northwestern Mexico and southwestern Taiwan experience periods of intense rainfall associated with the North American and Asian monsoons, respectively, as warm, moist air is ushered onshore due to a reversal of mean low-level winds. Potentially unstable air is lifted along the steep topography, leading to convective initiation over the high peaks and adjacent foothills in both regions. In addition, an enhancement of convection in preexisting systems is observed due to interaction with the terrain, leading to localized heavy rain along the western slopes. The predictability of warm-reason rainfall in these regions is limited by the lack of understanding of the nature of these precipitating features, including the diurnal variability and elevation-dependent trends in microphysical processes. Using polarimetric data from NCAR's S-band, polarimetric radar (S-Pol), deployed during the North American Monsoon Experiment (NAME) and Terrain-influenced Monsoon Rainfall Experiment (TiMREX), individual convective elements were identified and tracked, allowing for an analysis of hydrometeor characteristics within evolving cells. Furthermore, a feature classification algorithm was applied to these datasets to compare characteristics associated with isolated convection to cells contained within organized systems. Examples of isolated cells from a range of topography during NAME revealed the presence of ZDR columns, attributed to the lofting of drops above the melting level, where subsequent freezing and growth by riming led to the production of graupel along the western slopes of the Sierra Madre Occidental (SMO) and adjacent coastal plain. Melting of large ice hydrometeors was also noted over higher terrain, leading to short-lived yet intense rainfall despite truncated warm-cloud depths compared to cells over the lower elevations. Cells embedded within mesoscale convective systems (MCSs) during NAME also displayed the combined roles of warm-rain and

  19. COSMO-SkyMed measurements in precipitation over the sea: analysis of Louisiana summer thunderstorms by simultaneous weather radar observations

    NASA Astrophysics Data System (ADS)

    Roberto, N.; Baldini, L.; Gorgucci, E.; Facheris, L.; Chandrasekar, V.

    2012-04-01

    Radar signatures of rain cells are investigated using X-band synthetic aperture radar (X-SAR) images acquired from COSMO-SkyMed constellation over oceans off the coast of Louisiana in summer 2010 provided by ASI archive. COSMO-SkyMed (CSK) monitoring of Deepwater Horizon oil spill provided a big amount of data during the period April-September 2010 and in July-August when several thunderstorms occurred in that area. In X-SAR images, radar signatures of rain cells over the sea usually consist of irregularly shaped bright and dark patches. These signatures originate from 1) the scattering and attenuation of radiation by hydrometers in the rain cells and 2) the modification of the sea roughness induced by the impact of raindrops and by wind gusts associated with rain cell. However, the interpretation of precipitation signatures in X-SAR images is not completely straightforward, especially over sea. Coincident measurements from ground based radars and an electromagnetic (EM) model predicting radar returns from the sea surface corrugated by rainfall are used to support the analysis. A dataset consisting of 4 CSK images has been collected over Gulf of Mexico while a WSR-88D NEXRAD S-band Doppler radar (KLIX) located in New Orleans was scanning the nearby portion of ocean. Terrestrial measurements have been used to reconstruct the component of X-SAR returns due to precipitation by modifying the known technique applied on measurements over land (Fritz et al. 2010, Baldini et al. 2011). Results confirm that the attenuation signature in X-SAR images collected over land, particularly pronounced in the presence of heavy precipitation cells, can be related to the S-band radar reflectivity integrated along the same path. The Normalized Radar Cross Section (NRCS) of land is considered to vary usually up to a few dBs in case of rain but with strong dependency on the specific type and conditions of land cover. While the NRCS of sea surface in clear weather condition can be

  20. Sea Surface Scattering of Radar Signals in Ku- and C-Bands: the Role of Breaking Waves

    NASA Astrophysics Data System (ADS)

    Voronovich, A.; Zavorotny, V.

    2001-05-01

    A small-slope approximation (SSA) is used for numerical calculations of a radar backscattering cross section of the ocean surface for both Ku- and C-bands for wind speeds ranging from 5 m/s to 15 m/s as a function of an incident angle. Both the lowest order of the SSA and the one that includes the next-order correction to it are considered. The initial calculations were made assuming Gaussian statistics of sea surface and the Elfouhaily et al. surface-height spectrum for fully developed seas (T. Elfouhaily et al., J. Geophys. Res., vol.102, pp.15,781-15,796 (1997)). Empirical scattering models CMOD2-I3 and SASS-II are used for comparison. Theoretical calculations are in good overall agreement with the experiment, being within a 2 dB accuracy on average with a 3 dB maximal discrepancy. The only exception is HH-polarization in the upwind direction where discrepancies reach 5.7 dB for an incidence angle of 60{° }. Note that the SSA allows controlling the accuracy of calculations by comparing the results of the lowest order approximation with corrections originated from higher order terms. The discrepancy between our calculations and empirical data for HH polarization appears to be significantly larger then accuracy of the calculations. Hence, the reason for it should be attributed to the inadequate sea-roughness model. We have checked a hypothesis that steep waves are responsible for this effect. We assumed that the contribution from steep waves could be evaluated in the geometric optics approximation. This allowed us to retrieve the probability density function of large slopes based on comparison of theoretical calculations and experimental data for Ku-band at HH polarization. It was found that in the upwind direction this function could be approximated by a simple relationship: \\[ \\text{Log}_{10}P(a_{x},0) = -2.84 + 0.097ṡ U + 1.33ṡ a_{x}, \\] where U is wind speed in m/s and ax>0.8 is the appropriate slope. Note that such large slopes cannot belong to steady

  1. Radar analysis of fall bird migration stopover sites in the northeastern U.S.

    USGS Publications Warehouse

    Buler, Jeffrey J.; Dawson, Deanna K.

    2014-01-01

    The national network of weather surveillance radars (WSR-88D) detects flying birds and is a useful remote-sensing tool for ornithological study. We used data collected during fall 2008 and 2009 by 16 WSR-88D radars in the northeastern U.S. to quantify the spatial distribution of landbirds during migratory stopover. We geo-referenced estimates based on radar reflectivity, of the density of migrants aloft at their abrupt evening exodus from daytime stopover sites, to the approximate locations from which they emerged. We classified bird stopover use by the magnitude and variation of radar reflectivity across nights; areas were considered “important” stopover sites for conservation if bird density was consistently high. We developed statistical models that predict potentially important stopover sites across the region, based on land cover, ground elevation, and geographic location. Large areas of regionally important stopover sites were located along the coastlines of Long Island Sound, throughout the Delmarva Peninsula, in areas surrounding Baltimore and Washington, along the western edge of the Adirondack Mountains, and within the Appalachian Mountains of southwestern Virginia and West Virginia. Locally important stopover sites generally were associated with deciduous forests embedded within landscapes dominated by developed or agricultural lands, or near the shores of major water bodies. Preserving or enhancing patches of natural habitat, particularly deciduous forests, in developed or agricultural landscapes and along major coastlines could be a priority for conservation plans addressing the stopover requirements of migratory landbirds in the northeastern U.S. Our maps of important stopover sites can be used to focus conservation efforts and can serve as a sampling frame for fieldwork to validate radar observations or for ecological studies of landbirds on migratory stopover.

  2. Medical applications of shortwave FM radar: remote monitoring of cardiac and respiratory motion.

    PubMed

    Mostov, K; Liptsen, E; Boutchko, R

    2010-03-01

    This article introduces the use of low power continuous wave frequency modulated radar for medical applications, specifically for remote monitoring of vital signs in patients. Gigahertz frequency radar measures the electromagnetic wave signal reflected from the surface of a human body and from tissue boundaries. Time series analysis of the measured signal provides simultaneous information on range, size, and reflective properties of multiple targets in the field of view of the radar. This information is used to extract the respiratory and cardiac rates of the patient in real time. The results from several preliminary human subject experiments are provided. The heart and respiration rate frequencies extracted from the radar signal match those measured independently for all the experiments, including a case when additional targets are simultaneously resolved in the field of view and a case when only the patient's extremity is visible to the radar antennas. Micropower continuous wave FM radar is a reliable, robust, inexpensive, and harmless tool for real-time monitoring of the cardiac and respiratory rates. Additionally, it opens a range of new and exciting opportunities in diagnostic and critical care medicine. Differences between the presented approach and other types of radars used for biomedical applications are discussed.

  3. Middle Atmosphere Program. Handbook for MAP. Volume 30: International School on Atmospheric Radar

    NASA Technical Reports Server (NTRS)

    Fukao, Shoichiro (Editor)

    1989-01-01

    Broad, tutorial coverage is given to the technical and scientific aspects of mesosphere stratosphere troposphere (MST) meteorological radar systems. Control issues, signal processing, atmospheric waves, the historical aspects of radar atmospheric dynamics, incoherent scatter radars, radar echoes, radar targets, and gravity waves are among the topics covered.

  4. Systems Biology Analysis of Heterocellular Signaling.

    PubMed

    Tape, Christopher J

    2016-08-01

    Tissues comprise multiple heterotypic cell types (e.g., epithelial, mesenchymal, and immune cells). Communication between heterotypic cell types is essential for biological cohesion and is frequently dysregulated in disease. Despite the importance of heterocellular communication, most systems biology techniques do not report cell-specific signaling data from mixtures of cells. As a result, our existing perspective of cellular behavior under-represents the influence of heterocellular signaling. Recent technical advances now permit the resolution of systems-level cell-specific signaling data. This review discusses how new physical, spatial, and isotopic resolving methods are facilitating unique systems biology studies of heterocellular communication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Performance Analysis for Joint Target Parameter Estimation in UMTS-Based Passive Multistatic Radar with Antenna Arrays Using Modified Cramér-Rao Lower Bounds

    PubMed Central

    Wang, Fei; Salous, Sana; Zhou, Jianjiang

    2017-01-01

    In this study, the modified Cramér-Rao lower bounds (MCRLBs) on the joint estimation of target position and velocity is investigated for a universal mobile telecommunication system (UMTS)-based passive multistatic radar system with antenna arrays. First, we analyze the log-likelihood redfunction of the received signal for a complex Gaussian extended target. Then, due to the non-deterministic transmitted data symbols, the analytically closed-form expressions of the MCRLBs on the Cartesian coordinates of target position and velocity are derived for a multistatic radar system with Nt UMTS-based transmit station of Lt antenna elements and Nr receive stations of Lr antenna elements. With the aid of numerical simulations, it is shown that increasing the number of receiving elements in each receive station can reduce the estimation errors. In addition, it is demonstrated that the MCRLB is not only a function of signal-to-noise ratio (SNR), the number of receiving antenna elements and the properties of the transmitted UMTS signals, but also a function of the relative geometric configuration between the target and the multistatic radar system.The analytical expressions for MCRLB will open up a new dimension for passive multistatic radar system by aiding the optimal placement of receive stations to improve the target parameter estimation performance. PMID:29057805

  6. Performance Analysis for Joint Target Parameter Estimation in UMTS-Based Passive Multistatic Radar with Antenna Arrays Using Modified Cramér-Rao Lower Bounds.

    PubMed

    Shi, Chenguang; Wang, Fei; Salous, Sana; Zhou, Jianjiang

    2017-10-18

    In this study, the modified Cramér-Rao lower bounds (MCRLBs) on the joint estimation of target position and velocity is investigated for a universal mobile telecommunication system (UMTS)-based passive multistatic radar system with antenna arrays. First, we analyze the log-likelihood redfunction of the received signal for a complex Gaussian extended target. Then, due to the non-deterministic transmitted data symbols, the analytically closed-form expressions of the MCRLBs on the Cartesian coordinates of target position and velocity are derived for a multistatic radar system with N t UMTS-based transmit station of L t antenna elements and N r receive stations of L r antenna elements. With the aid of numerical simulations, it is shown that increasing the number of receiving elements in each receive station can reduce the estimation errors. In addition, it is demonstrated that the MCRLB is not only a function of signal-to-noise ratio (SNR), the number of receiving antenna elements and the properties of the transmitted UMTS signals, but also a function of the relative geometric configuration between the target and the multistatic radar system.The analytical expressions for MCRLB will open up a new dimension for passive multistatic radar system by aiding the optimal placement of receive stations to improve the target parameter estimation performance.

  7. Solid-state radar switchboard

    NASA Astrophysics Data System (ADS)

    Thiebaud, P.; Cross, D. C.

    1980-07-01

    A new solid-state radar switchboard equipped with 16 input ports which will output data to 16 displays is presented. Each of the ports will handle a single two-dimensional radar input, or three ports will accommodate a three-dimensional radar input. A video switch card of the switchboard is used to switch all signals, with the exception of the IFF-mode-control lines. Each card accepts inputs from up to 16 sources and can pass a signal with bandwidth greater than 20 MHz to the display assigned to that card. The synchro amplifier of current systems has been eliminated and in the new design each PPI receives radar data via a single coaxial cable. This significant reduction in cabling is achieved by adding a serial-to-parallel interface and a digital-to-synchro converter located at the PPI.

  8. Analysis of X-band radar images for the detection of the reflected and diffracted waves in coastal zones

    NASA Astrophysics Data System (ADS)

    Ludeno, Giovanni; Natale, Antonio; Soldovieri, Francesco; Vicinanza, Diego; Serafino, Francesco

    2014-05-01

    The observation of nearshore waves and the knowledge of the sea state parameters can play a crucial role for the safety of harbors and ocean engineering. In the last two decades, different algorithms for the estimation of sea state parameters, surface currents and bathymetry from X-band radar data have been developed and validated [1, 2]. The retrieval of ocean wave parameters such as significant height, period, direction and wavelength of the dominant wave is based on the spectral analysis of data sequences collected by nautical X-band radars [3]. In particular, the reconstruction of the wave motion is carried out through the inversion procedure explained in [1-3], which exploits the dispersion relationship to define a band pass filter used to separate the energy associated with the ocean waves from the background noise. It is worth to note that the shape of such a band pass filter depends upon the value of both the surface currents and bathymetry; in our reconstruction algorithm these parameters are estimated through the (Normalized Scalar Product) procedure [1], which outperforms other existing methods (e.g., the Least Squares) [4]. From the reconstructed wave elevation sequences we can get the directional spectrum that provides useful information (i.e., wavelength, period, direction and amplitude) relevant to the main waves contributing to the wave motion. Of course, in coastal zones a number of diffraction and reflection phenomena can be observed, due to sea-waves impinging obstacles as jetties, breakwaters and boats. In the present paper we want to show the capability to detect reflected and diffracted sea-waves offered by the processing of X-band radar data. Further details relevant to the obtained results will be provided in the full paper and at the conference time. References [1] F. Serafino, C. Lugni, F. Soldovieri, "A novel strategy for the surface current determination from marine X-Band radar data", IEEE Geosci. and Remote Sensing Letters, vol. 7, no

  9. Multifractal analysis of different hydrological products of X-band radar

    NASA Astrophysics Data System (ADS)

    Skouri-Plakali, Ilektra; Da Silva Rocha Paz, Igor; Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2017-04-01

    Rainfall is widely considered as the hydrological process that triggers all the others. Its accurate measurements are crucial especially when they are used afterwards for the hydrological modeling of urban and peri-urban catchments for decision-making. Rainfall is a complex process and is scale dependent in space and time. Hence a high spatial and temporal resolution of the data is more appropriate for urban modeling. Therefore, a great interest of high-resolution measurements of precipitation in space and time is manifested. Radar technologies have not stopped evolving since their first appearance about the mid-twentieth. Indeed, the turning point work by Marshall-Palmer (1948) has established the Z - R power-law relation that has been widely used, with major scientific efforts being devoted to find "the best choice" of the two associated parameters. Nowadays X-band radars, being provided with dual-polarization and Doppler means, offer more accurate data of higher resolution. The fact that drops are oblate induces a differential phase shift between the two polarizations. The quantity most commonly used for the rainfall rate computation is actually the specific differential phase shift, which is the gradient of the differential phase shift along the radial beam direction. It is even stronger correlated to the rain rate R than reflectivity Z. Hence the rain rate can be computed with a different power-law relation, which again depends on only two parameters. Furthermore, an attenuation correction is needed to adjust the loss of radar energy due to the absorption and scattering as it passes through the atmosphere. Due to natural variations of reflectivity with altitude, vertical profile of reflectivity should be corrected as well. There are some other typical radar data filtering procedures, all resulting in various hydrological products. In this work, we use the Universal Multifractal framework to analyze and to inter-compare different products of X-band radar

  10. Variability of Decimetre and Centimetre Scale Ice Surface Roughness and the Potential Consequences on the CryoSat Radar Altimeter Signal

    NASA Astrophysics Data System (ADS)

    Cawkwell, F. G.; Burgess, D. O.; Sharp, M. J.; Demuth, M.

    2004-12-01

    Snow and ice surface roughness affect the backscatter of the pulse emitted by a radar altimeter, and hence the accuracy of the surface elevation calculated from the waveform echo, but the influence of surface roughness has not been quantified. As part of the CryoSat calibration/validation field campaigns on the Devon Ice Cap in 2004, surface roughness measurements were made at 0.1-7km intervals along a 48km transect from near the summit to the southern margin. Measurements were made at the decimetre scale by surveying and at the centimetre scale using digital photography. The data collected were subjected to wavelet analysis to define characteristic roughness wavelengths, and the fractal dimension associated with each of these was calculated using the semi-variogram method. Vario functions were calculated for the photographic data. The survey results show that wavelength scales depend on orientation and distance from the ice cap summit, the fractal dimension depends on the wavelength scale and the orientation, and both are significantly affected by storm events. Profiles aligned with the easterly prevailing wind direction, and thus perpendicular to the predicted satellite track, proved to be more sensitive to meteorological events than those normal to the dominant winds. Wavelet and fractal analysis of the photographic data was less conclusive, potentially due to the `noisier' nature of the data at this scale, where `noise' is actually the superimposition of small scale wavelengths onto larger ones. Vario analysis showed the characteristic wavelengths at the centimetre scale to increase with distance from the summit, although the abrading effect of storm events caused a decrease in wavelength. The amplitude of the roughness also increases with distance from the summit, although following a period of calm this value is significantly decreased along the transect. Orientation with respect to the prevailing wind direction is also a significant factor. Analysis of the

  11. All-digital radar architecture

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo A.

    2014-10-01

    All digital radar architecture requires exclude mechanical scan system. The phase antenna array is necessarily large because the array elements must be co-located with very precise dimensions and will need high accuracy phase processing system for aggregate and distribute T/R modules data to/from antenna elements. Even phase array cannot provide wide field of view. New nature inspired all digital radar architecture proposed. The fly's eye consists of multiple angularly spaced sensors giving the fly simultaneously thee wide-area visual coverage it needs to detect and avoid the threats around him. Fly eye radar antenna array consist multiple directional antennas loose distributed along perimeter of ground vehicle or aircraft and coupled with receiving/transmitting front end modules connected by digital interface to central processor. Non-steering antenna array allows creating all-digital radar with extreme flexible architecture. Fly eye radar architecture provides wide possibility of digital modulation and different waveform generation. Simultaneous correlation and integration of thousands signals per second from each point of surveillance area allows not only detecting of low level signals ((low profile targets), but help to recognize and classify signals (targets) by using diversity signals, polarization modulation and intelligent processing. Proposed all digital radar architecture with distributed directional antenna array can provide a 3D space vector to the jammer by verification direction of arrival for signals sources and as result jam/spoof protection not only for radar systems, but for communication systems and any navigation constellation system, for both encrypted or unencrypted signals, for not limited number or close positioned jammers.

  12. Comparison of HF radar measurements with Eulerian and Lagrangian surface currents

    NASA Astrophysics Data System (ADS)

    Röhrs, Johannes; Sperrevik, Ann Kristin; Christensen, Kai Håkon; Broström, Göran; Breivik, Øyvind

    2015-05-01

    High-frequency (HF) radar-derived ocean currents are compared with in situ measurements to conclude if the radar observations include effects of surface waves that are of second order in the wave amplitude. Eulerian current measurements from a high-resolution acoustic Doppler current profiler and Lagrangian measurements from surface drifters are used as references. Directional wave spectra are obtained from a combination of pressure sensor data and a wave model. Our analysis shows that the wave-induced Stokes drift is not included in the HF radar-derived currents, that is, HF radars measure the Eulerian current. A disputed nonlinear correction to the phase velocity of surface gravity waves, which may affect HF radar signals, has a magnitude of about half the Stokes drift at the surface. In our case, this contribution by nonlinear dispersion would be smaller than the accuracy of the HF radar currents, hence no conclusion can be made. Finally, the analysis confirms that the HF radar data represent an exponentially weighted vertical average where the decay scale is proportional to the wavelength of the transmitted signal.

  13. Preliminary Regional Analysis of the Kaguya Lunar Radar Sounder (LRS) Data through Eastern Mare Imbrium

    NASA Technical Reports Server (NTRS)

    Cooper, B.L.; Antonenko, I.; Yamaguchi, Y.; Osinski, G.; Ono, T.; Ku-mamoto, A.

    2009-01-01

    The Lunar Radar Sounder (LRS) experiment on board the Kaguya spacecraft is observing the subsurface structure of the Moon, using ground-penetrating radar operating in the frequency range of 5 MHz [1]. Because LRS data provides in-formation about lunar features below the surface, it allows us to improve our understanding of the processes that formed the Moon, and the post-formation changes that have occurred (such as basin formation and volcanism). We look at a swath of preliminary LRS data, that spans from 7 to 72 N, and from 2 to 10 W, passing through the eastern portion of Mare Imbrium (Figure 1). Using software, designed for the mineral exploration industry, we produce a preliminary, coarse 3D model, showing the regional structure beneath the study area. Future research will involve smaller subsets of the data in regions of interest, where finer structures, such as those identified in [2], can be studied.

  14. Discrimination Between Child and Adult Forms Using Radar Frequency Signature Analysis

    DTIC Science & Technology

    2013-03-14

    Distances. This sensor poses no risk to human subjects or persons operating the equipment. The 88 th Medical Group Bio -Environmental Safety...method of remotely characterizing human activity. Unlike optical sensors , radar systems need not rely upon line-of-sight or good weather to perform well...and in monitoring vital signs through chemical or bio - logical protection suits. These military applications have seen research as early as the mid

  15. Design and analysis of a multi-passband complex filter for the multiband cognitive radar system

    NASA Astrophysics Data System (ADS)

    Lee, Hua-Chin; Ting, Der-Hong; Tsao, Ya-Lan

    2017-05-01

    Multiband cognitive radar systems, operating in a variety of frequency bands and combining the different channels into a joint system, can provide significant flexibility and capability to detect and track hostile targets. This paper proposes a multi-passband complex filter (MPCF) architecture and the related circuit design for a multiband cognitive radar system. By operating under the 5.8GHz UNII band, the sensing part detects the current usage of frequency bands from 5.15GHz to 5.825GHz and provides the information of unused channels. The multiband cognitive radar system uses the whole unused channels and eliminates the used channels by using an on-chip MPCF in order to be coexistent with the Wi-Fi standard. The MPCF filters out the unwanted channels and leave the wanted channels. It dynamically changes the bandwidth of frequency from 20MHz to 80MHz using the 0.18μm CMOS technology. The MPCF is composed of the combination of 5th-order Chebyshev low-pass filters and high-pass filters, and the overall inband ripple of the MPCF is 1.2dB. The consuming current is 21.7mA at 1.8V power supply and the 20MHz bandwidth noise is 55.5nV. The total harmonic distortion (THD) is 45dB at 25MHz and the adjacent channel rejection is 24dB. The result of the MPCF guarantees the performance requirements of the multiband cognitive radar system.

  16. Distributed sensing signal analysis of deformable plate/membrane mirrors

    NASA Astrophysics Data System (ADS)

    Lu, Yifan; Yue, Honghao; Deng, Zongquan; Tzou, Hornsen

    2017-11-01

    Deformable optical mirrors usually play key roles in aerospace and optical structural systems applied to space telescopes, radars, solar collectors, communication antennas, etc. Limited by the payload capacity of current launch vehicles, the deformable mirrors should be lightweight and are generally made of ultra-thin plates or even membranes. These plate/membrane mirrors are susceptible to external excitations and this may lead to surface inaccuracy and jeopardize relevant working performance. In order to investigate the modal vibration characteristics of the mirror, a piezoelectric layer is fully laminated on its non-reflective side to serve as sensors. The piezoelectric layer is segmented into infinitesimal elements so that microscopic distributed sensing signals can be explored. In this paper, the deformable mirror is modeled as a pre-tensioned plate and membrane respectively and sensing signal distributions of the two models are compared. Different pre-tensioning forces are also applied to reveal the tension effects on the mode shape and sensing signals of the mirror. Analytical results in this study could be used as guideline of optimal sensor/actuator placement for deformable space mirrors.

  17. Signal analysis techniques for incipient failure detection in turbomachinery

    NASA Technical Reports Server (NTRS)

    Coffin, T.

    1985-01-01

    Signal analysis techniques for the detection and classification of incipient mechanical failures in turbomachinery were developed, implemented and evaluated. Signal analysis techniques available to describe dynamic measurement characteristics are reviewed. Time domain and spectral methods are described, and statistical classification in terms of moments is discussed. Several of these waveform analysis techniques were implemented on a computer and applied to dynamic signals. A laboratory evaluation of the methods with respect to signal detection capability is described. Plans for further technique evaluation and data base development to characterize turbopump incipient failure modes from Space Shuttle main engine (SSME) hot firing measurements are outlined.

  18. Non Destructive Analysis of Fsw Welds using Ultrasonic Signal Analysis

    NASA Astrophysics Data System (ADS)

    Pavan Kumar, T.; Prabhakar Reddy, P.

    2017-08-01

    Friction Stir Welding is an evolving metal joining technique and is mostly used in joining materials which cannot be easily joined by other available welding techniques. It is a technique which can be used for welding dissimilar materials also. The strength of the weld joint is determined by the way in which these material are mixing with each other, since we are not using any filler material for the welding process the intermixing has a significant importance. The complication with the friction stir welding process is that there are many process parameters which effect this intermixing process such as tool geometry, rotating speed of the tool, transverse speed etc., In this study an attempt is made to compare the material flow and weld quality of various weldments by changing the parameters. Ultrasonic signal Analysis is used to characterize the microstructure of the weldments. use of ultrasonic waves is a non destructive, accurate and fast way of characterization of microstructure. In this method the relationship between the ultrasonic measured parameters and microstructures are evaluated using background echo and backscattered signal process techniques. The ultrasonic velocity and attenuation measurements are dependent on the elastic modulus and any change in the microstructure is reflected in the ultrasonic velocity. An insight into material flow is essential to determine the quality of the weld. Hence an attempt is made in this study to know the relationship between tool geometry and the pattern of material flow and resulting weld quality the experiments are conducted to weld dissimilar aluminum alloys and the weldments are characterized using and ultra Sonic signal processing. Characterization is also done using Scanning Electron Microscopy. It is observed that there is a good correlation between the ultrasonic signal processing results and Scanning Electron Microscopy on the observed precipitates. Tensile tests and hardness tests are conducted on the

  19. Effect of phase errors in stepped-frequency radar systems

    NASA Astrophysics Data System (ADS)

    Vanbrundt, H. E.

    1988-04-01

    Stepped-frequency waveforms are being considered for inverse synthetic aperture radar (ISAR) imaging from ship and airborne platforms and for detailed radar cross section (RCS) measurements of ships and aircraft. These waveforms make it possible to achieve resolutions of 1.0 foot by using existing radar designs and processing technology. One problem not yet fully resolved in using stepped-frequency waveform for ISAR imaging is the deterioration in signal level caused by random frequency error. Random frequency error of the stepped-frequency source results in reduced peak responses and increased null responses. The resulting reduced signal-to-noise ratio is range dependent. Two of the major concerns addressed in this report are radar range limitations for ISAR and the error in calibration for RCS measurements caused by differences in range between a passive reflector used for an RCS reference and the target to be measured. In addressing these concerns, NOSC developed an analysis to assess the tolerable frequency error in terms of resulting power loss in signal power and signal-to-phase noise.

  20. Combined analysis of the radar cross-section modulation due to the long ocean waves around 14° and 34° incidence: Implication for the hydrodynamic modulation

    NASA Astrophysics Data System (ADS)

    Hauser, DanièLe; Caudal, GéRard

    1996-11-01

    The analysis of synthetic aperture radar observations over the ocean to derive the directional spectra of the waves is based upon a complex transfer function which is the sum of three terms: tilt modulation, hydrodynamic modulation, and velocity bunching effect. Both the hydrodynamic and the velocity bunching terms are still poorly known. Here we focus on the hydrodynamic part of the transfer function, from an experimental point of view. In this paper a new method is proposed to estimate the hydrodynamic modulation. The approach consists in analyzing observations obtained with an airborne real-aperture radar (called RESSAC). This radar (C band, HH polarized, broad beam of 14° × 3°) was used during the SEMAPHORE experiment, in two different modes. From the first mode (incidence angles from 7° to 21°) the directional spectra of the long waves are deduced under the assumption that the hydrodynamic modulation can be neglected (small incidence angles) and validated against in situ measurements. From the second mode (incidence angle from 27° to 41°) the amplitude and phase of the hydrodynamic modulation are deduced by combining the measured signal modulation spectrum at a mean incidence angle of 34° and the directional wave spectrum obtained from the first mode. The results, obtained in four different wind-wave cases of the SEMAPHORE experiment, show that the modulus of the hydrodynamic modulation is larger than that of the tilt modulation. Furthermore, we find that the modulus of the hydrodynamic transfer function is several times larger (by a factor 2-12) than the theoretical value proposed in previous works and 1.5-2.5 larger than experimental values reported in recent papers. The phase of the hydrodynamic modulation is found to be close to zero for waves propagating at an angle from the wind direction and between -20° and -40° for waves propagating along the wind direction. This indicates a significant influence of the wind-wave angle on the phase of the

  1. Radar research at the University of Kansas

    NASA Astrophysics Data System (ADS)

    Blunt, Shannon D.; Allen, Christopher; Arnold, Emily; Hale, Richard; Hui, Rongqing; Keshmiri, Shahriar; Leuschen, Carlton; Li, Jilu; Paden, John; Rodriguez-Morales, Fernando; Salandrino, Alessandro; Stiles, James

    2017-05-01

    Radar research has been synonymous with the University of Kansas (KU) for over half a century. As part of this special session organized to highlight significant radar programs in academia, this paper surveys recent and ongoing work at KU. This work encompasses a wide breadth of sensing applications including the remote sensing of ice sheets, autonomous navigation methods for unmanned aerial vehicles (UAVs), novel laser radar capabilities, detection of highenergy cosmic rays using bistatic radar, different forms of waveform diversity such as MIMO radar and pulse agility, and various radar-embedded communication methods. The results of these efforts impact our understanding of the changing nature of the environment, address the proliferation of unmanned systems in the US airspace, realize new sensing modalities enabled by the joint consideration of electromagnetics and signal processing, and greater facilitate radar operation in an increasingly congested and contested spectrum.

  2. Orbiter CCTV video signal noise analysis

    NASA Technical Reports Server (NTRS)

    Lawton, R. M.; Blanke, L. R.; Pannett, R. F.

    1977-01-01

    The amount of steady state and transient noise which will couple to orbiter CCTV video signal wiring is predicted. The primary emphasis is on the interim system, however, some predictions are made concerning the operational system wiring in the cabin area. Noise sources considered are RF fields from on board transmitters, precipitation static, induced lightning currents, and induced noise from adjacent wiring. The most significant source is noise coupled to video circuits from associated circuits in common connectors. Video signal crosstalk is the primary cause of steady state interference, and mechanically switched control functions cause the largest induced transients.

  3. Recent Arecibo Radar Observations of Main-Belt Asteroids.

    NASA Astrophysics Data System (ADS)

    Shepard, Michael K.; Howell, Ellen; Nolan, Michael; Taylor, Patrick; Springmann, Alessondra; Giorgini, Jon; Benner, Lance; Magri, Christopher

    2014-11-01

    We recently observed main-belt asteroids 12 Victoria (Tholen S-class, Bus L-class), 246 Asporina (A-class), and 2035 Stearns with the S-band (12 cm) Arecibo radar. Signal-to-noise ratios for Asporina and Stearns were only strong enough for continuous-wave (CW) analysis. Signal-to-noise ratios for Victoria were high enough for delay-Doppler imaging. Stearns exhibited a high radar polarization ratio of unity, higher than any other main-belt E-class, but similar to near-Earth E-class asteroids [Benner et al. Icarus 198, 294-304, 2008; Shepard et al. Icarus 215, 547-551, 2011]. The A-class asteroids show spectral absorption features consistent with olivine and have been suggested as the source of pallasite meteorites or the rare brachinites [Cruikshank and Hartmann, Science 223, 281-283, 1984]. The radar cross-section measured for Asporina leads to a radar albedo estimate of 0.11, suggesting a low near-surface bulk density, and by inference, a low metal content. This suggests that the brachinites are a better analog for Asporina than the iron-rich pallasites. Victoria has been observed by radar in the past and the continuous-wave echoes suggest it has a large concavity or is a contact binary [Mitchell et al. Icarus 118, 105-131, 1995]. Our new imaging observations should determine which is more likely.

  4. Dynamic Gesture Recognition with a Terahertz Radar Based on Range Profile Sequences and Doppler Signatures

    PubMed Central

    Pi, Yiming

    2017-01-01

    The frequency of terahertz radar ranges from 0.1 THz to 10 THz, which is higher than that of microwaves. Multi-modal signals, including high-resolution range profile (HRRP) and Doppler signatures, can be acquired by the terahertz radar system. These two kinds of information are commonly used in automatic target recognition; however, dynamic gesture recognition is rarely discussed in the terahertz regime. In this paper, a dynamic gesture recognition system using a terahertz radar is proposed, based on multi-modal signals. The HRRP sequences and Doppler signatures were first achieved from the radar echoes. Considering the electromagnetic scattering characteristics, a feature extraction model is designed using location parameter estimation of scattering centers. Dynamic Time Warping (DTW) extended to multi-modal signals is used to accomplish the classifications. Ten types of gesture signals, collected from a terahertz radar, are applied to validate the analysis and the recognition system. The results of the experiment indicate that the recognition rate reaches more than 91%. This research verifies the potential applications of dynamic gesture recognition using a terahertz radar. PMID:29267249

  5. Dynamic Gesture Recognition with a Terahertz Radar Based on Range Profile Sequences and Doppler Signatures.

    PubMed

    Zhou, Zhi; Cao, Zongjie; Pi, Yiming

    2017-12-21

    The frequency of terahertz radar ranges from 0.1 THz to 10 THz, which is higher than that of microwaves. Multi-modal signals, including high-resolution range profile (HRRP) and Doppler signatures, can be acquired by the terahertz radar system. These two kinds of information are commonly used in automatic target recognition; however, dynamic gesture recognition is rarely discussed in the terahertz regime. In this paper, a dynamic gesture recognition system using a terahertz radar is proposed, based on multi-modal signals. The HRRP sequences and Doppler signatures were first achieved from the radar echoes. Considering the electromagnetic scattering characteristics, a feature extraction model is designed using location parameter estimation of scattering centers. Dynamic Time Warping (DTW) extended to multi-modal signals is used to accomplish the classifications. Ten types of gesture signals, collected from a terahertz radar, are applied to validate the analysis and the recognition system. The results of the experiment indicate that the recognition rate reaches more than 91%. This research verifies the potential applications of dynamic gesture recognition using a terahertz radar.

  6. Shuttle Imaging Radar - Geologic applications

    NASA Technical Reports Server (NTRS)

    Macdonald, H.; Bridges, L.; Waite, W.; Kaupp, V.

    1982-01-01

    The Space Shuttle, on its second flight (November 12, 1981), carried the first science and applications payload which provided an early demonstration of Shuttle's research capabilities. One of the experiments, the Shuttle Imaging Radar-A (SIR-A), had as a prime objective to evaluate the capability of spaceborne imaging radars as a tool for geologic exploration. The results of the experiment will help determine the value of using the combination of space radar and Landsat imagery for improved geologic analysis and mapping. Preliminary analysis of the Shuttle radar imagery with Seasat and Landsat imagery from similar areas provides evidence that spaceborne radars can significantly complement Landsat interpretation, and vastly improve geologic reconnaissance mapping in those areas of the world that are relatively unmapped because of perpetual cloud cover.

  7. Design, Analysis, and Characterization of Metamaterial Quasi-Optical Components for Millimeter-Wave Automotive Radar

    NASA Astrophysics Data System (ADS)

    Nguyen, Vinh Ngoc

    Since their introduction by Mercedes Benz in the late 1990s, W-band radars operating at 76-77 GHz have found their way into more and more passenger cars. These automotive radars are typically used in adaptive cruise control, pre-collision sensing, and other driver assistance systems. While these systems are usually only about the size of two stacked cigarette packs, system size, and weight remains a concern for many automotive manufacturers. In this dissertation, I discuss how artificially structured metamaterials can be used to improve lens-based automotive radar systems. Metamaterials allow the fabrication of smaller and lighter systems, while still meeting the frequency, high gain, and cost requirements of this application. In particular, I focus on the development of planar artificial dielectric lenses suitable for use in place of the injection-molded lenses now used in many automotive radar systems. I begin by using analytic and numerical ray-tracing to compare the performance of planar metamaterial GRIN lenses to equivalent aspheric refractive lenses. I do this to determine whether metamaterials are best employed in GRIN or refractive automotive radar lenses. Through this study I find that planar GRIN lenses with the large refractive index ranges enabled by metamaterials have approximately optically equivalent performance to equivalent refractive lenses for fields of view approaching +/-20°. I also find that the uniaxial nature of most planar metamaterials does not negatively impact planar GRIN lens performance. I then turn my attention to implementing these planar GRIN lenses at W-band automotive radar frequencies. I begin by designing uniform sheets of W-band electrically-coupled LC resonator-based metamaterials. These metamaterial samples were fabricated by the Jokerst research group on glass and liquid crystal polymer (LCP) substrates and tested at Toyota Research Institute- North America (TRI-NA). When characterized at W-band frequencies, these

  8. Micro-Pulse Lidar Signals: Uncertainty Analysis

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    Micro-pulse lidar (MPL) systems are small, autonomous, eye-safe lidars used for continuous observations of the vertical distribution of cloud and aerosol layers. Since the construction of the first MPL in 1993, procedures have been developed to correct for various instrument effects present in MPL signals. The primary instrument effects include afterpulse, laser-detector cross-talk, and overlap, poor near-range (less than 6 km) focusing. The accurate correction of both afterpulse and overlap effects are required to study both clouds and aerosols. Furthermore, the outgoing energy of the laser pulses and the statistical uncertainty of the MPL detector must also be correctly determined in order to assess the accuracy of MPL observations. The uncertainties associated with the afterpulse, overlap, pulse energy, detector noise, and all remaining quantities affecting measured MPL signals, are determined in this study. The uncertainties are propagated through the entire MPL correction process to give a net uncertainty on the final corrected MPL signal. The results show that in the near range, the overlap uncertainty dominates. At altitudes above the overlap region, the dominant source of uncertainty is caused by uncertainty in the pulse energy. However, if the laser energy is low, then during mid-day, high solar background levels can significantly reduce the signal-to-noise of the detector. In such a case, the statistical uncertainty of the detector count rate becomes dominant at altitudes above the overlap region.

  9. An Overview Of Wideband Signal Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Speiser, Jeffrey M.; Whitehouse, Harper J.

    1989-11-01

    This paper provides a unifying perspective for several narowband and wideband signal processing techniques. It considers narrowband ambiguity functions and Wigner-Ville distibutions, together with the wideband ambiguity function and several proposed approaches to a wideband version of the Wigner-Ville distribution (WVD). A unifying perspective is provided by the methodology of unitary representations and ray representations of transformation groups.

  10. [Study of ocular surface electromyography signal analysis].

    PubMed

    Zhu, Bei; Qi, Li-Ping

    2009-11-01

    Test ocular surface electromyography signal waves and characteristic parameters to provide effective data for the diagnosis and treatment of ocular myopathy. Surface electromyography signals tests were performed in 140 normal volunteers and 30 patients with ophthalmoplegia. Surface electrodes were attached to medial canthi, lateral canthi and the middle of frontal bone. Then some alternate flashing red lamps were installed on perimeter to reduce the movement of eyeball. The computer hardware, software, and A/D adapter (12 Bit) were used. Sampling frequency could be selected within 40 kHz, frequency of amplifier was 2 kHz, and input short circuit noise was less than 3 microV. For normal volunteers, the ocular surface electromyography signals were regular, and the electric waves were similar between different sex groups and age groups. While for patients with ophthalmoplegia, the wave amplitude of ocular surface electromyography signals were declined or disappeared in the dyskinesia direction. The wave amplitude was related with the degree of pathological process. The characteristic parameters of patients with ophthalmoplegia were higher than normal volunteers. The figures of ocular surface electromyogram obtained from normal volunteers were obviously different with that from patients with ophthalmoplegia. This test can provide reliable quantized data for the diagnosis and treatment of ocular myopathy.

  11. Dimensional analysis of acoustically propagated signals

    NASA Technical Reports Server (NTRS)

    Hansen, Scott D.; Thomson, Dennis W.

    1993-01-01

    Traditionally, long term measurements of atmospherically propagated sound signals have consisted of time series of multiminute averages. Only recently have continuous measurements with temporal resolution corresponding to turbulent time scales been available. With modern digital data acquisition systems we now have the capability to simultaneously record both acoustical and meteorological parameters with sufficient temporal resolution to allow us to examine in detail relationships between fluctuating sound and the meteorological variables, particularly wind and temperature, which locally determine the acoustic refractive index. The atmospheric acoustic propagation medium can be treated as a nonlinear dynamical system, a kind of signal processor whose innards depend on thermodynamic and turbulent processes in the atmosphere. The atmosphere is an inherently nonlinear dynamical system. In fact one simple model of atmospheric convection, the Lorenz system, may well be the most widely studied of all dynamical systems. In this paper we report some results of our having applied methods used to characterize nonlinear dynamical systems to study the characteristics of acoustical signals propagated through the atmosphere. For example, we investigate whether or not it is possible to parameterize signal fluctuations in terms of fractal dimensions. For time series one such parameter is the limit capacity dimension. Nicolis and Nicolis were among the first to use the kind of methods we have to study the properties of low dimension global attractors.

  12. The Multiple Doppler Radar Workshop, November 1979.

    NASA Astrophysics Data System (ADS)

    Carbone, R. E.; Harris, F. I.; Hildebrand, P. H.; Kropfli, R. A.; Miller, L. J.; Moninger, W.; Strauch, R. G.; Doviak, R. J.; Johnson, K. W.; Nelson, S. P.; Ray, P. S.; Gilet, M.

    1980-10-01

    The findings of the Multiple Doppler Radar Workshop are summarized by a series of six papers. Part I of this series briefly reviews the history of multiple Doppler experimentation, fundamental concepts of Doppler signal theory, and organization and objectives of the Workshop. Invited presentations by dynamicists and cloud physicists are also summarized.Experimental design and procedures (Part II) are shown to be of critical importance. Well-defined and limited experimental objectives are necessary in view of technological limitations. Specified radar scanning procedures that balance temporal and spatial resolution considerations are discussed in detail. Improved siting for suppression of ground clutter as well as scanning procedures to minimize errors at echo boundaries are discussed. The need for accelerated research using numerically simulated proxy data sets is emphasized.New technology to eliminate various sampling limitations is cited as an eventual solution to many current problems in Part III. Ground clutter contamination may be curtailed by means of full spectral processing, digital filters in real time, and/or variable pulse repetition frequency. Range and velocity ambiguities also may be minimized by various pulsing options as well as random phase transmission. Sidelobe contamination can be reduced through improvements in radomes, illumination patterns, and antenna feed types. Radar volume-scan time can be sharply reduced by means of wideband transmission, phased array antennas, multiple beam antennas, and frequency agility.Part IV deals with synthesis of data from several radars in the context of scientific requirements in cumulus clouds, widespread precipitation, and severe convective storms. The important temporal and spatial scales are examined together with the accuracy required for vertical air motion in each phenomenon. Factors that introduce errors in the vertical velocity field are identified and synthesis techniques are discussed separately for

  13. Techniques of EMG signal analysis: detection, processing, classification and applications

    PubMed Central

    Hussain, M.S.; Mohd-Yasin, F.

    2006-01-01

    Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications. PMID:16799694

  14. Radar transponder operation with compensation for distortion due to amplitude modulation

    DOEpatents

    Ormesher, Richard C [Albuquerque, NM; Tise, Bertice L [Albuquerque, NM; Axline, Jr., Robert M.

    2011-01-04

    In radar transponder operation, a variably delayed gating signal is used to gate a received radar pulse and thereby produce a corresponding gated radar pulse for transmission back to the source of the received radar pulse. This compensates for signal distortion due to amplitude modulation on the retransmitted pulse.

  15. Cytostatic response of NB69 cells to weak pulse-modulated 2.2 GHz radar-like signals.

    PubMed

    Trillo, María A; Cid, María Antonia; Martínez, Maria Antonia; Page, Juan E; Esteban, Jaime; Úbeda, Alejandro

    2011-07-01

    The present study investigates the response of two human cancer cell lines to a 24-h treatment with a 2.2-GHz, pulse-modulated (5 µs pulse duration, 100 Hz repetition rate) radar-like signal at an average SAR = 0.023 W/kg, using a newly designed setup for in vitro exposure to radiofrequency (RF) fields. A complete discretized model of the setup was created for numerical dosimetry using finite-difference time-domain (FDTD) software, SEMCAD X. The average dose of RF radiation absorbed by the cultures was calculated to be subthermal (ΔT < 0.1 °C). The RF exposure induced a consistent, statistically significant reduction in the cell number (13.5% below controls, P < 0.001) in the neuroblastoma NB69 line. This effect was accompanied with slight but statistically significant increases in the proportions of cells in phases G0/G1 and G2/M of the cell cycle (6% and 9%, respectively; P < 0.05 over controls). By contrast, the hepatocarcinoma cell line HepG2 did not respond to the same RF treatment. These results indicate that a pulse-modulated RF radiation with high instantaneous amplitude and low average power can induce cytostatic responses on specific, sensitive cancer cell lines. The effect would be mediated, at least in part, by alterations in the kinetics of the cell cycle. Copyright © 2011 Wiley-Liss, Inc.

  16. Analysis of warm season thunderstorms using an object-oriented tracking method based on radar and total lightning data

    NASA Astrophysics Data System (ADS)

    Rigo, T.; Pineda, N.; Bech, J.

    2010-09-01

    Monitoring thunderstorms activity is an essential part of operational weather surveillance given their potential hazards, including lightning, hail, heavy rainfall, strong winds or even tornadoes. This study has two main objectives: firstly, the description of a methodology, based on radar and total lightning data to characterise thunderstorms in real-time; secondly, the application of this methodology to 66 thunderstorms that affected Catalonia (NE Spain) in the summer of 2006. An object-oriented tracking procedure is employed, where different observation data types generate four different types of objects (radar 1-km CAPPI reflectivity composites, radar reflectivity volumetric data, cloud-to-ground lightning data and intra-cloud lightning data). In the framework proposed, these objects are the building blocks of a higher level object, the thunderstorm. The methodology is demonstrated with a dataset of thunderstorms whose main characteristics, along the complete life cycle of the convective structures (development, maturity and dissipation), are described statistically. The development and dissipation stages present similar durations in most cases examined. On the contrary, the duration of the maturity phase is much more variable and related to the thunderstorm intensity, defined here in terms of lightning flash rate. Most of the activity of IC and CG flashes is registered in the maturity stage. In the development stage little CG flashes are observed (2% to 5%), while for the dissipation phase is possible to observe a few more CG flashes (10% to 15%). Additionally, a selection of thunderstorms is used to examine general life cycle patterns, obtained from the analysis of normalized (with respect to thunderstorm total duration and maximum value of variables considered) thunderstorm parameters. Among other findings, the study indicates that the normalized duration of the three stages of thunderstorm life cycle is similar in most thunderstorms, with the longest

  17. Shuttle communication and tracking systems signal design and interface compatibility analysis

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Various options for the Dedicated Payload Communication Link (DPCL) were evaluated. Specific subjects addressed include: payload to DPCL power transfer in the proximity of the payload, DPCL antenna pointing considerations, and DPCL transceiver implementations which can be mounted on the deployed antenna boom. Additional analysis of the Space Telescope performance was conducted. The feasibility of using the Global Positioning System (GPS) for attitude determination and control for large spacecraft was examined. The objective of the Shuttle Orbiter Radar Test and Evaluation (SORTE) program was to quantify the Ku-band radar tracking accuracy using White Sands Missile Range (WSMR) radar and optical tracking equipment, with helicopter and balloon targets.

  18. Time series analysis of Mexico City subsidence constrained by radar interferometry

    NASA Astrophysics Data System (ADS)

    Doin, Marie-Pierre; Lopez-Quiroz, Penelope; Yan, Yajing; Bascou, Pascale; Pinel, Virginie

    2010-05-01

    In Mexico City, subsidence rates reach up to 40 cm/yr mainly due to soil compaction led by the over exploitation of the Mexico Basin aquifer. The Mexico Valley, an endoreic basin surrounded by mountains, was in the past covered by large lakes. After the Spanish conquest, the lakes have almost completely disappeared, being progressively replaced by buildings of the current Mexican capital. The simplified hydrogeologic structure includes a superficial 50 to 300 m thick lacustrine aquitard overlying a thicker aquifer made of alluvial deposits. The aquitard layer plays a crucial role in the subsidence process due to the extremely high compressibility of its clay deposits separated by a less compressible sand layer where the biggest buildings of the city are anchored. The aquifer over-exploitation leads to a large scale 30m depression of its piezometric level, inducing water downwards flow in the clays, yielding compaction and subsidence. In order to quantitatively link subsidence to water pumping, the Mexico city subsidence needs to be mapped and analyzed through space and time. We map its spatial and temporal patterns by differential radar interferometry, using 38 ENVISAT images acquired between end of 2002 and beginning of 2007. We employ both a Permanent Scatterer (PS) and a small baseline (SBAS) approach. The main difficulty consists in the severe unwrapping problems mostly due to the high deformation rate. We develop a specific SBAS approach based on 71 differential interferograms with a perpendicular baseline smaller than 500 m and a temporal baseline smaller than 9 months, forming a redundant network linking all images: (1) To help the unwrapping step, we use the fact that the deformation shape is stable for similar time intervals during the studied period. As a result, a stack of the five best interferograms can be used to reduce the number of fringes in wrapped interferograms. (2) Based on the redundancy of the interferometric data base, we quantify the

  19. On the Analysis of Fingertip Photoplethysmogram Signals

    PubMed Central

    Elgendi, Mohamed

    2012-01-01

    Photoplethysmography (PPG) is used to estimate the skin blood flow using infrared light. Researchers from different domains of science have become increasingly interested in PPG because of its advantages as non-invasive, inexpensive, and convenient diagnostic tool. Traditionally, it measures the oxygen saturation, blood pressure, cardiac output, and for assessing autonomic functions. Moreover, PPG is a promising technique for early screening of various atherosclerotic pathologies and could be helpful for regular GP-assessment but a full understanding of the diagnostic value of the different features is still lacking. Recent studies emphasise the potential information embedded in the PPG waveform signal and it deserves further attention for its possible applications beyond pulse oximetry and heart-rate calculation. Therefore, this overview discusses different types of artifact added to PPG signal, characteristic features of PPG waveform, and existing indexes to evaluate for diagnoses. PMID:22845812

  20. Analysis of Parametric Adaptive Signal Detection with Applications to Radars and Hyperspectral Imaging

    DTIC Science & Technology

    2010-02-01

    98 8.4.5 Training Screening ............................. .................................................................99 8.5 Experimental...associated with the proposed parametric model. Several im- portant issues are discussed, including model order selection, training screening , and time...parameters associated with the NS-AR model. In addition, we develop model order selection, training screening , and time-series based whitening and

  1. Large scale analysis of signal reachability.

    PubMed

    Todor, Andrei; Gabr, Haitham; Dobra, Alin; Kahveci, Tamer

    2014-06-15

    Major disorders, such as leukemia, have been shown to alter the transcription of genes. Understanding how gene regulation is affected by such aberrations is of utmost importance. One promising strategy toward this objective is to compute whether signals can reach to the transcription factors through the transcription regulatory network (TRN). Due to the uncertainty of the regulatory interactions, this is a #P-complete problem and thus solving it for very large TRNs remains to be a challenge. We develop a novel and scalable method to compute the probability that a signal originating at any given set of source genes can arrive at any given set of target genes (i.e., transcription factors) when the topology of the underlying signaling network is uncertain. Our method tackles this problem for large networks while providing a provably accurate result. Our method follows a divide-and-conquer strategy. We break down the given network into a sequence of non-overlapping subnetworks such that reachability can be computed autonomously and sequentially on each subnetwork. We represent each interaction using a small polynomial. The product of these polynomials express different scenarios when a signal can or cannot reach to target genes from the source genes. We introduce polynomial collapsing operators for each subnetwork. These operators reduce the size of the resulting polynomial and thus the computational complexity dramatically. We show that our method scales to entire human regulatory networks in only seconds, while the existing methods fail beyond a few tens of genes and interactions. We demonstrate that our method can successfully characterize key reachability characteristics of the entire transcriptions regulatory networks of patients affected by eight different subtypes of leukemia, as well as those from healthy control samples. All the datasets and code used in this article are available at bioinformatics.cise.ufl.edu/PReach/scalable.htm. © The Author 2014

  2. Analysis of mesoscale convective systems in Catalonia using meteorological radar for the period 1996 2000

    NASA Astrophysics Data System (ADS)

    Rigo, Tomeu; Llasat, Maria-Carmen

    2007-02-01

    The aim of this paper is to show a climatology of Mesoscale Convective Systems (MCS) in the NE of the Iberian Peninsula, on the basis of meteorological radar observations. Special attention was paid to those cases that have produced heavy rainfalls during the period 1996-2000. Identification of the MCS was undertaken using two procedures. Firstly, the precipitation structures at the lowest level were recognised by means of a 2D algorithm that distinguishes between convective and non-convective contribution. Secondly, the convective cells were identified using a 3D procedure quite similar to the SCIT (Storm Cell Identification and Tracking) algorithm that looks for the reflectivity cores in each radar volume. Finally, the convective cells (3D) were associated with the 2D structures (convective rainfall areas), in order to characterize the complete MCS. Once this methodology was presented the paper offers a proposal for classifying the precipitation systems, and particularly the MCS. 57 MCS structures were classified: 49% of them were identified as linearly well-organised systems, called TS (39%), LS (18%) and NS (43%). In addition to the classification, the following items were analysed for each MCS found: duration, season, time of day, area affected and direction of movement, and main radar parameters related with convection. The average features of those MCS show an area of about 25000 km 2, Zmax values of 47 dBz, an echotop of 12 km, the maximum frequency at 12 UTC and early afternoon and a displacement towards E-NE. The study was completed by analysing the field at surface, the presence of a mesoscale low near the system and the quasi-stationary features of three cases related with heavy rainfalls. Maximum rainfall (more then 200 mm in 6 h) was related with the presence of a cyclone in combination with the production of a convective train effect.

  3. Analysis of Radar and Optical Space Borne Data for Large Scale Topographical Mapping

    NASA Astrophysics Data System (ADS)

    Tampubolon, W.; Reinhardt, W.

    2015-03-01

    Normally, in order to provide high resolution 3 Dimension (3D) geospatial data, large scale topographical mapping needs input from conventional airborne campaigns which are in Indonesia bureaucratically complicated especially during legal administration procedures i.e. security clearance from military/defense ministry. This often causes additional time delays besides technical constraints such as weather and limited aircraft availability for airborne campaigns. Of course the geospatial data quality is an important issue for many applications. The increasing demand of geospatial data nowadays consequently requires high resolution datasets as well as a sufficient level of accuracy. Therefore an integration of different technologies is required in many cases to gain the expected result especially in the context of disaster preparedness and emergency response. Another important issue in this context is the fast delivery of relevant data which is expressed by the term "Rapid Mapping". In this paper we present first results of an on-going research to integrate different data sources like space borne radar and optical platforms. Initially the orthorectification of Very High Resolution Satellite (VHRS) imagery i.e. SPOT-6 has been done as a continuous process to the DEM generation using TerraSAR-X/TanDEM-X data. The role of Ground Control Points (GCPs) from GNSS surveys is mandatory in order to fulfil geometrical accuracy. In addition, this research aims on providing suitable processing algorithm of space borne data for large scale topographical mapping as described in section 3.2. Recently, radar space borne data has been used for the medium scale topographical mapping e.g. for 1:50.000 map scale in Indonesian territories. The goal of this on-going research is to increase the accuracy of remote sensing data by different activities, e.g. the integration of different data sources (optical and radar) or the usage of the GCPs in both, the optical and the radar satellite data

  4. An Analysis of Chronic Personnel Shortages in the B-52 Radar Navigator Career Field

    DTIC Science & Technology

    1987-03-01

    Weapon System Trainer - The new simulators for the B-52 located on some of the B-52 bases. Due to the complexity of the simulators, they have a small ...navigators crosstraining to these are lost to the B-52 career field. 21 ASTRA Every year a small number of radar navigators are chosen to attend one yerc at...this case, though, it turned up a small problem initially. The separation rates were obtained from Headquarters SAC (10), but did not include the number

  5. Defense Applications of Signal Processing

    DTIC Science & Technology

    1999-08-27

    class of multiscale autoregressive moving average (MARMA) processes. These are generalisations of ARMA models in time series analysis , and they contain...including the two theoretical sinusoidal components. Analysis of the amplitude and frequency time series provided some novel insight into the real...communication channels, underwater acoustic signals, radar systems , economic time series and biomedical signals [7]. The alpha stable (aS) distribution has

  6. Analysis of Rhythms in Experimental Signals

    NASA Astrophysics Data System (ADS)

    Desherevskii, A. V.; Zhuravlev, V. I.; Nikolsky, A. N.; Sidorin, A. Ya.

    2017-12-01

    We compare algorithms designed to extract quasiperiodic components of a signal and estimate the amplitude, phase, stability, and other characteristics of a rhythm in a sliding window in the presence of data gaps. Each algorithm relies on its own rhythm model; therefore, it is necessary to use different algorithms depending on the research objectives. The described set of algorithms and methods is implemented in the WinABD software package, which includes a time-series database management system, a powerful research complex, and an interactive data-visualization environment.

  7. A-Differential Synthetic Aperture Radar Interferometry analysis of a Deep Seated Gravitational Slope Deformation occurring at Bisaccia (Italy).

    PubMed

    Di Martire, Diego; Novellino, Alessandro; Ramondini, Massimo; Calcaterra, Domenico

    2016-04-15

    This paper presents the results of an investigation on a Deep Seated Gravitational Slope Deformation (DSGSD), previously only hypothesized by some authors, affecting Bisaccia, a small town located in Campania region, Italy. The study was conducted through the integration of conventional methods (geological-geomorphological field survey, air-photo interpretation) and an Advanced-Differential Interferometry Synthetic Aperture Radar (A-DInSAR) technique. The DSGSD involves a brittle lithotype (conglomerates of the Ariano Irpino Supersynthem) resting over a Structurally Complex Formation (Varycoloured Clays of Calaggio Formation). At Bisaccia, probably as a consequence of post-cyclic recompression phenomena triggered by reiterated seismic actions, the rigid plate made up of conglomeratic sediments resulted to be split in five portions, showing different rates of displacements, whose deformations are in the order of some centimeter/year, thus inducing severe damage to the urban settlement. A-DInSAR techniques confirmed to be a reliable tool in monitoring slow-moving landslides. In this case 96 ENVIronmental SATellite-Advanced Synthetic Aperture Radar (ENVISAT-ASAR) images, in ascending and descending orbits, have been processed using SUBSOFT software, developed by the Remote Sensing Laboratory (RSLab) group from the Universitat Politècnica de Catalunya (UPC). The DInSAR results, coupled with field survey, supported the analysis of the instability mechanism and confirmed the historical record of the movements already available for the town. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. ECG Signal Analysis and Arrhythmia Detection using Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Kaur, Inderbir; Rajni, Rajni; Marwaha, Anupma

    2016-12-01

    Electrocardiogram (ECG) is used to record the electrical activity of the heart. The ECG signal being non-stationary in nature, makes the analysis and interpretation of the signal very difficult. Hence accurate analysis of ECG signal with a powerful tool like discrete wavelet transform (DWT) becomes imperative. In this paper, ECG signal is denoised to remove the artifacts and analyzed using Wavelet Transform to detect the QRS complex and arrhythmia. This work is implemented in MATLAB software for MIT/BIH Arrhythmia database and yields the sensitivity of 99.85 %, positive predictivity of 99.92 % and detection error rate of 0.221 % with wavelet transform. It is also inferred that DWT outperforms principle component analysis technique in detection of ECG signal.

  9. Analysis of acoustic emission signals and monitoring of machining processes

    PubMed

    Govekar; Gradisek; Grabec

    2000-03-01

    Monitoring of a machining process on the basis of sensor signals requires a selection of informative inputs in order to reliably characterize and model the process. In this article, a system for selection of informative characteristics from signals of multiple sensors is presented. For signal analysis, methods of spectral analysis and methods of nonlinear time series analysis are used. With the aim of modeling relationships between signal characteristics and the corresponding process state, an adaptive empirical modeler is applied. The application of the system is demonstrated by characterization of different parameters defining the states of a turning machining process, such as: chip form, tool wear, and onset of chatter vibration. The results show that, in spite of the complexity of the turning process, the state of the process can be well characterized by just a few proper characteristics extracted from a representative sensor signal. The process characterization can be further improved by joining characteristics from multiple sensors and by application of chaotic characteristics.

  10. Analysis of the radar cross-section (RCS) of aircraft vortices

    NASA Astrophysics Data System (ADS)

    Shariff, Karim; Wray, Alan

    1999-11-01

    Radar has been proposed as one way to track wake vortices to reduce aircraft spacing. Radar echoes from aircraft wakes are usually interpreted qualitatively using Tatarski's theory of scattering by isotropic atmospheric turbulence. The present work predicts RCS by (1) Keeping the weak scattering approximation but dropping the assumptions of a far-field and a uniform incident wave, neither of which is generally valid for a coherent wake (2) Considering three simple mechanisms for the structure and magnitude of refractive index variations: (i) Radial density gradient in each vortex (ii) Adiabatic transport of atmospheric fluid in the oval surrounding the vortices (iii) 3D fluctuations in the vortex cores. For mechanism (ii) the predictions agree with available data. However, the predictions have a cut-off away from normal incidence which is not present in the measurements due possibly to 3D fluctuations in the oval. The reflectivity of mechanism (i) is comparable but cuts-off at frequencies lower than those considered in the experiment. Finally, we suggest that hot engine exhaust could increase RCS by 40 db and reveal vortex circulation, provided its mixing is prevented in the laminar vortices.

  11. Doppler radar echoes of lightning and precipitation at vertical incidence

    NASA Technical Reports Server (NTRS)

    Zrnic, D. S.; Rust, W. D.; Taylor, W. L.

    1982-01-01

    Digital time series data at 16 heights within two storms were collected at vertical incidence with a 10-cm Doppler radar. On several occasions during data collection, lightning echoes were observed as increased reflectivity on an oscilloscope display. Simultaneously, lightning signals from nearby electric field change antennas were recorded on an analog recorder together with the radar echoes. Reflectivity, mean velocity, and Doppler spectra were examined by means of time series analysis for times during and after lightning discharges. Spectra from locations where lightning occurred show peaks, due to the motion of the lightning channel at the air speed. These peaks are considerably narrower than the ones due to precipitation. Besides indicating the vertical air velocity that can then be used to estimate hydrometeor-size distribution, the lightning spectra provide a convenient means to estimate the radar cross section of the channel. Subsequent to one discharge, we deduce that a rapid change in the orientation of hydrometeors occurred within the resolution volume.

  12. Coded continuous wave meteor radar

    NASA Astrophysics Data System (ADS)

    Chau, J. L.; Vierinen, J.; Pfeffer, N.; Clahsen, M.; Stober, G.

    2016-12-01

    The concept of a coded continuous wave specular meteor radar (SMR) is described. The radar uses a continuously transmitted pseudorandom phase-modulated waveform, which has several advantages compared to conventional pulsed SMRs. The coding avoids range and Doppler aliasing, which are in some cases problematic with pulsed radars. Continuous transmissions maximize pulse compression gain, allowing operation at lower peak power than a pulsed system. With continuous coding, the temporal and spectral resolution are not dependent on the transmit waveform and they can be fairly flexibly changed after performing a measurement. The low signal-to-noise ratio before pulse compression, combined with independent pseudorandom transmit waveforms, allows multiple geographically separated transmitters to be used in the same frequency band simultaneously without significantly interfering with each other. Because the same frequency band can be used by multiple transmitters, the same interferometric receiver antennas can be used to receive multiple transmitters at the same time. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large-scale multi-static network of meteor radar transmitters and receivers. Such a system would be useful for increasing the number of meteor detections to obtain improved meteor radar data products, such as wind fields. This type of a radar would also be useful for over-the-horizon radar, ionosondes, and observations of field-aligned-irregularities.

  13. Study to investigate and evaluate means of optimizing the Ku-band combined radar/communication functions for the space shuttle

    NASA Technical Reports Server (NTRS)

    Weber, C. L.; Udalov, S.; Alem, W.

    1977-01-01

    The performance of the space shuttle orbiter's Ku-Band integrated radar and communications equipment is analyzed for the radar mode of operation. The block diagram of the rendezvous radar subsystem is described. Power budgets for passive target detection are calculated, based on the estimated values of system losses. Requirements for processing of radar signals in the search and track modes are examined. Time multiplexed, single-channel, angle tracking of passive scintillating targets is analyzed. Radar performance in the presence of main lobe ground clutter is considered and candidate techniques for clutter suppression are discussed. Principal system parameter drivers are examined for the case of stationkeeping at ranges comparable to target dimension. Candidate ranging waveforms for short range operation are analyzed and compared. The logarithmic error discriminant utilized for range, range rate and angle tracking is formulated and applied to the quantitative analysis of radar subsystem tracking loops.

  14. Analytical multiple scattering correction to the Mie theory: Application to the analysis of the lidar signal

    NASA Technical Reports Server (NTRS)

    Flesia, C.; Schwendimann, P.

    1992-01-01

    The contribution of the multiple scattering to the lidar signal is dependent on the optical depth tau. Therefore, the radar analysis, based on the assumption that the multiple scattering can be neglected is limited to cases characterized by low values of the optical depth (tau less than or equal to 0.1) and hence it exclude scattering from most clouds. Moreover, all inversion methods relating lidar signal to number densities and particle size must be modified since the multiple scattering affects the direct analysis. The essential requests of a realistic model for lidar measurements which include the multiple scattering and which can be applied to practical situations follow. (1) Requested are not only a correction term or a rough approximation describing results of a certain experiment, but a general theory of multiple scattering tying together the relevant physical parameter we seek to measure. (2) An analytical generalization of the lidar equation which can be applied in the case of a realistic aerosol is requested. A pure analytical formulation is important in order to avoid the convergency and stability problems which, in the case of numerical approach, are due to the large number of events that have to be taken into account in the presence of large depth and/or a strong experimental noise.

  15. Photoacoustic signal and noise analysis for Si thin plate: signal correction in frequency domain.

    PubMed

    Markushev, D D; Rabasović, M D; Todorović, D M; Galović, S; Bialkowski, S E

    2015-03-01

    Methods for photoacoustic signal measurement, rectification, and analysis for 85 μm thin Si samples in the 20-20 000 Hz modulation frequency range are presented. Methods for frequency-dependent amplitude and phase signal rectification in the presence of coherent and incoherent noise as well as distortion due to microphone characteristics are presented. Signal correction is accomplished using inverse system response functions deduced by comparing real to ideal signals for a sample with well-known bulk parameters and dimensions. The system response is a piece-wise construction, each component being due to a particular effect of the measurement system. Heat transfer and elastic effects are modeled using standard Rosencweig-Gersho and elastic-bending theories. Thermal diffusion, thermoelastic, and plasmaelastic signal components are calculated and compared to measurements. The differences between theory and experiment are used to detect and correct signal distortion and to determine detector and sound-card characteristics. Corrected signal analysis is found to faithfully reflect known sample parameters.

  16. A review of intelligent systems for heart sound signal analysis.

    PubMed

    Nabih-Ali, Mohammed; El-Dahshan, El-Sayed A; Yahia, Ashraf S

    2017-10-01

    Intelligent computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of physicians and reduce the time required for accurate diagnosis. CAD systems could provide physicians with a suggestion about the diagnostic of heart diseases. The objective of this paper is to review the recent published preprocessing, feature extraction and classification techniques and their state of the art of phonocardiogram (PCG) signal analysis. Published literature reviewed in this paper shows the potential of machine learning techniques as a design tool in PCG CAD systems and reveals that the CAD systems for PCG signal analysis are still an open problem. Related studies are compared to their datasets, feature extraction techniques and the classifiers they used. Current achievements and limitations in developing CAD systems for PCG signal analysis using machine learning techniques are presented and discussed. In the light of this review, a number of future research directions for PCG signal analysis are provided.

  17. Fatigue Analysis of Overhead Sign and Signal Structures

    DOT National Transportation Integrated Search

    1994-05-01

    This report documents methods of fatigue analysis for overhead sign and signal structures. The main purpose of this report is to combine pertinent wind loading and vibration theory, fatigue damage theory, and experimental data into a useable fatigue ...

  18. A High Resolution Hydrometer Phase Classifier Based on Analysis of Cloud Radar Doppler Spectra.

    SciTech Connect

    Luke,E.; Kollias, P.

    2007-08-06

    The lifecycle and radiative properties of clouds are highly sensitive to the phase of their hydrometeors (i.e., liquid or ice). Knowledge of cloud phase is essential for specifying the optical properties of clouds, or else, large errors can be introduced in the calculation of the cloud radiative fluxes. Current parameterizations of cloud water partition in liquid and ice based on temperature are characterized by large uncertainty (Curry et al., 1996; Hobbs and Rangno, 1998; Intriery et al., 2002). This is particularly important in high geographical latitudes and temperature ranges where both liquid droplets and ice crystal phases can exist (mixed-phasemore » cloud). The mixture of phases has a large effect on cloud radiative properties, and the parameterization of mixed-phase clouds has a large impact on climate simulations (e.g., Gregory and Morris, 1996). Furthermore, the presence of both ice and liquid affects the macroscopic properties of clouds, including their propensity to precipitate. Despite their importance, mixed-phase clouds are severely understudied compared to the arguably simpler single-phase clouds. In-situ measurements in mixed-phase clouds are hindered due to aircraft icing, difficulties distinguishing hydrometeor phase, and discrepancies in methods for deriving physical quantities (Wendisch et al. 1996, Lawson et al. 2001). Satellite-based retrievals of cloud phase in high latitudes are often hindered by the highly reflecting ice-covered ground and persistent temperature inversions. From the ground, the retrieval of mixed-phase cloud properties has been the subject of extensive research over the past 20 years using polarization lidars (e.g., Sassen et al. 1990), dual radar wavelengths (e.g., Gosset and Sauvageot 1992; Sekelsky and McIntosh, 1996), and recently radar Doppler spectra (Shupe et al. 2004). Millimeter-wavelength radars have substantially improved our ability to observe non-precipitating clouds (Kollias et al., 2007) due to their

  19. Radar Sounder

    DTIC Science & Technology

    1988-09-01

    S’ardard Form 298 Rev 2-89) • " Del " 1 , -iNS, 19 , q f .If - ACKNOWLEDGMENTS The authors would like to acknowledge the support of numerous...plates, etc.); estimation of rain rate and the observation of the horizontal and vertical structure of rain. The data from the radar sounder will be...crytal habit. The microphysical properties and vertical structure of the clouds are needed for applications of interest to the Air Force such as

  20. [Computers in biomedical research: I. Analysis of bioelectrical signals].

    PubMed

    Vivaldi, E A; Maldonado, P

    2001-08-01

    A personal computer equipped with an analog-to-digital conversion card is able to input, store and display signals of biomedical interest. These signals can additionally be submitted to ad-hoc software for analysis and diagnosis. Data acquisition is based on the sampling of a signal at a given rate and amplitude resolution. The automation of signal processing conveys syntactic aspects (data transduction, conditioning and reduction); and semantic aspects (feature extraction to describe and characterize the signal and diagnostic classification). The analytical approach that is at the basis of computer programming allows for the successful resolution of apparently complex tasks. Two basic principles involved are the definition of simple fundamental functions that are then iterated and the modular subdivision of tasks. These two principles are illustrated, respectively, by presenting the algorithm that detects relevant elements for the analysis of a polysomnogram, and the task flow in systems that automate electrocardiographic reports.

  1. Advanced Borehole Radar for Hydrogeology

    NASA Astrophysics Data System (ADS)

    Sato, M.

    2014-12-01

    Ground Penetrating Radar is a useful tool for monitoring the hydrogeological environment. We have developed GPR systems which can be applied to these purposes, and we will demonstrate examples borehole radar measurements. In order to have longer radar detection range, frequency lower than100MHz has been normally adopted in borehole radar. Typical subsurface fractures of our interests have a few mm aperture and radar resolution is much poorer than a few cm in this frequency range. We are proposing and demonstrating to use radar polarimetry to solve this problem. We have demonstrated that a full-polarimetry borehole radar can be used for characterization of subsurface fractures. Together with signal processing for antenna characteristic compensation to equalize the signal by a dipole antenna and slot antennas, we could demonstrate that polarimetric borehole radar can estimate the surface roughness of subsurface fractures, We believe the surface roughness is closely related to water permeability through the fractures. We then developed a directional borehole radar, which uses optical field sensor. A dipole antenna in a borehole has omni-directional radiation pattern, and we cannot get azimuthal information about the scatterers. We use multiple dipole antennas set around the borehole axis, and from the phase differences, we can estimate the 3-diemnational orientation of subsurface structures. We are using optical electric field sensor for receiver of borehole radar. This is a passive sensor and connected only with optical fibers and does not require any electric power supply to operate the receiver. It has two major advantages; the first one is that the receiver can be electrically isolated from other parts, and wave coupling to a logging cable is avoided. Then, secondary, it can operate for a long time, because it does not require battery installed inside the system. It makes it possible to set sensors in fixed positions to monitor the change of environmental

  2. Bistatic and Multistatic Radar: Surveillance, Countermeasures, and Radar Cross Sections. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The bibliography contains citations concerning the design, development, testing, and evaluation of bistatic and multistatic radar used in surveillance and countermeasure technology. Citations discuss radar cross sections, target recognition and characteristics, ghost recognition, motion image compensation, and wavelet analysis. Stealth aircraft design, stealth target tracking, synthetic aperture radar, and space applications are examined.

  3. Bistatic and Multistatic Radar: Surveillance, Countermeasures, and Radar Cross Sections. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The bibliography contains citations concerning the design, development, testing, and evaluation of bistatic and multistatic radar used in surveillance and countermeasure technology. Citations discuss radar cross sections, target recognition and characteristics, ghost recognition, motion image compensation, and wavelet analysis. Stealth aircraft design, stealth target tracking, synthetic aperture radar, and space applications are examined.

  4. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes...

  5. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes...

  6. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes...

  7. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes...

  8. 33 CFR 118.120 - Radar reflectors and racons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes...

  9. Parametric analysis of synthetic aperture radar data acquired over truck garden vegetation

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1984-01-01

    An airborne X-band SAR acquired multipolarization and multiflight pass SAR images over a truck garden vegetation area. Based on a variety of land cover and row crop direction variations, the vertical (VV) polarization data contain the highest contrast, while cross polarization contains the least. When the radar flight path is parallel to the row direction, both horizontal (HH) and VV polarization data contain very high return which masks out the specific land cover that forms the row structure. Cross polarization data are not that sensitive to row orientation. The inclusion of like and cross polarization data help delineate special surface features (e.g., row crop against non-row-oriented land cover, very-rough-surface against highly row-oriented surface).

  10. Fly eye radar or micro-radar sensor technology

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Asmolova, Olga

    2014-05-01

    To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.

  11. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameter values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emission associated with (a) crack propagation, (b) ball dropping on a plate, (c) spark discharge, and (d) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train is shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  12. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis, and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train are shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  13. Application of Signal Analysis to the Climate

    PubMed Central

    2014-01-01

    The primary ingredient of the Anthropogenic Global Warming hypothesis, namely, the assumption that additional atmospheric carbon dioxide substantially raises the global temperature, is studied. This is done by looking at the data of temperature and CO2, both in the time domain and in the phase domain of periodic data. Bicentenary measurements are analyzed and a relaxation model is introduced in the form of an electronic equivalent circuit. The effects of this relaxation manifest themselves in delays in the time domain and correlated phase shifts in the phase domain. For extremely long relaxation time constants, the delay is maximally one-quarter period, which for the yearly-periodic signal means 3 months. This is not in line with the analyzed data, the latter showing delays of 9 (−3) months. These results indicate a reverse function of cause and effect, with temperature being the cause for atmospheric CO2 changes, rather than their effect. These two hypotheses are discussed on basis of literature, where it was also reported that CO2 variations are lagging behind temperature variations. PMID:27350978

  14. A satellite-based radar wind sensor

    NASA Technical Reports Server (NTRS)

    Xin, Weizhuang

    1991-01-01

    The objective is to investigate the application of Doppler radar systems for global wind measurement. A model of the satellite-based radar wind sounder (RAWS) is discussed, and many critical problems in the designing process, such as the antenna scan pattern, tracking the Doppler shift caused by satellite motion, and backscattering of radar signals from different types of clouds, are discussed along with their computer simulations. In addition, algorithms for measuring mean frequency of radar echoes, such as the Fast Fourier Transform (FFT) estimator, the covariance estimator, and the estimators based on autoregressive models, are discussed. Monte Carlo computer simulations were used to compare the performance of these algorithms. Anti-alias methods are discussed for the FFT and the autoregressive methods. Several algorithms for reducing radar ambiguity were studied, such as random phase coding methods and staggered pulse repitition frequncy (PRF) methods. Computer simulations showed that these methods are not applicable to the RAWS because of the broad spectral widths of the radar echoes from clouds. A waveform modulation method using the concept of spread spectrum and correlation detection was developed to solve the radar ambiguity. Radar ambiguity functions were used to analyze the effective signal-to-noise ratios for the waveform modulation method. The results showed that, with suitable bandwidth product and modulation of the waveform, this method can achieve the desired maximum range and maximum frequency of the radar system.

  15. Develop Advanced Nonlinear Signal Analysis Topographical Mapping System

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1997-01-01

    During the development of the SSME, a hierarchy of advanced signal analysis techniques for mechanical signature analysis has been developed by NASA and AI Signal Research Inc. (ASRI) to improve the safety and reliability for Space Shuttle operations. These techniques can process and identify intelligent information hidden in a measured signal which is often unidentifiable using conventional signal analysis methods. Currently, due to the highly interactive processing requirements and the volume of dynamic data involved, detailed diagnostic analysis is being performed manually which requires immense man-hours with extensive human interface. To overcome this manual process, NASA implemented this program to develop an Advanced nonlinear signal Analysis Topographical Mapping System (ATMS) to provide automatic/unsupervised engine diagnostic capabilities. The ATMS will utilize a rule-based Clips expert system to supervise a hierarchy of diagnostic signature analysis techniques in the Advanced Signal Analysis Library (ASAL). ASAL will perform automatic signal processing, archiving, and anomaly detection/identification tasks in order to provide an intelligent and fully automated engine diagnostic capability. The ATMS has been successfully developed under this contract. In summary, the program objectives to design, develop, test and conduct performance evaluation for an automated engine diagnostic system have been successfully achieved. Software implementation of the entire ATMS system on MSFC's OISPS computer has been completed. The significance of the ATMS developed under this program is attributed to the fully automated coherence analysis capability for anomaly detection and identification which can greatly enhance the power and reliability of engine diagnostic evaluation. The results have demonstrated that ATMS can significantly save time and man-hours in performing engine test/flight data analysis and performance evaluation of large volumes of dynamic test data.

  16. Analysis of data acquired by Shuttle Imaging Radar SIR-A and Landsat Thematic Mapper over Baldwin County, Alabama

    NASA Technical Reports Server (NTRS)

    Wu, S.-T.

    1985-01-01

    Seasonally compatible data collected by SIR-A and by Landsat 4 TM over the lower coastal plain in Alabama were coregistered, forming a SIR-A/TM multichannel data set with 30 m x 30 m pixel size. Spectral signature plots and histogram analysis of the data were used to observe data characteristics. Radar returns from pine forest classes correlated highly with the tree ages, suggesting the potential utility of microwave remote sensing for forest biomass estimation. As compared with the TM-only data set, the use of SIR-A/TM data set improved classification accuracy of the seven land cover types studied. In addition, the SIR-A/TM classified data support previous finding by Engheta and Elachi (1982) that microwave data appear to be correlated with differing bottomland hardwood forest vegetation as associated with varying water regimens (i.e., wet versus dry).

  17. Efficient moving target analysis for inverse synthetic aperture radar images via joint speeded-up robust features and regular moment

    NASA Astrophysics Data System (ADS)

    Yang, Hongxin; Su, Fulin

    2018-01-01

    We propose a moving target analysis algorithm using speeded-up robust features (SURF) and regular moment in inverse synthetic aperture radar (ISAR) image sequences. In our study, we first extract interest points from ISAR image sequences by SURF. Different from traditional feature point extraction methods, SURF-based feature points are invariant to scattering intensity, target rotation, and image size. Then, we employ a bilateral feature registering model to match these feature points. The feature registering scheme can not only search the isotropic feature points to link the image sequences but also reduce the error matching pairs. After that, the target centroid is detected by regular moment. Consequently, a cost function based on correlation coefficient is adopted to analyze the motion information. Experimental results based on simulated and real data validate the effectiveness and practicability of the proposed method.

  18. Structural analysis of three extensional detachment faults with data from the 2000 Space-Shuttle Radar Topography Mission

    USGS Publications Warehouse

    Spencer, J.E.

    2010-01-01

    The Space-Shuttle Radar Topography Mission provided geologists with a detailed digital elevation model of most of Earth's land surface. This new database is used here for structural analysis of grooved surfaces interpreted to be the exhumed footwalls of three active or recently active extensional detachment faults. Exhumed fault footwalls, each with an areal extent of one hundred to several hundred square kilometers, make up much of Dayman dome in eastern Papua New Guinea, the western Gurla Mandhata massif in the central Himalaya, and the northern Tokorondo Mountains in central Sulawesi, Indonesia. Footwall curvature in profile varies from planar to slightly convex upward at Gurla Mandhata to strongly convex upward at northwestern Dayman dome. Fault curvature decreases away from the trace of the bounding detachment fault in western Dayman dome and in the Tokorondo massif, suggesting footwall flattening (reduction in curvature) following exhumation. Grooves of highly variable wavelength and amplitude reveal extension direction, although structural processes of groove genesis may be diverse.

  19. A combined quality-control methodology in Ebro Delta (NE Spain) high frequency radar system

    NASA Astrophysics Data System (ADS)

    Lorente, P.; Piedracoba, S.; Soto-Navarro, J.; Alvarez-Fanjul, E.

    2015-08-01

    Ebro River Delta is a relevant marine protected area in the western Mediterranean. In order to promote the conservation of its ecosystem and support operational decision making in this sensitive area, a three site standard-range (13.5 MHz) CODAR SeaSonde High Frequency (HF) radar was deployed in 2013. Since there is a growing demand for reliable HF radar surface current measurements, the main goal of this work is to present a combined quality control methodology. Firstly, one year-long (2014) real-time web monitoring of nonvelocity-based diagnostic parameters is conducted in order to infer both radar site status and HF radar system performance. Signal-to-noise ratio at the monopole exhibited a consistent monthly evolution although some abrupt decreases (below 10 dB), occasionally detected in June for one of the radar sites, impacted negatively on the spatiotemporal coverage of total current vectors. It seemed to be a sporadic episode since radar site overall performance was found to be robust during 2014. Secondly, a validation of HF radar data with independent in situ observations from a moored current meter was attempted for May-October 2014. The accuracy assessment of radial and total vectors revealed a consistently high agreement. The directional accuracy of the HF radar was rated at better than 8°. The correlation coefficient and RMSE values emerged in the ranges 0.58-0.83 and 4.02-18.31 cm s-1, respectively. The analysis of the monthly averaged current maps for 2014 showed that the HF radar properly represented basic oceanographic features previously reported, namely: the predominant southwestward flow, the coastal clockwise eddy confined south of Ebro Delta mouth or the Ebro River impulsive-type freshwater discharge. Future works should include the use of verified HF radar data for the rigorous skill assessment of operational ocean circulation systems currently running in Ebro estuarine region like MyOcean IBI.

  20. The Clementine Bistatic Radar Experiment

    NASA Technical Reports Server (NTRS)

    Nozette, S.; Lichtenberg, C. L.; Spudis, P.; Bonner, R.; Ort, W.; Malaret, E.; Robinson, M.; Shoemaker, E. M.

    1996-01-01

    During the Clementine 1 mission, a bistatic radar experiment measured the magnitude and polarization of the radar echo versus bistatic angle, beta, for selected lunar areas. Observations of the lunar south pole yield a same-sense polarization enhancement around beta = 0. Analysis shows that the observed enhancement is localized to the permanently shadowed regions of the lunar south pole. Radar observations of periodically solar-illuminated lunar surfaces, including the north pole, yielded no such enhancement. A probable explanation for these differences is the presence of low-loss volume scatterers, such as water ice, in the permanently shadowed region at the south pole.

  1. Correction of amplitude-phase distortion for polarimetric active radar calibrator

    NASA Astrophysics Data System (ADS)

    Lin, Jianzhi; Li, Weixing; Zhang, Yue; Chen, Zengping

    2015-01-01

    The polarimetric active radar calibrator (PARC) is extensively used as an external test target for system distortion compensation and polarimetric calibration for the high-resolution polarimetric radar. However, the signal undergoes distortion in the PARC, affecting the effectiveness of the compensation and the calibration. The system distortion compensation resulting from the distortion of the amplitude and phase in the PARC was analyzed based on the "method of paired echoes." Then the correction method was proposed, which separated the ideal signals from the distorted signals. Experiments were carried on real radar data, and the experimental results were in good agreement with the theoretical analysis. After the correction, the PARC can be better used as an external test target for the system distortion compensation.

  2. Signal Analysis Techniques for Interpreting Electroencephalograms

    DTIC Science & Technology

    1980-12-01

    investigations by Lansing and Barlow (61). The relation between VER, adaptation attention fatigue, etc., has been studied quite extensively with invasive...in order to restore the highly abnormal EEG to near normal. Anatomical and Neurophysiological Considerations of VER Changes For studies of visual...Computer Analysis of Electroencephalograms, Digest of the 7th International Conf. on Medical and Biological Engineering, Stockholm, pp. 257-260, 1967. 4

  3. Analysis of the Convective Storm using Meteosat Second Generation and SPOL Radar over a Megacity, on May 18, 2014

    NASA Astrophysics Data System (ADS)

    da Silva Júnior, Ivon Wilson; José Pereira Filho, Augusto; Alves Barbosa, Humberto

    2017-04-01

    The rapid populational growth in urban areas of Southeast and South Brazil has increased anthropic effects on severe weather caused by thunderstorms whose impacts require mitigation on a small space-time scale more susceptible to natural disasters such as flooding. The 18 May 2015 thunderstorms in The Metropolitan Area of São Paulo (MASP) caused many losses due to heavy rain, gusty winds and falling hail. The local press reported 310 tons of ice removed from the surface. Meteosat Second Generation (MSG) images, polarimetric weather radar measurements, radiosondes and surface weather variables data sets were used to analyze the event. The environmental thermodynamic analysis showed a dry layer at mid levels with wind shear at upper levels. Diabatic heating increased throughout the day and made the atmosphere very unstable at the end of the afternoon with greater potential energy induced by the local sea breeze. The 0 °C isotherm was at 3781 m. Initially, the rapid horizontal expansion of the storm caused by environmental wind shear was observed at 10.8 mm IR MSG channel brightness temperature (BT) was of -57 ° C. The brightness temperature differences (BTD) between WV and IR MSG channels evidenced vertical moisture transport from near the surface to the upper levels during convection. In the mature stage, radar reflectivity showed widespread multi cellular storm structures. Vertical cross-section indicated reflectivities between 45 dBZ to 55 dBZ with cloud tops with reflectivity greater than 30 dBZ at 14 km altitude when updrafts were more intense. Vertical profiles of differential reflectivity (ZDR) showed a deep column from to +2 to +4 dB between 6 km to 12 km altitude where intense vertical transport of large drops and a mixture of water and ice well above the 0 ° C isotherm level. This environment increased efficiency of the Wegener-Bergeron-Findeisen type microphysics with rapid ice crystal growth to hail with later precipitation at the surface that lasted

  4. Multiscale Analysis of the Water Content Output the NWP Model COSMO Over Switzerland and Comparison With Radar Data

    NASA Astrophysics Data System (ADS)

    Wolfensberger, D.; Gires, A.; Berne, A.; Tchiguirinskaia, I.; Schertzer, D. J. M.

    2015-12-01

    The resolution of operational numerical prediction models is typically of the order of a few kilometres meaning that small-scale features of precipitation can not be resolved explicitly. This creates the need for representative parametrizations of microphysical processes whose properties should be carefully analysed. In this study we will focus on the COSMO model which is a non-hydrostatic limited-area model, initially developed as the Lokal Model and used operationally in Switzerland and Germany. In its operational version, cloud microphysical processes are simulated with a one-moment bulk scheme where five hydrometeor classes are considered: cloud droplets, rain, ice crystals, snow, and graupel. A more sophisticated two-moment scheme is also available. The study will focus on two case studies: one in Payerne in western Switzerland in a relatively flat region and one in Davos in the eastern Swiss Alps in a more complex terrain.The objective of this work is to characterize the ability of the COSMO NWP model to reproduce the microphysics of precipitation across temporal and spatial scales as well as scaling variability. The characterization of COSMO outputs will rely on the Universal Multifractals framework, which allows to analyse and simulate geophysical fields extremely variabile over a wide range of scales with the help of a reduced number of parameters. First COSMO outputs are analysed; spatial multifractal analysis of 2D maps at various altitudes for each time steps are carried out for simulated solid, liquid, vapour and total water content. In general the fields exhibit a good quality of scaling on the whole range of available scales (2 km - 250 km), but some loss of scaling quality corresponding to the emergence of a scaling break are sometimes visible. This behaviour is not found at the same time or at the same altitude according to the water state and does not necessarily spread to the total water content. It is interpreted with the help of the underlying

  5. Artificial intelligence applied to process signal analysis

    NASA Technical Reports Server (NTRS)

    Corsberg, Dan

    1988-01-01

    Many space station processes are highly complex systems subject to sudden, major transients. In any complex process control system, a critical aspect of the human/machine interface is the analysis and display of process information. Human operators can be overwhelmed by large clusters of alarms that inhibit their ability to diagnose and respond to a disturbance. Using artificial intelligence techniques and a knowledge base approach to this problem, the power of the computer can be used to filter and analyze plant sensor data. This will provide operators with a better description of the process state. Once a process state is recognized, automatic action could be initiated and proper system response monitored.

  6. Music Structure Analysis from Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Dannenberg, Roger B.; Goto, Masataka

    Music is full of structure, including sections, sequences of distinct musical textures, and the repetition of phrases or entire sections. The analysis of music audio relies upon feature vectors that convey information about music texture or pitch content. Texture generally refers to the average spectral shape and statistical fluctuation, often reflecting the set of sounding instruments, e.g., strings, vocal, or drums. Pitch content reflects melody and harmony, which is often independent of texture. Structure is found in several ways. Segment boundaries can be detected by observing marked changes in locally averaged texture.

  7. Analysis of digital communication signals and extraction of parameters

    NASA Astrophysics Data System (ADS)

    Al-Jowder, Anwar

    1994-12-01

    The signal classification performance of four types of electronics support measure (ESM) communications detection systems is compared from the standpoint of the unintended receiver (interceptor). Typical digital communication signals considered include binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), frequency shift keying (FSK), and on-off keying (OOK). The analysis emphasizes the use of available signal processing software. Detection methods compared include broadband energy detection, FFT-based narrowband energy detection, and two correlation methods which employ the fast Fourier transform (FFT). The correlation methods utilize modified time-frequency distributions, where one of these is based on the Wigner-Ville distribution (WVD). Gaussian white noise is added to the signal to simulate various signal-to-noise ratios (SNR's).

  8. siGnum: graphical user interface for EMG signal analysis.

    PubMed

    Kaur, Manvinder; Mathur, Shilpi; Bhatia, Dinesh; Verma, Suresh

    2015-01-01

    Electromyography (EMG) signals that represent the electrical activity of muscles can be used for various clinical and biomedical applications. These are complicated and highly varying signals that are dependent on anatomical location and physiological properties of the muscles. EMG signals acquired from the muscles require advanced methods for detection, decomposition and processing. This paper proposes a novel Graphical User Interface (GUI) siGnum developed in MATLAB that will apply efficient and effective techniques on processing of the raw EMG signals and decompose it in a simpler manner. It could be used independent of MATLAB software by employing a deploy tool. This would enable researcher's to gain good understanding of EMG signal and its analysis procedures that can be utilized for more powerful, flexible and efficient applications in near future.

  9. Encoder fault analysis system based on Moire fringe error signal

    NASA Astrophysics Data System (ADS)

    Gao, Xu; Chen, Wei; Wan, Qiu-hua; Lu, Xin-ran; Xie, Chun-yu

    2018-02-01

    Aiming at the problem of any fault and wrong code in the practical application of photoelectric shaft encoder, a fast and accurate encoder fault analysis system is researched from the aspect of Moire fringe photoelectric signal processing. DSP28335 is selected as the core processor and high speed serial A/D converter acquisition card is used. And temperature measuring circuit using AD7420 is designed. Discrete data of Moire fringe error signal is collected at different temperatures and it is sent to the host computer through wireless transmission. The error signal quality index and fault type is displayed on the host computer based on the error signal identification method. The error signal quality can be used to diagnosis the state of error code through the human-machine interface.

  10. A Comprehensive Analysis of Swiss Alpine Glaciers Using Helicopter-Borne Ground-Penetrating-Radar

    NASA Astrophysics Data System (ADS)

    Rabenstein, L.; Maurer, H.; Bauder, A.; Langhammer, L.; Lucas, C.; Rutishauser, A.; Lathion, P.

    2014-12-01

    Detailed information exists on the surface area of glaciers in Switzerland and long-term mass balance observations are available but because glacial thickness remains elusive and so only a rough estimate of the present ice volume is available. After the successful recording of approximately 1000 km of helicopter ground penetrating radar (GPR) profiles on Swiss glaciers during the last three years, the Swiss Competence Center for Energy Research (SCCER) and the Swiss Geophysical Commission (SGPK) began an initiative to obtain for the first time an accurate estimate of the total ice volume located in the Swiss Alps. Steps towards this goal include the delineation of 3D bedrock topography beneath glacerized regions. The final ice volume estimation will comprise an ice flux computation model constrained by a dense network of helicopter-borne GPR profiles. Different systems that have been recently tested for acquiring helicopter GPR data in the Swiss Alps include towed systems (the HERA-G+ and the BGR-P30) and rigidly mounted systems of standard commercial GPR ground units (the GSSI and PulsEkko), all operating in the frequency range of 30 to 70 Mhz. Some measurements were ground-truthed using the same GPR antenna systems. Analyses of these data sets revealed a wealth of useful information on the glacier bed topography and some internal structures. For instance, at depths between 30 and 60 m, we often observe zones of low backscattering followed by a more reflective zone. In the glacial accumulation areas these features are interpreted as firn layers, in which the water percolates down to its base. The same test flights also provided useful technical information on the radar installation. For towed systems it is difficult to maintain a constant orientation of the antennas during the flight. In contrast, the rigidly mounted systems do not suffer from the orientation problem, but ringing effects are pronounced. We applied an SVD-based (singular value decomposition) multi

  11. Massive Signal Analysis with Hadoop (Invited)

    NASA Astrophysics Data System (ADS)

    Addair, T.

    2013-12-01

    The Geophysical Monitoring Program (GMP) at Lawrence Livermore National Laboratory is in the process of transitioning from a primarily human-driven analysis pipeline to a more automated and exploratory system. Waveform correlation represents a significant part of this effort, and the results that come out of this processing could lead to the development of more sophisticated event detection and analysis systems that require less human interaction, and address fundamental shortcomings in existing systems. Furthermore, use of distributed IO systems fundamentally addresses a scalability concern for the GMP as our data holdings continue to grow rapidly. As the data volume increases, it becomes less reasonable to rely upon human analysts to sift through all the information. Not only is more automation essential to keeping up with the ingestion rate, but so too do we require faster and more sophisticated tools for visualizing and interacting with the data. These issues of scalability are not unique to GMP or the seismic domain. All across the lab, and throughout industry, we hear about the promise of 'big data' to address the need of quickly analyzing vast amounts of data in fundamentally new ways. Our waveform correlation system finds and correlates nearby seismic events across the entire Earth. In our original implementation of the system, we processed some 50 TB of data on an in-house traditional HPC cluster (44 cores, 1 filesystem) over the span of 42 days. Having determined the primary bottleneck in the performance to be reading waveforms off a single BlueArc file server, we began investigating distributed IO solutions like Hadoop. As a test case, we took a 1 TB subset of our data and ported it to Livermore Computing's development Hadoop cluster. Through a pilot project sponsored by Livermore Computing (LC), the GMP successfully implemented the waveform correlation system in the Hadoop distributed MapReduce computing framework. Hadoop is an open source

  12. Analysis of ERS 1 synthetic aperture radar data of frozen lakes in northern Montana and implications for climate studies

    USGS Publications Warehouse

    Hall, Dorothy K.; Fagre, Daniel B.; Klasner, Fritz; Linebaugh, Gregg; Liston, Glen E.

    1994-01-01

    Lakes that freeze each winter are good indicators of regional climate change if key parameters, such as freeze-up and breakup date and maximum ice thickness, are measured over a decade-scale time frame. Synthetic aperture radar (SAR) satellite data have proven to be especially useful for measurement of climatologically significant parameters characteristic of frozen lakes. In this paper, five lakes in Glacier National Park, Montana, have been studied both in the field and using Earth Remote-Sensing Satellite (ERS) 1 SAR data during the 1992-1993 winter. The lakes are characterized by clear ice, sometimes with tubular or rounded bubbles, and often with a layer of snow ice on top of the clear ice. They are also often snow covered. Freeze-up is detected quite easily using ERS 1 SAR data as soon as a thin layer of ice forms. The effect of snow ice on the backscatter is thought to be significant but is, as yet, undetermined. On the five lakes studied, relative backscatter was found to increase with ice thickness until a maximum was reached in February. Breakup, an often ill-defined occurrence, is difficult to detect because surface water causes the SAR signal to be absorbed, thus masking the ice below. Comparison of the bubble structure of thaw lakes in northern Alaska with lakes in northern Montana has shown that the ice structure is quite different, and this difference may contribute to differential SAR signature evolution in the lakes of the two areas.

  13. Application of homomorphic signal processing to stress wave factor analysis

    NASA Technical Reports Server (NTRS)

    Karagulle, H.; Williams, J. H., Jr.; Lee, S. S.

    1985-01-01

    The stress wave factor (SWF) signal, which is the output of an ultrasonic testing system where the transmitting and receiving transducers are coupled to the same face of the test structure, is analyzed in the frequency domain. The SWF signal generated in an isotropic elastic plate is modelled as the superposition of successive reflections. The reflection which is generated by the stress waves which travel p times as a longitudinal (P) wave and s times as a shear (S) wave through the plate while reflecting back and forth between the bottom and top faces of the plate is designated as the reflection with p, s. Short-time portions of the SWF signal are considered for obtaining spectral information on individual reflections. If the significant reflections are not overlapped, the short-time Fourier analysis is used. A summary of the elevant points of homomorphic signal processing, which is also called cepstrum analysis, is given. Homomorphic signal processing is applied to short-time SWF signals to obtain estimates of the log spectra of individual reflections for cases in which the reflections are overlapped. Two typical SWF signals generated in aluminum plates (overlapping and non-overlapping reflections) are analyzed.

  14. Debris Flux Comparisons From The Goldstone Radar, Haystack Radar, and Hax Radar Prior, During, and After the Last Solar Maximum

    NASA Technical Reports Server (NTRS)

    Stokely, C. L.; Stansbery, E. G.; Goldstein, R. M.

    2006-01-01

    The continual monitoring of low Earth orbit (LEO) debris environment using highly sensitive radars is essential for an accurate characterization of these dynamic populations. Debris populations are continually evolving since there are new debris sources, previously unrecognized debris sources, and debris loss mechanisms that are dependent on the dynamic space environment. Such radar data are used to supplement, update, and validate existing orbital debris models. NASA has been utilizing radar observations of the debris environment for over a decade from three complementary radars: the NASA JPL Goldstone radar, the MIT Lincoln Laboratory (MIT/LL) Long Range Imaging Radar (known as the Haystack radar), and the MIT/LL Haystack Auxiliary radar (HAX). All of these systems are highly sensitive radars that operate in a fixed staring mode to statistically sample orbital debris in the LEO environment. Each of these radars is ideally suited to measure debris within a specific size region. The Goldstone radar generally observes objects with sizes from 2 mm to 1 cm. The Haystack radar generally measures from 5 mm to several meters. The HAX radar generally measures from 2 cm to several meters. These overlapping size regions allow a continuous measurement of cumulative debris flux versus diameter from 2 mm to several meters for a given altitude window. This is demonstrated for all three radars by comparing the debris flux versus diameter over 200 km altitude windows for 3 nonconsecutive years from 1998 through 2003. These years correspond to periods before, during, and after the peak of the last solar cycle. Comparing the year to year flux from Haystack for each of these altitude regions indicate statistically significant changes in subsets of the debris populations. Potential causes of these changes are discussed. These analysis results include error bars that represent statistical sampling errors, and are detailed in this paper.

  15. Signal Processing Applications Of Wigner-Ville Analysis

    NASA Astrophysics Data System (ADS)

    Whitehouse, H. J.; Boashash, B.

    1986-04-01

    The Wigner-Ville distribution (WVD), a form of time-frequency analysis, is shown to be useful in the analysis of a variety of non-stationary signals both deterministic and stochastic. The properties of the WVD are reviewed and alternative methods of calculating the WVD are discussed. Applications are presented.

  16. Measures of complexity in signal analysis

    SciTech Connect

    Kurths, J.; Schwarz, U.; Witt, A.

    Observational data of natural systems, as measured in astrophysical, geophysical or physiological experiments are typically quite different from those obtained in laboratories. Due to the peculiarities with these data, well-known characteristics processes, such as periodicities or fractal dimension, often do not provide a suitable description. To study such data, we present here the use of measures of complexity, which are mainly basing on symbolic dynamics. We distinguish two types of such quantities: traditional measures (e.g. algorithmic complexity) which are measures of randomness and alternative measures (e.g. {epsilon}-complexity) which relate highest complexity to some critical points. It is important to notemore » that there is no optimum measure of complexity. Its choice should depend on the context. Mostly, a combination of some such quantities is appropriate. Applying this concept to three examples in astrophysics, cardiology and cognitive psychology, we show that it can be helpful also in cases where other tools of data analysis fail. {copyright} {ital 1996 American Institute of Physics.}« less

  17. Analysis of musical expression in audio signals

    NASA Astrophysics Data System (ADS)

    Dixon, Simon

    2003-01-01

    In western art music, composers communicate their work to performers via a standard notation which specificies the musical pitches and relative timings of notes. This notation may also include some higher level information such as variations in the dynamics, tempo and timing. Famous performers are characterised by their expressive interpretation, the ability to convey structural and emotive information within the given framework. The majority of work on audio content analysis focusses on retrieving score-level information; this paper reports on the extraction of parameters describing the performance, a task which requires a much higher degree of accuracy. Two systems are presented: BeatRoot, an off-line beat tracking system which finds the times of musical beats and tracks changes in tempo throughout a performance, and the Performance Worm, a system which provides a real-time visualisation of the two most important expressive dimensions, tempo and dynamics. Both of these systems are being used to process data for a large-scale study of musical expression in classical and romantic piano performance, which uses artificial intelligence (machine learning) techniques to discover fundamental patterns or principles governing expressive performance.

  18. Analysis of data acquired by synthetic aperture radar over Dade County, Florida, and Acadia Parish, Louisiana

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1983-01-01

    Results of digital processing of airborne X-band synthetic aperture radar (SAR) data acquired over Dade County, Florida, and Acadia Parish, Louisiana are presented. The goal was to investigate the utility of SAR data for land cover mapping and area estimation under the AgRISTARS Domestic Crops and Land Cover Project. In the case of the Acadia Paris study area, LANDSAT multispectral scanner (MSS) data were also used to form a combined SAR and MSS data set. The results of accuracy evaluation for the SAR, MSS, and SAR/MSS data using supervised classification show that the combined SAR/MSS data set results in an improved classification accuracy of the five land cover classes as compared with SAR-only and MSS-only data sets. In the case of the Dade County study area, the results indicate that both HH and VV polarization data are highly responsive to the row orientation of the row crop but not to the specific vegetation which forms the row structure. On the other hand, the HV polarization data are relatively insensitive to the orientation of row crop. Therefore, the HV polarization data may be used to discriminate the specific vegetation that forms the row structure.

  19. Observation of sea-ice dynamics using synthetic aperture radar images: Automated analysis

    NASA Technical Reports Server (NTRS)

    Vesecky, John F.; Samadani, Ramin; Smith, Martha P.; Daida, Jason M.; Bracewell, Ronald N.

    1988-01-01

    The European Space Agency's ERS-1 satellite, as well as others planned to follow, is expected to carry synthetic-aperture radars (SARs) over the polar regions beginning in 1989. A key component in utilization of these SAR data is an automated scheme for extracting the sea-ice velocity field from a time sequence of SAR images of the same geographical region. Two techniques for automated sea-ice tracking, image pyramid area correlation (hierarchical correlation) and feature tracking, are described. Each technique is applied to a pair of Seasat SAR sea-ice images. The results compare well with each other and with manually tracked estimates of the ice velocity. The advantages and disadvantages of these automated methods are pointed out. Using these ice velocity field estimates it is possible to construct one sea-ice image from the other member of the pair. Comparing the reconstructed image with the observed image, errors in the estimated velocity field can be recognized and a useful probable error display created automatically to accompany ice velocity estimates. It is suggested that this error display may be useful in segmenting the sea ice observed into regions that move as rigid plates of significant ice velocity shear and distortion.

  20. Observation of the Earth by radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1982-01-01

    Techniques and applications of radar observation from Earth satellites are discussed. Images processing and analysis of these images are discussed. Also discussed is radar imaging from aircraft. Uses of this data include ocean wave analysis, surface water evaluation, and topographic analysis.

  1. The detection and analysis of point processes in biological signals

    NASA Technical Reports Server (NTRS)

    Anderson, D. J.; Correia, M. J.

    1977-01-01

    A pragmatic approach to the detection and analysis of discrete events in biomedical signals is taken. Examples from both clinical and basic research are provided. Introductory sections discuss not only discrete events which are easily extracted from recordings by conventional threshold detectors but also events embedded in other information carrying signals. The primary considerations are factors governing event-time resolution and the effects limits to this resolution have on the subsequent analysis of the underlying process. The analysis portion describes tests for qualifying the records as stationary point processes and procedures for providing meaningful information about the biological signals under investigation. All of these procedures are designed to be implemented on laboratory computers of modest computational capacity.

  2. Software development for airborne radar

    NASA Astrophysics Data System (ADS)

    Sundstrom, Ingvar G.

    Some aspects for development of software in a modern multimode airborne nose radar are described. First, an overview of where software is used in the radar units is presented. The development phases-system design, functional design, detailed design, function verification, and system verification-are then used as the starting point for the discussion. Methods, tools, and the most important documents are described. The importance of video flight recording in the early stages and use of a digital signal generators for performance verification is emphasized. Some future trends are discussed.

  3. Laboratory Measurements of Radar Transmission Through Dust with Implications for Radar Imaging on Mars

    NASA Technical Reports Server (NTRS)

    Williams, K. K.; Greeley, R.

    2001-01-01

    Measurements of radar transmission through a Mars analog dust are used to calculate values of signal attenuation over a frequency range of 0.5-12 GHz. These values are discussed in the context of a Mars radar imaging mission. Additional information is contained in the original extended abstract.

  4. Coupling Between Doppler Radar Signatures and Tornado Damage Tracks

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Molthan, Andrew L.; Carey, Lawrence; Carcione, Brian; Smith, Matthew; Schultz, Elise V.; Schultz, Christopher; Lafontaine, Frank

    2011-01-01

    On April 27, 2011, the southeastern United States was raked with several episodes of severe weather. Numerous tornadoes caused extensive damage, and tragically, the deaths of over 300 people. In Alabama alone, there were 61 confirmed tornados, 4 of them produced EF5 damage, and several were on the ground an hour or more with continuous damage tracks exceeding 80km. The use of Doppler radars covering the region provided reflectivity and velocity signatures that allowed forecasters to monitors the severe storms from beginning to end issuing hundreds of severe weather warnings throughout the day. Meteorologists from the the NWS performed extensive surveys to assess the intensity, duration, and ground track of tornadoes reported during the event. Survey activities included site visits to the affected locations, analysis of radar and satellite data, aerial surveys, and interviews with eyewitnesses. Satellite data from NASA's MODIS and ASTER instruments played a helpful role in determining the location of tornado damage paths and in the assessment. High resolution multispectral and temporal composites helped forecasters corroborate their damage assessments, determine starting and ending points for tornado touchdowns, and helped to provide forecasters with a better big-picture view of the damage region. The imagery also helped to separate damage from the April 27th tornados from severe weather that occurred earlier that month. In a post analysis of the outbreak, tornado damage path signatures observed in the NASA satellite data have been correlated to "debris ball" signatures in the NWS Doppler radars and a special ARMOR dual-polarization radar operated by the University of Alabama Huntsville during the event. The Doppler radar data indicates a circular enhanced reflectivity signal and rotational couplet in the radial velocity likely associated with the tornado that is spatially correlated with the damage tracks in the observed satellite data. An algorithm to detect and

  5. Synthetic aperture radar interferometry coherence analysis over Katmai volcano group, Alaska

    USGS Publications Warehouse

    Lu, Z.; Freymueller, J.T.

    1998-01-01

    The feasibility of measuring volcanic deformation or monitoring deformation of active volcanoes using space-borne synthetic aperture radar (SAR) interferometry depends on the ability to maintain phase coherence over appropriate time intervals. Using ERS 1 C band (λ=5.66 cm) SAR imagery, we studied the seasonal and temporal changes of the interferometric SAR coherence for fresh lava, weathered lava, tephra with weak water reworking, tephra with strong water reworking, and fluvial deposits representing the range of typical volcanic surface materials in the Katmai volcano group, Alaska. For interferograms based on two passes with 35 days separation taken during the same summer season, we found that coherence increases after early June, reaches a peak between the middle of July and the middle of September, and finally decreases until the middle of November when coherence is completely lost for all five sites. Fresh lava has the highest coherence, followed by either weathered lava or fluvial deposits. These surfaces maintain relatively high levels of coherence for periods up to the length of the summer season. Coherence degrades more rapidly with time for surfaces covered with tephra. For images taken in different summers, only the lavas maintained coherence well enough to provide useful interferometric images, but we found only a small reduction in coherence after the first year for surfaces with lava. Measurement of volcanic deformation is possible using summer images spaced a few years apart, as long as the surface is dominated by lavas. Our studies suggest that in order to make volcanic monitoring feasible along the Aleutian arc or other regions with similar climatic conditions, observation intervals of the satellite with C band SAR should be at least every month from July through September, every week during the late spring/early summer or late fall, and every 2–3 days during the winter.

  6. Power allocation for target detection in radar networks based on low probability of intercept: A cooperative game theoretical strategy

    NASA Astrophysics Data System (ADS)

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2017-08-01

    Distributed radar network systems have been shown to have many unique features. Due to their advantage of signal and spatial diversities, radar networks are attractive for target detection. In practice, the netted radars in radar networks are supposed to maximize their transmit power to achieve better detection performance, which may be in contradiction with low probability of intercept (LPI). Therefore, this paper investigates the problem of adaptive power allocation for radar networks in a cooperative game-theoretic framework such that the LPI performance can be improved. Taking into consideration both the transmit power constraints and the minimum signal to interference plus noise ratio (SINR) requirement of each radar, a cooperative Nash bargaining power allocation game based on LPI is formulated, whose objective is to minimize the total transmit power by optimizing the power allocation in radar networks. First, a novel SINR-based network utility function is defined and utilized as a metric to evaluate power allocation. Then, with the well-designed network utility function, the existence and uniqueness of the Nash bargaining solution are proved analytically. Finally, an iterative Nash bargaining algorithm is developed that converges quickly to a Pareto optimal equilibrium for the cooperative game. Numerical simulations and theoretic analysis are provided to evaluate the effectiveness of the proposed algorithm.

  7. Study of interhemispheric asymmetries in electroencephalographic signals by frequency analysis

    NASA Astrophysics Data System (ADS)

    Zapata, J. F.; Garzón, J.

    2011-01-01

    This study provides a new method for the detection of interhemispheric asymmetries in patients with continuous video-electroencephalography (EEG) monitoring at Intensive Care Unit (ICU), using wavelet energy. We obtained the registration of EEG signals in 42 patients with different pathologies, and then we proceeded to perform signal processing using the Matlab program, we compared the abnormalities recorded in the report by the neurophysiologist, the images of each patient and the result of signals analysis with the Discrete Wavelet Transform (DWT). Conclusions: there exists correspondence between the abnormalities found in the processing of the signal with the clinical reports of findings in patients; according to previous conclusion, the methodology used can be a useful tool for diagnosis and early quantitative detection of interhemispheric asymmetries.

  8. Multimission airborne radar for the 1990s

    NASA Astrophysics Data System (ADS)

    Robinson, Thomas H.

    1986-07-01

    The continuing trend towards the development and production of aircraft capable of multiple missions indicates that future airborne radars must provide a broad spectrum of air-to-air and air-to-ground modes. This paper investigates the modal and functional requirements of a multimode radar projected for the mid-1990s period. The paper is divided into two sections. In the first, the multimission capabilities of current radars are presented to establish trends and capabilities. In the second, the requirements of the next generation system are established. Current multimode radars lay the basis for future systems. The experience gained on the APG-65 and APG-63/70 radars is presented and conclusions are drawn regarding their impact on future system requirements. Not only are modes and performance reviewed for these radars but also their system architecture. The discussion starts with the APG-65 radar which is the first true multimission radar with programmable signal and data processing. Following this, the evolution of the APG-63 radar, culminating with the most recent upgrading resulting in redesignation of APG-70, is presented. The incorporation of air-to-ground capabilities in the APG-70, resulting from the Dual Role Fighter program, is reviewed. Results from the Advanced Fighter Capabilities Demonstration program are presented showing how high resolution SAR was incorporated into a full weapon delivery solution. The specific radar requirements for the next decade radar system are developed. This development is done in two parts. First, mode requirements are synthesized for air superiority, navigation and strike/interdiction operation. This includes low altitude penetration requirements and a review of radar timeline constraints which arise. Second, the fundamental functional requirements needed to implement the mode requirements are explored. Architectural issues and their impact on reliability and sustainability are also considered.

  9. A radar-based regional extreme rainfall analysis to derive the thresholds for a novel automatic alert system in Switzerland

    NASA Astrophysics Data System (ADS)

    Panziera, Luca; Gabella, Marco; Zanini, Stefano; Hering, Alessandro; Germann, Urs; Berne, Alexis

    2016-06-01

    This paper presents a regional extreme rainfall analysis based on 10 years of radar data for the 159 regions adopted for official natural hazard warnings in Switzerland. Moreover, a nowcasting tool aimed at issuing heavy precipitation regional alerts is introduced. The two topics are closely related, since the extreme rainfall analysis provides the thresholds used by the nowcasting system for the alerts. Warm and cold seasons' monthly maxima of several statistical quantities describing regional rainfall are fitted to a generalized extreme value distribution in order to derive the precipitation amounts corresponding to sub-annual return periods for durations of 1, 3, 6, 12, 24 and 48 h. It is shown that regional return levels exhibit a large spatial variability in Switzerland, and that their spatial distribution strongly depends on the duration of the aggregation period: for accumulations of 3 h and shorter, the largest return levels are found over the northerly alpine slopes, whereas for longer durations the southern Alps exhibit the largest values. The inner alpine chain shows the lowest values, in agreement with previous rainfall climatologies. The nowcasting system presented here is aimed to issue heavy rainfall alerts for a large variety of end users, who are interested in different precipitation characteristics and regions, such as, for example, small urban areas, remote alpine catchments or administrative districts. The alerts are issued not only if the rainfall measured in the immediate past or forecast in the near future exceeds some predefined thresholds but also as soon as the sum of past and forecast precipitation is larger than threshold values. This precipitation total, in fact, has primary importance in applications for which antecedent rainfall is as important as predicted one, such as urban floods early warning systems. The rainfall fields, the statistical quantity representing regional rainfall and the frequency of alerts issued in case of

  10. DC coupled Doppler radar physiological monitor.

    PubMed

    Zhao, Xi; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    One of the challenges in Doppler radar systems for physiological monitoring is a large DC offset in baseband outputs. Typically, AC coupling is used to eliminate this DC offset. Since the physiological signals of interest include frequency content near DC, it is not desirable to simply use AC coupling on the radar outputs. While AC coupling effectively removes DC offset, it also introduces a large time delay and distortion. This paper presents the first DC coupled IQ demodulator printed circuit board (PCB) design and measurements. The DC coupling is achieved by using a mixer with high LO to RF port isolation, resulting in a very low radar DC offset on the order of mV. The DC coupled signals from the PCB radar system were successfully detected with significant LNA gain without saturation. Compared to the AC coupled results, the DC coupled results show great advantages of less signal distortion and more accurate rate estimation.

  11. Analysis of the inversion monitoring capabilities of a monostatic acoustic radar in complex terrain. [Tennessee River Valley

    NASA Technical Reports Server (NTRS)

    Koepf, D.; Frost, W.

    1981-01-01

    A qualitative interpretation of the records from a monostatic acoustic radar is presented. This is achieved with the aid of airplane, helicopter, and rawinsonde temperature soundings. The diurnal structure of a mountain valley circulation pattern is studied with the use of two acoustic radars, one located in the valley and one on the downwind ridge. The monostatic acoustic radar was found to be sufficiently accurate in locating the heights of the inversions and the mixed layer depth to warrant use by industry even in complex terrain.

  12. Hybrid soft computing systems for electromyographic signals analysis: a review.

    PubMed

    Xie, Hong-Bo; Guo, Tianruo; Bai, Siwei; Dokos, Socrates

    2014-02-03

    Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis of EMG signals has been widely used to detect human movement intent, control various human-machine interfaces, diagnose neuromuscular diseases, and model neuromusculoskeletal system. With the advances of artificial intelligence and soft computing, many sophisticated techniques have been proposed for such purpose. Hybrid soft computing system (HSCS), the integration of these different techniques, aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis. This paper reviews and compares key combinations of neural network, support vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG analysis. Our suggestions on the possible future development of HSCS in EMG analysis are also given in terms of basic soft computing techniques, further combination of these techniques, and their other applications in EMG analysis.

  13. Hybrid soft computing systems for electromyographic signals analysis: a review

    PubMed Central

    2014-01-01

    Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis of EMG signals has been widely used to detect human movement intent, control various human-machine interfaces, diagnose neuromuscular diseases, and model neuromusculoskeletal system. With the advances of artificial intelligence and soft computing, many sophisticated techniques have been proposed for such purpose. Hybrid soft computing system (HSCS), the integration of these different techniques, aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis. This paper reviews and compares key combinations of neural network, support vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG analysis. Our suggestions on the possible future development of HSCS in EMG analysis are also given in terms of basic soft computing techniques, further combination of these techniques, and their other applications in EMG analysis. PMID:24490979

  14. Gear wear monitoring by modulation signal bispectrum based on motor current signal analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiliang; Gu, Fengshou; Mansaf, Haram; Wang, Tie; Ball, Andrew D.

    2017-09-01

    Gears are important mechanical components for power transmissions. Tooth wear is one of the most common failure modes, which can present throughout a gear's lifetime. It is significant to accurately monitor gear wear progression in order to take timely predictive maintenances. Motor current signature analysis (MCSA) is an effective and non-intrusive approach which is able to monitor faults from both electrical and mechanical systems. However, little research has been reported in monitoring the gear wear and estimating its severity based on MCSA. This paper presents a novel gear wear monitoring method through a modulation signal bispectrum based motor current signal analysis (MSB-MCSA). For a steady gear transmission, it is inevitable to exist load and speed oscillations due to various errors including wears. These oscillations can induce small modulations in the current signals of the driving motor. MSB is particularly effective in characterising such small modulation signals. Based on these understandings, the monitoring process was implemented based on the current signals from a run-to-failure test of an industrial two stages helical gearbox under a moderate accelerated fatigue process. At the initial operation of the test, MSB analysis results showed that the peak values at the bifrequencies of gear rotations and the power supply can be effective monitoring features for identifying faulty gears and wear severity as they exhibit agreeable changes with gear loads. A monotonically increasing trend established by these features allows a clear indication of the gear wear progression. The dismantle inspection at 477 h of operation, made when one of the monitored features is about 123% higher than its baseline, has found that there are severe scuffing wear marks on a number of tooth surfaces on the driving gear, showing that the gear endures a gradual wear process during its long test operation. Therefore, it is affirmed that the MSB-MSCA approach proposed is reliable

  15. Adaptive and Cognitive Ground and Wall Penetrating Radar System

    DTIC Science & Technology

    2015-04-24

    biosensing and active entangled photon radar. The concept behind the nonlinear biosensing is to the use the AC-GWPRS as a probe to measure the...the UVM campus that are willing to collaborate on this line of research. The active entangled photon radar concept centers around recent...Figure 44 Typical OFDM radar test results: a. Time domain OFDM signal with top trace original signal in time domain from Matlab , and bottom trace

  16. Agricultural and hydrological applications of radar

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1976-01-01

    Program objectives, covering a wide range of disciplines and activities in radar remote sensing, include radar systems development and analysis, data processing and display, and data interpretation in geology, geography and oceanography. Research was focused on the evaluation of radar remote sensing applications in hydrology and agriculture based on data acquired with the Microwave Active Spectrometer (MAS) system. The title, author(s) and abstract of each of the 62 technical reports generated under this contract are appended.

  17. Time-frequency analysis-based time-windowing algorithm for the inverse synthetic aperture radar imaging of ships

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Zhang, Xi; Sun, Weifeng; Dai, Yongshou; Wan, Yong

    2018-01-01

    An algorithm based on time-frequency analysis is proposed to select an imaging time window for the inverse synthetic aperture radar imaging of ships. An appropriate range bin is selected to perform the time-frequency analysis after radial motion compensation. The selected range bin is that with the maximum mean amplitude among the range bins whose echoes are confirmed to be contributed by a dominant scatter. The criterion for judging whether the echoes of a range bin are contributed by a dominant scatter is key to the proposed algorithm and is therefore described in detail. When the first range bin that satisfies the judgment criterion is found, a sequence composed of the frequencies that have the largest amplitudes in every moment's time-frequency spectrum corresponding to this range bin is employed to calculate the length and the center moment of the optimal imaging time window. Experiments performed with simulation data and real data show the effectiveness of the proposed algorithm, and comparisons between the proposed algorithm and the image contrast-based algorithm (ICBA) are provided. Similar image contrast and lower entropy are acquired using the proposed algorithm as compared with those values when using the ICBA.

  18. Venus: Dating Post-Regional-Plains Formations Through Analysis of Preservation of Crater-Associated Radar-Dark Deposits

    NASA Technical Reports Server (NTRS)

    Basilevsky, A. T.; Head, J. W., III

    2002-01-01

    The degree of preservation of crater-associated radar-dark deposits is used to estimate the age of the crater and adjacent deposits. Additional information is contained in the original extended abstract.

  19. Sensitivity Analysis of Sampling Number on Quality of Polarmetric Measurements from S-band Dual-Polarization Radar

    NASA Astrophysics Data System (ADS)

    KIM, H.; Suk, M. K.; Jung, S. A.; Park, J. S.; Ko, J. S.

    2016-12-01

    The data quality of dual-polarimetric weather radar is subject to radar scanning strategies such as pulse length, pulse repetition frequency (PRF), antenna scan speed, and sampling number. In terms of sampling number, the quality of radar moment data increases with the increasing of sampling number at the given PRF and pulse length while the feasible number of elevation angles decreases for the given time or the time required for radar volume scan increases with the relatively high sampling number. For operational weather radar, the sampling number is subjectively determined by the proficient radar operator. The determination of suitable sampling number is still challengeable for operational dual-polarimetric weather radar.In this study, we analyzed the sensitivity of polarimetric measurements to sampling number based on special radar experiment for rainfall and snowfall events using S-band dual-polarimetric radar (YIT) at Yong-In test bed. For this experiment, YIT radar transmitted a simultaneously polarized beam in horizontal and vertical with pulse length of 1.0 μs and single PRF of 600Hz. The beam width and gate size were 1.0° and 250m, respectively. The volume scan was composed of three PPI scans with three sampling numbers (antenna scan speed) of 40 (15°s-1), 60(10°s-1), and 85(7°s-1) at same elevation angle (=0.2°). We first investigated the spatial fluctuation of the polarimetric measurements according to three sampling numbers using radial texture. As the sampling number increases, the radial fluctuations of polarimetric measurements decrease. Second, we also examined the sensitivity to fuzzy logic based quality control algorithm for dual-polarimetric radar (Ye et al. 2015). The probability density functions (PDFs) of fuzzy logic feature parameters between ground clutter and meteorological echo area were compared. For overlapping area in both PDFs between ground clutter and meteorological echo increases with decreasing the sampling number. As the

  20. The Influence Analysis of the Rainfall Meteorological Conditions on the Operation of the Balloon Borne Radar in Plateau

    NASA Astrophysics Data System (ADS)

    Li, Qiong; Geng, Fangzhi

    2018-03-01

    Based on the characteristics of complex terrain and different seasons’ weather in Qinghai Tibet Plateau, through statistic the daily rainfall that from 2002 to 2012, nearly 11 years, by Bomi meteorological station, Bomi area rainfall forecast model is established, and which can provide the basis forecasting for dangerous weather warning system on the balloon borne radar in the next step, to protect the balloon borne radar equipment’s safety work and combat effectiveness.

  1. Medical radar considerations for detecting and monitoring Crohn's disease

    NASA Astrophysics Data System (ADS)

    Smith, Sonny; Narayanan, Ram M.; Messaris, Evangelos

    2014-05-01

    Crohn's disease is a condition that causes inflammation and associated complications along any section of the digestive tract. Over the years, numerous radiological and endoscopic methods as well as the use of ultrasound have been developed to examine and diagnose inflammatory bowel disorders such as Crohn's disease. While such techniques have much merit, an alternative medical solution that is safe, non-invasive, and inexpensive is proposed in this paper. Reflections from electromagnetic signals transmitted by an ultra-wide band (UWB) radar allow for not only range (or extent) information but also spectral analysis of a given target of interest. Moreover, the radar cross-section (RCS) of an object measures how detectable the electromagnetic return energy of such an object is to the radar. In the preliminary phase of research, we investigate how disparities in the dielectric properties of diseased versus non-diseased portions of the intestines can aid in the detection of Crohn's disease. RCS analysis from finite-difference time-domain (FDTD) method simulations using a simple 3D model of the intestines are presented. The ultimate goal of our research is to design a UWB radar system using a suitable waveform to detect and monitor Crohn's disease.

  2. Systematic analysis of signaling pathways using an integrative environment.

    PubMed

    Visvanathan, Mahesh; Breit, Marc; Pfeifer, Bernhard; Baumgartner, Christian; Modre-Osprian, Robert; Tilg, Bernhard

    2007-01-01

    Understanding the biological processes of signaling pathways as a whole system requires an integrative software environment that has comprehensive capabilities. The environment should include tools for pathway design, visualization, simulation and a knowledge base concerning signaling pathways as one. In this paper we introduce a new integrative environment for the systematic analysis of signaling pathways. This system includes environments for pathway design, visualization, simulation and a knowledge base that combines biological and modeling information concerning signaling pathways that provides the basic understanding of the biological system, its structure and functioning. The system is designed with a client-server architecture. It contains a pathway designing environment and a simulation environment as upper layers with a relational knowledge base as the underlying layer. The TNFa-mediated NF-kB signal trans-duction pathway model was designed and tested using our integrative framework. It was also useful to define the structure of the knowledge base. Sensitivity analysis of this specific pathway was performed providing simulation data. Then the model was extended showing promising initial results. The proposed system offers a holistic view of pathways containing biological and modeling data. It will help us to perform biological interpretation of the simulation results and thus contribute to a better understanding of the biological system for drug identification.

  3. Event Recognition for Contactless Activity Monitoring Using Phase-Modulated Continuous Wave Radar.

    PubMed

    Forouzanfar, Mohamad; Mabrouk, Mohamed; Rajan, Sreeraman; Bolic, Miodrag; Dajani, Hilmi R; Groza, Voicu Z

    2017-02-01

    The use of remote sensing technologies such as radar is gaining popularity as a technique for contactless detection of physiological signals and analysis of human motion. This paper presents a methodology for classifying different events in a collection of phase modulated continuous wave radar returns. The primary application of interest is to monitor inmates where the presence of human vital signs amidst different, interferences needs to be identified. A comprehensive set of features is derived through time and frequency domain analyses of the radar returns. The Bhattacharyya distance is used to preselect the features with highest class separability as the possible candidate features for use in the classification process. The uncorrelated linear discriminant analysis is performed to decorrelate, denoise, and reduce the dimension of the candidate feature set. Linear and quadratic Bayesian classifiers are designed to distinguish breathing, different human motions, and nonhuman motions. The performance of these classifiers is evaluated on a pilot dataset of radar returns that contained different events including breathing, stopped breathing, simple human motions, and movement of fan and water. Our proposed pattern classification system achieved accuracies of up to 93% in stationary subject detection, 90% in stop-breathing detection, and 86% in interference detection. Our proposed radar pattern recognition system was able to accurately distinguish the predefined events amidst interferences. Besides inmate monitoring and suicide attempt detection, this paper can be extended to other radar applications such as home-based monitoring of elderly people, apnea detection, and home occupancy detection.

  4. SMAP RADAR Calibration and Validation

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the

  5. Tangential velocity measurement using interferometric MTI radar

    DOEpatents

    Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.

    2006-01-03

    Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.

  6. The Role of Interpretation and Diagnosis in Signal Processing

    DTIC Science & Technology

    1988-01-01

    122b. TELEPHONE (Incude Area Code) 2cOFIESYMBOL Elisabeth Colford - RLE Contract Reports I(617)258-5871I DO Form 1473, JUN 84 Previous editions ame...6] S. Lee, E. Milios, R. Greiner , and J. Rossiter. Signal ab- stractions in the machine analysis of radar signals for ice profiling. In International

  7. Space Radar Image of Long Island Optical/Radar

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This pair of images of the Long Island, New York region is a comparison of an optical photograph (top) and a radar image (bottom), both taken in darkness in April 1994. The photograph at the top was taken by the Endeavour astronauts at about 3 a.m. Eastern time on April 20, 1994. The image at the bottom was acquired at about the same time four days earlier on April 16,1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) system aboard the space shuttle Endeavour. Both images show an area approximately 100 kilometers by 40 kilometers (62 miles by 25 miles) that is centered at 40.7 degrees North latitude and 73.5 degrees West longitude. North is toward the upper right. The optical image is dominated by city lights, which are particularly bright in the densely developed urban areas of New York City located on the left half of the photo. The brightest white zones appear on the island of Manhattan in the left center, and Central Park can be seen as a darker area in the middle of Manhattan. To the northeast (right) of the city, suburban Long Island appears as a less densely illuminated area, with the brightest zones occurring along major transportation and development corridors. Since radar is an active sensing system that provides its own illumination, the radar image shows a great amount of surface detail, despite the night-time acquisition. The colors in the radar image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In this image, the water surface - the Atlantic Ocean along the bottom edge and Long Island Sound shown at the top edge - appears red because small waves at the surface strongly reflect the horizontally transmitted and received L-band radar signal. Networks of highways and railroad lines are clearly

  8. A portable CW/FM-CW Doppler radar for local investigation of severe storms

    NASA Astrophysics Data System (ADS)

    Unruh, Wesley P.; Wolf, Michael A.; Bluestein, Howard B.

    During the 1987 spring storm season we used a portable 1-W X-band CW Doppler radar to probe a tornado, a funnel cloud, and a wall cloud in Oklahoma and Texas. This same device was used during the spring storm season in 1988 to probe a wall cloud in Texas. The radar was battery powered and highly portable, and thus convenient to deploy from our chase vehicle. The device separated the receding and approaching Doppler velocities in real time and, while the radar was being used, it allowed convenient stereo data recording for later spectral analysis and operator monitoring of the Doppler signals in stereo headphones. This aural monitoring, coupled with the ease with which an operator can be trained to recognize the nature of the signals heard, made the radar very easy to operate reliably and significantly enhanced the quality of the data being recorded. At the end of the 1988 spring season, the radar was modified to include FM-CW ranging and processing. These modifications were based on a unique combination of video recording and FM chirp generation, which incorporated a video camera and recorder as an integral part of the radar. After modification, the radar retains its convenient portability and the operational advantage of being able to listen to the Doppler signals directly. The original mechanical design was unaffected by these additions. During the summer of 1988, this modified device was used at the Langmuir Laboratory at Socorro, New Mexico in an attempt to measure vertical convective flow in a thunderstorm.

  9. Architecture for a 1-GHz Digital RADAR

    NASA Technical Reports Server (NTRS)

    Mallik, Udayan

    2011-01-01

    An architecture for a Direct RF-digitization Type Digital Mode RADAR was developed at GSFC in 2008. Two variations of a basic architecture were developed for use on RADAR imaging missions using aircraft and spacecraft. Both systems can operate with a pulse repetition rate up to 10 MHz with 8 received RF samples per pulse repetition interval, or at up to 19 kHz with 4K received RF samples per pulse repetition interval. The first design describes a computer architecture for a Continuous Mode RADAR transceiver with a real-time signal processing and display architecture. The architecture can operate at a high pulse repetition rate without interruption for an infinite amount of time. The second design describes a smaller and less costly burst mode RADAR that can transceive high pulse repetition rate RF signals without interruption for up to 37 seconds. The burst-mode RADAR was designed to operate on an off-line signal processing paradigm. The temporal distribution of RF samples acquired and reported to the RADAR processor remains uniform and free of distortion in both proposed architectures. The majority of the RADAR's electronics is implemented in digital CMOS (complementary metal oxide semiconductor), and analog circuits are restricted to signal amplification operations and analog to digital conversion. An implementation of the proposed systems will create a 1-GHz, Direct RF-digitization Type, L-Band Digital RADAR--the highest band achievable for Nyquist Rate, Direct RF-digitization Systems that do not implement an electronic IF downsample stage (after the receiver signal amplification stage), using commercially available off-the-shelf integrated circuits.

  10. Time-series analysis of surface deformation at Brady Hot Springs geothermal field (Nevada) using interferometric synthetic aperture radar

    SciTech Connect

    Ali, S. T.; Akerley, J.; Baluyut, E. C.

    We analyze interferometric synthetic aperture radar (InSAR) data acquired between 2004 and 2014, by the ERS-2, Envisat, ALOS and TerraSAR-X/TanDEM-X satellite missions to measure and characterize time-dependent deformation at the Brady Hot Springs geothermal field in western Nevada due to extraction of fluids. The long axis of the ~4 km by ~1.5 km elliptical subsiding area coincides with the strike of the dominant normal fault system at Brady. Within this bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of ~1 km. This signature occurs consistently in all of the well-correlated interferometric pairsmore » spanning several months. Results from inverse modeling suggest that the deformation is a result of volumetric contraction in shallow units, no deeper than 600 m, likely associated with damaged regions where fault segments mechanically interact. Such damaged zones are expected to extend downward along steeply dipping fault planes, providing a high permeability conduit to the production wells. Using time series analysis, we test the hypothesis that geothermal production drives the observed deformation. We find a good correlation between the observed deformation rate and the rate of production in the shallow wells. We also explore mechanisms that could potentially cause the observed deformation, including thermal contraction of rock, decline in pore pressure and dissolution of minerals over time.« less

  11. Multistatic synthetic aperture radar image formation.

    PubMed

    Krishnan, V; Swoboda, J; Yarman, C E; Yazici, B

    2010-05-01

    In this paper, we consider a multistatic synthetic aperture radar (SAR) imaging scenario where a swarm of airborne antennas, some of which are transmitting, receiving or both, are traversing arbitrary flight trajectories and transmitting arbitrary waveforms without any form of multiplexing. The received signal at each receiving antenna may be interfered by the scattered signal due to multiple transmitters and additive thermal noise at the receiver. In this scenario, standard bistatic SAR image reconstruction algorithms result in artifacts in reconstructed images due to these interferences. In this paper, we use microlocal analysis in a statistical setting to develop a filtered-backprojection (FBP) type analytic image formation method that suppresses artifacts due to interference while preserving the location and orientation of edges of the scene in the reconstructed image. Our FBP-type algorithm exploits the second-order statistics of the target and noise to suppress the artifacts due to interference in a mean-square sense. We present numerical simulations to demonstrate the performance of our multistatic SAR image formation algorithm with the FBP-type bistatic SAR image reconstruction algorithm. While we mainly focus on radar applications, our image formation method is also applicable to other problems arising in fields such as acoustic, geophysical and medical imaging.

  12. Analysis of a dynamic model of guard cell signaling reveals the stability of signal propagation

    NASA Astrophysics Data System (ADS)

    Gan, Xiao; Albert, RéKa

    Analyzing the long-term behaviors (attractors) of dynamic models of biological systems can provide valuable insight into biological phenotypes and their stability. We identified the long-term behaviors of a multi-level, 70-node discrete dynamic model of the stomatal opening process in plants. We reduce the model's huge state space by reducing unregulated nodes and simple mediator nodes, and by simplifying the regulatory functions of selected nodes while keeping the model consistent with experimental observations. We perform attractor analysis on the resulting 32-node reduced model by two methods: 1. converting it into a Boolean model, then applying two attractor-finding algorithms; 2. theoretical analysis of the regulatory functions. We conclude that all nodes except two in the reduced model have a single attractor; and only two nodes can admit oscillations. The multistability or oscillations do not affect the stomatal opening level in any situation. This conclusion applies to the original model as well in all the biologically meaningful cases. We further demonstrate the robustness of signal propagation by showing that a large percentage of single-node knockouts does not affect the stomatal opening level. Thus, we conclude that the complex structure of this signal transduction network provides multiple information propagation pathways while not allowing extensive multistability or oscillations, resulting in robust signal propagation. Our innovative combination of methods offers a promising way to analyze multi-level models.

  13. Range Sidelobe Suppression Using Complementary Sets in Distributed Multistatic Radar Networks

    PubMed Central

    Wang, Xuezhi; Song, Yongping; Huang, Xiaotao; Moran, Bill

    2017-01-01

    We propose an alternative waveform scheme built on mutually-orthogonal complementary sets for a distributed multistatic radar. Our analysis and simulation show a reduced frequency band requirement for signal separation between antennas with centralized signal processing using the same carrier frequency. While the scheme can tolerate fluctuations of carrier frequencies and phases, range sidelobes arise when carrier frequencies between antennas are significantly different. PMID:29295566

  14. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    PubMed

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.

  15. Informed spectral analysis: audio signal parameter estimation using side information

    NASA Astrophysics Data System (ADS)

    Fourer, Dominique; Marchand, Sylvain

    2013-12-01

    Parametric models are of great interest for representing and manipulating sounds. However, the quality of the resulting signals depends on the precision of the parameters. When the signals are available, these parameters can be estimated, but the presence of noise decreases the resulting precision of the estimation. Furthermore, the Cramér-Rao bound shows the minimal error reachable with the best estimator, which can be insufficient for demanding applications. These limitations can be overcome by using the coding approach which consists in directly transmitting the parameters with the best precision using the minimal bitrate. However, this approach does not take advantage of the information provided by the estimation from the signal and may require a larger bitrate and a loss of compatibility with existing file formats. The purpose of this article is to propose a compromised approach, called the 'informed approach,' which combines analysis with (coded) side information in order to increase the precision of parameter estimation using a lower bitrate than pure coding approaches, the audio signal being known. Thus, the analysis problem is presented in a coder/decoder configuration where the side information is computed and inaudibly embedded into the mixture signal at the coder. At the decoder, the extra information is extracted and is used to assist the analysis process. This study proposes applying this approach to audio spectral analysis using sinusoidal modeling which is a well-known model with practical applications and where theoretical bounds have been calculated. This work aims at uncovering new approaches for audio quality-based applications. It provides a solution for challenging problems like active listening of music, source separation, and realistic sound transformations.

  16. Architectures for Rainfall Property Estimation From Polarimetric Radar

    NASA Astrophysics Data System (ADS)

    Collis, S. M.; Giangrande, S. E.; Helmus, J.; Troemel, S.

    2014-12-01

    Radars that transmit and receive signals in polarizations aligned both horizontal and vertical to the horizon collect a number of measurements. The relation both between these measurements and between measurements and desired microphysical quantities (such as rainfall rate) is complicated due to a number of scattering mechanisms. The result is that there ends up being an intractable number of often incompatible techniques for extracting geophysical insight. This presentation will discuss methods developed by the Atmospheric Measurement Climate (ARM) Research Facility to streamline the creation of application chains for retrieving rainfall properties for the purposes of fine scale model evaluation. By using a Common Data Model (CDM) approach and working in the popular open source Python scientific environment analysis techniques such as Linear Programming (LP) can be bought to bear on the task of retrieving insight from radar signals. This presentation will outline how we have used these techniques to detangle polarimetric phase signals, estimate a three-dimensional precipitation field and then objectively compare to cloud resolving model derived rainfall fields from the NASA/DoE Mid-Latitude Continental Convective Clouds Experiment (MC3E). All techniques show will be available, open source, in the Python-ARM Radar Toolkit (Py-ART).

  17. Comparison of sigma(o) obtained from the conventional definition with sigma(o) appearing in the radar equation for randomly rough surfaces

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1981-01-01

    A comparison is made of the radar cross section of rough surface calculated in one case from the conventional definition and obtained in the second case directly from the radar equation. The validity of the conventional definition representing the cross section appearing in the radar equation is determined. The analysis is executed in the special case of perfectly conducting, randomly corrugated surfaces in the physical optics limit. The radar equation is obtained by solving for the radiation scattered from an arbitrary source back to a colocated antenna. The signal out of the receiving antenna is computed from this solution and the result put into a form recognizeable as the radar equation. The conventional definition is obtained by solving a similar problem but for backscatter from an incident planewave. It is shown that these tow forms for sigma are the same if the observer is far enough from the surface.

  18. Correlation analysis of respiratory signals by using parallel coordinate plots.

    PubMed

    Saatci, Esra

    2018-01-01

    The understanding of the bonds and the relationships between the respiratory signals, i.e. the airflow, the mouth pressure, the relative temperature and the relative humidity during breathing may provide the improvement on the measurement methods of respiratory mechanics and sensor designs or the exploration of the several possible applications in the analysis of respiratory disorders. Therefore, the main objective of this study was to propose a new combination of methods in order to determine the relationship between respiratory signals as a multidimensional data. In order to reveal the coupling between the processes two very different methods were used: the well-known statistical correlation analysis (i.e. Pearson's correlation and cross-correlation coefficient) and parallel coordinate plots (PCPs). Curve bundling with the number intersections for the correlation analysis, Least Mean Square Time Delay Estimator (LMS-TDE) for the point delay detection and visual metrics for the recognition of the visual structures were proposed and utilized in PCP. The number of intersections was increased when the correlation coefficient changed from high positive to high negative correlation between the respiratory signals, especially if whole breath was processed. LMS-TDE coefficients plotted in PCP indicated well-matched point delay results to the findings in the correlation analysis. Visual inspection of PCB by visual metrics showed range, dispersions, entropy comparisons and linear and sinusoidal-like relationships between the respiratory signals. It is demonstrated that the basic correlation analysis together with the parallel coordinate plots perceptually motivates the visual metrics in the display and thus can be considered as an aid to the user analysis by providing meaningful views of the data. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Analysis and prediction of leucine-rich nuclear export signals.

    PubMed

    la Cour, Tanja; Kiemer, Lars; Mølgaard, Anne; Gupta, Ramneek; Skriver, Karen; Brunak, Søren

    2004-06-01

    We present a thorough analysis of nuclear export signals and a prediction server, which we have made publicly available. The machine learning prediction method is a significant improvement over the generally used consensus patterns. Nuclear export signals (NESs) are extremely important regulators of the subcellular location of proteins. This regulation has an impact on transcription and other nuclear processes, which are fundamental to the viability of the cell. NESs are studied in relation to cancer, the cell cycle, cell differentiation and other important aspects of molecular biology. Our conclusion from this analysis is that the most important properties of NESs are accessibility and flexibility allowing relevant proteins to interact with the signal. Furthermore, we show that not only the known hydrophobic residues are important in defining a nuclear export signals. We employ both neural networks and hidden Markov models in the prediction algorithm and verify the method on the most recently discovered NESs. The NES predictor (NetNES) is made available for general use at http://www.cbs.dtu.dk/.

  20. Determination of the Sources of Radar Scattering

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Zoughi, R.

    1984-01-01

    Fine-resolution radar backscattering measurements were proposed to determine the backscattering sources in various vegetation canopies and surface targets. The results were then used to improve the existing theoretical models of terrain scattering, and also to enhance understanding of the radar signal observed by an imaging radar over a vegetated area. Various experiments were performed on targets such as corn, milo, soybeans, grass, asphalt pavements, soil and concrete walkways. Due to the lack of available references on measurements of this type, the obtained results will be used primarily as a foundation or future experiments. The constituent backscattering characteristics of the vegetation canopies was also examined.

  1. Detecting and mitigating wind turbine clutter for airspace radar systems.

    PubMed

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  2. Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems

    PubMed Central

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  3. The proposed flatland radar

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Gage, K. S.; Vanzandt, T. E.; Nastrom, G. D.

    1986-01-01

    A flexible very high frequency (VHF) stratosphere-troposphere (ST) radar configured for meteorological research is to be constructed near Urbana, Illinois. Measurement of small vertical velocities associated with synoptic-scale meteorology can be performed. A large Doppler microwave radar (CHILL) is located a few km from the site of the proposed ST radar. Since the microwave radar can measure the location and velocity of hydrometeors and the VHF ST radar can measure clear (or cloudy) air velocities, simultaneous observations by these two radars of stratiform or convective weather systems would provide valuable meteorological information.

  4. Analysis of ground penetrating radar data from the tunnel beneath the Temple of the Feathered Serpent in Teotihuacan, Mexico, using new multi-cross algorithms

    NASA Astrophysics Data System (ADS)

    López-Rodríguez, Flor; Velasco-Herrera, Víctor M.; Álvarez-Béjar, Román; Gómez-Chávez, Sergio; Gazzola, Julie

    2016-11-01

    The ground penetrating radar (GPR) -a non-invasive method based on the emission of electromagnetic waves and the reception of their reflections at the dielectric constant and electrical conductivity discontinuities of the materials surveyed- may be applied instead of the destructive and invasive methods used to find water in celestial bodies. As multichannel equipment is increasingly used, we developed two algorithms for multivariable wavelet analysis of GPR signals -multi-cross wavelet (MCW) and Fourier multi-cross function (FMC)- and applied them to analyze raw GPR traces of archeological subsurface strata. The traces were from the tunnel located beneath the Temple of the Feathered Serpent (The Citadel, Teotihuacan, Mexico), believed to represent the underworld, an outstanding region of the Mesoamerican mythology, home of telluric forces emanating from deities, where life was constantly created and recreated. GPR profiles obtained with 100 MHz antennas suggested the tunnel is 12-14 m deep and 100-120 m long with three chambers at its end, interpretations that were confirmed by excavations in 2014. Archeologists believe that due to the tunnel's sacredness and importance, one of the chambers may be the tomb of a ruler of the ancient city. The MCW and FMC algorithms determined the periods of subsurface strata of the tunnel. GPR traces inside-and-outside the tunnel/chamber, outside the tunnel/chamber and inside the tunnel/chamber analyzed with the MCW and filtered FMC algorithms determined the periods of the tunnel and chamber fillings, clay and matrix (limestone-clay compound). The tunnel filling period obtained by MCW analysis (14.37 ns) reflects the mixed limestone-clay compound of this stratum since its value is close to that of the period of the matrix (15.22 ns); periods of the chamber filling (11.40 ± 0.40 ns) and the matrix (11.40 ± 1.00 ns) were almost identical. FMC analysis of the tunnel obtained a period (5.08 ± 1.08 ns) close to that of the chamber (4

  5. Monitoring by holographic radar systems

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Crocco, Lorenzo; Affinito, Antonio; Gennarelli, Gianluca; Soldovieri, Francesco

    2013-04-01

    Nowadays, radar technology represents a significant opportunity to collect useful information for the monitoring and conservation of critical infrastructures. Radar systems exploit the non-invasive interaction between the matter and the electromagnetic waves at microwave frequencies. Such an interaction allows obtaining images of the region under test from which one can infer the presence of potential anomalies such as deformations, cracks, water infiltrations, etc. This information turns out to be of primary importance in practical scenarios where the probed structure is in a poor state of preservation and renovation works must be planned. In this framework, the aim of this contribution is to describe the potentialities of the holographic radar Rascan 4/4000, a holographic radar developed by Remote Sensing Laboratory of Bauman Moscow State Technical University, as a non-destructive diagnostic tool capable to provide, in real-time, high resolution subsurface images of the sounded structure [1]. This radar provides holograms of hidden anomalies from the amplitude of the interference signal arising between the backscattered signal and a reference signal. The performance of the holographic radar is appraised by means of several experiments. Preliminary tests concerning the imaging below the floor and inside wood structures are carried out in controlled conditions at the Electromagnetic Diagnostic Laboratory of IREA-CNR. After, with reference to bridge monitoring for security aim, the results of a measurement campaign performed on the Musmeci bridge are presented [2]. Acknowledgments This research has been performed in the framework of the "Active and Passive Microwaves for Security and Subsurface imaging (AMISS)" EU 7th Framework Marie Curie Actions IRSES project (PIRSES-GA-2010-269157). REFERENCES [1] S. Ivashov, V. Razevig, I. Vasilyev, A. Zhuravlev, T. Bechtel, L. Capineri, The holographic principle in subsurface radar technology, International Symposium to

  6. Studies on Radar and Non-radar Sensor Networks

    DTIC Science & Technology

    2006-06-15

    the following sections. ubiquitous and persistent sensor sources such as "* Organic sensors (e.g., radar, electro- optic and infrared, III. SITUATION...repetition frequency (PRF). Under these circumstances, target RSN, but in noncoherent systems as well. The latter scenario is more challenging as...signal propagation models. Section III and IV analyzes coherent andseletio an Ga ssin u equl me n trge mo els In [3] noncoherent detection

  7. Detection of motion and posture change using an IR-UWB radar.

    PubMed

    Van Nguyen; Javaid, Abdul Q; Weitnauer, Mary A

    2016-08-01

    Impulse radio ultra-wide band (IR-UWB) radar has recently emerged as a promising candidate for non-contact monitoring of respiration and heart rate. Different studies have reported various radar based algorithms for estimation of these physiological parameters. The radar can be placed under a subject's mattress as he lays stationary on his back or it can be attached to the ceiling directly above the subject's bed. However, advertent or inadvertent movement on part of the subject and different postures can affect the radar returned signal and also the accuracy of the estimated parameters from it. The detection and analysis of these postural changes can not only lead to improvement in estimation algorithms but also towards prevention of bed sores and ulcers in patients who require periodic posture changes. In this paper, we present an algorithm that detects and quantifies different types of motion events using an under-the-mattress IR-UWB radar. The algorithm also indicates a change in posture after a macro-movement event. Based on the findings of this paper, we anticipate that IR-UWB radar can be used for extracting posture related information in non-clinical enviroments for patients who are bed-ridden.

  8. Motion of Major Ice Shelf Fronts in Antarctica from Slant Range Analysis of Radar Altimeter Data, 1978 - 1998

    NASA Technical Reports Server (NTRS)

    Zwally, H. J.; Beckley, M. A.; Brenner, A. C.; Giovinetto, M. B.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Slant range analysis of radar altimeter data from the Seasat, Geosat, ERS-1 and ERS-2 databases are used to determine barrier location at particular times, and estimate barrier motion (km/yr) for major Antarctic ice shelves. The barrier locations, which are the seaward edges or fronts of floating ice shelves, advance with time as the ice flows from the grounded ice sheets and retreat whenever icebergs calve from the fronts. The analysis covers various multiyear intervals from 1978 to 1998, supplemented by barrier location maps produced elsewhere for 1977 and 1986. Barrier motion is estimated as the ratio between mean annual ice shelf area change for a particular interval, and the length of the discharge periphery. This value is positive if the barrier location progresses seaward, or negative if the barrier location regresses (break-back). Either positive or negative values are lower limit estimates because the method does not detect relatively small area changes due to calving or surge events. The findings are discussed in the context of the three ice shelves that lie in large embayments (the Filchner-Ronne, Amery, and Ross), and marginal ice shelves characterized by relatively short distances between main segments of grounding line and barrier (those in the Queen Maud Land sector between 10.1 deg. W and 32.5 deg. E, and the West and Shackleton ice shelves). All the ice shelves included in the study account for approximately three-fourths of the total ice shelf area of Antarctica, and discharge approximately two-thirds of the total grounded ice area.

  9. A transceiver module of the Mu radar

    NASA Technical Reports Server (NTRS)

    Kato, S.; Ogawa, T.; Tsuda, T.; Sato, T.; Kimura, I.; Fukao, S.

    1983-01-01

    The transceiver (TR) module of a middle and upper atmospheric radar is described. The TR module used in the radar is mainly composed of two units: a mixer (MIX unit) and a power amplifier (PA unit). The former generates the RF wave for transmission and converts the received echo to the IF signal. A 41.5-MHz local signal fed to mixers passes through a digitally controlled 8-bit phase shifter which can change its value up to 1,000 times in a second, so that the MU radar has the ability to steer its antenna direction quickly and flexibly. The MIX unit also contains a buffer amplifier and a gate for the transmitting signal and preamplifier for the received one whose noise figure is less than 5 dB. The PA unit amplifies the RF signal supplied from the MIX unit up to 63.7 dBm (2350 W), and feeds it to the crossed Yagi antenna.

  10. Comparison of Mesospheric Winds From a High-Altitude Meteorological Analysis System and Meteor Radar Observations During the Boreal Winters of 2009-2010 and 2012-2013

    NASA Technical Reports Server (NTRS)

    McCormack, J.; Hoppel, K.; Kuhl, D.; de Wit, R.; Stober, G.; Espy, P.; Baker, N.; Brown, P.; Fritts, D.; Jacobi, C.; hide

    2016-01-01

    We present a study of horizontal winds in the mesosphere and lower thermosphere (MLT) during the boreal winters of 2009-2010 and 2012-2013 produced with a new high-altitude numerical weather prediction (NWP) system. This system is based on a modified version of the Navy Global Environmental Model (NAVGEM) with an extended vertical domain up to approximately 116 km altitude coupled with a hybrid four-dimensional variational (4DVAR) data assimilation system that assimilates both standard operational meteorological observations in the troposphere and satellite-based observations of temperature, ozone and water vapor in the stratosphere and mesosphere. NAVGEM-based MLT analyzed winds are validated using independent meteor radar wind observations from nine different sites ranging from 69 deg N-67 deg S latitude. Time-averaged NAVGEM zonal and meridional wind profiles between 75 and 95 km altitude show good qualitative and quantitative agreement with corresponding meteor radar wind profiles. Wavelet analysis finds that the 3-hourly NAVGEM and 1-hourly radar winds both exhibit semi-diurnal, diurnal, and quasi-diurnal variations whose vertical profiles of amplitude and phase are also in good agreement. Wavelet analysis also reveals common time-frequency behavior in both NAVGEM and radar winds throughout the Northern extra tropics around the times of major stratospheric sudden warmings (SSWs) in January 2010 and January 2013, with a reduction in semi-diurnal amplitudes beginning around the time of a mesospheric wind reversal at 60 deg N that precedes the SSW, followed by an amplification of semi-diurnal amplitudes that peaks 10-14 days following the onset of the mesospheric wind reversal. The initial results presented in this study demonstrate that the wind analyses produced by the high altitude NAVGEM system accurately capture key features in the observed MLT winds during these two boreal winter periods.

  11. A semi-automatic method for analysis of landscape elements using Shuttle Radar Topography Mission and Landsat ETM+ data

    NASA Astrophysics Data System (ADS)

    Ehsani, Amir Houshang; Quiel, Friedrich

    2009-02-01

    In this paper, we demonstrate artificial neural networks—self-organizing map (SOM)—as a semi-automatic method for extraction and analysis of landscape elements in the man and biosphere reserve "Eastern Carpathians". The Shuttle Radar Topography Mission (SRTM) collected data to produce generally available digital elevation models (DEM). Together with Landsat Thematic Mapper data, this provides a unique, consistent and nearly worldwide data set. To integrate the DEM with Landsat data, it was re-projected from geographic coordinates to UTM with 28.5 m spatial resolution using cubic convolution interpolation. To provide quantitative morphometric parameters, first-order (slope) and second-order derivatives of the DEM—minimum curvature, maximum curvature and cross-sectional curvature—were calculated by fitting a bivariate quadratic surface with a window size of 9×9 pixels. These surface curvatures are strongly related to landform features and geomorphological processes. Four morphometric parameters and seven Landsat-enhanced thematic mapper (ETM+) bands were used as input for the SOM algorithm. Once the network weights have been randomly initialized, different learning parameter sets, e.g. initial radius, final radius and number of iterations, were investigated. An optimal SOM with 20 classes using 1000 iterations and a final neighborhood radius of 0.05 provided a low average quantization error of 0.3394 and was used for further analysis. The effect of randomization of initial weights for optimal SOM was also studied. Feature space analysis, three-dimensional inspection and auxiliary data facilitated the assignment of semantic meaning to the output classes in terms of landform, based on morphometric analysis, and land use, based on spectral properties. Results were displayed as thematic map of landscape elements according to form, cover and slope. Spectral and morphometric signature analysis with corresponding zoom samples superimposed by contour lines were

  12. Signal Detection Analysis of Computer Enhanced Group Decision Making Strategies

    DTIC Science & Technology

    2007-11-01

    group decision making. 20 References American Psychological Association (2002). Ethical principles of psychologists and code of conduct. American... Creelman , C. D. (2005). Detection theory: A user’s guide (2nd ed.). Mahwah, NJ: Lawrence Erlbaum. Sorkin, R. D. (1998). Group performance depends on...the majority rule. Psychological Science, 9, 456-463. Sorkin, R. D. (2001). Signal-detection analysis of group decision making. Psychological

  13. On the unified estimation of turbulence eddy dissipation rate using Doppler cloud radars and lidars: Radar and Lidar Turbulence Estimation

    DOE PAGES

    Borque, Paloma; Luke, Edward; Kollias, Pavlos

    2016-05-27

    Coincident profiling observations from Doppler lidars and radars are used to estimate the turbulence energy dissipation rate (ε) using three different data sources: (i) Doppler radar velocity (DRV), (ii) Doppler lidar velocity (DLV), and (iii) Doppler radar spectrum width (DRW) measurements. Likewise, the agreement between the derived ε estimates is examined at the cloud base height of stratiform warm clouds. Collocated ε estimates based on power spectra analysis of DRV and DLV measurements show good agreement (correlation coefficient of 0.86 and 0.78 for both cases analyzed here) during both drizzling and nondrizzling conditions. This suggests that unified (below and abovemore » cloud base) time-height estimates of ε in cloud-topped boundary layer conditions can be produced. This also suggests that eddy dissipation rate can be estimated throughout the cloud layer without the constraint that clouds need to be nonprecipitating. Eddy dissipation rate estimates based on DRW measurements compare well with the estimates based on Doppler velocity but their performance deteriorates as precipitation size particles are introduced in the radar volume and broaden the DRW values. And, based on this finding, a methodology to estimate the Doppler spectra broadening due to the spread of the drop size distribution is presented. Furthermore, the uncertainties in ε introduced by signal-to-noise conditions, the estimation of the horizontal wind, the selection of the averaging time window, and the presence of precipitation are discussed in detail.« less

  14. On the unified estimation of turbulence eddy dissipation rate using Doppler cloud radars and lidars: Radar and Lidar Turbulence Estimation

    SciTech Connect

    Borque, Paloma; Luke, Edward; Kollias, Pavlos

    Coincident profiling observations from Doppler lidars and radars are used to estimate the turbulence energy dissipation rate (ε) using three different data sources: (i) Doppler radar velocity (DRV), (ii) Doppler lidar velocity (DLV), and (iii) Doppler radar spectrum width (DRW) measurements. Likewise, the agreement between the derived ε estimates is examined at the cloud base height of stratiform warm clouds. Collocated ε estimates based on power spectra analysis of DRV and DLV measurements show good agreement (correlation coefficient of 0.86 and 0.78 for both cases analyzed here) during both drizzling and nondrizzling conditions. This suggests that unified (below and abovemore » cloud base) time-height estimates of ε in cloud-topped boundary layer conditions can be produced. This also suggests that eddy dissipation rate can be estimated throughout the cloud layer without the constraint that clouds need to be nonprecipitating. Eddy dissipation rate estimates based on DRW measurements compare well with the estimates based on Doppler velocity but their performance deteriorates as precipitation size particles are introduced in the radar volume and broaden the DRW values. And, based on this finding, a methodology to estimate the Doppler spectra broadening due to the spread of the drop size distribution is presented. Furthermore, the uncertainties in ε introduced by signal-to-noise conditions, the estimation of the horizontal wind, the selection of the averaging time window, and the presence of precipitation are discussed in detail.« less

  15. Develop advanced nonlinear signal analysis topographical mapping system

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Main Engine (SSME) has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature, pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system; (2) develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amount of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. High compression ratio can be achieved to allow minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities; and (3) integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of

  16. Develop advanced nonlinear signal analysis topographical mapping system

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1993-01-01

    The SSME has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) Develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system. (2) Develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amounts of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. A high compression ratio can be achieved to allow the minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities. (3) Integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for a quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of malfunction, and indicate

  17. Radar channel balancing with commutation

    SciTech Connect

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  18. Alternatives for Military Space Radar

    DTIC Science & Technology

    2007-01-01

    transmitted microwaves to produce images of the Earth’s surface (somewhat akin to photographs produced by optical imaging).2 By providing their own...microwaves for illumination (rather than sunlight, as in an optical imaging system). By providing their own illu- mination, radars can produce...carry a variety of payloads, including electro- optical , infrared, and SAR imagers; a film camera; and signals- intelligence equipment. The aircraft’s

  19. Analysis of borehole-radar reflection logs from selected HC boreholes at the Project Shoal area, Churchill County, Nevada

    USGS Publications Warehouse

    Lane, J.W.; Joesten, P.K.; Pohll, G.M.; Mihevic, Todd

    2001-01-01

    Single-hole borehole-radar reflection logs were collected and interpreted in support of a study to characterize ground-water flow and transport at the Project Shoal Area (PSA) in Churchill County, Nevada. Radar logging was conducted in six boreholes using 60-MHz omni-directional electric-dipole antennas and a 60-MHz magnetic-dipole directional receiving antenna.Radar data from five boreholes were interpreted to identify the location, orientation, estimated length, and spatial continuity of planar reflectors present in the logs. The overall quality of the radar data is marginal and ranges from very poor to good. Twenty-seven reflectors were interpreted from the directional radar reflection logs. Although the range of orientation interpreted for the reflectors is large, a significant number of reflectors strike northeast-southwest and east-west to slightly northwest-southeast. Reflectors are moderate to steeply dipping and reflector length ranged from less than 7 m to more than 133 m.Qualitative scores were assigned to each reflector to provide a sense of the spatial continuity of the reflector and the characteristics of the field data relative to an ideal planar reflector (orientation score). The overall orientation scores are low, which reflects the general data quality, but also indicates that the properties of most reflectors depart from the ideal planar case. The low scores are consistent with reflections from fracture zones that contain numerous, closely spaced, sub-parallel fractures.Interpretation of borehole-radar direct-wave velocity and amplitude logs identified several characteristics of the logged boreholes: (1) low-velocity zones correlate with decreased direct-wave amplitude, indicating the presence of fracture zones; (2) direct-wave amplitude increases with depth in three of the boreholes, suggesting an increase in electrical resistivity with depth resulting from changes in mineral assemblage or from a decrease in the specific conductance of ground

  20. Digital Beamforming Synthetic Aperture Radar (DBSAR): Performance Analysis During the Eco-3D 2011 and Summer 2012 Flight Campaigns

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Carter, Lynn; Ranson, K. Jon; Vega, Manuel; Osmanoglu, Batuhan; Lee, SeungKuk; Sun, Guoqing

    2014-01-01

    The Digital Beamforming Synthetic Aperture radar (DBSAR) is a state-of-the-art airborne radar developed at NASA/Goddard for the implementation, and testing of digital beamforming techniques applicable to Earth and planetary sciences. The DBSAR measurements have been employed to study: The estimation of vegetation biomass and structure - critical parameters in the study of the carbon cycle; The measurement of geological features - to explore its applicability to planetary science by measuring planetary analogue targets. The instrument flew two test campaigns over the East coast of the United States in 2011, and 2012. During the campaigns the instrument operated in full polarimetric mode collecting data from vegetation and topography features.