Science.gov

Sample records for radiation budget dataset

  1. First global WCRP shortwave surface radiation budget dataset

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Charlock, T. P.; Staylor, W. F.; Pinker, R. T.; Laszlo, I.; Ohmura, A.; Gilgen, H.; Konzelman, T.; DiPasquale, R. C.; Moats, C. D.

    1995-01-01

    Shortwave radiative fluxes that reach the Earth's surface are key factors that influence atmospheric and oceanic circulations as well as surface climate. Yet, information on these fluxes is meager. Surface site data are generally available from only a limited number of observing stations over land. Much less is known about the large-scale variability of the shortwave radiative fluxes over the oceans, which cover most of the globe. Recognizing the need to produce global-scale fields of such fluxes for use in climate research, the World Climate Research Program has initiated activities that led to the establishment of the Surface Radiation Budget Climatology Project with the ultimate goal to determine various components of the surface radiation budget from satellite data. In this paper, the first global products that resulted from this activity are described. Monthly and daily data on a 280-km grid scale are available. Samples of climate parameters obtainable from the dataset are presented. Emphasis is given to validation and limitations of the results. For most of the globe, satellite estimates have bias values between +/- 20 W/sq m and rms values are around 25 W/sq m. There are specific regions with much larger uncertainties however.

  2. First global WCRP shortwave surface radiation budget dataset

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Charlock, T. P.; Staylor, W. F.; Pinker, R. T.; Laszlo, I.; Ohmura, A.; Gilgen, H.; Konzelman, T.; Dipasquale, R. C.; Moats, C. D.

    1995-01-01

    Shortwave radiative fluxes that reach the earth's surface are key factors that influence atmospheric and oceanic circulations as well as surface climate. Yet, information on these fluxes is meager. Surface site data are generally available from only a limited number of observing stations over land. Much less is known about the large-scale variability of the shortwave radiative fluxes over the oceans, which cover most of the globe. Recognizing the need to produce global-scale fields of such fluxes for use in climate research, the World Climate Research Program has initiated activities that led to the establishment of the Surface Radiation Budget Climatology Project with the ultimate goal to determine various components of the surface radiation budget from satellite data. In this paper, the first global products that resulted from this activity are described. Monthly and daily data on a 280-km grid scale are available. Samples of climate parameters obtainable from the dataset are presented. Emphasis is given to validation and limitations of the results. For most of the globe, satellite estimates have bias values between +/- 20 W/sq m and root mean square (rms) values are around 25 W/sq m. There are specific regions with much larger uncertainties however.

  3. Charactering the Surface Radiation Budget over the Tibetan Plateau Using Ground Observations, Reanalysis, and Satellite Datasets

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Liang, S.

    2013-12-01

    The importance of the surface radiation budget (SRB) over the Tibetan Plateau (TP) to impact not only the local climate but also the remote area (i.e., the drought and flood in China) attracts increasing attentions in the scientific communities. Observed evidences support a continuous dimming trend with predominant warming, wind stilling, and moistening trends since 1980s. Cautions, however, need to be exercised when using ground observations or satellite retrievals alone, which are limited with large errors and sparse distributions, respectively. This study aims to characterize the monthly SRB at 0.5° over the TP extending two decades by incorporating multiple datasets, including ground-measured datasets, reanalysis datasets, and satellite datasets. The fused SRB was first generated using a multiple linear regression method to synthesize reanalysis and satellite datasets with ground observations from 1984 to 2007, and was then applied not only to analyze the characteristics (spatial distribution, temporal variation, and trend) of the SRB but also to compare with selected atmospheric (cloud cover, precipitation, and water vapor) and surface (temperature, snow cover, and the Normalized Difference Vegetation Index (NDVI)) anomalies over the TP. The cross validation results suggested that the fused data lowered the root mean square errors (RMSEs) at the monthly scale (<19 W/m2) by constraining uncertainties from multiple sources (i.e., inputs, preprocessing, and data fusion). The major finding is that the interaction of solar dimming with changes of surface albedo has dominated the marked decrease of all-wave net radiation since the mid-1980s regardless of the increase of downward longwave radiation (that counteracts the increase of upward longwave radiation). Furthermore, the weakening and strengthening of the relationships between the components of SRB and the correlated variables of atmospheric or surface conditions exhibit a seasonal dependency over the TP, where

  4. An Evaluation of Satellite-Based and Re-Analysis Radiation Budget Datasets Using CERES EBAF Products

    NASA Astrophysics Data System (ADS)

    Gupta, Shashi; Stackhouse, Paul; Wong, Takmeng; Mikovitz, Colleen; Cox, Stephen; Zhang, Taiping

    2016-04-01

    Top-of-atmosphere (TOA) and surface radiative fluxes from CERES Energy Balanced and Filled (EBAF; Loeb et al., 2009; Kato et al. 2013) products are used to evaluate the performance of several widely used long-term radiation budget datasets. Two of those are derived from satellite observations and five more are from re-analysis products. Satellite-derived datasets are the NASA/GEWEX Surface and TOA Radiation Budget Dataset Release-3 and the ISCCP-FD Dataset. The re-analysis datasets are taken from NCEP-CFSR, ERA-Interim, Japanese Re-Analysis (JRA-55), MERRA and the newly released MERRA2 products. Close examination is made of the differences between MERRA and MERRA2 products for the purpose of identifying improvements achieved for MERRA2. Many of these datasets have undergone quality assessment under the GEWEX Radiative Flux Assessment (RFA) project. For the purposes of the present study, EBAF datasets are treated as reference and other datasets are compared with it. All-sky and clear-sky, SW and LW, TOA and surface fluxes are included in this study. A 7-year period (2001-2007) common to all datasets is chosen for comparisons of global and zonal averages, monthly and annual average timeseries, and their anomalies. These comparisons show significant differences between EBAF and the other datasets. Certain anomalies and trends observed in the satellite-derived datasets are attributable to corresponding features in satellite datasets used as input, especially ISCCP cloud properties. Comparisons of zonal averages showed significant differences especially over higher latitudes even when those differences are not obvious in the global averages. Special emphasis is placed on the analysis of the correspondence between spatial patterns of geographical distribution of the above fluxes on a 7-year average as well as on a month-by-month basis using the Taylor (2001) methodology. Results showed that for 7-year average fields correlation coefficients between spatial patterns

  5. Earth Radiation Budget Science, 1978. [conferences

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An earth radiation budget satellite system planned in order to understand climate on various temporal and spatial scales is considered. Topics discussed include: climate modeling, climate diagnostics, radiation modeling, radiation variability and correlation studies, cloudiness and the radiation budget, and radiation budget and related measurements in 1985 and beyond.

  6. Radiation budget measurement/model interface

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Ciesielski, P.; Randel, D.; Stevens, D.

    1983-01-01

    This final report includes research results from the period February, 1981 through November, 1982. Two new results combine to form the final portion of this work. They are the work by Hanna (1982) and Stevens to successfully test and demonstrate a low-order spectral climate model and the work by Ciesielski et al. (1983) to combine and test the new radiation budget results from NIMBUS-7 with earlier satellite measurements. Together, the two related activities set the stage for future research on radiation budget measurement/model interfacing. Such combination of results will lead to new applications of satellite data to climate problems. The objectives of this research under the present contract are therefore satisfied. Additional research reported herein includes the compilation and documentation of the radiation budget data set a Colorado State University and the definition of climate-related experiments suggested after lengthy analysis of the satellite radiation budget experiments.

  7. Earth radiation budget experiment software development

    NASA Technical Reports Server (NTRS)

    Edmonds, W. L.

    1985-01-01

    Computer programming and analysis efforts were carried out in support of the Earth Radiation Budget Experiment (ERBE) at NASA/Langley. The Earth Radiation Budget Experiment is described as well as data acquisition, analysis and modeling support for the testing of ERBE instruments. Also included are descriptions of the programs developed to analyze, format and display data collected during testing of the various ERBE instruments. Listings of the major programs developed under this contract are located in an appendix.

  8. Earth Radiation Budget Experiment - Preliminary seasonal results

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.; Harrison, Edwin F.; Lee, Robert B., III

    1990-01-01

    Data from the Earth Radiation Budget Satellite (ERBS) and from the operational NOAA-9 satellite being placed in the archive of the earth Radiation Budget Experiment (ERBE) are discussed. The results of the ERBE data validation effort are reviewed along with ERBE solar constant observations and earth-viewing results. The latter include monthly average results for July 1985, annual average clear-sky fluxes, and annual average, zonal, and global results.

  9. Earth radiation budget experiment and smart sensors

    NASA Technical Reports Server (NTRS)

    Young, G. R.; Kibler, J. F.

    1979-01-01

    This paper presents the data analysis requirements for the Earth Radiation Budget Experiment and potential needs for a follow-on radiation budget system. The present requirements for determining the earth's radiation budget on scales from 250 by 250-km regions to global require two broadband measurements on each of three satellites. The instrument system is composed of wide- and medium-field-of-view radiometers and a narrow-field-of-view scanning radiometer. Modeled directional functions are required to interpret the data in terms of earth radiation fluxes. Meeting more stringent science requirements for a follow-on mission will require nine broadband channels with increased spatial and temporal sampling, resulting in six satellites and a fourfold increase in data transmission rates and ground-based data storage. Smart sensors can reduce the data and ground storage requirements by orders of magnitude with onboard processing, calibration, and attitude and ephemeris determination.

  10. Radiative Energy Budget Studies Using Observations from the Earth Radiation Budget Experiment (ERBE)

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Frey, R.; Shie, M.; Olson, R.; Collimore, C.; Friedman, M.

    1997-01-01

    Our research activities under this NASA grant have focused on two broad topics associated with the Earth Radiation Budget Experiment (ERBE): (1) the role of clouds and the surface in modifying the radiative balance; and (2) the spatial and temporal variability of the earth's radiation budget. Each of these broad topics is discussed separately in the text that follows. The major points of the thesis are summarized in section 3 of this report. Other dissertation focuses on deriving the radiation budget over the TOGA COARE region.

  11. Earth Radiation Budget Experiment (ERBE) validation

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.; Harrison, Edwin F.; Smith, G. Louis; Green, Richard N.; Kibler, James F.; Cess, Robert D.

    1990-01-01

    During the past 4 years, data from the Earth Radiation Budget Experiment (ERBE) have been undergoing detailed examination. There is no direct source of groundtruth for the radiation budget. Thus, this validation effort has had to rely heavily upon intercomparisons between different types of measurements. The ERBE SCIENCE Team chose 10 measures of agreement as validation criteria. Late in August 1988, the Team agreed that the data met these conditions. As a result, the final, monthly averaged data products are being archived. These products, their validation, and some results for January 1986 are described. Information is provided on obtaining the data from the archive.

  12. Earth Radiation Budget Experiment - Preliminary seasonal results

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.; Harrison, Edwin F.; Lee, Robert B., III

    1990-01-01

    Over the previous four years the Earth Radiation Budget Experiment (ERBE) instruments have been gathering data on two satellites, the Earth Radiation Budget Satellite and the the operational NOAA-9 satellite. The ERBE science team recently completed the validation of an initial sampling of these data involving intensive examination of data in four months during 1985 and 1986. The data being placed in the National Space Science Data Center to acquaint the scientific community with their availability are discussed. The ERBE archival data products are also presented.

  13. Surface radiation budget for climate applications

    NASA Technical Reports Server (NTRS)

    Suttles, J. T. (Editor); Ohring, G. (Editor)

    1986-01-01

    The Surface Radiation Budget (SRB) consists of the upwelling and downwelling radiation fluxes at the surface, separately determined for the broadband shortwave (SW) (0 to 5 micron) and longwave (LW) (greater than 5 microns) spectral regions plus certain key parameters that control these fluxes, specifically, SW albedo, LW emissivity, and surface temperature. The uses and requirements for SRB data, critical assessment of current capabilities for producing these data, and directions for future research are presented.

  14. An Earth radiation budget climate model

    NASA Technical Reports Server (NTRS)

    Bartman, Fred L.

    1988-01-01

    A 2-D Earth Radiation Budget Climate Model has been constructed from an OLWR (Outgoing Longwave Radiation) model and an Earth albedo model. Each of these models uses the same cloud cover climatology modified by a factor GLCLC which adjusts the global annual average cloud cover. The two models are linked by a set of equations which relate the cloud albedos to the cloud top temperatures of the OLWR model. These equations are derived from simultaneous narrow band satellite measurements of cloud top temperature and albedo. Initial results include global annual average values of albedo and latitude/longitude radiation for 45 percent and 57 percent global annual average cloud cover and two different forms of the cloud albedo-cloud top temperature equations.

  15. Design concept for an optimized earth radiation budget sensor

    NASA Technical Reports Server (NTRS)

    Carman, S. L.; Hansen, M. Z.; Arking, A.; Hoffman, J. W.

    1982-01-01

    The Earth Radiation Budget Program has the objective to measure and model the terrestrial radiation budget and obtain a better understanding of the climate and its changes. A multisensor, multisatellite system with high and midinclination orbits will be needed for implementing this program. Various approaches for conducting sensing operations have been evaluated. The present investigation considers a method of sampling with a unique multidirectional array mosaic sensor to fulfill the requirements of earth radiation budget measurements. Previous and present generation earth radiation budget (ERB) satellite instruments are discussed, and attention is given to instrument design tradeoffs and the baseline instrument concept.

  16. Regional Climatology and Surface Radiation Budget

    NASA Technical Reports Server (NTRS)

    Wilber, Anne C.; Smith, G. Louis; Stackhouse, Paul W., Jr.

    1999-01-01

    The climatology and surface radiation budget (SRB) of a region are intimately related. This paper presents a brief examination of this relationship. An 8-year surface radiation budget data set has been developed based on satellite measurements. In that data set and in this paper a region is defined as a quasi-square 2.5o in latitude and approximately the same physical distance in longitude. A pilot study by Wilber et al. (1998) showed a variety of behaviors of the annual cycles for selected regions. Selected desert regions form a loop in a specific part of the plot, with large NLW and large NSW. Tropical wet regions form much smaller loops in a different part of the plot, with small NLW and large NSW. For regions selected in high latitude the annual cycles form nearly linear figures in another part of the plot. The question arises as to whether these trajectories are characteristic of the climatology of the region or simply the behavior of the few regions selected from the set of 6596 regions. In order to address this question, it is necessary to classify the climatology of the each region, e.g. as classified by Koeppen (1936) or Trenwarthe and Horne (1980). This paper presents a method of classifying climate of the regions on the basis of the surface radiation behavior such that the results are very similar to the classification of Trenwarthe and Horne. The characteristics of the annual cycle of SRB components can then be investigated further, based on the climate classification of each region.

  17. The basic thermodynamics of Earth's radiation budget

    NASA Astrophysics Data System (ADS)

    Ward, Peter L.

    2015-04-01

    greenhouse gases. There simply is not enough thermal energy absorbed by greenhouse gases to have a major effect on global warming. Computer programs used to quantify greenhouse-gas theory overestimate infrared energies because they assume that thermal energy travels in space as waves, for which energy is a function of amplitude squared, and that energies are additive over bandwidth, both properties that are very different from the observed behavior of radiation in the atmosphere. Heat only flows from hot to cold; it cannot flow from a colder layer in the atmosphere to a warmer Earth, as assumed in many radiation budgets (e.g. Wild et al., 2013); you cannot get warmer by standing next to a cold stove. According to Planck's Law, radiation from a body of matter does not have high enough frequencies or amplitudes to warm the same body, as is assumed by greenhouse-gas theory. Warming radiation must come from a warmer body. Detailed observations of global warming, including the recent hiatus, are explained much more directly and clearly by ozone depletion theory, where less ozone in the stratosphere allows more high-energy, solar ultraviolet radiation to reach Earth, cooling the stratosphere, warming the oceans. More details at ozonedepletiontheory.info plus a video at tinyurl.com/ozone-depletion-theory.

  18. Datasets for radiation network algorithm development and testing

    SciTech Connect

    Rao, Nageswara S; Sen, Satyabrata; Berry, M. L..; Wu, Qishi; Grieme, M.; Brooks, Richard R; Cordone, G.

    2016-01-01

    Domestic Nuclear Detection Office s (DNDO) Intelligence Radiation Sensors Systems (IRSS) program supported the development of networks of commercial-off-the-shelf (COTS) radiation counters for detecting, localizing, and identifying low-level radiation sources. Under this program, a series of indoor and outdoor tests were conducted with multiple source strengths and types, different background profiles, and various types of source and detector movements. Following the tests, network algorithms were replayed in various re-constructed scenarios using sub-networks. These measurements and algorithm traces together provide a rich collection of highly valuable datasets for testing the current and next generation radiation network algorithms, including the ones (to be) developed by broader R&D communities such as distributed detection, information fusion, and sensor networks. From this multiple TeraByte IRSS database, we distilled out and packaged the first batch of canonical datasets for public release. They include measurements from ten indoor and two outdoor tests which represent increasingly challenging baseline scenarios for robustly testing radiation network algorithms.

  19. MVIRI/SEVIRI TOA Radiation Datasets within the Climate Monitoring SAF

    NASA Astrophysics Data System (ADS)

    Urbain, Manon; Clerbaux, Nicolas; Ipe, Alessandro; Baudrez, Edward; Velazquez Blazquez, Almudena; Moreels, Johan

    2016-04-01

    Within CM SAF, Interim Climate Data Records (ICDR) of Top-Of-Atmosphere (TOA) radiation products from the Geostationary Earth Radiation Budget (GERB) instruments on the Meteosat Second Generation (MSG) satellites have been released in 2013. These datasets (referred to as CM-113 and CM-115, resp. for shortwave (SW) and longwave (LW) radiation) are based on the instantaneous TOA fluxes from the GERB Edition-1 dataset. They cover the time period 2004-2011. Extending these datasets backward in the past is not possible as no GERB instruments were available on the Meteosat First Generation (MFG) satellites. As an alternative, it is proposed to rely on the Meteosat Visible and InfraRed Imager (MVIRI - from 1982 until 2004) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI - from 2004 onward) to generate a long Thematic Climate Data Record (TCDR) from Meteosat instruments. Combining MVIRI and SEVIRI allows an unprecedented temporal (30 minutes / 15 minutes) and spatial (2.5 km / 3 km) resolution compared to the Clouds and the Earth's Radiant Energy System (CERES) products. This is a step forward as it helps to increase the knowledge of the diurnal cycle and the small-scale spatial variations of radiation. The MVIRI/SEVIRI datasets (referred to as CM-23311 and CM-23341, resp. for SW and LW radiation) will provide daily and monthly averaged TOA Reflected Solar (TRS) and Emitted Thermal (TET) radiation in "all-sky" conditions (no clear-sky conditions for this first version of the datasets), as well as monthly averaged of the hourly integrated values. The SEVIRI Solar Channels Calibration (SSCC) and the operational calibration have been used resp. for the SW and LW channels. For MFG, it is foreseen to replace the latter by the EUMETSAT/GSICS recalibration of MVIRI using HIRS. The CERES TRMM angular dependency models have been used to compute TRS fluxes while theoretical models have been used for TET fluxes. The CM-23311 and CM-23341 datasets will cover a 32 years

  20. Earth Radiation Budget Experiment (ERBE) archival and April 1985 results

    NASA Technical Reports Server (NTRS)

    Barkstrom, B.; Harrison, E.; Smith, G.; Kibler, J.; Green, R.

    1989-01-01

    This paper describes the Earth Radiation Budget Experiment (ERBE) data products being made available to the community. The Science Team used ten validation criteria to judge the acceptability of the data for archival. These criteria are listed, and uncertainty estimates based on them for four typical data products are presented. A brief description of the radiation budget for April 1985 from the combined data of ERBE and NOAA-9 concludes this paper.

  1. Atlas of the Earth's radiation budget as measured by Nimbus-7: May 1979 to May 1980

    NASA Technical Reports Server (NTRS)

    Kyle, H. Lee; Hucek, Richard R.; Vallette, Brenda J.

    1991-01-01

    This atlas describes the seasonal changes in the Earth's radiation budget for the 13-month period, May 1979 to May 1980. It helps to illustrate the strong feedback mechanisms by which the Earth's climate interacts with the top-of-the-atmosphere insolation to modify the energy that various regions absorb from the Sun. Cloud type and cloud amount, which are linked to the surface temperature and the regional climate, are key elements in this interaction. Annual, seasonal, and monthly maps of the albedo, outgoing longwave and net radiation, noontime cloud cover, and mean diurnal surface temperatures are presented. Annual and seasonal net cloud forcing maps are also given. All of the quantities were derived from Nimbus-7 satellite measurements except for the temperatures, which were used in the cloud detection algorithm and came originally from the Air Force 3-dimensional nephanalysis dataset. The seasonal changes are described. The interaction of clouds and the radiation budget is briefly discussed.

  2. Non-Scanning Radiometer Results for Earth Radiation Budget Investigations

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Green, Richard N.; Lee, Robert B., III; Bess, T. Dale; Rutan, David

    1992-01-01

    The Earth Radiation Budget Experiment (ERBE) included non-scanning radiometers (Luther, 1986) flown aboard a dedicated mission of Earth Radiation Budget Satellite, and the NOAA-9 and -10 operational meteorological spacecraft (Barkstrom and Smith, 1986). The radiometers first began providing Earth radiation budget data in November 1984 and have remained operational, providing a record of nearly 8 years of data to date for researchers. Although they do not produce measurements with the resolution given by the scanning radiometers, the results from the non-scanning radiometers are extremely useful for climate research involving long-term radiation data sets. This paper discusses the non-scanning radiometers, their stability, the method of analyzing the data, and brief scientific results from the data.

  3. ERBE Wide-Field-of-View Nonscanner Data Reprocessing and revisiting its Radiation dataset from 1985 to 199

    NASA Astrophysics Data System (ADS)

    Shrestha, A. K.; Kato, S.; Wong, T.; Stackhouse, P. W.; Rose, F. G.; Miller, W. F.; Bush, K.; Rutan, D. A.; Minnis, P.; Doelling, D.

    2015-12-01

    The Earth's radiation budget is a fundamental component of the climate system and should reflect the variation in climate. As such, it is critical to know how it has varied over past decades to ensure that climate models are properly representing climate. Broadband shortwave and longwave irradiances were measured by the Earth Radiation Budget Experiment (ERBE) wide-field-of-view (WFOV) nonscanner instrument from 1985 to 1998. These WFOV nonscanner instruments were onboard NASA's Earth Radiation Budget Satellite (ERBS) and two NOAA's satellites (NOAA-9 and NOAA-10). However, earlier studies showed that the transmissivity of the dome for the WFOV shortwave (SW) nonscanner instrument degraded over time. To account for the degradation, WFOV instruments were calibrated assuming constant spectral degradation (gray assumption). Recent developments from analysis of data from the Clouds and the Earth's Radiant Energy System project (CERES), which has been measuring the radiation budget since 2000, suggest that transmissivity of shorter wavelength degrades faster. Therefore, a spectrally dependent degradation correction is needed for a better calibration. In addition, accounting for the spectrally dependent degradation may eliminate an additional correction applied to irradiances using a time series of daytime and nighttime longwave irradiance differences. Therefore, we have reprocessed WFOV nonscanner data by characterizing the spectrally dependent degradation of the SW dome transmissivity. Time and spectral dependent degradation of the shortwave filter function is estimated using solar data observed by these instruments during calibration days. Because the spectrum of reflected irradiance depends on scene type, we use Advanced Very High Resolution Radiometer AVHRR-derived cloud properties and surface type over the WFOV footprints in addition to time dependent filter function for the unfiltering process. This poster explains the reprocessing approach and discusses the

  4. Cloud types and the tropical Earth radiation budget, revised

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.; Kyle, H. Lee

    1989-01-01

    Nimbus-7 cloud and Earth radiation budget data are compared in a study of the effects of clouds on the tropical radiation budget. The data consist of daily averages over fixed 500 sq km target areas, and the months of July 1979 and January 1980 were chosen to show the effect of seasonal changes. Six climate regions, consisting of 14 to 24 target areas each, were picked for intensive analysis because they exemplified the range in the tropical cloud/net radiation interactions. The normal analysis was to consider net radiation as the independent variable and examine how cloud cover, cloud type, albedo and emitted radiation varied with the net radiation. Two recurring themes keep repeating on a local, regional, and zonal basis: the net radiation is strongly influenced by the average cloud type and amount present, but most net radiation values could be produced by several combinations of cloud types and amount. The regions of highest net radiation (greater than 125 W/sq m) tend to have medium to heavy cloud cover. In these cases, thin medium altitude clouds predominate. Their cloud tops are normally too warm to be classified as cirrus by the Nimbus cloud algorithm. A common feature in the tropical oceans are large regions where the total regional cloud cover varies from 20 to 90 percent, but with little regional difference in the net radiation. The monsoon and rain areas are high net radiation regions.

  5. Atmospheric Aerosols and Earth's Radiative Budget

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Condon, Estelle (Technical Monitor)

    1997-01-01

    During recent years interest in the radiative properties of aerosols has revived as it has been recognized that their potential radiative forcing rivals that of greenhouse gases, and that the uncertainty in their radiative forcing is so large that meaningful simulations of the climate cannot be done without considering them. In this talk I will review some of the direct and indirect effects that aerosols might have on climate. I will identify areas where considerable progress has been made during the past decade, and I will also highlight areas in which significant uncertainties remain. Unfortunately there is a lot of laboratory, field and theoretical work which remains to be done before we can reduce significantly the uncertainties in determining the radiative forcing by aerosols.

  6. 3D modeling of satellite spectral images, radiation budget and energy budget of urban landscapes

    NASA Astrophysics Data System (ADS)

    Gastellu-Etchegorry, J. P.

    2008-12-01

    DART EB is a model that is being developed for simulating the 3D (3 dimensional) energy budget of urban and natural scenes, possibly with topography and atmosphere. It simulates all non radiative energy mechanisms (heat conduction, turbulent momentum and heat fluxes, water reservoir evolution, etc.). It uses DART model (Discrete Anisotropic Radiative Transfer) for simulating radiative mechanisms: 3D radiative budget of 3D scenes and their remote sensing images expressed in terms of reflectance or brightness temperature values, for any atmosphere, wavelength, sun/view direction, altitude and spatial resolution. It uses an innovative multispectral approach (ray tracing, exact kernel, discrete ordinate techniques) over the whole optical domain. This paper presents two major and recent improvements of DART for adapting it to urban canopies. (1) Simulation of the geometry and optical characteristics of urban elements (houses, etc.). (2) Modeling of thermal infrared emission by vegetation and urban elements. The new DART version was used in the context of the CAPITOUL project. For that, districts of the Toulouse urban data base (Autocad format) were translated into DART scenes. This allowed us to simulate visible, near infrared and thermal infrared satellite images of Toulouse districts. Moreover, the 3D radiation budget was used by DARTEB for simulating the time evolution of a number of geophysical quantities of various surface elements (roads, walls, roofs). Results were successfully compared with ground measurements of the CAPITOUL project.

  7. In-Orbit Earth Radiation Budget Satellite (ERBS) Battery Switch

    NASA Technical Reports Server (NTRS)

    Ahmad, Anisa; Enciso, Marlon; Rao, Gopalakrishna

    2000-01-01

    A viewgraph presentation outlines the Earth Radiation Budget Satellite (ERBS) power system and battery history. ERBS spacecraft and battery cell failures are listed with the reasons for failure. The battery management decision and stabilization of the batteries is discussed. Present battery operations are shown to be successful.

  8. Earth Radiation Budget Research at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Harrison, Edwin F.; Gibson, Gary G.

    2014-01-01

    In the 1970s research studies concentrating on satellite measurements of Earth's radiation budget started at the NASA Langley Research Center. Since that beginning, considerable effort has been devoted to developing measurement techniques, data analysis methods, and time-space sampling strategies to meet the radiation budget science requirements for climate studies. Implementation and success of the Earth Radiation Budget Experiment (ERBE) and the Clouds and the Earth's Radiant Energy System (CERES) was due to the remarkable teamwork of many engineers, scientists, and data analysts. Data from ERBE have provided a new understanding of the effects of clouds, aerosols, and El Nino/La Nina oscillation on the Earth's radiation. CERES spacecraft instruments have extended the time coverage with high quality climate data records for over a decade. Using ERBE and CERES measurements these teams have created information about radiation at the top of the atmosphere, at the surface, and throughout the atmosphere for a better understanding of our climate. They have also generated surface radiation products for designers of solar power plants and buildings and numerous other applications

  9. Cloud types and the tropical earth radiation budget

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.; Kyle, H. Lee

    1990-01-01

    Nimbus-7 cloud and earth radiation budget data are compared in a study of the effects of clouds on the tropical radiation budget. The data consist of daily averages over fixed 500 sq km target areas, and the months of July 1979 and January 1980 were chosen to show the effect of seasonal changes. Six climate regions, consisting of 14 to 24 target areas each, were picked for intensive analysis because they exemplified the range in the tropical cloud/net radiation interactions. It is found that the net radiation is strongly influenced by the average cloud type and amount present, but most net radiation values could be produced by several combinations of cloud types and amount. The regions of highest net radiation (greater than 125 W/sq m) tend to have medium to heavy cloud cover. In these cases, thin medium-altitude clouds predominate. Their cloud tops are normally too warm to be classified as cirrus by the Nimbus cloud algorithm. In the tropical oceans there are large regions where the total regional cloud cover varies from 20 to 90 percent, but with little regional difference in the net radiation. The monsoon and rain areas are high net radiation regions.

  10. First diurnal results from the Earth Radiation Budget Experiment

    NASA Technical Reports Server (NTRS)

    Harrison, E. F.; Minnis, P.; Brooks, D. R.

    1986-01-01

    Early results are reported from measurements of the diurnal variability of total and clear-sky regional radiative parameters by the ERBE instruments on one dedicated satellite and the polar-orbiting NOAA-9 satellite. Attention is focused on November 1984, the first complete data set. The scene is identified in terms of longwave and shortwave radiances (daytime) or longwave radiation (night) and maximum likelihood estimates carried out with the addition of Earth Radiation Budget data from Nimbus-7. Analysis of the first data set revealed significant differences between total and clear-sky albedo. The clear-sky and LRE both reach maximum around noon and minimum values at midnight.

  11. Earth radiation budget measurements from satellites and their interpretation for climate modeling and studies

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Stephens, G. L.; Campbell, G. G.

    1980-01-01

    The annual and seasonal averaged Earth atmosphere radiation budgets derived from the most complete set of satellite observations available are presented. The budgets were derived from a composite of 48 monthly mean radiation budget maps. Annually and seasonally averaged radiation budgets are presented as global averages and zonal averages. The geographic distribution of the various radiation budget quantities is described. The annual cycle of the radiation budget was analyzed and the annual variability of net flux was shown to be largely dominated by the regular semi and annual cycles forced by external Earth-Sun geometry variations. Radiative transfer calculations were compared to the observed budget quantities and surface budgets were additionally computed with particular emphasis on discrepancies that exist between the present computations and previous surface budget estimates.

  12. Results from the Earth Radiation Budget Experiment (ERBE)

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.; Harrison, Edwin F.; Smith, G. Louis; Cess, Robert D.

    1989-01-01

    The Earth Radiation Budget Experiment (ERBE) has been observing the earth during the past 4 years from three satellites. Numerous validation procedures have been applied to the data. Particularly important have been intercomparisons between three channels of scanning radiometers and wide and medium field-of-view radiometers. These intercomparisons and onboard calibration targets have provided assurance of high data quality. In addition to the classic radiation budget parameters: global absorbed and emitted energy, ERBE is producing fluxes on scales of 250 km that can significantly increase understanding of the earth's climate. Of particular interest are ERBE measurements of clear-sky albedos and longwave fluxes, which are part of the ERBE data products. Use of data from the precessing ERBE satellite together with data from the sun-synchronous NOAA-9 and NOAA-10 satellites also provides information on the diurnal cycle of shortwave and longwave fluxes.

  13. Characteristics of the earth radiation budget experiment solar monitors

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Barkstrom, Bruce R.; Cess, Robert D.

    1987-01-01

    The earth radiation budget experiment solar monitors, active cavity pyrheliometers, have been developed to measure every two weeks the total optical solar irradiance from the earth radiation budget satellite (ERBS) and the National Oceanic and Atmospheric Administration NOAA-9 spacecraft platforms. In the unfiltered 0.2-50-micron wavelength broadband region, the monitors were used to obtain 1365 W/sq m as the mean value for the solar irradiance, with measurement precisions and accuracies approaching 0.1 and 0.2 percent, respectively. The design and characteristics of the solar monitors are presented along with the data reduction model. For the October 1984 through July 1985 period, the resulting ERBS and NOAA-9 solar irradiance values are intercompared.

  14. Space simulation testing of the Earth Radiation Budget Satellite (ERBS)

    NASA Technical Reports Server (NTRS)

    Magette, E.; Smith, D.

    1984-01-01

    The Earth radiation budget components and dynamics and the interactions of this energy cycle, which influences our climate were investigated. The satellite package was subjected to space simulation testing. The size of the spacecraft dictated that the testing be conducted in the new BRUTUS Thermal Vacuum Facility. Computer aided control (CAC), quartz crystal microbalance (QCM), and residual gas analysis (RGA) monitoring are combined with rigid contamination control procedures to protect the flight hardware from anomalous and potentially destructive out of scope test environments.

  15. Radiation budget measurements for the eighties and nineties

    SciTech Connect

    Smith, G.L.; Barkstrom, B.R.; Harrison, E.F.; Lee, R.B. III; Wielicki, B.A. )

    1994-01-01

    The Earth Radiation Budget Experiment (ERBE) consisted of a scanning radiometer and non-scanning radiometers on each of three spacecraft. These instruments began flying in October 1984. The nonscanning radiometers continue to operate, providing broadband radiation measurements of the Earth's outgoing longwave radiation and reflected solar radiation, in addition to measurements of the solar output. The Clouds and Earth Radiant Energy System (CERES) features a scanning radiometer, which is an improved version of the ERBE scanning radiometer, and will fly on the Tropical Rainfall Measurement Mission and Earth Observation System platforms in the late nineties. The CERES project will provide not only radiant fluxes at the top of the atmosphere' (TOA), but also at the surface and will compute radiant flux divergence through the atmosphere.

  16. Radiation budget changes with dry forest clearing in temperate Argentina.

    PubMed

    Houspanossian, Javier; Nosetto, Marcelo; Jobbágy, Esteban G

    2013-04-01

    Land cover changes may affect climate and the energy balance of the Earth through their influence on the greenhouse gas composition of the atmosphere (biogeochemical effects) but also through shifts in the physical properties of the land surface (biophysical effects). We explored how the radiation budget changes following the replacement of temperate dry forests by crops in central semiarid Argentina and quantified the biophysical radiative forcing of this transformation. For this purpose, we computed the albedo and surface temperature for a 7-year period (2003-2009) from MODIS imagery at 70 paired sites occupied by native forests and crops and calculated the radiation budget at the tropopause and surface levels using a columnar radiation model parameterized with satellite data. Mean annual black-sky albedo and diurnal surface temperature were 50% and 2.5 °C higher in croplands than in dry forests. These contrasts increased the outgoing shortwave energy flux at the top of the atmosphere in croplands by a quarter (58.4 vs. 45.9 W m(-2) ) which, together with a slight increase in the outgoing longwave flux, yielded a net cooling of -14 W m(-2) . This biophysical cooling effect would be equivalent to a reduction in atmospheric CO2 of 22 Mg C ha(-1) , which involves approximately a quarter to a half of the typical carbon emissions that accompany deforestation in these ecosystems. We showed that the replacement of dry forests by crops in central Argentina has strong biophysical effects on the energy budget which could counterbalance the biogeochemical effects of deforestation. Underestimating or ignoring these biophysical consequences of land-use changes on climate will certainly curtail the effectiveness of many warming mitigation actions, particularly in semiarid regions where high radiation load and smaller active carbon pools would increase the relative importance of biophysical forcing. PMID:23504897

  17. Annual Cycle of Cloud Forcing of Surface Radiation Budget

    NASA Technical Reports Server (NTRS)

    Wilber, Anne C.; Smith, G. Louis; Stackhouse, Paul W., Jr.; Gupta, Shashi K.

    2006-01-01

    The climate of the Earth is determined by its balance of radiation. The incoming and outgoing radiation fluxes are strongly modulated by clouds, which are not well understood. The Earth Radiation Budget Experiment (Barkstrom and Smith, 1986) provided data from which the effects of clouds on radiation at the top of the atmosphere (TOA) could be computed (Ramanathan, 1987). At TOA, clouds increase the reflected solar radiation, tending to cool the planet, and decrease the OLR, causing the planet to retain its heat (Ramanathan et al., 1989; Harrison et al., 1990). The effects of clouds on radiation fluxes are denoted cloud forcing. These shortwave and longwave forcings counter each other to various degrees, so that in the tropics the result is a near balance. Over mid and polar latitude oceans, cloud forcing at TOA results in large net loss of radiation. Here, there are large areas of stratus clouds and cloud systems associated with storms. These systems are sensitive to surface temperatures and vary strongly with the annual cycle. During winter, anticyclones form over the continents and move to the oceans during summer. This movement of major cloud systems causes large changes of surface radiation, which in turn drives the surface temperature and sensible and latent heat released to the atmosphere.

  18. Influence of absorbing aerosols on the inference of solar surface radiation budget and cloud absorption

    SciTech Connect

    Li, Zhanqing

    1998-01-01

    This study addresses the impact of absorbing aerosols on the retrieval of the solar surface radiation budget (SSRB) and on the inference of cloud absorption using multiple global datasets. The data pertain to the radiation budgets at the top of the atmosphere (TOA), at the surface, and to precipitation and tropical biomass burning. Satellite-based SSRB data were derived from the Earth Radiation Budget Experiment and the International Satellite Cloud Climatology Program using different inversion algorithms. A manifestation of the aerosol effect emerges from a zonal comparison between satellite-based and surface-observed SSRB, which shows good agreement in most regions except over the tropical continents active in biomass burning. Another indication arises from the variation of the ratio of cloud radiative forcing at the TOA and at the surface, which was used in many recent studies addressing the cloud absorption problem. The author`s studies showed that the ratio is around unity under most circumstances except when there is heavy urban/industrial pollution or fires. These exceptions register discrepancy between observed and modeled SSRB. The discrepancy is found to increase with decreasing cloudiness, implying that it has more to do with the treatment of aerosols than clouds, although minor influences by other factors may also exist. The largest discrepancy is observed in the month of minimal cloud cover and maximal aerosol loading. The corresponding maximum monthly mean aerosol optical thickness is estimated to be around 1.0 by a parameterization developed in this study. After the effects of aerosols on SSRB are accounted for using biomass burning and precipitation data, disagreements no longer exist between the theory and observation with regard to the transfer of solar radiation. It should be pointed out that the tropical data employed in this study are limited to a small number of continental sites. 75 refs., 9 figs., 1 tab.

  19. Effects of cirrus composition on atmospheric radiation budgets

    NASA Technical Reports Server (NTRS)

    Kinne, Stefan; Liou, Kuo-Nan

    1988-01-01

    A radiative transfer model that can be used to determine the change in solar and infrared fluxes caused by variations in the composition of cirrus clouds was used to investigate the importance of particle size and shape on the radiation budget of the Earth-atmosphere system. Even though the cloud optical thickness dominates the radiative properties of ice clouds, the particle size and nonsphericity of ice crystals are also important in calculations of the transfer of near-IR solar wavelengths. Results show that, for a given optical thickness, ice clouds composed of larger particles would produce larger greenhouse effects than those composed of smaller particles. Moreover, spherical particles with equivalent surface areas, frequently used for ice crystal clouds, would lead to an overestimation of the greenhouse effect.

  20. Evaluation of linear interpolation method for missing value on solar radiation dataset in Perlis

    SciTech Connect

    Saaban, Azizan; Zainudin, Lutfi; Bakar, Mohd Nazari Abu

    2015-05-15

    This paper intends to reveal the ability of the linear interpolation method to predict missing values in solar radiation time series. Reliable dataset is equally tends to complete time series observed dataset. The absence or presence of radiation data alters long-term variation of solar radiation measurement values. Based on that change, the opportunities to provide bias output result for modelling and the validation process is higher. The completeness of the observed variable dataset has significantly important for data analysis. Occurrence the lack of continual and unreliable time series solar radiation data widely spread and become the main problematic issue. However, the limited number of research quantity that has carried out to emphasize and gives full attention to estimate missing values in the solar radiation dataset.

  1. Characterization of the Earth Radiation Budget Experiment radiometers

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Barkstrom, B. R.

    1991-01-01

    The Earth Radiation Budget Experiment (ERBE) scanning radiometers were used to measure the earth's radiation fields during the period November 1984 through February 1990. The ERBE radiometric packages were placed into orbit aboard the Earth Radiation Budget Satellite (ERBS) and the NOAA-9 and NOAA-10 spacecraft platforms. In each radiometric package, thermistor bolometers were used as detection elements for the broadband total (0,2 - 50,0 microns), shortwave (0,2 - 5,0 microns), and longwave (5,0 - 50,0 microns) spectral regions. Flight calibration facilities were built into each of the spacecraft radiometric packages. The flight facilities consisted of black bodies, tungsten lamps, and silicon photodiodes. The black bodies and tungsten lamps were found to be reliable at precision levels approaching 0,5 percent over a five-year period. The photodiodes were found to degrade more than 2 percent during the first year in orbit. In this paper, the flight calibration systems for the ERBE scanning radiometers are described along with the resultant measurements.

  2. Observed perturbations of the Earth's Radiation Budget - A response to the El Chichon stratospheric aerosol layer?

    NASA Technical Reports Server (NTRS)

    Ardanuy, P. E.; Kyle, H. L.

    1986-01-01

    The Earth Radiation Budget experiment, launched aboard the Nimbus-7 polar-orbiting spacecraft in late 1978, has now taken over seven years of measurements. The dataset, which is global in coverage, consists of the individual components of the earth's radiation budget, including longwave emission, net radiation, and both total and near-infrared albedos. Starting some six months after the 1982 eruption of the El Chichon volcano, substantial long-lived positive shortwave irradiance anomalies were observed by the experiment in both the northern and southern polar regions. Analysis of the morphology of this phenomena indicates that the cause is the global stratospheric aerosol layer which formed from the cloud of volcanic effluents. There was little change in the emitted longwave in the polar regions. At the north pole the largest anomaly was in the near-infrared, but at the south pole the near UV-visible anomaly was larger. Assuming an exponential decay, the time constant for the north polar, near-infrared anomaly was 1.2 years. At mid- and low latitudes the effect of the El Chichon aerosol layer could not be separated from the strong reflected-shortwave and emitted-longwave perturbations issuing from the El Nino/Southern Oscillation event of 1982-83.

  3. Simulation and Correction of Triana-Viewed Earth Radiation Budget with ERBE/ISCCP Data

    NASA Technical Reports Server (NTRS)

    Huang, Jian-Ping; Minnis, Patrick; Doelling, David R.; Valero, Francisco P. J.

    2002-01-01

    This paper describes the simulation of the earth radiation budget (ERB) as viewed by Triana and the development of correction models for converting Trianaviewed radiances into a complete ERB. A full range of Triana views and global radiation fields are simulated using a combination of datasets from ERBE (Earth Radiation Budget Experiment) and ISCCP (International Satellite Cloud Climatology Project) and analyzed with a set of empirical correction factors specific to the Triana views. The results show that the accuracy of global correction factors to estimate ERB from Triana radiances is a function of the Triana position relative to the Lagrange-1 (L1) or the Sun location. Spectral analysis of the global correction factor indicates that both shortwave (SW; 0.2 - 5.0 microns) and longwave (LW; 5 -50 microns) parameters undergo seasonal and diurnal cycles that dominate the periodic fluctuations. The diurnal cycle, especially its amplitude, is also strongly dependent on the seasonal cycle. Based on these results, models are developed to correct the radiances for unviewed areas and anisotropic emission and reflection. A preliminary assessment indicates that these correction models can be applied to Triana radiances to produce the most accurate global ERB to date.

  4. Large Scale Surface Radiation Budget from Satellite Observation

    NASA Technical Reports Server (NTRS)

    Pinker, R. T.

    1995-01-01

    During the current reporting period, the focus of our work was on preparing and testing an improved version of our Surface Radiation Budget algorithm for processing the ISCCP D1 data routinely at the SRB Satellite Data Analysis Center (SDAC) at NASA Langley Research Center. The major issues addressed are related to gap filling and to testing whether observations made from ERBE could be used to improve current procedures of converting narrowband observations, as available from ISCCP, into broadband observations at the TOA. The criteria for selecting the optimal version are to be based on results of intercomparison with ground truth.

  5. In-Orbit Earth Radiation Budget Satellite (ERBS) Battery Switch

    NASA Technical Reports Server (NTRS)

    Ahmad, Anisa; Enciso, Marlon; Rao, Gopalakrishna

    1999-01-01

    This presentation reviews the history of the Earth Radiation Budget Satellite (ERBS) and the problems which were experienced with the batteries. After two cells shorted on the first Battery, the decision was made to take battery 1 of line in late 1992. This left the second battery supporting all loads. The second battery began to experience problems in 1998 into 1999. The decision was made to bring the first battery on line and take the second battery off line. The steps to switching the batteries are reviewed, and the results are discussed.

  6. Influence of aerosol vertical distribution on radiative budget and climate

    NASA Astrophysics Data System (ADS)

    Nabat, Pierre; Michou, Martine; Saint-Martin, David; Watson, Laura

    2016-04-01

    Aerosols interact with shortwave and longwave radiation with ensuing consequences on radiative budget and climate. Aerosols are represented in climate models either using an interactive aerosol scheme including prognostic aerosol variables, or using climatologies, such as monthly aerosol optical depth (AOD) fields. In the first case, aerosol vertical distribution can vary rapidly, at a daily or even hourly scale, following the aerosol evolution calculated by the interactive scheme. On the contrary, in the second case, a fixed aerosol vertical distribution is generally imposed by climatological profiles. The objective of this work is to study the impact of aerosol vertical distribution on aerosol radiative forcing, with ensuing effects on climate. Simulations have thus been carried out using CNRM-CM, which is a global climate model including an interactive aerosol scheme representing the five main aerosol species (desert dust, sea-salt, sulfate, black carbon and organic matter). Several multi-annual simulations covering the past recent years are compared, including either the prognostic aerosol variables, or monthly AOD fields with different aerosol vertical distributions. In the second case, AOD fields directly come from the first simulation, so that all simulations have the same integrated aerosol loads. The results show that modifying the aerosol vertical distribution has a significant impact on radiative budget, with consequences on global climate. These differences, highlighting the importance of aerosol vertical distribution in climate models, probably come from the modification of atmospheric circulation induced by changes in the heights of the different aerosols. Besides, nonlinear effects in the superposition of aerosol and clouds reinforce the impact of aerosol vertical distribution, since aerosol radiative forcing depends highly upon the presence of clouds, and upon the relative vertical position of aerosols and clouds.

  7. Clouds, surface temperature, and the tropical and subtropical radiation budget

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.; Kyle, H. Lee

    1980-01-01

    Solar energy drives both the Earth's climate and biosphere, but the absorbed energy is unevenly distributed over the Earth. The tropical regions receive excess energy which is then transported by atmospheric and ocean currents to the higher latitudes. All regions at a given latitude receive the same top of the atmosphere solar irradiance (insolation). However, the net radiation received from the Sun in the tropics and subtropics varies greatly from one region to another depending on local conditions. Over land, variations in surface albedo are important. Over both land and ocean, surface temperature, cloud amount, and cloud type are also important. The Nimbus-7 cloud and Earth radiation budget (ERB) data sets are used to examine the affect of these parameters.

  8. Investigation of scene identification algorithms for radiation budget measurements

    NASA Technical Reports Server (NTRS)

    Diekmann, F. J.

    1986-01-01

    The computation of Earth radiation budget from satellite measurements requires the identification of the scene in order to select spectral factors and bidirectional models. A scene identification procedure is developed for AVHRR SW and LW data by using two radiative transfer models. These AVHRR GAC pixels are then attached to corresponding ERBE pixels and the results are sorted into scene identification probability matrices. These scene intercomparisons show that there generally is a higher tendency for underestimation of cloudiness over ocean at high cloud amounts, e.g., mostly cloudy instead of overcast, partly cloudy instead of mostly cloudy, for the ERBE relative to the AVHRR results. Reasons for this are explained. Preliminary estimates of the errors of exitances due to scene misidentification demonstrates the high dependency on the probability matrices. While the longwave error can generally be neglected the shortwave deviations have reached maximum values of more than 12% of the respective exitances.

  9. Science support for the Earth radiation budget experiment

    NASA Technical Reports Server (NTRS)

    Coakley, James A., Jr.

    1994-01-01

    The work undertaken as part of the Earth Radiation Budget Experiment (ERBE) included the following major components: The development and application of a new cloud retrieval scheme to assess errors in the radiative fluxes arising from errors in the ERBE identification of cloud conditions. The comparison of the anisotropy of reflected sunlight and emitted thermal radiation with the anisotropy predicted by the Angular Dependence Models (ADM's) used to obtain the radiative fluxes. Additional studies included the comparison of calculated longwave cloud-free radiances with those observed by the ERBE scanner and the use of ERBE scanner data to track the calibration of the shortwave channels of the Advanced Very High Resolution Radiometer (AVHRR). Major findings included: the misidentification of cloud conditions by the ERBE scene identification algorithm could cause 15 percent errors in the shortwave flux reflected by certain scene types. For regions containing mixtures of scene types, the errors were typically less than 5 percent, and the anisotropies of the shortwave and longwave radiances exhibited a spatial scale dependence which, because of the growth of the scanner field of view from nadir to limb, gave rise to a view zenith angle dependent bias in the radiative fluxes.

  10. Processes linking the hydrological cycle and the atmospheric radiative budget

    NASA Astrophysics Data System (ADS)

    Fueglistaler, Stephan; Dinh, Tra

    2016-04-01

    We study the response of the strength of the global hydrological cycle to changes in carbon dioxide (CO2) using the HiRAM General Circulation Model developed at the Geophysical Fluid Dynamics Laboratory (GFDL), with the objective to better connect the well-known energetic constraints to physical processes. We find that idealized model setups using a global slab ocean and annual mean insolation give similar scalings as coupled atmosphere-ocean models with realistic land and topography. Using the surface temperatures from the slab ocean runs, we analyse the response in the atmospheric state and hydrological cycle separately for a change in CO2 (but fixed surface temperature), and for a change in surface temperature (but fixed CO2). The former perturbation is also referred to as the "fast" response, whereas the latter is commonly used to diagnose a model's climate sensitivity. As expected from the perspective of the atmospheric radiative budget, an increase in CO2 at fixed surface temperature decreases the strength of the hydrological cycle, and an increase in surface temperature increases the strength of the hydrological cycle. However, the physical processes that connect the atmospheric radiative energy budget to the sensible and latent heat fluxes at the surface remain not well understood. The responses to the two perturbations are linearly additive, and we find that the experiment with fixed surface temperature and changes in CO2 is of great relevance to understanding the total response. This result points to the importance of local radiative heating rate changes rather than just the net atmospheric radiative loss of energy. Although larger in magnitude, the response to changes in surface temperature is dominated by the temperature dependence of the water vapor pressure, but in both cases changes in near-surface relative humidity are very important.

  11. The next step in Earth radiation budget measurements

    NASA Astrophysics Data System (ADS)

    Wiscombe, Warren; Chiu, Christine

    2013-05-01

    Space-based Earth Radiation Budget (ERB) measurements are ready to take their next major evolutionary step beyond the ERBE three-satellite constellation of the 1980s. This step would complete the ERBE vision by using not just three but dozens of satellites, and it would complete the GERB vision by providing global diurnal cycle. Such a large constellation would measure true diurnal cycle, without long chains of assumptions and extrapolations, allowing ERB to take its place alongside the other synoptic variables that are assimilated in weather and climate models, and bringing ERB back to a forefront research area. This constellation approach would make it possible to study ERB for rapidly evolving large-scale phenomena. It would also allow, for the first time, the measurement of the true Earth Radiation Imbalance, a crucial quantity, much in the news of late, for testing climate models and for predicting the future course of global warming. Among many side benefits, the greatest would be that all interested nations could participate. Such nations would merely need to meet the instrument functional requirements and find rides to space, and the system could thus grow with time, allowing continuously improved sampling, rapid deployment of new technologies with minimal damage to data continuity, and economies of scale. This is really the perfect ERB system for a budget-constrained decade.

  12. The Earth Radiation Budget Experiment - Early validation results

    NASA Technical Reports Server (NTRS)

    Smith, G. L.; Barkstrom, B. R.; Harrison, E. F.; Huck, F. O.; Cess, R.; Coakley, J.; Duncan, C.; King, M.; Mecherikunnel, A.; Gruber, A.

    1986-01-01

    The primary techniques used to obtain and validate the data of the Earth Radiation Budget Experiment (ERBE) are described, together with preliminary results of the validation. The ERBE consists of radiometers aboard the ERB Satellite, dedicated to a 57-deg orbit, and each of the two NOAA meteorological spacecraft (NOAA 9 and NOAA G) in near polar orbits. The radiometers include scanning narrow field-of-view (FOV) and nadir-looking wide and medium FOV radiometers, and a solar monitoring channel. Measurements of the solar constant by the solar monitors, and the wide and medium FOV radiometers of the ERB and the NOAA 9 spacecraft agree within a fraction of a percent. Comparison of the wide and medium FOV radiometers with the scanning radiometers showed an agreement of 1 to 4 percent. The multiple ERBE satellites are acquiring the first global measurements of regional scale-diurnal variations in the earth's radiation budget. These were verified by comparison with the high-temporal-resolution geostationary satellite data.

  13. The Earth Radiation Budget (ERB) experiment - An overview

    NASA Technical Reports Server (NTRS)

    Jacobowitz, H.; Soule, H. V.; Kyle, H. L.; House, F. B.

    1984-01-01

    The development of ERB observational systems is traced from its beginnings in the late 1950's through to the current ERB on the Nimbus 7 satellite. The instruments comprising the current 22-channel ERB experiment are described in some detail. Noteworthy are the inclusion in one solar channel, of a self-calibrating cavity to measure the solar constant and the use of biaxial scanning telescopes to determine the angular reflection and emission model required for processing the narrow-angle radiometric data. A fairly detailed description of the prelaunch and in-flight calibrations is given along with an analysis of the radiometric performance of the instruments. The data processing system is traced with the aid of a schematic flow diagram showing the steps required to produce the many tape and microfilm products archived. Future plans for improving the quality and accuracy of the data products are discussed. Finally, the upcoming Earth Radiation Budget Experiment (ERBE) is briefly mentioned. It will be capable of simultaneously measuring the radiation budget from three satellites, each having a different equator crossing time and angle.

  14. Urban Surface Radiative Energy Budgets Determined Using Aircraft Scanner Data

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.; Estes, Maury G.; Arnold, James E. (Technical Monitor)

    2002-01-01

    the surface energy budget. Knowledge of it is important in any attempt to describe the radiative and mass fluxes which occur at the surface. Use of energy terms in modeling surface energy budgets allows the direct comparison of various land surfaces encountered in a urban landscape, from vegetated (forest and herbaceous) to non-vegetated (bare soil, roads, and buildings). These terms are also easily measured using remote sensing from aircraft or satellite platforms allowing one to examine the spacial variability. The partitioning of energy budget terms depends on the surface type. In natural landscapes, the partitioning is dependent on canopy biomass, leaf area index, aerodynamic roughness, and moisture status, all of which are influenced by the development stage of the ecosystem. In urban landscapes, coverage by man-made materials substantially alters the surface face energy budget. The remotely sensed data obtained from aircraft and satellites, when properly calibrated allows the measurement of important terms in the radiative surface energy budget a urban landscape scale.

  15. Cloud-radiative forcing and climate - Results from the Earth Radiation Budget Experiment

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.; Cess, R. D.; Harrison, E. F.; Minnis, P.; Barkstrom, B. R.

    1989-01-01

    The spaceborne Earth Radiation Budget Experiment was begun in 1984 to obtain quantitative estimates of the global distributions of cloud-radiative forcing. The magnitude of the observed net cloud forcing is about four times greater than the expected value of radiative forcing from a doubling of CO2; the shortwave and longwave components of cloud forcing are about 10 times as large as those for a CO2 doubling. Small changes in the cloud-radiative forcing fields can therefore play a significant role as a climate-feedback mechanism.

  16. Influence of two convection schemes on the radiative energy budget

    NASA Astrophysics Data System (ADS)

    Li, L.

    2010-12-01

    The authors use the Grid-point Atmospheric Model of IAP LASG version 1.0 (GAMIL1.0) to investigate impacts of different convective schemes on the energy budget. The two convective schemes are Zhang and McFarlance (1995) /Hack (1994) (ZM) and Tiedtke (1989) / Nordeng (1994) (TN). Two simulations are performed: one with the ZM scheme (EX_ZM) and the other with the TN scheme (EX_TN). The results indicate that, during the convective process, more water vapor consumption and temperature increment are found in EX_ZM, especially in lower model layer, its environment is therefore very dry. In contrast, there is a moister atmosphere in EX_TN, which favors low cloud formation and large-scale condensation, and hence more low cloud fraction, cloud water mixing ratio and deeper cloud extinction optical depth are simulated, reflecting more solar radiation flux in EX_TN. This explains why the TN scheme underestimates the net shortwave radiation flux at the top of the atmosphere and at surface. In addition, convection influences longwave radiative, surface sensible and latent heat fluxes through changes in cloud emissivity and precipitation.

  17. Influence of two convection schemes on the radiative energy budget

    NASA Astrophysics Data System (ADS)

    Li, Lijuan; Wang, Bin

    2010-05-01

    The authous use the Grid-point Atmospheric Model of IAP LASG version 1.0 (GAMIL1.0) to investigate impacts of different convective schemes on the energy budget. The two convective schemes are Zhang and McFarlance (1995) /Hack (1994) (ZM) and Tiedtke (1989) / Nordeng (1994) (TN). Two simulations are performed: one with the ZM scheme (EX_ZM) and the other with the TN scheme (EX_TN). The results indicate that, duiring the convective process, more water vapor consumption and temperature increment are found in EX_ZM, especially in lower model layer, its environment is therefore very dry. In contrast, there is a moister atmosphere in EX_TN, which favors low cloud formation and large-scale condensation, and hence more low cloud fraction, cloud water mixing ratio and deeper cloud extinction optical depth are simulated, reflecting more solar radiation flux in EX_TN. This explains why the TN scheme underestimates the net shortwave radiation flux at the top of the atmosphere and at surface. In addition, convection influences longwave radiative, surface sensible and latent heat fluxes through changes in cloud emissivity and precipitation.

  18. Earth Radiation Budget Experiment scanner radiometric calibration results

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Gibson, M. A.; Thomas, Susan; Meekins, Jeffrey L.; Mahan, J. R.

    1990-01-01

    The Earth Radiation Budget Experiment (ERBE) scanning radiometers are producing measurements of the incoming solar, earth/atmosphere-reflected solar, and earth/atmosphere-emitted radiation fields with measurement precisions and absolute accuracies, approaching 1 percent. ERBE uses thermistor bolometers as the detection elements in the narrow-field-of-view scanning radiometers. The scanning radiometers can sense radiation in the shortwave, longwave, and total broadband spectral regions of 0.2 to 5.0, 5.0 to 50.0, and 0.2 to 50.0 micrometers, respectively. Detailed models of the radiometers' response functions were developed in order to design the most suitable calibration techniques. These models guided the design of in-flight calibration procedures as well as the development and characterization of a vacuum-calibration chamber and the blackbody source which provided the absolute basis upon which the total and longwave radiometers were characterized. The flight calibration instrumentation for the narror-field-of-view scanning radiometers is presented and evaluated.

  19. The Earth Radiation Budget Experiment - Science and implementation

    NASA Technical Reports Server (NTRS)

    Barkstrom, B. R.; Smith, G. L.

    1986-01-01

    This paper gives an overview of the Earth Radiation Budget Experiment. The experiment consists of scanning and nonscanning radiometer packages on three spacecraft. One is a satellite with a 57 deg, inclination orbit which precesses around the earth once every 2 months. Packages are also flown on the sun-synchronous NOAA-F and NOAA-G operational meteorological satellites. The scanning radiometer includes three channels: shortwave, long-wave, and total. The nonscanner package encompasses a pair of wide-field-of-view radiometers and a pair of medium-field-of-view radiometers. Each pair consists of a total and a shortwave radiometer. The scientific importance and objectives of the mission are described, including the need for the three spacecraft and the utility of the complementary types of radiometers.

  20. The earth radiation budget experiment: Early validation results

    NASA Astrophysics Data System (ADS)

    Smith, G. Louis; Barkstrom, Bruce R.; Harrison, Edwin F.

    The Earth Radiation Budget Experiment (ERBE) consists of radiometers on a dedicated spacecraft in a 57° inclination orbit, which has a precessional period of 2 months, and on two NOAA operational meteorological spacecraft in near polar orbits. The radiometers include scanning narrow field-of-view (FOV) and nadir-looking wide and medium FOV radiometers covering the ranges 0.2 to 5 μm and 5 to 50 μm and a solar monitoring channel. This paper describes the validation procedures and preliminary results. Each of the radiometer channels underwent extensive ground calibration, and the instrument packages include in-flight calibration facilities which, to date, show negligible changes of the instruments in orbit, except for gradual degradation of the suprasil dome of the shortwave wide FOV (about 4% per year). Measurements of the solar constant by the solar monitors, wide FOV, and medium FOV radiometers of two spacecraft agree to a fraction of a percent. Intercomparisons of the wide and medium FOV radiometers with the scanning radiometers show agreement of 1 to 4%. The multiple ERBE satellites are acquiring the first global measurements of regional scale diurnal variations in the Earth's radiation budget. These diurnal variations are verified by comparison with high temporal resolution geostationary satellite data. Other principal investigators of the ERBE Science Team are: R. Cess, SUNY, Stoneybrook; J. Coakley, NCAR; C. Duncan, M. King and A Mecherikunnel, Goddard Space Flight Center, NASA; A. Gruber and A.J. Miller, NOAA; D. Hartmann, U. Washington; F.B. House, Drexel U.; F.O. Huck, Langley Research Center, NASA; G. Hunt, Imperial College, London U.; R. Kandel and A. Berroir, Laboratory of Dynamic Meteorology, Ecole Polytechique; V. Ramanathan, U. Chicago; E. Raschke, U. of Cologne; W.L. Smith, U. of Wisconsin and T.H. Vonder Haar, Colorado State U.

  1. Arctic ocean radiative fluxes and cloud forcing estimated from the ISCCP C2 cloud dataset, 1983-1990

    NASA Technical Reports Server (NTRS)

    Schweiger, Axel J.; Key, Jeffrey R.

    1994-01-01

    Radiative fluxes and cloud forcings for the ocean areas of the Arctic are computed from the monthly cloud product of the International Satellite Cloud Climatology Project (ISCCP) for 1983-90. Spatially averaged short-wave fluxes are compared well with climatological values, while downwelling longwave fluxes are significantly lower. This is probably due to the fact that the ISCCP cloud amounts are underestimates. Top-of-the-atmosphere radiative fluxes are in excellent agreement with measurements from the Earth Radiation Budget Experiment (ERBE). Computed cloud forcings indicate that clouds have a warming effect at the surface and at the top of the atmosphere during winter and a cooling effect during summer. The net radiative effect of clouds is larger at the surface during winter but greater at the top of the atmosphere during summer. Overall the net radiative effect of clouds at the top of the atmosphere is one of cooling. This is in contrast to a previous result from ERBE data showing arctic cloud forcings have a net warming effect. Sensitivities to errors in input parameters are generally greater during winter with cloud amount being the most important paarameter. During summer the surface radiation balance is most sensitive to errors in the measurements of surface reflectance. The results are encouraging, but the estimated error of 20 W/sq m in surface net radiative fluxes is too large, given that estimates of the net radiative warming effect due to a doubling of CO2 are on the order of 4 W/sq m. Because it is difficult to determine the accuracy of results with existing in situ observations, it is recommended that the development of improved algorithms for the retrieval of surface radiative properties be accompanied by the simultaneous assembly of validation datasets.

  2. Deep Valley Radiation and Surface Energy Budget Microclimates. Part II: Energy Budget.

    NASA Astrophysics Data System (ADS)

    Whiteman, C. David; Allwine, K. Jerry; Fritschen, Leo J.; Orgill, Montie M.; Simpson, James R.

    1989-06-01

    Surface energy budget measurements were made concurrently at five sites located on the valley floor, sidewalls and ridgetop of Colorado's 650-m deep Brush Creek Valley (39°32N, 108°24W) on the nearly clear day of 25 September 1984 using the Bowen ratio energy budget technique.Daily average surface heat flux values for a natural sagebrush ecosystem on the floor of the semiarid valley included an input of 109 W m2 net all-wave radiation and 15 W m2 ground heat flux, and a loss of 48 W m2 latent heat flux and 76 W m2 sensible heat flux. Significant differences in instantaneous, daily, and daytime fluxes occurred from site to site as a function of slope aspect and inclination angles and surface properties, including vegetation cover and soil moisture.Strong contrasts in instantaneous latent and sensible heat fluxes occurred between the opposing northeast-and southwest-facing sidewalls of the valley as solar insolation varied through the course of the day and as shadows propagated across the valley. This differential heating and moistening of the air above the opposing slopes produces cross valley circulations and the resulting moisture and heat transports observed by other investigators.The ridgetop site, with a nearly unobstructed view of the sky and the longest daytime period, received the highest daily total of net radiation (12.12 MJ m2) and lost the highest sensible heat flux total (8.49 MJ m2). The dry southwest-facing slope produced a nearly equivalent daily total sensible heat flux, despite the later sunrise and earlier sunset at this site, because of the dry soil, lack of vegetation, and intense afternoon radiation on the sloping surface. One of the valley floor sites, located in a wheatgrass meadow, produced a daily total latent heat flux (7.37 MJ m2) over four times larger than the dry southwest-facing sidewall. Mean daytime Bowen ratios varied from 0.86 at the valley floor meadow site to 7.60 on the southwest-facing sidewall.Daily total sensible heat

  3. Linking hemispheric radiation budgets, ITCZ shifts, and monsoons

    NASA Astrophysics Data System (ADS)

    McGee, D.; Donohoe, A.; Marshall, J.; Ferreira, D.

    2014-12-01

    We explore the relationship between the Intertropical Convergence Zone (ITCZ), hemispheric heat budgets, and monsoon strength in past climates. Modern seasonal and interannual variability in the globally-averaged position of the ITCZ (as estimated by the tropical precipitation centroid) reflects the interhemispheric heat balance, with the ITCZ's displacement toward the warmer hemisphere directly proportional to atmospheric heat transport into the cooler hemisphere. Model simulations suggest that ITCZ shifts are likely to have obeyed the same relationship with interhemispheric heat transport in response to past changes in orbital parameters, ice sheets, and ocean circulation. This relationship implies that even small (±1 degree) shifts in the mean (annually and zonally averaged) ITCZ require large changes in hemispheric heat budgets, placing tight bounds on mean ITCZ shifts in past climates. To test this energetic argument, we use the observed relationship between mean ITCZ position and tropical sea surface temperature (SST) gradients in combination with proxy-based estimates of past SST gradients to show that mean ITCZ shifts for the mid-Holocene, Heinrich Stadial 1 and Last Glacial Maximum are not likely to have been more than 1 degree latitude from its present mean position. In exploring these results, we provide brief descriptions of the estimated radiation budgets of past climates that help demonstrate how different climate forcings change the interhemispheric heat balance and thus the ITCZ's global-mean position. We also address the seeming inconsistency between the small ITCZ shifts indicated by energetic constraints and the large changes in monsoon rainfall suggested by proxy data. We compare global-average and regional-scale tropical precipitation in observations and explore their responses to a variety of forcings (orbital changes, ice sheets, hosing) in models. These comparisons make clear that monsoon precipitation can change substantially even in the

  4. Comparison of Radiative Energy Flows in Observational Datasets and Climate Modeling

    NASA Technical Reports Server (NTRS)

    Raschke, Ehrhard; Kinne, Stefan; Rossow, William B.; Stackhouse, Paul W. Jr.; Wild, Martin

    2016-01-01

    This study examines radiative flux distributions and local spread of values from three major observational datasets (CERES, ISCCP, and SRB) and compares them with results from climate modeling (CMIP3). Examinations of the spread and differences also differentiate among contributions from cloudy and clear-sky conditions. The spread among observational datasets is in large part caused by noncloud ancillary data. Average differences of at least 10Wm(exp -2) each for clear-sky downward solar, upward solar, and upward infrared fluxes at the surface demonstrate via spatial difference patterns major differences in assumptions for atmospheric aerosol, solar surface albedo and surface temperature, and/or emittance in observational datasets. At the top of the atmosphere (TOA), observational datasets are less influenced by the ancillary data errors than at the surface. Comparisons of spatial radiative flux distributions at the TOA between observations and climate modeling indicate large deficiencies in the strength and distribution of model-simulated cloud radiative effects. Differences are largest for lower-altitude clouds over low-latitude oceans. Global modeling simulates stronger cloud radiative effects (CRE) by +30Wmexp -2) over trade wind cumulus regions, yet smaller CRE by about -30Wm(exp -2) over (smaller in area) stratocumulus regions. At the surface, climate modeling simulates on average about 15Wm(exp -2) smaller radiative net flux imbalances, as if climate modeling underestimates latent heat release (and precipitation). Relative to observational datasets, simulated surface net fluxes are particularly lower over oceanic trade wind regions (where global modeling tends to overestimate the radiative impact of clouds). Still, with the uncertainty in noncloud ancillary data, observational data do not establish a reliable reference.

  5. Investigation of Next-Generation Earth Radiation Budget Radiometry

    NASA Technical Reports Server (NTRS)

    Coffey, Katherine L.; Mahan, J. R.

    1999-01-01

    The current effort addresses two issues important to the research conducted by the Thermal Radiation Group at Virginia Tech. The first research topic involves the development of a method which can properly model the diffraction of radiation as it enters an instrument aperture. The second topic involves the study of a potential next-generation space-borne radiometric instrument concept. Presented are multiple modeling efforts to describe the diffraction of monochromatic radiant energy passing through an aperture for use in the Monte-Carlo ray-trace environment. Described in detail is a deterministic model based upon Heisenberg's uncertainty principle and the particle theory of light. This method is applicable to either Fraunhofer or Fresnel diffraction situations, but is incapable of predicting the secondary fringes in a diffraction pattern. Also presented is a second diffraction model, based on the Huygens-Fresnel principle with a correcting obliquity factor. This model is useful for predicting Fraunhofer diffraction, and can predict the secondary fringes because it keeps track of phase. NASA is planning for the next-generation of instruments to follow CERES (Clouds and the Earth's Radiant Energy System), an instrument which measures components of the Earth's radiant energy budget in three spectral bands. A potential next-generation concept involves modification of the current CERES instrument to measure in a larger number of wavelength bands. This increased spectral partitioning would be achieved by the addition of filters and detectors to the current CERES geometry. The capacity of the CERES telescope to serve for this purpose is addressed in this thesis.

  6. CERES: The Next Generation of Earth Radiation Budget Measurements

    NASA Technical Reports Server (NTRS)

    Gibson, Gary G.; Wielicki, Bruce A.

    1999-01-01

    NASA's Earth Observing System (EOS) is part of an international program for studying the Earth from space using a multiple-instrument, multiple-satellite approach. The Clouds and the Earth's Radiant Energy System (CERES) experiment is designed to monitor changes in the Earth s radiant energy system and cloud systems and to provide these data with sufficient simultaneity and accuracy to examine critical cloud/climate feedback mechanisms which may play a major role in determining future changes in the climate system. The first EOS satellite (Terra), scheduled for launch this year, and the EOS-PM satellite, to be launched in late 2000, will each carry two CERES instruments. The first CERES instrument was launched in 1997 on the Tropical Rainfall Measuring Mission (TRMM) satellite. The CERES TRMM data show excellent instrument stability and a factor of 2 to 3 less error than previous Earth radiation budget missions. The first CERES data products have been validated and archived. The data consist of instantaneous longwave and shortwave broadband radiances, top-of-atmosphere fluxes, scene types, and time and space averaged fluxes and albedo. A later data product will combine CERES radiances and high- resolution imager data to produce cloud properties and fluxes throughout the atmosphere and at the surface.

  7. Use of Maple Seeding Canopy Reflectance Dataset for Validation of SART/LEAFMOD Radiative Transfer Model

    NASA Technical Reports Server (NTRS)

    Bond, Barbara J.; Peterson, David L.

    1999-01-01

    This project was a collaborative effort by researchers at ARC, OSU and the University of Arizona. The goal was to use a dataset obtained from a previous study to "empirically validate a new canopy radiative-transfer model (SART) which incorporates a recently-developed leaf-level model (LEAFMOD)". The document includes a short research summary.

  8. Simulation of a numerical filter for enhancing earth radiation budget measurements

    NASA Technical Reports Server (NTRS)

    Green, R. N.

    1981-01-01

    The Earth Radiation Budget Experiment has the objective to collect the radiation budget data which are needed to determine the radiation budget at the top of the atmosphere (TOA) on a regional scale. A second objective is to determine the accuracy of the results. Three satellites will carry wide and medium field of view radiometers which measure the longwave and shortwave components of radiation. Scanning radiometers will be included to detect small spatial features. A proposal has been made to employ for the nonscanning radiometers a one-dimensional numerical filter which reduces satellite measurements to TOA radiant excitances. The numerical filter was initially formulated by House (1980). It enhances the resolution of the radiation budget along the satellite groundtrack. The accuracy of the numerical filter estimate is studied by simulating the data gathering and measurement inversion process. The results of the study are discussed, taking into account two error sources.

  9. El Nino and outgoing longwave radiation: An atlas of Nimbus-7 Earth radiation budget observations

    NASA Technical Reports Server (NTRS)

    Kyle, H. L.; Ardanuy, P. E.; Hucek, R. R.

    1986-01-01

    Five years of broadband Earth Radiation Budget (ERB) measurements taken by the Nimbus-7 ERB experiment have been archived. This five year period included the 1982 to 1983 El Nino/Southern Oscillation event, which reached its peak in January 1983 (near the beginning of the fifth data year). An outgoing longwave radiation subset of the data, for the period June 1980 to October 1983, was processed to enhance spatial resolution. This atlas contains the analyses of the resultant fields. In addition, a set of anomaly maps, based on a definition of pre-El Nino climatology, is included. Together, these two sets of maps provide the first broadband glimpse of the terrestrial outgoing longwave radiation response to the El Nino event.

  10. Earth Radiation Budget Experiment (ERBE) Data Sets for Global Environment and Climate Change Studies

    NASA Technical Reports Server (NTRS)

    Bess, T. Dale; Carlson, Ann B.; Denn, Fredrick M.

    1997-01-01

    For a number of years there has been considerable interest in the earth's radiation budget (ERB) or energy balance, and entails making the best measurements possible of absorbed solar radiation, reflected shortwave radiation (RSW), thermal outgoing longwave radiation (OLR), and net radiation. ERB data are fundamental to the development of realistic climate models and studying natural and anthropogenic perturbations of the climate. Much of the interest and investigations in the earth's energy balance predated the age of earth-orbiting satellites (Hunt et al., 1986). Beginning in the mid 1960's earth-orbiting satellites began to play an important role in making measurements of the earth's radiation flux although much effort had gone into measuring ERB parameters prior to 1960 (House et al., 1986). Beginning in 1974 and extending until the present time, three different satellite experiments (not all operating at the same time) have been making radiation budget measurements almost continually in time. Two of the experiments were totally dedicated to making radiation budget measurements of the earth, and the other experiment flown on NOAA sun-synchronous AVHRR weather satellites produced radiation budget parameters as a by-product. The heat budget data from the AVHRR satellites began collecting data in June 1974 and have operated almost continuously for 23 years producing valuable data for long term climate monitoring.

  11. History of satellite missions and measurements of the Earth Radiation Budget (1957-1984)

    NASA Technical Reports Server (NTRS)

    House, F. B.; Gruber, A.; Hunt, G. E.; Mecherikunnel, A. T.

    1986-01-01

    The history of satellite missions and their measurements of the earth radiation budget from the beginning of the space age until the present time are reviewed. The survey emphasizes the early struggle to develop instrument systems to monitor reflected shortwave and emitted long-wave exitances from the earth, and the problems associated with the interpretation of these observations from space. In some instances, valuable data sets were developed from satellite measurements whose instruments were not specifically designed for earth radiation budget observations.

  12. Re-Examination of the Observed Decadal Variability of Earth Radiation Budget Using Altitude-Corrected ERBE/ERBS Nonscanner WFOV Data

    NASA Technical Reports Server (NTRS)

    Wong, Takmeng; Wielicki, Bruce A.; Lee, Robert B.; Smith, G. Louis; Bush, Kathryn A.

    2005-01-01

    This paper gives an update on the observed decadal variability of Earth Radiation Budget using the latest altitude-corrected Earth Radiation Budget Experiment (ERBE)/Earth Radiation Budget Satellite (ERBS) Nonscanner Wide Field of View (WFOV) instrument Edition3 dataset. The effects of the altitude correction are to modify the original reported decadal changes in tropical mean (20N to 20S) longwave (LW), shortwave (SW), and net radiation between the 1980s and the 1990s from 3.1/-2.4/-0.7 to 1.6/-3.0/1.4 Wm(sup -2) respectively. In addition, a small SW instrument drift over the 15-year period was discovered during the validation of the WFOV Edition3 dataset. A correction was developed and applied to the Edition3 dataset at the data user level to produce the WFOV Edition3_Rev1 dataset. With this final correction, the ERBS Nonscanner observed decadal changes in tropical mean LW, SW, and net radiation between the 1980s and the 1990s now stand at 0.7/-2.1/1.4 Wm(sup -2), respectively, which are similar to the observed decadal changes in the HIRS Pathfinder OLR and the ISCCP FD record; but disagree with the AVHRR Pathfinder ERB record. Furthermore, the observed interannual variability of near-global ERBS WFOV Edition3_Rev1 net radiation is found to be remarkably consistent with the latest ocean heat storage record for the overlapping time period of 1993 to 1999. Both data sets show variations of roughly 1.5 Wm(sup -2) in planetary net heat balance during the 1990s.

  13. Evidence for Large Decadal Variability in the Tropical Mean Radiative Energy Budget

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Wong, Takmeng; Allan, Richard; Slingo, Anthony; Kiehl, Jeffrey T.; Soden, Brian J.; Gordon, C. T.; Miller, Alvin J.; Yang, Shi-Keng; Randall, David R.; Arnold, James E. (Technical Monitor)

    2001-01-01

    It is widely assumed that variations in the radiative energy budget at large time and space scales are very small. We present new evidence from a compilation of over two decades of accurate satellite data that the top-of-atmosphere (TOA) tropical radiative energy budget is much more dynamic and variable than previously thought. We demonstrate that the radiation budget changes are caused by changes In tropical mean cloudiness. The results of several current climate model simulations fall to predict this large observed variation In tropical energy budget. The missing variability in the models highlights the critical need to Improve cloud modeling in the tropics to support Improved prediction of tropical climate on Inter-annual and decadal time scales. We believe that these data are the first rigorous demonstration of decadal time scale changes In the Earth's tropical cloudiness, and that they represent a new and necessary test of climate models.

  14. Cloud-radiative forcing and climate: results from the Earth radiation budget experiment.

    PubMed

    Ramanathan, V; Cess, R D; Harrison, E F; Minnis, P; Barkstrom, B R; Ahmad, E; Hartmann, D

    1989-01-01

    The study of climate and climate change is hindered by a lack of information on the effect of clouds on the radiation balance of the earth, referred to as the cloud-radiative forcing. Quantitative estimates of the global distributions of cloud-radiative forcing have been obtained from the spaceborne Earth Radiation Budget Experiment (ERBE) launched in 1984. For the April 1985 period, the global shortwave cloud forcing [-44.5 watts per square meter (W/m(2))] due to the enhancement of planetary albedo, exceeded in magnitude the longwave cloud forcing (31.3 W/m(2)) resulting from the greenhouse effect of clouds. Thus, clouds had a net cooling effect on the earth. This cooling effect is large over the mid-and high-latitude oceans, with values reaching -100 W/m(2). The monthly averaged longwave cloud forcing reached maximum values of 50 to 100 W/m(2) over the convectively disturbed regions of the tropics. However, this heating effect is nearly canceled by a correspondingly large negative shortwave cloud forcing, which indicates the delicately balanced state of the tropics. The size of the observed net cloud forcing is about four times as large as the expected value of radiative forcing from a doubling of CO(2). The shortwave and longwave components of cloud forcing are about ten times as large as those for a CO(2) doubling. Hence, small changes in the cloud-radiative forcing fields can play a significant role as a climate feedback mechanism. For example, during past glaciations a migration toward the equator of the field of strong, negative cloud-radiative forcing, in response to a similar migration of cooler waters, could have significantly amplified oceanic cooling and continental glaciation.

  15. Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment

    NASA Astrophysics Data System (ADS)

    Ramanathan, V.; Cess, R. D.; Harrison, E. F.; Minnis, P.; Barkstrom, B. R.; Ahmad, E.; Hartmann, D.

    1989-01-01

    The study of climate and climate change is hindered by a lack of information on the effect of clouds on the radiation balance of the earth, referred to as the cloud-radiative forcing. Quantitative estimates of the global distributions of cloud-radiative forcing have been obtained from the spaceborne Earth Radiation Budget Experiment (ERBE) launched in 1984. For the April 1985 period, the global shortwave cloud forcing [-44.5 watts per square meter (W/m2)] due to the enhancement of planetary albedo, exceeded in magnitude the longwave cloud forcing (31.3 W/m2) resulting from the greenhouse effect of clouds. Thus, clouds had a net cooling effect on the earth. This cooling effect is large over the mid- and high-latitude oceans, with values reaching -100 W/m2. The monthly averaged longwave cloud forcing reached maximum values of 50 to 100 W/m2 over the convectively disturbed regions of the tropics. However, this heating effect is nearly canceled by a correspondingly large negative shortwave cloud forcing, which indicates the delicately balanced state of the tropics. The size of the observed net cloud forcing is about four times as large as the expected value of radiative forcing from a doubling of CO2. The shortwave and longwave components of cloud forcing are about ten times as large as those for a CO2 doubling. Hence, small changes in the cloud-radiative forcing fields can play a significant role as a climate feedback mechanism. For example, during past glaciations a migration toward the equator of the field of strong, negative cloud-radiative forcing, in response to a similar migration of cooler waters, could have significantly amplified oceanic cooling and continental glaciation.

  16. A Global Model Simulation of Aerosol Effects of Surface Radiation Budget- Toward Understanding of the "Dimming to Brightening" Transition

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Bian, Huisheng; Yu, Hongbin

    2008-01-01

    We present a global model study on the role aerosols play in the change of solar radiation at Earth's surface that transitioned from a decreasing (dimming) trend to an increasing (brightening) trend. Our primary objective is to understand the relationship between the long-term trends of aerosol emission, atmospheric burden, and surface solar radiation. More specifically, we use the recently compiled comprehensive global emission datasets of aerosols and precursors from fuel combustion, biomass burning, volcanic eruptions and other sources from 1980 to 2006 to simulate long-term variations of aerosol distributions and optical properties, and then calculate the multi-decadal changes of short-wave radiative fluxes at the surface and at the top of the atmosphere by coupling the GOCART model simulated aerosols with the Goddard radiative transfer model. The model results are compared with long-term observational records from ground-based networks and satellite data. We will address the following critical questions: To what extent can the observed surface solar radiation trends, known as the transition from dimming to brightening, be explained by the changes of anthropogenic and natural aerosol loading on global and regional scales? What are the relative contributions of local emission and long-range transport to the surface radiation budget and how do these contributions change with time?

  17. Science support for the Earth radiation budget sensor on the Nimbus-7 spacecraft

    NASA Technical Reports Server (NTRS)

    Ingersoll, A. P.

    1982-01-01

    Experimental data supporting the Earth radiation budget sensor on the Nimbus 7 Satellite is given. The data deals with the empirical relations between radiative flux, cloudiness, and other meteorological parameters; response of a zonal climate ice sheet model to the orbital perturbations during the quaternary ice ages; and a simple parameterization for ice sheet ablation rate.

  18. WCRP surface radiation budget shortwave data product description, version 1.1

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Charlock, T. P.; Staylor, W. F.; Pinker, R. T.; Laszlo, I.; Dipasquale, R. C.; Ritchey, N. A.

    1993-01-01

    Shortwave radiative fluxes which reach the Earth's surface are key elements that influence both atmospheric and oceanic circulation. The World Climate Research Program has established the Surface Radiation Budget climatology project with the ultimate goal of determining the various components of the surface radiation budget from satellite data on a global scale. This report describes the first global product that is being produced and archived as part of that effort. The interested user can obtain the monthly global data sets free of charge using e-mail procedures.

  19. The WCRP/GEWEX Surface Radiation Budget Project Release 2: First Results at 1 Degree Resolution

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W., Jr.; Cox, Stephen J.; Gupta, Shashi K.; DiPasquale, Roberta C.; Brown, Donald E.

    1999-01-01

    The earth s surface radiative budget in the solar wavelengths (i.e., shortwave) and thermal infrared wavelengths (i.e., longwave) is an important component of Earth s global energy balance and climate. As such, it was identified as a priority need by the World Climate Research Programme (WCRP) and thus a program was instituted at NASA to estimate the radiative flux quantities at the surface from space observations. The Surface Radiation Budget (SRB) Project was created and later included as a component of the Global Energy and Water Cycle Experiment (GEWEX) under the auspices of the WCRP.

  20. Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated Clouds and TOA Radiation Budgets Using Satellite Observations. Part 2; TOA Radiation Budget and CREs

    NASA Technical Reports Server (NTRS)

    Stanfield, Ryan E.; Dong, Xiquan; Xi, Baike; Del Genio, Anthony D.; Minnis, Patrick; Doelling, David; Loeb, Norman

    2014-01-01

    In Part I of this study, the NASA GISS Coupled Model Intercomparison Project (CMIP5) and post-CMIP5 (herein called C5 and P5, respectively) simulated cloud properties were assessed utilizing multiple satellite observations, with a particular focus on the southern midlatitudes (SMLs). This study applies the knowledge gained from Part I of this series to evaluate the modeled TOA radiation budgets and cloud radiative effects (CREs) globally using CERES EBAF (CE) satellite observations and the impact of regional cloud properties and water vapor on the TOA radiation budgets. Comparisons revealed that the P5- and C5-simulated global means of clear-sky and all-sky outgoing longwave radiation (OLR) match well with CE observations, while biases are observed regionally. Negative biases are found in both P5- and C5-simulated clear-sky OLR. P5-simulated all-sky albedo slightly increased over the SMLs due to the increase in low-level cloud fraction from the new planetary boundary layer (PBL) scheme. Shortwave, longwave, and net CRE are quantitatively analyzed as well. Regions of strong large-scale atmospheric upwelling/downwelling motion are also defined to compare regional differences across multiple cloud and radiative variables. In general, the P5 and C5 simulations agree with the observations better over the downwelling regime than over the upwelling regime. Comparing the results herein with the cloud property comparisons presented in Part I, the modeled TOA radiation budgets and CREs agree well with the CE observations. These results, combined with results in Part I, have quantitatively estimated how much improvement is found in the P5-simulated cloud and radiative properties, particularly over the SMLs and tropics, due to the implementation of the new PBL and convection schemes.

  1. Spatial autocorrelation of radiation measured by the Earth Radiation Budget Experiment: Scene inhomogeneity and reciprocity violation

    NASA Technical Reports Server (NTRS)

    Davies, Roger

    1994-01-01

    The spatial autocorrelation functions of broad-band longwave and shortwave radiances measured by the Earth Radiation Budget Experiment (ERBE) are analyzed as a function of view angle in an investigation of the general effects of scene inhomogeneity on radiation. For nadir views, the correlation distance of the autocorrelation function is about 900 km for longwave radiance and about 500 km for shortwave radiance, consistent with higher degrees of freedom in shortwave reflection. Both functions rise monotonically with view angle, but there is a substantial difference in the relative angular dependence of the shortwave and longwave functions, especially for view angles less than 50 deg. In this range, the increase with angle of the longwave functions is found to depend only on the expansion of pixel area with angle, whereas the shortwave functions show an additional dependence on angle that is attributed to the occlusion of inhomogeneities by cloud height variations. Beyond a view angle of about 50 deg, both longwave and shortwave functions appear to be affected by cloud sides. The shortwave autocorrelation functions do not satisfy the principle of directional reciprocity, thereby proving that the average scene is horizontally inhomogeneous over the scale of an ERBE pixel (1500 sq km). Coarse stratification of the measurements by cloud amount, however, indicates that the average cloud-free scene does satisfy directional reciprocity on this scale.

  2. Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel

    NASA Technical Reports Server (NTRS)

    Stubenrauch, C. J.; Rossow, W. B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Getzewich, B.; Di Girolamo, L.; Guignard, A.; Heidinger, A.; Maddux, B.; Menzel, P.; Minnis, P.; Pearl, C.; Platnick, S.; Riedi, J.; Sun-Mack, S.; Walther, A.; Winker, D.; Zeng, S.; Zhao, G.

    2012-01-01

    Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the whole globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years in length. However, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provided the first coordinated intercomparison of publically available, standard global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multiangle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. A monthly, gridded database, in common format, facilitates further assessments, climate studies and the evaluation of climate models.

  3. Infrared radiation budget of the Harmattan haze. [West Africa

    NASA Technical Reports Server (NTRS)

    Kuhn, P. M.; Weickmann, H. K.

    1975-01-01

    Infrared in situ observations of the West African Harmaltan Haze during the 1974 GATE field phase were conducted to determine the radiative properties of the tropospheric phenomenon and to develop a calculation model for radiative transfer through the haze. Radiometric observations of the dust haze were analyzed for haze infrared transmission. Infrared and tropospheric cooling rates are given together with the haze volume absorption rate.

  4. Towards a Seamless Global Long-Term Earth Radiation Budget Climate Data Record

    NASA Astrophysics Data System (ADS)

    Loeb, N. G.; Priestley, K.; Minnis, P.; Smith, W. L., Jr.; Su, W.; Kratz, D. P.; Kato, S.; Doelling, D.

    2015-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation (ASR) fuels the climate system, providing the energy required for atmospheric and oceanic motions, and energy released to space in the form of outgoing longwave radiation (OLR) nearly balances ASR, ensuring a relatively stable climate. Owing to human activities, there is currently less emitted thermal radiation than absorbed solar radiation, leading to an accumulation of energy into the Earth's system, which is driving global warming. Achieving an understanding of Earth's energy flows requires an accurate description of how radiant energy at the top-of-atmosphere (TOA), within the atmosphere, and at the surface is distributed spatially, and how this changes with time. A central objective of the Clouds and the Earth's Radiant Energy System (CERES) project is the production of a long-term global climate data record of Earth's radiation budget from the TOA down to the surface along with the associated atmospheric and surface properties that influence this budget. The CERES team relies on a number of data sources, including broadband radiometers that measure incoming and reflected solar radiation and OLR, high-resolution spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. While TOA radiation budget is determined from accurate broadband radiometer measurements, the surface radiation budget is derived indirectly through radiative transfer model calculations initialized using imager-based cloud and aerosol retrievals and meteorological assimilation data. In order to accurately capture changes in Earth's radiation budget from interannual to decadal timescales, satellite instruments used to produce these data records must be radiometrically stable and the input data stream must be free of artificial discontinuities. Otherwise, distinguishing real climate system changes from

  5. The NOAA-9 Earth Radiation Budget Experiment Wide Field-of-View Data Set

    NASA Technical Reports Server (NTRS)

    Bush, Kathryn A.; Smith, G. Louis; Young, David F.

    1999-01-01

    The Earth Radiation Budget Experiment (ERBE) consisted of wide field-of-view (WFOV) radiometers and scanning radiometers for measuring outgoing longwave radiation and solar radiation reflected from the Earth. These instruments were carried by the dedicated Earth Radiation Budget Satellite (ERBS) and by the NOAA-9 and -10 operational spacecraft. The WFOV radiometers provided data from which instantaneous fluxes at the top of the atmosphere (TOA) are computed by use of a numerical filter algorithm. Monthly mean fluxes over a 5-degree equal angle grid are computed from the instantaneous TOA fluxes. The WFOV radiometers aboard the NOAA-9 spacecraft operated from February 1985 through December 1992, at which time a failure of the shortwave radiometer ended the usable data after nearly 8 years. This paper examines the monthly mean products from that data set.

  6. Observing the earth radiation budget from satellites - Past, present, and a look to the future

    NASA Technical Reports Server (NTRS)

    House, F. B.

    1985-01-01

    Satellite measurements of the radiative exchange between the planet earth and space have been the objective of many experiments since the beginning of the space age in the late 1950's. The on-going mission of the Earth Radiation Budget (ERB) experiments has been and will be to consider flight hardware, data handling and scientific analysis methods in a single design strategy. Research and development on observational data has produced an analysis model of errors associated with ERB measurement systems on polar satellites. Results show that the variability of reflected solar radiation from changing meteorology dominates measurement uncertainties. As an application, model calculations demonstrate that measurement requirements for the verification of climate models may be satisfied with observations from one polar satellite, provided there is information on diurnal variations of the radiation budget from the ERBE mission.

  7. Radiation budget and soil heat fluxes in different Arctic tundra vegetation types

    NASA Astrophysics Data System (ADS)

    Juszak, Inge; Iturrate Garcia, Maitane; Gastellu-Etchegorry, Jean-Philippe; Schaepman, Michael E.; Schaepman-Strub, Gabriela

    2016-04-01

    While solar radiation is one of the primary energy sources for warming and thawing permafrost soil, the amount of shortwave radiation reaching the soil is reduced by vegetation shading. Climate change has led to greening, shrub expansion and encroachment in many Arctic tundra regions and further changes are anticipated. These vegetation changes feed back to the atmosphere and permafrost as they modify the surface energy budget. However, canopy transmittance of solar radiation has rarely been measured or modelled for a variety of tundra vegetation types. We assessed the radiation budget of the most common vegetation types at the Kytalyk field site in North-East Siberia (70.8°N, 147.5°E) with field measurements and 3D radiative transfer modelling and linked it to soil heat fluxes. Our results show that Arctic tundra vegetation types differ in canopy albedo and transmittance as well as in soil heat flux and active layer thickness. Tussock sedges transmitted on average 56% of the incoming light and dwarf shrubs 27%. For wet sedges we found that the litter layer was very important as it reduced the average transmittance to only 6%. Model output indicated that both, albedo and transmittance, also depend on the spatial aggregation of vegetation types. We found that permafrost thaw was more strongly related to soil properties than to canopy shading. The presented radiative transfer model allows quantifying effects of the vegetation layer on the surface radiation budget in permafrost areas. The parametrised model can account for diverse vegetation types and variation of properties within types. Our results highlight small scale radiation budget and permafrost thaw variability which are indicated and partly caused by vegetation. As changes in species composition and biomass increase can influence thaw rates, small scale patterns should be considered in assessments of climate-vegetation-permafrost feedbacks.

  8. Impacts of Climate Change and Land use Changes on Land Surface Radiation and Energy Budgets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface radiation and energy budgets are critical to address a variety of scientific and application issues related to climate trends, weather predictions, hydrologic and biogeophysical modeling, and the monitoring of ecosystem health and agricultural crops. This is an introductory paper to t...

  9. Nimbus-6 and -7 Earth Radiation Budget (ERB) sensor details and component tests

    NASA Technical Reports Server (NTRS)

    Soule, H. V.; Kyle, H. L.; Jacobowitz, H.; Hickey, J.

    1983-01-01

    Construction details and operating characteristics are described for the thermopile (used in the solar and fixed-Earth channels) and the pyroelectric detector (used in the Earth-scanning channels) carried on the Nimbus 6 and the Nimbus 7 satellites for gathering Earth radiation budget data. Properties of the black coating for the detectors, and sensor testing and calibration are discussed.

  10. Data analysis and software support for the Earth radiation budget experiment

    SciTech Connect

    Edmonds, W.; Natarajan, S.

    1987-08-01

    Computer programming and data analysis efforts were performed in support of the Earth Radiation Budget Experiment (ERBE) at NASA/Langley. A brief description of the ERBE followed by sections describing software development and data analysis for both prelaunch and postlaunch instrument data are presented.

  11. Analysis of the uncertainty associated with national fossil fuel CO2 emissions datasets for use in the global Fossil Fuel Data Assimilation System (FFDAS) and carbon budgets

    NASA Astrophysics Data System (ADS)

    Song, Y.; Gurney, K. R.; Rayner, P. J.; Asefi-Najafabady, S.

    2012-12-01

    specific sectors required by FFDAS. Our results indicated that although the harmonization performed by Macknick generates better agreement among datasets, significant differences remain at national total level. For example, the CO2 emission span for most countries range from 10% to 12%; BP is generally the highest of the four datasets while IEA is typically the lowest; The US and China had the highest absolute span values but lower percentage span values compared to other countries. However, the US and China make up nearly one-half of the total global absolute span quantity. The absolute span value for the summation of national differences approaches 1 GtC/year in 2007, almost one-half of the biological "missing sink". The span value is used as a potential bias in a recalculation of global and regional carbon budgets to highlight the importance of fossil fuel CO2 emissions in calculating the missing sink. We conclude that if the harmonized span represents potential bias, calculations of the missing sink through forward budget or inverse approaches may be biased by nearly a factor of two.

  12. 1999-2003 Shortwave Characterizations of Earth Radiation Budget Satellite (ERBS)/Earth Radiation Budget Experiment (ERBE) Broadband Active Cavity Radiometer Sensors

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Smith, George L.; Wong, Takmeng

    2008-01-01

    From October 1984 through May 2005, the NASA Earth Radiation Budget Satellite (ERBS/ )/Earth Radiation Budget Experiment (ERBE)ERBE nonscanning active cavity radiometers (ACR) were used to monitor long-term changes in the earth radiation budget components of the incoming total solar irradiance (TSI), earth-reflected TSI, and earth-emitted outgoing longwave radiation (OLR). From September1984 through September 1999, using on-board calibration systems, the ERBS/ERBE ACR sensor response changes, in gains and offsets, were determined from on-orbit calibration sources and from direct observations of the incoming TSI through calibration solar ports at measurement precision levels approaching 0.5 W/sq m , at satellite altitudes. On October 6, 1999, the onboard radiometer calibration system elevation drive failed. Thereafter, special spacecraft maneuvers were performed to observe cold space and the sun in order to define the post-September 1999 geometry of the radiometer measurements, and to determine the October 1999-September 2003 ERBS sensor response changes. Analyses of these special solar and cold space observations indicate that the radiometers were pointing approximately 16 degrees away from the spacecraft nadir and on the anti-solar side of the spacecraft. The special observations indicated that the radiometers responses were stable at precision levels approaching 0.5 W/sq m . In this paper, the measurement geometry determinations and the determinations of the radiometers gain and offset are presented, which will permit the accurate processing of the October 1999 through September 2003 ERBE data products at satellite and top-of-the-atmosphere altitudes.

  13. Cloud Forcing and the Earth's Radiation Budget: New Ideas and New Observations

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.

    1997-01-01

    1. NEW PERSPECTIVES ON CLOUD-RADIATIVE FORCING. When the Earth Radiation Budget Experiment (ERBE) produced the first measurements of cloud-radiative forcing, the climate community interpreted the results from a context in which the atmosphere was a single column, strongly coupled to the Earth's surface. 2. NEW PERSPECTIVES ON CLOUD-RADIATION OBSERVATIONS. The climate community is also on the verge of adding a new dimension to its observational capability. In classic thinking about atmospheric circulation and climate, surface pressure was a readily available quantity. As meteorology developed, it was possible to develop quantitative predictions of future weather by bringing together a network of surface pressure observations and then of profiles of temperature and humidity obtained from balloons. 3. ON COMBINING OBSERVATIONS AND THE - ORY. With this new capability, it is natural to seek recognizable features in the observations we make of the Earth. There are techniques we can use to group the remotely sensed data in the individual footprints into objects that we can track. We will present one such image-processing application to radiation budget data, showing how we can interpret the radiation budget data in terms of cloud systems that are organized into systematic patterns of behavior - an ecosystem-like view of cloud behavior.

  14. Angular momentum budget of the radiational S1 ocean tide

    NASA Astrophysics Data System (ADS)

    Schindelegger, Michael; Dobslaw, Henryk; Poropat, Lea; Salstein, David; Böhm, Johannes

    2016-04-01

    The balance of diurnal S1 oceanic angular momentum (OAM) variations through torques at the sea surface and the bottom topography is validated using both a barotropic and a baroclinic numerical tide model. This analysis discloses the extent to which atmosphere-driven S1 forward simulations are reliable for use in studies of high-frequency polar motion and changes in length-of-day. Viscous and dissipative torques associated with wind stress, bottom friction, as well as internal tidal energy conversion are shown to be small, and they are overshadowed by gravitational and pressure-related interaction forces. In particular, the zonal OAM variability of S1 is almost completely balanced by the water pressure torque on the local bathymetry, whereas in the prograde equatorial case also the air pressure torque on the seafloor as well as ellipsoidal contributions from the non-spherical atmosphere and solid Earth must be taken into account. Overall, the OAM budget is well closed in both the axial and the equatorial directions, thus allowing for an identification of the main diurnal angular momentum sinks in the ocean. The physical interaction forces are found to be largest at shelf breaks and continental slopes in low latitudes, with the most dominant contribution coming from the Indonesian archipelago.

  15. Estimation of radiation budget and water balance with satellite data for savanna monitoring

    NASA Astrophysics Data System (ADS)

    Amram, Olivier; Flouzat, Guy; Cherchali, S.

    1995-01-01

    This paper presents a functional characterization of West Africa's ecological systems using satellite data. It shows the capability of spatio-temporal determination of the hydrological budget well fitted to the chlorophyllian phenology. The method includes two parts: estimation of radiation budget at the earth surface, and actual evapotranspiration and, in addition, estimation of one hydrological budget and its capability to describe and possibly to predict growth process. The estimation of evaportranspiration is made with simplified relationships proposed by Jackson and Seguin. These descriptions need a limited number of input data, and their parametrization can be deduced from the main classes of vegetation. A hydrological budget model is then established using evapotranspiration, rainfall measurement, and the estimation of ground contribution at a suitable scale. In this model, we assume that the phenological state of the plant at a given time depends on the efficient stock of water during the months preceding the state development. The results show that the concept of the estimation of radiation budget at the earth surface and actual evapotranspiration can be applied generally for large areas at fine spatial resolution and the model of efficient water shows a good adjustment with the cycle normalized difference vegetation index.

  16. Impact of Asian Dust on Global Surface Air Quality and Radiation Budget

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Yu, Hongbin; Ginoux, Paul

    2006-01-01

    Dust originating from Asian deserts and desertification areas can be transported regionally and globally to affect surface air quality, visibility, and radiation budget not only at immediate downwind locations (e.g., eastern Asia) but also regions far away from the sources (e.g., North America). Deposition of Asian dust to the North Pacific Ocean basin influences the ocean productivity. In this study, we will use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, remote sensing data form satellite and from the ground-based network, and in-situ data from aircraft and surface observations to address the following questions: - What are the effects of Asian dust on the surface air quality and visibility over Asia and North America? - What are the seasonal and spatial variations of dust deposition to the North Pacific Ocean? How does the Asian dust affect surface radiation budget?

  17. Earth radiation budget measurement from a spinning satellite: Conceptual design of detectors

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Revercomb, H. E.; Suomi, V. E.

    1975-01-01

    The conceptual design, sensor characteristics, sensor performance and accuracy, and spacecraft and orbital requirements for a spinning wide-field-of-view earth energy budget detector were investigated. The scientific requirements for measurement of the earth's radiative energy budget are presented. Other topics discussed include the observing system concept, solar constant radiometer design, plane flux wide FOV sensor design, fast active cavity theory, fast active cavity design and error analysis, thermopile detectors as an alternative, pre-flight and in-flight calibration plane, system error summary, and interface requirements.

  18. Defining Top-of-Atmosphere Flux Reference Level for Earth Radiation Budget Studies

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Kato, S.; Wielicki, B. A.

    2002-01-01

    To estimate the earth's radiation budget at the top of the atmosphere (TOA) from satellite-measured radiances, it is necessary to account for the finite geometry of the earth and recognize that the earth is a solid body surrounded by a translucent atmosphere of finite thickness that attenuates solar radiation differently at different heights. As a result, in order to account for all of the reflected solar and emitted thermal radiation from the planet by direct integration of satellite-measured radiances, the measurement viewing geometry must be defined at a reference level well above the earth s surface (e.g., 100 km). This ensures that all radiation contributions, including radiation escaping the planet along slant paths above the earth s tangent point, are accounted for. By using a field-of- view (FOV) reference level that is too low (such as the surface reference level), TOA fluxes for most scene types are systematically underestimated by 1-2 W/sq m. In addition, since TOA flux represents a flow of radiant energy per unit area, and varies with distance from the earth according to the inverse-square law, a reference level is also needed to define satellite-based TOA fluxes. From theoretical radiative transfer calculations using a model that accounts for spherical geometry, the optimal reference level for defining TOA fluxes in radiation budget studies for the earth is estimated to be approximately 20 km. At this reference level, there is no need to explicitly account for horizontal transmission of solar radiation through the atmosphere in the earth radiation budget calculation. In this context, therefore, the 20-km reference level corresponds to the effective radiative top of atmosphere for the planet. Although the optimal flux reference level depends slightly on scene type due to differences in effective transmission of solar radiation with cloud height, the difference in flux caused by neglecting the scene-type dependence is less than 0.1%. If an inappropriate

  19. Modeling and characterization of the Earth Radiation Budget Experiment (ERBE) nonscanner and scanner sensors

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Pandey, Dhirendra K.; Taylor, Deborah B.

    1989-01-01

    The Earth Radiation Budget Experiment (ERBE) is making high-absolute-accuracy measurements of the reflected solar and Earth-emitted radiation as well as the incoming solar radiation from three satellites: ERBS, NOAA-9, and NOAA-10. Each satellite has four Earth-looking nonscanning radiometers and three scanning radiometers. A fifth nonscanner, the solar monitor, measures the incoming solar radiation. The development of the ERBE sensor characterization procedures are described using the calibration data for each of the Earth-looking nonscanners and scanners. Sensor models for the ERBE radiometers are developed including the radiative exchange, conductive heat flow, and electronics processing for transient and steady state conditions. The steady state models are used to interpret the sensor outputs, resulting in the data reduction algorithms for the ERBE instruments. Both ground calibration and flight calibration procedures are treated and analyzed. The ground and flight calibration coefficients for the data reduction algorithms are presented.

  20. Radiation Budget Profiles measured through the Atmosphere with a Return Glider Radiosonde

    NASA Astrophysics Data System (ADS)

    Philipona, R.; Kraeuchi, A.; Kivi, R.

    2015-12-01

    Very promising radiation budget profile measurements through the atmosphere were made in 2011 with a balloon borne short- and longwave net radiometer. New and improved radiation sensors from Kipp&Zonen are now used in a glider aircraft together with a standard Swiss radiosonde from Meteolabor AG. This new return glider radiosonde (RG-R), is lifted up with double balloon technique to prevent pendulum motion and to keep the radiation instruments as horizontal as possible during the ascent measuring phase. The RG-R is equipped with a release mechanism and an autopilot that flies the glider radiosonde back to the launch site, or to a predefined open space, where it releases a parachute for landing once it is 100 meter above ground. The RG-R was successfully tested and deployed for tropospheric and stratospheric radiation measurements up to 30 hPa (24 km altitude) at the GRUAN sites Payerne (Switzerland) and Sodankylä (Finland). Radiation profiles and the radiation budget through the atmosphere during different daytimes and under cloud-free and cloudy situations will be shown in relation to temperature and humidity at the surface and in the atmosphere. The RG-R flight characteristics and new measurement possibilities will also be discussed.

  1. The budget of biologically active ultraviolet radiation in the earth-atmosphere system

    NASA Technical Reports Server (NTRS)

    Frederick, John E.; Lubin, Dan

    1988-01-01

    This study applies the concept of a budget to describe the interaction of solar ultraviolet (UV) radiation with the earth-atmosphere system. The wavelength ranges of interest are the biologically relevant UV-B between 280 and 320 nm and the UV-A from 32000 to 400 nm. The Nimbus 7 solar backscattered ultraviolet (SBUV) instrument provides measurements of total column ozone and information concerning cloud cover which, in combination with a simple model of radiation transfer, define the fractions of incident solar irradiance absorbed in the atmosphere, reflected to space, and absorbed at the ground. Results for the month of July quantify the contribution of fractional cloud cover and cloud optical thickness to the radiation budget's three components. Scattering within a thick cloud layer makes the downward radiation field at the cloud base more isotropic than is the case for clear skies. For small solar zenith angles, typical of summer midday conditions, the effective pathlength of this diffuse irradiance through tropospheric ozone is greater than that under clear-sky conditions. The result is an enhanced absorption of UV-B radiation in the troposphere during cloud-covered conditions. Major changes in global cloud cover or cloud optical thicknesses could alter the ultraviolet radiation received by the biosphere by an amount comparable to that predicted for long-term trends in ozone.

  2. Characterizing the elements of Earth s radiative budget: Applying uncertainty quantification to the CESM

    SciTech Connect

    Archibald, Richard K; Chakoumakos, Madison; Zhuang, Zibo

    2012-01-01

    Understanding and characterizing sources of uncertainty in climate modeling is an important task. Because of the ever increasing sophistication and resolution of climate modeling it is increasing important to develop uncertainty quantification methods that minimize the computational cost that occurs when these methods are added to climate modeling. This research explores the application of sparse stochastic collocation with polynomial edge detection to characterize portions of the probability space associated with the Earth s radiative budget in the Community Earth System Model (CESM). Specifically, we develop surrogate models with error estimates for a range of acceptable input parameters that predict statistical values of the Earth s radiative budget as derived from the CESM simulation. We extend these results in resolution from T31 to T42 and in parameter space increasing the degrees of freedom from two to three.

  3. The effects of atmospheric chemistry on radiation budget in the Community Earth Systems Model

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Czader, B.; Diao, L.; Rodriguez, J.; Jeong, G.

    2013-12-01

    The Community Earth Systems Model (CESM)-Whole Atmosphere Community Climate Model (WACCM) simulations were performed to study the impact of atmospheric chemistry on the radiation budget over the surface within a weather prediction time scale. The secondary goal is to get a simplified and optimized chemistry module for the short time period. Three different chemistry modules were utilized to represent tropospheric and stratospheric chemistry, which differ in how their reactions and species are represented: (1) simplified tropospheric and stratospheric chemistry (approximately 30 species), (2) simplified tropospheric chemistry and comprehensive stratospheric chemistry from the Model of Ozone and Related Chemical Tracers, version 3 (MOZART-3, approximately 60 species), and (3) comprehensive tropospheric and stratospheric chemistry (MOZART-4, approximately 120 species). Our results indicate the different details in chemistry treatment from these model components affect the surface temperature and impact the radiation budget.

  4. Intercomparison of scanner and nonscanner measurements for the Earth Radiation Budget Experiment

    NASA Technical Reports Server (NTRS)

    Green, Richard N.; House, Frederick B.; Stackhouse, Paul W.; Wu, Xiangqian; Ackerman, Steven A.

    1990-01-01

    The Earth Radiation Budget Experiment nonscanner measurements are simulated with the scanner measurements. The error in simulating a single measurement is 1 percent for longwave and 3 percent for shortwave. Errors in simulating the average daily measurements are half these amounts. Four months of Earth Radiation Budget Satellite measurements were analyzed. The results show that changing sun geometry affects the accuracy of the nonscanner measurements. The medium field show that changing sun geometry affects the accuracy of the nonscanner measurements. The medium field of view (MFOV) total channel and scanner agree to within 2 percent on average. The wide field of view (WFOV) total channel and scanner agree to within 1 percent. For the shortwave channels, the agreement with the scanner is 2 percent for the MFOV and 2.5 percent for the WFOV.

  5. Nimbus-earth radiation budget sensor characterization for improved data reduction fidelity

    NASA Technical Reports Server (NTRS)

    Maschhoff, R.; Jalink, A.; Hickey, J.; Swedberg, J.

    1984-01-01

    Detailed characterizations of flight spare earth flux sensors from the Nimbus Earth Radiation Budget (ERB) program have been performed which, when coupled with a more careful accounting of the orbital instrument environment, provide the potential for improved accuracy in the final data products. The characterizations included detailed field-of-view mappings, responses to transient long and short wavelength radiation, and response to sensor temperature changes. These sensor and environment characterizations, along with the outstanding low noise and stability properties of the ERB instrument signal processing system, promise improvement of the data accuracy to levels sufficient for long-term budget and climatological purposes. The combined data sets from Nimbus 6 and 7 are expected to span a period in excess of 10 years. The improvements in data accuracy are particularly significant over zonal latitude bands because the corrections are strongly latitude dependent.

  6. Zonal average earth radiation budget measurements from satellites for climate studies

    NASA Technical Reports Server (NTRS)

    Ellis, J. S.; Haar, T. H. V.

    1976-01-01

    Data from 29 months of satellite radiation budget measurements, taken intermittently over the period 1964 through 1971, are composited into mean month, season and annual zonally averaged meridional profiles. Individual months, which comprise the 29 month set, were selected as representing the best available total flux data for compositing into large scale statistics for climate studies. A discussion of spatial resolution of the measurements along with an error analysis, including both the uncertainty and standard error of the mean, are presented.

  7. Effects of clouds on the Earth radiation budget; Seasonal and inter-annual patterns

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.

    1992-01-01

    Seasonal and regional variations of clouds and their effects on the climatological parameters were studied. The climatological parameters surface temperature, solar insulation, short-wave absorbed, long wave emitted, and net radiation were considered. The data of climatological parameters consisted of about 20 parameters of Earth radiation budget and clouds of 2070 target areas which covered the globe. It consisted of daily and monthly averages of each parameter for each target area for the period, Jun. 1979 - May 1980. Cloud forcing and black body temperature at the top of the atmosphere were calculated. Interactions of clouds, cloud forcing, black body temperature, and the climatological parameters were investigated and analyzed.

  8. Study of the effect of cloud inhomogeneity on the earth radiation budget experiment

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.

    1988-01-01

    The Earth Radiation Budget Experiment (ERBE) is the most recent and probably the most intensive mission designed to gather precise measurements of the Earth's radiation components. The data obtained from ERBE is of great importance for future climatological studies. A statistical study reveals that the ERBE scanner data are highly correlated and that instantaneous measurements corresponding to neighboring pixels contain almost the same information. Analyzing only a fraction of the data set when sampling is suggested and applications of this strategy are given in the calculation of the albedo of the Earth and of the cloud-forcing over ocean.

  9. Performance of fused silica as a filter in a wide field-of-view earth radiation budget radiometer

    NASA Technical Reports Server (NTRS)

    Cooper, J. E.; Luther, M. R.

    1980-01-01

    The thermal response of the fused silica dome filter in an earth radiation budget WFOV shortwave channel conceptual design and the impact of that response on the channel measurement, is described. Attention is given to results from design definition and performance analysis studies. Consideration is given to problems associated with achieving the desired levels of confidence in a high accuracy filtered earth radiation budget WFOV radiometer. Finally, design approaches, ground calibration, and data reduction techniques that minimize measurement uncertainties are covered.

  10. Performance of fused silica as a filter in a wide field-of-view earth radiation budget radiometer

    NASA Astrophysics Data System (ADS)

    Cooper, J. E.; Luther, M. R.

    1980-06-01

    The thermal response of the fused silica dome filter in an earth radiation budget WFOV shortwave channel conceptual design and the impact of that response on the channel measurement, is described. Attention is given to results from design definition and performance analysis studies. Consideration is given to problems associated with achieving the desired levels of confidence in a high accuracy filtered earth radiation budget WFOV radiometer. Finally, design approaches, ground calibration, and data reduction techniques that minimize measurement uncertainties are covered.

  11. Relevance of warm conveyor belts for the dynamics of weather systems and the radiation budget in the extra-tropics

    NASA Astrophysics Data System (ADS)

    Joos, Hanna

    2014-05-01

    Warm conveyor belts (WCBs) are warm and moist airstreams in extra-tropical cyclones. They originate in the warm sector of the cyclone close to the surface and ascend in approximately two days ahead of the cold front to the upper troposphere. During the ascent, clouds and precipitation are forming and thus WCBs can be identified on satellite imagery as elongated cloud bands. Due to the cloud formation which is associated with the release of latent heat, WCBs are important for the dynamics of extra-tropical cyclones. The main process behind is the modification of potential vorticity (PV) due to the latent heating/cooling. In a first order, PV is produced below the maximum of diabatic heating and destroyed above. Thus, WCBs produce a positive PV anomaly in the mid-troposphere and a negative PV anomaly in the outflow in the upper troposphere. The positive anomaly can be important for the cyclone intensification and/or mesoscale dynamics along the cold front whereas the negative anomaly influences the large-scale upper tropospheric PV pattern. On the other hand, WCBs are important for the radiative budget in the extra-tropics. As they represent the main cloud producing airflow in extratropical cyclones they are responsible for the formation of a great part of condensate (liquid and ice) in the storm track regions. Subsequently, they are also responsible for a great part of the cloud radiative forcing and thus strongly influence the radiative budget in the extra-tropics. This presentation consists of two parts. In the first part we focus on the potential of WCBs to modify the PV. It is shown how the various microphysical processes occurring during the formation of clouds modify the PV along WCB trajectories. Therefore a simulation of a WCB with the regional NWP model COSMO is analyzed in detail. It can be seen that the condensation of water vapour as well as the depositional growth of snow strongly contribute to the latent heating in the WCB and therefore also modify the

  12. Evidence for Solar Cycle Influence on the Infrared Energy Budget and Radiative Cooling of the Thermosphere

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Martin-Torres, F. Javier; Marshall, B. Thomas; Thompson, R. Earl; Williams, Joshua; Turpin, TImothy; Kratz, D. P.; Russell, James M.; Woods, Tom; Gordley, Larry L.

    2007-01-01

    We present direct observational evidence for solar cycle influence on the infrared energy budget and radiative cooling of the thermosphere. By analyzing nearly five years of data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, we show that the annual mean infrared power radiated by the nitric oxide (NO) molecule at 5.3 m has decreased by a factor of 2.9. This decrease is correlated (r = 0.96) with the decrease in the annual mean F10.7 solar index. Despite the sharp decrease in radiated power (which is equivalent to a decrease in the vertical integrated radiative cooling rate), the variability of the power as given in the standard deviation of the annual means remains approximately constant. A simple relationship is shown to exist between the infrared power radiated by NO and the F10.7 index, thus providing a fundamental relationship between solar activity and the thermospheric cooling rate for use in thermospheric models. The change in NO radiated power is also consistent with changes in absorbed ultraviolet radiation over the same time period.

  13. Deconvolution estimation theory applied to Nimbus 6 ERB data. [Earth Radiation Budget

    NASA Technical Reports Server (NTRS)

    Green, R. N.; Smith, G. L.

    1978-01-01

    It is pointed out that the ERB (Earth Radiation Budget) Experiment aboard the Nimbus 6 spacecraft has provided nearly 3 years of data thus far from its wide field of view (WFOV) radiometers. Each data point is an integral of the irradiance from all points within the field of view of the WFOV sensor, which is an approximately 60 deg diameter circular region on the earth. House (1972) proposed that the data, being a convolution of the flux field at the top of the atmosphere, could be convoluted so as to enhance the resolution. The problem was solved by Smith and Green (1975-76) for the case of earth emitted radiation. A parameter estimation approach to the deconvolution problem was formulated. A description is presented of the deconvolution estimation concept and the results obtained by its application to the Nimbus 6 ERB WFOV data for earth emitted radiation for August 1975.

  14. Aspects of Radiation Budget, Subsurface Lateral Moisture Exchange, and Vegetation Function in Areas of Complex Topography.

    NASA Astrophysics Data System (ADS)

    Ivanov, V. Y.; Bras, R. L.; Istanbulluoglu, E.; Vivoni, E. R.

    2004-12-01

    There is evidence that topography strongly affects the state, function, and distribution of vegetation by controlling incoming solar radiation and lateral redistribution of soil moisture. However, numerical experiments studying the effects that a topography can have on vegetation have oversimplified the treatment of topography and/or the representation of vegetation. We investigate the control of topography on vegetation state and stress via detailed modeling of radiation and soil moisture budgets across the varied terrain of a watershed. A detailed vegetation-hydrology model parameterizes the processes of canopy radiative transfer and rainfall interception and couples the processes of infiltration and evapotranspiration to photosynthesis via moisture uptake through a root systems with varied profiles. The model is applied on a continuous basis to synthetic watersheds of topography dominated by either convex or concave hillslopes. The numerical analysis is carried out for several plant functional types and soils. Inferences from the spatially-distributed dynamics are used to examine topographic niches favorable to vegetation.

  15. Possible effects of the El Chichon volcanic cloud on the radiation budget of the northern tropics

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Ackerman, T. P.

    1983-01-01

    A series of calculations with a one-dimensional, time-marching, radiative-convective model are performed to assess the impact of the El Chichon volcanic cloud on the radiation budget of the northern tropics during the 6-month period following the injection of volcanic material into the stratosphere. Extensive measurement of the cloud obtained from airborne, spacecraft, and ground platforms were used to define the model parameters and to test the predictions of the model. The El Chichon cloud is predicted to have caused an increase in planetary albedo of 10 percent, a decrease in total solar radiation of 2-3 percent at the ground on cloudless days, and an increase in temperature of 3.5 K at the 24-km (30-mb) level. These predictions are compatible with relevant observations, within their respective error bars.

  16. Performance analysis of a filtered wide field-of-view radiometer for earth radiation budget measurements

    NASA Technical Reports Server (NTRS)

    Cooper, J. E.; Luther, M. R.

    1978-01-01

    The proposed Earth Radiation Budget Satellite System (ERBSS) of the 1980's will include a wide field-of-view (WFOV) fixed axes earth radiator discriminator consisting of a shortwave channel and a total (unfiltered) channel. The broadband spectral isolation required for the shortwave channel is achieved by use of a hemispherical fused silica (Suprasil W) dome filter placed in front of a wire wound thermopile radiation detector. A description is presented of the thermal response of the single-fused silica dome filter in the ERBSS WFOV shortwave channel conceptual design and the impact of that response on the channel measurement. Results from design definition and performance analysis studies are included. Problems associated with achieving the desired levels of confidence in a high accuracy filtered, WFOV radiometer are discussed. Design approaches, ground calibration, and data reduction techniques which minimize measurement uncertainties are explained.

  17. An information theory approach for evaluating earth radiation budget (ERB) measurements - Nonuniform sampling of reflected shortwave radiation

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.; Direskeneli, Haldun; Halyo, Nesim

    1992-01-01

    An information theory approach to examine the temporal nonuniform sampling characteristics of shortwave (SW) flux for earth radiation budget (ERB) measurements is suggested. The information gain is computed by computing the information content before and after the measurements. A stochastic diurnal model for the SW flux is developed, and measurements for different orbital parameters are examined. The methodology is applied to specific NASA Polar platform and Tropical Rainfall Measuring Mission (TRMM) orbital parameters. The information theory approach, coupled with the developed SW diurnal model, is found to be promising for measurements involving nonuniform orbital sampling characteristics.

  18. The electronic switching spherical array antenna for the Earth Radiation Budget Spacecraft

    NASA Technical Reports Server (NTRS)

    Kudrna, K.; Hockensmith, R. P.

    1983-01-01

    The ESSA is a microprocessor-controlled antenna for low orbiting spacecraft for telemetry and command relay through the Tracking and Data Relay Satellite System (TDRSS). The array is a hemispherical shape covered with disk radiating elements. A group of radiating elements are continuously selected by the microprocessor controller to form a beam in the direction of a TDRS. A radial switching power divider uses PIN diodes to select the desired radiating elements. The antenna gain is a function of the size of the hemispherical dome. A 30-inch diameter dome is presently being built for the Earth Radiation Budget Spacecraft (ERBS). Gain of this antenna over a hemisphere is 14 dBi and polarization is lefthand circular. There are 145 radiating elements with 12 being used at one time to form a beam. The ESSA subsystem weights 74 pounds and power consumption is 20 watts. RF power handling capability is 30 watts. The S-Band radiating elements have a 10 percent bandwidth that allows simultaneous transmission and reception.

  19. POMS, Polar Meteorological Satellite: A contribution for global radiation budget measurement

    NASA Technical Reports Server (NTRS)

    Puls, J.

    1981-01-01

    A proposal for a climate research mission specialized to Earth radiation budget measurements is given. This mission requires daily global coverage established by a system of three orbiting satellites. One of them is represented by the European Space Agency satellite SEOCS that is on a drifting orbit with respect to the Sun with 57 degrees inclination. The two others are polar orbiting satellites (POMS). The mission concept is treated with reference to the payload side requirements, the choice of orbit, orbital analysis, and satellite requirements.

  20. Human factors analysis of workstation design: Earth Radiation Budget Satellite Mission Operations Room

    NASA Technical Reports Server (NTRS)

    Stewart, L. J.; Murphy, E. D.; Mitchell, C. M.

    1982-01-01

    A human factors analysis addressed three related yet distinct issues within the area of workstation design for the Earth Radiation Budget Satellite (ERBS) mission operation room (MOR). The first issue, physical layout of the MOR, received the most intensive effort. It involved the positioning of clusters of equipment within the physical dimensions of the ERBS MOR. The second issue for analysis was comprised of several environmental concerns, such as lighting, furniture, and heating and ventilation systems. The third issue was component arrangement, involving the physical arrangement of individual components within clusters of consoles, e.g., a communications panel.

  1. Daily earth radiation budget results from the Nimbus-7 scanning radiometer

    NASA Technical Reports Server (NTRS)

    Randel, D. L.; Vonder Haar, T. H.

    1983-01-01

    Nimbus-7 broadband narrow-field-of-view scanning-radiometer data obtained in the Earth Radiation Budget Experiment on three days in 1979 (one with a blocking situation over the Northern Hemisphere, one with normal zonal flow, and one with two mature hurricanes over the Caribbean), are presented graphically and discussed. Both blocking and hurricane situations are characterized by anomalies (relative to the zonal-flow condition) in the zonally averaged emitted flux and albedo, with decreased tropical and midlatitude gradients in the case of blocking.

  2. Determinability of inter-annual global and regional climatic changes of the earth radiation budget

    NASA Technical Reports Server (NTRS)

    Ardanuy, P. E.

    1983-01-01

    The degradation characteristics of Earth Radiation Budget (ERB) experiments are examined with reference to the results of recent investigations into the calibration adjustments of the Wide Field of View channels on board the Nimbus 6 and 7 ERB experiments. The mechanisms of degradation are discussed, and changes in the transmissive and reflective properties of radiometers affecting their sensitivities and calibrations are estimated. It is emphasized that in order to observe interannual climate change on a global or a regional scale, calibration adjustments are a necessity.

  3. Earth Radiation Budget Satellite extraterrestrial solar constant measurements - 1986-1987 increasing trend

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Barkstrom, Bruce R.; Harrison, Edwin F.; Gibson, Michael A.; Natarajan, Sudha M.; Edmonds, William L.; Mecherikunnel, Ann T.; Kyle, H. Lee

    1988-01-01

    From June 1986 through Nov 1987, the Earth Radiation Budget Satellite (ERBS) pyrheliometric measurements indicated that the solar constant was increasing approximately +0.02 percent per year. Earlier ERBS measurements indicated that the solar constant was declining approximately -0.03 percent per year during the 1984 through mid-1986 period. Since mid-1986 represents the beginning of solar cycle 22, it is believed that the reversal in the long-term solar constant trend may be linked to increased solar activity associated with the beginning of the 11-year sunspot cycle. The typical value of the solar constant was found to be 1365 Wm-2.

  4. Toward Improved Solar Irradiance Forecasts: Comparison of Downwelling Surface Shortwave Radiation in Arizona Derived from Satellite with the Gridded Datasets

    NASA Astrophysics Data System (ADS)

    Kim, Chang Ki; Holmgren, William F.; Stovern, Michael; Betterton, Eric A.

    2016-08-01

    The downwelling surface shortwave radiation derived from geostationary satellite imagery was compared with the available datasets for the Southwestern United States. The averaged root mean square errors for our instantaneous estimates ranged from 95.0 to 122.7 W m-2, which is lower than those derived from the MODerate resolution Imaging Spectroradiometer (MODIS). The Modern Era Retrospective-analysis for Research and Applications (MERRA) products were used to compare the hourly mean solar insolation. The three hourly mean downwelling surface shortwave radiation was evaluated by comparing the North American Regional Reanalysis (NARR) and the Clouds and the Earth's Radiant Energy System (CERES) products. Our estimates show the better performance than MERRA, NARR and CERES datasets because of coarse resolution that limits determining the solar dimming due to small clouds.

  5. Comparison of Surface Radiation Budget Satellite algorithms for downwelled shortwave irradiance with Wisconsin Fire/SRB surface-truth data

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Staylor, W. F.; Darnell, W. L.; Chou, M. D.; Dedieu, G.; Deschamps, P. Y.; Ellis, J.; Gautier, C.; Frouin, R.; Rossow, W. B.

    1990-01-01

    Surface radiation instruments were operated at various locations during the Wisconsin First ISSCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) and Surface Radiation Budget (SRB) experiment in October 1986. Satellite data were distributed to scientists who had previously developed satellite algorithms to estimate downwelled shortwave irradiance. Results of intercomparison of ground-truth values with the satellite-derived estimates are described.

  6. Assessing surface albedo change and its induced radiation budget under rapid urbanization with Landsat and GLASS data

    NASA Astrophysics Data System (ADS)

    Hu, Yonghong; Jia, Gensuo; Pohl, Christine; Zhang, Xiaoxuan; van Genderen, John

    2016-02-01

    Radiative forcing (RF) induced by land use (mainly surface albedo) change is still not well understood in climate change science, especially the effects of changes in urban albedo due to rapid urbanization on the urban radiation budget. In this study, a modified RF derivation approach based on Landsat images was used to quantify changes in the solar radiation budget induced by variations in surface albedo in Beijing from 2001 to 2009. Field radiation records from a Beijing meteorological station were used to identify changes in RF at the local level. There has been rapid urban expansion over the last decade, with the urban land area increasing at about 3.3 % annually from 2001 to 2009. This has modified three-dimensional urban surface properties, resulting in lower albedo due to complex building configurations of urban centers and higher albedo on flat surfaces of suburban areas and cropland. There was greater solar radiation (6.93 × 108 W) in the urban center in 2009 than in 2001. However, large cropland and urban fringe areas caused less solar radiation absorption. RF increased with distance from the urban center (less than 14 km) and with greater urbanization, with the greatest value being 0.41 W/m2. The solar radiation budget in urban areas was believed to be mainly influenced by urban structural changes in the horizontal and vertical directions. Overall, the results presented herein indicate that cumulative urbanization impacts on the natural radiation budget could evolve into an important driver of local climate change.

  7. Stability of the Earth Radiation Budget Experiment scanner results for the first two years of multiple-satellite operation

    NASA Technical Reports Server (NTRS)

    Staylor, W. Frank

    1993-01-01

    Clear-sky albedos and outgoing longwave radiation (OLR) determined from Earth Radiation Budget Experiment (ERBE) scanners on board the earth radiation budget satellite and NOAA-9 spacecraft were analyzed for three target sites for the months February 1985-January 1987. The targets were oceans, deserts, and a multiscene site covering half the earth's surface. Year-to-year ratios of the monthly albedos and OLR were within the 0.98-1.02 range with a standard error of about 1%. The data indicate that ERBE scanner measurements were stable to within a few tenths of a percent for the two-year periods.

  8. Deconvolution and analysis of wide-angle longwave radiation data from Nimbus 6 Earth radiation budget experiment for the first year

    NASA Technical Reports Server (NTRS)

    Bess, T. D.; Green, R. N.; Smith, G. L.

    1980-01-01

    One year of longwave radiation data from July 1975 through June 1976 from the Nimbus 6 satellite Earth radiation budget experiment is analyzed by representing the radiation field by a spherical harmonic expansion. The data are from the wide field of view instrument. Contour maps of the longwave radiation field and spherical harmonic coefficients to degree 12 and order 12 are presented for a 12 month data period.

  9. Solar calibration results from two earth radiation budget experiment nonscanner instruments

    NASA Technical Reports Server (NTRS)

    Luther, M. R.; Lee, R. B., III; Barkstrom, B. R.; Cooper, J. E.; Cess, R. D.

    1986-01-01

    The Earth Radiation Budget Experiment (ERBE) makes use of three sets of two independent, but complementary, flight instruments. The two instruments in each set include a three-channel narrow field-of-view scanning instrument (scanner) and a five-channel wide field-of-view staring instrument (nonscanner). The ERBE nonscanner instruments are designed for the conduction of broad spectral and spatial measurements of the earth's reflected solar and emitted radiation and the determination of the incident solar flux. The nonscanner solar calibration process is considered along with the solar calibration results. A description of the data processing algorithms is also provided, taking into account the earth viewing channels and the solar monitor.

  10. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.

    PubMed

    Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S

    2015-05-15

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity.

  11. Optimum satellite orbits for accurate measurement of the earth's radiation budget, summary

    NASA Technical Reports Server (NTRS)

    Campbell, G. G.; Vonderhaar, T. H.

    1978-01-01

    The optimum set of orbit inclinations for the measurement of the earth radiation budget from spacially integrating sensor systems was estimated for two and three satellite systems. The best set of the two were satellites at orbit inclinations of 80 deg and 50 deg; of three the inclinations were 80 deg, 60 deg and 50 deg. These were chosen on the basis of a simulation of flat plate and spherical detectors flying over a daily varying earth radiation field as measured by the Nimbus 3 medium resolution scanners. A diurnal oscillation was also included in the emitted flux and albedo to give a source field as realistic as possible. Twenty three satellites with different inclinations and equator crossings were simulated, allowing the results of thousand of multisatellite sets to be intercompared. All were circular orbits of radius 7178 kilometers.

  12. Satellite Remote Sensing of Fires, Smoke and Regional Radiative Energy Budgets

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Wang, Min; Barbieri, Kristine; Welch, Ronald M.; Yang, Shi-Keng

    1997-01-01

    Using satellite imagery, more than five million square kilometers of the forest and cerrado regions over South America are extensively studied to monitor fires and smoke during the 1985 and 1986 biomass burning season. The results are characterized for four major eco-systems, namely: (1) Tropical Rain Forest (TRF), (2) Tropical Broadleaf Seasonal (TBS), (3) Mild/Warm/Hot Grass/Shrub (MGS), and (4) Savanna/Grass and Seasonal Woods (SGW). Using collocated measurements from the instantaneous scanner Earth Radiation Budget Experiment [ERBE) data, the direct regional radiative forcing of biomass burning aerosols are computed. The results show that more than 70% of the fires occur in the MGS and SGW eco-systems due to agricultural practices. The smoke generated from biomass burning has negative net radiative forcing values for all four major ecosystems within South America. The smoke found directly over the fires have mean net radiative forcing values ranging between -25.6 to -33.9 W/sq m for 1985 and between -12.9 to -40.8 W/sq m for 1986. These results confirm that the regional net radiative impact of biomass burning is one of cooling.

  13. CERES FM-5 on the NPP Spacecraft: Continuing the Earth Radiation Budget Climate Data Record

    NASA Technical Reports Server (NTRS)

    Priestly, Kory; Smith, G. Louis

    2009-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) Flight Model-5 (FM-5) instrument will fly on the NPOESS Preparatory Project (NPP) spacecraft, which has a launch-readiness date in June, 2010. This mission will continue the critical Earth Radiation Budget Climate Data Record (CDR) begun by the Earth Radiation Budget Experiment (ERBE) instruments in the mid 1980 s and continued by the CERES instruments currently flying on the EOS Terra and Aqua spacecraft. Ground calibrations have been completed for FM-5 and the instrument has been delivered for integration to the spacecraft Rigorous pre-launch ground calibration is performed on each CERES unit to achieve an accuracy goal of 1% for SW flux and 0.5% for outgoing LW flux. Any ground to flight or in-flight changes in radiometer response is monitored using a protocol employing both onboard and vicarious calibration sources and experiments. Recent studies of FM-1 through FM-4 data have shown that the SW response of space based broadband radiometers can change dramatically due to optical contamination. With these changes having most impact on optical response to blue-to UV radiance, where tungsten lamps are largely devoid of output, such changes are hard to monitor accurately using existing on-board sources. This paper outlines the lessons learned on the existing CERES sensors from 30+ years of flight experience and presents a radiometric protocol to be implemented on the FM-5 instrument to ensure that its performance exceeds the stated calibration and stability goals.

  14. Third generation earth radiation budget measurements; ERBE in the context of earlier systems

    NASA Technical Reports Server (NTRS)

    Vonderhaar, Thomas H.

    1990-01-01

    The Earth Radiation Budget Experiment (ERBE) observations are just becoming available for scientific use. These represent the third generation of measurements with steadily improving accuracy and resolution. Beginning in the 1960's observations by spherical detectors established the mean albedo of the Earth near 30 percent in substantial variance from presatellite estimates. The Nimbus 6 and 7 wide field of view ERB measurements represent a long-term climatology of measurements at 1000 km resolution. The ERBE measurements introduce higher accuracy and higher space and time resolution result. Comparisons will be presented of several April ERB measurements to illustrate what this improvement in resolution and accuracy can yield. Simultaneous ERBE and Nimbus 7 measurements for April 1985 show nearly identical results on the large scale. Comparison of measurements of direct solar energy from ERBE, Solar Max Mission and Nimbus 7 suggest a 'solar constant' value of 1368 w/sq m for the 1979 to 1986 period. The long-term record of earth radiation budget (Aprils from 1976 to 1985) over large regions is shown to have interannual variation of plus or minus 20 to 30 w/sq. m. The new ERBE data will allow this climate record measurement to continue.

  15. The Nature of Clouds and Their Effects on the Surface Radiative Energy Budget

    NASA Astrophysics Data System (ADS)

    Long, C.; Ackerman, T. P.; Gaustad, K.; Barnard, J.; Turner, D.

    2005-12-01

    Recently significant progress has been made in inferring cloud effects and cloud macrophysical properties using surface measurements of broadband irradiance and basic meteorological variables. These "Flux Analysis" methodologies build on the original work by Long and Ackerman (2000), who show that these techniques include a high degree of repeatability since both the clear-sky and all-sky values include the same measuring instrument characteristics. Examples of the Flux Analysis methodology applied to measurements from various ARM and BSRN sites spanning the years of available data will be presented. These results include analyses of shortwave (SW) and longwave (LW) all-sky and clear-sky climatology; SW, LW, and net cloud effects; total (daylight) and LW effective (24 hour) fractional sky cover; cloud transmissivity and visible optical thickness; and estimates of cloud field effective radiating temperature and radiating surface height. Preliminary results of the upwelling components of clear-sky and cloud effect will also be presented, and used to infer the total net surface radiative cloud forcing. Through these examples, the nature of cloudiness and the resultant influence on the surface radiative energy budget will be described.

  16. Implications of the Observed Mesoscale Variations of Clouds for Earth's Radiation Budget

    NASA Technical Reports Server (NTRS)

    Rossow, William B.; Delo, Carl; Cairns, Brian; Hansen, James E. (Technical Monitor)

    2001-01-01

    The effect of small-spatial-scale cloud variations on radiative transfer in cloudy atmospheres currently receives a lot of research attention, but the available studies are not very clear about which spatial scales are important and report a very large range of estimates of the magnitude of the effects. Also, there have been no systematic investigations of how to measure and represent these cloud variations. We exploit the cloud climatology produced by the International Satellite Cloud Climatology Project (ISCCP) to: (1) define and test different methods of representing cloud variation statistics, (2) investigate the range of spatial scales that should be included, (3) characterize cloud variations over a range of space and time scales covering mesoscale (30 - 300 km, 3-12 hr) into part of the lower part of the synoptic scale (300 - 3000 km, 1-30 days), (4) obtain a climatology of the optical thickness, emissivity and cloud top temperature variability of clouds that can be used in weather and climate GCMS, together with the parameterization proposed by Cairns et al. (1999), to account for the effects of small-scale cloud variations on radiative fluxes, and (5) evaluate the effect of observed cloud variations on Earth's radiation budget. These results lead to the formulation of a revised conceptual model of clouds for use in radiative transfer calculations in GCMS. The complete variability climatology can be obtained from the ISCCP Web site at http://isccp.giss.nasa.gov.

  17. Surface energy and radiation budgets in a steppe ecosystem in the Upper Columbia River Gorge

    SciTech Connect

    Whiteman, C.D.; Allwine, K.J.; Bian, X.

    1994-08-01

    Measurements of radiation and surface energy budget components are presented for a semiarid grassland-steppe ecosystem in the Upper Columbia River Gorge (45{degrees}45`25.6 inches N, 120{degrees}01`39.3 inches W, 190 m) for June 2-27, 1991. Over this period, the ratio of sensible to latent heat flux (the Bowen ratio) averaged 5.0, and mean daily surface energy balance totals were: net radiation, 9.23; ground heat flux, 1.25; latent heat flux, 1.32; and sensible heat flux, 6.66 MJ m{sup {minus}2} d{sup {minus}1}, where the mean daily nonradiative fluxes were directed away from the surface, and the mean daily radiative flux was directed toward the surface. On clear days, the site received from 0.71 to 0.76 of the theoretical extraterrestrial solar radiation. Albedo over the 26-d period varied from 0.17 to 0.21. Daily and daytime average values of the components are summarized, and a plot is presented of the 30-min average values of all components for the entire period.

  18. A study of the thermal and optical characteristics of radiometric channels for Earth radiation budget applications

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Tira, Nour E.

    1991-01-01

    An improved dynamic electrothermal model for the Earth Radiation Budget Experiment (ERBE) total, nonscanning channels is formulated. This model is then used to accurately simulate two types of dynamic solar observation: the solar calibration and the so-called pitchover maneuver. Using a second model, the nonscanner active cavity radiometer (ACR) thermal noise is studied. This study reveals that radiative emission and scattering by the surrounding parts of the nonscanner cavity are acceptably small. The dynamic electrothermal model is also used to compute ACR instrument transfer function. Accurate in-flight measurement of this transfer function is shown to depend on the energy distribution over the frequency spectrum of the radiation input function. A new array-type field of view limiter, whose geometry controls the input function, is proposed for in-flight calibration of an ACR and other types of radiometers. The point spread function (PSF) of the ERBE and the Clouds and Earth's Radiant Energy System (CERES) scanning radiometers is computed. The PSF is useful in characterizing the channel optics. It also has potential for recovering the distribution of the radiative flux from Earth by deconvolution.

  19. New surface solar radiation and evaporation datasets in Spain: in search of a better understating of the dimming/brightening

    NASA Astrophysics Data System (ADS)

    Sanchez-Lorenzo, A.; Calbó, J.; Wild, M.

    2012-04-01

    Previous research on the dimming/brightening phenomena in Spain has been limited to the analysis of the long-term series of sunshine duration (Sanchez-Lorenzo et al., 2007) and cloud cover observations (Sanchez-Lorenzo et al., 2009). This work describes the development of a new dataset of surface radiation in Spain based on the 16 longest daily series provided by the Spanish Meteorology Agency, with the first series starting in the early 1970s, and providing global, diffuse and direct radiation. For the Madrid station an additional effort has been made to digitalize monthly records of global radiation since 1958, which provide the longest series available in Spain up to the present. The results of a temporal analysis of this dataset show an overall agreement with the trends observed using sunshine duration series, confirming the suitability of this latter variable to estimate surface radiation on decadal time scales. The important role of surface solar radiation to drive evaporation is well known, and consequently an agreement between the dimming/brightening phases and the trends in potential evaporation has been observed worldwide (Wild, 2009). Therefore, a dataset consisting of monthly series of potential evaporation has been generated by using records from tanks and Piche atmometers. The pan evaporation data consist of 13 series with records since 1981, meanwhile for Piche measurements there are around 100 series with more than 60 years of data, some of them starting in the beginning of the 20th century. The results show a decrease in pan evaporation (1981-2010 period) that cannot be explained by the observed increase in solar radiation, but may be linked to a decrease in the wind speed. On the other hand, evaporation trends estimated by the Piche evaporimeter provide a better agreement with solar radiation and sunshine time trends. This relationship needs special attention, as Piche evaporimeter is exposed inside a meteorological screen, especially regarding

  20. Atlas of albedo and absorbed solar radiation derived from Nimbus 6 earth radiation budget data set, July 1975 to May 1978

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Bess, T. Dale; Rutan, David

    1989-01-01

    An atlas of monthly mean global contour maps of albedo and absorbed solar radiation is presented. The atlas is based on 35 months of continuous measurements from July 1975 through May 1978. The data were retrieved from measurements made by the shortwave wide field-of-view radiometer of the first Earth Radiation Budget (ERB) instrument, which flew on the Nimbus 6 spacecraft in 1975. Profiles of zonal mean albedos and absorbed solar radiation are tabulated. These geographical distributions are provided as a resource for studying the radiation budget of the earth. This atlas of albedo and absorbed solar radiation complements the atlases of outgoing longwave radiation by Bess and Smith in NASA-RP-1185 and RP-1186, also based on the Nimbus 6 and 7 ERB data.

  1. Long-term Radiation Budget Variability in the Northern Eurasian Region: Assessing the Interaction with Fire

    NASA Astrophysics Data System (ADS)

    Stackhouse, P. W.; Soja, A. J.; Zhang, T.; Mikovitz, J. C.

    2013-12-01

    In terms of global change, boreal regions are particularly important, because significant warming and change are already evident and significant future warming is predicted. Mean global air temperature has increased by 0.74°C in the last century, and temperatures are predicted to increase by 1.8°C to 4°C by 2090, depending on the Inter-governmental Panel on Climate Change (IPCC) scenario. Some of the greatest temperature increases are currently found in the Northern Eurasian winter and spring, which has led to longer growing seasons, increased potential evapotranspiration and extreme fire weather [Groisman et al., 2007]. In the Siberian Sayan, winter temperatures have already exceeded a 2090 Hadley Centre scenario (HadCM3GGa1) [Soja et al., 2007]. There is evidence of climate-induced change across the circumboreal in terms of increased infestations, alterations in vegetation and increased fire regimes (area burned, fire frequency, severity and number of extreme fire seasons). In this paper, we analyzed long-term surface radiation data sets from the NASA/GEWEX (Global Energy and Water Exchanges) Surface Radiation Budget data products, CERES Surface EBAF and SYN data products and also the available surface radiation measurements in the region. First, we show that during overlap years SRB and CERES data products agree very well in terms of anomalies and we'll use this fact to evaluate 30 years of satellite based estimates of the variability of downwelling SW parameters first corresponding to locations of surface measurements and then for the region as a whole. We also show the observed variability of other SW components such as the net SW and the albedo. Next we assess the variability of the downward and LW fluxes over time and compare these to variability observed in the surface temperature and other meteorological measurements. We assess anomalies on various spatial scales. Finally, we assess the correlation of this variability in specific locations to known fire

  2. Radiative energy budget reveals high photosynthetic efficiency in symbiont-bearing corals

    PubMed Central

    Brodersen, Kasper Elgetti; Lichtenberg, Mads; Ralph, Peter J.; Kühl, Michael; Wangpraseurt, Daniel

    2014-01-01

    The light field on coral reefs varies in intensity and spectral composition, and is the key regulating factor for phototrophic reef organisms, for example scleractinian corals harbouring microalgal symbionts. However, the actual efficiency of light utilization in corals and the mechanisms affecting the radiative energy budget of corals are underexplored. We present the first balanced light energy budget for a symbiont-bearing coral based on a fine-scale study of the microenvironmental photobiology of the massive coral Montastrea curta. The majority (more than 96%) of the absorbed light energy was dissipated as heat, whereas the proportion of the absorbed light energy used in photosynthesis was approximately 4.0% under an irradiance of 640 µmol photons m−2 s−1. With increasing irradiance, the proportion of heat dissipation increased at the expense of photosynthesis. Despite such low energy efficiency, we found a high photosynthetic efficiency of the microalgal symbionts showing high gross photosynthesis rates and quantum efficiencies (QEs) of approximately 0.1 O2 photon−1 approaching theoretical limits under moderate irradiance levels. Corals thus appear as highly efficient light collectors with optical properties enabling light distribution over the corallite/tissue microstructural canopy that enables a high photosynthetic QE of their photosynthetic microalgae in hospite. PMID:24478282

  3. Effects of sulfate aerosol on the central Pennsylvania surface shortwave radiation budget. Master's thesis

    SciTech Connect

    Guimond, P.W.

    1994-12-01

    Surface radiation measurements are taken simultaneously with measurements of meteorological variables including temperature, pressure, relative humidity, and visibility to evaluate the impact of sulfate haze on the surface radiation budget. A relationship is sought between flux losses due only to aerosol and relative humidity, visibility or both, with the goal of facilitating parameterization of sulfate hazes by climate modelers. At the same time, a rotating shadowband radiometer (RSR) is compared with a more costly sun photometer to determine the feasibility of substituting the former for the latter in future research. It is found that depletion of surface radiation due to aerosol is typically ten to twenty percent of initial insolation, and that the losses can be correlated with zenith angle, relative humidity and optical depth. In the case of flux loss as a function of optical depth, the two are related in a nearly linear fashion. It is also discovered that the RSR has a predictable error owing to a wider field of view than the sun photometer, and can be used as a replacement for the former by correcting for the error.

  4. Extended Kalman filter for attitude estimation of the earth radiation budget satellite

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack Y.

    1989-01-01

    The design and testing of an Extended Kalman Filter (EKF) for ground attitude determination, misalignment estimation and sensor calibration of the Earth Radiation Budget Satellite (ERBS) are described. Attitude is represented by the quaternion of rotation and the attitude estimation error is defined as an additive error. Quaternion normalization is used for increasing the convergence rate and for minimizing the need for filter tuning. The development of the filter dynamic model, the gyro error model and the measurement models of the Sun sensors, the IR horizon scanner and the magnetometers which are used to generate vector measurements are also presented. The filter is applied to real data transmitted by ERBS sensors. Results are presented and analyzed and the EKF advantages as well as sensitivities are discussed. On the whole the filter meets the expected synergism, accuracy and robustness.

  5. Exospheric cleaning of the Earth Radiation Budget solar radiometer during solar maximum

    NASA Technical Reports Server (NTRS)

    Predmore, R. E.; Jacobowitz, H.; Hickey, J. R.

    1983-01-01

    Anomalous behavior of the Earth Sensor Assemblies (ESA) had been observed on the Defense Meteorological Satellite Program (DMSP) 5D/1 satellites and the Tiros-N satellite. The present investigation is concerned with the reasons for the observed phenomena. Degradation of the Earth Radiation Budget (ERB) solar channels and the Solar Backscatter Ultraviolet and Total Ozone Mapping Spectrometer (SBUV/TOMS) diffuser plate is attributed to transmission or reflection loss originating from the growth of an organic film by photolytic polymerization. Simultaneous degradation of the ESA interference filter coated lenses facing the flight direction and the recovery of the ERB solar channels on Nimbus 6 and 7 is caused by a reaction with the increase in the exospheric atmospheric density caused by solar maximum.

  6. Conditional averaging of the Cloud Radiative Effect as a higher order test of GCM radiation budgets

    NASA Astrophysics Data System (ADS)

    Oreopoulos, L.

    2010-12-01

    Global Climate Models (GCMs) are quite capable in producing temporally and spatially averaged radiative fluxes that are close to observed values. Closer examination however of clear-sky fluxes and Cloud Radiative Effects (CREs) reveal that the agreement is often the result of numerous error cancellations in the spatiotemporal and spectral domains. One manifestation of this phenomenon is canceling CRE errors among different cloud types. Recent approaches of cloud retrieval analysis from satellites allow us to determine the contribution to the total CRE of various cloud types, information that can be used as a diagnostic of the quality of cloud-radiation simulations in GCMs. In this presentation we apply such conditional averaging to CREs and cloud types provided by the International Satellite Cloud Climatology Project (ISCCP). The ISCCP D1 gridded cloud product contains the joint distribution of cloud top pressure and cloud optical depth at 280 km grid cells observed daily every 3-hours. The patterns of these joint distributions can be used to identify, via cluster analysis, distinct states of the atmosphere at the mesoscale, which ISCCP terms "weather states". The spatiotemporal distribution of distinct weather states is now available as a separate ISCCP D1 product for various geographical zones. We identify the relative contribution to the total CRE (shortwave, longwave, and net; both top of the atmosphere and surface) of these weather states separately for the extended low latitudes, northern midlatitudes and southern midlatitudes for the period 1984-2007 by conditionally averaging the CREs of the ISCCP FD data set according to weather state. Results from such a CRE breakdown that can be used as higher order GCM diagnostics include: (a) The seasonal cycle of CRE of the various weather states and the relationship between their relative strength and their frequency of occurrence; b) the identification of the most dominant weather states in terms of their relative

  7. Effects of variability in land surface characteristics on the summer radiation budget across desert-oasis region in Northwestern China

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Zhao, Wenzhi

    2015-02-01

    The oasis area in the middle reaches of the Heihe River has changed since a water diversion scheme was implemented in 2000. The resultant variation land surface characteristics affects radiation budget during the oasisification process. The aim of this study was to investigate the variation in radiation budget within land surfaces during the oasisification process, through spatial instead of time-successional sequence method. Radiant data in the oasis fringe (maize field) and the desert-oasis ecotone was observed during the summer of 2009. The results showed that solar radiation (SR) in the oasis fringe was identical to that of the desert-oasis ecotone on selected clear, cloudy, and rainy days. Surface reflective radiation (SRR) and surface effective radiation (SER) both decreased from clear day to cloudy day and were lowest on the rainy day. The diurnal variation in radiation budget for cloudy and rainy days did not follow the same cycle as on clear day. The albedo values in the oasis fringe and the desert-oasis ecotone were 0.18 and 0.26, respectively. The diurnal variation in albedo tended toward a "U-shaped" curve on clear day. When the solar elevation angle was greater than 40°; the albedo was symmetrical in the a.m. and p.m. time frames. The radiation budget changed within land surfaces during the oasisification process. In summer, the albedo decreased, as did SER, with the transition from desert to oasis interior; whereas the surface-absorbed radiation (SAR) and net radiation (NR) both increased. More than half of the absorbed net energy in the desert was released in longwave form. The absorbed energy in the oasis was conserved to ensure stable light and heat resources utilization for agricultural production.

  8. Variability of Earth's radiation budget components during 2009 - 2015 from radiometer IKOR-M data

    NASA Astrophysics Data System (ADS)

    Cherviakov, Maksim

    2016-04-01

    This report describes a new «Meteor-M» satellite program which has been started in Russia. The first satellite of new generation "Meteor-M» № 1 was put into orbit in September, 2009. The radiometer IKOR-M - «The Measuring instrument of short-wave reflected radiation" was created in Saratov State University. It was installed on Russian hydrometeorological satellites «Meteor-M» № 1 and № 2. Radiometer IKOR-M designed for satellite monitoring of the outgoing reflected short-wave radiation, which is one of the components of Earth's radiation budget. Such information can be used in different models of long-term weather forecasts, in researches of climate change trends and also in calculation of absorbed solar radiation values and albedo of the Earth-atmosphere system. Satellite «Meteor-M» № 1 and № 2 are heliosynchronous that allows observing from North to South Poles. The basic products of data processing are given in the form of global maps of distribution outgoing short-wave radiation (OSR), albedo and absorbed solar radiation (ASR). Such maps were made for each month during observation period. The IKOR-M product archive is available online at all times. A searchable catalogue of data products is continually updated and users may search and download data products via the Earth radiation balance components research laboratory website (http://www.sgu.ru/structure/geographic/metclim/balans) as soon as they become available. Two series of measurements from two different IKOR-M are available. The first radiometer had worked from October, 2009 to August, 2014 and second - from August, 2014 to the present. Therefore, there is a period when both radiometers work at the same time. Top-of-atmosphere fluxes deduced from the «Meteor-M» № 1 measurements in August, 2014 show very good agreement with the fluxes determined from «Meteor-M» № 2. The seasonal and interannual variations of OSR, albedo and ASR were discussed. The variations between SW radiation

  9. Earth radiation budget - Results of outgoing longwave radiation from Nimbus-7, NOAA-9, and ERBS satellites

    NASA Technical Reports Server (NTRS)

    Bess, T. D.; Smith, G. L.

    1993-01-01

    Outgoing longwave radiation (OLR) data from Nimbus-7 ERB wide field-of-view instruments are compared with results from the ERBE instruments aboard the NOAA-9 and NOAA-10 satellites. Over most regions of the globe, the agreement between the two sets of OLR results is generally to within 8 W/sq m. There are larger differences at higher latitudes and regions concentrated over land and desert. Results of daytime and nighttime differences suggest that the shortwave channels may be at fault due to their different design for Nimbus-7 and NOAA-9. Some of the differences may also be related to different viewing geometry of the two satellites.

  10. Dynamic Electrothermal Model of a Sputtered Thermopile Thermal Radiation Detector for Earth Radiation Budget Applications

    NASA Technical Reports Server (NTRS)

    Weckmann, Stephanie

    1997-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) is a program sponsored by the National Aeronautics and Space Administration (NASA) aimed at evaluating the global energy balance. Current scanning radiometers used for CERES consist of thin-film thermistor bolometers viewing the Earth through a Cassegrain telescope. The Thermal Radiation Group, a laboratory in the Department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently studying a new sensor concept to replace the current bolometer: a thermopile thermal radiation detector. This next-generation detector would consist of a thermal sensor array made of thermocouple junction pairs, or thermopiles. The objective of the current research is to perform a thermal analysis of the thermopile. Numerical thermal models are particularly suited to solve problems for which temperature is the dominant mechanism of the operation of the device (through the thermoelectric effect), as well as for complex geometries composed of numerous different materials. Feasibility and design specifications are studied by developing a dynamic electrothermal model of the thermopile using the finite element method. A commercial finite element-modeling package, ALGOR, is used.

  11. Passive exposure of Earth radiation budget experiment components. LDEF experiment AO-147: Post-flight examinations and tests

    NASA Technical Reports Server (NTRS)

    Hickey, John R.

    1992-01-01

    The flight spare sensors of the Earth Radiation Budget (ERB) experiment of the Nimbus 6 and 7 missions were flown aboard the LDEF. The preliminary post retrieval examination and test results are presented here for the sensor windows and filters, the thermopile sensors and a cavity radiometer.

  12. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy

    PubMed Central

    Artemyev, A.V.; Agapitov, O.V.; Mourenas, D.; Krasnoselskikh, V.V.; Mozer, F.S.

    2015-01-01

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave–particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity. PMID:25975615

  13. The Potential for Collocated AGLP and ERBE Data for Fire, Smoke, and Radiation Budget Studies

    NASA Technical Reports Server (NTRS)

    Christopher, S. A.; Chou, J.

    1997-01-01

    One month of the Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC) Land Pathfinder (AGLP) data from September 1985 are used to examine the spatial and temporal distribution of fires over four major ecosystems in South America. The Earth Radiation Budget Experiment (ERBE) scanner data are used to examine the top of atmosphere (TOA) shortwave and longwave fluxes over smoke generated from biomass burning. The relationship between the AGLP-derived Normalized Difference Vegetation Index (NDVI) and the ERBE-estimated clear sky albedos are also examined as a function of the four ecosystems. This study shows that the grassland areas in South America have the highest number of fires for September 1985. and their corresponding NDVI values are smaller than the tropical rainforest region where the number of fires were comparatively small. Clear sky statistics accumulated during the days when smoke was not present show that clear sky albedos derived from ERBE are higher for grassland areas when compared to the tropical rainforest. The results show that the AGLP can be used to determine the spatial and temporal distribution of fires along with vegetation characteristics, while ERBE data can provide necessary information on broadband albedos and regional top of atmosphere radiative impacts of biomass burning aerosols. Since the AGLP data are available from 1981 to the present day, several climate-related issues can be addressed,

  14. The Potential for Collocated AGLP and ERBE data for Fire, Smoke, and Radiation Budget Studies

    NASA Technical Reports Server (NTRS)

    Christropher, S. A.; Chou, J.

    1997-01-01

    One month of the Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC) Land Pathfinder (AGLP) data from September 1985 are used to examine the spatial and temporal distribution of fires over four major ecosystems in South America. The Earth Radiation Budget Experiment (ERBE) scanner data are used to examine the top of atmosphere (TOA) shortwave and longwave fluxes over smoke generated from biomass burn- ing. The relationship between the AGLP-derived Normalized Difference Vegetation Index (NDVI) and the ERBE-estimated clear sky albedos are also examined as a function of the four ecosystems. This study shows that the grassland areas in South America have the highest number of fires for September 1985, and their corresponding NDVI values are smaller than the tropical rainforest region where the number of fires were comparatively small. Clear sky statistics accumulated during the days when smoke was not present show that clear sky albedos derived from ERBE are higher for grassland areas when compared to the tropical rainforest. The results show that the AGLP can be used to determine the spatial and temporal distribution of fires along with vegetation characteristics, while ERBE data can provide necessary information on broadband albedos and regional top of atmosphere radiative impacts of biomass burning aerosols. Since the AGLP data are available from 1981 to the present day, several climate-related issues can be addressed.

  15. Predicted dynamic electrothermal performance of thermistor bolometer radiometers for Earth radiation budget applications.

    PubMed

    Haeffelin, M P; Mahan, J R; Priestley, K J

    1997-10-01

    The Earth Radiation Budget Experiment (ERBE) and the Clouds and the Earth's Radiant Energy System (CERES) rely on scanning thermistor bolometer radiometers of a similar design for accomplishing their mission. High-level dynamic electrothermal models of these instruments have been developed on the basis of the Monte Carlo ray-trace, finite-difference, and finite-element methods. The models are capable of simulating the end-to-end response of the ERBE and the CERES instruments to simulated sequences of Earth scenes. Such models will prove useful in the design of future generations of similar instruments, in defining ground-based and in-flight calibration and data-reduction strategies, in the interpretation of flight data, and in understanding data anomalies that might arise after the instruments have been placed in orbit. Two modules that make up the end-to-end model are presented: the optical-thermal radiative module and the thermistor bolometer dynamic electrothermal module. The optics module is used to determine the point-spread function of the optics, which establishes that the instrument has sharply defined footprints on the Earth. Results obtained with the thermistor bolometer dynamic electrothermal module provide valuable insights into the details of channel operation and establish its high level of equivalence. The combination of the two modules allows the point-spread function of the instrument to be determined and reveals the potential of this tool for scanning realistic Earth scenes.

  16. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.

    PubMed

    Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S

    2015-01-01

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity. PMID:25975615

  17. The Langley Parameterized Shortwave Algorithm (LPSA) for Surface Radiation Budget Studies. 1.0

    NASA Technical Reports Server (NTRS)

    Gupta, Shashi K.; Kratz, David P.; Stackhouse, Paul W., Jr.; Wilber, Anne C.

    2001-01-01

    An efficient algorithm was developed during the late 1980's and early 1990's by W. F. Staylor at NASA/LaRC for the purpose of deriving shortwave surface radiation budget parameters on a global scale. While the algorithm produced results in good agreement with observations, the lack of proper documentation resulted in a weak acceptance by the science community. The primary purpose of this report is to develop detailed documentation of the algorithm. In the process, the algorithm was modified whenever discrepancies were found between the algorithm and its referenced literature sources. In some instances, assumptions made in the algorithm could not be justified and were replaced with those that were justifiable. The algorithm uses satellite and operational meteorological data for inputs. Most of the original data sources have been replaced by more recent, higher quality data sources, and fluxes are now computed on a higher spatial resolution. Many more changes to the basic radiation scheme and meteorological inputs have been proposed to improve the algorithm and make the product more useful for new research projects. Because of the many changes already in place and more planned for the future, the algorithm has been renamed the Langley Parameterized Shortwave Algorithm (LPSA).

  18. The Potential for Collocated AGLP and ERBE Data for Fire, Smoke, and Radiation Budget Studies

    NASA Technical Reports Server (NTRS)

    Christopher, S. A.; Chou, J.

    1997-01-01

    One month of the Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC) Land Pathfinder (AGLP) data from September 1985 are used to examine the spatial and temporal distribution of fires over four major ecosystems in South America. The Earth Radiation Budget Experiment (ERBE) scanner data are used to examine the top of atmosphere (TOA) shortwave and longwave fluxes over smoke generated from biomass burning. The relationship between the AGLP-derived Normalized Difference Vegetation Index (NDVI) and the ERBE-estimated clear sky albedos are also examined as a function of the four ecosystems. This study shows that the grassland areas in South America have the highest number of tires for September 1985, and their corresponding NDVI values are smaller than the tropical rainforest region where the number of fires were comparatively small. Clear sky statistics accumulated during the days when smoke was not present show that clear sky albedos derived from ERBE are higher for grassland areas when compared to the tropical rainforest. The results show that the AGLP can be used to determine the spatial and temporal distribution of fires along with vegetation characteristics, while ERBE data can provide necessary information on broadband albedos and regional top of atmosphere radiative impacts of biomass burning aerosols. Since the AGLP data are available from 1981 to the present day, several climate-related issues can be addressed.

  19. Evaluating the design of an Earth Radiation Budget Instrument with systen simulations. Part 1: Instantaneous estimates

    NASA Technical Reports Server (NTRS)

    Stowe, Larry; Ardanuy, Philip; Hucek, Richard; Abel, Peter; Jacobowitz, Herbert

    1993-01-01

    A set of system simulations has been performed to evaluate candidate scanner designs for an Earth Radiation Budget Instrument (ERBI) for the Earth Observing System (EOS) of the late 1990s. Five different instruments are considered: (1) the Active Cavity Array (ACA), (2) the Clouds and Earth's Radiant Energy System-Instrument (CERES-I), (3) the Conically Scanning Radiometer (CSR), (4) the Earth Radiation Budget Experiment Cross-Track Scanner (ERBE), and (5) the Nimbus-7 Biaxial Scanner (N7). Errors in instantaneous, top-of-the-atmosphere (TOA) satellite flux estimates are assumed to arise from two measurement problems: the sampling of space over a given geographic domain, and sampling in angle about a given spatial location. When angular sampling errors vanish due to the application of correct angular dependence models (ADMs) during inversion, the accuracy of each scanner design is determined by the instrument's ability to map the TOA radiance field in a uniform manner. In this regard, the instruments containing a cross-track scanning component (CERES-I and ERBE) do best. As errors in ADMs are encountered, cross-track instruments incur angular sampling errors more rapidly than biaxial instruments (N7, ACA, and CSR) and eventually overtake the biaxial designs in their total error amounts. A latitude bias (north-south error gradient) in the ADM error of cross-track instruments also exists. This would be objectionable when ADM errors are systematic over large areas of the globe. For instantaneous errors, however, cross-track scanners outperform biaxial or conical scanners for 2.5 deg latitude x 2.5 deg longitude target areas, providing that the ADM error is less than or equal to 30%. A key issue is the amount of systematic ADM error (departures from the mean models) that is present at the 2.5 deg resolution of the ERBE target areas. If this error is less than 30%, then the CERES-I, ERBE, and CSR, in order of increasing error, provide the most accurate instantaneous

  20. Evaluation and intercomparison of clouds, precipitation, and radiation budgets in recent reanalyses using satellite-surface observations

    NASA Astrophysics Data System (ADS)

    Dolinar, Erica K.; Dong, Xiquan; Xi, Baike

    2016-04-01

    Atmospheric reanalysis datasets offer a resource for investigating climate processes and extreme events; however, their uncertainties must first be addressed. In this study, we evaluate the five reanalyzed (20CR, CFSR, Era-Interim, JRA-25, and MERRA) cloud fraction (CF), precipitation rates (PR), and top-of-atmosphere (TOA) and surface radiation budgets using satellite observations during the period 03/2000-02/2012. Compared to the annual averaged CF of 56.7 % from CERES MODIS (CM) four of the five reanalyses underpredict CFs by 1.7-4.6 %, while 20CR overpredicts this result by 7.4 %. PR from the Tropical Rainfall Measurement Mission (TRMM) is 3.0 mm/day and the reanalyzed PRs agree with TRMM within 0.1-0.6 mm/day. The shortwave (SW) and longwave (LW) TOA cloud radiative effects (CREtoa) calculated by CERES EBAF (CE) are -48.1 and 27.3 W/m2, respectively, indicating a net cooling effect of -20.8 W/m2. Of the available reanalysis results, the CFSR and MERRA calculated net CREtoa values agree with CE within 1 W/m2, while the JRA-25 result is ~10 W/m2 more negative than the CE result, predominantly due to the underpredicted magnitude of the LW warming in the JRA-25 reanalysis. A regime metric is developed using the vertical motion field at 500 hPa over the oceans. Aptly named the "ascent" and "descent" regimes, these areas are distinguishable in their characteristic synoptic patterns and the predominant cloud-types; convective-type clouds and marine boundary layer (MBL) stratocumulus clouds. In general, clouds are overpredicted (underpredicted) in the ascent (descent) regime and the biases are often larger in the ascent regime than in the descent regime. PRs are overpredicted in both regimes; however the observed and reanalyzed PRs over the ascent regime are an order of magnitude larger than those over the descent regime, indicating different types of clouds exist in these two regimes. Based upon the Atmospheric Radiation Measurement Program ground-based and CM

  1. NASA/GEWEX Surface Radiation Budget: First Results From The Release 4 GEWEX Integrated Data Products

    NASA Astrophysics Data System (ADS)

    Stackhouse, Paul; Cox, Stephen; Gupta, Shashi; Mikovitz, J. Colleen; zhang, taiping

    2016-04-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current release 3 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number should help improve the RMS of the existing products and allow for future higher resolution SRB gridded product (e.g. 0.5 degree). In addition to the input data improvements, several important algorithm improvements have been made. Most notable has been the adaptation of Angular Distribution Models (ADMs) from CERES to improve the initial calculation of shortwave TOA fluxes, from which the surface flux calculations follow. Other key input improvements include a detailed aerosol history using the Max Planck Institut Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. As of the time of abstract submission, results from 2007 have been produced with ISCCP H availability the limiting factor. More SRB data will be produced as ISCCP reprocessing continues. The SRB data produced will be released as part of the Release 4.0 Integrated Product, recognizing the interdependence of the radiative fluxes with other GEWEX products providing estimates of the Earth's global water and energy cycle (I.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).

  2. Nimbus-7 Earth radiation budget calibration history. Part 2: The Earth flux channels

    NASA Technical Reports Server (NTRS)

    Kyle, H. Lee; Hucek, Douglas Richard R.; Ardanuy, Philip E.; Hickey, John R.; Maschhoff, Robert H.; Penn, Lanning M.; Groveman, Brian S.; Vallette, Brenda J.

    1994-01-01

    Nine years (November 1978 to October 1987) of Nimbus-7 Earth radiation budget (ERB) products have shown that the global annual mean emitted longwave, absorbed shortwave, and net radiation were constant to within about + 0.5 W/sq m. Further, most of the small annual variations in the emitted longwave have been shown to be real. To obtain this measurement accuracy, the wide-field-of-view (WFOV) Earth-viewing channels 12 (0.2 to over 50 micrometers), 13 (0.2 to 3.8 micrometers), and 14 (0.7 to 2.8 micrometers) have been characterized in their satellite environment to account for signal variations not considered in the prelaunch calibration equations. Calibration adjustments have been derived for (1) extraterrestrial radiation incident on the detectors, (2) long-term degradation of the sensors, and (3) thermal perturbations within the ERB instrument. The first item is important in all the channels; the second, mainly in channels 13 and 14, and the third, only in channels 13 and 14. The Sun is used as a stable calibration source to monitor the long-term degradation of the various channels. Channel 12, which is reasonably stable to both thermal perturbations and sensor degradation, is used as a reference and calibration transfer agent for the drifting sensitivities of the filtered channels 13 and 14. Redundant calibration procedures were utilized. Laboratory studies complemented analyses of the satellite data. Two nearly independent models were derived to account for the thermal perturbations in channels 13 and 14. The global annual mean terrestrial shortwave and longwave signals proved stable enough to act as secondary calibration sources. Instantaneous measurements may still, at times, be in error by as much as a few Wm(exp -2), but the long-term averages are stable to within a fraction of a Wm(exp -2).

  3. Observations of the Earth's Radiation Budget in relation to atmospheric hydrology. 4: Atmospheric column radiative cooling over the world's oceans

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Slingo, Anthony; Webb, Mark J.; Minnett, Peter J.; Daum, Peter H.; Kleinman, Lawrence; Wittmeyer, Ian; Randall, David A.

    1994-01-01

    This paper introduces a simple method for deriving climatological values of the longwave flux emitted from the clear sky atmosphere to the ice-free ocean surface. It is shown using both theory and data from simulations how the ratio of the surface to top-of-atmosphere (TOA) flux is a simple function of water vapor (W) and a validation of the simple relationship is presented based on a limited set of surface flux measurements. The rms difference between the retrieved surface fluxes and the simulated surface fluxes is approximately 6 W/sq m. The clear sky column cooling rate of the atmosphere is derived from the Earth Radiation Budget Experiment (ERBE) values of the clear sky TOA flux and the surface flux retrieved using Special Scanning Microwave Imager (SSM/I) measurements of w together with ERBE clear sky fluxes. The relationship between this column cooling rate, w, and the sea surface temperature (SST) is explored and it is shown how the cooling rate systematically increases as both w and SST increase. The uncertainty implied in these estmates of cooling are approximately +/- 0.2 K/d. The effects of clouds on this longwave cooling are also explored by placing bounds on the possible impact of clouds on the column cooling rate based on certain assumptions about the effect of clouds on the longwave flux to the surface. It is shown how the longwave effects of clouds in a moist atmosphere where the column water vapor exceeds approximately 30 kg/sq m may be estimated from presently available satellite data with an uncertainty estimated to be approximately 0.2 K/d. Based on an approach described in this paper, we show how clouds in these relatively moist regions decrease the column cooling by almost 50% of the clear sky values and the existence of significant longitudinal gradients in column radiative heating across the equatorial and subtropical Pacific Ocean.

  4. Impacts of cloud overlap assumptions on radiative budgets and heating fields in convective regions

    NASA Astrophysics Data System (ADS)

    Wang, XiaoCong; Liu, YiMin; Bao, Qing

    2016-01-01

    Impacts of cloud overlap assumptions on radiative budgets and heating fields are explored with the aid of a cloud-resolving model (CRM), which provided cloud geometry as well as cloud micro and macro properties. Large-scale forcing data to drive the CRM are from TRMM Kwajalein Experiment and the Global Atmospheric Research Program's Atlantic Tropical Experiment field campaigns during which abundant convective systems were observed. The investigated overlap assumptions include those that were traditional and widely used in the past and the one that was recently addressed by Hogan and Illingworth (2000), in which the vertically projected cloud fraction is expressed by a linear combination of maximum and random overlap, with the weighting coefficient depending on the so-called decorrelation length Lcf. Results show that both shortwave and longwave cloud radiative forcings (SWCF/LWCF) are significantly underestimated under maximum (MO) and maximum-random (MRO) overlap assumptions, whereas remarkably overestimated under the random overlap (RO) assumption in comparison with that using CRM inherent cloud geometry. These biases can reach as high as 100 Wm- 2 for SWCF and 60 Wm- 2 for LWCF. By its very nature, the general overlap (GenO) assumption exhibits an encouraging performance on both SWCF and LWCF simulations, with the biases almost reduced by 3-fold compared with traditional overlap assumptions. The superiority of GenO assumption is also manifested in the simulation of shortwave and longwave radiative heating fields, which are either significantly overestimated or underestimated under traditional overlap assumptions. The study also pointed out the deficiency of constant assumption on Lcf in GenO assumption. Further examinations indicate that the CRM diagnostic Lcf varies among different cloud types and tends to be stratified in the vertical. The new parameterization that takes into account variation of Lcf in the vertical well reproduces such a relationship and

  5. The NASA/GEWEX Surface Radiation Budget: Next Generation Data Product With Reprocessed ISCCP

    NASA Astrophysics Data System (ADS)

    Cox, S. J.; Stackhouse, P. W.; Gupta, S. K.; Mikovitz, J. C.; Zhang, T.

    2014-12-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Temporal resolutions are 3-hourly, 3-hourly-monthly, daily, and monthly. Spatial resolution is 1 degree. The current release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km, resulting in pixel counts of ~10 per grid box. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the HX product, at 10km resolution. The large increase in pixel number will allow SRB greater flexibility in its own spatial resolution, allowing a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. Additionally, the SRB team is collaborating with other global GEWEX energy flux teams to improve key inputs such as the inclusion of an aerosol history, meteorological, and ozone data sets. For instance, the aerosol history will be specified from the first version of the Max-Planck-Institut Aerosol Climatology (MAC) containing a climatological coarse mode and an emission based fine mode history. Here we present our first look at results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. Improvements in GSW include the incorporation of variable composition aerosol from the MAC data set, an expansion of the number of wavelength bands is expanded from five to eighteen, and the inclusion of ice cloud vs. water cloud radiative transfer. The GLW improvements include the MAC aerosol vertical profiles, meteorology from HIRS, diurnally varying sea surface and land surface temperatures, and new topography, surface type, and snow/ice fields. The

  6. Studies of radiative transfer in the earth's atmosphere with emphasis on the influence of the radiation budget in the joint institute for advancement of flight sciences at the NASA-Langley Research Center

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Earth and solar radiation budget measurements were examined. Sensor calibration and measurement accuracy were emphasized. Past works on the earth's radiation field that must be used in reducing observations of the radiation field were reviewed. Using a finite difference radiative transfer algorithm, models of the angular and spectral dependence of the earth's radiation field were developed.

  7. Nimbus-7 Earth radiation budget calibration history. Part 1: The solar channels

    NASA Technical Reports Server (NTRS)

    Kyle, H. Lee; Hoyt, Douglas V.; Hickey, John R.; Maschhoff, Robert H.; Vallette, Brenda J.

    1993-01-01

    The Earth Radiation Budget (ERB) experiment on the Nimbus-7 satellite measured the total solar irradiance plus broadband spectral components on a nearly daily basis from 16 Nov. 1978, until 16 June 1992. Months of additional observations were taken in late 1992 and in 1993. The emphasis is on the electrically self calibrating cavity radiometer, channel 10c, which recorded accurate total solar irradiance measurements over the whole period. The spectral channels did not have inflight calibration adjustment capabilities. These channels can, with some additional corrections, be used for short-term studies (one or two solar rotations - 27 to 60 days), but not for long-term trend analysis. For channel 10c, changing radiometer pointing, the zero offsets, the stability of the gain, the temperature sensitivity, and the influences of other platform instruments are all examined and their effects on the measurements considered. Only the question of relative accuracy (not absolute) is examined. The final channel 10c product is also compared with solar measurements made by independent experiments on other satellites. The Nimbus experiment showed that the mean solar energy was about 0.1 percent (1.4 W/sqm) higher in the excited Sun years of 1979 and 1991 than in the quiet Sun years of 1985 and 1986. The error analysis indicated that the measured long-term trends may be as accurate as +/- 0.005 percent. The worse-case error estimate is +/- 0.03 percent.

  8. Comparison and testing of extended Kalman filters for attitude estimation of the Earth radiation budget satellite

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack Y.; Rokni, Mohammad

    1990-01-01

    The testing and comparison of two Extended Kalman Filters (EKFs) developed for the Earth Radiation Budget Satellite (ERBS) is described. One EKF updates the attitude quaternion using a four component additive error quaternion. This technique is compared to that of a second EKF, which uses a multiplicative error quaternion. A brief development of the multiplicative algorithm is included. The mathematical development of the additive EKF was presented in the 1989 Flight Mechanics/Estimation Theory Symposium along with some preliminary testing results using real spacecraft data. A summary of the additive EKF algorithm is included. The convergence properties, singularity problems, and normalization techniques of the two filters are addressed. Both filters are also compared to those from the ERBS operational ground support software, which uses a batch differential correction algorithm to estimate attitude and gyro biases. Sensitivity studies are performed on the estimation of sensor calibration states. The potential application of the EKF for real time and non-real time ground attitude determination and sensor calibration for future missions such as the Gamma Ray Observatory (GRO) and the Small Explorer Mission (SMEX) is also presented.

  9. Air temperature, radiation budget and area changes of Quisoquipina glacier in the Cordillera Vilcanota (Peru)

    NASA Astrophysics Data System (ADS)

    Suarez, Wilson; Macedo, Nicolás; Montoya, Nilton; Arias, Sandro; Schauwecker, Simone; Huggel, Christian; Rohrer, Mario; Condom, Thomas

    2015-04-01

    The Peruvian Andes host about 71% of all tropical glaciers. Although several studies have focused on glaciers of the largest glaciered mountain range (Cordillera Blanca), other regions have received little attention to date. In 2011, a new program has been initiated with the aim of monitoring glaciers in the centre and south of Peru. The monitoring program is managed by the Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI) and it is a joint project together with the Universidad San Antonio Abad de Cusco (UNSAAC) and the Autoridad Nacional del Agua (ANA). In Southern Peru, the Quisoquipina glacier has been selected due to its representativeness for glaciers in the Cordillera Vilcanota considering area, length and orientation. The Cordillera Vilcanota is the second largest mountain range in Peru with a glaciated area of approximately 279 km2 in 2009. Melt water from glaciers in this region is partly used for hydropower in the dry season and for animal breeding during the entire year. Using Landsat 5 images, we could estimate that the area of Quisoquipina glacier has decreased by approximately 11% from 3.66 km2 in 1990 to 3.26 km2 in 2010. This strong decrease is comparable to observations of other tropical glaciers. In 2011, a meteorological station has been installed on the glacier at 5180 m asl., measuring air temperature, wind speed, relative humidity, net short and longwave radiation and atmospheric pressure. Here, we present a first analysis of air temperature and the radiation budget at the Quisoquipina glacier for the first three years of measurements. Additionally, we compare the results from Quisoquipina glacier to results obtained by the Institut de recherche pour le développement (IRD) for Zongo glacier (Bolivia) and Antizana glacier (Ecuador). For both, Quisoquipina and Zongo glacier, net shortwave radiation may be the most important energy source, thus indicating the important role of albedo in the energy balance of the glacier

  10. The WCRP/GEWEX Surface Radiation Budget Project Release 2: An Assessment of Surface Fluxes at 1 Degree Resolution

    NASA Technical Reports Server (NTRS)

    Stackhouse, P. W., Jr.; Gupta, S. K.; Cox, S. J.; Chiacchio, M.; Mikovitz, J. C.

    2004-01-01

    The U.S. National Aeronautics and Space Administration (NASA) based Surface Radiation Budget (SRB) Project in association with the World Climate Research Programme Global Energy and Water Cycle Experiment (WCRP/GEWEX) is preparing a new 1 deg x 1 deg horizontal resolution product for distribution scheduled for release in early 2001. The new release contains several significant upgrades from the previous version. This paper summarizes the most significant upgrades and presents validation results as an assessment of the new data set.

  11. Quasi-real-time monitoring of SW radiation budget using geostationary satellite for Climate study and Renewable energy. (Invited)

    NASA Astrophysics Data System (ADS)

    Takenaka, H.; Nakajima, T. Y.; Kuze, H.; Takamura, T.; Pinker, R. T.; Nakajima, T.

    2013-12-01

    Solar radiation is the only source of energy that drives the weather and climate of the Earth's surface. Earth is warmed by incoming solar radiation, and emitted energy to space by terrestrial radiation due to its temperature. It has been kept to the organisms viable environment by the effect of heating and cooling. Clouds can cool the Earth by reflecting solar radiation and also can keep the Earth warm by absorbing and emitting terrestrial radiation. They are important in the energy balance at the Earth surface and the Top of the Atmosphere (TOA) and are connected complicatedly into the Earth system as well as other climate feedback processes. Thus it is important to estimate Earth's radiation budget for better understanding of climate and environmental change. We have shared several topics related to climate change. Energy issues close to the climate change, it is an environmental problems. Photovoltaics is one of the power generation method to converts from solar radiation to electric power directly. It does not emit greenhouse gases during power generation. Similarly, drainage, exhaust, vibration does not emit. PV system can be distributed as a small power supply in urban areas and it can installed to near the power demand points. Also solar thermal is heat generator with high efficiency. Therefor it is an effective energy source that the solar power is expected as one of the mitigation of climate change (IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation). It is necessary to real-time-monitoring of the surface solar radiation for safety operation of electric power system. We introduce a fusion analysis of renewable energy and Quasi-real-time analysis of SW radiation budget. Sample of estimated PV power mapping using geostationary satellite.

  12. On the relationship of the earth radiation budget to the variability of atmospheric available potential and kinetic energies

    NASA Technical Reports Server (NTRS)

    Randel, David L.; Vonder Haar, Thomas H.

    1990-01-01

    The zonal and eddy kinetics energies and available potential energies are examined for both the Northern and the Southern Hemispheres, using a data set produced by 8 years of continuous simultaneous observations of the circulation parameters and measurements of the earth radiation budget (ERB) from the Nimbus-7 ERB experiment. The relationships between the seasonal cycles in ERB and those of the energetics are obtained, showing that the solar annual cycle accounts for most of the seasonal variability. It was found that the ERB midlatitude gradients of the net balance and the outgoing radiation lead the annual cycle of the energetics by 2-3 weeks.

  13. The Earth's radiation budget and its relation to atmospheric hydrology: 2. Observations of cloud effects

    NASA Astrophysics Data System (ADS)

    Stephens, Graeme L.; Greenwald, Thomas J.

    1991-08-01

    This paper describes an observational study of the relationship between the cloudy sky components of the Earth's radiation budget (ERB) and space/time coincident observations of the sea surface temperature, microwave-derived cloud liquid water and cloud cover. The study uses two ERB data sets; Nimbus 7 narrow field-of-view, broadband scanning radiometer data from June 1979 to May 1980 and the Earth Radiation Budget Experiment broadband scanning data from March 1985 to February 1986. Cloud fluxes are derived from the ERB fluxes and estimates of the clear sky fluxes are described in a related paper. A new method that extends the cloud forcing analysis of ERB data is also introduced to estimate the cloud albedo. The zonally and seasonally averaged cloud flux components of the ERB are within 6 W m-2 for the two data sets. The general gross features of the global distributions of these fluxes also reproduce those reported in recent studies with the largest differences in mid-to-high latitude regions characterized by persistent cloud cover where the estimation of Nimbus 7 clear sky fluxes is suspect. A quantitative assessment of the impact of clouds on the greenhouse effect is given in terms of the greenhouse parameter introduced in a related study. This impact is significant, especially for deep convective clouds that form over the warmest waters of the oceans. It is also shown how the greenhouse effect of clouds increases as the liquid water path (LWP) of clouds increases in a manner analogous to that observed for water vapor. This increase is in direct contrast to many recent model studies of cloud feedback that ignore this influence. Cloud albedo data are grouped in categories corresponding to ranges of solar zenith angle. Albedos and longwave fluxes for the latitudinal ranges of these categories suggest that brighter, colder clouds exist over tropical land masses in comparison to tropical oceanic regions and vice versa for middle and high latitudes. While

  14. Estimation of SW radiation budget using geostationary satellites and quasi-real-time monitoring of PV power generation

    NASA Astrophysics Data System (ADS)

    Takenaka, H.; Nakajima, T. Y.; Inoue, T.; Takamura, T.; Pinker, R. T.; Teruyuki, N.

    2012-12-01

    Clouds can cool the Earth by reflecting solar radiation and also can keep the Earth warm by absorbing and emitting terrestrial radiation. They are important in the energy balance at the Earth surface and the Top of the Atmosphere (TOA) and are connected complicatedly into the Earth system as well as other climate feedback processes. Thus it is important to estimate Earth's radiation budget for better understanding of climate and environmental change. In this study, we developed the high speed and accurate algorithm for shortwave (SW) radiation budget and it's applied to five geostationary satellites for global analysis. There are validated by SKYNET and BSRN ground observation data. The analysis results showed a distinctive trend of direct and diffuse component of surface SW fluxes in North Pacific and North Atlantic ocean. Similarly, developed algorithm is applied to quasi-real time analysis synchronous to geostationary satellite observation. It enabled highly accurate monitoring of solar radiation and photo voltaic (PV) power generation. It indicates the possibility of the fusion analysis of climate study and renewable energy.

  15. Inversion methods for satellite studies of the Earth Radiation Budget - Development of algorithms for the ERBE mission

    NASA Technical Reports Server (NTRS)

    Smith, G. L.; Green, R. N.; Avis, L. M.; Suttles, J. T.; Wielicki, B. A.; Raschke, E.; Davies, R.

    1986-01-01

    The Earth Radiation Budget Experiment carries a three-channel scanning radiometer and a set of nadir-looking wide and medium field-of-view instruments for measuring the radiation emitted from earth and the solar radiation reflected from earth. This paper describes the algorithms which are used to compute the radiant exitances at a reference level ('top of the atmosphere') from these measurements. Methods used to analyze data from previous radiation budget experiments are reviewed, and the rationale for the present algorithms is developed. The scanner data are converted to radiances by use of spectral factors, which account for imperfect spectral response of the optics. These radiances are converted to radiant exitances at the reference level by use of directional models, which account for anisotropy of the radiation as it leaves the earth. The spectral factors and directional models are selected on the basis of the scene, which is identified on the basis of the location and the long-wave and shortwave radiances. These individual results are averaged over 2.5 x 2.5 deg regions. Data from the wide and medium field-of-view instruments are analyzed by use of the traditional shape factor method and also by use of a numerical filter, which permits resolution enhancement along the orbit track.

  16. An aerosol optical depth climatology for NOAA's national surface radiation budget network (SURFRAD)

    NASA Astrophysics Data System (ADS)

    Augustine, John A.; Hodges, Gary B.; Dutton, Ellsworth G.; Michalsky, Joseph J.; Cornwall, Christopher R.

    2008-06-01

    A series of algorithms developed to process spectral solar measurements for aerosol optical depth (AOD) for the National Oceanic and Atmospheric Administration's (NOAA) national surface radiation budget network (SURFRAD) is summarized, and decadal results are presented. AOD is a measure of the extinction of the Sun's beam due to aerosols. Daily files of AOD for five spectral measurements in the visible and near-infrared have been produced for 1997-2006. Comparisons of SURFRAD daily AOD averages to NASA's Aerosol Robotic Network product at two of the stations were generally good. An AOD climatology for each SURFRAD station is presented as an annual time series of composite monthly means that represents a typical intra-annual AOD variation. Results are similar to previous U.S. climatologies in that the highest AOD magnitude and greatest variability occur in summer, the lowest AOD levels are in winter, and geographically, the highest-magnitude AOD is in the eastern United States. Springtime Asian dust intrusions show up as a secondary maximum at the western stations. A time series of nationwide annual means shows that 500-nm AOD has decreased over the United States by about 0.02 AOD units over the 10-year period. However, this decline is not statistically significant nor geographically consistent within the country. The eastern U.S. stations and westernmost station at Desert Rock, Nevada, show decreasing AOD, whereas the other two western stations show an increase that is attributed to an upsurge in wildfire activity in the last half of the decade.

  17. Validation of clear-sky fluxes for tropical oceans from the Earth Radiation Budget Experiment

    NASA Technical Reports Server (NTRS)

    Collins, W. D.; Inamdar, A. K.

    1995-01-01

    The existence and magnitude of a systematic bias in the clear-sky longwave fluxes from the Earth Radiation Budget Experiment (ERBE) is investigated. The bias is apparently introduced because the ERBE method for scene identification does not account for large zonal gradients in longwave absorption by water vapor. The ERBE fluxes are compared to fluxes calculated with a radiative transfer model from ship radiosonde measurements. The comparison is based upon an analysis of 5 yr of coincident satellite and radiosonde observations for equatorial ocean regions. The differences between the ERBE and model fluxes are examined as functions of sea surface temperature (SST) and relative humidity. The authors use height-mean relative humidity bar-RH as an index of atmospheric moisture. The average offset between and model ERBE fluxes ranges between +2 and +6 W/sq m for SSTs above 295 K, and the gradients with respect to SST are nearly identical. However, the difference between the model and ERBE depends significantly on the tropospheric relative humidity. ERBE fluxes exceed model fluxes for bar-RH above 70%, and the maximum offset of +9 to +12 W/sq m is consistent with previous estimates. There are also indications that the clear-sky fluxes for bar-RH below 25% may be underestimated by about 10-15 W/sq m. Since extreme values of height-mean humidity are relatively infrequent, the net bias introduced in the ERBE monthly mean clear-sky fluxes is generally less than the systematic error in estimates introduced in the ERBE monthly mean clear-sky fluxes is generally less than the systematic error in estimates of the instantaneous fluxes. These findings support earlier work on the coupling between SST and the atmospheric greenhouse effect, in particular the existence of a super greenhouse effect for oceans warmer than 300 K. Recent reports of much larger systematic differences are not supported by this analysis. The results indicate that comparison of general circulation model (GCM

  18. A study of the earth radiation budget using a 3D Monte-Carlo radiative transer code

    NASA Astrophysics Data System (ADS)

    Okata, M.; Nakajima, T.; Sato, Y.; Inoue, T.; Donovan, D. P.

    2013-12-01

    The purpose of this study is to evaluate the earth's radiation budget when data are available from satellite-borne active sensors, i.e. cloud profiling radar (CPR) and lidar, and a multi-spectral imager (MSI) in the project of the Earth Explorer/EarthCARE mission. For this purpose, we first developed forward and backward 3D Monte Carlo radiative transfer codes that can treat a broadband solar flux calculation including thermal infrared emission calculation by k-distribution parameters of Sekiguchi and Nakajima (2008). In order to construct the 3D cloud field, we tried the following three methods: 1) stochastic cloud generated by randomized optical thickness each layer distribution and regularly-distributed tilted clouds, 2) numerical simulations by a non-hydrostatic model with bin cloud microphysics model and 3) Minimum cloud Information Deviation Profiling Method (MIDPM) as explained later. As for the method-2 (numerical modeling method), we employed numerical simulation results of Californian summer stratus clouds simulated by a non-hydrostatic atmospheric model with a bin-type cloud microphysics model based on the JMA NHM model (Iguchi et al., 2008; Sato et al., 2009, 2012) with horizontal (vertical) grid spacing of 100m (20m) and 300m (20m) in a domain of 30km (x), 30km (y), 1.5km (z) and with a horizontally periodic lateral boundary condition. Two different cell systems were simulated depending on the cloud condensation nuclei (CCN) concentration. In the case of horizontal resolution of 100m, regionally averaged cloud optical thickness, , and standard deviation of COT, were 3.0 and 4.3 for pristine case and 8.5 and 7.4 for polluted case, respectively. In the MIDPM method, we first construct a library of pair of observed vertical profiles from active sensors and collocated imager products at the nadir footprint, i.e. spectral imager radiances, cloud optical thickness (COT), effective particle radius (RE) and cloud top temperature (Tc). We then select a

  19. Atlas of albedo and absorbed solar radiation derived from Nimbus 7 earth radiation budget data set, November 1985 to October 1987

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Rutan, David; Bess, T. Dale

    1992-01-01

    An atlas of monthly mean global contour maps of albedo and absorbed solar radiation is presented for 21 months from Nov. 1985 to Oct. 1987. These data were retrieved from measurements made by the shortwave wide-field-of-view radiometer of the Earth Radiation Budget (ERB) instrument aboard the Nimbus 7 spacecraft. Profiles of zonal mean albedos and absorbed solar radiation were tabulated. These geographical distributions are provided as a resource for researchers studying the radiation budget of the Earth. The El Nino/Southern Oscillation event of 1986-1987 is included in this data set. This atlas of albedo and absorbed solar radiation extends to 12 years the period covered by two similar atlases: NASA RP-1230 (Jul. 1975 - Oct. 1978) and NASA RP-1231 (Nov. 1978 - Oct. 1985). These three compilations complement the atlases of outgoing longwave radiation by Bess and Smith in NASA RP-1185, RP-1186, and RP-1261, which were also based on the Nimbus 6 and 7 ERB data.

  20. Long-Term Validation and Variability of the Shortwave and Longwave Radiation Data of the GEWEX Surface Radiation Budget (SRB) Project

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Cox, Stephan J.; Mikovitz, Colleen; Hinkelman, Laura M.

    2006-01-01

    In this investigation, we make systematic Surface Radiation Budget-Baseline Surface Radiation Network (SRB-BSRN), Surface Radiation Data Centre (SRB-WRDC) and Surface Radiation Budget-Global Energy Balance Archive (SRB-GEBA) comparisons for both shortwave and longwave daily and monthly mean radiation fluxes at the Earth's surface. We first have an overview of all the comparable pairs of data in scatter or scatter density plots. Then we show the time series of the SRB data at grids in which there are ground sites where longterm records of data are available for comparison. An overall very good agreement between the SRB data and ground observations is found. To see the variability of the SRB data during the 21.5 years, we computed the global mean and its linear trend. No appreciable trend is detected at the 5% level. The empirical orthogonal functions (EOF) of the SRB deseasonalized shortwave downward flux are computed over the Pacific region, and the first EOF coefficient is found to be correlated with the ENSO Index at a high value of coefficient of 0.7083.

  1. Toward an Improved Understanding of the Tropical Energy Budget Using TRMM-based Atmospheric Radiative Heating Products

    NASA Astrophysics Data System (ADS)

    L'Ecuyer, T.; McGarragh, G.; Ellis, T.; Stephens, G.; Olson, W.; Grecu, M.; Shie, C.; Jiang, X.; Waliser, D.; Li, J.; Tian, B.

    2008-05-01

    It is widely recognized that clouds and precipitation exert a profound influence on the propagation of radiation through the Earth's atmosphere. In fact, feedbacks between clouds, radiation, and precipitation represent one of the most important unresolved factors inhibiting our ability to predict the consequences of global climate change. Since its launch in late 1997, the Tropical Rainfall Measuring Mission (TRMM) has collected more than a decade of rainfall measurements that now form the gold standard of satellite-based precipitation estimates. Although not as widely advertised, the instruments aboard TRMM are also well-suited to the problem of characterizing the distribution of atmospheric heating in the tropics and a series of algorithms have recently been developed for estimating profiles of radiative and latent heating from these measurements. This presentation will describe a new multi-sensor tropical radiative heating product derived primarily from TRMM observations. Extensive evaluation of the products using a combination of ground and satellite-based observations is used to place the dataset in the context of existing techniques for quantifying atmospheric radiative heating. Highlights of several recent applications of the dataset will be presented that illustrate its utility for observation-based analysis of energy and water cycle variability on seasonal to inter-annual timescales and evaluating the representation of these processes in numerical models. Emphasis will be placed on the problem of understanding the impacts of clouds and precipitation on atmospheric heating on large spatial scales, one of the primary benefits of satellite observations like those provided by TRMM.

  2. Use of a GCM to Explore Sampling Issues in Connection with Satellite Remote Sensing of the Earth Radiation Budget

    NASA Technical Reports Server (NTRS)

    Fowler, Laura D.; Wielicki, Bruce A.; Randall, David A.; Branson, Mark D.; Gibson, Gary G.; Denn, Fredrick M.

    2000-01-01

    Collocated in time and space, top-of-the-atmosphere measurements of the Earth radiation budget (ERB) and cloudiness from passive scanning radiometers, and lidar- and radar-in-space measurements of multilayered cloud systems, are the required combination to improve our understanding of the role of clouds and radiation in climate. Experiments to fly multiple satellites "in formation" to measure simultaneously the radiative and optical properties of overlapping cloud systems are being designed. Because satellites carrying ERB experiments and satellites carrying lidars- or radars-in space have different orbital characteristics, the number of simultaneous measurements of radiation and clouds is reduced relative to the number of measurements made by each satellite independently. Monthly averaged coincident observations of radiation and cloudiness are biased when compared against more frequently sampled observations due, in particular, to the undersampling of their diurnal cycle, Using the Colorado State University General Circulation Model (CSU GCM), the goal of this study is to measure the impact of using simultaneous observations from the Earth Observing System (EOS) platform and companion satellites flying lidars or radars on monthly averaged diagnostics of longwave radiation, cloudiness, and its cloud optical properties. To do so, the hourly varying geographical distributions of coincident locations between the afternoon EOS (EOS-PM) orbit and the orbit of the ICESAT satellite set to fly at the altitude of 600 km, and between the EOS PM orbit and the orbits of the PICASSO satellite proposed to fly at the altitudes of 485 km (PICA485) or 705 km (PICA705), are simulated in the CSU GCM for a 60-month time period starting at the idealistic July 1, 2001, launch date. Monthly averaged diagnostics of the top-of-the-atmosphere, atmospheric, and surface longwave radiation budgets and clouds accumulated over grid boxes corresponding to satellite overpasses are compared against

  3. Global Observations of Aerosols and Clouds from Combined Lidar and Passive Instruments to Improve Radiation Budget and Climate Studies

    NASA Technical Reports Server (NTRS)

    Winker, David M.

    1999-01-01

    Current uncertainties in the effects of clouds and aerosols on the Earth radiation budget limit our understanding of the climate system and the potential for global climate change. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations - Climatologie Etendue des Nuages et des Aerosols (PICASSO-CENA) is a recently approved satellite mission within NASA's Earth System Science Pathfinder (ESSP) program which will address these uncertainties with a unique suite of active and passive instruments. The Lidar In-space Technology Experiment (LITE) demonstrated the potential benefits of space lidar for studies of clouds and aerosols. PICASSO-CENA builds on this experience with a payload consisting of a two-wavelength polarization-sensitive lidar, an oxygen A-band spectrometer (ABS), an imaging infrared radiometer (IIR), and a wide field camera (WFC). Data from these instruments will be used to measure the vertical distributions of aerosols and clouds in the atmosphere, as well as optical and physical properties of aerosols and clouds which influence the Earth radiation budget. PICASSO-CENA will be flown in formation with the PM satellite of the NASA Earth Observing System (EOS) to provide a comprehensive suite of coincident measurements of atmospheric state, aerosol and cloud optical properties, and radiative fluxes. The mission will address critical uncertainties iin the direct radiative forcing of aerosols and clouds as well as aerosol influences on cloud radiative properties and cloud-climate radiation feedbacks. PICASSO-CENA is planned for a three year mission, with a launch in early 2003. PICASSO-CENA is being developed within the framework of a collaboration between NASA and CNES.

  4. Annual variations in the surface radiation budget and soil water and heat content in the Upper Yellow River area

    NASA Astrophysics Data System (ADS)

    Li, Suosuo; Lü, Shihua; Ao, Yinhuan; Shang, Lunyu

    2009-03-01

    Measurements taken between July 2006 to May 2007 at the Maqu station in the Upper Yellow River area were used to study the surface radiation budget and soil water and heat content in this area. These data revealed distinct seasonal variations in downward shortwave radiation, downward longwave radiation, upward longwave radiation and net radiation, with larger values in the summer than in winter because of solar altitudinal angle. The upward shortwave radiation factor is not obvious because of albedo (or snow). Surface albedo in the summer was lower than in the winter and was directly associated with soil moisture and solar altitudinal angle. The annual averaged albedo was 0.26. Soil heat flux, soil temperature and soil water content changed substantially with time and depth. The soil temperature gradient was positive from August to February and was related to the surface net radiation and the heat condition of the soil itself. There was a negative correlation between soil temperature gradient and net radiation, and the correlation coefficient achieved a significance level of 0.01. Because of frozen state of the soil, the maximum soil thermal conductivity value was 1.21 W m-1°C-1 in January 2007. In May 2007, soil thermal conductivity was 0.23 W m-1°C-1, which is the lowest value measured in the study, likely due to the fact that the soil was drier then than in other months. The soil thermal conductivity values for the four seasons were 0.27, 0.38, 0.55 and 0.83 W m-1°C-1, respectively.

  5. Evaluation of the Earth Radiation Budget Experiment (ERBE) shortwave channel's stability using in-flight calibration sources

    NASA Technical Reports Server (NTRS)

    Gibson, Michael A.; Lee, Robert B., III; Thomas, Susan

    1992-01-01

    The Earth Radiation Budget Experiment (ERBE) radiometers were designed to make absolute measurements of the incoming solar, earth-reflected solar, and earth-emitted fluxes for investigations of the earth's climate system. Thermistor bolometers were the sensors used for the ERBE scanning radiometric package. Each thermistor bolometer package consisted of three narrow field of view broadband radiometric channels measuring shortwave, longwave, and total (0.2 micron to 50 microns) radiation. The in-flight calibration facilities include Mirror Attenuator Mosaics, shortwave internal calibration source, and internal blackbody sources to monitor the long-term responsivity of the radiometers. This paper describes the in-flight calibration facilities, the calibration data reduction techniques, and the results from the in-flight shortwave channel calibrations. The results indicate that the ERBE shortwave detectors were stable to within +/- 1 percent for up to five years of flight operation.

  6. Modelling canopy radiation budget through multiple scattering approximation: a case study of coniferous forest in Mexico City Valley

    NASA Astrophysics Data System (ADS)

    Silván-Cárdenas, Jose L.; Corona-Romero, Nirani

    2015-10-01

    In this paper, we describe some results from a study on hyperspectral analysis of coniferous canopy scattering for the purpose of estimating forest biophysical and structural parameters. Georeferenced airborne hyperspectral measurements were taken from a flying helicopter over a coniferous forest dominated by Pinus hartweguii and Abies religiosa within the Federal District Conservation Land in Mexico City. Hyperspectral data was recorded in the optical range from 350 to 2500 nm at 1nm spectral resolution using the FieldSpec 4 (ASD Inc.). Spectral measurements were also carried out in the ground for vegetation and understory components, including leaf, bark, soil and grass. Measurements were then analyzed through a previously developed multiple scattering approximation (MSA) model, which represents above-canopy spectral reflectance through a non-linear combination of pure spectral components (endmembers), as well as through a set of photon recollision probabilities and interceptance fractions. In this paper we provide an expression for the canopy absorptance as the basis for estimating the components of canopy radiation budget using the MSA model. Furthermore, since MSA does not prescribe a priori the endmembers to incorporate in the model, a multiple endmember selection method (MESMSA) was developed and tested. Photon recollision probabilities and interceptance fractions were estimated by fitting the model to airborne spectral reflectance and selected endmembers where then used to estimate the canopy radiation budget at each measured location.

  7. Summary of along-track data from the earth radiation budget satellite for several representative ocean regions

    NASA Technical Reports Server (NTRS)

    Brooks, David R.; Fenn, Marta A.

    1988-01-01

    For several days in January and August 1985, the Earth Radiation Budget Satellite, a component of the Earth Radiation Budget Experiment (ERBE), was operated in an along-track scanning mode. A survey of radiance measurements taken in this mode is given for five ocean regions: the north and south Atlantic, the Arabian Sea, the western Pacific north of the Equator, and part of the Intertropical Convergence Zone. Each overflight contains information about the clear scene and three cloud categories: partly cloudy, mostly cloudy, and overcast. The data presented include the variation of longwave and shortwave radiance in each scene classification as a function of viewing zenity angle during each overflight of one of the five target regions. Several features of interest in the development of anisotropic models are evident, including the azimuthal dependence of shortwave radiance that is an essential feature of shortwave bidirectional models. The data also demonstrate that the scene classification algorithm employed by the ERBE results in scene classifications that are a function of viewing geometry.

  8. Summary of along-track data from the Earth radiation budget satellite for several major desert regions

    NASA Technical Reports Server (NTRS)

    Brooks, David R.; Fenn, Marta A.

    1988-01-01

    For several days in January and August 1985, the Earth Radiation Budget Satellite, a component of the Earth Radiation Budget Experiment (ERBE), was operated in an along-track scanning mode. A survey of radiance measurements is given for four desert areas in Africa, the Arabian Peninsula, Australia, and the Sahel region of Africa. Each overflight provides radiance information for four scene categories: clear, partly cloudy, mostly cloudy, and overcast. The data presented include the variation of radiance in each scene classification as a function of viewing zenith angle during each overflight of the five target areas. Several features of interest in the development of anisotropic models are evident, including day-night differences in longwave limb darkening and the azimuthal dependence of short wave radiance. There is some evidence that surface features may introduce thermal or visible shadowing that is not incorporated in the usual descriptions of the anisotropic behavior of radiance as viewed from space. The data also demonstrate that the ERBE scene classification algorithms give results that, at least for desert surfaces, are a function of viewing geometry.

  9. Passive exposure of Earth radiation budget experiment components LDEF experiment AO-147: Post-flight examinations and tests

    NASA Technical Reports Server (NTRS)

    Hickey, John R.

    1991-01-01

    The Passive Exposure of Earth Radiation Budget Experiment Components (PEERBEC) experiment of the Long Duration Exposure Facility (LDEF) mission was composed of sensors and components associated with the measurement of the earth radiation budget (ERB) from satellites. These components included the flight spare sensors from the ERB experiment which operated on Nimbus 6 and 7 satellites. The experiment components and materials as well as the pertinent background and ancillary information necessary for the understanding of the intended mission and the results are described. The extent and timing of the LDEF mission brought the exposure from solar minimum between cycles 21 and 22 through the solar maximum of cycle 22. The orbital decay, coupled with the events of solar maximum, caused the LDEF to be exposed to a broader range of space environmental effects than were anticipated. The mission spanned almost six years concurrent with the 12 year (to date) Nimbus 7 operations. Preliminary information is presented on the following: (1) the changes in transmittance experienced by the interference filters; (2) the results of retesting of the thermopile sensors, which appear to be relatively unaffected by the exposure; and (3) the results of the recalibration of the APEX cavity radiometer. The degradation and recovery of the filters of the Nimbus 7 ERB are also discussed relative to the apparent atomic oxygen cleaning which also applies to the LDEF.

  10. The Direct Cloud-free Longwave Radiative Effect of Saharan Dust as observed by the Geostationary Earth Radiation Budget (GERB) Experiment

    NASA Astrophysics Data System (ADS)

    Brindley, Helen E.; Russell, Jacqueline E.

    2009-03-01

    The Geostationary Earth Radiation Budget (GERB) instruments flying on the Meteosat Second Generation (MSG) series of satellites provide a unique tool with which to monitor the diurnally resolved evolution of the top of atmosphere broad-band radiation fields. In addition, coincident narrow band observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments, also flying on the MSG platforms, can be used to provide information about the key atmospheric parameters that influence these broad-band radiative fluxes. One such parameter which can cause a large radiative perturbation, and is commonly seen within the GERB field of view is airborne Saharan dust. In this paper we briefly recap the algorithms that we have developed to identify and quantify Saharan dust loading over North Africa and Arabia using the SEVIRI observations, and to simultaneously diagnose the cloud-free longwave dust direct radiative effect (LW DRE) from GERB. Focussing on spring and early summer 2006, we obtain initial estimates of the regional mean aerosol optical depth at 0.67 μm (τ067) and LW DRE of 0.5±0.1 and 12±4 W m-2 respectively. The corresponding dust longwave radiative efficiency is calculated to be 24±4 W m-2 per unit τ067.

  11. Improvement in Clouds and the Earth's Radiant Energy System/Surface and Atmosphere Radiation Budget Dust Aerosol Properties, Effects on Surface Validation of Clouds and Radiative Swath

    SciTech Connect

    Rutan, D.; Rose, F.; Charlock, T.P.

    2005-03-18

    Within the Clouds and the Earth's Radiant Energy System (CERES) science team (Wielicki et al. 1996), the Surface and Atmospheric Radiation Budget (SARB) group is tasked with calculating vertical profiles of heating rates, globally, and continuously, beneath CERES footprint observations of Top of Atmosphere (TOA) fluxes. This is accomplished using a fast radiative transfer code originally developed by Qiang Fu and Kuo-Nan Liou (Fu and Liou 1993) and subsequently highly modified by the SARB team. Details on the code and its inputs can be found in Kato et al. (2005) and Rose and Charlock (2002). Among the many required inputs is characterization of the vertical column profile of aerosols beneath each footprint. To do this SARB combines aerosol optical depth information from the moderate-resolution imaging spectroradiometer (MODIS) instrument along with aerosol constituents specified by the Model for Atmosphere and Chemical Transport (MATCH) of Collins et al. (2001), and aerosol properties (e.g. single scatter albedo and asymmetry parameter) from Tegen and Lacis (1996) and OPAC (Hess et al. 1998). The publicly available files that include these flux profiles, called the Clouds and Radiative Swath (CRS) data product, available from the Langley Atmospheric Sciences Data Center (http://eosweb.larc.nasa.gov/). As various versions of the code are completed, publishable results are named ''Editions.'' After CRS Edition 2A was finalized it was found that dust aerosols were too absorptive. Dust aerosols have subsequently been modified using a new set of properties developed by Andy Lacis and results have been released in CRS Edition 2B. This paper discusses the effects of changing desert dust aerosol properties, which can be significant for the radiation budget in mid ocean, a few thousand kilometers from the source regions. Resulting changes are validated via comparison of surface observed fluxes from the Saudi Solar Village surface site (Myers et al. 1999), and the E13 site

  12. The 1985 Biomass Burning Season in South America: Satellite Remote Sensing of Fires, Smoke, and Regional Radiative Energy Budgets

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Wang, Min; Berendes, Todd A.; Welch, Ronald M.; Yang, Shi-Keng

    1998-01-01

    Using satellite imagery, more than five million square kilometers of the forest and cerrado regions over South America are extensively studied to monitor fires and smoke during the 1985 biomass burning season. The results are characterized for four major ecosystems, namely: (1) tropical rain forest, (2) tropical broadleaf seasonal, (3) savannah/grass and seasonal woods (SGW), and (4) mild/warm/hot grass/shrub (MGS). The spatial and temporal distribution of fires are examined from two different methods using the multispectral Advanced Very High Resolution Radiometer Local Area Coverage data. Using collocated measurements from the instantaneous scanner Earth Radiation Budget Experiment data, the direct regional radiative forcing of biomass burning aerosols is computed. The results show that more than 70% of the fires occur in the MGS and SGW ecosystems due to agricultural practices. The smoke generated from biomass burning has negative instantaneous net radiative forcing values for all four major ecosystems within South America. The smoke found directly over the fires has mean net radiative forcing values ranging from -25.6 to -33.9 W m(exp -2). These results confirm that the regional net radiative impact of biomass burning is one of cooling. The spectral and broadband properties for clear-sky and smoke regions are also presented that could be used as input and/or validation for other studies attempting to model the impact of aerosols on the earth-atmosphere system. These results have important applications for future instruments from the Earth Observing System (EOS) program. Specifically, the combination of the Visible Infrared Scanner and Clouds and the Earth's Radiant Energy System (CERES) instruments from the Tropical Rainfall Measuring Mission and the combination of Moderate Resolution Imaging Spectrometer and CERES instruments from the EOS morning crossing mission could provide reliable estimates of the direct radiative forcing of aerosols on a global scale

  13. Assessment of near-future policy instruments for oceangoing shipping: impact on atmospheric aerosol burdens and the earth's radiation budget.

    PubMed

    Lauer, Axel; Eyring, Veronika; Corbett, James J; Wang, Chengfeng; Winebrake, James J

    2009-08-01

    We apply the global climate model ECHAM5/MESSy1-MADE with detailed aerosol and cloud microphysics to study the impact of shipping on tropospheric aerosol burdens, clouds, and the radiation budget for four near-future ship emission policy scenarios for the year 2012. We compare a "No Control" scenario with global sulfur limits and regionally applied reductions. We show that, if no control measures are taken, near surface sulfate increases by about 10-20% over the main transoceanic shipping routes from 2002 to 2012. A reduction of the maximum fuel sulfur (S) content allowed within 200 nautical miles of coastal areas ("global emission control areas") to 0.5% or 0.1% (5000 or 1000 ppm S, respectively) results in a distinctive reduction in near surface sulfate from shipping in coastal regions compared with the year 2002. The model results also show that if emissions of nitrogen oxides (NO(x)) remain unabated, a reduction of the fuel sulfur content favors a strong increase in aerosol nitrate (NO3) which could counteract up to 20% of the decrease in sulfate mass achieved by sulfur emission reductions. The most important impact of shipping on the radiation budget is related to the modification of low maritime stratus clouds resulting in an increased reflectivity and enhanced shortwave cloud forcing. The direct aerosol effect from shipping is small. Our study shows that one can expect a less negative (less cooling) radiative forcing due to reductions in the current fuel sulfur content of ocean-going ships. The global annual average net cloud forcings due to shipping (year 2012) are in the range of -0.27 to -0.58 W/m2 with regional cooling occurring most over the remote oceans.

  14. The effect of clouds on the earth's solar and infrared radiation budgets

    NASA Technical Reports Server (NTRS)

    Herman, G. F.; Wu, M.-L. C.; Johnson, W. T.

    1980-01-01

    The effect of global cloudiness on the solar and infrared components of the earth's radiation balance is studied in general circulation model experiments. A wintertime simulation is conducted in which the cloud radiative transfer calculations use realistic cloud optical properties and are fully interactive with model-generated cloudiness. This simulation is compared to others in which the clouds are alternatively non-interactive with respect to the solar or thermal radiation calculations. Other cloud processes (formation, latent heat release, precipitation, vertical mixing) were accurately simulated in these experiments. It is concluded that on a global basis clouds increase the global radiation balance by 40 W/sq m by absorbing longwave radiation, but decrease it by 56 W/sq m by reflecting solar radiation to space. The net cloud effect is therefore a reduction of the radiation balance by 16 W/sq m, and is dominated by the cloud albedo effect. Changes in cloud frequency and distribution and in atmospheric and land temperatures are also reported for the control and for the non-interactive simulations. In general, removal of the clouds' infrared absorption cools the atmosphere and causes additional cloudiness to occur, while removal of the clouds' solar radiative properties warms the atmosphere and causes fewer clouds to form. It is suggested that layered clouds and convective clouds over water enter the climate system as positive feedback components, while convective clouds over land enter as negative components.

  15. Tropical Trends in Surface Radiation Budgets in the Context of Global Trends

    NASA Astrophysics Data System (ADS)

    Pinker, Rachel T.; Zhang, Banglin; Ma, Yingtao

    2016-04-01

    For assessment of variability and trends in the Earth Radiation Balance, information is needed at climatic time scales. Satellite observations have been instrumental for advancing the understanding of radiative balance at global scale, however, the length of available satellite records is limited due to the frequent changes in the observing systems. In this paper we report on an effort to synthesize satellite observations from independent sources to estimates shortwave and longwave surface radiative fluxes at climatic time scales and use them to learn about their variability and trends with a focus on the tropics. From a comparison with similar global trends an attempt will be made to learn about possible causes of what is observed. The radiative fluxes were derived in the framework of the MEaSURES and NEWS programs; they are evaluated against ground observations and compared to independent satellite and model estimates. Attention is given to updates of knowledge on the radiative balance as compared to what is known from shorter time records.

  16. Surface radiation budget in the Clouds and the Earth's Radiant Energy System (CERES) effort and in the Global Energy and Water Cycle Experiment (GEWEX)

    NASA Technical Reports Server (NTRS)

    Charlock, Thomas P.; Smith, G. L.; Rose, Fred G.

    1990-01-01

    The surface radiation budget (SRB) and the atmospheric radiative flux divergence (ARD) are vital components of the weather and climate system. The importance of radiation in a complex international scientific endeavor, the GEWEX of the World Climate Research Programme is explained. The radiative transfer techniques and satellite instrumentation that will be used to retrieve the SRB and ARD later in this decade with the CERES are discussed; CERES is a component of the Earth Observing System satellite program. Examples of consistent SRB and ARD retrievals made with Nimbus-7 and International Satellite Cloud Climatology Project data from July 1983 are presented.

  17. Orbital measurements of the Earth's radiation budget during the first decade of the space program

    NASA Technical Reports Server (NTRS)

    Bandeen, W. R.

    1982-01-01

    The instrumentation and data analysis methods applied to data from the Explorer 7, TIROS 2, 3, 4, and 7, and Nimbus 2 and 3 experimental satellites are summarized. Problems encountered in analyzing these data included: determining the value of the solar constant, inaccuracies introduced by degradation of the sensors in orbit, the need to infer the total reflected and emitted radiation from filtered measurements, the development of corrections for anisotropy in order to determine the outgoing flux densities at the moment of measurement, and the development of corrections to account for diurnal variability. The corrections for long- and shortwave anisotropy and historical determinations of the solar constant and albedo are treated in detail. These early measurements indicated that the planetary albedo was lower, the emitted radiation higher, and the equator-to-pole gradient of net radiation greater than previously supposed.

  18. Effects of aerosol from biomass burning on the global radiation budget

    NASA Technical Reports Server (NTRS)

    Penner, Joyce E.; Dickinson, Robert E.; O'Neill, Christine A.

    1992-01-01

    An analysis is made of the likely contribution of smoke particles from biomass burning to the global radiation balance. These particles act to reflect solar radiation directly; they also can act as cloud condensation nuclei, increasing the reflectivity of clouds. Together these effects, although uncertain, may add up globally to a cooling effect as large as 2 watts per square meter, comparable to the estimated contribution to sulfate aerosols. Anthropogenic increases of smoke emission thus may have helped weaken the net greenhouse warming from anthropogenic trace gases.

  19. Effects of aerosol from biomass burning on the global radiation budget.

    PubMed

    Penner, J E; Dickinson, R E; O'neill, C A

    1992-06-01

    An analysis is made of the likely contribution of smoke particles from biomass burning to the global radiation balance. These particles act to reflect solar radiation directly; they also can act as cloud condensation nuclei, increasing the reflectivity of clouds. Together these effects, although uncertain, may add up globally to a cooling effect as large as 2 watts per square meter, comparable to the estimated contribution of sulfate aerosols. Anthropogenic increases of smoke emission thus may have helped weaken the net greenhouse warming from anthropogenic trace gases.

  20. Radiometer offsets and count conversion coefficients for the Earth Radiation Budget Experiment (ERBE) spacecraft for the years 1984, 1985, and 1986

    NASA Technical Reports Server (NTRS)

    Paden, Jack; Pandey, Dhirendra K.; Shivakumar, Netra D.; Stassi, Joseph C.; Wilson, Robert; Bolden, William; Thomas, Susan; Gibson, M. Alan

    1991-01-01

    A compendium is presented of the ground and inflight scanner and nonscanner offsets and count conversion (gain) coefficients used for the Earth Radiation Budget Experiment (ERBE) production processing of data from the ERBS, NOAA-9, and NOAA-10 satellites for the 1 Nov. 1984 to 31 Dec. 1986.

  1. The NASA/GEWEX Surface Radiation Budget: Integrated Data Product With Reprocessed Radiance, Cloud, and Meteorology Inputs

    NASA Astrophysics Data System (ADS)

    Stackhouse, P. W.; Gupta, S. K.; Cox, S. J.; Mikovitz, J. C.; Zhang, T.

    2015-12-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. Other key input improvements include a detailed aerosol history using the Max Planck Institut Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice. At the time of abstract submission, results from the year 2007 have been produced. More years will be added as ISCCP reprocessing occurs. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. Improvements in GSW include an expansion of the number of wavelength bands from five to eighteen, and the inclusion of ice cloud vs. water cloud radiative transfer. The SRB data produced will be released as part of the Release 4.0 Integrated Product, recognizing the interdependence of the radiative fluxes with other GEWEX products providing estimates of the Earth's global water and energy cycle (I.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).

  2. Analysis and comparison of diurnal variations of cloud radiative forcing: Earth Radiation Budget Experiment and International Satellite Cloud Climatology Project results

    NASA Technical Reports Server (NTRS)

    Kim, Yongseung

    1994-01-01

    Cloud radiative forcing (CRF) is the radiative impact of clouds on the Earth's radiation budget. This study examines the diurnal variations of CRF using the Earth Radiation Budget Experiment (ERBE) monthly hourly flux data and the flux data derived from the International Satellite Cloud Climatology Project (ISCCP) using the Goddard Institute for Space Studies general circulation model radiation code. The results for the months of April, July, and October 1985 and January 1986 are analyzed. We found that, in general, two data sets agreed. For longwave (LW) CRF the diurnal range over land is generally greater than that observed over oceans. For the 4-month averages the ERBE values are 15.8 W/sq m and 6.8 W/sq m for land and ocean, respectively, compared with the ISCCP calculated values of 18.4 W/sq m and 8.0 W/sq m, respectively. The land/ocean contrast is largely associated with changes in cloud amount and the temperature difference between surface and cloud top. It would be more important to note that the clear-sky flux (i.e., surface temperature) variabilities are shown to be a major contributor to the large variabilities over land. The maximum diurnal range is found to be in the summer hemisphere, and the minimum values in the winter hemisphere. It is also shown that the daytime maximum and the nighttime minimum are seen over large portions of land, whereas they occur at any local hour over most oceans. For shortwave (SW) CRF the daytime maximum values are about twice as large as monthly averages, and their highest frequency occurs at local noon, indicating that solar insolation is a primary factor for the diurnal variation of SW CRF. However, the comparison of the ERBE data with the ISCCP results demonstrated that the largest differences in the diurnal range and monthly mean of LW CRF were associated with tropical convergence zones, where clear-sky fluxes could be easily biased by persistent cloudiness and the inadequate treatment of the atmospheric water vapor.

  3. Changes in radiative forcing in Amazonia: the influence of clouds and aerosols controlling carbon budget

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo

    2016-07-01

    Surface radiation fluxes are critically important in photosynthetic processes that controls carbon assimilation and losses in tropical forests. Clouds and aerosols control the surface radiation fluxes in Amazonia, and the ratio of diffuse and direct radiation directly affects photosynthetic plant processes. Biomass burning emissions changes the atmosphere aerosol loading. The background aerosol optical thickness in wet season Amazonia is about 0.1 at 550 nm, while during the dry season AOT can reach values as high as 3-4 over large areas. The increase in diffuse radiation significantly enhance photosynthesis. Remote sensing measurements using MODIS and AERONET were used to measure the large scale aerosol distribution over Amazonia, and LBA flux towers provided the carbon balance over several sites. The enhancement in carbon uptake for AOD between 0.1 and 1 can reach 45%. For AOD above 1, the reduction in the direct flux starts to dominate and a strong reduction in carbon uptake is observed. Cloud cover also has a huge impact on carbon balance in Amazonia, but it is more difficult to quantify. These effects controls carbon balance in Amazonia.

  4. Development and Implementation of a Comprehensive Radiometric Validation Protocol for the CERES Earth Radiation Budget Climate Record Sensors

    NASA Technical Reports Server (NTRS)

    Priestley, K. J.; Matthews, G.; Thomas, S.

    2006-01-01

    The CERES Flight Models 1 through 4 instruments were launched aboard NASA's Earth Observing System (EOS) Terra and Aqua Spacecraft into 705 Km sun-synchronous orbits with 10:30 a.m. and 1:30 p.m. equatorial crossing times. These instruments supplement measurements made by the CERES Proto Flight Model (PFM) instrument launched aboard NASA's Tropical Rainfall Measuring Mission (TRMM) into a 350 Km, 38-degree mid-inclined orbit. CERES Climate Data Records consist of geolocated and calibrated instantaneous filtered and unfiltered radiances through temporally and spatially averaged TOA, Surface and Atmospheric fluxes. CERES filtered radiance measurements cover three spectral bands including shortwave (0.3 to 5 microns), total (0.3 to 100 microns) and an atmospheric window channel (8 to 12 microns). The CERES Earth Radiation Budget measurements represent a new era in radiation climate data, realizing a factor of 2 to 4 improvement in calibration accuracy and stability over the previous ERBE climate records, while striving for the next goal of 0.3-percent per decade absolute stability. The current improvement is derived from two sources: the incorporation of lessons learned from the ERBE mission in the design of the CERES instruments and the development of a rigorous and comprehensive radiometric validation protocol consisting of individual studies covering different spatial, spectral and temporal time scales on data collected both pre and post launch. Once this ensemble of individual perspectives is collected and organized, a cohesive and highly rigorous picture of the overall end-to-end performance of the CERES instrument's and data processing algorithms may be clearly established. This approach has resulted in unprecedented levels of accuracy for radiation budget instruments and data products with calibration stability of better than 0.2-percent and calibration traceability from ground to flight of 0.25-percent. The current work summarizes the development, philosophy

  5. Shortwave surface radiation budget network for observing small-scale cloud inhomogeneity fields

    NASA Astrophysics Data System (ADS)

    Madhavan, B. L.; Kalisch, J.; Macke, A.

    2015-03-01

    As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high spatial density network of 99 silicon photodiode pyranometers was set up around Jülich (10 km x 12 km area) from April to July 2013, to capture the variability in the radiation field at the surface induced by small-scale cloud inhomogeneity. Each of these autonomously operated pyranometer stations was equipped with weather sensors for simultaneous measurements of ambient air temperature and relative humidity. In this paper, we provide the details of this unique setup of the pyranometer network and the data analysis with initial quality screening procedure we adopted. We also present some exemplary cases consisting of the days with clear, broken cloudy and overcast skies to assess our spatio-temporal observations from the network, and validate their consistency with other collocated radiation measurements available during the HOPE period.

  6. Total solar irradiance values determined using Earth Radiation Budget Experiment (ERBE) radiometers

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Gibson, Michael A.; Natarajan, Sudha

    1988-01-01

    During the October 1984 through January 1988 period, the ERBE solar monitors on the NASA Earth Radiation Satellite and on the National Oceanic and Atmospheric Administration NOAA 9 and NOAA 10 spacecraft were used to obtain mean total solar irradiance values of 1365, 1365, and 1363 W/sq m, respectively. Secular variations in the solar irradiance have been observed, and they appear to be correlated with solar activity.

  7. Calculation of TIR Canopy Hot Spot and Implications for Earth Radiation Budget

    NASA Technical Reports Server (NTRS)

    Smith, J. A.; Ballard, J. R., Jr.

    2000-01-01

    Using a 3-D model for thermal infrared exitance and the Lowtran 7 atmospheric radiative transfer model, we compute the variation in brightness temperature with view direction and, in particular, the canopy thermal hot spot. We then perform a sensitivity analysis of surface energy balance components for a nominal case using a simple SVAT model given the uncertainty in canopy temperature arising from the thermal hot spot effect. Canopy thermal hot spot variations of two degrees C lead to differences of plus or minus 24% in the midday available energy.

  8. Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Lewis, Marlon R.; Carr, Mary-Elena; Feldman, Gene C.; Esaias, Wayne; Mcclain, Chuck

    1990-01-01

    Recent satellite observations of ocean transparency, coupled with climatological surface heat fluxes and ocean density profiles, are used here to show that solar radiation in visible frequencies, usually assumed to be absorbed at the sea surface, in fact penetrates to a significant degree to below the upper mixed layer of the ocean which interacts actively with the atmosphere. The net effect is a reduction of the heat input into the upper layer; for a 20 m-thick mixed layer this is equivalent to an annual reduction in temperature of about 5-10 K. The results provide a natural explanation for the discrepancy between the SSTs predicted by models and those observed.

  9. Shortwave wide-field-of-view results from the Earth Radiation Budget Experiment

    NASA Technical Reports Server (NTRS)

    Rutan, David; Smith, G. L.

    1991-01-01

    The deconvolution (DCN) and numerical filter (NF) techniques of analyzing nonscanning radiometer measurements are evaluated by comparison with scanning radiometer results for monthly mean maps of albedo and absorbed solar radiation. Both techniques successfully enhance the resolution of the monthly mean product. The numerical filter albedo adheres closer to the scanning radiometer in the zonal average than does the DCN albedo. Zonal rms's, however, show that the DCN albedo is about 1 percent better than the NF in the Southern Hemisphere, but in the Northern Hemisphere the NF is better by up to 2 percent.

  10. Analysis of the radiative budget of Venus atmosphere based on infrared Net Exchange Rate formalism

    NASA Astrophysics Data System (ADS)

    Lebonnois, S.; Eymet, V.; Lee, C.; Vatant d'Ollone, J.

    2015-10-01

    The thick cloud cover present in the atmosphere of Venus between roughly 47 and 70 km of altitude plays a crucial role in the radiative balance of this system,by reflecting more than 75 % of the incoming solar flux back to space, absorbing half of the remaining flux, and being also optically thick over most of the infrared spectral range. The temperature profile of the atmosphere of Venus is characterized by a very hot troposphere from the surface (˜735 K) to roughly 60 km altitude, in the middle clouds. The strong greenhouse effect is provided by the 92 bars of CO2 that is the main constituent of the atmosphere and by the thick cloud layer.

  11. Consistency of Earth Radiation Budget Experiment bidirectional models and the observed anisotropy of reflected sunlight

    NASA Technical Reports Server (NTRS)

    Baldwin, Daniel G.; Coakley, James A., Jr.

    1991-01-01

    The anisotropy of the radiance field estimated from bidirectional models derived from Nimbus 7 ERB scanner data is compared with the anisotropy observed with the ERB Experiment (ERBE) scanner aboard the ERB satellite. The results of averaging over groups of 40 ERBE scanner scan lines for a period of a month revealed significant differences between the modeled and the observed anisotropy for given scene types and the sun-earth-satellite viewing geometries. By comparing the radiative fluxes derived using the observed anisotropy with those derived assuming isotropic reflection, it is concluded that a reasonable estimate for the maximum error due to the use of incorrect bidirectional models is a bias of about 4 percent for a typical 2.5 deg latitude-longitude monthly mean, and an rms error of 15 percent.

  12. Wavenumber dependent investigation of the terrestrial infrared radiation budget with two versions of the LOWTRAN5 band model

    NASA Technical Reports Server (NTRS)

    Charlock, T. P.

    1984-01-01

    Two versions of the LOWTRAN5 radiance code are used in a study of the earth's clear sky infrared radiation budget in the interval 30 per cm (333.3 microns) to 3530 per cm (2.8 microns). One version uses 5 per cm resolution and temperature dependent molecular absorption coefficients, and the second uses 20 per cm resolution and temperature independent molecular absorption coefficients. Both versions compare well with Nimbus 3 IRIS spectra, with some discrepancies at particular wavenumber intervals. Up and downgoing fluxes, calculated as functions of latitude, are displayed for wavenumbers at which the principle absorbers are active. Most of the variation of the fluxes with latitude is found in the higher wavenumber intervals for both clear and cloudy skies. The main features of the wavenumber integrated cooling rates are explained with reference to calculations in more restricted wavenumber intervals. A tropical lower tropospheric cooling maximum is produced by water vapor continuum effects in the 760-1240 per cm window. A secondary upper tropospheric cooling maximum, with wide meridional extent, is produced by water vapor rotational lines between 30-430 per cm. Water vapor lines throughout the terrestrial infrared spectrum prevent the upflux maximum from coinciding with the surface temperature maximum.

  13. Evaluating the design of satellite scanning radiometers for earth radiation budget measurements with system simulations. Part 1: Instantaneous estimates

    NASA Technical Reports Server (NTRS)

    Stowe, Larry; Ardanuy, Philip; Hucek, Richard; Abel, Peter; Jacobowitz, Herbert

    1991-01-01

    A set of system simulations was performed to evaluate candidate scanner configurations to fly as a part of the Earth Radiation Budget Instrument (ERBI) on the polar platforms during the 1990's. The simulation is considered of instantaneous sampling (without diurnal averaging) of the longwave and shortwave fluxes at the top of the atmosphere (TOA). After measurement and subsequent inversion to the TOA, the measured fluxes were compared to the reference fluxes for 2.5 deg lat/long resolution targets. The reference fluxes at this resolution are obtained by integrating over the 25 x 25 = 625 grid elements in each target. The differences between each of these two resultant spatially averaged sets of target measurements (errors) are taken and then statistically summarized. Five instruments are considered: (1) the Conically Scanning Radiometer (CSR); (2) the ERBE Cross Track Scanner; (3) the Nimbus-7 Biaxial Scanner; (4) the Clouds and Earth's Radiant Energy System Instrument (CERES-1); and (5) the Active Cavity Array (ACA). Identical studies of instantaneous error were completed for many days, two seasons, and several satellite equator crossing longitudes. The longwave flux errors were found to have the same space and time characteristics as for the shortwave fluxes, but the errors are only about 25 pct. of the shortwave errors.

  14. Evaluating the design of satellite scanning radiometers for earth radiation budget measurements with system simulations. Part 1: Instantaneous estimates

    NASA Astrophysics Data System (ADS)

    Stowe, Larry; Ardanuy, Philip; Hucek, Richard; Abel, Peter; Jacobowitz, Herbert

    1991-10-01

    A set of system simulations was performed to evaluate candidate scanner configurations to fly as a part of the Earth Radiation Budget Instrument (ERBI) on the polar platforms during the 1990's. The simulation is considered of instantaneous sampling (without diurnal averaging) of the longwave and shortwave fluxes at the top of the atmosphere (TOA). After measurement and subsequent inversion to the TOA, the measured fluxes were compared to the reference fluxes for 2.5 deg lat/long resolution targets. The reference fluxes at this resolution are obtained by integrating over the 25 x 25 = 625 grid elements in each target. The differences between each of these two resultant spatially averaged sets of target measurements (errors) are taken and then statistically summarized. Five instruments are considered: (1) the Conically Scanning Radiometer (CSR); (2) the ERBE Cross Track Scanner; (3) the Nimbus-7 Biaxial Scanner; (4) the Clouds and Earth's Radiant Energy System Instrument (CERES-1); and (5) the Active Cavity Array (ACA). Identical studies of instantaneous error were completed for many days, two seasons, and several satellite equator crossing longitudes. The longwave flux errors were found to have the same space and time characteristics as for the shortwave fluxes, but the errors are only about 25 pct. of the shortwave errors.

  15. Aerosol-Cloud Interactions Control of Earth Radiation and Latent Heat Release Budgets

    NASA Astrophysics Data System (ADS)

    Rosenfeld, D.

    2006-08-01

    Aircraft observations and model simulations show that cloud development is strongly modulated by the impact of cloud-aerosol interactions on precipitation forming processes. New insights into the mechanisms by which aerosols dominate the cloud cover of marine shallow clouds suggest that feedbacks between the cloud microstructure and cloud dynamics through precipitation processes play a major role in determining when a solid cloud cover will break up into a field of trade wind cumulus. Cloud-aerosol interactions dominate not only the dynamics of marine shallow clouds, but also the lifetime and the vertical disposition of latent heat of deep convective clouds over ocean and even more strongly over land. Recent coincident satellite measurements of aerosols and cloud properties quantify the aerosol effects on cloud cover and radiative forcing on regional and global scales. The shapes of the satellite retrieved relations between aerosols and cloud properties are consistent with the suggested ways by which aerosols affect clouds via precipitation processes, particularly by affecting the intensity of the cloud vertical air motions and its vertical development.

  16. User's guide: Nimbus-7 Earth radiation budget narrow-field-of-view products. Scene radiance tape products, sorting into angular bins products, and maximum likelihood cloud estimation products

    NASA Technical Reports Server (NTRS)

    Kyle, H. Lee; Hucek, Richard R.; Groveman, Brian; Frey, Richard

    1990-01-01

    The archived Earth radiation budget (ERB) products produced from the Nimbus-7 ERB narrow field-of-view scanner are described. The principal products are broadband outgoing longwave radiation (4.5 to 50 microns), reflected solar radiation (0.2 to 4.8 microns), and the net radiation. Daily and monthly averages are presented on a fixed global equal area (500 sq km), grid for the period May 1979 to May 1980. Two independent algorithms are used to estimate the outgoing fluxes from the observed radiances. The algorithms are described and the results compared. The products are divided into three subsets: the Scene Radiance Tapes (SRT) contain the calibrated radiances; the Sorting into Angular Bins (SAB) tape contains the SAB produced shortwave, longwave, and net radiation products; and the Maximum Likelihood Cloud Estimation (MLCE) tapes contain the MLCE products. The tape formats are described in detail.

  17. Radiative transfer within seagrass canopies: impact on carbon budgets and light requirements

    NASA Astrophysics Data System (ADS)

    Zimmerman, Richard C.; Mobley, Curtis D.

    1997-02-01

    Seagrasses are ecologically important but extremely vulnerable to anthropogenic modifications of the coastal zone that affect light availability within these unique ecosystems. Strongly pigmented seagrass leaves can extend for more than 1 m above the substrate and biomass is distributed unevenly throughout the canopy. in this study, light attenuation in a 7 m water column that contained a seagrass canopy extending 1.5 m above the bottom was calculated by the radiative transfer model Hydrolight using the spectral absorbance of eelgrass leaves and a non-uniform vertical distribution of biomass. Runs were performed in clear and turbid water columns, over san d and mud substrates, and with shoot densities ranging from 25 to 200 m-2 using solar angles for both winter and summer solstices. The flux of photosynthetically active irradiance (EPAR) reaching the top of the seagrass canopy was twice as high in summer compared to winter, and in clear water compared to turbid water. Sediment type had a measurable effect on EPAR only within the bottom third of the canopy. Light penetration within the canopy was inversely proportional to shoot density. Introduction of daylength and a sinusoidal distribution of EPAR throughout the day greatly increased the importance of solar elevation on daily integrated production relative to water column turbidity and sediment type. Shoot-specific productivity decreased and the position of maximum shoot productivity within the canopy shallowed as shoot density increased. Positive net photosynthesis for entire shoots was possible only when plant density was lower than 100 shoots m-2 in winter; values consistent with field observations. Although very simplistic with regard to inherent optical properties of real seagrass leaves, this model was able to generate estimates of maximum sustainable shoot density that were fully testable by, and wholly consistent with, field observations.

  18. Our contaminated atmosphere: The danger of climate change, phases 1 and 2. [effect of atmospheric particulate matter on surface temperature and earth's radiation budget

    NASA Technical Reports Server (NTRS)

    Cimorelli, A. J.; House, F. B.

    1974-01-01

    The effects of increased concentrations of atmospheric particulate matter on average surface temperature and on the components of the earth's radiation budget are studied. An atmospheric model which couples particulate loading to surface temperature and to changes in the earth's radiation budget was used. A determination of the feasibility of using satellites to monitor the effect of increased atmospheric particulate concentrations is performed. It was found that: (1) a change in man-made particulate loading of a factor of 4 is sufficient to initiate an ice age; (2) variations in the global and hemispheric weighted averages of surface temperature, reflected radiant fluz and emitted radiant flux are nonlinear functions of particulate loading; and (3) a black satellite sphere meets the requirement of night time measurement sensitivity, but not the required day time sensitivity. A nonblack, spherical radiometer whose external optical properties are sensitive to either the reflected radiant fluz or the emitted radiant flux meets the observational sensitivity requirements.

  19. The measurement of the earth's radiation budget as a problem in information theory - A tool for the rational design of earth observing systems

    NASA Technical Reports Server (NTRS)

    Barkstrom, B. R.

    1983-01-01

    The measurement of the earth's radiation budget has been chosen to illustrate the technique of objective system design. The measurement process is an approximately linear transformation of the original field of radiant exitances, so that linear statistical techniques may be employed. The combination of variability, measurement strategy, and error propagation is presently made with the help of information theory, as suggested by Kondratyev et al. (1975) and Peckham (1974). Covariance matrices furnish the quantitative statement of field variability.

  20. Radiometer offsets and count conversion coefficients for the Earth Radiation Budget Experiment (ERBE) spacecraft for the years 1987, 1988, and 1989

    NASA Technical Reports Server (NTRS)

    Paden, Jack; Pandey, Dhirendra K.; Stassi, Joseph C.; Wilson, Robert; Bolden, William; Thomas, Susan; Gibson, M. Alan

    1993-01-01

    This document contains a compendium of the ground and in-flight scanner and non-scanner offsets and count conversion (gain) coefficients used for the Earth Radiation Budget Experiment (ERBE) production processing of data from the ERBS satellite for the period from 1 January 1987 to 31 December 1989; for the NOAA-9 satellite, for the month of January 1987; and for the NOAA-10 satellite, for the period from 1 January 1987 to 31 May 1989.

  1. Budgeting Process

    ERIC Educational Resources Information Center

    Hentschke, Guilbert C.; Shaughnessy, John

    1973-01-01

    Attempts to describe the budgeting process in school districts. Discusses general budget calendars and explains the process of constructing a Program Evaluation and Review Technique (PERT) chart of the budgeting process. Presents a detailed list of activities to be included in the budgeting process and a PERT chart indicating how these activities…

  2. The Role of Clear Sky Identification in the Study of Cloud Radiative Effects: Combine Analysis from ISCCP and the Scanner of Radiation Budget (ScaRaB)

    NASA Technical Reports Server (NTRS)

    Rossow, W. B.; Stubenrauch, C. J.; Briand, V.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Since the effect of clouds on the earth's radiation balance is often estimated as the difference of net radiative fluxes at the top of the atmosphere between all situations and monthly averaged clear sky situations of the same regions, a reliable identification of clear sky is important for the study of cloud radiative effects. The Scanner for Radiation Balance (ScaRaB) radiometer on board the Russian Meteor-3/7 satellite provided earth radiation budget observations from March 1994 to February 1995 with two ERBE-Re broad-band longwave and shortwave channels. Two narrow-band channels, in the infrared atmospheric window and in the visible band, have been added to the ScaRaB instrument to improve the cloud scene identification. The International Satellite Cloud Climatology Project (ISCCP) method for cloud detection and determination of cloud and surface properties uses the same narrow-band channels as ScaRaB, but is employed to a collection of measurements at a better spatial resolution of about 5 km. By applying the original ISCCP algorithms to the ScaRaB data, the clear sky frequency is about 5% lower than the one over quasi-simultaneous original ISCCP data, an indication that the ISCCP cloud detection is quite stable. However, one would expect an about 10 to 20% smaller clear sky occurrence over the larger ScaRaB pixels. Adapting the ISCCP algorithms to the reduced spatial resolution of 60 km and to the different time sampling of the ScaRaB data leads therefore to a reduction of a residual cloud contamination. A sensitivity study with time-space collocated ScaRaB and original ISCCP data at a spatial resolution of 1deg longitude x 1deg latitude shows that the effect of clear sky identification method plays a higher role on the clear sky frequency and therefore on the statistics than on the zonal mean values of the clear sky fluxes. Nevertheless, the zonal outgoing longwave fluxes corresponding to ERBE clear sky are in general about 2 to 10 W/sq m higher than those

  3. Recent Changes in Earth's Energy Budget As Observed By CERES

    NASA Astrophysics Data System (ADS)

    Loeb, N. G.

    2014-12-01

    A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term climate data record of Earth's radiation budget at the top-of-atmosphere, within-atmosphere and surface together with coincident cloud, aerosol and surface properties. CERES relies on a number of data sources, including broadband CERES radiometers on Terra, Aqua, and Suomi-NPP, high-resolution spectral imagers (MODIS and VIIRS), geostationary visible/infrared imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. The many input data sets are integrated and cross-calibrated to provide a consistent climate data record that accurately captures variations in Earth's radiation budget and associated cloud, aerosol and surface properties over a range of time and space scales. The CERES datasets are primarily used for climate model evaluation, process studies and climate monitoring. This presentation will review some of the ways in which the CERES record along with other datasets have been used to improve our understanding Earth's energy budget. At the top-of-atmosphere, we will show how Earth's energy imbalance, a critical indictor of climate change, has varied during the past 15 years relative to what is observed by in-situ observations of ocean heat content by the Argo observing system. We will use these results to place the so-called global warming hiatus into a larger context that takes Earth's energy budget into account. We will also discuss how recent advances in surface radiation budget estimation by the CERES group is reshaping the debate on why the surface energy budget cannot be closed to better than 15 Wm-2 using state-of-the-art observations. Finally, we will highlight the dramatic changes that have been observed by CERES over the Arctic Ocean, and discuss some of the yet unresolved observational challenges that limit our ability document change in this unique part of the planet.

  4. Long Term Cloud Property Datasets From MODIS and AVHRR Using the CERES Cloud Algorithm

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Bedka, Kristopher M.; Doelling, David R.; Sun-Mack, Sunny; Yost, Christopher R.; Trepte, Qing Z.; Bedka, Sarah T.; Palikonda, Rabindra; Scarino, Benjamin R.; Chen, Yan; Hong, Gang; Bhatt, Rajendra

    2015-01-01

    Cloud properties play a critical role in climate change. Monitoring cloud properties over long time periods is needed to detect changes and to validate and constrain models. The Clouds and the Earth's Radiant Energy System (CERES) project has developed several cloud datasets from Aqua and Terra MODIS data to better interpret broadband radiation measurements and improve understanding of the role of clouds in the radiation budget. The algorithms applied to MODIS data have been adapted to utilize various combinations of channels on the Advanced Very High Resolution Radiometer (AVHRR) on the long-term time series of NOAA and MetOp satellites to provide a new cloud climate data record. These datasets can be useful for a variety of studies. This paper presents results of the MODIS and AVHRR analyses covering the period from 1980-2014. Validation and comparisons with other datasets are also given.

  5. Theoretical and Observational Determination of Global and Regional Radiation Budget, Forcing and Feedbacks at the Top-of-Atmosphere and Surface

    NASA Technical Reports Server (NTRS)

    Loeb, Norman G.

    2004-01-01

    Report consists of: 1. List of accomplishments 2. List of publications 3. Abstracts of published or submitted papers and 4. Subject invention disclosure. The accomplishments of the grant listed are: 1. Improved the third-order turbulence closure in cloud resolving models to remove the liquid water oscillation. 2. Used the University of California-Los Angeles (UCLA) large-eddy simulation (LES) model to provide data for radiation transfer testing. 3. Revised shortwave k-distribution models based on HITRAN 2000. 4. Developed a gamma-weighted two-stream radiative transfer model for radiation budget estimate applications. 5. Estimated the effect of spherical geometry to the earth radiation budget. 6. Estimated top-of-atmosphere irradiance over snow and sea ice surfaces. 7. Estimated the aerosol direct radiative effect at the top of the atmosphere. 8. Estimated the top-of-atmosphere reflectance of the clear-sky molecular atmosphere over ocean. 9. Developed and validated new set of Angular Distribution Models for the CERES TRMM satellite instrument (tropical) 10. Developed and validated new set of Angular Distribution Models for the CERES Terra satellite instrument (global) 11. Quantified the top-of-atmosphere direct radiative effect of aerosols over global oceans from merged CERES and MODIS observations 12 Clarified the definition of TOA flux reference level for radiation budget studies 13. Developed new algorithm for unfaltering CERES measured radiances 14. Used multiangle POLDER measurements to produce narrowband angular distribution models and examine the effect of scene identification errors on TOA albedo estimates 15. Developed and validated a novel algorithm called the Multidirectional Reflectance Matching (MRM) model for inferring TOA albedos from ice clouds using multi-angle satellite measurements. 16. Developed and validated a novel algorithm called the Multidirectional Polarized Reflectance Matching (MPRM) model for inferring particle shapes from ice clouds

  6. Long Term Measurement of the Earth's Radiation Budget using a constellation of Broadband Radiometers hosted on Iridium NEXT

    NASA Astrophysics Data System (ADS)

    Gupta, Om Prakash; Thoma, Donald; Chaloner, Chris; Russell, Jacqueline; Simpson, Bill; Spilling, David; Morris, Nigel; Caldwell, Martin; Oneill, Alan

    The WMO called for "bringing new missions to operational status" and that "ERB should be measured through a constellation of sensors". A unique opportu-nity exists to host a set of Earth Radiation Budget (ERB) sensors on the Iridium NEXT (NEXT) LEO constellation in a cost effective manner that can deliver these requirements. The NEXT constellation, with 66 interconnected satellites in 6 near polar orbiting planes, provides a unique platform for hosting a variety of Earth observation missions including ERB. Launches are planned to begin in 2014 through 2016. The ERB both drives and responds to global climate and monitoring it can provide much insight into the climate system and how it might be changing. A climate quality measurement of the ERB requires high absolute accuracy and excellent stability and a long-term (decades) data record in order to inform the debate about global warming. Measurement of the ERB in terms of the broadband reflected solar (0.3 to 4 µm) and emitted thermal (4 to 200 µm) components have been identified as high priority by the WMO for climate observations. High temporal resolution is the key advantage offered by the NEXT platform and can provide a great step forward in accurately monitoring the energy balance of the planet. The sensor we propose will consist of a broad band instrument and associated imager for scene identification and cloud classification. There is the chance to place two such sensors in each of six different orbital planes this will improve the product refresh time from currently 12 hours to 3 hours. The increased temporal resolution will allow direct measure-ment of the changes to the broadband radiances that result from rapidly varying components of the climate such as cloud and aerosol, and avoid the need of relying on narrow band sensors to infer such changes. Considering that the prediction of cloud response to climate change is still a major source of uncertainty; improved measurement of the cloud effect and

  7. Validation of cloud forcing simulated by the National Center for Atmospheric Research Community Climate Model using observations from the Earth Radiation Budget Experiment

    NASA Technical Reports Server (NTRS)

    Soden, B. J.

    1992-01-01

    Satellite measurements of the effect of clouds on the top of atmosphere radiative energy budget are used to validate model simulations from the National Center for Atmospheric Research Community Climate Model (NCAR CCM). The ability of the NCAR CCM to reproduce the monthly mean global distribution and temporal variability on both daily and seasonal time scales is assessed. The comparison reveals several deficiencies in the CCM cloud representation. Most notable are the difficulties in properly simulating the effect of clouds on the planetary albedo. This problem arises from discrepancies in the model's portrayal of low-level cloudiness and leads to significant errors in the absorbed solar radiation simulated by the model. The CCM performs much better in simulating the effect of clouds on the longwave radiation emitted to space, indicating its relative success in capturing the vertical distribution of cloudiness. The daily variability of the radiative effects of clouds in both the shortwave and longwave spectral regions is systematically overestimated. Analysis of the seasonal variations illustrates a distinct lack of coupling in the seasonal changes in the radiative effects of cloudiness between the tropics and mid-latitudes and between the Northern and Southern Hemisphere. Much of this problem also arises from difficulties in simulating low-level cloudiness, placing further emphasis on the need for better model parameterizations of boundary layer clouds.

  8. The effects of smoke aerosols, land-use change and water vapor reduction on the shortwave radiative budget over the Amazônia

    NASA Astrophysics Data System (ADS)

    Sena, Elisa; Artaxo, Paulo; Correia, Alexandre

    2014-05-01

    Simultaneous CERES (Clouds and the Earth's Radiant Energy System) and MODIS (Moderate Resolution Imaging Spectrometer) sensors retrievals were used to calculate the changes in radiation fluxes resulting from deforestation in the Amazon during the peak of the biomass burning seasons from 2000 to 2009. The energy balance of the region is modified by the emission of biomass burning aerosols, changes in surface properties and in the atmospheric water vapor column. The direct radiative forcing (RF) of biomass burning aerosols and the RF due to surface albedo changes, triggered by deforestation in the Amazonia, were calculated using two different methodologies. MODIS's bidirectional reflectance distribution functions (BRDF) product and biomass burning aerosol properties retrieved by AERONET were used in a radiative transfer code, to expand the instantaneous radiative forcing values, obtained during the satellite overpass, into 24-hour RF average. The mean direct RF of aerosols at the TOA during the biomass burning season for the 10-year period was -8.2 ± 2.1 W/m² and -5.2 ± 2.6 W/m², depending on the methodology applied. The spatial distributions of the direct radiative forcing of aerosols over the Amazon Basin show that for high concentrations of aerosols, the daily average of the RF at the TOA can reach up to -30 W/m². The surface reflectance strongly influences the direct RF of aerosols. The impact of aerosols over different surface types was analyzed, indicating that the direct RF is systematically more negative over forest than over cerrado areas. The mean annual land use change RF, due to deforestation, in Rondônia was determined as -7.4 ± 0.9 W/m² and -8.1 ± 1.0 W/m², using the two different methodologies. Biomass burning aerosols impact the radiative budget for approximately 2-3 months per year, whereas the surface albedo impact is observed throughout the year. Because of this seasonality, the estimated impact in the Amazonian annual radiative budget

  9. Study of the Effect of Temporal Sampling Frequency on DSCOVR Observations Using the GEOS-5 Nature Run Results (Part I): Earths Radiation Budget

    NASA Technical Reports Server (NTRS)

    Holdaway, Daniel; Yang, Yuekui

    2016-01-01

    Satellites always sample the Earth-atmosphere system in a finite temporal resolution. This study investigates the effect of sampling frequency on the satellite-derived Earth radiation budget, with the Deep Space Climate Observatory (DSCOVR) as an example. The output from NASA's Goddard Earth Observing System Version 5 (GEOS-5) Nature Run is used as the truth. The Nature Run is a high spatial and temporal resolution atmospheric simulation spanning a two-year period. The effect of temporal resolution on potential DSCOVR observations is assessed by sampling the full Nature Run data with 1-h to 24-h frequencies. The uncertainty associated with a given sampling frequency is measured by computing means over daily, monthly, seasonal and annual intervals and determining the spread across different possible starting points. The skill with which a particular sampling frequency captures the structure of the full time series is measured using correlations and normalized errors. Results show that higher sampling frequency gives more information and less uncertainty in the derived radiation budget. A sampling frequency coarser than every 4 h results in significant error. Correlations between true and sampled time series also decrease more rapidly for a sampling frequency less than 4 h.

  10. The radiative budgets of a tropical mesoscale convective system during the EMEX-STEP-AMEX experiment. I - Observations. II - Model results

    NASA Technical Reports Server (NTRS)

    Wong, Takmeng; Stephens, Graeme L.; Stackhouse, Paul W., Jr.; Valero, Francisco P. J.

    1993-01-01

    The spatial radiation heating budget associated with tropical mesoscale convective systems (MCSs) is studied and the change of this heating/budget throughout the life cycle of such a cloud system is investigated. The movements of an EMEX 9 cloud cluster are described. The vertical structure of the cluster contains two types of imbedded convection: an upright vertical structure and a pronounced rearward slope with vertical extent of 14.5 km or more and a horizontal scale of about 40 km. The cloud base and cloud top altitude in the stratiform region are of the order of 4.8 km and 15-16 km, respectively. The upward and downward solar flux profiles suggest very little solar heating in these regions. A tropical MCS that occurred during the EMEX Mission 9 is simulated, and the simulation is shown to broadly agree with the observations. The simulation results, which are reported in detail, show how tropical mesoscale cloud systems provide an effective radiative heat source for the tropical atmosphere.

  11. Budget Exercise.

    ERIC Educational Resources Information Center

    Clowes, Darrel A.

    Following a discussion of the factors to be considered in constructing feasible college budgets, an exercise in budget development is presented involving a hypothetical community college with 2,500 full-time equivalent (FTE) students, 500 in developmental education, 750 each in transfer and technical programs, and 500 undecided. Exercise…

  12. Budget timetable

    NASA Astrophysics Data System (ADS)

    This is a timetable for congressional action under the Balanced Budget and Emergency Deficit Control Act of 1985 (Gramm-Rudman-Hollings). These deadlines apply to fiscal years (FY) 1987-1991. The Congress missed a number of these deadlines last year. The deficit reduction measures in Gramm-Rudman-Hollings would lead to a balanced budget in 1991.

  13. 76 FR 4944 - Ionizing Radiation Standard; Extension of the Office of Management and Budget's (OMB) Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    .... 3506 et seq.) and Secretary of Labor's Order No. 4-2010 (75 FR 55355). Signed at Washington, DC, on... Occupational Safety and Health Administration Ionizing Radiation Standard; Extension of the Office of... requirements specified in the Ionizing Radiation Standard (29 CFR 1910.1096). The information...

  14. Development of response models for the Earth Radiation Budget Experiment (ERBE) sensors. Part 1: Dynamic models and computer simulations for the ERBE nonscanner, scanner and solar monitor sensors

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Choi, Sang H.; Chrisman, Dan A., Jr.; Samms, Richard W.

    1987-01-01

    Dynamic models and computer simulations were developed for the radiometric sensors utilized in the Earth Radiation Budget Experiment (ERBE). The models were developed to understand performance, improve measurement accuracy by updating model parameters and provide the constants needed for the count conversion algorithms. Model simulations were compared with the sensor's actual responses demonstrated in the ground and inflight calibrations. The models consider thermal and radiative exchange effects, surface specularity, spectral dependence of a filter, radiative interactions among an enclosure's nodes, partial specular and diffuse enclosure surface characteristics and steady-state and transient sensor responses. Relatively few sensor nodes were chosen for the models since there is an accuracy tradeoff between increasing the number of nodes and approximating parameters such as the sensor's size, material properties, geometry, and enclosure surface characteristics. Given that the temperature gradients within a node and between nodes are small enough, approximating with only a few nodes does not jeopardize the accuracy required to perform the parameter estimates and error analyses.

  15. Development of response models for the Earth Radiation Budget Experiment (ERBE) sensors. Part 2: Analysis of the ERBE integrating sphere ground calibration

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Taylor, Deborah B.

    1987-01-01

    An explicit solution of the spectral radiance leaving an arbitrary point on the wall of a spherical cavity with diffuse reflectivity is obtained. The solution is applicable to spheres with an arbitrary number of openings of any size and shape, an arbitrary number of light sources with possible non-diffuse characteristics, a non-uniform sphere wall temperature distribution, non-uniform and non-diffuse sphere wall emissivity and non-uniform but diffuse sphere wall spectral reflectivity. A general measurement equation describing the output of a sensor with a given field of view, angular and spectral response measuring the sphere output is obtained. The results are applied to the Earth Radiation Budget Experiment (ERBE) integrating sphere. The sphere wall radiance uniformity, loading effects and non-uniform wall temperature effects are investigated. It is shown that using appropriate interpretation and processing, a high-accuracy short-wave calibration of the ERBE sensors can be achieved.

  16. THE EFFECT OF CLOUD FRACTION ON THE RADIATIVE ENERGY BUDGET: The Satellite-Based GEWEX-SRB Data vs. the Ground-Based BSRN Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Stackhouse, P. W.; Gupta, S. K.; Cox, S. J.; Mikovitz, J. C.; Nasa Gewex Srb

    2011-12-01

    The NASA GEWEX-SRB (Global Energy and Water cycle Experiment - Surface Radiation Budget) project produces and archives shortwave and longwave atmospheric radiation data at the top of the atmosphere (TOA) and the Earth's surface. The archive holds uninterrupted records of shortwave/longwave downward/upward radiative fluxes at 1 degree by 1 degree resolution for the entire globe. The latest version in the archive, Release 3.0, is available as 3-hourly, daily and monthly means, spanning 24.5 years from July 1983 to December 2007. Primary inputs to the models used to produce the data include: shortwave and longwave radiances from International Satellite Cloud Climatology Project (ISCCP) pixel-level (DX) data, cloud and surface properties derived therefrom, temperature and moisture profiles from GEOS-4 reanalysis product obtained from the NASA Global Modeling and Assimilation Office (GMAO), and column ozone amounts constituted from Total Ozone Mapping Spectrometer (TOMS), TIROS Operational Vertical Sounder (TOVS) archives, and Stratospheric Monitoring-group's Ozone Blended Analysis (SMOBA), an assimilation product from NOAA's Climate Prediction Center. The data in the archive have been validated systemically against ground-based measurements which include the Baseline Surface Radiation Network (BSRN) data, the World Radiation Data Centre (WRDC) data, and the Global Energy Balance Archive (GEBA) data, and generally good agreement has been achieved. In addition to all-sky radiative fluxes, the output data include clear-sky fluxes, cloud optical depth, cloud fraction and so on. The BSRN archive also includes observations that can be used to derive the cloud fraction, which provides a means for analyzing and explaining the SRB-BSRN flux differences. In this paper, we focus on the effect of cloud fraction on the surface shortwave flux and the level of agreement between the satellite-based SRB data and the ground-based BSRN data. The satellite and BSRN employ different

  17. Measurement of the Earth's Radiation Budget components from Russian satellites "Meteor-M" № 1 and "Meteor-M" № 2

    NASA Astrophysics Data System (ADS)

    Cherviakov, M.

    2015-12-01

    One of the foremost challenges to monitoring the climate system is the ability to make a precise measurement of Earth's radiation budget components from space. Thereupon a new "Meteor-M" satellite program has been started in Russia. The first satellite of new generation "Meteor-M" № 1 was put into orbit in September, 2009 and second satellite "Meteor-M" № 2 - in July, 2014. Some measurements results obtained by the nadir looking medium field of view radiometers IKOR-M which was installed on "Meteor-M" satellites are presented. These equipments were created in Saratov State University under the direction of Yu. A. Sklyarov for monitoring of outgoing shortwave radiation (OSR), albedo and absorbed solar radiation (ASR) at TOA. The basic products of data processing are given in the form of global maps of distribution OSR, albedo and ASR. Such maps were made for each month during observation period. Fig. 1 presents the map of global distribution of monthly averaged values of albedo in April, 2014. Two series of measurements from two different IKOR-M are available. The first radiometer had worked from October, 2009 to August, 2014 and second - from August, 2014 to the present. Therefore, there is a period when both radiometers work at the same time. TOA fluxes deduced from the "Meteor-M" № 1 measurements in August, 2014 show very good agreement with the fluxes determined from "Meteor-M" № 2. The seasonal and interannual variations of OSR, albedo and ASR were discussed. The variations between SW radiation budget components seem to be within observational uncertainty and natural variability governed by cloudiness, water vapor and aerosol variations. It was assessed spatial and temporal variations of albedo and ASR over different regions. Latitudinal distributions of albedo and ASR were estimated in more detail. Meridional cross sections over oceans and land were used separately for this estimation. It was shown that the albedo and ASR data received from the

  18. Thermal Orbital Environmental Parameter Study on the Propulsive Small Expendable Deployer System (ProSEDS) Using Earth Radiation Budget Experiment (ERBE) Data

    NASA Technical Reports Server (NTRS)

    Sharp, John R.; McConnaughey, Paul K. (Technical Monitor)

    2002-01-01

    The natural thermal environmental parameters used on the Space Station Program (SSP 30425) were generated by the Space Environmental Effects Branch at NASA's Marshall Space Flight Center (MSFC) utilizing extensive data from the Earth Radiation Budget Experiment (ERBE), a series of satellites which measured low earth orbit (LEO) albedo and outgoing long-wave radiation. Later, this temporal data was presented as a function of averaging times and orbital inclination for use by thermal engineers in NASA Technical Memorandum TM 4527. The data was not presented in a fashion readily usable by thermal engineering modeling tools and required knowledge of the thermal time constants and infrared versus solar spectrum sensitivity of the hardware being analyzed to be used properly. Another TM was recently issued as a guideline for utilizing these environments (NASA/TM-2001-211221) with more insight into the utilization by thermal analysts. This paper gives a top-level overview of the environmental parameters presented in the TM and a study of the effects of implementing these environments on an ongoing MSFC project, the Propulsive Small Expendable Deployer System (ProSEDS), compared to conventional orbital parameters that had been historically used.

  19. The earth's radiation budget and its relation to atmospheric hydrology. I - Observations of the clear sky greenhouse effect. II - Observations of cloud effects

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Greenwald, Thomas J.

    1991-01-01

    The clear-sky components of the earth's radiation budget (ERB), the relationship of these components to the sea surface temperature (SST), and microwave-derived water-vapor amount are analyzed in an observational study along with the relationship between the cloudy-sky components of ERB and space/time coincident observations of SST, microwave-derived cloud liquid water, and cloud cover. The purpose of the study is to use these observations for establishing an understanding of the couplings between radiation and the atmosphere that are important to understanding climate feedback. A strategy for studying the greenhouse effect of earth by analyzing the emitted clear-sky longwave flux over the ocean is proposed. It is concluded that the largest observed influence of clouds on ERB is more consistent with macrophysical properties of clouds as opposed to microphysical properties. The analysis for clouds and the greenhouse effect of clouds is compared quantitatively with the clear sky results. Land-ocean differences and tropical-midlatitude differences are shown and explained in terms of the cloud macrostructure.

  20. Calculation of the static in-flight telescope-detector response by deconvolution applied to point-spread function for the geostationary earth radiation budget experiment.

    PubMed

    Matthews, Grant

    2004-12-01

    The Geostationary Earth Radiation Budget (GERB) experiment is a broadband satellite radiometer instrument program intended to resolve remaining uncertainties surrounding the effect of cloud radiative feedback on future climate change. By use of a custom-designed diffraction-aberration telescope model, the GERB detector spatial response is recovered by deconvolution applied to the ground calibration point-spread function (PSF) measurements. An ensemble of randomly generated white-noise test scenes, combined with the measured telescope transfer function results in the effect of noise on the deconvolution being significantly reduced. With the recovered detector response as a base, the same model is applied in construction of the predicted in-flight field-of-view response of each GERB pixel to both short- and long-wave Earth radiance. The results of this study can now be used to simulate and investigate the instantaneous sampling errors incurred by GERB. Also, the developed deconvolution method may be highly applicable in enhancing images or PSF data for any telescope system for which a wave-front error measurement is available. PMID:15619842

  1. Influences of dust aerosols on regional aerosol optical properties, radiation budget and tropospheric chemistry during a typical pre-monsoon season dust storm in northern India

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Barth, M. C.; Madronich, S.; Naja, M. K.; Carmichael, G. R.; Pfister, G.; Knote, C. J.; Brasseur, G. P.; Ojha, N.; Sarangi, T.

    2013-12-01

    The effects of dust aerosols on the regional aerosol optical properties, radiation budget and tropospheric chemistry during a typical pre-monsoon season (April-June) dust storm event in northern India are analyzed. The MOZCART chemical mechanism of WRF-Chem is extended to simulate heterogeneous chemistry on dust surface and F-TUV photolysis scheme is updated to account for effects of dust aerosols on photolysis rates. The dust storm event lasted from 17 to 22 April 2010 and large changes (>50%) in local to regional scale aerosol optical properties are observed in both AERONET and satellite observations during this period. The extended version of WRF-Chem model captured several important features of the spatio-temporal distributions of dust plumes, aerosol optical properties and trace gases during the dust storm. Model results show that dust particles cool the surface and the top of the atmosphere, and warm the atmosphere. The regionally averaged radiative perturbation due to dust aerosols is estimated as -2.0×3.0 W m-2 at the top of the atmosphere, 2.3×1.8 W m-2 in the atmosphere and -4.4×3.1 W m-2 at the surface. The impact of these radiative perturbations on the surface energy budget is estimated to be small on a regional scale but significant locally. The dust storm acted as a sink for many key trace gases including ozone, nitrogen oxides, hydrogen oxides, methanol, acetic acid and formaldehyde, and significantly perturbed their spatial and vertical distributions. The reductions in these gases are estimated as 5-99% and more than 80% of this reduction came from the heterogeneous chemistry. The RH dependence of reactive uptake coefficient is found to have a significant impact on the distributions of trace gases. A set of sensitivity analyses revealed that dust aging can play an important role in heterogeneous chemistry. Model experiments based on laboratory measurements of changes in the uptake of ozone by dust with aging showed that dust aging can lead to

  2. The earth's radiation budget and its relation to atmospheric hydrology. III - Comparison of observations over the oceans with a GCM

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Randall, David A.; Wittmeyer, Ian L.; Dazlich, Donald A.; Tjemkes, Stephen

    1993-01-01

    The ability of the Colorado State University general circulation model (GCM) to simulate interactions between the hydrological cycle and the radiative processes on earth was examined by comparing various sensitivity relationships established by the model with those observed on earth, and the observed and calculated seasonal cycles of the greenhouse effect and cloud radiative forcing. Results showed that, although the GCM model used was able to simulate well some aspects of the observed sensitivities, there were many serious quantitative differences, including problems in the simulation of the column vapor in the tropics and an excessively strong clear-sky greenhouse effect in the mid-latitudes. These differences led to an underestimation by the model of the sensitivity of the clear-sky greenhouse to changes in sea surface temperature.

  3. The Impact of Aerosols Generated from Biomass Burning, Dust Storms, and Volcanoes Upon the Earth's Radiative Energy Budget

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.

    1997-01-01

    A new technique for detecting aerosols from biomass burning and dust is developed. The radiative forcing of aerosols is estimated over four major ecosystems in South America. A new smoke and fire detection scheme is developed for biomass burning aerosols over South America. Surface shortware irradiance calculations are developed in the presence of biomass burning aerosols during the SCAR-B experiment. This new approach utilizes ground based, aircraft, and satellite measurements.

  4. Standards for Radiation Effects Testing: Ensuring Scientific Rigor in the Face of Budget Realities and Modern Device Challenges

    NASA Technical Reports Server (NTRS)

    Lauenstein, J M.

    2015-01-01

    An overview is presented of the space radiation environment and its effects on electrical, electronic, and electromechanical parts. Relevant test standards and guidelines are listed. Test standards and guidelines are necessary to ensure best practices, minimize and bound systematic and random errors, and to ensure comparable results from different testers and vendors. Test standards are by their nature static but exist in a dynamic environment of advancing technology and radiation effects research. New technologies, failure mechanisms, and advancement in our understanding of known failure mechanisms drive the revision or development of test standards. Changes to standards must be weighed against their impact on cost and existing part qualifications. There must be consensus on new best practices. The complexity of some new technologies exceeds the scope of existing test standards and may require development of a guideline specific to the technology. Examples are given to illuminate the value and limitations of key radiation test standards as well as the challenges in keeping these standards up to date.

  5. Statistical Reference Datasets

    National Institute of Standards and Technology Data Gateway

    Statistical Reference Datasets (Web, free access)   The Statistical Reference Datasets is also supported by the Standard Reference Data Program. The purpose of this project is to improve the accuracy of statistical software by providing reference datasets with certified computational results that enable the objective evaluation of statistical software.

  6. NASA/GEWEX Surface Radiation Budget: Integrated Data Product With Reprocessed Radiance, Cloud, and Meteorology Inputs, and New Surface Albedo Treatment

    NASA Technical Reports Server (NTRS)

    Cox, Stephen J.; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Mikovitz, J. Colleen; Zhang, Taiping

    2016-01-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. In addition to the input data improvements, several important algorithm improvements have been made. Most notable has been the adaptation of Angular Distribution Models (ADMs) from CERES to improve the initial calculation of shortwave TOA fluxes, from which the surface flux calculations follow. Other key input improvements include a detailed aerosol history using the Max Planck Institut Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. As of the time of abstract submission, results from 2007 have been produced with ISCCP H availability the limiting factor. More SRB data will be produced as ISCCP reprocessing continues. The SRB data produced will be released as part of the Release 4.0 Integrated Product, recognizing the interdependence of the radiative fluxes with other GEWEX products providing estimates of the Earth's global water and energy cycle (I.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).

  7. Future Flight Opportunities and Calibration Protocols for CERES: Continuation of Observations in Support of the Long-Term Earth Radiation Budget Climate Data Record

    NASA Technical Reports Server (NTRS)

    Priestley, Kory J.; Smith, George L.

    2010-01-01

    The goal of the Clouds and the Earth s Radiant Energy System (CERES) project is to provide a long-term record of radiation budget at the top-of-atmosphere (TOA), within the atmosphere, and at the surface with consistent cloud and aerosol properties at climate accuracy. CERES consists of an integrated instrument-algorithm validation science team that provides development of higher-level products (Levels 1-3) and investigations. It involves a high level of data fusion, merging inputs from 25 unique input data sources to produce 18 CERES data products. Over 90% of the CERES data product volume involves two or more instruments. Continuation of the Earth Radiation Budget (ERB) Climate Data Record (CDR) has been identified as critical in the 2007 NRC Decadal Survey, the Global Climate Observing System WCRP report, and in an assessment titled Impacts of NPOESS Nunn-McCurdy Certification on Joint NASA-NOAA Climate Goals . Five CERES instruments have flown on three different spacecraft: TRMM, EOS-Terra and EOS-Aqua. In response, NASA, NOAA and NPOESS have agreed to fly the existing CERES Flight Model (FM-5) on the NPP spacecraft in 2011 and to procure an additional CERES Sensor with modest upgrades for flight on the JPSS C1 spacecraft in 2014, followed by a CERES follow-on sensor for flight in 2018. CERES is a scanning broadband radiometer that measures filtered radiance in the SW (0.3-5 m), total (TOT) (0.3-200 m) and WN (8-12 m) regions. Pre-launch calibration is performed on each Flight Model to meet accuracy requirements of 1% for SW and 0.5% for outgoing LW observations. Ground to flight or in-flight changes are monitored using protocols employing onboard and vicarious calibration sources. Studies of flight data show that SW response can change dramatically due to optical contamination. with greatest impact in blue-to UV radiance, where tungsten lamps are largely devoid of output. While science goals remain unchanged for ERB Climate Data Record, it is now understood

  8. Extending measurements in long-term permanent sites using a mobile observation system: Tradeoffs between carbon sequestration and radiation budget across a climatic gradient

    NASA Astrophysics Data System (ADS)

    Ramati, Efrat; Rohatyn, Shani; Rotenberg, Eyal; Tatarinov, Fyodor; Yakir, Dan

    2015-04-01

    Recent observations from the semi-arid region in Israel showed that conversion of the local sparse shrubland to pine forest resulted in greatly increased surface radiation load due to reduced canopy albedo combined with reduced emission of thermal radiations, which overwhelmed the beneficial effects of the relatively high rates of the forest carbon sequestration. Here we extend this study across the local climatic gradient, and test the hypothesis that increased carbon sequestration and reduced differences in surface radiation budgets along the precipitation gradient, diminish the surface effects of forestation while enhancing the benefits of carbon sequestration. We used a custom-built mobile laboratory (for eddy-flux and surface radiation measurements) on a campaign basis (about two weeks per site repeated along the seasonal cycle) to compare surface-atmosphere radiative (short- and long-wave radiation) and non-radiative (net carbon uptake, NEE, evapotranspiration, ET, and sensible heat, H) fluxes in three paired sites of pine forest (Pinus halepensis) and nearby non-forested ecosystems with mean annual precipitation/temperature of 291/19.5, 543/20.8, and 755/16.4 mm/˚C, respectively. Forests NEE and ET increased with increasing precipitation along the gradient from 0.8, to 1.5 gC m-2d-1, and 0.7 to 1.3 mmol H2O m-2s-1. Forests albedo did not changed along the gradient or along the seasonal cycle (αF ~0.12), while shrub land albedo (αS) varied along the gradient and the seasonal cycle due in part to variability in soil types (from 0.31 to 0.19, on average for dry and wet sites). Sensible heat flux did not markedly changed (HF~110 Wm-2 and HS~60 Wm-2), and the net thermal radiation emission along the climatic gradient increased in the forests (-90, to -105 Wm-2) and decreased in the shrub land (-112 to -104 Wm-2). The results showed, on average, enhanced carbon sink associated with forestation of shrub land (ΔNEEF-S) increased with precipitation (from near

  9. Budgeting Process

    ERIC Educational Resources Information Center

    Hentschke, Guilbert C.; Shaughnessy, John

    1973-01-01

    Discusses steps three and four in a budgeting process that uses Program Evaluation and Review Techniques (PERT). Step three involves developing time estimates and scheduling each of the activities in the PERT chart. Step four involves responsibility identification and coordination. (Author/JF)

  10. Battling Budgets

    ERIC Educational Resources Information Center

    White, Stacey

    2006-01-01

    Higher-education institutions are facing financial crises in their capital programs. Constant increases in the cost of oil, combined with material shortages in copper, steel and gypsum products, have contributed to an inexorable rise in the cost of construction. At the same time, capital budgets are decreasing. The result is that the education…

  11. Analytical and Experimental Characterization of a Linear-Array Thermopile Scanning Radiometer for Geo-Synchronous Earth Radiation Budget Applications

    NASA Technical Reports Server (NTRS)

    Sorensen, Ira J.

    1998-01-01

    The Thermal Radiation Group, a laboratory in the department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently working towards the development of a new technology for cavity-based radiometers. The radiometer consists of a 256-element linear-array thermopile detector mounted on the wall of a mirrored wedgeshaped cavity. The objective of this research is to provide analytical and experimental characterization of the proposed radiometer. A dynamic end-to-end opto-electrothermal model is developed to simulate the performance of the radiometer. Experimental results for prototype thermopile detectors are included. Also presented is the concept of the discrete Green's function to characterize the optical scattering of radiant energy in the cavity, along with a data-processing algorithm to correct for the scattering. Finally, a parametric study of the sensitivity of the discrete Green's function to uncertainties in the surface properties of the cavity is presented.

  12. The radiated energy budget of chromospheric plasma in a major solar flare deduced from multi-wavelength observations

    SciTech Connect

    Milligan, Ryan O.; Mathioudakis, Mihalis; Keenan, Francis P.; Kerr, Graham S.; Hudson, Hugh S.; Fletcher, Lyndsay; Dennis, Brian R.; Allred, Joel C.; Chamberlin, Phillip C.; Ireland, Jack

    2014-10-01

    This paper presents measurements of the energy radiated by the lower solar atmosphere, at optical, UV, and EUV wavelengths, during an X-class solar flare (SOL2011-02-15T01:56) in response to an injection of energy assumed to be in the form of nonthermal electrons. Hard X-ray observations from RHESSI were used to track the evolution of the parameters of the nonthermal electron distribution to reveal the total power contained in flare accelerated electrons. By integrating over the duration of the impulsive phase, the total energy contained in the nonthermal electrons was found to be >2 × 10{sup 31} erg. The response of the lower solar atmosphere was measured in the free-bound EUV continua of H I (Lyman), He I, and He II, plus the emission lines of He II at 304 Å and H I (Lyα) at 1216 Å by SDO/EVE, the UV continua at 1600 Å and 1700 Å by SDO/AIA, and the white light continuum at 4504 Å, 5550 Å, and 6684 Å, along with the Ca II H line at 3968 Å using Hinode/SOT. The summed energy detected by these instruments amounted to ∼3 × 10{sup 30} erg; about 15% of the total nonthermal energy. The Lyα line was found to dominate the measured radiative losses. Parameters of both the driving electron distribution and the resulting chromospheric response are presented in detail to encourage the numerical modeling of flare heating for this event, to determine the depth of the solar atmosphere at which these line and continuum processes originate, and the mechanism(s) responsible for their generation.

  13. Segmentation of Unstructured Datasets

    NASA Technical Reports Server (NTRS)

    Bhat, Smitha

    1996-01-01

    Datasets generated by computer simulations and experiments in Computational Fluid Dynamics tend to be extremely large and complex. It is difficult to visualize these datasets using standard techniques like Volume Rendering and Ray Casting. Object Segmentation provides a technique to extract and quantify regions of interest within these massive datasets. This thesis explores basic algorithms to extract coherent amorphous regions from two-dimensional and three-dimensional scalar unstructured grids. The techniques are applied to datasets from Computational Fluid Dynamics and from Finite Element Analysis.

  14. Dataset Lifecycle Policy

    NASA Technical Reports Server (NTRS)

    Armstrong, Edward; Tauer, Eric

    2013-01-01

    The presentation focused on describing a new dataset lifecycle policy that the NASA Physical Oceanography DAAC (PO.DAAC) has implemented for its new and current datasets to foster improved stewardship and consistency across its archive. The overarching goal is to implement this dataset lifecycle policy for all new GHRSST GDS2 datasets and bridge the mission statements from the GHRSST Project Office and PO.DAAC to provide the best quality SST data in a cost-effective, efficient manner, preserving its integrity so that it will be available and usable to a wide audience.

  15. Budget management.

    PubMed

    Hughes, G

    1997-05-01

    Budgetary responsibility gives you more control. Take time to master the fine detail, ask questions of your management and finance colleagues about anything you do not understand (you will not lose face), and develop the skills of lateral thinking and creative accountancy. Even if your budget is repeatedly overspent do not take it personally, ensure that management are aware of it and have a good night's sleep. Do not worry about it.

  16. Evaluating the design of an earth radiation budget instrument with system simulations. Part 2: Minimization of instantaneous sampling errors for CERES-I

    NASA Technical Reports Server (NTRS)

    Stowe, Larry; Hucek, Richard; Ardanuy, Philip; Joyce, Robert

    1994-01-01

    Much of the new record of broadband earth radiation budget satellite measurements to be obtained during the late 1990s and early twenty-first century will come from the dual-radiometer Clouds and Earth's Radiant Energy System Instrument (CERES-I) flown aboard sun-synchronous polar orbiters. Simulation studies conducted in this work for an early afternoon satellite orbit indicate that spatial root-mean-square (rms) sampling errors of instantaneous CERES-I shortwave flux estimates will range from about 8.5 to 14.0 W/m on a 2.5 deg latitude and longitude grid resolution. Rms errors in longwave flux estimates are only about 20% as large and range from 1.5 to 3.5 W/sq m. These results are based on an optimal cross-track scanner design that includes 50% footprint overlap to eliminate gaps in the top-of-the-atmosphere coverage, and a 'smallest' footprint size to increase the ratio in the number of observations lying within to the number of observations lying on grid area boundaries. Total instantaneous measurement error also depends on the variability of anisotropic reflectance and emission patterns and on retrieval methods used to generate target area fluxes. Three retrieval procedures from both CERES-I scanners (cross-track and rotating azimuth plane) are used. (1) The baseline Earth Radiaton Budget Experiment (ERBE) procedure, which assumes that errors due to the use of mean angular dependence models (ADMs) in the radiance-to-flux inversion process nearly cancel when averaged over grid areas. (2) To estimate N, instantaneous ADMs are estimated from the multiangular, collocated observations of the two scanners. These observed models replace the mean models in computation of satellite flux estimates. (3) The scene flux approach, conducts separate target-area retrievals for each ERBE scene category and combines their results using area weighting by scene type. The ERBE retrieval performs best when the simulated radiance field departs from the ERBE mean models by less than

  17. A Characterization of Arctic Aerosols as Derived from Airborne Observations and their Influence on the Surface Radiation Budget

    NASA Astrophysics Data System (ADS)

    Herber, A.; Stone, R.; Liu, P. S.; Li, S.; Sharma, S.; Neuber, R.; Birnbaumn, G.; Vitale, V.

    2011-12-01

    Arctic climate is influenced by aerosols that affect the radiation balance at the surface and within the atmosphere. Impacts depend on the composition and concentration of aerosols that determine opacity, which is quantified by the measure of aerosol optical depth (AOD). During winter and spring, aerosols are transported into the Arctic from lower latitude industrial regions. Trans-Arctic flight missions PAMARCMiP (Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project) of the German POLAR 5 during spring 2009 and spring 2011 provided opportunities to collect a comprehensive data set from which properties of the aerosol were derived, including AOD. Measurements were made from near the surface to over 4 km in altitude during flights between Svalbard, Norway and Pt. Barrow, Alaska. These, along with measurements of particle size and concentration, and black carbon content (BC) provide a three-dimensional characterization of the aerosols encountered along track. The horizontal and vertical distribution of Arctic haze, in particular, was evaluated. During April 2009, the Arctic atmosphere was variably turbid with total column AOD (at 500 nm) ranging from ~ 0.12 to > 0.35, where clean background values are typically < 0.06 (Stone et al., 2010). The haze was concentrated within and just above the surface-based temperature inversion layer. Few, distinct elevated aerosol layers were observed, also with an aerosol airborne Lidar. The presence of these haze layers in the Arctic atmosphere during spring reduced the diurnally averaged net shortwave irradiance, which can cause cooling of the surface, depending on its Albedo (reflectivity). An overview of both campaigns will be given with results presented in the context of historical observations and current thinking about the impact aerosols have on the Arctic climate. Stone, R.S., A. Herber, V. Vitale, M. Mazzola, A. Lupi, R. Schnell, E.G. Dutton, P. Liu, S.M. Li, K. Dethloff, A. Lampert, C. Ritter

  18. Fixing Dataset Search

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris

    2014-01-01

    Three current search engines are queried for ozone data at the GES DISC. The results range from sub-optimal to counter-intuitive. We propose a method to fix dataset search by implementing a robust relevancy ranking scheme. The relevancy ranking scheme is based on several heuristics culled from more than 20 years of helping users select datasets.

  19. Sources of black carbon aerosols in South Asia and surrounding regions during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB)

    SciTech Connect

    Kumar, R.; Barth, M. C.; Nair, V. S.; Pfister, G. G.; Babu, S. Suresh; Satheesh, S. K.; Moorthy, K. Krishna; Carmichael, G. R.; Lu, Z.; Streets, D. G.

    2015-01-01

    This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March-May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inland sites. In general, the model underestimates the observed BC mass concentrations. However, the model-observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average +/- standard deviation (representing spatial and temporal variability) BC mass concentration (1341 +/- 2353 ng m(-3)) in South Asia. BC emissions from residential (61 %) and industrial (23 %) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.

  20. Sources of black carbon aerosols in South Asia and surrounding regions during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB)

    SciTech Connect

    Kumar, R.; Barth, M. C.; Nair, V. S.; Pfister, G. G.; Suresh Babu, S.; Satheesh, S. K.; Moorthy, K. Krishna; Carmichael, G. R.; Lu, Z.; Streets, D. G.

    2015-05-19

    This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March–May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inland sites. In general, the model underestimates the observed BC mass concentrations. However, the model–observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average ± standard deviation (representing spatial and temporal variability) BC mass concentration (1341 ± 2353 ng m-3) in South Asia. BC emissions from residential (61%) and industrial (23%) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.

  1. Sources of black carbon aerosols in South Asia and surrounding regions during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB)

    DOE PAGES

    Kumar, R.; Barth, M. C.; Nair, V. S.; Pfister, G. G.; Suresh Babu, S.; Satheesh, S. K.; Moorthy, K. Krishna; Carmichael, G. R.; Lu, Z.; Streets, D. G.

    2015-05-19

    This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March–May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inlandmore » sites. In general, the model underestimates the observed BC mass concentrations. However, the model–observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average ± standard deviation (representing spatial and temporal variability) BC mass concentration (1341 ± 2353 ng m-3) in South Asia. BC emissions from residential (61%) and industrial (23%) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.« less

  2. Dataset Modelability by QSAR

    PubMed Central

    Golbraikh, Alexander; Muratov, Eugene; Fourches, Denis; Tropsha, Alexander

    2014-01-01

    We introduce a simple MODelability Index (MODI) that estimates the feasibility of obtaining predictive QSAR models (Correct Classification Rate above 0.7) for a binary dataset of bioactive compounds. MODI is defined as an activity class-weighted ratio of the number of the nearest neighbor pairs of compounds with the same activity class versus the total number of pairs. The MODI values were calculated for more than 100 datasets and the threshold of 0.65 was found to separate non-modelable from the modelable datasets. PMID:24251851

  3. From Regional Cloud-Albedo to a Global Albedo Footprint - Studying Aerosol Effects on the Radiation Budget Using the Relation Between Albedo and Cloud Fraction

    NASA Astrophysics Data System (ADS)

    Bender, F.; Engström, A.; Karlsson, J.; Wood, R.; Charlson, R. J.

    2015-12-01

    Earth's albedo is the primary determinant of the amount of energy absorbed by the Earth-atmosphere system. The main factor controlling albedo is the amount of clouds present, but aerosols can affect and alter both clear-sky and cloudy-sky reflectance. How albedo depends on cloud fraction and how albedo varies at a given cloud fraction and a given cloud water content, reveals information about these aerosol effects on the radiation budget. Hence, the relation between total albedo and cloud fraction can be used for illustration and quantification of aerosol effects, and as a diagnostic tool, to test model performance. Here, we show examples of the utilisation of this relation focusing on satellite observations from CERES and MODIS on Aqua, as well as from Calipso and CloudSat, and performing comparisons with climate models on the way: In low-cloud regions in the subtropics, we find that climate models well represent a near-constant regional cloud albedo, and this representation has improved from CMIP3 to CMIP5. CMIP5 models indicate more reflective clouds in present-day climate than pre-industrial, as a result of increased aerosol burdens. On monthly mean time scale, models are found to over-estimate the regional cloud-brightening due to aerosols. On the global scale we find an increasing cloud albedo with increasing cloud fraction - a relation that is very well defined in observations, and less so in CMIP5 models. Cloud brightening from pre-industrial to present day is also seen on global scale. Further, controlling for both cloud fraction and cloud water content we can trace small variations in albedo, or perturbations of solar reflectivity, that create a near-global coherent geographical pattern that is consistent with aerosol impacts on climate, with albedo enhancement in regions dominant of known aerosol sources and suppression of albedo in regions associated with high rates of aerosol removal (deduced using CloudSat precipitation estimates). This mapping can be

  4. The Energy Budget of the Mesosphere Derived from SABER

    NASA Astrophysics Data System (ADS)

    Hunt, L. A.; Mlynczak, M. G.; Mertens, C. J.; Marshall, B. T.; Russell, J. M., III

    2014-12-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument measures the vertical distribution of infrared radiation emitted by various atmospheric gases (ozone, water vapor, nitric oxide, and carbon dioxide), providing important information about the radiation budget in the upper atmosphere. From the SABER radiances, we determine the radiative cooling by CO2, solar heating by O3 and O2, and chemical heating from a suite of exothermic reactions over the vertical range of 65-100 km. In addition, we derive amounts of several constituents of those chemical reactions and are able to determine bounds on a key parameter in the energy calculation, atomic oxygen. In general we find the global annual mean heating and cooling to be in balance within the measurement uncertainties. This is because the atomic oxygen concentrations derived from SABER are at the maximum, radiatively allowed limit. The results will be discussed in terms of the absolute energy balance and its variation with the solar cycle. In general the changes in radiative cooling appear consistent with changes in solar and chemical heating over the solar cycle. SABER, launched in December 2001, will soon have collected 13 years of this unique, comprehensive dataset on middle atmosphere structure and energy balance.

  5. The Surface Energy Budget in Urban Environments

    NASA Astrophysics Data System (ADS)

    Twine, T. E.; Snyder, P. K.; Hertel, W.

    2011-12-01

    Urban heat islands (UHIs) occur when urban and suburban areas experience elevated temperatures relative to their rural surroundings because of differences in vegetation cover, buildings and other development, and infrastructure. Most cities in the United States are warming at twice the rate of the outlying rural areas and the planet as a whole. This difference in temperature is proportional to the size of the city and can be in excess of 2-5°C during the daytime and as much as 10°C at night. UHIs can exacerbate the warming during heat waves and play a role in additional heat-related mortality, an increase in tropospheric ozone, and economic losses that total in the billions of dollars from excess energy consumption. Many cities are experimenting with strategies to reduce urban warming. A number of mitigation strategies involve manipulating the surface energy budget to either reduce the amount of solar radiation absorbed at the surface or offset absorbed energy through latent cooling. Options include using building materials with different properties of reflectivity and emissivity, increasing the reflectivity of parking lots, covering roofs with vegetation, and increasing the amount of vegetation overall through tree planting or increasing green space. The goal of the Islands in the Sun project is to understand the formation and behavior of urban heat islands and to mitigate their effects through sensible city engineering and design practices. Methods include analysis of global remotely sensed datasets, the development of a reduced-complexity urban model, and evaluation of measurements made in the Twin Cities Metropolitan Area (TCMA). The TCMA is a 7,700 square kilometer urban and suburban region located in east central Minnesota that includes the two cities of Minneapolis and Saint Paul. Mitigation of the UHI in northern latitude cities, such as the TCMA, is a challenge because (1) residents in more northerly cities are more likely to suffer heat-related illness

  6. Combining the effect of crops surface albedo variability on the radiative forcing together with crop GHG budgets calculated from in situ flux measurements in a life cycle assessment approach: methodology and results

    NASA Astrophysics Data System (ADS)

    Ceschia, E.; Ferlicoq, M.; Brut, A.; Tallec, T.

    2013-12-01

    The carbon and GHG budgets (GHGB) of the 2 crop sites with contrasted management located in South West France was estimated over a complete rotation by combining a classical LCA approach with on site CO2 flux measurements. At both sites, carbon inputs (organic fertilization, seeds), carbon exports (harvest) and net ecosystem production (NEP), measured with the eddy covariance technique, were estimated. The variability of the different terms and their relative contributions to the net ecosystem carbon budget (NECB) were analyzed for all site-years, and the effect of management on NECB was assessed. To account for GHG fluxes that were not directly measured on site, we estimated the emissions caused by field operations (EFO) for each site using emission factors from the literature. The EFO were added to the NECB to calculate the total GHGB for a range of cropping systems and management regimes. N2O emissions were calculated following the IPCC (2007) guidelines or and CH4 emissions were assumed to be negligible. Albedo was calculated continuously using the short wave incident and reflected radiation measurements in the field from CNR1 sensors. Rapid changes in surface albedo typical from those ecosystems and resulting from management and crop phenology were analysed. The annual radiative forcing for each plot was estimated by calculating the difference between a mean annual albedo for each crop and a reference bare soil albedo value calculated over 5 years for each plot. To finalize the radiative forcing calculation, the method developed by Muñoz et al (2010) using up and down atmospheric transmittance had to be corrected so it would only account for up-going atmospheric transmittance. Annual differences in radiative forcing between crops were then converted in g C equivalent m-2 in order to add this effect to the GHG budget of each crop within a rotation. This methodology could be applied to all ICOS/NEON cropland sites. We found that the differences in radiative

  7. FY 1996 Congressional budget request: Budget highlights

    SciTech Connect

    Not Available

    1995-02-01

    The FY 1996 budget presentation is organized by the Department`s major business lines. An accompanying chart displays the request for new budget authority. The report compares the budget request for FY 1996 with the appropriated FY 1995 funding levels displayed on a comparable basis. The FY 1996 budget represents the first year of a five year plan in which the Department will reduce its spending by $15.8 billion in budget authority and by $14.1 billion in outlays. FY 1996 is a transition year as the Department embarks on its multiyear effort to do more with less. The Budget Highlights are presented by business line; however, the fifth business line, Economic Productivity, which is described in the Policy Overview section, cuts across multiple organizational missions, funding levels and activities and is therefore included in the discussion of the other four business lines.

  8. Application of Huang-Hilbert Transforms to Geophysical Datasets

    NASA Technical Reports Server (NTRS)

    Duffy, Dean G.

    2003-01-01

    The Huang-Hilbert transform is a promising new method for analyzing nonstationary and nonlinear datasets. In this talk I will apply this technique to several important geophysical datasets. To understand the strengths and weaknesses of this method, multi- year, hourly datasets of the sea level heights and solar radiation will be analyzed. Then we will apply this transform to the analysis of gravity waves observed in a mesoscale observational net.

  9. The National Hydrography Dataset

    USGS Publications Warehouse

    ,

    1999-01-01

    The National Hydrography Dataset (NHD) is a newly combined dataset that provides hydrographic data for the United States. The NHD is the culmination of recent cooperative efforts of the U.S. Environmental Protection Agency (USEPA) and the U.S. Geological Survey (USGS). It combines elements of USGS digital line graph (DLG) hydrography files and the USEPA Reach File (RF3). The NHD supersedes RF3 and DLG files by incorporating them, not by replacing them. Users of RF3 or DLG files will find the same data in a new, more flexible format. They will find that the NHD is familiar but greatly expanded and refined. The DLG files contribute a national coverage of millions of features, including water bodies such as lakes and ponds, linear water features such as streams and rivers, and also point features such as springs and wells. These files provide standardized feature types, delineation, and spatial accuracy. From RF3, the NHD acquires hydrographic sequencing, upstream and downstream navigation for modeling applications, and reach codes. The reach codes provide a way to integrate data from organizations at all levels by linking the data to this nationally consistent hydrographic network. The feature names are from the Geographic Names Information System (GNIS). The NHD provides comprehensive coverage of hydrographic data for the United States. Some of the anticipated end-user applications of the NHD are multiuse hydrographic modeling and water-quality studies of fish habitats. Although based on 1:100,000-scale data, the NHD is planned so that it can incorporate and encourage the development of the higher resolution data that many users require. The NHD can be used to promote the exchange of data between users at the national, State, and local levels. Many users will benefit from the NHD and will want to contribute to the dataset as well.

  10. Surface Water and Energy Budgets for Sub-Saharan Africa in GFDL Coupled Climate Model

    NASA Astrophysics Data System (ADS)

    Tian, D.; Wood, E. F.; Vecchi, G. A.; Jia, L.; Pan, M.

    2015-12-01

    This study compare surface water and energy budget variables from the Geophysical Fluid Dynamics Laboratory (GFDL) FLOR models with the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR), Princeton University Global Meteorological Forcing Dataset (PGF), and PGF-driven Variable Infiltration Capacity (VIC) model outputs, as well as available observations over the sub-Saharan Africa. The comparison was made for four configurations of the FLOR models that included FLOR phase 1 (FLOR-p1) and phase 2 (FLOR-p2) and two phases of flux adjusted versions (FLOR-FA-p1 and FLOR-FA-p2). Compared to p1, simulated atmospheric states in p2 were nudged to the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The seasonal cycle and annual mean of major surface water (precipitation, evapotranspiration, runoff, and change of storage) and energy variables (sensible heat, ground heat, latent heat, net solar radiation, net longwave radiation, and skin temperature) over a 34-yr period during 1981-2014 were compared in different regions in sub-Saharan Africa (West Africa, East Africa, and Southern Africa). In addition to evaluating the means in three sub-regions, empirical orthogonal functions (EOFs) analyses were conducted to compare both spatial and temporal characteristics of water and energy budget variables from four versions of GFDL FLOR, NCEP CFSR, PGF, and VIC outputs. This presentation will show how well each coupled climate model represented land surface physics and reproduced spatiotemporal characteristics of surface water and energy budget variables. We discuss what caused differences in surface water and energy budgets in land surface components of coupled climate model, climate reanalysis, and reanalysis driven land surface model. The comparisons will reveal whether flux adjustment and nudging would improve depiction of the surface water and energy budgets in coupled climate models.

  11. National Hydrography Dataset (NHD)

    USGS Publications Warehouse

    ,

    2001-01-01

    The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000 scale and exists at that scale for the whole country. High resolution NHD adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Like the 1:100,000-scale NHD, high resolution NHD contains reach codes for networked features and isolated lakes, flow direction, names, stream level, and centerline representations for areal water bodies. Reaches are also defined to represent waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria set out by the Federal Geographic Data Committee.

  12. Federal budget timetable

    NASA Astrophysics Data System (ADS)

    This is the federal budget timetable under the Balanced Budget and Emergency Deficit Control Act of 1985 (Gramm-Rudman-Hollings). These deadlines apply to fiscal years (FY) 1987-1991. The deficit reduction measures in Gramm-Rudman-Hollings would lead to a balanced budget in 1991.

  13. School Budget Seminars.

    ERIC Educational Resources Information Center

    New York State School Boards Association, Albany.

    This report is a compilation of the presentations made at three New York State School Boards Association seminars on school budgets. The programs consisted of presentations on the relationship of the school district's program to the budget and to budget development, timetable, control, and presentation, as well as to other considerations such as…

  14. School District Budgeting.

    ERIC Educational Resources Information Center

    Hartman, William T.

    This book is devoted exclusively to the budgeting process in school districts, unlike the more common generic budgeting texts. As such, it allows an in-depth treatment of both conceptual and practical aspects of budgeting in a single volume. By default, school business officials have had to rely on the state education accounting manual as their…

  15. Quantifying Diurnal Cloud Radiative Effects by Cloud Type in the Tropical Western Pacific

    SciTech Connect

    Burleyson, Casey D.; Long, Charles N.; Comstock, Jennifer M.

    2015-06-01

    Cloud radiative effects are examined using long-term datasets collected at the three Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facilities in the tropical western Pacific. We quantify the surface radiation budget, cloud populations, and cloud radiative effects by partitioning the data by cloud type, time of day, and as a function of large scale modes of variability such as El Niño Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin. The novel facet of our analysis is that we break aggregate cloud radiative effects down by cloud type across the diurnal cycle. The Nauru cloud populations and subsequently the surface radiation budget are strongly impacted by ENSO variability whereas the cloud populations over Manus only shift slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon related variations. We show that while deeper convective clouds have a strong conditional influence on the radiation reaching the surface, their limited frequency reduces their aggregate radiative impact. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. We use the observations to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget compared to biases in the timing of the diurnal cycle of cloud frequency. Our results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.

  16. 7 CFR 3402.14 - Budget and budget narrative.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Budget and budget narrative. 3402.14 Section 3402.14... Preparation of an Application § 3402.14 Budget and budget narrative. Applicants must prepare the Budget, Form NIFA-2004, and a budget narrative identifying all costs associated with the application....

  17. 7 CFR 3402.14 - Budget and budget narrative.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Budget and budget narrative. 3402.14 Section 3402.14... Preparation of an Application § 3402.14 Budget and budget narrative. Applicants must prepare the Budget, Form NIFA-2004, and a budget narrative identifying all costs associated with the application....

  18. 7 CFR 3402.14 - Budget and budget narrative.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Budget and budget narrative. 3402.14 Section 3402.14... Preparation of an Application § 3402.14 Budget and budget narrative. Applicants must prepare the Budget, Form NIFA-2004, and a budget narrative identifying all costs associated with the application....

  19. 7 CFR 3402.14 - Budget and budget narrative.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Budget and budget narrative. 3402.14 Section 3402.14... Preparation of an Application § 3402.14 Budget and budget narrative. Applicants must prepare the Budget, Form CSREES-2004, and a budget narrative identifying all costs associated with the application....

  20. Atmospheric radiation

    SciTech Connect

    Harshvardhan, M.R. )

    1991-01-01

    Studies of atmospheric radiative processes are summarized for the period 1987-1990. Topics discussed include radiation modeling; clouds and radiation; radiative effects in dynamics and climate; radiation budget and aerosol effects; and gaseous absorption, particulate scattering and surface reflection. It is concluded that the key developments of the period are a defining of the radiative forcing to the climate system by trace gases and clouds, the recognition that cloud microphysics and morphology need to be incorporated not only into radiation models but also climate models, and the isolation of a few important unsolved theoretical problems in atmospheric radiation.

  1. National Elevation Dataset

    USGS Publications Warehouse

    ,

    2002-01-01

    The National Elevation Dataset (NED) is a new raster product assembled by the U.S. Geological Survey. NED is designed to provide National elevation data in a seamless form with a consistent datum, elevation unit, and projection. Data corrections were made in the NED assembly process to minimize artifacts, perform edge matching, and fill sliver areas of missing data. NED has a resolution of one arc-second (approximately 30 meters) for the conterminous United States, Hawaii, Puerto Rico and the island territories and a resolution of two arc-seconds for Alaska. NED data sources have a variety of elevation units, horizontal datums, and map projections. In the NED assembly process the elevation values are converted to decimal meters as a consistent unit of measure, NAD83 is consistently used as horizontal datum, and all the data are recast in a geographic projection. Older DEM's produced by methods that are now obsolete have been filtered during the NED assembly process to minimize artifacts that are commonly found in data produced by these methods. Artifact removal greatly improves the quality of the slope, shaded-relief, and synthetic drainage information that can be derived from the elevation data. Figure 2 illustrates the results of this artifact removal filtering. NED processing also includes steps to adjust values where adjacent DEM's do not match well, and to fill sliver areas of missing data between DEM's. These processing steps ensure that NED has no void areas and artificial discontinuities have been minimized. The artifact removal filtering process does not eliminate all of the artifacts. In areas where the only available DEM is produced by older methods, then "striping" may still occur.

  2. Developing a global mixed-canopy, height-variable vegetation structure dataset for estimating global vegetation albedo by a clumped canopy radiative transfer scheme in the NASA Ent Terrestrial Biosphere Model and GISS GCM

    NASA Astrophysics Data System (ADS)

    Montes, Carlo; Kiang, Nancy Y.; Ni-Meister, Wenge; Yang, Wenze; Schaaf, Crystal; Aleinov, Igor; Jonas, Jeffrey A.; Zhao, Feng; Yao, Tian; Wang, Zhuosen; Sun, Qingsong; Carrer, Dominique

    2016-04-01

    Processes determining biosphere-atmosphere coupling are strongly influenced by vegetation structure. Thus, ecosystem carbon sequestration and evapotranspiration affecting global carbon and water balances will depend upon the spatial extent of vegetation, its vertical structure, and its physiological variability. To represent this globally, Dynamic Global Vegetation Models (DGVMs) coupled to General Circulation Models (GCMs) make use of satellite and/or model-based vegetation classifications often composed by homogeneous communities. This work aims at developing a new Global Vegetation Structure Dataset (GVSD) by incorporating varying vegetation heights for mixed plant communities to be used as boundary conditions to the Analytical Clumped Two-Stream (ACTS) canopy radiative transfer scheme (Ni-Meister et al., 2010) incorporated into the NASA Ent Terrestrial Biosphere Model (TBM), the DGVM coupled to the NASA Goddard Institute for Space Studies (GISS) GCM. Information sources about land surface and vegetation characteristics obtained from a number of earth observation platforms and algorithms include the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and plant functional types (PFTs) (Friedl et al., 2010), soil albedo derived from MODIS (Carrer et al., 2014), along with vegetation height from the Geoscience Laser Altimeter System (GLAS) on board ICESat (Ice, Cloud, and land Elevation Satellite) (Simard et al., 2011; Tang et al., 2014). Three widely used Leaf Area Index (LAI) products are compared as input to the GVSD and ACTS forcing in terms of vegetation albedo: Global Data Sets of Vegetation (LAI)3g (Zhu et al. 2013), Beijing Normal University LAI (Yuan et al., 2011), and MODIS MOD15A2H product (Yang et al., 2006). Further PFT partitioning is performed according to a climate classification utilizing the Climate Research Unit (CRU; Harris et al., 2013) and the NOAA Global Precipitation Climatology Centre (GPCC; Scheider et al., 2014) data. Final

  3. Water-budget methods

    USGS Publications Warehouse

    Healy, Richard W.; Scanlon, Bridget R.

    2010-01-01

    A water budget is an accounting of water movement into and out of, and storage change within, some control volume. Universal and adaptable are adjectives that reflect key features of water-budget methods for estimating recharge. The universal concept of mass conservation of water implies that water-budget methods are applicable over any space and time scales (Healy et al., 2007). The water budget of a soil column in a laboratory can be studied at scales of millimeters and seconds. A water-budget equation is also an integral component of atmospheric general circulation models used to predict global climates over periods of decades or more. Water-budget equations can be easily customized by adding or removing terms to accurately portray the peculiarities of any hydrologic system. The equations are generally not bound by assumptions on mechanisms by which water moves into, through, and out of the control volume of interest. So water-budget methods can be used to estimate both diffuse and focused recharge, and recharge estimates are unaffected by phenomena such as preferential flow paths within the unsaturated zone. Water-budget methods represent the largest class of techniques for estimating recharge. Most hydrologic models are derived from a water-budget equation and can therefore be classified as water-budget models. It is not feasible to address all water-budget methods in a single chapter. This chapter is limited to discussion of the “residual” water-budget approach, whereby all variables in a water-budget equation, except for recharge, are independently measured or estimated and recharge is set equal to the residual. This chapter is closely linked with Chapter 3, on modeling methods, because the equations presented here form the basis of many models and because models are often used to estimate individual components in water-budget studies. Water budgets for streams and other surface-water bodies are addressed in Chapter 4. The use of soil-water budgets and

  4. Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades.

    PubMed

    Orchard, Garrick; Jayawant, Ajinkya; Cohen, Gregory K; Thakor, Nitish

    2015-01-01

    Creating datasets for Neuromorphic Vision is a challenging task. A lack of available recordings from Neuromorphic Vision sensors means that data must typically be recorded specifically for dataset creation rather than collecting and labeling existing data. The task is further complicated by a desire to simultaneously provide traditional frame-based recordings to allow for direct comparison with traditional Computer Vision algorithms. Here we propose a method for converting existing Computer Vision static image datasets into Neuromorphic Vision datasets using an actuated pan-tilt camera platform. Moving the sensor rather than the scene or image is a more biologically realistic approach to sensing and eliminates timing artifacts introduced by monitor updates when simulating motion on a computer monitor. We present conversion of two popular image datasets (MNIST and Caltech101) which have played important roles in the development of Computer Vision, and we provide performance metrics on these datasets using spike-based recognition algorithms. This work contributes datasets for future use in the field, as well as results from spike-based algorithms against which future works can compare. Furthermore, by converting datasets already popular in Computer Vision, we enable more direct comparison with frame-based approaches.

  5. Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades

    PubMed Central

    Orchard, Garrick; Jayawant, Ajinkya; Cohen, Gregory K.; Thakor, Nitish

    2015-01-01

    Creating datasets for Neuromorphic Vision is a challenging task. A lack of available recordings from Neuromorphic Vision sensors means that data must typically be recorded specifically for dataset creation rather than collecting and labeling existing data. The task is further complicated by a desire to simultaneously provide traditional frame-based recordings to allow for direct comparison with traditional Computer Vision algorithms. Here we propose a method for converting existing Computer Vision static image datasets into Neuromorphic Vision datasets using an actuated pan-tilt camera platform. Moving the sensor rather than the scene or image is a more biologically realistic approach to sensing and eliminates timing artifacts introduced by monitor updates when simulating motion on a computer monitor. We present conversion of two popular image datasets (MNIST and Caltech101) which have played important roles in the development of Computer Vision, and we provide performance metrics on these datasets using spike-based recognition algorithms. This work contributes datasets for future use in the field, as well as results from spike-based algorithms against which future works can compare. Furthermore, by converting datasets already popular in Computer Vision, we enable more direct comparison with frame-based approaches. PMID:26635513

  6. Modeling Carbon Sequestration over the Large-Scale Amazon Basin, Aided by Satellite Observations. Part I: Wet- and Dry-Season Surface Radiation Budget Flux and Precipitation Variability Based on GOES Retrievals.

    NASA Astrophysics Data System (ADS)

    Gu, Jiujing; Smith, Eric A.; Cooper, Harry J.; Grose, Andrew; Liu, Guosheng; Merritt, James D.; Waterloo, Maarten J.; de Araújo, Alessandro C.; Nobre, Antonio D.; Manzi, Antonio O.; Marengo, Jose; de Oliveira, Paulo J.; von Randow, Celso; Norman, John; Silva Dias, Pedro

    2004-06-01

    In this first part of a two-part investigation, large-scale Geostationary Operational Environmental Satellite (GOES) analyses over the Amazônia region have been carried out for March and October of 1999 to provide detailed information on surface radiation budget (SRB) and precipitation variability. SRB fluxes and rainfall are the two foremost cloud-modulated control variables that affect land surface processes, and they require specification at space time resolutions concomitant with the changing cloud field to represent adequately the complex coupling of energy, water, and carbon budgets. These processes ultimately determine the relative variations in carbon sequestration and carbon dioxide release within a forest ecosystem. SRB and precipitation retrieval algorithms using GOES imager measurements are used to retrieve surface downward radiation and surface rain rates at high space time resolutions for large-scale carbon budget modeling applications in conjunction with the Large-Scale Biosphere Atmosphere Experiment in Amazônia. To validate the retrieval algorithms, instantaneous estimates of SRB fluxes and rain rates over 8 km × 8 km areas were compared with 30-min-averaged surface measurements obtained from tower sites located near Ji-Paraná and Manaus in the states of Rondônia and Amazonas, respectively. Because of large aerosol concentrations originating from biomass burning during the dry season (i.e., September and October for purposes of this analysis), an aerosol index from the Total Ozone Mapping Spectrometer is used in the solar radiation retrieval algorithm. The validation comparisons indicate that bias errors for incoming total solar, photosynthetically active radiation (PAR), and infrared flux retrievals are under 4%, 6%, and 3% of the mean values, respectively. Precision errors at the analyzed space time scales are on the order of 20%, 20%, and 5%. The visible and infrared satellite measurements used for precipitation retrieval do not directly

  7. Evaluation of Uncertainty in Precipitation Datasets for New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Besha, A. A.; Steele, C. M.; Fernald, A.

    2014-12-01

    Climate change, population growth and other factors are endangering water availability and sustainability in semiarid/arid areas particularly in the southwestern United States. Wide coverage of spatial and temporal measurements of precipitation are key for regional water budget analysis and hydrological operations which themselves are valuable tool for water resource planning and management. Rain gauge measurements are usually reliable and accurate at a point. They measure rainfall continuously, but spatial sampling is limited. Ground based radar and satellite remotely sensed precipitation have wide spatial and temporal coverage. However, these measurements are indirect and subject to errors because of equipment, meteorological variability, the heterogeneity of the land surface itself and lack of regular recording. This study seeks to understand precipitation uncertainty and in doing so, lessen uncertainty propagation into hydrological applications and operations. We reviewed, compared and evaluated the TRMM (Tropical Rainfall Measuring Mission) precipitation products, NOAA's (National Oceanic and Atmospheric Administration) Global Precipitation Climatology Centre (GPCC) monthly precipitation dataset, PRISM (Parameter elevation Regression on Independent Slopes Model) data and data from individual climate stations including Cooperative Observer Program (COOP), Remote Automated Weather Stations (RAWS), Soil Climate Analysis Network (SCAN) and Snowpack Telemetry (SNOTEL) stations. Though not yet finalized, this study finds that the uncertainty within precipitation estimates datasets is influenced by regional topography, season, climate and precipitation rate. Ongoing work aims to further evaluate precipitation datasets based on the relative influence of these phenomena so that we can identify the optimum datasets for input to statewide water budget analysis.

  8. Chemical gas sensor array dataset.

    PubMed

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Huerta, Ramón

    2015-06-01

    To address drift in chemical sensing, an extensive dataset was collected over a period of three years. An array of 16 metal-oxide gas sensors was exposed to six different volatile organic compounds at different concentration levels under tightly-controlled operating conditions. Moreover, the generated dataset is suitable to tackle a variety of challenges in chemical sensing such as sensor drift, sensor failure or system calibration. The data is related to "Chemical gas sensor drift compensation using classifier ensembles", by Vergara et al. [1], and "On the calibration of sensor arrays for pattern recognition using the minimal number of experiments", by Rodriguez-Lujan et al. [2] The dataset can be accessed publicly at the UCI repository upon citation of: http://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+Different+Concentrations.

  9. Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance

    SciTech Connect

    Slingo, A.; Ackerman, Thomas P.; Allan, R. P.; Kassianov, Evgueni I.; McFarlane, Sally A.; Robinson, G. J.; Barnard, James C.; Miller, Mark; Harries, J. E.; Russell, J. E.; Dewitte, S.

    2006-12-01

    Saharan dust storms transport large quantities of material across the African continent and beyond, causing widespread disruption and hazards to health. The dust may be deposited into the Atlantic Ocean, where it provides an important source of nutrients1, and may be carried as far as the West Indies. Such events may also influence the growth of Atlantic tropical cyclones. Satellite observations have enabled estimates to be made of the effect of the dust on the radiation budget seen from space, but only limited in situ observations have hitherto been made at the surface. Here we present the first simultaneous and continuous observations of the effect of a major dust storm in March 2006 on the radiation budget both at the top of the atmosphere (TOA) and at the surface. We combine data from the Geostationary Earth Radiation Budget (GERB) broadband radiometer and the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on the Meteosat-8 weather satellite with remote sensing and in situ measurements from a new Mobile Facility located in Niamey, Niger (13{sup o} 29'N, 2{sup o} 10'E), operated by the US Atmospheric Radiation Measurement (ARM) program. We show that the dust produced major perturbations to the radiation budget seen from space and from the surface. By combining the two datasets, we estimate the impact on the radiation budget of the atmosphere itself. Using independent data from the Mobile Facility, we derive the optical properties of the dust and input these and other information into radiation codes to simulate the radiative fluxes. Comparisons with the observed fluxes provides a stringent test of the ability of the codes to represent the radiative properties of this important component of the global aerosol burden.

  10. Budgeting Approaches in Community Colleges

    ERIC Educational Resources Information Center

    Palmer, James C.

    2014-01-01

    Several budgeting approaches have been initiated as alternatives to the traditional, incremental process. These include formula budgeting; zero-base budgeting; planning, programming, and budgeting systems; and responsibility center budgeting. Each is premised on assumptions about how organizations might best make resource allocation decisions.…

  11. Colorado Children's Budget 2005

    ERIC Educational Resources Information Center

    Colorado Children's Campaign, 2005

    2005-01-01

    The Children's Budget is a comprehensive report on funding for children's services in Colorado. This report provides a six- year funding history for more than 50 programs funded with state, local, and federal dollars. The Colorado Children's Budget analyzes reductions in programs and services during the economic downturn. The data in the…

  12. Reading Institutional Budgets.

    ERIC Educational Resources Information Center

    Chabot, Barry

    2001-01-01

    Prepares two tables to illustrate how it is helpful to place worries about much smaller sums in the context of Miami University's overall academic budget; One table summarizes the academic budgets for every department during the 1997-98 academic year and a second contains the income-expense ratios for all Oxford departments over a five-year…

  13. Budgeting Based on Results

    ERIC Educational Resources Information Center

    Cooper, Kelt L.

    2011-01-01

    Every program in a school or school district has, or once had, a purpose. The purpose was most likely promoted, argued and debated among school constituencies--parents, teachers, administrators and school board members--before it was eventually approved. This process occurs year after year, budget after budget. In itself, this is not necessarily a…

  14. Colorado Children's Budget 2010

    ERIC Educational Resources Information Center

    Colorado Children's Campaign, 2010

    2010-01-01

    The "Children's Budget 2010" is intended to be a resource guide for policymakers and advocates who are interested in better understanding how Colorado funds children's programs and services. It attempts to clarify often confusing budget information and describe where the state's investment trends are and where those trends will lead the state if…

  15. Colorado Children's Budget 2013

    ERIC Educational Resources Information Center

    Buck, Beverly; Baker, Robin

    2013-01-01

    The "Colorado Children's Budget" presents and analyzes investments and spending trends during the past five state fiscal years on services that benefit children. The "Children's Budget" focuses mainly on state investment and spending, with some analysis of federal investments and spending to provide broader context of state…

  16. PROGRAM BUDGETING FOR EDUCATION.

    ERIC Educational Resources Information Center

    HIRSCH, WERNER Z.

    THE APPLICATION OF PROGRAM BUDGETING TO EDUCATION IS RECOMMENDED. A NATIONAL-LEVEL PROGRAM BUDGET EXAMPLE IS PRESENTED, WITH SUGGESTIONS FOR OBTAINING MORE EFFECTIVE MANAGEMENT OF EDUCATION. FINANCING OF EDUCATION IN THE UNITED STATES IS CURRENTLY UNDERTAKEN BY MORE THAN 40 AGENCIES OF THE FEDERAL GOVERNMENT, 50 STATE GOVERNMENTS, AND MORE THAN…

  17. Budget brief, 1981

    SciTech Connect

    Not Available

    1980-01-01

    The FY DOE budge totals $12.6 billion in budget authority and $11.1 billion in budget outlays. The budget authority being requested consists of $10.3 billion in new authority and a $2.3 billion reappropriation of expiring funds for the Strategic Petroleum Reserve. Areas covered in the Energy budget are: energy conservation; research, development, and applications; regulation and information; direct energy production; strategic energy production; and energy security reserve. Other areas include: general science, defense activities; departmental administration; and legislative proposal - spent fuel. Budget totals are compared for 1980 and 1981. A detailed discussion of the FY 1981 activities to be undertaken to carry out these activities is provided. (MCW)

  18. Development of response models for the Earth Radiation Budget Experiment (ERBE) sensors. Part 3: ERBE scanner measurement accuracy analysis due to reduced housekeeping data

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Chrisman, Dan A., Jr.; Halyo, Nesim

    1987-01-01

    The accuracy of scanner measurements was evaluated when the sampling frequency of sensor housekeeping (HK) data was reduced from once every scan to once every eight scans. The resulting increase in uncertainty was greatest for sources with rapid or extreme temperature changes. This analysis focused on the mirror attenuator mosaic (MAM) baffle and plate and scanner radiometer baffle due to their relatively high temperature changes during solar calibrations. Since only solar simulator data were available, the solar temperatures were approximated on these components and the radiative and thermal gradients in the MAM baffle due to reflected sunlight. Of the two cases considered for the MAM plate and baffle temperatures, one uses temperatures obtained from the ground calibration. The other attempt uses temperatures computed from the MAM baffle model. This analysis shows that the heat input variations due largely to the solar radiance and irradiance during a scan cycle are small. It also demonstrates that reasonable intervals longer than the current HK data acquisition interval should not significantly affect the estimation of a radiation field in the sensor field-of-view.

  19. Climate Model Evaluation using New Datasets from the Clouds and the Earth's Radiant Energy System (CERES)

    NASA Technical Reports Server (NTRS)

    Loeb, Norman G.; Wielicki, Bruce A.; Doelling, David R.

    2008-01-01

    There are some in the science community who believe that the response of the climate system to anthropogenic radiative forcing is unpredictable and we should therefore call off the quest . The key limitation in climate predictability is associated with cloud feedback. Narrowing the uncertainty in cloud feedback (and therefore climate sensitivity) requires optimal use of the best available observations to evaluate and improve climate model processes and constrain climate model simulations over longer time scales. The Clouds and the Earth s Radiant Energy System (CERES) is a satellite-based program that provides global cloud, aerosol and radiative flux observations for improving our understanding of cloud-aerosol-radiation feedbacks in the Earth s climate system. CERES is the successor to the Earth Radiation Budget Experiment (ERBE), which has widely been used to evaluate climate models both at short time scales (e.g., process studies) and at decadal time scales. A CERES instrument flew on the TRMM satellite and captured the dramatic 1998 El Nino, and four other CERES instruments are currently flying aboard the Terra and Aqua platforms. Plans are underway to fly the remaining copy of CERES on the upcoming NPP spacecraft (mid-2010 launch date). Every aspect of CERES represents a significant improvement over ERBE. While both CERES and ERBE measure broadband radiation, CERES calibration is a factor of 2 better than ERBE. In order to improve the characterization of clouds and aerosols within a CERES footprint, we use coincident higher-resolution imager observations (VIRS, MODIS or VIIRS) to provide a consistent cloud-aerosol-radiation dataset at climate accuracy. Improved radiative fluxes are obtained by using new CERES-derived Angular Distribution Models (ADMs) for converting measured radiances to fluxes. CERES radiative fluxes are a factor of 2 more accurate than ERBE overall, but the improvement by cloud type and at high latitudes can be as high as a factor of 5

  20. Genomic Datasets for Cancer Research

    Cancer.gov

    A variety of datasets from genome-wide association studies of cancer and other genotype-phenotype studies, including sequencing and molecular diagnostic assays, are available to approved investigators through the Extramural National Cancer Institute Data Access Committee.

  1. Who needs budgets?

    PubMed

    Hope, Jeremy; Fraser, Robin

    2003-02-01

    Budgeting, as most corporations practice it, should be abolished. That may sound radical, but doing so would further companies' long-running efforts to transform themselves into developed networks that can nimbly adjust to market conditions. Most other building blocks are in place, but companies continue to restrict themselves by relying on inflexible budget processes and the command-and-control culture that budgeting entails. A number of companies have rejected the foregone conclusions embedded in budgets, and they've given up the self-interested wrangling over what the data indicate. In the absence of budgets, alternative goals and measures--some financial, such as cost-to-income ratios, and some nonfinancial, such as time to market-move to the foreground. Companies that have rejected budgets require employees to measure themselves against the performance of competitors and against internal peer groups. Because employees don't know whether they've succeeded until they can look back on the results of a given period, they must use every ounce of energy to ensure that they beat the competition. A key feature of many companies that have rejected budgets is the use of rolling forecasts, which are created every few months and typically cover five to eight quarters. Because the forecasts are regularly revised, they allow companies to continuously adapt to market conditions. The forecasting practices of two such companies, both based in Sweden, are examined in detail: the bank Svenska Handelsbanken and the wholesaler Ahlsell. Though the first companies to reject budgets were located in Northern Europe, organizations that have gone beyond budgeting can be found in a range of countries and industries. Their practices allow them to unleash the power of today's management tools and realize the potential of a fully decentralized organization. PMID:12577658

  2. Who needs budgets?

    PubMed

    Hope, Jeremy; Fraser, Robin

    2003-02-01

    Budgeting, as most corporations practice it, should be abolished. That may sound radical, but doing so would further companies' long-running efforts to transform themselves into developed networks that can nimbly adjust to market conditions. Most other building blocks are in place, but companies continue to restrict themselves by relying on inflexible budget processes and the command-and-control culture that budgeting entails. A number of companies have rejected the foregone conclusions embedded in budgets, and they've given up the self-interested wrangling over what the data indicate. In the absence of budgets, alternative goals and measures--some financial, such as cost-to-income ratios, and some nonfinancial, such as time to market-move to the foreground. Companies that have rejected budgets require employees to measure themselves against the performance of competitors and against internal peer groups. Because employees don't know whether they've succeeded until they can look back on the results of a given period, they must use every ounce of energy to ensure that they beat the competition. A key feature of many companies that have rejected budgets is the use of rolling forecasts, which are created every few months and typically cover five to eight quarters. Because the forecasts are regularly revised, they allow companies to continuously adapt to market conditions. The forecasting practices of two such companies, both based in Sweden, are examined in detail: the bank Svenska Handelsbanken and the wholesaler Ahlsell. Though the first companies to reject budgets were located in Northern Europe, organizations that have gone beyond budgeting can be found in a range of countries and industries. Their practices allow them to unleash the power of today's management tools and realize the potential of a fully decentralized organization.

  3. Observation and modelling of main-sequence star chromospheres - X. Radiative budgets on Gl 867A and AU Mic (dM1e), and a two-component model chromosphere for Gl 205 (dM1)

    NASA Astrophysics Data System (ADS)

    Houdebine, E. R.

    2010-04-01

    We report on high-resolution observations of two dM1 stars: Gl 867A, an active dM1e star, and Gl 205, a less active dM1 star. The wavelength coverage is from 3890 to 6820Å with a resolving power of about 45000. The difference spectrum of these two stars allows us to make a survey of spectral lines sensitive to magnetic activity. We chose these two stars because, to within measurement errors, they have very close properties: Gl 867A has R = 0.726Rsolar, [M/H] = 0.080 dex and Teff = 3416 K, and Gl 205 has R = 0.758Rsolar, [M/H] = 0.101 dex and Teff = 3493 K. We find that besides traditional chromospheric lines, many photospheric lines are `filled-in' in the active star spectrum. These differences are, most of the time, weak in absolute fluxes but can be large in terms of differences in the spectral-line equivalent widths. We calculate the differences in surface fluxes between these two stars for many spectral lines. We derive the radiative budgets for two dM1e stars: Gl 867A and AU Mic. We show that the sum of the numerous spectral lines represents a significant fraction of the radiative cooling of the outer atmosphere. We also re-investigate the cooling from the continuum from the visible to the extreme ultraviolet; we find that earlier predictions of the calculations of Houdebine et al. (Paper V) are in good agreement with observations. We emphasize that if this radiative cooling is chromospheric in character, then in chromospheric model calculations, we should include the radiative losses in CaI, CrI, VI, TiI and FeI. From simple constraints, we derive model chromospheres for quiescent and active regions on Gl 205. We show that the quiescent regions have a strong absorption Hα profile. The plage regions show a filled-in intermediate activity Hα profile. We also present possible spectral line profiles of quiescent and active regions on Gl 867A. Based on observations collected at Observatoire de Haute Provence, France. E-mail: eric_houdebine@yahoo.fr

  4. Fiscal 1983 Science Budget

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Support for science generally is strong in President Ronald Reagan's fiscal 1983 budget proposal, released last week; agency budgets for the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS), however, did not beat inflation.Total federal funding for research and development and related facilities rose 9.6% to $44.3 billion, beating the 7.3% inflation rate estimated for 1982 by the Office of Management and Budget. Obligations for basic research by various departments and agencies also topped inflation. The President proposes federal funding of $5.82 billion in fiscal 1983, compared with $5.35 billion in 1982.

  5. Outyear Budgeting Tool

    SciTech Connect

    Carlos Castillo, Jerel Nelson

    2010-12-31

    OBTool performs the following: • Consistent method and tool to develop/estimate fiscal year (FY) 2010 and outyear budget/estimates • Maintain configuration control on resource rates and changes to outyear budget estimates, while allowing for accessibility, accountability, and tracking shared access between program managers, facility managers (FMs), project managers (PMs), cost account managers (CAMs), and project controls engineers (PCEs) • Consistency in budget estimating methodology, including scope, requirements, basis of estimates, resources, activities, escalation, and presentation of documentation in tasks and execution plans and reports • Ability to sync (i.e. export) and import data into Primavera and Cobra to the lifecycle baseline file

  6. Model Error Budgets

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    2008-01-01

    An error budget is a commonly used tool in design of complex aerospace systems. It represents system performance requirements in terms of allowable errors and flows these down through a hierarchical structure to lower assemblies and components. The requirements may simply be 'allocated' based upon heuristics or experience, or they may be designed through use of physics-based models. This paper presents a basis for developing an error budget for models of the system, as opposed to the system itself. The need for model error budgets arises when system models are a principle design agent as is increasingly more common for poorly testable high performance space systems.

  7. Impact of aerosol direct radiative forcing on the radiative budget, surface heat fluxes, and atmospheric dynamics during the heat wave of summer 2003 over western Europe: A modeling study

    NASA Astrophysics Data System (ADS)

    PéRé, J. C.; Mallet, M.; Pont, V.; Bessagnet, B.

    2011-12-01

    In this work, an off-line coupling between the chemistry-transport model CHIMERE (associated with an aerosol optical module) and the meteorological model Weather Research and Forecasting (WRF) is used to study (1) the direct radiative forcing of pollution aerosols during the heat wave of summer 2003 over western Europe and (2) the possible feedbacks of this direct radiative forcing on the surface-atmosphere system. Simulations performed for the period 7-15 August 2003 reveal a significant decrease of daily mean solar radiation reaching the surface (ΔFBOA = -(10-30) W/m2) because of back scattering at the top of the atmosphere (ΔFTOA = -(1-12) W/m2) and also absorption of solar radiation by polluted particles (ΔFatm = + (5-23) W/m2). During daytime, the aerosol surface dimming induces a mean reduction of both sensible (16 W/m2) and latent (21 W/m2) heat fluxes emitted by the terrestrial surface, resulting in a radiative cooling of the air near the surface (up to 2.9 K/d at noon). Simultaneously, the absorption of solar energy by aerosols causes an atmospheric radiative heating within the planetary boundary layer reaching 1.20 K/d at noon. As a consequence, the direct radiative effect of aerosols is shown to reduce both the planetary boundary layer height (up to 30%) and the horizontal wind speed (up to 6%); that may have contributed to favor the particulate pollution during the heat wave of summer 2003.

  8. FY 1997 congressional budget request: Budget highlights

    SciTech Connect

    1996-03-01

    This is an overview of the 1997 budget request for the US DOE. The topics of the overview include a policy overview, the budget by business line, business lines by organization, crosswalk from business line to appropriation, summary by appropriation, energy supply research and development, uranium supply and enrichment activities, uranium enrichment decontamination and decommissioning fund, general science and research, weapons activities, defense environmental restoration and waste management, defense nuclear waste disposal, departmental administration, Office of the Inspector General, power marketing administrations, Federal Energy Regulatory commission, nuclear waste disposal fund, fossil energy research and development, naval petroleum and oil shale reserves, energy conservation, economic regulation, strategic petroleum reserve, energy information administration, clean coal technology and a Department of Energy Field Facilities map.

  9. Evaluation of anomalies in GLDAS-1996 dataset.

    PubMed

    Zhou, Xinyao; Zhang, Yongqiang; Yang, Yonghui; Yang, Yanmin; Han, Shumin

    2013-01-01

    Global Land Data Assimilation System (GLDAS) data are widely used for land-surface flux simulations. Therefore, the simulation accuracy using GLDAS dataset is largely contingent upon the accuracy of the GLDAS dataset. It is found that GLDAS land-surface model simulated runoff exhibits strong anomalies for 1996. These anomalies are investigated by evaluating four GLDAS meteorological forcing data (precipitation, air temperature, downward shortwave radiation and downward longwave radiation) in six large basins across the world (Danube, Mississippi, Yangtze, Congo, Amazon and Murray-Darling basins). Precipitation data from the Global Precipitation Climatology Centre (GPCC) are also compared with GLDAS forcing precipitation data. Large errors and lack of monthly variability in GLDAS-1996 precipitation data are the main sources for the anomalies in the simulated runoff. The impact of the precipitation data on simulated runoff for 1996 is investigated with the Community Atmosphere Biosphere Land Exchange (CABLE) land-surface model in the Yangtze basin, for which area high-quality local precipitation data are obtained from the China Meteorological Administration (CMA). The CABLE model is driven by GLDAS daily precipitation data and CMA daily precipitation, respectively. The simulated daily and monthly runoffs obtained from CMA data are noticeably better than those obtained from GLDAS data, suggesting that GLDAS-1996 precipitation data are not so reliable for land-surface flux simulations. PMID:23579825

  10. Evaluation of anomalies in GLDAS-1996 dataset.

    PubMed

    Zhou, Xinyao; Zhang, Yongqiang; Yang, Yonghui; Yang, Yanmin; Han, Shumin

    2013-01-01

    Global Land Data Assimilation System (GLDAS) data are widely used for land-surface flux simulations. Therefore, the simulation accuracy using GLDAS dataset is largely contingent upon the accuracy of the GLDAS dataset. It is found that GLDAS land-surface model simulated runoff exhibits strong anomalies for 1996. These anomalies are investigated by evaluating four GLDAS meteorological forcing data (precipitation, air temperature, downward shortwave radiation and downward longwave radiation) in six large basins across the world (Danube, Mississippi, Yangtze, Congo, Amazon and Murray-Darling basins). Precipitation data from the Global Precipitation Climatology Centre (GPCC) are also compared with GLDAS forcing precipitation data. Large errors and lack of monthly variability in GLDAS-1996 precipitation data are the main sources for the anomalies in the simulated runoff. The impact of the precipitation data on simulated runoff for 1996 is investigated with the Community Atmosphere Biosphere Land Exchange (CABLE) land-surface model in the Yangtze basin, for which area high-quality local precipitation data are obtained from the China Meteorological Administration (CMA). The CABLE model is driven by GLDAS daily precipitation data and CMA daily precipitation, respectively. The simulated daily and monthly runoffs obtained from CMA data are noticeably better than those obtained from GLDAS data, suggesting that GLDAS-1996 precipitation data are not so reliable for land-surface flux simulations.

  11. "Workshop to Promote and Coordinate U.S.A. Contributions to AMMA on Land Surface, Water Cycle, Aerosol and Radiation Budget Issues".

    SciTech Connect

    Lamb, Peter

    2008-05-05

    RIMS ID: ER64245-1028054-0012347 Consistent with the original proposal (dated February 28, 2006), the grant supported the participation in the above Workshop of a diverse group of West African, British, and American atmospheric scientists. All of these individuals contributed strongly to Workshop, with the result that ARM’s involvement in and contribution to AMMA was enhanced with respect to land surface, water cycle, aerosol, and radiation issues. Also, the Workshop gave these participants early exposure to ARM’s 2007 CLASIC Campaign over the U.S. Southern Great Plains, which is addressing parts of the same problem complex. The following eight individuals were fully funded (complete airfare, accommodations, registration, meals) to participate in the Workshop -- Dr. Aiguo Dai (NCAR, USA), Dr. Adamou Ousmane Manga (University of Niamey, Niger), Professor Abdelkrim Ben Mohamed (University of Niamey, Niger), Dr. Gary Robinson (University of Reading, UK), Dr. Amadou Gaye (University of Dakar, Senegal), Dr. Anne Jefferson (NOAA, USA), Dr. Aondover Tarhule (University of Oklahoma, USA), and Dr. Sally McFarlane (Pacific Northwest National Laboratory, USA). Partial funding also was provided for Professor Peter Lamb (University of Oklahoma, USA). To deepen the involvement of ARM in AMMA, the grant also paid for participation in the AMMA Special Observing Period in Niamey during August (Professor Peter J. Lamb) and in a follow-up Workshop at Méteo France (Toulouse) in November (Dr. Zeinabou Mindaodou Souley, University of Niamey, Niger; Professor Peter J. Lamb). When he was in Niamey for 11 days in August, Professor Lamb had considerable involvement with the ARM Mobile Facility there. I am confident that the participation of the above individuals in the two AMMA Workshops and the AMMA Special Observing Period strengthened the ARM Program’s contribution to AMMA, increased the associated international attention on ARM, and provided a bridge to the ARM CLASIC Campaign

  12. Reanalyses' performance of boundary layer, cloud, and surface energy budget variables over Arctic pack ice

    NASA Astrophysics Data System (ADS)

    Wheeler, Cassandra Renee

    Earth's climate has been changing rapidly, particularly in the Arctic; however, the Arctic is poorly understood due to spatially and temporally sparse observations. Arctic conditions prove difficult to obtain good quality, long-duration field measurements. Current studies utilize model-observation hybrid datasets (i.e., reanalyses); hence, the accuracy of processes represented in these datasets is important. In this study, meteorological parameters, turbulent fluxes, cloud properties, radiative fluxes, and the surface energy budget from ERA-40, ERA-Interim, NCEP/DOE, and JRA-25 reanalyses are compared to SHEBA observations. Six-hourly reanalyses data were interpolated to the location of the multiyear ice floe and combined, along with observations, into seven-day running means. These were used to understand observation-reanalysis comparisons of energy flux relationships between clouds and sea-ice. All reanalyses demonstrate compensating errors in turbulent and radiative fluxes, yielding negative mean biases for the surface energy balance. These underestimations (surface energy under-absorption) represent too much sea-ice growth compared to reality.

  13. Congress trims NSF budget

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    The last-minute spending bill adopted by Congress just before its 1987 holiday recess provides $1,717 billion for the National Science Foundation (NSF) for fiscal year (FY) 1988. The approved figure is more than 9% lower than the request in President Reagan's budget plan. In addition, wording in the House version of the bill that mandated protection of ocean science and women and minorities programs did not appear in the final product that was approved by Congress and signed into law.In absolute terms, NSF's budget will be 6% more than in 1987, far less than expected by the agency and the White House, which had proposed a doubling of NSF's budget over the next several years. The Research and Related Activities section of the budget, out of which comes the bulk of NSF's support of basic research, was funded at $1,453 billion, $200 million less than its $1,653 billion request, and the Antarctic Research section received $124.8 million of $143 million in the President's budget. Science Education, on the other hand, was budgeted for $139.2 million, $25 million more than requested.

  14. Radiation

    NASA Video Gallery

    Outside the protective cocoon of Earth's atmosphere, the universe is full of harmful radiation. Astronauts who live and work in space are exposed not only to ultraviolet rays but also to space radi...

  15. The Harvard organic photovoltaic dataset

    PubMed Central

    Lopez, Steven A.; Pyzer-Knapp, Edward O.; Simm, Gregor N.; Lutzow, Trevor; Li, Kewei; Seress, Laszlo R.; Hachmann, Johannes; Aspuru-Guzik, Alán

    2016-01-01

    The Harvard Organic Photovoltaic Dataset (HOPV15) presented in this work is a collation of experimental photovoltaic data from the literature, and corresponding quantum-chemical calculations performed over a range of conformers, each with quantum chemical results using a variety of density functionals and basis sets. It is anticipated that this dataset will be of use in both relating electronic structure calculations to experimental observations through the generation of calibration schemes, as well as for the creation of new semi-empirical methods and the benchmarking of current and future model chemistries for organic electronic applications. PMID:27676312

  16. Querying Large Biological Network Datasets

    ERIC Educational Resources Information Center

    Gulsoy, Gunhan

    2013-01-01

    New experimental methods has resulted in increasing amount of genetic interaction data to be generated every day. Biological networks are used to store genetic interaction data gathered. Increasing amount of data available requires fast large scale analysis methods. Therefore, we address the problem of querying large biological network datasets.…

  17. Estimated energy budget along drifting buoys trajectories

    SciTech Connect

    Planton, S.; Caniaux, G.; Roquet, H.

    1994-12-31

    The heat budget of upper ocean is strongly constrained by ocean-atmosphere heat exchange. The energy surface fluxes are poorly determined by the classical empirical formulae. These determinations also need good quality atmospheric and surface observations which are sparse over the global ocean. Surface solar incoming radiation is now routinely retrieved from satellite observation with a satisfactory level of confidence. The calculation of satellite-derived infrared incoming radiation gives promising results when compared to direct observation at sea. A new method of determination of the last component of the energy budget which avoid a calculation through bulk formulae, has been experimented with oceanic data. It is applied here to drifting buoys measurements collected in 1992 and 1993 in the Azores region.

  18. Outyear Budgeting Tool

    2010-12-31

    OBTool performs the following: • Consistent method and tool to develop/estimate fiscal year (FY) 2010 and outyear budget/estimates • Maintain configuration control on resource rates and changes to outyear budget estimates, while allowing for accessibility, accountability, and tracking shared access between program managers, facility managers (FMs), project managers (PMs), cost account managers (CAMs), and project controls engineers (PCEs) • Consistency in budget estimating methodology, including scope, requirements, basis of estimates, resources, activities, escalation, and presentationmore » of documentation in tasks and execution plans and reports • Ability to sync (i.e. export) and import data into Primavera and Cobra to the lifecycle baseline file« less

  19. The Clinton military budget

    SciTech Connect

    Isaacs, J. )

    1993-05-01

    In February, the Clinton administration presented the overall contours, if not the details, of its military budget plans for the next five years. $263.5 billion was requested in new budget authority for fiscal 1994. By fiscal 1995, according to the administration blueprint, the budget would be reduced to about $250 billion annually. The three points that stand out, apart from the modest nature of the reductions from the previous administration's five-year Pentagon plan, are discussed in this article. First, the Clinton team downplayed the magnitude of the cutbacks. Second, the Clinton reductions generated great confusion, as an extraordinary range of numbers was banded about. Third, the pro-military members of Congress were remarkably quiet about the Clinton defense plan. Explanations and implications of these points are explained.

  20. Cloud variations and the Earth's energy budget

    NASA Astrophysics Data System (ADS)

    Dessler, A. E.

    2011-10-01

    The question of whether clouds are the cause of surface temperature changes, rather than acting as a feedback in response to those temperature changes, is explored using data obtained between 2000 and 2010. An energy budget calculation shows that the radiative impact of clouds accounts for little of the observed climate variations. It is also shown that observations of the lagged response of top-of-atmosphere (TOA) energy fluxes to surface temperature variations are not evidence that clouds are causing climate change.

  1. Rough Clustering for Cancer Datasets

    NASA Astrophysics Data System (ADS)

    Herawan, Tutut

    Cancer is becoming a leading cause of death among people in the whole world. It is confirmed that the early detection and accurate diagnosis of this disease can ensure a long survival of the patients. Expert systems and machine learning techniques are gaining popularity in this field because of the effective classification and high diagnostic capability. This paper presents the application of rough set theory for clustering two cancer datasets. These datasets are taken from UCI ML repository. The method is based on MDA technique proposed by [11]. To select a clustering attribute, the maximal degree of the rough attributes dependencies in categorical-valued information systems is used. Further, we use a divide-and-conquer method to partition/cluster the objects. The results show that MDA technique can be used to cluster to the data. Further, we present clusters visualization using two dimensional plot. The plot results provide user friendly navigation to understand the cluster obtained.

  2. Source Detection with Interferometric Datasets

    NASA Astrophysics Data System (ADS)

    Trott, Cathryn M.; Wayth, Randall B.; Macquart, Jean-Pierre R.; Tingay, Steven J.

    2012-04-01

    The detection of sources in interferometric radio data typically relies on extracting information from images, formed by Fourier transform of the underlying visibility dataset, and CLEANed of contaminating sidelobes through iterative deconvolution. Variable and transient radio sources span a large range of variability timescales, and their study has the potential to enhance our knowledge of the dynamic universe. Their detection and classification involve large data rates and non-stationary PSFs, commensal observing programs and ambitious science goals, and will demand a paradigm shift in the deployment of next-generation instruments. Optimal source detection and classification in real time requires efficient and automated algorithms. On short time-scales variability can be probed with an optimal matched filter detector applied directly to the visibility dataset. This paper shows the design of such a detector, and some preliminary detection performance results.

  3. Bank-a-Budget

    ERIC Educational Resources Information Center

    Karls, Doris; Jordan, Elaine

    1978-01-01

    The article gives procedures for consumer foods teachers to use to actively involve students in making independent food purchasing decisions according to the school foods lab budget and food buying principles. Included are forms used to keep records for each lab: unit bank account, meat lab evaluation, and market order. (MF)

  4. Battling Budget Woes.

    ERIC Educational Resources Information Center

    Agron, Joe, Ed.

    1999-01-01

    Discusses how various school districts are addressing school quality on tight budgets. Options discussed include use of portable classrooms, streamlining non-educational services, leasing and performance contracting, and energy improvements and working with power utilities to cut costs. Argues for adopting and enforcing ISO 9000 standards to…

  5. Budgeting in Hard Times.

    ERIC Educational Resources Information Center

    Parrino, Frank M.

    2003-01-01

    Interviews with school board members and administrators produced a list of suggestions for balancing a budget in hard times. Among these are changing calendars and schedules to reduce heating and cooling costs; sharing personnel; rescheduling some extracurricular activities; and forming cooperative agreements with other districts. (MLF)

  6. Colorado Children's Budget 2011

    ERIC Educational Resources Information Center

    Colorado Children's Campaign, 2011

    2011-01-01

    "Colorado Children's Budget 2011" tallies up Colorado's public investments during FY 2007-08 through FY 2011-12 for programs and services that enhance the well-being of children across four domains--Early Childhood, K-12 Education, Health, and Other Supports. It is intended to be a resource guide for policymakers and advocates who are interested…

  7. Marbling on a Budget.

    ERIC Educational Resources Information Center

    Gruber, Donald

    2001-01-01

    Provides historical information on the art technique called marbling. Includes floating paints on water and transferring the patterns formed in the water to paper. Discusses how teachers can teach this technique with materials that fit their budgets. Describes the process in detail. (CMK)

  8. Obama Budget Choices Scrutinized

    ERIC Educational Resources Information Center

    Klein, Alyson

    2009-01-01

    Following an unprecedented increase for education aid in the federal economic-stimulus package, President Barack Obama's fiscal 2010 budget request for the U.S. Department of Education is being met with a tepid response from some school advocates. While few complained outright about the overall funding level, some educators are opposed to specific…

  9. Implementing Responsibility Centre Budgeting

    ERIC Educational Resources Information Center

    Vonasek, Joseph

    2011-01-01

    Recently, institutes of higher education (universities) have shown a renewed interest in organisational structures and operating methodologies that generate productivity and innovation; responsibility centre budgeting (RCB) is one such process. This paper describes the underlying principles constituting RCB, its origin and structural elements, and…

  10. The Global Energy Budget.

    ERIC Educational Resources Information Center

    Jax, Daniel W.

    1992-01-01

    Presents a lesson plan about greenhouse effect and global warming. Includes diagrams and graphs from which students are asked to make inferences. Provides background information about how energy enters and leaves the earth system, the energy budget, consequences of obstructing the energy balance, and the greenhouse effect. (three references) (MCO)

  11. Budgeting Academic Space

    ERIC Educational Resources Information Center

    Harris, Watson

    2011-01-01

    There are many articles about space management, including those that discuss space calculations, metrics, and categories. Fewer articles discuss the space budgeting processes used by administrators to allocate space. The author attempts to fill this void by discussing her administrative experiences with Middle Tennessee State University's (MTSU)…

  12. Colorado Children's Budget 2012

    ERIC Educational Resources Information Center

    Buck, Beverly; Cuciti, Peggy L.; Baker, Robin

    2012-01-01

    The "Colorado Children's Budget 2012" examines the state's commitment to investing in the well-being of children. It tallies up Colorado's actual and planned investment during the past five years (Fiscal Year (FY) 2008-2009 through FY 2012-2013) on programs and services in four areas: Early Childhood Learning and Development, K-12 Education,…

  13. A Better Budget Rule

    ERIC Educational Resources Information Center

    Dothan, Michael; Thompson, Fred

    2009-01-01

    Debt limits, interest coverage ratios, one-off balanced budget requirements, pay-as-you-go rules, and tax and expenditure limits are among the most important fiscal rules for constraining intertemporal transfers. There is considerable evidence that the least costly and most effective of such rules are those that focus directly on the rate of…

  14. Integrated Budget Office Toolbox

    NASA Technical Reports Server (NTRS)

    Rushing, Douglas A.; Blakeley, Chris; Chapman, Gerry; Robertson, Bill; Horton, Allison; Besser, Thomas; McCarthy, Debbie

    2010-01-01

    The Integrated Budget Office Toolbox (IBOT) combines budgeting, resource allocation, organizational funding, and reporting features in an automated, integrated tool that provides data from a single source for Johnson Space Center (JSC) personnel. Using a common interface, concurrent users can utilize the data without compromising its integrity. IBOT tracks planning changes and updates throughout the year using both phasing and POP-related (program-operating-plan-related) budget information for the current year, and up to six years out. Separating lump-sum funds received from HQ (Headquarters) into separate labor, travel, procurement, Center G&A (general & administrative), and servicepool categories, IBOT creates a script that significantly reduces manual input time. IBOT also manages the movement of travel and procurement funds down to the organizational level and, using its integrated funds management feature, helps better track funding at lower levels. Third-party software is used to create integrated reports in IBOT that can be generated for plans, actuals, funds received, and other combinations of data that are currently maintained in the centralized format. Based on Microsoft SQL, IBOT incorporates generic budget processes, is transportable, and is economical to deploy and support.

  15. Pakistan boosts science budget

    NASA Astrophysics Data System (ADS)

    Harris, Margaret

    2009-08-01

    Government spending on science and technology development in Pakistan will jump by about a quarter in 2009-2010 compared with the previous fiscal year, with big increases planned for nuclear physics and higher education. In late June the country's National Assembly approved a budget of 48.2bn Pakistani rupees (Rs), or about £361m, for new science projects.

  16. Budgeting for Libraries.

    ERIC Educational Resources Information Center

    Randall, G. E.

    Empirically and rationally derived bases for determining the costs for industrial libraries are suggested. Taken into consideration is the fact that recent accounting procedures and the advent of new technologies have introduced costs into the library budget so that literature and personnel costs may now account for only 75-80 percent of the…

  17. NOAA seeks healthy budget

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    The small, crowded room of the House side of the U.S. Capitol building belied the large budget of $1,611,991,000 requested for Fiscal Year 1992 by the National Oceanic and Atmospheric Administration. John A. Knauss, Undersecretary for Oceans and Atmosphere, U.S. Department of Commerce, delivered his testimony on February 28 before the House Appropriations Subcommittee on Commerce, Justice, and State, the Judiciary and Related Agencies. He told the subcommittee that the budget “attempts to balance the two goals of maintaining NOAA's position as an important science agency and addressing the serious budget problems that the government continues to face.”Climate and global change, modernization of the National Weather Service, and the Coastal Ocean Science program are NOAA's three ongoing, high-priority initiatives that the budget addresses. Also, three additional initiatives—a NOAA-wide program to improve environmental data management, President Bush's multiagency Coastal America initiative, and a seafood safety program administered jointly by NOAA and the Food and Drug Administration—are addressed.

  18. Budget and Appropriations - Congressional Justification

    Cancer.gov

    The Congressional Justification is prepared when the President submits an annual budget to Congress, to justify the President's request by explaining NCI's mission, objectives for the coming fiscal year, and providing comparative budget data and analysis.

  19. Reagan Administration Prepares Budget Cuts.

    ERIC Educational Resources Information Center

    Norman, Colin

    1981-01-01

    Describes tentative federal budget cuts affecting science education in the National Science Foundation, National Aeronautics and Space Administration, Department of Energy, National Institutes of Health, and the specific areas these budget cuts will affect. (DS)

  20. The Faculty Role in Budgeting.

    ERIC Educational Resources Information Center

    Meisinger, Richard J., Jr.; Dubeck, Leroy W.

    1984-01-01

    Specific roles faculty members can play in their institution's budget processes are discussed, and the general ends served by budgets are identified. Each of the dimensions of institutional character (e.g., size, mission) determines the ways in which participants in budgeting will interact. For example, broader faculty participation in budgeting…

  1. NASA budget in Congress

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    The House of Representatives has authorized $161.7 million more than President Ronald Reagan proposed for the fiscal 1984 National Aeronautics and Space Administration (NASA) budget. The House NASA authorization bill (H.R. 2065) passed by voice vote on April 26. Five days earlier, the Senate Commerce, Science, and Technology Committee marked up S. 1096, the Senate's NASA authorization bill, and recommended $171.6 million more than the Reagan proposal. The Senate is expected to vote on the bill in mid May, after which time a conference committee will iron out the differences between the House and Senate versions.President Reagan requested a total NASA budget of $7.1065 billion: $5.7085 billion for research and development, $150.5 million for construction of facilities, and $1.2475 billion for research and program management (Eos, February 15, 1983, p. 65).

  2. The Incredible Shrinking Budget

    ERIC Educational Resources Information Center

    T.H.E. Journal, 2013

    2013-01-01

    If district technology leaders had a nickel for every time they heard the phrase "the new normal," they'd have all the money they need to run their IT departments. In an effort to help readers think about their budgets in creative and practical ways, "T.H.E. Journal" and the Consortium for School Networking (CoSN) recently convened a panel of CTOs…

  3. The CMS dataset bookkeeping service

    SciTech Connect

    Afaq, Anzar,; Dolgert, Andrew; Guo, Yuyi; Jones, Chris; Kosyakov, Sergey; Kuznetsov, Valentin; Lueking, Lee; Riley, Dan; Sekhri, Vijay; /Fermilab

    2007-10-01

    The CMS Dataset Bookkeeping Service (DBS) has been developed to catalog all CMS event data from Monte Carlo and Detector sources. It provides the ability to identify MC or trigger source, track data provenance, construct datasets for analysis, and discover interesting data. CMS requires processing and analysis activities at various service levels and the DBS system provides support for localized processing or private analysis, as well as global access for CMS users at large. Catalog entries can be moved among the various service levels with a simple set of migration tools, thus forming a loose federation of databases. DBS is available to CMS users via a Python API, Command Line, and a Discovery web page interfaces. The system is built as a multi-tier web application with Java servlets running under Tomcat, with connections via JDBC to Oracle or MySQL database backends. Clients connect to the service through HTTP or HTTPS with authentication provided by GRID certificates and authorization through VOMS. DBS is an integral part of the overall CMS Data Management and Workflow Management systems.

  4. Global Energy and Water Budgets in MERRA

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Robertson, Franklin R.; Chen, Junye

    2010-01-01

    Reanalyses, retrospectively analyzing observations over climatological time scales, represent a merger between satellite observations and models to provide globally continuous data and have improved over several generations. Balancing the Earth s global water and energy budgets has been a focus of research for more than two decades. Models tend to their own climate while remotely sensed observations have had varying degrees of uncertainty. This study evaluates the latest NASA reanalysis, called the Modern Era Retrospective-analysis for Research and Applications (MERRA), from a global water and energy cycles perspective. MERRA was configured to provide complete budgets in its output diagnostics, including the Incremental Analysis Update (IAU), the term that represents the observations influence on the analyzed states, alongside the physical flux terms. Precipitation in reanalyses is typically sensitive to the observational analysis. For MERRA, the global mean precipitation bias and spatial variability are more comparable to merged satellite observations (GPCP and CMAP) than previous generations of reanalyses. Ocean evaporation also has a much lower value which is comparable to observed data sets. The global energy budget shows that MERRA cloud effects may be generally weak, leading to excess shortwave radiation reaching the ocean surface. Evaluating the MERRA time series of budget terms, a significant change occurs, which does not appear to be represented in observations. In 1999, the global analysis increments of water vapor changes sign from negative to positive, and primarily lead to more oceanic precipitation. This change is coincident with the beginning of AMSU radiance assimilation. Previous and current reanalyses all exhibit some sensitivity to perturbations in the observation record, and this remains a significant research topic for reanalysis development. The effect of the changing observing system is evaluated for MERRA water and energy budget terms.

  5. Using the National Datasets for Faculty Studies.

    ERIC Educational Resources Information Center

    Milam, John

    1999-01-01

    This paper examines 17 national datasets that are available for policy studies and research about college faculty. The datasets include 11 containing faculty information, two about student enrollment, two about degrees awarded, and two about institutional activity. Each of the following datasets is individually described: (1) National Science…

  6. Data Integration for Heterogenous Datasets

    PubMed Central

    2014-01-01

    Abstract More and more, the needs of data analysts are requiring the use of data outside the control of their own organizations. The increasing amount of data available on the Web, the new technologies for linking data across datasets, and the increasing need to integrate structured and unstructured data are all driving this trend. In this article, we provide a technical overview of the emerging “broad data” area, in which the variety of heterogeneous data being used, rather than the scale of the data being analyzed, is the limiting factor in data analysis efforts. The article explores some of the emerging themes in data discovery, data integration, linked data, and the combination of structured and unstructured data. PMID:25553272

  7. Watershed Boundary Dataset for Mississippi

    USGS Publications Warehouse

    Wilson, K. Van; Clair, Michael G.; Turnipseed, D. Phil; Rebich, Richard A.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Mississippi Department of Environmental Quality, U.S. Department of Agriculture-Natural Resources Conservation Service, Mississippi Department of Transportation, U.S. Department of Agriculture-Forest Service, and the Mississippi Automated Resource Information System developed a 1:24,000-scale Watershed Boundary Dataset for Mississippi including watershed and subwatershed boundaries, codes, names, and areas. The Watershed Boundary Dataset for Mississippi provides a standard geographical framework for water-resources and selected land-resources planning. The original 8-digit subbasins (Hydrologic Unit Codes) were further subdivided into 10-digit watersheds (62.5 to 391 square miles (mi2)) and 12-digit subwatersheds (15.6 to 62.5 mi2) - the exceptions being the Delta part of Mississippi and the Mississippi River inside levees, which were subdivided into 10-digit watersheds only. Also, large water bodies in the Mississippi Sound along the coast were not delineated as small as a typical 12-digit subwatershed. All of the data - including watershed and subwatershed boundaries, subdivision codes and names, and drainage-area data - are stored in a Geographic Information System database, which are available at: http://ms.water.usgs.gov/. This map shows information on drainage and hydrography in the form of U.S. Geological Survey hydrologic unit boundaries for water-resource 2-digit regions, 4-digit subregions, 6-digit basins (formerly called accounting units), 8-digit subbasins (formerly called cataloging units), 10-digit watershed, and 12-digit subwatersheds in Mississippi. A description of the project study area, methods used in the development of watershed and subwatershed boundaries for Mississippi, and results are presented in Wilson and others (2008). The data presented in this map and by Wilson and others (2008) supersede the data presented for Mississippi by Seaber and others (1987) and U.S. Geological Survey (1977).

  8. Baseline budgeting for continuous improvement.

    PubMed

    Kilty, G L

    1999-05-01

    This article is designed to introduce the techniques used to convert traditionally maintained department budgets to baseline budgets. This entails identifying key activities, evaluating for value-added, and implementing continuous improvement opportunities. Baseline Budgeting for Continuous Improvement was created as a result of a newly named company president's request to implement zero-based budgeting. The president was frustrated with the mind-set of the organization, namely, "Next year's budget should be 10 to 15 percent more than this year's spending." Zero-based budgeting was not the answer, but combining the principles of activity-based costing and the Just-in-Time philosophy of eliminating waste and continuous improvement did provide a solution to the problem.

  9. Conference OKs science budgets

    NASA Astrophysics Data System (ADS)

    With the budget process all but complete for next fiscal year, the National Science Foundation and the National Aeronautics and Space Administration observers were saying that science had not done that badly in Congress, for an election year. NSF got half the budget increase it requested, NASA two-thirds. The Space Station did well, at the expense of environmental and social programs, which are funded by Congress from the same pot of money as NASA and NSF.A House-Senate conference finished work on a $59 billion appropriations bill for the Department of Housing and Urban Development and independent agencies, including EPA, NASA, and NSF, in early August. The House and Senate then quickly passed the measure before their recess; the President is expected to sign it soon. Included in the Fiscal Year 1989 spending bill are $1,885 billion for NSF, a 9.8% increase over FY 1988, and $10.7 billion for NASA, 18.5% more than the year before.

  10. Evaluation of water and energy budgets over Colombia, South America

    NASA Astrophysics Data System (ADS)

    Baquero-Bernal, Astrid; Hagemann, Stefan; Hoyos-Rincón, Isabel; Sanchez-Rodriguez, Ines

    2010-05-01

    The study presents a dataset intercomparison of reanalyses, data from other authors, and one regional climate model applied over South America with special focus on the hydrological cycle and the surface energy budget. The model simulated the 41 years from 1960 to 2000 by using quasi-observed boundary conditions derived from ECMWF re-analysis (ERA). The intercomparison focuses on one large catchment covering an area of major research interest within Colombia. The variables used are monthly mean surface air temperature, precipitation and river discharge. From the modelling perspective, the potential advantages of such comparative analyses are to provide information about model performance, enhance the understanding of hydrological behavior in a systematic dataset comparison framework, characterize consistencies and differences in datasets, and identify the requirements for catchment-scale hydrological models to reliably simulate future behavior.

  11. Integrating Academic Planning and Budgeting.

    ERIC Educational Resources Information Center

    McClenney, Byron N.; Chaffee, Ellen Earle

    1985-01-01

    Argues that effective college management depends upon the budget implementing the important values of the institution. Suggests a model integrating strategic and operational planning and resource allocation. (AYC)

  12. Assimilation impacts on Arctic Ocean circulation, heat and freshwater budgets

    NASA Astrophysics Data System (ADS)

    Zuo, Hao; Mugford, Ruth I.; Haines, Keith; Smith, Gregory C.

    We investigate the Arctic basin circulation, freshwater content (FWC) and heat budget by using a high-resolution global coupled ice-ocean model implemented with a state-of-the-art data assimilation scheme. We demonstrate that, despite a very sparse dataset, by assimilating hydrographic data in and near the Arctic basin, the initial warm bias and drift in the control run is successfully corrected, reproducing a much more realistic vertical and horizontal structure to the cyclonic boundary current carrying the Atlantic Water (AW) along the Siberian shelves in the reanalysis run. The Beaufort Gyre structure and FWC and variability are also more accurately reproduced. Small but important changes in the strait exchange flows are found which lead to more balanced budgets in the reanalysis run. Assimilation fluxes dominate the basin budgets over the first 10 years (P1: 1987-1996) of the reanalysis for both heat and FWC, after which the drifting Arctic upper water properties have been restored to realistic values. For the later period (P2: 1997-2004), the Arctic heat budget is almost balanced without assimilation contributions, while the freshwater budget shows reduced assimilation contributions compensating largely for surface salinity damping, which was extremely strong in this run. A downward trend in freshwater export at the Canadian Straits and Fram Strait is found in period P2, associated with Beaufort Gyre recharge. A detailed comparison with observations and previous model studies at the individual Arctic straits is also included.

  13. 7 CFR 3402.14 - Budget and budget narrative.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Budget and budget narrative. 3402.14 Section 3402.14 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL...

  14. Budgeting Time to Teach about the School Budget

    ERIC Educational Resources Information Center

    Weiss, Dale

    2011-01-01

    As a teacher in the Milwaukee Public Schools (MPS) for the past 16 years, the author has grown used to dismal budget cut news arriving each February. Although cuts are always frustrating and their results burdensome, the school has been able to "hang on" reasonably well. This year, however, the budget cuts were extreme. In this article, the author…

  15. Debating personal health budgets.

    PubMed

    Alakeson, Vidhya; Boardman, Jed; Boland, Billy; Crimlisk, Helen; Harrison, Charlotte; Iliffe, Steve; Khan, Masood; O'Shea, Rory; Patterson, Janet

    2016-02-01

    Personal health budgets (PHBs) were piloted in the National Health Service (NHS) in England between 2009 and 2012 and were found to have greater positive effects on quality of life and psychological well-being for those with mental health problems than commissioned service, as well as reducing their use of unplanned care. The government intends to extend PHBs in England for long-term conditions, including mental health, from April 2015. Given the importance of engaging clinicians in the next phase of PHB development, we provide an overview of the approach, synthesise the evidence from the national pilot and debate some of the opportunities and challenges. Balancing individual choice and recovery with concerns for risk, equity and the sustainability of existing community services is the central tension underpinning this innovation in mental health service delivery. PMID:26958358

  16. Debating personal health budgets

    PubMed Central

    Alakeson, Vidhya; Boardman, Jed; Boland, Billy; Crimlisk, Helen; Harrison, Charlotte; Iliffe, Steve; Khan, Masood; O'Shea, Rory; Patterson, Janet

    2016-01-01

    Personal health budgets (PHBs) were piloted in the National Health Service (NHS) in England between 2009 and 2012 and were found to have greater positive effects on quality of life and psychological well-being for those with mental health problems than commissioned service, as well as reducing their use of unplanned care. The government intends to extend PHBs in England for long-term conditions, including mental health, from April 2015. Given the importance of engaging clinicians in the next phase of PHB development, we provide an overview of the approach, synthesise the evidence from the national pilot and debate some of the opportunities and challenges. Balancing individual choice and recovery with concerns for risk, equity and the sustainability of existing community services is the central tension underpinning this innovation in mental health service delivery. PMID:26958358

  17. Program Budgeting for Industrial Education.

    ERIC Educational Resources Information Center

    Gramberg, Merlyn Ludwig

    In recognition of the increasing concern for the expenditure of tax dollars and the resulting need for accountability in budgeting, this study provides a model for program budgeting at the collegiate level in industrial education. Course outlines for drafting and woodworking at the University of Northern Colorado were analyzed and activities were…

  18. Carbon budgets in symbiotic associations

    SciTech Connect

    Muscatine, L.; Falkowski, P.G.; Dubinsky, Z.

    1983-01-01

    Methods are described which permit the estimation of daily budgets for photosynthetically fixed carbon in any alga-invertebrate symbiosis. Included is a method for estimating total daily translocation which does not involve the use of C-14. A daily carbon budget for a shallow water symbiotic reef coral is presented.

  19. FY 1986 science budget overview

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.; Robb, David W.

    Continental lithosphere research, scientific ocean drilling, investigative surveys in the Exclusive Economic Zone, and the Mars Observer were among those programs that fared best in the federal budget proposal for fiscal year (FY) 1986 that President Ronald Reagan sent to Congress last week. However, the Sea Grant and Coastal Zone Management programs were among those that fell victim to the budget ax once again.

  20. Health Cost Strain School Budgets

    ERIC Educational Resources Information Center

    Sack, Joetta L.

    2004-01-01

    This article describes how the rising cost of health insurance is being picked as the top budget concern of school businesses. These data were the result of a survey conducted by the Association of School Business Officials International. Schools report that the cost of insuring employees is outpacing increases in state and local budgets that…

  1. Budgeting for Efficiency and Effectiveness

    ERIC Educational Resources Information Center

    Pereus, Steven C.

    2012-01-01

    For most districts, budgeting has become a cost-cutting exercise designed to close the gap between revenues and expenses. During this process, decision makers inherently assume that existing operations are efficient and effective--an assumption that is rarely validated by facts. Cutting programs and services balances budgets but does not…

  2. Service Increases Fueling Budget Growth

    ERIC Educational Resources Information Center

    Cottrell, Terry

    2011-01-01

    Reactionary stances against pending budget cuts should be considered to be less favorable positioning for library leaders versus more proactive and anticipatory strategies. By changing the attitudinal and service posturing of library staff and services, libraries can show themselves as a more essential function to their colleges. Budget cuts…

  3. The Bush Education Budget Legacy

    ERIC Educational Resources Information Center

    Delisle, Jason; Luebchow, Lindsey; Rieman, Heather

    2008-01-01

    Next week, President George W. Bush will submit his eighth and final budget request to the Congress. How has he fared with respect to education budget proposals thus far? Answer: although President Bush made the No Child Left Behind Act, which deals with elementary and secondary education, the hallmark of his education policy, from a federal…

  4. Budgeting Based on Student Needs

    ERIC Educational Resources Information Center

    Willis, Jason; Hill, Matt

    2011-01-01

    School finance reform has become a key component for transforming public schools in the United States. Over the last decade, a growing number of districts have turned to an approach known by different names--student-based budgeting, weighted student funding and fair student funding, among others--in which budgets are allocated to schools in…

  5. Education Takes Hit in Budgets

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2011-01-01

    After months of arduous negotiation and partisan squabbling, states across the country have produced budgets for the new fiscal year that in many cases will bring deep cuts to state spending, including money for schools. The budget blueprints adopted by numerous states were postscripts to divisive legislative sessions that saw newly elected…

  6. Budget Report 2009: Adjustment Time

    ERIC Educational Resources Information Center

    Oder, Norman

    2009-01-01

    This article reports on a 2009 budget survey conducted by "Library Journal" in which a random sample of U.S. public libraries were surveyed via mail or fax in October 2008. Those that answered the survey projected a modest increase in budgets for 2009, just 2%, with less than a 1% increase in funds for materials, a predictable area for cuts. That…

  7. Estimation of the Water Budget for Major Canadian River Basins

    NASA Astrophysics Data System (ADS)

    Wang, S.; Huang, J.; Li, J.; Rivera, A.; Russell, H.

    2012-12-01

    Understanding regional water budgets is essential in water resources management, particularly for irrigation planning, drought, flood and pollution control, drainage system design, and climate modelling. A water budget for a drainage basin is needed to determine the magnitude of the impacts of climate change and anthropogenic disturbances on terrestrial water cycle and to evaluate possible mitigation actions. In this study, the monthly and 30-year (1979-2008) average water budgets were calculated for large Canadian river basins with an area > 90,000 km2. The total area studied takes about 58% of the entire Canadian landmass. The datasets used include two gridded precipitation products based on measurement, the land surface evapotranspiration product derived from the EALCO model, the river discharge measured from hydrometric stations, and the total water (surface water+groundwater) storage anomaly derived from GRACE satellite observations. These datasets are deemed as the best-available long-term national scale datasets that meet the requirement of this study. Our objectives are to characterise the spatial and temporal variations of water budget across the vast Canadian landmass and to answer the questions of (1) how well can we close the water budget at both long-term and monthly time scales for the major Canadian river basins and (2) which component(s) of the water budget (i.e., precipitation, evapotranspiration, river discharge, or total water storage change) and in which season and which region contribute the main error source to the water budget imbalance? We also examined the decadal change in total water storage in the major Canadian river basins and quantified the bias in evapotranspiration estimation by using the widely-accepted surface water budget approach. Our results show that the national scale water budget imbalance is very close to 0 (-0.2 mm year-1) due to the offset of positive and negative imbalances among the studies basins. Basins with positive

  8. Precipitation rates in the tropics based on the Q1-budget method - 1 June 1984-31 May 1987

    NASA Technical Reports Server (NTRS)

    Vincent, Dayton G.; North, Keith H.; Velasco, Robb A.; Ramsey, Perry G.

    1991-01-01

    The 'apparent' heat source method (Q1 budget) is used to compute the total derivative of dry static energy from 30 deg N to 30 deg S for the period June 1, 1984-May 31, 1987. The dataset is produced from the ECMWF global analyses and consists of twice-daily values of temperature, geopotential height, horizontal wind components, and vertical velocity at increments of 2.5 x 2.5 deg lat/long at seven pressure levels. Vertically integrated values of ds/dt, which are equal to total diabatic heating, Q1, are combined with estimates of net columnar radiation and surface sensible heat exchange to compute mean monthly precipitation rates, P0, as the residual in the Q1 budget. The accuracy of these P0 values is thoroughly examined, and it is suggested that the technique produces reliable estimates of precipitation over tropical oceanic areas on a monthly basis. Time series of mean monthly P0 for several geographic regions of the Southern Hemisphere tropics and the equatorial western Pacific (TOGA-COARE region) reveal that (1) the South Pacific convergence zone has the highest precipitation rates in the Southern Hemisphere; (2) a clear and distinct seasonal cycle is prominent in all regions; and (3) the 1986-87 ENSO event is easily identified, particularly in the TOGA-COARE region.

  9. ENSO in CMIP5 models from an energy budget perspective

    NASA Astrophysics Data System (ADS)

    Mayer, Michael; Haimberger, Leopold

    2015-04-01

    Vast amounts of energy are exchanged between ocean, atmosphere, and space in association with the primary mode of global climate variability, El Niño-Southern Oscillation (ENSO). Energy budgets of all tropical (30S-30N) ocean basins and the atmosphere are assessed separately to depict anomalous energy flows associated with ENSO in a consistent budget framework. First, state-of-the art atmospheric and oceanic reanalyses are employed to robustly quantify changes in ocean heat storage, anomalous ocean-atmosphere energy exchanges and atmospheric energy transports during ENSO. Variability of area-averaged tropical Pacific ocean heat content (OHC) to a large extent is modulated by energy flow through the ocean surface. While redistribution of OHC within the tropical Pacific is an integral part of ENSO dynamics, variability of lateral ocean heat transport out of the tropical Pacific region is found to be small. The only noteworthy contributions arise from the Indonesian Throughflow (ITF), which is anti-correlated with ENSO at a few months lag. Regression analysis reveals that atmospheric energy transport and RadTOA (radiation at top-of-the-atmosphere) almost perfectly balance the OHC changes and ITF variability associated with ENSO. Only a relatively small fraction of El Niño-related heat lost by the Pacific ocean is radiated to space (mainly in the Pacific subtropics), whereas the major part of the energy is transported away by the atmosphere. Ample changes in tropical atmospheric circulation lead to enhanced surface fluxes and consequently to an increase of tropical Atlantic and Indian OHC that to very large degree compensates tropical Pacific OHC loss. This signature of energy redistribution is robust across the employed datasets for all three tropical ocean basins and explains the small observed ENSO signal in global mean RadTOA. These results are then used as a benchmark to evaluate the energy pathways during ENSO as simulated by an ensemble of coupled climate

  10. NSF and NASA budgets increased

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Research budgets of several of the federal government agencies were increased significantly over the Reagan administration's requests in the House of Representative's appropriations bill H.R. 4034. These budgets had been removed from the Reagan administration's omnibus reconciliation bill, and thus there were worries expressed that certain research funding could be in jeopardy. The rationale was that because the requests were voted on individually on the floor of the House, many sections of the budgets would be subjected to extra scrutiny, which would lead to more cuts.The National Science Foundation (NSF) budget request had been cut and reordered by the Office of Management and Budget (OMB) by making sharp reductions in programs of the social sciences and in programs of science and engineering education. There were fears that these programs would be reinstated to the original request level, at the expense of the budgets of other research activities. These fears materialized, but only momentarily. Efforts to cut the research activities by the House Appropriations Committee were soundly defeated. The budget was supported, with additional increases to provide for the education programs, by a high margin, which included most Republican and Democratic members of the House of Representatives. The overall NSF budget, as passed, has a total appropriation of $1103.5 million, compared with the Administration's request of $1033.5 million (the Fiscal Year 1981 appropriation for the NSF was $1022.4 million). The House approved budget included increases of $44.9 million in research and $25.1 million in science and engineering education. Included in the research budget increase were recommendations by the House Appropriations Committee for support of the social sciences and for the international affairs programs. Also included in the recommendations was support of interdisciplinary research programs that cut across the directorates of the NSF.

  11. A high-resolution European dataset for hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Ntegeka, Victor; Salamon, Peter; Gomes, Goncalo; Sint, Hadewij; Lorini, Valerio; Thielen, Jutta

    2013-04-01

    There is an increasing demand for large scale hydrological models not only in the field of modeling the impact of climate change on water resources but also for disaster risk assessments and flood or drought early warning systems. These large scale models need to be calibrated and verified against large amounts of observations in order to judge their capabilities to predict the future. However, the creation of large scale datasets is challenging for it requires collection, harmonization, and quality checking of large amounts of observations. For this reason, only a limited number of such datasets exist. In this work, we present a pan European, high-resolution gridded dataset of meteorological observations (EFAS-Meteo) which was designed with the aim to drive a large scale hydrological model. Similar European and global gridded datasets already exist, such as the HadGHCND (Caesar et al., 2006), the JRC MARS-STAT database (van der Goot and Orlandi, 2003) and the E-OBS gridded dataset (Haylock et al., 2008). However, none of those provide similarly high spatial resolution and/or a complete set of variables to force a hydrologic model. EFAS-Meteo contains daily maps of precipitation, surface temperature (mean, minimum and maximum), wind speed and vapour pressure at a spatial grid resolution of 5 x 5 km for the time period 1 January 1990 - 31 December 2011. It furthermore contains calculated radiation, which is calculated by using a staggered approach depending on the availability of sunshine duration, cloud cover and minimum and maximum temperature, and evapotranspiration (potential evapotranspiration, bare soil and open water evapotranspiration). The potential evapotranspiration was calculated using the Penman-Monteith equation with the above-mentioned meteorological variables. The dataset was created as part of the development of the European Flood Awareness System (EFAS) and has been continuously updated throughout the last years. The dataset variables are used as

  12. Precipitation variability in High Mountain Asia from multiple datasets and implication for water balance analysis in large lake basins

    NASA Astrophysics Data System (ADS)

    Song, Chunqiao; Huang, Bo; Ke, Linghong; Ye, Qinghua

    2016-10-01

    For the period 1979-2011, eight gridded monthly precipitation datasets, including GPCP, CMAP-1/2, TRMM, PREC/L, APHRODITE, NCEP-2 and ERA-Interim, are inter-compared with each other and station observations over High Mountain Asia (HMA). The precipitation variability from the first six gauge-based or merged analysis datasets agree better with each other than with the two reanalysis data. The long-term trend analysis of GPCP, CMAP-1, PREC/L and APHRODITE precipitation datasets consistently reveals moderate increases in the inner and northeastern Tibetan Plateau (TP) and northwest Xinjiang, and obvious decreases in the southeast TP. However, in the Himalayas and Karakorum, there are large discrepancies among different datasets, where GPCP and APHRODITE precipitation datasets show significant decreases along the Himalayas while other datasets show strong spatial heterogeneity or slight variations. The larger uncertainties in the rugged area may be largely attributed to scarce station observations, as well as the stronger snow-induced scattering by microwave measurement. To assess which precipitation datasets tend to be more suitable for hydrologic analysis in HMA, we further investigate the accuracy of precipitation estimates at basin scale by comparing with gauge-based observations, and examine the coherences of annual lake water budgets and precipitation variability over four large closed lake catchments. The results indicate that two reanalysis precipitation datasets show evidently weaker correlations with station observations; the other six datasets perform better in indicating inter-annual variations of lake water budgets. It suggests that these merged analysis precipitation datasets, especially for GPCP, CMAP-1/2 and PREC/L, have the potential in examining regional water balances of the inner basins in HMA.

  13. Dataset of Scientific Inquiry Learning Environment

    ERIC Educational Resources Information Center

    Ting, Choo-Yee; Ho, Chiung Ching

    2015-01-01

    This paper presents the dataset collected from student interactions with INQPRO, a computer-based scientific inquiry learning environment. The dataset contains records of 100 students and is divided into two portions. The first portion comprises (1) "raw log data", capturing the student's name, interfaces visited, the interface…

  14. A Multiyear Dataset of SSM/I-Derived Global Ocean Surface Turbulent Fluxes

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The surface turbulent fluxes of momentum, latent heat, and sensible heat over global oceans are essential to weather, climate and ocean problems. Evaporation is a key component of the hydrological cycle and the surface heat budget, while the wind stress is the major forcing for driving the oceanic circulation. The global air-sea fluxes of momentum, latent and sensible heat, radiation, and freshwater (precipitation-evaporation) are the forcing for driving oceanic circulation and, hence, are essential for understanding the general circulation of global oceans. The global air-sea fluxes are required for driving ocean models and validating coupled ocean-atmosphere global models. We have produced a 7.5-year (July 1987-December 1994) dataset of daily surface turbulent fluxes over the global oceans from the Special Sensor microwave/Imager (SSM/I) data. Daily turbulent fluxes were derived from daily data of SSM/I surface winds and specific humidity, National Centers for Environmental Prediction (NCEP) sea surface temperatures, and European Centre for Medium-Range Weather Forecasts (ECMWF) air-sea temperature differences, using a stability-dependent bulk scheme. The retrieved instantaneous surface air humidity (with a 25-km resolution) validated well with that of the collocated radiosonde observations over the global oceans. Furthermore, the retrieved daily wind stresses and latent heat fluxes were found to agree well with that of the in situ measurements (IMET buoy, RV Moana Wave, and RV Wecoma) in the western Pacific warm pool during the TOGA COARE intensive observing period (November 1992-February 1993). The global distributions of 1988-94 seasonal-mean turbulent fluxes will be presented. In addition, the global distributions of 1990-93 annual-means turbulent fluxes and input variables will be compared with those of UWM/COADS covering the same period. The latter is based on the COADS (comprehensive ocean-atmosphere data set) and is recognized to be one of the best

  15. Global Carbon Budget 2015

    DOE PAGES

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Canadell, J. G.; Sitch, S.; Korsbakken, J. I.; Friedlingstein, P.; Peters, G. P.; Andres, R. J.; Boden, T. A.; et al

    2015-12-07

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We also discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology andmore » data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. Moreover, the mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each

  16. Global carbon budget 2014

    DOE PAGES

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; et al

    2015-05-08

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissionsmore » from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ;, reflecting the current capacity to characterise the annual estimates

  17. Global Carbon Budget 2015

    NASA Astrophysics Data System (ADS)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Canadell, J. G.; Sitch, S.; Korsbakken, J. I.; Friedlingstein, P.; Peters, G. P.; Andres, R. J.; Boden, T. A.; Houghton, R. A.; House, J. I.; Keeling, R. F.; Tans, P.; Arneth, A.; Bakker, D. C. E.; Barbero, L.; Bopp, L.; Chang, J.; Chevallier, F.; Chini, L. P.; Ciais, P.; Fader, M.; Feely, R. A.; Gkritzalis, T.; Harris, I.; Hauck, J.; Ilyina, T.; Jain, A. K.; Kato, E.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landschützer, P.; Lauvset, S. K.; Lefèvre, N.; Lenton, A.; Lima, I. D.; Metzl, N.; Millero, F.; Munro, D. R.; Murata, A.; Nabel, J. E. M. S.; Nakaoka, S.; Nojiri, Y.; O'Brien, K.; Olsen, A.; Ono, T.; Pérez, F. F.; Pfeil, B.; Pierrot, D.; Poulter, B.; Rehder, G.; Rödenbeck, C.; Saito, S.; Schuster, U.; Schwinger, J.; Séférian, R.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Laan-Luijkx, I. T.; van der Werf, G. R.; van Heuven, S.; Vandemark, D.; Viovy, N.; Wiltshire, A.; Zaehle, S.; Zeng, N.

    2015-12-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global

  18. Global Carbon Budget 2015

    SciTech Connect

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Canadell, J. G.; Sitch, S.; Korsbakken, J. I.; Friedlingstein, P.; Peters, G. P.; Andres, R. J.; Boden, T. A.; Houghton, R. A.; House, J. I.; Keeling, R. F.; Tans, P.; Arneth, A.; Bakker, D. C. E.; Barbero, L.; Bopp, L.; Chang, J.; Chevallier, F.; Chini, L. P.; Ciais, P.; Fader, M.; Gkritzalis, T.; Harris, I.; Hauck, J.; Ilyina, T.; Jain, A. K.; Kato, E.; Kitidis, V.; Klein Goldewijk, K.; Landschützer, P.; Lauvset, S. K.; Lefèvre, N.; Lenton, A.; Lima, I. D.; Metzl, N.; Millero, F.; Munro, D. R.; Murata, A.; Nabel, J. E. M. S.; Nakaoka, S.; Nojiri, Y.; O'Brien, K.; Olsen, A.; Ono, T.; Pérez, F. F.; Pfeil, B.; Pierrot, D.; Poulter, B.; Rehder, G.; Rödenbeck, C.; Saito, S.; Schuster, U.; Schwinger, J.; Séférian, R.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Laan-Luijkx, I. T.; van der Werf, G. R.; van Heuven, S.; Vandemark, D.; Viovy, N.; Wiltshire, A.; Zaehle, S.; Zeng, N.

    2015-12-07

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We also discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. Moreover, the mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three

  19. Global carbon budget 2014

    NASA Astrophysics Data System (ADS)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; Boden, T. A.; Bopp, L.; Bozec, Y.; Canadell, J. G.; Chini, L. P.; Chevallier, F.; Cosca, C. E.; Harris, I.; Hoppema, M.; Houghton, R. A.; House, J. I.; Jain, A. K.; Johannessen, T.; Kato, E.; Keeling, R. F.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landa, C. S.; Landschützer, P.; Lenton, A.; Lima, I. D.; Marland, G.; Mathis, J. T.; Metzl, N.; Nojiri, Y.; Olsen, A.; Ono, T.; Peng, S.; Peters, W.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Salisbury, J. E.; Schuster, U.; Schwinger, J.; Séférian, R.; Segschneider, J.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Werf, G. R.; Viovy, N.; Wang, Y.-P.; Wanninkhof, R.; Wiltshire, A.; Zeng, N.

    2015-05-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each

  20. Global carbon budget 2014

    SciTech Connect

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; Boden, T. A.; Bopp, L.; Bozec, Y.; Canadell, J. G.; Chini, L. P.; Chevallier, F.; Cosca, C. E.; Harris, I.; Hoppema, M.; Houghton, R. A.; House, J. I.; Jain, A. K.; Johannessen, T.; Kato, E.; Keeling, R. F.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landa, C. S.; Landschützer, P.; Lenton, A.; Lima, I. D.; Marland, G.; Mathis, J. T.; Metzl, N.; Nojiri, Y.; Olsen, A.; Ono, T.; Peng, S.; Peters, W.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Salisbury, J. E.; Schuster, U.; Schwinger, J.; Séférian, R.; Segschneider, J.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Werf, G. R.; Viovy, N.; Wang, Y.-P.; Wanninkhof, R.; Wiltshire, A.; Zeng, N.

    2015-05-08

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from

  1. Budget Risk & Prioritization Analysis Tool

    2010-12-31

    BRPAtool performs the following: •Assists managers in making solid decisions on what scope/activities to reduce and/or eliminate, to meet constrained budgets, based on multiple risk factors •Enables analysis of different budget scenarios •Can analyze risks and cost for each activity based on technical, quantifiable risk criteria and management-determined risks •Real-time analysis •Enables managers to determine the multipliers and where funding is best applied •Promotes solid budget defense

  2. Federal budget process: An overview

    NASA Astrophysics Data System (ADS)

    Frizzell, Virgil A., Jr.

    Much geophysical research funding originates from the federal government, and many who obtain federal funding consider the executive branch to be its source. In fact, the federal budget results from a complex ballet between the executive and legislative branches. Because it is both little understood and essential to our work, this report will review the fundamentals of the three-year budgetary process.The Constitution assigns the power of the purse to the Congress. Before the 1920s, executive branch agencies and departments submitted their own separate budgets to Congress, and deliberate planning and priority setting was minimal. In 1921 Congress empowered the president to submit an executive branch budget reflecting his priorities for the next fiscal year. Following this protocol, former President Reagan submitted his budget for Fiscal Year 1990 in January, and President Bush outlined his FY'90 priorities in February.

  3. Carter Revises the Science Budget

    ERIC Educational Resources Information Center

    Science News, 1977

    1977-01-01

    Reviews budget changes made by President Carter in the following science areas: basic science research; fusion research and breeder reactor projects; oil and gas recovery; coal conversion techniques; and space exploration. (CS)

  4. Reaction to Global Change Budget

    NASA Astrophysics Data System (ADS)

    Jones, R.

    A recent hearing of the Subcommittee on Veterans Administration/Department of Housing and Urban Development and Independent Agencies of the Senate Committee on Appropriations provided an early glimpse of congressional reaction to the administration's global change research budget.

  5. Uncertainty budgets of major ozone absorption cross sections used in UV remote sensing applications

    NASA Astrophysics Data System (ADS)

    Weber, Mark; Gorshelev, Victor; Serdyuchenko, Anna

    2016-09-01

    Detailed uncertainty budgets of three major ultraviolet (UV) ozone absorption cross-section datasets that are used in remote sensing application are provided and discussed. The datasets are Bass-Paur (BP), Brion-Daumont-Malicet (BDM), and the more recent Serdyuchenko-Gorshelev (SG). For most remote sensing application the temperature dependence of the Huggins ozone band is described by a quadratic polynomial in temperature (Bass-Paur parameterization) by applying a regression to the cross-section data measured at selected atmospherically relevant temperatures. For traceability of atmospheric ozone measurements, uncertainties from the laboratory measurements as well as from the temperature parameterization of the ozone cross-section data are needed as input for detailed uncertainty calculation of atmospheric ozone measurements. In this paper the uncertainty budgets of the three major ozone cross-section datasets are summarized from the original literature. The quadratic temperature dependence of the cross-section datasets is investigated. Combined uncertainty budgets is provided for all datasets based upon Monte Carlo simulation that includes uncertainties from the laboratory measurements as well as uncertainties from the temperature parameterization. Between 300 and 330 nm both BDM and SG have an overall uncertainty of 1.5 %, while BP has a somewhat larger uncertainty of 2.1 %. At temperatures below about 215 K, uncertainties in the BDM data increase more strongly than the others due to the lack of very low temperature laboratory measurements (lowest temperature of BDM available is 218 K).

  6. Constructing a morphologic sediment budget, with uncertainties, for a 50-km segment of the Colorado River in Grand Canyon

    NASA Astrophysics Data System (ADS)

    Kaplinski, M. A.; Hazel, J. E.; Grams, P. E.; Buscombe, D.; Hadley, D.; Kohl, K.

    2013-12-01

    Fluvial sediment budgets may be computed by measurement of sediment flux, measurement of channel morphologic change, or by a combination of both methods. Because the uncertainty associated with flux-based sediment budgets accumulates over time, it may be difficult or impossible to use this type of budget to predict or monitor long-term changes in sediment storage and channel morphology. Uncertainty in morphologically-based sediment budgets is not time-dependent and provides an attractive complement or alternative to sediment budgets based on measurements of flux. However, computation of a morphologically based sediment budget for long (~50 km) river segments does require thorough consideration of the suite of uncertainties (i.e. measurement error, interpolation error, and error associated with variability in bed surface texture, among others) that contribute to the sediment budget uncertainty. We report on repeat measurements of morphology and associated uncertainties for a 50-km segment of the Colorado River in Grand Canyon. Topographic (total station) surveys, bathymetric (multibeam and singlebeam) surveys, and underwater microscope grain-size measurements were conducted in 2009 and 2012 for the same river segment. Multibeam sonar surveys also incorporate backscatter information used to define the distribution of bed sediment. One meter DEM's of the study reach were interpolated from TIN models constructed from the combined topographic and bathymetric datasets and differenced to determine the sediment budget. Uncertainties were estimated for each input dataset, as well as the interpolation methods used to construct each DEM. This results in a spatially variable 1 meter model of surface uncertainty, which is used to determine the total uncertainty of the sediment budget calculated by DEM differencing. Sediment flux measurements are also measured for the study segment over the same time period. Together, these datasets provide a unique opportunity to compare

  7. PEViD: privacy evaluation video dataset

    NASA Astrophysics Data System (ADS)

    Korshunov, Pavel; Ebrahimi, Touradj

    2013-09-01

    Visual privacy protection, i.e., obfuscation of personal visual information in video surveillance is an important and increasingly popular research topic. However, while many datasets are available for testing performance of various video analytics, little to nothing exists for evaluation of visual privacy tools. Since surveillance and privacy protection have contradictory objectives, the design principles of corresponding evaluation datasets should differ too. In this paper, we outline principles that need to be considered when building a dataset for privacy evaluation. Following these principles, we present new, and the first to our knowledge, Privacy Evaluation Video Dataset (PEViD). With the dataset, we provide XML-based annotations of various privacy regions, including face, accessories, skin regions, hair, body silhouette, and other personal information, and their descriptions. Via preliminary subjective tests, we demonstrate the flexibility and suitability of the dataset for privacy evaluations. The evaluation results also show the importance of secondary privacy regions that contain non-facial personal information for privacy- intelligibility tradeoff. We believe that PEViD dataset is equally suitable for evaluations of privacy protection tools using objective metrics and subjective assessments.

  8. Budget priorities of the nation.

    PubMed

    Ooms, V D

    1992-12-11

    Changes in the federal budget over the last several decades have raised current consumption at the expense of the investment needed for stronger economic growth. These changes have occurred in the budget's fiscal policy, which has reduced national saving and private investment; in its expenditure policy, which has emphasized short-term benefits rather than public investments; and in its transfer policy, which has not adequately addressed the increasing child poverty that threatens the productivity of our future labor force. PMID:17831654

  9. Evolution of Triton's volatile budget

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.

    1993-01-01

    Triton's volatile budget provides important links to planetary formation processes in the cold outer solar nebula. However, the budget has been modified by processes subsequent to the accretion of this body. It is of interest to assess whether certain formation environments can be ruled out for Triton on the basis of its current volatile abundances, and also to quantify some of the post-accretional processes by which the abundances have been modified.

  10. Budget variance analysis using RVUs.

    PubMed

    Berlin, M F; Budzynski, M R

    1998-01-01

    This article details the use of the variance analysis as management tool to evaluate the financial health of the practice. A common financial tool for administrators has been a simple calculation measuring the difference between actual financials vs. budget financials. Standard cost accounting provides a methodology known as variance analysis to better understand the actual vs. budgeted financial streams. The standard variance analysis has been modified by applying relative value units (RVUs) as standards for the practice. PMID:10387247

  11. Earth Radiation Measurement Science

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis

    2000-01-01

    This document is the final report for NASA Grant NAG1-1959, 'Earth Radiation Measurement Science'. The purpose of this grant was to perform research in this area for the needs of the Clouds and Earth Radiant Energy System (CERES) project and for the Earth Radiation Budget Experiment (ERBE), which are bing conducted by the Radiation and Aerosols Branch of the Atmospheric Sciences Division of Langley Research Center. Earth Radiation Measurement Science investigates the processes by which measurements are converted into data products. Under this grant, research was to be conducted for five tasks: (1) Point Response Function Measurements; (2) Temporal Sampling of Outgoing Longwave Radiation; (3) Spatial Averaging of Radiation Budget Data; (4) CERES Data Validation and Applications; and (5) ScaRaB Data Validation and Application.

  12. How To Develop an Effective Budget Process.

    ERIC Educational Resources Information Center

    Chabotar, Kent John

    1999-01-01

    An effective college or university budget process is dependent on the culture of the institution. Different processes and budget types are appropriate to different institutions. Understanding the interrelationships of budgeting, planning, and financial modeling can help make the budget more predictable and relevant to the college's values and…

  13. School Budget Hold'em Facilitator's Guide

    ERIC Educational Resources Information Center

    Education Resource Strategies, 2012

    2012-01-01

    "School Budget Hold'em" is a game designed to help school districts rethink their budgeting process. It evolved out of Education Resource Strategies' (ERS) experience working with large urban districts around the country. "School Budget Hold'em" offers a completely new approach--one that can turn the budgeting process into a long-term visioning…

  14. 24 CFR 968.225 - Budget revisions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Budget revisions. 968.225 Section... Fewer Than 250 Units) § 968.225 Budget revisions. (a) A PHA shall not incur any modernization cost in excess of the total HUD-approved CIAP budget. A PHA shall submit a budget revision, in a form...

  15. Simulation of Smart Home Activity Datasets.

    PubMed

    Synnott, Jonathan; Nugent, Chris; Jeffers, Paul

    2015-01-01

    A globally ageing population is resulting in an increased prevalence of chronic conditions which affect older adults. Such conditions require long-term care and management to maximize quality of life, placing an increasing strain on healthcare resources. Intelligent environments such as smart homes facilitate long-term monitoring of activities in the home through the use of sensor technology. Access to sensor datasets is necessary for the development of novel activity monitoring and recognition approaches. Access to such datasets is limited due to issues such as sensor cost, availability and deployment time. The use of simulated environments and sensors may address these issues and facilitate the generation of comprehensive datasets. This paper provides a review of existing approaches for the generation of simulated smart home activity datasets, including model-based approaches and interactive approaches which implement virtual sensors, environments and avatars. The paper also provides recommendation for future work in intelligent environment simulation.

  16. Simulation of Smart Home Activity Datasets

    PubMed Central

    Synnott, Jonathan; Nugent, Chris; Jeffers, Paul

    2015-01-01

    A globally ageing population is resulting in an increased prevalence of chronic conditions which affect older adults. Such conditions require long-term care and management to maximize quality of life, placing an increasing strain on healthcare resources. Intelligent environments such as smart homes facilitate long-term monitoring of activities in the home through the use of sensor technology. Access to sensor datasets is necessary for the development of novel activity monitoring and recognition approaches. Access to such datasets is limited due to issues such as sensor cost, availability and deployment time. The use of simulated environments and sensors may address these issues and facilitate the generation of comprehensive datasets. This paper provides a review of existing approaches for the generation of simulated smart home activity datasets, including model-based approaches and interactive approaches which implement virtual sensors, environments and avatars. The paper also provides recommendation for future work in intelligent environment simulation. PMID:26087371

  17. Identifying early signs of Global Warming in the Energy budget of the ERA-20CM experiment

    NASA Astrophysics Data System (ADS)

    Lembo, Valerio; Lionello, Piero

    2015-04-01

    This study investigates the relation between the energy budgets of the climate system and the evolution of surface temperatures for understanding the mechanisms involved in anthropogenic Global Warming. The analysis is based on ERA-20CM, an ensemble of 10 AMIP-like simulations covering the period 1900-2009 and carried out with the IFS-ECMWF model. Simulations are forced by prescribed atmospheric composition, solar irradiance, SST and Sea-ice concentrations (SIC). The 10 members sample the uncertainty in the Had-ISST2 observational dataset for SST and SIC. This dataset is meant to reproduce the real evolution of the atmospheric component of the climate system on decadal time scales. The ensemble mean of the last decade of simulations (2000-2009) can be compared with observational datasets, based on satellite data and surface observations. At the Earth's surface simulations show a significant underestimate of the downward thermal radiation (-9W/m2), upward thermal radiation (-4W/m2) and latent heat flux (-2W/m2), while the solar net flux is overestimated (+4W/m2). As a result there is a net warming of the surface (+1.5W/m2), which is larger than observational estimates. Further the energy balance shows a net cooling (-2.1W/m2) of the atmosphere that added to the net warming of the surface determines a total net cooling (-0.6W/m2). Compared to CERES-EBAF satellite observations, which instead show a net warming of about 1W/m2 a systematic bias in net radiation at Top of Atmosphere (TOA) is suggested (-1.6W/m2). Actually, the energy deficit of the atmosphere has not changed during the simulated period (it is always about -2.1W/m2) and it is likely to be a model systematic bias. In fact, the small heat capacity of the atmosphere would prevent it from absorbing such an amount of heat without changing dramatically its temperature. As a result, a systematic bias in surface budget can be defined as the difference between the total and atmospheric bias, i.e. amounting to

  18. Nanomaterial datasets to advance tomography in scanning transmission electron microscopy

    PubMed Central

    Levin, Barnaby D.A.; Padgett, Elliot; Chen, Chien-Chun; Scott, M.C.; Xu, Rui; Theis, Wolfgang; Jiang, Yi; Yang, Yongsoo; Ophus, Colin; Zhang, Haitao; Ha, Don-Hyung; Wang, Deli; Yu, Yingchao; Abruña, Hector D.; Robinson, Richard D.; Ercius, Peter; Kourkoutis, Lena F.; Miao, Jianwei; Muller, David A.; Hovden, Robert

    2016-01-01

    Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data. PMID:27272459

  19. Nanomaterial datasets to advance tomography in scanning transmission electron microscopy.

    PubMed

    Levin, Barnaby D A; Padgett, Elliot; Chen, Chien-Chun; Scott, M C; Xu, Rui; Theis, Wolfgang; Jiang, Yi; Yang, Yongsoo; Ophus, Colin; Zhang, Haitao; Ha, Don-Hyung; Wang, Deli; Yu, Yingchao; Abruña, Hector D; Robinson, Richard D; Ercius, Peter; Kourkoutis, Lena F; Miao, Jianwei; Muller, David A; Hovden, Robert

    2016-01-01

    Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data. PMID:27272459

  20. Nanomaterial datasets to advance tomography in scanning transmission electron microscopy.

    PubMed

    Levin, Barnaby D A; Padgett, Elliot; Chen, Chien-Chun; Scott, M C; Xu, Rui; Theis, Wolfgang; Jiang, Yi; Yang, Yongsoo; Ophus, Colin; Zhang, Haitao; Ha, Don-Hyung; Wang, Deli; Yu, Yingchao; Abruña, Hector D; Robinson, Richard D; Ercius, Peter; Kourkoutis, Lena F; Miao, Jianwei; Muller, David A; Hovden, Robert

    2016-06-07

    Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data.

  1. Managing large SNP datasets with SNPpy.

    PubMed

    Mitha, Faheem

    2013-01-01

    Using relational databases to manage SNP datasets is a very useful technique that has significant advantages over alternative methods, including the ability to leverage the power of relational databases to perform data validation, and the use of the powerful SQL query language to export data. SNPpy is a Python program which uses the PostgreSQL database and the SQLAlchemy Python library to automate SNP data management. This chapter shows how to use SNPpy to store and manage large datasets.

  2. The global carbon budget 1959-2011

    NASA Astrophysics Data System (ADS)

    Le Quéré, C.; Andres, R. J.; Boden, T.; Conway, T.; Houghton, R. A.; House, J. I.; Marland, G.; Peters, G. P.; van der Werf, G.; Ahlström, A.; Andrew, R. M.; Bopp, L.; Canadell, J. G.; Ciais, P.; Doney, S. C.; Enright, C.; Friedlingstein, P.; Huntingford, C.; Jain, A. K.; Jourdain, C.; Kato, E.; Keeling, R. F.; Klein Goldewijk, K.; Levis, S.; Levy, P.; Lomas, M.; Poulter, B.; Raupach, M. R.; Schwinger, J.; Sitch, S.; Stocker, B. D.; Viovy, N.; Zaehle, S.; Zeng, N.

    2012-12-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. Based on energy statistics, we estimate that the global emissions of CO2 from fossil fuel combustion and cement production were 9.5 ± 0.5 PgC yr-1 in 2011, 3.0 percent above 2010 levels. We project these emissions will increase by 2.6% (1.9-3.5%) in 2012 based on projections of Gross World Product and recent changes in the carbon intensity of the economy. Global net CO2 emissions from Land-Use Change, including deforestation, are more difficult to update annually because of data availability, but combined evidence from land cover change data, fire activity in regions undergoing deforestation and models suggests those net emissions were 0.9 ± 0.5 PgC yr-1 in 2011. The global atmospheric CO2 concentration is measured directly and reached 391.38 ± 0.13 ppm at the end of year 2011, increasing 1.70 ± 0.09 ppm yr-1 or 3.6 ± 0.2 PgC yr-1 in 2011. Estimates from four ocean models suggest that the ocean CO2 sink was 2.6 ± 0.5 PgC yr-1 in 2011, implying a global residual terrestrial CO2 sink of 4.1 ± 0.9 PgC yr-1. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the

  3. Improving Estimates of Cloud Radiative Forcing over Greenland

    NASA Astrophysics Data System (ADS)

    Wang, W.; Zender, C. S.

    2014-12-01

    Multiple driving mechanisms conspire to increase melt extent and extreme melt events frequency in the Arctic: changing heat transport, shortwave radiation (SW), and longwave radiation (LW). Cloud Radiative Forcing (CRF) of Greenland's surface is amplified by a dry atmosphere and by albedo feedback, making its contribution to surface melt even more variable in time and space. Unfortunately accurate cloud observations and thus CRF estimates are hindered by Greenland's remoteness, harsh conditions, and low contrast between surface and cloud reflectance. In this study, cloud observations from satellites and reanalyses are ingested into and evaluated within a column radiative transfer model. An improved CRF dataset is obtained by correcting systematic discrepancies derived from sensitivity experiments. First, we compare the surface radiation budgets from the Column Radiation Model (CRM) driven by different cloud datasets, with surface observations from Greenland Climate Network (GC-Net). In clear skies, CRM-estimated surface radiation driven by water vapor profiles from both AIRS and MODIS during May-Sept 2010-2012 are similar, stable, and reliable. For example, although AIRS water vapor path exceeds MODIS by 1.4 kg/m2 on a daily average, the overall absolute difference in downwelling SW is < 4 W/m2. CRM estimates are within 20 W/m2 range of GC-Net downwelling SW. After calibrating CRM in clear skies, the remaining differences between CRM and observed surface radiation are primarily attributable to differences in cloud observations. We estimate CRF using cloud products from MODIS and from MERRA. The SW radiative forcing of thin clouds is mainly controlled by cloud water path (CWP). As CWP increases from near 0 to 200 g/m2, the net surface SW drops from over 100 W/m2 to 30 W/m2 almost linearly, beyond which it becomes relatively insensitive to CWP. The LW is dominated by cloud height. For clouds at all altitudes, the lower the clouds, the greater the LW forcing. By

  4. THE Antarctic Atmospheric Energy Budget: Observations and Model Simulations

    NASA Astrophysics Data System (ADS)

    Previdi, M. J.; Smith, K. L.; Polvani, L. M.

    2014-12-01

    We present a new, observationally-based estimate of the atmospheric energy budget for the Antarctic polar cap (the region poleward of 70°S). This energy budget is constructed using state-of-the-art reanalysis products from ECMWF [the ECMWF Interim Re-Analysis (ERA-Interim)] and Clouds and the Earth's Radiant Energy System (CERES) top-of-atmosphere (TOA) radiative fluxes. We find that the climatological mean Antarctic energy budget is characterized by an approximate balance between the TOA net outgoing radiation and the horizontal convergence of atmospheric energy transport, with the net surface energy flux and atmospheric energy storage generally being small in comparison. We compare these observationally-based results with coupled atmosphere-ocean general circulation model simulations that have been made available as part of the Coupled Model Intercomparison Project, phase 5 (CMIP5). While CMIP5 models generally perform well in simulating the observed climatological mean energy budget, some notable model biases are apparent. These biases are most pronounced during the austral summer and fall seasons, with the largest biases (approaching 30 W m-2 for some models) occurring for the TOA net incoming shortwave radiation during summer. Finally, we examine the causes of model biases (e.g., deficiencies in the simulated cloud cover and sea ice), as well as their relationship to the simulated twenty-first century trends in the energy budget. We find a statistically significant inverse correlation across the CMIP5 models between the present-day biases in atmospheric energy transport into the polar cap, and the simulated future changes in energy transport over the twenty-first century. Possible reasons for this relationship are discussed.

  5. Simulations of cloud-radiation interaction with imposed largescale dynamics from the DYNAMO northern sounding array

    NASA Astrophysics Data System (ADS)

    Wang, S.; Sobel, A. H.; Fridlind, A. M.

    2014-12-01

    The recently accomplished CINDY/DYNAMO project observed three MJO events in the equatorial Indian Ocean from October to December 2011. Analysis of the moist static energy budget by Sobel et al. (2014) indicates that the moist static energy anomalies in these events grew and were sustained to a significant extent by radiative feedbacks. We present here a study of radiative fluxes and clouds in a set of cloud-resolving simulations of the same DYNAMO MJO events. The simulations are driven by the large scale forcing dataset from the DYNAMO northern sounding array, and carried out in doubly-periodic domains using the WRF model. Simulated cloud properties and radiative fluxes are compared to the observed reflectivity from the SPolka radar and observed radiative fluxes from the CERES and VISST datasets. To accommodate the uncertainty in cloud microphysics, we have tested a number of single-moment (SM) and double-moment (DM) microphysical schemes in the WRF model. We find that in general the SM schemes tend to underestimate radiative flux anomalies in the active phase of the MJOs, while the DM schemes perform better but can instead overestimate radiative fluxes. All the microphysics schemes tested exhibit bias in the shape of the histograms of radiative fluxes and radar reflectivity. Analysis of CRM-simulated radar reflectivity indicates that this microphysics-related radiative flux uncertainty is closely related to how much stratiform clouds the CRM can simulate. SM schemes underestimate stratiform clouds by a factor of 2, while DM schemes simulate much more stratiform cloud, closer to observation, but shows a peak in the histogram at 15-20 dBz that is absent in observations. The double-moment Morrison scheme appears to give the best results in TOA fluxes associated with the MJO convective anomalies despite biases in the histograms of cloud and radiative fluxes.

  6. GEWEX Water and Energy Budget Study

    NASA Technical Reports Server (NTRS)

    Roads, J.; Bainto, E.; Masuda, K.; Rodell, Matthew; Rossow, W. B.

    2008-01-01

    Closing the global water and energy budgets has been an elusive Global Energy and Water-cycle Experiment (GEWEX) goal. It has been difficult to gather many of the needed global water and energy variables and processes, although, because of GEWEX, we now have globally gridded observational estimates for precipitation and radiation and many other relevant variables such as clouds and aerosols. Still, constrained models are required to fill in many of the process and variable gaps. At least there are now several atmospheric reanalyses ranging from the early National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) and NCEP/Department of Energy (DOE) reanalyses to the more recent ERA40 and JRA-25 reanalyses. Atmospheric constraints include requirements that the models state variables remain close to in situ observations or observed satellite radiances. This is usually done by making short-term forecasts from an analyzed initial state; these short-term forecasts provide the next guess, which is corrected by comparison to available observations. While this analysis procedure is likely to result in useful global descriptions of atmospheric temperature, wind and humidity, there is no guarantee that relevant hydroclimate processes like precipitation, which we can observe and evaluate, and evaporation over land, which we cannot, have similar verisimilitude. Alternatively, the Global Land Data Assimilation System (GLDAS), drives uncoupled land surface models with precipitation, surface solar radiation, and surface meteorology (from bias-corrected reanalyses during the study period) to simulate terrestrial states and surface fluxes. Further constraints are made when a tuned water balance model is used to characterize the global runoff observational estimates. We use this disparate mix of observational estimates, reanalyses, GLDAS and calibrated water balance simulations to try to characterize and close global and terrestrial atmospheric

  7. Interoperability of Multiple Datasets with JMARS

    NASA Astrophysics Data System (ADS)

    Smith, M. E.; Christensen, P. R.; Noss, D.; Anwar, S.; Dickenshied, S.

    2012-12-01

    Planetary Science includes all celestial bodies including Earth. However, when investigating Geographic Information System (GIS) applications, Earth and planetary bodies have the tendency to be separated. One reason is because we have been learning and investigating Earth's properties much longer than we have been studying the other planetary bodies, therefore, the archive of GCS and projections is much larger. The first latitude and longitude system of Earth was invented between 276 BC and 194 BC by Eratosthenes who was also the first to calculate the circumference of the Earth. As time went on, scientists continued to re-measure the Earth on both local and global scales which has created a large collection of projections and geographic coordinate systems (GCS) to choose from. The variety of options can create a time consuming task to determine which GCS or projection gets applied to each dataset and how to convert to the correct GCS or projection. Another issue is presented when determining if the dataset should be applied to a geocentric sphere or a geodetic spheroid. Both of which are measured and determine latitude values differently. This can lead to inconsistent results and frustration for the user. This is not the case with other planetary bodies. Although the existence of other planets have been known since the early Babylon times, the accuracy of the planets rotation, size and geologic properties weren't known for several hundreds of years later. Therefore, the options for projections or GCS's are much smaller than the options one has for Earth's data. Even then, the projection and GCS options for other celestial bodies are informal. So it can be hard for the user to determine which projection or GCS to apply to the other planets. JMARS (Java Mission Analysis for Remote Sensing) is an open source suite that was developed by Arizona State University's Mars Space Flight Facility. The beauty of JMARS is that the tool transforms all datasets behind the scenes

  8. Circcrex: A New Cirrus Dataset for Model Evaluation

    NASA Astrophysics Data System (ADS)

    Fox, C.; Pickering, J. C.; Murray, J. E.

    2014-12-01

    The Cirrus Coupled Cloud-Radiation Experiment (CIRCCREX), a new NERC-funded airborne research campaign, aims to understand the link between evolving ice cloud microphysical properties and cirrus radiative signatures at the macrophysical scale. CIRCCREX will obtain for the first time radiation measurements across the electromagnetic spectrum (visible to sub-mm wavelengths) together with state-of-the-art cloud microphysical measurements. These datasets will be utilised to achieve the overall goal of an accurate parameterisation of cirrus optical properties in global climate modelling and Numerical Weather Prediction, through testing and facilitating improvement of cirrus scattering models and investigation of the sensitivity of the radiance to Particle Size Distribution, habit types and crystal complexity. Presented here is an overview of CIRCCREX, the relevant background and previous results. Findings from the first stage of the research campaign, which took place over Prestwick, UK in November 2013, are reported with an emphasis on performance of cirrus radiative and scattering models. High resolution far- and mid-infrared spectra recorded over cirrus scenes are presented and linked to micro- and macro-physical cirrus properties. Uncertainties and challenges in both observations and model simulations are discussed, along with improvements for the next stages of the campaign.

  9. Budget constrained non-monotonic feature selection.

    PubMed

    Yang, Haiqin; Xu, Zenglin; Lyu, Michael R; King, Irwin

    2015-11-01

    Feature selection is an important problem in machine learning and data mining. We consider the problem of selecting features under the budget constraint on the feature subset size. Traditional feature selection methods suffer from the "monotonic" property. That is, if a feature is selected when the number of specified features is set, it will always be chosen when the number of specified feature is larger than the previous setting. This sacrifices the effectiveness of the non-monotonic feature selection methods. Hence, in this paper, we develop an algorithm for non-monotonic feature selection that approximates the related combinatorial optimization problem by a Multiple Kernel Learning (MKL) problem. We justify the performance guarantee for the derived solution when compared to the global optimal solution for the related combinatorial optimization problem. Finally, we conduct a series of empirical evaluation on both synthetic and real-world benchmark datasets for the classification and regression tasks to demonstrate the promising performance of the proposed framework compared with the baseline feature selection approaches.

  10. Budget Brief: 2015 Proposed Budget Milwaukee Public Schools

    ERIC Educational Resources Information Center

    Allen, Vanessa; Chapman, Anne; Henken, Rob

    2014-01-01

    In this report, the authors provide a detailed analysis of the major changes in revenue and expenditures in the Milwaukee Public Schools (MPS) 2015 proposed budget, and the manner in which MPS has responded to recent legislative changes and turbulent workforce challenges. The objective is to provide an independent assessment of the district's…

  11. Outcome Based Budgeting: Connecting Budget Development, Allocation and Outcomes.

    ERIC Educational Resources Information Center

    Anderes, Thomas

    This plan for outcome-based budgeting (OBB) is the result of growing demands for increased fiscal accountability, measurable outcomes, strengthened assessment processes, and more meaningful performance indicators as mandated by many State and Federal legislators. OBB focuses on linking funding with outputs and outcomes. Higher education…

  12. 7 CFR 277.3 - Budgets and budget revision procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 277.3 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE FOOD STAMP AND FOOD DISTRIBUTION PROGRAM PAYMENTS OF CERTAIN ADMINISTRATIVE COSTS..., and revision requirements for the State Food Stamp Program Budget shall be as specified in §...

  13. 7 CFR 277.3 - Budgets and budget revision procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 277.3 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE FOOD STAMP AND FOOD DISTRIBUTION PROGRAM PAYMENTS OF CERTAIN ADMINISTRATIVE COSTS..., and revision requirements for the State Food Stamp Program Budget shall be as specified in §...

  14. Visualizing large geospatial datasets with KML Regions

    NASA Astrophysics Data System (ADS)

    Ilyushchenko, S.; Wheeler, D.; Ummel, K.; Hammer, D.; Kraft, R.

    2008-12-01

    Regions are a powerful KML feature that helps viewing very large datasets in Google Earth without sacrificing performance. Data is loaded and drawn only when it falls within the user's view and occupies a certain portion of the screen. Using Regions, it is possible to supply separate levels of detail for the data, so that fine details are loaded only when the data fills a portion of the screen that is large enough for the details to be visible. It becomes easy to create compelling interactive presentations of geospatial datasets that are meaningful at both large and small scale. We present two example datasets: worldwide past, present and future carbon dioxide emissions by power plants provided by Carbon Monitoring for Action, Center for Global Development (http://carma.org), as well as 2007 US bridge safety ratings from Federal Highway Administration (http://www.fhwa.dot.gov/BRIDGE/nbi/ascii.cfm).

  15. Genomics dataset of unidentified disclosed isolates.

    PubMed

    Rekadwad, Bhagwan N

    2016-09-01

    Analysis of DNA sequences is necessary for higher hierarchical classification of the organisms. It gives clues about the characteristics of organisms and their taxonomic position. This dataset is chosen to find complexities in the unidentified DNA in the disclosed patents. A total of 17 unidentified DNA sequences were thoroughly analyzed. The quick response codes were generated. AT/GC content of the DNA sequences analysis was carried out. The QR is helpful for quick identification of isolates. AT/GC content is helpful for studying their stability at different temperatures. Additionally, a dataset on cleavage code and enzyme code studied under the restriction digestion study, which helpful for performing studies using short DNA sequences was reported. The dataset disclosed here is the new revelatory data for exploration of unique DNA sequences for evaluation, identification, comparison and analysis.

  16. Quality Visualization of Microarray Datasets Using Circos

    PubMed Central

    Koch, Martin; Wiese, Michael

    2012-01-01

    Quality control and normalization is considered the most important step in the analysis of microarray data. At present there are various methods available for quality assessments of microarray datasets. However there seems to be no standard visualization routine, which also depicts individual microarray quality. Here we present a convenient method for visualizing the results of standard quality control tests using Circos plots. In these plots various quality measurements are drawn in a circular fashion, thus allowing for visualization of the quality and all outliers of each distinct array within a microarray dataset. The proposed method is intended for use with the Affymetrix Human Genome platform (i.e., GPL 96, GPL570 and GPL571). Circos quality measurement plots are a convenient way for the initial quality estimate of Affymetrix datasets that are stored in publicly available databases.

  17. Maximising the value of hospital administrative datasets.

    PubMed

    Nadathur, Shyamala G

    2010-05-01

    Mandatory and standardised administrative data collections are prevalent in the largely public-funded acute sector. In these systems the data collections are used for financial, performance monitoring and reporting purposes. This paper comments on the infrastructure and standards that have been established to support data collection activities, audit and feedback. The routine, local and research uses of these datasets are described using examples from Australian and international literature. The advantages of hospital administrative datasets and opportunities for improvement are discussed under the following headings: accessibility, standardisation, coverage, completeness, cost of obtaining clinical data, recorded Diagnostic Related Groups and International Classification of Diseases codes, linkage and connectivity. In an era of diminishing resources better utilisation of these datasets should be encouraged. Increased study and scrutiny will enhance transparency and help identify issues in the collections. As electronic information systems are increasingly embraced, administrative data collections need to be managed as valuable assets and powerful operational and patient management tools.

  18. Genomics dataset of unidentified disclosed isolates.

    PubMed

    Rekadwad, Bhagwan N

    2016-09-01

    Analysis of DNA sequences is necessary for higher hierarchical classification of the organisms. It gives clues about the characteristics of organisms and their taxonomic position. This dataset is chosen to find complexities in the unidentified DNA in the disclosed patents. A total of 17 unidentified DNA sequences were thoroughly analyzed. The quick response codes were generated. AT/GC content of the DNA sequences analysis was carried out. The QR is helpful for quick identification of isolates. AT/GC content is helpful for studying their stability at different temperatures. Additionally, a dataset on cleavage code and enzyme code studied under the restriction digestion study, which helpful for performing studies using short DNA sequences was reported. The dataset disclosed here is the new revelatory data for exploration of unique DNA sequences for evaluation, identification, comparison and analysis. PMID:27408929

  19. 77 FR 15052 - Dataset Workshop-U.S. Billion Dollar Disasters Dataset (1980-2011): Assessing Dataset Strengths...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ... restrictions preclude attendance for those who do not RSVP by the deadline. Space is also limited to the first... individual basis once participation has been confirmed through RSVP. Workshop Date and Time: The workshop... will be placed on dataset accuracy and time-dependent biases. Pathways to overcome accuracy and...

  20. Introduction of a simple-model-based land surface dataset for Europe

    NASA Astrophysics Data System (ADS)

    Orth, Rene; Seneviratne, Sonia I.

    2015-04-01

    Land surface hydrology is important because it can play a crucial role during extreme events such as droughts, floods and even heat waves. We introduce in this study a new hydrological dataset for the European continent that consists of soil moisture, runoff and evapotranspiration. It is derived with a simple water balance model (SWBM) forced with precipitation, temperature and net radiation. The SWBM dataset covers Europe and extends over the period 1984-2013 with a daily time step and 0.5°x0.5° resolution. We employ a novel approach to calibrate the model, whereby we consider 300 random parameter sets chosen from an observation-based range. Using several independent validation datasets representing soil moisture (or terrestrial water content), evapotranspiration and streamflow, we identify the best performing parameter set and hence the new dataset. To illustrate its usefulness, the SWBM dataset is compared against ERA-Interim/Land and simulations of the Community Land Model Version 4, using all validation datasets as reference. For soil moisture dynamics it outperforms the benchmarks. Therefore the SWBM soil moisture dataset constitutes a reasonable alternative to sparse measurements, little validated model results, or proxy data such as precipitation indices. In terms of runoff the SWBM dataset also performs well versus the benchmarks. They all show a slight dry bias which is probably due to underestimated precipitation used to force the model. The evaluation of the SWBM evapotranspiration dataset is overall satisfactory, but the dynamics are less well captured for this variable. This highlights the limitations of the dataset, as it is based on a simple model that uses uniform parameter values. Hence some processes impacting evapotranspiration dynamics may not be captured, and quality issues may occur in regions with complex terrain. Furthermore we investigate the sources of skill of the SWBM dataset and find that the parameter set has a similar impact on the

  1. Comparison of recent SnIa datasets

    SciTech Connect

    Sanchez, J.C. Bueno; Perivolaropoulos, L.; Nesseris, S. E-mail: nesseris@nbi.ku.dk

    2009-11-01

    We rank the six latest Type Ia supernova (SnIa) datasets (Constitution (C), Union (U), ESSENCE (Davis) (E), Gold06 (G), SNLS 1yr (S) and SDSS-II (D)) in the context of the Chevalier-Polarski-Linder (CPL) parametrization w(a) = w{sub 0}+w{sub 1}(1−a), according to their Figure of Merit (FoM), their consistency with the cosmological constant (ΛCDM), their consistency with standard rulers (Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillations (BAO)) and their mutual consistency. We find a significant improvement of the FoM (defined as the inverse area of the 95.4% parameter contour) with the number of SnIa of these datasets ((C) highest FoM, (U), (G), (D), (E), (S) lowest FoM). Standard rulers (CMB+BAO) have a better FoM by about a factor of 3, compared to the highest FoM SnIa dataset (C). We also find that the ranking sequence based on consistency with ΛCDM is identical with the corresponding ranking based on consistency with standard rulers ((S) most consistent, (D), (C), (E), (U), (G) least consistent). The ranking sequence of the datasets however changes when we consider the consistency with an expansion history corresponding to evolving dark energy (w{sub 0},w{sub 1}) = (−1.4,2) crossing the phantom divide line w = −1 (it is practically reversed to (G), (U), (E), (S), (D), (C)). The SALT2 and MLCS2k2 fitters are also compared and some peculiar features of the SDSS-II dataset when standardized with the MLCS2k2 fitter are pointed out. Finally, we construct a statistic to estimate the internal consistency of a collection of SnIa datasets. We find that even though there is good consistency among most samples taken from the above datasets, this consistency decreases significantly when the Gold06 (G) dataset is included in the sample.

  2. Programme Budgets for Graduate Training.

    ERIC Educational Resources Information Center

    Appelquist, Claes G.; And Others

    The development of a methodological framework for planning, programming, and budgeting which is specific to graduate training and research activities at the Chalmers University of Technology in Sweden is described. This pilot project is regarded as a step towards developing and implementing a generalized approach to an output-oriented finance…

  3. Budget Response: Fiscal Year 2012

    ERIC Educational Resources Information Center

    Bissonnette, Jocelyn, Ed.; Ellerson, Noelle, Ed.; Jones, Lindsay, Ed.

    2011-01-01

    The Committee for Education Funding (CEF), a coalition of over 85 national education associations and institutions from preschool to postgraduate education, applauds President Obama's Fiscal Year 2012 budget for recognizing the importance of investing in education to our nation's economic growth and competitiveness. Within a constrained fiscal…

  4. Geology on a Sand Budget

    ERIC Educational Resources Information Center

    Kane, Jacqueline

    2004-01-01

    Earth science teachers know how frustrating it can be to spend hundreds of dollars on three-dimensional (3-D) models of Earth's geologic features, to use the models for only a few class periods. To avoid emptying an already limited science budget, the author states that teachers can use a simple alternative to the expensive 3-D models--sand. She…

  5. Congress Wraps Up 2011 Budget

    ERIC Educational Resources Information Center

    Klein, Alyson

    2011-01-01

    Education advocates are already bracing for protracted budget battles in the coming year, even as they sort the winners and losers in the bill approved by Congress late last week financing the U.S. Department of Education and the rest of the federal government through September. The hard-fought agreement followed months of wrangling between…

  6. Rational Budgeting? The Stanford Case.

    ERIC Educational Resources Information Center

    Chaffee, Ellen Earle

    The budget decision making process at Stanford University, California, from 1970 through 1979 was evaluated in relation to the allocation of general funds to 38 academic departments. Using Simon's theory of bounded rationality and an organizational level of analysis, the Stanford decision process was tested for its rationality through…

  7. Reconceptualization of the Budget Envelope.

    ERIC Educational Resources Information Center

    Jefferson, Anne L.

    This paper reconceptualizes the purposes of education's budget envelope. Citing numerous examples of how policymakers consider resource allocations apart from the main concerns of individual programs, the people reallocations affect, and education's most important programs, it suggests that policymakers and finance officers reemphasize program and…

  8. Provenance of Earth Science Datasets - How Deep Should One Go?

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H.; Manipon, G. J. M.; Aulenbach, S.; Duggan, B.; Goldstein, J.; Hua, H.; Tan, D.; Tilmes, C.; Wilson, B. D.; Wolfe, R.; Zednik, S.

    2015-12-01

    For credibility of scientific research, transparency and reproducibility are essential. This fundamental tenet has been emphasized for centuries, and has been receiving increased attention in recent years. The Office of Management and Budget (2002) addressed reproducibility and other aspects of quality and utility of information from federal agencies. Specific guidelines from NASA (2002) are derived from the above. According to these guidelines, "NASA requires a higher standard of quality for information that is considered influential. Influential scientific, financial, or statistical information is defined as NASA information that, when disseminated, will have or does have clear and substantial impact on important public policies or important private sector decisions." For information to be compliant, "the information must be transparent and reproducible to the greatest possible extent." We present how the principles of transparency and reproducibility have been applied to NASA data supporting the Third National Climate Assessment (NCA3). The depth of trace needed of provenance of data used to derive conclusions in NCA3 depends on how the data were used (e.g., qualitatively or quantitatively). Given that the information is diligently maintained in the agency archives, it is possible to trace from a figure in the publication through the datasets, specific files, algorithm versions, instruments used for data collection, and satellites, as well as the individuals and organizations involved in each step. Such trace back permits transparency and reproducibility.

  9. Future weather dataset for fourteen UK sites.

    PubMed

    Liu, Chunde

    2016-09-01

    This Future weather dataset is used for assessing the risk of overheating and thermal discomfort or heat stress in the free running buildings. The weather files are in the format of .epw which can be used in the building simulation packages such as EnergyPlus, DesignBuilder, IES, etc. PMID:27570809

  10. Bacterial clinical infectious diseases ontology (BCIDO) dataset.

    PubMed

    Gordon, Claire L; Weng, Chunhua

    2016-09-01

    This article describes the Bacterial Infectious Diseases Ontology (BCIDO) dataset related to research published in http:dx.doi.org/ 10.1016/j.jbi.2015.07.014 [1], and contains the Protégé OWL files required to run BCIDO in the Protégé environment. BCIDO contains 1719 classes and 39 object properties. PMID:27508237

  11. Thesaurus Dataset of Educational Technology in Chinese

    ERIC Educational Resources Information Center

    Wu, Linjing; Liu, Qingtang; Zhao, Gang; Huang, Huan; Huang, Tao

    2015-01-01

    The thesaurus dataset of educational technology is a knowledge description of educational technology in Chinese. The aims of this thesaurus were to collect the subject terms in the domain of educational technology, facilitate the standardization of terminology and promote the communication between Chinese researchers and scholars from various…

  12. NASA's Fiscal Year 2012 Budget Request

    NASA Video Gallery

    NASA announced an $18.7 billion budget request for fiscal year 2012 that supports a reinvigorated path of innovation, technological development and scientific discovery. The budget supports all ele...

  13. Efficiently Finding Individuals from Video Dataset

    NASA Astrophysics Data System (ADS)

    Hao, Pengyi; Kamata, Sei-Ichiro

    We are interested in retrieving video shots or videos containing particular people from a video dataset. Owing to the large variations in pose, illumination conditions, occlusions, hairstyles and facial expressions, face tracks have recently been researched in the fields of face recognition, face retrieval and name labeling from videos. However, when the number of face tracks is very large, conventional methods, which match all or some pairs of faces in face tracks, will not be effective. Therefore, in this paper, an efficient method for finding a given person from a video dataset is presented. In our study, in according to performing research on face tracks in a single video, we also consider how to organize all the faces in videos in a dataset and how to improve the search quality in the query process. Different videos may include the same person; thus, the management of individuals in different videos will be useful for their retrieval. The proposed method includes the following three points. (i) Face tracks of the same person appearing for a period in each video are first connected on the basis of scene information with a time constriction, then all the people in one video are organized by a proposed hierarchical clustering method. (ii) After obtaining the organizational structure of all the people in one video, the people are organized into an upper layer by affinity propagation. (iii) Finally, in the process of querying, a remeasuring method based on the index structure of videos is performed to improve the retrieval accuracy. We also build a video dataset that contains six types of videos: films, TV shows, educational videos, interviews, press conferences and domestic activities. The formation of face tracks in the six types of videos is first researched, then experiments are performed on this video dataset containing more than 1 million faces and 218,786 face tracks. The results show that the proposed approach has high search quality and a short search time.

  14. Budget estimates fiscal year 1995: Volume 10

    SciTech Connect

    Not Available

    1994-02-01

    This report contains the Nuclear Regulatory Commission (NRC) fiscal year budget justification to Congress. The budget provides estimates for salaries and expenses and for the Office of the Inspector General for fiscal year 1995. The NRC 1995 budget request is $546,497,000. This is an increase of $11,497,000 above the proposed level for FY 1994. The NRC FY 1995 budget request is 3,218 FTEs. This is a decrease of 75 FTEs below the 1994 proposed level.

  15. Assimilation of nontraditional datasets to improve atmospheric compensation

    NASA Astrophysics Data System (ADS)

    Kelly, Michael A.; Osei-Wusu, Kwame; Spisz, Thomas S.; Strong, Shadrian; Setters, Nathan; Gibson, David M.

    2012-06-01

    Detection and characterization of space objects require the capability to derive physical properties such as brightness temperature and reflectance. These quantities, together with trajectory and position, are often used to correlate an object from a catalogue of known characteristics. However, retrieval of these physical quantities can be hampered by the radiative obscuration of the atmosphere. Atmospheric compensation must therefore be applied to remove the radiative signature of the atmosphere from electro-optical (EO) collections and enable object characterization. The JHU/APL Atmospheric Compensation System (ACS) was designed to perform atmospheric compensation for long, slant-range paths at wavelengths from the visible to infrared. Atmospheric compensation is critically important for airand ground-based sensors collecting at low elevations near the Earth's limb. It can be demonstrated that undetected thin, sub-visual cirrus clouds in the line of sight (LOS) can significantly alter retrieved target properties (temperature, irradiance). The ACS algorithm employs non-traditional cirrus datasets and slant-range atmospheric profiles to estimate and remove atmospheric radiative effects from EO/IR collections. Results are presented for a NASA-sponsored collection in the near-IR (NIR) during hypersonic reentry of the Space Shuttle during STS-132.

  16. Federal Budget Considerations for Colleges, 1998.

    ERIC Educational Resources Information Center

    Association of Colleges of Applied Arts and Technology of Ontario, North York.

    This document highlights federal budget considerations for colleges of applied arts and technology in Ontario, Canada. A key focus of the budget is the Federal Government's Canadian Opportunities Strategy, which supports the acquisition of skills and knowledge required for the 21st century. The budget's emphasis on education over other social…

  17. Planning to Communicate: A Budget Companion

    ERIC Educational Resources Information Center

    Dereef, Marvin

    2011-01-01

    Failing to have a plan to communicate with stakeholders during the budget process is a plan to fail. Without community support, getting budget approval can be difficult. Thus, school business officials must have a plan to ensure the appropriate budget message is conveyed throughout all communication channels. In fact, a communication plan is the…

  18. Formula Budgeting: An Approach to Facilities Funding.

    ERIC Educational Resources Information Center

    McClintock, David L.

    Formula budgeting for college and university facilities maintenance is recommended because: (1) formulas inject objectivity into the budgeting process by using quantified data; (2) formulas tend to improve the equitability of treatment of comparable institutions; (3) formulas are intended to provide adequate but economical budgets; and (4)…

  19. Predictive Modeling: Linking Enrollment and Budgeting

    ERIC Educational Resources Information Center

    Trusheim, Dale; Rylee, Carol

    2011-01-01

    The hard choices that must be made to balance budgets at higher education institutions can be painful and have dramatic consequences that may linger for years. If enrollment projections and therefore tuition income/budgeting projections for future years are inaccurate, then the result may be unnecessary or insufficient budget reductions, both of…

  20. Community College Budgeting and Financing Demystified

    ERIC Educational Resources Information Center

    Murphy, David S.; Katsinas, Stephen G.

    2014-01-01

    The topic of budgeting and financial resources often strikes fear in the hearts of community college administrators and faculty, as they believe it is an arcane and complex art understood only by accountants and financial specialists. This chapter attempts to demystify the basic concepts involved in budgeting and addresses approaches to budgeting,…

  1. Teaching Budget Cuts to Third Graders

    ERIC Educational Resources Information Center

    Weiss, Dale

    2011-01-01

    As a teacher in the Milwaukee Public Schools (MPS) for the past 16 years, this author has grown used to dismal budget cut news arriving each February. Although cuts are always frustrating and their results burdensome, his school has been able to "hang on" reasonably well. This year, however, the budget cuts were extreme. The school's budget was…

  2. 25 CFR 276.14 - Budget revision.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Budget revision. 276.14 Section 276.14 Indians BUREAU OF... UNIFORM ADMINISTRATIVE REQUIREMENTS FOR GRANTS § 276.14 Budget revision. Criteria and procedures to be followed by grantees in reporting deviations from grant budgets and requesting approval for...

  3. Teaching the Federal Budget, National Debt, and Budget Deficit: Findings from High School Teachers

    ERIC Educational Resources Information Center

    Marri, Anand R.; Ahn, Meesuk; Crocco, Margaret Smith; Grolnick, Maureen; Gaudelli, William; Walker, Erica N.

    2011-01-01

    The issues surrounding the federal budget, national debt, and budget deficit are complex, but not beyond the reach of young students. This study finds scant treatment of the federal budget, national debt, and budget deficit in high schools today. It is hardly surprising that high school teachers spend so little time discussing these topics in…

  4. Heat Budget of Large Rivers: Sensitivity to Stream Morphology

    NASA Astrophysics Data System (ADS)

    Lancaster, S. T.; Haggerty, R.

    2014-12-01

    In order to assess the feasibility of effecting measurable changes in the heat budget of a large river through restoration, we use a numerical model to analyze the sensitivity of that heat budget to morphological manipulations, specifically those resulting in a narrower main channel with more alcoves. We base model parameters primarily on the gravel-bedded middle Snake River near Marsing, Idaho. The heat budget is represented by an advection-dispersion-reaction equation with, in addition to radiative, evaporative, and sensible heat fluxes, a hyporheic flux term that models lateral flow from the main stream, through bars, and into alcoves and side channels. This term effectively introduces linear dispersion of water temperatures with respect to time, so that the magnitude of the hyporheic term in the heat budget is expected to scale with the ``hyporheic number," defined as , where is dimensionless hyporheic flow rate and is dimensionless mean residence time of water entering the hyporheic zone. Simulations varying the parameters for channel width and hyporheic flow indicate that, for a large river such as the middle Snake River, feasible changes in channel width would produce downstream changes in heat flux an order of magnitude larger than would relatively extreme changes in hyporheic number. Changes, such as reduced channel width and increased hyporheic number, that tend to reduce temperatures in the summer, when temperatures are increasing with time and downstream distance, actually tend to increase temperatures in the fall, when temperatures are decreasing with time and distance.

  5. Global atmospheric methane: budget, changes and dangers.

    PubMed

    Dlugokencky, Edward J; Nisbet, Euan G; Fisher, Rebecca; Lowry, David

    2011-05-28

    A factor of 2.5 increase in the global abundance of atmospheric methane (CH(4)) since 1750 contributes 0.5 Wm(-2) to total direct radiative forcing by long-lived greenhouse gases (2.77 Wm(-2) in 2009), while its role in atmospheric chemistry adds another approximately 0.2 Wm(-2) of indirect forcing. Since CH(4) has a relatively short lifetime and it is very close to a steady state, reductions in its emissions would quickly benefit climate. Sensible emission mitigation strategies require quantitative understanding of CH(4)'s budget of emissions and sinks. Atmospheric observations of CH(4) abundance and its rate of increase, combined with an estimate of the CH(4) lifetime, constrain total global CH(4) emissions to between 500 and 600 Tg CH(4) yr(-1). While total global emissions are constrained reasonably well, estimates of emissions by source sector vary by up to a factor of 2. Current observation networks are suitable to constrain emissions at large scales (e.g. global) but not at the regional to national scales necessary to verify emission reductions under emissions trading schemes. Improved constraints on the global CH(4) budget and its break down of emissions by source sector and country will come from an enhanced observation network for CH(4) abundance and its isotopic composition (δ(13)C, δD(D=(2)H) and δ(14)C). Isotopic measurements are a valuable tool in distinguishing among various sources that contribute emissions to an air parcel, once fractionation by loss processes is accounted for. Isotopic measurements are especially useful at regional scales where signals are larger. Reducing emissions from many anthropogenic source sectors is cost-effective, but these gains may be cancelled, in part, by increasing emissions related to economic development in many parts of the world. An observation network that can quantitatively assess these changing emissions, both positive and negative, is required, especially in the context of emissions trading schemes.

  6. NASA Science Budget Choices Criticized

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2006-03-01

    NASA's decision to focus its science efforts on large missions at the expense of smaller missions and research is misguided and will have a long-term negative impact on attracting and retaining scientists and engineers to NASA-related science, several scientists testified at a 2 March hearing. Witnesses at the hearing before the U.S. House of Representatives Science Committee included NASA Associate Administrator for the Science Mission Directorate Mary Cleave and members or chairs of four U.S. National Academy of Sciences (NAS) decadal surveys of various aspects of NASA science. The witnesses discussed cuts and delays to NASA projects proposed in the agency's Fiscal Year 2007 budget request. NASA's science budget would grow by 1.5 percent in FY2007, and then by just one percent per year in 2008-2011 (see Eos 87(9), 2006).

  7. U.S. science budget

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Science agency budgets were slashed July 30 by the U.S. House of Representatives Appropriations Committee, which voted significant cuts to the proposed fiscal year 2000 budgets of NASA, the Environmental Protection Agency (EPA), the National Science Foundation (NSF), and other agencies.While the funding levels may change in early September when the Senate takes up the appropriations bill for NASA, EPA, and NSF— which funds the Veterans Administration (VA), Housing and Urban Development (HUD), and independent agencies—Congress appears to be trying to maintain budgetary caps established in 1997. A separate House appropriations bill covering the Commerce Department cut research funding at the National Oceanic and Atmospheric Administration (NOAA) by 10%.

  8. Method of generating features optimal to a dataset and classifier

    DOEpatents

    Bruillard, Paul J.; Gosink, Luke J.; Jarman, Kenneth D.

    2016-10-18

    A method of generating features optimal to a particular dataset and classifier is disclosed. A dataset of messages is inputted and a classifier is selected. An algebra of features is encoded. Computable features that are capable of describing the dataset from the algebra of features are selected. Irredundant features that are optimal for the classifier and the dataset are selected.

  9. Vibration budget for observatory equipment

    NASA Astrophysics Data System (ADS)

    MacMartin, Douglas G.; Thompson, Hugh

    2015-07-01

    Vibration from equipment mounted on the telescope and in summit support buildings has been a source of performance degradation at existing astronomical observatories, particularly for adaptive optics performance. Rather than relying only on best practices to minimize vibration, we present here a vibration budget that specifies allowable force levels from each source of vibration in the observatory (e.g., pumps, chillers, cryocoolers, etc.). This design tool helps ensure that the total optical performance degradation due to vibration is less than the corresponding error budget allocation and is also useful in design trade-offs, specifying isolation requirements for equipment, and tightening or widening individual equipment vibration specifications as necessary. The vibration budget relies on model-based analysis of the optical consequences that result from forces applied at different locations and frequencies, including both image jitter and primary mirror segment motion. We develop this tool here for the Thirty Meter Telescope but hope that this approach will be broadly useful to other observatories, not only in the design phase, but for verification and operations as well.

  10. 3DSEM: A 3D microscopy dataset.

    PubMed

    Tafti, Ahmad P; Kirkpatrick, Andrew B; Holz, Jessica D; Owen, Heather A; Yu, Zeyun

    2016-03-01

    The Scanning Electron Microscope (SEM) as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples. PMID:26779561

  11. 3DSEM: A 3D microscopy dataset

    PubMed Central

    Tafti, Ahmad P.; Kirkpatrick, Andrew B.; Holz, Jessica D.; Owen, Heather A.; Yu, Zeyun

    2015-01-01

    The Scanning Electron Microscope (SEM) as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples. PMID:26779561

  12. Global Precipitation Measurement: Methods, Datasets and Applications

    NASA Technical Reports Server (NTRS)

    Tapiador, Francisco; Turk, Francis J.; Petersen, Walt; Hou, Arthur Y.; Garcia-Ortega, Eduardo; Machado, Luiz, A. T.; Angelis, Carlos F.; Salio, Paola; Kidd, Chris; Huffman, George J.; De Castro, Manuel

    2011-01-01

    This paper reviews the many aspects of precipitation measurement that are relevant to providing an accurate global assessment of this important environmental parameter. Methods discussed include ground data, satellite estimates and numerical models. First, the methods for measuring, estimating, and modeling precipitation are discussed. Then, the most relevant datasets gathering precipitation information from those three sources are presented. The third part of the paper illustrates a number of the many applications of those measurements and databases. The aim of the paper is to organize the many links and feedbacks between precipitation measurement, estimation and modeling, indicating the uncertainties and limitations of each technique in order to identify areas requiring further attention, and to show the limits within which datasets can be used.

  13. Detecting Novel Associations in Large Datasets

    PubMed Central

    Reshef, David N.; Reshef, Yakir A.; Finucane, Hilary K.; Grossman, Sharon R.; McVean, Gilean; Turnbaugh, Peter J.; Lander, Eric S.; Mitzenmacher, Michael; Sabeti, Pardis C.

    2012-01-01

    Identifying interesting relationships between pairs of variables in large datasets is increasingly important. Here, we present a measure of dependence for two-variable relationships: the maximal information coefficient (MIC). MIC captures a wide range of associations both functional and not, and for functional relationships provides a score that roughly equals the coefficient of determination (R2) of the data relative to the regression function. MIC belongs to a larger class of maximal information-based nonparametric exploration (MINE) statistics for identifying and classifying relationships. We apply MIC and MINE to datasets in global health, gene expression, major-league baseball, and the human gut microbiota, and identify known and novel relationships. PMID:22174245

  14. 3DSEM: A 3D microscopy dataset.

    PubMed

    Tafti, Ahmad P; Kirkpatrick, Andrew B; Holz, Jessica D; Owen, Heather A; Yu, Zeyun

    2016-03-01

    The Scanning Electron Microscope (SEM) as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples.

  15. Scalable Machine Learning for Massive Astronomical Datasets

    NASA Astrophysics Data System (ADS)

    Ball, Nicholas M.; Astronomy Data Centre, Canadian

    2014-01-01

    We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors, and the local outlier factor. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex datasets that wishes to extract the full scientific value from its data.

  16. Scalable Machine Learning for Massive Astronomical Datasets

    NASA Astrophysics Data System (ADS)

    Ball, Nicholas M.; Gray, A.

    2014-04-01

    We present the ability to perform data mining and machine learning operations on a catalog of half a billion astronomical objects. This is the result of the combination of robust, highly accurate machine learning algorithms with linear scalability that renders the applications of these algorithms to massive astronomical data tractable. We demonstrate the core algorithms kernel density estimation, K-means clustering, linear regression, nearest neighbors, random forest and gradient-boosted decision tree, singular value decomposition, support vector machine, and two-point correlation function. Each of these is relevant for astronomical applications such as finding novel astrophysical objects, characterizing artifacts in data, object classification (including for rare objects), object distances, finding the important features describing objects, density estimation of distributions, probabilistic quantities, and exploring the unknown structure of new data. The software, Skytree Server, runs on any UNIX-based machine, a virtual machine, or cloud-based and distributed systems including Hadoop. We have integrated it on the cloud computing system of the Canadian Astronomical Data Centre, the Canadian Advanced Network for Astronomical Research (CANFAR), creating the world's first cloud computing data mining system for astronomy. We demonstrate results showing the scaling of each of our major algorithms on large astronomical datasets, including the full 470,992,970 objects of the 2 Micron All-Sky Survey (2MASS) Point Source Catalog. We demonstrate the ability to find outliers in the full 2MASS dataset utilizing multiple methods, e.g., nearest neighbors. This is likely of particular interest to the radio astronomy community given, for example, that survey projects contain groups dedicated to this topic. 2MASS is used as a proof-of-concept dataset due to its convenience and availability. These results are of interest to any astronomical project with large and/or complex

  17. Data Assimilation and Model Evaluation Experiment Datasets.

    NASA Astrophysics Data System (ADS)

    Lai, Chung-Chieng A.; Qian, Wen; Glenn, Scott M.

    1994-05-01

    The Institute for Naval Oceanography, in cooperation with Naval Research Laboratories and universities, executed the Data Assimilation and Model Evaluation Experiment (DAMÉE) for the Gulf Stream region during fiscal years 1991-1993. Enormous effort has gone into the preparation of several high-quality and consistent datasets for model initialization and verification. This paper describes the preparation process, the temporal and spatial scopes, the contents, the structure, etc., of these datasets.The goal of DAMEE and the need of data for the four phases of experiment are briefly stated. The preparation of DAMEE datasets consisted of a series of processes: 1)collection of observational data; 2) analysis and interpretation; 3) interpolation using the Optimum Thermal Interpolation System package; 4) quality control and re-analysis; and 5) data archiving and software documentation.The data products from these processes included a time series of 3D fields of temperature and salinity, 2D fields of surface dynamic height and mixed-layer depth, analysis of the Gulf Stream and rings system, and bathythermograph profiles. To date, these are the most detailed and high-quality data for mesoscale ocean modeling, data assimilation, and forecasting research. Feedback from ocean modeling groups who tested this data was incorporated into its refinement.Suggestions for DAMEE data usages include 1) ocean modeling and data assimilation studies, 2) diagnosis and theorectical studies, and 3) comparisons with locally detailed observations.

  18. Projecting global datasets to achieve equal areas

    USGS Publications Warehouse

    Usery, E.L.; Finn, M.P.; Cox, J.D.; Beard, T.; Ruhl, S.; Bearden, M.

    2003-01-01

    Scientists routinely accomplish global modeling in the raster domain, but recent research has indicated that the transformation of large areas through map projection equations leads to errors. This research attempts to gauge the extent of map projection and resampling effects on the tabulation of categorical areas by comparing the results of three datasets for seven common projections. The datasets, Global Land Cover, Holdridge Life Zones, and Global Vegetation, were compiled at resolutions of 30 arc-second, 1/2 degree, and 1 degree, respectively. These datasets were projected globally from spherical coordinates to plane representations. Results indicate significant problems in the implementation of global projection transformations in commercial software, as well as differences in areal accuracy across projections. The level of raster resolution directly affects the accuracy of areal tabulations, with higher resolution yielding higher accuracy. If the raster resolution is high enough for individual pixels to approximate points, the areal error tends to zero. The 30-arc-second cells appear to approximate this condition.

  19. Evaluation of Global Monsoon Precipitation Changes based on Five Reanalysis Datasets

    SciTech Connect

    Lin, Renping; Zhou, Tianjun; Qian, Yun

    2014-02-01

    With the motivation to identify whether or not a reasonably simulated atmospheric circulation would necessarily lead to a successful reproduction of monsoon precipitation, the performances of five sets of reanalysis data (NCEP2, ERA40, JRA25, ERA-Interim and MERRA) in reproducing the climatology, interannual variation and long-term trend of global monsoon (GM) precipitation are comprehensively evaluated. In order to better understand the variability and long-term trend of GM precipitation, we also examined the major components of water budget, including evaporation, water vapor convergence and the change in local water vapor storage, based on five reanalysis datasets. The results show that all five reanalysis data reasonably reproduce the climatology of GM precipitation. The ERA-Interim (NCEP2) shows the highest (lowest) skill among the five datasets. The observed GM precipitation shows an increasing tendency during 1979-2001 along with a strong interannual variability, which is reasonably reproduced by the five sets of reanalysis data. The observed increasing trend of GM precipitation is dominated by the contribution from the North African, North American and Australian monsoons. All five data fail in reproducing the increasing tendency of North African monsoon precipitation. The wind convergence term in water budget equation dominate the GM precipitation variation, indicating a consistency between the GM precipitation and the seasonal change of prevailing wind.

  20. 2001 BUDGET: Research Gets Hefty Boost in 2001 Defense Budget.

    PubMed

    Malakoff, D

    2000-09-01

    Next year's $289 billion defense budget, which President Bill Clinton signed last month, includes big boosts for a host of science programs, from endangered species research to developing laser weapons. And with the two major presidential candidates pledging further boosts, the Pentagon's portfolio is attracting increasing attention from the life sciences community as well. But some analysts worry that Congress and the Pentagon may be shortchanging long-term, high-risk research in favor of projects with a more certain payoff. PMID:17811142

  1. Quantifying uncertainty in observational rainfall datasets

    NASA Astrophysics Data System (ADS)

    Lennard, Chris; Dosio, Alessandro; Nikulin, Grigory; Pinto, Izidine; Seid, Hussen

    2015-04-01

    The CO-ordinated Regional Downscaling Experiment (CORDEX) has to date seen the publication of at least ten journal papers that examine the African domain during 2012 and 2013. Five of these papers consider Africa generally (Nikulin et al. 2012, Kim et al. 2013, Hernandes-Dias et al. 2013, Laprise et al. 2013, Panitz et al. 2013) and five have regional foci: Tramblay et al. (2013) on Northern Africa, Mariotti et al. (2014) and Gbobaniyi el al. (2013) on West Africa, Endris et al. (2013) on East Africa and Kalagnoumou et al. (2013) on southern Africa. There also are a further three papers that the authors know about under review. These papers all use an observed rainfall and/or temperature data to evaluate/validate the regional model output and often proceed to assess projected changes in these variables due to climate change in the context of these observations. The most popular reference rainfall data used are the CRU, GPCP, GPCC, TRMM and UDEL datasets. However, as Kalagnoumou et al. (2013) point out there are many other rainfall datasets available for consideration, for example, CMORPH, FEWS, TAMSAT & RIANNAA, TAMORA and the WATCH & WATCH-DEI data. They, with others (Nikulin et al. 2012, Sylla et al. 2012) show that the observed datasets can have a very wide spread at a particular space-time coordinate. As more ground, space and reanalysis-based rainfall products become available, all which use different methods to produce precipitation data, the selection of reference data is becoming an important factor in model evaluation. A number of factors can contribute to a uncertainty in terms of the reliability and validity of the datasets such as radiance conversion algorithims, the quantity and quality of available station data, interpolation techniques and blending methods used to combine satellite and guage based products. However, to date no comprehensive study has been performed to evaluate the uncertainty in these observational datasets. We assess 18 gridded

  2. Comparing methods of analysing datasets with small clusters: case studies using four paediatric datasets.

    PubMed

    Marston, Louise; Peacock, Janet L; Yu, Keming; Brocklehurst, Peter; Calvert, Sandra A; Greenough, Anne; Marlow, Neil

    2009-07-01

    Studies of prematurely born infants contain a relatively large percentage of multiple births, so the resulting data have a hierarchical structure with small clusters of size 1, 2 or 3. Ignoring the clustering may lead to incorrect inferences. The aim of this study was to compare statistical methods which can be used to analyse such data: generalised estimating equations, multilevel models, multiple linear regression and logistic regression. Four datasets which differed in total size and in percentage of multiple births (n = 254, multiple 18%; n = 176, multiple 9%; n = 10 098, multiple 3%; n = 1585, multiple 8%) were analysed. With the continuous outcome, two-level models produced similar results in the larger dataset, while generalised least squares multilevel modelling (ML GLS 'xtreg' in Stata) and maximum likelihood multilevel modelling (ML MLE 'xtmixed' in Stata) produced divergent estimates using the smaller dataset. For the dichotomous outcome, most methods, except generalised least squares multilevel modelling (ML GH 'xtlogit' in Stata) gave similar odds ratios and 95% confidence intervals within datasets. For the continuous outcome, our results suggest using multilevel modelling. We conclude that generalised least squares multilevel modelling (ML GLS 'xtreg' in Stata) and maximum likelihood multilevel modelling (ML MLE 'xtmixed' in Stata) should be used with caution when the dataset is small. Where the outcome is dichotomous and there is a relatively large percentage of non-independent data, it is recommended that these are accounted for in analyses using logistic regression with adjusted standard errors or multilevel modelling. If, however, the dataset has a small percentage of clusters greater than size 1 (e.g. a population dataset of children where there are few multiples) there appears to be less need to adjust for clustering.

  3. Budget estimates. Fiscal year 1998

    SciTech Connect

    1997-02-01

    The U.S. Congress has determined that the safe use of nuclear materials for peaceful purposes is a legitimate and important national goal. It has entrusted the Nuclear Regulatory Commission (NRC) with the primary Federal responsibility for achieving that goal. The NRC`s mission, therefore, is to regulate the Nation`s civilian use of byproduct, source, and special nuclear materials to ensure adequate protection of public health and safety, to promote the common defense and security, and to protect the environment. The NRC`s FY 1998 budget requests new budget authority of $481,300,000 to be funded by two appropriations - one is the NRC`s Salaraies and Expenses appropriation for $476,500,000, and the other is NRC`s Office of Inspector General appropriation for $4,800,000. Of the funds appropriated to the NRC`s Salaries and Expenses, $17,000,000, shall be derived from the Nuclear Waste Fund and $2,000,000 shall be derived from general funds. The proposed FY 1998 appropriation legislation would also exempt the $2,000,000 for regulatory reviews and other assistance provided to the Department of Energy from the requirement that the NRC collect 100 percent of its budget from fees. The sums appropriated to the NRC`s Salaries and Expenses and NRC`s Office of Inspector General shall be reduced by the amount of revenues received during FY 1998 from licensing fees, inspection services, and other services and collections, so as to result in a final FY 1998 appropriation for the NRC of an estimated $19,000,000 - the amount appropriated from the Nuclear Waste Fund and from general funds. Revenues derived from enforcement actions shall be deposited to miscellaneous receipts of the Treasury.

  4. Development of a SPARK Training Dataset

    SciTech Connect

    Sayre, Amanda M.; Olson, Jarrod R.

    2015-03-01

    In its first five years, the National Nuclear Security Administration’s (NNSA) Next Generation Safeguards Initiative (NGSI) sponsored more than 400 undergraduate, graduate, and post-doctoral students in internships and research positions (Wyse 2012). In the past seven years, the NGSI program has, and continues to produce a large body of scientific, technical, and policy work in targeted core safeguards capabilities and human capital development activities. Not only does the NGSI program carry out activities across multiple disciplines, but also across all U.S. Department of Energy (DOE)/NNSA locations in the United States. However, products are not readily shared among disciplines and across locations, nor are they archived in a comprehensive library. Rather, knowledge of NGSI-produced literature is localized to the researchers, clients, and internal laboratory/facility publication systems such as the Electronic Records and Information Capture Architecture (ERICA) at the Pacific Northwest National Laboratory (PNNL). There is also no incorporated way of analyzing existing NGSI literature to determine whether the larger NGSI program is achieving its core safeguards capabilities and activities. A complete library of NGSI literature could prove beneficial to a cohesive, sustainable, and more economical NGSI program. The Safeguards Platform for Automated Retrieval of Knowledge (SPARK) has been developed to be a knowledge storage, retrieval, and analysis capability to capture safeguards knowledge to exist beyond the lifespan of NGSI. During the development process, it was necessary to build a SPARK training dataset (a corpus of documents) for initial entry into the system and for demonstration purposes. We manipulated these data to gain new information about the breadth of NGSI publications, and they evaluated the science-policy interface at PNNL as a practical demonstration of SPARK’s intended analysis capability. The analysis demonstration sought to answer the

  5. Network interdiction with budget constraints

    SciTech Connect

    Santhi, Nankakishore; Pan, Feng

    2009-01-01

    Several scenarios exist in the modern interconnected world which call for efficient network interdiction algorithms. Applications are varied, including computer network security, prevention of spreading of Internet worms, policing international smuggling networks, controlling spread of diseases and optimizing the operation of large public energy grids. In this paper we consider some natural network optimization questions related to the budget constrained interdiction problem over general graphs. Many of these questions turn out to be computationally hard to tackle. We present a particularly interesting practical form of the interdiction question which we show to be computationally tractable. A polynomial time algorithm is then presented for this problem.

  6. National Hydropower Plant Dataset, Version 1

    DOE Data Explorer

    Samu, Nicole; Kao, Shih-Chieh; O'Connor, Patrick

    2016-09-30

    The 2016 National Hydropower Plant Dataset, Version 1, includes geospatial point-level locations and key characteristics of online existing hydropower plants in the United States that are currently licensed, exempt, or awaiting relicensing. These data are a subset extracted from NHAAP’s Existing Hydropower Assets (EHA) internal database, which is a cornerstone of NHAAP’s EHA effort that has supported multiple U.S. hydropower R&D research initiatives related to market acceleration, environmental impact reduction, technology-to-market activities, and climate change impact assessment. For more information on NHAAP’s EHA effort, please visit the project web page at: http://nhaap.ornl.gov/existing-hydropower.

  7. Solar resource assessment in complex orography: a comparison of available datasets for the Trentino region

    NASA Astrophysics Data System (ADS)

    Laiti, Lavinia; Giovannini, Lorenzo; Zardi, Dino

    2015-04-01

    The accurate assessment of the solar radiation available at the Earth's surface is essential for a wide range of energy-related applications, such as the design of solar power plants, water heating systems and energy-efficient buildings, as well as in the fields of climatology, hydrology, ecology and agriculture. The characterization of solar radiation is particularly challenging in complex-orography areas, where topographic shadowing and altitude effects, together with local weather phenomena, greatly increase the spatial and temporal variability of such variable. At present, approaches ranging from surface measurements interpolation to orographic down-scaling of satellite data, to numerical model simulations are adopted for mapping solar radiation. In this contribution a high-resolution (200 m) solar atlas for the Trentino region (Italy) is presented, which was recently developed on the basis of hourly observations of global radiation collected from the local radiometric stations during the period 2004-2012. Monthly and annual climatological irradiation maps were obtained by the combined use of a GIS-based clear-sky model (r.sun module of GRASS GIS) and geostatistical interpolation techniques (kriging). Moreover, satellite radiation data derived by the MeteoSwiss HelioMont algorithm (2 km resolution) were used for missing-data reconstruction and for the final mapping, thus integrating ground-based and remote-sensing information. The results are compared with existing solar resource datasets, such as the PVGIS dataset, produced by the Joint Research Center Institute for Energy and Transport, and the HelioMont dataset, in order to evaluate the accuracy of the different datasets available for the region of interest.

  8. Ultraspectral Sounding Retrieval Error Budget and Estimation

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2011-01-01

    The ultraspectral infrared radiances obtained from satellite observations provide atmospheric, surface, and/or cloud information. The intent of the measurement of the thermodynamic state is the initialization of weather and climate models. Great effort has been given to retrieving and validating these atmospheric, surface, and/or cloud properties. Error Consistency Analysis Scheme (ECAS), through fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of absolute and standard deviation of differences in both spectral radiance and retrieved geophysical parameter domains. The retrieval error is assessed through ECAS without assistance of other independent measurements such as radiosonde data. ECAS re-evaluates instrument random noise, and establishes the link between radiometric accuracy and retrieved geophysical parameter accuracy. ECAS can be applied to measurements of any ultraspectral instrument and any retrieval scheme with associated RTM. In this paper, ECAS is described and demonstration is made with the measurements of the METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI)..

  9. AGU testifies on NASA Budget

    NASA Astrophysics Data System (ADS)

    Simarski, Lynn Teo

    Witnesses from outside the U.S. government—including Frank Eden, representing AGU—testified about the National Aeronautics and Space Administration's budget on March 12 before the House Science Committee's subcommittee on space. One major topic of the hearing was familiar: what should NASA's top priority be, space science or human exploration of space.“Obviously this committee has a huge job of trying to set priorities—consistent with the budget restraints—that will end up giving the American taxpayer the most bang for his buck, as well as providing direction for our space program,” said F. James Sensenbrenner, Jr. (R-Wis.), the subcommittee's ranking Republican. Another recurring topic, cited by the subcommittee's new chairman, Ralph M. Hall (D-Tex.), as well as by other committee members, was how to translate NASA-developed technologies into commercial gain for the U.S. in the global marketplace. Hall and others also posed a number of questions on a topic the chairman called a special concern of his: whether it would be economically and scientifically plausible for the U.S. to use the Soviet space station Mir for certain activities, such as medical applications.

  10. The NASA budget in Congress

    NASA Astrophysics Data System (ADS)

    Reiff, Patricia H.

    I would like to make the members of AGU aware of the recent happenings in Congress with regard to the fiscal year (FY) 1986 budget for the National Aeronautics and Space Administration (NASA). NASA was scheduled for modest increases from FY 1985 levels in the President's budget (Eos, February 19, 1985, p. 73), which was approved by the House Science and Technology Committee. However, when the authorization bill (H.R. 1714) “hit the floor” on April 3, amendments were offered and overwhelmingly passed to freeze funding at FY 1985 levels. (A similar fate met the National Science Foundation bill, H.R. 1210, on April 17.) The process is under way in the Senate, and the Subcommittee on Science, Technology, and Space, which is the authorizing committee (under the chairmanship of Slade Gorton), plans to mark up its NASA bill in the next few days; the full committee—the Senate Commerce, Science, and Transportation Committee—will then offer it to the floor.

  11. Lifting Object Detection Datasets into 3D.

    PubMed

    Carreira, Joao; Vicente, Sara; Agapito, Lourdes; Batista, Jorge

    2016-07-01

    While data has certainly taken the center stage in computer vision in recent years, it can still be difficult to obtain in certain scenarios. In particular, acquiring ground truth 3D shapes of objects pictured in 2D images remains a challenging feat and this has hampered progress in recognition-based object reconstruction from a single image. Here we propose to bypass previous solutions such as 3D scanning or manual design, that scale poorly, and instead populate object category detection datasets semi-automatically with dense, per-object 3D reconstructions, bootstrapped from:(i) class labels, (ii) ground truth figure-ground segmentations and (iii) a small set of keypoint annotations. Our proposed algorithm first estimates camera viewpoint using rigid structure-from-motion and then reconstructs object shapes by optimizing over visual hull proposals guided by loose within-class shape similarity assumptions. The visual hull sampling process attempts to intersect an object's projection cone with the cones of minimal subsets of other similar objects among those pictured from certain vantage points. We show that our method is able to produce convincing per-object 3D reconstructions and to accurately estimate cameras viewpoints on one of the most challenging existing object-category detection datasets, PASCAL VOC. We hope that our results will re-stimulate interest on joint object recognition and 3D reconstruction from a single image. PMID:27295458

  12. Land cover trends dataset, 1973-2000

    USGS Publications Warehouse

    Soulard, Christopher E.; Acevedo, William; Auch, Roger F.; Sohl, Terry L.; Drummond, Mark A.; Sleeter, Benjamin M.; Sorenson, Daniel G.; Kambly, Steven; Wilson, Tamara S.; Taylor, Janis L.; Sayler, Kristi L.; Stier, Michael P.; Barnes, Christopher A.; Methven, Steven C.; Loveland, Thomas R.; Headley, Rachel; Brooks, Mark S.

    2014-01-01

    The U.S. Geological Survey Land Cover Trends Project is releasing a 1973–2000 time-series land-use/land-cover dataset for the conterminous United States. The dataset contains 5 dates of land-use/land-cover data for 2,688 sample blocks randomly selected within 84 ecological regions. The nominal dates of the land-use/land-cover maps are 1973, 1980, 1986, 1992, and 2000. The land-use/land-cover maps were classified manually from Landsat Multispectral Scanner, Thematic Mapper, and Enhanced Thematic Mapper Plus imagery using a modified Anderson Level I classification scheme. The resulting land-use/land-cover data has a 60-meter resolution and the projection is set to Albers Equal-Area Conic, North American Datum of 1983. The files are labeled using a standard file naming convention that contains the number of the ecoregion, sample block, and Landsat year. The downloadable files are organized by ecoregion, and are available in the ERDAS IMAGINETM (.img) raster file format.

  13. Cloud Induced Enhancement of Ground Level Solar Radiation

    NASA Astrophysics Data System (ADS)

    Inman, R.; Chu, Y.; Coimbra, C.

    2013-12-01

    Atmospheric aerosol and cloud cover are typically associated with long and short-term variability of all three solar radiation components at the ground level. Although aerosol attenuation can be a substantial factor for Direct Normal Irradiance (DNI) in some microclimates, the strongest factor for ground level irradiance attenuation is cloud cover which acts on time-scales associated with strong solar power generation fluctuations. Furthermore, the driving effects of clouds on radiative energy budgets include shortwave cooling, as a result of absorption of incoming solar radiation, and longwave heating, due to reduced emission of thermal radiation by relatively cool cloud tops. Under special circumstances, the presence of clouds in the circumsolar region may lead to the reverse; a local increase in the diffuse downwelling solar radiation due to directional scattering from clouds. This solar beam effect exceed the losses resulting from the backscattering of radiation into space. Such conditions result in radiation levels that temporarily exceed the localized clear sky values. These phenomena are referred to as Cloud Enhancement Events (CEEs). There are currently two fundamental CEE mechanisms discussed in the literature. The first involves well-defined, and optically thick cloud edges close to, but not obscuring, the solar disk. The effect here is of producing little or no change in the normal beam radiation. In this case, cloud edges in the vicinity of the sun create a non-isotropic increase in the local diffuse radiation field with respect to the isotropic scattering of a clear-sky atmosphere. The second type of CEE allows for partial or full obstruction of the solar disk by an optically thin diffuser such as fine clouds, haze or fog; which results in an enhanced but still nearly isotropic diffuse radiation field. In this study, an entire year of solar radiation data and total sky images taken at 30 second resolution at the University of California, Merced (UCM

  14. A satellite view of the direct effect of aerosols on solar radiation at global scale

    NASA Astrophysics Data System (ADS)

    Hatzianastassiou, Nikolaos; Papadimas, Christos D.; Matsoukas, Christos; Fotiadi, Aggeliki; Benas, Nikolaos; Vardavas, Ilias

    2016-04-01

    Aerosols are a key parameter for better understanding and predicting current and future climate change. They are determining, apart from clouds, patterns of solar radiation through scattering and absorption processes. Especially, under cloud-free skies, aerosols are the major modulator of the solar radiation budget of the Earth-atmosphere system. Although significant improvement has been made as to better understanding the direct radiative effect (DRE) of aerosols, there is still a need for further improvement in our knowledge of the DRE spatial and temporal patterns, in particular with respect to extended spatial and temporal coverage of relevant information. In an ongoing rapidly evolving era of great satellite-based achievements, concerning the knowledge of solar radiation budget and its modulators, and with the great progress in obtaining significant information on key aerosol optical properties needed for modeling DRE, it is a great challenge to use all this new aerosol information and to see what is the new acquired scientific knowledge. The objective of this study is to obtain an improved view of global aerosol DRE effects using contemporary accurate data for the important atmospheric and surface parameters determining the solar radiation budget, with emphasis to state of the art aerosol data. Thus, a synergy is made of different datasets providing the necessary input data and of a detailed spectral radiative transfer model (RTM) to compute spectral globally distributed aerosol DREs. Emphasis is given on using highly accurate and well-tested aerosol optical properties. Spectral information on aerosol optical depth (AOD) is taken from retrieved products of the MODerate resolution Imaging Spectroradiometer (MODIS) instrument, while similar information is taken from MODIS for the aerosol asymmetry parameter (AP) over ocean. Information from MODIS is also taken for the aerosol single scattering albedo (SSA). All this information comes from the latest Collection

  15. Most science spared big budget bite

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Most science budgets emerged unscathed from President Ronald Reagan's fiscal 1983 budget proposal. Total funding for research and development came out slightly ahead of inflation, as did funding for basic research (Eos, February 16, p. 162). The National Science Foundation (NSF) edged past the projected 7.3% inflation rate for 1982, and the National Aeronautics and Space Administration (NASA) budget is to be increased by 10.6%. However, the U.S. Geological Survey (USGS) is budgeted for a 4.2% increase in funding, and the National Oceanic and Atmospheric Administration (NOAA) will take an 8.3% cut.

  16. 42 CFR 441.472 - Budget methodology.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... following criteria: (1) The State's method of determining the budget allocation is objective and evidence based utilizing valid, reliable cost data. (2) The State's method is applied consistently...

  17. Assessment of the global energy budget of Mars and comparison to the Earth

    NASA Astrophysics Data System (ADS)

    Madeleine, J.; Head, J. W.; Forget, F.; Wolff, M. J.

    2012-12-01

    The energy balance of a planet depends on its radiative environment and internal energy production. In the case of present-day Mars, the whole climate system is by far controlled by solar radiation rather than internal heat. Over the last hundreds of millions of years, changes in the orbital parameters and insolation pattern have induced various climatic excursions, during which the energy transfers within the atmosphere were different from today. On the longer term, i.e. over the last billions of years, the energy budget was even more different, as a result of the larger geothermal flux and heat provided by volcanic eruptions and impacts. Seeing the climate of Mars from an energy budget perspective provides a framework for understanding the key processes, as well as constraining climate models. The goal of this research is thus to characterize and analyze the energy budget of Mars. The first step, which is described in this communication, consists of quantifying the different components of the Mars radiation budget using the LMD (Laboratoire de Météorologie Dynamique) GCM (Global Climate Model). The LMD/GCM has been developed for more than 20 years and has now reached a level of detail that allows us to quantify the different contributions of CO2 gas, dust and clouds to the radiation budget. The general picture of the radiation budget as simulated by the GCM can be summarized as follows. First of all, the global-mean shortwave (SW) flux incident on the top of the Martian atmosphere is 148.5 W m-2. Whereas most of the incoming solar radiation is absorbed by atmospheric gases on Earth, on Mars most of the sunlight is absorbed by dust particles. Our simulations show that around 15% of the incoming solar radiation is absorbed by dust particles whereas 2.5% is reflected by them. Water-ice clouds also reflect around 1.5% of the solar radiation, which is much smaller than the amount of radiation reflected by clouds on Earth (around 20%). The Martian atmosphere is even

  18. Seasonal budgets of ozone and oxidant precursors in an industrial coastal area of northern Italy

    NASA Technical Reports Server (NTRS)

    Georgiadis, T.; Alberti, L.; Bonasoni, P.; Fortezza, F.; Giovanelli, G.; Strocchi, V.

    1994-01-01

    The seasonal budgets and evolution of photochemical oxidants reported for greater Ravenna's urban-industrial area in the present study were calculated using the combined data from on-site systematic surveys (1978-1989) and from the monitoring network of the local environmental authorities. The notable differences in the concentrations of ozone and nitrogen oxides depended on season, and meteorological variables showed a marked correlation to the seasonal budget of trace constituents. The weak local circulation, the land-sea breeze system, and high solar radiation in summer, which may persist at length because of the anticyclonic conditions, can produce episodes of intense photochemical reactions. In winter, by contrast, low solar radiation and the absence of the breeze system results in very different evolutions of both pollutant concentrations and their seasonal budget.

  19. Interannual variability of the Atlantic Cold Tongue heat budget

    NASA Astrophysics Data System (ADS)

    Planton, Yann; Voldoire, Aurore; Giordani, Hervé; Caniaux, Guy

    2015-04-01

    The processes governing the Atlantic Cold Tongue (ACT) development are now better understood, but the mechanisms of its interannual variability are still unclear. The aim of the present study is to explore the mechanisms leading to the cold tongue formation during cold and warm ACT events. Cold and warm ACT events are classified statistically from several datasets following a criteria derived from Richter et al. (2013) and slightly adapted. This classification allows to analyse composites of extreme events. In particular, composites of the mixed layer heat budget have been calculated, computed online in a forced global ocean model. This mixed layer heat budget is a good tool to identify the oceanic processes which control the formation of the ACT and its variability. The results show that the turbulent mixing at the base of the mixed layer plays a dominant role controlling the ACT formation. Cold (warm) events are associated with strong increase (decrease) of the turbulent mixing from march to July. In addition horizontal the advection anomalies are opposite during cold and warm events in June-July. The positive (negative) anomalies during cold (warm) events tend to damp (enhance) the ACT. During warm events, the advection process is responsible of the ACT formation with almost the same intensity as when averaged over all.

  20. GLEAM v3: updated land evaporation and root-zone soil moisture datasets

    NASA Astrophysics Data System (ADS)

    Martens, Brecht; Miralles, Diego; Lievens, Hans; van der Schalie, Robin; de Jeu, Richard; Fernández-Prieto, Diego; Verhoest, Niko

    2016-04-01

    Evaporation determines the availability of surface water resources and the requirements for irrigation. In addition, through its impacts on the water, carbon and energy budgets, evaporation influences the occurrence of rainfall and the dynamics of air temperature. Therefore, reliable estimates of this flux at regional to global scales are of major importance for water management and meteorological forecasting of extreme events. However, the global-scale magnitude and variability of the flux, and the sensitivity of the underlying physical process to changes in environmental factors, are still poorly understood due to the limited global coverage of in situ measurements. Remote sensing techniques can help to overcome the lack of ground data. However, evaporation is not directly observable from satellite systems. As a result, recent efforts have focussed on combining the observable drivers of evaporation within process-based models. The Global Land Evaporation Amsterdam Model (GLEAM, www.gleam.eu) estimates terrestrial evaporation based on daily satellite observations of meteorological drivers of terrestrial evaporation, vegetation characteristics and soil moisture. Since the publication of the first version of the model in 2011, GLEAM has been widely applied for the study of trends in the water cycle, interactions between land and atmosphere and hydrometeorological extreme events. A third version of the GLEAM global datasets will be available from the beginning of 2016 and will be distributed using www.gleam.eu as gateway. The updated datasets include separate estimates for the different components of the evaporative flux (i.e. transpiration, bare-soil evaporation, interception loss, open-water evaporation and snow sublimation), as well as variables like the evaporative stress, potential evaporation, root-zone soil moisture and surface soil moisture. A new dataset using SMOS-based input data of surface soil moisture and vegetation optical depth will also be

  1. Advance Appropriations: A Needless and Confusing Education Budget Technique. Federal Education Budget Project

    ERIC Educational Resources Information Center

    Delisle, Jason

    2007-01-01

    This report argues that advance appropriations serve no functional purpose for schools, but they create a loss of transparency, comparability, and simplicity in federal education budgeting. It allocates spending before future budgets have been established. The approach was originally used to skirt spending limits and budget procedures in place…

  2. Enhanced orbit determination filter sensitivity analysis: Error budget development

    NASA Technical Reports Server (NTRS)

    Estefan, J. A.; Burkhart, P. D.

    1994-01-01

    An error budget analysis is presented which quantifies the effects of different error sources in the orbit determination process when the enhanced orbit determination filter, recently developed, is used to reduce radio metric data. The enhanced filter strategy differs from more traditional filtering methods in that nearly all of the principal ground system calibration errors affecting the data are represented as filter parameters. Error budget computations were performed for a Mars Observer interplanetary cruise scenario for cases in which only X-band (8.4-GHz) Doppler data were used to determine the spacecraft's orbit, X-band ranging data were used exclusively, and a combined set in which the ranging data were used in addition to the Doppler data. In all three cases, the filter model was assumed to be a correct representation of the physical world. Random nongravitational accelerations were found to be the largest source of error contributing to the individual error budgets. Other significant contributors, depending on the data strategy used, were solar-radiation pressure coefficient uncertainty, random earth-orientation calibration errors, and Deep Space Network (DSN) station location uncertainty.

  3. SAGE Research Methods Datasets: A Data Analysis Educational Tool.

    PubMed

    Vardell, Emily

    2016-01-01

    SAGE Research Methods Datasets (SRMD) is an educational tool designed to offer users the opportunity to obtain hands-on experience with data analysis. Users can search for and browse authentic datasets by method, discipline, and data type. Each of the datasets are supplemented with educational material on the research method and clear guidelines for how to approach data analysis. PMID:27391182

  4. SAGE Research Methods Datasets: A Data Analysis Educational Tool.

    PubMed

    Vardell, Emily

    2016-01-01

    SAGE Research Methods Datasets (SRMD) is an educational tool designed to offer users the opportunity to obtain hands-on experience with data analysis. Users can search for and browse authentic datasets by method, discipline, and data type. Each of the datasets are supplemented with educational material on the research method and clear guidelines for how to approach data analysis.

  5. Dataset-Driven Research to Support Learning and Knowledge Analytics

    ERIC Educational Resources Information Center

    Verbert, Katrien; Manouselis, Nikos; Drachsler, Hendrik; Duval, Erik

    2012-01-01

    In various research areas, the availability of open datasets is considered as key for research and application purposes. These datasets are used as benchmarks to develop new algorithms and to compare them to other algorithms in given settings. Finding such available datasets for experimentation can be a challenging task in technology enhanced…

  6. National hydrography dataset--linear referencing

    USGS Publications Warehouse

    Simley, Jeffrey; Doumbouya, Ariel

    2012-01-01

    Geospatial data normally have a certain set of standard attributes, such as an identification number, the type of feature, and name of the feature. These standard attributes are typically embedded into the default attribute table, which is directly linked to the geospatial features. However, it is impractical to embed too much information because it can create a complex, inflexible, and hard to maintain geospatial dataset. Many scientists prefer to create a modular, or relational, data design where the information about the features is stored and maintained separately, then linked to the geospatial data. For example, information about the water chemistry of a lake can be maintained in a separate file and linked to the lake. A Geographic Information System (GIS) can then relate the water chemistry to the lake and analyze it as one piece of information. For example, the GIS can select all lakes more than 50 acres, with turbidity greater than 1.5 milligrams per liter.

  7. AMADA-Analysis of multidimensional astronomical datasets

    NASA Astrophysics Data System (ADS)

    de Souza, R. S.; Ciardi, B.

    2015-09-01

    We present AMADA, an interactive web application to analyze multidimensional datasets. The user uploads a simple ASCII file and AMADA performs a number of exploratory analysis together with contemporary visualizations diagnostics. The package performs a hierarchical clustering in the parameter space, and the user can choose among linear, monotonic or non-linear correlation analysis. AMADA provides a number of clustering visualization diagnostics such as heatmaps, dendrograms, chord diagrams, and graphs. In addition, AMADA has the option to run a standard or robust principal components analysis, displaying the results as polar bar plots. The code is written in R and the web interface was created using the SHINY framework. AMADA source-code is freely available at https://goo.gl/KeSPue, and the shiny-app at http://goo.gl/UTnU7I.

  8. Internationally coordinated glacier monitoring: strategy and datasets

    NASA Astrophysics Data System (ADS)

    Hoelzle, Martin; Armstrong, Richard; Fetterer, Florence; Gärtner-Roer, Isabelle; Haeberli, Wilfried; Kääb, Andreas; Kargel, Jeff; Nussbaumer, Samuel; Paul, Frank; Raup, Bruce; Zemp, Michael

    2014-05-01

    (c) the Randolph Glacier Inventory (RGI), a new and globally complete digital dataset of outlines from about 180,000 glaciers with some meta-information, which has been used for many applications relating to the IPCC AR5 report. Concerning glacier changes, a database (Fluctuations of Glaciers) exists containing information about mass balance, front variations including past reconstructed time series, geodetic changes and special events. Annual mass balance reporting contains information for about 125 glaciers with a subset of 37 glaciers with continuous observational series since 1980 or earlier. Front variation observations of around 1800 glaciers are available from most of the mountain ranges world-wide. This database was recently updated with 26 glaciers having an unprecedented dataset of length changes from from reconstructions of well-dated historical evidence going back as far as the 16th century. Geodetic observations of about 430 glaciers are available. The database is completed by a dataset containing information on special events including glacier surges, glacier lake outbursts, ice avalanches, eruptions of ice-clad volcanoes, etc. related to about 200 glaciers. A special database of glacier photographs contains 13,000 pictures from around 500 glaciers, some of them dating back to the 19th century. A key challenge is to combine and extend the traditional observations with fast evolving datasets from new technologies.

  9. VAST Contest Dataset Use in Education

    SciTech Connect

    Whiting, Mark A.; North, Chris; Endert, Alexander; Scholtz, Jean; Haack, Jereme N.; Varley, Caroline F.; Thomas, James J.

    2009-12-13

    The IEEE Visual Analytics Science and Technology (VAST) Symposium has held a contest each year since its inception in 2006. These events are designed to provide visual analytics researchers and developers with analytic challenges similar to those encountered by professional information analysts. The VAST contest has had an extended life outside of the symposium, however, as materials are being used in universities and other educational settings, either to help teachers of visual analytics-related classes or for student projects. We describe how we develop VAST contest datasets that results in products that can be used in different settings and review some specific examples of the adoption of the VAST contest materials in the classroom. The examples are drawn from graduate and undergraduate courses at Virginia Tech and from the Visual Analytics "Summer Camp" run by the National Visualization and Analytics Center in 2008. We finish with a brief discussion on evaluation metrics for education

  10. LIMS Version 6 Level 3 Dataset

    NASA Technical Reports Server (NTRS)

    Remsberg, Ellis E.; Lingenfelser, Gretchen

    2010-01-01

    This report describes the Limb Infrared Monitor of the Stratosphere (LIMS) Version 6 (V6) Level 3 data products and the assumptions used for their generation. A sequential estimation algorithm was used to obtain daily, zonal Fourier coefficients of the several parameters of the LIMS dataset for 216 days of 1978-79. The coefficients are available at up to 28 pressure levels and at every two degrees of latitude from 64 S to 84 N and at the synoptic time of 12 UT. Example plots were prepared and archived from the data at 10 hPa of January 1, 1979, to illustrate the overall coherence of the features obtained with the LIMS-retrieved parameters.

  11. Visualization of cosmological particle-based datasets.

    PubMed

    Navratil, Paul; Johnson, Jarrett; Bromm, Volker

    2007-01-01

    We describe our visualization process for a particle-based simulation of the formation of the first stars and their impact on cosmic history. The dataset consists of several hundred time-steps of point simulation data, with each time-step containing approximately two million point particles. For each time-step, we interpolate the point data onto a regular grid using a method taken from the radiance estimate of photon mapping. We import the resulting regular grid representation into ParaView, with which we extract isosurfaces across multiple variables. Our images provide insights into the evolution of the early universe, tracing the cosmic transition from an initially homogeneous state to one of increasing complexity. Specifically, our visualizations capture the build-up of regions of ionized gas around the first stars, their evolution, and their complex interactions with the surrounding matter. These observations will guide the upcoming James Webb Space Telescope, the key astronomy mission of the next decade.

  12. Asteroids in the EXPLORE II Dataset

    NASA Astrophysics Data System (ADS)

    Schmoll, S.; Mallen-Ornelas, G.; Holman, M.

    2005-12-01

    The inner asteroid belt holds information about the solar system's history and future. The currently accepted theory of planet formation is that smaller rocky bodies collided and formed the planets of the inner solar system, and asteroids are relics of this past. Furthermore, near Earth objects that could potentially collide with us usually originate in the main belt. Determining the size distribution of the main-belt asteroids is key to unlocking the processes of planet formation and possible problems with near Earth objects. Here the EXtra Solar PLanet Occultation(EXPLORE) II data taken with the CFH12K mosaic CCD prime focus camera on the CFHT 3.6-m telescope are used to find the size distribution of main belt asteroids. The EXPLORE Project is an extrasolar planet detection survey that focuses on one patch of the sky per observing run. The resultant data have more observations per asteroid than any preceding deep asteroid search. Here a pipeline is presented to find the asteroids in this dataset, along with the other four EXPLORE datasets. This is done by processing the data with an image subtraction package called ISIS (Alard et al. 1997) and custom masking using IRAF. Asteroids are found using SExtractor (Bertin et al. 1996) and a set of custom C programs that detects moving objects in a series of images. Then light curves are created for each asteroid found. Sizes can be estimated based on the absolute magnitudes of the asteroids. We present absolute magnitudes and preliminary size distribution for the >52 asteroids found thus far. This Research was made possible by the NSF and SAO REU Program.

  13. FY 1984 Science Budget overview

    NASA Astrophysics Data System (ADS)

    Astronomy, engineering, and the physical sciences as a whole were among the best funded programs in the fiscal 1984 budget that President Ronald Reagan sent to Congress last week. In addition, science education got a shot in the arm: The Reagan proposal includes plans for the nation's universities to upgrade scientific instrumentation and to attract and support high caliber scientists and engineers.Reagan proposes that federal funding for research and development, including R&D facilities, total $47 billion in fiscal 1984, up 17% from the fiscal 1983 level. Defense research and development programs would be increased 29%; nondefense R&D would be increased 0.4%. Total basic research would be boosted 10%.

  14. NASA Budget Focuses on Exploration

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2006-02-01

    NASA has decided to rebalance its priorities following several years of healthy growth for science, turning its focus instead towards expanding support for manned space exploration, explained NASA Administrator Michael Griffin at a 16 February hearing before the U.S. House of Representatives Committee on Science. The Bush Administration has requested $16.8 billion for NASA in Fiscal Year 2007, an increase of 3.2 percent over the previous year. Most of the benefit would go to the exploration program, which would get a 55 percent increase in funding-for a total of $3.9 billion-primarily for the development of the new Crew Exploration Vehicle and Crew Launch Vehicle. The science budget would grow by 1.5 percent in FY2007-to $5.3 billion-and then is projected to grow by just one percent per year in 2008-2011.

  15. House cuts NASA, NSF budgets

    NASA Astrophysics Data System (ADS)

    The House passed its version of the Fiscal Year 1990 spending bill July 20, voting less money than requested for NASA, NSF, and other independent agencies. An appropriation of $1.6 billion was approved for the space station despite an effort to cut funding for the project on the House floor.With a voice vote the House approved a Veterans Affairs-Housing and Urban Development- Independent Agencies subcommittee (VAHUDIA) package totaling $65.1 billion, nearly $2.5 billion more than requested in President Bush's budget. NSF received $1.99 billion in the bill, $150 million less than requested, and NASA $12.26 billion, more than a billion less than the President asked for. The Department of Housing and Urban Development ($2.23 billion more than requested) and the Department of Veteran's Affairs ($908 million more than requested) were the big winners in the bill.

  16. NSF budget for fiscal 1986

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    Congress recently passed its first authorization bill for the National Science Foundation (NSF) since fiscal year (FY) 1981. As part of specifying how NSF should spend its money, the bill (H.R. 1210) directs NSF to conduct biannual assessments of universities' needs for research facilities, as called for in the proposed University Research Facilities Revitalization Act (H.R. 2823) (Eos, September 17, 1985, p. 660).The NSF appropriation was of another bill (H.R. 3038) that provided more than $50 billion for the Department of Housing and Urban Development and for 17 independent agencies. The appropriation bill calls for NSF to receive $45.6 million less for research and related activities than the budget request, $5 million less than the request for the U.S. Antarctic Program, but $5 million more than the request for science and engineering education (see Table 1).

  17. 1996 Budget picture still clouded

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    Four months and three work stoppages into fiscal 1996, whole departments and agencies of the United States federal government remain in budgetary limbo. Five annual spending bills still await approval, and parts of nine federal departments and several agencies face the possibility of yet another shutdown, as the current continuing resolution for temporary funding expires on March 15.In the wake of the recent three-week shutdown of the federal government, congressional leaders worked in January to ease future political pain by funding a list of “essential services” for the remainder of the fiscal year. Deemed essential were government programs with the most immediate and conspicuous public impact, such as the National Parks Service and the Passport Services Office. Included on that list of essential services was the National Institutes of Health (NIH), which not only received full funding for the entire fiscal year but also got a 5.7% increase over its 1995 budget.

  18. The Carbon Budget of California

    NASA Astrophysics Data System (ADS)

    Potter, C. S.

    2009-12-01

    The carbon budget of a region can be defined as the sum of annual fluxes of carbon dioxide and methane greenhouse gases (GHGs) into and out of the regional surface coverage area. According to the state government’s recent inventory, California's carbon budget is presently dominated by fossil fuel emissions of CO2 (at >85% of total annual GHG emissions) to meet energy and transportation requirements. Other notable (non-ecosystem) sources of carbon GHG emissions in 2004 were from cement- and lime-making industries, livestock-based agriculture, and waste treatment activities. The NASA-CASA (Carnegie Ames Stanford Approach) simulation model based on satellite observations of monthly vegetation cover (including those from the Moderate Resolution Imaging Spectroradiometer - MODIS) has been used to estimate net ecosystem fluxes and vegetation biomass production over the period 1990-2004. California's annual NPP for all ecosystems in the early 2000s, estimated by CASA at 120 million metric tons of carbon equivalent (MMTCE) per year, was roughly equal to its annual fossil fuel emission rates for carbon. However, since natural ecosystems can accumulate only a small fraction of this annual NPP total in long-term storage pools, the net ecosystem sink flux for atmospheric carbon across the state was estimated at a maximum rate of between 15-24 MMTCE per year under favorable precipitation conditions. Under less favorable precipitation conditions, such as those experienced during the early 1990s, ecosystems statewide were estimated to have lost nearly 15 MMTCE per year to the atmosphere. Considering the large amounts of carbon stored in standing biomass of forests, shrublands, and rangelands across the state, the implications of changing climate and land use practices on ecosystems must be factored into the state’s planning to reduce overall GHG emissions.

  19. Using Radar, Lidar and Radiometer Data from NSA and SHEBA to Quantify Cloud Property Effects on the Surface Heat Budget in the Arctic

    SciTech Connect

    Janet Intrieri; Mathhew Shupe

    2005-01-01

    Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from (1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and (2) the SHEBA field program, which was conducted from an icebreaker frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cycles of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between the two

  20. 7 CFR 3015.115 - Budget revisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Budget revisions. 3015.115 Section 3015.115 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF THE CHIEF FINANCIAL OFFICER, DEPARTMENT OF AGRICULTURE UNIFORM FEDERAL ASSISTANCE REGULATIONS Programmatic Changes and Budget...