Science.gov

Sample records for radiation carcinogenesis comprehensive

  1. [Radiation carcinogenesis].

    PubMed

    Hosoi, Yoshio

    2013-11-01

    Misrepair of DNA damage induced by ionizing radiation is a potential cause of carcinogenesis following exposure to radiation. Radiation exposure increases the incidence of the same types of mutations that occur spontaneously in a given population. A high incidence of DNA double-strand breaks is characteristic of damage by ionizing radiation compared with those induced by other environmental mutagens. In China, residents living in areas with high level background radiation(6mSv/y) had a significantly higher frequency of dicentric and ring chromosomes compared to that for the residents living in the control areas(2mSv/y). Radiation-associated increases in risk were seen for most sites. Gender-averaged excess absolute risk rates estimated at age 70, after exposure at age 30, differ in the sites, and the risks of gastric cancer, breast cancer, colon cancer, and lung cancer were highly increased, in that order. Latent periods for the development of leukemia and thyroid cancer after radiation exposure at ages younger than 18 were shorter compared to those for other solid cancers.

  2. Radiation carcinogenesis. Comprehensive final report, 16 May 1979-31 December 1980

    SciTech Connect

    Warren, S; Brown, C E; Gates, O

    1981-03-01

    This abstract covers three main areas of investigation: mesothelioma induction by asbestos, radiation tumorigenesis and transplantable tumors. Canadian and Rhodesian asbestos fibers have been administered under anesthesia to rats by intratracheal, intrapleural and intraperitoneal injection. Additional groups were given 3-methylcholanthrene or x-radiation along with asbestos. A large series of mice also treated as above have displayed mesotheliomas. In addition, glass fiber injections and feeding of asbestos were done and have produced negative results to date. The carcinogenic effect of whole-body radiation on hemi-irradiated parabiont partners exposed to a single 1000 R dose of x-ray was evidenced by a significant increase in the incidence of malignant tumors in only six tissues: skin, supporting soft tissue, kidney, bone, pancreatic islets and ovary. In the male adrenal medulla and in the female breast genetic and parabiotic hormonal factors were judged to exert a significant effect. The occurrence of incisional (anastomotic) sarcomas in significant numbers in hemi-irradiated and parabiont control pairs suggests the operation of mechanical factors complicating the healing process, only slightly enhanced by radiation. One of the very valuable but unanticipated developments of the rat radiation program was the isolation of two transplantable endocrine tumors with strong hormonal potentials: an insulinoma of the pancreas and a pheochromocytoma of the adrenal medulla.

  3. Radiation carcinogenesis: radioprotectors and photosensitizers

    SciTech Connect

    Fry, R.J.M.

    1982-01-01

    This paper outlines 1) some of the salient features of radiation carcinogenesis that are pertinent to the questions of how the carcinogenic effects might be influenced, 2) the effects of radioprotectors on ionizing radiation-induced cancer, and 3) the effect of photosensitizers on UVR-induced skin cancer.

  4. Radiation carcinogenesis: lessons from Chernobyl.

    PubMed

    Williams, D

    2008-12-01

    Radiation is a carcinogen, interacting with DNA to produce a range of mutations. Irradiated cells also show genomic instability, as do adjacent non-irradiated cells (the bystander effect); the importance to carcinogenesis remains to be established. Current knowledge of radiation effects is largely dependent on evidence from exposure to atomic bomb whole body radiation, leading to increases in a wide range of malignancies. In contrast, millions of people were exposed to radioactive isotopes in the fallout from the Chernobyl accident, within the first 20 years there was a large increase in thyroid carcinoma incidence and a possible radiation-related increase in breast cancer, but as yet there is no general increase in malignancies. The increase in thyroid carcinoma, attributable to the very large amounts of iodine 131 released, was first noticed in children with a strong relationship between young age at exposure and risk of developing papillary thyroid carcinoma (PTC). The extent of the increase, the reasons for the relationship to age at exposure, the reduction in attributable fraction with increasing latency and the role of environmental factors are discussed. The large number of radiation-induced PTCs has allowed new observations. The subtype and molecular findings change with latency; most early cases were solid PTCs with RET-PTC3 rearrangements, later cases were classical PTCs with RET-PTC1 rearrangements. Small numbers of many other RET rearrangements have occurred in 'Chernobyl' PTCs, and also rearrangement of BRAF. Five of the N-terminal genes found in papillary carcinoma rearrangements are also involved in rearrangements in hematological malignancies; three are putative tumor suppressor genes, and two are further genes fused to RET in PTCs. Radiation causes double-strand breaks; the rearrangements common in these radiation-induced tumors reflect their etiology. It is suggested that oncogenic rearrangements may commonly involve both a tumor-suppressor gene

  5. Factors that modify radiation-induced carcinogenesis.

    PubMed

    Kennedy, Ann R

    2009-11-01

    It is known that numerous factors can influence radiation carcinogenesis in animals; these factors include the specific characteristics of the radiation (radiation type and dose, dose-rate, dose-fractionation, dose distribution, etc.) as well as many other contributing elements that are not specific to the radiation exposure, such as animal genetic characteristics and age, the environment of the animal, dietary factors and whether specific modifying agents for radiation carcinogenesis have been utilized in the studies. This overview focuses on the modifying factors for radiation carcinogenesis, in both in vivo and in vitro systems, and includes a discussion of agents that enhance (e.g., promoting agents) or suppress (e.g., cancer preventive agents) radiation-induced carcinogenesis. The agents that enhance or suppress radiation carcinogenesis in experimental model systems have been shown to lead to effects equally as large as other known modifying factors for radiation-induced carcinogenesis (e.g., dose-rate, dose-fractionation, linear energy transfer). It is known that dietary factors play an important role in determining the yields of radiation-induced cancers in animal model systems, and it is likely that they also influence radiation-induced cancer risks in human populations.

  6. A Systems Approach to Radiation Carcinogenesis

    NASA Astrophysics Data System (ADS)

    Hlatky, Lynn

    Understanding carcinogenesis risk is complicated by a number of factors, among these the lack of a common platform to integrate and analyze the available data, and the inherently systemsbiologic nature of the problem. We have investigated mechanistic approaches to radiogenic risk estimation that draw on unifying biological principles and incorporate data from multiscale sources. The resultant modeling takes into account that carcinogenesis is a multi-scale phenomenon, critically influenced by determinants not only at the molecular level, but at the cell and tissue-levels as well. To account for cell-level carcinogenesis progression as influenced by inter-tissue signaling, we have developed a dynamic carrying capacity construct that couples the growth of a tumor with the degree of induced vascularization. We have also characterized the molecular responses to radiation incorporating tissue-level angiogenesis implications, and have found striking radiation-quality-dependent responses. The molecular-level events of initiation and promotion are considered in our Two-Stage Logistic model, while incorporating in a rudimentary way the larger-scale growth-limiting role of cell-cell interactions. These and other recent studies undertaken to elaborate radiation-induced carcinogenesis are discussed, in pursuit of a more complete paradigm for understanding radiation induction of cancer and the consequent risk.

  7. High-let radiation carcinogenesis

    SciTech Connect

    Fry, R.J.M.; Powers-Risius, P.; Alpen, E.L.; Ainsworth, E.J.; Ullrich, R.L.

    1982-01-01

    Recent results for neutron radiation-induced tumors are presented to illustrate the complexities of the dose-response curves for high-LET radiation. It is suggested that in order to derive an appropriate model for dose-response curves for the induction of tumors by high-LET radiation it is necessary to take into account dose distribution, cell killing and the susceptibility of the tissue under study. Preliminary results for the induction of Harderian gland tumors in mice exposed to various heavy ion beams are presented. The results suggest that the effectiveness of the heavy ion beams increases with increasing LET. The slopes of the dose-response curves for the different high-LET radiations decrease between 20 and 40 rads and therefore comparisons of the relative effectiveness should be made from data obtained at doses below about 20 to 30 rads.

  8. High-LET radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Fry, R. J. M.; Ullrich, R. L.; Powers-Risius, P.; Alpen, E. L.; Ainsworth, E. J.

    Recent results for neutron radiation-induced tumors are presented to illustrate the complexities of the dose-response curves for high-LET radiation. It is suggested that in order to derive an appropriate model for dose-response curves for the induction of tumors by high-LET radiation it is necessary to take into account dose distribution, cell killing and the susceptibility of the tissue under study. Preliminary results for the induction of Harderian gland tumors in mice exposed to various heavy ion beams are presented. The results suggest that the effectiveness of the heavy ion beams increases with increasing LET. The slopes of the dose-response curves for the different high-LET radiations decrease between 20 and 40 rads and therefore comparisons of the relative effectiveness should be made from data obtained at doses below about 20-30 rads.

  9. Study of chemical and radiation induced carcinogenesis

    SciTech Connect

    Chmura, A.

    1995-11-01

    The study of chemical and radiation induced carcinogenesis has up to now based many of its results on the detection of genetic aberrations using the fluorescent in situ hybridization (FISH) technique. FISH is time consuming and this tends to hinder its use for looking at large numbers of samples. We are currently developing new technological advances which will increase the speed, clarity and functionality of the FISH technique. These advances include multi-labeled probes, amplification techniques, and separation techniques.

  10. High-LET radiation carcinogenesis

    SciTech Connect

    Fry, R.J.M.; Powers-Risius, P.; Alpen, E.L.; Ainsworth, E.J.

    1985-01-01

    The dose-response curves for the induction of tumors by high-LET radiation are complex and are insufficiently understood. There is no model or formulation to describe the dose-response relationship over a range 0 to 100 rad. Evidence suggests that at doses below 20 rad the response is linear, at least for life shortening and some tumor systems. Thus, limiting values of RBEs for the induction of cancer in various tissues can be determined, but it will require sufficient data obtained at low single doses or with small fractions. The results obtained from experiments with heavy ions indicate an initial linear response with a plateauing of the curve at a tumor incidence level that is dependent on the type of tissue. The RBE values for the heavy ions using /sup 60/Co gamma rays as the reference radiation increase with the estimated LET from 4 for /sup 4/H to about 27 for /sup 56/Fe, /sup 40/Ar. The dose-responses and RBEs for /sup 56/Fe and /sup 40/Ar are similar to those for fission neutrons. These findings suggest the possibility that the effectiveness for tumor induction reaches a maximum. 26 refs., 4 figs., 2 tabs.

  11. Gestational mutations in radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Meza, R.; Luebeck, G.; Moolgavkar, S.

    Mutations in critical genes during gestation could increase substantially the risk of cancer. We examine the consequences of such mutations using the Luebeck-Moolgavkar model for colorectal cancer and the Lea-Coulson modification of the Luria-Delbruck model for the accumulation of mutations during gestation. When gestational mutation rates are high, such mutations make a significant contribution to cancer risk even for adult tumors. Furthermore, gestational mutations ocurring at distinct times during emryonic developmemt lead to substantially different numbers of mutated cells at birth, with early mutations leading to a large number (jackpots) of mutated cells at birth and mutation occurring late leading to only a few mutated cells. Thus gestational mutations could confer considerable heterogeneity of the risk of cancer. If the fetus is exposed to an environmental mutagen, such as ionizing radiation, the gestational mutation rate would be expected to increase. We examine the consequences of such exposures during gestation on the subsequent development of cancer.

  12. Clonal theory of radiation carcinogenesis

    SciTech Connect

    Baum, J.W.

    1982-01-01

    In some cases, usually involving high-LET radiations, the dose response at low doses follows a power function of dose with exponent less than one over a wide dose range. This type of response is of great interest since (a) it implies greater effect per unit dose at progressively smaller doses, and (b) it is not predicted by most models and theories of radiobiology. A theoretical framework is presented for responses having the above characteristics over a dose range extending over a factor of 1000. The model postulates precursor cells which occur in clones. Different numbers of precursor cells per clone are assumed. Suitable transformation of a single cell in a clone completes initiation of that clone and raises the probability of tumor formation. At low doses, clones with large numbers of cells at risk have relatively high probability of response. However, depletion of the number of untransformed large clones with increasing dose leaves primarily untransformed smaller clones with smaller probability of response per unit dose. The analytical results demonstrate that power functions with exponent less than one can result even for doses so small that the mean number of charged particle traversals per cell is much less than one. The results also demonstrate that response functions may change from nearly approx. D/sup 0.4/ to nearly linear as linear energy transfer (LET) of the charged particle secondaries decreases. (ERB)

  13. Molecular mechanisms of ultraviolet radiation carcinogenesis.

    PubMed

    Ananthaswamy, H N; Pierceall, W E

    1990-12-01

    UV radiation is a potent DNA damaging agent and a known inducer of skin cancer in experimental animals. There is excellent scientific evidence to indicate that most non-melanoma human skin cancers are induced by repeated exposure to sunlight. UV radiation is unique in that it induces DNA damage that differs from the lesions induced by any other carcinogen. The prevalence of skin cancer on sun-exposed body sites in individuals with the inherited disorder XP suggests that defective repair of UV-induced DNA damage can lead to cancer induction. Carcinogenesis in the skin, as elsewhere, is a multistep process in which a series of genetic and epigenetic events leads to the emergence of a clone of cells that have escaped normal growth control mechanisms. The principal candidates that are involved in these events are oncogenes and tumor suppressor genes. Oncogenes display a positive effect on transformation, whereas tumor suppressor genes have an essentially negative effect, blocking transformation. Activated ras oncogenes have been identified in human skin cancers. In most cases, the mutations in the ras oncogenes have been localized to pyrimidine-rich sequences, which indicates that these sites are probably the targets for UV-induced DNA damage and subsequent mutation and transformation. The finding that activation of ras oncogenes in benign and self-regressing keratoacanthomas in both humans and in animals indicates that they play a role in the early stages of carcinogenesis (Corominas et al., 1989; Kumar et al., 1990). Since cancers do not arise immediately after exposure to physical or chemical carcinogens, ras oncogenes must remain latent for long periods of time. Tumor growth and progression into the more malignant stages may require additional events involving activation of other oncogenes or deletion of growth suppressor genes. In addition, amplification of proto-oncogenes or other genes may also be involved in tumor induction or progression. In contrast to the

  14. (Radiation carcinogenesis in the whole body system)

    SciTech Connect

    Fry, R.J.M.

    1990-12-14

    The objectives of the trip were: to take part in and to give the summary of a Symposium on Radiation Carcinogenesis at Tokyo, and to give a talk at the National Institute of Radiological Sciences at Chiba. The breadth of the aspects considered at the conference was about as broad as is possible, from effects at the molecular level to human epidemiology, from the effects of tritium to cancer induction by heavy ions. The events induced by cancer that lead to cancer and the events that are secondary are beginning to come into better focus but much is still not known. Interest in suppressor genes is increasing rapidly in the studies of human tumors and many would predict that the three or four suppressor genes associated with cancer are only the first sighting of a much larger number.

  15. The Dose Response Relationship for Radiation Carcinogenesis

    NASA Astrophysics Data System (ADS)

    Hall, Eric

    2008-03-01

    Recent surveys show that the collective population radiation dose from medical procedures in the U.S. has increased by 750% in the past two decades. It would be impossible to imagine the practice of medicine today without diagnostic and therapeutic radiology, but nevertheless the widespread and rapidly increasing use of a modality which is a known human carcinogen is a cause for concern. To assess the magnitude of the problem it is necessary to establish the shape of the dose response relationship for radiation carcinogenesis. Information on radiation carcinogenesis comes from the A-bomb survivors, from occupationally exposed individuals and from radiotherapy patients. The A-bomb survivor data indicates a linear relationship between dose and the risk of solid cancers up to a dose of about 2.5 Sv. The lowest dose at which there is a significant excess cancer risk is debatable, but it would appear to be between 40 and 100 mSv. Data from the occupation exposure of nuclear workers shows an excess cancer risk at an average dose of 19.4 mSv. At the other end of the dose scale, data on second cancers in radiotherapy patients indicates that cancer risk does not continue to rise as a linear function of dose, but tends towards a plateau of 40 to 60 Gy, delivered in a fractionated regime. These data can be used to estimate the impact of diagnostic radiology at the low dose end of the dose response relationship, and the impact of new radiotherapy modalities at the high end of the dose response relationship. In the case of diagnostic radiology about 90% of the collective population dose comes from procedures (principally CT scans) which involve doses at which there is credible evidence of an excess cancer incidence. While the risk to the individual is small and justified in a symptomatic patient, the same is not true of some screening procedures is asymptomatic individuals, and in any case the huge number of procedures must add up to a potential public health problem. In the

  16. Colorectal Carcinogenesis, Radiation Quality, and the Ubiquitin-Proteasome Pathway

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Kumar, Santosh; Fornace, Albert J

    2016-01-01

    Adult colorectal epithelium undergoes continuous renewal and maintains homeostatic balance through regulated cellular proliferation, differentiation, and migration. The canonical Wnt signaling pathway involving the transcriptional co-activator β-catenin is important for colorectal development and normal epithelial maintenance, and deregulated Wnt/β-catenin signaling has been implicated in colorectal carcinogenesis. Colorectal carcinogenesis has been linked to radiation exposure, and radiation has been demonstrated to alter Wnt/β-catenin signaling, as well as the proteasomal pathway involved in the degradation of the signaling components and thus regulation of β-catenin. The current review discusses recent progresses in our understanding of colorectal carcinogenesis in relation to different types of radiation and roles that radiation quality plays in deregulating β-catenin and ubiquitin-proteasome pathway (UPP) for colorectal cancer initiation and progression. PMID:26819641

  17. Experimental radiation carcinogenesis: what have we learned

    SciTech Connect

    Fry, R.J.M.

    1980-01-01

    The author reviews the need for animal experiments in development of a biological model for radioinduced carcinogenesis. He concludes they are vital for: (1) study of mechanisms; (2) establishment of generalizations; (3) elucidation of dose-response and time-dose relationships; and (4) determination of dose-distributions and their results, particularly for radionuclides. (PSB)

  18. Studies on the multistage nature of radiation carcinogenesis

    SciTech Connect

    Fry, R.J.M.; Ley, R.D.; Grube, D.; Staffeldt, E.

    1982-01-01

    The effectiveness of ionizing radiation and ultraviolet radiation (uvr) in the induction of carcinogenesis in mice and humans is discussed. It is clear that with low-dose levels of ionizing or uvr, the number of initiation events exceeds the numbers of tumors that grow to a detectable size. Ionizing radiation, which is a complete carcinogen, appears to be a more effective initiator than an enhancer or promoter. In the case of uvr, with or without photosensitizers such as psoralens, the requirement of a relatively large number of exposures for carcinogenesis suggests that the expression of the initiated cells as frank tumors requires a number of events spread out over the time of the development of the tumor. (KRM)

  19. Modification of radiation carcinogenesis by marihuana

    SciTech Connect

    Montour, J.L.; Dutz, W.; Harris, L.S.

    1981-03-15

    Male, female, and ovariectomized female Sprague-Dawley rats were irradiated with 400 rads, 150 rads, or 300 rads, respectively, of /sup 60/Co gamma rays when they were between 40 and 50 days of age. The animals were injected three times weekly with either marihuana extract or with alcohol-emulphor carrier. Comparable unirradiated groups were similarly injected. Mean survival time in males was significantly shorter in the 400 rad + marihuana group compared with the three other groups whose mean survival times did not differ. Through the 546 days that the males were observed, the total number of tumors other than fibrosarcomas was significantly greater following radiation and marihuana (22) than radiation alone (6). Fifteen of the tumors were of breast or endocrine tissues. No differences were seen in the unirradiated groups. In the females, which were observed for 635 days, the total number of breast tumors was greater with the combined treatment (38) compared with radiation alone (22). This was entirely due to a marked difference in the adenocarcinoma incidence, which was 21 (radiation + marihuana) compared with four (radiation alone). The number of adenofibromas was similar in the two groups. In the unirradiated female groups the breast adenocarcinoma incidence was eight in the marihuana group and two in the control group. Ovariectomy resulted in a lower breast tumor incidence in all groups. Nonbreast tumors were more frequent in the ovariectomized-irradiated groups. Radiation plus marihuana produced more nonbreast tumors (25) than radiation alone (17) in the ovariectomized females.

  20. Modification of radiation carcinogenesis by marijuana

    SciTech Connect

    Montour, J.L.; Dutz, W.; Harris, L.S.

    1981-03-15

    Male, female, and ovariectomized female Sprague-Dawley rats were irradiated with 400 rads, 150 rads, or 300 rads, respectively, of /sup 60/Co gamma rays when they were between 40 and 50 days of age. The animals were injected three times weekly with either marihuana extract or with alcohol-emulphor carrier. Comparable unirradiated groups were similarly injected. Mean survival time in males was significantly shorter in the 400 rad + marihuana group compared with the three other groups whose mean survival times did not differ. Through the 546 days that the males were observed, the total number of tumors other than fibrosarcomas was significantly greater following radiation and marihuana (22) than radiation alone (6). Fifteen of the tumors were of breast or endocrine tissues. No differences were seen in the unirradiated groups. In the females, which were observed for 635 days, the total number of breast tumors was greater with the combined treatment (38) compared with radiation alone (22). This was entirely due to a marked difference in the adenocarcinoma incidence, which was 21 (radiation + marihuana) compared with four (radiation alone). The number of adenofibromas was similar in the two groups. In the unirradiated female groups the breast adenocarcinoma incidence was eight in the marihuana group and two in the control group. Ovariectomy resulted in a lower breast tumor incidence in all groups. Nonbreast tumors were more frequent in the ovariectomized-irradiated groups. Radiation plus marihuana produced more nonbreast tumors (25) than radiation alone (17) in the ovariectomized females.

  1. Low-dose radiation exposure and carcinogenesis.

    PubMed

    Suzuki, Keiji; Yamashita, Shunichi

    2012-07-01

    Absorption of energy from ionizing radiation by the genetic material in the cell leads to damage to DNA, which in turn leads to cell death, chromosome aberrations and gene mutations. While early or deterministic effects result from organ and tissue damage caused by cell killing, latter two are considered to be involved in the initial events that lead to the development of cancer. Epidemiological studies have demonstrated the dose-response relationships for cancer induction and quantitative evaluations of cancer risk following exposure to moderate to high doses of low-linear energy transfer radiation. A linear, no-threshold model has been applied to assessment of the risks resulting from exposure to moderate and high doses of ionizing radiation; however, a statistically significant increase has hardly been described for radiation doses below 100 mSv. This review summarizes our current knowledge of the physical and biological features of low-dose radiation and discusses the possibilities of induction of cancer by low-dose radiation.

  2. Evidence Report: Risk of Radiation Carcinogenesis

    NASA Technical Reports Server (NTRS)

    Huff, Janice; Carnell, Lisa; Blattnig, Steve; Chappell, Lori; Kerry, George; Lumpkins, Sarah; Simonsen, Lisa; Slaba, Tony; Werneth, Charles

    2016-01-01

    As noted by Durante and Cucinotta (2008), cancer risk caused by exposure to space radiation is now generally considered a main hindrance to interplanetary travel for the following reasons: large uncertainties are associated with the projected cancer risk estimates; no simple and effective countermeasures are available, and significant uncertainties prevent scientists from determining the effectiveness of countermeasures. Optimizing operational parameters such as the length of space missions, crew selection for age and sex, or applying mitigation measures such as radiation shielding or use of biological countermeasures can be used to reduce risk, but these procedures have inherent limitations and are clouded by uncertainties. Space radiation is comprised of high energy protons, neutrons and high charge (Z) and energy (E) nuclei (HZE). The ionization patterns and resulting biological insults of these particles in molecules, cells, and tissues are distinct from typical terrestrial radiation, which is largely X-rays and gamma-rays, and generally characterized as low linear energy transfer (LET) radiation. Galactic cosmic rays (GCR) are comprised mostly of highly energetic protons with a small component of high charge and energy (HZE) nuclei. Prominent HZE nuclei include He, C, O, Ne, Mg, Si, and Fe. GCR ions have median energies near 1 GeV/n, and energies as high as 10 GeV/n make important contributions to the total exposure. Ionizing radiation is a well known carcinogen on Earth (BEIR 2006). The risks of cancer from X-rays and gamma-rays have been established at doses above 50 mSv (5 rem), although there are important uncertainties and on-going scientific debate about cancer risk at lower doses and at low dose rates (<50 mSv/h). The relationship between the early biological effects of HZE nuclei and the probability of cancer in humans is poorly understood, and it is this missing knowledge that leads to significant uncertainties in projecting cancer risks during space

  3. Heel spur radiotherapy and radiation carcinogenesis risk estimation.

    PubMed

    Surenkok, Serdar; Dirican, Bahar; Beyzadeoglu, Murat; Oysul, Kaan

    2006-10-01

    Radiotherapy is a nonsurgical alternative therapy of painful heel spur patients. Nonetheless, cancer induction is the most important somatic effect of ionizing radiation. This study was designed to evaluate the carcinogenesis risk factor in benign painful heel spur patients treated by radiotherapy. Between 1974 and 1999, a total of 20 patients received mean 8.16 Gy total irradiation dose in two fractions. Thermoluminescent dosimeters (TLD(100)) were placed on multiple phantom sites in vivo within the irradiated volume to verify irradiation accuracy and carcinogenesis risk factor calculation. The 20 still-alive patients, who had a minimum 5-year and maximum 29-year follow-up (mean 11.9 years), have been evaluated by carcinogenic radiation risk factor on the basis of tissue weighting factors as defined by the International Commission on Radiological Protection Publication 60. Reasonable pain relief has been obtained in all 20 patients. The calculated mean carcinogenesis risk factor is 1.3% for radiation portals in the whole group, and no secondary cancer has been clinically observed. Radiotherapy is an effective treatment modality for relieving pain in calcaneal spur patients. The estimated secondary cancer risk factor for irradiation of this benign lesion is not as high as was feared.

  4. Studies on the multistage nature of radiation carcinogenesis

    SciTech Connect

    Fry, R.J.M.; Ley, R.D.; Grube, D.; Staffeldt, E.

    1980-01-01

    With low dose levels of ionizing or ultraviolet radiation, the number of initiation events exceeds the number of tumors that grow to a detectable size. Ionizing radiation, which is a complete carcinogen, appears to be a more effective initiator than an enhancer or promoter. However, the initiation and promotion aspects of ionizing radiation have been studied in very few organ systems. In the case of UVR, with or without photosensitizers such as psoralens, the requirement of a relatively large number of exposures for carcinogenesis suggests that the expression of the initiated cells as frank tumors requires a number of events spread out over the time of the development of the tumor. Both ionizing and ultraviolet radiation are, perhaps, underutilized as tools for probing the mechanism of both initiation and promotion.

  5. Smoking and Hormesis as Confounding Factors in Radiation Pulmonary Carcinogenesis

    PubMed Central

    Sanders, Charles L.; Scott, Bobby R.

    2008-01-01

    Confounding factors in radiation pulmonary carcinogenesis are passive and active cigarette smoke exposures and radiation hormesis. Significantly increased lung cancer risk from ionizing radiation at lung doses < 1 Gy is not observed in never smokers exposed to ionizing radiations. Residential radon is not a cause of lung cancer in never smokers and may protect against lung cancer in smokers. The risk of lung cancer found in many epi-demiological studies was less than the expected risk (hormetic effect) for nuclear weapons and power plant workers, shipyard workers, fluoroscopy patients, and inhabitants of high-dose background radiation. The protective effect was noted for low- and mixed high- and low-linear energy transfer (LET) radiations in both genders. Many studies showed a protection factor (PROFAC) > 0.40 (40% avoided) against the occurrence of lung cancer. The ubiquitous nature of the radiation hormesis response in cellular, animal, and epidemio-logical studies negates the healthy worker effect as an explanation for radiation hormesis. Low-dose radiation may stimulate DNA repair/apoptosis and immunity to suppress and eliminate cigarette-smoke-induced transformed cells in the lung, reducing lung cancer occurrence in smokers. PMID:18648572

  6. Smoking and hormesis as confounding factors in radiation pulmonary carcinogenesis.

    PubMed

    Sanders, Charles L; Scott, Bobby R

    2006-12-06

    Confounding factors in radiation pulmonary carcinogenesis are passive and active cigarette smoke exposures and radiation hormesis. Significantly increased lung cancer risk from ionizing radiation at lung doses < 1 Gy is not observed in never smokers exposed to ionizing radiations. Residential radon is not a cause of lung cancer in never smokers and may protect against lung cancer in smokers. The risk of lung cancer found in many epidemiological studies was less than the expected risk (hormetic effect) for nuclear weapons and power plant workers, shipyard workers, fluoroscopy patients, and inhabitants of high-dose background radiation. The protective effect was noted for low- and mixed high- and low-linear energy transfer (LET) radiations in both genders. Many studies showed a protection factor (PROFAC) > 0.40 (40% avoided) against the occurrence of lung cancer. The ubiquitous nature of the radiation hormesis response in cellular, animal, and epidemio-logical studies negates the healthy worker effect as an explanation for radiation hormesis. Low-dose radiation may stimulate DNA repair/apoptosis and immunity to suppress and eliminate cigarette-smoke-induced transformed cells in the lung, reducing lung cancer occurrence in smokers.

  7. Protective role of metallothionein in chemical and radiation carcinogenesis.

    PubMed

    Fujiwara, Yasuyuki; Satoh, Masahiko

    2013-01-01

    Metallothionein (MT) is a low molecular weight metal-binding protein induced by endogenous and exogenous stimuli such as cytokines and heavy metals. In 1993 and 1994, two research groups (Choo et al. and Palmiter et al., respectively) produced MT-I/II double-knockout mice (MT-I/II null mice) with null mutations of the MT-I and MT-II genes. Subsequently, MT-I/II null mice have been used to clarify the biological function, physiological role, and pathophysiological relevance of MT by many research groups. Recent studies using MT-I/II null mice to investigate the role of MT in metal toxicity and distribution, oxidative stress, and some disease were reviewed. In addition, several research groups including our laboratory have reported that MT-I/II null mice are highly susceptible to several carcinogenesis caused by 7,12-dimethylbenz[a]anthracene, X-ray, benzo[a]pyrene, N-butyl-N-(4-hydroxybutyl) nitrosamine, lead, and cisplatin. These results suggest that MT is an important protective factor against not only metal toxicity and oxidative stress but also chemical and radiation carcinogenesis. In this review, we present the findings of MT-I/II null mice with regard to the protective role of MT in carcinogenesis and mutagenesis caused by chemical agents and X-ray.

  8. [Carcinogenesis].

    PubMed

    Martín de Civetta, María Teresa; Civetta, Julio Domingo

    2011-01-01

    Cell division is controlled by stimulatory and inhibitory systems.The origin of cancer is monoclonal, and in order that a normal cell switches its phenotype and becomes a neoplastic cell, genetic mutations must occur on it.These genetic mutations modify the products that in normal conditions the gene would codify and, finally, cause cancer. Cancer may be hereditary (due to mutations in one or both of germinal cells alleles) or sporadic (due to action of environmental mutagenic agents).The mechanisms that may cause alterations on genes may be genetic or epigenetic. Genetic mechanisms occur when structural alterations of genome are present and the epigenetic processes occur due to enzymatic alterations or alterations on its substrates. Carcinogenesis has three stages: initiation, promotion and progression.The last of these stages, progression, is exclusive of malignant transformation and implies the capacity to invade surrounding or distant tissues. For metastasis to take place, many mechanisms are required: angiogenesis, matrix degradation, cell migration, evasion of host immune response and metastatic colonization. This article presents a partial review of current bibliography about concepts related to carcinogenesis and conveys the minimum necessary information to achieve an understanding of this complex process.

  9. Radiation-induced instability and its relation to radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Ullrich, R. L.; Ponnaiya, B.

    1998-01-01

    PURPOSE: A model that identifies radiation-induced genetic instability as the earliest cellular event in the multi-step sequence leading to radiation-induced cancer was previously proposed. In this paper ongoing experiments are discussed which are designed to test this model and its predictions in mouse mammary epithelial cells. RESULTS: Several lines of evidence are presented that appear to support this model: first, the development of delayed mutations in p53 following irradiation in altered growth variants; secondly, the high frequencies for the induction of both instability and transformation following irradiation in mammary epithelial cells; and finally, the demonstration that susceptibility to the induction of cytogenetic instability is a heritable trait that correlates with susceptibility to transformation and radiation-induced mammary cancer. Mice resistant to transformation and mammary cancer development are also resistant to the development of instability after irradiation. In contrast, mice sensitive to transformation and cancer are also sensitive to the development of cytogenetic instability. CONCLUSIONS: Data from this laboratory and from the studies cited above suggest a specific, and perhaps unique, role for radiation-induced instability as a critical early event associated with initiation of the carcinogenic process.

  10. Radiation-induced instability and its relation to radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Ullrich, R. L.; Ponnaiya, B.

    1998-01-01

    PURPOSE: A model that identifies radiation-induced genetic instability as the earliest cellular event in the multi-step sequence leading to radiation-induced cancer was previously proposed. In this paper ongoing experiments are discussed which are designed to test this model and its predictions in mouse mammary epithelial cells. RESULTS: Several lines of evidence are presented that appear to support this model: first, the development of delayed mutations in p53 following irradiation in altered growth variants; secondly, the high frequencies for the induction of both instability and transformation following irradiation in mammary epithelial cells; and finally, the demonstration that susceptibility to the induction of cytogenetic instability is a heritable trait that correlates with susceptibility to transformation and radiation-induced mammary cancer. Mice resistant to transformation and mammary cancer development are also resistant to the development of instability after irradiation. In contrast, mice sensitive to transformation and cancer are also sensitive to the development of cytogenetic instability. CONCLUSIONS: Data from this laboratory and from the studies cited above suggest a specific, and perhaps unique, role for radiation-induced instability as a critical early event associated with initiation of the carcinogenic process.

  11. Molecular characterization of cancer reveals interactions between ionizing radiation and chemicals on rat mammary carcinogenesis.

    PubMed

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Doi, Kazutaka; Tani, Shusuke; Ishikawa, Ken-ichi; Yamashita, Satoshi; Ushijima, Toshikazu; Imai, Takashi; Shimada, Yoshiya

    2014-04-01

    Although various mechanisms have been inferred for combinatorial actions of multiple carcinogens, these mechanisms have not been well demonstrated in experimental carcinogenesis models. We evaluated mammary carcinogenesis initiated by combined exposure to various doses of radiation and chemical carcinogens. Female rats at 7 weeks of age were γ-irradiated (0.2-2 Gy) and/or exposed to 1-methyl-1-nitrosourea (MNU) (20 or 40 mg/kg, single intraperitoneal injection) or 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) (40 mg/kg/day by gavage for 10 days) and were observed until 50 weeks of age. The incidence of mammary carcinoma increased steadily as a function of radiation dose in the absence of chemicals; mathematical analysis supported an additive increase when radiation was combined with a chemical carcinogen, irrespective of the chemical species and its dose. Hras mutations were characteristic of carcinomas that developed after chemical carcinogen treatments and were overrepresented in carcinomas induced by the combination of radiation and MNU (but not PhIP), indicating an interaction of radiation and MNU at the level of initiation. The expression profiles of seven classifier genes, previously shown to distinguish two classes of rat mammary carcinomas, categorized almost all examined carcinomas that developed after individual or combined treatments with radiation (1 Gy) and chemicals as belonging to a single class; more comprehensive screening using microarrays and a separate test sample set failed to identify differences in gene expression profiles among these carcinomas. These results suggest that a complex, multilevel interaction underlies the combinatorial action of radiation and chemical carcinogens in the experimental model.

  12. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    SciTech Connect

    Fabrikant, J.I.

    1981-05-01

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures. (ACR)

  13. Radiation signatures in childhood thyroid cancers after the Chernobyl accident: possible roles of radiation in carcinogenesis.

    PubMed

    Suzuki, Keiji; Mitsutake, Norisato; Saenko, Vladimir; Yamashita, Shunichi

    2015-02-01

    After the Tokyo Electric Power Company Fukushima Daiichi nuclear power plant accident, cancer risk from low-dose radiation exposure has been deeply concerning. The linear no-threshold model is applied for the purpose of radiation protection, but it is a model based on the concept that ionizing radiation induces stochastic oncogenic alterations in the target cells. As the elucidation of the mechanism of radiation-induced carcinogenesis is indispensable to justify the concept, studies aimed at the determination of molecular changes associated with thyroid cancers among children who suffered effects from the Chernobyl nuclear accident will be overviewed. We intend to discuss whether any radiation signatures are associated with radiation-induced childhood thyroid cancers.

  14. Radiation signatures in childhood thyroid cancers after the Chernobyl accident: Possible roles of radiation in carcinogenesis

    PubMed Central

    Suzuki, Keiji; Mitsutake, Norisato; Saenko, Vladimir; Yamashita, Shunichi

    2015-01-01

    After the Tokyo Electric Power Company Fukushima Daiichi nuclear power plant accident, cancer risk from low-dose radiation exposure has been deeply concerning. The linear no-threshold model is applied for the purpose of radiation protection, but it is a model based on the concept that ionizing radiation induces stochastic oncogenic alterations in the target cells. As the elucidation of the mechanism of radiation-induced carcinogenesis is indispensable to justify the concept, studies aimed at the determination of molecular changes associated with thyroid cancers among children who suffered effects from the Chernobyl nuclear accident will be overviewed. We intend to discuss whether any radiation signatures are associated with radiation-induced childhood thyroid cancers. PMID:25483826

  15. Pharmacokinetics, biochemical mechanism and mutation accumulation: a comprehensive model of chemical carcinogenesis.

    PubMed

    Conolly, R B; Reitz, R H; Clewell, H J; Andersen, M E

    1988-10-01

    Chemical carcinogenesis is a process beginning with carcinogen absorption and ending with development of a malignant tumor. Individual elements of this process have been studied intensively but no comprehensive model has been developed. This report describes a comprehensive model which incorporates carcinogen pharmacokinetics, biochemical mechanism of action, and the resultant mutation of normal cells to malignancy. Model parameters correspond to specific physiological and biochemical structures and processes. The model was encoded in a simulation language and used to examined biochemical and cellular effects of exposure to an initiator and a promoter. With laboratory validation, the model should be useful for interpretation and design of studies on carcinogenic mechanisms and for risk assessment.

  16. Biological Complexities in Radiation Carcinogenesis and Cancer Radiotherapy: Impact of New Biological Paradigms

    PubMed Central

    Mozdarani, Hossein

    2012-01-01

    Although radiation carcinogenesis has been shown both experimentally and epidemiologically, the use of ionizing radiation is also one of the major modalities in cancer treatment. Various known cellular and molecular events are involved in carcinogenesis. Apart from the known phenomena, there could be implications for carcinogenesis and cancer prevention due to other biological processes such as the bystander effect, the abscopal effect, intrinsic radiosensitivity and radioadaptation. Bystander effects have consequences for mutation initiated cancer paradigms of radiation carcinogenesis, which provide the mechanistic justification for low-dose risk estimates. The abscopal effect is potentially important for tumor control and is mediated through cytokines and/or the immune system (mainly cell-mediated immunity). It results from loss of growth and stimulatory and/or immunosuppressive factors from the tumor. Intrinsic radiosensitivity is a feature of some cancer prone chromosomal breakage syndromes such as ataxia telangectiasia. Radiosensitivity is manifested as higher chromosomal aberrations and DNA repair impairment is now known as a good biomarker for breast cancer screening and prediction of prognosis. However, it is not yet known whether this effect is good or bad for those receiving radiation or radiomimetic agents for treatment. Radiation hormesis is another major concern for carcinogenesis. This process which protects cells from higher doses of radiation or radio mimic chemicals, may lead to the escape of cells from mitotic death or apoptosis and put cells with a lower amount of damage into the process of cancer induction. Therefore, any of these biological phenomena could have impact on another process giving rise to genome instability of cells which are not in the field of radiation but still receiving a lower amount of radiation. For prevention of radiation induced carcinogenesis or risk assessment as well as for successful radiation therapy, all these

  17. Radiation-induced genomic instability and its implications for radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Huang, Lei; Snyder, Andrew R.; Morgan, William F.

    2003-01-01

    Radiation-induced genomic instability is characterized by an increased rate of genetic alterations including cytogenetic rearrangements, mutations, gene amplifications, transformation and cell death in the progeny of irradiated cells multiple generations after the initial insult. Chromosomal rearrangements are the best-characterized end point of radiation-induced genomic instability, and many of the rearrangements described are similar to those found in human cancers. Chromosome breakage syndromes are defined by chromosome instability, and individuals with these diseases are cancer prone. Consequently, chromosomal instability as a phenotype may underlie some fraction of those changes leading to cancer. Here we attempt to relate current knowledge regarding radiation-induced chromosome instability with the emerging molecular information on the chromosome breakage syndromes. The goal is to understand how genetic and epigenetic factors might influence the onset of chromosome instability and the role of chromosomal instability in carcinogenesis.

  18. Radiation-induced genomic instability and its implications for radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Huang, Lei; Snyder, Andrew R.; Morgan, William F.

    2003-01-01

    Radiation-induced genomic instability is characterized by an increased rate of genetic alterations including cytogenetic rearrangements, mutations, gene amplifications, transformation and cell death in the progeny of irradiated cells multiple generations after the initial insult. Chromosomal rearrangements are the best-characterized end point of radiation-induced genomic instability, and many of the rearrangements described are similar to those found in human cancers. Chromosome breakage syndromes are defined by chromosome instability, and individuals with these diseases are cancer prone. Consequently, chromosomal instability as a phenotype may underlie some fraction of those changes leading to cancer. Here we attempt to relate current knowledge regarding radiation-induced chromosome instability with the emerging molecular information on the chromosome breakage syndromes. The goal is to understand how genetic and epigenetic factors might influence the onset of chromosome instability and the role of chromosomal instability in carcinogenesis.

  19. Effect of ionizing radiation at low dose on transgenerational carcinogenesis by epigenetic regulation.

    PubMed

    Li, Lan; Kim, Jong-Hyun; Park, Hee-Tae; Lee, Jae-Hoon; Park, Min-Koo; Lee, Ji-Won; Lee, Jeong-Chan; Lee, Min-Jae

    2017-06-01

    The objective of this study was to determine the effect of ionizing radiation (IR) exposure of parents on carcinogenesis of the next generation focusing on the epigenetic perspective to clarify the relationship between radiation dose and carcinogenesis in F1 generation SD rats. F1 generations from pregnant rats (F0) who were exposed to gamma rays were divided into three groups according to the dose of radiation: 10 rad, 30 rad, and untreated. They were intraperitoneally injected with 50 mg/kg of diethylnitrosamine (DEN). Carcinogenesis was analyzed by examining expression levels of tumor suppressor genes (TSG) and other related genes by methylation-specific polymerase chain reaction (MSP). DNA methylation in liver tissues was evaluated to discern epigenetic regulation of transgenerational carcinogenesis vulnerability following IR exposure. Numerous studies have proved that transcriptional inactivation due to hypermethylation of TSG preceded carcinogenesis. Results of this study revealed hypermethylation of tumor suppressor gene SOCS1 in group treated with 30 rad. In addition, genes related to DNA damage response pathway (GSTP1, ATM, DGKA, PARP1, and SIRT6) were epigenetically inactivated in all DEN treated groups. In the case of proto-oncogene c-Myc, DNA hypermethylation was identified in the group with low dose of IR (10 rad). Results of this study indicated that each TSG had different radiation threshold level (dose-independent way) and DEN treatment could affect DNA methylation profile irrelevant of ionizing radiation dose.

  20. Important step in radiation carcinogenesis may be inactivation of cellular genes

    SciTech Connect

    Weichselbaum, R.R.; Beckett, M.A.; Diamond, A.A.

    1989-01-01

    The loss of genetic material may result in a predisposition to malignant disease. The best studied example is retinoblastoma where deletion or transcriptional inactivation of a specific gene is associated with the development of the tumor. When hereditary retinoblastoma patients are treated with radiation, the incidence of osteosarcoma within the treatment field is extremely high compared to other cancer patients treated with radiotherapy. These data, together with cytogenetic and molecular data on the development of acute non-lymphocytic leukemia secondary to radiotherapy and chemotherapy treatment suggest that radiation-induced deletions of critical DNA sequences may be an important event in radiation carcinogenesis. Therefore, we propose that radiation-induced tumors may result from deletion of tissue specific regulatory genes. Base alterations caused by radiation in dominantly transforming oncogenes may also contribute to radiation carcinogenesis.62 references.

  1. Health effects of low level radiation: carcinogenesis, teratogenesis, and mutagenesis

    SciTech Connect

    Ritenour, E.R.

    1986-04-01

    The carcinogenic effects of radiation have been demonstrated at high dose levels. At low dose levels, such as those encountered in medical diagnosis, the magnitude of the effect is more difficult to quantify. Three reasons for this difficulty are (1) the effects in human populations are small compared with the natural incidence of cancer in the populations; (2) it is difficult to transfer results obtained in animal studies to the human experience; and (3) the effects of latency period and plateau increase the complexity of population studies. In spite of these difficulties, epidemiologic studies of human populations exposed to low levels of radiation still play a valuable role in the determination of radiation carcinogenecity. They serve to provide upper estimates of risk and to rule out the appearance of new effects that may be masked by the effects of high doses. While there is evidence for mutagenic effects of radiation in experimental animals, no conclusive human data exist at the present. It is not possible to rule out the presence of genetic effects of radiation in humans, however, because many problems exist with regard to the epidemiologic detection of small effects when the natural incidence is relatively large. In animals, subtle effects (eg, a decrease in the probability of survival from egg to adult) may occur with greater frequency than more dramatic disorders in irradiated populations. However, these types of genetic abnormalities are difficult to quantitate. Current risk estimates are based primarily upon data pertaining to dominant mutations in rodents. Some specific locus studies also permit identification of recessive mutation rates. The embryo and fetus are considered to be at greater risk for adverse effects of radiation than is the adult.

  2. Risks of carcinogenesis from electromagnetic radiation of mobile telephony devices.

    PubMed

    Yakymenko, I; Sidorik, E

    2010-07-01

    Intensive implementation of mobile telephony technology in everyday human life during last two decades has given a possibility for epidemiological estimation of long-term effects of chronic exposure of human organism to low-intensive microwave (MW) radiation. Latest epidemiological data reveal a significant increase in risk of development of some types of tumors in chronic (over 10 years) users of mobile phone. It was detected a significant increase in incidence of brain tumors (glioma, acoustic neuroma, meningioma), parotid gland tumor, seminoma in long-term users of mobile phone, especially in cases of ipsilateral use (case-control odds ratios from 1.3 up to 6.1). Two epidemiological studies have indicated a significant increase of cancer incidence in people living close to the mobile telephony base station as compared with the population from distant area. These data raise a question of adequacy of modern safety limits of electromagnetic radiation (EMR) exposure for humans. For today the limits were based solely on the conception of thermal mechanism of biological effects of RF/MW radiation. Meantime the latest experimental data indicate the significant metabolic changes in living cell under the low-intensive (non-thermal) EMR exposure. Among reproducible biological effects of low-intensive MWs are reactive oxygen species overproduction, heat shock proteins expression, DNA damages, apoptosis. The lack of generally accepted mechanism of biological effects of low-intensive non-ionizing radiation doesn't permit to disregard the obvious epidemiological and experimental data of its biological activity. Practical steps must be done for reasonable limitation of excessive EMR exposure, along with the implementation of new safety limits of mobile telephony devices radiation, and new technological decisions, which would take out the source of radiation from human brain.

  3. Effect of sodium meclofenamate on ultraviolet radiation induced carcinogenesis

    SciTech Connect

    Ambrus, J.L.; Ambrus, C.M.; Pickren, J.W.; Klein, E.

    1984-01-01

    Sodium meclofenamate (Meclomen), an antiprostaglandin antileukotriene agent, was found in previous studies to protect primates against x-ray induced brain edema, esophagitis and cystitis. In the present study, it appeared to protect hairless mice against the carcinogenic effect of ultraviolet B-radiation.

  4. Age, sex and other factors in radiation carcinogenesis

    SciTech Connect

    Fry, R.J.M.; Carnes, B.A.

    1988-01-01

    It has been held for a long time that the young are more susceptible than adults to the induction of cancer by radiation. The data in support of that contention are accumulating especially from human studies. In an exposed population a significant fraction of the total population risk may be attributed to the risk associated with those who were young at the time of exposure. Since cancer may not appear for decades after exposure estimates of risk may require models for projecting the lifetime risk. Two such models, additive or absolute risk and multiplicative or relative risk have been used. The appropriateness of the latter model is supported by the finding in mice of a positive relationship between natural incidence and the susceptibility for induction by radiation of solid cancer. The choice of model for leukemias is not clear cut. The incidence of cancer increases with age, but the susceptibility for induction decreases. The incidence of cancers increases to a peak and then begins to decline at different ages, dependent on the type of cancer. Sex-dependent differences in both the natural incidence and the susceptibility for induction of cancer are not restricted to sex organs. For example, the susceptibility for the induction by radiation for myeloid leukemia is greater in males than females, whereas in the case of thymic lymphoma it is vice versa. 25 refs., 5 figs., 3 tabs.

  5. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis

    PubMed Central

    Shim, Grace; Ricoul, Michelle; Hempel, William M.; Azzam, Edouard I.; Sabatier, Laure

    2014-01-01

    It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis. PMID:24486376

  6. MicroRNA-21 is involved in ionizing radiation-promoted liver carcinogenesis

    PubMed Central

    Zhu, Yun; Yu, Xiaoyan; Fu, Hanjiang; Wang, Hongyan; Wang, Ping; Zheng, Xiaofei; Wang, Ya

    2010-01-01

    It has been known for decades that ionizing radiation (IR) promotes carcinogenesis and high-linear energy transfer (LET) IR has a higher risk than low-LET IR for carcinogenesis; however, the mechanism remains unclear. MicroRNAs (miRNAs) have a critical effect on carcinogenesis through post-transcriptional modification. In this study, our purpose is to explore whether miRNAs are involved in IR-(especially high-LET IR) promoted liver carcinogenesis. We showed here that among several hundred miRNAs, miR-21 was the only one that increased 6 folds in high-LET IR-promoted mouse liver tumors when compared with that in the non-irradiated liver tissues. We also showed that miR-21 was up-regulated in human or mouse hepatocytes after exposure to IR, as well as in liver tissues derived from whole body irradiated mice. The increased level of miR-21 was more significant in high-LET irradiated cells or liver tissues. After the non-irradiated, low-LET or high-LET irradiated human hepatocytes were over-expressed with miR-21, these cells became tumorigenesis in nude mice. The tumors derived from high-LET-irradiated-cells were largest, and accompanied by more significant changes in the miR-21-targets: PTEN and RECK. In addition, we showed that IR-induced up-regulation of miR-21 depended on the up-regulation/activation of AP-1 (at an earlier time, within 2 h) and the ErbB/Stat3 pathway (at a later time, more than 2 h), which was also IR dose dependent. Taken together, we conclude that IR-induced up-regulation of miR-21 plays an important role in IR (especially high-LET IR)-promoted liver carcinogenesis. PMID:20827319

  7. Does Imaging Technology Cause Cancer? Debunking the Linear No-Threshold Model of Radiation Carcinogenesis.

    PubMed

    Siegel, Jeffry A; Welsh, James S

    2016-04-01

    In the past several years, there has been a great deal of attention from the popular media focusing on the alleged carcinogenicity of low-dose radiation exposures received by patients undergoing medical imaging studies such as X-rays, computed tomography scans, and nuclear medicine scintigraphy. The media has based its reporting on the plethora of articles published in the scientific literature that claim that there is "no safe dose" of ionizing radiation, while essentially ignoring all the literature demonstrating the opposite point of view. But this reported "scientific" literature in turn bases its estimates of cancer induction on the linear no-threshold hypothesis of radiation carcinogenesis. The use of the linear no-threshold model has yielded hundreds of articles, all of which predict a definite carcinogenic effect of any dose of radiation, regardless of how small. Therefore, hospitals and professional societies have begun campaigns and policies aiming to reduce the use of certain medical imaging studies based on perceived risk:benefit ratio assumptions. However, as they are essentially all based on the linear no-threshold model of radiation carcinogenesis, the risk:benefit ratio models used to calculate the hazards of radiological imaging studies may be grossly inaccurate if the linear no-threshold hypothesis is wrong. Here, we review the myriad inadequacies of the linear no-threshold model and cast doubt on the various studies based on this overly simplistic model. © The Author(s) 2015.

  8. Toxicogenomic Effects in Rat Blood Leukocytes and Chemoprophylaxis of Radiation-Induced Carcinogenesis.

    PubMed

    Ivanov, S D; Bespalov, V G; Semenov, A L; Kovan'ko, E G; Aleksandrov, V A

    2016-03-01

    Toxicogenomic parameters were studied in the blood of female rats after exposure to ionizing γ-radiation in a dose of 4 Gy and chemoprophylaxis with α-difluoromethylornithine, eleutherococcus or leuzea extracts, which were used in animals with morphological manifestations of tumor growth under conditions of radiation-induced carcinogenesis. Life-time evaluation of toxicogenomic effects was carried out by express method for measurements of blood nucleotid DNA - fluorescent indication. The level of hyperaneu/polyploidy increased in the blood leukocytes of control rats 30 days after radiation exposure. A significant decrease of genotoxicity as a result of drug treatment in comparison with the number and multiplicity of tumors in irradiated animals was found only in the endocrine and reproductive organs of rats treated by eleutherococcus extract.

  9. The balance between initiation and promotion in radiation-induced murine carcinogenesis.

    PubMed

    Shuryak, Igor; Ullrich, Robert L; Sachs, Rainer K; Brenner, David J

    2010-09-01

    Studies of radiation carcinogenesis in animals allow detailed investigation of how the risk depends on age at exposure and time since exposure and of the mechanisms that determine this risk, e.g., induction of new pre-malignant cells (initiation) and enhanced proliferation of already existing pre-malignant cells (promotion). To assist the interpretation of these patterns, we apply a newly developed biologically based mathematical model to data on several types of solid tumors induced by acute whole-body radiation in mice. The model includes both initiation and promotion and analyzes pre-malignant cell dynamics on two different time scales: comparatively short-term during irradiation and long-term during the entire life span. Our results suggest general mechanistic similarities between radiation carcinogenesis in mice and in human atomic bomb survivors. The excess relative risk (ERR) in mice decreases with age at exposure up to an exposure age of 1 year, which corresponds to mid-adulthood in humans; the pattern for older ages at exposure, for which there is some evidence of increasing ERRs in atomic bomb survivors, cannot be evaluated using the data set analyzed here. Also similar to findings in humans, initiation dominates the ERR at young ages in mice, when there are few background pre-malignant cells, and promotion becomes important at older ages.

  10. The Balance Between Initiation and Promotion in Radiation-Induced Murine Carcinogenesis

    PubMed Central

    Shuryak, Igor; Ullrich, Robert L.; Sachs, Rainer K.; Brenner, David J.

    2013-01-01

    Studies of radiation carcinogenesis in animals allow detailed investigation of how the risk depends on age at exposure and time since exposure and of the mechanisms that determine this risk, e.g., induction of new pre-malignant cells (initiation) and enhanced proliferation of already existing pre-malignant cells (promotion). To assist the interpretation of these patterns, we apply a newly developed biologically based mathematical model to data on several types of solid tumors induced by acute whole-body radiation in mice. The model includes both initiation and promotion and analyzes pre-malignant cell dynamics on two different time scales: comparatively short-term during irradiation and long-term during the entire life span. Our results suggest general mechanistic similarities between radiation carcinogenesis in mice and in human atomic bomb survivors. The excess relative risk (ERR) in mice decreases with age at exposure up to an exposure age of 1 year, which corresponds to mid-adulthood in humans; the pattern for older ages at exposure, for which there is some evidence of increasing ERRs in atomic bomb survivors, cannot be evaluated using the data set analyzed here. Also similar to findings in humans, initiation dominates the ERR at young ages in mice, when there are few background pre-malignant cells, and promotion becomes important at older ages. PMID:20726716

  11. Stable loss of global DNA methylation in the radiation-target tissue-A possible mechanism contributing to radiation carcinogenesis?

    SciTech Connect

    Koturbash, Igor; Pogribny, Igor; Kovalchuk, Olga . E-mail: olga.kovalchuk@uleth.ca

    2005-11-18

    Radiation-induced lymphomagenesis and leukemogenesis are complex processes involving both genetic and epigenetic changes. Although genetic alterations during radiation-induced lymphoma- and leukemogenesis are fairly well studied, the role of epigenetic changes has been largely overlooked. Rodent models are valuable tools for identifying molecular mechanisms of lymphoma and leukemogenesis. A widely used mouse model of radiation-induced thymic lymphoma is characterized by a lengthy 'pre-lymphoma' period. Delineating molecular changes occurring during the pre-lymphoma period is crucial for understanding the mechanisms of radiation-induced leukemia/lymphoma development. In the present study, we investigated the role of radiation-induced DNA methylation changes in the radiation carcinogenesis target organ-thymus, and non-target organ-muscle. This study is the first report on the radiation-induced epigenetic changes in radiation-target murine thymus during the pre-lymphoma period. We have demonstrated that acute and fractionated whole-body irradiation significantly altered DNA methylation pattern in murine thymus leading to a massive loss of global DNA methylation. We have also observed that irradiation led to increased levels of DNA strand breaks 6 h following the initial exposure. The majority of radiation-induced DNA strand breaks were repaired 1 month after exposure. DNA methylation changes, though, were persistent and significant radiation-induced DNA hypomethylation was observed in thymus 1 month after exposure. In sharp contrast to thymus, no significant persistent changes were noted in the non-target muscle tissue. The presence of stable DNA hypomethylation in the radiation-target tissue, even though DNA damage resulting from initial genotoxic radiation insult was repaired, suggests of the importance of epigenetic mechanisms in the development of radiation-related pathologies. The possible role of radiation-induced DNA hypomethylation in radiation-induced genome

  12. HZE Radiation Non-Targeted Effects on the Microenvironment That Mediate Mammary Carcinogenesis

    PubMed Central

    Barcellos-Hoff, Mary Helen; Mao, Jian-Hua

    2016-01-01

    Clear mechanistic understanding of the biological processes elicited by radiation that increase cancer risk can be used to inform prediction of health consequences of medical uses, such as radiotherapy, or occupational exposures, such as those of astronauts during deep space travel. Here, we review the current concepts of carcinogenesis as a multicellular process during which transformed cells escape normal tissue controls, including the immune system, and establish a tumor microenvironment. We discuss the contribution of two broad classes of radiation effects that may increase cancer: radiation targeted effects that occur as a result of direct energy deposition, e.g., DNA damage, and non-targeted effects (NTE) that result from changes in cell signaling, e.g., genomic instability. It is unknown whether the potentially greater carcinogenic effect of high Z and energy (HZE) particle radiation is a function of the relative contribution or extent of NTE or due to unique NTE. We addressed this problem using a radiation/genetic mammary chimera mouse model of breast cancer. Our experiments suggest that NTE promote more aggressive cancers, as evidenced by increased growth rate, transcriptomic signatures, and metastasis, and that HZE particle NTE are more effective than reference γ-radiation. Emerging evidence suggest that HZE irradiation dampens antitumor immunity. These studies raise concern that HZE radiation exposure not only increases the likelihood of developing cancer but also could promote progression to more aggressive cancer with a greater risk of mortality. PMID:27014632

  13. HZE Radiation Non-Targeted Effects on the Microenvironment That Mediate Mammary Carcinogenesis.

    PubMed

    Barcellos-Hoff, Mary Helen; Mao, Jian-Hua

    2016-01-01

    Clear mechanistic understanding of the biological processes elicited by radiation that increase cancer risk can be used to inform prediction of health consequences of medical uses, such as radiotherapy, or occupational exposures, such as those of astronauts during deep space travel. Here, we review the current concepts of carcinogenesis as a multicellular process during which transformed cells escape normal tissue controls, including the immune system, and establish a tumor microenvironment. We discuss the contribution of two broad classes of radiation effects that may increase cancer: radiation targeted effects that occur as a result of direct energy deposition, e.g., DNA damage, and non-targeted effects (NTE) that result from changes in cell signaling, e.g., genomic instability. It is unknown whether the potentially greater carcinogenic effect of high Z and energy (HZE) particle radiation is a function of the relative contribution or extent of NTE or due to unique NTE. We addressed this problem using a radiation/genetic mammary chimera mouse model of breast cancer. Our experiments suggest that NTE promote more aggressive cancers, as evidenced by increased growth rate, transcriptomic signatures, and metastasis, and that HZE particle NTE are more effective than reference γ-radiation. Emerging evidence suggest that HZE irradiation dampens antitumor immunity. These studies raise concern that HZE radiation exposure not only increases the likelihood of developing cancer but also could promote progression to more aggressive cancer with a greater risk of mortality.

  14. NSBRI Radiation Effects: Carcinogenesis in Sprague-Dawley Rats Irradiated with Iron Ions, Protons, or Photons

    NASA Technical Reports Server (NTRS)

    Dicello, J. F.; Cucinotta, F. A.; Gridley, D. S.; Howard, S. P.; Novak, G. R.; Ricart-Arbona, R.; Strandberg, J. D.; Vazquez, M. E.; Williams, J. R.; Zhang, Y.; Zhou, H.; Huso, D. L.

    1999-01-01

    Our ability to confidently develop appropriate countermeasures for radiations in space in terms of shielding and design of a spacecraft, the mission scenario, or chemoprevention is severely limited by the uncertainties in both the risk itself and the change in that risk with intervention. Despite the fact that the risk of carcinogenesis from exposures of personnel to radiations on long-term missions is considered one of the worst hazards in space, only a limited amount of in-vivo data exist for tumor induction from exposures to protons or energetic heavy ions (HZEs) at lower doses. The most extensive work remains the landmark study. for tumor development in the harderian gland of the mouse. The objective of this study is to characterize the level of risk for tumor induction in another relevant animal model. Subsequent experiments are designed to test the hypothesis that the level of risk can be reduced by pharmaceutical intervention in the promoting and progressing stages of the disease rather than in the initiating stage. The work presented here results from a cooperative effort on the part of investigators from two projects of the Radiation-Effects Team of the National Space Biomedical Research Institute (NSBRI). The collaborating projects are the Core Project which is investigating the risk of carcinogenesis in Sprague-Dawley rats and the Chemoprevention Project which is investigating the ability of Tamoxifen to reduce the number of malignant tumors in the irradiated animals. Research at the cellular and subcellular levels is being conducted in two other projects of the Radiation-Effects Team, Cytogenetics with J. R. Williams as Principal Investigator and Mutations from Repeated DNA Sequences. Results for these other projects also are being presented at this Workshop.

  15. NSBRI Radiation Effects: Carcinogenesis in Sprague-Dawley Rats Irradiated with Iron Ions, Protons, or Photons

    NASA Technical Reports Server (NTRS)

    Dicello, J. F.; Cucinotta, F. A.; Gridley, D. S.; Howard, S. P.; Novak, G. R.; Ricart-Arbona, R.; Strandberg, J. D.; Vazquez, M. E.; Williams, J. R.; Zhang, Y.; hide

    1999-01-01

    Our ability to confidently develop appropriate countermeasures for radiations in space in terms of shielding and design of a spacecraft, the mission scenario, or chemoprevention is severely limited by the uncertainties in both the risk itself and the change in that risk with intervention. Despite the fact that the risk of carcinogenesis from exposures of personnel to radiations on long-term missions is considered one of the worst hazards in space, only a limited amount of in-vivo data exist for tumor induction from exposures to protons or energetic heavy ions (HZEs) at lower doses. The most extensive work remains the landmark study. for tumor development in the harderian gland of the mouse. The objective of this study is to characterize the level of risk for tumor induction in another relevant animal model. Subsequent experiments are designed to test the hypothesis that the level of risk can be reduced by pharmaceutical intervention in the promoting and progressing stages of the disease rather than in the initiating stage. The work presented here results from a cooperative effort on the part of investigators from two projects of the Radiation-Effects Team of the National Space Biomedical Research Institute (NSBRI). The collaborating projects are the Core Project which is investigating the risk of carcinogenesis in Sprague-Dawley rats and the Chemoprevention Project which is investigating the ability of Tamoxifen to reduce the number of malignant tumors in the irradiated animals. Research at the cellular and subcellular levels is being conducted in two other projects of the Radiation-Effects Team, Cytogenetics with J. R. Williams as Principal Investigator and Mutations from Repeated DNA Sequences. Results for these other projects also are being presented at this Workshop.

  16. Multistage Carcinogenesis Modelling of Low and Protracted Radiation Exposure for Risk Assessment

    NASA Astrophysics Data System (ADS)

    Brugmans, M. J. P.; Bijwaard, H.

    Exposure to cosmic radiation in space poses an increased risk for radiation-induced cancer later in life. Modelling is essential to quantify these excess risks from low and protracted exposures to a mixture of radiation types, since they cannot be determined directly in epidemiological studies. Multistage carcinogenesis models provide a mechanistic basis for the extrapolation of epidemiological data to the regime that is relevant for radiation protection. In recent years, we have exploited the well-known two-mutation carcinogenesis model to bridge the gap between radiobiology and epidemiology. We have fitted this model to a number of animal and epidemiological data sets, using dose-response relationships for the mutational steps that are well established in cellular radiobiology. The methodology and implications for radiation risks are illustrated with analyses of two radiation-induced tumours: bone cancer from internal (high-LET and low-LET) emitters and lung cancer after radon exposure. For the risks of bone-seeking radionuclides (Ra-226, Sr-90, Pu-239), model fits to beagle data show that the dose-effect relationship for bone cancer at low intakes is linear-quadratic. This is due to a combination of equally strong linear dose-effects in the two subsequent mutational steps in the model. This supra-linear dose-effect relationship is also found in a model analysis of bone cancer in radium dial painters. This implies that at low intakes the risks from bone seekers are significantly lower than estimated from a linear extrapolation from high doses. Model analyses of radon-exposed rats and uranium miners show that lung-cancer induction is dominated by a linear radiation effect in the first mutational step. For two miner cohorts with significantly different lung cancer baselines a uniform description of the effect of radon is obtained in a joint analysis. This demonstrates the possibility to model risk transfer across populations. In addition to biologically based risk

  17. Integration of a radiation biomarker into modeling of thyroid carcinogenesis and post-Chernobyl risk assessment.

    PubMed

    Kaiser, Jan Christian; Meckbach, Reinhard; Eidemüller, Markus; Selmansberger, Martin; Unger, Kristian; Shpak, Viktor; Blettner, Maria; Zitzelsberger, Horst; Jacob, Peter

    2016-12-01

    Strong evidence for the statistical association between radiation exposure and disease has been produced for thyroid cancer by epidemiological studies after the Chernobyl accident. However, limitations of the epidemiological approach in order to explore health risks especially at low doses of radiation appear obvious. Statistical fluctuations due to small case numbers dominate the uncertainty of risk estimates. Molecular radiation markers have been searched extensively to separate radiation-induced cancer cases from sporadic cases. The overexpression of the CLIP2 gene is the most promising of these markers. It was found in the majority of papillary thyroid cancers (PTCs) from young patients included in the Chernobyl tissue bank. Motivated by the CLIP2 findings we propose a mechanistic model which describes PTC development as a sequence of rate-limiting events in two distinct paths of CLIP2-associated and multistage carcinogenesis. It integrates molecular measurements of the dichotomous CLIP2 marker from 141 patients into the epidemiological risk analysis for about 13 000 subjects from the Ukrainian-American cohort which were exposed below age 19 years and were put under enhanced medical surveillance since 1998. For the first time, a radiation risk has been estimated solely from marker measurements. Cross checking with epidemiological estimates and model validation suggests that CLIP2 is a marker of high precision. CLIP2 leaves an imprint in the epidemiological incidence data which is typical for a driver gene. With the mechanistic model, we explore the impact of radiation on the molecular landscape of PTC. The model constitutes a unique interface between molecular biology and radiation epidemiology. © The Author 2016. Published by Oxford University Press.

  18. Integration of a radiation biomarker into modeling of thyroid carcinogenesis and post-Chernobyl risk assessment

    PubMed Central

    Kaiser, Jan Christian; Meckbach, Reinhard; Eidemüller, Markus; Selmansberger, Martin; Unger, Kristian; Shpak, Viktor; Blettner, Maria; Zitzelsberger, Horst; Jacob, Peter

    2016-01-01

    Strong evidence for the statistical association between radiation exposure and disease has been produced for thyroid cancer by epidemiological studies after the Chernobyl accident. However, limitations of the epidemiological approach in order to explore health risks especially at low doses of radiation appear obvious. Statistical fluctuations due to small case numbers dominate the uncertainty of risk estimates. Molecular radiation markers have been searched extensively to separate radiation-induced cancer cases from sporadic cases. The overexpression of the CLIP2 gene is the most promising of these markers. It was found in the majority of papillary thyroid cancers (PTCs) from young patients included in the Chernobyl tissue bank. Motivated by the CLIP2 findings we propose a mechanistic model which describes PTC development as a sequence of rate-limiting events in two distinct paths of CLIP2-associated and multistage carcinogenesis. It integrates molecular measurements of the dichotomous CLIP2 marker from 141 patients into the epidemiological risk analysis for about 13 000 subjects from the Ukrainian-American cohort which were exposed below age 19 years and were put under enhanced medical surveillance since 1998. For the first time, a radiation risk has been estimated solely from marker measurements. Cross checking with epidemiological estimates and model validation suggests that CLIP2 is a marker of high precision. CLIP2 leaves an imprint in the epidemiological incidence data which is typical for a driver gene. With the mechanistic model, we explore the impact of radiation on the molecular landscape of PTC. The model constitutes a unique interface between molecular biology and radiation epidemiology. PMID:27729373

  19. Report of National Cancer Institute symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. I. Common molecular mechanisms

    SciTech Connect

    Borg, D.C.

    1984-01-01

    Some aspects of molecular mechanisms common to radiation and chemical carcinogenesis are discussed, particularly the DNA damage done by these agents. Emphasis is placed on epidemiological considerations and on dose-response models used in risk assessment to extrapolate from experimental data obtained at high doses to the effects from long-term, low-level exposures. 3 references, 6 figures. (ACR)

  20. The inhibitory effect of meadowsweet (Filipendula ulmaria) on radiation-induced carcinogenesis in rats.

    PubMed

    Bespalov, Vladimir G; Alexandrov, Valery A; Semenov, Alexandr L; Kovan'ko, Elena G; Ivanov, Sergey D; Vysochina, Galina I; Kostikova, Vera A; Baranenko, Denis A

    2017-04-01

    To examine the ability of the meadowsweet preparation to inhibit carcinogenesis induced by ionizing radiation in female rats. The chemical composition of meadowsweet (Filipendula ulmaria) raw material (ethanol and aqueous extracts of meadowsweet flowers) has been studied for the presence of flavonoids, tannins and catechins. Adult female LIO strain rats were subjected to a single whole body γ-irradiation at a dose of 4 Gy in animal experiments. One group of irradiated rats served as control while the other group, starting from the 10th day after irradiation and until the end of the experiment, was given meadowsweet as a decoction of the flowers instead of drinking water. The average daily intake of meadowsweet (dry raw material) was 1 g/kg body weight. Rats were observed for 16 months. The analyzed meadowsweet extracts showed a sufficiently high content of flavonoids and tannins. In irradiated rats after 16 months the overall incidence of tumors was 79.6% (in 82 of 103 rats), the incidence of malignant tumors was 43.7% and the overall tumor multiplicity was 1.48. Most tumors were localized in the mammary gland - 57.3%. In rats that received meadowsweet, the incidence of all malignant tumors and overall multiplicity of tumors were significantly decreased by 1.5 and 1.3 times, respectively. The greatest reduction of many parameters has been identified for breast tumors: the overall incidence was decreased by 1.5 (p = 0.0174) and the overall multiplicity and multiplicity of malignant tumors - by 1.6 (p = 0.0002) and 2.2 (p = 0.0383) times, respectively. Meadowsweet preparation showed inhibiting activity on radiation carcinogenesis.

  1. Protein Kinases and Transcription Factors Activation in Response to UV-Radiation of Skin: Implications for Carcinogenesis

    PubMed Central

    López-Camarillo, César; Ocampo, Elena Aréchaga; Casamichana, Mavil López; Pérez-Plasencia, Carlos; Álvarez-Sánchez, Elizbeth; Marchat, Laurence A.

    2012-01-01

    Solar ultraviolet (UV) radiation is an important environmental factor that leads to immune suppression, inflammation, photoaging, and skin carcinogenesis. Here, we reviewed the specific signal transduction pathways and transcription factors involved in the cellular response to UV-irradiation. Increasing experimental data supporting a role for p38, MAPK, JNK, ERK1/2, and ATM kinases in the response network to UV exposure is discussed. We also reviewed the participation of NF-κB, AP-1, and NRF2 transcription factors in the control of gene expression after UV-irradiation. In addition, we discussed the promising chemotherapeutic intervention of transcription factors signaling by natural compounds. Finally, we focused on the review of data emerging from the use of DNA microarray technology to determine changes in global gene expression in keratinocytes and melanocytes in response to UV treatment. Efforts to obtain a comprehensive portrait of the transcriptional events regulating photodamage of intact human epidermis after UV exposure reveals the existence of novel factors participating in UV-induced cell death. Progress in understanding the multitude of mechanisms induced by UV-irradiation could lead to the potential use of protein kinases and novel proteins as specific targets for the prevention and control of skin cancer. PMID:22312244

  2. Protein kinases and transcription factors activation in response to UV-radiation of skin: implications for carcinogenesis.

    PubMed

    López-Camarillo, César; Ocampo, Elena Aréchaga; Casamichana, Mavil López; Pérez-Plasencia, Carlos; Alvarez-Sánchez, Elizbeth; Marchat, Laurence A

    2012-01-01

    Solar ultraviolet (UV) radiation is an important environmental factor that leads to immune suppression, inflammation, photoaging, and skin carcinogenesis. Here, we reviewed the specific signal transduction pathways and transcription factors involved in the cellular response to UV-irradiation. Increasing experimental data supporting a role for p38, MAPK, JNK, ERK1/2, and ATM kinases in the response network to UV exposure is discussed. We also reviewed the participation of NF-κB, AP-1, and NRF2 transcription factors in the control of gene expression after UV-irradiation. In addition, we discussed the promising chemotherapeutic intervention of transcription factors signaling by natural compounds. Finally, we focused on the review of data emerging from the use of DNA microarray technology to determine changes in global gene expression in keratinocytes and melanocytes in response to UV treatment. Efforts to obtain a comprehensive portrait of the transcriptional events regulating photodamage of intact human epidermis after UV exposure reveals the existence of novel factors participating in UV-induced cell death. Progress in understanding the multitude of mechanisms induced by UV-irradiation could lead to the potential use of protein kinases and novel proteins as specific targets for the prevention and control of skin cancer.

  3. Medical radiation exposure and human carcinogenesis-genetic and epigenetic mechanisms.

    PubMed

    Dincer, Yildiz; Sezgin, Zeynep

    2014-09-01

    Ionizing radiation (IR) is a potential carcinogen. Evidence for the carcinogenic effect of IR radiation has been shown after long-term animal investigations and observations on survivors of the atom bombs in Hiroshima and Nagasaki. However, IR has been widely used in a controlled manner in the medical imaging for diagnosis and monitoring of various diseases and also in cancer therapy. The collective radiation dose from medical imagings has increased six times in the last two decades, and grow continuously day to day. A large number of evidence has revealed the increased cancer risk in the people who had frequently exposed to x-rays, especially in childhood. It has also been shown that secondary malignancy may develop within the five years in cancer survivors who have received radiotherapy, because of IR-mediated damage to healthy cells. In this article, we review the current knowledge about the role of medical x-ray exposure in cancer development in humans, and recently recognized epigenetic mechanisms in IR-induced carcinogenesis.

  4. Atomic Bomb Survivors Life-Span Study: Insufficient Statistical Power to Select Radiation Carcinogenesis Model.

    PubMed

    Socol, Yehoshua; Dobrzyński, Ludwik

    2015-01-01

    The atomic bomb survivors life-span study (LSS) is often claimed to support the linear no-threshold hypothesis (LNTH) of radiation carcinogenesis. This paper shows that this claim is baseless. The LSS data are equally or better described by an s-shaped dependence on radiation exposure with a threshold of about 0.3 Sievert (Sv) and saturation level at about 1.5 Sv. A Monte-Carlo simulation of possible LSS outcomes demonstrates that, given the weak statistical power, LSS cannot provide support for LNTH. Even if the LNTH is used at low dose and dose rates, its estimation of excess cancer mortality should be communicated as 2.5% per Sv, i.e., an increase of cancer mortality from about 20% spontaneous mortality to about 22.5% per Sv, which is about half of the usually cited value. The impact of the "neutron discrepancy problem" - the apparent difference between the calculated and measured values of neutron flux in Hiroshima - was studied and found to be marginal. Major revision of the radiation risk assessment paradigm is required.

  5. Estimation of risk based on multiple events in radiation carcinogenesis of rat skin

    NASA Astrophysics Data System (ADS)

    Burns, F. J.; Jin, Y.; Garte, S. J.; Hosselet, S.

    1994-10-01

    In the multistage theory of carcinogenesis, cells progress to cancer through a series of discrete, irreversible, heritable genetic alterations or mutations. However data on radiation-induced cancer incidence in rat skin suggests that some part of an intermediate repairable alteration may occur. Data are presented on cancer induction in rat skin exposed to the following radiations: 1. an electron beam (LET = 0.34 keV/um, 2. a neon ion beam (LET = 25 keV/um and 3. an argon ion beam (LET = 125 keV/um. The latter 2 beams were generated by the Bevalac at the Lawrence Berkeley Laboratory, Berkeley, CA. About 6.0 cm2 of skin was irradiated per rat. The rats were observed every 6 weeks for at least 78 weeks and tumors were scored at first occurrence. Several histological types of cancer, including squamous and basal cell carcinomas, were induced. The cancer yield versus radiation dose was fitted by the quadratic equation (Y (D) = CLD + BD2), and the parameters C and B were estimated for each type of radiation. Analysis of the DNA from the electron-induced carcinomas indicated that K-ras and/or c-myc oncogenes were activated in all tumors tested, although only a small proportion of neon-induced tumors showed similar activation. In situ hybridization indicated that the cancers contain subpopulations of cells with differing amounts of c-myc and H-ras amplification. The results are consistent with the idea that ionizing radiation produces carcinogenically relevant lesions via 2 repairable events at low LET and via a non-repairable, linked event pathway at high LET; either pathway may advance the cell by 1 stage in the multistage model. The model, if validated, permits the direct calculation of cancer risk in rat skin in a way that can be subjected to experimental testing.

  6. Changing Attitude Toward Radiation Carcinogenesis and Prospects for Novel Low-Dose Radiation Treatments.

    PubMed

    Socol, Yehoshua; Welsh, James S

    2016-12-01

    All procedures involving ionizing radiation, whether diagnostic or therapeutic, are subject to strict regulation, and public concerns have been raised about even the low levels of radiation exposures involved in diagnostic imaging. During the last 2 decades, there are signs of more balanced attitude to ionizing radiation hazards, as opposed to the historical "radiophobia." The linear no-threshold hypothesis, based on the assumption that every radiation dose increment constitutes increased cancer risk for humans, is increasingly debated. In particular, the recent memorandum of the International Commission on Radiological Protection admits that the linear no-threshold hypothesis predictions at low doses (that International Commission on Radiological Protection itself has used and continues to use) are "speculative, unproven, undetectable, and 'phantom'." Moreover, numerous experimental, ecological, and epidemiological studies suggest that low doses of ionizing radiation may actually be beneficial to human health. Although these advances in scientific understanding have not yet yielded significant changes in radiation regulation and policy, we are hopeful such changes may happen in the relatively near future. This article reviews the present status of the low-dose radiation hazard debate and outlines potential opportunities in the field of low-dose radiation therapy. © The Author(s) 2015.

  7. Influence of Ionizing Radiation on Stromal-Epithelial Intercellular Communication in Esophageal Carcinogenesis

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Kalabis, Jiri; Rustgi, Anil K.; Cucinotta, Francis A.; Huff, Janice L.

    2010-01-01

    Esophageal cancer is the 6th leading cause of cancer death worldwide. Its development is associated with a variety of risk factors including tobacco use, heavy alcohol consumption, human papilloma virus infection, and certain dietary factors such as trace mineral and vitamin deficiencies. An association with ionizing radiation exposure is revealed by the high excess relative risk for squamous cell carcinoma of the esophagus observed in the survivors of the atomic bomb detonations in Japan. It is also seen as a secondary malignancy in patients who received radiotherapy for breast and thoracic cancers; additionally, patients with head/neck and oral squamous cell cancers are at increased risk for metachronous esophageal squamous cell cancers. This malignancy is rapidly fatal, mainly because it remains asymptomatic until late, advanced stages when the disease is rarely curable. The stromal microenvironment plays an essential role in the maintenance and modulation of normal epithelial cell growth and differentiation and cross talk between the epithelial and stromal compartments can influence many aspects of malignant progression, including tumor cell proliferation, migration, invasion and recruitment of new blood vessels. To test the hypothesis that radiation exposure plays a role in esophageal carcinogenesis via non-targeted mechanisms involving stromal-epithelial cell communication, we are studying radiation effects on hTERT-immortalized human esophageal epithelial cells and genetic variants grown in co-culture with human esophageal stromal fibroblasts (Okawa et al., Genes & Dev. 2007. 21: 2788-2803). We examined how radiation treatment of stromal fibroblasts affected epithelial migration and invasion, behaviors associated with cancer promotion and progression. Chemotactic and haptotactic migration of epithelial cells stimulated by conditioned media from irradiated fibroblasts was measured using assays conducted in Transwell cell culture chambers. Our results using

  8. Influence of Ionizing Radiation on Stromal-Epithelial Intercellular Communication in Esophageal Carcinogenesis

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Kalabis, Jiri; Rustgi, Anil K.; Cucinotta, Francis A.; Huff, Janice L.

    2010-01-01

    Esophageal cancer is the 6th leading cause of cancer death worldwide. Its development is associated with a variety of risk factors including tobacco use, heavy alcohol consumption, human papilloma virus infection, and certain dietary factors such as trace mineral and vitamin deficiencies. An association with ionizing radiation exposure is revealed by the high excess relative risk for squamous cell carcinoma of the esophagus observed in the survivors of the atomic bomb detonations in Japan. It is also seen as a secondary malignancy in patients who received radiotherapy for breast and thoracic cancers; additionally, patients with head/neck and oral squamous cell cancers are at increased risk for metachronous esophageal squamous cell cancers. This malignancy is rapidly fatal, mainly because it remains asymptomatic until late, advanced stages when the disease is rarely curable. The stromal microenvironment plays an essential role in the maintenance and modulation of normal epithelial cell growth and differentiation and cross talk between the epithelial and stromal compartments can influence many aspects of malignant progression, including tumor cell proliferation, migration, invasion and recruitment of new blood vessels. To test the hypothesis that radiation exposure plays a role in esophageal carcinogenesis via non-targeted mechanisms involving stromal-epithelial cell communication, we are studying radiation effects on hTERT-immortalized human esophageal epithelial cells and genetic variants grown in co-culture with human esophageal stromal fibroblasts (Okawa et al., Genes & Dev. 2007. 21: 2788-2803). We examined how radiation treatment of stromal fibroblasts affected epithelial migration and invasion, behaviors associated with cancer promotion and progression. Chemotactic and haptotactic migration of epithelial cells stimulated by conditioned media from irradiated fibroblasts was measured using assays conducted in Transwell cell culture chambers. Our results using

  9. Human epidermal stem cells: Role in adverse skin reactions and carcinogenesis from radiation.

    PubMed

    Martin, Michèle T; Vulin, Adeline; Hendry, Jolyon H

    In human skin, keratinopoiesis is based on a functional hierarchy among keratinocytes, with rare slow-cycling stem cells responsible for the long-term maintenance of the tissue through their self-renewal potential, and more differentiated daughter progenitor cells actively cycling to permit epidermal renewal and turn-over every month. Skin is a radio-responsive tissue, developing all types of radiation damage and pathologies, including early tissue reactions such as dysplasia and denudation in epidermis, and later fibrosis in the dermis and acanthosis in epidermis, with the TGF-beta 1 pathway as a known master switch. Also there is a risk of basal cell carcinoma, which arises from epidermal keratinocytes, notably after oncogenic events in PTCH1 or TP53 genes. This review will cover the mechanisms of adverse human skin reactions and carcinogenesis after various types of exposures to ionizing radiation, with comparison with animal data when necessary, and will discuss the possible role of stem cells and their progeny in the development of these disorders. The main endpoints presented are basal cell intrinsic radiosensitivity, genomic stability, individual factors of risk, dose specific responses, major molecular pathways involved and the cellular origin of skin reactions and cancer. Although major advances have been obtained in recent years, the precise implications of epidermal stem cells and their progeny in these processes are not yet fully characterized. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    SciTech Connect

    Fabrikant, J.I.

    1982-08-01

    The present review provides an understanding of our current knowledge of the carcinogenic effect of low-dose radiation in man, and surveys the epidemiological studies of human populations exposed to nuclear explosions and medical radiation. Discussion centers on the contributions of quantitative epidemiology to present knowledge, the reliability of the dose-incidence data, and those relevant epidemiological studies that provide the most useful information for risk estimation of cancer-induction in man. Reference is made to dose-incidence relationships from laboratory animal experiments where they may obtain for problems and difficulties in extrapolation from data obtained at high doses to low doses, and from animal data to the human situation. The paper describes the methods of application of such epidemiological data for estimation of excess risk of radiation-induced cancer in exposed human populations, and discusses the strengths and limitations of epidemiology in guiding radiation protection philosophy and public health policy.

  11. Influence of Ionizing Radiation on Stromal-Epithelial Communication in Esophageal Carcinogenesis

    NASA Astrophysics Data System (ADS)

    Huff, Janice; Patel, Zarana; Grugan, Katharine; Rustgi, Anil; Cucinotta, Francis A.

    Esophageal cancer is the 6th leading cause of cancer death worldwide and is associated with a variety of risk factors including tobacco use, heavy alcohol consumption, human papilloma virus infection, and certain dietary factors such as trace mineral and vitamin deficiencies. A connection with ionizing radiation exposure is revealed by the high excess relative risk for esophageal squamous cell carcinoma observed in the survivors of the atomic bomb detonations in Japan. Esophageal carcinomas are also seen as secondary malignancies in patients who received radiotherapy for breast and thoracic cancers; additionally, patients with head/neck and oral squamous cell cancers are at increased risk for metachronous esophageal squamous cell cancers. This malignancy is rapidly fatal, mainly because it remains asymptomatic until late, advanced stages when the disease is rarely responsive to treatment. In normal epithelium, the stromal microenvironment is essential for the maintenance and modulation of cell growth and differentiation. Cross talk between the epithelial and stromal compartments can influence many aspects of malignant progression, including tumor cell proliferation, migration, invasion and recruitment of new blood vessels. To test the hypothesis that radiation exposure plays a role in esophageal carcinogenesis via non-targeted mechanisms involving stromal-epithelial cell communication, we are studying radiation effects on hTERT-immortalized human esophageal epithelial cells and genetic variants grown in co-culture with human esophageal stromal fibrob-lasts (Okawa et al., Genes Dev. 2007. 21: 2788-2803). We examined how irradiation of stromal fibroblasts affected epithelial migration and invasion, behaviors associated with cancer promotion and progression. These assays were conducted in modified Boyden chambers using conditioned media from irradiated fibroblasts. Our results using low LET gamma radiation showed a dose-dependent increase in migration of epithelial

  12. Tumor suppressor function of Betaig-H3 gene in radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Zhao, Y. L.; Piao, C. Q.; Hei, T. K.

    Interaction between cell and extracellular matrix (ECM) plays a crucial role in tumor invasiveness and metastasis. Using an immortalized human bronchial epithelial (BEP2D) cell model, we showed previously that expression of a list of genes including Betaig-h3 (induced by transforming growth factor-β) DCC (deleted in colorectal cancer), p21 cip1, c-fos , Heat shock protein (HSP27) and cytokeratin 14 were differentially expressed in several independently generated, radiation-induced tumor cell lines (TL1-TL5) relative to parental BEP2D cells. Our previous data further demonstrated that loss of tumor suppressor gene(s) as a likely mechanism of radiation carcinogenesis. In the present study, we chose Betaig-h3 and DCC that were downregulated in tumorigenic cells for further study. Restored expression of Betaig-h3 gene, not DCC gene, by transfecting cDNA into tumor cells resulted in a significant reduction in tumor growth. While integrin receptor α5β1 was overexpressed in tumor cells, its expression was corrected to the level found in control BEP2D cells after Betaig-h3 transfection. These data suggest that Betaig-h3 gene is involved in tumor progression by regulating integrin α5β1 receptor. Furthermore, exogenous TGF-β1 induced expression of Betaig-h3 gene and inhibited the growth of both control and tumorigenic BEP2D cells. Therefore, downregulation of Betaig-h3 gene may results from the decreased expression of upstream mediators such as TGF-β. The findings provide strong evidence that the Betaig-h3 gene has tumor suppressor function in radiation-induced tumorigenic human bronchial epithelial cells and suggest a potential target for interventional therapy.

  13. Apps for Radiation Oncology. A Comprehensive Review.

    PubMed

    Calero, J J; Oton, L F; Oton, C A

    2017-02-01

    Software applications executed on a smart-phone or mobile device ("Apps") are increasingly used by oncologists in their daily work. A comprehensive critical review was conducted on Apps specifically designed for Radiation Oncology, which aims to provide scientific support for these tools and to guide users in choosing the most suited to their needs. A systematic search was conducted in mobile platforms, iOS and Android, returning 157 Apps. Excluding those whose purpose did not match the scope of the study, 31 Apps were methodically analyzed by the following items: Objective Features, List of Functionalities, Consistency in Outcomes and Usability. Apps are presented in groups of features, as Dose Calculators (7 Apps), Clinical Calculators (4), Tools for Staging (7), Multipurpose (7) and Others (6). Each App is presented with the list of attributes and a brief comment. A short summary is provided at the end of each group. There are numerous Apps with useful tools at the disposal of radiation oncologists. The most advisable Apps do not match the more expensive. Three all-in-one apps seem advisable above all: RadOnc Reference (in English), Easy Oncology (in German) and iOncoR (in Spanish). Others recommendations are suggested for specific tasks: dose calculators, treatment-decision and staging. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Radiation-induced carcinogenesis: mechanistically based differences between gamma-rays and neutrons, and interactions with DMBA.

    PubMed

    Shuryak, Igor; Brenner, David J; Ullrich, Robert L

    2011-01-01

    Different types of ionizing radiation produce different dependences of cancer risk on radiation dose/dose rate. Sparsely ionizing radiation (e.g. γ-rays) generally produces linear or upwardly curving dose responses at low doses, and the risk decreases when the dose rate is reduced (direct dose rate effect). Densely ionizing radiation (e.g. neutrons) often produces downwardly curving dose responses, where the risk initially grows with dose, but eventually stabilizes or decreases. When the dose rate is reduced, the risk increases (inverse dose rate effect). These qualitative differences suggest qualitative differences in carcinogenesis mechanisms. We hypothesize that the dominant mechanism for induction of many solid cancers by sparsely ionizing radiation is initiation of stem cells to a pre-malignant state, but for densely ionizing radiation the dominant mechanism is radiation-bystander-effect mediated promotion of already pre-malignant cell clone growth. Here we present a mathematical model based on these assumptions and test it using data on the incidence of dysplastic growths and tumors in the mammary glands of mice exposed to high or low dose rates of γ-rays and neutrons, either with or without pre-treatment with the chemical carcinogen 7,12-dimethylbenz-alpha-anthracene (DMBA). The model provides a mechanistic and quantitative explanation which is consistent with the data and may provide useful insight into human carcinogenesis.

  15. Radiation-Induced Carcinogenesis: Mechanistically Based Differences between Gamma-Rays and Neutrons, and Interactions with DMBA

    PubMed Central

    Shuryak, Igor; Brenner, David J.; Ullrich, Robert L.

    2011-01-01

    Different types of ionizing radiation produce different dependences of cancer risk on radiation dose/dose rate. Sparsely ionizing radiation (e.g. γ-rays) generally produces linear or upwardly curving dose responses at low doses, and the risk decreases when the dose rate is reduced (direct dose rate effect). Densely ionizing radiation (e.g. neutrons) often produces downwardly curving dose responses, where the risk initially grows with dose, but eventually stabilizes or decreases. When the dose rate is reduced, the risk increases (inverse dose rate effect). These qualitative differences suggest qualitative differences in carcinogenesis mechanisms. We hypothesize that the dominant mechanism for induction of many solid cancers by sparsely ionizing radiation is initiation of stem cells to a pre-malignant state, but for densely ionizing radiation the dominant mechanism is radiation-bystander-effect mediated promotion of already pre-malignant cell clone growth. Here we present a mathematical model based on these assumptions and test it using data on the incidence of dysplastic growths and tumors in the mammary glands of mice exposed to high or low dose rates of γ-rays and neutrons, either with or without pre-treatment with the chemical carcinogen 7,12-dimethylbenz-alpha-anthracene (DMBA). The model provides a mechanistic and quantitative explanation which is consistent with the data and may provide useful insight into human carcinogenesis. PMID:22194850

  16. Carcinogenesis and low-level ionizing radiation with special reference to lung cancer and exposure to radon daughters

    SciTech Connect

    Fabrikant, J.I.

    1982-04-01

    Of the important health effects of ionizing radiation, three important late effects - carcinogenesis, teratogenesis and mutagenesis are of greatest concern. This is because any exposure, even at low levels, carries some risk of such deleterious effects. As the dose of radiation increases above very low levels, the risk of health effects increases. Cancer-induction is the most important late somatic effect of low-dose ionizing radiation. Solid cancers, rather than leukemia, are principal late effects in exposed individuals. Tissues vary greatly in their susceptibility to radiation carcinogenesis. The most frequently occurring radiation-induced cancers in man include, in decreasing order of susceptibility: the female breast, the thyroid gland, the blood-forming tissues, the lung, certain organs of the gastrointestinal tract, and the bones. A number of biological and physical factors affect the cancer risk, such as age, sex, life-style, LET, and RBE. Despite uncertainty about low-level radiation risks, regulatory and advisory bodies must set standards for exposure, and individuals need information to be able to make informed judgments for themselves. From the point of view of the policy maker, the overriding concern is the fact that small doses of radiation can cause people to have more cancers than would otherwise be expected. While concern for all radiation effects exists, our human experience is limited to cancer-induction in exposed populations. This discussion is limited to cancer risk estimation and decision-making in relation to the health effects on populations of exposure to low levels of ionizing radiation. Here, low-level radiation will refer to yearly whole-body doses up to 5 rems or 0.05 Sv, or to cumulative doses up to 50 rems or 0.5 Sv from low-LET radiation and from high-LET radiation. (ERB)

  17. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis

    SciTech Connect

    Wright, Aaron T.; Magnaldo, Thierry; Sontag, Ryan L.; Anderson, Lindsey N.; Sadler, Natalie C.; Piehowski, Paul D.; Gache, Yannick; Weber, Thomas J.

    2013-11-27

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of relevant pathways/networks. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol-reactive probes with a flexible click chemistry functional group to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. We observe qualitative differences in protein thiol profiles by SDS-PAGE analysis when detection by iodoacetamide vs maleimide probe chemistries are compared, and pretreatment of cells with hydrogen peroxide eliminates detection of the majority of SDS-PAGE bands. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent donors, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and this deficiency was confirmed by Western blot. Redox probes revealed additional protein thiol differences between GDFs and NHDFs, including radiation responsive annexin family members. Our results indicate a multifactorial basis for the unusual sensitivity of Gorlin syndrome to radiation carcinogenesis, and the pathways identified have plausible implications for radiation health effects.

  18. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis

    DOE PAGES

    Wright, Aaron T.; Magnaldo, Thierry; Sontag, Ryan L.; ...

    2013-11-27

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of relevant pathways/networks. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol-reactive probes with a flexible click chemistry functional group to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. We observe qualitative differences in protein thiol profilesmore » by SDS-PAGE analysis when detection by iodoacetamide vs maleimide probe chemistries are compared, and pretreatment of cells with hydrogen peroxide eliminates detection of the majority of SDS-PAGE bands. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent donors, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and this deficiency was confirmed by Western blot. Redox probes revealed additional protein thiol differences between GDFs and NHDFs, including radiation responsive annexin family members. Our results indicate a multifactorial basis for the unusual sensitivity of Gorlin syndrome to radiation carcinogenesis, and the pathways identified have plausible implications for radiation health effects.« less

  19. Carcinogenesis and aging

    SciTech Connect

    Anisimov, V.N.; Petrov, N.N.

    1987-01-01

    This 2-voluem set discusses the problem of inter-relation between carcinogenesis and aging, and the phenomenon of age-related increase in cancer incidence in animals and humans. Covered topics include current concepts in mechanisms of carcinogenesis and aging; data on chemical, radiation, ultraviolet-light, hormonal and viral carcinogenesis in aging; data on the role of age-related shifts in the activity of carcinogen-metabolizing enzymes; binding of carcinogens with macromolecules; DNA repair; tissue proliferation; and immunity and homono-metabolic patterns in realization of initiation and promotion of carcinogenesis.

  20. Radiation carcinogenesis and acute radiation mortality in the rat as produced by 2.2 GeV protons

    NASA Technical Reports Server (NTRS)

    Shellabarger, C. J.; Straub, R. F.; Jesseph, J. E.; Montour, J. L.

    1972-01-01

    Biological studies, proton carcinogenesis, the interaction of protons and gamma-rays on carcinogenesis, proton-induced acute mortality, and chemical protection against proton-induced acute mortality were studied in the rat and these proton-produced responses were compared to similar responses produced by gamma-rays or X-rays. Litter-mate mice were assigned to each experimental and control group so that approximately equal numbers of litter mates were placed in each group. Animals to be studied for mammary neoplasia were handled for 365 days post-exposure when all animals alive were killed. All animals were examined frequently for mammary tumors and as these were found, they were removed, sectioned and given a pathologic classification.

  1. Deficient Expression of Aldehyde Dehydrogenase 1A1 is Consistent With Increased Sensitivity of Gorlin Syndrome Patients to Radiation Carcinogenesis

    PubMed Central

    Wright, Aaron T.; Magnaldo, Thierry; Sontag, Ryan L.; Anderson, Lindsey N.; Sadler, Natalie C.; Piehowski, Paul D.; Gache, Yannick; Weber, Thomas J.

    2016-01-01

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of the pathways/networks that contribute to pathophysiological outcomes. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced inducible tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol reactive probes to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent Gorlin syndrome patients, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and ALDH1A1 protein deficiency in GDFs was confirmed by Western blot. A number of additional protein thiol differences in GDFs were identified, including radiation responsive annexin family members and lamin A/C. Collectively, candidates identified in our study have plausible implications for radiation health effects and cancer susceptibility. PMID:24285572

  2. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis.

    PubMed

    Wright, Aaron T; Magnaldo, Thierry; Sontag, Ryan L; Anderson, Lindsey N; Sadler, Natalie C; Piehowski, Paul D; Gache, Yannick; Weber, Thomas J

    2015-06-01

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of the pathways/networks that contribute to pathophysiological outcomes. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced inducible tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol reactive probes to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent Gorlin syndrome patients, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and ALDH1A1 protein deficiency in GDFs was confirmed by Western blot. A number of additional protein thiol differences in GDFs were identified, including radiation responsive annexin family members and lamin A/C. Collectively, candidates identified in our study have plausible implications for radiation health effects and cancer susceptibility.

  3. Validation of comprehensive space radiation transport code

    SciTech Connect

    Shinn, J.L.; Simonsen, L.C.; Cucinotta, F.A.

    1998-12-01

    The HZETRN code has been developed over the past decade to evaluate the local radiation fields within sensitive materials on spacecraft in the space environment. Most of the more important nuclear and atomic processes are now modeled and evaluation within a complex spacecraft geometry with differing material components, including transition effects across boundaries of dissimilar materials, are included. The atomic/nuclear database and transport procedures have received limited validation in laboratory testing with high energy ion beams. The codes have been applied in design of the SAGE-III instrument resulting in material changes to control injurious neutron production, in the study of the Space Shuttle single event upsets, and in validation with space measurements (particle telescopes, tissue equivalent proportional counters, CR-39) on Shuttle and Mir. The present paper reviews the code development and presents recent results in laboratory and space flight validation.

  4. Radiation acts on the microenvironment to affect breast carcinogenesis by distinct mechanisms that decrease cancer latency and affect tumor type.

    PubMed

    Nguyen, David H; Oketch-Rabah, Hellen A; Illa-Bochaca, Irineu; Geyer, Felipe C; Reis-Filho, Jorge S; Mao, Jian-Hua; Ravani, Shraddha A; Zavadil, Jiri; Borowsky, Alexander D; Jerry, D Joseph; Dunphy, Karen A; Seo, Jae Hong; Haslam, Sandra; Medina, Daniel; Barcellos-Hoff, Mary Helen

    2011-05-17

    Tissue microenvironment is an important determinant of carcinogenesis. We demonstrate that ionizing radiation, a known carcinogen, affects cancer frequency and characteristics by acting on the microenvironment. Using a mammary chimera model in which an irradiated host is transplanted with oncogenic Trp53 null epithelium, we show accelerated development of aggressive tumors whose molecular signatures were distinct from tumors arising in nonirradiated hosts. Molecular and genetic approaches show that TGFβ mediated tumor acceleration. Tumor molecular signatures implicated TGFβ, and genetically reducing TGFβ abrogated the effect on latency. Surprisingly, tumors from irradiated hosts were predominantly estrogen receptor negative. This effect was TGFβ independent and linked to mammary stem cell activity. Thus, the irradiated microenvironment affects latency and clinically relevant features of cancer through distinct and unexpected mechanisms. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background.

    PubMed

    Mitra, Devarati; Luo, Xi; Morgan, Ann; Wang, Jin; Hoang, Mai P; Lo, Jennifer; Guerrero, Candace R; Lennerz, Jochen K; Mihm, Martin C; Wargo, Jennifer A; Robinson, Kathleen C; Devi, Suprabha P; Vanover, Jillian C; D'Orazio, John A; McMahon, Martin; Bosenberg, Marcus W; Haigis, Kevin M; Haber, Daniel A; Wang, Yinsheng; Fisher, David E

    2012-11-15

    People with pale skin, red hair, freckles and an inability to tan--the 'red hair/fair skin' phenotype--are at highest risk of developing melanoma, compared to all other pigmentation types. Genetically, this phenotype is frequently the product of inactivating polymorphisms in the melanocortin 1 receptor (MC1R) gene. MC1R encodes a cyclic AMP-stimulating G-protein-coupled receptor that controls pigment production. Minimal receptor activity, as in red hair/fair skin polymorphisms, produces the red/yellow pheomelanin pigment, whereas increasing MC1R activity stimulates the production of black/brown eumelanin. Pheomelanin has weak shielding capacity against ultraviolet radiation relative to eumelanin, and has been shown to amplify ultraviolet-A-induced reactive oxygen species. Several observations, however, complicate the assumption that melanoma risk is completely ultraviolet-radiation-dependent. For example, unlike non-melanoma skin cancers, melanoma is not restricted to sun-exposed skin and ultraviolet radiation signature mutations are infrequently oncogenic drivers. Although linkage of melanoma risk to ultraviolet radiation exposure is beyond doubt, ultraviolet-radiation-independent events are likely to have a significant role. Here we introduce a conditional, melanocyte-targeted allele of the most common melanoma oncoprotein, BRAF(V600E), into mice carrying an inactivating mutation in the Mc1r gene (these mice have a phenotype analogous to red hair/fair skin humans). We observed a high incidence of invasive melanomas without providing additional gene aberrations or ultraviolet radiation exposure. To investigate the mechanism of ultraviolet-radiation-independent carcinogenesis, we introduced an albino allele, which ablates all pigment production on the Mc1r(e/e) background. Selective absence of pheomelanin synthesis was protective against melanoma development. In addition, normal Mc1r(e/e) mouse skin was found to have significantly greater oxidative DNA and lipid

  6. Effects of Ionizing Radiation on Cellular Structures, Induced Instability, and Carcinogenesis

    SciTech Connect

    Resat, Marianne S.; Arthurs, Benjamin J.; Estes, Brian J.; Morgan, William F.

    2006-03-01

    According to the American Cancer Society, the United States can expect 1,368,030 new cases of cancer in 2004 [1]. Among the many carcinogens Americans are exposed to, ionizing radiation will contribute to this statistic. Humans live in a radiation environment. Ionizing radiation is in the air we breathe, the earth we live on, and the food we eat. Man-made radiation adds to this naturally occurring radiation level thereby increasing the chance for human exposure. For many decades the scientific community, governmental regulatory bodies, and concerned citizens have struggled to estimate health risks associated with radiation exposures, particularly at low doses. While cancer induction is the primary concern and the most important somatic effect of exposure to ionizing radiation, potential health risks do not involve neoplastic diseases exclusively but also include somatic mutations that might contribute to birth defects and ocular maladies, and heritable mutations that might impact on disease risks in future generations. Consequently it is important we understand the effect of ionizingradiation on cellular structures and the subsequent long-term health risks associated with exposure to ionizing radiation.

  7. A Rat Model to Study the Effects of Diet-Induced Obesity on Radiation-Induced Mammary Carcinogenesis.

    PubMed

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Daino, Kazuhiro; Morioka, Takamitsu; Nishimura, Yukiko; Uemura, Hiroji; Akimoto, Kenta; Furukawa, Yuki; Fukushi, Masahiro; Wakabayashi, Keiji; Mutoh, Michihiro; Shimada, Yoshiya

    2016-05-01

    A detailed understanding of the relationship between radiation-induced breast cancer and obesity is needed for appropriate risk management and to prevent the development of a secondary cancer in patients who have been treated with radiation. Our goal was to develop an animal model to study the relationship by combining two existing Sprague-Dawley rat models of radiation-induced mammary carcinogenesis and diet-induced obesity. Female rats were fed a high-fat diet for 4 weeks and categorized as obesity prone or obesity resistant based on their body weight at 7 weeks of age, at which time the rats were irradiated with 4 Gy. Control rats were fed a standard diet and irradiated at the same time and in the same manner. All rats were maintained on their initial diets and assessed for palpable mammary cancers once a week for the next 30 weeks. The obesity-prone rats were heavier than those in the other groups. The obesity-prone rats were also younger than the other animals at the first detection of mammary carcinomas and their carcinoma weights were greater. A tendency toward higher insulin and leptin blood levels were observed in the obesity-prone rats compared to the other two groups. Blood angiotensin II levels were elevated in the obesity-prone and obesity-resistant rats. Genes related to translation and oxidative phosphorylation were upregulated in the carcinomas of obesity-prone rats. Expression profiles from human breast cancers were used to validate this animal model. As angiotensin is potentially an important factor in obesity-related morbidities and breast cancer, a second set of rats was fed in a similar manner, irradiated and then treated with an angiotensin-receptor blocker, losartan and candesartan. Neither blocker altered mammary carcinogenesis; analyses of losartan-treated animals indicated that expression of renin in the renal cortex and of Agtr1a (angiotensin II receptor, type 1) in cancer tissue was significantly upregulated, suggesting the presence of

  8. Test of the linear-NO threshold theory of radiation carcinogenesis for inhaled radon decay products

    SciTech Connect

    Cohen, B.L.

    1995-02-01

    Data on lung cancer mortality rates vs. average radon concentration in homes for 1,601 U.S. counties are used to test the linear-no threshold theory. The widely recognized problems with ecological studies, as applied to this work, are addressed extensively. With or without corrections for variations in smoking prevalence, there is a strong tendency for lung cancer rates to decrease with increasing radon exposure, in sharp contrast to the increase expected from the theory. The discrepancy in slope is about 20 standard deviations. It is shown that uncertainties in lung cancer rates, radon exposures, and smoking prevalence are not important and that confounding by 54 socioeconomic factors, by geography, and by altitude and climate can explain only a small fraction of the discrepancy. Effects of known radon-smoking prevalence correlations-rural people have higher radon levels and smoke less than urban people, and smokers are exposed to less radon than non-smokers-are calculated and found to be trivial. In spite of extensive efforts, no potential explanation for the discrepancy other than failure of the linear-no threshold theory for carcinogenesis from inhaled radon decay products could be found. 46 refs., 2 figs., 7 tabs.

  9. A Research Agenda for Radiation Oncology: Results of the Radiation Oncology Institute's Comprehensive Research Needs Assessment

    SciTech Connect

    Jagsi, Reshma; Bekelman, Justin E.; Brawley, Otis W.; Deasy, Joseph O.; Le, Quynh-Thu; Michalski, Jeff M.; Movsas, Benjamin; Thomas, Charles R.; Lawton, Colleen A.; Lawrence, Theodore S.; Hahn, Stephen M.

    2012-10-01

    Purpose: To promote the rational use of scarce research funding, scholars have developed methods for the systematic identification and prioritization of health research needs. The Radiation Oncology Institute commissioned an independent, comprehensive assessment of research needs for the advancement of radiation oncology care. Methods and Materials: The research needs assessment used a mixed-method, qualitative and quantitative social scientific approach, including structured interviews with diverse stakeholders, focus groups, surveys of American Society for Radiation Oncology (ASTRO) members, and a prioritization exercise using a modified Delphi technique. Results: Six co-equal priorities were identified: (1) Identify and develop communication strategies to help patients and others better understand radiation therapy; (2) Establish a set of quality indicators for major radiation oncology procedures and evaluate their use in radiation oncology delivery; (3) Identify best practices for the management of radiation toxicity and issues in cancer survivorship; (4) Conduct comparative effectiveness studies related to radiation therapy that consider clinical benefit, toxicity (including quality of life), and other outcomes; (5) Assess the value of radiation therapy; and (6) Develop a radiation oncology registry. Conclusions: To our knowledge, this prioritization exercise is the only comprehensive and methodologically rigorous assessment of research needs in the field of radiation oncology. Broad dissemination of these findings is critical to maximally leverage the impact of this work, particularly because grant funding decisions are often made by committees on which highly specialized disciplines such as radiation oncology are not well represented.

  10. Cell specific radiation dosimetry in skeleton from life-span carcinogenesis studies

    SciTech Connect

    Webster, S.S.J.

    1993-04-05

    The osteogenic sarcoma is the dominant life-threatening pathology in lifespan studies of beagles exposed to alpha-emitting bone-seeking radionuclides. It was deduced from these studies that certain skeletal sites are more prone to develop tumors. This project sought to determine the bone cells at risk and their cell-specific radiation dose. The cell-specific radiation dose values are related to loss and high Ra-226 and Pu-239 induced osteogenic sarcoma sites, to test different dose response hypothesis and predict the extent of effects in humans.

  11. Cell specific radiation dosimetry in skeleton from life-span carcinogenesis studies. Final report

    SciTech Connect

    Webster, S.S.J.

    1993-04-05

    The osteogenic sarcoma is the dominant life-threatening pathology in lifespan studies of beagles exposed to alpha-emitting bone-seeking radionuclides. It was deduced from these studies that certain skeletal sites are more prone to develop tumors. This project sought to determine the bone cells at risk and their cell-specific radiation dose. The cell-specific radiation dose values are related to loss and high Ra-226 and Pu-239 induced osteogenic sarcoma sites, to test different dose response hypothesis and predict the extent of effects in humans.

  12. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis.

    PubMed

    Mavragani, Ifigeneia V; Nikitaki, Zacharenia; Souli, Maria P; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy; Georgakilas, Alexandros G

    2017-07-18

    Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15-20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent "danger" signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.

  13. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis

    PubMed Central

    Mavragani, Ifigeneia V.; Nikitaki, Zacharenia; Souli, Maria P.; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy

    2017-01-01

    Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair. PMID:28718816

  14. Dietary feeding of Opuntia humifusa inhibits UVB radiation-induced carcinogenesis by reducing inflammation and proliferation in hairless mouse model.

    PubMed

    Lee, Jin-A; Jung, Bock-Gie; Kim, Tae-Hoon; Lee, Su-Gil; Park, Young-Seok; Lee, Bong-Joo

    2013-01-01

    It has been validated that ultraviolet B (UVB) irradiation induced both squamous and basal cell carcinomas, as a tumor initiator and promoter. Opuntia humifusa is a member of the Cactaceae family which has been demonstrated in our previous study to have a chemopreventive effect in 7, 12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate induced skin carcinogenesis models. Therefore, this study was designed to determine the protective effects of O. humifusa against photocarcinogenesis. O. humifusa was administrated to mice as a dietary feeding, following exposure to UVB radiation (180 mJ/cm(2)) twice a week of 30 weeks for skin tumor development in hairless mice. Dietary O. humifusa inhibited UVB-induced epidermal hyperplasia, infiltration of leukocytes, level of myeloperoxidase and the levels of proinflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), in UVB exposed skin. Also, O. humifusa significantly inhibited both protein and mRNA expression level of cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), proliferating cell nuclear antigen (PCNA) and cyclin D1 compared to the non-O. humifusa treated group. Collectively, these results suggest that O. humifusa could inhibit photocarcinogenesis in mouse skin and that protective effect is associated with the inhibition of not only UVB-induced inflammatory responses involving COX-2, iNOS and proinflammatory cytokines, but also the down-regulation of UVB-induced cellular proliferation. © 2013 The American Society of Photobiology.

  15. Urinary bladder carcinogenesis induced by chronic exposure to persistent low-dose ionizing radiation after Chernobyl accident.

    PubMed

    Romanenko, Alina; Kakehashi, Anna; Morimura, Keiichirou; Wanibuchi, Hideki; Wei, Min; Vozianov, Alexander; Fukushima, Shoji

    2009-11-01

    Urinary bladder urothelium as well as cells in the microenvironment of lamina propria (endothelial elements, fibroblasts and lymphocytes) demonstrate a number of responses to chronic persistent long-term, low-dose ionizing radiation (IR). Thus, oxidative stress occurs, accompanied by up-regulation of at least two signaling pathways (p38 mitogen-activated protein kinase and nuclear factor-kappaB cascades) and activation of growth factor receptors, in the bladder urothelium of people living in Cesium 137-contaminated areas of Ukraine, resulting in chronic inflammation and the development of proliferative atypical cystitis, so-called Chernobyl cystitis, which is considered a possible pre-neoplastic condition in humans. Furthermore, significant alterations in regulation of cell cycle transitions are associated with increased cell proliferation, along with up-regulated ubiquitination and sumoylation processes as well as inefficient DNA repair (base and nucleotide excision repair pathways) in the affected urothelium. The microenvironmental changes induced by chronic long-term, low-dose IR also appear to promote angiogenesis and remodeling of the extracellular matrix that could facilitate invasion as well as progression of pre-existing initiated cells to malignancy. Based on the available findings, new strategies have been developed for predicting and treatment of Chernobyl cystitis-a first step in urinary bladder carcinogenesis in humans.

  16. Analysis of radiation effects using a combined cell cycle and multistage carcinogenesis model

    NASA Astrophysics Data System (ADS)

    Hazelton, William D.; Curtis, Stanley B.; Moolgavkar, Suresh H.

    PurposeTo study radiation effects using a combined cell cycle and multistage clonal expansion model that includes processes of damage, repair, apoptosis, and mutation. The model includes endogenous and radiation induced damage causing progression of cells from normal, to damaged, to initiated, to initiated damage, to malignant status. We utilize complementary deterministic and stochastic versions of the model that share the same transition rates. The deterministic version is used to calibrate model rates for cell cycle progression, damage, checkpoint delay, repair, and apoptosis, and to implement tissue homeostasis. The stochastic version is used to predict the cancer hazard and survival. ResultsWe calibrated transition rates in the deterministic version of the model to fit flow cytometry-based clonogenic survival data for Chinese hamster V79 cells and for HeLa × skin fibroblast human hybrid cells exposed to sparsely ionizing radiation during different phases of the cell cycle. We also calibrated repair and malignant transformation rates to fit neoplastic transformation data for HeLa × skin fibroblast human hybrid cells. We found that induced repair in G2 phase explained the low-dose hypersensitivity for survival in both cell lines, and a different induced repair process explained the neoplastic transformation data. ConclusionThe shape of the induced repair curves for G2-phase survival and neoplastic transformation differ significantly, suggesting that these low-dose phenomena differ in regulation and, in fact, may be mechanistically unrelated.

  17. Telomeres and Telomerase in the Radiation Response: Implications for Instability, Reprograming, and Carcinogenesis

    PubMed Central

    Sishc, Brock J.; Nelson, Christopher B.; McKenna, Miles J.; Battaglia, Christine L. R.; Herndon, Andrea; Idate, Rupa; Liber, Howard L.; Bailey, Susan M.

    2015-01-01

    Telomeres are nucleoprotein complexes comprised of tandem arrays of repetitive DNA sequence that serve to protect chromosomal termini from inappropriate degradation, as well as to prevent these natural DNA ends from being recognized as broken DNA (double-strand breaks) and triggering of inappropriate DNA damage responses. Preservation of telomere length requires telomerase, the specialized reverse transcriptase capable of maintaining telomere length via template-mediated addition of telomeric repeats onto the ends of newly synthesized chromosomes. Loss of either end-capping function or telomere length maintenance has been associated with genomic instability or senescence in a variety of settings; therefore, telomeres and telomerase have well-established connections to cancer and aging. It has long been recognized that oxidative stress promotes shortening of telomeres, and that telomerase activity is a radiation-inducible function. However, the effects of ionizing radiation (IR) exposure on telomeres per se are much less well understood and appreciated. To gain a deeper understanding of the roles, telomeres and telomerase play in the response of human cells to IRs of different qualities, we tracked changes in telomeric end-capping function, telomere length, and telomerase activity in panels of mammary epithelial and hematopoietic cell lines exposed to low linear energy transfer (LET) gamma(γ)-rays or high LET, high charge, high energy (HZE) particles, delivered either acutely or at low dose rates. In addition to demonstrating that dysfunctional telomeres contribute to IR-induced mutation frequencies and genome instability, we reveal non-canonical roles for telomerase, in that telomerase activity was required for IR-induced enrichment of mammary epithelial putative stem/progenitor cell populations, a finding also suggestive of cellular reprograming. Taken together, the results reported here establish the critical importance of telomeres and telomerase in the

  18. Silver nanoparticles protect human keratinocytes against UVB radiation-induced DNA damage and apoptosis: potential for prevention of skin carcinogenesis.

    PubMed

    Arora, Sumit; Tyagi, Nikhil; Bhardwaj, Arun; Rusu, Lilia; Palanki, Rohan; Vig, Komal; Singh, Shree R; Singh, Ajay P; Palanki, Srinivas; Miller, Michael E; Carter, James E; Singh, Seema

    2015-07-01

    Ultraviolet (UV)-B radiation from the sun is an established etiological cause of skin cancer, which afflicts more than a million lives each year in the United States alone. Here, we tested the chemopreventive efficacy of silver-nanoparticles (AgNPs) against UVB-irradiation-induced DNA damage and apoptosis in human immortalized keratinocytes (HaCaT). AgNPs were synthesized by reduction-chemistry and characterized for their physicochemical properties. AgNPs were well tolerated by HaCaT cells and their pretreatment protected them from UVB-irradiation-induced apoptosis along with significant reduction in cyclobutane-pyrimidine-dimer formation. Moreover, AgNPs pre-treatment led to G1-phase cell-cycle arrest in UVB-irradiated HaCaT cells. AgNPs were efficiently internalized in UVB-irradiated cells and localized into cytoplasmic and nuclear compartments. Furthermore, we observed an altered expression of various genes involved in cell-cycle, apoptosis and nucleotide-excision repair in HaCaT cells treated with AgNPs prior to UVB-irradiation. Together, these findings provide support for potential utility of AgNPs as novel chemopreventive agents against UVB-irradiation-induced skin carcinogenesis. Excessive exposure to the sun is known to increase the risk of skin cancer due to DNA damage. In this work, the authors tested the use of silver nanoparticles as protective agents against ultraviolet radiation. The positive results may open a door for the use of silver nanoparticle as novel agents in the future. Published by Elsevier Inc.

  19. Promoting action of radiation in the atomic bomb survivor carcinogenesis data?

    PubMed

    Heidenreich, W F; Cullings, H M; Funamoto, S; Paretzke, H G

    2007-12-01

    The age-time patterns of risk in the atomic bomb survivor data on incidence of solid cancers suggest an action of low-LET radiation not only on the initiating event but also on promotion in a biologically motivated model that allows for both actions. The favored model indicates a decrease of radiation risks with age at exposure due to the initiating effect and with time since exposure due to the promoting effect. These result in a relative risk that depends mostly on attained age for ages at exposure above 20 years. According to the model, a dose of 100 mGy is inducing about the same number of initiating events that occur spontaneously in 1 year. Assuming that several mutations are needed to obtain intermediate cells with growth advantage does not improve the quality of fit. The estimated promoting effect could be explained if the number of intermediate cells increases by 80% at 1 Gy, e.g. due to stimulated cell repopulation.

  20. Tumor suppression function of the Big-h3 gene in radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Piao, C.; Hei, T.

    Interaction between cell and extracellular matrix (ECM) plays a crucial role in tumor invasiveness and metastasis. Using an immortalized human bronchial epithelial (BEP2D) cell model, we show here that expression of Big-h3 gene, a secreted adhesion molecule induced by transforming growth factor- beta (TGF-beta ), is markedly decreased in independently generated, high LET radiation-induced tumor cell lines (TL1-TL5) relative to parental BEP2D cells. Expression of this gene was restored to control level in fusion cell lines between the tumorigenic and parental BEP2D cells that were no longer tumorigenic in nude mice. Transfection of Big-h3 gene into tumor cells resulted in a significant reduction of tumor growth. While integrin receptor alpha 5/beta 1 was overexpressed in tumor cells, its expression was corrected to the level of control BEP2D cells after Big-h3 transfection. These data suggest that Big-h3 is involved in tumor progression by regulating integrin receptor alpha 5/beta 1. . WWee We further show that down regulation of Big-h3 results from loss of expression of TGFbeta1 in tumor cells. The findings provide strong evidence that the Big-h3 gene has tumor suppressor function in radiation induced tumorigenic human bronchial epithelial cells and suggest a potential target for interventional therapy.

  1. Lippia graveolens photochemopreventive effect against UVB radiation-induced skin carcinogenesis.

    PubMed

    García-Bores, A M; Espinosa-González, A M; Reyna-Campos, A; Cruz-Toscano, S; Benítez-Flores, J C; Hernández-Delgado, C T; Flores-Maya, S; Urzúa-Meza, M; Peñalosa-Castro, I; Céspedes-Acuña, C L; Avila-Acevedo, J G

    2017-02-01

    Lippia graveolens HBK (Mexican oregano) is a species that is regularly used as a condiment in Mexican cuisine. In traditional medicine, it is used for the treatment of respiratory and digestive illnesses, headaches, rheumatism and inflammation-related disorders. The main chemical components reported in this species include the following: terpenoids, iridoids and flavonoids. The aim of this study was to determine the potential photochemopreventive effect of the methanolic extract of Lippia graveolens (MELG) against ultraviolet B (UVB)-induced skin cancer in SKH-1 mice. The phenolic content, radical scavenger activity, penetration and genotoxicity of the MELG were also evaluated. The MELG exhibited scavenging activity against 1,1-diphenyl-2-picrylhydrazyl, superoxide and hydroxyl radicals, and it did not exhibit genotoxic activity in the micronucleus test. In addition, the MELG absorbed UVB (280nm) electromagnetic radiation. The main components detected in the plant extract were naringenin and galangin, and pinocembrin was also isolated and identified through spectroscopic analysis. The MELG demonstrated a photoprotective effect against UVB-induced cell death in Escherichia coli. In chronic challenge experiments, the MELG protected against UVB-induced skin cancer in SKH-1 mice. The MELG penetrated the skin of mice. Topical administration of the MELG protected against chronic UVB-induced damage in mouse SKH-1 skin. Our results suggest that the MELG has photochemopreventive activity and may potentially prevent photo-tumorigenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system

    PubMed Central

    Desai, Nisarg R; Kesari, Kavindra K; Agarwal, Ashok

    2009-01-01

    Hazardous health effects stemming from exposure to radiofrequency electromagnetic waves (RF-EMW) emitted from cell phones have been reported in the literature. However, the cellular target of RF-EMW is still controversial. This review identifies the plasma membrane as a target of RF-EMW. In addition, the effects of RF-EMW on plasma membrane structures (i.e. NADH oxidase, phosphatidylserine, ornithine decarboxylase) and voltage-gated calcium channels are discussed. We explore the disturbance in reactive oxygen species (ROS) metabolism caused by RF-EMW and delineate NADH oxidase mediated ROS formation as playing a central role in oxidative stress (OS) due to cell phone radiation (with a focus on the male reproductive system). This review also addresses: 1) the controversial effects of RF-EMW on mammalian cells and sperm DNA as well as its effect on apoptosis, 2) epidemiological, in vivo animal and in vitro studies on the effect of RF-EMW on male reproductive system, and 3) finally, exposure assessment and dosimetry by computational biomodeling. PMID:19849853

  3. Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system.

    PubMed

    Desai, Nisarg R; Kesari, Kavindra K; Agarwal, Ashok

    2009-10-22

    Hazardous health effects stemming from exposure to radiofrequency electromagnetic waves (RF-EMW) emitted from cell phones have been reported in the literature. However, the cellular target of RF-EMW is still controversial. This review identifies the plasma membrane as a target of RF-EMW. In addition, the effects of RF-EMW on plasma membrane structures (i.e. NADH oxidase, phosphatidylserine, ornithine decarboxylase) and voltage-gated calcium channels are discussed. We explore the disturbance in reactive oxygen species (ROS) metabolism caused by RF-EMW and delineate NADH oxidase mediated ROS formation as playing a central role in oxidative stress (OS) due to cell phone radiation (with a focus on the male reproductive system). This review also addresses: 1) the controversial effects of RF-EMW on mammalian cells and sperm DNA as well as its effect on apoptosis, 2) epidemiological, in vivo animal and in vitro studies on the effect of RF-EMW on male reproductive system, and 3) finally, exposure assessment and dosimetry by computational biomodeling.

  4. Virus Carcinogenesis

    DTIC Science & Technology

    1961-01-01

    viruses are capable of inducing cancer, it is obvious that virus carcinogenesis cannot be considered in an isolated fashion, without some reference to...intradermal inoculations of vaccinia virus . One of the viruses most widely investigated with respect to quantitative dose- response relationships is the...than the rule. Figure 6 shows the type of deviation most commonly observed with viruses of infectious diseases. VIRUS CARCINOGENESIS 131 It is a

  5. MiR-21 plays an Important Role in Radiation Induced Carcinogenesis in BALB/c Mice by Directly Targeting the Tumor Suppressor Gene Big-h3

    PubMed Central

    Liu, Cong; Li, Bailong; Cheng, Ying; Lin, Jing; Hao, Jun; Zhang, Shuyu; Mitchel, R.E.J.; Sun, Ding; Ni, Jin; Zhao, Luqian; Gao, Fu; Cai, Jianming

    2011-01-01

    Dysregulation of certain microRNAs (miRNAs) in cancer can promote tumorigenesis, metastasis and invasion. However, the functions and targets of only a few mammalian miRNAs are known. In particular, the miRNAs that participates in radiation induced carcinogenesis and the miRNAs that target the tumor suppressor gene Big-h3 remain undefined. Here in this study, using a radiation induced thymic lymphoma model in BALB/c mice, we found that the tumor suppressor gene Big-h3 is down-regulated and miR-21 is up-regulated in radiation induced thymic lymphoma tissue samples. We also found inverse correlations between Big-h3 protein and miR-21 expression level among different tissue samples. Furthermore, our data indicated that miR-21 could directly target Big-h3 in a 3′UTR dependent manner. Finally, we found that miR-21 could be induced by TGFβ, and miR-21 has both positive and negative effects in regulating TGFβ signaling. We conclude that miR-21 participates in radiation induced carcinogenesis and it regulates TGFβ signaling. PMID:21494432

  6. Comprehensive Craniospinal Radiation for Controlling Central Nervous System Leukemia

    PubMed Central

    Walker, Gary V.; Shihadeh, Ferial; Kantarjian, Hagop; Allen, Pamela; Rondon, Gabriela; Kebriaei, Partow; O’Brien, Susan; Kedir, Aziza; Said, Mustefa; Grant, Jonathan D.; Thomas, Deborah A.; Gidley, Paul W.; Arzu, Isidora; Pinnix, Chelsea; Reed, Valerie; Dabaja, Bouthaina S.

    2016-01-01

    Purpose To determine the benefit of radiation therapy (RT) in resolution of neurologic symptoms and deficits and whether the type of RT fields influences central nervous system (CNS) control in adults with CNS leukemia. Methods and Materials A total of 163 adults from 1996 to 2012 were retrospectively analyzed. Potential associations between use of radiation and outcome were investigated by univariate and multivariate analysis. Results The median survival time was 3.8 months after RT. Common presenting symptoms were headache in 79 patients (49%), cranial nerve VII deficit in 46 (28%), and cranial nerve II deficit in 44 (27%). RT was delivered to the base of skull in 48 patients (29%), to the whole brain (WB) in 67 (41%), and to the craniospinal axis (CS) in 48 (29%). Among 149 patients with a total of 233 deficits, resolution was observed in 34 deficits (15%), improvement in 126 deficits (54%), stability in 34 deficits (15%), and progression in 39 deficits (17%). The 12-month CNS progression-free survival was 77% among those receiving CS/WB and 51% among those receiving base of skull RT (P = .02). On multivariate analysis, patients who did not undergo stem cell transplantation after RT and base of skull RT were associated with worse CNS progression-free survival. Conclusions Improvement or resolution of symptoms occurred in two thirds of deficits after RT. Comprehensive radiation to the WB or CS seems to offer a better outcome, especially in isolated CNS involvement. PMID:25539370

  7. Comprehensive Craniospinal Radiation for Controlling Central Nervous System Leukemia

    SciTech Connect

    Walker, Gary V.; Shihadeh, Ferial; Kantarjian, Hagop; Allen, Pamela; Rondon, Gabriela; Kebriaei, Partow; O'Brien, Susan; Kedir, Aziza; Said, Mustefa; Grant, Jonathan D.; Thomas, Deborah A.; Gidley, Paul W.; Arzu, Isidora; Pinnix, Chelsea; Reed, Valerie; Dabaja, Bouthaina S.

    2014-12-01

    Purpose: To determine the benefit of radiation therapy (RT) in resolution of neurologic symptoms and deficits and whether the type of RT fields influences central nervous system (CNS) control in adults with CNS leukemia. Methods and Materials: A total of 163 adults from 1996 to 2012 were retrospectively analyzed. Potential associations between use of radiation and outcome were investigated by univariate and multivariate analysis. Results: The median survival time was 3.8 months after RT. Common presenting symptoms were headache in 79 patients (49%), cranial nerve VII deficit in 46 (28%), and cranial nerve II deficit in 44 (27%). RT was delivered to the base of skull in 48 patients (29%), to the whole brain (WB) in 67 (41%), and to the craniospinal axis (CS) in 48 (29%). Among 149 patients with a total of 233 deficits, resolution was observed in 34 deficits (15%), improvement in 126 deficits (54%), stability in 34 deficits (15%), and progression in 39 deficits (17%). The 12-month CNS progression-free survival was 77% among those receiving CS/WB and 51% among those receiving base of skull RT (P=.02). On multivariate analysis, patients who did not undergo stem cell transplantation after RT and base of skull RT were associated with worse CNS progression-free survival. Conclusions: Improvement or resolution of symptoms occurred in two thirds of deficits after RT. Comprehensive radiation to the WB or CS seems to offer a better outcome, especially in isolated CNS involvement.

  8. Chemical carcinogenesis.

    PubMed

    Oliveira, Paula A; Colaço, Aura; Chaves, Raquel; Guedes-Pinto, Henrique; De-La-Cruz P, Luis F; Lopes, Carlos

    2007-12-01

    The use of chemical compounds benefits society in a number of ways. Pesticides, for instance, enable foodstuffs to be produced in sufficient quantities to satisfy the needs of millions of people, a condition that has led to an increase in levels of life expectancy. Yet, at times, these benefits are offset by certain disadvantages, notably the toxic side effects of the chemical compounds used. Exposure to these compounds can have varying effects, ranging from instant death to a gradual process of chemical carcinogenesis. There are three stages involved in chemical carcinogenesis. These are defined as initiation, promotion and progression. Each of these stages is characterised by morphological and biochemical modifications and result from genetic and/or epigenetic alterations. These genetic modifications include: mutations in genes that control cell proliferation, cell death and DNA repair--i.e. mutations in proto-oncogenes and tumour suppressing genes. The epigenetic factors, also considered as being non-genetic in character, can also contribute to carcinogenesis via epigenetic mechanisms which silence gene expression. The control of responses to carcinogenesis through the application of several chemical, biochemical and biological techniques facilitates the identification of those basic mechanisms involved in neoplasic development. Experimental assays with laboratory animals, epidemiological studies and quick tests enable the identification of carcinogenic compounds, the dissection of many aspects of carcinogenesis, and the establishment of effective strategies to prevent the cancer which results from exposure to chemicals.

  9. Combined therapeutic efficacy of carvacrol and X-radiation against 1,2-dimethyl hydrazine-induced experimental rat colon carcinogenesis.

    PubMed

    Arivalagan, Sivaranjani; Thomas, Nisha Susan; Chandrasekaran, Balaji; Mani, Vijay; Siddique, Aktarul Islam; Kuppsamy, Thayalan; Namasivayam, Nalini

    2015-12-01

    Colon cancer is one of the most commonly diagnosed cancers, and is a major cause of cancer morbidity and mortality worldwide. The objective of the present study is to evaluate the combined therapeutic efficacy of carvacrol (CVC) and X-radiation against 1,2-dimethylhydrazine-induced colon cancer. Male albino Wistar rats were randomly divided into six groups. Group 1 served as control; group 2 received 40 mg/kg b.wt of CVC orally everyday throughout the experimental period (32 weeks); groups 3-6 received subcutaneous injections of DMH (20 mg/kg b.wt), once a week for the first 15 weeks; group 4 received a single dose of X-radiation at the 31st week; group 5 received CVC (40 mg/kg b.wt) two days after the last injection of DMH and continued everyday till the end of the experimental period; group 6 received CVC as in group 5 and radiation as in group 4. DMH-treated rats showed increased incidence of aberrant crypt foci (ACF), dysplastic aberrant crypt foci (DACF), mast cell number, argyrophilic nucleolar organizer regions; elevated activities of phase I enzymes, decreased activities of phase II enzymes, decreased mucin content and altered colonic and liver histology as compared to control rats. Though the individual treatments with CVC and X-radiation to DMH-treated rats reversed the above changes, the combined treatment with both CVC and X-radiation showed a marked effect. Our findings emphasize the potential role of combined therapeutic effect of CVC and X-radiation against DMH-induced colon carcinogenesis.

  10. Viral Carcinogenesis.

    PubMed

    Smith, A J; Smith, L A

    2016-01-01

    Cancer has been recognized for thousands of years. Egyptians believed that cancer occurred at the will of the gods. Hippocrates believed human disease resulted from an imbalance of the four humors: blood, phlegm, yellow bile, and black bile with cancer being caused by excess black bile. The lymph theory of cancer replaced the humoral theory and the blastema theory replaced the lymph theory. Rudolph Virchow was the first to recognize that cancer cells like all cells came from other cells and believed chronic irritation caused cancer. At the same time there was a belief that trauma caused cancer, though it never evolved after many experiments inducing trauma. The birth of virology occurred in 1892 when Dimitri Ivanofsky demonstrated that diseased tobacco plants remained infective after filtering their sap through a filter that trapped bacteria. Martinus Beijerinck would call the tiny infective agent a virus and both Dimitri Ivanofsky and Marinus Beijerinck would become the fathers of virology. Not to long thereafter, Payton Rous founded the field of tumor virology in 1911 with his discovery of a transmittable sarcoma of chickens by what would come to be called Rous sarcoma virus or RSV for short. The first identified human tumor virus was the Epstein-Barr virus (EBV), named after Tony Epstein and Yvonne Barr who visualized the virus particles in Burkitt's lymphoma cells by electron microscopy in 1965. Since that time, many viruses have been associated with carcinogenesis including the most studied, human papilloma virus associated with cervical carcinoma, many other anogenital carcinomas, and oropharyngeal carcinoma. The World Health Organization currently estimates that approximately 22% of worldwide cancers are attributable to infectious etiologies, of which viral etiologies is estimated at 15-20%. The field of tumor virology/viral carcinogenesis has not only identified viruses as etiologic agents of human cancers, but has also given molecular insights to all human

  11. The Antioxidant Tempol Reduces Carcinogenesis and Enhances Survival in Mice when Administered After Non-Lethal Total Body Radiation

    PubMed Central

    Mitchell, James B.; Anver, Miriam R.; Sowers, Anastasia L.; Rosenberg, Philip S.; Figueroa, Maria; Thetford, Angela; Krishna, Murali C.; Albert, Paul S.; Cook, John A.

    2012-01-01

    There is significant interest in the development of agents that can ameliorate radiation damage after exposure to radiation has occurred. Here we report that chronic supplementation of the antioxidant Tempol in the diet of mice can reduce body weight without toxicity, decrease cancer, and extend survival when administered after non-lethal total body radiation (TBI). These effects were apparent in two different strains of mice (C3H, CBA) exposed to TBI (3 Gy). Notably, delaying administration of the Tempol diet 1 month after TBI could also enhance survival. Tempol reduced the incidence of hematopoietic neoplasms (lymphomas) in both strains; whereas, both the onset and incidence of non-hematopoietic neoplasms were reduced in CBA mice. These results encourage further study of Tempol as a chemopreventive, to reduce the incidence of radiation-induced second malignancies after a course of definitive radiation therapy. Tempol may also find applications to reduce the risk of cancers in populations exposed to non-lethal radiation due to nuclear accidents or terrorist attacks. PMID:22805306

  12. Transplacental chemical carcinogenesis in man.

    PubMed

    Miller, R W

    1971-12-01

    This editorial was prompted by the published association of maternal diethylstilbestrol (DES) ingestion during pregnancy and subsequent development of vaginal adenocarcinoma among female offspring, and explores various factors involved in transplacental chemical carcinogenesis in humans. Known prenatal determinants of carcinogenic transmission are 1) germ cells, 2) transplantation, and 3) ionizing radiation. Other chemicals besides DES which may be implicated in transplacental carcinogenesis are cytotoxic anticancer agents, such as therapy. The hypothesis of DES-associated maternal-fetal exchange was developed as a result of physician recognition of a cluster of cases with commonality; it is hoped that further epidemiological studies, more systemitized, will lead to hypotheses regarding the epidemiology of other in utero carcinogenesis.

  13. Carcinogenesis and low-level ionizing radiation with special reference to lung cancer and exposure to radon daughters

    SciTech Connect

    Fabrikant, J.I.

    1982-06-01

    The quantitative estimation of the carcinogenic risk of low-dose, high-LET radiation in the case of exposure to radon daughters and lung-cancer is subject to numerous uncertainties. The greatest of these concerns the parametric values of the dose-response curve. We lack knowledge and an understanding of the dosimetry and the distribution of aggregates of radioactivity that remain localized as hot spots in specific regions of the lungs and the influence on greater or lesser risk of lung cancer per average lung dose than uniformly deposited radiation (NRC76). We have only a limited understanding of the response to exposure to high-LET radiations, such as alpha particles, for which linear risk estimates for low doses are less likely to overestimate the risk, and may, in fact, underestimate the risk (BEIR80). Other uncertainties include the length of the latency period, the RBE for alpha radiation relative to gamma radiation, the period during which the radiation risk is expressed, the risk projection model used - whether absolute or relative - for projecting risk beyond the period of observation, the effect of dose rate and protraction of dose, and the influence of differences in the natural incidence of lung cancer in different populations. In addition, uncertainties are introduced by the biological and life-style risk characteristics of humans, for example, the effect of sex, the effect of age at the time of irradiation and at the time of appearance of the cancer, the influence of length of observation or follow-up of the study populations, and the influence of perhaps the most important confounding bias, cigarette-smoking. The collective influence of these uncertainties is such as to deny great credibility to any estimate of human lung cancer risk and other cancer risk that can be made for low-dose, high-LET radon daughter radiation exposure.

  14. ALDH1A1 Deficiency in Gorlin Syndrome Suggests a Central Role for Retinoic Acid and ATM Deficits in Radiation Carcinogenesis

    PubMed Central

    Weber, Thomas J.; Magnaldo, Thierry; Xiong, Yijia

    2014-01-01

    We hypothesize that aldehyde dehydrogenase 1A1 (ALDH1A1) deficiency will result in impaired ataxia-telangiectasia mutated (ATM) activation in a retinoic acid-sensitive fashion. Data supporting this hypothesis include (1) reduced ATM activation in irradiated primary dermal fibroblasts from ALDH1A1-deficient Gorlin syndrome patients (GDFs), relative to ALDH1A1-positive normal human dermal fibroblasts (NHDFs) and (2) increased ATM activation by X-radiation in GDFs pretreated with retinoic acid, however, the impact of donor variability on ATM activation in fibroblasts was not assessed and is a prudent consideration in future studies. Clonogenic survival of irradiated cells showed differential responses to retinoic acid as a function of treatment time. Long-term (5 Day) retinoic acid treatment functioned as a radiosensitizer and was associated with downregulation of ATM protein levels. Short-term (7 h) retinoic acid treatment showed a trend toward increased survival of irradiated cells and did not downregulate ATM protein levels. Using a newly developed IncubATR technology, which defines changes in bulk chemical bond patterns in live cells, we can discriminate between the NHDF and GDF phenotypes, but treatment of GDFs with retinoic acid does not induce reversion of bulk chemical bond patterns associated with GDFs toward the NHDF phenotype. Collectively, our preliminary investigation of the Gorlin phenotype has identified deficient ALDH1A1 expression associated with deficient ATM activation as a possible susceptibility factor that is consistent with the high incidence of spontaneous and radiation-induced carcinogenesis in these patients. The IncubATR technology exhibits sufficient sensitivity to detect phenotypic differences in live cells that may be relevant to radiation health effects. PMID:28250390

  15. ALDH1A1 Deficiency in Gorlin Syndrome Suggests a Central Role for Retinoic Acid and ATM Deficits in Radiation Carcinogenesis.

    PubMed

    Weber, Thomas J; Magnaldo, Thierry; Xiong, Yijia

    2014-09-11

    We hypothesize that aldehyde dehydrogenase 1A1 (ALDH1A1) deficiency will result in impaired ataxia-telangiectasia mutated (ATM) activation in a retinoic acid-sensitive fashion. Data supporting this hypothesis include (1) reduced ATM activation in irradiated primary dermal fibroblasts from ALDH1A1-deficient Gorlin syndrome patients (GDFs), relative to ALDH1A1-positive normal human dermal fibroblasts (NHDFs) and (2) increased ATM activation by X-radiation in GDFs pretreated with retinoic acid, however, the impact of donor variability on ATM activation in fibroblasts was not assessed and is a prudent consideration in future studies. Clonogenic survival of irradiated cells showed differential responses to retinoic acid as a function of treatment time. Long-term (5 Day) retinoic acid treatment functioned as a radiosensitizer and was associated with downregulation of ATM protein levels. Short-term (7 h) retinoic acid treatment showed a trend toward increased survival of irradiated cells and did not downregulate ATM protein levels. Using a newly developed IncubATR technology, which defines changes in bulk chemical bond patterns in live cells, we can discriminate between the NHDF and GDF phenotypes, but treatment of GDFs with retinoic acid does not induce reversion of bulk chemical bond patterns associated with GDFs toward the NHDF phenotype. Collectively, our preliminary investigation of the Gorlin phenotype has identified deficient ALDH1A1 expression associated with deficient ATM activation as a possible susceptibility factor that is consistent with the high incidence of spontaneous and radiation-induced carcinogenesis in these patients. The IncubATR technology exhibits sufficient sensitivity to detect phenotypic differences in live cells that may be relevant to radiation health effects.

  16. Report on NCI symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. II. Cellular and animal models

    SciTech Connect

    Fry, R.J.M.

    1984-01-01

    The point at which the common final pathway for induction of cancer by chemical carcinogens and ionizing radiation has not been identified. Although common molecular targets are suggested by recent findings about the role of oncogenes, the mechanism by which the deposition of radiation energy and the formation of adducts or other DNA lesions induced by chemicals affects the changes in the relevant targets may be quite different. The damage to DNA that plays no part in the transformation events, but that influences the stability of the genome, and therefore, the probability of subsequent changes that influence tumorigenesis may be more readily induced by some agents than others. Similarly, the degree of cytotoxic effects that disrupt tissue integrity and increase the probability of expression of initiated cells may be dependent on the type of carcinogen. Also, evidence was presented that repair of the initial lesions could be demonstrated after exposure to low-LET radiation but not after exposure to chemical carcinogens.

  17. Investigation of the modifying effects of vitamin A and hypoxic cell sensitizers in radiation carcinogenesis in mice

    SciTech Connect

    Mian, T.A.

    1982-01-01

    The effect of vitamin A (retinyl acetate) and three hypoxic cell sensitizers (metronidazole, misonidazole and desmethylmisonidazole) on lung tumor development in strain A mice exposed to radiation was assessed. In experiments involving vitamin A, two groups of mice were fed a low vitamin A diet (< 100 IU/100g diet) while the two other groups were fed a high vitamin A diet (800 IU/100 g diet). After two weeks one group maintained on the high vitamin A diet and one group maintained on the low vitamin A diet were given an acute dose of 500 rad of gamma radiation to the thoracic region. Mice were killed, their lungs were removed and the number of surface adenomas were counted. There was a significant increase in the number of mice bearing lung tumors and the mean number of lung tumors per mouse in the irradiated group maintained on the high vitamin A diet at 40 weeks post irradiation as compared to the irradiated group maintained on a low vitamin A diet. In the other experiment two dose levels of the hypoxic cell sensitizers, 0.2 mg/g and 0.6 mg/g, were used either alone or in combination with 900 rad of gamma radiation in a fractionated dose schedule of twice a week for three weeks. In the groups of mice which received hypoxic cell sensitizers only, the prevalence and the mean number of lung tumors per mouse were somewhat increased in the higher dose group (0.6 mg/g) of misonidazole but was not significantly different from the control animals in the other two sensitizer groups. The combination of hypoxic cell sensitizer and radiation did not show any significant enhancement of lung tumor response when compared with the group which received radiation only. The dose of radiation used in this study significantly enhanced lung tumor formation in mice when compared with the control group.

  18. 2013 Space Radiation Standing Review Panel Status Review for: The Risk of Acute and Late Central Nervous System Effects from Radiation Exposure, The Risk of Acute Radiation Syndromes Due to Solar Particle Events (SPEs), The Risk Of Degenerative Tissue Or Other Health Effects From Radiation Exposure, and The Risk of Radiation Carcinogenesis

    NASA Technical Reports Server (NTRS)

    2014-01-01

    The Space Radiation Standing Review Panel (from here on referred to as the SRP) was impressed with the strong research program presented by the scientists and staff associated with NASA's Space Radiation Program Element and National Space Biomedical Research Institute (NSBRI). The presentations given on-site and the reports of ongoing research that were provided in advance indicated the potential Risk of Acute and Late Central Nervous System Effects from Radiation Exposure (CNS) and were extensively discussed by the SRP. This new data leads the SRP to recommend that a higher priority should be placed on research designed to identify and understand these risks at the mechanistic level. To support this effort the SRP feels that a shift of emphasis from Acute Radiation Syndromes (ARS) and carcinogenesis to CNS-related endpoints is justified at this point. However, these research efforts need to focus on mechanisms, should follow pace with advances in the field of CNS in general and should consider the specific comments and suggestions made by the SRP as outlined below. The SRP further recommends that the Space Radiation Program Element continue with its efforts to fill the vacant positions (Element Scientist, CNS Risk Discipline Lead) as soon as possible. The SRP also strongly recommends that NASA should continue the NASA Space Radiation Summer School. In addition to these broad recommendations, there are specific comments/recommendations noted for each risk, described in detail below.

  19. Use of a State-Vector Model of Radiation Carcinogenesis to Integrate Information from in vitro, in vivo, Epidemiological and Physiological Studies

    SciTech Connect

    Doug Crawford-Brown; Marc Serre

    2006-06-01

    This project focused on extension of a generalized state-vector model developed by Crawford-Brown and Hofmann (1-4). The model incorporates phenomena such as DNA damage and repair, intercellular communication mechanisms, both spontaneous and radiation-induced cell death and cell division, to predict cellular transformation following exposure to ionizing radiation. Additionally, this model may be simulated over time periods that correspond to the temporal scale of biological mechanisms. The state-vector model has been shown to generally reproduce transformation frequency patterns for in vitro studies (2), but still significantly underpredicted in vivo cancer incidence data at the higher doses for high-LET radiations when biologically realistic rate constants for cell killing are included (1). Mebust et al. (1) claimed that one reason for this underprediction might be that the model's ability to fit the in vitro data is due in part to compensating errors that only reveal themselves when the more complex in vivo and epidemiological data are considered. This implies that the original in vitro model may be based on incomplete assumptions regarding the underlying biological mechanisms. The present research considered this explanation for the case of low LET radiation. An extension of the in vitro state-vector model was tested that includes additional biological mechanisms in order to improve model predictions with respect to dose-response data on in vitro oncogenic transformation of C3H10T1/2 mouse fibroblast cells exposed to acute doses of X-radiation (5). These data display a plateau of transformation frequency per surviving cell in the X-ray dose range of 0.1 to 1 Gy, with an increase in transformation frequency at higher acute doses. To reproduce these trends in the data, additional biological processes were formulated mathematically and incorporated into the existing model as parameters whose values could be adjusted and tested by an optimization method (genetic

  20. Somatic cell mutations at the glycophorin A locus in erythrocytes of atomic bomb survivors: Implications for radiation carcinogenesis

    SciTech Connect

    Kyoizumi, Seishi; Akiyama, Mitoshi; Tanabe, Kazumi; Hirai, Yuko; Kusunoki, Yoichiro; Umeki, Shigeko

    1996-07-01

    To clarify the relationship between somatic cell mutations and radiation exposure, the frequency of hemizygous mutant erythrocytes at the glycophorin A (GPA) locus was measured by flow cytometry for 1,226 heterozygous atomic bomb (A-bomb) survivors in HIroshima and Nagasaki. For statistical analysis, both GPA mutant frequency and radiation dose were log-transformed to normalize skewed distributions of these variables. The GPA mutant frequency increased slightly but significantly with age at testing and with the number of cigarettes smoked. Also, mutant frequency was significantly higher in males than in females even with adjustment for smoking and was higher to Hiroshima than in Nagasaki. These characteristics of background GPA mutant frequency are qualitatively similar to those of background solid cancer incidence or mortality obtained from previous epidemiological studies of survivors. An analysis of the mutant frequency dose response using a descriptive model showed that the doubling dose is about 1.20 Sv [95% confidence interval (CI): 0.95-1.56], whereas the minimum dose for detecting a significant increase in mutant frequency is about 0.24 Sv (95% CI: 0.041-0.51). No significant effects of sex, city or age at the time of exposure on the dose response were detected. Interestingly, the doubling dose of the GPA mutant frequency was similar to that of solid cancer incidence in A-bomb survivors. This observation is in line with the hypothesis that radiation-induced somatic cell mutations are the major cause of excess cancer risk after radiation. 49 refs., 6 figs., 2 tabs.

  1. Dietary glucoraphanin-rich broccoli sprout extracts protect against UV radiation-induced skin carcinogenesis in SKH-1 hairless mice

    PubMed Central

    Fahey, Jed W.; Benedict, Andrea L.; Jenkins, Stephanie N.; Ye, Lingxiang; Wehage, Scott L.; Talalay, Paul

    2011-01-01

    Feeding broccoli sprout extracts providing daily doses of 10 μmol of glucoraphanin to SKH-1 hairless mice with prior chronic exposure to UV radiation (30 mJ cm-2 of UVB, twice a week, for 17 weeks) inhibited the development of skin tumors during the subsequent 13 weeks; compared to the controls, tumor incidence, multiplicity, and volume were reduced by 25, 47, and 70%, respectively, in the animals that received the protective agent. PMID:20354656

  2. Probability of Causation for Space Radiation Carcinogenesis Following International Space Station, Near Earth Asteroid, and Mars Missions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Chappell, Lori J.

    2012-01-01

    Cancer risk is an important concern for International Space Station (ISS) missions and future exploration missions. An important question concerns the likelihood of a causal association between a crew members radiation exposure and the occurrence of cancer. The probability of causation (PC), also denoted as attributable risk, is used to make such an estimate. This report summarizes the NASA model of space radiation cancer risks and uncertainties, including improvements to represent uncertainties in tissue-specific cancer incidence models for never-smokers and the U.S. average population. We report on tissue-specific cancer incidence estimates and PC for different post-mission times for ISS and exploration missions. An important conclusion from our analysis is that the NASA policy to limit the risk of exposure-induced death to 3% at the 95% confidence level largely ensures that estimates of the PC for most cancer types would not reach a level of significance. Reducing uncertainties through radiobiological research remains the most efficient method to extend mission length and establish effective mitigators for cancer risks. Efforts to establish biomarkers of space radiation-induced tumors and to estimate PC for rarer tumor types are briefly discussed.

  3. Molecular mechanisms underlying chemopreventive activities of glycyrrhizic acid against UVB-radiation-induced carcinogenesis in SKH-1 hairless mouse epidermis.

    PubMed

    Cherng, Jaw-Ming; Tsai, Kuen-Daw; Yu, Yu-Whay; Lin, Jung-Chung

    2011-08-01

    Glycyrrhizic acid has been shown to possess anti-inflammation, antiviral and chemoprotective activity against tumors. We evaluated the protective effects of glycyrrhizic acid in UVB-radiation-induced skin tumor formation in SKH-1 hairless mice and the early molecular biomarkers of these effects. Mice irradiated at 180 mJ/cm² twice per week showed 100% tumor incidence in 20 weeks. Feeding with glycyrrhizic acid prior to UVB irradiation caused delays in tumor appearance, multiplicity and size. Feeding with glycyrrhizic acid for 2 weeks before a single UVB irradiation (180 mJ/cm²) resulted in significant decrease in UVB-radiation-induced thymine dimer-positive cells, expression of proliferative cell nuclear antigen (PCNA), terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells, and apoptotic sunburn cells together with an increase in p53- and p21/Cip1-positive cell populations in epidermis. Simultaneously, glycyrrhizic acid also significantly inhibited NF-κB, cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and nitric oxide (NO) levels. Thus glycyrrhizic acid ameliorates UVB-radiation-induced tumorigenesis via downregulation of cell proliferation controls involving thymine dimer, PCNA, apoptosis and transcription factor NF-κB and of inflammatory responses involving COX-2, PGE2 and NO while upregulating of p53 and p21/Cip1 to prevent DNA damage and facilitate DNA repair.

  4. Validation of a comprehensive space radiation transport code.

    PubMed

    Shinn, J L; Cucinotta, F A; Simonsen, L C; Wilson, J W; Badavi, F F; Badhwar, G D; Miller, J; Zeitlin, C; Heilbronn, L; Tripathi, R K; Clowdsley, M S; Heinbockel, J H; Xapsos, M A

    1998-12-01

    The HZETRN code has been developed over the past decade to evaluate the local radiation fields within sensitive materials on spacecraft in the space environment. Most of the more important nuclear and atomic processes are now modeled and evaluation within a complex spacecraft geometry with differing material components, including transition effects across boundaries of dissimilar materials, are included. The atomic/nuclear database and transport procedures have received limited validation in laboratory testing with high energy ion beams. The codes have been applied in design of the SAGE-III instrument resulting in material changes to control injurious neutron production, in the study of the Space Shuttle single event upsets, and in validation with space measurements (particle telescopes, tissue equivalent proportional counters, CR-39) on Shuttle and Mir. The present paper reviews the code development and presents recent results in laboratory and space flight validation.

  5. Radiogenic cell transformation and carcinogenesis

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Mei, M.; Durante, M.; Craise, L. M.

    1995-01-01

    Radiation carcinogenesis is one of the major biological effects considered important in the risk assessment for space travel. Various biological model systems, including both cultured cells and animals, have been found useful for studying the carcinogenic effects of space radiations, which consist of energetic electrons, protons and heavy ions. The development of techniques for studying neoplastic cell transformation in culture has made it possible to examine the cellular and molecular mechanisms of radiation carcinogenesis. Cultured cell systems are thus complementary to animal models. Many investigators have determined the oncogenic effects of ionizing and nonionizing radiation in cultured mammalian cells. One of the cell systems used most often for radiation transformation studies is mouse embryonic cells (C3H10T1/2), which are easy to culture and give good quantitative dose-response curves. Relative biological effectiveness (RBE) for heavy ions with various energies and linear energy transfer (LET) have been obtained with this cell system. Similar RBE and LET relationship was observed by investigators for other cell systems. In addition to RBE measurements, fundamental questions on repair of sub- and potential oncogenic lesions, direct and indirect effect, primary target and lesion, the importance of cell-cell interaction and the role of oncogenes and tumor suppressor genes in radiogenic carcinogenesis have been studied, and interesting results have been found. Recently several human epithelial cell systems have been developed, and ionizing radiation have been shown to transform these cells. Oncogenic transformation of these cells, however, requires a long expression time and/or multiple radiation exposures. Limited experimental data indicate high-LET heavy ions can be more effective than low-LET radiation in inducing cell transformation. Cytogenetic and molecular analyses can be performed with cloned transformants to provide insights into basic genetic

  6. Radiogenic cell transformation and carcinogenesis

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Mei, M.; Durante, M.; Craise, L. M.

    1995-01-01

    Radiation carcinogenesis is one of the major biological effects considered important in the risk assessment for space travel. Various biological model systems, including both cultured cells and animals, have been found useful for studying the carcinogenic effects of space radiations, which consist of energetic electrons, protons and heavy ions. The development of techniques for studying neoplastic cell transformation in culture has made it possible to examine the cellular and molecular mechanisms of radiation carcinogenesis. Cultured cell systems are thus complementary to animal models. Many investigators have determined the oncogenic effects of ionizing and nonionizing radiation in cultured mammalian cells. One of the cell systems used most often for radiation transformation studies is mouse embryonic cells (C3H10T1/2), which are easy to culture and give good quantitative dose-response curves. Relative biological effectiveness (RBE) for heavy ions with various energies and linear energy transfer (LET) have been obtained with this cell system. Similar RBE and LET relationship was observed by investigators for other cell systems. In addition to RBE measurements, fundamental questions on repair of sub- and potential oncogenic lesions, direct and indirect effect, primary target and lesion, the importance of cell-cell interaction and the role of oncogenes and tumor suppressor genes in radiogenic carcinogenesis have been studied, and interesting results have been found. Recently several human epithelial cell systems have been developed, and ionizing radiation have been shown to transform these cells. Oncogenic transformation of these cells, however, requires a long expression time and/or multiple radiation exposures. Limited experimental data indicate high-LET heavy ions can be more effective than low-LET radiation in inducing cell transformation. Cytogenetic and molecular analyses can be performed with cloned transformants to provide insights into basic genetic

  7. Carcinogenesis From Inhaled (PuO2)-Pu-239 in Beagles: Evidence for Radiation Homeostasis at Low Doses?

    SciTech Connect

    Fisher, Darrell R.; Weller, Richard E.

    2010-09-01

    From the early 1970s to the late 1980s, Pacific Northwest National Laboratory conducted life-span studies in beagle dogs on the biological effects of inhaled plutonium (239PuO2, 238PuO2, and 239Pu[NO3]4) to help predict risks associated with accidental intakes in workers. Years later, the purpose of the present follow-up study is to reassess the dose-response relationship for lung cancer induction in the 239PuO2 dogs compared to controls, with particular focus on the dose-response at low lung doses. A 239PuO2 aerosol (2.3 μm AMAD, 1.9 μm GSD) was administered to six groups of 20 young (18-month old) beagle dogs (10 males and 10 females) by inhalation at six different activity levels, as previously described in Laboratory reports. Control dogs were sham-exposed. In dose level 1, initial pulmonary lung depositions were 130 ± 48 Bq (3.5 ± 1.3 nCi), corresponding to 1 Bq g-1 lung tissue (0.029 ± 0.001 nCi g-1. Groups 2 through 6 received initial lung depositions (mean values) of 760, 2724, 10345, 37900, and 200000 Bq (22, 79, 300, 1100, and 5800 nCi) 239PuO2, respectively. For each dog, the absorbed dose to lungs was calculated from the initial lung burden and the final lung burden at time of death and lung mass, assuming a single, long-term retention function. Insoluble plutonium oxide exhibited long retention times in the lungs. Increased dose-dependent mortality due to lung cancer (bronchiolar-alveolar carcinoma, adenocarcinoma, epidermoid carcinoma) and radiation pneumonitis (highest exposures group) was observed in dogs exposed to 239PuO2. Calculated lung doses ranged from a few cGy in early-sacrificed dogs to 7764 cGy in dogs that experienced early deaths from radiation pneumonitis. Data were regrouped by lifetime lung dose and plotted as a function of lung tumor incidence. Lung tumor incidence in controls and zero-dose exposed dogs was 18% (5/28). However, no lung tumors were observed in 16 dogs with the lowest lung doses (8 to 22 cGy, mean 14.4 ± 7.6 c

  8. Radiation levels in cyclotron-radiochemistry facility measured by a novel comprehensive computerized monitoring system

    NASA Astrophysics Data System (ADS)

    Mishani, E.; Lifshits, N.; Osavistky, A.; Kaufman, J.; Ankry, N.; Tal, N.; Chisin, R.

    1999-04-01

    Radiation levels in a cyclotron-radiochemistry facility were measured during the production of commonly used PET radiopharmaceuticals by a comprehensive computerized monitoring system. The system consists of three major components: on-line radiation monitoring channels, an area control unit, and a gas waste management unit. During production the radiation levels were measured in the cyclotron vault, inside automatic chemistry production and research shielded cells, in the radiochemistry room, in the gas waste decay tank, in the chimney filters, and at the top of the cells chimney. Each detector was calibrated in a known radiation field, and a special detector dead time correction was performed in order to achieve detected signal-to-radiation linearity for the Geiger tubes located in the radiochemistry production and research cells. During production of C-11 and O-15 PET radiopharmaceuticals, high radiation levels were measured in the gas waste decay tank (240 and 80 mR/h, respectively). In contrast, the radiation levels at the chimney filters and at the top of the cells chimney did not exceed the International Atomic Energy Agency (IAEA) Drive Air Concentration (DAC) recommended for C-11 or O-15. During production of FDG, high radiation levels were measured at the chimney filters, however the radiation level at the top of the chimney (3.7 μCi/m 3) did not exceed the F-18 DAC recommendation (27 μCi/m 3). Low radiation levels of approximately 0.5-1 mR/h were measured in the radiochemistry room during production of PET radiopharmaceuticals. In the cyclotron vault, 2 min after bombardment the radiation levels at 2 m from the cyclotron decreased to 1-2 mR/h. The addition of a gas waste decay system to computerized monitoring channels located near each strategic point of the site allows for a comprehensive survey of the radiochemical processes.

  9. Building the basis for a comprehensive radiation protection program for a multi-program laboratory

    SciTech Connect

    Copenhaver, E.D.

    1987-01-01

    An explicit, workplace-specific training has been developed, implemented, and documented for all radiation workers. In addition to the radiation worker personnel located at reactors, accelerators, radiochemical laboratories, and waste treatment areas, we have trained other personnel who work in areas where a lesser potential for radiological/chemical exposure exists. These workforces include construction crews, site restoration crews, contracted special services such as scoping and site characterization teams, and short-term visitors. We are developing a comprehensive, integrated approach to radiation protection training suited for a multi-purpose research laboratory. 9 refs., 1 fig., 1 tab.

  10. Gene-environment interaction for polymorphisms in ataxia telangiectasia-mutated gene and radiation exposure in carcinogenesis: results from two literature-based meta-analyses of 27120 participants

    PubMed Central

    Wu, Di; He, Hua; Wang, Mengmeng; Ge, Tingwen; Liu, Yudi; Tian, Huimin; Cui, Jiuwei; Jia, Lin; Wan, Ziqiang; Han, Fujun

    2016-01-01

    Purpose We conducted two meta-analyses of ATM genetic polymorphisms and cancer risk in individuals with or without radiation exposure to determine whether there was a joint effect between the ATM gene and radiation exposure in carcinogenesis. Results rs1801516, which was the only ATM polymorphism investigated by more than 3 studies of radiation exposure, was eligible for the present study. The meta-analysis of 23333 individuals without radiation exposure from 24 studies showed no association between the rs1801516 polymorphism and cancer risk, without heterogeneity across studies. The meta-analysis of 3787 individuals with radiation exposure from 6 studies showed a significant association between the rs1801516 polymorphism and a decreased cancer risk, with heterogeneity across studies. There was a borderline-significant difference between the ORs of the two meta-analyses (P = 0.066), and the difference was significant when only Caucasians were included (P = 0.011). Materials and methods Publications were identified by searching PubMed, EMBASE, Web of Science, and CNKI databases. Odds ratios (ORs) were calculated to estimate the association between ATM genetic polymorphisms and cancer risk. Tests of interaction were used to compare differences between the ORs of the two meta-analyses. Conclusions Our meta-analyses confirmed the presence of a gene-environment interaction between the rs1801516 polymorphism and radiation exposure in carcinogenesis, whereas no association was found between the rs1801516 polymorphism and cancer risk for individuals without radiation exposure. The heterogeneity observed in the meta-analysis of individuals with radiation exposure might be due to gene-ethnicity or gene-gene interactions. Further studies are needed to elucidate sources of the heterogeneity. PMID:27764772

  11. Caspase 3 promotes genetic instability and carcinogenesis

    PubMed Central

    Liu, Xinjian; He, Yujun; Li, Fang; Huang, Qian; Kato, Takamitsu A.; Hall, Russell P; Li, Chuan-Yuan

    2015-01-01

    Summary Apoptosis is typically considered an anti-oncogenic process since caspase activation can promote the elimination of genetically unstable or damaged cells. We report that a central effector of apoptosis, caspase 3, facilitates, rather than suppresses, chemical and radiation-induced genetic instability and carcinogenesis. We found that a significant fraction of mammalian cells treated with ionizing radiation can survive, despite caspase 3 activation. Moreover, this sublethal activation of caspase 3 promoted persistent DNA damage and oncogenic transformation. In addition, chemically-induced skin carcinogenesis was significantly reduced in mice genetically deficient in caspase 3. Furthermore, attenuation of Endo G activity significantly reduced radiation-induced DNA damage and oncogenic transformation, identifying Endo G as a downstream effector of caspase 3 in this pathway. Our findings suggest that rather than acting as a broad inhibitor of carcinogenesis, caspase 3 activation may contribute to genome instability and play a pivotal role in tumor formation following damage. PMID:25866249

  12. Threshold models in radiation carcinogenesis

    SciTech Connect

    Hoel, D.G.; Li, P.

    1998-09-01

    Cancer incidence and mortality data from the atomic bomb survivors cohort has been analyzed to allow for the possibility of a threshold dose response. The same dose-response models as used in the original papers were fit to the data. The estimated cancer incidence from the fitted models over-predicted the observed cancer incidence in the lowest exposure group. This is consistent with a threshold or nonlinear dose-response at low-doses. Thresholds were added to the dose-response models and the range of possible thresholds is shown for both solid tumor cancers as well as the different leukemia types. This analysis suggests that the A-bomb cancer incidence data agree more with a threshold or nonlinear dose-response model than a purely linear model although the linear model is statistically equivalent. This observation is not found with the mortality data. For both the incidence data and the mortality data the addition of a threshold term significantly improves the fit to the linear or linear-quadratic dose response for both total leukemias and also for the leukemia subtypes of ALL, AML, and CML.

  13. A Comparison of Out-of-Field Dose and Its Constituent Components for Intensity-Modulated Radiation Therapy Versus Conformal Radiation Therapy: Implications for Carcinogenesis

    SciTech Connect

    Ruben, Jeremy D.; Lancaster, Craig M.; Jones, Phillip; Smith, Ryan L.

    2011-12-01

    Purpose: To investigate differences in scatter and leakage between 6-MV intensity-modulated radiation therapy (IMRT) and three-dimensional conformal radiation therapy (3DCRT); to describe the relative contributions of internal patient scatter, collimator scatter, and head leakage; and to discuss implications for second cancer induction. Methods and Materials: Dose was measured at increasing distances from the field edge in a water bath with a sloping wall (1) under full scatter conditions, (2) with the field edge abutting but outside the bath to prevent internal (water) scatter, and (3) with the beam aperture plugged to reflect leakage only. Results: Internal patient scatter from IMRT is 11% lower than 3DCRT, but collimator scatter and head leakage are five and three times higher, respectively. Ultimately, total scattered dose is 80% higher with IMRT; however this difference is small in absolute terms, being 0.14% of prescribed dose. Secondary dose from 3DCRT is mostly due to internal patient scatter, which contributes 70% of the total and predominates until 25 cm from the field edge. For IMRT, however, machine scatter/leakage is the dominant source, contributing 65% of the secondary dose. Internal scatter predominates for just the first 10 cm from field edge, collimator scatter for the next 10 cm, and head leakage thereafter. Conclusions: Out-of-field dose is 80% higher with IMRT, but differences are tiny in absolute terms. Reductions in internal patient scatter with IMRT are outweighed by increased machine scatter and leakage, at least for small fields. Reductions from IMRT in dose to tissues within the portals and in internal scatter, which predominates close to the field edge, means that calculations based solely on dose to distant tissues may overestimate carcinogenic risks.

  14. A comparison of out-of-field dose and its constituent components for intensity-modulated radiation therapy versus conformal radiation therapy: implications for carcinogenesis.

    PubMed

    Ruben, Jeremy D; Lancaster, Craig M; Jones, Phillip; Smith, Ryan L

    2011-12-01

    To investigate differences in scatter and leakage between 6-MV intensity-modulated radiation therapy (IMRT) and three-dimensional conformal radiation therapy (3DCRT); to describe the relative contributions of internal patient scatter, collimator scatter, and head leakage; and to discuss implications for second cancer induction. Dose was measured at increasing distances from the field edge in a water bath with a sloping wall (1) under full scatter conditions, (2) with the field edge abutting but outside the bath to prevent internal (water) scatter, and (3) with the beam aperture plugged to reflect leakage only. Internal patient scatter from IMRT is 11% lower than 3DCRT, but collimator scatter and head leakage are five and three times higher, respectively. Ultimately, total scattered dose is 80% higher with IMRT; however this difference is small in absolute terms, being 0.14% of prescribed dose. Secondary dose from 3DCRT is mostly due to internal patient scatter, which contributes 70% of the total and predominates until 25 cm from the field edge. For IMRT, however, machine scatter/leakage is the dominant source, contributing 65% of the secondary dose. Internal scatter predominates for just the first 10 cm from field edge, collimator scatter for the next 10 cm, and head leakage thereafter. Out-of-field dose is 80% higher with IMRT, but differences are tiny in absolute terms. Reductions in internal patient scatter with IMRT are outweighed by increased machine scatter and leakage, at least for small fields. Reductions from IMRT in dose to tissues within the portals and in internal scatter, which predominates close to the field edge, means that calculations based solely on dose to distant tissues may overestimate carcinogenic risks. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  15. A meta-analysis of evidence for hormesis in animal radiation carcinogenesis, including a discussion of potential pitfalls in statistical analyses to detect hormesis.

    PubMed

    Crump, Kenny S; Duport, Philippe; Jiang, Huixia; Shilnikova, Natalia S; Krewski, Daniel; Zielinski, Jan M

    2012-01-01

    A database containing 800 datasets on the incidence of specific tumor types from 262 radiation carcinogenicity experiments identified in a comprehensive literature search through September 2000 was analyzed for evidence of hormesis. This database includes lifetime studies of tumorigenic responses in mice, rats, and dogs to exposures to alpha, beta, gamma, neutron, or x-ray radiation. A J-shaped dose response, in the form of a significant decreased response at some low dose followed by a significant increased response at a higher dose, was found in only four datasets from three experiments. Three of these datasets involved the same control animals and two also shared dosed animals; the J shape in the fourth dataset appeared to be the result of an outlier within an otherwise monotonic dose response. A meta-analysis was conducted to determine whether there was an excess of dose groups with decreases in tumor response below that in controls at doses below no-observed-effect levels (NOELs) in individual datasets. Because the probability of a decreased response is generally not equal to the probability of an increased response even in the null case, the meta-analysis focused on comparing the number of statistically significant diminished responses to the number expected, assuming no dose effect below the NOEL. Only 54 dose groups out of the total of 2579 in the database had doses below the dataset-specific NOEL and that satisfied an a priori criterion for sufficient power to detect a reduced response. Among these 54, a liberal criterion for defining a significant decreases identified 15 such decreases, versus 54 × 0.2 = 10.8 expected. The excess in significant reductions was accounted for almost entirely by the excess from neutron experiments (10 observed, 6.2 expected). Nine of these 10 dose groups involved only 2 distinct control groups, and 2 pairs from the 10 even shared dosed animals. Given this high degree of overlap, this small excess did not appear remarkable

  16. Global fine-mode aerosol radiative effect, as constrained by comprehensive observations

    NASA Astrophysics Data System (ADS)

    Chung, Chul E.; Chu, Jung-Eun; Lee, Yunha; van Noije, Twan; Jeoung, Hwayoung; Ha, Kyung-Ja; Marks, Marguerite

    2016-07-01

    Aerosols directly affect the radiative balance of the Earth through the absorption and scattering of solar radiation. Although the contributions of absorption (heating) and scattering (cooling) of sunlight have proved difficult to quantify, the consensus is that anthropogenic aerosols cool the climate, partially offsetting the warming by rising greenhouse gas concentrations. Recent estimates of global direct anthropogenic aerosol radiative forcing (i.e., global radiative forcing due to aerosol-radiation interactions) are -0.35 ± 0.5 W m-2, and these estimates depend heavily on aerosol simulation. Here, we integrate a comprehensive suite of satellite and ground-based observations to constrain total aerosol optical depth (AOD), its fine-mode fraction, the vertical distribution of aerosols and clouds, and the collocation of clouds and overlying aerosols. We find that the direct fine-mode aerosol radiative effect is -0.46 W m-2 (-0.54 to -0.39 W m-2). Fine-mode aerosols include sea salt and dust aerosols, and we find that these natural aerosols result in a very large cooling (-0.44 to -0.26 W m-2) when constrained by observations. When the contribution of these natural aerosols is subtracted from the fine-mode radiative effect, the net becomes -0.11 (-0.28 to +0.05) W m-2. This net arises from total (natural + anthropogenic) carbonaceous, sulfate and nitrate aerosols, which suggests that global direct anthropogenic aerosol radiative forcing is less negative than -0.35 W m-2.

  17. Comprehensive assessment of radiation dose estimates for the CORE320 study.

    PubMed

    Rybicki, Frank J; Mather, Richard T; Kumamaru, Kanako K; Brinker, Jeffrey; Chen, Marcus Y; Cox, Christopher; Matheson, Matthew B; Dewey, Marc; DiCarli, Marcelo F; Miller, Julie M; Geleijns, Jacob; George, Richard T; Paul, Narinder; Texter, John; Vavere, Andrea; Yaw, Tan Swee; Lima, Joao A C; Clouse, Melvin E

    2015-01-01

    OBJECTIVE. The purpose of this study was to comprehensively study estimated radiation doses for subjects included in the main analysis of the Combined Non-invasive Coronary Angiography and Myocardial Perfusion Imaging Using 320 Detector Computed Tomography (CORE320) study ( ClinicalTrials.gov identifier NCT00934037), a clinical trial comparing combined CT angiography (CTA) and perfusion CT with the reference standard catheter angiography plus myocardial perfusion SPECT. SUBJECTS AND METHODS. Prospectively acquired data on 381 CORE320 subjects were analyzed in four groups of testing related to radiation exposure. Radiation dose estimates were compared between modalities for combined CTA and perfusion CT with respect to covariates known to influence radiation exposure and for the main clinical outcomes defined by the trial. The final analysis assessed variations in radiation dose with respect to several factors inherent to the trial. RESULTS. The mean radiation dose estimate for the combined CTA and perfusion CT protocol (8.63 mSv) was significantly (p < 0.0001 for both) less than the average dose delivered from SPECT (10.48 mSv) and the average dose from diagnostic catheter angiography (11.63 mSv). There was no significant difference in estimated CTA-perfusion CT radiation dose for subjects who had false-positive or false-negative results in the CORE320 main analyses in a comparison with subjects for whom the CTA-perfusion CT findings were in accordance with the reference standard SPECT plus catheter angiographic findings. CONCLUSION. Radiation dose estimates from CORE320 support clinical implementation of a combined CT protocol for assessing coronary anatomy and myocardial perfusion.

  18. Comprehensibility.

    ERIC Educational Resources Information Center

    Pettersson, Rune

    This paper addresses the difficulty involved in creating easily understood information. The act of communicating is not complete until the message has been both received and understood by the audience. Messages must always be comprehensible, otherwise they will have no effect. The readability, legibility, and reading value of a graphic message is…

  19. Wound-healing error model for radon carcinogenesis

    SciTech Connect

    Kondo, Sohei

    1995-12-31

    Epidemiological studies of lung cancer in uranium miners exposed to radon suggest that radon is a tumor promoter. I will refine this notion by applying the wound-healing error model proposed for radiation carcinogenesis in general.

  20. Effect of LET and microdistribution of radiation on the transformation in vitro and in vivo. Comprehensive progress report

    SciTech Connect

    Little, J.B.

    1983-09-01

    Work has involved the following three areas: (1) an investigation of the mechanisms of radiation carcinogenesis by studying the events involved in the process of malignant transformation of mouse 10 T-1/2 cells; (2) an investigation of the effects of promoting agents on radiation-induced transformation in vitro; and (3) an investigation of the induction of transformation by internally emitting radionuclides incorporated into cellular DNA. The latter area has been extended to include studies of mutagenesis by these radionuclides in human lymphoblasts, and molecular measurements of DNA strand breaks. During the past year, research has focused on the first area, as well as on studies of the mutagenic effects of incorporated radionuclides.

  1. SU-E-T-89: Comprehensive Quality Assurance Phantom for the Small Animal Radiation Research Platform

    SciTech Connect

    Jermoumi, M; Ngwa, W; Korideck, H; Zygmanski, P; Berbeco, R; Makrigiorgos, G; Cormack, R

    2014-06-01

    Purpose: Use of Small Animal Radiation Research Platform (SARRP) systems for conducting state-of-the-art image guided radiotherapy (IGRT) research on small animals has become more common over the past years. The purpose of this work is to develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the SARRP. Methods: A QA phantom was developed for carrying out daily, monthly and annual QA tasks including imaging, dosimetry and treatment planning system (TPS) performance evaluation of the SARRP. The QA phantom consists of nine (60×60×5 mm3) KV-energy tissue equivalent solid water slabs that can be employed for annual dosimetry QA with film. Three of the top slabs are replaceable with ones incorporating Mosfets or OSLDs arranged in a quincunx pattern, or a slab drilled to accommodate an ion chamber insert. These top slabs are designed to facilitate routine daily and monthly QA tasks such as output constancy, isocenter congruency test, treatment planning system (TPS) QA, etc. One slab is designed with inserts for image QA. A prototype of the phantom was applied to test the performance of the imaging, planning and treatment delivery systems. Results: Output constancy test results showed daily variations within 3%. For isocenter congruency test, the phantom could be used to detect 0.3 mm deviations of the CBCT isocenter from the radiation isocenter. Using the Mosfet in phantom as target, the difference between TPS calculations and measurements was within 5%. Image-quality parameters could also be assessed in terms of geometric accuracy, CT number accuracy, linearity, noise and image uniformity, etc. Conclusion: The developed phantom can be employed as a simple tool for comprehensive performance evaluation of the SARRP. The study provides a reference for development of a comprehensive quality assurance program for the SARRP, with proposed tolerances and frequency of required tests.

  2. Carcinogenesis and aging

    SciTech Connect

    Anisimov, V.N.

    1983-01-01

    A suggested mechanism of carcinogenesis is presented. This scheme takes into account the effect of carcinogens at different integration levels: subcellular, tissue, and organism. Any of these levels may be age dependent. Age-associated changes in the activity of enzymes responsible for activation and inactivation of carcinogens, and variations in concentrations of lipids and proteins contributing to the transport of carcinogenic agents into cells, may play an important role in the modifying effect of age on carcinogenesis. The effects of age-associated changes in DNA repair need clarification. However, they are thought to exert a permissive influence on the age-associated rise in tumor incidence. It seems that proliferative activity of target tissues is the important modifying factor of carcinogenesis. Age-related changes of regulation at tissue and organism levels are also powerful factors in carcinogenesis modification. Age-dependent changes in the neuroendocrine system provide conditions for metabolic immunodepression and promotion of carcinogenesis. On the other hand, carcinogens per se (especially chemical and radiological) may intensify aging processes in the organism. Normalization, by drugs, of age-associated shifts requiring synthetic and energetic changes of a transformed tumor cells, and of immunological shifts, may exert both antitumor and geroprotective effects.

  3. Models of carcinogenesis: an overview

    PubMed Central

    Vineis, Paolo; Schatzkin, Arthur; Potter, John D.

    2010-01-01

    At least five coherent models of carcinogenesis have been proposed in the history of cancer research in the last century. Model 1 is mainly centered around mutations, and its main focus is on the chemical environment, radiation and viruses. Model 2 has to do mainly with genome instability and it focuses on familiality. Model 3 is based on non-genotoxic mechanisms, and clonal expansion and epigenetics are its main features. We propose a fourth model, which can encompass the previous three, based on the concept of a ‘Darwinian’ cell selection (we clarify that the term Darwinian needs to be used cautiously, being a short cut for ‘somatic cellular selection’). Finally, a fifth model has recently become popular, based on the concept of ‘tissue organization’. We describe examples of the five models and how they have been formalized mathematically. The five models largely overlap, both scientifically and historically, but for the sake of clarity, it is useful to treat them separately. We also argue that the five models can be included into a simpler scheme, i.e. two types of models: (i) biological changes in the epithelium alone lead to malignancy and (ii) changes in stroma/extracellular matrix are necessary (along with changes in epithelium) for malignancy. Our description, though simplified, looks realistic, it is able to capture the historical sequence of carcinogenesis theories in the last century and can serve as a frame to make research hypotheses more explicit. PMID:20430846

  4. PreImplantation factor (PIF) therapy provides comprehensive protection against radiation induced pathologies

    PubMed Central

    Shainer, Reut; Almogi-Hazan, Osnat; Berger, Arye; Hinden, Liad; Mueller, Martin; Brodie, Chaya; Simillion, Cedric; Paidas, Michael

    2016-01-01

    Acute Radiation Syndrome (ARS) may lead to cancer and death and has few effective countermeasures. Efficacy of synthetic PIF treatment was demonstrated in preclinical autoimmune and transplantation models. PIF protected against inflammation and mortality following lethal irradiation in allogeneic bone marrow transplant (BMT) model. Herein, we demonstrate that PIF imparts comprehensive local and systemic protection against lethal and sub-lethal ARS in murine models. PIF treatment 2 h after lethal irradiation led to 100% survival and global hematopoietic recovery at 2 weeks after therapy. At 24 h after irradiation PIF restored hematopoiesis in a semi-allogeneic BMT model. PIF-preconditioning provided improved long-term engraftment. The direct effect of PIF on bone marrow cells was also demonstrated in vitro: PIF promoted pre-B cell differentiation and increased immunoregulatory properties of BM-derived mesenchymal stromal cells. PIF treatment also improved hematopoietic recovery and reduced systemic inflammatory cytokine production after sub-lethal radiation exposure. Here, PIF also prevented colonic crypt and basal membrane damage coupled with reduced nitric oxide synthetase (iNOS) and increased (B7h1) expression. Global upper GI gene pathway analysis revealed PIF's involvement in protein-RNA interactions, mitochondrial oxidative pathways, and responses to cellular stress. Some effects may be attributed to PIF's influence on macrophage differentiation and function. PIF demonstrated a regulatory effect on irradiated macrophages and on classically activated M1 macrophages, reducing inflammatory gene expression (iNOS, Cox2), promoting protective (Arg1) gene expression and inducing pro-tolerance cytokine secretion. Notably, synthetic PIF is stable for long-term field use. Overall, clinical investigation of PIF for comprehensive ARS protection is warranted. PMID:27449294

  5. Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies.

    PubMed

    Mutanen, Marko; Wahlberg, Niklas; Kaila, Lauri

    2010-09-22

    Lepidoptera (butterflies and moths) represent one of the most diverse animals groups. Yet, the phylogeny of advanced ditrysian Lepidoptera, accounting for about 99 per cent of lepidopteran species, has remained largely unresolved. We report a rigorous and comprehensive analysis of lepidopteran affinities. We performed phylogenetic analyses of 350 taxa representing nearly 90 per cent of lepidopteran families. We found Ditrysia to be a monophyletic taxon with the clade Tischerioidea + Palaephatoidea being the sister group of it. No support for the monophyly of the proposed major internested ditrysian clades, Apoditrysia, Obtectomera and Macrolepidoptera, was found as currently defined, but each of these is supported with some modification. The monophyly or near-monophyly of most previously identified lepidopteran superfamilies is reinforced, but several species-rich superfamilies were found to be para- or polyphyletic. Butterflies were found to be more closely related to 'microlepidopteran' groups of moths rather than the clade Macrolepidoptera, where they have traditionally been placed. There is support for the monophyly of Macrolepidoptera when butterflies and Calliduloidea are excluded. The data suggest that the generally short diverging nodes between major groupings in basal non-tineoid Ditrysia are owing to their rapid radiation, presumably in correlation with the radiation of flowering plants.

  6. Redefining the roles of apoptotic factors in carcinogenesis

    PubMed Central

    Liu, Xinjian; He, Yujun; Li, Fang; Huang, Qian; Kato, Takamitsu A.; Hall, Russell P.; Li, Chuan-Yuan

    2016-01-01

    ABSTRACT In a recent study we reported that mammalian cells exposed to stress such as ionizing radiation can survive with activation of caspase-3 or caspase-7. We found that sublethal activation of the executioner caspases promotes chemical- and radiation-induced genetic instability and carcinogenesis, in contrast to their perceived roles as tumor suppressors. PMID:27314073

  7. Dietary modifiers of carcinogenesis.

    PubMed Central

    Kohlmeier, L; Simonsen, N; Mottus, K

    1995-01-01

    Dietary components express a wide range of activities that can affect carcinogenesis. Naturally occurring substances in foods have been shown in laboratory experiments to serve as dietary antimutagens, either as bioantimutagens or as desmutagens. Dietary desmutagens may function as chemical inactivaters, enzymatic inducers, scavengers, or antioxidants. Dietary components may also act later in the carcinogenic process as tumor growth suppressors. Examples of dietary factors acting in each of these stages of carcinogenesis are presented, and potential anticarcinogens such as the carotenoids, tocopherols, phenolic compounds, glucosinolates, metal-binding proteins, phytoestrogens, and conjugated linoleic acid are discussed. Individual foods typically contain multiple potential anticarcinogens. Many of these substances can influence carcinogenesis through more than one mechanism. Some substances exhibit both anticarcinogenic and carcinogenic activity in vitro, depending on conditions. Epidemiologic research indicates that high fruit and vegetable consumption is associated with lower cancer risk. Little research has focused on the effects of single substances or single foods in man. Realization of the potential of foodborne substances to reduce the human burden of cancer will only be achieved with better measurement of dietary exposures and funding of multidisciplinary research in this area commensurate with its importance. PMID:8741780

  8. A comprehensive spectrometry study of a stray neutron radiation field in scanning proton therapy

    NASA Astrophysics Data System (ADS)

    Mares, Vladimir; Romero-Expósito, Maite; Farah, Jad; Trinkl, Sebastian; Domingo, Carles; Dommert, Martin; Stolarczyk, Liliana; Van Ryckeghem, Laurent; Wielunski, Marek; Olko, Pawel; Harrison, Roger M.

    2016-06-01

    , epithermal, evaporation and intra-nuclear cascade neutrons. This comprehensive spectrometry analysis can also help in understanding the tremendous literature data based rem-counters while also being of great value for general neutron shielding and radiation safety studies.

  9. A comprehensive spectrometry study of a stray neutron radiation field in scanning proton therapy.

    PubMed

    Mares, Vladimir; Romero-Expósito, Maite; Farah, Jad; Trinkl, Sebastian; Domingo, Carles; Dommert, Martin; Stolarczyk, Liliana; Van Ryckeghem, Laurent; Wielunski, Marek; Olko, Pawel; Harrison, Roger M

    2016-06-07

    thermal, epithermal, evaporation and intra-nuclear cascade neutrons. This comprehensive spectrometry analysis can also help in understanding the tremendous literature data based rem-counters while also being of great value for general neutron shielding and radiation safety studies.

  10. Simulation modeling of carcinogenesis.

    PubMed

    Ellwein, L B; Cohen, S M

    1992-03-01

    A discrete-time simulation model of carcinogenesis is described mathematically using recursive relationships between time-varying model variables. The dynamics of cellular behavior is represented within a biological framework that encompasses two irreversible and heritable genetic changes. Empirical data and biological supposition dealing with both control and experimental animal groups are used together to establish values for model input variables. The estimation of these variables is integral to the simulation process as described in step-by-step detail. Hepatocarcinogenesis in male F344 rats provides the basis for seven modeling scenarios which illustrate the complexity of relationships among cell proliferation, genotoxicity, and tumor risk.

  11. Mechanisms of cadmium carcinogenesis

    SciTech Connect

    Joseph, Pius

    2009-08-01

    Cadmium (Cd), a heavy metal of considerable occupational and environmental concern, has been classified as a human carcinogen by the International Agency for Research on Cancer (IARC). The carcinogenic potential of Cd as well as the mechanisms underlying carcinogenesis following exposure to Cd has been studied using in vitro cell culture and in vivo animal models. Exposure of cells to Cd results in their transformation. Administration of Cd in animals results in tumors of multiple organs/tissues. Also, a causal relationship has been noticed between exposure to Cd and the incidence of lung cancer in human. It has been demonstrated that Cd induces cancer by multiple mechanisms and the most important among them are aberrant gene expression, inhibition of DNA damage repair, induction of oxidative stress, and inhibition of apoptosis. The available evidence indicates that, perhaps, oxidative stress plays a central role in Cd carcinogenesis because of its involvement in Cd-induced aberrant gene expression, inhibition of DNA damage repair, and apoptosis.

  12. [Iron function and carcinogenesis].

    PubMed

    Akatsuka, Shinya; Toyokuni, Shinya

    2016-07-01

    Though iron is an essential micronutrient for humans, the excess state is acknowledged to be associated with oncogenesis. For example, iron overload in the liver of the patients with hereditary hemocromatosis highly increases the risk of hepatocellular carcinoma. Also, as to asbestos-related mesothelioma, such kinds of asbestos with a higher iron content are considered to be more carcinogenic. Iron is a useful element, which enables fundamental functions for life such as oxygen carrying and electron transport. However, in the situation where organisms are unable to have good control of it, iron turns into a dangerous element which catalyzes generation of reactive oxygen. In this review, I first outline the relationships between iron and cancer in general, then give an explanation about iron-related animal carcinogenesis models.

  13. Cell proliferation in carcinogenesis

    SciTech Connect

    Cohen, S.M.; Ellwein, L.B. )

    1990-08-31

    Chemicals that induce cancer at high doses in animal bioassays often fail to fit the traditional characterization of genotoxins. Many of these nongenotoxic compounds (such as sodium saccharin) have in common the property that they increase cell proliferation in the target organ. A biologically based, computerized description of carcinogenesis was used to show that the increase in cell proliferation can account for the carcinogenicity of nongenotoxic compounds. The carcinogenic dose-response relationship for genotoxic chemicals (such as 2-acetylaminofluorene) was also due in part to increased cell proliferation. Mechanistic information is required for determination of the existence of a threshold for the proliferative (and carcinogenic) response of nongenotoxic chemicals and the estimation of risk for human exposure.

  14. Multistage models of carcinogenesis.

    PubMed Central

    Armitage, P

    1985-01-01

    The simple multistage model of carcinogenesis is outlined. It provides a satisfactory explanation of the power law for the age incidence of many forms of epithelial carcinoma, for the effects in human populations of changing exposures to supposed carcinogenic agents, and for many of the observed effects of applied carcinogens in animal experiments. In particular, the evidence on the effects of starting and stopping cigarette smoking suggests that both an early and a late stage may be affected. In the absence of direct evidence on the nature of the cellular changes there is some reluctance to accept a model with more than two stages, and several forms of two-stage models provide good general explanations of observed phenomena. Such a model has recently been applied to breast cancer; another approach to this disease, effectively involving transformations of the time scale, is discussed. PMID:3908088

  15. Response modification in carcinogenesis.

    PubMed Central

    Cerutti, P A

    1989-01-01

    A major goal in multistep carcinogenesis research is the integration of recent findings obtained by sophisticated molecular-genetic and cytogenetic analysis of cancer into the more descriptive concepts of experimental pathology. It is proposed that the creation of a promotable cell in carcinogenic initiation requires a response modification to extracellular or intercellular signals. Different types of response modification can be distinguished: changes in the receptors for growth and differentiation factors and their cytoplasmic and nuclear signal transduction pathways; increased resistance of initiated cells to cytotoxic agents; alterations in junctional cell-to-cell communications. The challenge of a response-modified cell to an appropriate promoter results in its selection and clonal expansion, usually to a benign tumor. In addition, for malignancy, chromosomal changes are required that affect cellular functions that can play a role early or late in tumorigenesis. These concepts are illustrated with examples from oncogene research and oxidant promotion. PMID:2667983

  16. Nutritional factors in carcinogenesis.

    PubMed

    Wahlqvist, M L

    1993-09-01

    There have been varying estimates of the role of nutritional as opposed to other contributors to carcinogenesis. Several considerations probably account for the different estimates: (1) genetic overestimates because of foetal and early life rearing practices and the nutritional modulation of genetic expression (2) errors in food intake methodology (3) the limitations of nutrient carcinogenesis hypotheses, ie models which are too naive and do not allow for non-nutrients in food, food patterns and the overall package which is food culture (4) indirect pathways connecting nutrition and cancer such as that via immunosurveillance. Examples of cancers where rapid change in nutritional thinking is underway are breast, prostatic, colorectal and pancreatic. With breast cancer, weakly oestrogenic compounds from foods may be comparable to tamoxifen. Changing food culture away from that rich in phyto-oestrogens may increase the risk of prostatic cancer in men as well. Colorectal cancer incidence has continued at high rates in urbanized society despite an awareness of dietary contribution comparable to the knowledge of diet and coronary heart disease is the analysis sufficiently stratified for large bowel site or nutritionally sophisticated enough to allow for aggregate food pattern effects? Pancreatic cancer on the rise presents questions about unidentified changes continuing in the diets of industrialized societies, possibly from an early age, and even during infant feeding. Nutritional surveillance with mathematical modelling of food intake at a more sophisticated level will be required to understand present food-cancer relationships, and those which may emerge with newer food technologies, especially those related to designer foods.

  17. French maritime pine bark (Pinus maritima Lam.) extract (Flavangenol) prevents chronic UVB radiation-induced skin damage and carcinogenesis in melanin-possessing hairless mice.

    PubMed

    Kimura, Yoshiyuki; Sumiyoshi, Maho

    2010-01-01

    A French maritime pine bark extract, Flavangenol, is widely used as a nutritional supplement for protection against atherosclerosis, hypertension, diabetes, etc. Chronic exposure to solar UV radiation damages skin, increasing cutaneous thickness, wrinkling and pigmentation, as well as reducing elasticity, and causes skin cancer. The aim of this study was to examine the effects of flavangenol on skin damage and the incidence of skin tumors caused by long-term UVB irradiation in melanin-possessing hairless mice. The oral administration of flavangenol (60, 200 or 600 mg kg(-1), twice daily) significantly inhibited increases in skin thickness, and the formation of wrinkles and melanin granules, as well as increases in the diameter and length of skin blood vessels. Furthermore, it prevented increases in numbers of apoptotic, Ki-67-positive and 8-hydroxy-2'-deoxyguanosine (8-OHdG)-positive cells, and the expression of skin vascular endothelial growth factor (VEGF) induced by chronic UVB irradiation. The effect on these biomarkers was associated with a reduction in the incidence of tumors in mice. The antiphotoaging and anticarcinogenetic activities of flavangenol may be due to inhibition of the expression of Ki-67, 8-OHdG and VEGF through a scavenging effect on reactive oxygen species.

  18. Oral feeding of pomegranate fruit extract inhibits early biomarkers of UVB radiation-induced carcinogenesis in SKH-1 hairless mouse epidermis.

    PubMed

    Afaq, Farrukh; Khan, Naghma; Syed, Deeba N; Mukhtar, Hasan

    2010-01-01

    Pomegranate from the plant Punica granatum L. possesses strong antioxidant and anti-inflammatory properties. Recently, we have demonstrated that treatment of normal human epidermal keratinocytes with pomegranate fruit extract (PFE) inhibited UVB-mediated activation of nuclear factor kappa B (NF-κB) and mitogen activated protein kinases pathways. Here, we evaluated the effect of PFE on early biomarkers of photocarcinogenesis employing SKH-1 hairless mice. PFE was provided in drinking water (0.2%, wt/vol) to SKH-1 hairless mice for 14 days before a single UVB (180 mJ cm(-2)) irradiation. We found that oral feeding of PFE inhibited UVB-induced: (1) skin edema; (2) hyperplasia; (3) infiltration of leukocytes; (4) lipid peroxidation; (5) hydrogen peroxide generation; (6) ornithine decarboxylase (ODC) activity; and (7) ODC, cyclooxygenase-2 and proliferating cell nuclear antigen protein expression. Oral feeding of PFE enhanced repair of UVB-mediated formation of cyclobutane pyrimidine dimers (CPDs) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG). Importantly, PFE treatment further enhanced UVB-mediated increase in tumor suppressor p53 and cyclin kinase inhibitor p21. Furthermore, oral feeding of PFE inhibited UVB-mediated: (1) nuclear translocation of NF-κB; (2) activation of IKKα; and (3) phosphorylation and degradation of IκBα. Taken together, we provide evidence that oral feeding of PFE to mice affords substantial protection from the adverse effects of UVB radiation via modulation in early biomarkers of photocarcinogenesis and provide suggestion for its photochemopreventive potential.

  19. Oral Feeding of Pomegranate Fruit Extract Inhibits Early Biomarkers of UVB Radiation-Induced Carcinogenesis in SKH-1 Hairless Mouse Epidermis

    PubMed Central

    Afaq, Farrukh; Khan, Naghma; Syed, Deeba N.; Mukhtar, Hasan

    2010-01-01

    Pomegranate from the plant Punica granatum possesses strong antioxidant and anti-inflammatory properties. Recently, we have demonstrated that treatment of normal human epidermal keratinocytes with pomegranate fruit extract (PFE) inhibited ultraviolet B (UVB)-mediated activation of nuclear factor kappa B (NF-κB) and mitogen activated protein kinases (MAPK) pathways. Here, we evaluated the effect of PFE on early biomarkers of photocarcinogenesis employing SKH-1 hairless mice. PFE was provided in drinking water (0.2%, wt/vol) to SKH-1 hairless mice for 14 days before a single UVB (180 mJ/cm2) irradiation. We found that oral feeding of PFE inhibited UVB-induced: (i) skin edema, (ii) hyperplasia, (iii) infiltration of leukocytes, (iv) lipid peroxidation, (v) hydrogen peroxide generation, (vi) ODC activity, and (vii) ODC, COX-2 and PCNA protein expression. Oral feeding of PFE enhanced repair of UVB-mediated formation of cyclobutane pyrimidine dimers (CPDs) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG). Importantly, PFE treatment further enhanced UVB-mediated increase in tumor suppressor p53 and cyclin kinase inhibitor p21. Furthermore, oral feeding of PFE inhibited UVB-mediated: (i) nuclear translocation of NF-κB, (ii) activation of IKKα, and (iii) phosphorylation and degradation of IκBα. Taken together, we provide evidence that oral feeding of PFE to mice affords substantial protection from the adverse effects of UVB radiation via modulation in early biomarkers of photocarcinogenesis and provide suggestion for its photochemopreventive potential. PMID:20946358

  20. The evaluation of the feasibility of carotid sparing intensity modulated radiation therapy technique for comprehensive breast irradiation.

    PubMed

    Erpolat, Ozge Petek; Akmansu, Muge; Catli Dinc, Serap; Akkan, Koray; Bora, Huseyin

    2017-04-01

    To investigate the feasibility of carotid sparing intensity modulated radiation therapy (CS-IMRT) to minimize the radiation dose to carotid arteries for comprehensive irradiation of breast cancer patients who have risk factors for atherosclerosis. The dose distribution of CS-IMRT technique and the conventional irradiation technique were also compared. Ten patients who were previously treated with comprehensive three-dimensional conformal radiation therapy (3DCRT) were selected. DICOM data were used to contour the carotid artery and to create the virtual CS-IMRT plans for each patient. 3DCRT and CS-IMRT plans were compared in terms of conformity index, homogeneity index, and the doses to organ at risk and carotid arteries. The homogeneity and conformity indices were better with CS-IMRT plans compared to 3DCRT plan. The homogeneity index was 1.13 vs 1.11 (p=0.007) for 3DCRT and CS-IMRT and the conformity index was 0.96 vs 0.97 (p=0.006) for 3DCRT and CS-IMRT. The radiation dose to the carotid arteries were reduced by applying CS-IMRT without compromising the target volume coverage. When the carotid artery was considered as organ at risk for CS-IMRT planning, the median of V50 was decreased to 0% from 12.5% compared to 3DCRT plans (p=0.017). The median of the maximum dose to the carotid artery was decreased under 50Gy with CS-IMRT. CS-IMRT can significantly reduce the unnecessary radiation dose to the carotid arteries compared with conventional 3DCRT technique while maintaining target volume coverage. CS-IMRT technique can be considered for breast cancer patient with high risk of atherosclerosis. Copyright © 2017. Published by Elsevier Ltd.

  1. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning

    SciTech Connect

    Paulson, Eric S.; Erickson, Beth; Schultz, Chris; Allen Li, X.

    2015-01-15

    Purpose: The use of magnetic resonance imaging (MRI) in radiation oncology is expanding rapidly, and more clinics are integrating MRI into their radiation therapy workflows. However, radiation therapy presents a new set of challenges and places additional constraints on MRI compared to diagnostic radiology that, if not properly addressed, can undermine the advantages MRI offers for radiation treatment planning (RTP). The authors introduce here strategies to manage several challenges of using MRI for virtual simulation in external beam RTP. Methods: A total of 810 clinical MRI simulation exams were performed using a dedicated MRI scanner for external beam RTP of brain, breast, cervix, head and neck, liver, pancreas, prostate, and sarcoma cancers. Patients were imaged in treatment position using MRI-optimal immobilization devices. Radiofrequency (RF) coil configurations and scan protocols were optimized based on RTP constraints. Off-resonance and gradient nonlinearity-induced geometric distortions were minimized or corrected prior to using images for RTP. A multidisciplinary MRI simulation guide, along with window width and level presets, was created to standardize use of MR images during RTP. A quality assurance program was implemented to maintain accuracy and repeatability of MRI simulation exams. Results: The combination of a large bore scanner, high field strength, and circumferentially wrapped, flexible phased array RF receive coils permitted acquisition of thin slice images with high contrast-to-noise ratio (CNR) and image intensity uniformity, while simultaneously accommodating patient setup and immobilization devices. Postprocessing corrections and alternative acquisition methods were required to reduce or correct off-resonance and gradient nonlinearity induced geometric distortions. Conclusions: The methodology described herein contains practical strategies the authors have implemented through lessons learned performing clinical MRI simulation exams. In

  2. Risk of secondary malignancies after radiation therapy for breast cancer: Comprehensive results.

    PubMed

    Burt, Lindsay M; Ying, Jian; Poppe, Matthew M; Suneja, Gita; Gaffney, David K

    2017-10-01

    To assess risks of secondary malignancies in breast cancer patients who received radiation therapy compared to patients who did not. The SEER database was used to identify females with a primary diagnosis of breast cancer as their first malignancy, during 1973-2008. We excluded patients with metastatic disease, age <18 years, no definitive surgical intervention, ipsilateral breast cancer recurrence, or who developed a secondary malignancy within 1 year of diagnosis. Standardized incidence ratios and absolute excess risk were calculated using SEER*Stat, version 8.2.1 and SAS, version 9.4. There were 374,993 patients meeting the inclusion criteria, with 154,697 who received radiation therapy. With a median follow-up of 8.9 years, 13% of patients (49,867) developed a secondary malignancy. The rate of secondary malignancies was significantly greater than the endemic rate in breast cancer patients treated without radiation therapy, (O/E 1.2, 95% CI 1.19-1.22) and with radiation therapy (O/E 1.33, 95% CI 1.31-1.35). Approximately 3.4% of secondary malignancies were attributable to radiation therapy. The increased risk of secondary malignancies in breast cancer patients treated with radiation therapy compared to those without was significant regardless of age at breast cancer diagnosis (p < 0.01) and more pronounced with longer latency periods. There was an increased risk of secondary malignancies for breast cancer patients both with and without radiation therapy compared to the general population. There was an increased risk in specific sites for patients treated with radiation therapy. This risk was most evident in young patients and who had longer latency periods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. COMPREHENSIVE DATA CONCERNING COSMIC RADIATION DOSES AT GROUND LEVEL AND IN-FLIGHTS FOR TURKEY.

    PubMed

    Parmaksız, A

    2016-12-01

    Cosmic radiation doses of individuals living in 81 cities in Turkey were estimated by using CARI-6 software. Annual cosmic radiation doses of individuals were found to be between 308 and 736 µSv y(-1) at ground level. The population-weighted annual effective dose from cosmic radiation was determined to be 387 µSv y(-1) for Turkey. Cosmic radiation doses on-board for 137 (60 domestic and 77 international) flights varied from 1.2 to 83 µSv. It was estimated that six or over long-route round-trip air travels may cause cosmic radiation dose above the permissible limit for member of the public, i.e. 1 mSv y(-1) According to the assumption of flights throughout 800 h on each route, cosmic radiation doses were found to be between 1.0 and 4.8 mSv for aircrew. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Hypermutability in carcinogenesis.

    PubMed Central

    Strauss, B S

    1998-01-01

    The presence of numerous chromosomal changes and point mutations in tumors is well established. At least some of these changes play a role in the development of the tumors. It has been suggested that the number of these genetic changes requires that tumorigenesis involves an increase in mutation rate. However, the presence of numerous changes can also be accounted for by efficient selection. What is required to settle the issue is some measure of nonselected mutations in tumors. In order to determine whether the tumor suppressor TP53 (coding for the protein p53) is hypermutable at some stage of carcinogenesis, the frequency of silent and multiple mutations in this gene has been examined. Silent mutations make up approximately 3% of the total recorded but constitute 9.5% of the mutations found in tumors with multiple mutations. Multiple closely linked mutations are also observed. Such multiple mutations suggest the operation of an error-prone replication process in a subclass of cells. The published data indicate that TP53 is hypermutable at some stage of tumor development. It is not yet clear whether TP53 is unique or whether other genes display a similar pattern of silent and multiple mutations. PMID:9560381

  5. Comprehensive 2D measurements of radiative divertor plasmas in DIII-D

    SciTech Connect

    Fenstermacher, M.E.; Wood, R.D.; Allen, S.L.; Hill, D.N.

    1997-07-01

    This paper presents a comparison of the total radiated power profile and impurity line emission distributions in the SOL and divertor of DIII-D. This is done for ELMing H-mode plasmas with heavy deuterium injection (Partially Detached Divertor operation, PDD) and those without deuterium puffing. Results are described from a series of dedicated experiments performed on DIII-D to systematically measure the 2-D (R,Z) structure of the divertor plasma. The discharges were designed to optimize measurements with new divertor diagnostics including a divertor Thomson scattering system. Discharge sequences were designed to produce optimized data sets against which SOL and divertor theories and simulation codes could be benchmarked. During PDD operation the regions of significant radiated power shift from the inner divertor leg and SOL to the outer leg and X-point regions. D{alpha} emission shifts from the inner strikepoint to the outer strikepoint. Carbon emissions (visible CII and CIII) shift from the inner SOL near the X-point to a distributed region from the X-point to partially down the outer leg during moderate D2 puffing. In heavy puffing discharges the carbon emission coalesces on the outer separatrix near the X-point and for very heavy puffing it appears inside the last closed flux surface above the X-point. Calibrated spectroscopic measurements indicate that hydrogenic and carbon radiation can account for all of the radiated power. L{alpha} and CIV radiation are comparable and when combined account for as much as 90% of the total radiated power along chords viewing the significant radiating regions of the outer leg.

  6. CT Radiation Dose Management: A Comprehensive Optimization Process for Improving Patient Safety.

    PubMed

    Parakh, Anushri; Kortesniemi, Mika; Schindera, Sebastian T

    2016-09-01

    Rising concerns of radiation exposure from computed tomography have caused various advances in dose reduction technologies. While proper justification and optimization of scans has been the main focus to address increasing doses, the value of dose management has been largely overlooked. The purpose of this article is to explain the importance of dose management, provide an overview of the available options for dose tracking, and discuss the importance of a dedicated dose team. The authors also describe how a digital radiation tracking software can be used for analyzing the big data on doses for auditing patient safety, scanner utilization, and productivity, all of which have enormous personal and institutional implications. (©) RSNA, 2016.

  7. Comprehensive Review of Ultraviolet Radiation and the Current Status on Sunscreens

    PubMed Central

    Moon, Summer; Armstrong, Frank

    2012-01-01

    In the past, manufacturers’ labeling of sunscreen varied greatly, confusing the consumers regarding efficacy and the appropriate photoprotection provided by their products. Therefore, in June 2011, the United States Food and Drug Administration issued new guidelines for sunscreen labeling. Sunscreen products are over-the-counter drugs; therefore, they are regulated by the United States Food and Drug Administration to determine safety, efficacy, and labeling. This article discusses ultraviolet radiation and the positive and negative effects of ultraviolet radiation, provides a review of sunscreens, and discusses the new United States Food and Drug Administration regulations for sunscreens. PMID:23050030

  8. A comprehensive system for dosimetric commissioning and Monte Carlo validation for the small animal radiation research platform

    PubMed Central

    Tryggestad, E; Armour, M; Iordachita, I; Verhaegen, F; Wong, J W

    2011-01-01

    Our group has constructed the small animal radiation research platform (SARRP) for delivering focal, kilo-voltage radiation to targets in small animals under robotic control using cone-beam CT guidance. The present work was undertaken to support the SARRP’s treatment planning capabilities. We have devised a comprehensive system for characterizing the radiation dosimetry in water for the SARRP and have developed a Monte Carlo dose engine with the intent of reproducing these measured results. We find that the SARRP provides sufficient therapeutic dose rates ranging from 102 to 228 cGy min−1 at 1 cm depth for the available set of high-precision beams ranging from 0.5 to 5 mm in size. In terms of depth–dose, the mean of the absolute percentage differences between the Monte Carlo calculations and measurement is 3.4% over the full range of sampled depths spanning 0.5–7.2 cm for the 3 and 5 mm beams. The measured and computed profiles for these beams agree well overall; of note, good agreement is observed in the profile tails. Especially for the smallest 0.5 and 1 mm beams, including a more realistic description of the effective x-ray source into the Monte Carlo model may be important. PMID:19687532

  9. A comprehensive system for dosimetric commissioning and Monte Carlo validation for the small animal radiation research platform.

    PubMed

    Tryggestad, E; Armour, M; Iordachita, I; Verhaegen, F; Wong, J W

    2009-09-07

    Our group has constructed the small animal radiation research platform (SARRP) for delivering focal, kilo-voltage radiation to targets in small animals under robotic control using cone-beam CT guidance. The present work was undertaken to support the SARRP's treatment planning capabilities. We have devised a comprehensive system for characterizing the radiation dosimetry in water for the SARRP and have developed a Monte Carlo dose engine with the intent of reproducing these measured results. We find that the SARRP provides sufficient therapeutic dose rates ranging from 102 to 228 cGy min(-1) at 1 cm depth for the available set of high-precision beams ranging from 0.5 to 5 mm in size. In terms of depth-dose, the mean of the absolute percentage differences between the Monte Carlo calculations and measurement is 3.4% over the full range of sampled depths spanning 0.5-7.2 cm for the 3 and 5 mm beams. The measured and computed profiles for these beams agree well overall; of note, good agreement is observed in the profile tails. Especially for the smallest 0.5 and 1 mm beams, including a more realistic description of the effective x-ray source into the Monte Carlo model may be important.

  10. Helicobacter pylori in gastric carcinogenesis

    PubMed Central

    Ahn, Hyo Jun; Lee, Dong Soo

    2015-01-01

    Gastric cancer still is a major concern as the third most common cancer worldwide, despite declining rates of incidence in many Western countries. Helicobacter pylori (H. pylori) is the major cause of gastric carcinogenesis, and its infection insults gastric mucosa leading to the occurrence of atrophic gastritis which progress to intestinal metaplasia, dysplasia, early gastric cancer, and advanced gastric cancer consequently. This review focuses on multiple factors including microbial virulence factors, host genetic factors, and environmental factors, which can heighten the chance of occurrence of gastric adenocarcinoma due to H. pylori infection. Bacterial virulence factors are key components in controlling the immune response associated with the induction of carcinogenesis, and cagA and vacA are the most well-known pathogenic factors. Host genetic polymorphisms contribute to regulating the inflammatory response to H. pylori and will become increasingly important with advancing techniques. Environmental factors such as high salt and smoking may also play a role in gastric carcinogenesis. It is important to understand the virulence factors, host genetic factors, and environmental factors interacting in the multistep process of gastric carcinogenesis. To conclude, prevention via H. pylori eradication and controlling environmental factors such as diet, smoking, and alcohol is an important strategy to avoid H. pylori-associated gastric carcinogenesis. PMID:26690981

  11. Carcinogenesis studies with benzoyl peroxide (Panoxyl gel 5%)

    SciTech Connect

    Iversen, O.H.

    1986-04-01

    Several groups of hairless mice were given UV radiation with and without pretreatment with 7,12-dimethylbenz(a)anthracene (DMBA), 5% benzoyl peroxide in a gel (Panoxyl), and gel alone, in various combinations, with appropriate control groups included, in order to see whether benzoyl peroxide, which is known to enhance chemical skin carcinogenesis after a single, small dose of DMBA, also enhances UV carcinogenesis. The mice were observed for skin tumors, and all skin lesions were histologically investigated. The percentage of tumor-bearing animals with time is called the tumor rate, the total number of tumors occurring is called the tumor yield. Continual treatment with 5% benzoyl peroxide in gel twice a week, with or without a short pretreatment period of UV radiation resulted in only 2 skin carcinomas, which is remarkable, but not significant. Both Panoxyl and gel alone enhanced tumorigenicity significantly in animals pretreated with a single dose of 51.2 micrograms DMBA. There was no difference between the enhancement caused by Panoxyl and the gel as regards the tumor rate, but when measured as final tumor yield, Panoxyl was slightly more tumor-enhancing than gel alone. However, both Panoxyl and gel protected significantly against UV tumorigenesis (all tumors). There was no difference between the protective effect of the 2 types of treatment. Neither Panoxyl nor gel alone influenced significantly UV skin carcinogenesis (malignant tumors). It is concluded that under these experimental conditions both Panoxyl and gel alone tend to protect against the tumorigenicity and do not enhance the carcinogenicity of UV radiation in hairless mice, whereas both gel and Panoxyl enhance chemical carcinogenesis. The carcinogenic mechanisms may be different for UV and chemical carcinogenesis, respectively.

  12. Carcinogenesis mechanisms of Fusobacterium nucleatum.

    PubMed

    Gholizadeh, Pourya; Eslami, Hosein; Kafil, Hossein Samadi

    2017-03-07

    Transformed cells of cancers may be related to stromal cells, immune cells, and some bacteria such as Fusobacterium nucleatum. This review aimed to evaluate carcinogenesis mechanisms of Fusobacterium spp. in the oral cavity, pancreatic and colorectal cancers. These cancers are the three of the ten most prevalence cancer in the worldwide. Recent findings demonstrated that F. nucleatum could be considered as the risk factor for these cancers. The most important carcinogenesis mechanisms of F. nucleatum are chronic infection, interaction of cell surface molecules of these bacteria with immune system and stromal cells, immune evasion and immune suppression. However, there are some uncertainty carcinogenesis mechanisms about these bacteria, but this review evaluates almost all the known mechanisms. Well-characterized virulence factors of F. nucleatum such as FadA, Fap2, LPS and cell wall extracts may act as effector molecules in the shift of normal epithelial cells to tumor cells. These molecules may provide new targets, drugs, and strategies for therapeutic intervention.

  13. Differential gene expression during multistage carcinogenesis

    SciTech Connect

    Bowden, G.T. ); Krieg, P. )

    1991-06-01

    The use of the mouse skin multistage model of carcinogenesis has aided our understanding of critical target genes in chemical carcinogenesis. The mutagenic activation of the Harvey-ras proto-oncogene has been found to be an early event associated with the initiation of mouse skin tumors by the polycyclic aromatic hydrocarbon 7,12 dimethylbenz(a)anthracene and the pure initiator ethyl carbamate (urethane). In contrast to chemical initiation of mouse skin tumors, ionizing radiation-initiated malignant skin tumors have been shown to possess distinct non-ras transforming gene(s). Differential screening of cDNA libraries made from chemically initiated malignant skin tumors has been used to identify a number of cellular gene transcripts that are overexpressed during mouse skin tumor progression. These differentially expressed genes include {beta}-actin, ubiquitin, a hyperproliferative keratin (K6), a gene whose product is a member of a fatty acid or lipid-binding protein family, and a gene called transin or stromelysin. The overexpression of the stromelysin gene, which encodes a metalloproteinase that degrades proteins in the basement membrane, is hypothesized to play a functional role in malignant tumor cell invasion and metastasis. The authors believe that the cloning, identification, and characterization of gene sequences that are differentially expressed during tumor progression could lead to the discovery of gene products that either play functional roles in skin tumor progression or in the maintenance of various progressive tumor phenotypes.

  14. A comprehensive dose reconstruction methodology for former rocketdyne/atomics international radiation workers.

    PubMed

    Boice, John D; Leggett, Richard W; Ellis, Elizabeth Dupree; Wallace, Phillip W; Mumma, Michael; Cohen, Sarah S; Brill, A Bertrand; Chadda, Bandana; Boecker, Bruce B; Yoder, R Craig; Eckerman, Keith F

    2006-05-01

    Incomplete radiation exposure histories, inadequate treatment of internally deposited radionuclides, and failure to account for neutron exposures can be important uncertainties in epidemiologic studies of radiation workers. Organ-specific doses from lifetime occupational exposures and radionuclide intakes were estimated for an epidemiologic study of 5,801 Rocketdyne/Atomics International (AI) radiation workers engaged in nuclear technologies between 1948 and 1999. The entire workforce of 46,970 Rocketdyne/AI employees was identified from 35,042 Kardex work histories cards, 26,136 electronic personnel listings, and 14,189 radiation folders containing individual exposure histories. To obtain prior and subsequent occupational exposure information, the roster of all workers was matched against nationwide dosimetry files from the Department of Energy, the Nuclear Regulatory Commission, the Landauer dosimetry company, the U.S. Army, and the U.S. Air Force. Dosimetry files of other worker studies were also accessed. Computation of organ doses from radionuclide intakes was complicated by the diversity of bioassay data collected over a 40-y period (urine and fecal samples, lung counts, whole-body counts, nasal smears, and wound and incident reports) and the variety of radionuclides with documented intake including isotopes of uranium, plutonium, americium, calcium, cesium, cerium, zirconium, thorium, polonium, promethium, iodine, zinc, strontium, and hydrogen (tritium). Over 30,000 individual bioassay measurements, recorded on 11 different bioassay forms, were abstracted. The bioassay data were evaluated using ICRP biokinetic models recommended in current or upcoming ICRP documents (modified for one inhaled material to reflect site-specific information) to estimate annual doses for 16 organs or tissues taking into account time of exposure, type of radionuclide, and excretion patterns. Detailed internal exposure scenarios were developed and annual internal doses were derived

  15. Towards a comprehensive CT image segmentation for thoracic organ radiation dose estimation and reporting

    NASA Astrophysics Data System (ADS)

    Lorenz, Cristian; Ruppertshofen, Heike; Vik, Torbjörn; Prinsen, Peter; Wiegert, Jens

    2014-03-01

    Administered dose of ionizing radiation during medical imaging is an issue of increasing concern for the patient, for the clinical community, and for respective regulatory bodies. CT radiation dose is currently estimated based on a set of very simplifying assumptions which do not take the actual body geometry and organ specific doses into account. This makes it very difficult to accurately report imaging related administered dose and to track it for different organs over the life of the patient. In this paper this deficit is addressed in a two-fold way. In a first step, the absorbed radiation dose in each image voxel is estimated based on a Monte-Carlo simulation of X-ray absorption and scattering. In a second step, the image is segmented into tissue types with different radio sensitivity. In combination this allows to calculate the effective dose as a weighted sum of the individual organ doses. The main purpose of this paper is to assess the feasibility of automatic organ specific dose estimation. With respect to a commercially applicable solution and respective robustness and efficiency requirements, we investigated the effect of dose sampling rather than integration over the organ volume. We focused on the thoracic anatomy as the exemplary body region, imaged frequently by CT. For image segmentation we applied a set of available approaches which allowed us to cover the main thoracic radio-sensitive tissue types. We applied the dose estimation approach to 10 thoracic CT datasets and evaluated segmentation accuracy and administered dose and could show that organ specific dose estimation can be achieved.

  16. Radiation induced oxidation of sulphydryl molecules in aqueous solutions. A comprehensive review

    NASA Astrophysics Data System (ADS)

    Lal, Manohar

    1994-06-01

    Radiation degradation studies of thiols in aqueous solutions under variety of conditions during the past more than three decades are reviewed. Radiolytic mechanism of γ-irradiated air free, air and N 2O-saturated solutions of cysteine, cysteamine, dithiothreitol, mercaptoethanol, glutathione and papain are high lighted. A large variety of thiols repair organic radicals by H atom transfer from SH group. The repair rate constants are found to be between 5 × 10 6M -1s -1 to 4.0 × 10 8M -1s -1. The data are tabulated. The rate constants of e -aq and ȮH radicals with variety of thiols evaluated by pulse radioanalysis and flash photolysis are found to be very high and are computed. Sulphur centered radicals e.g. RṠ;, RSSR ⨪ generated in the pulse radioanalysis of thiols are very important species. Their reactions with oxygen and other compounds are of relevance to radiation biology. The results, reaction mechanism, the repair rate constant, the rate constants of e -aq and ȮH radicals with thiols and the rate constants of sulphur centered radicals with oxygen and other compounds of biological interest can be of great use in the interpretation of the mechanism of the protection of cells, animals, DNA and other biological molecules and may well provide basic essential information for the understanding of radiation biology. The protection of biological target at chemical level is generally understood in terms of protecting compounds participating directly in the radiochemical event and reducing the damage to biological target. The damage to the biological target is repaired by the hydrogen transfer from the thiol. Biochemical and metabolic mechanisms are quite complex. There is no single mechanism which explains all the experimental observations on the metabolism of thiols. More work needs to be done in order to understand the metabolic aspect of the protection mechanism.

  17. Modeling Multiple Causes of Carcinogenesis

    SciTech Connect

    Jones, T D

    1999-01-24

    An array of epidemiological results and databases on test animal indicate that risk of cancer and atherosclerosis can be up- or down-regulated by diet through a range of 200%. Other factors contribute incrementally and include the natural terrestrial environment and various human activities that jointly produce complex exposures to endotoxin-producing microorganisms, ionizing radiations, and chemicals. Ordinary personal habits and simple physical irritants have been demonstrated to affect the immune response and risk of disease. There tends to be poor statistical correlation of long-term risk with single agent exposures incurred throughout working careers. However, Agency recommendations for control of hazardous exposures to humans has been substance-specific instead of contextually realistic even though there is consistent evidence for common mechanisms of toxicological and carcinogenic action. That behavior seems to be best explained by molecular stresses from cellular oxygen metabolism and phagocytosis of antigenic invasion as well as breakdown of normal metabolic compounds associated with homeostatic- and injury-related renewal of cells. There is continually mounting evidence that marrow stroma, comprised largely of monocyte-macrophages and fibroblasts, is important to phagocytic and cytokinetic response, but the complex action of the immune process is difficult to infer from first-principle logic or biomarkers of toxic injury. The many diverse database studies all seem to implicate two important processes, i.e., the univalent reduction of molecular oxygen and breakdown of aginuine, an amino acid, by hydrolysis or digestion of protein which is attendant to normal antigen-antibody action. This behavior indicates that protection guidelines and risk coefficients should be context dependent to include reference considerations of the composite action of parameters that mediate oxygen metabolism. A logic of this type permits the realistic common-scale modeling of

  18. Comprehensive radiative forcing assesment highlights trade-offs in climate mitigation potential of managed boreal forests

    NASA Astrophysics Data System (ADS)

    Kalliokoski, Tuomo; Berninger, Frank; Bäck, Jaana; Boy, Michael; Kuusinen, Nea; Mäkelä, Annikki; Matthies, Brent; Minkkinen, Kari; Mogensen, Ditte; Peltoniemi, Mikko; Sievänen, Risto; Zhou, Luxi; Vanhatalo, Anni; Valsta, Lauri; Nikinmaa, Eero

    2016-04-01

    Boreal forests have an important role in the mitigation of climate change. In this study we evaluated four key climate impacts of forest management: (1) carbon sequestration (in forest ecosystems and wood products), (2) surface albedo of forest area, (3) forest originating Secondary Organic Aerosols (SOA) and (4) avoided CO2-emissions from wood energy and product substitution. We calculated their net effect at both a single stand and regional level using Finland as a case study. We made analyses both in current climate up to a year 2050 and in the projected climate of year 2050. At the stand level, the carbon sequestration effect and avoided CO2 emissions due to substituted materials dominated in net RF in current climate. The warming effect of surface albedo of forest cover was lower or of same magnitude than cooling effect of SOAs. Together, the rarely considered SOAs and product substitution corresponded over 70% of the total cooling effect of forest cover. The cooling effect of net radiative forcing increased along the increasing site fertility. Although the carbon stocks of broadleaved trees were smaller than that of conifers their total radiative cooling effect was larger due to the integrated albedo and aerosol effects. In the projected climate of 2050, the radiative cooling of aerosols approached the level of forest carbon fixation. These results emphasize the need for holistic evaluation of climate impacts over simple carbon sequestration analysis to understand the role of forest management in climate change mitigation. Landscape level analyses emphasized the broad range of options to reach the cooling effect. The lowest harvest regime, 50% of current annual increment (CAI), yielded the largest cooling effect. Yet, harvests up to CAI produced only slightly less cooling RF if avoided emissions were considered. This result was highly sensitive to used substitution factors. Our result highlights that the combination of intensive harvests and the use of wood

  19. Comprehensive molecular tumor profiling in radiation oncology: How it could be used for precision medicine.

    PubMed

    Eke, Iris; Makinde, Adeola Y; Aryankalayil, Molykutty J; Ahmed, Mansoor M; Coleman, C Norman

    2016-11-01

    New technologies enabling the analysis of various molecules, including DNA, RNA, proteins and small metabolites, can aid in understanding the complex molecular processes in cancer cells. In particular, for the use of novel targeted therapeutics, elucidation of the mechanisms leading to cell death or survival is crucial to eliminate tumor resistance and optimize therapeutic efficacy. While some techniques, such as genomic analysis for identifying specific gene mutations or epigenetic testing of promoter methylation, are already in clinical use, other "omics-based" assays are still evolving. Here, we provide an overview of the current status of molecular profiling methods, including promising research strategies, as well as possible challenges, and their emerging role in radiation oncology. Published by Elsevier Ireland Ltd.

  20. Toward a comprehensive theory for the sweeping of trapped radiation by inert orbiting matter

    NASA Technical Reports Server (NTRS)

    Fillius, Walker

    1988-01-01

    There is a need to calculate loss rates when trapped Van Allen radiation encounters inert orbiting material such as planetary rings and satellites. An analytic expression for the probability of a hit in a bounce encounter is available for all cases where the absorber is spherical and the particles are gyrotropically distributed on a cylindrical flux tube. The hit probability is a function of the particle's pitch angle, the size of the absorber, and the distance between flux tube and absorber, when distances are scaled to the gyroradius of a particle moving perpendicular to the magnetic field. Using this expression, hit probabilities have been computed in drift encounters for all regimes of particle energies and absorber sizes. This technique generalizes the approach to sweeping lifetimes, and is particularly suitable for attacking the inverse problem, where one is given a sweeping signature and wants to deduce the properties of the absorber(s).

  1. Panoramic X-rays. Comprehensive radiodiagnostics or radiation protection at all costs?

    PubMed

    Landau, Helga; Schröder, Ralf; Roth, Johannes

    2005-01-01

    A case report is presented to examine the question of whether a panoramic x-ray in standard projection can be readily replaced by a radiation-reduced projection with shielding of the condylar processes.A female patient with juvenile idiopathic arthritis was examined by a panoramic x-ray and MRI prior to TMJ splinting. The panoramic x-ray in standard projection showed short, atypically-shaped condylar processes with cystic lesions and cortical erosion. The MRI confirmed the TMJ destruction. The condylar processes were shielded on the x-rays taken for a previous orthodontic treatment. Thus TMJ assessment was not done, though it is an integral part of orthodontic radiodiagnostics according to Hirschfelder and other authors. This example of juvenile idiopathic arthritis with TMJ involvement shows that visualization of the condylar processes is indispensable.

  2. [Comparative evaluation of influence of low-intensity laser radiation of different spectrum components and regimen of laser work upon microcirculation in comprehensive treatment of chronic parodontitis].

    PubMed

    Krechina, E K; Shidova, A V; Maslova, V V

    2008-01-01

    Comparative study of the influence details of low-intensity pulse and continuous oscillation of laser radiation of red and infrared parts of spectrum upon microcirculation indices in comprehensive treatment of chronic parodontitis of light and middle severity was performed. For the first time the predominantly activating influence upon microcirculation in gingival tissues of the pulsed laser radiation in the red part of spectrum was established.

  3. A Comprehensive Quality Assurance Program for Personnel and Procedures in Radiation Oncology: Value of Voluntary Error Reporting and Checklists

    SciTech Connect

    Kalapurakal, John A.; Zafirovski, Aleksandar; Smith, Jeffery; Fisher, Paul; Sathiaseelan, Vythialingam; Barnard, Cynthia; Rademaker, Alfred W.; Rave, Nick; Mittal, Bharat B.

    2013-06-01

    Purpose: This report describes the value of a voluntary error reporting system and the impact of a series of quality assurance (QA) measures including checklists and timeouts on reported error rates in patients receiving radiation therapy. Methods and Materials: A voluntary error reporting system was instituted with the goal of recording errors, analyzing their clinical impact, and guiding the implementation of targeted QA measures. In response to errors committed in relation to treatment of the wrong patient, wrong treatment site, and wrong dose, a novel initiative involving the use of checklists and timeouts for all staff was implemented. The impact of these and other QA initiatives was analyzed. Results: From 2001 to 2011, a total of 256 errors in 139 patients after 284,810 external radiation treatments (0.09% per treatment) were recorded in our voluntary error database. The incidence of errors related to patient/tumor site, treatment planning/data transfer, and patient setup/treatment delivery was 9%, 40.2%, and 50.8%, respectively. The compliance rate for the checklists and timeouts initiative was 97% (P<.001). These and other QA measures resulted in a significant reduction in many categories of errors. The introduction of checklists and timeouts has been successful in eliminating errors related to wrong patient, wrong site, and wrong dose. Conclusions: A comprehensive QA program that regularly monitors staff compliance together with a robust voluntary error reporting system can reduce or eliminate errors that could result in serious patient injury. We recommend the adoption of these relatively simple QA initiatives including the use of checklists and timeouts for all staff to improve the safety of patients undergoing radiation therapy in the modern era.

  4. Constituent Components of Out-of-Field Scatter Dose for 18-MV Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy: A Comparison With 6-MV and Implications for Carcinogenesis

    SciTech Connect

    Ruben, Jeremy D.; Smith, Ryan; Lancaster, Craig M.; Haynes, Matthew; Jones, Phillip; Panettieri, Vanessa

    2014-11-01

    Purpose: To characterize and compare the components of out-of-field dose for 18-MV intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3D-CRT) and their 6-MV counterparts and consider implications for second cancer induction. Methods and Materials: Comparable plans for each technique/energy were delivered to a water phantom with a sloping wall; under full scatter conditions; with field edge abutting but outside the bath to prevent internal/phantom scatter; and with shielding below the linear accelerator head to attenuate head leakage. Neutron measurements were obtained from published studies. Results: Eighteen-megavolt IMRT produces 1.7 times more out-of-field scatter than 18-MV 3D-CRT. In absolute terms, however, differences are just approximately 0.1% of central axis dose. Eighteen-megavolt IMRT reduces internal/patient scatter by 13%, but collimator scatter (C) is 2.6 times greater than 18-MV 3D-CRT. Head leakage (L) is minimal. Increased out-of-field photon scatter from 18-MV IMRT carries out-of-field second cancer risks of approximately 0.2% over and above the 0.4% from 18-MV 3D-CRT. Greater photoneutron dose from 18-MV IMRT may result in further maximal, absolute increased risk to peripheral tissue of approximately 1.2% over 18-MV 3D-CRT. Out-of-field photon scatter remains comparable for the same modality irrespective of beam energy. Machine scatter (C+L) from 18 versus 6 MV is 1.2 times higher for IMRT and 1.8 times for 3D-CRT. It is 4 times higher for 6-MV IMRT versus 3D-CRT. Reduction in internal scatter with 18 MV versus 6 MV is 27% for 3D-CRT and 29% for IMRT. Compared with 6-MV 3D-CRT, 18-MV IMRT increases out-of-field second cancer risk by 0.2% from photons and adds 0.28-2.2% from neutrons. Conclusions: Out-of-field photon dose seems to be independent of beam energy for both techniques. Eighteen-megavolt IMRT increases out-of-field scatter 1.7-fold over 3D-CRT because of greater collimator scatter despite

  5. Constituent components of out-of-field scatter dose for 18-MV intensity modulated radiation therapy versus 3-dimensional conformal radiation therapy: a comparison with 6-MV and implications for carcinogenesis.

    PubMed

    Ruben, Jeremy D; Smith, Ryan; Lancaster, Craig M; Haynes, Matthew; Jones, Phillip; Panettieri, Vanessa

    2014-11-01

    To characterize and compare the components of out-of-field dose for 18-MV intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3D-CRT) and their 6-MV counterparts and consider implications for second cancer induction. Comparable plans for each technique/energy were delivered to a water phantom with a sloping wall; under full scatter conditions; with field edge abutting but outside the bath to prevent internal/phantom scatter; and with shielding below the linear accelerator head to attenuate head leakage. Neutron measurements were obtained from published studies. Eighteen-megavolt IMRT produces 1.7 times more out-of-field scatter than 18-MV 3D-CRT. In absolute terms, however, differences are just approximately 0.1% of central axis dose. Eighteen-megavolt IMRT reduces internal/patient scatter by 13%, but collimator scatter (C) is 2.6 times greater than 18-MV 3D-CRT. Head leakage (L) is minimal. Increased out-of-field photon scatter from 18-MV IMRT carries out-of-field second cancer risks of approximately 0.2% over and above the 0.4% from 18-MV 3D-CRT. Greater photoneutron dose from 18-MV IMRT may result in further maximal, absolute increased risk to peripheral tissue of approximately 1.2% over 18-MV 3D-CRT. Out-of-field photon scatter remains comparable for the same modality irrespective of beam energy. Machine scatter (C+L) from 18 versus 6 MV is 1.2 times higher for IMRT and 1.8 times for 3D-CRT. It is 4 times higher for 6-MV IMRT versus 3D-CRT. Reduction in internal scatter with 18 MV versus 6 MV is 27% for 3D-CRT and 29% for IMRT. Compared with 6-MV 3D-CRT, 18-MV IMRT increases out-of-field second cancer risk by 0.2% from photons and adds 0.28-2.2% from neutrons. Out-of-field photon dose seems to be independent of beam energy for both techniques. Eighteen-megavolt IMRT increases out-of-field scatter 1.7-fold over 3D-CRT because of greater collimator scatter despite reducing internal/patient scatter. Out

  6. Mouse Models of Gastric Carcinogenesis

    PubMed Central

    Yu, Sungsook; Yang, Mijeong

    2014-01-01

    Gastric cancer is one of the most common cancers in the world. Animal models have been used to elucidate the details of the molecular mechanisms of various cancers. However, most inbred strains of mice have resistance to gastric carcinogenesis. Helicobacter infection and carcinogen treatment have been used to establish mouse models that exhibit phenotypes similar to those of human gastric cancer. A large number of transgenic and knockout mouse models of gastric cancer have been developed using genetic engineering. A combination of carcinogens and gene manipulation has been applied to facilitate development of advanced gastric cancer; however, it is rare for mouse models of gastric cancer to show aggressive, metastatic phenotypes required for preclinical studies. Here, we review current mouse models of gastric carcinogenesis and provide our perspectives on future developments in this field. PMID:25061535

  7. Carcinogenesis of Depleted Uranium Fragments

    DTIC Science & Technology

    2000-06-01

    later determined not to cause cancer in humans. Examples are certain food colorings (Grasso and Golberg , 1966), iron dextran (Baker et al., 1961), and...carcinogenesis caused by dyes 21 Contains unpublished data; limit distribution and food additives (Grasso and Golberg , 1966). It is also apparent that...subcutaneously in rats (Grasso and Golberg , 1966). Those compounds that produced tissue destruction with subsequent dense collagen formation invariably

  8. Development and Implementation of a Comprehensive Radiometric Validation Protocol for the CERES Earth Radiation Budget Climate Record Sensors

    NASA Technical Reports Server (NTRS)

    Priestley, K. J.; Matthews, G.; Thomas, S.

    2006-01-01

    The CERES Flight Models 1 through 4 instruments were launched aboard NASA's Earth Observing System (EOS) Terra and Aqua Spacecraft into 705 Km sun-synchronous orbits with 10:30 a.m. and 1:30 p.m. equatorial crossing times. These instruments supplement measurements made by the CERES Proto Flight Model (PFM) instrument launched aboard NASA's Tropical Rainfall Measuring Mission (TRMM) into a 350 Km, 38-degree mid-inclined orbit. CERES Climate Data Records consist of geolocated and calibrated instantaneous filtered and unfiltered radiances through temporally and spatially averaged TOA, Surface and Atmospheric fluxes. CERES filtered radiance measurements cover three spectral bands including shortwave (0.3 to 5 microns), total (0.3 to 100 microns) and an atmospheric window channel (8 to 12 microns). The CERES Earth Radiation Budget measurements represent a new era in radiation climate data, realizing a factor of 2 to 4 improvement in calibration accuracy and stability over the previous ERBE climate records, while striving for the next goal of 0.3-percent per decade absolute stability. The current improvement is derived from two sources: the incorporation of lessons learned from the ERBE mission in the design of the CERES instruments and the development of a rigorous and comprehensive radiometric validation protocol consisting of individual studies covering different spatial, spectral and temporal time scales on data collected both pre and post launch. Once this ensemble of individual perspectives is collected and organized, a cohesive and highly rigorous picture of the overall end-to-end performance of the CERES instrument's and data processing algorithms may be clearly established. This approach has resulted in unprecedented levels of accuracy for radiation budget instruments and data products with calibration stability of better than 0.2-percent and calibration traceability from ground to flight of 0.25-percent. The current work summarizes the development, philosophy

  9. Development and Implementation of a Comprehensive Radiometric Validation Protocol for the CERES Earth Radiation Budget Climate Record Sensors

    NASA Technical Reports Server (NTRS)

    Priestley, K. J.; Matthews, G.; Thomas, S.

    2006-01-01

    The CERES Flight Models 1 through 4 instruments were launched aboard NASA's Earth Observing System (EOS) Terra and Aqua Spacecraft into 705 Km sun-synchronous orbits with 10:30 a.m. and 1:30 p.m. equatorial crossing times. These instruments supplement measurements made by the CERES Proto Flight Model (PFM) instrument launched aboard NASA's Tropical Rainfall Measuring Mission (TRMM) into a 350 Km, 38-degree mid-inclined orbit. CERES Climate Data Records consist of geolocated and calibrated instantaneous filtered and unfiltered radiances through temporally and spatially averaged TOA, Surface and Atmospheric fluxes. CERES filtered radiance measurements cover three spectral bands including shortwave (0.3 to 5 microns), total (0.3 to 100 microns) and an atmospheric window channel (8 to 12 microns). The CERES Earth Radiation Budget measurements represent a new era in radiation climate data, realizing a factor of 2 to 4 improvement in calibration accuracy and stability over the previous ERBE climate records, while striving for the next goal of 0.3-percent per decade absolute stability. The current improvement is derived from two sources: the incorporation of lessons learned from the ERBE mission in the design of the CERES instruments and the development of a rigorous and comprehensive radiometric validation protocol consisting of individual studies covering different spatial, spectral and temporal time scales on data collected both pre and post launch. Once this ensemble of individual perspectives is collected and organized, a cohesive and highly rigorous picture of the overall end-to-end performance of the CERES instrument's and data processing algorithms may be clearly established. This approach has resulted in unprecedented levels of accuracy for radiation budget instruments and data products with calibration stability of better than 0.2-percent and calibration traceability from ground to flight of 0.25-percent. The current work summarizes the development, philosophy

  10. Easy Aerosol - Robust and non-robust circulation responses to aerosol radiative forcing in comprehensive atmosphere models

    NASA Astrophysics Data System (ADS)

    Voigt, Aiko; Bony, Sandrine; Stevens, Bjorn; Boucher, Olivier; Medeiros, Brian; Pincus, Robert; Wang, Zhili; Zhang, Kai; Lewinschal, Anna; Bellouin, Nicolas; Yang, Young-Min

    2015-04-01

    A number of recent studies illustrated the potential of aerosols to change the large-scale atmospheric circulation and precipitation patterns. It remains unclear, however, to what extent the proposed aerosol-induced changes reflect robust model behavior or are affected by uncertainties in the models' treatment of parametrized physical processes, such as those related to clouds. "Easy Aerosol", a model-intercomparison project organized within the Grand Challenge on Clouds, Circulation and Climate Sensitivity of the World Climate Research Programme, addresses this question by subjecting a suite of comprehensive atmosphere general circulation models with prescribed sea-surface temperatures (SSTs) to the same set of idealized "easy" aerosol perturbations. This contribution discusses the aerosol perturbations as well as their impact on the model's precipitation and surface winds. The aerosol perturbations are designed based on a global aerosol climatology and mimic the gravest mode of the anthropogenic aerosol. Specifically, the meridional and zonal distributions of total aerosol optical depth are approximated by a superposition of Gaussian plumes; the vertical distribution is taken as constant within the lowest 1250m of the atmosphere followed by an exponential decay with height above. The aerosol both scatters and absorbs shortwave radiation, but in order to focus on direct radiative effects aerosol-cloud interactions are omitted. Each model contributes seven simulations. A clean control case with no aerosol-radiative effects at all is compared to six perturbed simulations with differing aerosol loading, zonal aerosol distributions, and SSTs. To estimate the role of natural variability, one of the models, MPI-ESM, contributes a 5-member ensemble for each simulation. If the observed SSTs from years 1979-2005 are prescribed, the aerosol leads to a local depression of precipitation at the Northern Hemisphere center of the aerosol and a northward shift of the

  11. An Emergence Framework of Carcinogenesis

    PubMed Central

    Sigston, Elizabeth A. W.; Williams, Bryan R. G.

    2017-01-01

    Experimental paradigms provide the framework for the understanding of cancer, and drive research and treatment, but are rarely considered by clinicians. The somatic mutation theory (SMT), in which cancer is considered a genetic disease, has been the predominant traditional model of cancer for over 50 years. More recently, alternative theories have been proposed, such as tissue organization field theory (TOFT), evolutionary models, and inflammatory models. Key concepts within the various models have led to them being difficult to reconcile. Progressively, it has been recognized that biological systems cannot be fully explained by the physicochemical properties of their constituent parts. There is an increasing call for a ‘systems’ approach. Incorporating the concepts of ‘emergence’, ‘systems’, ‘thermodynamics’, and ‘chaos’, a single integrated framework for carcinogenesis has been developed, enabling existing theories to become compatible as alternative mechanisms, facilitating the integration of bioinformatics and providing a structure in which translational research can flow from both ‘benchtop to bedside’ and ‘bedside to benchtop’. In this review, a basic understanding of the key concepts of ‘emergence’, ‘systems’, ‘system levels’, ‘complexity’, ‘thermodynamics’, ‘entropy’, ‘chaos’, and ‘fractals’ is provided. Non-linear mathematical equations are included where possible to demonstrate compatibility with bioinformatics. Twelve principles that define the ‘emergence framework of carcinogenesis’ are developed, with principles 1–10 encapsulating the key concepts upon which the framework is built and their application to carcinogenesis. Principle 11 relates the framework to cancer progression. Principle 12 relates to the application of the framework to translational research. The ‘emergence framework of carcinogenesis’ collates current paradigms, concepts, and evidence around carcinogenesis into a

  12. Experimental mammary carcinogenesis - Rat models.

    PubMed

    Alvarado, Antonieta; Faustino-Rocha, Ana I; Colaço, Bruno; Oliveira, Paula A

    2017-03-15

    Mammary cancer is one of the most common cancers, victimizing more than half a million of women worldwide every year. Despite all the studies in this field, the current therapeutic approaches are not effective and have several devastating effects for patients. In this way, the need to better understand the mammary cancer biopathology and find effective therapies led to the development of several rodent models over years. With this review, the authors intended to provide the readers with an overview of the rat models used to study mammary carcinogenesis, with a special emphasis on chemically-induced models.

  13. Liver development, regeneration, and carcinogenesis.

    PubMed

    Kung, Janet W C; Currie, Ian S; Forbes, Stuart J; Ross, James A

    2010-01-01

    The identification of putative liver stem cells has brought closer the previously separate fields of liver development, regeneration, and carcinogenesis. Significant overlaps in the regulation of these processes are now being described. For example, studies in embryonic liver development have already provided the basis for directed differentiation of human embryonic stem cells and induced pluripotent stem cells into hepatocyte-like cells. As a result, the understanding of the cell biology of proliferation and differentiation in the liver has been improved. This knowledge can be used to improve the function of hepatocyte-like cells for drug testing, bioartificial livers, and transplantation. In parallel, the mechanisms regulating cancer cell biology are now clearer, providing fertile soil for novel therapeutic approaches. Recognition of the relationships between development, regeneration, and carcinogenesis, and the increasing evidence for the role of stem cells in all of these areas, has sparked fresh enthusiasm in understanding the underlying molecular mechanisms and has led to new targeted therapies for liver cirrhosis and primary liver cancers.

  14. Pancreatic carcinogenesis: apoptosis and angiogenesis.

    PubMed

    Onizuka, Shinya; Kawakami, Shunsuke; Taniguchi, Ken; Fujioka, Hikaru; Miyashita, Kosei

    2004-04-01

    Apoptosis and angiogenesis are critical biologic processes that are altered during carcinogenesis. Both apoptosis and angiogenesis may play an important role in pancreatic carcinogenesis. Despite numerous advances in the diagnosis and treatment of pancreatic cancer, its prognosis remains dismal and a new therapeutic approach is much needed. Recent research has revealed that apoptosis and angiogenesis are closely interrelated. Several reports show that a tumor suppresser gene that is expressed in pancreatic carcinoma and related to malignant potential can induce apoptosis and also inhibit angiogenesis. At present, it is generally accepted that tumor growth in cancers, including pancreatic cancer, depends on angiogenesis. We have identified 2 new angiogenesis inhibitors from a conditioned medium of human pancreatic carcinoma cell line (BxPC-3): antiangiogenic antithrombin III (aaAT-III) and vitamin D binding protein-macrophage activating factor (DBP-maf). These molecules were able to regress tumors in severe combined immunodeficiency disease (SCID) mice, demonstrating potent inhibition of endothelial cell proliferation. Moreover, the angiogenesis inhibitors induced tumor dormancy in the animal model. These results suggest that antiangiogenic therapy using angiogenesis inhibitors may become a new strategy for treatment of pancreatic cancer in the near future.

  15. Selenium inhibition of chemical carcinogenesis.

    PubMed

    Ip, C

    1985-06-01

    In this article I review the work of our laboratory concerning the relationship between dietary Se intake and susceptibility to mammary carcinogenesis induced by 7,12-dimethylbenz[a]anthracene in female rats. The effect of graded levels of Se in the diet was investigated, ranging from deficiency to excessive supplementation that produced marginal toxicity in the animals. In addition, the interdependence between Se status and fat intake was also explored. Further experiments were aimed at defining the role of Se in the initiation and promotion phases of chemical carcinogenesis. In view of the biochemical function of Se as an antioxidant, the chemopreventive efficacy of Se was compared to that of vitamin E in conjunction with their ability to inhibit lipid peroxidation. Results of this study indicated that the antitumorigenic activity of Se could not be accounted for by suppression of tissue peroxidation, although an environment with a lower oxidant stress might enhance the potency of Se in protecting against cancer. The possible mechanisms of action of Se based on the observations and characteristics of several tumor models are briefly discussed.

  16. Association of p62/SQSTM1 Excess and Oral Carcinogenesis

    PubMed Central

    Inui, Takuma; Chano, Tokuhiro; Takikita-Suzuki, Mikiko; Nishikawa, Masanori; Yamamoto, Gaku; Okabe, Hidetoshi

    2013-01-01

    p62/SQSTM1 (sequestosome1) has never been evaluated in oral epithelium. In order to clarify the role of p62/SQSTM1 in carcinogenesis in oral epithelium, both p62/SQSTM1 and Nrf2 were immunohistochemically evaluated in 54 carcinomas and 14 low grade dysplasias. p62/SQSTM1 knockdowns were also designed in oral cancer cells, and we analyzed the Nrf2 pathway, GSH contents and ROS accumulation. The association between p62/SQSTM1 excess and prognosis was addressed in a clinical cohort of oral carcinoma cases. p62/SQSTM1 excess was more obvious in carcinomas, but Nrf2 was abundant in almost all samples of the oral epithelium. In oral carcinoma cells, p62/SQSTM1 knockdown did not affect the Nrf2-Keap1 pathway but did significantly reduce GSH content with subsequent ROS accumulation, and caused cell growth inhibition in the irradiated condition. Finally, p62/SQSTM1 excess was associated with poor prognosis in a clinical cohort. In oral epithelial carcinogenesis, p62/SQSTM1 excess played a role in GSH induction rather than Nrf2 accumulation, and may cause resistance to cytotoxic stresses such as radiation or chemotherapy. Immunohistochemical evaluation of p62/SQSTM1 may be a potential significant marker to identify early carcinogenesis, chemo-radiotherapeutic resistance or poor prognosis of oral squamous cell carcinomas. PMID:24086340

  17. Temporal Trends in Postmastectomy Radiation Therapy and Breast Reconstruction Associated With Changes in National Comprehensive Cancer Network Guidelines.

    PubMed

    Frasier, Lane L; Holden, Sara; Holden, Timothy; Schumacher, Jessica R; Leverson, Glen; Anderson, Bethany; Greenberg, Caprice C; Neuman, Heather B

    2016-01-01

    Evolving data on the effectiveness of postmastectomy radiation therapy (PMRT) have led to changes in National Comprehensive Cancer Network (NCCN) recommendations, counseling clinicians to "strongly consider" PMRT for patients with breast cancer with tumors 5 cm or smaller and 1 to 3 positive nodes; however, anticipation of PMRT may lead to delay or omission of reconstruction, which can have cosmetic, quality-of-life, and complication implications for patients. To determine whether revised guidelines have increased PMRT and affected receipt of breast reconstruction. We hypothesized that (1) PMRT rates would increase for women affected by the revised guidelines while remaining stable in other cohorts and (2) receipt of breast reconstruction would decrease in these women while increasing in other groups. Retrospective, population-based cohort study of Surveillance, Epidemiology, and End Results (SEER) data on women with stage I to III breast cancer undergoing mastectomy from 2000 through 2011. Our analytic sample (N = 62,442) was divided into cohorts on the basis of current NCCN radiotherapy recommendations: "radiotherapy recommended" (tumors > 5 cm or ≥ 4 positive lymph nodes), "strongly consider radiotherapy" (tumor ≤ 5 cm, 1-3 positive nodes), and "radiotherapy not recommended" (tumors ≤ 5 cm, no positive nodes). We used Joinpoint regression analysis to evaluate temporal trends in receipt of PMRT and breast reconstruction. The 3 cohorts comprised 15,999 in the "radiotherapy recommended" group, 15,006 in the "strongly consider radiotherapy" group, and 31,837 in the "radiotherapy not recommended" group. [corrected]. Rates of PMRT were unchanged in the radiotherapy recommended (29.9%) and radiotherapy not recommended (7.4%) cohorts over the study period. Receipt of PMRT for the strongly consider radiotherapy cohort was unchanged at 26.9% until 2007. At that time, a significant change in the APC was observed (P = .01) with an increase in APC from 2.1% to 9.0% (P

  18. Stem cells and colorectal carcinogenesis

    PubMed Central

    Stoian, M; Stoica, V; Radulian, G

    2016-01-01

    Abstract Colorectal cancer represents an important cause of mortality and morbidity. Unfortunately, the physiopathology is still under study. There are theories about carcinogenesis and it is known that not only a single factor is responsible for the development of a tumor, but several conditions. Stem cells are a promising target for the treatment of colorectal cancer, along with the environment that has an important role. It has been postulated that mutations within the adult colonic stem cells may induce neoplastic changes. This theory is based on the observation that within a colon cancer, less than 1% of the neoplastic cells have the ability to regenerate the tumor and therefore they are responsible for recurrence. It is important to know that a new way of treatment needs to be found, since these cells are resistant to chemotherapy and radiotherapy. PMID:27713769

  19. Polycyclic aromatic hydrocarbons in carcinogenesis.

    PubMed Central

    Warshawsky, D

    1999-01-01

    A symposium on "Polycyclic Aromatic Hydrocarbons (PAHs) in Carcinogenesis" was presented at the third International Congress of Pathophysiology held in Lathi, Finland, 28 June-3 July 1998. The congress was also sponsored by the International Union of Biological Sciences and the International Society of Free Radical Research. Institutional support for the symposium included the Electric Power Research Institute, National Center for Toxicological Research, and EPA/National Health and Environmental Effects Research Laboratory and the Office of Solid Waste and Emergency Response. The symposium focused on the sources, carcinogenicity, genotoxicity, and risk assessment of individual and mixtures of PAHs that are found in solid wastes, Superfund sites, and other hazardous waste sites. Based on the occurrence of PAHs at numerous Superfund sites and the significant data gaps on the toxic potential of certain PAHs, the information developed during this symposium would be of value in assessing health risks of these chemicals at Superfund and other hazardous waste sites. PMID:10090712

  20. Oxidative Stress and HPV Carcinogenesis

    PubMed Central

    De Marco, Federico

    2013-01-01

    Extensive experimental work has conclusively demonstrated that infection with certain types of human papillomaviruses, the so-called high-risk human papillomavirus (HR-HPV), represent a most powerful human carcinogen. However, neoplastic growth is a rare and inappropriate outcome in the natural history of HPV, and a number of other events have to concur in order to induce the viral infection into the (very rare) neoplastic transformation. From this perspective, a number of putative viral, host, and environmental co-factors have been proposed as potential candidates. Among them oxidative stress (OS) is an interesting candidate, yet comparatively underexplored. OS is a constant threat to aerobic organisms being generated during mitochondrial oxidative phosphorylation, as well as during inflammation, infections, ionizing irradiation, UV exposure, mechanical and chemical stresses. Epithelial tissues, the elective target for HPV infection, are heavily exposed to all named sources of OS. Two different types of cooperative mechanisms are presumed to occur between OS and HPV: I) The OS genotoxic activity and the HPV-induced genomic instability concur independently to the generation of the molecular damage necessary for the emergence of neoplastic clones. This first mode is merely a particular form of co-carcinogenesis; and II) OS specifically interacts with one or more molecular stages of neoplastic initiation and/or progression induced by the HPV infection. This manuscript was designed to summarize available data on this latter hypothesis. Experimental data and indirect evidences on promoting the activity of OS in viral infection and viral integration will be reviewed. The anti-apoptotic and pro-angiogenetic role of NO (nitric oxide) and iNOS (inducible nitric oxide synthase) will be discussed together with the OS/HPV cooperation in inducing cancer metabolism adaptation. Unexplored/underexplored aspects of the OS interplay with the HPV-driven carcinogenesis will be

  1. Journey Toward High Reliability: A Comprehensive Safety Program to Improve Quality of Care and Safety Culture in a Large, Multisite Radiation Oncology Department.

    PubMed

    Woodhouse, Kristina Demas; Volz, Edna; Maity, Amit; Gabriel, Peter E; Solberg, Timothy D; Bergendahl, Howard W; Hahn, Stephen M

    2016-05-01

    High-reliability organizations (HROs) focus on continuous identification and improvement of safety issues. We sought to advance a large, multisite radiation oncology department toward high reliability through the implementation of a comprehensive safety culture (SC) program at the University of Pennsylvania Department of Radiation Oncology. In 2011, with guidance from safety literature and experts in HROs, we designed an SC framework to reduce radiation errors. All state-reported medical events (SRMEs) from 2009 to 2016 were retrospectively reviewed and plotted on a control chart. Changes in SC grade were assessed using the Agency for Healthcare Research and Quality Hospital Survey. Outcomes measured included the number of radiation treatment fractions and days between SRMEs, as well as SC grade. Multifaceted safety initiatives were implemented at our main academic center and across all network sites. Postintervention results demonstrate increased staff fundamental safety knowledge, enhanced peer review with an electronic system, and special cause variation of SRMEs on control chart analysis. From 2009 to 2016, the number of days and fractions between SRMEs significantly increased, from a mean of 174 to 541 days (P < .0075) and 21,678 to 113,104 fractions (P < .0028) preintervention and postintervention, respectively. Agency for Healthcare Research and Quality results demonstrate a high patient SC grade over time. Our journey toward becoming an HRO has led to the development of a robust SC through a comprehensive safety framework. Our multifaceted initiatives, focusing on culture and system changes, can be successfully implemented in a large academic radiation oncology department to yield measurable improvements in SC and outcomes. Copyright © 2016 by American Society of Clinical Oncology.

  2. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT).

    PubMed

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen

    2014-01-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients' average CT. All the plans delivered 50.4Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V18Gy), stomach (mean and V20Gy), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V18Gy), liver (mean dose), total bowel (V20Gy and mean dose), and small bowel (V15Gy absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose escalation and combining with radiosensitizing chemotherapy. Published by

  3. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    SciTech Connect

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen

    2014-07-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose

  4. Duodenogastric reflux and foregut carcinogenesis.

    PubMed

    Miwa, K; Hattori, T; Miyazaki, I

    1995-03-15

    Epidemiologic cohort studies have established that after distal gastric resection, there is a higher risk of gastric carcinoma. It is likely that a main factor of this higher risk is the excessive duodenogastric reflux induced by surgery, because the incidence of stump carcinomas is higher in Billroth II than in Billroth I, and most of the stump carcinomas are located near the stoma. In addition, several groups of investigators have suggested that duodenogastric reflux per se induces stump carcinomas in rats. There is another human duodenogastric reflux, the primary duodenogastric reflux, through the pylorus. Experiments in animals have demonstrated that this type of duodenal reflux also induces gastric carcinomas in the antrum of the stomach that has not undergone surgery. Recent clinical attention has focused on the role of duodenogastric reflux in the pathogenesis of Barrett's esophagus and subsequent esophageal adenocarcinomas. Experimentally, reflux of duodenal contents into the esophagus can cause not only Barrett's esophagus and subsequent adenocarcinomas, but also squamous cell carcinomas. These findings suggest that duodenogastric reflux may be implicated in gastric and esophageal, that is, foregut carcinogenesis.

  5. Autophagy analysis in oral carcinogenesis.

    PubMed

    de Lima, T B; Paz, A H R; Rados, P V; Leonardi, R; Bufo, P; Pedicillo, M C; Santoro, A; Cagiano, S; Aquino, G; Botti, G; Pannone, G; Visioli, F

    2017-09-01

    The aim of this study was to evaluate the levels of autophagy in oral leukoplakia and squamous cell carcinoma and to correlate with clinical pathological features, as well as, the evolution of these lesions. 7 Normal oral mucosa, 51 oral leukoplakias, and 120 oral squamous cell carcinomas (OSCC) were included in the study. Histological sections of the mucosa and leukoplakias were evaluated throughout their length, while the carcinomas were evaluated using Tissue Microarray. After the immunohistochemical technique, LC3-II positive cells were quantified in the different epithelial layers of the mucosa and leukoplakias and in the microarrays of the squamous cell carcinomas. The correlation between positive cells with the different clinical-pathological variables and with the evolution of the lesions was tested using the t test, ANOVA, and Kaplan-Meier survival analysis. We observed increased levels of autophagy in the oral squamous cell carcinomas (p<0.001) in relation to the other groups, but without any association with poorer evolution or survival of these patients. Among the leukoplakias, we observed a higher percentage of positive cells in the intermediate layer of the dysplastic leukoplakias (p=0.0319) and in the basal layer of lesions with poorer evolution (p=0.0133). The levels of autophagy increased during the process of oral carcinogenesis and are correlated with poorer behavior of the leukoplakias. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Inhibition of carcinogenesis by tea.

    PubMed

    Yang, Chung S; Maliakal, Pius; Meng, Xiaofeng

    2002-01-01

    Tea has received a great deal of attention because tea polyphenols are strong antioxidants, and tea preparations have inhibitory activity against tumorigenesis. The bioavailability and biotransformation of tea polyphenols, however, are key factors limiting these activities in vivo. The inhibition of tumorigenesis by green or black tea preparations has been demonstrated in animal models on different organ sites such as skin, lung, oral cavity, esophagus, forestomach, stomach, small intestine, colon, pancreas, and mammary gland. Epidemiological studies, however, have not yielded clear conclusions concerning the protective effects of tea consumption against cancer formation in humans. The discrepancy between the results from humans and animal models could be due to 1) the much higher doses of tea used in animals in comparison to human consumption, 2) the differences in causative factors between the cancers in humans and animals, and 3) confounding factors limiting the power of epidemiological studies to detect an effect. It is possible that tea may be only effective against specific types of cancer caused by certain etiological factors. Many mechanisms have been proposed for the inhibition of carcinogenesis by tea, including the modulation of signal transduction pathways that leads to the inhibition of cell proliferation and transformation, induction of apoptosis of preneoplastic and neoplastic cells, as well as inhibition of tumor invasion and angiogenesis. These mechanisms need to be evaluated and verified in animal models or humans in order to gain more understanding on the effect of tea consumption on human cancer.

  7. ACR White Paper-Based Comprehensive Dose Reduction Initiative Is Associated With a Reversal of the Upward Trend in Radiation Dose for Chest CT.

    PubMed

    Rawat, Udit; Cohen, Stuart L; Levsky, Jeffrey M; Haramati, Linda B

    2015-12-01

    In 2010, the authors' department implemented a comprehensive dose reduction strategy based on the ACR white paper on radiation dose in medicine. The aim of this study was to evaluate the effectiveness of the dose reduction program. In total, 1,234 adult chest CT scans from 2007 to 2012 were analyzed retrospectively, with institutional review board approval and a waiver of the requirement for informed consent. The primary outcome was effective dose in millisieverts during the three-year periods before (2007-2009) and after (2010-2012) dose reduction implementation. Dose trends were analyzed by fitted linear modeling. The use and effects on total exposure of dose reduction strategies (high pitch, adaptive statistical iterative reconstruction [ASIR], and low tube voltage) were analyzed. The overall mean dose for chest CT was 7.3 ± 5.1 mSv. The mean dose decreased by 30%, from 9.2 mSv (2007-2009) to 6.5 mSv (2010-2012) (P < .001). From 2007 to 2009, the mean dose increased by 1.2 mSv per year (P < .01). From 2010 to 2012, the mean dose decreased by 1.1 mSv per year (P < 0.01). High-pitch technique, ASIR, and low tube voltage increased significantly after dose reduction implementation. High pitch and ASIR were significantly associated with a reduced dose, whereas the effect of reduced voltage was not significant. Reductions in radiation exposure from medical imaging rely on ongoing technical developments and consistent, vigilant use of dose reduction strategies. This comprehensive dose reduction strategy significantly reduced radiation exposure from chest CT. Annual increases in radiation dose reversed after the strategy was implemented and continued to decline over the study period. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  8. [Monoamines stimulations in experimental carcinogenesis].

    PubMed

    Popov, I; Spuzić, I; Rakić, Lj

    1994-01-01

    Facts about the role of CNS monoamines in cancerogenesis have been accumulated for many years. The aim of the present study was to investigate the effect of interaction of psychoactive drug (Piracetam) and other treatments on survival time of tumour-bearing rats. 138 Wistar rats were used in the experiment. The animals were injected 1% 3--Methilcholantren suspension in 10% Tylose, s.c. under the dorsal skin of the neck in a dose of 3 mg/animal. Within 4-9 months after a single injection, the rats developed tumours at the site of injection. The surgical removal was performed when tumours reached the size of 1-3 cm. After surgical extirpation of tumours different groups of animals were treated by cyclophosphamide (s.c. one-time dose of 50 mg/kg for female and 100 mg/kg for male) or by psychoactive drug (Piracetam) administrated by GE tube 5 time/week, 100 mg/kg. Autopsy and histological examinations were carried out in all animals. Survival time (> 120 days) was the greatest in group B (Piracetam, after surgical removal of tumours) 81.2%, and group C (Cyclophosphamid, after surgical removal of tumours) 68.8% and in group A (only surgical removal of tumours) 50%. In group B the incidence of metastases was the smallest (87.1% of animals were without metastases), compared with group C (45.4% of animals were without metastases) and group A (27.3% of animals were without metastases). The diference is statistically significant. The mechanism of antineoplastic effect of Piracetam consisted of the interaction of influences both on metabolism of the Central nervous system and the tumour. Probably, it is the neurotransmitter modulation that had its effect on carcinogenesis not only by regulation/disregulation of brain homeostasis, but also via direct effect on intracellular processes during cell development and differentation.

  9. Radiation

    NASA Image and Video Library

    Outside the protective cocoon of Earth's atmosphere, the universe is full of harmful radiation. Astronauts who live and work in space are exposed not only to ultraviolet rays but also to space radi...

  10. Chemical carcinogenesis in the tracheobronchial epithelium.

    PubMed Central

    Trump, B F; McDowell, E M; Harris, C C

    1984-01-01

    Some of the recent work in pulmonary carcinogenesis is briefly reviewed. Morphologic studies of neoplastic and preneoplastic lesions of the human bronchi are compared with similar studies of carcinogenesis and epithelial regeneration in the hamster trachea. These studies suggest that bronchogenic carcinomas are typically complex mixtures of three basic phenotypes, the epidermoid and the mucous and dense-core granulated (endocrine) phenotypes. Pure forms of these phenotypes are rare, as different cells and even individual cells in single tumors express more than one phenotype. The clinical significance of such phenotypic variability is not yet known. Bronchial cell types which retain the capacity to divide include the mucous cell, the basal cell and perhaps the dense-core granulated cell. Studies of epithelial regeneration and preneoplastic lesions suggest that the mucous cell may be pivotal both in the response to injury and in carcinogenesis. Cigarette smoking is believed to be the major etiologic factor in bronchogenic carcinoma. Cigarette smoke contains initiators of carcinogenesis, but it contains a plethora of probable promoters and cocarcinogens as well. It is hypothesized that cigarette smoke may both initiate bronchial cells and promote carcinogenesis in cells which have previously been initiated by smoke or other factors. It is further hypothesized that that mucous cell is the major target for initiation and subsequent tumorigenesis. The ultimate phenotype(s) displayed by the tumor is suggested to result from the effect of microenvironmental factors upon the initiated cell and its progeny. PMID:6376112

  11. Transplacental arsenic carcinogenesis in mice

    SciTech Connect

    Waalkes, Michael P. Liu, Jie; Diwan, Bhalchandra A.

    2007-08-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show that a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from days 8 to 18 of gestation, and the offspring were observed for up to 2 years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans

  12. Decorin deficiency promotes hepatic carcinogenesis

    PubMed Central

    Horváth, Zsolt; Kovalszky, Ilona; Fullár, Alexandra; Kiss, Katalin; Schaff, Zsuzsa; Iozzo, Renato V.; Baghy, Kornélia

    2014-01-01

    experimental carcinogenesis by providing an environment devoid of this potent pan-RTK inhibitor. Thus, our results support future utilization of decorin as an antitumor agent in liver cancer. PMID:24361483

  13. Transplacental Arsenic Carcinogenesis in Mice

    PubMed Central

    Waalkes, Michael P.; Liu, Jie; Diwan, Bhalchandra A.

    2007-01-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from day 8 to 18 of gestation, and the offspring were observed for up to two years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans and

  14. Comprehensive Evaluation of Personal, Clinical, and Radiation Dosimetric Parameters for Acute Skin Reaction during Whole Breast Radiotherapy

    PubMed Central

    Yang, Dae Sik; Lee, Jung Ae; Lee, Nam Kwon; Park, Young Je; Lee, Suk; Kim, Chul Yong; Son, Gil Soo

    2016-01-01

    Skin reaction is major problem during whole breast radiotherapy. To identify factors related to skin reactions during whole breast radiotherapy, various personal, clinical, and radiation dosimetric parameters were evaluated. From January 2012 to December 2013, a total of 125 patients who underwent breast conserving surgery and adjuvant whole breast irradiation were retrospectively reviewed. All patients had both whole breast irradiation and boost to the tumour bed. Skin reaction was measured on the first day of boost therapy based on photography of the radiation field and medical records. For each area of axilla and inferior fold, the intensity score of erythema (score 1 to 5) and extent (score 0 to 1) were summed. The relationship of various parameters to skin reaction was evaluated using chi-square and linear regression tests. The V100 (volume receiving 100% of prescribed radiation dose, p < 0.001, both axilla and inferior fold) and age (p = 0.039 for axilla and 0.026 for inferior fold) were significant parameters in multivariate analyses. The calculated axilla dose (p = 0.003) and breast separation (p = 0.036) were also risk factors for axilla and inferior fold, respectively. Young age and large V100 are significant factors for acute skin reaction that can be simply and cost-effectively measured. PMID:27579310

  15. Comprehensive Evaluation of Personal, Clinical, and Radiation Dosimetric Parameters for Acute Skin Reaction during Whole Breast Radiotherapy.

    PubMed

    Yang, Dae Sik; Lee, Jung Ae; Yoon, Won Sup; Lee, Nam Kwon; Park, Young Je; Lee, Suk; Kim, Chul Yong; Son, Gil Soo

    2016-01-01

    Skin reaction is major problem during whole breast radiotherapy. To identify factors related to skin reactions during whole breast radiotherapy, various personal, clinical, and radiation dosimetric parameters were evaluated. From January 2012 to December 2013, a total of 125 patients who underwent breast conserving surgery and adjuvant whole breast irradiation were retrospectively reviewed. All patients had both whole breast irradiation and boost to the tumour bed. Skin reaction was measured on the first day of boost therapy based on photography of the radiation field and medical records. For each area of axilla and inferior fold, the intensity score of erythema (score 1 to 5) and extent (score 0 to 1) were summed. The relationship of various parameters to skin reaction was evaluated using chi-square and linear regression tests. The V 100 (volume receiving 100% of prescribed radiation dose, p < 0.001, both axilla and inferior fold) and age (p = 0.039 for axilla and 0.026 for inferior fold) were significant parameters in multivariate analyses. The calculated axilla dose (p = 0.003) and breast separation (p = 0.036) were also risk factors for axilla and inferior fold, respectively. Young age and large V 100 are significant factors for acute skin reaction that can be simply and cost-effectively measured.

  16. Anticancer Effect of Lycopene in Gastric Carcinogenesis

    PubMed Central

    Kim, Mi Jung; Kim, Hyeyoung

    2015-01-01

    Gastric cancer ranks as the most common cancer and the second leading cause of cancer-related death in the world. Risk factors of gastric carcinogenesis include oxidative stress, DNA damage, Helicobacter pylori infection, bad eating habits, and smoking. Since oxidative stress is related to DNA damage, smoking, and H. pylori infection, scavenging of reactive oxygen species may be beneficial for prevention of gastric carcinogenesis. Lycopene, one of the naturally occurring carotenoids, has unique structural and chemical features that contributes to a potent antioxidant activity. It shows a potential anticancer activity and reduces gastric cancer incidence. This review will summarize anticancer effect and mechanism of lycopene on gastric carcinogenesis based on the recent experimental and clinical studies. PMID:26151041

  17. Evaluation of near-miss and adverse events in radiation oncology using a comprehensive causal factor taxonomy.

    PubMed

    Spraker, Matthew B; Fain, Robert; Gopan, Olga; Zeng, Jing; Nyflot, Matthew; Jordan, Loucille; Kane, Gabrielle; Ford, Eric

    Incident learning systems (ILSs) are a popular strategy for improving safety in radiation oncology (RO) clinics, but few reports focus on the causes of errors in RO. The goal of this study was to test a causal factor taxonomy developed in 2012 by the American Association of Physicists in Medicine and adopted for use in the RO: Incident Learning System (RO-ILS). Three hundred event reports were randomly selected from an institutional ILS database and Safety in Radiation Oncology (SAFRON), an international ILS. The reports were split into 3 groups of 100 events each: low-risk institutional, high-risk institutional, and SAFRON. Three raters retrospectively analyzed each event for contributing factors using the American Association of Physicists in Medicine taxonomy. No events were described by a single causal factor (median, 7). The causal factor taxonomy was found to be applicable for all events, but 4 causal factors were not described in the taxonomy: linear accelerator failure (n = 3), hardware/equipment failure (n = 2), failure to follow through with a quality improvement intervention (n = 1), and workflow documentation was misleading (n = 1). The most common causal factor categories contributing to events were similar in all event types. The most common specific causal factor to contribute to events was a "slip causing physical error." Poor human factors engineering was the only causal factor found to contribute more frequently to high-risk institutional versus low-risk institutional events. The taxonomy in the study was found to be applicable for all events and may be useful in root cause analyses and future studies. Communication and human behaviors were the most common errors affecting all types of events. Poor human factors engineering was found to specifically contribute to high-risk more than low-risk institutional events, and may represent a strategy for reducing errors in all types of events. Copyright © 2017 American Society for Radiation Oncology

  18. Incident learning in pursuit of high reliability: implementing a comprehensive, low-threshold reporting program in a large, multisite radiation oncology department.

    PubMed

    Gabriel, Peter E; Volz, Edna; Bergendahl, Howard W; Burke, Sean V; Solberg, Timothy D; Maity, Amit; Hahn, Stephen M

    2015-04-01

    Incident learning programs have been recognized as cornerstones of safety and quality assurance in so-called high reliability organizations in industries such as aviation and nuclear power. High reliability organizations are distinguished by their drive to continuously identify and proactively address a broad spectrum of latent safety issues. Many radiation oncology institutions have reported on their experience in tracking and analyzing adverse events and near misses but few have incorporated the principles of high reliability into their programs. Most programs have focused on the reporting and retrospective analysis of a relatively small number of significant adverse events and near misses. To advance a large, multisite radiation oncology department toward high reliability, a comprehensive, cost-effective, electronic condition reporting program was launched to enable the identification of a broad spectrum of latent system failures, which would then be addressed through a continuous quality improvement process. A comprehensive program, including policies, work flows, and information system, was designed and implemented, with use of a low reporting threshold to focus on precursors to adverse events. In a 46-month period from March 2011 through December 2014, a total of 8,504 conditions (average, 185 per month, 1 per patient treated, 3.9 per 100 fractions [individual treatments]) were reported. Some 77.9% of clinical staff members reported at least 1 condition. Ninety-eight percent of conditions were classified in the lowest two of four severity levels, providing the opportunity to address conditions before they contribute to adverse events. Results after approximately four years show excellent employee engagement, a sustained rate of reporting, and a focus on low-level issues leading to proactive quality improvement interventions.

  19. Relationship Between the Comprehensive Nutritional Index and the EORTC QLQ-H&N35 in Nasopharyngeal Carcinoma Patients Treated with Intensity-Modulated Radiation Therapy.

    PubMed

    He, Yan; Chen, Liping; Chen, Linmin; Hu, Wen; Wang, Cong; Tang, Linquan; Mai, Haiqiang; Li, Jianmei; Wu, Liping; Fan, Yuying

    2017-04-01

    This study aimed to explore the relationship between the comprehensive nutritional index (CNI) and quality of life in nasopharyngeal carcinoma (NPC) patients receiving intensity-modulated radiation therapy (IMRT). The nutritional index, which includes total lymphocyte count, hemoglobin and albumin levels, body mass index, and usual body weight percentage, was evaluated pre-treatment and post-treatment in patients who underwent IMRT. The quality of life of NPC patients was measured by the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Head and Neck Cancer Module (EORTC QLQ-H&N35) at four time points: pre-treatment, post-treatment, and 3 and 6 mo after IMRT. A comprehensive nutritional model was used to assess the correlation with QLQ-H&N35. The nutritional index decreased significantly post-treatment. The CNI was associated with immunotherapy; the International Union Against Cancer (UICC) stage; concurrent chemotherapy; speech problems, trouble with social contact, feeling ill and having dental problems at pre-treatment; sexuality at 3 mos post-treatment; and sensory problems and xerostomia at 6 mo post-treatment (P < 0.05). The nutritional status and QLQ-H&N35 scores in NPC patients decreased during IMRT. Our study provides an alternative measure of the CNI to improve the QLQ-H&N35 evaluation system for patients with NPC.

  20. [The role of sonic hedgehog pathway in skin carcinogenesis].

    PubMed

    Lesiak, Aleksandra; Sysa-Jedrzejowska, Anna; Narbutt, Joanna

    2010-08-01

    Non melanoma skin cancers (NMSC) involving basal (BCC)--and squamosus cell carcinomas (SCC) and are the most frequent skin cancers in Caucasians. Ultraviolet radiation is the main environmental risk factor for NMSC development. The aim of this paper is to review the latest opinions concerning the role of sonic hedgehog pathway in non-melanoma skin cancers development. Experimental data indicate that sonic hedgehog pathway might be involved in skin carcinogenesis. Under physiological conditions sonic hedgehog pathway is responsible for normal embryogenesis, regeneration of damaged tissues and for regulation of cell proliferation. It was revealed that UVR caused inactivated mutation in PATCHED gene encoding Ptch1 protein. These events lead to deregulation of sonic hedgehog pathway trough activation of Smo protein and Gli transcriptional factors what stimulates cell proliferation and in consequence NMSC development. Literature data indicate that understanding of molecular background of skin cancers might be a reason for introduction of new therapeutic approaches including sonic hedgehog pathway inhibitors.

  1. Human papillomaviruses and carcinogenesis: well-established and novel models.

    PubMed

    Viarisio, Daniele; Gissmann, Lutz; Tommasino, Massimo

    2017-08-01

    Human papillomaviruses (HPVs) infect the cutaneous or mucosal epithelia and are classified phylogenetically as genera and species. Persistent infections by the mucosal high-risk (HR) HPV types from genus alpha are associated with cancer development of the genital and upper respiratory tracts. The products of two early genes, E6 and E7, are the major HR HPV oncoproteins, being essential in all steps of the carcinogenic process. Cutaneous beta HPV types are proposed, together with ultraviolet (UV) radiation, to promote non-melanoma skin cancer development. However, in contrast to the HR HPV types, beta HPV types appear to be required only at an early stage of carcinogenesis, facilitating the accumulation of UV-induced DNA mutations. Although findings in experimental models also suggest that beta HPV types and other carcinogens may synergize in the induction of malignancies, these possibilities need to be confirmed in human studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. UCP2 knockout suppresses mouse skin carcinogenesis.

    PubMed

    Li, Wenjuan; Zhang, Chunjing; Jackson, Kasey; Shen, Xingui; Jin, Rong; Li, Guohong; Kevil, Christopher G; Gu, Xin; Shi, Runhua; Zhao, Yunfeng

    2015-06-01

    Mitochondrial uncoupling (uncouples electron transport from ATP production) has recently been proposed as a novel survival mechanism for cancer cells, and reduction in free radical generation is the accepted mechanism of action. However, there is no direct evidence supporting that uncoupling proteins promote carcinogenesis. Herein, we examined whether mitochondrial uncoupling affects mouse skin carcinogenesis using uncoupling protein 2 (UCP2) homozygous knockout and wild-type mice. The results indicate that knockout of Ucp2 significantly reduced the formation of both benign (papilloma) and malignant (squamous cell carcinoma) tumors. UCP2 knockout did not cause increases in apoptosis during skin carcinogenesis. The rates of oxygen consumption were decreased only in the carcinogen-treated UCP2 knockout mice, whereas glycolysis was increased only in the carcinogen-treated wild-type mice. Finally, the levels of metabolites pyruvate, malate, and succinate showed different trends after carcinogen treatments between the wild-type and UCP2 knockout mice. Our study is the first to demonstrate that Ucp2 knockout suppresses carcinogenesis in vivo. Together with early studies showing that UCP2 is overexpressed in a number of human cancers, UCP2 could be a potential target for cancer prevention and/or therapy. Cancer Prev Res; 8(6); 487-91. ©2015 AACR. ©2015 American Association for Cancer Research.

  3. Mechanisms and Chemoprevention of Ovarian Carcinogenesis

    DTIC Science & Technology

    2008-02-01

    2004 Apr;14(2):175-82. 10. Kabbarah O, Pinto K, Mutch DG, Goodfellow PJ. Expression profiling of mouse endometrial cancers microdissected from...Ovarian Carcinogenesis PRINCIPAL INVESTIGATOR: Dusica Cvetkovic, Ph.D. CONTRACTING ORGANIZATION: Fox Chase Cancer Center...ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Fox Chase Cancer Center Philadelphia, PA 19111 9. SPONSORING / MONITORING

  4. Management of radiation oncology patients with a pacemaker or ICD: A new comprehensive practical guideline in The Netherlands

    PubMed Central

    2012-01-01

    Current clinical guidelines for the management of radiotherapy patients having either a pacemaker or implantable cardioverter defibrillator (both CIEDs: Cardiac Implantable Electronic Devices) do not cover modern radiotherapy techniques and do not take the patient’s perspective into account. Available data on the frequency and cause of CIED failure during radiation therapy are limited and do not converge. The Dutch Society of Radiotherapy and Oncology (NVRO) initiated a multidisciplinary task group consisting of clinical physicists, cardiologists, radiation oncologists, pacemaker and ICD technologists to develop evidence based consensus guidelines for the management of CIED patients. CIED patients receiving radiotherapy should be categorised based on the chance of device failure and the clinical consequences in case of failure. Although there is no clear cut-off point nor a clear linear relationship, in general, chances of device failure increase with increasing doses. Clinical consequences of device failures like loss of pacing, carry the most risks in pacing dependent patients. Cumulative dose and pacing dependency have been combined to categorise patients into low, medium and high risk groups. Patients receiving a dose of less than 2 Gy to their CIED are categorised as low risk, unless pacing dependent since then they are medium risk. Between 2 and 10 Gy, all patients are categorised as medium risk, while above 10 Gy every patient is categorised as high risk. Measures to secure patient safety are described for each category. This guideline for the management of CIED patients receiving radiotherapy takes into account modern radiotherapy techniques, CIED technology, the patients’ perspective and the practical aspects necessary for the safe management of these patients. The guideline is implemented in The Netherlands in 2012 and is expected to find clinical acceptance outside The Netherlands as well. PMID:23176563

  5. Evaluation of Four Techniques Using Intensity-Modulated Radiation Therapy for Comprehensive Locoregional Irradiation of Breast Cancer

    SciTech Connect

    Jagsi, Reshma; Moran, Jean; Marsh, Robin; Masi, Kathryn; Griffith, Kent A.; Pierce, Lori J.

    2010-12-01

    Purpose: To establish optimal intensity-modulated radiation therapy (IMRT) techniques for treating the left breast and regional nodes, using moderate deep-inspiration breath hold. Methods and Materials: We developed four IMRT plans of differing complexity for each of 10 patients following lumpectomy for left breast cancer. A dose of 60 Gy was prescribed to the boost planning target volume (PTV) and 52.2 Gy to the breast and supraclavicular, infraclavicular, and internal mammary nodes. Two plans used inverse-planned beamlet techniques: a 9-field technique, with nine equispaced axial beams, and a tangential beamlet technique, with three to five ipsilateral beams. The third plan (a segmental technique) used a forward-planned multisegment technique, and the fourth plan (a segmental blocked technique) was identical but included a block to limit heart dose. Dose--volume histograms were generated, and metrics chosen for comparison were analyzed using the paired t test. Results: Mean heart and left anterior descending coronary artery doses were similar with the tangential beamlet and segmental blocked techniques but higher with the segmental and 9-field techniques (mean paired difference of 15.1 Gy between segmental and tangential beamlet techniques, p < 0.001). Substantial volumes of contralateral tissue received dose with the 9-field technique (mean right breast V2, 58.9%; mean right lung V2, 75.3%). Minimum dose to {>=}95% of breast PTV was, on average, 45.9 Gy with tangential beamlet, 45.0 Gy with segmental blocked, 51.4 Gy with segmental, and 50.2 Gy with 9-field techniques. Coverage of the internal mammary region was substantially better with the two beamlet techniques than with the segmental blocked technique. Conclusions: Compared to the 9-field beamlet and segmental techniques, a tangential beamlet IMRT technique reduced exposure to normal tissues and maintained reasonable target coverage.

  6. Evaluation of four techniques using intensity-modulated radiation therapy for comprehensive locoregional irradiation of breast cancer.

    PubMed

    Jagsi, Reshma; Moran, Jean; Marsh, Robin; Masi, Kathryn; Griffith, Kent A; Pierce, Lori J

    2010-12-01

    To establish optimal intensity-modulated radiation therapy (IMRT) techniques for treating the left breast and regional nodes, using moderate deep-inspiration breath hold. We developed four IMRT plans of differing complexity for each of 10 patients following lumpectomy for left breast cancer. A dose of 60 Gy was prescribed to the boost planning target volume (PTV) and 52.2 Gy to the breast and supraclavicular, infraclavicular, and internal mammary nodes. Two plans used inverse-planned beamlet techniques: a 9-field technique, with nine equispaced axial beams, and a tangential beamlet technique, with three to five ipsilateral beams. The third plan (a segmental technique) used a forward-planned multisegment technique, and the fourth plan (a segmental blocked technique) was identical but included a block to limit heart dose. Dose--volume histograms were generated, and metrics chosen for comparison were analyzed using the paired t test. Mean heart and left anterior descending coronary artery doses were similar with the tangential beamlet and segmental blocked techniques but higher with the segmental and 9-field techniques (mean paired difference of 15.1 Gy between segmental and tangential beamlet techniques, p < 0.001). Substantial volumes of contralateral tissue received dose with the 9-field technique (mean right breast V2, 58.9%; mean right lung V2, 75.3%). Minimum dose to ≥95% of breast PTV was, on average, 45.9 Gy with tangential beamlet, 45.0 Gy with segmental blocked, 51.4 Gy with segmental, and 50.2 Gy with 9-field techniques. Coverage of the internal mammary region was substantially better with the two beamlet techniques than with the segmental blocked technique. Compared to the 9-field beamlet and segmental techniques, a tangential beamlet IMRT technique reduced exposure to normal tissues and maintained reasonable target coverage. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Risk of second cancers in the era of modern radiation therapy: does the risk/benefit analysis overcome theoretical models?

    PubMed

    Chargari, Cyrus; Goodman, Karyn A; Diallo, Ibrahima; Guy, Jean-Baptiste; Rancoule, Chloe; Cosset, Jean-Marc; Deutsch, Eric; Magne, Nicolas

    2016-06-01

    In the era of modern radiation therapy, the compromise between the reductions in deterministic radiation-induced toxicities through highly conformal devices may be impacting the stochastic risk of second malignancies. We reviewed the clinical literature and evolving theoretical models evaluating the impact of intensity-modulated radiation therapy (IMRT) on the risk of second cancers, as a consequence of the increase in volumes of normal tissues receiving low doses. The risk increase (if any) is not as high as theoretical models have predicted in adults. Moreover, the increase in out-of-field radiation doses with IMRT could be counterbalanced by the decrease in volumes receiving high doses. Clinical studies with short follow-up have not corroborated the hypothesis that IMRT would drastically increase the incidence of second cancers. In children, the risk of radiation-induced carcinogenesis increases from low doses and consequently the relative risk of second cancers after IMRT could be higher than in adults, justifying current developments of proton therapy with priority given to this population. Although only longer follow-up will allow a true assessment of the real impact of these modern techniques on radiation-induced carcinogenesis, a comprehensive risk-adapted strategy will help minimize the probability of second cancers.

  8. Predictors of CT Radiation Dose and Their Effect on Patient Care: A Comprehensive Analysis Using Automated Data.

    PubMed

    Smith-Bindman, Rebecca; Wang, Yifei; Yellen-Nelson, Thomas R; Moghadassi, Michelle; Wilson, Nicole; Gould, Robert; Seibert, Anthony; Boone, John M; Krishnam, Mayil; Lamba, Ramit; Hall, David J; Miglioretti, Diana L

    2017-01-01

    Purpose To determine patient, vendor, and institutional factors that influence computed tomography (CT) radiation dose. Materials and Methods The relevant institutional review boards approved this HIPAA-compliant study, with waiver of informed consent. Volume CT dose index (CTDIvol) and effective dose in 274 124 head, chest, and abdominal CT examinations performed in adult patients at 12 facilities in 2013 were collected prospectively. Patient, vendor, and institutional characteristics that could be used to predict (a) median dose by using linear regression after log transformation of doses and (b) high-dose examinations (top 25% of dose within anatomic strata) by using modified Poisson regression were assessed. Results There was wide variation in dose within and across medical centers. For chest CTDIvol, overall median dose across all institutions was 11 mGy, and institutional median dose was 7-16 mGy. Models including patient, vendor, and institutional factors were good for prediction of median doses (R(2) = 0.31-0.61). The specific institution where the examination was performed (reflecting the specific protocols used) accounted for a moderate to large proportion of dose variation. For chest CTDIvol, unadjusted median CTDIvol was 16.5 mGy at one institution and 6.7 mGy at another (adjusted relative median dose, 2.6 mGy [95% confidence interval: 2.5, 2.7]). Several variables were important predictors that a patient would undergo high-dose CT. These included patient size, the specific institution where CT was performed, and the use of multiphase scanning. For example, while 49% of patients (21 411 of 43 696) who underwent multiphase abdominal CT had a high-dose examination, 8% of patients (4977 of 62 212) who underwent single-phase CT had a high-dose examination (adjusted relative risk, 6.20 [95% CI: 6.17, 6.23]). If all patients had been examined with single-phase CT, 69% (18 208 of 26 388) of high-dose examinations would have been eliminated. Patient size

  9. Lymphotoxin prevention of diethylnitrosamine carcinogenesis in vivo.

    PubMed

    Ransom, J H; Evans, C H; DiPaolo, J A

    1982-09-01

    Development of intervention measures to control cancer would be facilitated by being able to monitor in vivo carcinogenesis by in vitro quantitation of early indices of neoplastic transformation to assess the in vivo effectiveness of preventive-therapeutic measures. Pregnant Syrian golden hamsters were used in an in vivo-in vitro transplacental model of carcinogenesis to determine the extent that in vivo administration of immunologic hormone preparations along with chemical carcinogen would prevent morphologic transformation assessed in vitro. Pregnant hamsters at 10-11 days of gestation were given injections ip of 3 mg diethylnitrosamine (DENA)/100 g body weight and were killed 2 days later when fetal cells were seeded for colony formation. The frequency of morphologically transformed colonies was assessed after 7 days of growth. Cloning efficiency and mean transformation frequency after DENA exposure were 3.6% and 1 X 10(-4) per cell seeded, respectively. The ip injection of an immunologic hormone preparation reduced the transformation frequency by 46%. The hormone preparation, containing 10,000 U of lymphotoxin but no detectable interferon, was the ultrafiltered lymphokines (greater than 10,000 mol wt) from phytohemagglutinin-stimulated hamster peritoneal leukocytes. The effect of lymphotoxin on cocarcinogenic exposure of fetal cells to DENA in vivo followed by X-irradiation in vitro was also determined. Cells exposed to 250 rad in vitro had a cloning efficiency of 0.5% and a transformation frequency of 0.4 X 10(-4) per cell seeded. After DENA injection and X-irradiation, the transformation frequency increased to 1 X 10(-4) and was inhibited 64% by lymphotoxin in vivo. Thus immunologic hormones (e.g., lymphotoxin) can prevent carcinogenesis in vivo. Furthermore, in vitro quantitation of transformation is a rapid means for evaluating therapeutic and autochthonous effector mechanisms for their ability to prevent or otherwise modulate carcinogenesis in vivo.

  10. Biodynamic modeling and simulation of multistage carcinogenesis.

    PubMed

    Ahangar, R; Iqbal, K

    2004-01-01

    We present a mathematical model of multistage carcinogenesis. The population genetic model is developed based on the reaction diffusion, logistic behavior, and Hollings Type II interactions between normal, benign, and premalignant mutant cells. Computer simulations are used to observe the behavior, stability, and traveling wave solution of the premalignant stage mutation as well as its survival under natural selection pressure. As a simple application of the model, the interaction between normal and tumor cells with one or two stages of mutation is analyzed.

  11. Lymphotoxin prevention of diethylnitrosamine carcinogenesis in vivo

    SciTech Connect

    Ransom, J.H.; Evans, C.H.; DiPaolo, J.A.

    1982-09-01

    Development of intervention measures to control cancer would be facilitated by being able to monitor in vivo carcinogenesis by in vitro quantitation of early indices of neoplastic transformation to assess the in vivo effectiveness of preventive-therapeutic measures. Pregnant Syrian golden hamsters were used in an in vivo-in vitro transplacental model of carcinogenesis to determine the extent that in vivo administration of immunologic hormone preparations along with chemical carcinogen would prevent morphologic transformation assessed in vitro. Pregnant hamsters at 10-11 days of gestation were given injections ip of 3 mg diethylnitrosamine (DENA)/100 g body weight and were killed 2 days later when fetal cells were seeded for colony formation. The frequency of morphologically transformed colonies was assessed after 7 days of growth. Cloning efficiency and mean transformation frequency after DENA exposure were 3.6% and 1 X 10(-4) per cell seeded, respectively. The ip injection of an immunologic hormone preparation reduced the transformation frequency by 46%. The hormone preparation, containing 10,000 U of lymphotoxin but no detectable interferon, was the ultrafiltered lymphokines (greater than 10,000 mol wt) from phytohemagglutinin-stimulated hamster peritoneal leukocytes. The effect of lymphotoxin on cocarcinogenic exposure of fetal cells to DENA in vivo followed by X-irradiation in vitro was also determined. Cells exposed to 250 rad in vitro had a cloning efficiency of 0.5% and a transformation frequency of 0.4 X 10(-4) per cell seeded. After DENA injection and X-irradiation, the transformation frequency increased to 1 X 10(-4) and was inhibited 64% by lymphotoxin in vivo. Thus immunologic hormones (e.g., lymphotoxin) can prevent carcinogenesis in vivo. Furthermore, in vitro quantitation of transformation is a rapid means for evaluating therapeutic and autochthonous effector mechanisms for their ability to prevent or otherwise modulate carcinogenesis in vivo.

  12. Cell Lineage Analysis of Mouse Prostate Carcinogenesis

    DTIC Science & Technology

    2015-09-01

    are derived from luminal or basal epithelial cells using genetic lineage tracing of prostate carcinogenesis in PSA-CreERT2;R26RmT/mG;EAF2-/-;PTEN...derived from luminal epithelial cells in the prostate, because a hallmark of prostate cancer is the loss of basal epithelial cells and prostate...publications [2, 3]. This project will determine whether prostate cancer cells are derived from luminal or basal epithelial cells in an EAF2-/- mouse

  13. Zinc and zinc transporters in prostate carcinogenesis

    PubMed Central

    Kolenko, Vladimir; Teper, Ervin; Kutikov, Alexander; Uzzo, Robert

    2013-01-01

    The healthy human prostate accumulates the highest level of zinc of any soft tissue in the body. This unique property is retained in BPH, but is lost in prostatic malignancy, which implicates changes in zinc and its transporters in carcinogenesis. Indeed, zinc concentrations diminish early in the course of prostate carcinogenesis, preceding histopathological changes, and continue to decline during progression toward castration-resistant disease. Numerous studies suggest that increased zinc intake might protect against progression of prostatic malignancy. Despite increased dietary intake, zinc accumulation might be limited by the diminished expression of zinc uptake transporters, resulting in decreased intratumoural zinc levels. This finding can explain the conflicting results of various epidemiological studies evaluating the role of zinc supplementation on primary and secondary prostate cancer prevention. Overall, more research into the mechanisms of zinc homeostasis are needed to fully understand its impact on prostate carcinogenesis. Only then can the potential of zinc and zinc transport proteins be harnessed in the diagnosis and treatment of men with prostate cancer. PMID:23478540

  14. Relationships between DNA adduct formation and carcinogenesis

    SciTech Connect

    Swenberg, J.A.; Richardson, F.C.; Boucheron, J.A.; Dyroff, M.C.

    1985-10-01

    An impressive array of evidence has been obtained during the past decade establishing correlations between specific DNA adducts and carcinogenesis. Many of the studies utilized organ specific differences in carcinogenesis to establish the correlations. More recently, we have investigated similar relationships between target and nontarget cell populations within the liver. Chronic exposure to methylating hepatocarcinogens predominantly induces hemangiosarcomas, whereas exposure to ethylating agents causes hepatocellular carcinomas. This cell specificity in carcinogenesis correlates well with the presence of promutagenic DNA adducts. In the case of methylating agents, the nonparenchymal cells accumulate O6-methylguanine whereas the hepatocytes do not. Exposure to ethylating agents leads to accumulation of O4-ethyldeoxythymidine, but not O6-ethyldeoxyguanosine in hepatocytes. These differences reflect the ability of the two cell populations to repair O6-alkylguanine and the extent of purine and pyrimidine alkylation with methylating and ethylating agents. Hepatocytes of rats exposed to diethylnitrosamine for 28 days have four to five times more promutagenic DNA adducts (O6-alkyldeoxyguanosine and O4-alkyldeoxythymidine) than hepatocytes of rats exposed to nearly equimolar doses of dimethylhydrazine. Both O6-methylguanine and O4-methyldeoxythymidine are rapidly repaired by rat hepatocytes, while only O6-ethyldeoxyguanosine is rapidly repaired. Studies comparing the relationship between the induction of gamma-glutamyl transpeptidase-positive foci, hepatocellular carcinoma and promutagenic lesions such as O4-ethyldeoxythymidine will be useful in understanding associations between the molecular dosimetry of DNA adducts, initiation, and progression of hepatocarcinogenesis.

  15. Progesterone Signaling Inhibits Cervical Carcinogenesis in Mice

    PubMed Central

    Yoo, Young A; Son, Jieun; Mehta, Fabiola F.; DeMayo, Francesco J.; Lydon, John P.; Chung, Sang-Hyuk

    2014-01-01

    Human papillomavirus is the main cause of cervical cancer, yet other nonviral cofactors are also required for the disease. The uterine cervix is a hormone-responsive tissue, and female hormones have been implicated in cervical carcinogenesis. A transgenic mouse model expressing human papillomavirus oncogenes E6 and/or E7 has proven useful to study a mechanism of hormone actions in the context of this common malignancy. Estrogen and estrogen receptor α are required for the development of cervical cancer in this mouse model. Estrogen receptor α is known to up-regulate expression of the progesterone receptor, which, on activation by its ligands, either promotes or inhibits carcinogenesis, depending on the tissue context. Here, we report that progesterone receptor inhibits cervical and vaginal epithelial cell proliferation in a ligand-dependent manner. We also report that synthetic progestin medroxyprogesterone acetate promotes regression of cancers and precancerous lesions in the female lower reproductive tracts (ie, cervix and vagina) in the human papillomavirus transgenic mouse model. Our results provide the first experimental evidence that supports the hypothesis that progesterone signaling is inhibitory for cervical carcinogenesis in vivo. PMID:24012679

  16. Predicting cancer rates in astronauts from animal carcinogenesis studies and cellular markers

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Zhang, Y.; Zhou, H.; Osman, M.; Cha, D.; Kavet, R.; Cuccinotta, F.; Dicello, J. F.; Dillehay, L. E.

    1999-01-01

    The radiation space environment includes particles such as protons and multiple species of heavy ions, with much of the exposure to these radiations occurring at extremely low average dose-rates. Limitations in databases needed to predict cancer hazards in human beings from such radiations are significant and currently do not provide confidence that such predictions are acceptably precise or accurate. In this article, we outline the need for animal carcinogenesis data based on a more sophisticated understanding of the dose-response relationship for induction of cancer and correlative cellular endpoints by representative space radiations. We stress the need for a model that can interrelate human and animal carcinogenesis data with cellular mechanisms. Using a broad model for dose-response patterns which we term the "subalpha-alpha-omega (SAO) model", we explore examples in the literature for radiation-induced cancer and for radiation-induced cellular events to illustrate the need for data that define the dose-response patterns more precisely over specific dose ranges, with special attention to low dose, low dose-rate exposure. We present data for multiple endpoints in cells, which vary in their radiosensitivity, that also support the proposed model. We have measured induction of complex chromosome aberrations in multiple cell types by two space radiations, Fe-ions and protons, and compared these to photons delivered at high dose-rate or low dose-rate. Our data demonstrate that at least three factors modulate the relative efficacy of Fe-ions compared to photons: (i) intrinsic radiosensitivity of irradiated cells; (ii) dose-rate; and (iii) another unspecified effect perhaps related to reparability of DNA lesions. These factors can produce respectively up to at least 7-, 6- and 3-fold variability. These data demonstrate the need to understand better the role of intrinsic radiosensitivity and dose-rate effects in mammalian cell response to ionizing radiation. Such

  17. Predicting cancer rates in astronauts from animal carcinogenesis studies and cellular markers.

    PubMed

    Williams, J R; Zhang, Y; Zhou, H; Osman, M; Cha, D; Kavet, R; Cuccinotta, F; Dicello, J F; Dillehay, L E

    1999-12-06

    The radiation space environment includes particles such as protons and multiple species of heavy ions, with much of the exposure to these radiations occurring at extremely low average dose-rates. Limitations in databases needed to predict cancer hazards in human beings from such radiations are significant and currently do not provide confidence that such predictions are acceptably precise or accurate. In this article, we outline the need for animal carcinogenesis data based on a more sophisticated understanding of the dose-response relationship for induction of cancer and correlative cellular endpoints by representative space radiations. We stress the need for a model that can interrelate human and animal carcinogenesis data with cellular mechanisms. Using a broad model for dose-response patterns which we term the "subalpha-alpha-omega (SAO) model", we explore examples in the literature for radiation-induced cancer and for radiation-induced cellular events to illustrate the need for data that define the dose-response patterns more precisely over specific dose ranges, with special attention to low dose, low dose-rate exposure. We present data for multiple endpoints in cells, which vary in their radiosensitivity, that also support the proposed model. We have measured induction of complex chromosome aberrations in multiple cell types by two space radiations, Fe-ions and protons, and compared these to photons delivered at high dose-rate or low dose-rate. Our data demonstrate that at least three factors modulate the relative efficacy of Fe-ions compared to photons: (i) intrinsic radiosensitivity of irradiated cells; (ii) dose-rate; and (iii) another unspecified effect perhaps related to reparability of DNA lesions. These factors can produce respectively up to at least 7-, 6- and 3-fold variability. These data demonstrate the need to understand better the role of intrinsic radiosensitivity and dose-rate effects in mammalian cell response to ionizing radiation. Such

  18. Predicting cancer rates in astronauts from animal carcinogenesis studies and cellular markers

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Zhang, Y.; Zhou, H.; Osman, M.; Cha, D.; Kavet, R.; Cuccinotta, F.; Dicello, J. F.; Dillehay, L. E.

    1999-01-01

    The radiation space environment includes particles such as protons and multiple species of heavy ions, with much of the exposure to these radiations occurring at extremely low average dose-rates. Limitations in databases needed to predict cancer hazards in human beings from such radiations are significant and currently do not provide confidence that such predictions are acceptably precise or accurate. In this article, we outline the need for animal carcinogenesis data based on a more sophisticated understanding of the dose-response relationship for induction of cancer and correlative cellular endpoints by representative space radiations. We stress the need for a model that can interrelate human and animal carcinogenesis data with cellular mechanisms. Using a broad model for dose-response patterns which we term the "subalpha-alpha-omega (SAO) model", we explore examples in the literature for radiation-induced cancer and for radiation-induced cellular events to illustrate the need for data that define the dose-response patterns more precisely over specific dose ranges, with special attention to low dose, low dose-rate exposure. We present data for multiple endpoints in cells, which vary in their radiosensitivity, that also support the proposed model. We have measured induction of complex chromosome aberrations in multiple cell types by two space radiations, Fe-ions and protons, and compared these to photons delivered at high dose-rate or low dose-rate. Our data demonstrate that at least three factors modulate the relative efficacy of Fe-ions compared to photons: (i) intrinsic radiosensitivity of irradiated cells; (ii) dose-rate; and (iii) another unspecified effect perhaps related to reparability of DNA lesions. These factors can produce respectively up to at least 7-, 6- and 3-fold variability. These data demonstrate the need to understand better the role of intrinsic radiosensitivity and dose-rate effects in mammalian cell response to ionizing radiation. Such

  19. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Comprehensive progress report, July 1991--June 1994

    SciTech Connect

    Rowley, J.D.

    1994-06-01

    This comprehensive progress report provides a synopsis of major research accomplishments during the years of 1991-1994, including the technical aspects of the project. The objectives and accomplishments are as follows: 1. Defining the chromosome segments associated with radiation and chemically-induced leukemogenesis (treatment-related acute myeloid leukemia, t-AML); A. Continued genetic analysis of chromosomes 5 and 7, B. Correlation of treatment with balanced and unbalanced translocations. 2. Cloning the breakpoints in balanced translocations in t-AML; A. Clone the t(9;11) and t(11;19) breakpoints, B. Clone the t(3,21)(q26,q22) breakpoint, C. Determine the relationship of these translocations to prior exposure to topoisomerase II inhibitors. 3. Compare the breakpoint junctions in patients who have the same translocations in t-AML and AML de novo. 4. Map the scaffold attachment regions in the genes that are involved in balanced translocations in t-AML. Plans for the continuation of present objectives and possible new objectives in consideration of past results are also provided.

  20. Multiple oncogene activation in a radiation carcinogenesis model

    SciTech Connect

    Garte, S.J.; Sawey, M.J.; Burns, F.J.; Felber, M.; Ashkenazi-Kimmel, T.

    1987-01-01

    There is evidence from animal systems to suggest that certain oncogenes may be activated by the direct action of the initiating carcinogen. Consistent activation by a point mutation of a single member of the ras oncogene family in different tumors produced by a single agent has been demonstrated. In contrast the c-myc and other oncogenes have been shown to be activated by a process involving chromosomal translocations, enhanced expression, and/or gene amplification. We have examined a panel of 12 late stage rat skin tumors for activation of oncogenes from the ras and myc complementation groups. These tumors were four squamous cell carcinomas, three poorly differentiated carcinomas (clear cell), one each of basal cell carcinoma, sebaceous carcinoma, sarcoma, fibroma, and mixed (largely squamous) histology carcinoma. The positive tumor DNAs were from three poorly differentiated clear cell carcinomas, a sebaceous carcinoma, a squamous cell carcinoma, and a sarcoma. DNA from one of the primary transfectants was positive in a second round of transfection. The transformed phenotype of the transfectants was confirmed by anchorage independent growth and tumorigenicity in nude mice. Southern blot analysis of DNA from primary and secondary transfectants, as well as from nude mouse tumors arising after injection of transfectant cells revealed the presence of rat derived restriction fragments homologous to the K-ras oncogene against the mouse background. Similar experiments using N- and H-ras probes, revealed only the endogenous mouse fragments in transfectant DNA. 11 refs., 1 tab.

  1. Modulation of PPAR-Gamma Signaling in Prostatic Carcinogenesis

    DTIC Science & Technology

    2008-09-01

    PPAR - Gamma Signaling in Prostatic Carcinogenesis PRINCIPAL INVESTIGATOR: Simon W. Hayward PhD CONTRACTING...annual 1 Jun 00 - 31 May 01) Annual 1 SEP 2007 - 1 SEP 2008 4. Title and Subtitle Modulation of PPAR - Gamma Signaling in Prostatic Carcinogenesis...Modulation of PPAR - Gamma Signaling in Prostatic Carcinogenesis P.I. Simon W. Hayward, PhD Introduction This project examines the relationship between

  2. [Radiation Anticarcinogenesis by Thiazolidine Pro-drug

    NASA Technical Reports Server (NTRS)

    Warters, Raymond L.; Roberts, Jeanette C.; Fain, Heidi

    1999-01-01

    The original goal of this work was to determine the capacity of selected aminothiols to modulate radiation induced cytotoxicity, mutagenesis and carcinogenesis in a human mammary epithelial cell line. The conclusions from this work are that WR-1065 is the "gold standard" for protection against radiation induced cytotoxicity, mutagenesis and carcinogenesis. While a potent radiation protector, WR-1065 is cytotoxic in vitro and in vivo. Our rationale for a study of the thiazolidine pro-drugs was that these compounds are neither toxic in vitro or in vivo. The results obtained during this funding period indicate that the thiazolidine pro-drugs are as potent as WR-1065 as protectors against radiation induced mutation induction, and thus presumably against radiation induced carcinogenesis. Our results indicate that the thiazolidine prodrugs are excellent candidates to test as non-toxic anticarcinogens for protecting astronauts from cancer induction during space travel.

  3. [Radiation Anticarcinogenesis by Thiazolidine Pro-drug

    NASA Technical Reports Server (NTRS)

    Warters, Raymond L.; Roberts, Jeanette C.; Fain, Heidi

    1999-01-01

    The original goal of this work was to determine the capacity of selected aminothiols to modulate radiation induced cytotoxicity, mutagenesis and carcinogenesis in a human mammary epithelial cell line. The conclusions from this work are that WR-1065 is the "gold standard" for protection against radiation induced cytotoxicity, mutagenesis and carcinogenesis. While a potent radiation protector, WR-1065 is cytotoxic in vitro and in vivo. Our rationale for a study of the thiazolidine pro-drugs was that these compounds are neither toxic in vitro or in vivo. The results obtained during this funding period indicate that the thiazolidine pro-drugs are as potent as WR-1065 as protectors against radiation induced mutation induction, and thus presumably against radiation induced carcinogenesis. Our results indicate that the thiazolidine prodrugs are excellent candidates to test as non-toxic anticarcinogens for protecting astronauts from cancer induction during space travel.

  4. A novel in vitro pancreatic carcinogenesis model

    PubMed Central

    Kang, Hyo Jin; Hong, Young Bin; Kim, Hee Jeong; Yi, Yong Weon; Nath, Raghu G.; Chang, Young Soo; Cho, Ho-Chan; Bae, Insoo

    2011-01-01

    Environmental factors (e.g., BaP) have been pointed out as one of the etiologies of pancreatic cancer. However, very limited experimental assays are available to identify pancreatic specific environmental mutagens or susceptibility genes. In this study, we have developed a simple in vitro cell culture model system that can be used to study the molecular and biochemical aspects of carcinogenesis in a near-normal immortalized pancreatic ductal epithelial cell lines. In order to demonstrate that xenobiotic stress response is intact in these cells we employed standard molecular biology techniques. For examples, luciferase reporter and/or real-time quantitative PCR assays were used to determine stress-induced CYP1A1 and CYP1B1 gene expression. Western blotting and immunocytochemistry assays were used to demonstrate that TCDD or BaP could activate AhR signaling. For exploring the carcinogenesis mechanism, we incubated cells with [3H]BaP and determined BaP-DNA binding activity by measuring its radioactivity. BaP-DNA adduct formation was further confirmed by [32P]-postlabeling assay. Finally, we demonstrated the effects of endogenous AhR or BRCA1 in BaP-DNA adduct accumulation in our cell system: As results, no apparent BaP-DNA adduct accumulation by [32P]-postlabeling assay was found in either control-siRNA or AhR-siRNA pretreated cells. On the other hand, a significant increase of BaP-DNA adduct accumulation was found in BRCA1 knockdown cells. In conclusion, we suggest that this in vitro model may provide the feasibility for future studies on the molecular basis of pancreatic ductal cell carcinogenesis caused by dietary mutagens. PMID:21256203

  5. Poly(ADP-ribosyl)ation in carcinogenesis.

    PubMed

    Masutani, Mitsuko; Fujimori, Hiroaki

    2013-12-01

    Cancer develops through diverse genetic, epigenetic and other changes, so-called 'multi-step carcinogenesis', and each cancer harbors different alterations and properties. Here in this article we review how poly(ADP-ribosyl)ation is involved in multi-step and diverse pathways of carcinogenesis. Involvement of poly- and mono-ADP-ribosylation in carcinogenesis has been studied at molecular and cellular levels, and further by animal models and human genetic approaches. PolyADP-ribosylation acts in DNA damage repair response and maintenance mechanisms of genomic stability. Several DNA repair pathways, including base-excision repair and double strand break repair pathways, involve PARP and PARG functions. These care-taker functions of poly(ADP-ribosyl)ation suggest that polyADP-ribosyation may mainly act in a tumor suppressive manner because genomic instability caused by defective DNA repair response could serve as a driving force for tumor progression, leading to invasion, metastasis and relapse of cancer. On the other hand, the new concept of 'synthetic lethality by PARP inhibition' suggests the significance of PARP activities for survival of cancer cells that harbor defects in DNA repair. Accumulating evidence has revealed that some PARP family molecules are involved in various signaling cascades other than DNA repair, including epigenetic and transcriptional regulations, inflammation/immune response and epithelial-mesenchymal transition, suggesting that poly(ADP-ribosyl)ation both promotes and suppresses carcinogenic processes depending on the conditions. Expanding understanding of poly(ADP-ribosyl)ation suggests that strategies to achieve cancer prevention targeting poly(ADP-ribosyl)ation for genome protection against life-long exposure to environmental carcinogens and endogenous carcinogenic stimuli.

  6. Accurate Quantification of Ionospheric State Based on Comprehensive Radiative Transfer Modeling and Optimal Inversion of the OI 135.6-nm Emission

    NASA Astrophysics Data System (ADS)

    Qin, J.; Kamalabadi, F.; Makela, J. J.; Meier, R. J.

    2015-12-01

    Remote sensing of the nighttime OI 135.6-nm emission represents the primary means of quantifying the F-region ionospheric state from optical measurements. Despite its pervasive use for studying aeronomical processes, the interpretation of these emissions as a proxy for ionospheric state remains ambiguous in that the relative contributions of radiative recombination and mutual neutralization to the production and, especially, the effects of scattering and absorption on the transport of the 135.6-nm emissions have not been fully quantified. Moreover, an inversion algorithm, which is robust to varying ionospheric structures under different geophysical conditions, is yet to be developed for statistically optimal characterization of the ionospheric state. In this work, as part of the NASA ICON mission, we develop a comprehensive radiative transfer model from first principle to investigate the production and transport of the nighttime 135.6-nm emissions. The forward modeling investigation indicates that under certain conditions mutual neutralization can contribute up to ~38% to the 135.6-nm emissions. Moreover, resonant scattering and pure absorption can reduce the brightness observed in the limb direction by ~40% while enhancing the brightness in the nadir direction by ~25%. Further analysis shows that without properly addressing these effects in the inversion process, the peak electron density in the F-region ionosphere (NmF2) can be overestimated by up to ~24%. To address these issues, an inversion algorithm that properly accounts for the above-mentioned effects is proposed for accurate quantification of the ionospheric state using satellite measurements. The ill-posedness due to the intrinsic presence of noise in real data is coped with by incorporating proper regularizations that enforce either global smoothness or piecewise smoothness of the solution. Application to model-generated data with different signal-to-noise ratios show that the algorithm has achieved

  7. Visceral adiposity in gastrointestinal and hepatic carcinogenesis.

    PubMed

    Vongsuvanh, Roslyn; George, Jacob; Qiao, Liang; van der Poorten, David

    2013-03-01

    There is emerging evidence that the association between obesity and cancer is mediated by visceral rather than generalised body fat. Visceral fat has been directly implicated in the risk and progression of several gastrointestinal cancers including colorectal, oesophageal, pancreatic and hepatocellular carcinomas. Excess visceral adipose tissue induces a state of chronic systemic inflammation and altered metabolic activity that promotes a pro-oncogenic environment. This review examines the evidence linking visceral fat in gastrointestinal and hepatic carcinogenesis and explores our current understanding of the mechanisms underlying this relationship. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. A comprehensive molecular phylogeny of the starlings (Aves: Sturnidae) and mockingbirds (Aves: Mimidae): congruent mtDNA and nuclear trees for a cosmopolitan avian radiation.

    PubMed

    Lovette, Irby J; Rubenstein, Dustin R

    2007-09-01

    We generated a comprehensive phylogeny for the avian families Sturnidae (starlings, mynas, Rhabdornis, oxpeckers, and allies) and Mimidae (mockingbirds, thrashers, and allies) to explore patterns of morphological and behavioral diversification. Reconstructions were based on mitochondrial DNA sequences from five coding genes (4108 bp), and nuclear intron sequences from four loci (2974 bp), for most taxa, supplemented with NDII gene sequences (1041 bp) derived from museum skin specimens from additional taxa; together the 117 sampled taxa comprise 78% of the 151 species in these families and include representatives of all currently or recently recognized genera. Phylogenetic analyses consistently identified nine major clades. The basal lineage is comprised of the two Buphagus oxpeckers, which are presently confined to Africa where they are obligately associated with large mammals. Some species in nearly all of the other major clades also feed on or around large vertebrates, and this association may be an ancestral trait that fostered the world-wide dispersal of this group. The remaining taxa divide into sister clades representing the New-World Mimidae and Old-World Sturnidae. The Mimidae are divided into two subclades, a group of Central American and West Indian catbirds and thrashers, and a pan-American clade of mockingbirds and thrashers. The Sturnidae are subdivided into six clades. The Phillipine endemic Rhabdornis are the sister lineage to a larger and substantially more recent radiation of South Asian and Pacific island starlings and mynas. A clade of largely migratory or nomadic Eurasian starlings (within which the basal lineage is the model taxon Sturnus vulgaris) is allied to three groups of largely African species. These reconstructions confirm that Buphagus should not be included in the Sturnidae, and identify many genera that are not monophyletic. They also highlight the substantial diversity among the major Sturnidae subclades in rates of species

  9. An Overview of Ultraviolet B Radiation-Induced Skin Cancer Chemoprevention by Silibinin

    PubMed Central

    Kumar, Rahul; Deep, Gagan; Agarwal, Rajesh

    2015-01-01

    Skin cancer incidences are rising worldwide, and one of the major causative factors is excessive exposure to solar ultraviolet radiation (UVR). Annually, ~5 million skin cancer patients are treated in United States, mostly with nonmelanoma skin cancer (NMSC), which is also frequent in other Western countries. As sunscreens do not provide adequate protection against deleterious effects of UVR, additional and alternative chemoprevention strategies are urgently needed to reduce skin cancer burden. Over the last couple of decades, extensive research has been conducted to understand the molecular basis of skin carcinogenesis, and to identifying novel agents which could be useful in the chemoprevention of skin cancer. In this regard, several natural non-toxic compounds have shown promising efficacy in preventing skin carcinogenesis at initiation, promotion and progression stages, and are considered important in better management of skin cancer. Consistent with this, we and others have studied and established the notable efficacy of natural flavonolignan silibinin against UVB-induced skin carcinogenesis. Extensive pre-clinical animal and cell culture studies report strong anti-inflammatory, anti-oxidant, DNA damage repair, immune-modulatory and anti-proliferative properties of silibinin. Molecular studies have identified that silibinin targets pleotropic signaling pathways including mitogenic, cell cycle, apoptosis, autophagy, p53, NF-κB, etc. Overall, the skin cancer chemopreventive potential of silibinin is well supported by comprehensive mechanistic studies, suggesting its greater use against UV-induced cellular damages and photocarcinogenesis. PMID:26097804

  10. Quantification of nanoscale density fluctuations by electron microscopy: probing cellular alterations in early carcinogenesis

    NASA Astrophysics Data System (ADS)

    Pradhan, Prabhakar; Damania, Dhwanil; Joshi, Hrushikesh M.; Turzhitsky, Vladimir; Subramanian, Hariharan; Roy, Hemant K.; Taflove, Allen; Dravid, Vinayak P.; Backman, Vadim

    2011-04-01

    Most cancers are curable if they are diagnosed and treated at an early stage. Recent studies suggest that nanoarchitectural changes occur within cells during early carcinogenesis and that such changes precede microscopically evident tissue alterations. It follows that the ability to comprehensively interrogate cell nanoarchitecture (e.g., macromolecular complexes, DNA, RNA, proteins and lipid membranes) could be critical to the diagnosis of early carcinogenesis. We present a study of the nanoscale mass-density fluctuations of biological tissues by quantifying their degree of disorder at the nanoscale. Transmission electron microscopy images of human tissues are used to construct corresponding effective disordered optical lattices. The properties of nanoscale disorder are then studied by statistical analysis of the inverse participation ratio (IPR) of the spatially localized eigenfunctions of these optical lattices at the nanoscale. Our results show an increase in the disorder of human colonic epithelial cells in subjects harboring early stages of colon neoplasia. Furthermore, our findings strongly suggest that increased nanoscale disorder correlates with the degree of tumorigenicity. Therefore, the IPR technique provides a practicable tool for the detection of nanoarchitectural alterations in the earliest stages of carcinogenesis. Potential applications of the technique for early cancer screening and detection are also discussed. Originally submitted for the special focus issue on physical oncology.

  11. Colonic perianastomotic carcinogenesis in an experimental model

    PubMed Central

    Pérez-Holanda, Sergio; Rodrigo, Luis; Pinyol-Felis, Carme; Vinyas-Salas, Joan

    2008-01-01

    Background To examine the effect of anastomosis on experimental carcinogenesis in the colon of rats. Methods Forty-three 10-week-old male and female Sprague-Dawley rats were operated on by performing an end-to-side ileorectostomy. Group A:16 rats received no treatment. Group B: 27 rats received 18 subcutaneous injections weekly at a dose of 21 mg/kg wt of 1–2 dimethylhydrazine (DMH), from the eighth day after the intervention. Animals were sacrificed between 25–27 weeks. The number of tumours, their localization, size and microscopic characteristics were recorded. A paired chi-squared analysis was performed comparing tumoral induction in the perianastomotic zone with the rest of colon with faeces. Results No tumours appeared in the dimethylhydrazine-free group. The percentage tumoral area was greater in the perianastomotic zone compared to tumours which had developed in the rest of colon with faeces (p = 0.014). Conclusion We found a cocarcinogenic effect due to the creation of an anastomosis, when using an experimental model of colonic carcinogenesis induced by DMH in rats. PMID:18667092

  12. A proposed model for endometrial serous carcinogenesis.

    PubMed

    Zheng, Wenxin; Xiang, Li; Fadare, Oluwole; Kong, Beihua

    2011-01-01

    Endometrial serous carcinomas constitute no more than 10% of endometrial adenocarcinomas, but frequently present at an advanced stage and have a significantly worse prognosis than the more common low-grade and intermediate-grade endometrioid adenocarcinomas. The neoplasm's potential for rapid tumor progression and the high mortality that is associated with advanced-stage disease underscore the importance of understanding endometrial serous carcinogenesis so that its precancers can be diagnosed and an effective therapeutic intervention can be administered. In this study, the authors summarize the current state of knowledge on endometrial serous carcinogenesis and propose a model for its development based on recent work from our group and published data from other researchers. In this model, endometrial serous carcinoma arises predominantly in the resting endometrium, manifesting first as p53 immunoreactive, morphologically normal endometrial cells (p53 signatures), evolving to endometrial glandular dysplasia (which is the first morphologically identifiable precursor lesion), then to serous endometrial intraepithelial carcinoma (a carcinoma with a noninvasive growth pattern in the uterus but which is not infrequently associated with extrauterine disease), and finally into fully developed serous carcinoma. Endometrial glandular dysplasia is a lesion, which can be diagnosed by routine microscopic evaluation, whose ablation or removal may potentially offer the opportunity to prevent the development of the associated malignancy. The diagnostic criteria, practical applicability, and evidentiary basis for the delineation of this lesion are studied.

  13. Liver is a target of arsenic carcinogenesis.

    PubMed

    Liu, Jie; Waalkes, Michael P

    2008-09-01

    Inorganic arsenic is clearly a human carcinogen causing tumors of the skin, lung, urinary bladder, and possibly liver (IARC, 2004). At the time of construction of this monograph, the evidence for arsenic as a hepatocarcinogen in humans was considered controversial and in rodents considered insufficient. However, recent data has accumulated indicating hepatocarcinogenicity of arsenic. This forum reevaluates epidemiology studies, rodent studies together with in vitro models, and focuses on the liver as a target organ of arsenic toxicity and carcinogenesis. Hepatocellular carcinoma and hepatic angiosarcoma, have been frequently associated with environmental or medicinal exposure to arsenicals. Preneoplastic lesions, including hepatomegaly, hepatoportal sclerosis, fibrosis, and cirrhosis often occur after chronic arsenic exposure. Recent work in mice clearly shows that exposure to inorganic arsenic during gestation induces tumors, including hepatocellular adenoma and carcinoma, in offspring when they reach adulthood. In rats, the methylated arsenicals, dimethylarsinic acid promotes diethylnitrosamine-initiated liver tumors, whereas trimethylarsine oxide induces liver adenomas. Chronic exposure of rat liver epithelial cells to low concentrations of inorganic arsenic induces malignant transformation, producing aggressive, undifferentiated epithelial tumors when inoculated into the Nude mice. There are a variety of potential mechanisms for arsenical-induced hepatocarcinogenesis, such as oxidative DNA damage, impaired DNA damage repair, acquired apoptotic tolerance, hyperproliferation, altered DNA methylation, and aberrant estrogen signaling. Some of these mechanisms may be liver specific/selective. Overall, accumulating evidence clearly indicates that the liver could be an important target of arsenic carcinogenesis.

  14. Carcinogenesis and therapeutics: the microbiota perspective.

    PubMed

    Tsilimigras, Matthew C B; Fodor, Anthony; Jobin, Christian

    2017-02-22

    Cancer arises from the acquisition of multiple genetic and epigenetic changes in host cells over the span of many years, promoting oncogenic traits and carcinogenesis. Most cancers develop following random somatic alterations of key oncogenic genes, which are favoured by a number of risk factors, including lifestyle, diet and inflammation. Importantly, the environment where tumours evolve provides a unique source of signalling cues that affects cancer cell growth, survival, movement and metastasis. Recently, there has been increased interest in how the microbiota, the collection of microorganisms inhabiting the host body surface and cavities, shapes a micro-environment for host cells that can either promote or prevent cancer formation. The microbiota, particularly the intestinal biota, plays a central role in host physiology, and the composition and activity of this consortium of microorganisms is directly influenced by known cancer risk factors such as lifestyle, diet and inflammation. In this REVIEW, we discuss the pro- and anticarcinogenic role of the microbiota, as well as highlighting the therapeutic potential of microorganisms in tumourigenesis. The broad impacts, and, at times, opposing roles of the microbiota in carcinogenesis serve to illustrate the complex and sometimes conflicted relationship between microorganisms and the host-a relationship that could potentially be harnessed for therapeutic benefits.

  15. Aurora kinase A in Barrett's carcinogenesis.

    PubMed

    Rugge, Massimo; Fassan, Matteo; Zaninotto, Giovanni; Pizzi, Marco; Giacomelli, Luciano; Battaglia, Giorgio; Rizzetto, Christian; Parente, Paola; Ancona, Ermanno

    2010-10-01

    In Barrett's mucosa, both aneuploidy and TP53 mutations are consistently recognized as markers of an increased risk of Barrett's adenocarcinoma. Overexpression of the mitotic kinase encoding gene (AURKA) results in chromosome instability (assessed from the micronuclei count) and ultimately in aneuploidy. Eighty-seven esophageal biopsy samples representative of all the phenotypic lesions occurring in the multistep process of Barrett's carcinogenesis (gastric metaplasia in 25, intestinal metaplasia in 25, low-grade intraepithelial neoplasia in 16, high-grade intraepithelial neoplasia in 11, and Barrett's adenocarcinoma in 10) were obtained from long segments of Barrett's mucosa. Twenty-five additional biopsy samples of native esophageal mucosa were used for control purposes. In all tissue samples, the immunohistochemical expression of both AURKA and TP53 gene products was scored; and the micronuclei index was calculated. AURKA immunostaining increased progressively and significantly along with dedifferentiation of the histologic phenotype (P < .001). Nine of 10 Barrett's adenocarcinomas showed AURKA immunostaining. AURKA expression correlated significantly with p53 expression and the micronuclei index (both Ps < .001). AURKA overexpression is significantly associated with Barrett's mucosa progressing to Barrett's adenocarcinoma and contributes to esophageal carcinogenesis via chromosome instability. The identification of AURKA as a novel molecular target of cancer progression in Barrett's mucosa provides a lead for the development of new therapeutic approaches in Barrett's mucosa patients.

  16. Dynamic changes in the gene expression profile during rat oral carcinogenesis induced by 4-nitroquinoline 1-oxide

    PubMed Central

    GE, SHUYUN; ZHANG, JI; DU, YANZHI; HU, BIN; ZHOU, ZENGTONG; LOU, JIANING

    2016-01-01

    The typical progression of oral cancer is from hyperplastic epithelial lesions through dysplasia to invasive carcinoma. It is important to investigate malignant oral cancer progression and development in order to determine useful approaches of prevention of dysplastic lesions. The present study aimed to gain insights into the underlying molecular mechanism of oral carcinogenesis by establishing a rat model of oral carcinogenesis using 4-nitroquino-line 1-oxide. Subsequently, transcription profile analysis using an integrating microarray was performed. The dynamic gene expression changes of the six stages of rat oral carcinogenesis (normal, mild epithelial dysplasia, moderate dysplasia, severe dysplasia, carcinoma in situ and oral squamous cell carcinomas) were analyzed using component plane presentations (CPP)-self-organizing map (SOM). Six genes were verified by quantitative polymerase chain reaction, immunohistochemistry and succinate dehydrogenase (SDH) activity assay kit. Numerous differentially expressed genes (DEGs) were identified during rat oral carcinogenesis. CPP-SOM determined that these DEGs were primarily enriched during cell cycle, apoptosis, inflammatory response and tricarboxylic acid cycle, indicating the coordinated regulation of molecular networks. In addition, the expression of specific DEGs, such as janus kinase 3, cyclin-dependent kinase A-1, B-cell chronic lymphocytic leukaemia/lymphoma 2-like 2, nuclear factor-κB, tumor necrosis factor receptor superfamily member 1A, cyclin D1 and SDH were identified to have high concordance with the results from microarray data. The current study demonstrated that oral carcinogenesis is a multi-step and multi-gene process, with a distinct pattern alteration along a continuum of malignant transformation. In addition, this comprehensive investigation provided a theoretical basis for the understanding of the molecular alterations associated with oral carcinogenesis. PMID:26860129

  17. Acetaldehyde and the genome: beyond nuclear DNA adducts and carcinogenesis.

    PubMed

    Brooks, Philip J; Zakhari, Samir

    2014-03-01

    The designation of acetaldehyde associated with the consumption of alcoholic beverages as "carcinogenic to humans" (Group 1) by the International Agency for Research on Cancer (IARC) has brought renewed attention to the biological effects of acetaldehyde, as the primary oxidative metabolite of alcohol. Therefore, the overall focus of this review is on acetaldehyde and its direct and indirect effects on the nuclear and mitochondrial genome. We first consider different acetaldehyde-DNA adducts, including a critical assessment of the evidence supporting a role for acetaldehyde-DNA adducts in alcohol related carcinogenesis, and consideration of additional data needed to make a conclusion. We also review recent data on the role of the Fanconi anemia DNA repair pathway in protecting against acetaldehyde genotoxicity and carcinogenicity, as well as teratogenicity. We also review evidence from the older literature that acetaldehyde may impact the genome indirectly, via the formation of adducts with proteins that are themselves critically involved in the maintenance of genetic and epigenetic stability. Finally, we note the lack of information regarding acetaldehyde effects on the mitochondrial genome, which is notable since aldehyde dehydrogenase 2 (ALDH2), the primary acetaldehyde metabolic enzyme, is located in the mitochondrion, and roughly 30% of East Asian individuals are deficient in ALDH2 activity due to a genetic variant in the ALDH2 gene. In summary, a comprehensive understanding of all of the mechanisms by which acetaldehyde impacts the function of the genome has implications not only for alcohol and cancer, but types of alcohol related pathologies as well.

  18. THE REACTIVE OXYGEN SPECIES (ROS) THEORY OF ARSENIC CARCINOGENESIS

    EPA Science Inventory

    At this time, there is not a scientific consensus on the mechanisms/modes of action for arsenic carcinogenesis. Proposed mechanisms/modes of action for arsenic carcinogenesis include but are not limited to clastogenic effects, mutation, oxidative stress (via ROS and other chemic...

  19. THE REACTIVE OXYGEN SPECIES (ROS) THEORY OF ARSENIC CARCINOGENESIS

    EPA Science Inventory



    Arsenic is a human carcinogen in skin, lung, liver, urinary bladder
    and kidney. At this time, there is not a scientific consensus on the
    mechanisms/modes of action for arsenic carcinogenesis. Proposed
    mechanisms/modes of action for arsenic carcinogenesi...

  20. THE REACTIVE OXYGEN SPECIES (ROS) THEORY OF ARSENIC CARCINOGENESIS

    EPA Science Inventory



    Arsenic is a human carcinogen in skin, lung, liver, urinary bladder
    and kidney. At this time, there is not a scientific consensus on the
    mechanisms/modes of action for arsenic carcinogenesis. Proposed
    mechanisms/modes of action for arsenic carcinogenesi...

  1. THE REACTIVE OXYGEN SPECIES (ROS) THEORY OF ARSENIC CARCINOGENESIS

    EPA Science Inventory

    At this time, there is not a scientific consensus on the mechanisms/modes of action for arsenic carcinogenesis. Proposed mechanisms/modes of action for arsenic carcinogenesis include but are not limited to clastogenic effects, mutation, oxidative stress (via ROS and other chemic...

  2. Tissue distribution of Thorotrast and role of internal irradiation in carcinogenesis.

    PubMed

    Yamasaki, Kyoko; Yamasaki, Aiichi; Tosaki, Mitsuo; Isozumi, Yasuto; Hiai, Hiroshi

    2004-10-01

    Carcinogenesis in Thorotrastosis has been assumed due to direct bombardment by alpha-particle with high linear energy transfer during decay of 232Th. To revisit the mechanism of carcinogenesis by Thorotrast (THR), we examined the tissue distribution of THR granules and two-dimensional distribution of radioactivity in the organs of Thorotrastosis patients and studied their spatial relationship to histopathological changes. The high radioactivity in the patients' organ was predominantly derived from decay of Thorium series and showed unique distribution, while the far lower natural radioactivity was mainly from Uranium series decay and fairly evenly distributed. It was found that a large majority of THR granules were phagocytized by macrophages and were embedded in extensive fibrosis. Cancer was rarely in the center of THR deposition but rather at a distance from the deposits. These observations may indicate that the predominant feature of THR deposition is the tissue damage by direct hit of alpha-particles and subsequent fibrosis. The effect of THR resembles action of toxic chemical agents, as several authors have pointed out. We therefore assume that carcinogenesis in Thorotrastosis is a combination of events, such as regeneration of liver tissue after radiation damage, emission of secondary electrons, ionization of the surrounding tissue, and beta- or gamma-ray from daughter nuclei of Thorium (Th). In this context, the role of alpha-particle is important but more intriguing.

  3. TLR4-directed Molecular Strategies Targeting Skin Photodamage and Carcinogenesis.

    PubMed

    Dickinson, Sally E; Wondrak, Georg T

    2017-08-28

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photodamage and carcinogenesis, and inflammatory dysregulation is a key mechanism underlying detrimental effects of acute and chronic UV exposure. The health and economic burden of skin cancer treatment is substantial, creating an increasingly urgent need for the development of improved molecular strategies for photoprotection and photochemoprevention. The role of Toll-like receptor 4 (TLR4) as a key regulator of skin anti-microbial defense, wound healing, and cutaneous tumorigenic inflammation has now been recognized, and recently published evidence suggests that TLR4 represents a novel molecular target for skin photoprotection and cancer photochemoprevention. Specifically, it has been shown that pharmacological and genetic antagonism of TLR4 suppresses UV-induced inflammatory signaling involving the attenuation of cutaneous NF-κB and AP-1 stress signaling observable in vitro and in vivo. A number of TLR4-directed small molecule pharmacological antagonists [including eritoran, (+)-naloxone, ST2825, and resatorvid] have now been identified and are at various stages of preclinical and clinical development for the modulation of dysregulated TLR4-dependent inflammatory signaling. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Metal interactions in carcinogenesis: enhancement, inhibition

    PubMed Central

    Nordberg, Gunnar F.; Andersen, Ole

    1981-01-01

    Metals constitute a fundamentally important part of the total human environment. Since human exposure often involves complex mixtures of metal compounds and, possibly, organic compounds which may be carcinogenic per se, interactions between these compounds may add significantly to human cancer risk. Our present knowledge about these kinds of interactions is very limited. The best investigated area is benzo(a)pyrene (BP)-metal oxide particle interactions in respiratory carcinogenesis in the hamster. Metal oxide particles were also shown to modify the carcinogenic effect of nitrosamines. Several reports describe experiments in which selenium compounds exerted a generally anticarcinogenic and antimutagenic activity. Inorganic arsenic compounds, which are accepted to be carcinogenic in man, have so far been negative in animal experiments except for one recent suggested report. Several authors have, however, suggested that these compounds may act as cocarcinogens due to their inhibition of DNA repair, although animal experiments to demonstrate a cocarcinogenic effect of arsenic compounds have been negative so far, except for one preliminary report. The concentration of zinc in the diet seemed to influence both transplanted tumor growth and the carcinogenicity of several organic compounds, and the possibility of a correlation between dietary zinc and certain cancer forms in man has been suggested. Protection against development of Leydigiomas usually induced by cadmium injection was afforded by simultaneous injection of zinc salts. Nickel carcinogenesis has been reported to be antagonized by manganese, and synergism between Ni and organic carcinogens, e.g. BP, has been demonstrated. There is no firm evidence that lead may be a cocarcinogen, although some limited experimental evidence is available. Oxidizing agents have been demonstrated to increase, and reducing agents to antagonize, the mutagenic effect of chromium compounds in vitro. The content of carcinogenic and

  5. [Mechanisms of asbestos-induced carcinogenesis].

    PubMed

    Toyokuni, Shinya; Jiang, Li; Hu, Qian; Nagai, Hirotaka; Okazaki, Yasumasa; Akatsuka, Shinya; Yamashita, Yoriko

    2011-05-01

    Several types of fibrous stone called asbestos have been an unexpected cause of human cancer in the history. This form of mineral is considered precious in that they are heat-, friction-, and acid-resistant, are obtained easily from mines, and can be modified to any form with many industrial merits. However, it became evident that the inspiration of asbestos causes a rare cancer called malignant mesothelioma. Because of the long incubation period, the peak year for malignant mesothelioma is expected to be 2025 in Japan. Thus, it is necessary to elucidate the mechanisms of asbestos-induced mesothelial carcinogenesis. In this review, we summarize the cutting edge results of our 5-year project funded by a MEXT grant, in which local iron deposition and the characteristics of mesothelial cells are the key issues.

  6. Dysregulation of Autophagy Contributes to Anal Carcinogenesis

    PubMed Central

    Carchman, Evie H.; Matkowskyj, Kristina A.; Meske, Louise; Lambert, Paul F.

    2016-01-01

    Introduction Autophagy is an intracellular catabolic process that removes and recycles unnecessary/dysfunctional cellular components, contributing to cellular health and survival. Autophagy is a highly regulated cellular process that responds to several intracellular signals, many of which are deregulated by human papillomavirus (HPV) infection through the expression of HPV-encoded oncoproteins. This adaptive inhibitory response helps prevent viral clearance. A strong correlation remains between HPV infection and the development of squamous cell carcinoma (SCC) of the anus, particularly in HIV positive and other immunosuppressed patients. We hypothesize that autophagy is inhibited by HPV–encoded oncoproteins thereby promoting anal carcinogenesis (Fig 1). Materials and Methods HPV16 transgenic mice (K14E6/E7) and non-transgenic mice (FVB/N), both of which do not spontaneously develop anal tumors, were treated topically with the chemical carcinogen, 7,12-Dimethylbenz[a]anthracene (DMBA), to induce anal cancer. The anuses at different time points of treatment (5, 10, 15 and 20 weeks) were analyzed using immunofluorescence (IF) for two key autophagy marker proteins (LC3β and p62) in addition to histological grading. The anuses from the K14E6/E7 mice were also analyzed for visual evidence of autophagic activity by electron microscopy (EM). To see if there was a correlation to humans, archival anal specimens were assessed histologically for grade of dysplasia and then analyzed for LC3β and p62 protein content. To more directly examine the effect of autophagic inhibition on anal carcinogenesis, nontransgenic mice that do not develop anal cancer with DMBA treatment were treated with a known pharmacologic inhibitor of autophagy, chloroquine, and examined for tumor development and analyzed by IF for autophagic proteins. Results Histologically, we observed the progression of normal anoderm to invasive SCC with DMBA treatment in K14E6/E7 mice but not in nontransgenic

  7. Cadmium and dimethylnitrosamine as synergists in carcinogenesis

    SciTech Connect

    Wade, G.G. Jr.

    1986-01-01

    A two part study was conducted with male Wistar rats to investigate possible synergism in carcinogenesis between Cd and dimethylnitrosamine (DMN). In Series I, rats received an intraperitoneal dose of DMN followed at 4 hours and at 4 days by intramuscular injections of CdCl/sub 2/. Series II rats received a series of intramuscular CdCl/sub 2/ injections over 13 days followed by an intraperitoneal DMN injection 24 hours later. Untreated and single agent controls were incorporated. One year after DMN exposure, both Series show a significant (p < 0.025) synergistic increase in the incidence of renal neoplasia and an additive increase in the incidence of focal atypical hyperplasia (FAH) of renal tubules. Likewise, there was a synergistic increase in the number of altered foci/areas in livers of Series I animals. In addition, Series I rats with combined treatment had a significant increase in tumor incidence at sites other than kidney. Pretreatment with DMN was more synergistic in toxicity than pretreatment with Cd. Series II animals also showed an apparent shift in renal tumor type from mesenchymal and tubular neoplasms to tubular epithelial neoplasms alone. Theories on the origin(s) of malignant transformation are reviewed as is the biologic important of cadmium in the environment and possible mechanisms of synergistic action. This thesis supports (1) the finding of synergism in the occurrence of renal cancer in man associated with cadmium exposure and cigarette smoking, (2) the importance of synergisms in carcinogenesis, (3) the importance of such interaction in the determination of threshold doses, and (4) the role that indirect mechanisms play in carcinogenic activity of cadmium and other heavy metals.

  8. Inflammation, oxidative DNA damage, and carcinogenesis.

    PubMed Central

    Lewis, J G; Adams, D O

    1987-01-01

    Inflammation has long been associated with carcinogenesis, especially in the promotion phase. The mechanism of action of the potent inflammatory agent and skin promoter 12-tetradecanoyl phorbol-13-acetate (TPA) is unknown. It is thought that TPA selectively enhances the growth of initiated cells, and during this process, initiated cells progress to the preneoplastic state and eventually to the malignant phenotype. Many studies support the multistep nature of carcinogenesis, and a significant amount of evidence indicates that more than one genetic event is necessary for neoplastic transformation. Selective growth stimulation of initiated cells by TPA does not explain how further genetic events may occur by chronic exposure to this nongenotoxic agent. We and others have proposed that TPA may work, in part, by inciting inflammation and stimulating inflammatory cells to release powerful oxidants which then induce DNA damage in epidermal cells. Macrophages cocultured with target cells and TPA induce oxidized thymine bases in the target cells. This process is inhibited by both catalase and inhibitors of lipoxygenases, suggesting the involvement of both H2O2 and oxidized lipid products. Furthermore, macrophage populations that release both H2O2 and metabolites of arachidonic acid (AA) are more efficient at inducing oxidative DNA damage in surrounding cells than populations which only release H2O2 or metabolites of AA. In vivo studies demonstrated that SENCAR mice, which are sensitive to promotion by TPA, have a more intense inflammatory reaction in skin than C57LB/6 mice, which are resistant to promotion by TPA. In addition, macrophages from SENCAR mice release more H2O2 and metabolites of AA, and induce more oxidative DNA damage in cocultured cells than macrophages from C57LB/6 mice.(ABSTRACT TRUNCATED AT 250 WORDS) Images FIGURE 8. A FIGURE 8. B PMID:3129286

  9. Awareness of radiation protection and dose levels of imaging procedures among medical students, radiography students, and radiology residents at an academic hospital: Results of a comprehensive survey.

    PubMed

    Faggioni, Lorenzo; Paolicchi, Fabio; Bastiani, Luca; Guido, Davide; Caramella, Davide

    2017-01-01

    To evaluate the awareness of radiation protection issues and the knowledge of dose levels of imaging procedures among medical students, radiology residents, and radiography students at an academic hospital. A total of 159 young doctors and students (including 60 radiology residents, 56 medical students, and 43 radiography students) were issued a questionnaire consisting of 16 multiple choice questions divided into three separated sections (i.e., demographic data, awareness about radiation protection issues, and knowledge about radiation dose levels of common radiological examinations). Medical students claimed to have at least a good knowledge of radiation protection issues more frequently than radiology residents and radiography students (94.4% vs 55% and 35.7%, respectively; P<0.05), with no cases of perceived excellent knowledge among radiography students. However, the actual knowledge of essential radiation protection topics such as regulations, patient and tissue susceptibility to radiation damage, professional radiation risk and dose optimisation, as well as of radiation doses delivered by common radiological procedures was significantly worse among medical students than radiology residents and radiography students (P<0.05). Those latter significantly outperformed radiology residents as to knowledge of radiation protection issues (P<0.01). Overall, less than 50% of survey respondents correctly answered all questions of the survey. Radiology residents, radiography students and medical students have a limited awareness about radiation protection, with a specific gap of knowledge concerning real radiation doses of daily radiological examinations. Both undergraduate and postgraduate teaching needs to be effectively implemented with radiation safety courses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Residual-QSAR. Implications for genotoxic carcinogenesis

    PubMed Central

    2011-01-01

    Introduction Both main types of carcinogenesis, genotoxic and epigenetic, were examined in the context of non-congenericity and similarity, respectively, for the structure of ligand molecules, emphasizing the role of quantitative structure-activity relationship ((Q)SAR) studies in accordance with OECD (Organization for Economic and Cooperation Development) regulations. The main purpose of this report involves electrophilic theory and the need for meaningful physicochemical parameters to describe genotoxicity by a general mechanism. Residual-QSAR Method The double or looping multiple linear correlation was examined by comparing the direct and residual structural information against the observed activity. A self-consistent equation of observed-computed activity was assumed to give maximum correlation efficiency for those situations in which the direct correlations gave non-significant statistical information. Alternatively, it was also suited to describe slow and apparently non-noticeable cancer phenomenology, with special application to non-congeneric molecules involved in genotoxic carcinogenesis. Application and Discussions The QSAR principles were systematically applied to a given pool of molecules with genotoxic activity in rats to elucidate their carcinogenic mechanisms. Once defined, the endpoint associated with ligand-DNA interaction was used to select variables that retained the main Hansch physicochemical parameters of hydrophobicity, polarizability and stericity, computed by the custom PM3 semiempirical quantum method. The trial and test sets of working molecules were established by implementing the normal Gaussian principle of activities that applies when the applicability domain is not restrained to the congeneric compounds, as in the present study. The application of the residual, self-consistent QSAR method and the factor (or average) method yielded results characterized by extremely high and low correlations, respectively, with the latter resembling

  11. Residual-QSAR. Implications for genotoxic carcinogenesis.

    PubMed

    Putz, Mihai V

    2011-06-13

    Both main types of carcinogenesis, genotoxic and epigenetic, were examined in the context of non-congenericity and similarity, respectively, for the structure of ligand molecules, emphasizing the role of quantitative structure-activity relationship ((Q)SAR) studies in accordance with OECD (Organization for Economic and Cooperation Development) regulations. The main purpose of this report involves electrophilic theory and the need for meaningful physicochemical parameters to describe genotoxicity by a general mechanism. RESIDUAL-QSAR METHOD: The double or looping multiple linear correlation was examined by comparing the direct and residual structural information against the observed activity. A self-consistent equation of observed-computed activity was assumed to give maximum correlation efficiency for those situations in which the direct correlations gave non-significant statistical information. Alternatively, it was also suited to describe slow and apparently non-noticeable cancer phenomenology, with special application to non-congeneric molecules involved in genotoxic carcinogenesis. The QSAR principles were systematically applied to a given pool of molecules with genotoxic activity in rats to elucidate their carcinogenic mechanisms. Once defined, the endpoint associated with ligand-DNA interaction was used to select variables that retained the main Hansch physicochemical parameters of hydrophobicity, polarizability and stericity, computed by the custom PM3 semiempirical quantum method. The trial and test sets of working molecules were established by implementing the normal Gaussian principle of activities that applies when the applicability domain is not restrained to the congeneric compounds, as in the present study. The application of the residual, self-consistent QSAR method and the factor (or average) method yielded results characterized by extremely high and low correlations, respectively, with the latter resembling the direct activity to parameter QSARs

  12. Localized fibrous mesothelioma of pleura following external ionizing radiation therapy

    SciTech Connect

    Bilbey, J.H.; Mueller, N.L.M.; Miller, R.R.; Nelems, B.

    1988-12-01

    Carcinogenesis is a well-known complication of radiation exposure. Ionizing radiation also leads to an increased incidence of benign tumors. A 36-year-old woman had a localized fibrous mesothelioma of the pleura and an ipsilateral breast carcinoma 23 years after receiving external radiation therapy for treatment of a chest wall keloid.

  13. Effect of Dendrobium officinale Extraction on Gastric Carcinogenesis in Rats

    PubMed Central

    Liu, Yan; Lan, Xi-Ming; Xu, Guo-Liang; Sun, You-Zhi; Li, Fei

    2016-01-01

    Dendrobium officinale (Tie Pi Shi Hu in Chinese) has been widely used to treat different diseases in China. Anticancer effect is one of the important effects of Dendrobium officinale. However, the molecular mechanism of its anticancer effect remains unclear. In the present study, gastric carcinogenesis in rats was used to evaluate the effect of Dendrobium officinale on cancer, and its pharmacological mechanism was explored. Dendrobium officinale extracts (4.8 and 2.4 g/kg) were orally administered to the rats of the gastric carcinogenesis model. Compared with the cancer model group, the high dose of Dendrobium officinale extracts significantly inhibited the rate of carcinogenesis. Further analysis revealed that Dendrobium officinale extracts could regulate the DNA damage, oxidative stress, and cytokines related with carcinogenesis and induce cell apoptosis in order to prevent gastric cancer. PMID:28119756

  14. Comfrey (Symphytum Officinale. l.) and Experimental Hepatic Carcinogenesis: A Short-term Carcinogenesis Model Study

    PubMed Central

    Gomes, Maria Fernanda Pereira Lavieri; de Oliveira Massoco, Cristina; Xavier, José Guilherme

    2010-01-01

    Comfrey or Symphytum officinale (L.) (Boraginaceae) is a very popular plant used for therapeutic purposes. Since the 1980s, its effects have been studied in long-term carcinogenesis studies, in which Comfrey extract is administered at high doses during several months and the neoplastic hepatic lesions are evaluated. However, the literature on this topic is very poor considering the studies performed under short-term carcinogenesis protocols, such as the ‘resistant hepatocyte model’ (RHM). In these studies, it is possible to observe easily the phenomena related to the early phases of tumor development, since pre-neoplastic lesions (PNLs) rise in about 1–2 months of chemical induction. Herein, the effects of chronic oral treatment of rats with 10% Comfrey ethanolic extract were evaluated in a RHM. Wistar rats were sequentially treated with N-nitrosodiethylamine (ip) and 2-acetilaminofluorene (po), and submitted to hepatectomy to induce carcinogenesis promotion. Macroscopic/microscopic quantitative analysis of PNL was performed. Non-parametric statistical tests (Mann–Whitney and χ2) were used, and the level of significance was set at P ≤ 0.05. Comfrey treatment reduced the number of pre-neoplastic macroscopic lesions up to 1 mm (P ≤ 0.05), the percentage of oval cells (P = 0.0001) and mitotic figures (P = 0.007), as well as the number of Proliferating Cell Nuclear Antigen (PCNA) positive cells (P = 0.0001) and acidophilic pre-neoplastic nodules (P = 0.05). On the other hand, the percentage of cells presenting megalocytosis (P = 0.0001) and vacuolar degeneration (P = 0.0001) was increased. Scores of fibrosis, glycogen stores and the number of nucleolus organizing regions were not altered. The study indicated that oral treatment of rats with 10% Comfrey alcoholic extract reduced cell proliferation in this model. PMID:18955295

  15. Chemical carcinogenesis studies in nonhuman primates

    PubMed Central

    Takayama, Shozo; Thorgeirsson, Unnur P.; Adamson, Richard H.

    2008-01-01

    This review covers chemical carcinogenesis studies in nonhuman primates performed by the National Cancer Institute, USA, to provide hitherto unavailable information on their susceptibility to compounds producing carcinogenic effects in rodents. From autopsy records of 401 breeders and untreated controls, incidences of spontaneous malignant tumors were found to be relatively low in cynomolgus (1.9%) and rhesus monkeys (3.8%), but higher in African green monkeys (8%). Various chemical compounds, and in particular 6 antineoplastic agents, 13 food-related compounds including additives and contaminants, 1 pesticide, 5 N-nitroso compounds, 3 heterocyclic amines, and 7 “classical” rodent carcinogens, were tested during the 34 years period, generally at doses 10∼40 times the estimated human exposure. Results were inconclusive in many cases but unequivocal carcinogenicity was demonstrated for IQ, procarbazine, methylnitrosourea and diethylnitrosamine. Furthermore, negative findings for saccharine and cyclamate were in line with results in other species. Thus susceptibility to carcinogens is at least partly shared by nonhuman primates and rodents. PMID:18941297

  16. Bioassay of metals for carcinogenesis: whole animals.

    PubMed Central

    Furst, A

    1981-01-01

    Metals have been evaluated as potential carcinogens by administering pure elements or compounds by a large variety of routes. These include mixing the agent in the food, dissolving the test compound in the drinking water, or administering the material by gavage. The respiratory tract routes tested include inhalation, intratracheal instillation, the direct injection of particulates into the pleural cavity, or the implantation of hooks by surgical intervention. The parenteral routes used were intravenous injection, intraperitoneal injection, subcutaneous implantation, as well as intrafemoral and intramuscular injection. This latter route is the most commonly used. There are major objections to the subcutaneous implantations route, and data generated from these experiments are difficult to interpret for the foreign body reaction may give rise also to fibrosarcomas. This then is a nonspecific reaction. Exotic routes tested include intrarenal, intratesticular, and intracranial injections. The endpoints of the carcinogenic reactions are, in the main, sarcomas of certain types with fibrosarcomas predominating. Rhabdomyosarcomas are the next most frequent cancer found, and squamous cell carcinoma may account for less than 2% of the cancers reported. Much more research is necessary to clarify the nature of metal carcinogenesis. Dose-response information is almost nonexistent; the divided dose problem has not been studied adequately, and very little information is available on interspecies reactions. More work is needed to help interpret the mechanism of action. PMID:7274189

  17. Carcinogenesis of Pancreatic Adenocarcinoma: Precursor Lesions

    PubMed Central

    Gnoni, Antonio; Licchetta, Antonella; Scarpa, Aldo; Azzariti, Amalia; Brunetti, Anna Elisabetta; Simone, Gianni; Nardulli, Patrizia; Santini, Daniele; Aieta, Michele; Delcuratolo, Sabina; Silvestris, Nicola

    2013-01-01

    Pancreatic adenocarcinoma displays a variety of molecular changes that evolve exponentially with time and lead cancer cells not only to survive, but also to invade the surrounding tissues and metastasise to distant sites. These changes include: genetic alterations in oncogenes and cancer suppressor genes; changes in the cell cycle and pathways leading to apoptosis; and also changes in epithelial to mesenchymal transition. The most common alterations involve the epidermal growth factor receptor (EGFR) gene, the HER2 gene, and the K-ras gene. In particular, the loss of function of tumor-suppressor genes has been documented in this tumor, especially in CDKN2a, p53, DPC4 and BRCA2 genes. However, other molecular events involved in pancreatic adenocarcinoma pathogenesis contribute to its development and maintenance, specifically epigenetic events. In fact, key tumor suppressors that are well established to play a role in pancreatic adenocarcinoma may be altered through hypermethylation, and oncogenes can be upregulated secondary to permissive histone modifications. Indeed, factors involved in tumor invasiveness can be aberrantly expressed through dysregulated microRNAs. This review summarizes current knowledge of pancreatic carcinogenesis from its initiation within a normal cell until the time that it has disseminated to distant organs. In this scenario, highlighting these molecular alterations could provide new clinical tools for early diagnosis and new effective therapies for this malignancy. PMID:24084722

  18. Parasite Infection, Carcinogenesis and Human Malignancy.

    PubMed

    van Tong, Hoang; Brindley, Paul J; Meyer, Christian G; Velavan, Thirumalaisamy P

    2017-02-01

    Cancer may be induced by many environmental and physiological conditions. Infections with viruses, bacteria and parasites have been recognized for years to be associated with human carcinogenicity. Here we review current concepts of carcinogenicity and its associations with parasitic infections. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic while the protozoan Trypanosoma cruzi, the causing agent of Chagas disease, has a dual role in the development of cancer, including both carcinogenic and anticancer properties. Although malaria per se does not appear to be causative in carcinogenesis, it is strongly associated with the occurrence of endemic Burkitt lymphoma in areas holoendemic for malaria. The initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by the Epstein-Barr virus. Observations suggest that Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas. This review provides an overview of the mechanisms of parasitic infection-induced carcinogenicity. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Exocrine Pancreatic Carcinogenesis and Autotaxin Expression

    PubMed Central

    Kadekar, Sandeep; Silins, Ilona; Korhonen, Anna; Dreij, Kristian; Al-Anati, Lauy; Högberg, Johan; Stenius, Ulla

    2012-01-01

    Exocrine pancreatic cancer is an aggressive disease with an exceptionally high mortality rate. Genetic analysis suggests a causative role for environmental factors, but consistent epidemiological support is scarce and no biomarkers for monitoring the effects of chemical pancreatic carcinogens are available. With the objective to identify common traits for chemicals inducing pancreatic tumors we studied the National Toxicology Program (NTP) bioassay database. We found that male rats were affected more often than female rats and identified eight chemicals that induced exocrine pancreatic tumors in males only. For a hypothesis generating process we used a text mining tool to analyse published literature for suggested mode of actions (MOA). The resulting MOA analysis suggested inflammatory responses as common feature. In cell studies we found that all the chemicals increased protein levels of the inflammatory protein autotaxin (ATX) in Panc-1, MIA PaCa-2 or Capan-2 cells. Induction of MMP-9 and increased invasive migration were also frequent effects, consistent with ATX activation. Testosterone has previously been implicated in pancreatic carcinogenesis and we found that it increased ATX levels. Our data show that ATX is a target for chemicals inducing pancreatic tumors in rats. Several lines of evidence implicate ATX and its product lysophosphatidic acid in human pancreatic cancer. Mechanisms of action may include stimulated invasive growth and metastasis. ATX may interact with hormones or onco- or suppressor-genes often deregulated in exocrine pancreatic cancer. Our data suggest that ATX is a target for chemicals promoting pancreatic tumor development. PMID:22952646

  20. An Evaluation of Transplacental Carcinogenesis for Human ...

    EPA Pesticide Factsheets

    Risk assessments take into account the sensitivity of the postnatal period to carcinogens through the application of age-dependent adjustment factors (ADAFs) (Barton et al. 2005). The prenatal period is also recognized to be sensitive but is typically not included into risk assessments (NRC, 2009). An analysis by California OEHHA (2008) contrasted prenatal, postnatal and adult sensitivity to 23 different carcinogens across 37 studies. That analysis found a wide range of transplacental sensitivity with some agents nearly 100 fold more potent in utero than in adults while others had an in utero/adult ratio adult only exposure). Five carcinogens had more modest ratios to adult potency in both pre- and postnatal testing (vinyl chloride, ethylnitroso biuret, 3-methylcholanthrene, urethane, diethylnitrosamine, 3-10 fold). Only one chemical showed a pre- vs postnatal divergence (butylnitrosourea, prenataladult). Based upon this limited set of genotoxic carcinogens, it appears that the prenatal period often has a sensitivity that approximates what has been found for postnatal, and the maternal system does not offer substantial protection against transplacental carcinogenesis in most cases. This suggests that the system of ADAFs developed for postnatal exposure may be considered for prenatal exposures as well. An alternative approach may be to calculate cancer risk for the period of pregnancy rather than blend this risk into the calculation of lifetime risk. This

  1. [Molecular genetics of colorectal cancer and carcinogenesis].

    PubMed

    Panduro Cerda, A; Lima González, G; Villalobos, J J

    1993-01-01

    Genetic and environmental aspects play an important role in the development of colorectal cancer. However, the common molecular alteration in both hereditary and sporadic colon cancer is localized in the APC gene. the APC gene maps in the long arm of chromosome 5 and was discovered in patients with familial adenomatous polyposis (FAP). The search for the APC gene led to the identification of restriction fragment length polymorphisms (RFLPs) in FAP patients. Using these RFLPs in relatives of FAP patients it is possible to make the presymptomatic and prenatal diagnosis. The FAP syndrome is an interesting model of carcinogenesis in vivo. Thus the different stages involved in the FAP syndrome which include hyperproliferative epithelium, adenoma, adenocarcinoma and metastases, have allowed the analysis of molecular alterations in oncogenes and tumor suppressor genes. The APC gene alteration if not inherited, occurs as the earliest molecular alteration in the development of colorectal cancer whereas structural alterations of the genes myc, ras, p53, MCC and DCC are considered to be late events. All these investigations have lead to 1) a better understanding of the ethiology of cancer and 2) early diagnosis of colorectal cancer in both the hereditary and sporadic forms of the disease.

  2. Role of human papillomaviruses in carcinogenesis

    PubMed Central

    Ghittoni, Raffaella; Accardi, Rosita; Chiocca, Susanna; Tommasino, Massimo

    2015-01-01

    The human papillomavirus (HPV) family comprises more than 170 different types that preferentially infect the mucosa of the genitals, upper-respiratory tract, or the skin. The ‘high-risk HPV type’, a sub-group of mucosal HPVs, is the cause of approximately 5% of all human cancers, which corresponds to one-third of all virus-induced tumours. Within the high-risk group, HPV16 is the most oncogenic type, being responsible for approximatively 50% of all worldwide cervical cancers. Many studies suggest that, in addition to the high-risk mucosal HPV types, certain cutaneous HPVs also have a role in the development of non-melanoma skin cancer (NMSC). Functional studies on the HPV early gene products showed that E6 and E7 play a key role in carcinogenesis. These two proteins use multiple mechanisms to evade host immune surveillance, allowing viral persistence, and to deregulate cell cycle and apoptosis control, thus facilitating the accumulation of DNA damage and ultimately cellular transformation. The demonstration that high-risk HPV types are the etiological agents of cervical cancer allowed the implementation in the clinical routine of novel screening strategies for cervical lesions, as well as the development of a very efficient prophylactic vaccine. Because of these remarkable achievements, there is no doubt that in the coming decades we will witness a dramatic reduction of cervical cancer incidence worldwide. PMID:25987895

  3. Somatic Host Cell Alterations in HPV Carcinogenesis

    PubMed Central

    Litwin, Tamara R.; Clarke, Megan A.; Dean, Michael; Wentzensen, Nicolas

    2017-01-01

    High-risk human papilloma virus (HPV) infections cause cancers in different organ sites, most commonly cervical and head and neck cancers. While carcinogenesis is initiated by two viral oncoproteins, E6 and E7, increasing evidence shows the importance of specific somatic events in host cells for malignant transformation. HPV-driven cancers share characteristic somatic changes, including apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC)-driven mutations and genomic instability leading to copy number variations and large chromosomal rearrangements. HPV-associated cancers have recurrent somatic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) and phosphatase and tensin homolog (PTEN), human leukocyte antigen A and B (HLA-A and HLA-B)-A/B, and the transforming growth factor beta (TGFβ) pathway, and rarely have mutations in the tumor protein p53 (TP53) and RB transcriptional corepressor 1 (RB1) tumor suppressor genes. There are some variations by tumor site, such as NOTCH1 mutations which are primarily found in head and neck cancers. Understanding the somatic events following HPV infection and persistence can aid the development of early detection biomarkers, particularly when mutations in precancers are characterized. Somatic mutations may also influence prognosis and treatment decisions. PMID:28771191

  4. Tumor promoters and cocarcinogens in tobacco carcinogenesis.

    PubMed Central

    Hoffmann, D; Hecht, S S; Wynder, E L

    1983-01-01

    Cigarette smoke induces carcinoma of the larynx in Syrian golden hamsters and is active as a tumor promoter in hamsters pretreated with a low dose of a PAH, nitrosamine, or nitrosamide. These tumorigenic effects are only observed with total smoke, but not with the gas phase alone. This demonstrates that the tumorigenic agents reside primarily in the particulate phase. According to fractionation experiments, a number of four- and five-ring aromatic hydrocarbons serve as the major tumor initiators in tobacco smoke. Tumor promoters reside primarily in weakly polaric neutral subfractions and in the weakly acidic portion of the particulate matter and include certain unsaturated hydrocarbons and phenolic compounds. Cocarcinogenic activity is a characteristic feature of tobacco smoke and its particulates. Among the cocarcinogens formed during combustion are catechols and certain nontumorigenic aromatic hydrocarbons and terpenes. Nicotine may also serve as a cocarcinogen as is indicated by preliminary data. The action of tumor promoters and cocarcinogens in tobacco carcinogenesis, the precursors for tobacco smoke promoters and cocarcinogens, and methods for their reduction in smoke are discussed. Images FIGURE 2. FIGURE 5. PMID:6409604

  5. Role of RUNX2 in Breast Carcinogenesis

    PubMed Central

    Wysokinski, Daniel; Blasiak, Janusz; Pawlowska, Elzbieta

    2015-01-01

    RUNX2 is a transcription factor playing the major role in osteogenesis, but it can be involved in DNA damage response, which is crucial for cancer transformation. RUNX2 can interact with cell cycle regulators: cyclin-dependent kinases, pRB and p21Cip1 proteins, as well as the master regulator of the cell cycle, the p53 tumor suppressor. RUNX2 is involved in many signaling pathways, including those important for estrogen signaling, which, in turn, are significant for breast carcinogenesis. RUNX2 can promote breast cancer development through Wnt and Tgfβ signaling pathways, especially in estrogen receptor (ER)-negative cases. ERα interacts directly with RUNX2 and regulates its activity. Moreover, the ERα gene has a RUNX2 binding site within its promoter. RUNX2 stimulates the expression of aromatase, an estrogen producing enzyme, increasing the level of estrogens, which in turn stimulate cell proliferation and replication errors, which can be turned into carcinogenic mutations. Exploring the role of RUNX2 in the pathogenesis of breast cancer can lead to revealing new therapeutic targets. PMID:26404249

  6. Heavy Ion Carcinogenesis and Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Durante, Marco

    2008-01-01

    Prior to the human exploration of Mars or long duration stays on the Earth s moon, the risk of cancer and other diseases from space radiation must be accurately estimated and mitigated. Space radiation, comprised of energetic protons and heavy nuclei, has been show to produce distinct biological damage compared to radiation on Earth, leading to large uncertainties in the projection of cancer and other health risks, while obscuring evaluation of the effectiveness of possible countermeasures. Here, we describe how research in cancer radiobiology can support human missions to Mars and other planets.

  7. Heavy ion carcinogenesis and human space exploration.

    PubMed

    Durante, Marco; Cucinotta, Francis A

    2008-06-01

    Before the human exploration of Mars or long-duration missions on the Earth's moon, the risk of cancer and other diseases from space radiation must be accurately estimated and mitigated. Space radiation, comprised of energetic protons and heavy nuclei, has been shown to produce distinct biological damage compared with radiation on Earth, leading to large uncertainties in the projection of cancer and other health risks, and obscuring evaluation of the effectiveness of possible countermeasures. Here, we describe how research in cancer radiobiology can support human missions to Mars and other planets.

  8. Radionuclides in cigarettes may lead to carcinogenesis via p16(INK4a) inactivation.

    PubMed

    Prueitt, Robyn L; Goodman, Julie E; Valberg, Peter A

    2009-02-01

    It is widely accepted that tobacco smoke is responsible for the vast majority of lung cancers worldwide. There are many known and suspected carcinogens present in cigarette smoke, including alpha-emitting radioisotopes. Epidemiologic studies have shown that increased lung cancer risk is associated with exposure to ionizing radiation, and it is estimated that the majority of smoking-induced lung cancers may be at least partly attributable to the inhaled and deposited radiation dose from radioisotopes in the cigarette smoke itself. Recent research shows that silencing of the tumor suppressor gene p16(INK4a) (p16) by promoter methylation plays a role in smoking-related lung cancer. Inactivation of p16 has also been associated with lung cancer incidence in radiation-exposed workers, suggesting that radionuclides in cigarette smoke may be acting with other compounds to cause smoking-induced lung cancer. We evaluated the mechanism of ionizing radiation as an accepted cause of lung cancer in terms of its dose from tobacco smoke and silencing of p16. Because both radiation and cigarette smoking are associated with inactivation of p16, and p16 inactivation has been shown to play a major role in carcinogenesis, ionizing radiation from cigarette smoke likely plays a role in lung cancer risk. How large a role it plays, relative to chemical carcinogens and other modes of action, remains to be elucidated.

  9. Pulmonary carcinogenesis from plutonium-containing particles

    SciTech Connect

    Thomas, R.G.; Smith, D.M.; Anderson, E.C.

    1980-01-01

    Plutonium administered as an alpha radiation source to the respiratory tracts of Syrian hamsters has resulted in various incidences of neoplasia. Adenomas are the primary lung tumor observed, but adenocarcinomas are also prevalent.

  10. A comprehensive evaluation of different radiation models in a gas turbine combustor under conditions of oxy-fuel combustion with dry recycle

    NASA Astrophysics Data System (ADS)

    Kez, V.; Liu, F.; Consalvi, J. L.; Ströhle, J.; Epple, B.

    2016-03-01

    The oxy-fuel combustion is a promising CO2 capture technology from combustion systems. This process is characterized by much higher CO2 concentrations in the combustion system compared to that of the conventional air-fuel combustion. To accurately predict the enhanced thermal radiation in oxy-fuel combustion, it is essential to take into account the non-gray nature of gas radiation. In this study, radiation heat transfer in a 3D model gas turbine combustor under two test cases at 20 atm total pressure was calculated by various non-gray gas radiation models, including the statistical narrow-band (SNB) model, the statistical narrow-band correlated-k (SNBCK) model, the wide-band correlated-k (WBCK) model, the full spectrum correlated-k (FSCK) model, and several weighted sum of gray gases (WSGG) models. Calculations of SNB, SNBCK, and FSCK were conducted using the updated EM2C SNB model parameters. Results of the SNB model are considered as the benchmark solution to evaluate the accuracy of the other models considered. Results of SNBCK and FSCK are in good agreement with the benchmark solution. The WBCK model is less accurate than SNBCK or FSCK. Considering the three formulations of the WBCK model, the multiple gases formulation is the best choice regarding the accuracy and computational cost. The WSGG model with the parameters of Bordbar et al. (2014) [20] is the most accurate of the three investigated WSGG models. Use of the gray WSSG formulation leads to significant deviations from the benchmark data and should not be applied to predict radiation heat transfer in oxy-fuel combustion systems. A best practice to incorporate the state-of-the-art gas radiation models for high accuracy of radiation heat transfer calculations at minimal increase in computational cost in CFD simulation of oxy-fuel combustion systems for pressure path lengths up to about 10 bar m is suggested.

  11. Mucosal microbiome dysbiosis in gastric carcinogenesis.

    PubMed

    Coker, Olabisi Oluwabukola; Dai, Zhenwei; Nie, Yongzhan; Zhao, Guijun; Cao, Lei; Nakatsu, Geicho; Wu, William Kk; Wong, Sunny Hei; Chen, Zigui; Sung, Joseph J Y; Yu, Jun

    2017-08-01

    We aimed to characterise the microbial changes associated with histological stages of gastric tumourigenesis. We performed 16S rRNA gene analysis of gastric mucosal samples from 81 cases including superficial gastritis (SG), atrophic gastritis (AG), intestinal metaplasia (IM) and gastric cancer (GC) from Xi'an, China, to determine mucosal microbiome dysbiosis across stages of GC. We validated the results in mucosal samples of 126 cases from Inner Mongolia, China. We observed significant mucosa microbial dysbiosis in IM and GC subjects, with significant enrichment of 21 and depletion of 10 bacterial taxa in GC compared with SG (q<0.05). Microbial network analysis showed increasing correlation strengths among them with disease progression (p<0.001). Five GC-enriched bacterial taxa whose species identifications correspond to Peptostreptococcus stomatis, Streptococcus anginosus, Parvimonas micra, Slackia exigua and Dialister pneumosintes had significant centralities in the GC ecological network (p<0.05) and classified GC from SG with an area under the receiver-operating curve (AUC) of 0.82. Moreover, stronger interactions among gastric microbes were observed in Helicobacter pylori-negative samples compared with H. pylori-positive samples in SG and IM. The fold changes of selected bacteria, and strengths of their interactions were successfully validated in the Inner Mongolian cohort, in which the five bacterial markers distinguished GC from SG with an AUC of 0.81. In addition to microbial compositional changes, we identified differences in bacterial interactions across stages of gastric carcinogenesis. The significant enrichments and network centralities suggest potentially important roles of P. stomatis, D. pneumosintes, S. exigua, P. micra and S. anginosus in GC progression. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Magnesium: its role in nutrition and carcinogenesis.

    PubMed

    Blaszczyk, Urszula; Duda-Chodak, Aleksandra

    2013-01-01

    Magnesium (Mg2+) plays a key role in many essential cellular processes such as intermediary metabolism, DNA replication and repair, transporting potassium and calcium ions, cell proliferation together with signalling transduction. Dietary sources rich in magnesium are whole and unrefined grains, seeds, cocoa, nuts, almonds and green leafy vegetables. Hard water is also considered to be an important source of magnesium beneficial to human health. The daily dietary intake of magnesium is however frequently found to be below that recommended in Western countries. Indeed, it is recognised that magnesium deficiency may lead to many disorders of the human body, where for instance magnesium depletion is believed to play an important role in the aetiology of the following; cardiovascular disease (including thrombosis, atherosclerosis, ishaemic heart disease, myocardial infarction, hypertension, arrhythmias and congestive heart failure in human), as well as diabetes mellitus, gastrointestinal (GI) tract disease, liver cirrhosis and diseases of the thyroid and parathyroid glands. Insufficient dietary intake of magnesium may also significantly affect the development and exacerbation ofADHD (Attention Deficit- Hyperactivity Disorder) symptoms in children. The known links between magnesium and carcinogenesis still remain unclear and complex, with conflicting results being reported from many experimental, epidemiological and clinical studies; further knowledge is thus required. Mg2+ ions are enzyme cofactors involved in DNA repair mechanisms that maintain genomic stability and fidelity. Any magnesium deficiencies could thereby cause a dysfunction of these systems to occur leading to DNA mutations. Magnesium deficiency may also be associated with inflammation and increased levels of free radicals where both inflammatory mediators and free radicals so arising could cause oxidative DNA damage and therefore tumour formation. The presented review article now provides a summary

  13. Inflammation, oxidative DNA damage, and carcinogenesis

    SciTech Connect

    Lewis, J.G.; Adams, D.O.

    1987-12-01

    Inflammation has long been associated with carcinogenesis, especially in the promotion phase. The mechanism of action of the potent inflammatory agent and skin promoter 12-tetradecanoyl phorbol-13-acetate (TPA) is unknown. It is though that TPA selectively enhances the growth of initiated cells, and during this process, initiated cells progress to the preneoplastic state and eventually to the malignant phenotype. The authors and others have proposed that TPA may work, in part, by inciting inflammation and stimulating inflammatory cells to release powerful oxidants which then induce DNA damage in epidermal cells. Macrophages cocultured with target cells and TPA induce oxidized thymine bases in the target cells. This process is inhibited by both catalase and inhibitors of lipoxygenases, suggesting the involvement of both H/sub 2/O/sub 2/ and oxidized lipid products. In vivo studies demonstrated that SENCAR mice, which are sensitive to promotion by TPA, have a more intense inflammatory reaction in skin that C57LB/6 mice, which are resistant to promotion by TPA. In addition, macrophages from SENCAR mice release more H/sub 2/O/sub 2/ and metabolites of AA, and induce more oxidative DNA damage in cocultured cells than macrophages from C57LB/6 mice. These data support the hypothesis that inflammation and the release of genotoxic oxidants may be one mechanism whereby initiated cells receive further genetic insults. They also further complicate risk assessment by suggesting that some environmental agents may work indirectly by subverting host systems to induce damage rather than maintaining homeostasis.

  14. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    SciTech Connect

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-06-27

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C {r_arrow} A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C {r_arrow} T, two C {r_arrow} A, one C {r_arrow} G, and one A {r_arrow} T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab.

  15. Ionizing radiation

    USDA-ARS?s Scientific Manuscript database

    This chapter gives a comprehensive review on ionizing irradiation of fresh fruits and vegetables. Topics include principles of ionizing radiation, its effects on pathogenic and spoilage microorganisms, shelf-life, sensory quality, nutritional and phytochemical composition, as well as physiologic and...

  16. Intercellular communication and human prostate carcinogenesis.

    PubMed

    Carruba, Giuseppe; Stefano, Rosalba; Cocciadiferro, Letizia; Saladino, Francesca; Di Cristina, Antonietta; Tokar, Erik; Quader, Salmann T A; Webber, Mukta M; Castagnetta, Luigi

    2002-06-01

    Gap-junction-mediated intercellular communication (GJIC) is required for completion of embryonic development, tissue homeostasis, and regulation of cell proliferation and death. Although, as emphasized in several reports, defects or disruption of GJIC may be important in carcinogenesis, the potential role of GJIC in the onset and progression of human prostate cancer remains ill-defined. The gap junction channel-forming connexins (Cx) comprise a multigene family of highly conserved proteins that are differentially expressed in a tissue- and development-specific manner; changes in connexin expression are also commonly seen during cellular differentiation. However, when multiple connexins are concurrently expressed, gap junction channels may consist of more than one connexin species. This is important, because only certain pairings give rise to functional channels. In our studies, we investigated GJIC in a panel of both nontumorigenic (RWPE-1) and malignant (RWPE-2, LNCaP, DU-145) human prostate epithelial cells, compared to a normal rat liver epithelial F344 (WB-1) cell line, as it was found to be junctionally proficient. In addition, expression and regulation of Cx43 and Cx32 were also inspected using western blot analysis. The ability of hormones, antihormones, and the antihypertensive drug forskolin to restore GJIC in nontumorigenic and malignant human prostate epithelial cells was examined by the scrape-loading/dye transfer (SL/DT) or fluorescence recovery after photobleaching (FRAP) methods using an Ultima laser cytometer. Results from both assays showed that neither nontumorigenic nor malignant prostate cells have functional GJIC. However, both estrone (E1) and forskolin (FK) induced a significant increase (4.4- and 2.8-fold, respectively) in cell-cell communication only in the RWPE-1 cells. Interestingly, the use of Matrigel, a solubilized basement membrane, as substrate for cell attachment and growth resulted in the rescue of GJIC activity in RWPE-1 cells, as

  17. Age-Related Differences in Susceptibility to Carcinogenesis: A Quantitative Analysis of Empirical Animal Bioassay Data

    PubMed Central

    Hattis, Dale; Goble, Robert; Russ, Abel; Chu, Margaret; Ericson, Jen

    2004-01-01

    In revising cancer risk assessment guidelines, the U.S. Environmental Protection Agency (EPA) analyzed animal cancer bioassay data over different periods of life. In this article, we report an improved analysis of these data (supplemented with some chemical carcinogenesis observations not included in the U.S. EPA’s original analysis) and animal bioassay studies of ionizing radiation. We use likelihood methods to avoid excluding cases where no tumors were observed in specific groups. We express dosage for animals of different weights on a metabolically consistent basis (concentration in air or food, or per unit body weight to the three-quarters power). Finally, we use a system of dummy variables to represent exposures during fetal, preweaning, and weaning–60-day postnatal periods, yielding separate estimates of relative sensitivity per day of dosing in these intervals. Central estimate results indicate a 5- to 60-fold increased carcinogenic sensitivity in the birth–weaning period per dose ÷ (body weight0.75-day) for mutagenic carcinogens and a somewhat smaller increase—centered about 5-fold—for radiation carcinogenesis per gray. Effects were greater in males than in females. We found a similar increased sensitivity in the fetal period for direct-acting nitrosoureas, but no such increased fetal sensitivity was detected for carcinogens requiring metabolic activation. For the birth–weaning period, we found an increased sensitivity for direct administration to the pups similar to that found for indirect exposure via lactation. Radiation experiments indicated that carcinogenic sensitivity is not constant through the “adult” period, but the dosage delivered in 12- to 21-month-old animals appears a few-fold less effective than the comparable dosage delivered in young adults (90–105 days of age). PMID:15289159

  18. Mobile Technology and Social Media in the Clinical Practice of Young Radiation Oncologists: Results of a Comprehensive Nationwide Cross-sectional Study

    SciTech Connect

    Bibault, Jean-Emmanuel; Leroy, Thomas; Blanchard, Pierre; Biau, Julian; Cervellera, Mathilde; Diaz, Olivia; Faivre, Jean Christophe; and others

    2014-09-01

    Purpose: Social media and mobile technology are transforming the way in which young physicians are learning and practicing medicine. The true impact of such technologies has yet to be evaluated. Methods and Materials: We performed a nationwide cross-sectional survey to better assess how young radiation oncologists used these technologies. An online survey was sent out between April 24, 2013, and June 1, 2013. All residents attending the 2013 radiation oncology French summer course were invited to complete the survey. Logistic regressions were performed to assess predictors of use of these tools in the hospital on various clinical endpoints. Results: In all, 131 of 140 (93.6%) French young radiation oncologists answered the survey. Of these individuals, 93% owned a smartphone and 32.8% owned a tablet. The majority (78.6%) of the residents owning a smartphone used it to work in their department. A total of 33.5% had more than 5 medical applications installed. Only 60.3% of the residents verified the validity of the apps that they used. In all, 82.9% of the residents had a social network account. Conclusions: Most of the residents in radiation oncology use their smartphone to work in their department for a wide variety of tasks. However, the residents do not consistently check the validity of the apps that they use. Residents also use social networks, with only a limited impact on their relationship with their patients. Overall, this study highlights the irruption and the risks of new technologies in the clinical practice and raises the question of a possible regulation of their use in the hospital.

  19. Mobile technology and social media in the clinical practice of young radiation oncologists: results of a comprehensive nationwide cross-sectional study.

    PubMed

    Bibault, Jean-Emmanuel; Leroy, Thomas; Blanchard, Pierre; Biau, Julian; Cervellera, Mathilde; Diaz, Olivia; Faivre, Jean Christophe; Fumagalli, Ingrid; Lescut, Nicolas; Martin, Valentine; Pichon, Baptiste; Riou, Olivier; Thureau, Sébastien; Giraud, Philippe

    2014-09-01

    Social media and mobile technology are transforming the way in which young physicians are learning and practicing medicine. The true impact of such technologies has yet to be evaluated. We performed a nationwide cross-sectional survey to better assess how young radiation oncologists used these technologies. An online survey was sent out between April 24, 2013, and June 1, 2013. All residents attending the 2013 radiation oncology French summer course were invited to complete the survey. Logistic regressions were performed to assess predictors of use of these tools in the hospital on various clinical endpoints. In all, 131 of 140 (93.6%) French young radiation oncologists answered the survey. Of these individuals, 93% owned a smartphone and 32.8% owned a tablet. The majority (78.6%) of the residents owning a smartphone used it to work in their department. A total of 33.5% had more than 5 medical applications installed. Only 60.3% of the residents verified the validity of the apps that they used. In all, 82.9% of the residents had a social network account. Most of the residents in radiation oncology use their smartphone to work in their department for a wide variety of tasks. However, the residents do not consistently check the validity of the apps that they use. Residents also use social networks, with only a limited impact on their relationship with their patients. Overall, this study highlights the irruption and the risks of new technologies in the clinical practice and raises the question of a possible regulation of their use in the hospital. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Simulation of stratospheric aerosol and its radiative forcing with the comprehensive chemistry - climate model EMAC based on satellite and aircraft observations

    NASA Astrophysics Data System (ADS)

    Schallock, Jennifer; Brühl, Christoph; Lelieveld, Jos; Borrmann, Stephan; Bingen, Christine; Höpfner, Michael

    2017-04-01

    Volcanic eruptions contribute strongly to the radiative effects on climate by stratospheric aerosols. We have used satellite data, including anomalies in SO2 concentrations and optical extinction, to analyze sulfate in the lower stratosphere. We present results of transient simulations for the period 2002 to 2012, using the chemistry-climate model EMAC in different configurations with interactive tropospheric and stratospheric aerosol processes. We show that the volcanic emissions are essential to reproduce observed stratospheric aerosol optical depth and compute the radiative forcing of climate. Analyzing newly available 3D-datasets of the MIPAS and GOMOS instruments on ENVISAT, with reduced data gaps, increased the number of identified volcanic eruptions to about 230 events. This includes strong volcanic eruptions injecting directly into the stratosphere and medium and small volcanic eruptions reaching the stratosphere through transport from the upper troposphere. This update improves the EMAC-simulated global radiative forcing by stratospheric aerosol and aerosol optical depth. The availability of in situ aircraft measurements in the UTLS region by M55-Geophysica from the StratoClim project providing information on sulfate and silicate fraction and also size distribution appears to be very important to define the optimal model configuration.

  1. Experimental, statistical, and biological models of radon carcinogenesis

    SciTech Connect

    Cross, F.T.

    1991-09-01

    Risk models developed for underground miners have not been consistently validated in studies of populations exposed to indoor radon. Imprecision in risk estimates results principally from differences between exposures in mines as compared to domestic environments and from uncertainties about the interaction between cigarette-smoking and exposure to radon decay products. Uncertainties in extrapolating miner data to domestic exposures can be reduced by means of a broad-based health effects research program that addresses the interrelated issues of exposure, respiratory tract dose, carcinogenesis (molecular/cellular and animal studies, plus developing biological and statistical models), and the relationship of radon to smoking and other copollutant exposures. This article reviews experimental animal data on radon carcinogenesis observed primarily in rats at Pacific Northwest Laboratory. Recent experimental and mechanistic carcinogenesis models of exposures to radon, uranium ore dust, and cigarette smoke are presented with statistical analyses of animal data. 20 refs., 1 fig.

  2. The transformation of the nuclear nanoarchitecture in human field carcinogenesis

    PubMed Central

    Bauer, Greta M; Stypula-Cyrus, Yolanda; Subramanian, Hariharan; Cherkezyan, Lusik; Viswanathan, Parvathi; Zhang, Di; Iyengar, Radha; Bagalkar, Saurabh; Derbas, Justin; Graff, Taylor; Gladstein, Scott; Almassalha, Luay M; Chandler, John E; Roy, Hemant K; Backman, Vadim

    2017-01-01

    Morphological alterations of the nuclear texture are a hallmark of carcinogenesis. At later stages of disease, these changes are well characterized and detectable by light microscopy. Evidence suggests that similar albeit nanoscopic alterations develop at the predysplastic stages of carcinogenesis. Using the novel optical technique partial wave spectroscopic microscopy, we identified profound changes in the nanoscale chromatin topology in microscopically normal tissue as a common event in the field carcinogenesis of many cancers. In particular, higher-order chromatin structure at supranucleosomal length scales (20–200 nm) becomes exceedingly heterogeneous, a measure we quantify using the disorder strength (Ld) of the spatial arrangement of chromatin density. Here, we review partial wave spectroscopic nanocytology clinical studies and the technology's promise as an early cancer screening technology. PMID:28884003

  3. Colorectal Carcinogenesis: Role of Oxidative Stress and Antioxidants.

    PubMed

    Carini, Francesco; Mazzola, Margherita; Rappa, Francesca; Jurjus, Abdo; Geagea, Alice Gerges; Al Kattar, Sahar; Bou-Assi, Tarek; Jurjus, Rosalyn; Damiani, Provvidenza; Leone, Angelo; Tomasello, Giovanni

    2017-09-01

    One of the contributory causes of colon cancer is the negative effect of reactive oxygen species on DNA repair mechanisms. Currently, there is a growing support for the concept that oxidative stress may be an important etiological factor for carcinogenesis. The purpose of this review is to elucidate the role of oxidative stress in promoting colorectal carcinogenesis and to highlight the potential protective role of antioxidants. Several studies have documented the importance of antioxidants in countering oxidative stress and preventing colorectal carcinogenesis. However, there are conflicting data in the literature concerning its proper use in humans, since these studies did not yield definitive results and were performed mostly in vitro on cell populations, or in vivo in experimental animal models. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. Comprehensive Care

    MedlinePlus

    Emergency & Disaster Resources If you or a loved one have been affected—or may be affected—by a hurricane, ... our comprehensive information and resources on emergency and disaster planning . We can also connect you to emergency ...

  5. Photochemical genotoxicity and photochemical carcinogenesis--two sides of a coin?

    PubMed

    Müller, L; Kasper, P; Kersten, B; Zhang, J

    1998-12-28

    The direct tumorigenic effects of ultraviolet radiation (UVR) are well known. Specifically, the premutagenic lesions of UVB (290-320 nm), are known to be the most important molecular events in UVR tumorigenicity. The less carcinogenic UVA (320-400 nm) mainly generates oxidative damage in the DNA via photodynamic generation of active oxygen species involving endogenous or exogenous photosensitizers. Several pharmaceuticals are known to act as photosensitizers. Photoinstable phenothiazines, furocoumarins and fluoroquinolones were shown to be very efficient inducers of chromosomal damage in UV-irradiated mammalian cells. Testing for photochemical carcinogenesis in hairless mice of furocoumarins and several fluoroquinolones resulted in a higher incidence and a shorter latent period for skin tumors compared to UVR alone. Overall, the correlation of experimental data between photochemical carcinogens and photochemical genotoxins is quite convincing. Therefore, testing for photochemical genotoxicity preferably in mammalian cells in vitro may be an easy hazard identification approach for photochemical carcinogens. However, further factors such as immunosuppression, irritation and dedifferentiation are to be considered for risk assessment in photochemical carcinogenesis.

  6. ICRP Publication 131: Stem cell biology with respect to carcinogenesis aspects of radiological protection.

    PubMed

    Hendry, J H; Niwa, O; Barcellos-Hoff, M H; Globus, R K; Harrison, J D; Martin, M T; Seed, T M; Shay, J W; Story, M D; Suzuki, K; Yamashita, S

    2016-06-01

    Current knowledge of stem cell characteristics, maintenance and renewal, evolution with age, location in 'niches', and radiosensitivity to acute and protracted exposures is reviewed regarding haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. The identity of the target cells for carcinogenesis continues to point to the more primitive and mostly quiescent stem cell population (able to accumulate the protracted sequence of mutations necessary to result in malignancy), and, in a few tissues, to daughter progenitor cells. Several biological processes could contribute to the protection of stem cells from mutation accumulation: (1) accurate DNA repair; (2) rapid induced death of injured stem cells; (3) retention of the intact parental strand during divisions in some tissues so that mutations are passed to the daughter differentiating cells; and (4) stem cell competition, whereby undamaged stem cells outcompete damaged stem cells for residence in the vital niche. DNA repair mainly operates within a few days of irradiation, while stem cell replications and competition require weeks or many months depending on the tissue type. This foundation is used to provide a biological insight to protection issues including the linear-non-threshold and relative risk models, differences in cancer risk between tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age. © The International Society for Prosthetics and Orthotics.

  7. Host cell reactivation studies with epidermal cells of mice sensitive and resistant to carcinogenesis

    SciTech Connect

    Strickland, J.E.; Strickland, A.G.

    1984-03-01

    Primary epidermal cells from AKR, BALB/c, CD-1, and SENCAR mice, listed in order of least to most sensitive to epidermal carcinogenesis by initiation and promotion protocols, were found to be equally competent to ''reactivate'' herpes simplex virus type 1 irradiated by germicidal ultraviolet radiation. Nontumorigenic BALB/c epidermal cell lines selected in vitro for resistance to terminal differentiation after in vivo or in vitro treatment with initiating doses of carcinogens showed virus survival curves similar to those of primary cells. Similarly, primary cultures which were allowed to grow to confluency following a single treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (100 ng/ml) retained normal host cell reactivation. Host cell reactivation studies with mouse dermal fibroblasts could not be done because of the failure of the herpes simplex virus to infect these cells and produce plaques. These results demonstrate that survival of ultraviolet light-damaged virus in primary epidermal cells in culture is unrelated to whether the cells are derived from mice sensitive or resistant to epidermal carcinogenesis. Furthermore, virus survival is not changed by tumor promoter treatment or by treatment with initiating doses of carcinogens which results in differentiation-resistant cells.

  8. Distinctive molecular responses to ultraviolet radiation between keratinocytes and melanocytes

    PubMed Central

    Sun, Xiaoyun; Kim, Arianna; Nakatani, Masashi; Shen, Yao; Liu, Liang

    2017-01-01

    Solar ultraviolet radiation (UVR) is the major risk factor for skin carcinogenesis. To gain new insights into the molecular pathways mediating UVR effects in the skin, we performed comprehensive transcriptomic analyses to identify shared and distinctive molecular responses to UVR between human keratinocytes and melanocytes. Keratinocytes and melanocytes were irradiated with varying doses of UVB (10, 20 and 30 mJ/cm2) then analysed by RNA-Seq at different time points post-UVB radiation (4, 24 and 72 h). Under basal conditions, keratinocytes and melanocytes expressed similar number of genes, although they each expressed a distinctive subset of genes pertaining to their specific cellular identity. Upon UVB radiation, keratinocytes displayed a clear pattern of time- and dose-dependent changes in gene expression that was different from melanocytes. The early UVB-responsive gene set (4 h post-UVR) differed significantly from delayed UVB-responsive gene sets (24 and 72 h). We also identified multiple novel UVB signature genes including PRSS23, SERPINH1, LCE3D and CNFN, which were conserved between melanocyte and keratinocyte lines from different individuals. Taken together, our findings elucidated both common and distinctive molecular features between melanocytes and keratinocytes and uncovered novel UVB signature genes that might be utilized to predict UVB photobiological effects on the skin. PMID:27119462

  9. EFFECT OF ARSENICALS ON ULTRAVIOLET-RADIATION-INDUCED GROWTH ARREST AND RELATED SIGNALING EVENTS IN HUMAN KERATINOCYTES

    EPA Science Inventory

    The molecular mechanisms mediating arsenic-induced carcinogenesis are not well understood. The role of confounding factors such as ultraviolet radiation (UV), add another level of complexity to the study of arsenic carcinogenesis and the cancer risk assessment to humans. We hypot...

  10. EFFECT OF ARSENICALS ON ULTRAVIOLET-RADIATION-INDUCED GROWTH ARREST AND RELATED SIGNALING EVENTS IN HUMAN KERATINOCYTES

    EPA Science Inventory

    The molecular mechanisms mediating arsenic-induced carcinogenesis are not well understood. The role of confounding factors such as ultraviolet radiation (UV), add another level of complexity to the study of arsenic carcinogenesis and the cancer risk assessment to humans. We hypot...

  11. Microalgal compounds modulate carcinogenesis in the gastrointestinal tract.

    PubMed

    Amaro, Helena M; Barros, Rita; Guedes, A Catarina; Sousa-Pinto, I; Malcata, F Xavier

    2013-02-01

    Gastrointestinal cancers rank second in overall cancer-related deaths. Carotenoids, sulfated polysaccharides, and polyunsaturated fatty acids (PUFAs) from microalgae exhibit cancer chemopreventive features at different stages of carcinogenesis. For instance, sulfated polysaccharides bear a prophylactic potential via blocking adhesion of pathogens to the gastric surface, whereas carotenoids are effective against Helicobacter pylori infection. This effect is notable because H. pylori has been targeted as the primary cause of gastric cancer. Recent results on antitumor and antibacterial compounds synthesized by microalgae are reviewed here, with an emphasis on their impact upon H. pylori infection and derived pathologies accompanying the progression of gastric carcinogenesis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. The role of adiponectin in obesity-associated female-specific carcinogenesis.

    PubMed

    Nagaraju, Ganji Purnachandra; Rajitha, Balney; Aliya, Sheik; Kotipatruni, Rama P; Madanraj, Appiya Santharam; Hammond, Anthea; Park, Dongkyoo; Chigurupati, Srinivasulu; Alam, Afroz; Pattnaik, Subasini

    2016-10-01

    Adipose tissue is a highly vascularized endocrine organ, and its secretion profiles may vary with obesity. Adiponectin is secreted by adipocytes that make up adipose tissue. Worldwide, obesity has been designated a serious health problem among women and is associated with a variety of metabolic disorders and an increased risk of developing cancer of the cervix, ovaries, uterus (uterine/endometrial), and breast. In this review, the potential link between obesity and female-specific malignancies is comprehensively presented by discussing significant features of the intriguing and complex molecule, adiponectin, with a focus on recent findings highlighting its molecular mechanism of action in female-specific carcinogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Neutron carcinogenesis: past, present, and future.

    PubMed

    Hill, C K; Williams-Hill, D

    1999-12-01

    An interest in the possible cancer causing ability of neutrons began soon after their discovery. Early use of neutrons from radioactive sources and from cyclotrons led to a need to define risk for such exposures. This need was soon followed by a more tangible need to define risk to the general population of high LET radiation from nuclear fall out and use of the Atomic bomb and possible use of the H-bomb. Neutrons were soon found to be very effective cell killing agents compared to conventional ionizing radiation. However High LET radiation sources and neutrons in particular, come in many different energies and from many types of sources. I will survey the differences between different energy neutrons and conventional types of radiation, particularly with respect to the dose rate of exposures and the influence of repair or lack thereof and more recently the effect of cell cycle distribution on the carcinogenic outcome. I will illustrate these ideas with examples of carcinogenicity studies and mutation studies from my own laboratory and in some cases from the work of others. Lastly I will introduce some possible avenues for molecular studies of neutron effects that might answer such vexing questions as the real risk at very low doses, is repair error free or error prone, do neutrons cause genetic instability for many cell generations after exposure, and others? There remain many questions about the biology of neutron action that require answers if we are to protect the ever increasing number of people exposed to them because of their growing use in medicine, in the military and in commercial industry.

  14. THE ROLE OF PROTEIN BINDING OF TRIVALENT ARSENICALS IN ARSENIC CARCINOGENESIS AND TOXICITY

    EPA Science Inventory

    Three of the most plausible biological theories of arsenic carcinogenesis are protein binding, oxidative stress and altered DNA methylation. This review presents the role of trivalent arsenicals binding to proteins in arsenic carcinogenesis. Using vacuum filtration based receptor...

  15. THE ROLE OF PROTEIN BINDING OF TRIVALENT ARSENICALS IN ARSENIC CARCINOGENESIS AND TOXICITY

    EPA Science Inventory

    Three of the most plausible biological theories of arsenic carcinogenesis are protein binding, oxidative stress and altered DNA methylation. This review presents the role of trivalent arsenicals binding to proteins in arsenic carcinogenesis. Using vacuum filtration based receptor...

  16. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Comprehensive progress report, July 1991--June 1992

    SciTech Connect

    Rowley, J.D.

    1992-06-01

    This project seeks to defining the chromosome segments associated with radiation induced leukemogenesis (treatment-related acute myeloid leukemia, or t-AML). Towards these goals genetic analysis of human chromosomes 5 and 7 continues to investigate correlation of treatment with balanced and unbalanced chromosomal translocations. Progress is being made in cloning the breakpoints in balanced translocations in t-AML, that is to clone the t(9;11) and t(11;19) breakpoints, to clone the t(3;21)(q26;q22) breakpoints and to determine the relationship of these translocations to prior exposure to topoisomerase II inhibitors. 11 figs. 3 figs.

  17. Imbalance between apoptosis and cell proliferation during early stages of mammary gland carcinogenesis in ACI rats.

    PubMed

    Kutanzi, Kristy R; Koturbash, Igor; Bronson, Roderick T; Pogribny, Igor P; Kovalchuk, Olga

    2010-12-10

    Estrogen and ionizing radiation are well-documented human breast carcinogens, yet the exact mechanisms of their deleterious effects on mammary gland remain to be discerned. Here we analyze the balance between cellular proliferation and apoptosis in the mammary glands of rats exposed to estrogen and X-ray radiation and the combined action of these carcinogenic agents. For the first time, we show that combined exposure to estrogen and radiation has a synergistic effect on cell proliferation in the mammary glands of ACI rats, as evidenced by a substantially greater magnitude of cell proliferation, especially after 12 and 18 weeks of treatment, when compared to mammary glands of rats exposed to estrogen or radiation alone. We also demonstrate that an imbalance between cell proliferation and apoptosis, rather than enhanced cell proliferation or apoptosis suppression alone, may be a driving force for carcinogenesis. Our studies further suggest that compromised functional activity of p53 may be one of the mechanisms responsible for the proliferation/apoptosis imbalance. In sum, the results of our study indicate that evaluation of the extent of cell proliferation and apoptosis before the onset of preneoplastic lesions may be a potential biomarker of breast cancer risk after exposure to breast carcinogens.

  18. Attribution of different volcano eruptions to injected SO2 from satellite data and implications for radiative forcing calculated by a comprehensive CCM

    NASA Astrophysics Data System (ADS)

    Schallock, Jennifer; Brühl, Christoph; Lelieveld, Jos; Bingen, Christine; Höpfner, Michael

    2016-04-01

    Volcanic eruptions have important radiative effects on climate through impacts on the stratospheric aerosol layer. They have been estimated by analyzing satellite data for anomalies in stratospheric SO2 concentration and aerosol extinction. For this work we used the data of different satellites: MIPAS, GOMOS, OMI and TOMS to cover the time period 2002-2012. It is important to use multiple satellite data sources to compensate for data gaps of individual sensors. The result is a list of about 150 volcanic eruptions (small to medium) that reach the stratosphere directly or by transport from the upper troposphere. Some eruptions have only a regional effect while other SO2 plumes are transported globally. This depends on injection height, latitude, season and circulation patterns (e.g. monsoon). Because of dispersion and advection it is difficult to identify single eruptions in a 2D data field with monthly zonal means, therefore, it is important to use 3D data fields. We find that a temporal resolution of about 5 days and a spatial resolution of 60 degrees longitude and 10 degrees latitude is a good compromise to have sufficient coverage. The volcanic SO2 data in different complexity were used in transient simulations with the atmospheric chemistry circulation model EMAC. It is demonstrated that the neglect of smaller eruptions or the application of only the MIPAS data set significantly underestimates volcanic radiative forcing.

  19. CARCINOGENIC EFFECTS OF LOW DOSES OF IONIZING RADIATION

    EPA Science Inventory

    Carcinogenic Effects of Low Doses of Ionizing Radiation

    R Julian Preston, Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

    The form of the dose-response curve for radiation-induced cancers, particu...

  20. CARCINOGENIC EFFECTS OF LOW DOSES OF IONIZING RADIATION

    EPA Science Inventory

    Carcinogenic Effects of Low Doses of Ionizing Radiation

    R Julian Preston, Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

    The form of the dose-response curve for radiation-induced cancers, particu...

  1. Arsenic toxicity, mutagenesis, and carcinogenesis--a health risk assessment and management approach.

    PubMed

    Tchounwou, Paul B; Centeno, Jose A; Patlolla, Anita K

    2004-01-01

    A comprehensive analysis of published data indicates that arsenic exposure induces cardiovascular diseases, developmental abnormalities, neurologic and neurobehavioral disorders, diabetes, hearing loss, hematologic disorders, and various types of cancer. Although exposure may occur via the dermal, and parenteral routes, the main pathways of exposure include ingestion, and inhalation. The severity of adverse health effects is related to the chemical form of arsenic, and is also time- and dose-dependent. Recent reports have pointed out that arsenic poisoning appears to be one of the major public health problems of pandemic nature. Acute and chronic exposure to arsenic has been reported in several countries of the world where a large proportion of drinking water (groundwater) is contaminated with high concentrations of arsenic. Research has also pointed significantly higher standardized mortality rates for cancers of the bladder, kidney, skin, liver, and colon in many areas of arsenic pollution. There is therefore a great need for developing a comprehensive health risk assessment (RA) concept that should be used by public health officials and environmental managers for an effective management of the health effects associated with arsenic exposure. With a special emphasis on arsenic toxicity, mutagenesis, and carcinogenesis, this paper is aimed at using the National Academy of Science's RA framework as a guide, for developing a RA paradigm for arsenic based on a comprehensive analysis of the currently available scientific information on its physical and chemical properties, production and use, fate and transport, toxicokinetics, systemic and carcinogenic health effects, regulatory and health guidelines, analytical guidelines and treatment technologies.

  2. OXIDATIVE STRESS AS A POSSIBLE MODE OF ACTION FOR ARSENIC CARCINOGENESIS

    EPA Science Inventory

    Abstract

    Many modes of action for arsenic carcinogenesis have been proposed, but few theories have a substantial mass of supporting data. Three stronger theories of arsenic carcinogenesis are production of chromosomal abnormalities, promotion of carcinogenesis and oxidati...

  3. OXIDATIVE STRESS AS A POSSIBLE MODE OF ACTION FOR ARSENIC CARCINOGENESIS

    EPA Science Inventory

    Abstract

    Many modes of action for arsenic carcinogenesis have been proposed, but few theories have a substantial mass of supporting data. Three stronger theories of arsenic carcinogenesis are production of chromosomal abnormalities, promotion of carcinogenesis and oxidati...

  4. Carcinogenesis explained within the context of a theory of organisms

    PubMed Central

    Sonnenschein, Carlos; Soto, Ana

    2017-01-01

    For a century, the somatic mutation theory (SMT) has been the prevalent theory to explain carcinogenesis. According to the SMT, cancer is a cellular problem, and thus, the level of organization where it should be studied is the cellular level. Additionally, the SMT proposes that cancer is a problem of the control of cell proliferation and assumes that proliferative quiescence is the default state of cells in metazoa. In 1999, a competing theory, the tissue organization field theory (TOFT), was proposed. In contraposition to the SMT, the TOFT posits that cancer is a tissue-based disease whereby carcinogens (directly) and mutations in the germ-line (indirectly) alter the normal interactions between the diverse components of an organ, such as the stroma and its adjacent epithelium. The TOFT explicitly acknowledges that the default state of all cells is proliferation with variation and motility. When taking into consideration the principle of organization, we posit that carcinogenesis can be explained as a relational problem whereby release of the constraints created by cell interactions and the physical forces generated by cellular agency lead cells within a tissue to regain their default state of proliferation with variation and motility. Within this perspective, what matters both in morphogenesis and carcinogenesis is not only molecules, but also biophysical forces generated by cells and tissues. Herein, we describe how the principles for a theory of organisms apply to the TOFT and thus to the study of carcinogenesis. PMID:27498170

  5. STUDIES INTO THE MECHANISMS OF POTASSIUM BROMATE INDUCED THYROID CARCINOGENESIS

    EPA Science Inventory

    Studies into the Mechanisms of Potassium Bromate Induced Thyroid Carcinogenesis.

    Potassium bromate (KBrO3) occurs in finished drinking water as a by-product of the ozonation disinfection process and has been found to induce thyroid follicular cell tumors in the rat after ...

  6. PROPICONAZOLE-INDUCED CARCINOGENESIS: ROLE OF OXIDATIVE STRESS

    EPA Science Inventory

    Propiconazole is a systemic foliar fungicide with a broad range of activity. Rodents fed with propiconazole at high dose resulted in diminished body weight, increased liver weight of adults and pups, and eventually liver carcinogenesis. In order to unravel the toxic processes inv...

  7. The genetic/metabolic transformation concept of carcinogenesis

    PubMed Central

    Franklin, Renty B.

    2014-01-01

    The carcinogenesis process is poorly understood and subject to varying concepts and views. A rejuvenated interest has arisen regarding the role of altered cellular intermediary metabolism in the development and progression of cancer. As a result, differing views of the implications of altered metabolism in the development of cancer exist. None of the concepts recognize and incorporate the principles of cell metabolism to cell activity, which are applicable to all cells including the carcinogenesis process. This presentation incorporates a novel concept of carcinogenesis that includes a “genetic/metabolic” transformation that encompasses these principles of cell metabolism to cell activity. The intermediary metabolism transformation is essential to provide the bioenergetic/ synthetic, growth/proliferation, and migration/invasive events of malignancy. The concept invokes an “oncogenetic transformation” for the development of neoplastic cells from their precursor normal cells; and a required “genetic/metabolic” transformation for facilitation of the development of the neoplastic cells to malignant cells with the manifestation of the malignant process. Such a concept reveals stages and events of carcinogenesis that provide approaches for the identification of biomarkers and for development of therapeutic agents. The presentation discusses the contemporary application of genetics and proteomics to altered cellular metabolism in cancer; and underscores the importance of proper integration of genetics and proteomics with biochemical and metabolic studies, and the consequences of inappropriate studies. PMID:22109079

  8. Carcinogenesis explained within the context of a theory of organisms.

    PubMed

    Sonnenschein, Carlos; Soto, Ana M

    2016-10-01

    For a century, the somatic mutation theory (SMT) has been the prevalent theory to explain carcinogenesis. According to the SMT, cancer is a cellular problem, and thus, the level of organization where it should be studied is the cellular level. Additionally, the SMT proposes that cancer is a problem of the control of cell proliferation and assumes that proliferative quiescence is the default state of cells in metazoa. In 1999, a competing theory, the tissue organization field theory (TOFT), was proposed. In contraposition to the SMT, the TOFT posits that cancer is a tissue-based disease whereby carcinogens (directly) and mutations in the germ-line (indirectly) alter the normal interactions between the diverse components of an organ, such as the stroma and its adjacent epithelium. The TOFT explicitly acknowledges that the default state of all cells is proliferation with variation and motility. When taking into consideration the principle of organization, we posit that carcinogenesis can be explained as a relational problem whereby release of the constraints created by cell interactions and the physical forces generated by cellular agency lead cells within a tissue to regain their default state of proliferation with variation and motility. Within this perspective, what matters both in morphogenesis and carcinogenesis is not only molecules, but also biophysical forces generated by cells and tissues. Herein, we describe how the principles for a theory of organisms apply to the TOFT and thus to the study of carcinogenesis.

  9. PROPICONAZOLE-INDUCED CARCINOGENESIS: ROLE OF OXIDATIVE STRESS

    EPA Science Inventory

    Propiconazole is a systemic foliar fungicide with a broad range of activity. Rodents fed with propiconazole at high dose resulted in diminished body weight, increased liver weight of adults and pups, and eventually liver carcinogenesis. In order to unravel the toxic processes inv...

  10. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis

    PubMed Central

    Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo

    2017-01-01

    Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways. PMID:28277539

  11. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis.

    PubMed

    Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo

    2017-03-09

    Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways.

  12. Management of radiation oncology patients with a pacemaker or ICD: a new comprehensive practical guideline in The Netherlands. Dutch Society of Radiotherapy and Oncology (NVRO).

    PubMed

    Hurkmans, Coen W; Knegjens, Joost L; Oei, Bing S; Maas, Ad J J; Uiterwaal, G J; van der Borden, Arnoud J; Ploegmakers, Marleen M J; van Erven, Lieselot

    2012-11-24

    Current clinical guidelines for the management of radiotherapy patients having either a pacemaker or implantable cardioverter defibrillator (both CIEDs: Cardiac Implantable Electronic Devices) do not cover modern radiotherapy techniques and do not take the patient's perspective into account. Available data on the frequency and cause of CIED failure during radiation therapy are limited and do not converge. The Dutch Society of Radiotherapy and Oncology (NVRO) initiated a multidisciplinary task group consisting of clinical physicists, cardiologists, radiation oncologists, pacemaker and ICD technologists to develop evidence based consensus guidelines for the management of CIED patients. CIED patients receiving radiotherapy should be categorised based on the chance of device failure and the clinical consequences in case of failure. Although there is no clear cut-off point nor a clear linear relationship, in general, chances of device failure increase with increasing doses. Clinical consequences of device failures like loss of pacing, carry the most risks in pacing dependent patients. Cumulative dose and pacing dependency have been combined to categorise patients into low, medium and high risk groups. Patients receiving a dose of less than 2 Gy to their CIED are categorised as low risk, unless pacing dependent since then they are medium risk. Between 2 and 10 Gy, all patients are categorised as medium risk, while above 10 Gy every patient is categorised as high risk. Measures to secure patient safety are described for each category. This guideline for the management of CIED patients receiving radiotherapy takes into account modern radiotherapy techniques, CIED technology, the patients' perspective and the practical aspects necessary for the safe management of these patients. The guideline is implemented in The Netherlands in 2012 and is expected to find clinical acceptance outside The Netherlands as well.

  13. Comprehensive evaluations of cone-beam CT dose in image-guided radiation therapy via GPU-based Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Montanari, Davide; Scolari, Enrica; Silvestri, Chiara; Jiang Graves, Yan; Yan, Hao; Cervino, Laura; Rice, Roger; Jiang, Steve B.; Jia, Xun

    2014-03-01

    Cone beam CT (CBCT) has been widely used for patient setup in image-guided radiation therapy (IGRT). Radiation dose from CBCT scans has become a clinical concern. The purposes of this study are (1) to commission a graphics processing unit (GPU)-based Monte Carlo (MC) dose calculation package gCTD for Varian On-Board Imaging (OBI) system and test the calculation accuracy, and (2) to quantitatively evaluate CBCT dose from the OBI system in typical IGRT scan protocols. We first conducted dose measurements in a water phantom. X-ray source model parameters used in gCTD are obtained through a commissioning process. gCTD accuracy is demonstrated by comparing calculations with measurements in water and in CTDI phantoms. Twenty-five brain cancer patients are used to study dose in a standard-dose head protocol, and 25 prostate cancer patients are used to study dose in pelvis protocol and pelvis spotlight protocol. Mean dose to each organ is calculated. Mean dose to 2% voxels that have the highest dose is also computed to quantify the maximum dose. It is found that the mean dose value to an organ varies largely among patients. Moreover, dose distribution is highly non-homogeneous inside an organ. The maximum dose is found to be 1-3 times higher than the mean dose depending on the organ, and is up to eight times higher for the entire body due to the very high dose region in bony structures. High computational efficiency has also been observed in our studies, such that MC dose calculation time is less than 5 min for a typical case.

  14. A comprehensive model for x-ray projection imaging system efficiency and image quality characterization in the presence of scattered radiation.

    PubMed

    Monnin, P; Verdun, F R; Bosmans, H; Pérez, S Rodríguez; Marshall, N W

    2017-06-23

    This work proposes a method for assessing the detective quantum efficiency (DQE) of radiographic imaging systems that include both the x-ray detector and the antiscatter device. Cascaded linear analysis of the antiscatter device efficiency (DQEASD) with the x-ray detector DQE is used to develop a metric of system efficiency (DQEsys); the new metric is then related to the existing system efficiency parameters of effective DQE (eDQE) and generalized DQE (gDQE). The effect of scatter on signal transfer was modelled through its point spread function (PSF), leading to an x-ray beam transfer function (BTF) that multiplies with the classical presampling modulation transfer function (MTF) to give the system MTF. Expressions are then derived for the influence of scattered radiation on signal-difference to noise ratio (SDNR) and contrast-detail (c-d) detectability. The DQEsys metric was tested using two digital mammography systems, for eight x-ray beams (four with and four without scatter), matched in terms of effective energy. The model was validated through measurements of contrast, SDNR and MTF for poly(methyl)methacrylate thicknesses covering the range of scatter fractions expected in mammography. The metric also successfully predicted changes in c-d detectability for different scatter conditions. Scatter fractions for the four beams with scatter were established with the beam stop method using an extrapolation function derived from the scatter PSF, and validated through Monte Carlo (MC) simulations. Low-frequency drop of the MTF from scatter was compared to both theory and MC calculations. DQEsys successfully quantified the influence of the grid on SDNR and accurately gave the break-even object thickness at which system efficiency was improved by the grid. The DQEsys metric is proposed as an extension of current detector characterization methods to include a performance evaluation in the presence of scattered radiation, with an antiscatter device in place.

  15. Comprehensive evaluations of cone-beam CT dose in image-guided radiation therapy via GPU-based Monte Carlo simulations.

    PubMed

    Montanari, Davide; Scolari, Enrica; Silvestri, Chiara; Graves, Yan Jiang; Yan, Hao; Cervino, Laura; Rice, Roger; Jiang, Steve B; Jia, Xun

    2014-03-07

    Cone beam CT (CBCT) has been widely used for patient setup in image-guided radiation therapy (IGRT). Radiation dose from CBCT scans has become a clinical concern. The purposes of this study are (1) to commission a graphics processing unit (GPU)-based Monte Carlo (MC) dose calculation package gCTD for Varian On-Board Imaging (OBI) system and test the calculation accuracy, and (2) to quantitatively evaluate CBCT dose from the OBI system in typical IGRT scan protocols. We first conducted dose measurements in a water phantom. X-ray source model parameters used in gCTD are obtained through a commissioning process. gCTD accuracy is demonstrated by comparing calculations with measurements in water and in CTDI phantoms. Twenty-five brain cancer patients are used to study dose in a standard-dose head protocol, and 25 prostate cancer patients are used to study dose in pelvis protocol and pelvis spotlight protocol. Mean dose to each organ is calculated. Mean dose to 2% voxels that have the highest dose is also computed to quantify the maximum dose. It is found that the mean dose value to an organ varies largely among patients. Moreover, dose distribution is highly non-homogeneous inside an organ. The maximum dose is found to be 1-3 times higher than the mean dose depending on the organ, and is up to eight times higher for the entire body due to the very high dose region in bony structures. High computational efficiency has also been observed in our studies, such that MC dose calculation time is less than 5 min for a typical case.

  16. A comprehensive model for x-ray projection imaging system efficiency and image quality characterization in the presence of scattered radiation

    NASA Astrophysics Data System (ADS)

    Monnin, P.; Verdun, F. R.; Bosmans, H.; Rodríguez Pérez, S.; Marshall, N. W.

    2017-07-01

    This work proposes a method for assessing the detective quantum efficiency (DQE) of radiographic imaging systems that include both the x-ray detector and the antiscatter device. Cascaded linear analysis of the antiscatter device efficiency (DQEASD) with the x-ray detector DQE is used to develop a metric of system efficiency (DQEsys); the new metric is then related to the existing system efficiency parameters of effective DQE (eDQE) and generalized DQE (gDQE). The effect of scatter on signal transfer was modelled through its point spread function (PSF), leading to an x-ray beam transfer function (BTF) that multiplies with the classical presampling modulation transfer function (MTF) to give the system MTF. Expressions are then derived for the influence of scattered radiation on signal-difference to noise ratio (SDNR) and contrast-detail (c-d) detectability. The DQEsys metric was tested using two digital mammography systems, for eight x-ray beams (four with and four without scatter), matched in terms of effective energy. The model was validated through measurements of contrast, SDNR and MTF for poly(methyl)methacrylate thicknesses covering the range of scatter fractions expected in mammography. The metric also successfully predicted changes in c-d detectability for different scatter conditions. Scatter fractions for the four beams with scatter were established with the beam stop method using an extrapolation function derived from the scatter PSF, and validated through Monte Carlo (MC) simulations. Low-frequency drop of the MTF from scatter was compared to both theory and MC calculations. DQEsys successfully quantified the influence of the grid on SDNR and accurately gave the break-even object thickness at which system efficiency was improved by the grid. The DQEsys metric is proposed as an extension of current detector characterization methods to include a performance evaluation in the presence of scattered radiation, with an antiscatter device in place.

  17. Enhanced UV-induced skin carcinogenesis in transgenic mice overexpressing proprotein convertases.

    PubMed

    Fu, Jian; Bassi, Daniel E; Zhang, Jirong; Li, Tianyu; Cai, Kathy Q; Testa, Courtney Lyons; Nicolas, Emmanuelle; Klein-Szanto, Andres J

    2013-02-01

    The proprotein convertases (PCs) furin and PACE4 process numerous substrates involved in tumor growth, invasion, and metastasis. We have previously shown that PCs increase the susceptibility to chemical skin carcinogenesis. Because of the human relevancy of UV radiation in the etiopathogenesis of human skin cancer, we investigated whether or not transgenic mice overexpressing either furin alone or both furin and PACE4 show increased susceptibility to UV carcinogenesis. After backcrossing our previously described furin and PACE4 transgenic lines, targeted to the epidermis, into a SKH-1 background, we exposed both single and double transgenic mice to UV radiation for 34 weeks. The results showed an increase in squamous cell carcinoma (SCC) multiplicity of approximately 70% in the single furin transgenic mouse line SF47 (P < .002) and a 30% increase in the other single transgenic line SF49 when compared to wild-type (WT) SKH-1 mice. Interestingly, there was also an increase in the percentage of high histologic grade SCCs in the transgenic lines compared to the WT mice, i.e., WT = 9%, SF47 = 15%, and SF49 = 26% (P < .02). Targeting both furin and PACE4 to the epidermis in double transgenic mice did not have an additive effect on tumor incidence/multiplicity but did enhance the tumor histopathologic grade, i.e., a significant increase in higher grade SCCs was seen in the bigenic mouse line SPF47 (P < .02). Thus, we observed an increased susceptibility to UV in single furin transgenic mice that was not substantially enhanced in the double furin/PACE4 transgenic mice.

  18. Radiation-induced thyroid disease

    SciTech Connect

    Maxon, H.R.

    1985-09-01

    Ionizing radiation has been demonstrated to result in a number of changes in the human thyroid gland. At lower radiation dose levels (between 10 and 1500 rads), benign and malignant neoplasms appear to be the dominant effect, whereas at higher dose levels functional changes and thyroiditis become more prevalent. In all instances, the likelihood of the effect is related to the amount and type of radiation exposure, time since exposure, and host factors such as age, sex, and heredity. The author's current approach to the evaluation of patients with past external radiation therapy to the thyroid is discussed. The use of prophylactic thyroxine (T4) therapy is controversial. While T4 therapy may not be useful in preventing carcinogenesis when instituted many years after radiation exposure, theoretically T4 may block TSH secretion and stimulation of damaged cells to undergo malignant transformation when instituted soon after radiation exposure.

  19. Clock gene Per2 as a controller of liver carcinogenesis

    PubMed Central

    Mteyrek, Ali; Filipski, Elisabeth; Guettier, Catherine; Okyar, Alper; Lévi, Francis

    2016-01-01

    Environmental disruption of molecular clocks promoted liver carcinogenesis and accelerated cancer progression in rodents. We investigated the specific role of clock gene Period 2 (Per2) for liver carcinogenesis and clock-controlled cellular proliferation, genomic instability and inflammation. We assessed liver histopathology, and determined molecular and physiology circadian patterns in mice on chronic diethylnitrosamine (DEN) exposure according to constitutive Per2 mutation. First, we found that Per2m/m liver displayed profound alterations in proliferation gene expression, including c-Myc derepression, phase-advanced Wee1, and arrhythmic Ccnb1 and K-ras mRNA expressions, as well as deregulated inflammation, through arrhythmic liver IL-6 protein concentration, in the absence of any DEN exposure. These changes could then make Per2m/m mice more prone to subsequently develop liver cancers on DEN. Indeed, primary liver cancers were nearly fourfold as frequent in Per2m/m mice as compared to wild-type (WT), 4 months after DEN exposure. The liver molecular clock was severely disrupted throughout the whole carcinogenesis process, including the initiation stage, i.e. within the initial 17 days on DEN. Per2m/m further exhibited increased c-Myc and Ccnb1 mean 24h expressions, lack of P53 response, and arrhythmic ATM, Wee1 and Ccnb1 expressions. DEN-induced tumor related inflammation was further promoted through increased protein concentrations of liver IL-6 and TNF-α as compared to WT during carcinogenesis initiation. Per2 mutation severely deregulated liver gene or protein expressions related to three cancer hallmarks, including uncontrolled proliferation, genomic instability, and tumor promoting inflammation, and accelerated liver carcinogenesis several-fold. Clock gene Per2 acted here as a liver tumor suppressor from initiation to progression. PMID:27494874

  20. Comprehension Clinchers

    ERIC Educational Resources Information Center

    Marcell, Barclay

    2006-01-01

    This author, an academic achievement teacher for second and third grade reading and math at Theodore Roosevelt Elementary School in Park Ridge, Illinois, contends that since fluency is such a measurable skill, over-emphasizing decoding and de-emphasizing comprehension results in short-changing students. In this article, she shares several reading…

  1. Dysregulation of host cellular genes targeted by human papillomavirus (HPV) integration contributes to HPV-related cervical carcinogenesis.

    PubMed

    Zhang, Ruiyang; Shen, Congle; Zhao, Lijun; Wang, Jianliu; McCrae, Malcolm; Chen, Xiangmei; Lu, Fengmin

    2016-03-01

    Integration of human papillomavirus (HPV) viral DNA into the human genome has been postulated as an important etiological event during cervical carcinogenesis. Several recent reports suggested a possible role for such integration-targeted cellular genes (ITGs) in cervical carcinogenesis. Therefore, a comprehensive analysis of HPV integration events was undertaken using data collected from 14 publications, with 499 integration loci on human chromosomes included. It revealed that HPV DNA preferred to integrate into intragenic regions and gene-dense regions of human chromosomes. Intriguingly, the host cellular genes nearby the integration sites were found to be more transcriptionally active compared with control. Furthermore, analysis of the integration sites in the human genome revealed that there were several integration hotspots although all chromosomes were represented. The ITGs identified were found to be enriched in tumor-related terms and pathways using gene ontology and KEGG analysis. In line with this, three of six ITGs tested were found aberrantly expressed in cervical cancer tissues. Among them, it was demonstrated for the first time that MPPED2 could induce HeLa cell and SiHa cell G1/S transition block and cell proliferation retardation. Moreover, "knocking out" the integrated HPV fragment in HeLa cell line decreased expression of MYC located ∼500 kb downstream of the integration site, which provided the first experimental evidence supporting the hypothesis that integrated HPV fragment influence MYC expression via long distance chromatin interaction. Overall, the results of this comprehensive analysis implicated that dysregulation of ITGs caused by viral integration as possibly having an etiological involvement in cervical carcinogenesis.

  2. Comprehensive assessment of patient image quality and radiation dose in latest generation cardiac x-ray equipment for percutaneous coronary interventions.

    PubMed

    Gislason-Lee, Amber J; Keeble, Claire; Egleston, Daniel; Bexon, Josephine; Kengyelics, Stephen M; Davies, Andrew G

    2017-04-01

    This study aimed to determine whether a reduction in radiation dose was found for percutaneous coronary interventional (PCI) patients using a cardiac interventional x-ray system with state-of-the-art image enhancement and x-ray optimization, compared to the current generation x-ray system, and to determine the corresponding impact on clinical image quality. Patient procedure dose area product (DAP) and fluoroscopy duration of 131 PCI patient cases from each x-ray system were compared using a Wilcoxon test on median values. Significant reductions in patient dose ([Formula: see text]) were found for the new system with no significant change in fluoroscopy duration ([Formula: see text]); procedure DAP reduced by 64%, fluoroscopy DAP by 51%, and "cine" acquisition DAP by 76%. The image quality of 15 patient angiograms from each x-ray system (30 total) was scored by 75 clinical professionals on a continuous scale for the ability to determine the presence and severity of stenotic lesions; image quality scores were analyzed using a two-sample [Formula: see text]-test. Image quality was reduced by 9% ([Formula: see text]) for the new x-ray system. This demonstrates a substantial reduction in patient dose, from acquisition more than fluoroscopy imaging, with slightly reduced image quality, for the new x-ray system compared to the current generation system.

  3. SU-F-18C-01: Minimum Detectability Analysis for Comprehensive Sized Based Optimization of Image Quality and Radiation Dose Across CT Protocols

    SciTech Connect

    Smitherman, C; Chen, B; Samei, E

    2014-06-15

    Purpose: This work involved a comprehensive modeling of task-based performance of CT across a wide range of protocols. The approach was used for optimization and consistency of dose and image quality within a large multi-vendor clinical facility. Methods: 150 adult protocols from the Duke University Medical Center were grouped into sub-protocols with similar acquisition characteristics. A size based image quality phantom (Duke Mercury Phantom) was imaged using these sub-protocols for a range of clinically relevant doses on two CT manufacturer platforms (Siemens, GE). The images were analyzed to extract task-based image quality metrics such as the Task Transfer Function (TTF), Noise Power Spectrum, and Az based on designer nodule task functions. The data were analyzed in terms of the detectability of a lesion size/contrast as a function of dose, patient size, and protocol. A graphical user interface (GUI) was developed to predict image quality and dose to achieve a minimum level of detectability. Results: Image quality trends with variations in dose, patient size, and lesion contrast/size were evaluated and calculated data behaved as predicted. The GUI proved effective to predict the Az values representing radiologist confidence for a targeted lesion, patient size, and dose. As an example, an abdomen pelvis exam for the GE scanner, with a task size/contrast of 5-mm/50-HU, and an Az of 0.9 requires a dose of 4.0, 8.9, and 16.9 mGy for patient diameters of 25, 30, and 35 cm, respectively. For a constant patient diameter of 30 cm, the minimum detected lesion size at those dose levels would be 8.4, 5, and 3.9 mm, respectively. Conclusion: The designed CT protocol optimization platform can be used to evaluate minimum detectability across dose levels and patient diameters. The method can be used to improve individual protocols as well as to improve protocol consistency across CT scanners.

  4. ICRP Publication 131: Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological Protection.

    PubMed

    Niwa, O; Barcellos-Hoff, M H; Globus, R K; Harrison, J D; Hendry, J H; Jacob, P; Martin, M T; Seed, T M; Shay, J W; Story, M D; Suzuki, K; Yamashita, S

    2015-12-01

    This report provides a review of stem cells/progenitor cells and their responses to ionising radiation in relation to issues relevant to stochastic effects of radiation that form a major part of the International Commission on Radiological Protection's system of radiological protection. Current information on stem cell characteristics, maintenance and renewal, evolution with age, location in stem cell 'niches', and radiosensitivity to acute and protracted exposures is presented in a series of substantial reviews as annexes concerning haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. This foundation of knowledge of stem cells is used in the main text of the report to provide a biological insight into issues such as the linear-no-threshold (LNT) model, cancer risk among tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age. Knowledge of the biology and associated radiation biology of stem cells and progenitor cells is more developed in tissues that renew fairly rapidly, such as haematopoietic tissue, intestinal mucosa, and epidermis, although all the tissues considered here possess stem cell populations. Important features of stem cell maintenance, renewal, and response are the microenvironmental signals operating in the niche residence, for which a well-defined spatial location has been identified in some tissues. The identity of the target cell for carcinogenesis continues to point to the more primitive stem cell population that is mostly quiescent, and hence able to accumulate the protracted sequence of mutations necessary to result in malignancy. In addition, there is some potential for daughter progenitor cells to be target cells in particular cases, such as in haematopoietic tissue and in skin. Several biological processes could contribute to protecting stem cells from mutation accumulation: (a) accurate DNA repair; (b) rapidly induced death of injured stem cells

  5. Adult stem cell theory of the multi-stage, multi-mechanism theory of carcinogenesis: role of inflammation on the promotion of initiated stem cells.

    PubMed

    Trosko, James E; Tai, Mei-Hui

    2006-01-01

    Inflammation, induced by microbial agents, radiation, endogenous or exogenous chemicals, has been associated with chronic diseases, including cancer. Since carcinogenesis has been characterized as consisting of the 'initiation', 'promotion' and 'progression' phases, the inflammatory process could affect any or all three phases. The stem cell theory of carcinogenesis has been given a revival, in that isolated human adult stem cells have been isolated and shown to be 'targets' for neoplastic transformation. Oct4, a transcription factor, has been associated with adult stem cells, as well as their immortalized and tumorigenic derivatives, but not with the normal differentiated daughters. These data are consistent with the stem cell theory of carcinogenesis. In addition, Gap Junctional Intercellular Communication (GJIC) seems to play a major role in cell growth. Inhibition of GJIC by non-genotoxic chemicals or various oncogenes seems to be the mechanism for the tumor promotion and progression phases of carcinogenesis. Many of the toxins, synthetic non-genotoxicants, and endogenous inflammatory factors have been shown to inhibit GJIC and act as tumor promoters. The inhibition of GJIC might be the mechanism by which the inflammatory process affects cancer and that to intervene during tumor promotion with anti-inflammatory factors might be the most efficacious anti-cancer strategy.

  6. Neutrons and carcinogenesis: a cautionary tale.

    PubMed

    Hall, E J

    1996-01-01

    The best estimates for radiation induced cancer and leukemia are based on the Japanese survivors of Hiroshima and Nagasaki. With the earlier dosimetry systems of the 1960s, it was possible to drive an RBE (relative biological effectiveness) for neutrons from the Japanese data, because it was thought that there was a significant neutron dose at Hiroshima compared with Nagasaki. The estimated RBE of about 20 was consistent with laboratory estimates for oncogenic transformation in vitro and tumors in animals. The revised dosimetry of the 1980s [DS 86] essentially eliminated the neutron component at Hiroshima, and consequently removed the only neutron RBE estimate based on human data. However, recent neutron activation measurements indicate that there may indeed have been thermal neutrons at Hiroshima, and measurements of the ratio of inter- to intra-chromosomal aberrations in peripheral lymphocytes of survivors also tend to indicate that the biologically effective dose was dominated by neutrons. Another area in which the large biological effectiveness of neutrons assumes importance is the production of photoneutrons in high energy medical linear accelerators (Linacs). An increasing number of accelerators operating in the 18 to 20 MV range are coming into routine clinical use and at this energy, photoneutrons generated largely in the collimators result in a total body dose to the patient. The increased risk of second malignancies must be balanced against the slight improvement in percentage depth doses compared with more conventional machines operating at 6 to 10 MV, below the threshold for photoneutron production.

  7. Modelling carcinogenesis after radiotherapy using Poisson statistics: implications for IMRT, protons and ions.

    PubMed

    Jones, Bleddyn

    2009-06-01

    Current technical radiotherapy advances aim to (a) better conform the dose contours to cancers and (b) reduce the integral dose exposure and thereby minimise unnecessary dose exposure to normal tissues unaffected by the cancer. Various types of conformal and intensity modulated radiotherapy (IMRT) using x-rays can achieve (a) while charged particle therapy (CPT)-using proton and ion beams-can achieve both (a) and (b), but at greater financial cost. Not only is the long term risk of radiation related normal tissue complications important, but so is the risk of carcinogenesis. Physical dose distribution plans can be generated to show the differences between the above techniques. IMRT is associated with a dose bath of low to medium dose due to fluence transfer: dose is effectively transferred from designated organs at risk to other areas; thus dose and risk are transferred. Many clinicians are concerned that there may be additional carcinogenesis many years after IMRT. CPT reduces the total energy deposition in the body and offers many potential advantages in terms of the prospects for better quality of life along with cancer cure. With C ions there is a tail of dose beyond the Bragg peaks, due to nuclear fragmentation; this is not found with protons. CPT generally uses higher linear energy transfer (which varies with particle and energy), which carries a higher relative risk of malignant induction, but also of cell death quantified by the relative biological effect concept, so at higher dose levels the frank development of malignancy should be reduced. Standard linear radioprotection models have been used to show a reduction in carcinogenesis risk of between two- and 15-fold depending on the CPT location. But the standard risk models make no allowance for fractionation and some have a dose limit at 4 Gy. Alternatively, tentative application of the linear quadratic model and Poissonian statistics to chromosome breakage and cell kill simultaneously allows estimation of

  8. Thermal radiation heat transfer.

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Howell, J. R.

    1972-01-01

    A comprehensive discussion of heat transfer by thermal radiation is presented, including the radiative behavior of materials, radiation between surfaces, and gas radiation. Among the topics considered are property prediction by electromagnetic theory, the observed properties of solid materials, radiation in the presence of other modes of energy transfer, the equations of transfer for an absorbing-emitting gas, and radiative transfer in scattering and absorbing media. Also considered are radiation exchange between black isothermal surfaces, radiation exchange in enclosures composed of diffuse gray surfaces and in enclosures having some specularly reflecting surfaces, and radiation exchange between nondiffuse nongray surfaces. The use of the Monte Carlo technique in solving radiant-exchange problems and problems of radiative transfer through absorbing-emitting media is explained.

  9. Carcinogenesis and Inflammatory Effects of Plutonium-Nitrate Retention in an Exposed Nuclear Worker and Beagle Dogs.

    SciTech Connect

    Nielsen, Christopher E.; Wang, Xihai; Robinson, Robert J.; Brooks, Antone L.; Lovaglio, Jamie A.; Patton, Kristin M.; McComish, Stacey; Tolmachev, Sergei Y.; Morgan, William F.

    2014-01-01

    The genetic and inflammatory response pathways elicited following plutonium exposure in archival lung tissue of an occupationally exposed human and experimentally exposed beagle dogs were investigated. These pathways include: tissue injury, apoptosis and gene expression modifications related to carcinogenesis and inflammation. In order to determine which pathways are involved, multiple lung samples from a plutonium exposed worker (Case 0269), a human control (Case 0385), and plutonium exposed beagle dogs were examined using histological staining and immunohistochemistry. Examinations were performed to identify target tissues at risk of radiation-induced fibrosis, inflammation, and carcinogenesis. Case 0269 showed interstitial fibrosis in peripheral and subpleural regions of the lung, but no pulmonary tumors. In contrast, the dogs with similar and higher doses showed pulmonary tumors primarily in brochiolo-alveolar, peripheral and subpleural alveolar regions. The TUNEL assay showed slight elevation of apoptosis in tracheal mucosa, tumor cells, and nuclear debris was present in the inflammatory regions of alveoli and lymph nodes of both the human and the dogs. The expression of apoptosis and a number of chemokine/cytokine genes was slightly but not significantly elevated in protein or gene levels compared to that of the control samples. In the beagles, mucous production was increased in the airway epithelial goblet cells and glands of trachea, and a number of chemokine/cytokine genes showed positive immunoreactivity. This analysis of archival tissue from an accidentally exposed worker and in a large animal model provides valuable information on the effects of long-term retention of plutonium in the respiratory tract and the histological evaluation study may impact mechanistic studies of radiation carcinogenesis.

  10. Carcinogenesis--a synopsis of human experience with external exposure in medicine.

    PubMed

    Boice, J D

    1988-10-01

    Studies in the 1980s of medically irradiated populations have increased our knowledge of radiation carcinogenesis. (1) Investigations of prenatal x-ray exposures, especially in twins, provide evidence that very low doses of ionizing radiation may cause cancer in humans. (2) Fractionated doses appear as effective as single exposures of the same total dose in causing breast cancer, but seem less effective for lung cancer. (3) Excess breast cancers can occur among women exposed under age 10, indicating that the immature breast is susceptible to the carcinogenic action of radiation. (4) Moderate doses on the order of 1 Gy to the brains of children can cause tumors later in life; moderately high doses to the skin can cause cancer when followed by frequent exposure to ultraviolet light. (5) Radiotherapy for cervical cancer can increase the rate of subsequent leukemia with the best fitting dose-response functions including a negative exponential term to account for cell-killing. (6) Low-dose exposures of about 10 cGy may increase the risk of thyroid cancer. (7) Second cancers following radiotherapy for a variety of cancers occur primarily among long-term survivors. (8) Radiotherapy may not significantly increase the risk of leukemia following childhood cancer, whereas chemotherapy with alkylating agents is a major risk factor. (9) Bone cancer occurs after high-dose radiotherapy for childhood cancer, but children with retinoblastoma are not more susceptible to radiation-induced disease than children with other malignancies. (10) High-dose external beam therapy can cause thyroid cancer, whereas high-dose radioactive 131I may not. (11) Studies of cervical cancer patients indicate that the risk of radiation-induced second malignancies follows a time-response model consistent with a constant multiplication of the underlying background incidence, i.e. a relative risk model seems to hold for projecting risks forward in time.

  11. Carcinogenesis--a synopsis of human experience with external exposure in medicine

    SciTech Connect

    Boice, J.D. Jr.

    1988-10-01

    Studies in the 1980s of medically irradiated populations have increased our knowledge of radiation carcinogenesis. (1) Investigations of prenatal x-ray exposures, especially in twins, provide evidence that very low doses of ionizing radiation may cause cancer in humans. (2) Fractionated doses appear as effective as single exposures of the same total dose in causing breast cancer, but seem less effective for lung cancer. (3) Excess breast cancers can occur among women exposed under age 10, indicating that the immature breast is susceptible to the carcinogenic action of radiation. (4) Moderate doses on the order of 1 Gy to the brains of children can cause tumors later in life; moderately high doses to the skin can cause cancer when followed by frequent exposure to ultraviolet light. (5) Radiotherapy for cervical cancer can increase the rate of subsequent leukemia with the best fitting dose-response functions including a negative exponential term to account for cell-killing. (6) Low-dose exposures of about 10 cGy may increase the risk of thyroid cancer. (7) Second cancers following radiotherapy for a variety of cancers occur primarily among long-term survivors. (8) Radiotherapy may not significantly increase the risk of leukemia following childhood cancer, whereas chemotherapy with alkylating agents is a major risk factor. (9) Bone cancer occurs after high-dose radiotherapy for childhood cancer, but children with retinoblastoma are not more susceptible to radiation-induced disease than children with other malignancies. (10) High-dose external beam therapy can cause thyroid cancer. (11) Studies of cervical cancer patients indicate that the risk of radiation-induced second malignancies follows a time-response model consistent with a constant multiplication of the underlying background incidence. 83 references.

  12. Raman spectroscopy detects biomolecular changes associated with nanoencapsulated hesperetin treatment in experimental oral carcinogenesis

    NASA Astrophysics Data System (ADS)

    Gurushankar, K.; Gohulkumar, M.; Kumar, Piyush; Krishna, C. Murali; Krishnakumar, N.

    2016-03-01

    Recently it has been shown that Raman spectroscopy possesses great potential in the investigation of biomolecular changes of tumor tissues with therapeutic drug response in a non-invasive and label-free manner. The present study is designed to investigate the antitumor effect of hespertin-loaded nanoparticles (HETNPs) relative to the efficacy of native hesperetin (HET) in modifying the biomolecular changes during 7,12-dimethyl benz(a)anthracene (DMBA)-induced oral carcinogenesis using a Raman spectroscopic technique. Significant differences in the intensity and shape of the Raman spectra between the control and the experimental tissues at 1800-500 cm-1 were observed. Tumor tissues are characterized by an increase in the relative amount of proteins, nucleic acids, tryptophan and phenylalanine and a decrease in the percentage of lipids when compared to the control tissues. Further, oral administration of HET and its nanoparticulates restored the status of the lipids and significantly decreased the levels of protein and nucleic acid content. Treatment with HETNPs showed a more potent antitumor effect than treatment with native HET, which resulted in an overall reduction in the intensity of several biochemical Raman bands in DMBA-induced oral carcinogenesis being observed. Principal component and linear discriminant analysis (PC-LDA), together with leave-one-out cross validation (LOOCV) on Raman spectra yielded diagnostic sensitivities of 100%, 80%, 91.6% and 65% and specificities of 100%, 65%, 60% and 55% for classification of control versus DMBA, DMBA versus DMBA  +  HET, DMBA versus DMBA  +  HETNPs and DMBA  +  HET versus DMBA  +  HETNPs treated tissue groups, respectively. These results further demonstrate that Raman spectroscopy associated with multivariate statistical algorithms could be a valuable tool for developing a comprehensive understanding of the process of biomolecular changes, and could reveal the signatures of the

  13. Epigenetics in metal carcinogenesis: Nickel, Arsenic, Chromium and Cadmium

    PubMed Central

    Arita, Adriana; Costa, Max

    2010-01-01

    Summary Although carcinogenic metals have been known to disrupt a wide range of cellular processes the precise mechanism by which these exert their carcinogenic effects is not known. Over the last decade or two, studies in the field of metal carcinogenesis suggest that epigenetic mechanisms may play a role in metal-induced carcinogenesis. In this review we summarize the evidence demonstrating that exposure to carcinogenic metals such as nickel, arsenic, chromium, and cadmium can perturb DNA methylation levels as well as global and gene specific histone tail posttranslational modification marks. We also wish to emphasize the importance in understanding that gene expression can be regulated by both genetic and epigenetic mechanisms and both these must be considered when studying the mechanism underlying the toxicity and cell-transforming ability of carcinogenic metals and other toxicants, and aberrant changes in gene expression that occur during disease states such as cancer. PMID:20461219

  14. Role of nitric oxide in genotoxicity: implication for carcinogenesis.

    PubMed

    Felley-Bosco, E

    1998-03-01

    Reactive oxygen species can initiate carcinogenesis by virtue of their capacity to react with DNA and cause mutations. Recently, it has been suggested that nitric oxide (NO) and its derivatives produced in inflamed tissues could contribute to the carcinogenesis process. Genotoxicity of NO follows its reaction with oxygen and superoxide. It can be due either to direct DNA damage or indirect DNA damage. Direct damage includes DNA base deamination, peroxynitrite-induced adducts formation and single strand breaks in the DNA. Indirect damage is due to the interaction of NO reactive species with other molecules such as amines, thiols and lipids. The efficiency of one pathway or another might depend on the cellular antioxidant status or the presence of free metals.

  15. European Community research on environmental mutagenesis and carcinogenesis.

    PubMed Central

    Sors, A I

    1993-01-01

    Within the 12 Member States of the European Community (EC), environmental policy is now formulated primarily at Community level. As a result, the EC has important regulatory responsibilities for the protection of workers, consumers, and the general public from risks that may arise from environmental chemicals, foremost among them potential carcinogens and mutagens. An important part of EC environmental research and development is intended to provide a scientific basis for these regulations as well as increasing understanding of the basic mechanisms involved in environmental carcinogenesis and mutagenesis. This paper contains a brief introduction to EC environment policy and research, followed by an overview of EC chemicals control activities that are of particular relevance to the research and development program. Community-level research on environmental mutagenesis and carcinogenesis is then reviewed in some detail, including the achievements of recent projects, the scientific content of the current program, and perspectives for the future. PMID:8143645

  16. The Thymus in Experimental Mammary Carcinogenesis and Polychemotherapy.

    PubMed

    Kazakov, O V; Kabakov, A V; Ishchenko, I Yu; Poveshchenko, A F; Raiter, T V; Strunkin, D N; Michurina, S V; Konenkov, V I

    2017-02-01

    Histological study of structural transformations in the thymus of Wistar females in induced carcinogenesis (N-methyl-N-nitrosourea injection in the right 2-nd mamma) and polychemotherapy (6 months after tumor growth initiation; cyclophosphamide, methotrexate, and 5-fluorouracyl) was carried out. The area of the cortical matter in the thymus decreased 6 months after carcinogenesis induction, the percentage of connective tissue elements and glandular tissue and the counts of immunoblasts and cells with pyknotic nuclei increased, this indicating the development of accidental involution of the thymus. Animals of the experimental tumor+chemotherapy group exhibited morphological signs of lymphocyte migration from the thymus and suppressed activities of the lymphoid and epithelial components (lesser area of connective tissue elements and glandular tissue, lesser density of parenchymatous cell elements, lesser counts of immunoblasts and small lymphocytes, and larger area of the medulla) in comparison with animals without chemotherapy.

  17. TRIM Family Proteins: Roles in Autophagy, Immunity, and Carcinogenesis.

    PubMed

    Hatakeyama, Shigetsugu

    2017-01-21

    Tripartite motif (TRIM) family proteins, most of which have E3 ubiquitin ligase activities, have various functions in cellular processes including intracellular signaling, development, apoptosis, protein quality control, innate immunity, autophagy, and carcinogenesis. The ubiquitin system is one of the systems for post-translational modifications, which play crucial roles not only as markers for degradation of target proteins by the proteasome but also as regulators of protein-protein interactions and of the activation of enzymes. Accumulating evidence has shown that TRIM family proteins have unique, important roles and that their dysregulation causes several diseases classified as cancer, immunological disease, or developmental disorders. In this review we focus on recent emerging topics on TRIM proteins in the regulation of autophagy, innate immunity, and carcinogenesis.

  18. Inhibitory effects of acetylsalicylic acid on exocrine pancreatic carcinogenesis.

    PubMed

    Yıldız, H; Oztas, H; Yıldız, D; Koc, A; Kalipci, E

    2013-05-01

    We investigated short (6 months) and long (12 months) term inhibitory effects of low (200 ppm) and high (400 ppm) dosages of acetylsalicylic acid (aspirin) on exocrine pancreatic carcinogenesis. It is known that exocrine pancreatic carcinogenesis can be detected by the presence of atypical acinar cell foci (AACF) in pancreas. We investigated possible inhibitory effects of acetylsalicylic acid in an azaserine-treated rat model. AACF were produced in rats by injection with azaserine according to previous studies. Our findings showed that the number, volume and diameter of pancreatic AACF were reduced after acetylsalicylic acid application. These observations suggest that acetylsalicylic acid may exert a protective effect against neoplastic development of pancreatic acinar cells in azaserine injected rats. Our findings corroborate reports in the literature concerning the effects of aspirin in reducing neoplastic development.

  19. Cervical Carcinogenesis and Immune Response Gene Polymorphisms: A Review

    PubMed Central

    Mooij, Merel

    2017-01-01

    The local immune response is considered a key determinant in cervical carcinogenesis after persistent infection with oncogenic, high-risk human papillomavirus (HPV) infections. Genetic variation in various immune response genes has been shown to influence risk of developing cervical cancer, as well as progression and survival among cervical cancer patients. We reviewed the literature on associations of immunogenetic single nucleotide polymorphism, allele, genotype, and haplotype distributions with risk and progression of cervical cancer. Studies on HLA and KIR gene polymorphisms were excluded due to the abundance on literature on that subject. We show that multiple genes and loci are associated with variation in risk of cervical cancer. Rather than one single gene being responsible for cervical carcinogenesis, we postulate that variations in the different immune response genes lead to subtle differences in the effectiveness of the antiviral and antitumour immune responses, ultimately leading to differences in risk of developing cervical cancer and progressive disease after HPV infection. PMID:28280748

  20. (Oncogenic action of ionizing radiation)

    SciTech Connect

    Not Available

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. The carcinogenicity of energetic electrons was determined for comparison with the neon ion results. As in past reports we will describe progress in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) DNA strand breaks in the epidermis as a function of radiation penetration; (3) oncogene activation in radiation-induced rat skin cancers. 72 refs., 6 tabs.

  1. Fifty years of tobacco carcinogenesis research: from mechanisms to early detection and prevention of lung cancer.

    PubMed

    Hecht, Stephen S; Szabo, Eva

    2014-01-01

    The recognition of the link between cigarette smoking and lung cancer in the 1964 Surgeon General's Report initiated definitive and comprehensive research on the identification of carcinogens in tobacco products and the relevant mechanisms of carcinogenesis. The resultant comprehensive data clearly illustrate established pathways of cancer induction involving carcinogen exposure, metabolic activation, DNA adduct formation, and consequent mutation of critical genes along with the exacerbating influences of inflammation, cocarcinogenesis, and tumor promotion. This mechanistic understanding has provided a framework for the regulation of tobacco products and for the development of relevant tobacco carcinogen and toxicant biomarkers that can be applied in cancer prevention. Simultaneously, the recognition of the link between smoking and lung cancer paved the way for two additional critical approaches to cancer prevention that are discussed here: detection of lung cancer at an early, curable stage, and chemoprevention of lung cancer. Recent successes in more precisely identifying at-risk populations and in decreasing lung cancer mortality with helical computed tomography screening are notable, and progress in chemoprevention continues, although challenges with respect to bringing these approaches to the general population exist. Collectively, research performed since the 1964 Report demonstrates unequivocally that the majority of deaths from lung cancer are preventable.

  2. Synergistic chemopreventive effects of nobiletin and atorvastatin on colon carcinogenesis.

    PubMed

    Wu, Xian; Song, Mingyue; Qiu, Peiju; Rakariyatham, Kanyasiri; Li, Fang; Gao, Zili; Cai, Xiaokun; Wang, Minqi; Xu, Fei; Zheng, Jinkai; Xiao, Hang

    2017-04-01

    Different cancer chemopreventive agents may act synergistically and their combination may produce enhanced protective effects against carcinogenesis than each individual agent alone. Herein, we investigated the chemopreventive effects of nobiletin (NBT, a citrus polymethoxyflavone) and atorvastatin (ATST, a lipid-lowering drug) in colon cancer cells/macrophages and an azoxymethane (AOM)-induced colon carcinogenesis rat model. The results demonstrated that co-treatments of NBT/ATST produced enhanced growth inhibitory and anti-inflammatory effects on the colon cancer cells and macrophages, respectively. Isobologram analysis confirmed that these interactions between NBT and ATST were synergistic. NBT/ATST co-treatment also synergistically induced extensive cell cycle arrest and apoptosis in colon cancer cells. Oral administration of NBT (0.1%, w/w in diet) or ATST (0.04%, w/w in diet) significantly decreased colonic tumor incidence and multiplicity in AOM-treated rats. Most importantly, co-treatment of NBT/ATST at their half doses (0.05% NBT + 0.02% ATST, w/w in diet) resulted in even stronger inhibitory effects on colonic tumor incidence and multiplicity than did NBT or ATST alone at higher doses. Statistical analysis confirmed that the enhanced chemopreventive activities against colon carcinogenesis in rats by the NBT/ATST combination were highly synergistic. Our results further demonstrated that NBT/ATST co-treatment profoundly modulated key cellular signaling regulators associated with inflammation, cell proliferation, cell cycle progression, apoptosis, angiogenesis and metastasis in the colon of AOM-treated rats. In conclusion, for the first time, our results demonstrated a strong synergy in inhibiting colon carcinogenesis produced by the co-treatment of NBT and ATST, which provided a scientific basis for using NBT in combination with ATST for colon cancer chemoprevention in humans. © The Author 2017. Published by Oxford University Press. All rights reserved

  3. Modulation of PPAR-Gamma Signaling in Prostatic Carcinogenesis

    DTIC Science & Technology

    2011-05-01

    Modulation of PPAR - Gamma Signaling in Prostatic Carcinogenesis 5. Award Number W81XWH-07-1-0479 6. Author(s) Simon W. Hayward, PhD 7...These findings validate the potential for chemopreventive uses for PPAR  agonists . During the life of the gran t unexpected side effects of the TZD... PPAR  agonists resulted in the withdrawal of these drugs from the market. We are investigating this as well as clinical links between T ZD use and

  4. Modulation of PPAR-Gamma Signaling in Prostatic Carcinogenesis

    DTIC Science & Technology

    2009-09-01

    AD_________________ AWARD NUMBER: W81XWH-07-1-0479 TITLE: Modulation of PPAR -Gamma Signaling in...REPORT TYPE Annual 3. DATES COVERED 1 Sep 2008 – 1 Sep 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Modulation of PPAR -Gamma Signaling in...4 Annual Report PCRP Idea Development Award W81XWH-07-1-0479 Modulation of PPAR -Gamma Signaling in Prostatic Carcinogenesis P.I. Simon W

  5. Colon epithelial proliferation and carcinogenesis in diet-induced obesity.

    PubMed

    Takahashi, Hirokazu; Hosono, Kunihiro; Endo, Hiroki; Nakajima, Atsushi

    2013-12-01

    Colorectal cancer is the third leading cause of cancer death in Japan and the United States and is strongly associated with obesity, especially visceral obesity. Several metabolic mediators, such as adiponectin, have been suspected to play a role in obesity-related carcinogenesis. In a previous human study, the existence of a significant correlation between the number of human dysplastic aberrant crypt foci (ACF) and the visceral fat area was demonstrated, and also that of a significant inverse correlation between the number of dysplastic ACF and the plasma adiponectin level. Other studies have investigated the effect of adiponectin under the normal and high-fat diet conditions in a mouse model of azoxymethane-induced colon cancer. Enhanced formation of both ACF and tumors was observed in the adiponectin-deficient mice, as compared with that in the wild-type, under the high-fat diet condition but not under the normal diet condition. Furthermore, that the 5'-AMP-activated kinase/mammalian target of rapamycin pathway is involved in the promotion of colorectal carcinogenesis in adiponectin-deficient mice under the high-fat diet condition was shown. Therefore, that the 5'-AMP-activated kinase/mammalian target of rapamycin signaling pathway may play an important role in colorectal carcinogenesis was speculated. Metformin, a biguanide derivative widely used in the treatment of diabetes mellitus, has been shown to exert a suppressive effect on ACF formation in both mouse models and humans. Therefore, metformin might be a promising candidate as a safe drug for chemoprevention of colorectal carcinogenesis. Further studies with high evidence levels, such as randomized, controlled studies, are needed to clarify these relationships. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  6. Experimental Gastric Carcinogenesis in Cebus apella Nonhuman Primates

    PubMed Central

    Silva, Tanielly Cristina Raiol; Andrade Junior, Edilson Ferreira; Rezende, Alexandre Pingarilho; Carneiro Muniz, José Augusto Pereira; Lacreta Junior, Antonio Carlos Cunha; Assumpção, Paulo Pimentel; Calcagno, Danielle Queiroz; Demachki, Samia; Rabenhorst, Silvia Helena Barem; Smith, Marília de Arruda Cardoso; Burbano, Rommel Rodriguez

    2011-01-01

    The evolution of gastric carcinogenesis remains largely unknown. We established two gastric carcinogenesis models in New-World nonhuman primates. In the first model, ACP03 gastric cancer cell line was inoculated in 18 animals. In the second model, we treated 6 animals with N-methyl-nitrosourea (MNU). Animals with gastric cancer were also treated with Canova immunomodulator. Clinical, hematologic, and biochemical, including C-reactive protein, folic acid, and homocysteine, analyses were performed in this study. MYC expression and copy number was also evaluated. We observed that all animals inoculated with ACP03 developed gastric cancer on the 9th day though on the 14th day presented total tumor remission. In the second model, all animals developed pre-neoplastic lesions and five died of drug intoxication before the development of cancer. The last surviving MNU-treated animal developed intestinal-type gastric adenocarcinoma observed by endoscopy on the 940th day. The level of C-reactive protein level and homocysteine concentration increased while the level of folic acid decreased with the presence of tumors in ACP03-inoculated animals and MNU treatment. ACP03 inoculation also led to anemia and leukocytosis. The hematologic and biochemical results corroborate those observed in patients with gastric cancer, supporting that our in vivo models are potentially useful to study this neoplasia. In cell line inoculated animals, we detected MYC immunoreactivity, mRNA overexpression, and amplification, as previously observed in vitro. In MNU-treated animals, mRNA expression and MYC copy number increased during the sequential steps of intestinal-type gastric carcinogenesis and immunoreactivity was only observed in intestinal metaplasia and gastric cancer. Thus, MYC deregulation supports the gastric carcinogenesis process. Canova immunomodulator restored several hematologic measurements and therefore, can be applied during/after chemotherapy to increase the tolerability and

  7. Human somatic mutation assays as biomarkers of carcinogenesis

    SciTech Connect

    Compton, P.J.E.; Smith, M.T. ); Hooper, K. )

    1991-08-01

    This paper describes four assays that detect somatic gene mutations in humans: the hypoxanthine-guanine phosphoribosyl transferase assay, the glycophorin A assay, the HLA-A assay, and the sickle cell hemoglobin assay. Somatic gene mutations can be considered a biomarker of carcinogenesis, and assays for somatic mutation may assist epidemiologists in studies that attempt to identify factors associated with increased risks of cancer. Practical aspects of the use of these assays are discussed.

  8. Molecular Genetic Changes Associated With Colorectal Carcinogenesis Are Not Prognostic for Tumor Regression Following Preoperative Chemoradiation of Rectal Carcinoma

    SciTech Connect

    Zauber, N. Peter Marotta, Steven P.; Berman, Errol; Grann, Alison; Rao, Maithili; Komati, Naga; Ribiero, Kezia; Bishop, D. Timothy

    2009-06-01

    Purpose: Preoperative chemotherapy and radiation has become the standard of care for many patients with rectal cancer. The therapy may have toxicity and delays definitive surgery. It would therefore be desirable to identify those cancers that will not regress with preoperative therapy. We assessed a series of rectal cancers for the molecular changes of loss of heterozygosity of the APC and DCC genes, K-ras mutations, and microsatellite instability, changes that have clearly been associated with rectal carcinogenesis. Methods and Materials: Diagnostic colonoscopic biopsies from 53 patients who received preoperative chemotherapy and radiation were assayed using polymerase chain reaction techniques followed by single-stranded conformation polymorphism and DNA sequencing. Regression of the primary tumor was evaluated using the surgically removed specimen. Results: Twenty-three lesions (45%) were found to have a high degree of regression. None of the molecular changes were useful as indicators of regression. Conclusions: Recognized molecular changes critical for rectal carcinogenesis including APC and DCC loss of heterozygosity, K-ras mutations, and microsatellite instability are not useful as indicators of tumor regression following chemoradiation for rectal carcinoma.

  9. Review and evaluation of the NCI/NTP carcinogenesis bioassays

    SciTech Connect

    Hottendorf, G.H.; Pachter, I.J.

    1985-01-01

    A comparison of the carcinogenesis bioassay results obtained by the National Cancer Institute (NCI) and the National Toxicology Program (NTP) indicates that approximately one-half of the bioassays directed by both institutions were positive for carcinogenicity. The more recent 85 bioassays completed by NTP reveal a higher proportion of studies interpreted as demonstrating no evidence of carcinogenicity than represented in the initial 198 bioassays conducted by NCI. Of the 100 NCI bioassays that were not positive for carcinogenicity 3 (3%) were classified in the category of ''no evidence for carcinogenicity in two animal species.'' Of the 43 NTP bioassays that were not positive for carcinogenicity 36 (84%) were placed in the category of ''no carcinogenic effects.'' The reason for this shift from a 33:1 positive to negative ratio in the NCI bioassays to an approximately 1:1 ratio in the NTP bioassays appears to be a difference in interpretation of the adequacy of the testing. Uniform criteria for concluding that a bioassay is negative must be developed and the results of all existing and future carcinogenesis bioassays must be interpreted with these exclusive criteria. Other bioassay problems are explored, including the incomplete validation of the carcinogenesis bioassay protocol by confirmatory results with positive and negative reference agents, the apparent lack of bioavailability data for some orally administered negative compounds, the continued use of mouse hepatic neoplasia as a single discriminating parameter, the variability in the inter- and intrastudy incidence of spontaneous tumors, and the continued reliance on the maximum tolerated dose.

  10. Carcinogenesis in mouse and human cells: parallels and paradoxes.

    PubMed

    Balmain, A; Harris, C C

    2000-03-01

    It has been known since the last century that genetic changes are important in carcinogenesis [Boveri,T. (1914) Zur Frage der Erstehung Maligner Tumoren. Gustav Fischer, Jena]. Observations of tumor cells growing in tissue culture led to the prediction, even before the true nature of the genetic material was known, that alterations at the chromosomal level were critically involved in the process of neoplastic development. The past 20 years have seen the transition of carcinogenesis studies from the purely observational to the molecular genetic level. Although much more needs to be done, it is nevertheless gratifying to be able to piece together the sequence of events from carcinogen exposure, metabolism of the carcinogen to the activated form, formation of specific carcinogen-DNA adducts, misrepair leading to the fixation of mutations in particular target genes, and the resulting selective outgrowth of neoplastic cells. The nature of many of these steps has been clarified only in the relatively recent past, and only for a small number of specific target genes, but the fact that we can say with confidence that such processes occur and are causal changes in tumorigenesis represents a tremendous advance over the situation pertaining 20 years ago. The purpose of this review is to summarize the advances over this time period in our understanding of some of the genetic alterations that contribute to neoplasia, with particular emphasis on chemical carcinogenesis in rodents and the parallels with transformation of human cells.

  11. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation.

    PubMed

    Li, Wenjuan; Zhang, Chunjing; Ren, Amy; Li, Teena; Jin, Rong; Li, Guohong; Gu, Xin; Shi, Runhua; Zhao, Yunfeng

    2015-01-01

    The M2 isoform of pyruvate kinase M2 (PKM2) has been shown to be up-regulated in human skin cancers. To test whether PKM2 may be a target for chemoprevention, shikonin, a natural product from the root of Lithospermum erythrorhizon and a specific inhibitor of PKM2, was used in a chemically-induced mouse skin carcinogenesis study. The results revealed that shikonin treatment suppressed skin tumor formation. Morphological examinations and immunohistochemical staining of the skin epidermal tissues suggested that shikonin inhibited cell proliferation without inducing apoptosis. Although shikonin alone suppressed PKM2 activity, it did not suppress tumor promoter-induced PKM2 activation in the skin epidermal tissues at the end of the skin carcinogenesis study. To reveal the potential chemopreventive mechanism of shikonin, an antibody microarray analysis was performed, and the results showed that the transcription factor ATF2 and its downstream target Cdk4 were up-regulated by chemical carcinogen treatment; whereas these up-regulations were suppressed by shikonin. In a promotable skin cell model, the nuclear levels of ATF2 were increased during tumor promotion, whereas this increase was inhibited by shikonin. Furthermore, knockdown of ATF2 decreased the expression levels of Cdk4 and Fra-1 (a key subunit of the activator protein 1. In summary, these results suggest that shikonin, rather than inhibiting PKM2 in vivo, suppresses the ATF2 pathway in skin carcinogenesis.

  12. Cell Selection as Driving Force in Lung and Colon Carcinogenesis

    PubMed Central

    Schöllnberger, Helmut; Beerenwinkel, Niko; Hoogenveen, Rudolf; Vineis, Paolo

    2011-01-01

    Carcinogenesis is the result of mutations and subsequent clonal expansions of mutated, selectively advantageous cells. To investigate the relative contributions of mutation versus cell selection in tumorigenesis, we compared two mathematical models of carcinogenesis in two different cancer types: lung and colon. One approach is based on a population genetics model, the Wright-Fisher process, whereas the other approach is the two-stage clonal expansion model. We compared the dynamics of tumorigenesis predicted by the two models in terms of the time period until the first malignant cell appears, which will subsequently form a tumor. The mean waiting time to cancer has been calculated approximately for the evolutionary colon cancer model. Here, we derive new analytic approximations to the median waiting time for the two-stage lung cancer model and for a multistage approximation to the Wright-Fisher process. Both equations show that the waiting time to cancer is dominated by the selective advantage per mutation and the net clonal expansion rate, respectively, whereas the mutation rate has less effect. Our comparisons support the idea that the main driving force in lung and colon carcinogenesis is Darwinian cell selection. PMID:20656803

  13. A genetic model for gallbladder carcinogenesis and its dissemination

    PubMed Central

    Barreto, S. G.; Dutt, A.; Chaudhary, A.

    2014-01-01

    Gallbladder cancer, although regarded as the most common malignancy of the biliary tract, continues to be associated with a dismal overall survival even in the present day. While complete surgical removal of the tumour offers a good chance of cure, only a fraction of the patients are amenable to curative surgery owing to their delayed presentation. Moreover, the current contribution of adjuvant therapies towards prolonging survival is marginal, at best. Thus, understanding the biology of the disease will not only enable a better appreciation of the pathways of progression but also facilitate the development of an accurate genetic model for gallbladder carcinogenesis and dissemination. This review provides an updated, evidence-based model of the pathways of carcinogenesis in gallbladder cancer and its dissemination. The model proposed could serve as the scaffolding for elucidation of the molecular mechanisms involved in gallbladder carcinogenesis. A better understanding of the pathways involved in gallbladder tumorigenesis will serve to identify patients at risk for the cancer (and who thus could be offered prophylactic cholecystectomy) as well as aid oncologists in planning the most suitable treatment for a particular patient, thereby setting us on the vanguard of transforming the current treatment paradigm for gallbladder cancer. PMID:24705974

  14. Integrative Radiation Biology

    SciTech Connect

    Barcellos-Hoff, Mary Helen

    2015-02-27

    We plan to study tissue-level mechanisms important to human breast radiation carcinogenesis. We propose that the cell biology of irradiated tissues reveals a coordinated multicellular damage response program in which individual cell contributions are primarily directed towards suppression of carcinogenesis and reestablishment of homeostasis. We identified transforming growth factor β1 (TGFβ) as a pivotal signal. Notably, we have discovered that TGFβ suppresses genomic instability by controlling the intrinsic DNA damage response and centrosome integrity. However, TGFβ also mediates disruption of microenvironment interactions, which drive epithelial to mesenchymal transition in irradiated human mammary epithelial cells. This apparent paradox of positive and negative controls by TGFβ is the topic of the present proposal. First, we postulate that these phenotypes manifest differentially following fractionated or chronic exposures; second, that the interactions of multiple cell types in tissues modify the responses evident in this single cell type culture models. The goals are to: 1) study the effect of low dose rate and fractionated radiation exposure in combination with TGFβ on the irradiated phenotype and genomic instability of non-malignant human epithelial cells; and 2) determine whether stromal-epithelial interactions suppress the irradiated phenotype in cell culture and the humanized mammary mouse model. These data will be used to 3) develop a systems biology model that integrates radiation effects across multiple levels of tissue organization and time. Modeling multicellular radiation responses coordinated via extracellular signaling could have a significant impact on the extrapolation of human health risks from high dose to low dose/rate radiation exposure.

  15. A stochastic carcinogenesis model incorporating genomic instability fitted to colon cancer data.

    PubMed

    Little, M P; Wright, E G

    2003-06-01

    A generalization of the two-mutation stochastic carcinogenesis model of Moolgavkar, Venzon and Knudson and certain models constructed by Little is developed; the model incorporates progressive genomic instability and an arbitrary number of mutational stages. This model is shown to have the property that, at least in the case when the parameters of the model are eventually constant, the excess relative and absolute cancer rates following changes in any of the parameters will eventually tend to zero. It is also shown that when the parameters governing the processes of cell division, death, or additional mutation (whether of the normal sort or that resulting in genomic destabilization) at the penultimate stage are subject to perturbations, there are relatively large fluctuations in the hazard function for the model, which start almost as soon as the parameters are changed. The model is fitted to US Caucasian colon cancer incidence data. A model with five stages and two levels of genomic destabilization fits the data well. Comparison with patterns of excess risk in the Japanese atomic bomb survivor colon cancer incidence data indicate that radiation might act on early mutation rates in the model; a major role for radiation in initiating genomic destabilization is less likely.

  16. Genotoxicity Induced by Dental Materials: A Comprehensive Review.

    PubMed

    Ribeiro, Daniel Araki; Yujra, Veronica Quispe; DE Moura, Carolina Foot Gomes; Handan, Bianca Andrade; DE Barros Viana, Milena; Yamauchi, Liria Yuri; Castelo, Paula Midori; Aguiar, Odair

    2017-08-01

    Genotoxicity is the capacity of an agent to produce damage in the DNA molecule. Considering the strong evidence for a relationship between genetic damage and carcinogenesis, evaluation of genotoxicity induced by dental materials is necessary for elucidating the true health risks to patients and professionals. The purpose of this article was to provide a comprehensive review of genotoxicity induced by dental materials. All published data showed some evidence of genotoxicity, especially related to dental bleaching, restorative materials and endodontic compounds. Certainly, such information will be added to that already established for regulatory purposes as a safe way to promote oral healthcare and prevent oral carcinogenesis. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Space radiation health research, 1991-1992

    SciTech Connect

    Jablin, M.H.; Brooks, C.; Ferraro, G.; Dickson, K.J.; Powers, J.V.; Wallace-Robinson, J.; Zafren, B.

    1993-10-01

    The present volume is a collection of 227 abstracts of radiation research sponsored by the NASA Space Radiation Health Program for the period 1991-1992. Each abstract has been categorized within one of three discipline areas: Physics, Biology and Risk Assessment. Topic areas within each discipline have been assigned as follows: Physics - Atomic Physics, Theory, Cosmic Ray and Astrophysics, Experimental, Environments and Environmental Models, Solar Activity and Prediction, Experiments, Radiation Transport and Shielding, Theory and Model Development, Experimental Studies, and Instrumentation. Biology - Biology, Molecular Biology, Cellular Radiation Biology, Transformation, Mutation, Lethality, Survival, DNA Damage and Repair, Tissue, Organs, and Organisms, In Vivo/In Vitro Systems, Carcinogenesis and Life Shortening, Cataractogenesis, Genetics/Developmental, Radioprotectants, Plants, and Other Effects. Risk Assessment - Risk Assessment, Radiation Health and Epidemiology, Space Flight Radiation Health Physics, Inter- and Intraspecies Extrapolation and Radiation Limits and Standards. Section I contains refereed journals; Section II contains reports/meetings. Keywords and author indices are provided.

  18. Pharmacological inhibition of MAGL attenuates experimental colon carcinogenesis.

    PubMed

    Pagano, Ester; Borrelli, Francesca; Orlando, Pierangelo; Romano, Barbara; Monti, Martina; Morbidelli, Lucia; Aviello, Gabriella; Imperatore, Roberta; Capasso, Raffaele; Piscitelli, Fabiana; Buono, Lorena; Di Marzo, Vincenzo; Izzo, Angelo A

    2017-05-01

    Colorectal cancer (CRC) is a major health problem in Western countries. The endocannabinoid 2-arachidonoyl-glycerol (2-AG) exerts antiproliferative actions in a number of tumoral cell lines, including CRC cells. Monoacylglycerol lipase (MAGL), a serine hydrolase that inactivates 2-AG, is highly expressed in aggressive human cancer cells. Here, we investigated the role of MAGL in experimental colon carcinogenesis. The role of MAGL was assessed in vivo by using the xenograft and the azoxymethane models of colon carcinogenesis; MAGL expression was evaluated by RT-PCR and immunohistochemistry; 2-AG levels were measured by liquid chromatography mass spectrometry; angiogenesis was evaluated in tumor tissues [by microvessel counting and by investigating the expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) proteins] as well as in human umbilical vein endothelial cells (HUVEC); cyclin D1 was evaluated by RT-PCR. MAGL and 2-AG were strongly expressed in tumor tissues. The MAGL inhibitor URB602 reduced xenograft tumor volume, this effect being associated to down-regulation of VEGF and FGF-2, reduction in the number of vessels and down-regulation of cyclin D1. In HUVEC, URB602 exerted a direct antiangiogenic effect by inhibiting FGF-2 induced proliferation and migration, and by modulating pro/anti-angiogenic agents. In experiments aiming at investigating the role of MAGL in chemoprevention, URB602 attenuated azoxymethane-induced preneoplastic lesions, polyps and tumors. MAGL, possibly through modulation of angiogenesis, plays a pivotal role in experimental colon carcinogenesis. Pharmacological inhibition of MAGL could represent an innovative therapeutic approach to reduce colorectal tumor progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Interplay of LncRNA-H19 and Its Binding Partners in Physiological Process and Gastric Carcinogenesis

    PubMed Central

    Zhang, Li; Zhou, Yuhang; Huang, Tingting; Cheng, Alfred S. L.; Yu, Jun; Kang, Wei; To, Ka Fai

    2017-01-01

    Long non-coding RNA (lncRNA), a novel and effective modulator in carcinogenesis, has become a study hotspot in recent years. The imprinted oncofetal lncRNA H19 is one of the first identified imprinted lncRNAs with a high expression level in embryogenesis but is barely detectable in most tissues after birth. Aberrant alterations of H19 expression have been demonstrated in various tumors, including gastric cancer (GC), implicating a crucial role of H19 in cancer progression. As one of the top malignancies in the world, GC has already become a serious concern to public health with poor prognosis. The regulatory roles of H19 in gastric carcinogenesis have been explored by various research groups, which leads to the development of GC therapy. This review comprehensively summarizes the current knowledge of H19 in tumorigenesis, especially in GC pathogenesis, with emphasis on the underneath molecular mechanisms depicted from its functional partners. Furthermore, the accumulated knowledge of H19 will provide better understanding on targeted therapy of GC. PMID:28230721

  20. The Interplay of LncRNA-H19 and Its Binding Partners in Physiological Process and Gastric Carcinogenesis.

    PubMed

    Zhang, Li; Zhou, Yuhang; Huang, Tingting; Cheng, Alfred S L; Yu, Jun; Kang, Wei; To, Ka Fai

    2017-02-20

    Long non-coding RNA (lncRNA), a novel and effective modulator in carcinogenesis, has become a study hotspot in recent years. The imprinted oncofetal lncRNA H19 is one of the first identified imprinted lncRNAs with a high expression level in embryogenesis but is barely detectable in most tissues after birth. Aberrant alterations of H19 expression have been demonstrated in various tumors, including gastric cancer (GC), implicating a crucial role of H19 in cancer progression. As one of the top malignancies in the world, GC has already become a serious concern to public health with poor prognosis. The regulatory roles of H19 in gastric carcinogenesis have been explored by various research groups, which leads to the development of GC therapy. This review comprehensively summarizes the current knowledge of H19 in tumorigenesis, especially in GC pathogenesis, with emphasis on the underneath molecular mechanisms depicted from its functional partners. Furthermore, the accumulated knowledge of H19 will provide better understanding on targeted therapy of GC.

  1. Role of adiponectin in obesity related gastrointestinal carcinogenesis.

    PubMed

    Nagaraju, Ganji Purnachandra; Aliya, Sheik; Alese, Olatunji Boladale

    2015-02-01

    Adiponectin is produced in the white adipose tissue and is known to have anti-metabolic and anti-inflammatory properties. Serum/plasma adiponectin levels depend on diet, physical activity, and inheritance. Epidemiologic observations suggest a potential link between obesity and gastrointestinal malignancies. Low levels of adiponectin, which are known to occur in obesity, may contribute to the high incidence of cancer in this population. This review discusses the biochemical and molecular evidence regarding the relationship between adiponectin and gastrointestinal carcinogenesis and provides several future perspectives on the role of adiponectin as a target for prevention and therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Helicobacter pylori infection, gastrin and cyclooxygenase-2 in gastric carcinogenesis.

    PubMed

    Shao, Yun; Sun, Kun; Xu, Wei; Li, Xiao-Lin; Shen, Hong; Sun, Wei-Hao

    2014-09-28

    Gastric cancer is one of the most frequent neoplasms and a main cause of death worldwide, especially in China and Japan. Numerous epidemiological, animal and experimental studies support a positive association between chronic Helicobacter pylori (H. pylori) infection and the development of gastric cancer. However, the exact mechanism whereby H. pylori causes gastric carcinogenesis remains unclear. It has been demonstrated that expression of cyclooxygenase-2 (COX-2) is elevated in gastric carcinomas and in their precursor lesions. In this review, we present the latest clinical and experimental evidence showing the role of gastrin and COX-2 in H. pylori-infected patients and their possible association with gastric cancer risk.

  3. Biological models and statistical interactions: an example from multistage carcinogenesis.

    PubMed

    Siemiatycki, J; Thomas, D C

    1981-12-01

    From the assessment of statistical interaction between risk factors it is tempting to infer the nature of the biologic interaction between the factors. However, the use of statistical analyses of epidemiologic data to infer biologic processes can be misleading. as an example, we consider the multistage model of carcinogenesis. Under this biologic model, it is shown, by means of simple hypothetical examples, that even if carcinogenic factors act independently, some pairs may fit an additive statistical model, some a multiplicative statistical model, and some neither. The elucidation of biological interactions by means of statistical models requires the imaginative and prudent use of inductive and deductive reasoning; it cannot be done mechanically.

  4. Evolution of cell interactions with extracellular matrix during carcinogenesis.

    PubMed

    Alexandrova, A Y

    2008-07-01

    Interaction of cells with extracellular matrix (ECM) largely defines migration capacity of cells and ways of their dissemination in normal tissue processes and during tumor progression. We review current knowledge about structure of cell adhesions with ECM and their alterations during carcinogenesis. We analyze how changes in structure of cell-matrix adhesions and ECM itself lead to acquisition of neoplastic properties by cells. Modern concepts of tumor cell motility and changes in the relationships of cells with ECM during tumor development are presented. Contemporary approaches for influencing the cell-ECM adhesion structures for inhibition of invasion and metastasis are briefly discussed.

  5. The Role of Hormonal and Dietary Factors in Pancreatic Carcinogenesis

    PubMed Central

    Christopoulou, A.; Blanc, F.

    1993-01-01

    The pancreatic cancer continues to represent an important problem, as a cancer with extremely poor prognosis. To date more than 16 chemicals have been shown to induce pancreatic tumors, in animal models. The tumors developed in rats are essentially of acinar type and those in hamsters mostly of ductal type. Many studies proved the direct or indirect role of hormonal and dietary factors in pancreatic cancer. The development of alternative treatments according to biological and biochemical steps of carcinogenesis is available as adjuvant treatment. We present herein an overview of current experimental and clinical results in order to understand the evolution, histogenesis and biological behaviour of pancreatic cancer. PMID:8489964

  6. Roles of SPARC in urothelial carcinogenesis, progression and metastasis

    PubMed Central

    Said, Neveen

    2016-01-01

    Secreted Protein Acidic and Rich in Cysteine (SPARC) is a matricellular glycoprotein that is implicated in myriad physiological and pathological conditions characterized by extensive remodeling and plasticity. The functions and disease association of SPARC in cancer is being increasingly appreciated as it plays multi-faceted contextual roles depending on the cancer type, cell of origin and the unique cancer milieu at both primary and metastatic sites. Herein we will review our current knowledge of the role of SPARC in the multistep cascades of urinary bladder carcinogenesis, progression and metastasis from preclinical models and clinical data and shine the light on its prognostic and therapeutic potentials. PMID:27564266

  7. Epithelial Notch signaling is a limiting step for pancreatic carcinogenesis.

    PubMed

    Thomas, Marsha M; Zhang, Yaqing; Mathew, Esha; Kane, Kevin T; Maillard, Ivan; Pasca di Magliano, Marina

    2014-11-22

    Pancreatic cancer is one of the deadliest human malignancies, with few therapeutic options. Re-activation of embryonic signaling pathways is commonly in human pancreatic cancer and provided rationale to explore inhibition of these pathways therapeutically. Notch signaling is important during pancreatic development, and it is re-activated in pancreatic cancer. The functional role of Notch signaling during pancreatic carcinogenesis has been previously characterized using both genetic and drug-based approaches. However, contrasting findings were reported based on the study design. In fact, Notch signaling has been proposed to act as tumor-promoter or tumor-suppressor. Given the availability of Notch inhibitors in the clinic, understanding how this signaling pathway contributes to pancreatic carcinogenesis has important therapeutic implications. Here, we interrogated the role of Notch signaling specifically in the epithelial compartment of the pancreas, in the context of a genetically engineered mouse model of pancreatic cancer. To inhibit Notch signaling in the pancreas epithelium, we crossed a mouse model of pancreatic cancer based on pancreas-specific expression of mutant Kras with a transgenic mouse that conditionally expresses a dominant negative form of the Mastermind-like 1 gene. MAML is an essential co-activator of the canonical Notch signaling-mediated transcription. DNMAML encodes a truncated MAML protein that represses all canonical Notch mediated transcription in a cell autonomous manner, independent of which Notch receptor is activated. As a result, in mice co-expressing mutant Kras and DNMAML, Notch signaling is inhibited specifically in the epithelium upon Cre-mediated recombination. We explored the effect of epithelial-specific DNMAML expression on Kras-driven carcinogenesis both during normal aging and following the induction of acute pancreatitis. We find that DNMAML expression efficiently inhibits epithelial Notch signaling and delays PanIN formation

  8. Repair of radiation damage in mammalian cells

    SciTech Connect

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis.

  9. Biologically based multistage modeling of radiation effects

    SciTech Connect

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of epidemiologic studies using multistage

  10. Chemoprevention of rat liver toxicity and carcinogenesis by Spirulina

    PubMed Central

    Ismail, Mohamed F; Ali, Doaa A; Fernando, Augusta; Abdraboh, Mohamed E; Gaur, Rajiv L; Ibrahim, Wael M; Raj, Madhwa HG; Ouhtit, Allal

    2009-01-01

    Spirulina platensis (SP) is a filamentous cyanobacterium microalgae with potent dietary phyto-antioxidant, anti-inflammatory and anti-cancerous properties. The present study aimed to investigate the chemopreventive effect of SP against rat liver toxicity and carcinogenesis induced by dibutyl nitrosamine (DBN) precursors, and further characterized its underlying mechanisms of action in HepG2 cell line. Investigation by light and electron microscopy showed that DBN treatment induced severe liver injury and histopathological abnormalities, which were prevented by SP supplementation. The incidence of liver tumors was significantly reduced from 80 to 20% by SP. Immunohistochemical results indicated that both PCNA and p53 were highly expressed in the liver of DBN-treated rats, but were significantly reduced by SP supplementation. Molecular analysis indicated that SP treatment inhibited cell proliferation, which was accompanied by increased p21 and decreased Rb expression levels at 48hrs post-treatment. In addition, SP increased Bax and decreased Bcl-2 expression, indicating induction of apoptosis by 48hrs. This is the first report of the in vivo chemopreventive effect of SP against DBN-induced rat liver cytotoxicity and carcinogenesis, suggesting its potential use in chemoprevention of cancer. PMID:19521547

  11. Role of the chronic bacterial infection in urinary bladder carcinogenesis

    SciTech Connect

    Higgy, N.A.

    1985-01-01

    The purpose of this thesis was to determine whether or not bacterial infection of the urinary bladder had a role in urinary bladder carcinogenesis. To investigate this proposition, four separate studies were conducted. The first study developed an experimental animal model where bacterial infection of the urinary bladder could be introduced and maintained for a period in excess of one year. The method of infection, inoculation of bacteria (Escherichia coli type 04) subserosally into the vesical wall, successfully caused persistent infection in the majority of animals. In the second study the temporal effects of bacterial infection on the induction of urothelial ornithine decarboxylase (ODC) and /sup 3/H-thymidine uptake and DNA synthesis were examined. Bacterial infection of the urinary bladder induced urothelial ODC with a peak in enzyme activity 6 hr after infection./sup 3/H-Thymidine uptake and DNA synthesis peaked 48 hr after infection and coincided with the urothelial hyperplasia that occurred in response to the infection. In the third study the specific bladder carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) was given to rats concurrent with the urinary bacterial infection. In the fourth study rats were administered sodium nitrate and either dibutylamine or piperazine in the drinking water. The infected group developed bladder tumors while none were detected in the non-infected rats. From these studies it may be concluded that bacterial infection may have a significant role in the process of urinary bladder carcinogenesis.

  12. Glutaminolysis and carcinogenesis of oral squamous cell carcinoma.

    PubMed

    Cetindis, Marcel; Biegner, Thorsten; Munz, Adelheid; Teriete, Peter; Reinert, Siegmar; Grimm, Martin

    2016-02-01

    Glutaminolysis is a crucial factor for tumor metabolism in the carcinogenesis of several tumors but has not been clarified for oral squamous cell carcinoma (OSCC) yet. Expression of glutaminolysis-related solute carrier family 1, member 5 (SLC1A5)/neutral amino acid transporter (ASCT2), glutaminase (GLS), and glutamate dehydrogenase (GLDH) was analyzed in normal oral mucosa (n = 5), oral precursor lesions (simple hyperplasia, n = 11; squamous intraepithelial neoplasia, SIN I-III, n = 35), and OSCC specimen (n = 42) by immunohistochemistry. SLC1A5/ASCT2 and GLS were significantly overexpressed in the carcinogenesis of OSCC compared with normal tissue, while GLDH was weakly detected. Compared with SIN I-III SLC1A5/ASCT2 and GLS expression were significantly increased in OSCC. GLDH expression did not significantly differ from SIN I-III compared with OSCC. This study shows the first evidence of glutaminolysis-related SLC1A5/ASCT2, GLS, and GLDH expression in OSCC. The very weak GLDH expression indicates that glutamine metabolism is rather related to nucleotide or protein/hexosamine biosynthesis or to the function as an antioxidant (glutathione) than to energy production or generation of lactate through entering the tricarboxylic acid cycle. Overcoming glutaminolysis by targeting c-Myc oncogene (e.g. by natural compounds) and thereby cross-activation of mammalian target of rapamycin complex 1 or SLC1A5/ASCT2, GLS inhibitors may be a useful strategy to sensitize cancer cells to common OSCC cancer therapies.

  13. What gastric cancer proteomic studies show about gastric carcinogenesis?

    PubMed

    Leal, Mariana Ferreira; Wisnieski, Fernanda; de Oliveira Gigek, Carolina; do Santos, Leonardo Caires; Calcagno, Danielle Queiroz; Burbano, Rommel Rodriguez; Smith, Marilia Cardoso

    2016-08-01

    Gastric cancer is a complex, heterogeneous, and multistep disease. Over the past decades, several studies have aimed to determine the molecular factors that lead to gastric cancer development and progression. After completing the human genome sequencing, proteomic technologies have presented rapid progress. Differently from the relative static state of genome, the cell proteome is dynamic and changes in pathologic conditions. Proteomic approaches have been used to determine proteome profiles and identify differentially expressed proteins between groups of samples, such as neoplastic and nonneoplastic samples or between samples of different cancer subtypes or stages. Therefore, proteomic technologies are a useful tool toward improving the knowledge of gastric cancer molecular pathogenesis and the understanding of tumor heterogeneity. This review aimed to summarize the proteins or protein families that are frequently identified by using high-throughput screening methods and which thus may have a key role in gastric carcinogenesis. The increased knowledge of gastric carcinogenesis will clearly help in the development of new anticancer treatments. Although the studies are still in their infancy, the reviewed proteins may be useful for gastric cancer diagnosis, prognosis, and patient management.

  14. Prevention of colon carcinogenesis by components of dietary fiber.

    PubMed

    Reddy, B S

    1999-01-01

    Cancer of the colon is one of the leading causes of cancer death in Western countries and is increasing rapidly in Japan. Epidemiological and laboratory animal model studies have suggested an inverse relationship between colon cancer risk and intake of fiber-rich foods. The protective effect of dietary fiber which comprises a heterogeneous group of nonstarch polysaccharides such as cellulose, hemicellulose, and pectin and noncarbohydrate substances such as phytic acid depends on the nature and source of fiber in the diet. Laboratory animal models have consistently shown that dietary administration of wheat bran reduced colon tumorigenesis. Human diet intervention studies have demonstrated that supplemental wheat bran in the diet decreased the formation of putative metabolites such as secondary bile acids and diacylglycerol in the colon that have been shown to act as tumor promoters in the colon. Among the components of dietary fiber, especially wheat bran, phytic acid (inositol hexaphosphate) has been studied extensively for its chemopreventive properties against colon carcinogenesis in the laboratory animal models. In studies carried out to date, dietary phytic acid reduced the incidence of colonic aberrant crypt foci, putative preneoplastic lesions in rats. Oral administration of phytic acid was shown to inhibit colon carcinogenesis in rodents during the initiation and postinitiation stages. These studies provide evidence for potential chemopreventive properties of phytic acid against colon cancer. With regard to mode of action, phytic acid acts as an antioxidant, to reduce the rate of cell proliferation and to augment the immune response by enhancing the activity of natural killer (NK) cells.

  15. Genetic background of carcinogenesis in the thyroid gland.

    PubMed

    Lewiński, Andrzej; Wojciechowska, Katarzyna

    2007-04-01

    The process of carcinogenesis is permanently one of the most interesting and significant issues for researchers in different fields of medicine. Therefore, we attempted to bring closer the problem of neoplastic transformation in the thyroid gland. This article covers the latest data about genetic factors, involved in thyroid carcinogenesis. We have presented results of the most recent studies referred to molecular biology of thyroid neoplasms. We have demonstrated not only the genetic background of cancers, derived from the thyroid follicular cell, but also genetic aspects related to medullary thyroid carcinoma and some benign thyroid lesions. The review describes DNA methylation disturbances and the mutations in thyrotropin receptor and G protein genes. Furthermore, we introduce the results of studies performed at our laboratory, concerning mutations in the following protooncogenes: RAS, RET, Trk, MET, and BRAF. Also, we present our data, regarding the loss of heterozygosity (LOH) in the short arm of chromosome 3. Additionally, we discuss overexpression of cyclin D1 gene in benign and malignant thyroid lesions. Previous studies performed at our laboratory indicate the role of IGF-I in the pathogenesis and invasiveness of thyroid cancers. The review indicates that progress in genetics of the thyroid cancer is extremely rapid.

  16. Langerhans Cells Facilitate UVB-induced Epidermal Carcinogenesis

    PubMed Central

    Lewis, Julia M.; Bürgler, Christina D.; Freudzon, Marianna; Golubets, Kseniya; Gibson, Juliet F.; Filler, Renata B.; Girardi, Michael

    2015-01-01

    Ultraviolet B (UVB) light is considered the major environmental inducer of human keratinocyte DNA mutations, including within the tumor-suppressor gene p53, and chronic exposure is associated with cutaneous squamous cell carcinoma (SCC) formation. Langerhans cells (LC) comprise a dendritic network within the suprabasilar epidermis, yet the role of LC in UVB-induced carcinogenesis is largely unknown. Herein, we show that LC-intact epidermis develops UVB-induced tumors more readily than LC-deficient epidermis. While levels of epidermal cyclopyrimidine dimers (CPD) following acute UVB exposure are equivalent in the presence or absence of LC, chronic UVB-induced p53 mutant clonal islands expand more readily in association with LC which remain largely intact and are preferentially found in proximity to the expanding mutant keratinocyte populations. The observed LC facilitation of mutant p53 clonal expansion is completely αβ and γδ T-cell independent, and is associated with increased intraepidermal expression of interleukin (IL)-22 and the presence of group 3 innate lymphoid cells (ILC3). These data demonstrate that LC play a key role in UVB-induced cutaneous carcinogenesis, and suggest that LC locally stimulate keratinocyte proliferation and innate immune cells that provoke tumor outgrowth. PMID:26053049

  17. Viral Carcinogenesis: Factors Inducing DNA Damage and Virus Integration

    PubMed Central

    Chen, Yan; Williams, Vonetta; Filippova, Maria; Filippov, Valery; Duerksen-Hughes, Penelope

    2014-01-01

    Viruses are the causative agents of 10%–15% of human cancers worldwide. The most common outcome for virus-induced reprogramming is genomic instability, including accumulation of mutations, aberrations and DNA damage. Although each virus has its own specific mechanism for promoting carcinogenesis, the majority of DNA oncogenic viruses encode oncogenes that transform infected cells, frequently by targeting p53 and pRB. In addition, integration of viral DNA into the human genome can also play an important role in promoting tumor development for several viruses, including HBV and HPV. Because viral integration requires the breakage of both the viral and the host DNA, the integration rate is believed to be linked to the levels of DNA damage. DNA damage can be caused by both endogenous and exogenous factors, including inflammation induced by either the virus itself or by co-infections with other agents, environmental agents and other factors. Typically, cancer develops years to decades following the initial infection. A better understanding of virus-mediated carcinogenesis, the networking of pathways involved in transformation and the relevant risk factors, particularly in those cases where tumorigenesis proceeds by way of virus integration, will help to suggest prophylactic and therapeutic strategies to reduce the risk of virus-mediated cancer. PMID:25340830

  18. Validation of an HPV16-mediated carcinogenesis mouse model.

    PubMed

    De Azambuja, Katherine; Barman, Provabati; Toyama, Joy; Elashoff, David; Lawson, Gregory W; Williams, Lisa K; Chua, Kristofer; Lee, Deborah; Kehoe, Joseph J; Brodkorb, Andre; Schwiebert, Rebecca; Kitchen, Scott; Bhimani, Aamir; Wiley, Dorothy J

    2014-01-01

    Human papillomavirus Type 16 (HPV16) infection is a necessary but alone insufficient cause of invasive cervical cancer (ICC) and likely causes other genital cancers. Individual genetic variability influences the natural history of the neoplasm. Developing a variety of animal models to investigate HPV16-mediated carcinogenesis is important to Phase 1 trials for human cancer treatments. C57BL/6 mice expressing the HPV16-E7 transgene were treated with 100 nmoles of 7,12-dimethylbenz(a)anthracene (DMBA) on dorsal-thoracolumbar skin for ≤20 weeks. Transgenic-HPV16E7 mice showed more tumors (14.11±1.49 vs. 7.2±0.73) that more quickly reached maximal size (17.53±0.53 vs. 28.75±0.67 weeks) than syngeneic controls. DMBA topically-treated C57BL/6-HPV16E7 mice developed chronic inflammation as well as benign and malignant lesions, many of which ulcerated. Histology showed that the HPV16-E7 transgene more than doubled the effect of complete carcinogenesis against a C57BL/6 background alone, strongly influencing the number, size, and time-to-maximal tumor burden for DMBA-exposed transgenic-C57BL/6 mice. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. Validation of an HPV16-mediated Carcinogenesis Mouse Model

    PubMed Central

    Azambuja, Katherine DE; Barman, Provabati; Toyama, Joy; David, Elashoff D; Lawson, Gregory W.; Williams, Lisa K.; Chua, Kristofer; Lee, Deborah; Kehoe, Joseph J.; Brodkorb, Andre; Schwiebert, Rebecca; Kitchen, Scott; Bhimani, Aamir; Wiley, Dorothy J.

    2016-01-01

    Background Human papillomavirus Type 16 (HPV16) infection is a necessary but alone insufficient cause of invasive cervical cancer (ICC) and likely causes other genital cancers. Individual genetic variability influences the natural history of neoplasm. Developing a variety of animal models to investigate HPV16-mediated carcinogenesis is important to Phase 1 trials for human cancer treatments. Methods C57BL/6 mice expressing HPV16-E7 transgene were treated with 100 nmoles of 7,12-dimethylbenz(a)anthracene (DMBA) on dorsal-thoracolumbar skin for ≤20 weeks. Results Transgenic-HPV16E7 mice showed more tumors (14.11 ±1.49 vs. 7.2 ±0.73) that more quickly reached maximal size (17.53 ±0.53 vs. 28.75 ±0.67 weeks) than syngeneic controls. Conclusion DMBA topically-treated C57BL/6-HPV16E7 mice developed chronic inflammation as well as benign and malignant lesions, many of which ulcerated. Histology showed the HPV16-E7 transgene more than doubled the effect of complete carcinogenesis against a C57BL/6 background alone, strongly influencing the number, size, and time to maximal tumor burden for DMBA-exposed transgenic-C57BL/6 mice. PMID:25189887

  20. The malignant conversion step of mouse skin carcinogenesis

    SciTech Connect

    Yuspa, S.H.; Hennings, H.; Roop, D.; Strickland, J.; Greenhalgh, D.A. )

    1990-08-01

    Multiple benign squamous papillomas commonly precede the development of an occasional squamous cell carcinoma in mouse skin carcinogenesis. The incidence of carcinomas can be enhanced by treating papilloma-bearing mice with mutagens such as urethane, nitroquinoline-N-oxide, or cisplatinum. This observation suggests that a genetic change is required for malignant conversion. The malignant phenotype is characterized by a marked reduction in the transcription of specific epidermal differentiation markers, a pattern which is useful for the early diagnosis of malignant conversion. Cells expressing a benign phenotype can be obtained by introducing the v-ras{sup Ha} oncogene into cultured epidermal cells by a replication-defective retrovirus. Alternatively, benign tumor cells can be cultured from papillomas induced by chemical carcinogens in vivo or from carcinogen-treated mouse epidermis. In all cases, the benign phenotype in vitro is characterized by an altered biological response to changes in extracellular calcium, an important determinant of the differentiation state of cultured normal keratinocytes. Transfection of cloned plasmid DNA into benign tumor cells has revealed that transforming constructs of the fos oncogene induce malignant conversion, whereas myc and adenovirus E1A oncogenes do not. Cultured normal epidermal cells, exposed to the v-ras and the v-fos oncogenes simultaneously, are malignantly transformed. Alone, the fos oncogene does not detectably alter the phenotype of normal keratinocytes. These studies indicate that a limited number of genes is involved in epidermal carcinogenesis.

  1. Chemoprevention of rat liver toxicity and carcinogenesis by Spirulina.

    PubMed

    Ismail, Mohamed F; Ali, Doaa A; Fernando, Augusta; Abdraboh, Mohamed E; Gaur, Rajiv L; Ibrahim, Wael M; Raj, Madhwa H G; Ouhtit, Allal

    2009-06-02

    Spirulina platensis (SP) is a filamentous cyanobacterium microalgae with potent dietary phyto-antioxidant, anti-inflammatory and anti-cancerous properties. The present study aimed to investigate the chemopreventive effect of SP against rat liver toxicity and carcinogenesis induced by dibutyl nitrosamine (DBN) precursors, and further characterized its underlying mechanisms of action in HepG2 cell line. Investigation by light and electron microscopy showed that DBN treatment induced severe liver injury and histopathological abnormalities, which were prevented by SP supplementation. The incidence of liver tumors was significantly reduced from 80 to 20% by SP. Immunohistochemical results indicated that both PCNA and p53 were highly expressed in the liver of DBN-treated rats, but were significantly reduced by SP supplementation. Molecular analysis indicated that SP treatment inhibited cell proliferation, which was accompanied by increased p21 and decreased Rb expression levels at 48hrs post-treatment. In addition, SP increased Bax and decreased Bcl-2 expression, indicating induction of apoptosis by 48hrs. This is the first report of the in vivo chemopreventive effect of SP against DBN-induced rat liver cytotoxicity and carcinogenesis, suggesting its potential use in chemoprevention of cancer.

  2. Oncogenic mechanisms of HOXB13 missense mutations in prostate carcinogenesis

    PubMed Central

    Cardoso, Marta; Maia, Sofia; Paulo, Paula; Teixeira, Manuel R.

    2016-01-01

    The recurrent germline mutation HOXB13 p.(Gly84Glu) (G84E) has recently been identified as a risk factor for prostate cancer. In a recent study, we have performed full sequencing of the HOXB13 gene in 462 Portuguese prostate cancer patients with early-onset and/or familial/hereditary disease, and identified two novel missense mutations, p.(Ala128Asp) (A128D) and p.(Phe240Leu) (F240L), that were predicted to be damaging to protein function. In the present work we aimed to investigate the potential oncogenic role of these mutations, comparing to that of the recurrent G84E mutation and wild-type HOXB13. We induced site-directed mutagenesis in a HOXB13 expression vector and established in vitro cell models of prostate carcinogenesis with stable overexpression of either the wild-type or the mutated HOXB13 variants. By performing in vitro assays we observed that, while the wild-type promotes proliferation, also observed with the F240L variant along with a decrease in apoptosis, the A128D mutation decreases apoptosis and promotes anchorage independent growth. No phenotypic impact was observed for the G84E mutation in the cell line model used. Our data show that specific HOXB13 mutations are involved in the acquisition of different cancer-associated capabilities and further support an oncogenic role for HOXB13 in prostate carcinogenesis. PMID:28050579

  3. Sewage sludge does not induce genotoxicity and carcinogenesis.

    PubMed

    Silva, Paula Regina Pereira; Barbisan, Luis Fernando; Dagli, Maria Lúcia Zaidan; Saldiva, Paulo Hilário Nascimento

    2012-07-01

    Through a series of experiments, the genotoxic/mutagenic and carcinogenic potential of sewage sludge was assessed. Male Wistar rats were randomly assigned to four groups: Group 1 - negative control; Group 2 - liver carcinogenesis initiated by diethylnitrosamine (DEN; 200 mg/kg i.p.); Group 3 and G4-liver carcinogenesis initiated by DEN and fed 10,000 ppm or 50,000 ppm of sewage sludge. The animals were submitted to a 70% partial hepatectomy at the 3(rd) week. Livers were processed for routine histological analysis and immunohistochemistry, in order to detect glutathione S-transferase positive altered hepatocyte foci (GST-P(+) AHF). Peripheral blood samples for the comet assay were obtained from the periorbital plexus immediately prior to sacrificing. Polychromatic erythrocytes (PCEs) were analyzed in femoral bone-marrow smears, and the frequencies of those micronucleated (MNPCEs) registered. There was no sewage-sludge-induced increase in frequency of either DNA damage in peripheral blood leucocytes, or MNPCEs in the femoral bone marrow. Also, there was no increase in the levels of DNA damage, in the frequency of MNPCEs, and in the development of GST-P AHF when compared with the respective control group.

  4. Chemically induced skin carcinogenesis: Updates in experimental models (Review)

    PubMed Central

    NEAGU, MONICA; CARUNTU, CONSTANTIN; CONSTANTIN, CAROLINA; BODA, DANIEL; ZURAC, SABINA; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.

    2016-01-01

    Skin cancer is one of the most common malignancies affecting humans worldwide, and its incidence is rapidly increasing. The study of skin carcinogenesis is of major interest for both scientific research and clinical practice and the use of in vivo systems may facilitate the investigation of early alterations in the skin and of the mechanisms involved, and may also lead to the development of novel therapeutic strategies for skin cancer. This review outlines several aspects regarding the skin toxicity testing domain in mouse models of chemically induced skin carcinogenesis. There are important strain differences in view of the histological type, development and clinical evolution of the skin tumor, differences reported decades ago and confirmed by our hands-on experience. Using mouse models in preclinical testing is important due to the fact that, at the molecular level, common mechanisms with human cutaneous tumorigenesis are depicted. These animal models resemble human skin cancer development, in that genetic changes caused by carcinogens and pro-inflammatory cytokines, and simultaneous inflammation sustained by pro-inflammatory cytokines and chemokines favor tumor progression. Drugs and environmental conditions can be tested using these animal models. keeping in mind the differences between human and rodent skin physiology. PMID:26986013

  5. Sewage sludge does not induce genotoxicity and carcinogenesis

    PubMed Central

    Silva, Paula Regina Pereira; Barbisan, Luis Fernando; Dagli, Maria Lúcia Zaidan; Saldiva, Paulo Hilário Nascimento

    2012-01-01

    Through a series of experiments, the genotoxic/mutagenic and carcinogenic potential of sewage sludge was assessed. Male Wistar rats were randomly assigned to four groups: Group 1 - negative control; Group 2 - liver carcinogenesis initiated by diethylnitrosamine (DEN; 200 mg/kg i.p.); Group 3 and G4-liver carcinogenesis initiated by DEN and fed 10,000 ppm or 50,000 ppm of sewage sludge. The animals were submitted to a 70% partial hepatectomy at the 3rd week. Livers were processed for routine histological analysis and immunohistochemistry, in order to detect glutathione S-transferase positive altered hepatocyte foci (GST-P+ AHF). Peripheral blood samples for the comet assay were obtained from the periorbital plexus immediately prior to sacrificing. Polychromatic erythrocytes (PCEs) were analyzed in femoral bone-marrow smears, and the frequencies of those micronucleated (MNPCEs) registered. There was no sewage-sludge-induced increase in frequency of either DNA damage in peripheral blood leucocytes, or MNPCEs in the femoral bone marrow. Also, there was no increase in the levels of DNA damage, in the frequency of MNPCEs, and in the development of GST-P AHF when compared with the respective control group. PMID:23055806

  6. [THE ROLE OF ESTROGENS IN THE CARCINOGENESIS OF LUNG CANCER].

    PubMed

    Uchikova, E; Uchikov, A; Dimitrakova, E; Uchikov, P

    2016-01-01

    Morbidity and mortality from lung cancer has dramatically increased in women as compared to men over the past few years. Historically, smoking has been considered the major risk factor for lung cancer regardless of gender. Several recent lines of evidence implicate gender differences in the observed differences in prevalence and histologic type which cannot be explained based on the carcinogenic action of nicotine. Several recent studies underscore the importance of reproductive and hormonal factors in the carcinogenesis of lung cancer Lung cancer morbidity and mortality in Bulgaria was 16.2/100000 women and 14.6/ 100000 women, resp. Lung cancer morbidity in Europe was 39/100000 women. Lung cancer is extremely sensitive to estrogens. The latter act directly or as effect modifiers for the relationship between smoking and lung cancer. Further research examining the relationship between serum estrogen levels and the estrogen receptor expression in normal and tumor lung tissue samples can help elucidate the importance of reproductive and hormonal (exogenous and endogenous) factors in the carcinogenesis of lung cancer.

  7. Small non-coding RNA deregulation in endometrial carcinogenesis

    PubMed Central

    Ravo, Maria; Cordella, Angela; Rinaldi, Antonio; Bruno, Giuseppina; Alexandrova, Elena; Saggese, Pasquale; Nassa, Giovanni; Giurato, Giorgio; Tarallo, Roberta; Marchese, Giovanna; Rizzo, Francesca; Stellato, Claudia; Biancardi, Rossella; Troisi, Jacopo; Di Spiezio Sardo, Attilio; Zullo, Fulvio; Weisz, Alessandro; Guida, Maurizio

    2015-01-01

    Small non-coding RNAs (sncRNAs) represent a heterogeneous group of <200nt-long transcripts comprising microRNAs, PIWI-interacting RNAs (piRNAs) and small-nucleolar-RNAs (snoRNAs) involved in physiological and pathological processes such as carcinogenesis and tumor progression. Aberrant sncRNA expression in cancer has been associated with specific clinical phenotypes, grading, staging, metastases development and resistance to therapy. Aim of the present work is to study the role of sncRNAs in endometrial carcinogenesis. Changes in sncRNA expression were identified by high-throughput genomic analysis of paired normal, hyperplastic and cancerous endometrial tissues obtained by endometrial biopsies (n = 10). Using smallRNA sequencing and microarrays we identified significant differences in sncRNA expression pattern between normal, hyperplastic and neoplastic endometrium. This led to the definition of a sncRNA signature (129 microRNAs, 2 of which not previously described, 10 piRNAs and 3 snoRNAs) of neoplastic transformation. Functional bioinformatics analysis identified as downstream targets multiple signaling pathways potentially involved in the hyperplastic and neoplastic tissue responses, including Wnt/β-catenin, and ERK/MAPK and TGF-β-Signaling. Considering the regulatory role of sncRNAs, this newly identified sncRNA signature is likely to reflect the events leading to endometrial cancer, which can be exploited to dissect the carcinogenic process including novel biomarkers for early and non-invasive diagnosis of these tumors. PMID:25686835

  8. Selenoprotein deficiency accelerates prostate carcinogenesis in a transgenic model

    PubMed Central

    Diwadkar-Navsariwala, Veda; Prins, Gail S.; Swanson, Steven M.; Birch, Lynn A.; Ray, Vera H.; Hedayat, Samad; Lantvit, Daniel L.; Diamond, Alan M.

    2006-01-01

    Considerable animal and human data have indicated that selenium is effective in reducing the incidence of several different types of cancer, including that of the prostate. However, the mechanism by which selenium inhibits carcinogenesis remains unknown. One possibility is that dietary selenium influences the levels of selenium-containing proteins, or selenoproteins. Selenoproteins contain selenium in the form of selenocysteine and perform a variety of cellular functions, including antioxidant defense. To determine whether the levels of selenoproteins can influence carcinogenesis independent of selenium intake, a unique mouse model was developed by breeding two transgenic animals: mice with reduced selenoprotein levels because of the expression of an altered selenocysteine-tRNA (i6A−) and mice that develop prostate cancer because of the targeted expression of the SV40 large T and small t oncogenes to that organ [C3(1)/Tag]. The resulting bigenic animals (i6A−/Tag) and control WT/Tag mice were assessed for the presence, degree, and progression of prostatic epithelial hyperplasia and nuclear atypia. The selenoprotein-deficient mice exhibited accelerated development of lesions associated with prostate cancer progression, implicating selenoproteins in cancer risk and development and raising the possibility that selenium prevents cancer by modulating the levels of these selenoproteins. PMID:16690748

  9. Chemoprevention of pulmonary carcinogenesis by myo-inositol.

    PubMed

    Wattenberg, L W

    1999-01-01

    This abstract summarizes material presented at the "First International Symposium on Disease Prevention by IP6 and other Rice Components "held in Kyoto, Japan in June, 1998. The presentation deals primarily with studies of chemoprevention of pulmonary carcinogenesis by myo-inositol. This compound is largely formed by the dephosphorylation of inositol hexaphosphate (IP6, phytate) within the gastrointestinal tract in humans and animals. myo-Inositol is one of a relatively few compounds that has an inhibitory effect on carcinogenesis of the lung in experimental animals when administered during the post-initiation period. It prevents pulmonary adenoma formation in A/J mice when fed in the diet subsequent to administrations of benzo[a]pyrene or the tobacco specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) to the mice. A second compound, dexamethasone, also prevents pulmonary neoplasia under the same conditions. Experiments in which both myo-inositol and dexamethasone were administered together in the diet showed an additive inhibitory effect. The significance and utility of the chemopreventive properties of these agents remains to be determined.

  10. Host Species Barriers to Jaagsiekte Sheep Retrovirus Replication and Carcinogenesis

    PubMed Central

    Martineau, Henny; De las Heras, Marcelo; Murgia, Claudio; Huang, Robert; Centorame, Patrizia; Di Francesco, Gabriella; Di Gialleonardo, Luigina; Spencer, Thomas E.; Griffiths, David J.; Palmarini, Massimo

    2013-01-01

    Understanding the factors governing host species barriers to virus transmission has added significantly to our appreciation of virus pathogenesis. Jaagsiekte sheep retrovirus (JSRV) is the causative agent of ovine pulmonary adenocarcinoma (OPA), a transmissible lung cancer of sheep that has rarely been found in goats. In this study, in order to further clarify the pathogenesis of OPA, we investigated whether goats are resistant to JSRV replication and carcinogenesis. We found that JSRV induces lung tumors in goats with macroscopic and histopathological features that dramatically differ from those in sheep. However, the origins of the tumor cells in the two species are identical. Interestingly, in experimentally infected lambs and goat kids, we revealed major differences in the number of virus-infected cells at early stages of infection. These differences were not related to the number of available target cells for virus infection and cell transformation or the presence of a host-specific immune response toward JSRV. Indeed, we also found that goats possess transcriptionally active endogenous retroviruses (enJSRVs) that likely influence the host immune response toward the exogenous JSRV. Overall, these results suggest that goat cells, or at least those cells targeted for viral carcinogenesis, are not permissive to virus replication but can be transformed by JSRV. PMID:23903827

  11. Radiation and the Microenvironment - Tumorigenesis andTherapy

    SciTech Connect

    Barcellos-Hoff, Mary Helen; Park, Catherine; Wright, Eric G.

    2005-10-01

    Radiation rapidly and persistently alters the soluble and insoluble components of the tissue microenvironment. This affects the cell phenotype, tissue composition and the physical interactions and signaling between cells. These alterations in the microenvironment can contribute to carcinogenesis and alter the tissue response to anticancer therapy. Examples of these responses and their implications are discussed with a view to therapeutic intervention.

  12. The Hedgehog signalling pathway in breast development, carcinogenesis and cancer therapy

    PubMed Central

    2013-01-01

    Despite the progress achieved in breast cancer screening and therapeutic innovations, the basal-like subtype of breast cancer (BLBC) still represents a particular clinical challenge. In order to make an impact on survival in this type of aggressive breast cancer, new targeted therapeutic agents are urgently needed. Aberrant activation of the Hedgehog (Hh) signalling pathway has been unambiguously tied to cancer development and progression in a variety of solid malignancies, and the recent approval of vismodegib, an orally bioavailable small-molecule inhibitor of Smoothened, validates Hh signalling as a valuable therapeutic target. A number of recent publications have highlighted a role for Hh signalling in breast cancer models and clinical specimens. Interestingly, Hh ligand overexpression is associated with the BLBC phenotype and a poor outcome in terms of metastasis and breast cancer-related death. In this review, we provide a comprehensive overview of the canonical Hh signalling pathway in mammals, highlight its roles in mammary gland development and breast carcinogenesis and discuss its potential therapeutic value in BLBC. PMID:23547970

  13. Genome-Wide Expression Screening Discloses Long Noncoding RNAs Involved in Thyroid Carcinogenesis.

    PubMed

    Liyanarachchi, Sandya; Li, Wei; Yan, Pearlly; Bundschuh, Ralf; Brock, Pamela; Senter, Leigha; Ringel, Matthew D; de la Chapelle, Albert; He, Huiling

    2016-11-01

    Long noncoding RNAs (lncRNAs) regulate pathological processes, yet their potential roles in papillary thyroid carcinoma (PTC) are poorly understood. To profile transcriptionally dysregulated lncRNAs in PTC and identify lncRNAs associated with clinicopathological characteristics. We performed RNA sequencing of 12 paired PTC tumors and matched noncancerous tissues and correlated the expression of lncRNAs with clinical parameters. The 2 most significantly dysregulated lncRNAs were studied in an Ohio PTC cohort (n = 109) and in PTC data (n = 497) from The Cancer Genome Atlas. A combination of laboratory-based studies and computational analysis using clinical data and samples and a publically available database. Correlation between expression values and clinical parameters. We identified 218 lncRNAs showing differential expression in PTC (fold change ≥ 2.0, P < .01). Significant correlation was observed between the expression of 2 lncRNAs (XLOC_051122 and XLOC_006074) and 1) lymph node metastasis (N stage) and 2) BRAF(V600E) mutation. Among patients with wild-type BRAF, the expression of these 2 lncRNAs showed significantly higher levels in the patients with lymph node metastasis. In silico analysis of these lncRNAs pinpointed cell movement and cellular growth and proliferation as targeted functions. Comprehensive expression screening identified 2 novel lncRNAs associated with risk factors of adverse prognosis in PTC patients. These lncRNAs may be novel players in PTC carcinogenesis.

  14. Transcriptional dynamics in colorectal carcinogenesis: new insights into the role of c-Myc and miR17 in benign to cancer transformation.

    PubMed

    Ben-David, Eyal; Bester, Assaf C; Shifman, Sagiv; Kerem, Batsheva

    2014-10-01

    Colorectal cancer develops in a sequential, evolutionary process, leading to a heterogenic tumor. Comprehensive molecular studies of colorectal cancer have been previously performed; still, the process of carcinogenesis is not fully understood. We utilized gene expression patterns from 94 samples including normal, adenoma, and adenocarcinoma colon biopsies and performed a coexpression network analysis to determine gene expression trajectories of 8,000 genes across carcinogenesis. We found that the majority of gene expression changes occur in the transition from normal tissue to adenoma. The upregulated genes, known to be involved in cellular proliferation, included c-Myc along with its targets. In a cellular model system, we show that physiologic upregulation of c-Myc can lead to cellular proliferation without DNA replication stress. Our analysis also found that carcinogenesis involves a progressive downregulation of genes that are markers of colonic tissue and propose that this reflects a perturbed differentiation of colon cells during carcinogenesis. The analysis of miRNAs targets pointed toward the involvement of miR17 in the regulation of colon cell differentiation. Finally, we found that copy-number variations (CNV) enriched in colon adenocarcinoma tend to occur in genes whose expression changes already in adenoma, with deletions occurring in genes downregulated and duplications in genes upregulated in adenomas. We suggest that the CNVs are selected to reinforce changes in gene expression, rather than initiate them. Together, these findings shed new light into the molecular processes that underlie the transformation of colon tissue from normal to cancer and add a temporal context that has been hitherto lacking. ©2014 American Association for Cancer Research.

  15. Analysis of the incidence of solid cancer among atomic bomb survivors using a two-stage model of carcinogenesis.

    PubMed

    Kai, M; Luebeck, E G; Moolgavkar, S H

    1997-10-01

    A two-stage stochastic model for carcinogenesis was used to analyze the incidence of cancer of the lung, stomach and colon in the cohort of atomic bomb survivors. We fitted the model assuming that acute exposure to radiation results in the creation of initiated cells that are added to the pool of spontaneously initiated cells. In the cancers analyzed, with the exception of lung cancer in females, we found no evidence that radiation-induced initiation was dependent upon age at exposure. In contrast, we found that spontaneous initiation was dependent upon age at exposure in the cancers analyzed except stomach cancer among males. Because exposure to radiation in this cohort occurred at the same time for all members of the cohort, age at exposure is exactly correlated with birth cohort, and the dependence of spontaneous initiation on age at exposure is a reflection of the cohort effects seen in these cancers in Japan. Even without a dependence of radiation-induced initiation on age at exposure, the two-stage model can explain the temporal behavior of the excess relative risk with age at exposure and time since exposure. In particular, the model predicts that excess relative risk is highest among those exposed as children. Moreover, since radiation-induced initiation is not higher among those exposed as children, the excess relative risk in this group is not due to an inherently higher sensitivity to radiation. Our biologically based approach provides another perspective on the temporal behavior of risk after acute exposure to ionizing radiation.

  16. Deletion of epidermal Rac1 inhibits HPV-8 induced skin papilloma formation and facilitates HPV-8- and UV-light induced skin carcinogenesis

    PubMed Central

    Deshmukh, Jayesh; Pofahl, Ruth; Pfister, Herbert; Haase, Ingo

    2016-01-01

    Overexpression and increased activity of the small Rho GTPase Rac1 has been linked to squamous cell carcinoma of the epidermis and mucosa in humans. Targeted deletion of Rac1 or inhibition of Rac1 activity in epidermal keratinocytes reduced papilloma formation in a chemical skin carcinogenesis mouse model. However, a potential role of Rac1 in HPV- and UV-light induced skin carcinogenesis has not been investigated so far, solar UV radiation being an important carcinogen to the skin. To investigate this, we deleted Rac1 or modulated its activity in mice with transgenic expression of Human papilloma virus type-8 (HPV-8) in epidermal keratinocytes. Our data show that inhibition or deletion of Rac1 results in reduced papilloma formation upon UV-irradiation with a single dose, whereas constitutive activation of Rac1 strongly increases papilloma frequency in these mice. Surprisingly, we observed that, upon chronic UV-irradiation, the majority of mice with transgenic expression of HPV-8 and epidermis specific Rac1 deletion developed squamous cell carcinomas. Taken together, our data show that Rac1 exerts a dual role in skin carcinogenesis: its activation is, on one hand, required for HPV-8- and UV-light induced papilloma formation but, on the other, suppresses the development of squamous cell carcinomas. PMID:27506937

  17. Deletion of epidermal Rac1 inhibits HPV-8 induced skin papilloma formation and facilitates HPV-8- and UV-light induced skin carcinogenesis.

    PubMed

    Deshmukh, Jayesh; Pofahl, Ruth; Pfister, Herbert; Haase, Ingo

    2016-09-06

    Overexpression and increased activity of the small Rho GTPase Rac1 has been linked to squamous cell carcinoma of the epidermis and mucosa in humans. Targeted deletion of Rac1 or inhibition of Rac1 activity in epidermal keratinocytes reduced papilloma formation in a chemical skin carcinogenesis mouse model. However, a potential role of Rac1 in HPV- and UV-light induced skin carcinogenesis has not been investigated so far, solar UV radiation being an important carcinogen to the skin.To investigate this, we deleted Rac1 or modulated its activity in mice with transgenic expression of Human papilloma virus type-8 (HPV-8) in epidermal keratinocytes. Our data show that inhibition or deletion of Rac1 results in reduced papilloma formation upon UV-irradiation with a single dose, whereas constitutive activation of Rac1 strongly increases papilloma frequency in these mice. Surprisingly, we observed that, upon chronic UV-irradiation, the majority of mice with transgenic expression of HPV-8 and epidermis specific Rac1 deletion developed squamous cell carcinomas. Taken together, our data show that Rac1 exerts a dual role in skin carcinogenesis: its activation is, on one hand, required for HPV-8- and UV-light induced papilloma formation but, on the other, suppresses the development of squamous cell carcinomas.

  18. Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses

    PubMed Central

    Rana, Sudha; Kumar, Raj; Sultana, Sarwat; Sharma, Rakesh Kumar

    2010-01-01

    Radiation incident involving living organisms is an uncommon but a very serious situation. The first step in medical management including triage is high-throughput assessment of the radiation dose received. Radiation exposure levels can be assessed from viability of cells, cellular organelles such as chromosome and different intermediate metabolites. Oxidative damages by ionizing radiation result in carcinogenesis, lowering of the immune response and, ultimately, damage to the hematopoietic system, gastrointestinal system and central nervous system. Biodosimetry is based on the measurement of the radiation-induced changes, which can correlate them with the absorbed dose. Radiation biomarkers such as chromosome aberration are most widely used. Serum enzymes such as serum amylase and diamine oxidase are the most promising biodosimeters. The level of gene expression and protein are also good biomarkers of radiation. PMID:21829314

  19. Enhancement of chemical carcinogenesis in mice by systemic effects of ultraviolet irradiation.

    PubMed

    Gensler, H L

    1988-02-01

    The present study was designed to determine the systemic influence of ultraviolet (UVB) irradiation upon subsequent carcinogenesis induced by benzo(a)pyrene. The source of UV irradiation consisted of six Westinghouse FS-40 fluorescent sunlamps. Female BALB/c mice received five 30-min dorsal UVB radiation treatments per week for 13 wk. At the end of 13 wk, irradiated and unirradiated mice received ventral applications of 0.1 or 1.0 mg of benzo(a)pyrene twice weekly for 20 or 10 wk, respectively. At 18 wk after the first benzo(a)pyrene treatment, mice receiving 0-, 0.1-, or 1.0-mg benzo(a)pyrene treatments bore 0, 12, or 29 tumors per group of 18 mice, respectively. Tumor-free survival was significantly shortened in the UV-irradiated hosts as compared with unirradiated hosts, as analyzed by the Kaplan-Meier method of survival analysis. Therefore, ultraviolet irradiation induced a systemic effect which enhanced subsequent tumor induction by benzo(a)pyrene in a manner which was dependent on the dose of benzo(a)pyrene.

  20. Animal models of chemical carcinogenesis: driving breakthroughs in cancer research for 100 years

    PubMed Central

    Kemp, Christopher J.

    2016-01-01

    Chemical carcinogenesis studies in animals have directly contributed to a reduction of cancer burden in the human population through their ability to identify carcinogens from the workplace, diet, and environment. Reduced exposure to these carcinogens through lifestyle changes, government regulation, or change in industry practices has reduced cancer incidence in exposed populations. In addition to providing the first experimental evidence for the link between chemical and radiation exposure and cancer, animal models of environmentally induced cancer have and will continue to provide important insight into the causes, mechanisms, and conceptual frameworks of cancer. More recently, combining chemical carcinogens with genetically engineered mouse models (GEMMs) has emerged as an invaluable approach to study the complex interaction between genotype and environment that contributes to cancer development. In the future, animal models of environmentally induced cancer are likely to provide insight into areas such as the epigenetic basis of cancer, genetic modifiers of cancer susceptibility, the systems biology of cancer, inflammation and cancer, and cancer prevention. PMID:26430259

  1. Evidence for the multistep nature of in vitro human epithelial cell carcinogenesis

    SciTech Connect

    Rhim, J.S.; Yoo, J.H.; Park, J.H.; Thraves, P.; Salehi, Z.; Dritschilo, A. )

    1990-09-01

    In keeping with the multistep development of human cancer in vivo, a stepwise approach to neoplastic transformation in vitro presents a reasonable strategy. We have recently developed an in vitro multistep model suitable for the study of human epithelial cell carcinogenesis. Upon infection with the adenovirus 12-simian virus 40 hybrid virus, primary human epidermal keratinocytes acquired an indefinite life span in culture but did not undergo malignant conversion. Subsequent addition of Kirsten murine sarcoma virus and human ras oncogene or chemical carcinogens (N-methyl-N{prime}-nitro-N-nitrosoguanidine or 4-nitroquinoline 1-oxide) to these cells induced morphological alterations and the acquisition of neoplastic properties. Subsequently it was found that this line could be transformed neoplastically by a variety of retrovirus-containing H-ras, bas, fes, fms, erbB, and src oncogenes. In addition, we found that the immortalized human epidermal keratinocyte (RHEK-1) line can be transformed neoplastically by exposure to ionizing radiation. Thus, this in vitro system may be useful in studying the interaction of a variety of carcinogenic agents and human epithelial cells. These findings demonstrate the malignant transformation of human primary epithelial cells in culture by the combined action of viruses, oncogenes, chemical carcinogens, or X-ray irradiation and support a multistep process for neoplastic conversion.

  2. Fish models for environmental carcinogenesis: the rainbow trout.

    PubMed Central

    Bailey, G S; Williams, D E; Hendricks, J D

    1996-01-01

    Progress over the past 30 years has revealed many strengths of the rainbow trout as an alternative model for environmental carcinogenesis research. These include low rearing costs, an early life-stage ultrasensitive bioassay, sensitivity to many classes of carcinogen, a well-described tumor pathology, responsiveness to tumor promoters and inhibitors, and a mechanistically informative nonmammalian comparative status. Low-cost husbandry, for example, has permitted statistically challenging tumor study designs with up to 10,000 trout to investigate the quantitative interrelationships among carcinogen dose, anticarcinogen dose, DNA adduct formation, and final tumor outcome. The basic elements of the trout carcinogen bioassay include multiple exposure routes, carcinogen response, husbandry requirements, and pathology. The principal known neoplasms occur in liver (mixed hepatocellular/cholangiocellular adenoma and carcinoma, hepatocellular carcinoma), kidney (nephroblastoma), swim bladder (adenopapilloma), and stomach (adenopapilloma). Trout possess a complex but incompletely characterized array of cytochromes P450, transferases, and other enzymic systems for phase I and phase II procarcinogen metabolism. In general, trout exhibit only limited capacity for DNA repair, especially for removal of bulky DNA adducts. This factor, together with a high capacity for P450 bioactivation and negligible glutathione transferase-mediated detoxication of the epoxide, accounts for the exceptional sensitivity of trout to aflatoxin B1 carcinogenesis. At the gene level, all trout tumors except nephroblastoma exhibit variable and often high incidences of oncogenic Ki-ras gene mutations. Mutations in the trout p53 tumor suppressor gene have yet to be described. There are many aspects of the trout model, especially the lack of complete organ homology, that limit its application as a surrogate for human cancer research. Within these limitations, however, it is apparent that trout and other

  3. The oncogenic action of ionizing radiation on rat skin

    SciTech Connect

    Burns, F.J.; Garte, S.J.

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. Progress is described in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) oncogene activation in radiation-induced rat skin cancers; (3) DNA strand breaks in the epidermis as a function of radiation penetration. 59 refs., 4 tabs.

  4. The effect of hypergravity on carcinogenesis in mice.

    PubMed

    Volegov, V I; Ilyin, E A

    2002-07-01

    In recent years, investigators began studying the effect of hypergravity on pathological developments in the animal and human body. It was shown that a regular exposure of tail suspended rats to normal gravity diminished osteopenia and muscle atrophy. Moderate gravitational loading produced by a G-suit dramatically increased the therapeutic success rate in children with cerebral palsy. Rotation of patients with obliterating endarteritis and limb bone fractures in a short-radius centrifuge in hospitals of the city of Samara (Russia) yielded promising results. The purpose of our investigations was to investigate the effects of hypergravity on chemically induced carcinogenesis in mice. We hypothesized that gravitational loading may produce a generalized effect on the animal body and thus to enhance its nonspecific anti-tumor resistance.

  5. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis

    PubMed Central

    Bergers, Gabriele; Brekken, Rolf; McMahon, Gerald; Vu, Thiennu H.; Itoh, Takeshi; Tamaki, Kazuhiko; Tanzawa, Kazuhiko; Thorpe, Philip; Itohara, Shigeyoshi; Werb, Zena; Hanahan, Douglas

    2010-01-01

    During carcinogenesis of pancreatic islets in transgenic mice, an angiogenic switch activates the quiescent vasculature. Paradoxically, vascular endothelial growth factor (VEGF) and its receptors are expressed constitutively. Nevertheless, a synthetic inhibitor (SU5416) of VEGF signalling impairs angiogenic switching and tumour growth. Two metalloproteinases, MMP-2/gelatinase-A and MMP-9/gelatinase-B, are upregulated in angiogenic lesions. MMP-9 can render normal islets angiogenic, releasing VEGF. MMP inhibitors reduce angiogenic switching, and tumour number and growth, as does genetic ablation of MMP-9. Absence of MMP-2 does not impair induction of angiogenesis, but retards tumour growth, whereas lack of urokinase has no effect. Our results show that MMP-9 is a component of the angiogenic switch. PMID:11025665

  6. Mouse models for the study of colon carcinogenesis

    PubMed Central

    Rosenberg, Daniel W.; Giardina, Charles; Tanaka, Takuji

    2009-01-01

    The study of experimental colon carcinogenesis in rodents has a long history, dating back almost 80 years. There are many advantages to studying the pathogenesis of carcinogen-induced colon cancer in mouse models, including rapid and reproducible tumor induction and the recapitulation of the adenoma–carcinoma sequence that occurs in humans. The availability of recombinant inbred mouse panels and the existence of transgenic, knock-out and knock-in genetic models further increase the value of these studies. In this review, we discuss the general mechanisms of tumor initiation elicited by commonly used chemical carcinogens and how genetic background influences the extent of disease. We will also describe the general features of lesions formed in response to carcinogen treatment, including the underlying molecular aberrations and how these changes may relate to the pathogenesis of human colorectal cancer. PMID:19037092

  7. Thymus in experimental carcinogenesis of the prostate gland.

    PubMed

    Borodin, Yu I; Lomshakov, A A; Astashov, V V; Kazakov, O V; Mayorov, A P; Larionov, P M

    2014-10-01

    We studied structural changes in the prostate gland, thymus, and lymph nodes in CBA mice after transplantation of Ehrlich ascites tumor cells into the prostate gland. On experimental day 5, the number of blood and lymph vessels decreased in the gland; the percentage of connective tissue elements and glandular tissue and the number of immunoblasts in the thymus increased. On day 18, the number of blood vessels in the tumor decreased; the width of the cortex and glandular tissue increased in the thymus, while the number of immunoblasts was reduced. On day 28, tumor infiltration and increased number of lymphatic vessels in its stroma were observed; parenchyma was reduced, and the area of the connective tissue increased in the thymus. These structural changes indicated the development of accidental involution of the thymus during carcinogenesis of the prostate.

  8. Growth-related alterations during liver carcinogenesis: Effect of promoters

    SciTech Connect

    Seglen, P.O.; Gerlyng, P. )

    1990-08-01

    Bromodeoxyuridine labeling of DNA, binuclearity counting, and flow cytometric analysis of isolated hepatocytes and hepatocyte nuclei has been used to assess heptocellular growth patterns related to liver carcinogenesis. Three growth patterns can be distinguished. Mononucleating growth is observed during liver regeneration and after treatment with the tumor promoter 2-acetylaminofluorene (2-AAF) and its analogue 4-AAF. In this growth mode binucleation does not occur, resulting in a decrease in the fraction of binucleated cells. Binucleating growth is observed during normal liver development and after treatment with compounds such as phenobarbital, characterized by progressive polyploidization and maintenance of a binucleated cell fraction. Diploid growth is the growth pattern of neoplastic liver hepatocytes. Most of the cells in neoplastic lesions (foci, nodules, and carcinomas) are diploid, in contrast to the normal liver. Diploid tumor cells have a much higher proliferative activity than tetraploid tumor cells, suggesting that the latter may posses a limited growth potential that makes abrogation of binucleation proliferatively advantageous.

  9. Establishing the Role of PPARβ/δ in Carcinogenesis.

    PubMed

    Peters, Jeffrey M; Gonzalez, Frank J; Müller, Rolf

    2015-11-01

    The role of the nuclear hormone receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in carcinogenesis is controversial because conflicting studies indicate that it both inhibits and promotes tumorigenesis. In this review, we focus on recent studies on PPARβ/δ including the significance of increased or decreased PPARβ/δ expression in cancers; a range of opposing mechanisms describing how PPARβ/δ agonists, antagonists, and inverse agonists regulate tumorigenesis and/or whether there may be cell context-specific mechanisms; and whether activating or inhibiting PPARβ/δ is feasible for cancer chemoprevention and/or therapy. Research questions that need to be addressed are highlighted to establish whether PPARβ/δ can be effectively targeted for cancer chemoprevention.

  10. Nomadic genetic elements contribute to oncogenic translocations: Implications in carcinogenesis.

    PubMed

    Dhivya, Sridaran; Premkumar, Kumpati

    2016-02-01

    Chromosomal translocations as molecular signatures have been reported in various malignancies but, the mechanism behind which is largely unknown. Swapping of chromosomal fragments occurs by induction of double strand breaks (DSBs), most of which were initially assumed de novo. However, decoding of human genome proved that transposable elements (TE) might have profound influence on genome integrity. TEs are highly conserved mobile genetic elements that generate DSBs, subsequently resulting in large chromosomal rearrangements. Previously TE insertions were thought to be harmless, but recently gains attention due to the origin of spectrum of post-insertional genomic alterations and subsequent transcriptional alterations leading to development of deleterious effects mainly carcinogenesis. Though the existing knowledge on the cancer-associated TE dynamics is very primitive, exploration of underlying mechanism promises better therapeutic strategies for cancer. Thus, this review focuses on the prevalence of TE in the genome, associated genomic instability upon transposition activation and impact on tumorigenesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Translesion Synthesis Polymerases in the Prevention and Promotion of Carcinogenesis

    PubMed Central

    Stallons, L. Jay; McGregor, W. Glenn

    2010-01-01

    A critical step in the transformation of cells to the malignant state of cancer is the induction of mutations in the DNA of cells damaged by genotoxic agents. Translesion DNA synthesis (TLS) is the process by which cells copy DNA containing unrepaired damage that blocks progression of the replication fork. The DNA polymerases that catalyze TLS in mammals have been the topic of intense investigation over the last decade. DNA polymerase η (Pol η) is best understood and is active in error-free bypass of UV-induced DNA damage. The other TLS polymerases (Pol ι, Pol κ, REV1, and Pol ζ) have been studied extensively in vitro, but their in vivo role is only now being investigated using knockout mouse models of carcinogenesis. This paper will focus on the studies of mice and humans with altered expression of TLS polymerases and the effects on cancer induced by environmental agents. PMID:20936171

  12. NOTCH1 mutations occur early during cutaneous squamous cell carcinogenesis

    PubMed Central

    South, Andrew P; Purdie, Karin J; Watt, Stephen A; Haldenby, Sam; den Breems, Nicoline; Dimon, Michelle; Arron, Sarah T; Kluk, Michael J; Aster, Jon C; McHugh, Angela; Xue, Dylan J; Dayal, Jasbani HS; Robinson, Kim S; Rizvi, SM Hasan

    2014-01-01

    Cutaneous SCC (cSCC) is the most frequent skin cancer with metastatic potential and can manifest rapidly as a common side effect in patients receiving systemic kinase inhibitors. Here we use massively parallel exome and targeted level sequencing 132 sporadic cSCC, 39 squamoproliferative lesions and cSCC arising in patients receiving the BRAF inhibitor vemurafenib, as well as 10 normal skin samples to identify significant NOTCH1 mutation as an early event in squamous cell carcinogenesis. Bisected vemurafenib induced lesions revealed surprising heterogeneity with different activating HRAS and NOTCH1 mutations identified in two halves of the same cSCC suggesting polyclonal origin. Immunohistochemical analysis using an antibody specific to nuclear NOTCH1 correlates with mutation status in sporadic cSCC and regions of NOTCH1 loss or down-regulation are frequently observed in normal looking skin. Our data indicate that NOTCH1 acts as a gatekeeper in human cSCC. PMID:24662767

  13. ALDH2 polymorphism for the risk of cervical carcinogenesis.

    PubMed

    Nunobiki, Osamu; Sano, Daisuke; Akashi, Kyoko; Higashida, Taro; Ogasawara, Toshitada; Akise, Hikari; Izuma, Shinji; Torii, Kiyo; Okamoto, Yoshiaki; Tanaka, Ichiro; Ueda, Masatsugu

    2016-04-01

    To investigate the clinical significance of ALDH2 genetic polymorphisms in cervical carcinogenesis. ALDH2 polymorphisms together with human papillomavirus (HPV) types were examined in a total of 195 cervical smear in exfoliated cervical cell samples using Real-Time polymerase chain reaction (PCR) System. The frequency for the AG+AA genotype was seven in the normal group (70.0 %), 16 in the LSIL group (57.1 %), and 27 in the HSIL group (90.0 %). A significant difference was found between the LSIL and HSIL groups (P = 0.0064). Patients with HSIL lesions frequently had high-risk HPV infections and concurrently belonged to the AG+AA group. ALDH2 genotype in cervical cell samples may be associated with more severe precancerous lesions of the cervix in a Japanese population.

  14. Paradoxes in carcinogenesis: new opportunities for research directions.

    PubMed

    Baker, Stuart G; Kramer, Barnett S

    2007-08-06

    The prevailing paradigm in cancer research is the somatic mutation theory that posits that cancer begins with a single mutation in a somatic cell followed by successive mutations. Much cancer research involves refining the somatic mutation theory with an ever increasing catalog of genetic changes. The problem is that such research may miss paradoxical aspects of carcinogenesis for which there is no likely explanation under the somatic mutation theory. These paradoxical aspects offer opportunities for new research directions that should not be ignored. Various paradoxes related to the somatic mutation theory of carcinogenesis are discussed: (1) the presence of large numbers of spatially distinct precancerous lesions at the onset of promotion, (2) the large number of genetic instabilities found in hyperplastic polyps not considered cancer, (3) spontaneous regression, (4) higher incidence of cancer in patients with xeroderma pigmentosa but not in patients with other comparable defects in DNA repair, (5) lower incidence of many cancers except leukemia and testicular cancer in patients with Down's syndrome, (6) cancer developing after normal tissue is transplanted to other parts of the body or next to stroma previously exposed to carcinogens, (7) the lack of tumors when epithelial cells exposed to a carcinogen were transplanted next to normal stroma, (8) the development of cancers when Millipore filters of various pore sizes were was inserted under the skin of rats, but only if the holes were sufficiently small. For the latter paradox, a microarray experiment is proposed to try to better understand the phenomena. The famous physicist Niels Bohr said "How wonderful that we have met with a paradox. Now we have some hope of making progress." The same viewpoint should apply to cancer research. It is easy to ignore this piece of wisdom about the means to advance knowledge, but we do so at our peril.

  15. Effect of Thyroid Function on MNU-Induced Mammary Carcinogenesis.

    PubMed

    Vermey, Mackenzie L; Marks, Gregory T; Baldridge, Monika G

    2015-06-01

    Mammary cancer is a disease that affects many women. Extensive research has been conducted to elucidate which variables are involved in the development of this cancer. Studies have highlighted thyroid function as a modulator of tumor growth and development. Thyroxine and 3,3',5-triiodothyronine are responsible for regulating the development, differentiation, homeostasis, and metabolism of cells in the body including mammary tissue. Thyroid hormones also have estrogen-like effects on mammary cancer cell growth by regulating the estrogen receptor. The present study was designed to determine whether medically induced hyperthyroidism increases the multiplicity, prevalence, and mammary tumor burden in rats; and to elucidate whether surgically induced hypothyroidism conversely attenuates the rate of mammary cancer cell growth. Female Sprague-Dawley rats were randomly divided into three groups (euthyroid-control, hyperthyroid, and hypothyroid). Hyperthyroidism was induced via oral administration of levothyroxine; whereas, hypothyroidism was induced by thyroidectomy. Mammary carcinogenesis was induced with a single intraperitoneal injection of N-methyl-N-nitrosurea (MNU). Rats were sacrificed at 38 weeks, and the mammary tumors were excised, fixed for histology and analyzed. Analysis included evaluation of malignancy and immunohistochemistry for ER. MNU-induced mammary carcinogenesis among the groups resulted in a significant difference in tumor burden. The hyperthyroid group had a statistically higher tumor burden than did the euthyroid group, and the hypothyroid group had no tumors of mammary tissue origin at 38 weeks. All excised mammary tumors were ER alpha negative. These data support the hypothesis that thyroid function is one of potentially many factors that contribute to modulation of MNU-induced mammary tumor growth.

  16. Role of oxidative stress in cadmium toxicity and carcinogenesis

    SciTech Connect

    Liu Jie Qu Wei; Kadiiska, Maria B.

    2009-08-01

    Cadmium (Cd) is a toxic metal, targeting the lung, liver, kidney, and testes following acute intoxication, and causing nephrotoxicity, immunotoxicity, osteotoxicity and tumors after prolonged exposures. Reactive oxygen species (ROS) are often implicated in Cd toxicology. This minireview focused on direct evidence for the generation of free radicals in intact animals following acute Cd overload and discussed the association of ROS in chronic Cd toxicity and carcinogenesis. Cd-generated superoxide anion, hydrogen peroxide, and hydroxyl radicals in vivo have been detected by the electron spin resonance spectra, which are often accompanied by activation of redox sensitive transcription factors (e.g., NF-{kappa}B, AP-1 and Nrf2) and alteration of ROS-related gene expression. It is generally agreed upon that oxidative stress plays important roles in acute Cd poisoning. However, following long-term Cd exposure at environmentally-relevant low levels, direct evidence for oxidative stress is often obscure. Alterations in ROS-related gene expression during chronic exposures are also less significant compared to acute Cd poisoning. This is probably due to induced adaptation mechanisms (e.g., metallothionein and glutathione) following chronic Cd exposures, which in turn diminish Cd-induced oxidative stress. In chronic Cd-transformed cells, less ROS signals are detected with fluorescence probes. Acquired apoptotic tolerance renders damaged cells to proliferate with inherent oxidative DNA lesions, potentially leading to tumorigenesis. Thus, ROS are generated following acute Cd overload and play important roles in tissue damage. Adaptation to chronic Cd exposure reduces ROS production, but acquired Cd tolerance with aberrant gene expression plays important roles in chronic Cd toxicity and carcinogenesis.

  17. Salivary glyco-sialylation changes monitors oral carcinogenesis.

    PubMed

    Vajaria, Bhairavi N; Patel, Kinjal R; Begum, Rasheedunnisa; Patel, Jayendra B; Shah, Franky D; Joshi, Geeta M; Patel, Prabhudas S

    2014-12-01

    Alterations in cell membrane glycosylation play important role in oral carcinogenesis. The present study evaluated salivary sialylation changes i.e. total sialic acid (TSA), sialidase activity, linkage specific (α2-3 and α2-6) sialoproteins and sialyl transferase (ST) activity in controls, patients with oral precancerous conditions (OPC) and oral cancer. Subjects enrolled included 100 controls, 50 patients with OPC, 100 oral cancer patients, and 30 post treatment follow-ups. TSA was estimated by spectrophotometric method, sialidase activity by spectrofluorometric assay and linkage specific biotinylated lectins (α2-3: sambucus nigra agglutinin and α2-6: maackia amurensis agglutinin) were used to detect α-2,3 and α-2,6 STs and sialoproteins by ELISA and dot blot respectively. An increasing trend of salivary TSA/TP ratio, sialidase activity, α2-3 sialoproteins, α-2,3 and α-2,6 ST activities was observed from controls to patients with OPC to oral cancer patients and levels were significantly elevated in oral cancer patients as compared to the controls. Sialidase activity exhibited significant association with metastasis and infiltration. Sialidase activity, TSA/TP ratio, α-2,3 and α-2,6 ST activities were found to be higher in patients with metastasis as compared to patients without metastasis. A progressive increase in TSA/TP ratio, sialidase activity, α2-3 and α2-6 sialoproteins was observed from controls to early to advanced stage of the disease. Sialidase activity, α2-3 and α2-6 sialoproteins and ST activities were found to be decreased in complete responders; while levels were elevated in non-responders. The results documented utility of salivary sialylation endpoints, a non invasive tool in monitoring of oral carcinogenesis.

  18. Paradoxes in carcinogenesis: New opportunities for research directions

    PubMed Central

    Baker, Stuart G; Kramer, Barnett S

    2007-01-01

    Background The prevailing paradigm in cancer research is the somatic mutation theory that posits that cancer begins with a single mutation in a somatic cell followed by successive mutations. Much cancer research involves refining the somatic mutation theory with an ever increasing catalog of genetic changes. The problem is that such research may miss paradoxical aspects of carcinogenesis for which there is no likely explanation under the somatic mutation theory. These paradoxical aspects offer opportunities for new research directions that should not be ignored. Discussion Various paradoxes related to the somatic mutation theory of carcinogenesis are discussed: (1) the presence of large numbers of spatially distinct precancerous lesions at the onset of promotion, (2) the large number of genetic instabilities found in hyperplastic polyps not considered cancer, (3) spontaneous regression, (4) higher incidence of cancer in patients with xeroderma pigmentosa but not in patients with other comparable defects in DNA repair, (5) lower incidence of many cancers except leukemia and testicular cancer in patients with Down's syndrome, (6) cancer developing after normal tissue is transplanted to other parts of the body or next to stroma previously exposed to carcinogens, (7) the lack of tumors when epithelial cells exposed to a carcinogen were transplanted next to normal stroma, (8) the development of cancers when Millipore filters of various pore sizes were was inserted under the skin of rats, but only if the holes were sufficiently small. For the latter paradox, a microarray experiment is proposed to try to better understand the phenomena. Summary The famous physicist Niels Bohr said "How wonderful that we have met with a paradox. Now we have some hope of making progress." The same viewpoint should apply to cancer research. It is easy to ignore this piece of wisdom about the means to advance knowledge, but we do so at our peril. PMID:17683619

  19. Chemopreventive potential of zinc in experimentally induced colon carcinogenesis.

    PubMed

    Dani, Vijayta; Goel, Ajay; Vaiphei, K; Dhawan, D K

    2007-06-15

    The present study was performed to evaluate the efficacy of zinc treatment on colonic antioxidant defense system and histoarchitecture in 1,2-dimethylhydrazine- (DMH) induced colon carcinogenesis in male Sprague-Dawley rats. The rats were segregated into four groups viz., normal control, DMH treated, zinc treated, DMH+zinc treated. Colon carcinogenesis was induced through weekly subcutaneous injections of DMH (30 mg/kg body weight) for 16 weeks. Zinc (in the form of zinc sulphate) was supplemented to rats at a dose level of 227 mg/L in drinking water, ad libitum for the entire duration of the study. Increased tumor incidence, tumor size and number of aberrant crypt foci (ACF) were accompanied by a decrease in lipid peroxidation, glutathione-S-transferase, superoxide dismutase (SOD) and catalase. On the contrary, significantly increased levels of reduced glutathione (GSH) and glutathione reductase (GR) were observed in DMH treated rats. Administration of zinc to DMH treated rats significantly decreased the tumor incidence, tumor size and aberrant crypt foci number with simultaneous enhancement of lipid peroxidation, SOD, catalase and glutathione-S-transferase. Further, the levels of GSH and GR were also decreased following zinc supplementation to DMH treated rats. Well-differentiated signs of dysplasia were evident in colonic tissue sections by DMH administration alone. However, zinc treatment to DMH treated rats greatly restored normalcy in the colonic histoarchitecture, with no apparent signs of neoplasia. EDXRF studies revealed a significant decrease in tissue concentrations of zinc in the colon following DMH treatment, which upon zinc supplementation were recovered to near normal levels. In conclusion, the results of this study suggest that zinc has a positive beneficial effect against chemically induced colonic preneoplastic progression in rats induced by DMH.

  20. The aryl hydrocarbon receptor inhibits prostate carcinogenesis in TRAMP mice.

    PubMed

    Fritz, Wayne A; Lin, Tien-Min; Cardiff, Robert D; Peterson, Richard E

    2007-02-01

    The aryl hydrocarbon receptor (AhR) is a transcription factor that mediates the inhibitory effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on prostate growth and also modulates normal prostate development. This is evidenced by AhR null mice (Ahr-/-) having smaller dorsolateral and anterior prostates, even though all prostate lobes remain histologically normal. To test the hypothesis that loss of the AhR increases the rate of prostate carcinogenesis, the incidence of macroscopic prostate tumors was determined in Ahr+/+, Ahr+/- and Ahr-/- C57BL/6J transgenic adenocarcinoma of the mouse prostate (TRAMP) mice at 35, 70, 105, 140, 175 and 210 days of age. From 140 days, prostate tumor incidence was greater in Ahr-/- (60%) and Ahr+/- (43%) mice than in Ahr+/+ mice (16%). Allele quantification did not indicate a loss of the wild-type Ahr allele in heterozygous TRAMP tumors, suggesting that tumor formation in these mice was not due to a loss of Ahr heterozygosity. Prostatic SV40 large T antigen mRNA expression and protein localization were comparable in TRAMP mice of each Ahr genotype. Prostates from all mice of each Ahr genotype were histologically indistinguishable, exhibiting diffuse epithelial hyperplasia by 105 days of age. mRNA expression and protein localization for molecular markers of neuroendocrine differentiation, including chromogranin A and neuropilin-1, were elevated in prostate tumors compared to tumor-free ventral prostates, regardless of Ahr genotype or age. Taken together, these results demonstrate that the Ahr inhibits prostate carcinogenesis in C57BL/6J TRAMP mice by interfering with neuroendocrine differentiation.

  1. Helicobacter-based mouse models of digestive system carcinogenesis.

    PubMed

    Rogers, Arlin B; Houghton, JeanMarie

    2009-01-01

    Animal models are necessary to reproduce the complex host, microbial and environmental influences associated with infectious carcinogenesis of the digestive system. Today, mouse models are preferred by most researchers because of cost efficiencies, rapid reproduction, choice of laboratory reagents, and availability of genetically engineered mutants to study specific gene functions in vivo. Mouse models have validated the once-provocative hypothesis that Helicobacter pylori infection is a major risk factor for gastric carcinoma, dispelling early skepticism over the pathogenic nature of this organism in the human stomach. Enterohepatic Helicobacter spp. induce inflammatory bowel disease and colorectal carcinoma in susceptible mouse strains, permitting study of host immunity and microbial factors at the cellular and molecular level. H. hepaticus is the only proven infectious hepatocarcinogen of mice and has been used to explore mechanisms of inflammation-associated liver cancer as seen in human chronic viral hepatitis. For example, this model was used to identify for the first time a potential mechanism for male-predominant liver cancer risk independent of circulating sex hormones. Helicobacter-based mouse models of digestive system carcino-genesis are used to investigate the basic biology of inflammation-associated human cancers and to evaluate therapeutic interventions at the discovery level. Because of exciting advances in genetic engineering of mice, in vivo imaging, and system-wide genomics and proteomics, these models will provide even more information in the future. This chapter introduces the mouse as a model species; summarizes important models of inflammation-associated cancer incited by murine Helicobacter infection; and describes methods for the collection, sampling, and histologic grading of mouse digestive system tissues.

  2. The Anticancer Role of Capsaicin in Experimentallyinduced Lung Carcinogenesis.

    PubMed

    Anandakumar, Pandi; Kamaraj, Sattu; Jagan, Sundaram; Ramakrishnan, Gopalakrishnan; Asokkumar, Selvamani; Naveenkumar, Chandrashekar; Raghunandhakumar, Subramanian; Vanitha, Manickam Kalappan; Devaki, Thiruvengadam

    2015-06-01

    Capsaicin (CAP) is the chief pungent principle found in the hot red peppers and the chili peppers that have long been used as spices, food additives and drugs. This study investigated the anticancer potential of CAP through its ability to modify extracellular matrix components and proteases during mice lung carcinogenesis. Swiss albino mice were treated with benzo(a) pyrene (50 mg/kg body weight dissolved in olive oil) orally twice a week for four successive weeks to induce lung cancer at the end of 14(th) week. CAP was administrated (10 mg/kg body weight dissolved in olive oil) intraperitoneally. Extracellular matrix components were assayed; Masson's trichome staining of lung tissues was performed. Western blot analyses of matrix metalloproteases 2 and 9 were also carried out. In comparison with the control animals, animals in which benzo(a)pyrene had induced lung cancer showed significant increases in extracellular matrix components such as collagen (hydroxy proline), elastin, uronic acid and hexosamine and in glycosaminoglycans such as hyaluronate, chondroitin sulfate, keratan sulfate and dermatan sulfate. The above alterations in extracellular matrix components were effectively counteracted in benzo(a)pyrene along with CAP supplemented animals when compared to benzo(a) pyrene alone supplemented animals. The results of Masson's trichome staining for collagen and of, immunoblotting analyses of matrix metalloproteases 2 and 9 further supported the biochemical findings. The apparent potential of CAP in modulating extracellular matrix components and proteases suggests that CAP plays a chemomodulatory and anti- cancer role working against experimentally induced lung carcinogenesis.

  3. Differential network analysis reveals dysfunctional regulatory networks in gastric carcinogenesis.

    PubMed

    Cao, Mu-Shui; Liu, Bing-Ya; Dai, Wen-Tao; Zhou, Wei-Xin; Li, Yi-Xue; Li, Yuan-Yuan

    2015-01-01

    Gastric Carcinoma is one of the most common cancers in the world. A large number of differentially expressed genes have been identified as being associated with gastric cancer progression, however, little is known about the underlying regulatory mechanisms. To address this problem, we developed a differential networking approach that is characterized by including a nascent methodology, differential coexpression analysis (DCEA), and two novel quantitative methods for differential regulation analysis. We first applied DCEA to a gene expression dataset of gastric normal mucosa, adenoma and carcinoma samples to identify gene interconnection changes during cancer progression, based on which we inferred normal, adenoma, and carcinoma-specific gene regulation networks by using linear regression model. It was observed that cancer genes and drug targets were enriched in each network. To investigate the dynamic changes of gene regulation during carcinogenesis, we then designed two quantitative methods to prioritize differentially regulated genes (DRGs) and gene pairs or links (DRLs) between adjacent stages. It was found that known cancer genes and drug targets are significantly higher ranked. The top 4% normal vs. adenoma DRGs (36 genes) and top 6% adenoma vs. carcinoma DRGs (56 genes) proved to be worthy of further investigation to explore their association with gastric cancer. Out of the 16 DRGs involved in two top-10 DRG lists of normal vs. adenoma and adenoma vs. carcinoma comparisons, 15 have been reported to be gastric cancer or cancer related. Based on our inferred differential networking information and known signaling pathways, we generated testable hypotheses on the roles of GATA6, ESRRG and their signaling pathways in gastric carcinogenesis. Compared with established approaches which build genome-scale GRNs, or sub-networks around differentially expressed genes, the present one proved to be better at enriching cancer genes and drug targets, and prioritizing

  4. Relevance of CCL3/CCR5 axis in oral carcinogenesis.

    PubMed

    da Silva, Janine Mayra; Moreira Dos Santos, Tálita Pollyanna; Sobral, Lays Martin; Queiroz-Junior, Celso Martins; Rachid, Milene Alvarenga; Proudfoot, Amanda E I; Garlet, Gustavo Pompermaier; Batista, Aline Carvalho; Teixeira, Mauro Martins; Leopoldino, Andréia Machado; Russo, Remo Castro; Silva, Tarcília Aparecida

    2017-08-01

    The chemokine CCL3 is a chemotactic cytokine crucial for inflammatory cell recruitment in homeostatic and pathological conditions. CCL3 might stimulate cancer progression by promoting leukocyte accumulation, angiogenesis and tumour growth. The expression of CCL3 and its receptors CCR1 and CCR5 was demonstrated in oral squamous cell carcinoma (OSCC), but their role was not defined. Here, the functions of CCL3 were assessed using a model of chemically induced tongue carcinogenesis with 4-nitroquinoline-1-oxide (4NQO). Lineages of OSCC were used to analyse the effects of CCL3 in vitro. The 4NQO-induced lesions exhibited increased expression of CCL3, CCR1 and CCR5. CCL3(-/-) and CCR5(-/-) mice presented reduced incidence of tongue tumours compared to wild-type (WT) and CCR1(-/-) mice. Consistently, attenuated cytomorphological atypia and reduced cell proliferation were observed in lesions of CCL3(-/-) and CCR5(-/-) mice. OSCC from CCL3(-/-) mice exhibited lower infiltration of eosinophils and reduced expression of Egf, Fgf1, Tgf-β1, Vegfa, Vegfb, Itga-4, Vtn, Mmp-1a, Mmp-2 and Mmp-9 than WT mice. In vitro, CCL3 induced invasion and production of CCL5, IL-6, MMP -2, -8, -9. Blockage of CCL3 in vitro using α-CCL3 or Evasin-1 (a CCL3-binding protein) impaired tumour cell invasion. In conclusion, CCL3/CCR5 axis has pro-tumourigenic effects in oral carcinogenesis. The induction of inflammatory and angiogenic pathways and eosinophils recruitment appear to be the underlying mechanism explaining these effects. These data reveal potential protective effects of CCL3 blockade in oral cancer.

  5. Involvement of regucalcin as a suppressor protein in human carcinogenesis: insight into the gene therapy.

    PubMed

    Yamaguchi, Masayoshi

    2015-08-01

    Regucalcin, which its gene is located on the X chromosome, plays a multifunctional role as a suppressor protein in cell signal transduction in various types of cells and tissues. The suppression of regucalcin gene expression has been shown to involve in carcinogenesis. Regucalcin gene expression was uniquely downregulated in carcinogenesis of rat liver in vivo, although the expression of other many genes was upregulated, indicating that endogenous regucalcin plays a suppressive role in the development of hepatocarcinogenesis. Overexpression of endogenous regucalcin was found to suppress proliferation of rat cloned hepatoma cells in vitro. Moreover, the regucalcin gene and its protein levels were demonstrated specifically to downregulate in human hepatocellular carcinoma by analysis with multiple gene expression profiles and proteomics. Regucalcin gene expression was also found to suppress in human tumor tissues including kidney, lung, brain, breast and prostate, suggesting that repressed regucalcin gene expression leads to the development of carcinogenesis in various tissues. Regucalcin may play a role as a suppressor protein in carcinogenesis. Overexpression of endogenous regucalcin is suggested to reveal preventive and therapeutic effects on carcinogenesis. Delivery of the regucalcin gene may be a novel useful tool in the gene therapy of carcinogenesis. This review will discuss regarding to an involvement of regucalcin as a suppressor protein in human carcinogenesis in insight into the gene therapy.

  6. Cancer risks after radiation exposure in middle age.

    PubMed

    Shuryak, Igor; Sachs, Rainer K; Brenner, David J

    2010-11-03

    Epidemiological data show that radiation exposure during childhood is associated with larger cancer risks compared with exposure at older ages. For exposures in adulthood, however, the relative risks of radiation-induced cancer in Japanese atomic bomb survivors generally do not decrease monotonically with increasing age of adult exposure. These observations are inconsistent with most standard models of radiation-induced cancer, which predict that relative risks decrease monotonically with increasing age at exposure, at all ages. We analyzed observed cancer risk patterns as a function of age at exposure in Japanese atomic bomb survivors by using a biologically based quantitative model of radiation carcinogenesis that incorporates both radiation induction of premalignant cells (initiation) and radiation-induced promotion of premalignant damage. This approach emphasizes the kinetics of radiation-induced initiation and promotion, and tracks the yields of premalignant cells before, during, shortly after, and long after radiation exposure. Radiation risks after exposure in younger individuals are dominated by initiation processes, whereas radiation risks after exposure at later ages are more influenced by promotion of preexisting premalignant cells. Thus, the cancer site-dependent balance between initiation and promotion determines the dependence of cancer risk on age at radiation exposure. For example, in terms of radiation induction of premalignant cells, a quantitative measure of the relative contribution of initiation vs promotion is 10-fold larger for breast cancer than for lung cancer. Reflecting this difference, radiation-induced breast cancer risks decrease with age at exposure at all ages, whereas radiation-induced lung cancer risks do not. For radiation exposure in middle age, most radiation-induced cancer risks do not, as often assumed, decrease with increasing age at exposure. This observation suggests that promotional processes in radiation carcinogenesis

  7. The oncogenic action of ionizing radiation on rat skin

    SciTech Connect

    Burns, F.J.

    1991-01-01

    Progress has occurred in several areas corresponding to the specific aims of the proposal: (1) Progression and multiple events in radiation carcinogenesis of rat skin as a function of LET; (2) cell cycle kinetics of irradiated rat epidermis as determined by double labeling and double emulsion autoradiography; (3) oncogene activation detected by in situ hybridization in radiation-induced rat skin tumors; (4) amplification of the c-myc oncogene in radiation-induced rat skin tumors as a function of LET; and (5) transformation of rat skin keratinocytes by ionizing radiation in combination with c-Ki-ras and c-myc oncogenes. 111 refs., 13 figs., 12 tabs.

  8. Chemopreventive Strategies for Inflammation-Related Carcinogenesis: Current Status and Future Direction.

    PubMed

    Kanda, Yusuke; Osaki, Mitsuhiko; Okada, Futoshi

    2017-04-19

    A sustained and chronically-inflamed environment is characterized by the presence of heterogeneous inflammatory cellular components, including neutrophils, macrophages, lymphocytes and fibroblasts. These infiltrated cells produce growth stimulating mediators (inflammatory cytokines and growth factors), chemotactic factors (chemokines) and genotoxic substances (reactive oxygen species and nitrogen oxide) and induce DNA damage and methylation. Therefore, chronic inflammation serves as an intrinsic niche for carcinogenesis and tumor progression. In this article, we summarize the up-to-date findings regarding definitive/possible causes and mechanisms of inflammation-related carcinogenesis derived from experimental and clinical studies. We also propose 10 strategies, as well as candidate agents for the prevention of inflammation-related carcinogenesis.

  9. Documentation of Ultrastructural Changes in Nucleus and Microvilli by Fish Oil in Experimental Colon Carcinogenesis.

    PubMed

    Sharma, Gayatri; Rani, Isha; Bhatnagar, Archana; Agnihotri, Navneet

    2015-01-01

    Fish oil (FO) exerts a chemopreventive effect by regulating apoptosis in colon carcinogenesis. The present study reports the ultrastructural changes in various organelles on supplementation of FO in experimental colon carcinogenesis. The carcinogen treatment led to abnormal nuclear shape and alteration in microvilli number indicating cancer establishment. On the other hand, different ratios of FO and corn oil increased chromatin condensation along with an extensive loss of microvilli in a dose- and time-dependent manner which depicts an increase in apoptosis. The associated ultrastuctural alterations support the facilitation of apoptosis by FO as a mechanism for its beneficial effect in colon carcinogenesis.

  10. Radiation exposure and pregnancy.

    PubMed

    Labant, Amy; Silva, Christina

    2014-01-01

    Radiological exposure from nuclear power reactor accidents, transportation of nuclear waste accidents, industrial accidents, or terrorist activity may be a remote possibility, but it could happen. Nurses must be prepared to evaluate and treat pregnant women and infants who have been exposed to radiation, and to have an understanding of the health consequences of a nuclear or radiological incident. Pregnant women and infants are a special group of patients who need consideration when exposed to radiation. Initial care requires thorough assessment and decisions regarding immediate care needs. Ongoing care is based on type and extent of radiation exposure. With accurate, comprehensive information and education, nurses will be better prepared to help mitigate the effects of radiation exposure to pregnant women and infants following a radiological incident. Information about radiation, health effects of prenatal radiation exposure, assessment, patient care, and treatment of pregnant women and infants are presented.

  11. Comprehensibility maximization and humanly comprehensible representations

    NASA Astrophysics Data System (ADS)

    Kamimura, Ryotaro

    2012-04-01

    In this paper, we propose a new information-theoretic method to measure the comprehensibility of network configurations in competitive learning. Comprehensibility is supposed to be measured by information contained in components in competitive networks. Thus, the increase in information corresponds to the increase in comprehensibility of network configurations. One of the most important characteristics of the method is that parameters can be explicitly determined so as to produce a state where the different types of comprehensibility can be mutually increased. We applied the method to two problems, namely an artificial data set and the ionosphere data from the well-known machine learning database. In both problems, we showed that improved performance could be obtained in terms of all types of comprehensibility and quantization errors. For the topographic errors, we found that updating connection weights prevented them from increasing. Then, the optimal values of comprehensibility could be explicitly determined, and clearer class boundaries were generated.

  12. Mesothelial papillary proliferation of the pleura associated with radiation therapy: Does it have a role in the pathogenesis of mesothelioma

    SciTech Connect

    Jagirdar, J.; Frydman, C.; Sakurai, H.; Dumitrescu, O.

    1989-03-01

    Diffuse papillary proliferation of mesothelial cells in the pleura mimicking metastatic carcinoma was seen four weeks following radiation therapy for a Pancoast tumor. Such papillary proliferations are not observed incidentally and are envisioned to occur during asbestos-induced carcinogenesis. We postulate that similar papillary lesions may serve as a link in the pathogenesis of radiation-induced mesotheliomas.

  13. Use of Proteins as Biomarkers and Their Role in Carcinogenesis

    PubMed Central

    Zarogoulidis, Paul; Tsakiridis, Kosmas; Karapantzou, Chrisanthi; Lampaki, Sofia; Kioumis, Ioannis; Pitsiou, Georgia; Papaiwannou, Antonis; Hohenforst-Schmidt, Wolfgang; Huang, Haidong; Kesisis, George; Karapantzos, Ilias; Chlapoutakis, Serafeim; Korantzis, Ippokratis; Mpakas, Andreas; Karavasilis, Vasilis; Mpoukovinas, Ioannis; Li, Qiang; Zarogoulidis, Konstantinos

    2015-01-01

    Summary: Improved diagnostic methods and medical therapies are necessary for early detection and treatment and an improved prognosis. It is thus vital to both examine and evaluate the role of the various existing proteins as biomarkers in carcinogenesis and to assess the contribution of these proteins in anti-cancer activity, for consideration in therapeutic strategies. It is essential to both examine and evaluate the role of the various existing proteins as biomarkers in carcinogenesis and to assess the contribution of these proteins in anti-cancer activity, for consideration in therapeutic strategies. The purpose of this review is twofold. Firstly, it is to evaluate recent data about which proteins can be utilized as biomarkers in carcinogenesis. The proteins reviewed include: CPTP, IL-6, CCN, and S100. Secondly, it is to evaluate the contribution of dietary proteins in cancer activity. Specifically, how whey protein, soy proteins and lectin, a phytochemical could be useful in cancer prevention and treatment. Recent Findings: Whey protein, present in dairy products, is an excellent source of the sulphur amino acid cysteine, the rate limiting substrate in glutathione synthesis. Notably, this protein survives digestion and has been shown to have anti-carcinogenic properties in animal studies. Lectins are phytochemicals present in plant foods, and have active components which alters cancer initiation, promotion and progression. Lectins have been characterized as a useful tool in biochemistry, cell biology, immunology and in diagnostic and therapeutic purposes in cancer research. Soy proteins contain various compounds, including isoflavones, protease inhibitors and protein kinase inhibitors, which have been proven effective in tumor growth inhibition. They have therefore, been greatly emphasized in cancer prevention and treatment. It has been proved that soy food consumption was associated with decreased risk of death and recurrence of breast cancer. CPTP is a

  14. Radiation takes its Toll

    PubMed Central

    Ratikan, Josephine A.; Micewicz, Ewa D.; Xie, Michael W.; Schaue, Dörthe

    2015-01-01

    The ability to recognize and respond to universal molecular patterns on invading microorganisms allows our immune system to stay on high alert, sensing danger to our self-integrity. Our own damaged cells and tissues in pathological situations activate similar warning systems as microbes. In this way, the body is able to mount a response that is appropriate to the danger. Toll-like receptors are at the heart of this pattern recognition system that initiates innate pro-oxidant, pro-inflammatory signaling cascades and ultimately bridges recognition of danger to adaptive immunity. The acute inflammatory lesions that are formed segue into resolution of inflammation, repair and healing or, more dysfunctionally, into chronic inflammation, autoimmunity, excessive tissue damage and carcinogenesis. Redox is at the nexus of this decision making process and is the point at which ionizing radiation initially intercepts to trigger similar responses to self-damage. In this review we discuss our current understanding of how radiation-damaged cells interact with Toll-like receptors and how the immune systems interprets these radiation-induced danger signals in the context of whole-body exposures and during local tumor irradiation. PMID:25819030

  15. Radiation takes its Toll.

    PubMed

    Ratikan, Josephine A; Micewicz, Ewa D; Xie, Michael W; Schaue, Dörthe

    2015-11-28

    The ability to recognize and respond to universal molecular patterns on invading microorganisms allows our immune system to stay on high alert, sensing danger to our self-integrity. Our own damaged cells and tissues in pathological situations activate similar warning systems as microbes. In this way, the body is able to mount a response that is appropriate to the danger. Toll-like receptors are at the heart of this pattern recognition system that initiates innate pro-oxidant, pro-inflammatory signaling cascades and ultimately bridges recognition of danger to adaptive immunity. The acute inflammatory lesions that are formed segue into resolution of inflammation, repair and healing or, more dysfunctionally, into chronic inflammation, autoimmunity, excessive tissue damage and carcinogenesis. Redox is at the nexus of this decision making process and is the point at which ionizing radiation initially intercepts to trigger similar responses to self-damage. In this review we discuss our current understanding of how radiation-damaged cells interact with Toll-like receptors and how the immune systems interprets these radiation-induced danger signals in the context of whole-body exposures and during local tumor irradiation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Prototype Biology-Based Radiation Risk Module Project

    NASA Technical Reports Server (NTRS)

    Terrier, Douglas; Clayton, Ronald G.; Patel, Zarana; Hu, Shaowen; Huff, Janice

    2015-01-01

    Biological effects of space radiation and risk mitigation are strategic knowledge gaps for the Evolvable Mars Campaign. The current epidemiology-based NASA Space Cancer Risk (NSCR) model contains large uncertainties (HAT #6.5a) due to lack of information on the radiobiology of galactic cosmic rays (GCR) and lack of human data. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. Our proposed study will compare DNA damage, histological, and cell kinetic parameters after irradiation in normal 2D human cells versus 3D tissue models, and it will use a multi-scale computational model (CHASTE) to investigate various biological processes that may contribute to carcinogenesis, including radiation-induced cellular signaling pathways. This cross-disciplinary work, with biological validation of an evolvable mathematical computational model, will help reduce uncertainties within NSCR and aid risk mitigation for radiation-induced carcinogenesis.

  17. Differential network analysis reveals dysfunctional regulatory networks in gastric carcinogenesis

    PubMed Central

    Cao, Mu-Shui; Liu, Bing-Ya; Dai, Wen-Tao; Zhou, Wei-Xin; Li, Yi-Xue; Li, Yuan-Yuan

    2015-01-01

    Gastric Carcinoma is one of the most common cancers in the world. A large number of differentially expressed genes have been identified as being associated with gastric cancer progression, however, little is known about the underlying regulatory mechanisms. To address this problem, we developed a differential networking approach that is characterized by including a nascent methodology, differential coexpression analysis (DCEA), and two novel quantitative methods for differential regulation analysis. We first applied DCEA to a gene expression dataset of gastric normal mucosa, adenoma and carcinoma samples to identify gene interconnection changes during cancer progression, based on which we inferred normal, adenoma, and carcinoma-specific gene regulation networks by using linear regression model. It was observed that cancer genes and drug targets were enriched in each network. To investigate the dynamic changes of gene regulation during carcinogenesis, we then designed two quantitative methods to prioritize differentially regulated genes (DRGs) and gene pairs or links (DRLs) between adjacent stages. It was found that known cancer genes and drug targets are significantly higher ranked. The top 4% normal vs. adenoma DRGs (36 genes) and top 6% adenoma vs. carcinoma DRGs (56 genes) proved to be worthy of further investigation to explore their association with gastric cancer. Out of the 16 DRGs involved in two top-10 DRG lists of normal vs. adenoma and adenoma vs. carcinoma comparisons, 15 have been reported to be gastric cancer or cancer related. Based on our inferred differential networking information and known signaling pathways, we generated testable hypotheses on the roles of GATA6, ESRRG and their signaling pathways in gastric carcinogenesis. Compared with established approaches which build genome-scale GRNs, or sub-networks around differentially expressed genes, the present one proved to be better at enriching cancer genes and drug targets, and prioritizing

  18. NASA Strategy to Safely Live and Work in the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis; Wu, Honglu; Corbin, Barbara; Sulzman, Frank; Kreneck, Sam

    2007-01-01

    This viewgraph document reviews the radiation environment that is a significant potential hazard to NASA's goals for space exploration, of living and working in space. NASA has initiated a Peer reviewed research program that is charged with arriving at an understanding of the space radiation problem. To this end NASA Space Radiation Laboratory (NSRL) was constructed to simulate the harsh cosmic and solar radiation found in space. Another piece of the work was to develop a risk modeling tool that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting risk of carcinogenesis, central nervous system damage, degenerative tissue disease, and acute radiation effects acute radiation effects.

  19. Modulation of Estrogen Chemical Carcinogenesis by Botanical Supplements used for Postmenopausal Women’s Health

    PubMed Central

    Snelten, Courtney S.; Dietz, Birgit; Bolton, Judy L.

    2012-01-01

    Breast cancer risk has been associated with long-term estrogen exposure including traditional hormone therapy (HT, formally hormone replacement therapy). To avoid traditional HT and associated risks, women have been turning to botanical supplements such as black cohosh, red clover, licorice, hops, dong gui, and ginger to relieve menopausal symptoms despite a lack of efficacy evidence. The mechanisms of estrogen carcinogenesis involve both hormonal and chemical pathways. Botanical supplements could protect women from estrogen carcinogenesis by modulating key enzymatic steps [aromatase, P4501B1, P4501A1, catechol-O-methyltransferase (COMT), NAD(P)H quinone oxidoreductase 1 (NQO1), and reactive oxygen species (ROS) scavenging] in estradiol metabolism leading to estrogen carcinogenesis as outlined in Figure 1. This review summarizes the influence of popular botanical supplements used for women’s health on these key steps in the estrogen chemical carcinogenesis pathway, and suggests that botanical supplements may have added chemopreventive benefits by modulating estrogen metabolism. PMID:24223609

  20. Modulation of Estrogen Chemical Carcinogenesis by Botanical Supplements used for Postmenopausal Women's Health.

    PubMed

    Snelten, Courtney S; Dietz, Birgit; Bolton, Judy L

    2012-06-01

    Breast cancer risk has been associated with long-term estrogen exposure including traditional hormone therapy (HT, formally hormone replacement therapy). To avoid traditional HT and associated risks, women have been turning to botanical supplements such as black cohosh, red clover, licorice, hops, dong gui, and ginger to relieve menopausal symptoms despite a lack of efficacy evidence. The mechanisms of estrogen carcinogenesis involve both hormonal and chemical pathways. Botanical supplements could protect women from estrogen carcinogenesis by modulating key enzymatic steps [aromatase, P4501B1, P4501A1, catechol-O-methyltransferase (COMT), NAD(P)H quinone oxidoreductase 1 (NQO1), and reactive oxygen species (ROS) scavenging] in estradiol metabolism leading to estrogen carcinogenesis as outlined in Figure 1. This review summarizes the influence of popular botanical supplements used for women's health on these key steps in the estrogen chemical carcinogenesis pathway, and suggests that botanical supplements may have added chemopreventive benefits by modulating estrogen metabolism.

  1. Radiation-induced genomic instability: radiation quality and dose response

    NASA Technical Reports Server (NTRS)

    Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.

    2003-01-01

    Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.

  2. Radiation-induced genomic instability: radiation quality and dose response

    NASA Technical Reports Server (NTRS)

    Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.

    2003-01-01

    Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.

  3. Development of Carcinogenesis Bioassay Models: Response of Small Fish Species to Various Classes of Carcinogens

    DTIC Science & Technology

    1989-12-14

    carcinogenesis tests with the halogenated hydrocarbon l,l,2,2-tetrachloroethane (TeCE), (2) the heavy metal cadmium, and (3) the aromatic amine 2...Poecilia reticulata) 2 A. Introduction B. Materials and Methods C. Results D. Discussion III. Carcinogenesis bioassay with the heavy metal cadmium on...bioassays of the halogenated hydrocarbon 1,1,2,2- tetrachloroethane (TeCE) against the medaka and guppy, the heavy metal cadmium against the medaka

  4. Role of the Novel Kinase, H51, in Breast Development, Differentiation, and Carcinogenesis

    DTIC Science & Technology

    1999-07-01

    GRANT NUMBER DAMD17-98-1-8235 TITLE: Role of the Novel Kinase, H51, in Breast Development, Differentiation , and Carcinogenesis PRINCIPAL INVESTIGATOR...NUMBERS Role of the Novel Kinase, H51, in Breast Development, Differentiation , and DAMDI7-98-1-8235 Carcinogenesis 6. AUTHOR(S) Douglas B. Stairs 7...expressed in the epithelium of several tissues including the mammary gland. Since many kinases regulate cellular proliferation and differentiation , it

  5. Radiation effects in the lung

    SciTech Connect

    Coggle, J.E.; Lambert, B.E.; Moores, S.R.

    1986-12-01

    This article outlines the principles of radiobiology that can explain the time of onset, duration, and severity of the complex reactions of the lung to ionizing radiation. These reactions have been assayed biochemically, cell kinetically, physiologically, and pathologically. Clinical and experimental data are used to describe the acute and late reactions of the lung to both external and internal radiation including pneumonitis, fibrosis and carcinogenesis. Acute radiation pneumonitis, which can be fatal, develops in both humans and animals within 6 months of exposure to doses greater than or equal to 8 Gy of low LET radiation. It is divisible into a latent period lasting up to 4 weeks; an exudative phase (3-8 weeks) and with an acute pneumonitic phase between 2 and 6 months. There is much evidence to suggest that pneumonitis is an epithelial reaction and some evidence to suggest that this early damage may not be predictive of late fibrosis. However, despite detailed work on collagen metabolism, the pathogenesis of radiation fibrosis remains unknown. The data on radiation-induced pulmonary cancer, both in man and experimental animals from both external and internal irradiation following the inhalation of both soluble and insoluble alpha and beta emitting radionuclides are reviewed. 312 references. (Abstract Truncated)

  6. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis

    PubMed Central

    Forshew, Tim; Barbera, Mariagnese; Murtaza, Muhammed; Ong, Chin-Ann J.; Lao-Sirieix, Pierre; Dunning, Mark J; Smith, Laura; Smith, Mike L.; Anderson, Charlotte L.; Carvalho, Benilton; O’Donovan, Maria; Underwood, Timothy J.; May, Andrew P; Grehan, Nicola; Hardwick, Richard; Davies, Jim; Oloumi, Arusha; Aparicio, Sam; Caldas, Carlos; Eldridge, Matthew D.; Edwards, Paul A.W.; Rosenfeld, Nitzan; Tavaré, Simon; Fitzgerald, Rebecca C

    2014-01-01

    Cancer genome sequencing studies have identified numerous driver genes but the relative timing of mutations in carcinogenesis remains unclear. The gradual progression from pre-malignant Barrett’s esophagus to esophageal adenocarcinoma (EAC) provides an ideal model to study the ordering of somatic mutations. We identified recurrently-mutated genes and assessed clonal structure using whole-genome sequencing and amplicon-resequencing of 112 EACs. We next screened a cohort of 109 biopsies from two key transition points in the development of malignancy; benign metaplastic never-dysplastic Barrett’s esophagus (NDBE, n=66), and high-grade dysplasia (HGD, n=43). Unexpectedly, the majority of recurrently mutated genes in EAC were also mutated in NDBE. Only TP53 and SMAD4 were stage-specific, confined to HGD and EAC, respectively. Finally, we applied this knowledge to identify high-risk Barrett’s esophagus in a novel non-endoscopic test. In conclusion, mutations in EAC driver genes generally occur exceptionally early in disease development with profound implications for diagnostic and therapeutic strategies. PMID:24952744

  7. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis.

    PubMed

    Weaver, Jamie M J; Ross-Innes, Caryn S; Shannon, Nicholas; Lynch, Andy G; Forshew, Tim; Barbera, Mariagnese; Murtaza, Muhammed; Ong, Chin-Ann J; Lao-Sirieix, Pierre; Dunning, Mark J; Smith, Laura; Smith, Mike L; Anderson, Charlotte L; Carvalho, Benilton; O'Donovan, Maria; Underwood, Timothy J; May, Andrew P; Grehan, Nicola; Hardwick, Richard; Davies, Jim; Oloumi, Arusha; Aparicio, Sam; Caldas, Carlos; Eldridge, Matthew D; Edwards, Paul A W; Rosenfeld, Nitzan; Tavaré, Simon; Fitzgerald, Rebecca C

    2014-08-01

    Cancer genome sequencing studies have identified numerous driver genes, but the relative timing of mutations in carcinogenesis remains unclear. The gradual progression from premalignant Barrett's esophagus to esophageal adenocarcinoma (EAC) provides an ideal model to study the ordering of somatic mutations. We identified recurrently mutated genes and assessed clonal structure using whole-genome sequencing and amplicon resequencing of 112 EACs. We next screened a cohort of 109 biopsies from 2 key transition points in the development o