Science.gov

Sample records for radiation carcinogenesis comprehensive

  1. [Radiation carcinogenesis].

    PubMed

    Hosoi, Yoshio

    2013-11-01

    Misrepair of DNA damage induced by ionizing radiation is a potential cause of carcinogenesis following exposure to radiation. Radiation exposure increases the incidence of the same types of mutations that occur spontaneously in a given population. A high incidence of DNA double-strand breaks is characteristic of damage by ionizing radiation compared with those induced by other environmental mutagens. In China, residents living in areas with high level background radiation(6mSv/y) had a significantly higher frequency of dicentric and ring chromosomes compared to that for the residents living in the control areas(2mSv/y). Radiation-associated increases in risk were seen for most sites. Gender-averaged excess absolute risk rates estimated at age 70, after exposure at age 30, differ in the sites, and the risks of gastric cancer, breast cancer, colon cancer, and lung cancer were highly increased, in that order. Latent periods for the development of leukemia and thyroid cancer after radiation exposure at ages younger than 18 were shorter compared to those for other solid cancers.

  2. Radiation carcinogenesis. Comprehensive final report, 16 May 1979-31 December 1980

    SciTech Connect

    Warren, S; Brown, C E; Gates, O

    1981-03-01

    This abstract covers three main areas of investigation: mesothelioma induction by asbestos, radiation tumorigenesis and transplantable tumors. Canadian and Rhodesian asbestos fibers have been administered under anesthesia to rats by intratracheal, intrapleural and intraperitoneal injection. Additional groups were given 3-methylcholanthrene or x-radiation along with asbestos. A large series of mice also treated as above have displayed mesotheliomas. In addition, glass fiber injections and feeding of asbestos were done and have produced negative results to date. The carcinogenic effect of whole-body radiation on hemi-irradiated parabiont partners exposed to a single 1000 R dose of x-ray was evidenced by a significant increase in the incidence of malignant tumors in only six tissues: skin, supporting soft tissue, kidney, bone, pancreatic islets and ovary. In the male adrenal medulla and in the female breast genetic and parabiotic hormonal factors were judged to exert a significant effect. The occurrence of incisional (anastomotic) sarcomas in significant numbers in hemi-irradiated and parabiont control pairs suggests the operation of mechanical factors complicating the healing process, only slightly enhanced by radiation. One of the very valuable but unanticipated developments of the rat radiation program was the isolation of two transplantable endocrine tumors with strong hormonal potentials: an insulinoma of the pancreas and a pheochromocytoma of the adrenal medulla.

  3. Radiation carcinogenesis: radioprotectors and photosensitizers

    SciTech Connect

    Fry, R.J.M.

    1982-01-01

    This paper outlines 1) some of the salient features of radiation carcinogenesis that are pertinent to the questions of how the carcinogenic effects might be influenced, 2) the effects of radioprotectors on ionizing radiation-induced cancer, and 3) the effect of photosensitizers on UVR-induced skin cancer.

  4. Radiation carcinogenesis: lessons from Chernobyl.

    PubMed

    Williams, D

    2008-12-01

    Radiation is a carcinogen, interacting with DNA to produce a range of mutations. Irradiated cells also show genomic instability, as do adjacent non-irradiated cells (the bystander effect); the importance to carcinogenesis remains to be established. Current knowledge of radiation effects is largely dependent on evidence from exposure to atomic bomb whole body radiation, leading to increases in a wide range of malignancies. In contrast, millions of people were exposed to radioactive isotopes in the fallout from the Chernobyl accident, within the first 20 years there was a large increase in thyroid carcinoma incidence and a possible radiation-related increase in breast cancer, but as yet there is no general increase in malignancies. The increase in thyroid carcinoma, attributable to the very large amounts of iodine 131 released, was first noticed in children with a strong relationship between young age at exposure and risk of developing papillary thyroid carcinoma (PTC). The extent of the increase, the reasons for the relationship to age at exposure, the reduction in attributable fraction with increasing latency and the role of environmental factors are discussed. The large number of radiation-induced PTCs has allowed new observations. The subtype and molecular findings change with latency; most early cases were solid PTCs with RET-PTC3 rearrangements, later cases were classical PTCs with RET-PTC1 rearrangements. Small numbers of many other RET rearrangements have occurred in 'Chernobyl' PTCs, and also rearrangement of BRAF. Five of the N-terminal genes found in papillary carcinoma rearrangements are also involved in rearrangements in hematological malignancies; three are putative tumor suppressor genes, and two are further genes fused to RET in PTCs. Radiation causes double-strand breaks; the rearrangements common in these radiation-induced tumors reflect their etiology. It is suggested that oncogenic rearrangements may commonly involve both a tumor-suppressor gene

  5. Factors that modify radiation-induced carcinogenesis.

    PubMed

    Kennedy, Ann R

    2009-11-01

    It is known that numerous factors can influence radiation carcinogenesis in animals; these factors include the specific characteristics of the radiation (radiation type and dose, dose-rate, dose-fractionation, dose distribution, etc.) as well as many other contributing elements that are not specific to the radiation exposure, such as animal genetic characteristics and age, the environment of the animal, dietary factors and whether specific modifying agents for radiation carcinogenesis have been utilized in the studies. This overview focuses on the modifying factors for radiation carcinogenesis, in both in vivo and in vitro systems, and includes a discussion of agents that enhance (e.g., promoting agents) or suppress (e.g., cancer preventive agents) radiation-induced carcinogenesis. The agents that enhance or suppress radiation carcinogenesis in experimental model systems have been shown to lead to effects equally as large as other known modifying factors for radiation-induced carcinogenesis (e.g., dose-rate, dose-fractionation, linear energy transfer). It is known that dietary factors play an important role in determining the yields of radiation-induced cancers in animal model systems, and it is likely that they also influence radiation-induced cancer risks in human populations.

  6. A Systems Approach to Radiation Carcinogenesis

    NASA Astrophysics Data System (ADS)

    Hlatky, Lynn

    Understanding carcinogenesis risk is complicated by a number of factors, among these the lack of a common platform to integrate and analyze the available data, and the inherently systemsbiologic nature of the problem. We have investigated mechanistic approaches to radiogenic risk estimation that draw on unifying biological principles and incorporate data from multiscale sources. The resultant modeling takes into account that carcinogenesis is a multi-scale phenomenon, critically influenced by determinants not only at the molecular level, but at the cell and tissue-levels as well. To account for cell-level carcinogenesis progression as influenced by inter-tissue signaling, we have developed a dynamic carrying capacity construct that couples the growth of a tumor with the degree of induced vascularization. We have also characterized the molecular responses to radiation incorporating tissue-level angiogenesis implications, and have found striking radiation-quality-dependent responses. The molecular-level events of initiation and promotion are considered in our Two-Stage Logistic model, while incorporating in a rudimentary way the larger-scale growth-limiting role of cell-cell interactions. These and other recent studies undertaken to elaborate radiation-induced carcinogenesis are discussed, in pursuit of a more complete paradigm for understanding radiation induction of cancer and the consequent risk.

  7. High-let radiation carcinogenesis

    SciTech Connect

    Fry, R.J.M.; Powers-Risius, P.; Alpen, E.L.; Ainsworth, E.J.; Ullrich, R.L.

    1982-01-01

    Recent results for neutron radiation-induced tumors are presented to illustrate the complexities of the dose-response curves for high-LET radiation. It is suggested that in order to derive an appropriate model for dose-response curves for the induction of tumors by high-LET radiation it is necessary to take into account dose distribution, cell killing and the susceptibility of the tissue under study. Preliminary results for the induction of Harderian gland tumors in mice exposed to various heavy ion beams are presented. The results suggest that the effectiveness of the heavy ion beams increases with increasing LET. The slopes of the dose-response curves for the different high-LET radiations decrease between 20 and 40 rads and therefore comparisons of the relative effectiveness should be made from data obtained at doses below about 20 to 30 rads.

  8. High-LET radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Fry, R. J. M.; Ullrich, R. L.; Powers-Risius, P.; Alpen, E. L.; Ainsworth, E. J.

    Recent results for neutron radiation-induced tumors are presented to illustrate the complexities of the dose-response curves for high-LET radiation. It is suggested that in order to derive an appropriate model for dose-response curves for the induction of tumors by high-LET radiation it is necessary to take into account dose distribution, cell killing and the susceptibility of the tissue under study. Preliminary results for the induction of Harderian gland tumors in mice exposed to various heavy ion beams are presented. The results suggest that the effectiveness of the heavy ion beams increases with increasing LET. The slopes of the dose-response curves for the different high-LET radiations decrease between 20 and 40 rads and therefore comparisons of the relative effectiveness should be made from data obtained at doses below about 20-30 rads.

  9. Study of chemical and radiation induced carcinogenesis

    SciTech Connect

    Chmura, A.

    1995-11-01

    The study of chemical and radiation induced carcinogenesis has up to now based many of its results on the detection of genetic aberrations using the fluorescent in situ hybridization (FISH) technique. FISH is time consuming and this tends to hinder its use for looking at large numbers of samples. We are currently developing new technological advances which will increase the speed, clarity and functionality of the FISH technique. These advances include multi-labeled probes, amplification techniques, and separation techniques.

  10. High-LET radiation carcinogenesis

    SciTech Connect

    Fry, R.J.M.; Powers-Risius, P.; Alpen, E.L.; Ainsworth, E.J.

    1985-01-01

    The dose-response curves for the induction of tumors by high-LET radiation are complex and are insufficiently understood. There is no model or formulation to describe the dose-response relationship over a range 0 to 100 rad. Evidence suggests that at doses below 20 rad the response is linear, at least for life shortening and some tumor systems. Thus, limiting values of RBEs for the induction of cancer in various tissues can be determined, but it will require sufficient data obtained at low single doses or with small fractions. The results obtained from experiments with heavy ions indicate an initial linear response with a plateauing of the curve at a tumor incidence level that is dependent on the type of tissue. The RBE values for the heavy ions using /sup 60/Co gamma rays as the reference radiation increase with the estimated LET from 4 for /sup 4/H to about 27 for /sup 56/Fe, /sup 40/Ar. The dose-responses and RBEs for /sup 56/Fe and /sup 40/Ar are similar to those for fission neutrons. These findings suggest the possibility that the effectiveness for tumor induction reaches a maximum. 26 refs., 4 figs., 2 tabs.

  11. Gestational mutations in radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Meza, R.; Luebeck, G.; Moolgavkar, S.

    Mutations in critical genes during gestation could increase substantially the risk of cancer. We examine the consequences of such mutations using the Luebeck-Moolgavkar model for colorectal cancer and the Lea-Coulson modification of the Luria-Delbruck model for the accumulation of mutations during gestation. When gestational mutation rates are high, such mutations make a significant contribution to cancer risk even for adult tumors. Furthermore, gestational mutations ocurring at distinct times during emryonic developmemt lead to substantially different numbers of mutated cells at birth, with early mutations leading to a large number (jackpots) of mutated cells at birth and mutation occurring late leading to only a few mutated cells. Thus gestational mutations could confer considerable heterogeneity of the risk of cancer. If the fetus is exposed to an environmental mutagen, such as ionizing radiation, the gestational mutation rate would be expected to increase. We examine the consequences of such exposures during gestation on the subsequent development of cancer.

  12. Clonal theory of radiation carcinogenesis

    SciTech Connect

    Baum, J.W.

    1982-01-01

    In some cases, usually involving high-LET radiations, the dose response at low doses follows a power function of dose with exponent less than one over a wide dose range. This type of response is of great interest since (a) it implies greater effect per unit dose at progressively smaller doses, and (b) it is not predicted by most models and theories of radiobiology. A theoretical framework is presented for responses having the above characteristics over a dose range extending over a factor of 1000. The model postulates precursor cells which occur in clones. Different numbers of precursor cells per clone are assumed. Suitable transformation of a single cell in a clone completes initiation of that clone and raises the probability of tumor formation. At low doses, clones with large numbers of cells at risk have relatively high probability of response. However, depletion of the number of untransformed large clones with increasing dose leaves primarily untransformed smaller clones with smaller probability of response per unit dose. The analytical results demonstrate that power functions with exponent less than one can result even for doses so small that the mean number of charged particle traversals per cell is much less than one. The results also demonstrate that response functions may change from nearly approx. D/sup 0.4/ to nearly linear as linear energy transfer (LET) of the charged particle secondaries decreases. (ERB)

  13. (Radiation carcinogenesis in the whole body system)

    SciTech Connect

    Fry, R.J.M.

    1990-12-14

    The objectives of the trip were: to take part in and to give the summary of a Symposium on Radiation Carcinogenesis at Tokyo, and to give a talk at the National Institute of Radiological Sciences at Chiba. The breadth of the aspects considered at the conference was about as broad as is possible, from effects at the molecular level to human epidemiology, from the effects of tritium to cancer induction by heavy ions. The events induced by cancer that lead to cancer and the events that are secondary are beginning to come into better focus but much is still not known. Interest in suppressor genes is increasing rapidly in the studies of human tumors and many would predict that the three or four suppressor genes associated with cancer are only the first sighting of a much larger number.

  14. The Dose Response Relationship for Radiation Carcinogenesis

    NASA Astrophysics Data System (ADS)

    Hall, Eric

    2008-03-01

    Recent surveys show that the collective population radiation dose from medical procedures in the U.S. has increased by 750% in the past two decades. It would be impossible to imagine the practice of medicine today without diagnostic and therapeutic radiology, but nevertheless the widespread and rapidly increasing use of a modality which is a known human carcinogen is a cause for concern. To assess the magnitude of the problem it is necessary to establish the shape of the dose response relationship for radiation carcinogenesis. Information on radiation carcinogenesis comes from the A-bomb survivors, from occupationally exposed individuals and from radiotherapy patients. The A-bomb survivor data indicates a linear relationship between dose and the risk of solid cancers up to a dose of about 2.5 Sv. The lowest dose at which there is a significant excess cancer risk is debatable, but it would appear to be between 40 and 100 mSv. Data from the occupation exposure of nuclear workers shows an excess cancer risk at an average dose of 19.4 mSv. At the other end of the dose scale, data on second cancers in radiotherapy patients indicates that cancer risk does not continue to rise as a linear function of dose, but tends towards a plateau of 40 to 60 Gy, delivered in a fractionated regime. These data can be used to estimate the impact of diagnostic radiology at the low dose end of the dose response relationship, and the impact of new radiotherapy modalities at the high end of the dose response relationship. In the case of diagnostic radiology about 90% of the collective population dose comes from procedures (principally CT scans) which involve doses at which there is credible evidence of an excess cancer incidence. While the risk to the individual is small and justified in a symptomatic patient, the same is not true of some screening procedures is asymptomatic individuals, and in any case the huge number of procedures must add up to a potential public health problem. In the

  15. Stress and radiation carcinogenesis in mice.

    PubMed

    Kalisnik, M; Vraspir-Porenta, O; Kham-Lindtner, T; Logonder-Mlinsek, M; Skrk, J; Pajntar, M

    1981-01-01

    In the present experiment irritation consisting of a combination of an optic signal followed by a mild electroshock administered at regular intervals was started in 2 groups of animals at the age of 3 months. At 4 months of age, one of the irritated and one of the nonirritated groups were exposed to whole-body gamma irradiation at 20 daily doses of 0.5 Gy (50 rad(, 1.4 Gy/min (140 rad/min), while the other 2 groups were sham-irradiated. The animals were autopsied and the specimens were microscopically studied for the presence of malignant tumors. Malignant tumors involving particularly the testes and lungs and leukosis were found in 29% of males, whereas in females the tumor incidence with mammary, pulmonary and ovarian involvement and leukosis was 39%. The irradiation decreased the minimum latency time in the irritated males and both female groups. In males, the irritation lowered the cumulative prevalence of malignant tumors, a significant decrease being noted at the age of 15 months. In females, it was increased, with a significant rise observed to occur at the end of the experiment. The opposite effects of irritation on the radiation carcinogenesis in males and females can be attributed to the irradiation-induced specific alterations of the gonads in females and, in part, to a longer survival time observed in the irradiated females.

  16. Colorectal Carcinogenesis, Radiation Quality, and the Ubiquitin-Proteasome Pathway

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Kumar, Santosh; Fornace, Albert J

    2016-01-01

    Adult colorectal epithelium undergoes continuous renewal and maintains homeostatic balance through regulated cellular proliferation, differentiation, and migration. The canonical Wnt signaling pathway involving the transcriptional co-activator β-catenin is important for colorectal development and normal epithelial maintenance, and deregulated Wnt/β-catenin signaling has been implicated in colorectal carcinogenesis. Colorectal carcinogenesis has been linked to radiation exposure, and radiation has been demonstrated to alter Wnt/β-catenin signaling, as well as the proteasomal pathway involved in the degradation of the signaling components and thus regulation of β-catenin. The current review discusses recent progresses in our understanding of colorectal carcinogenesis in relation to different types of radiation and roles that radiation quality plays in deregulating β-catenin and ubiquitin-proteasome pathway (UPP) for colorectal cancer initiation and progression. PMID:26819641

  17. Experimental radiation carcinogenesis: what have we learned

    SciTech Connect

    Fry, R.J.M.

    1980-01-01

    The author reviews the need for animal experiments in development of a biological model for radioinduced carcinogenesis. He concludes they are vital for: (1) study of mechanisms; (2) establishment of generalizations; (3) elucidation of dose-response and time-dose relationships; and (4) determination of dose-distributions and their results, particularly for radionuclides. (PSB)

  18. Studies on the multistage nature of radiation carcinogenesis

    SciTech Connect

    Fry, R.J.M.; Ley, R.D.; Grube, D.; Staffeldt, E.

    1982-01-01

    The effectiveness of ionizing radiation and ultraviolet radiation (uvr) in the induction of carcinogenesis in mice and humans is discussed. It is clear that with low-dose levels of ionizing or uvr, the number of initiation events exceeds the numbers of tumors that grow to a detectable size. Ionizing radiation, which is a complete carcinogen, appears to be a more effective initiator than an enhancer or promoter. In the case of uvr, with or without photosensitizers such as psoralens, the requirement of a relatively large number of exposures for carcinogenesis suggests that the expression of the initiated cells as frank tumors requires a number of events spread out over the time of the development of the tumor. (KRM)

  19. Modification of radiation carcinogenesis by marijuana

    SciTech Connect

    Montour, J.L.; Dutz, W.; Harris, L.S.

    1981-03-15

    Male, female, and ovariectomized female Sprague-Dawley rats were irradiated with 400 rads, 150 rads, or 300 rads, respectively, of /sup 60/Co gamma rays when they were between 40 and 50 days of age. The animals were injected three times weekly with either marihuana extract or with alcohol-emulphor carrier. Comparable unirradiated groups were similarly injected. Mean survival time in males was significantly shorter in the 400 rad + marihuana group compared with the three other groups whose mean survival times did not differ. Through the 546 days that the males were observed, the total number of tumors other than fibrosarcomas was significantly greater following radiation and marihuana (22) than radiation alone (6). Fifteen of the tumors were of breast or endocrine tissues. No differences were seen in the unirradiated groups. In the females, which were observed for 635 days, the total number of breast tumors was greater with the combined treatment (38) compared with radiation alone (22). This was entirely due to a marked difference in the adenocarcinoma incidence, which was 21 (radiation + marihuana) compared with four (radiation alone). The number of adenofibromas was similar in the two groups. In the unirradiated female groups the breast adenocarcinoma incidence was eight in the marihuana group and two in the control group. Ovariectomy resulted in a lower breast tumor incidence in all groups. Nonbreast tumors were more frequent in the ovariectomized-irradiated groups. Radiation plus marihuana produced more nonbreast tumors (25) than radiation alone (17) in the ovariectomized females.

  20. Low-dose radiation exposure and carcinogenesis.

    PubMed

    Suzuki, Keiji; Yamashita, Shunichi

    2012-07-01

    Absorption of energy from ionizing radiation by the genetic material in the cell leads to damage to DNA, which in turn leads to cell death, chromosome aberrations and gene mutations. While early or deterministic effects result from organ and tissue damage caused by cell killing, latter two are considered to be involved in the initial events that lead to the development of cancer. Epidemiological studies have demonstrated the dose-response relationships for cancer induction and quantitative evaluations of cancer risk following exposure to moderate to high doses of low-linear energy transfer radiation. A linear, no-threshold model has been applied to assessment of the risks resulting from exposure to moderate and high doses of ionizing radiation; however, a statistically significant increase has hardly been described for radiation doses below 100 mSv. This review summarizes our current knowledge of the physical and biological features of low-dose radiation and discusses the possibilities of induction of cancer by low-dose radiation.

  1. Evidence Report: Risk of Radiation Carcinogenesis

    NASA Technical Reports Server (NTRS)

    Huff, Janice; Carnell, Lisa; Blattnig, Steve; Chappell, Lori; Kerry, George; Lumpkins, Sarah; Simonsen, Lisa; Slaba, Tony; Werneth, Charles

    2016-01-01

    As noted by Durante and Cucinotta (2008), cancer risk caused by exposure to space radiation is now generally considered a main hindrance to interplanetary travel for the following reasons: large uncertainties are associated with the projected cancer risk estimates; no simple and effective countermeasures are available, and significant uncertainties prevent scientists from determining the effectiveness of countermeasures. Optimizing operational parameters such as the length of space missions, crew selection for age and sex, or applying mitigation measures such as radiation shielding or use of biological countermeasures can be used to reduce risk, but these procedures have inherent limitations and are clouded by uncertainties. Space radiation is comprised of high energy protons, neutrons and high charge (Z) and energy (E) nuclei (HZE). The ionization patterns and resulting biological insults of these particles in molecules, cells, and tissues are distinct from typical terrestrial radiation, which is largely X-rays and gamma-rays, and generally characterized as low linear energy transfer (LET) radiation. Galactic cosmic rays (GCR) are comprised mostly of highly energetic protons with a small component of high charge and energy (HZE) nuclei. Prominent HZE nuclei include He, C, O, Ne, Mg, Si, and Fe. GCR ions have median energies near 1 GeV/n, and energies as high as 10 GeV/n make important contributions to the total exposure. Ionizing radiation is a well known carcinogen on Earth (BEIR 2006). The risks of cancer from X-rays and gamma-rays have been established at doses above 50 mSv (5 rem), although there are important uncertainties and on-going scientific debate about cancer risk at lower doses and at low dose rates (<50 mSv/h). The relationship between the early biological effects of HZE nuclei and the probability of cancer in humans is poorly understood, and it is this missing knowledge that leads to significant uncertainties in projecting cancer risks during space

  2. Studies on the multistage nature of radiation carcinogenesis

    SciTech Connect

    Fry, R.J.M.; Ley, R.D.; Grube, D.; Staffeldt, E.

    1980-01-01

    With low dose levels of ionizing or ultraviolet radiation, the number of initiation events exceeds the number of tumors that grow to a detectable size. Ionizing radiation, which is a complete carcinogen, appears to be a more effective initiator than an enhancer or promoter. However, the initiation and promotion aspects of ionizing radiation have been studied in very few organ systems. In the case of UVR, with or without photosensitizers such as psoralens, the requirement of a relatively large number of exposures for carcinogenesis suggests that the expression of the initiated cells as frank tumors requires a number of events spread out over the time of the development of the tumor. Both ionizing and ultraviolet radiation are, perhaps, underutilized as tools for probing the mechanism of both initiation and promotion.

  3. Smoking and hormesis as confounding factors in radiation pulmonary carcinogenesis.

    PubMed

    Sanders, Charles L; Scott, Bobby R

    2006-12-06

    Confounding factors in radiation pulmonary carcinogenesis are passive and active cigarette smoke exposures and radiation hormesis. Significantly increased lung cancer risk from ionizing radiation at lung doses < 1 Gy is not observed in never smokers exposed to ionizing radiations. Residential radon is not a cause of lung cancer in never smokers and may protect against lung cancer in smokers. The risk of lung cancer found in many epidemiological studies was less than the expected risk (hormetic effect) for nuclear weapons and power plant workers, shipyard workers, fluoroscopy patients, and inhabitants of high-dose background radiation. The protective effect was noted for low- and mixed high- and low-linear energy transfer (LET) radiations in both genders. Many studies showed a protection factor (PROFAC) > 0.40 (40% avoided) against the occurrence of lung cancer. The ubiquitous nature of the radiation hormesis response in cellular, animal, and epidemio-logical studies negates the healthy worker effect as an explanation for radiation hormesis. Low-dose radiation may stimulate DNA repair/apoptosis and immunity to suppress and eliminate cigarette-smoke-induced transformed cells in the lung, reducing lung cancer occurrence in smokers.

  4. Molecular characterization of cancer reveals interactions between ionizing radiation and chemicals on rat mammary carcinogenesis.

    PubMed

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Doi, Kazutaka; Tani, Shusuke; Ishikawa, Ken-ichi; Yamashita, Satoshi; Ushijima, Toshikazu; Imai, Takashi; Shimada, Yoshiya

    2014-04-01

    Although various mechanisms have been inferred for combinatorial actions of multiple carcinogens, these mechanisms have not been well demonstrated in experimental carcinogenesis models. We evaluated mammary carcinogenesis initiated by combined exposure to various doses of radiation and chemical carcinogens. Female rats at 7 weeks of age were γ-irradiated (0.2-2 Gy) and/or exposed to 1-methyl-1-nitrosourea (MNU) (20 or 40 mg/kg, single intraperitoneal injection) or 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) (40 mg/kg/day by gavage for 10 days) and were observed until 50 weeks of age. The incidence of mammary carcinoma increased steadily as a function of radiation dose in the absence of chemicals; mathematical analysis supported an additive increase when radiation was combined with a chemical carcinogen, irrespective of the chemical species and its dose. Hras mutations were characteristic of carcinomas that developed after chemical carcinogen treatments and were overrepresented in carcinomas induced by the combination of radiation and MNU (but not PhIP), indicating an interaction of radiation and MNU at the level of initiation. The expression profiles of seven classifier genes, previously shown to distinguish two classes of rat mammary carcinomas, categorized almost all examined carcinomas that developed after individual or combined treatments with radiation (1 Gy) and chemicals as belonging to a single class; more comprehensive screening using microarrays and a separate test sample set failed to identify differences in gene expression profiles among these carcinomas. These results suggest that a complex, multilevel interaction underlies the combinatorial action of radiation and chemical carcinogens in the experimental model.

  5. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    SciTech Connect

    Fabrikant, J.I.

    1981-05-01

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures. (ACR)

  6. Radiation-induced instability and its relation to radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Ullrich, R. L.; Ponnaiya, B.

    1998-01-01

    PURPOSE: A model that identifies radiation-induced genetic instability as the earliest cellular event in the multi-step sequence leading to radiation-induced cancer was previously proposed. In this paper ongoing experiments are discussed which are designed to test this model and its predictions in mouse mammary epithelial cells. RESULTS: Several lines of evidence are presented that appear to support this model: first, the development of delayed mutations in p53 following irradiation in altered growth variants; secondly, the high frequencies for the induction of both instability and transformation following irradiation in mammary epithelial cells; and finally, the demonstration that susceptibility to the induction of cytogenetic instability is a heritable trait that correlates with susceptibility to transformation and radiation-induced mammary cancer. Mice resistant to transformation and mammary cancer development are also resistant to the development of instability after irradiation. In contrast, mice sensitive to transformation and cancer are also sensitive to the development of cytogenetic instability. CONCLUSIONS: Data from this laboratory and from the studies cited above suggest a specific, and perhaps unique, role for radiation-induced instability as a critical early event associated with initiation of the carcinogenic process.

  7. Radiation signatures in childhood thyroid cancers after the Chernobyl accident: possible roles of radiation in carcinogenesis.

    PubMed

    Suzuki, Keiji; Mitsutake, Norisato; Saenko, Vladimir; Yamashita, Shunichi

    2015-02-01

    After the Tokyo Electric Power Company Fukushima Daiichi nuclear power plant accident, cancer risk from low-dose radiation exposure has been deeply concerning. The linear no-threshold model is applied for the purpose of radiation protection, but it is a model based on the concept that ionizing radiation induces stochastic oncogenic alterations in the target cells. As the elucidation of the mechanism of radiation-induced carcinogenesis is indispensable to justify the concept, studies aimed at the determination of molecular changes associated with thyroid cancers among children who suffered effects from the Chernobyl nuclear accident will be overviewed. We intend to discuss whether any radiation signatures are associated with radiation-induced childhood thyroid cancers.

  8. Radiation-induced genomic instability and its implications for radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Huang, Lei; Snyder, Andrew R.; Morgan, William F.

    2003-01-01

    Radiation-induced genomic instability is characterized by an increased rate of genetic alterations including cytogenetic rearrangements, mutations, gene amplifications, transformation and cell death in the progeny of irradiated cells multiple generations after the initial insult. Chromosomal rearrangements are the best-characterized end point of radiation-induced genomic instability, and many of the rearrangements described are similar to those found in human cancers. Chromosome breakage syndromes are defined by chromosome instability, and individuals with these diseases are cancer prone. Consequently, chromosomal instability as a phenotype may underlie some fraction of those changes leading to cancer. Here we attempt to relate current knowledge regarding radiation-induced chromosome instability with the emerging molecular information on the chromosome breakage syndromes. The goal is to understand how genetic and epigenetic factors might influence the onset of chromosome instability and the role of chromosomal instability in carcinogenesis.

  9. Health effects of low level radiation: carcinogenesis, teratogenesis, and mutagenesis

    SciTech Connect

    Ritenour, E.R.

    1986-04-01

    The carcinogenic effects of radiation have been demonstrated at high dose levels. At low dose levels, such as those encountered in medical diagnosis, the magnitude of the effect is more difficult to quantify. Three reasons for this difficulty are (1) the effects in human populations are small compared with the natural incidence of cancer in the populations; (2) it is difficult to transfer results obtained in animal studies to the human experience; and (3) the effects of latency period and plateau increase the complexity of population studies. In spite of these difficulties, epidemiologic studies of human populations exposed to low levels of radiation still play a valuable role in the determination of radiation carcinogenecity. They serve to provide upper estimates of risk and to rule out the appearance of new effects that may be masked by the effects of high doses. While there is evidence for mutagenic effects of radiation in experimental animals, no conclusive human data exist at the present. It is not possible to rule out the presence of genetic effects of radiation in humans, however, because many problems exist with regard to the epidemiologic detection of small effects when the natural incidence is relatively large. In animals, subtle effects (eg, a decrease in the probability of survival from egg to adult) may occur with greater frequency than more dramatic disorders in irradiated populations. However, these types of genetic abnormalities are difficult to quantitate. Current risk estimates are based primarily upon data pertaining to dominant mutations in rodents. Some specific locus studies also permit identification of recessive mutation rates. The embryo and fetus are considered to be at greater risk for adverse effects of radiation than is the adult.

  10. Risks of carcinogenesis from electromagnetic radiation of mobile telephony devices.

    PubMed

    Yakymenko, I; Sidorik, E

    2010-07-01

    Intensive implementation of mobile telephony technology in everyday human life during last two decades has given a possibility for epidemiological estimation of long-term effects of chronic exposure of human organism to low-intensive microwave (MW) radiation. Latest epidemiological data reveal a significant increase in risk of development of some types of tumors in chronic (over 10 years) users of mobile phone. It was detected a significant increase in incidence of brain tumors (glioma, acoustic neuroma, meningioma), parotid gland tumor, seminoma in long-term users of mobile phone, especially in cases of ipsilateral use (case-control odds ratios from 1.3 up to 6.1). Two epidemiological studies have indicated a significant increase of cancer incidence in people living close to the mobile telephony base station as compared with the population from distant area. These data raise a question of adequacy of modern safety limits of electromagnetic radiation (EMR) exposure for humans. For today the limits were based solely on the conception of thermal mechanism of biological effects of RF/MW radiation. Meantime the latest experimental data indicate the significant metabolic changes in living cell under the low-intensive (non-thermal) EMR exposure. Among reproducible biological effects of low-intensive MWs are reactive oxygen species overproduction, heat shock proteins expression, DNA damages, apoptosis. The lack of generally accepted mechanism of biological effects of low-intensive non-ionizing radiation doesn't permit to disregard the obvious epidemiological and experimental data of its biological activity. Practical steps must be done for reasonable limitation of excessive EMR exposure, along with the implementation of new safety limits of mobile telephony devices radiation, and new technological decisions, which would take out the source of radiation from human brain.

  11. Age, sex and other factors in radiation carcinogenesis

    SciTech Connect

    Fry, R.J.M.; Carnes, B.A.

    1988-01-01

    It has been held for a long time that the young are more susceptible than adults to the induction of cancer by radiation. The data in support of that contention are accumulating especially from human studies. In an exposed population a significant fraction of the total population risk may be attributed to the risk associated with those who were young at the time of exposure. Since cancer may not appear for decades after exposure estimates of risk may require models for projecting the lifetime risk. Two such models, additive or absolute risk and multiplicative or relative risk have been used. The appropriateness of the latter model is supported by the finding in mice of a positive relationship between natural incidence and the susceptibility for induction by radiation of solid cancer. The choice of model for leukemias is not clear cut. The incidence of cancer increases with age, but the susceptibility for induction decreases. The incidence of cancers increases to a peak and then begins to decline at different ages, dependent on the type of cancer. Sex-dependent differences in both the natural incidence and the susceptibility for induction of cancer are not restricted to sex organs. For example, the susceptibility for the induction by radiation for myeloid leukemia is greater in males than females, whereas in the case of thymic lymphoma it is vice versa. 25 refs., 5 figs., 3 tabs.

  12. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis

    PubMed Central

    Shim, Grace; Ricoul, Michelle; Hempel, William M.; Azzam, Edouard I.; Sabatier, Laure

    2014-01-01

    It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis. PMID:24486376

  13. MicroRNA-21 is involved in ionizing radiation-promoted liver carcinogenesis

    PubMed Central

    Zhu, Yun; Yu, Xiaoyan; Fu, Hanjiang; Wang, Hongyan; Wang, Ping; Zheng, Xiaofei; Wang, Ya

    2010-01-01

    It has been known for decades that ionizing radiation (IR) promotes carcinogenesis and high-linear energy transfer (LET) IR has a higher risk than low-LET IR for carcinogenesis; however, the mechanism remains unclear. MicroRNAs (miRNAs) have a critical effect on carcinogenesis through post-transcriptional modification. In this study, our purpose is to explore whether miRNAs are involved in IR-(especially high-LET IR) promoted liver carcinogenesis. We showed here that among several hundred miRNAs, miR-21 was the only one that increased 6 folds in high-LET IR-promoted mouse liver tumors when compared with that in the non-irradiated liver tissues. We also showed that miR-21 was up-regulated in human or mouse hepatocytes after exposure to IR, as well as in liver tissues derived from whole body irradiated mice. The increased level of miR-21 was more significant in high-LET irradiated cells or liver tissues. After the non-irradiated, low-LET or high-LET irradiated human hepatocytes were over-expressed with miR-21, these cells became tumorigenesis in nude mice. The tumors derived from high-LET-irradiated-cells were largest, and accompanied by more significant changes in the miR-21-targets: PTEN and RECK. In addition, we showed that IR-induced up-regulation of miR-21 depended on the up-regulation/activation of AP-1 (at an earlier time, within 2 h) and the ErbB/Stat3 pathway (at a later time, more than 2 h), which was also IR dose dependent. Taken together, we conclude that IR-induced up-regulation of miR-21 plays an important role in IR (especially high-LET IR)-promoted liver carcinogenesis. PMID:20827319

  14. Does Imaging Technology Cause Cancer? Debunking the Linear No-Threshold Model of Radiation Carcinogenesis.

    PubMed

    Siegel, Jeffry A; Welsh, James S

    2016-04-01

    In the past several years, there has been a great deal of attention from the popular media focusing on the alleged carcinogenicity of low-dose radiation exposures received by patients undergoing medical imaging studies such as X-rays, computed tomography scans, and nuclear medicine scintigraphy. The media has based its reporting on the plethora of articles published in the scientific literature that claim that there is "no safe dose" of ionizing radiation, while essentially ignoring all the literature demonstrating the opposite point of view. But this reported "scientific" literature in turn bases its estimates of cancer induction on the linear no-threshold hypothesis of radiation carcinogenesis. The use of the linear no-threshold model has yielded hundreds of articles, all of which predict a definite carcinogenic effect of any dose of radiation, regardless of how small. Therefore, hospitals and professional societies have begun campaigns and policies aiming to reduce the use of certain medical imaging studies based on perceived risk:benefit ratio assumptions. However, as they are essentially all based on the linear no-threshold model of radiation carcinogenesis, the risk:benefit ratio models used to calculate the hazards of radiological imaging studies may be grossly inaccurate if the linear no-threshold hypothesis is wrong. Here, we review the myriad inadequacies of the linear no-threshold model and cast doubt on the various studies based on this overly simplistic model.

  15. The Balance Between Initiation and Promotion in Radiation-Induced Murine Carcinogenesis

    PubMed Central

    Shuryak, Igor; Ullrich, Robert L.; Sachs, Rainer K.; Brenner, David J.

    2013-01-01

    Studies of radiation carcinogenesis in animals allow detailed investigation of how the risk depends on age at exposure and time since exposure and of the mechanisms that determine this risk, e.g., induction of new pre-malignant cells (initiation) and enhanced proliferation of already existing pre-malignant cells (promotion). To assist the interpretation of these patterns, we apply a newly developed biologically based mathematical model to data on several types of solid tumors induced by acute whole-body radiation in mice. The model includes both initiation and promotion and analyzes pre-malignant cell dynamics on two different time scales: comparatively short-term during irradiation and long-term during the entire life span. Our results suggest general mechanistic similarities between radiation carcinogenesis in mice and in human atomic bomb survivors. The excess relative risk (ERR) in mice decreases with age at exposure up to an exposure age of 1 year, which corresponds to mid-adulthood in humans; the pattern for older ages at exposure, for which there is some evidence of increasing ERRs in atomic bomb survivors, cannot be evaluated using the data set analyzed here. Also similar to findings in humans, initiation dominates the ERR at young ages in mice, when there are few background pre-malignant cells, and promotion becomes important at older ages. PMID:20726716

  16. Toxicogenomic Effects in Rat Blood Leukocytes and Chemoprophylaxis of Radiation-Induced Carcinogenesis.

    PubMed

    Ivanov, S D; Bespalov, V G; Semenov, A L; Kovan'ko, E G; Aleksandrov, V A

    2016-03-01

    Toxicogenomic parameters were studied in the blood of female rats after exposure to ionizing γ-radiation in a dose of 4 Gy and chemoprophylaxis with α-difluoromethylornithine, eleutherococcus or leuzea extracts, which were used in animals with morphological manifestations of tumor growth under conditions of radiation-induced carcinogenesis. Life-time evaluation of toxicogenomic effects was carried out by express method for measurements of blood nucleotid DNA - fluorescent indication. The level of hyperaneu/polyploidy increased in the blood leukocytes of control rats 30 days after radiation exposure. A significant decrease of genotoxicity as a result of drug treatment in comparison with the number and multiplicity of tumors in irradiated animals was found only in the endocrine and reproductive organs of rats treated by eleutherococcus extract.

  17. Stable loss of global DNA methylation in the radiation-target tissue-A possible mechanism contributing to radiation carcinogenesis?

    SciTech Connect

    Koturbash, Igor; Pogribny, Igor; Kovalchuk, Olga . E-mail: olga.kovalchuk@uleth.ca

    2005-11-18

    Radiation-induced lymphomagenesis and leukemogenesis are complex processes involving both genetic and epigenetic changes. Although genetic alterations during radiation-induced lymphoma- and leukemogenesis are fairly well studied, the role of epigenetic changes has been largely overlooked. Rodent models are valuable tools for identifying molecular mechanisms of lymphoma and leukemogenesis. A widely used mouse model of radiation-induced thymic lymphoma is characterized by a lengthy 'pre-lymphoma' period. Delineating molecular changes occurring during the pre-lymphoma period is crucial for understanding the mechanisms of radiation-induced leukemia/lymphoma development. In the present study, we investigated the role of radiation-induced DNA methylation changes in the radiation carcinogenesis target organ-thymus, and non-target organ-muscle. This study is the first report on the radiation-induced epigenetic changes in radiation-target murine thymus during the pre-lymphoma period. We have demonstrated that acute and fractionated whole-body irradiation significantly altered DNA methylation pattern in murine thymus leading to a massive loss of global DNA methylation. We have also observed that irradiation led to increased levels of DNA strand breaks 6 h following the initial exposure. The majority of radiation-induced DNA strand breaks were repaired 1 month after exposure. DNA methylation changes, though, were persistent and significant radiation-induced DNA hypomethylation was observed in thymus 1 month after exposure. In sharp contrast to thymus, no significant persistent changes were noted in the non-target muscle tissue. The presence of stable DNA hypomethylation in the radiation-target tissue, even though DNA damage resulting from initial genotoxic radiation insult was repaired, suggests of the importance of epigenetic mechanisms in the development of radiation-related pathologies. The possible role of radiation-induced DNA hypomethylation in radiation-induced genome

  18. HZE Radiation Non-Targeted Effects on the Microenvironment That Mediate Mammary Carcinogenesis

    PubMed Central

    Barcellos-Hoff, Mary Helen; Mao, Jian-Hua

    2016-01-01

    Clear mechanistic understanding of the biological processes elicited by radiation that increase cancer risk can be used to inform prediction of health consequences of medical uses, such as radiotherapy, or occupational exposures, such as those of astronauts during deep space travel. Here, we review the current concepts of carcinogenesis as a multicellular process during which transformed cells escape normal tissue controls, including the immune system, and establish a tumor microenvironment. We discuss the contribution of two broad classes of radiation effects that may increase cancer: radiation targeted effects that occur as a result of direct energy deposition, e.g., DNA damage, and non-targeted effects (NTE) that result from changes in cell signaling, e.g., genomic instability. It is unknown whether the potentially greater carcinogenic effect of high Z and energy (HZE) particle radiation is a function of the relative contribution or extent of NTE or due to unique NTE. We addressed this problem using a radiation/genetic mammary chimera mouse model of breast cancer. Our experiments suggest that NTE promote more aggressive cancers, as evidenced by increased growth rate, transcriptomic signatures, and metastasis, and that HZE particle NTE are more effective than reference γ-radiation. Emerging evidence suggest that HZE irradiation dampens antitumor immunity. These studies raise concern that HZE radiation exposure not only increases the likelihood of developing cancer but also could promote progression to more aggressive cancer with a greater risk of mortality. PMID:27014632

  19. NSBRI Radiation Effects: Carcinogenesis in Sprague-Dawley Rats Irradiated with Iron Ions, Protons, or Photons

    NASA Technical Reports Server (NTRS)

    Dicello, J. F.; Cucinotta, F. A.; Gridley, D. S.; Howard, S. P.; Novak, G. R.; Ricart-Arbona, R.; Strandberg, J. D.; Vazquez, M. E.; Williams, J. R.; Zhang, Y.; Zhou, H.; Huso, D. L.

    1999-01-01

    Our ability to confidently develop appropriate countermeasures for radiations in space in terms of shielding and design of a spacecraft, the mission scenario, or chemoprevention is severely limited by the uncertainties in both the risk itself and the change in that risk with intervention. Despite the fact that the risk of carcinogenesis from exposures of personnel to radiations on long-term missions is considered one of the worst hazards in space, only a limited amount of in-vivo data exist for tumor induction from exposures to protons or energetic heavy ions (HZEs) at lower doses. The most extensive work remains the landmark study. for tumor development in the harderian gland of the mouse. The objective of this study is to characterize the level of risk for tumor induction in another relevant animal model. Subsequent experiments are designed to test the hypothesis that the level of risk can be reduced by pharmaceutical intervention in the promoting and progressing stages of the disease rather than in the initiating stage. The work presented here results from a cooperative effort on the part of investigators from two projects of the Radiation-Effects Team of the National Space Biomedical Research Institute (NSBRI). The collaborating projects are the Core Project which is investigating the risk of carcinogenesis in Sprague-Dawley rats and the Chemoprevention Project which is investigating the ability of Tamoxifen to reduce the number of malignant tumors in the irradiated animals. Research at the cellular and subcellular levels is being conducted in two other projects of the Radiation-Effects Team, Cytogenetics with J. R. Williams as Principal Investigator and Mutations from Repeated DNA Sequences. Results for these other projects also are being presented at this Workshop.

  20. Multistage Carcinogenesis Modelling of Low and Protracted Radiation Exposure for Risk Assessment

    NASA Astrophysics Data System (ADS)

    Brugmans, M. J. P.; Bijwaard, H.

    Exposure to cosmic radiation in space poses an increased risk for radiation-induced cancer later in life. Modelling is essential to quantify these excess risks from low and protracted exposures to a mixture of radiation types, since they cannot be determined directly in epidemiological studies. Multistage carcinogenesis models provide a mechanistic basis for the extrapolation of epidemiological data to the regime that is relevant for radiation protection. In recent years, we have exploited the well-known two-mutation carcinogenesis model to bridge the gap between radiobiology and epidemiology. We have fitted this model to a number of animal and epidemiological data sets, using dose-response relationships for the mutational steps that are well established in cellular radiobiology. The methodology and implications for radiation risks are illustrated with analyses of two radiation-induced tumours: bone cancer from internal (high-LET and low-LET) emitters and lung cancer after radon exposure. For the risks of bone-seeking radionuclides (Ra-226, Sr-90, Pu-239), model fits to beagle data show that the dose-effect relationship for bone cancer at low intakes is linear-quadratic. This is due to a combination of equally strong linear dose-effects in the two subsequent mutational steps in the model. This supra-linear dose-effect relationship is also found in a model analysis of bone cancer in radium dial painters. This implies that at low intakes the risks from bone seekers are significantly lower than estimated from a linear extrapolation from high doses. Model analyses of radon-exposed rats and uranium miners show that lung-cancer induction is dominated by a linear radiation effect in the first mutational step. For two miner cohorts with significantly different lung cancer baselines a uniform description of the effect of radon is obtained in a joint analysis. This demonstrates the possibility to model risk transfer across populations. In addition to biologically based risk

  1. Integration of a radiation biomarker into modeling of thyroid carcinogenesis and post-Chernobyl risk assessment

    PubMed Central

    Kaiser, Jan Christian; Meckbach, Reinhard; Eidemüller, Markus; Selmansberger, Martin; Unger, Kristian; Shpak, Viktor; Blettner, Maria; Zitzelsberger, Horst; Jacob, Peter

    2016-01-01

    Strong evidence for the statistical association between radiation exposure and disease has been produced for thyroid cancer by epidemiological studies after the Chernobyl accident. However, limitations of the epidemiological approach in order to explore health risks especially at low doses of radiation appear obvious. Statistical fluctuations due to small case numbers dominate the uncertainty of risk estimates. Molecular radiation markers have been searched extensively to separate radiation-induced cancer cases from sporadic cases. The overexpression of the CLIP2 gene is the most promising of these markers. It was found in the majority of papillary thyroid cancers (PTCs) from young patients included in the Chernobyl tissue bank. Motivated by the CLIP2 findings we propose a mechanistic model which describes PTC development as a sequence of rate-limiting events in two distinct paths of CLIP2-associated and multistage carcinogenesis. It integrates molecular measurements of the dichotomous CLIP2 marker from 141 patients into the epidemiological risk analysis for about 13 000 subjects from the Ukrainian-American cohort which were exposed below age 19 years and were put under enhanced medical surveillance since 1998. For the first time, a radiation risk has been estimated solely from marker measurements. Cross checking with epidemiological estimates and model validation suggests that CLIP2 is a marker of high precision. CLIP2 leaves an imprint in the epidemiological incidence data which is typical for a driver gene. With the mechanistic model, we explore the impact of radiation on the molecular landscape of PTC. The model constitutes a unique interface between molecular biology and radiation epidemiology. PMID:27729373

  2. Report of National Cancer Institute symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. I. Common molecular mechanisms

    SciTech Connect

    Borg, D.C.

    1984-01-01

    Some aspects of molecular mechanisms common to radiation and chemical carcinogenesis are discussed, particularly the DNA damage done by these agents. Emphasis is placed on epidemiological considerations and on dose-response models used in risk assessment to extrapolate from experimental data obtained at high doses to the effects from long-term, low-level exposures. 3 references, 6 figures. (ACR)

  3. Protein Kinases and Transcription Factors Activation in Response to UV-Radiation of Skin: Implications for Carcinogenesis

    PubMed Central

    López-Camarillo, César; Ocampo, Elena Aréchaga; Casamichana, Mavil López; Pérez-Plasencia, Carlos; Álvarez-Sánchez, Elizbeth; Marchat, Laurence A.

    2012-01-01

    Solar ultraviolet (UV) radiation is an important environmental factor that leads to immune suppression, inflammation, photoaging, and skin carcinogenesis. Here, we reviewed the specific signal transduction pathways and transcription factors involved in the cellular response to UV-irradiation. Increasing experimental data supporting a role for p38, MAPK, JNK, ERK1/2, and ATM kinases in the response network to UV exposure is discussed. We also reviewed the participation of NF-κB, AP-1, and NRF2 transcription factors in the control of gene expression after UV-irradiation. In addition, we discussed the promising chemotherapeutic intervention of transcription factors signaling by natural compounds. Finally, we focused on the review of data emerging from the use of DNA microarray technology to determine changes in global gene expression in keratinocytes and melanocytes in response to UV treatment. Efforts to obtain a comprehensive portrait of the transcriptional events regulating photodamage of intact human epidermis after UV exposure reveals the existence of novel factors participating in UV-induced cell death. Progress in understanding the multitude of mechanisms induced by UV-irradiation could lead to the potential use of protein kinases and novel proteins as specific targets for the prevention and control of skin cancer. PMID:22312244

  4. Protein kinases and transcription factors activation in response to UV-radiation of skin: implications for carcinogenesis.

    PubMed

    López-Camarillo, César; Ocampo, Elena Aréchaga; Casamichana, Mavil López; Pérez-Plasencia, Carlos; Alvarez-Sánchez, Elizbeth; Marchat, Laurence A

    2012-01-01

    Solar ultraviolet (UV) radiation is an important environmental factor that leads to immune suppression, inflammation, photoaging, and skin carcinogenesis. Here, we reviewed the specific signal transduction pathways and transcription factors involved in the cellular response to UV-irradiation. Increasing experimental data supporting a role for p38, MAPK, JNK, ERK1/2, and ATM kinases in the response network to UV exposure is discussed. We also reviewed the participation of NF-κB, AP-1, and NRF2 transcription factors in the control of gene expression after UV-irradiation. In addition, we discussed the promising chemotherapeutic intervention of transcription factors signaling by natural compounds. Finally, we focused on the review of data emerging from the use of DNA microarray technology to determine changes in global gene expression in keratinocytes and melanocytes in response to UV treatment. Efforts to obtain a comprehensive portrait of the transcriptional events regulating photodamage of intact human epidermis after UV exposure reveals the existence of novel factors participating in UV-induced cell death. Progress in understanding the multitude of mechanisms induced by UV-irradiation could lead to the potential use of protein kinases and novel proteins as specific targets for the prevention and control of skin cancer.

  5. Atomic Bomb Survivors Life-Span Study: Insufficient Statistical Power to Select Radiation Carcinogenesis Model.

    PubMed

    Socol, Yehoshua; Dobrzyński, Ludwik

    2015-01-01

    The atomic bomb survivors life-span study (LSS) is often claimed to support the linear no-threshold hypothesis (LNTH) of radiation carcinogenesis. This paper shows that this claim is baseless. The LSS data are equally or better described by an s-shaped dependence on radiation exposure with a threshold of about 0.3 Sievert (Sv) and saturation level at about 1.5 Sv. A Monte-Carlo simulation of possible LSS outcomes demonstrates that, given the weak statistical power, LSS cannot provide support for LNTH. Even if the LNTH is used at low dose and dose rates, its estimation of excess cancer mortality should be communicated as 2.5% per Sv, i.e., an increase of cancer mortality from about 20% spontaneous mortality to about 22.5% per Sv, which is about half of the usually cited value. The impact of the "neutron discrepancy problem" - the apparent difference between the calculated and measured values of neutron flux in Hiroshima - was studied and found to be marginal. Major revision of the radiation risk assessment paradigm is required.

  6. Medical radiation exposure and human carcinogenesis-genetic and epigenetic mechanisms.

    PubMed

    Dincer, Yildiz; Sezgin, Zeynep

    2014-09-01

    Ionizing radiation (IR) is a potential carcinogen. Evidence for the carcinogenic effect of IR radiation has been shown after long-term animal investigations and observations on survivors of the atom bombs in Hiroshima and Nagasaki. However, IR has been widely used in a controlled manner in the medical imaging for diagnosis and monitoring of various diseases and also in cancer therapy. The collective radiation dose from medical imagings has increased six times in the last two decades, and grow continuously day to day. A large number of evidence has revealed the increased cancer risk in the people who had frequently exposed to x-rays, especially in childhood. It has also been shown that secondary malignancy may develop within the five years in cancer survivors who have received radiotherapy, because of IR-mediated damage to healthy cells. In this article, we review the current knowledge about the role of medical x-ray exposure in cancer development in humans, and recently recognized epigenetic mechanisms in IR-induced carcinogenesis.

  7. Estimation of risk based on multiple events in radiation carcinogenesis of rat skin

    NASA Astrophysics Data System (ADS)

    Burns, F. J.; Jin, Y.; Garte, S. J.; Hosselet, S.

    1994-10-01

    In the multistage theory of carcinogenesis, cells progress to cancer through a series of discrete, irreversible, heritable genetic alterations or mutations. However data on radiation-induced cancer incidence in rat skin suggests that some part of an intermediate repairable alteration may occur. Data are presented on cancer induction in rat skin exposed to the following radiations: 1. an electron beam (LET = 0.34 keV/um, 2. a neon ion beam (LET = 25 keV/um and 3. an argon ion beam (LET = 125 keV/um. The latter 2 beams were generated by the Bevalac at the Lawrence Berkeley Laboratory, Berkeley, CA. About 6.0 cm2 of skin was irradiated per rat. The rats were observed every 6 weeks for at least 78 weeks and tumors were scored at first occurrence. Several histological types of cancer, including squamous and basal cell carcinomas, were induced. The cancer yield versus radiation dose was fitted by the quadratic equation (Y (D) = CLD + BD2), and the parameters C and B were estimated for each type of radiation. Analysis of the DNA from the electron-induced carcinomas indicated that K-ras and/or c-myc oncogenes were activated in all tumors tested, although only a small proportion of neon-induced tumors showed similar activation. In situ hybridization indicated that the cancers contain subpopulations of cells with differing amounts of c-myc and H-ras amplification. The results are consistent with the idea that ionizing radiation produces carcinogenically relevant lesions via 2 repairable events at low LET and via a non-repairable, linked event pathway at high LET; either pathway may advance the cell by 1 stage in the multistage model. The model, if validated, permits the direct calculation of cancer risk in rat skin in a way that can be subjected to experimental testing.

  8. Influence of Ionizing Radiation on Stromal-Epithelial Intercellular Communication in Esophageal Carcinogenesis

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Kalabis, Jiri; Rustgi, Anil K.; Cucinotta, Francis A.; Huff, Janice L.

    2010-01-01

    Esophageal cancer is the 6th leading cause of cancer death worldwide. Its development is associated with a variety of risk factors including tobacco use, heavy alcohol consumption, human papilloma virus infection, and certain dietary factors such as trace mineral and vitamin deficiencies. An association with ionizing radiation exposure is revealed by the high excess relative risk for squamous cell carcinoma of the esophagus observed in the survivors of the atomic bomb detonations in Japan. It is also seen as a secondary malignancy in patients who received radiotherapy for breast and thoracic cancers; additionally, patients with head/neck and oral squamous cell cancers are at increased risk for metachronous esophageal squamous cell cancers. This malignancy is rapidly fatal, mainly because it remains asymptomatic until late, advanced stages when the disease is rarely curable. The stromal microenvironment plays an essential role in the maintenance and modulation of normal epithelial cell growth and differentiation and cross talk between the epithelial and stromal compartments can influence many aspects of malignant progression, including tumor cell proliferation, migration, invasion and recruitment of new blood vessels. To test the hypothesis that radiation exposure plays a role in esophageal carcinogenesis via non-targeted mechanisms involving stromal-epithelial cell communication, we are studying radiation effects on hTERT-immortalized human esophageal epithelial cells and genetic variants grown in co-culture with human esophageal stromal fibroblasts (Okawa et al., Genes & Dev. 2007. 21: 2788-2803). We examined how radiation treatment of stromal fibroblasts affected epithelial migration and invasion, behaviors associated with cancer promotion and progression. Chemotactic and haptotactic migration of epithelial cells stimulated by conditioned media from irradiated fibroblasts was measured using assays conducted in Transwell cell culture chambers. Our results using

  9. Influence of Ionizing Radiation on Stromal-Epithelial Communication in Esophageal Carcinogenesis

    NASA Astrophysics Data System (ADS)

    Huff, Janice; Patel, Zarana; Grugan, Katharine; Rustgi, Anil; Cucinotta, Francis A.

    Esophageal cancer is the 6th leading cause of cancer death worldwide and is associated with a variety of risk factors including tobacco use, heavy alcohol consumption, human papilloma virus infection, and certain dietary factors such as trace mineral and vitamin deficiencies. A connection with ionizing radiation exposure is revealed by the high excess relative risk for esophageal squamous cell carcinoma observed in the survivors of the atomic bomb detonations in Japan. Esophageal carcinomas are also seen as secondary malignancies in patients who received radiotherapy for breast and thoracic cancers; additionally, patients with head/neck and oral squamous cell cancers are at increased risk for metachronous esophageal squamous cell cancers. This malignancy is rapidly fatal, mainly because it remains asymptomatic until late, advanced stages when the disease is rarely responsive to treatment. In normal epithelium, the stromal microenvironment is essential for the maintenance and modulation of cell growth and differentiation. Cross talk between the epithelial and stromal compartments can influence many aspects of malignant progression, including tumor cell proliferation, migration, invasion and recruitment of new blood vessels. To test the hypothesis that radiation exposure plays a role in esophageal carcinogenesis via non-targeted mechanisms involving stromal-epithelial cell communication, we are studying radiation effects on hTERT-immortalized human esophageal epithelial cells and genetic variants grown in co-culture with human esophageal stromal fibrob-lasts (Okawa et al., Genes Dev. 2007. 21: 2788-2803). We examined how irradiation of stromal fibroblasts affected epithelial migration and invasion, behaviors associated with cancer promotion and progression. These assays were conducted in modified Boyden chambers using conditioned media from irradiated fibroblasts. Our results using low LET gamma radiation showed a dose-dependent increase in migration of epithelial

  10. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    SciTech Connect

    Fabrikant, J.I.

    1982-08-01

    The present review provides an understanding of our current knowledge of the carcinogenic effect of low-dose radiation in man, and surveys the epidemiological studies of human populations exposed to nuclear explosions and medical radiation. Discussion centers on the contributions of quantitative epidemiology to present knowledge, the reliability of the dose-incidence data, and those relevant epidemiological studies that provide the most useful information for risk estimation of cancer-induction in man. Reference is made to dose-incidence relationships from laboratory animal experiments where they may obtain for problems and difficulties in extrapolation from data obtained at high doses to low doses, and from animal data to the human situation. The paper describes the methods of application of such epidemiological data for estimation of excess risk of radiation-induced cancer in exposed human populations, and discusses the strengths and limitations of epidemiology in guiding radiation protection philosophy and public health policy.

  11. Tumor suppressor function of Betaig-H3 gene in radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Zhao, Y. L.; Piao, C. Q.; Hei, T. K.

    Interaction between cell and extracellular matrix (ECM) plays a crucial role in tumor invasiveness and metastasis. Using an immortalized human bronchial epithelial (BEP2D) cell model, we showed previously that expression of a list of genes including Betaig-h3 (induced by transforming growth factor-β) DCC (deleted in colorectal cancer), p21 cip1, c-fos , Heat shock protein (HSP27) and cytokeratin 14 were differentially expressed in several independently generated, radiation-induced tumor cell lines (TL1-TL5) relative to parental BEP2D cells. Our previous data further demonstrated that loss of tumor suppressor gene(s) as a likely mechanism of radiation carcinogenesis. In the present study, we chose Betaig-h3 and DCC that were downregulated in tumorigenic cells for further study. Restored expression of Betaig-h3 gene, not DCC gene, by transfecting cDNA into tumor cells resulted in a significant reduction in tumor growth. While integrin receptor α5β1 was overexpressed in tumor cells, its expression was corrected to the level found in control BEP2D cells after Betaig-h3 transfection. These data suggest that Betaig-h3 gene is involved in tumor progression by regulating integrin α5β1 receptor. Furthermore, exogenous TGF-β1 induced expression of Betaig-h3 gene and inhibited the growth of both control and tumorigenic BEP2D cells. Therefore, downregulation of Betaig-h3 gene may results from the decreased expression of upstream mediators such as TGF-β. The findings provide strong evidence that the Betaig-h3 gene has tumor suppressor function in radiation-induced tumorigenic human bronchial epithelial cells and suggest a potential target for interventional therapy.

  12. Radiation-Induced Carcinogenesis: Mechanistically Based Differences between Gamma-Rays and Neutrons, and Interactions with DMBA

    PubMed Central

    Shuryak, Igor; Brenner, David J.; Ullrich, Robert L.

    2011-01-01

    Different types of ionizing radiation produce different dependences of cancer risk on radiation dose/dose rate. Sparsely ionizing radiation (e.g. γ-rays) generally produces linear or upwardly curving dose responses at low doses, and the risk decreases when the dose rate is reduced (direct dose rate effect). Densely ionizing radiation (e.g. neutrons) often produces downwardly curving dose responses, where the risk initially grows with dose, but eventually stabilizes or decreases. When the dose rate is reduced, the risk increases (inverse dose rate effect). These qualitative differences suggest qualitative differences in carcinogenesis mechanisms. We hypothesize that the dominant mechanism for induction of many solid cancers by sparsely ionizing radiation is initiation of stem cells to a pre-malignant state, but for densely ionizing radiation the dominant mechanism is radiation-bystander-effect mediated promotion of already pre-malignant cell clone growth. Here we present a mathematical model based on these assumptions and test it using data on the incidence of dysplastic growths and tumors in the mammary glands of mice exposed to high or low dose rates of γ-rays and neutrons, either with or without pre-treatment with the chemical carcinogen 7,12-dimethylbenz-alpha-anthracene (DMBA). The model provides a mechanistic and quantitative explanation which is consistent with the data and may provide useful insight into human carcinogenesis. PMID:22194850

  13. Radiation-induced carcinogenesis: mechanistically based differences between gamma-rays and neutrons, and interactions with DMBA.

    PubMed

    Shuryak, Igor; Brenner, David J; Ullrich, Robert L

    2011-01-01

    Different types of ionizing radiation produce different dependences of cancer risk on radiation dose/dose rate. Sparsely ionizing radiation (e.g. γ-rays) generally produces linear or upwardly curving dose responses at low doses, and the risk decreases when the dose rate is reduced (direct dose rate effect). Densely ionizing radiation (e.g. neutrons) often produces downwardly curving dose responses, where the risk initially grows with dose, but eventually stabilizes or decreases. When the dose rate is reduced, the risk increases (inverse dose rate effect). These qualitative differences suggest qualitative differences in carcinogenesis mechanisms. We hypothesize that the dominant mechanism for induction of many solid cancers by sparsely ionizing radiation is initiation of stem cells to a pre-malignant state, but for densely ionizing radiation the dominant mechanism is radiation-bystander-effect mediated promotion of already pre-malignant cell clone growth. Here we present a mathematical model based on these assumptions and test it using data on the incidence of dysplastic growths and tumors in the mammary glands of mice exposed to high or low dose rates of γ-rays and neutrons, either with or without pre-treatment with the chemical carcinogen 7,12-dimethylbenz-alpha-anthracene (DMBA). The model provides a mechanistic and quantitative explanation which is consistent with the data and may provide useful insight into human carcinogenesis.

  14. Carcinogenesis and low-level ionizing radiation with special reference to lung cancer and exposure to radon daughters

    SciTech Connect

    Fabrikant, J.I.

    1982-04-01

    Of the important health effects of ionizing radiation, three important late effects - carcinogenesis, teratogenesis and mutagenesis are of greatest concern. This is because any exposure, even at low levels, carries some risk of such deleterious effects. As the dose of radiation increases above very low levels, the risk of health effects increases. Cancer-induction is the most important late somatic effect of low-dose ionizing radiation. Solid cancers, rather than leukemia, are principal late effects in exposed individuals. Tissues vary greatly in their susceptibility to radiation carcinogenesis. The most frequently occurring radiation-induced cancers in man include, in decreasing order of susceptibility: the female breast, the thyroid gland, the blood-forming tissues, the lung, certain organs of the gastrointestinal tract, and the bones. A number of biological and physical factors affect the cancer risk, such as age, sex, life-style, LET, and RBE. Despite uncertainty about low-level radiation risks, regulatory and advisory bodies must set standards for exposure, and individuals need information to be able to make informed judgments for themselves. From the point of view of the policy maker, the overriding concern is the fact that small doses of radiation can cause people to have more cancers than would otherwise be expected. While concern for all radiation effects exists, our human experience is limited to cancer-induction in exposed populations. This discussion is limited to cancer risk estimation and decision-making in relation to the health effects on populations of exposure to low levels of ionizing radiation. Here, low-level radiation will refer to yearly whole-body doses up to 5 rems or 0.05 Sv, or to cumulative doses up to 50 rems or 0.5 Sv from low-LET radiation and from high-LET radiation. (ERB)

  15. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis

    DOE PAGES

    Wright, Aaron T.; Magnaldo, Thierry; Sontag, Ryan L.; ...

    2013-11-27

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of relevant pathways/networks. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol-reactive probes with a flexible click chemistry functional group to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. We observe qualitative differences in protein thiol profilesmore » by SDS-PAGE analysis when detection by iodoacetamide vs maleimide probe chemistries are compared, and pretreatment of cells with hydrogen peroxide eliminates detection of the majority of SDS-PAGE bands. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent donors, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and this deficiency was confirmed by Western blot. Redox probes revealed additional protein thiol differences between GDFs and NHDFs, including radiation responsive annexin family members. Our results indicate a multifactorial basis for the unusual sensitivity of Gorlin syndrome to radiation carcinogenesis, and the pathways identified have plausible implications for radiation health effects.« less

  16. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis

    SciTech Connect

    Wright, Aaron T.; Magnaldo, Thierry; Sontag, Ryan L.; Anderson, Lindsey N.; Sadler, Natalie C.; Piehowski, Paul D.; Gache, Yannick; Weber, Thomas J.

    2013-11-27

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of relevant pathways/networks. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol-reactive probes with a flexible click chemistry functional group to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. We observe qualitative differences in protein thiol profiles by SDS-PAGE analysis when detection by iodoacetamide vs maleimide probe chemistries are compared, and pretreatment of cells with hydrogen peroxide eliminates detection of the majority of SDS-PAGE bands. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent donors, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and this deficiency was confirmed by Western blot. Redox probes revealed additional protein thiol differences between GDFs and NHDFs, including radiation responsive annexin family members. Our results indicate a multifactorial basis for the unusual sensitivity of Gorlin syndrome to radiation carcinogenesis, and the pathways identified have plausible implications for radiation health effects.

  17. Carcinogenesis and aging

    SciTech Connect

    Anisimov, V.N.; Petrov, N.N.

    1987-01-01

    This 2-voluem set discusses the problem of inter-relation between carcinogenesis and aging, and the phenomenon of age-related increase in cancer incidence in animals and humans. Covered topics include current concepts in mechanisms of carcinogenesis and aging; data on chemical, radiation, ultraviolet-light, hormonal and viral carcinogenesis in aging; data on the role of age-related shifts in the activity of carcinogen-metabolizing enzymes; binding of carcinogens with macromolecules; DNA repair; tissue proliferation; and immunity and homono-metabolic patterns in realization of initiation and promotion of carcinogenesis.

  18. Radiation carcinogenesis and acute radiation mortality in the rat as produced by 2.2 GeV protons

    NASA Technical Reports Server (NTRS)

    Shellabarger, C. J.; Straub, R. F.; Jesseph, J. E.; Montour, J. L.

    1972-01-01

    Biological studies, proton carcinogenesis, the interaction of protons and gamma-rays on carcinogenesis, proton-induced acute mortality, and chemical protection against proton-induced acute mortality were studied in the rat and these proton-produced responses were compared to similar responses produced by gamma-rays or X-rays. Litter-mate mice were assigned to each experimental and control group so that approximately equal numbers of litter mates were placed in each group. Animals to be studied for mammary neoplasia were handled for 365 days post-exposure when all animals alive were killed. All animals were examined frequently for mammary tumors and as these were found, they were removed, sectioned and given a pathologic classification.

  19. Validation of comprehensive space radiation transport code

    SciTech Connect

    Shinn, J.L.; Simonsen, L.C.; Cucinotta, F.A.

    1998-12-01

    The HZETRN code has been developed over the past decade to evaluate the local radiation fields within sensitive materials on spacecraft in the space environment. Most of the more important nuclear and atomic processes are now modeled and evaluation within a complex spacecraft geometry with differing material components, including transition effects across boundaries of dissimilar materials, are included. The atomic/nuclear database and transport procedures have received limited validation in laboratory testing with high energy ion beams. The codes have been applied in design of the SAGE-III instrument resulting in material changes to control injurious neutron production, in the study of the Space Shuttle single event upsets, and in validation with space measurements (particle telescopes, tissue equivalent proportional counters, CR-39) on Shuttle and Mir. The present paper reviews the code development and presents recent results in laboratory and space flight validation.

  20. Deficient Expression of Aldehyde Dehydrogenase 1A1 is Consistent With Increased Sensitivity of Gorlin Syndrome Patients to Radiation Carcinogenesis

    PubMed Central

    Wright, Aaron T.; Magnaldo, Thierry; Sontag, Ryan L.; Anderson, Lindsey N.; Sadler, Natalie C.; Piehowski, Paul D.; Gache, Yannick; Weber, Thomas J.

    2016-01-01

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of the pathways/networks that contribute to pathophysiological outcomes. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced inducible tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol reactive probes to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent Gorlin syndrome patients, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and ALDH1A1 protein deficiency in GDFs was confirmed by Western blot. A number of additional protein thiol differences in GDFs were identified, including radiation responsive annexin family members and lamin A/C. Collectively, candidates identified in our study have plausible implications for radiation health effects and cancer susceptibility. PMID:24285572

  1. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis.

    PubMed

    Wright, Aaron T; Magnaldo, Thierry; Sontag, Ryan L; Anderson, Lindsey N; Sadler, Natalie C; Piehowski, Paul D; Gache, Yannick; Weber, Thomas J

    2015-06-01

    Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of the pathways/networks that contribute to pathophysiological outcomes. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced inducible tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol reactive probes to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent Gorlin syndrome patients, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and ALDH1A1 protein deficiency in GDFs was confirmed by Western blot. A number of additional protein thiol differences in GDFs were identified, including radiation responsive annexin family members and lamin A/C. Collectively, candidates identified in our study have plausible implications for radiation health effects and cancer susceptibility.

  2. An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background.

    PubMed

    Mitra, Devarati; Luo, Xi; Morgan, Ann; Wang, Jin; Hoang, Mai P; Lo, Jennifer; Guerrero, Candace R; Lennerz, Jochen K; Mihm, Martin C; Wargo, Jennifer A; Robinson, Kathleen C; Devi, Suprabha P; Vanover, Jillian C; D'Orazio, John A; McMahon, Martin; Bosenberg, Marcus W; Haigis, Kevin M; Haber, Daniel A; Wang, Yinsheng; Fisher, David E

    2012-11-15

    People with pale skin, red hair, freckles and an inability to tan--the 'red hair/fair skin' phenotype--are at highest risk of developing melanoma, compared to all other pigmentation types. Genetically, this phenotype is frequently the product of inactivating polymorphisms in the melanocortin 1 receptor (MC1R) gene. MC1R encodes a cyclic AMP-stimulating G-protein-coupled receptor that controls pigment production. Minimal receptor activity, as in red hair/fair skin polymorphisms, produces the red/yellow pheomelanin pigment, whereas increasing MC1R activity stimulates the production of black/brown eumelanin. Pheomelanin has weak shielding capacity against ultraviolet radiation relative to eumelanin, and has been shown to amplify ultraviolet-A-induced reactive oxygen species. Several observations, however, complicate the assumption that melanoma risk is completely ultraviolet-radiation-dependent. For example, unlike non-melanoma skin cancers, melanoma is not restricted to sun-exposed skin and ultraviolet radiation signature mutations are infrequently oncogenic drivers. Although linkage of melanoma risk to ultraviolet radiation exposure is beyond doubt, ultraviolet-radiation-independent events are likely to have a significant role. Here we introduce a conditional, melanocyte-targeted allele of the most common melanoma oncoprotein, BRAF(V600E), into mice carrying an inactivating mutation in the Mc1r gene (these mice have a phenotype analogous to red hair/fair skin humans). We observed a high incidence of invasive melanomas without providing additional gene aberrations or ultraviolet radiation exposure. To investigate the mechanism of ultraviolet-radiation-independent carcinogenesis, we introduced an albino allele, which ablates all pigment production on the Mc1r(e/e) background. Selective absence of pheomelanin synthesis was protective against melanoma development. In addition, normal Mc1r(e/e) mouse skin was found to have significantly greater oxidative DNA and lipid

  3. Effects of Ionizing Radiation on Cellular Structures, Induced Instability, and Carcinogenesis

    SciTech Connect

    Resat, Marianne S.; Arthurs, Benjamin J.; Estes, Brian J.; Morgan, William F.

    2006-03-01

    According to the American Cancer Society, the United States can expect 1,368,030 new cases of cancer in 2004 [1]. Among the many carcinogens Americans are exposed to, ionizing radiation will contribute to this statistic. Humans live in a radiation environment. Ionizing radiation is in the air we breathe, the earth we live on, and the food we eat. Man-made radiation adds to this naturally occurring radiation level thereby increasing the chance for human exposure. For many decades the scientific community, governmental regulatory bodies, and concerned citizens have struggled to estimate health risks associated with radiation exposures, particularly at low doses. While cancer induction is the primary concern and the most important somatic effect of exposure to ionizing radiation, potential health risks do not involve neoplastic diseases exclusively but also include somatic mutations that might contribute to birth defects and ocular maladies, and heritable mutations that might impact on disease risks in future generations. Consequently it is important we understand the effect of ionizingradiation on cellular structures and the subsequent long-term health risks associated with exposure to ionizing radiation.

  4. A Rat Model to Study the Effects of Diet-Induced Obesity on Radiation-Induced Mammary Carcinogenesis.

    PubMed

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Daino, Kazuhiro; Morioka, Takamitsu; Nishimura, Yukiko; Uemura, Hiroji; Akimoto, Kenta; Furukawa, Yuki; Fukushi, Masahiro; Wakabayashi, Keiji; Mutoh, Michihiro; Shimada, Yoshiya

    2016-05-01

    A detailed understanding of the relationship between radiation-induced breast cancer and obesity is needed for appropriate risk management and to prevent the development of a secondary cancer in patients who have been treated with radiation. Our goal was to develop an animal model to study the relationship by combining two existing Sprague-Dawley rat models of radiation-induced mammary carcinogenesis and diet-induced obesity. Female rats were fed a high-fat diet for 4 weeks and categorized as obesity prone or obesity resistant based on their body weight at 7 weeks of age, at which time the rats were irradiated with 4 Gy. Control rats were fed a standard diet and irradiated at the same time and in the same manner. All rats were maintained on their initial diets and assessed for palpable mammary cancers once a week for the next 30 weeks. The obesity-prone rats were heavier than those in the other groups. The obesity-prone rats were also younger than the other animals at the first detection of mammary carcinomas and their carcinoma weights were greater. A tendency toward higher insulin and leptin blood levels were observed in the obesity-prone rats compared to the other two groups. Blood angiotensin II levels were elevated in the obesity-prone and obesity-resistant rats. Genes related to translation and oxidative phosphorylation were upregulated in the carcinomas of obesity-prone rats. Expression profiles from human breast cancers were used to validate this animal model. As angiotensin is potentially an important factor in obesity-related morbidities and breast cancer, a second set of rats was fed in a similar manner, irradiated and then treated with an angiotensin-receptor blocker, losartan and candesartan. Neither blocker altered mammary carcinogenesis; analyses of losartan-treated animals indicated that expression of renin in the renal cortex and of Agtr1a (angiotensin II receptor, type 1) in cancer tissue was significantly upregulated, suggesting the presence of

  5. A Research Agenda for Radiation Oncology: Results of the Radiation Oncology Institute's Comprehensive Research Needs Assessment

    SciTech Connect

    Jagsi, Reshma; Bekelman, Justin E.; Brawley, Otis W.; Deasy, Joseph O.; Le, Quynh-Thu; Michalski, Jeff M.; Movsas, Benjamin; Thomas, Charles R.; Lawton, Colleen A.; Lawrence, Theodore S.; Hahn, Stephen M.

    2012-10-01

    Purpose: To promote the rational use of scarce research funding, scholars have developed methods for the systematic identification and prioritization of health research needs. The Radiation Oncology Institute commissioned an independent, comprehensive assessment of research needs for the advancement of radiation oncology care. Methods and Materials: The research needs assessment used a mixed-method, qualitative and quantitative social scientific approach, including structured interviews with diverse stakeholders, focus groups, surveys of American Society for Radiation Oncology (ASTRO) members, and a prioritization exercise using a modified Delphi technique. Results: Six co-equal priorities were identified: (1) Identify and develop communication strategies to help patients and others better understand radiation therapy; (2) Establish a set of quality indicators for major radiation oncology procedures and evaluate their use in radiation oncology delivery; (3) Identify best practices for the management of radiation toxicity and issues in cancer survivorship; (4) Conduct comparative effectiveness studies related to radiation therapy that consider clinical benefit, toxicity (including quality of life), and other outcomes; (5) Assess the value of radiation therapy; and (6) Develop a radiation oncology registry. Conclusions: To our knowledge, this prioritization exercise is the only comprehensive and methodologically rigorous assessment of research needs in the field of radiation oncology. Broad dissemination of these findings is critical to maximally leverage the impact of this work, particularly because grant funding decisions are often made by committees on which highly specialized disciplines such as radiation oncology are not well represented.

  6. Test of the linear-NO threshold theory of radiation carcinogenesis for inhaled radon decay products

    SciTech Connect

    Cohen, B.L.

    1995-02-01

    Data on lung cancer mortality rates vs. average radon concentration in homes for 1,601 U.S. counties are used to test the linear-no threshold theory. The widely recognized problems with ecological studies, as applied to this work, are addressed extensively. With or without corrections for variations in smoking prevalence, there is a strong tendency for lung cancer rates to decrease with increasing radon exposure, in sharp contrast to the increase expected from the theory. The discrepancy in slope is about 20 standard deviations. It is shown that uncertainties in lung cancer rates, radon exposures, and smoking prevalence are not important and that confounding by 54 socioeconomic factors, by geography, and by altitude and climate can explain only a small fraction of the discrepancy. Effects of known radon-smoking prevalence correlations-rural people have higher radon levels and smoke less than urban people, and smokers are exposed to less radon than non-smokers-are calculated and found to be trivial. In spite of extensive efforts, no potential explanation for the discrepancy other than failure of the linear-no threshold theory for carcinogenesis from inhaled radon decay products could be found. 46 refs., 2 figs., 7 tabs.

  7. Cell specific radiation dosimetry in skeleton from life-span carcinogenesis studies. Final report

    SciTech Connect

    Webster, S.S.J.

    1993-04-05

    The osteogenic sarcoma is the dominant life-threatening pathology in lifespan studies of beagles exposed to alpha-emitting bone-seeking radionuclides. It was deduced from these studies that certain skeletal sites are more prone to develop tumors. This project sought to determine the bone cells at risk and their cell-specific radiation dose. The cell-specific radiation dose values are related to loss and high Ra-226 and Pu-239 induced osteogenic sarcoma sites, to test different dose response hypothesis and predict the extent of effects in humans.

  8. Cell specific radiation dosimetry in skeleton from life-span carcinogenesis studies

    SciTech Connect

    Webster, S.S.J.

    1993-04-05

    The osteogenic sarcoma is the dominant life-threatening pathology in lifespan studies of beagles exposed to alpha-emitting bone-seeking radionuclides. It was deduced from these studies that certain skeletal sites are more prone to develop tumors. This project sought to determine the bone cells at risk and their cell-specific radiation dose. The cell-specific radiation dose values are related to loss and high Ra-226 and Pu-239 induced osteogenic sarcoma sites, to test different dose response hypothesis and predict the extent of effects in humans.

  9. Analysis of radiation effects using a combined cell cycle and multistage carcinogenesis model

    NASA Astrophysics Data System (ADS)

    Hazelton, William D.; Curtis, Stanley B.; Moolgavkar, Suresh H.

    PurposeTo study radiation effects using a combined cell cycle and multistage clonal expansion model that includes processes of damage, repair, apoptosis, and mutation. The model includes endogenous and radiation induced damage causing progression of cells from normal, to damaged, to initiated, to initiated damage, to malignant status. We utilize complementary deterministic and stochastic versions of the model that share the same transition rates. The deterministic version is used to calibrate model rates for cell cycle progression, damage, checkpoint delay, repair, and apoptosis, and to implement tissue homeostasis. The stochastic version is used to predict the cancer hazard and survival. ResultsWe calibrated transition rates in the deterministic version of the model to fit flow cytometry-based clonogenic survival data for Chinese hamster V79 cells and for HeLa × skin fibroblast human hybrid cells exposed to sparsely ionizing radiation during different phases of the cell cycle. We also calibrated repair and malignant transformation rates to fit neoplastic transformation data for HeLa × skin fibroblast human hybrid cells. We found that induced repair in G2 phase explained the low-dose hypersensitivity for survival in both cell lines, and a different induced repair process explained the neoplastic transformation data. ConclusionThe shape of the induced repair curves for G2-phase survival and neoplastic transformation differ significantly, suggesting that these low-dose phenomena differ in regulation and, in fact, may be mechanistically unrelated.

  10. Telomeres and Telomerase in the Radiation Response: Implications for Instability, Reprograming, and Carcinogenesis

    PubMed Central

    Sishc, Brock J.; Nelson, Christopher B.; McKenna, Miles J.; Battaglia, Christine L. R.; Herndon, Andrea; Idate, Rupa; Liber, Howard L.; Bailey, Susan M.

    2015-01-01

    Telomeres are nucleoprotein complexes comprised of tandem arrays of repetitive DNA sequence that serve to protect chromosomal termini from inappropriate degradation, as well as to prevent these natural DNA ends from being recognized as broken DNA (double-strand breaks) and triggering of inappropriate DNA damage responses. Preservation of telomere length requires telomerase, the specialized reverse transcriptase capable of maintaining telomere length via template-mediated addition of telomeric repeats onto the ends of newly synthesized chromosomes. Loss of either end-capping function or telomere length maintenance has been associated with genomic instability or senescence in a variety of settings; therefore, telomeres and telomerase have well-established connections to cancer and aging. It has long been recognized that oxidative stress promotes shortening of telomeres, and that telomerase activity is a radiation-inducible function. However, the effects of ionizing radiation (IR) exposure on telomeres per se are much less well understood and appreciated. To gain a deeper understanding of the roles, telomeres and telomerase play in the response of human cells to IRs of different qualities, we tracked changes in telomeric end-capping function, telomere length, and telomerase activity in panels of mammary epithelial and hematopoietic cell lines exposed to low linear energy transfer (LET) gamma(γ)-rays or high LET, high charge, high energy (HZE) particles, delivered either acutely or at low dose rates. In addition to demonstrating that dysfunctional telomeres contribute to IR-induced mutation frequencies and genome instability, we reveal non-canonical roles for telomerase, in that telomerase activity was required for IR-induced enrichment of mammary epithelial putative stem/progenitor cell populations, a finding also suggestive of cellular reprograming. Taken together, the results reported here establish the critical importance of telomeres and telomerase in the

  11. Tumor suppression function of the Big-h3 gene in radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Piao, C.; Hei, T.

    Interaction between cell and extracellular matrix (ECM) plays a crucial role in tumor invasiveness and metastasis. Using an immortalized human bronchial epithelial (BEP2D) cell model, we show here that expression of Big-h3 gene, a secreted adhesion molecule induced by transforming growth factor- beta (TGF-beta ), is markedly decreased in independently generated, high LET radiation-induced tumor cell lines (TL1-TL5) relative to parental BEP2D cells. Expression of this gene was restored to control level in fusion cell lines between the tumorigenic and parental BEP2D cells that were no longer tumorigenic in nude mice. Transfection of Big-h3 gene into tumor cells resulted in a significant reduction of tumor growth. While integrin receptor alpha 5/beta 1 was overexpressed in tumor cells, its expression was corrected to the level of control BEP2D cells after Big-h3 transfection. These data suggest that Big-h3 is involved in tumor progression by regulating integrin receptor alpha 5/beta 1. . WWee We further show that down regulation of Big-h3 results from loss of expression of TGFbeta1 in tumor cells. The findings provide strong evidence that the Big-h3 gene has tumor suppressor function in radiation induced tumorigenic human bronchial epithelial cells and suggest a potential target for interventional therapy.

  12. Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system.

    PubMed

    Desai, Nisarg R; Kesari, Kavindra K; Agarwal, Ashok

    2009-10-22

    Hazardous health effects stemming from exposure to radiofrequency electromagnetic waves (RF-EMW) emitted from cell phones have been reported in the literature. However, the cellular target of RF-EMW is still controversial. This review identifies the plasma membrane as a target of RF-EMW. In addition, the effects of RF-EMW on plasma membrane structures (i.e. NADH oxidase, phosphatidylserine, ornithine decarboxylase) and voltage-gated calcium channels are discussed. We explore the disturbance in reactive oxygen species (ROS) metabolism caused by RF-EMW and delineate NADH oxidase mediated ROS formation as playing a central role in oxidative stress (OS) due to cell phone radiation (with a focus on the male reproductive system). This review also addresses: 1) the controversial effects of RF-EMW on mammalian cells and sperm DNA as well as its effect on apoptosis, 2) epidemiological, in vivo animal and in vitro studies on the effect of RF-EMW on male reproductive system, and 3) finally, exposure assessment and dosimetry by computational biomodeling.

  13. Lippia graveolens photochemopreventive effect against UVB radiation-induced skin carcinogenesis.

    PubMed

    García-Bores, A M; Espinosa-González, A M; Reyna-Campos, A; Cruz-Toscano, S; Benítez-Flores, J C; Hernández-Delgado, C T; Flores-Maya, S; Urzúa-Meza, M; Peñalosa-Castro, I; Céspedes-Acuña, C L; Avila-Acevedo, J G

    2017-02-01

    Lippia graveolens HBK (Mexican oregano) is a species that is regularly used as a condiment in Mexican cuisine. In traditional medicine, it is used for the treatment of respiratory and digestive illnesses, headaches, rheumatism and inflammation-related disorders. The main chemical components reported in this species include the following: terpenoids, iridoids and flavonoids. The aim of this study was to determine the potential photochemopreventive effect of the methanolic extract of Lippia graveolens (MELG) against ultraviolet B (UVB)-induced skin cancer in SKH-1 mice. The phenolic content, radical scavenger activity, penetration and genotoxicity of the MELG were also evaluated. The MELG exhibited scavenging activity against 1,1-diphenyl-2-picrylhydrazyl, superoxide and hydroxyl radicals, and it did not exhibit genotoxic activity in the micronucleus test. In addition, the MELG absorbed UVB (280nm) electromagnetic radiation. The main components detected in the plant extract were naringenin and galangin, and pinocembrin was also isolated and identified through spectroscopic analysis. The MELG demonstrated a photoprotective effect against UVB-induced cell death in Escherichia coli. In chronic challenge experiments, the MELG protected against UVB-induced skin cancer in SKH-1 mice. The MELG penetrated the skin of mice. Topical administration of the MELG protected against chronic UVB-induced damage in mouse SKH-1 skin. Our results suggest that the MELG has photochemopreventive activity and may potentially prevent photo-tumorigenesis.

  14. Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system

    PubMed Central

    Desai, Nisarg R; Kesari, Kavindra K; Agarwal, Ashok

    2009-01-01

    Hazardous health effects stemming from exposure to radiofrequency electromagnetic waves (RF-EMW) emitted from cell phones have been reported in the literature. However, the cellular target of RF-EMW is still controversial. This review identifies the plasma membrane as a target of RF-EMW. In addition, the effects of RF-EMW on plasma membrane structures (i.e. NADH oxidase, phosphatidylserine, ornithine decarboxylase) and voltage-gated calcium channels are discussed. We explore the disturbance in reactive oxygen species (ROS) metabolism caused by RF-EMW and delineate NADH oxidase mediated ROS formation as playing a central role in oxidative stress (OS) due to cell phone radiation (with a focus on the male reproductive system). This review also addresses: 1) the controversial effects of RF-EMW on mammalian cells and sperm DNA as well as its effect on apoptosis, 2) epidemiological, in vivo animal and in vitro studies on the effect of RF-EMW on male reproductive system, and 3) finally, exposure assessment and dosimetry by computational biomodeling. PMID:19849853

  15. Comprehensive Craniospinal Radiation for Controlling Central Nervous System Leukemia

    SciTech Connect

    Walker, Gary V.; Shihadeh, Ferial; Kantarjian, Hagop; Allen, Pamela; Rondon, Gabriela; Kebriaei, Partow; O'Brien, Susan; Kedir, Aziza; Said, Mustefa; Grant, Jonathan D.; Thomas, Deborah A.; Gidley, Paul W.; Arzu, Isidora; Pinnix, Chelsea; Reed, Valerie; Dabaja, Bouthaina S.

    2014-12-01

    Purpose: To determine the benefit of radiation therapy (RT) in resolution of neurologic symptoms and deficits and whether the type of RT fields influences central nervous system (CNS) control in adults with CNS leukemia. Methods and Materials: A total of 163 adults from 1996 to 2012 were retrospectively analyzed. Potential associations between use of radiation and outcome were investigated by univariate and multivariate analysis. Results: The median survival time was 3.8 months after RT. Common presenting symptoms were headache in 79 patients (49%), cranial nerve VII deficit in 46 (28%), and cranial nerve II deficit in 44 (27%). RT was delivered to the base of skull in 48 patients (29%), to the whole brain (WB) in 67 (41%), and to the craniospinal axis (CS) in 48 (29%). Among 149 patients with a total of 233 deficits, resolution was observed in 34 deficits (15%), improvement in 126 deficits (54%), stability in 34 deficits (15%), and progression in 39 deficits (17%). The 12-month CNS progression-free survival was 77% among those receiving CS/WB and 51% among those receiving base of skull RT (P=.02). On multivariate analysis, patients who did not undergo stem cell transplantation after RT and base of skull RT were associated with worse CNS progression-free survival. Conclusions: Improvement or resolution of symptoms occurred in two thirds of deficits after RT. Comprehensive radiation to the WB or CS seems to offer a better outcome, especially in isolated CNS involvement.

  16. Chemical carcinogenesis.

    PubMed

    Oliveira, Paula A; Colaço, Aura; Chaves, Raquel; Guedes-Pinto, Henrique; De-La-Cruz P, Luis F; Lopes, Carlos

    2007-12-01

    The use of chemical compounds benefits society in a number of ways. Pesticides, for instance, enable foodstuffs to be produced in sufficient quantities to satisfy the needs of millions of people, a condition that has led to an increase in levels of life expectancy. Yet, at times, these benefits are offset by certain disadvantages, notably the toxic side effects of the chemical compounds used. Exposure to these compounds can have varying effects, ranging from instant death to a gradual process of chemical carcinogenesis. There are three stages involved in chemical carcinogenesis. These are defined as initiation, promotion and progression. Each of these stages is characterised by morphological and biochemical modifications and result from genetic and/or epigenetic alterations. These genetic modifications include: mutations in genes that control cell proliferation, cell death and DNA repair--i.e. mutations in proto-oncogenes and tumour suppressing genes. The epigenetic factors, also considered as being non-genetic in character, can also contribute to carcinogenesis via epigenetic mechanisms which silence gene expression. The control of responses to carcinogenesis through the application of several chemical, biochemical and biological techniques facilitates the identification of those basic mechanisms involved in neoplasic development. Experimental assays with laboratory animals, epidemiological studies and quick tests enable the identification of carcinogenic compounds, the dissection of many aspects of carcinogenesis, and the establishment of effective strategies to prevent the cancer which results from exposure to chemicals.

  17. Combined therapeutic efficacy of carvacrol and X-radiation against 1,2-dimethyl hydrazine-induced experimental rat colon carcinogenesis.

    PubMed

    Arivalagan, Sivaranjani; Thomas, Nisha Susan; Chandrasekaran, Balaji; Mani, Vijay; Siddique, Aktarul Islam; Kuppsamy, Thayalan; Namasivayam, Nalini

    2015-12-01

    Colon cancer is one of the most commonly diagnosed cancers, and is a major cause of cancer morbidity and mortality worldwide. The objective of the present study is to evaluate the combined therapeutic efficacy of carvacrol (CVC) and X-radiation against 1,2-dimethylhydrazine-induced colon cancer. Male albino Wistar rats were randomly divided into six groups. Group 1 served as control; group 2 received 40 mg/kg b.wt of CVC orally everyday throughout the experimental period (32 weeks); groups 3-6 received subcutaneous injections of DMH (20 mg/kg b.wt), once a week for the first 15 weeks; group 4 received a single dose of X-radiation at the 31st week; group 5 received CVC (40 mg/kg b.wt) two days after the last injection of DMH and continued everyday till the end of the experimental period; group 6 received CVC as in group 5 and radiation as in group 4. DMH-treated rats showed increased incidence of aberrant crypt foci (ACF), dysplastic aberrant crypt foci (DACF), mast cell number, argyrophilic nucleolar organizer regions; elevated activities of phase I enzymes, decreased activities of phase II enzymes, decreased mucin content and altered colonic and liver histology as compared to control rats. Though the individual treatments with CVC and X-radiation to DMH-treated rats reversed the above changes, the combined treatment with both CVC and X-radiation showed a marked effect. Our findings emphasize the potential role of combined therapeutic effect of CVC and X-radiation against DMH-induced colon carcinogenesis.

  18. Viral Carcinogenesis.

    PubMed

    Smith, A J; Smith, L A

    2016-01-01

    Cancer has been recognized for thousands of years. Egyptians believed that cancer occurred at the will of the gods. Hippocrates believed human disease resulted from an imbalance of the four humors: blood, phlegm, yellow bile, and black bile with cancer being caused by excess black bile. The lymph theory of cancer replaced the humoral theory and the blastema theory replaced the lymph theory. Rudolph Virchow was the first to recognize that cancer cells like all cells came from other cells and believed chronic irritation caused cancer. At the same time there was a belief that trauma caused cancer, though it never evolved after many experiments inducing trauma. The birth of virology occurred in 1892 when Dimitri Ivanofsky demonstrated that diseased tobacco plants remained infective after filtering their sap through a filter that trapped bacteria. Martinus Beijerinck would call the tiny infective agent a virus and both Dimitri Ivanofsky and Marinus Beijerinck would become the fathers of virology. Not to long thereafter, Payton Rous founded the field of tumor virology in 1911 with his discovery of a transmittable sarcoma of chickens by what would come to be called Rous sarcoma virus or RSV for short. The first identified human tumor virus was the Epstein-Barr virus (EBV), named after Tony Epstein and Yvonne Barr who visualized the virus particles in Burkitt's lymphoma cells by electron microscopy in 1965. Since that time, many viruses have been associated with carcinogenesis including the most studied, human papilloma virus associated with cervical carcinoma, many other anogenital carcinomas, and oropharyngeal carcinoma. The World Health Organization currently estimates that approximately 22% of worldwide cancers are attributable to infectious etiologies, of which viral etiologies is estimated at 15-20%. The field of tumor virology/viral carcinogenesis has not only identified viruses as etiologic agents of human cancers, but has also given molecular insights to all human

  19. Transplacental chemical carcinogenesis in man.

    PubMed

    Miller, R W

    1971-12-01

    This editorial was prompted by the published association of maternal diethylstilbestrol (DES) ingestion during pregnancy and subsequent development of vaginal adenocarcinoma among female offspring, and explores various factors involved in transplacental chemical carcinogenesis in humans. Known prenatal determinants of carcinogenic transmission are 1) germ cells, 2) transplantation, and 3) ionizing radiation. Other chemicals besides DES which may be implicated in transplacental carcinogenesis are cytotoxic anticancer agents, such as therapy. The hypothesis of DES-associated maternal-fetal exchange was developed as a result of physician recognition of a cluster of cases with commonality; it is hoped that further epidemiological studies, more systemitized, will lead to hypotheses regarding the epidemiology of other in utero carcinogenesis.

  20. Carcinogenesis and low-level ionizing radiation with special reference to lung cancer and exposure to radon daughters

    SciTech Connect

    Fabrikant, J.I.

    1982-06-01

    The quantitative estimation of the carcinogenic risk of low-dose, high-LET radiation in the case of exposure to radon daughters and lung-cancer is subject to numerous uncertainties. The greatest of these concerns the parametric values of the dose-response curve. We lack knowledge and an understanding of the dosimetry and the distribution of aggregates of radioactivity that remain localized as hot spots in specific regions of the lungs and the influence on greater or lesser risk of lung cancer per average lung dose than uniformly deposited radiation (NRC76). We have only a limited understanding of the response to exposure to high-LET radiations, such as alpha particles, for which linear risk estimates for low doses are less likely to overestimate the risk, and may, in fact, underestimate the risk (BEIR80). Other uncertainties include the length of the latency period, the RBE for alpha radiation relative to gamma radiation, the period during which the radiation risk is expressed, the risk projection model used - whether absolute or relative - for projecting risk beyond the period of observation, the effect of dose rate and protraction of dose, and the influence of differences in the natural incidence of lung cancer in different populations. In addition, uncertainties are introduced by the biological and life-style risk characteristics of humans, for example, the effect of sex, the effect of age at the time of irradiation and at the time of appearance of the cancer, the influence of length of observation or follow-up of the study populations, and the influence of perhaps the most important confounding bias, cigarette-smoking. The collective influence of these uncertainties is such as to deny great credibility to any estimate of human lung cancer risk and other cancer risk that can be made for low-dose, high-LET radon daughter radiation exposure.

  1. ALDH1A1 Deficiency in Gorlin Syndrome Suggests a Central Role for Retinoic Acid and ATM Deficits in Radiation Carcinogenesis.

    PubMed

    Weber, Thomas J; Magnaldo, Thierry; Xiong, Yijia

    2014-09-11

    We hypothesize that aldehyde dehydrogenase 1A1 (ALDH1A1) deficiency will result in impaired ataxia-telangiectasia mutated (ATM) activation in a retinoic acid-sensitive fashion. Data supporting this hypothesis include (1) reduced ATM activation in irradiated primary dermal fibroblasts from ALDH1A1-deficient Gorlin syndrome patients (GDFs), relative to ALDH1A1-positive normal human dermal fibroblasts (NHDFs) and (2) increased ATM activation by X-radiation in GDFs pretreated with retinoic acid, however, the impact of donor variability on ATM activation in fibroblasts was not assessed and is a prudent consideration in future studies. Clonogenic survival of irradiated cells showed differential responses to retinoic acid as a function of treatment time. Long-term (5 Day) retinoic acid treatment functioned as a radiosensitizer and was associated with downregulation of ATM protein levels. Short-term (7 h) retinoic acid treatment showed a trend toward increased survival of irradiated cells and did not downregulate ATM protein levels. Using a newly developed IncubATR technology, which defines changes in bulk chemical bond patterns in live cells, we can discriminate between the NHDF and GDF phenotypes, but treatment of GDFs with retinoic acid does not induce reversion of bulk chemical bond patterns associated with GDFs toward the NHDF phenotype. Collectively, our preliminary investigation of the Gorlin phenotype has identified deficient ALDH1A1 expression associated with deficient ATM activation as a possible susceptibility factor that is consistent with the high incidence of spontaneous and radiation-induced carcinogenesis in these patients. The IncubATR technology exhibits sufficient sensitivity to detect phenotypic differences in live cells that may be relevant to radiation health effects.

  2. ALDH1A1 Deficiency in Gorlin Syndrome Suggests a Central Role for Retinoic Acid and ATM Deficits in Radiation Carcinogenesis

    PubMed Central

    Weber, Thomas J.; Magnaldo, Thierry; Xiong, Yijia

    2014-01-01

    We hypothesize that aldehyde dehydrogenase 1A1 (ALDH1A1) deficiency will result in impaired ataxia-telangiectasia mutated (ATM) activation in a retinoic acid-sensitive fashion. Data supporting this hypothesis include (1) reduced ATM activation in irradiated primary dermal fibroblasts from ALDH1A1-deficient Gorlin syndrome patients (GDFs), relative to ALDH1A1-positive normal human dermal fibroblasts (NHDFs) and (2) increased ATM activation by X-radiation in GDFs pretreated with retinoic acid, however, the impact of donor variability on ATM activation in fibroblasts was not assessed and is a prudent consideration in future studies. Clonogenic survival of irradiated cells showed differential responses to retinoic acid as a function of treatment time. Long-term (5 Day) retinoic acid treatment functioned as a radiosensitizer and was associated with downregulation of ATM protein levels. Short-term (7 h) retinoic acid treatment showed a trend toward increased survival of irradiated cells and did not downregulate ATM protein levels. Using a newly developed IncubATR technology, which defines changes in bulk chemical bond patterns in live cells, we can discriminate between the NHDF and GDF phenotypes, but treatment of GDFs with retinoic acid does not induce reversion of bulk chemical bond patterns associated with GDFs toward the NHDF phenotype. Collectively, our preliminary investigation of the Gorlin phenotype has identified deficient ALDH1A1 expression associated with deficient ATM activation as a possible susceptibility factor that is consistent with the high incidence of spontaneous and radiation-induced carcinogenesis in these patients. The IncubATR technology exhibits sufficient sensitivity to detect phenotypic differences in live cells that may be relevant to radiation health effects. PMID:28250390

  3. Report on NCI symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. II. Cellular and animal models

    SciTech Connect

    Fry, R.J.M.

    1984-01-01

    The point at which the common final pathway for induction of cancer by chemical carcinogens and ionizing radiation has not been identified. Although common molecular targets are suggested by recent findings about the role of oncogenes, the mechanism by which the deposition of radiation energy and the formation of adducts or other DNA lesions induced by chemicals affects the changes in the relevant targets may be quite different. The damage to DNA that plays no part in the transformation events, but that influences the stability of the genome, and therefore, the probability of subsequent changes that influence tumorigenesis may be more readily induced by some agents than others. Similarly, the degree of cytotoxic effects that disrupt tissue integrity and increase the probability of expression of initiated cells may be dependent on the type of carcinogen. Also, evidence was presented that repair of the initial lesions could be demonstrated after exposure to low-LET radiation but not after exposure to chemical carcinogens.

  4. Investigation of the modifying effects of vitamin A and hypoxic cell sensitizers in radiation carcinogenesis in mice

    SciTech Connect

    Mian, T.A.

    1982-01-01

    The effect of vitamin A (retinyl acetate) and three hypoxic cell sensitizers (metronidazole, misonidazole and desmethylmisonidazole) on lung tumor development in strain A mice exposed to radiation was assessed. In experiments involving vitamin A, two groups of mice were fed a low vitamin A diet (< 100 IU/100g diet) while the two other groups were fed a high vitamin A diet (800 IU/100 g diet). After two weeks one group maintained on the high vitamin A diet and one group maintained on the low vitamin A diet were given an acute dose of 500 rad of gamma radiation to the thoracic region. Mice were killed, their lungs were removed and the number of surface adenomas were counted. There was a significant increase in the number of mice bearing lung tumors and the mean number of lung tumors per mouse in the irradiated group maintained on the high vitamin A diet at 40 weeks post irradiation as compared to the irradiated group maintained on a low vitamin A diet. In the other experiment two dose levels of the hypoxic cell sensitizers, 0.2 mg/g and 0.6 mg/g, were used either alone or in combination with 900 rad of gamma radiation in a fractionated dose schedule of twice a week for three weeks. In the groups of mice which received hypoxic cell sensitizers only, the prevalence and the mean number of lung tumors per mouse were somewhat increased in the higher dose group (0.6 mg/g) of misonidazole but was not significantly different from the control animals in the other two sensitizer groups. The combination of hypoxic cell sensitizer and radiation did not show any significant enhancement of lung tumor response when compared with the group which received radiation only. The dose of radiation used in this study significantly enhanced lung tumor formation in mice when compared with the control group.

  5. 2013 Space Radiation Standing Review Panel Status Review for: The Risk of Acute and Late Central Nervous System Effects from Radiation Exposure, The Risk of Acute Radiation Syndromes Due to Solar Particle Events (SPEs), The Risk Of Degenerative Tissue Or Other Health Effects From Radiation Exposure, and The Risk of Radiation Carcinogenesis

    NASA Technical Reports Server (NTRS)

    2014-01-01

    The Space Radiation Standing Review Panel (from here on referred to as the SRP) was impressed with the strong research program presented by the scientists and staff associated with NASA's Space Radiation Program Element and National Space Biomedical Research Institute (NSBRI). The presentations given on-site and the reports of ongoing research that were provided in advance indicated the potential Risk of Acute and Late Central Nervous System Effects from Radiation Exposure (CNS) and were extensively discussed by the SRP. This new data leads the SRP to recommend that a higher priority should be placed on research designed to identify and understand these risks at the mechanistic level. To support this effort the SRP feels that a shift of emphasis from Acute Radiation Syndromes (ARS) and carcinogenesis to CNS-related endpoints is justified at this point. However, these research efforts need to focus on mechanisms, should follow pace with advances in the field of CNS in general and should consider the specific comments and suggestions made by the SRP as outlined below. The SRP further recommends that the Space Radiation Program Element continue with its efforts to fill the vacant positions (Element Scientist, CNS Risk Discipline Lead) as soon as possible. The SRP also strongly recommends that NASA should continue the NASA Space Radiation Summer School. In addition to these broad recommendations, there are specific comments/recommendations noted for each risk, described in detail below.

  6. Use of a State-Vector Model of Radiation Carcinogenesis to Integrate Information from in vitro, in vivo, Epidemiological and Physiological Studies

    SciTech Connect

    Doug Crawford-Brown; Marc Serre

    2006-06-01

    This project focused on extension of a generalized state-vector model developed by Crawford-Brown and Hofmann (1-4). The model incorporates phenomena such as DNA damage and repair, intercellular communication mechanisms, both spontaneous and radiation-induced cell death and cell division, to predict cellular transformation following exposure to ionizing radiation. Additionally, this model may be simulated over time periods that correspond to the temporal scale of biological mechanisms. The state-vector model has been shown to generally reproduce transformation frequency patterns for in vitro studies (2), but still significantly underpredicted in vivo cancer incidence data at the higher doses for high-LET radiations when biologically realistic rate constants for cell killing are included (1). Mebust et al. (1) claimed that one reason for this underprediction might be that the model's ability to fit the in vitro data is due in part to compensating errors that only reveal themselves when the more complex in vivo and epidemiological data are considered. This implies that the original in vitro model may be based on incomplete assumptions regarding the underlying biological mechanisms. The present research considered this explanation for the case of low LET radiation. An extension of the in vitro state-vector model was tested that includes additional biological mechanisms in order to improve model predictions with respect to dose-response data on in vitro oncogenic transformation of C3H10T1/2 mouse fibroblast cells exposed to acute doses of X-radiation (5). These data display a plateau of transformation frequency per surviving cell in the X-ray dose range of 0.1 to 1 Gy, with an increase in transformation frequency at higher acute doses. To reproduce these trends in the data, additional biological processes were formulated mathematically and incorporated into the existing model as parameters whose values could be adjusted and tested by an optimization method (genetic

  7. Somatic cell mutations at the glycophorin A locus in erythrocytes of atomic bomb survivors: Implications for radiation carcinogenesis

    SciTech Connect

    Kyoizumi, Seishi; Akiyama, Mitoshi; Tanabe, Kazumi; Hirai, Yuko; Kusunoki, Yoichiro; Umeki, Shigeko

    1996-07-01

    To clarify the relationship between somatic cell mutations and radiation exposure, the frequency of hemizygous mutant erythrocytes at the glycophorin A (GPA) locus was measured by flow cytometry for 1,226 heterozygous atomic bomb (A-bomb) survivors in HIroshima and Nagasaki. For statistical analysis, both GPA mutant frequency and radiation dose were log-transformed to normalize skewed distributions of these variables. The GPA mutant frequency increased slightly but significantly with age at testing and with the number of cigarettes smoked. Also, mutant frequency was significantly higher in males than in females even with adjustment for smoking and was higher to Hiroshima than in Nagasaki. These characteristics of background GPA mutant frequency are qualitatively similar to those of background solid cancer incidence or mortality obtained from previous epidemiological studies of survivors. An analysis of the mutant frequency dose response using a descriptive model showed that the doubling dose is about 1.20 Sv [95% confidence interval (CI): 0.95-1.56], whereas the minimum dose for detecting a significant increase in mutant frequency is about 0.24 Sv (95% CI: 0.041-0.51). No significant effects of sex, city or age at the time of exposure on the dose response were detected. Interestingly, the doubling dose of the GPA mutant frequency was similar to that of solid cancer incidence in A-bomb survivors. This observation is in line with the hypothesis that radiation-induced somatic cell mutations are the major cause of excess cancer risk after radiation. 49 refs., 6 figs., 2 tabs.

  8. Probability of Causation for Space Radiation Carcinogenesis Following International Space Station, Near Earth Asteroid, and Mars Missions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Chappell, Lori J.

    2012-01-01

    Cancer risk is an important concern for International Space Station (ISS) missions and future exploration missions. An important question concerns the likelihood of a causal association between a crew members radiation exposure and the occurrence of cancer. The probability of causation (PC), also denoted as attributable risk, is used to make such an estimate. This report summarizes the NASA model of space radiation cancer risks and uncertainties, including improvements to represent uncertainties in tissue-specific cancer incidence models for never-smokers and the U.S. average population. We report on tissue-specific cancer incidence estimates and PC for different post-mission times for ISS and exploration missions. An important conclusion from our analysis is that the NASA policy to limit the risk of exposure-induced death to 3% at the 95% confidence level largely ensures that estimates of the PC for most cancer types would not reach a level of significance. Reducing uncertainties through radiobiological research remains the most efficient method to extend mission length and establish effective mitigators for cancer risks. Efforts to establish biomarkers of space radiation-induced tumors and to estimate PC for rarer tumor types are briefly discussed.

  9. Validation of a comprehensive space radiation transport code.

    PubMed

    Shinn, J L; Cucinotta, F A; Simonsen, L C; Wilson, J W; Badavi, F F; Badhwar, G D; Miller, J; Zeitlin, C; Heilbronn, L; Tripathi, R K; Clowdsley, M S; Heinbockel, J H; Xapsos, M A

    1998-12-01

    The HZETRN code has been developed over the past decade to evaluate the local radiation fields within sensitive materials on spacecraft in the space environment. Most of the more important nuclear and atomic processes are now modeled and evaluation within a complex spacecraft geometry with differing material components, including transition effects across boundaries of dissimilar materials, are included. The atomic/nuclear database and transport procedures have received limited validation in laboratory testing with high energy ion beams. The codes have been applied in design of the SAGE-III instrument resulting in material changes to control injurious neutron production, in the study of the Space Shuttle single event upsets, and in validation with space measurements (particle telescopes, tissue equivalent proportional counters, CR-39) on Shuttle and Mir. The present paper reviews the code development and presents recent results in laboratory and space flight validation.

  10. Radiogenic cell transformation and carcinogenesis

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Mei, M.; Durante, M.; Craise, L. M.

    1995-01-01

    Radiation carcinogenesis is one of the major biological effects considered important in the risk assessment for space travel. Various biological model systems, including both cultured cells and animals, have been found useful for studying the carcinogenic effects of space radiations, which consist of energetic electrons, protons and heavy ions. The development of techniques for studying neoplastic cell transformation in culture has made it possible to examine the cellular and molecular mechanisms of radiation carcinogenesis. Cultured cell systems are thus complementary to animal models. Many investigators have determined the oncogenic effects of ionizing and nonionizing radiation in cultured mammalian cells. One of the cell systems used most often for radiation transformation studies is mouse embryonic cells (C3H10T1/2), which are easy to culture and give good quantitative dose-response curves. Relative biological effectiveness (RBE) for heavy ions with various energies and linear energy transfer (LET) have been obtained with this cell system. Similar RBE and LET relationship was observed by investigators for other cell systems. In addition to RBE measurements, fundamental questions on repair of sub- and potential oncogenic lesions, direct and indirect effect, primary target and lesion, the importance of cell-cell interaction and the role of oncogenes and tumor suppressor genes in radiogenic carcinogenesis have been studied, and interesting results have been found. Recently several human epithelial cell systems have been developed, and ionizing radiation have been shown to transform these cells. Oncogenic transformation of these cells, however, requires a long expression time and/or multiple radiation exposures. Limited experimental data indicate high-LET heavy ions can be more effective than low-LET radiation in inducing cell transformation. Cytogenetic and molecular analyses can be performed with cloned transformants to provide insights into basic genetic

  11. Radiation levels in cyclotron-radiochemistry facility measured by a novel comprehensive computerized monitoring system

    NASA Astrophysics Data System (ADS)

    Mishani, E.; Lifshits, N.; Osavistky, A.; Kaufman, J.; Ankry, N.; Tal, N.; Chisin, R.

    1999-04-01

    Radiation levels in a cyclotron-radiochemistry facility were measured during the production of commonly used PET radiopharmaceuticals by a comprehensive computerized monitoring system. The system consists of three major components: on-line radiation monitoring channels, an area control unit, and a gas waste management unit. During production the radiation levels were measured in the cyclotron vault, inside automatic chemistry production and research shielded cells, in the radiochemistry room, in the gas waste decay tank, in the chimney filters, and at the top of the cells chimney. Each detector was calibrated in a known radiation field, and a special detector dead time correction was performed in order to achieve detected signal-to-radiation linearity for the Geiger tubes located in the radiochemistry production and research cells. During production of C-11 and O-15 PET radiopharmaceuticals, high radiation levels were measured in the gas waste decay tank (240 and 80 mR/h, respectively). In contrast, the radiation levels at the chimney filters and at the top of the cells chimney did not exceed the International Atomic Energy Agency (IAEA) Drive Air Concentration (DAC) recommended for C-11 or O-15. During production of FDG, high radiation levels were measured at the chimney filters, however the radiation level at the top of the chimney (3.7 μCi/m 3) did not exceed the F-18 DAC recommendation (27 μCi/m 3). Low radiation levels of approximately 0.5-1 mR/h were measured in the radiochemistry room during production of PET radiopharmaceuticals. In the cyclotron vault, 2 min after bombardment the radiation levels at 2 m from the cyclotron decreased to 1-2 mR/h. The addition of a gas waste decay system to computerized monitoring channels located near each strategic point of the site allows for a comprehensive survey of the radiochemical processes.

  12. Carcinogenesis From Inhaled (PuO2)-Pu-239 in Beagles: Evidence for Radiation Homeostasis at Low Doses?

    SciTech Connect

    Fisher, Darrell R.; Weller, Richard E.

    2010-09-01

    From the early 1970s to the late 1980s, Pacific Northwest National Laboratory conducted life-span studies in beagle dogs on the biological effects of inhaled plutonium (239PuO2, 238PuO2, and 239Pu[NO3]4) to help predict risks associated with accidental intakes in workers. Years later, the purpose of the present follow-up study is to reassess the dose-response relationship for lung cancer induction in the 239PuO2 dogs compared to controls, with particular focus on the dose-response at low lung doses. A 239PuO2 aerosol (2.3 μm AMAD, 1.9 μm GSD) was administered to six groups of 20 young (18-month old) beagle dogs (10 males and 10 females) by inhalation at six different activity levels, as previously described in Laboratory reports. Control dogs were sham-exposed. In dose level 1, initial pulmonary lung depositions were 130 ± 48 Bq (3.5 ± 1.3 nCi), corresponding to 1 Bq g-1 lung tissue (0.029 ± 0.001 nCi g-1. Groups 2 through 6 received initial lung depositions (mean values) of 760, 2724, 10345, 37900, and 200000 Bq (22, 79, 300, 1100, and 5800 nCi) 239PuO2, respectively. For each dog, the absorbed dose to lungs was calculated from the initial lung burden and the final lung burden at time of death and lung mass, assuming a single, long-term retention function. Insoluble plutonium oxide exhibited long retention times in the lungs. Increased dose-dependent mortality due to lung cancer (bronchiolar-alveolar carcinoma, adenocarcinoma, epidermoid carcinoma) and radiation pneumonitis (highest exposures group) was observed in dogs exposed to 239PuO2. Calculated lung doses ranged from a few cGy in early-sacrificed dogs to 7764 cGy in dogs that experienced early deaths from radiation pneumonitis. Data were regrouped by lifetime lung dose and plotted as a function of lung tumor incidence. Lung tumor incidence in controls and zero-dose exposed dogs was 18% (5/28). However, no lung tumors were observed in 16 dogs with the lowest lung doses (8 to 22 cGy, mean 14.4 ± 7.6 c

  13. Caspase 3 promotes genetic instability and carcinogenesis

    PubMed Central

    Liu, Xinjian; He, Yujun; Li, Fang; Huang, Qian; Kato, Takamitsu A.; Hall, Russell P; Li, Chuan-Yuan

    2015-01-01

    Summary Apoptosis is typically considered an anti-oncogenic process since caspase activation can promote the elimination of genetically unstable or damaged cells. We report that a central effector of apoptosis, caspase 3, facilitates, rather than suppresses, chemical and radiation-induced genetic instability and carcinogenesis. We found that a significant fraction of mammalian cells treated with ionizing radiation can survive, despite caspase 3 activation. Moreover, this sublethal activation of caspase 3 promoted persistent DNA damage and oncogenic transformation. In addition, chemically-induced skin carcinogenesis was significantly reduced in mice genetically deficient in caspase 3. Furthermore, attenuation of Endo G activity significantly reduced radiation-induced DNA damage and oncogenic transformation, identifying Endo G as a downstream effector of caspase 3 in this pathway. Our findings suggest that rather than acting as a broad inhibitor of carcinogenesis, caspase 3 activation may contribute to genome instability and play a pivotal role in tumor formation following damage. PMID:25866249

  14. Gene-environment interaction for polymorphisms in ataxia telangiectasia-mutated gene and radiation exposure in carcinogenesis: results from two literature-based meta-analyses of 27120 participants

    PubMed Central

    Wu, Di; He, Hua; Wang, Mengmeng; Ge, Tingwen; Liu, Yudi; Tian, Huimin; Cui, Jiuwei; Jia, Lin; Wan, Ziqiang; Han, Fujun

    2016-01-01

    Purpose We conducted two meta-analyses of ATM genetic polymorphisms and cancer risk in individuals with or without radiation exposure to determine whether there was a joint effect between the ATM gene and radiation exposure in carcinogenesis. Results rs1801516, which was the only ATM polymorphism investigated by more than 3 studies of radiation exposure, was eligible for the present study. The meta-analysis of 23333 individuals without radiation exposure from 24 studies showed no association between the rs1801516 polymorphism and cancer risk, without heterogeneity across studies. The meta-analysis of 3787 individuals with radiation exposure from 6 studies showed a significant association between the rs1801516 polymorphism and a decreased cancer risk, with heterogeneity across studies. There was a borderline-significant difference between the ORs of the two meta-analyses (P = 0.066), and the difference was significant when only Caucasians were included (P = 0.011). Materials and methods Publications were identified by searching PubMed, EMBASE, Web of Science, and CNKI databases. Odds ratios (ORs) were calculated to estimate the association between ATM genetic polymorphisms and cancer risk. Tests of interaction were used to compare differences between the ORs of the two meta-analyses. Conclusions Our meta-analyses confirmed the presence of a gene-environment interaction between the rs1801516 polymorphism and radiation exposure in carcinogenesis, whereas no association was found between the rs1801516 polymorphism and cancer risk for individuals without radiation exposure. The heterogeneity observed in the meta-analysis of individuals with radiation exposure might be due to gene-ethnicity or gene-gene interactions. Further studies are needed to elucidate sources of the heterogeneity. PMID:27764772

  15. Threshold models in radiation carcinogenesis

    SciTech Connect

    Hoel, D.G.; Li, P.

    1998-09-01

    Cancer incidence and mortality data from the atomic bomb survivors cohort has been analyzed to allow for the possibility of a threshold dose response. The same dose-response models as used in the original papers were fit to the data. The estimated cancer incidence from the fitted models over-predicted the observed cancer incidence in the lowest exposure group. This is consistent with a threshold or nonlinear dose-response at low-doses. Thresholds were added to the dose-response models and the range of possible thresholds is shown for both solid tumor cancers as well as the different leukemia types. This analysis suggests that the A-bomb cancer incidence data agree more with a threshold or nonlinear dose-response model than a purely linear model although the linear model is statistically equivalent. This observation is not found with the mortality data. For both the incidence data and the mortality data the addition of a threshold term significantly improves the fit to the linear or linear-quadratic dose response for both total leukemias and also for the leukemia subtypes of ALL, AML, and CML.

  16. Comprehensive assessment of radiation dose estimates for the CORE320 study.

    PubMed

    Rybicki, Frank J; Mather, Richard T; Kumamaru, Kanako K; Brinker, Jeffrey; Chen, Marcus Y; Cox, Christopher; Matheson, Matthew B; Dewey, Marc; DiCarli, Marcelo F; Miller, Julie M; Geleijns, Jacob; George, Richard T; Paul, Narinder; Texter, John; Vavere, Andrea; Yaw, Tan Swee; Lima, Joao A C; Clouse, Melvin E

    2015-01-01

    OBJECTIVE. The purpose of this study was to comprehensively study estimated radiation doses for subjects included in the main analysis of the Combined Non-invasive Coronary Angiography and Myocardial Perfusion Imaging Using 320 Detector Computed Tomography (CORE320) study ( ClinicalTrials.gov identifier NCT00934037), a clinical trial comparing combined CT angiography (CTA) and perfusion CT with the reference standard catheter angiography plus myocardial perfusion SPECT. SUBJECTS AND METHODS. Prospectively acquired data on 381 CORE320 subjects were analyzed in four groups of testing related to radiation exposure. Radiation dose estimates were compared between modalities for combined CTA and perfusion CT with respect to covariates known to influence radiation exposure and for the main clinical outcomes defined by the trial. The final analysis assessed variations in radiation dose with respect to several factors inherent to the trial. RESULTS. The mean radiation dose estimate for the combined CTA and perfusion CT protocol (8.63 mSv) was significantly (p < 0.0001 for both) less than the average dose delivered from SPECT (10.48 mSv) and the average dose from diagnostic catheter angiography (11.63 mSv). There was no significant difference in estimated CTA-perfusion CT radiation dose for subjects who had false-positive or false-negative results in the CORE320 main analyses in a comparison with subjects for whom the CTA-perfusion CT findings were in accordance with the reference standard SPECT plus catheter angiographic findings. CONCLUSION. Radiation dose estimates from CORE320 support clinical implementation of a combined CT protocol for assessing coronary anatomy and myocardial perfusion.

  17. Global fine-mode aerosol radiative effect, as constrained by comprehensive observations

    NASA Astrophysics Data System (ADS)

    Chung, Chul E.; Chu, Jung-Eun; Lee, Yunha; van Noije, Twan; Jeoung, Hwayoung; Ha, Kyung-Ja; Marks, Marguerite

    2016-07-01

    Aerosols directly affect the radiative balance of the Earth through the absorption and scattering of solar radiation. Although the contributions of absorption (heating) and scattering (cooling) of sunlight have proved difficult to quantify, the consensus is that anthropogenic aerosols cool the climate, partially offsetting the warming by rising greenhouse gas concentrations. Recent estimates of global direct anthropogenic aerosol radiative forcing (i.e., global radiative forcing due to aerosol-radiation interactions) are -0.35 ± 0.5 W m-2, and these estimates depend heavily on aerosol simulation. Here, we integrate a comprehensive suite of satellite and ground-based observations to constrain total aerosol optical depth (AOD), its fine-mode fraction, the vertical distribution of aerosols and clouds, and the collocation of clouds and overlying aerosols. We find that the direct fine-mode aerosol radiative effect is -0.46 W m-2 (-0.54 to -0.39 W m-2). Fine-mode aerosols include sea salt and dust aerosols, and we find that these natural aerosols result in a very large cooling (-0.44 to -0.26 W m-2) when constrained by observations. When the contribution of these natural aerosols is subtracted from the fine-mode radiative effect, the net becomes -0.11 (-0.28 to +0.05) W m-2. This net arises from total (natural + anthropogenic) carbonaceous, sulfate and nitrate aerosols, which suggests that global direct anthropogenic aerosol radiative forcing is less negative than -0.35 W m-2.

  18. A meta-analysis of evidence for hormesis in animal radiation carcinogenesis, including a discussion of potential pitfalls in statistical analyses to detect hormesis.

    PubMed

    Crump, Kenny S; Duport, Philippe; Jiang, Huixia; Shilnikova, Natalia S; Krewski, Daniel; Zielinski, Jan M

    2012-01-01

    A database containing 800 datasets on the incidence of specific tumor types from 262 radiation carcinogenicity experiments identified in a comprehensive literature search through September 2000 was analyzed for evidence of hormesis. This database includes lifetime studies of tumorigenic responses in mice, rats, and dogs to exposures to alpha, beta, gamma, neutron, or x-ray radiation. A J-shaped dose response, in the form of a significant decreased response at some low dose followed by a significant increased response at a higher dose, was found in only four datasets from three experiments. Three of these datasets involved the same control animals and two also shared dosed animals; the J shape in the fourth dataset appeared to be the result of an outlier within an otherwise monotonic dose response. A meta-analysis was conducted to determine whether there was an excess of dose groups with decreases in tumor response below that in controls at doses below no-observed-effect levels (NOELs) in individual datasets. Because the probability of a decreased response is generally not equal to the probability of an increased response even in the null case, the meta-analysis focused on comparing the number of statistically significant diminished responses to the number expected, assuming no dose effect below the NOEL. Only 54 dose groups out of the total of 2579 in the database had doses below the dataset-specific NOEL and that satisfied an a priori criterion for sufficient power to detect a reduced response. Among these 54, a liberal criterion for defining a significant decreases identified 15 such decreases, versus 54 × 0.2 = 10.8 expected. The excess in significant reductions was accounted for almost entirely by the excess from neutron experiments (10 observed, 6.2 expected). Nine of these 10 dose groups involved only 2 distinct control groups, and 2 pairs from the 10 even shared dosed animals. Given this high degree of overlap, this small excess did not appear remarkable

  19. Wound-healing error model for radon carcinogenesis

    SciTech Connect

    Kondo, Sohei

    1995-12-31

    Epidemiological studies of lung cancer in uranium miners exposed to radon suggest that radon is a tumor promoter. I will refine this notion by applying the wound-healing error model proposed for radiation carcinogenesis in general.

  20. Effect of LET and microdistribution of radiation on the transformation in vitro and in vivo. Comprehensive progress report

    SciTech Connect

    Little, J.B.

    1983-09-01

    Work has involved the following three areas: (1) an investigation of the mechanisms of radiation carcinogenesis by studying the events involved in the process of malignant transformation of mouse 10 T-1/2 cells; (2) an investigation of the effects of promoting agents on radiation-induced transformation in vitro; and (3) an investigation of the induction of transformation by internally emitting radionuclides incorporated into cellular DNA. The latter area has been extended to include studies of mutagenesis by these radionuclides in human lymphoblasts, and molecular measurements of DNA strand breaks. During the past year, research has focused on the first area, as well as on studies of the mutagenic effects of incorporated radionuclides.

  1. Carcinogenesis and aging

    SciTech Connect

    Anisimov, V.N.

    1983-01-01

    A suggested mechanism of carcinogenesis is presented. This scheme takes into account the effect of carcinogens at different integration levels: subcellular, tissue, and organism. Any of these levels may be age dependent. Age-associated changes in the activity of enzymes responsible for activation and inactivation of carcinogens, and variations in concentrations of lipids and proteins contributing to the transport of carcinogenic agents into cells, may play an important role in the modifying effect of age on carcinogenesis. The effects of age-associated changes in DNA repair need clarification. However, they are thought to exert a permissive influence on the age-associated rise in tumor incidence. It seems that proliferative activity of target tissues is the important modifying factor of carcinogenesis. Age-related changes of regulation at tissue and organism levels are also powerful factors in carcinogenesis modification. Age-dependent changes in the neuroendocrine system provide conditions for metabolic immunodepression and promotion of carcinogenesis. On the other hand, carcinogens per se (especially chemical and radiological) may intensify aging processes in the organism. Normalization, by drugs, of age-associated shifts requiring synthetic and energetic changes of a transformed tumor cells, and of immunological shifts, may exert both antitumor and geroprotective effects.

  2. Models of carcinogenesis: an overview

    PubMed Central

    Vineis, Paolo; Schatzkin, Arthur; Potter, John D.

    2010-01-01

    At least five coherent models of carcinogenesis have been proposed in the history of cancer research in the last century. Model 1 is mainly centered around mutations, and its main focus is on the chemical environment, radiation and viruses. Model 2 has to do mainly with genome instability and it focuses on familiality. Model 3 is based on non-genotoxic mechanisms, and clonal expansion and epigenetics are its main features. We propose a fourth model, which can encompass the previous three, based on the concept of a ‘Darwinian’ cell selection (we clarify that the term Darwinian needs to be used cautiously, being a short cut for ‘somatic cellular selection’). Finally, a fifth model has recently become popular, based on the concept of ‘tissue organization’. We describe examples of the five models and how they have been formalized mathematically. The five models largely overlap, both scientifically and historically, but for the sake of clarity, it is useful to treat them separately. We also argue that the five models can be included into a simpler scheme, i.e. two types of models: (i) biological changes in the epithelium alone lead to malignancy and (ii) changes in stroma/extracellular matrix are necessary (along with changes in epithelium) for malignancy. Our description, though simplified, looks realistic, it is able to capture the historical sequence of carcinogenesis theories in the last century and can serve as a frame to make research hypotheses more explicit. PMID:20430846

  3. PreImplantation factor (PIF) therapy provides comprehensive protection against radiation induced pathologies

    PubMed Central

    Shainer, Reut; Almogi-Hazan, Osnat; Berger, Arye; Hinden, Liad; Mueller, Martin; Brodie, Chaya; Simillion, Cedric; Paidas, Michael

    2016-01-01

    Acute Radiation Syndrome (ARS) may lead to cancer and death and has few effective countermeasures. Efficacy of synthetic PIF treatment was demonstrated in preclinical autoimmune and transplantation models. PIF protected against inflammation and mortality following lethal irradiation in allogeneic bone marrow transplant (BMT) model. Herein, we demonstrate that PIF imparts comprehensive local and systemic protection against lethal and sub-lethal ARS in murine models. PIF treatment 2 h after lethal irradiation led to 100% survival and global hematopoietic recovery at 2 weeks after therapy. At 24 h after irradiation PIF restored hematopoiesis in a semi-allogeneic BMT model. PIF-preconditioning provided improved long-term engraftment. The direct effect of PIF on bone marrow cells was also demonstrated in vitro: PIF promoted pre-B cell differentiation and increased immunoregulatory properties of BM-derived mesenchymal stromal cells. PIF treatment also improved hematopoietic recovery and reduced systemic inflammatory cytokine production after sub-lethal radiation exposure. Here, PIF also prevented colonic crypt and basal membrane damage coupled with reduced nitric oxide synthetase (iNOS) and increased (B7h1) expression. Global upper GI gene pathway analysis revealed PIF's involvement in protein-RNA interactions, mitochondrial oxidative pathways, and responses to cellular stress. Some effects may be attributed to PIF's influence on macrophage differentiation and function. PIF demonstrated a regulatory effect on irradiated macrophages and on classically activated M1 macrophages, reducing inflammatory gene expression (iNOS, Cox2), promoting protective (Arg1) gene expression and inducing pro-tolerance cytokine secretion. Notably, synthetic PIF is stable for long-term field use. Overall, clinical investigation of PIF for comprehensive ARS protection is warranted. PMID:27449294

  4. Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies.

    PubMed

    Mutanen, Marko; Wahlberg, Niklas; Kaila, Lauri

    2010-09-22

    Lepidoptera (butterflies and moths) represent one of the most diverse animals groups. Yet, the phylogeny of advanced ditrysian Lepidoptera, accounting for about 99 per cent of lepidopteran species, has remained largely unresolved. We report a rigorous and comprehensive analysis of lepidopteran affinities. We performed phylogenetic analyses of 350 taxa representing nearly 90 per cent of lepidopteran families. We found Ditrysia to be a monophyletic taxon with the clade Tischerioidea + Palaephatoidea being the sister group of it. No support for the monophyly of the proposed major internested ditrysian clades, Apoditrysia, Obtectomera and Macrolepidoptera, was found as currently defined, but each of these is supported with some modification. The monophyly or near-monophyly of most previously identified lepidopteran superfamilies is reinforced, but several species-rich superfamilies were found to be para- or polyphyletic. Butterflies were found to be more closely related to 'microlepidopteran' groups of moths rather than the clade Macrolepidoptera, where they have traditionally been placed. There is support for the monophyly of Macrolepidoptera when butterflies and Calliduloidea are excluded. The data suggest that the generally short diverging nodes between major groupings in basal non-tineoid Ditrysia are owing to their rapid radiation, presumably in correlation with the radiation of flowering plants.

  5. Redefining the roles of apoptotic factors in carcinogenesis

    PubMed Central

    Liu, Xinjian; He, Yujun; Li, Fang; Huang, Qian; Kato, Takamitsu A.; Hall, Russell P.; Li, Chuan-Yuan

    2016-01-01

    ABSTRACT In a recent study we reported that mammalian cells exposed to stress such as ionizing radiation can survive with activation of caspase-3 or caspase-7. We found that sublethal activation of the executioner caspases promotes chemical- and radiation-induced genetic instability and carcinogenesis, in contrast to their perceived roles as tumor suppressors. PMID:27314073

  6. Dietary modifiers of carcinogenesis.

    PubMed Central

    Kohlmeier, L; Simonsen, N; Mottus, K

    1995-01-01

    Dietary components express a wide range of activities that can affect carcinogenesis. Naturally occurring substances in foods have been shown in laboratory experiments to serve as dietary antimutagens, either as bioantimutagens or as desmutagens. Dietary desmutagens may function as chemical inactivaters, enzymatic inducers, scavengers, or antioxidants. Dietary components may also act later in the carcinogenic process as tumor growth suppressors. Examples of dietary factors acting in each of these stages of carcinogenesis are presented, and potential anticarcinogens such as the carotenoids, tocopherols, phenolic compounds, glucosinolates, metal-binding proteins, phytoestrogens, and conjugated linoleic acid are discussed. Individual foods typically contain multiple potential anticarcinogens. Many of these substances can influence carcinogenesis through more than one mechanism. Some substances exhibit both anticarcinogenic and carcinogenic activity in vitro, depending on conditions. Epidemiologic research indicates that high fruit and vegetable consumption is associated with lower cancer risk. Little research has focused on the effects of single substances or single foods in man. Realization of the potential of foodborne substances to reduce the human burden of cancer will only be achieved with better measurement of dietary exposures and funding of multidisciplinary research in this area commensurate with its importance. PMID:8741780

  7. A comprehensive spectrometry study of a stray neutron radiation field in scanning proton therapy

    NASA Astrophysics Data System (ADS)

    Mares, Vladimir; Romero-Expósito, Maite; Farah, Jad; Trinkl, Sebastian; Domingo, Carles; Dommert, Martin; Stolarczyk, Liliana; Van Ryckeghem, Laurent; Wielunski, Marek; Olko, Pawel; Harrison, Roger M.

    2016-06-01

    , epithermal, evaporation and intra-nuclear cascade neutrons. This comprehensive spectrometry analysis can also help in understanding the tremendous literature data based rem-counters while also being of great value for general neutron shielding and radiation safety studies.

  8. Mechanisms of cadmium carcinogenesis

    SciTech Connect

    Joseph, Pius

    2009-08-01

    Cadmium (Cd), a heavy metal of considerable occupational and environmental concern, has been classified as a human carcinogen by the International Agency for Research on Cancer (IARC). The carcinogenic potential of Cd as well as the mechanisms underlying carcinogenesis following exposure to Cd has been studied using in vitro cell culture and in vivo animal models. Exposure of cells to Cd results in their transformation. Administration of Cd in animals results in tumors of multiple organs/tissues. Also, a causal relationship has been noticed between exposure to Cd and the incidence of lung cancer in human. It has been demonstrated that Cd induces cancer by multiple mechanisms and the most important among them are aberrant gene expression, inhibition of DNA damage repair, induction of oxidative stress, and inhibition of apoptosis. The available evidence indicates that, perhaps, oxidative stress plays a central role in Cd carcinogenesis because of its involvement in Cd-induced aberrant gene expression, inhibition of DNA damage repair, and apoptosis.

  9. Response modification in carcinogenesis.

    PubMed Central

    Cerutti, P A

    1989-01-01

    A major goal in multistep carcinogenesis research is the integration of recent findings obtained by sophisticated molecular-genetic and cytogenetic analysis of cancer into the more descriptive concepts of experimental pathology. It is proposed that the creation of a promotable cell in carcinogenic initiation requires a response modification to extracellular or intercellular signals. Different types of response modification can be distinguished: changes in the receptors for growth and differentiation factors and their cytoplasmic and nuclear signal transduction pathways; increased resistance of initiated cells to cytotoxic agents; alterations in junctional cell-to-cell communications. The challenge of a response-modified cell to an appropriate promoter results in its selection and clonal expansion, usually to a benign tumor. In addition, for malignancy, chromosomal changes are required that affect cellular functions that can play a role early or late in tumorigenesis. These concepts are illustrated with examples from oncogene research and oxidant promotion. PMID:2667983

  10. COMPREHENSIVE DATA CONCERNING COSMIC RADIATION DOSES AT GROUND LEVEL AND IN-FLIGHTS FOR TURKEY.

    PubMed

    Parmaksız, A

    2016-12-01

    Cosmic radiation doses of individuals living in 81 cities in Turkey were estimated by using CARI-6 software. Annual cosmic radiation doses of individuals were found to be between 308 and 736 µSv y(-1) at ground level. The population-weighted annual effective dose from cosmic radiation was determined to be 387 µSv y(-1) for Turkey. Cosmic radiation doses on-board for 137 (60 domestic and 77 international) flights varied from 1.2 to 83 µSv. It was estimated that six or over long-route round-trip air travels may cause cosmic radiation dose above the permissible limit for member of the public, i.e. 1 mSv y(-1) According to the assumption of flights throughout 800 h on each route, cosmic radiation doses were found to be between 1.0 and 4.8 mSv for aircrew.

  11. Nutritional factors in carcinogenesis.

    PubMed

    Wahlqvist, M L

    1993-09-01

    There have been varying estimates of the role of nutritional as opposed to other contributors to carcinogenesis. Several considerations probably account for the different estimates: (1) genetic overestimates because of foetal and early life rearing practices and the nutritional modulation of genetic expression (2) errors in food intake methodology (3) the limitations of nutrient carcinogenesis hypotheses, ie models which are too naive and do not allow for non-nutrients in food, food patterns and the overall package which is food culture (4) indirect pathways connecting nutrition and cancer such as that via immunosurveillance. Examples of cancers where rapid change in nutritional thinking is underway are breast, prostatic, colorectal and pancreatic. With breast cancer, weakly oestrogenic compounds from foods may be comparable to tamoxifen. Changing food culture away from that rich in phyto-oestrogens may increase the risk of prostatic cancer in men as well. Colorectal cancer incidence has continued at high rates in urbanized society despite an awareness of dietary contribution comparable to the knowledge of diet and coronary heart disease is the analysis sufficiently stratified for large bowel site or nutritionally sophisticated enough to allow for aggregate food pattern effects? Pancreatic cancer on the rise presents questions about unidentified changes continuing in the diets of industrialized societies, possibly from an early age, and even during infant feeding. Nutritional surveillance with mathematical modelling of food intake at a more sophisticated level will be required to understand present food-cancer relationships, and those which may emerge with newer food technologies, especially those related to designer foods.

  12. French maritime pine bark (Pinus maritima Lam.) extract (Flavangenol) prevents chronic UVB radiation-induced skin damage and carcinogenesis in melanin-possessing hairless mice.

    PubMed

    Kimura, Yoshiyuki; Sumiyoshi, Maho

    2010-01-01

    A French maritime pine bark extract, Flavangenol, is widely used as a nutritional supplement for protection against atherosclerosis, hypertension, diabetes, etc. Chronic exposure to solar UV radiation damages skin, increasing cutaneous thickness, wrinkling and pigmentation, as well as reducing elasticity, and causes skin cancer. The aim of this study was to examine the effects of flavangenol on skin damage and the incidence of skin tumors caused by long-term UVB irradiation in melanin-possessing hairless mice. The oral administration of flavangenol (60, 200 or 600 mg kg(-1), twice daily) significantly inhibited increases in skin thickness, and the formation of wrinkles and melanin granules, as well as increases in the diameter and length of skin blood vessels. Furthermore, it prevented increases in numbers of apoptotic, Ki-67-positive and 8-hydroxy-2'-deoxyguanosine (8-OHdG)-positive cells, and the expression of skin vascular endothelial growth factor (VEGF) induced by chronic UVB irradiation. The effect on these biomarkers was associated with a reduction in the incidence of tumors in mice. The antiphotoaging and anticarcinogenetic activities of flavangenol may be due to inhibition of the expression of Ki-67, 8-OHdG and VEGF through a scavenging effect on reactive oxygen species.

  13. Oral feeding of pomegranate fruit extract inhibits early biomarkers of UVB radiation-induced carcinogenesis in SKH-1 hairless mouse epidermis.

    PubMed

    Afaq, Farrukh; Khan, Naghma; Syed, Deeba N; Mukhtar, Hasan

    2010-01-01

    Pomegranate from the plant Punica granatum L. possesses strong antioxidant and anti-inflammatory properties. Recently, we have demonstrated that treatment of normal human epidermal keratinocytes with pomegranate fruit extract (PFE) inhibited UVB-mediated activation of nuclear factor kappa B (NF-κB) and mitogen activated protein kinases pathways. Here, we evaluated the effect of PFE on early biomarkers of photocarcinogenesis employing SKH-1 hairless mice. PFE was provided in drinking water (0.2%, wt/vol) to SKH-1 hairless mice for 14 days before a single UVB (180 mJ cm(-2)) irradiation. We found that oral feeding of PFE inhibited UVB-induced: (1) skin edema; (2) hyperplasia; (3) infiltration of leukocytes; (4) lipid peroxidation; (5) hydrogen peroxide generation; (6) ornithine decarboxylase (ODC) activity; and (7) ODC, cyclooxygenase-2 and proliferating cell nuclear antigen protein expression. Oral feeding of PFE enhanced repair of UVB-mediated formation of cyclobutane pyrimidine dimers (CPDs) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG). Importantly, PFE treatment further enhanced UVB-mediated increase in tumor suppressor p53 and cyclin kinase inhibitor p21. Furthermore, oral feeding of PFE inhibited UVB-mediated: (1) nuclear translocation of NF-κB; (2) activation of IKKα; and (3) phosphorylation and degradation of IκBα. Taken together, we provide evidence that oral feeding of PFE to mice affords substantial protection from the adverse effects of UVB radiation via modulation in early biomarkers of photocarcinogenesis and provide suggestion for its photochemopreventive potential.

  14. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning

    SciTech Connect

    Paulson, Eric S.; Erickson, Beth; Schultz, Chris; Allen Li, X.

    2015-01-15

    Purpose: The use of magnetic resonance imaging (MRI) in radiation oncology is expanding rapidly, and more clinics are integrating MRI into their radiation therapy workflows. However, radiation therapy presents a new set of challenges and places additional constraints on MRI compared to diagnostic radiology that, if not properly addressed, can undermine the advantages MRI offers for radiation treatment planning (RTP). The authors introduce here strategies to manage several challenges of using MRI for virtual simulation in external beam RTP. Methods: A total of 810 clinical MRI simulation exams were performed using a dedicated MRI scanner for external beam RTP of brain, breast, cervix, head and neck, liver, pancreas, prostate, and sarcoma cancers. Patients were imaged in treatment position using MRI-optimal immobilization devices. Radiofrequency (RF) coil configurations and scan protocols were optimized based on RTP constraints. Off-resonance and gradient nonlinearity-induced geometric distortions were minimized or corrected prior to using images for RTP. A multidisciplinary MRI simulation guide, along with window width and level presets, was created to standardize use of MR images during RTP. A quality assurance program was implemented to maintain accuracy and repeatability of MRI simulation exams. Results: The combination of a large bore scanner, high field strength, and circumferentially wrapped, flexible phased array RF receive coils permitted acquisition of thin slice images with high contrast-to-noise ratio (CNR) and image intensity uniformity, while simultaneously accommodating patient setup and immobilization devices. Postprocessing corrections and alternative acquisition methods were required to reduce or correct off-resonance and gradient nonlinearity induced geometric distortions. Conclusions: The methodology described herein contains practical strategies the authors have implemented through lessons learned performing clinical MRI simulation exams. In

  15. Hypermutability in carcinogenesis.

    PubMed Central

    Strauss, B S

    1998-01-01

    The presence of numerous chromosomal changes and point mutations in tumors is well established. At least some of these changes play a role in the development of the tumors. It has been suggested that the number of these genetic changes requires that tumorigenesis involves an increase in mutation rate. However, the presence of numerous changes can also be accounted for by efficient selection. What is required to settle the issue is some measure of nonselected mutations in tumors. In order to determine whether the tumor suppressor TP53 (coding for the protein p53) is hypermutable at some stage of carcinogenesis, the frequency of silent and multiple mutations in this gene has been examined. Silent mutations make up approximately 3% of the total recorded but constitute 9.5% of the mutations found in tumors with multiple mutations. Multiple closely linked mutations are also observed. Such multiple mutations suggest the operation of an error-prone replication process in a subclass of cells. The published data indicate that TP53 is hypermutable at some stage of tumor development. It is not yet clear whether TP53 is unique or whether other genes display a similar pattern of silent and multiple mutations. PMID:9560381

  16. Comprehensive 2D measurements of radiative divertor plasmas in DIII-D

    SciTech Connect

    Fenstermacher, M.E.; Wood, R.D.; Allen, S.L.; Hill, D.N.

    1997-07-01

    This paper presents a comparison of the total radiated power profile and impurity line emission distributions in the SOL and divertor of DIII-D. This is done for ELMing H-mode plasmas with heavy deuterium injection (Partially Detached Divertor operation, PDD) and those without deuterium puffing. Results are described from a series of dedicated experiments performed on DIII-D to systematically measure the 2-D (R,Z) structure of the divertor plasma. The discharges were designed to optimize measurements with new divertor diagnostics including a divertor Thomson scattering system. Discharge sequences were designed to produce optimized data sets against which SOL and divertor theories and simulation codes could be benchmarked. During PDD operation the regions of significant radiated power shift from the inner divertor leg and SOL to the outer leg and X-point regions. D{alpha} emission shifts from the inner strikepoint to the outer strikepoint. Carbon emissions (visible CII and CIII) shift from the inner SOL near the X-point to a distributed region from the X-point to partially down the outer leg during moderate D2 puffing. In heavy puffing discharges the carbon emission coalesces on the outer separatrix near the X-point and for very heavy puffing it appears inside the last closed flux surface above the X-point. Calibrated spectroscopic measurements indicate that hydrogenic and carbon radiation can account for all of the radiated power. L{alpha} and CIV radiation are comparable and when combined account for as much as 90% of the total radiated power along chords viewing the significant radiating regions of the outer leg.

  17. CT Radiation Dose Management: A Comprehensive Optimization Process for Improving Patient Safety.

    PubMed

    Parakh, Anushri; Kortesniemi, Mika; Schindera, Sebastian T

    2016-09-01

    Rising concerns of radiation exposure from computed tomography have caused various advances in dose reduction technologies. While proper justification and optimization of scans has been the main focus to address increasing doses, the value of dose management has been largely overlooked. The purpose of this article is to explain the importance of dose management, provide an overview of the available options for dose tracking, and discuss the importance of a dedicated dose team. The authors also describe how a digital radiation tracking software can be used for analyzing the big data on doses for auditing patient safety, scanner utilization, and productivity, all of which have enormous personal and institutional implications. (©) RSNA, 2016.

  18. Comprehensive Review of Ultraviolet Radiation and the Current Status on Sunscreens

    PubMed Central

    Moon, Summer; Armstrong, Frank

    2012-01-01

    In the past, manufacturers’ labeling of sunscreen varied greatly, confusing the consumers regarding efficacy and the appropriate photoprotection provided by their products. Therefore, in June 2011, the United States Food and Drug Administration issued new guidelines for sunscreen labeling. Sunscreen products are over-the-counter drugs; therefore, they are regulated by the United States Food and Drug Administration to determine safety, efficacy, and labeling. This article discusses ultraviolet radiation and the positive and negative effects of ultraviolet radiation, provides a review of sunscreens, and discusses the new United States Food and Drug Administration regulations for sunscreens. PMID:23050030

  19. A comprehensive system for dosimetric commissioning and Monte Carlo validation for the small animal radiation research platform

    PubMed Central

    Tryggestad, E; Armour, M; Iordachita, I; Verhaegen, F; Wong, J W

    2011-01-01

    Our group has constructed the small animal radiation research platform (SARRP) for delivering focal, kilo-voltage radiation to targets in small animals under robotic control using cone-beam CT guidance. The present work was undertaken to support the SARRP’s treatment planning capabilities. We have devised a comprehensive system for characterizing the radiation dosimetry in water for the SARRP and have developed a Monte Carlo dose engine with the intent of reproducing these measured results. We find that the SARRP provides sufficient therapeutic dose rates ranging from 102 to 228 cGy min−1 at 1 cm depth for the available set of high-precision beams ranging from 0.5 to 5 mm in size. In terms of depth–dose, the mean of the absolute percentage differences between the Monte Carlo calculations and measurement is 3.4% over the full range of sampled depths spanning 0.5–7.2 cm for the 3 and 5 mm beams. The measured and computed profiles for these beams agree well overall; of note, good agreement is observed in the profile tails. Especially for the smallest 0.5 and 1 mm beams, including a more realistic description of the effective x-ray source into the Monte Carlo model may be important. PMID:19687532

  20. Carcinogenesis studies with benzoyl peroxide (Panoxyl gel 5%)

    SciTech Connect

    Iversen, O.H.

    1986-04-01

    Several groups of hairless mice were given UV radiation with and without pretreatment with 7,12-dimethylbenz(a)anthracene (DMBA), 5% benzoyl peroxide in a gel (Panoxyl), and gel alone, in various combinations, with appropriate control groups included, in order to see whether benzoyl peroxide, which is known to enhance chemical skin carcinogenesis after a single, small dose of DMBA, also enhances UV carcinogenesis. The mice were observed for skin tumors, and all skin lesions were histologically investigated. The percentage of tumor-bearing animals with time is called the tumor rate, the total number of tumors occurring is called the tumor yield. Continual treatment with 5% benzoyl peroxide in gel twice a week, with or without a short pretreatment period of UV radiation resulted in only 2 skin carcinomas, which is remarkable, but not significant. Both Panoxyl and gel alone enhanced tumorigenicity significantly in animals pretreated with a single dose of 51.2 micrograms DMBA. There was no difference between the enhancement caused by Panoxyl and the gel as regards the tumor rate, but when measured as final tumor yield, Panoxyl was slightly more tumor-enhancing than gel alone. However, both Panoxyl and gel protected significantly against UV tumorigenesis (all tumors). There was no difference between the protective effect of the 2 types of treatment. Neither Panoxyl nor gel alone influenced significantly UV skin carcinogenesis (malignant tumors). It is concluded that under these experimental conditions both Panoxyl and gel alone tend to protect against the tumorigenicity and do not enhance the carcinogenicity of UV radiation in hairless mice, whereas both gel and Panoxyl enhance chemical carcinogenesis. The carcinogenic mechanisms may be different for UV and chemical carcinogenesis, respectively.

  1. Carcinogenesis mechanisms of Fusobacterium nucleatum.

    PubMed

    Gholizadeh, Pourya; Eslami, Hosein; Kafil, Hossein Samadi

    2017-03-07

    Transformed cells of cancers may be related to stromal cells, immune cells, and some bacteria such as Fusobacterium nucleatum. This review aimed to evaluate carcinogenesis mechanisms of Fusobacterium spp. in the oral cavity, pancreatic and colorectal cancers. These cancers are the three of the ten most prevalence cancer in the worldwide. Recent findings demonstrated that F. nucleatum could be considered as the risk factor for these cancers. The most important carcinogenesis mechanisms of F. nucleatum are chronic infection, interaction of cell surface molecules of these bacteria with immune system and stromal cells, immune evasion and immune suppression. However, there are some uncertainty carcinogenesis mechanisms about these bacteria, but this review evaluates almost all the known mechanisms. Well-characterized virulence factors of F. nucleatum such as FadA, Fap2, LPS and cell wall extracts may act as effector molecules in the shift of normal epithelial cells to tumor cells. These molecules may provide new targets, drugs, and strategies for therapeutic intervention.

  2. A comprehensive dose reconstruction methodology for former rocketdyne/atomics international radiation workers.

    PubMed

    Boice, John D; Leggett, Richard W; Ellis, Elizabeth Dupree; Wallace, Phillip W; Mumma, Michael; Cohen, Sarah S; Brill, A Bertrand; Chadda, Bandana; Boecker, Bruce B; Yoder, R Craig; Eckerman, Keith F

    2006-05-01

    Incomplete radiation exposure histories, inadequate treatment of internally deposited radionuclides, and failure to account for neutron exposures can be important uncertainties in epidemiologic studies of radiation workers. Organ-specific doses from lifetime occupational exposures and radionuclide intakes were estimated for an epidemiologic study of 5,801 Rocketdyne/Atomics International (AI) radiation workers engaged in nuclear technologies between 1948 and 1999. The entire workforce of 46,970 Rocketdyne/AI employees was identified from 35,042 Kardex work histories cards, 26,136 electronic personnel listings, and 14,189 radiation folders containing individual exposure histories. To obtain prior and subsequent occupational exposure information, the roster of all workers was matched against nationwide dosimetry files from the Department of Energy, the Nuclear Regulatory Commission, the Landauer dosimetry company, the U.S. Army, and the U.S. Air Force. Dosimetry files of other worker studies were also accessed. Computation of organ doses from radionuclide intakes was complicated by the diversity of bioassay data collected over a 40-y period (urine and fecal samples, lung counts, whole-body counts, nasal smears, and wound and incident reports) and the variety of radionuclides with documented intake including isotopes of uranium, plutonium, americium, calcium, cesium, cerium, zirconium, thorium, polonium, promethium, iodine, zinc, strontium, and hydrogen (tritium). Over 30,000 individual bioassay measurements, recorded on 11 different bioassay forms, were abstracted. The bioassay data were evaluated using ICRP biokinetic models recommended in current or upcoming ICRP documents (modified for one inhaled material to reflect site-specific information) to estimate annual doses for 16 organs or tissues taking into account time of exposure, type of radionuclide, and excretion patterns. Detailed internal exposure scenarios were developed and annual internal doses were derived

  3. Radiation induced oxidation of sulphydryl molecules in aqueous solutions. A comprehensive review

    NASA Astrophysics Data System (ADS)

    Lal, Manohar

    1994-06-01

    Radiation degradation studies of thiols in aqueous solutions under variety of conditions during the past more than three decades are reviewed. Radiolytic mechanism of γ-irradiated air free, air and N 2O-saturated solutions of cysteine, cysteamine, dithiothreitol, mercaptoethanol, glutathione and papain are high lighted. A large variety of thiols repair organic radicals by H atom transfer from SH group. The repair rate constants are found to be between 5 × 10 6M -1s -1 to 4.0 × 10 8M -1s -1. The data are tabulated. The rate constants of e -aq and ȮH radicals with variety of thiols evaluated by pulse radioanalysis and flash photolysis are found to be very high and are computed. Sulphur centered radicals e.g. RṠ;, RSSR ⨪ generated in the pulse radioanalysis of thiols are very important species. Their reactions with oxygen and other compounds are of relevance to radiation biology. The results, reaction mechanism, the repair rate constant, the rate constants of e -aq and ȮH radicals with thiols and the rate constants of sulphur centered radicals with oxygen and other compounds of biological interest can be of great use in the interpretation of the mechanism of the protection of cells, animals, DNA and other biological molecules and may well provide basic essential information for the understanding of radiation biology. The protection of biological target at chemical level is generally understood in terms of protecting compounds participating directly in the radiochemical event and reducing the damage to biological target. The damage to the biological target is repaired by the hydrogen transfer from the thiol. Biochemical and metabolic mechanisms are quite complex. There is no single mechanism which explains all the experimental observations on the metabolism of thiols. More work needs to be done in order to understand the metabolic aspect of the protection mechanism.

  4. Towards a comprehensive CT image segmentation for thoracic organ radiation dose estimation and reporting

    NASA Astrophysics Data System (ADS)

    Lorenz, Cristian; Ruppertshofen, Heike; Vik, Torbjörn; Prinsen, Peter; Wiegert, Jens

    2014-03-01

    Administered dose of ionizing radiation during medical imaging is an issue of increasing concern for the patient, for the clinical community, and for respective regulatory bodies. CT radiation dose is currently estimated based on a set of very simplifying assumptions which do not take the actual body geometry and organ specific doses into account. This makes it very difficult to accurately report imaging related administered dose and to track it for different organs over the life of the patient. In this paper this deficit is addressed in a two-fold way. In a first step, the absorbed radiation dose in each image voxel is estimated based on a Monte-Carlo simulation of X-ray absorption and scattering. In a second step, the image is segmented into tissue types with different radio sensitivity. In combination this allows to calculate the effective dose as a weighted sum of the individual organ doses. The main purpose of this paper is to assess the feasibility of automatic organ specific dose estimation. With respect to a commercially applicable solution and respective robustness and efficiency requirements, we investigated the effect of dose sampling rather than integration over the organ volume. We focused on the thoracic anatomy as the exemplary body region, imaged frequently by CT. For image segmentation we applied a set of available approaches which allowed us to cover the main thoracic radio-sensitive tissue types. We applied the dose estimation approach to 10 thoracic CT datasets and evaluated segmentation accuracy and administered dose and could show that organ specific dose estimation can be achieved.

  5. Modeling Multiple Causes of Carcinogenesis

    SciTech Connect

    Jones, T D

    1999-01-24

    An array of epidemiological results and databases on test animal indicate that risk of cancer and atherosclerosis can be up- or down-regulated by diet through a range of 200%. Other factors contribute incrementally and include the natural terrestrial environment and various human activities that jointly produce complex exposures to endotoxin-producing microorganisms, ionizing radiations, and chemicals. Ordinary personal habits and simple physical irritants have been demonstrated to affect the immune response and risk of disease. There tends to be poor statistical correlation of long-term risk with single agent exposures incurred throughout working careers. However, Agency recommendations for control of hazardous exposures to humans has been substance-specific instead of contextually realistic even though there is consistent evidence for common mechanisms of toxicological and carcinogenic action. That behavior seems to be best explained by molecular stresses from cellular oxygen metabolism and phagocytosis of antigenic invasion as well as breakdown of normal metabolic compounds associated with homeostatic- and injury-related renewal of cells. There is continually mounting evidence that marrow stroma, comprised largely of monocyte-macrophages and fibroblasts, is important to phagocytic and cytokinetic response, but the complex action of the immune process is difficult to infer from first-principle logic or biomarkers of toxic injury. The many diverse database studies all seem to implicate two important processes, i.e., the univalent reduction of molecular oxygen and breakdown of aginuine, an amino acid, by hydrolysis or digestion of protein which is attendant to normal antigen-antibody action. This behavior indicates that protection guidelines and risk coefficients should be context dependent to include reference considerations of the composite action of parameters that mediate oxygen metabolism. A logic of this type permits the realistic common-scale modeling of

  6. Comprehensive radiative forcing assesment highlights trade-offs in climate mitigation potential of managed boreal forests

    NASA Astrophysics Data System (ADS)

    Kalliokoski, Tuomo; Berninger, Frank; Bäck, Jaana; Boy, Michael; Kuusinen, Nea; Mäkelä, Annikki; Matthies, Brent; Minkkinen, Kari; Mogensen, Ditte; Peltoniemi, Mikko; Sievänen, Risto; Zhou, Luxi; Vanhatalo, Anni; Valsta, Lauri; Nikinmaa, Eero

    2016-04-01

    Boreal forests have an important role in the mitigation of climate change. In this study we evaluated four key climate impacts of forest management: (1) carbon sequestration (in forest ecosystems and wood products), (2) surface albedo of forest area, (3) forest originating Secondary Organic Aerosols (SOA) and (4) avoided CO2-emissions from wood energy and product substitution. We calculated their net effect at both a single stand and regional level using Finland as a case study. We made analyses both in current climate up to a year 2050 and in the projected climate of year 2050. At the stand level, the carbon sequestration effect and avoided CO2 emissions due to substituted materials dominated in net RF in current climate. The warming effect of surface albedo of forest cover was lower or of same magnitude than cooling effect of SOAs. Together, the rarely considered SOAs and product substitution corresponded over 70% of the total cooling effect of forest cover. The cooling effect of net radiative forcing increased along the increasing site fertility. Although the carbon stocks of broadleaved trees were smaller than that of conifers their total radiative cooling effect was larger due to the integrated albedo and aerosol effects. In the projected climate of 2050, the radiative cooling of aerosols approached the level of forest carbon fixation. These results emphasize the need for holistic evaluation of climate impacts over simple carbon sequestration analysis to understand the role of forest management in climate change mitigation. Landscape level analyses emphasized the broad range of options to reach the cooling effect. The lowest harvest regime, 50% of current annual increment (CAI), yielded the largest cooling effect. Yet, harvests up to CAI produced only slightly less cooling RF if avoided emissions were considered. This result was highly sensitive to used substitution factors. Our result highlights that the combination of intensive harvests and the use of wood

  7. Toward a comprehensive theory for the sweeping of trapped radiation by inert orbiting matter

    NASA Technical Reports Server (NTRS)

    Fillius, Walker

    1988-01-01

    There is a need to calculate loss rates when trapped Van Allen radiation encounters inert orbiting material such as planetary rings and satellites. An analytic expression for the probability of a hit in a bounce encounter is available for all cases where the absorber is spherical and the particles are gyrotropically distributed on a cylindrical flux tube. The hit probability is a function of the particle's pitch angle, the size of the absorber, and the distance between flux tube and absorber, when distances are scaled to the gyroradius of a particle moving perpendicular to the magnetic field. Using this expression, hit probabilities have been computed in drift encounters for all regimes of particle energies and absorber sizes. This technique generalizes the approach to sweeping lifetimes, and is particularly suitable for attacking the inverse problem, where one is given a sweeping signature and wants to deduce the properties of the absorber(s).

  8. [Comparative evaluation of influence of low-intensity laser radiation of different spectrum components and regimen of laser work upon microcirculation in comprehensive treatment of chronic parodontitis].

    PubMed

    Krechina, E K; Shidova, A V; Maslova, V V

    2008-01-01

    Comparative study of the influence details of low-intensity pulse and continuous oscillation of laser radiation of red and infrared parts of spectrum upon microcirculation indices in comprehensive treatment of chronic parodontitis of light and middle severity was performed. For the first time the predominantly activating influence upon microcirculation in gingival tissues of the pulsed laser radiation in the red part of spectrum was established.

  9. Constituent Components of Out-of-Field Scatter Dose for 18-MV Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy: A Comparison With 6-MV and Implications for Carcinogenesis

    SciTech Connect

    Ruben, Jeremy D.; Smith, Ryan; Lancaster, Craig M.; Haynes, Matthew; Jones, Phillip; Panettieri, Vanessa

    2014-11-01

    Purpose: To characterize and compare the components of out-of-field dose for 18-MV intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3D-CRT) and their 6-MV counterparts and consider implications for second cancer induction. Methods and Materials: Comparable plans for each technique/energy were delivered to a water phantom with a sloping wall; under full scatter conditions; with field edge abutting but outside the bath to prevent internal/phantom scatter; and with shielding below the linear accelerator head to attenuate head leakage. Neutron measurements were obtained from published studies. Results: Eighteen-megavolt IMRT produces 1.7 times more out-of-field scatter than 18-MV 3D-CRT. In absolute terms, however, differences are just approximately 0.1% of central axis dose. Eighteen-megavolt IMRT reduces internal/patient scatter by 13%, but collimator scatter (C) is 2.6 times greater than 18-MV 3D-CRT. Head leakage (L) is minimal. Increased out-of-field photon scatter from 18-MV IMRT carries out-of-field second cancer risks of approximately 0.2% over and above the 0.4% from 18-MV 3D-CRT. Greater photoneutron dose from 18-MV IMRT may result in further maximal, absolute increased risk to peripheral tissue of approximately 1.2% over 18-MV 3D-CRT. Out-of-field photon scatter remains comparable for the same modality irrespective of beam energy. Machine scatter (C+L) from 18 versus 6 MV is 1.2 times higher for IMRT and 1.8 times for 3D-CRT. It is 4 times higher for 6-MV IMRT versus 3D-CRT. Reduction in internal scatter with 18 MV versus 6 MV is 27% for 3D-CRT and 29% for IMRT. Compared with 6-MV 3D-CRT, 18-MV IMRT increases out-of-field second cancer risk by 0.2% from photons and adds 0.28-2.2% from neutrons. Conclusions: Out-of-field photon dose seems to be independent of beam energy for both techniques. Eighteen-megavolt IMRT increases out-of-field scatter 1.7-fold over 3D-CRT because of greater collimator scatter despite

  10. Mouse Models of Gastric Carcinogenesis

    PubMed Central

    Yu, Sungsook; Yang, Mijeong

    2014-01-01

    Gastric cancer is one of the most common cancers in the world. Animal models have been used to elucidate the details of the molecular mechanisms of various cancers. However, most inbred strains of mice have resistance to gastric carcinogenesis. Helicobacter infection and carcinogen treatment have been used to establish mouse models that exhibit phenotypes similar to those of human gastric cancer. A large number of transgenic and knockout mouse models of gastric cancer have been developed using genetic engineering. A combination of carcinogens and gene manipulation has been applied to facilitate development of advanced gastric cancer; however, it is rare for mouse models of gastric cancer to show aggressive, metastatic phenotypes required for preclinical studies. Here, we review current mouse models of gastric carcinogenesis and provide our perspectives on future developments in this field. PMID:25061535

  11. Carcinogenesis of Depleted Uranium Fragments

    DTIC Science & Technology

    2000-06-01

    later determined not to cause cancer in humans. Examples are certain food colorings (Grasso and Golberg , 1966), iron dextran (Baker et al., 1961), and...carcinogenesis caused by dyes 21 Contains unpublished data; limit distribution and food additives (Grasso and Golberg , 1966). It is also apparent that...subcutaneously in rats (Grasso and Golberg , 1966). Those compounds that produced tissue destruction with subsequent dense collagen formation invariably

  12. Development and Implementation of a Comprehensive Radiometric Validation Protocol for the CERES Earth Radiation Budget Climate Record Sensors

    NASA Technical Reports Server (NTRS)

    Priestley, K. J.; Matthews, G.; Thomas, S.

    2006-01-01

    The CERES Flight Models 1 through 4 instruments were launched aboard NASA's Earth Observing System (EOS) Terra and Aqua Spacecraft into 705 Km sun-synchronous orbits with 10:30 a.m. and 1:30 p.m. equatorial crossing times. These instruments supplement measurements made by the CERES Proto Flight Model (PFM) instrument launched aboard NASA's Tropical Rainfall Measuring Mission (TRMM) into a 350 Km, 38-degree mid-inclined orbit. CERES Climate Data Records consist of geolocated and calibrated instantaneous filtered and unfiltered radiances through temporally and spatially averaged TOA, Surface and Atmospheric fluxes. CERES filtered radiance measurements cover three spectral bands including shortwave (0.3 to 5 microns), total (0.3 to 100 microns) and an atmospheric window channel (8 to 12 microns). The CERES Earth Radiation Budget measurements represent a new era in radiation climate data, realizing a factor of 2 to 4 improvement in calibration accuracy and stability over the previous ERBE climate records, while striving for the next goal of 0.3-percent per decade absolute stability. The current improvement is derived from two sources: the incorporation of lessons learned from the ERBE mission in the design of the CERES instruments and the development of a rigorous and comprehensive radiometric validation protocol consisting of individual studies covering different spatial, spectral and temporal time scales on data collected both pre and post launch. Once this ensemble of individual perspectives is collected and organized, a cohesive and highly rigorous picture of the overall end-to-end performance of the CERES instrument's and data processing algorithms may be clearly established. This approach has resulted in unprecedented levels of accuracy for radiation budget instruments and data products with calibration stability of better than 0.2-percent and calibration traceability from ground to flight of 0.25-percent. The current work summarizes the development, philosophy

  13. Easy Aerosol - Robust and non-robust circulation responses to aerosol radiative forcing in comprehensive atmosphere models

    NASA Astrophysics Data System (ADS)

    Voigt, Aiko; Bony, Sandrine; Stevens, Bjorn; Boucher, Olivier; Medeiros, Brian; Pincus, Robert; Wang, Zhili; Zhang, Kai; Lewinschal, Anna; Bellouin, Nicolas; Yang, Young-Min

    2015-04-01

    A number of recent studies illustrated the potential of aerosols to change the large-scale atmospheric circulation and precipitation patterns. It remains unclear, however, to what extent the proposed aerosol-induced changes reflect robust model behavior or are affected by uncertainties in the models' treatment of parametrized physical processes, such as those related to clouds. "Easy Aerosol", a model-intercomparison project organized within the Grand Challenge on Clouds, Circulation and Climate Sensitivity of the World Climate Research Programme, addresses this question by subjecting a suite of comprehensive atmosphere general circulation models with prescribed sea-surface temperatures (SSTs) to the same set of idealized "easy" aerosol perturbations. This contribution discusses the aerosol perturbations as well as their impact on the model's precipitation and surface winds. The aerosol perturbations are designed based on a global aerosol climatology and mimic the gravest mode of the anthropogenic aerosol. Specifically, the meridional and zonal distributions of total aerosol optical depth are approximated by a superposition of Gaussian plumes; the vertical distribution is taken as constant within the lowest 1250m of the atmosphere followed by an exponential decay with height above. The aerosol both scatters and absorbs shortwave radiation, but in order to focus on direct radiative effects aerosol-cloud interactions are omitted. Each model contributes seven simulations. A clean control case with no aerosol-radiative effects at all is compared to six perturbed simulations with differing aerosol loading, zonal aerosol distributions, and SSTs. To estimate the role of natural variability, one of the models, MPI-ESM, contributes a 5-member ensemble for each simulation. If the observed SSTs from years 1979-2005 are prescribed, the aerosol leads to a local depression of precipitation at the Northern Hemisphere center of the aerosol and a northward shift of the

  14. Experimental mammary carcinogenesis - Rat models.

    PubMed

    Alvarado, Antonieta; Faustino-Rocha, Ana I; Colaço, Bruno; Oliveira, Paula A

    2017-03-15

    Mammary cancer is one of the most common cancers, victimizing more than half a million of women worldwide every year. Despite all the studies in this field, the current therapeutic approaches are not effective and have several devastating effects for patients. In this way, the need to better understand the mammary cancer biopathology and find effective therapies led to the development of several rodent models over years. With this review, the authors intended to provide the readers with an overview of the rat models used to study mammary carcinogenesis, with a special emphasis on chemically-induced models.

  15. Pancreatic carcinogenesis: apoptosis and angiogenesis.

    PubMed

    Onizuka, Shinya; Kawakami, Shunsuke; Taniguchi, Ken; Fujioka, Hikaru; Miyashita, Kosei

    2004-04-01

    Apoptosis and angiogenesis are critical biologic processes that are altered during carcinogenesis. Both apoptosis and angiogenesis may play an important role in pancreatic carcinogenesis. Despite numerous advances in the diagnosis and treatment of pancreatic cancer, its prognosis remains dismal and a new therapeutic approach is much needed. Recent research has revealed that apoptosis and angiogenesis are closely interrelated. Several reports show that a tumor suppresser gene that is expressed in pancreatic carcinoma and related to malignant potential can induce apoptosis and also inhibit angiogenesis. At present, it is generally accepted that tumor growth in cancers, including pancreatic cancer, depends on angiogenesis. We have identified 2 new angiogenesis inhibitors from a conditioned medium of human pancreatic carcinoma cell line (BxPC-3): antiangiogenic antithrombin III (aaAT-III) and vitamin D binding protein-macrophage activating factor (DBP-maf). These molecules were able to regress tumors in severe combined immunodeficiency disease (SCID) mice, demonstrating potent inhibition of endothelial cell proliferation. Moreover, the angiogenesis inhibitors induced tumor dormancy in the animal model. These results suggest that antiangiogenic therapy using angiogenesis inhibitors may become a new strategy for treatment of pancreatic cancer in the near future.

  16. Selenium inhibition of chemical carcinogenesis.

    PubMed

    Ip, C

    1985-06-01

    In this article I review the work of our laboratory concerning the relationship between dietary Se intake and susceptibility to mammary carcinogenesis induced by 7,12-dimethylbenz[a]anthracene in female rats. The effect of graded levels of Se in the diet was investigated, ranging from deficiency to excessive supplementation that produced marginal toxicity in the animals. In addition, the interdependence between Se status and fat intake was also explored. Further experiments were aimed at defining the role of Se in the initiation and promotion phases of chemical carcinogenesis. In view of the biochemical function of Se as an antioxidant, the chemopreventive efficacy of Se was compared to that of vitamin E in conjunction with their ability to inhibit lipid peroxidation. Results of this study indicated that the antitumorigenic activity of Se could not be accounted for by suppression of tissue peroxidation, although an environment with a lower oxidant stress might enhance the potency of Se in protecting against cancer. The possible mechanisms of action of Se based on the observations and characteristics of several tumor models are briefly discussed.

  17. Association of p62/SQSTM1 Excess and Oral Carcinogenesis

    PubMed Central

    Inui, Takuma; Chano, Tokuhiro; Takikita-Suzuki, Mikiko; Nishikawa, Masanori; Yamamoto, Gaku; Okabe, Hidetoshi

    2013-01-01

    p62/SQSTM1 (sequestosome1) has never been evaluated in oral epithelium. In order to clarify the role of p62/SQSTM1 in carcinogenesis in oral epithelium, both p62/SQSTM1 and Nrf2 were immunohistochemically evaluated in 54 carcinomas and 14 low grade dysplasias. p62/SQSTM1 knockdowns were also designed in oral cancer cells, and we analyzed the Nrf2 pathway, GSH contents and ROS accumulation. The association between p62/SQSTM1 excess and prognosis was addressed in a clinical cohort of oral carcinoma cases. p62/SQSTM1 excess was more obvious in carcinomas, but Nrf2 was abundant in almost all samples of the oral epithelium. In oral carcinoma cells, p62/SQSTM1 knockdown did not affect the Nrf2-Keap1 pathway but did significantly reduce GSH content with subsequent ROS accumulation, and caused cell growth inhibition in the irradiated condition. Finally, p62/SQSTM1 excess was associated with poor prognosis in a clinical cohort. In oral epithelial carcinogenesis, p62/SQSTM1 excess played a role in GSH induction rather than Nrf2 accumulation, and may cause resistance to cytotoxic stresses such as radiation or chemotherapy. Immunohistochemical evaluation of p62/SQSTM1 may be a potential significant marker to identify early carcinogenesis, chemo-radiotherapeutic resistance or poor prognosis of oral squamous cell carcinomas. PMID:24086340

  18. Polycyclic aromatic hydrocarbons in carcinogenesis.

    PubMed Central

    Warshawsky, D

    1999-01-01

    A symposium on "Polycyclic Aromatic Hydrocarbons (PAHs) in Carcinogenesis" was presented at the third International Congress of Pathophysiology held in Lathi, Finland, 28 June-3 July 1998. The congress was also sponsored by the International Union of Biological Sciences and the International Society of Free Radical Research. Institutional support for the symposium included the Electric Power Research Institute, National Center for Toxicological Research, and EPA/National Health and Environmental Effects Research Laboratory and the Office of Solid Waste and Emergency Response. The symposium focused on the sources, carcinogenicity, genotoxicity, and risk assessment of individual and mixtures of PAHs that are found in solid wastes, Superfund sites, and other hazardous waste sites. Based on the occurrence of PAHs at numerous Superfund sites and the significant data gaps on the toxic potential of certain PAHs, the information developed during this symposium would be of value in assessing health risks of these chemicals at Superfund and other hazardous waste sites. PMID:10090712

  19. Stem cells and colorectal carcinogenesis

    PubMed Central

    Stoian, M; Stoica, V; Radulian, G

    2016-01-01

    Abstract Colorectal cancer represents an important cause of mortality and morbidity. Unfortunately, the physiopathology is still under study. There are theories about carcinogenesis and it is known that not only a single factor is responsible for the development of a tumor, but several conditions. Stem cells are a promising target for the treatment of colorectal cancer, along with the environment that has an important role. It has been postulated that mutations within the adult colonic stem cells may induce neoplastic changes. This theory is based on the observation that within a colon cancer, less than 1% of the neoplastic cells have the ability to regenerate the tumor and therefore they are responsible for recurrence. It is important to know that a new way of treatment needs to be found, since these cells are resistant to chemotherapy and radiotherapy. PMID:27713769

  20. Oxidative Stress and HPV Carcinogenesis

    PubMed Central

    De Marco, Federico

    2013-01-01

    Extensive experimental work has conclusively demonstrated that infection with certain types of human papillomaviruses, the so-called high-risk human papillomavirus (HR-HPV), represent a most powerful human carcinogen. However, neoplastic growth is a rare and inappropriate outcome in the natural history of HPV, and a number of other events have to concur in order to induce the viral infection into the (very rare) neoplastic transformation. From this perspective, a number of putative viral, host, and environmental co-factors have been proposed as potential candidates. Among them oxidative stress (OS) is an interesting candidate, yet comparatively underexplored. OS is a constant threat to aerobic organisms being generated during mitochondrial oxidative phosphorylation, as well as during inflammation, infections, ionizing irradiation, UV exposure, mechanical and chemical stresses. Epithelial tissues, the elective target for HPV infection, are heavily exposed to all named sources of OS. Two different types of cooperative mechanisms are presumed to occur between OS and HPV: I) The OS genotoxic activity and the HPV-induced genomic instability concur independently to the generation of the molecular damage necessary for the emergence of neoplastic clones. This first mode is merely a particular form of co-carcinogenesis; and II) OS specifically interacts with one or more molecular stages of neoplastic initiation and/or progression induced by the HPV infection. This manuscript was designed to summarize available data on this latter hypothesis. Experimental data and indirect evidences on promoting the activity of OS in viral infection and viral integration will be reviewed. The anti-apoptotic and pro-angiogenetic role of NO (nitric oxide) and iNOS (inducible nitric oxide synthase) will be discussed together with the OS/HPV cooperation in inducing cancer metabolism adaptation. Unexplored/underexplored aspects of the OS interplay with the HPV-driven carcinogenesis will be

  1. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    SciTech Connect

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen

    2014-07-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose

  2. Inhibition of carcinogenesis by tea.

    PubMed

    Yang, Chung S; Maliakal, Pius; Meng, Xiaofeng

    2002-01-01

    Tea has received a great deal of attention because tea polyphenols are strong antioxidants, and tea preparations have inhibitory activity against tumorigenesis. The bioavailability and biotransformation of tea polyphenols, however, are key factors limiting these activities in vivo. The inhibition of tumorigenesis by green or black tea preparations has been demonstrated in animal models on different organ sites such as skin, lung, oral cavity, esophagus, forestomach, stomach, small intestine, colon, pancreas, and mammary gland. Epidemiological studies, however, have not yielded clear conclusions concerning the protective effects of tea consumption against cancer formation in humans. The discrepancy between the results from humans and animal models could be due to 1) the much higher doses of tea used in animals in comparison to human consumption, 2) the differences in causative factors between the cancers in humans and animals, and 3) confounding factors limiting the power of epidemiological studies to detect an effect. It is possible that tea may be only effective against specific types of cancer caused by certain etiological factors. Many mechanisms have been proposed for the inhibition of carcinogenesis by tea, including the modulation of signal transduction pathways that leads to the inhibition of cell proliferation and transformation, induction of apoptosis of preneoplastic and neoplastic cells, as well as inhibition of tumor invasion and angiogenesis. These mechanisms need to be evaluated and verified in animal models or humans in order to gain more understanding on the effect of tea consumption on human cancer.

  3. Duodenogastric reflux and foregut carcinogenesis.

    PubMed

    Miwa, K; Hattori, T; Miyazaki, I

    1995-03-15

    Epidemiologic cohort studies have established that after distal gastric resection, there is a higher risk of gastric carcinoma. It is likely that a main factor of this higher risk is the excessive duodenogastric reflux induced by surgery, because the incidence of stump carcinomas is higher in Billroth II than in Billroth I, and most of the stump carcinomas are located near the stoma. In addition, several groups of investigators have suggested that duodenogastric reflux per se induces stump carcinomas in rats. There is another human duodenogastric reflux, the primary duodenogastric reflux, through the pylorus. Experiments in animals have demonstrated that this type of duodenal reflux also induces gastric carcinomas in the antrum of the stomach that has not undergone surgery. Recent clinical attention has focused on the role of duodenogastric reflux in the pathogenesis of Barrett's esophagus and subsequent esophageal adenocarcinomas. Experimentally, reflux of duodenal contents into the esophagus can cause not only Barrett's esophagus and subsequent adenocarcinomas, but also squamous cell carcinomas. These findings suggest that duodenogastric reflux may be implicated in gastric and esophageal, that is, foregut carcinogenesis.

  4. [Monoamines stimulations in experimental carcinogenesis].

    PubMed

    Popov, I; Spuzić, I; Rakić, Lj

    1994-01-01

    Facts about the role of CNS monoamines in cancerogenesis have been accumulated for many years. The aim of the present study was to investigate the effect of interaction of psychoactive drug (Piracetam) and other treatments on survival time of tumour-bearing rats. 138 Wistar rats were used in the experiment. The animals were injected 1% 3--Methilcholantren suspension in 10% Tylose, s.c. under the dorsal skin of the neck in a dose of 3 mg/animal. Within 4-9 months after a single injection, the rats developed tumours at the site of injection. The surgical removal was performed when tumours reached the size of 1-3 cm. After surgical extirpation of tumours different groups of animals were treated by cyclophosphamide (s.c. one-time dose of 50 mg/kg for female and 100 mg/kg for male) or by psychoactive drug (Piracetam) administrated by GE tube 5 time/week, 100 mg/kg. Autopsy and histological examinations were carried out in all animals. Survival time (> 120 days) was the greatest in group B (Piracetam, after surgical removal of tumours) 81.2%, and group C (Cyclophosphamid, after surgical removal of tumours) 68.8% and in group A (only surgical removal of tumours) 50%. In group B the incidence of metastases was the smallest (87.1% of animals were without metastases), compared with group C (45.4% of animals were without metastases) and group A (27.3% of animals were without metastases). The diference is statistically significant. The mechanism of antineoplastic effect of Piracetam consisted of the interaction of influences both on metabolism of the Central nervous system and the tumour. Probably, it is the neurotransmitter modulation that had its effect on carcinogenesis not only by regulation/disregulation of brain homeostasis, but also via direct effect on intracellular processes during cell development and differentation.

  5. Transplacental arsenic carcinogenesis in mice

    SciTech Connect

    Waalkes, Michael P. Liu, Jie; Diwan, Bhalchandra A.

    2007-08-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show that a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from days 8 to 18 of gestation, and the offspring were observed for up to 2 years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans

  6. Decorin deficiency promotes hepatic carcinogenesis

    PubMed Central

    Horváth, Zsolt; Kovalszky, Ilona; Fullár, Alexandra; Kiss, Katalin; Schaff, Zsuzsa; Iozzo, Renato V.; Baghy, Kornélia

    2014-01-01

    experimental carcinogenesis by providing an environment devoid of this potent pan-RTK inhibitor. Thus, our results support future utilization of decorin as an antitumor agent in liver cancer. PMID:24361483

  7. Comprehensive Evaluation of Personal, Clinical, and Radiation Dosimetric Parameters for Acute Skin Reaction during Whole Breast Radiotherapy

    PubMed Central

    Yang, Dae Sik; Lee, Jung Ae; Lee, Nam Kwon; Park, Young Je; Lee, Suk; Kim, Chul Yong; Son, Gil Soo

    2016-01-01

    Skin reaction is major problem during whole breast radiotherapy. To identify factors related to skin reactions during whole breast radiotherapy, various personal, clinical, and radiation dosimetric parameters were evaluated. From January 2012 to December 2013, a total of 125 patients who underwent breast conserving surgery and adjuvant whole breast irradiation were retrospectively reviewed. All patients had both whole breast irradiation and boost to the tumour bed. Skin reaction was measured on the first day of boost therapy based on photography of the radiation field and medical records. For each area of axilla and inferior fold, the intensity score of erythema (score 1 to 5) and extent (score 0 to 1) were summed. The relationship of various parameters to skin reaction was evaluated using chi-square and linear regression tests. The V100 (volume receiving 100% of prescribed radiation dose, p < 0.001, both axilla and inferior fold) and age (p = 0.039 for axilla and 0.026 for inferior fold) were significant parameters in multivariate analyses. The calculated axilla dose (p = 0.003) and breast separation (p = 0.036) were also risk factors for axilla and inferior fold, respectively. Young age and large V100 are significant factors for acute skin reaction that can be simply and cost-effectively measured. PMID:27579310

  8. Anticancer Effect of Lycopene in Gastric Carcinogenesis

    PubMed Central

    Kim, Mi Jung; Kim, Hyeyoung

    2015-01-01

    Gastric cancer ranks as the most common cancer and the second leading cause of cancer-related death in the world. Risk factors of gastric carcinogenesis include oxidative stress, DNA damage, Helicobacter pylori infection, bad eating habits, and smoking. Since oxidative stress is related to DNA damage, smoking, and H. pylori infection, scavenging of reactive oxygen species may be beneficial for prevention of gastric carcinogenesis. Lycopene, one of the naturally occurring carotenoids, has unique structural and chemical features that contributes to a potent antioxidant activity. It shows a potential anticancer activity and reduces gastric cancer incidence. This review will summarize anticancer effect and mechanism of lycopene on gastric carcinogenesis based on the recent experimental and clinical studies. PMID:26151041

  9. Radiation

    NASA Video Gallery

    Outside the protective cocoon of Earth's atmosphere, the universe is full of harmful radiation. Astronauts who live and work in space are exposed not only to ultraviolet rays but also to space radi...

  10. Relationship Between the Comprehensive Nutritional Index and the EORTC QLQ-H&N35 in Nasopharyngeal Carcinoma Patients Treated with Intensity-Modulated Radiation Therapy.

    PubMed

    He, Yan; Chen, Liping; Chen, Linmin; Hu, Wen; Wang, Cong; Tang, Linquan; Mai, Haiqiang; Li, Jianmei; Wu, Liping; Fan, Yuying

    2017-04-01

    This study aimed to explore the relationship between the comprehensive nutritional index (CNI) and quality of life in nasopharyngeal carcinoma (NPC) patients receiving intensity-modulated radiation therapy (IMRT). The nutritional index, which includes total lymphocyte count, hemoglobin and albumin levels, body mass index, and usual body weight percentage, was evaluated pre-treatment and post-treatment in patients who underwent IMRT. The quality of life of NPC patients was measured by the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Head and Neck Cancer Module (EORTC QLQ-H&N35) at four time points: pre-treatment, post-treatment, and 3 and 6 mo after IMRT. A comprehensive nutritional model was used to assess the correlation with QLQ-H&N35. The nutritional index decreased significantly post-treatment. The CNI was associated with immunotherapy; the International Union Against Cancer (UICC) stage; concurrent chemotherapy; speech problems, trouble with social contact, feeling ill and having dental problems at pre-treatment; sexuality at 3 mos post-treatment; and sensory problems and xerostomia at 6 mo post-treatment (P < 0.05). The nutritional status and QLQ-H&N35 scores in NPC patients decreased during IMRT. Our study provides an alternative measure of the CNI to improve the QLQ-H&N35 evaluation system for patients with NPC.

  11. Mechanisms and Chemoprevention of Ovarian Carcinogenesis

    DTIC Science & Technology

    2008-02-01

    2004 Apr;14(2):175-82. 10. Kabbarah O, Pinto K, Mutch DG, Goodfellow PJ. Expression profiling of mouse endometrial cancers microdissected from...Ovarian Carcinogenesis PRINCIPAL INVESTIGATOR: Dusica Cvetkovic, Ph.D. CONTRACTING ORGANIZATION: Fox Chase Cancer Center...ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Fox Chase Cancer Center Philadelphia, PA 19111 9. SPONSORING / MONITORING

  12. [The role of sonic hedgehog pathway in skin carcinogenesis].

    PubMed

    Lesiak, Aleksandra; Sysa-Jedrzejowska, Anna; Narbutt, Joanna

    2010-08-01

    Non melanoma skin cancers (NMSC) involving basal (BCC)--and squamosus cell carcinomas (SCC) and are the most frequent skin cancers in Caucasians. Ultraviolet radiation is the main environmental risk factor for NMSC development. The aim of this paper is to review the latest opinions concerning the role of sonic hedgehog pathway in non-melanoma skin cancers development. Experimental data indicate that sonic hedgehog pathway might be involved in skin carcinogenesis. Under physiological conditions sonic hedgehog pathway is responsible for normal embryogenesis, regeneration of damaged tissues and for regulation of cell proliferation. It was revealed that UVR caused inactivated mutation in PATCHED gene encoding Ptch1 protein. These events lead to deregulation of sonic hedgehog pathway trough activation of Smo protein and Gli transcriptional factors what stimulates cell proliferation and in consequence NMSC development. Literature data indicate that understanding of molecular background of skin cancers might be a reason for introduction of new therapeutic approaches including sonic hedgehog pathway inhibitors.

  13. Predictors of CT Radiation Dose and Their Effect on Patient Care: A Comprehensive Analysis Using Automated Data.

    PubMed

    Smith-Bindman, Rebecca; Wang, Yifei; Yellen-Nelson, Thomas R; Moghadassi, Michelle; Wilson, Nicole; Gould, Robert; Seibert, Anthony; Boone, John M; Krishnam, Mayil; Lamba, Ramit; Hall, David J; Miglioretti, Diana L

    2017-01-01

    Purpose To determine patient, vendor, and institutional factors that influence computed tomography (CT) radiation dose. Materials and Methods The relevant institutional review boards approved this HIPAA-compliant study, with waiver of informed consent. Volume CT dose index (CTDIvol) and effective dose in 274 124 head, chest, and abdominal CT examinations performed in adult patients at 12 facilities in 2013 were collected prospectively. Patient, vendor, and institutional characteristics that could be used to predict (a) median dose by using linear regression after log transformation of doses and (b) high-dose examinations (top 25% of dose within anatomic strata) by using modified Poisson regression were assessed. Results There was wide variation in dose within and across medical centers. For chest CTDIvol, overall median dose across all institutions was 11 mGy, and institutional median dose was 7-16 mGy. Models including patient, vendor, and institutional factors were good for prediction of median doses (R(2) = 0.31-0.61). The specific institution where the examination was performed (reflecting the specific protocols used) accounted for a moderate to large proportion of dose variation. For chest CTDIvol, unadjusted median CTDIvol was 16.5 mGy at one institution and 6.7 mGy at another (adjusted relative median dose, 2.6 mGy [95% confidence interval: 2.5, 2.7]). Several variables were important predictors that a patient would undergo high-dose CT. These included patient size, the specific institution where CT was performed, and the use of multiphase scanning. For example, while 49% of patients (21 411 of 43 696) who underwent multiphase abdominal CT had a high-dose examination, 8% of patients (4977 of 62 212) who underwent single-phase CT had a high-dose examination (adjusted relative risk, 6.20 [95% CI: 6.17, 6.23]). If all patients had been examined with single-phase CT, 69% (18 208 of 26 388) of high-dose examinations would have been eliminated. Patient size

  14. Risk of second cancers in the era of modern radiation therapy: does the risk/benefit analysis overcome theoretical models?

    PubMed

    Chargari, Cyrus; Goodman, Karyn A; Diallo, Ibrahima; Guy, Jean-Baptiste; Rancoule, Chloe; Cosset, Jean-Marc; Deutsch, Eric; Magne, Nicolas

    2016-06-01

    In the era of modern radiation therapy, the compromise between the reductions in deterministic radiation-induced toxicities through highly conformal devices may be impacting the stochastic risk of second malignancies. We reviewed the clinical literature and evolving theoretical models evaluating the impact of intensity-modulated radiation therapy (IMRT) on the risk of second cancers, as a consequence of the increase in volumes of normal tissues receiving low doses. The risk increase (if any) is not as high as theoretical models have predicted in adults. Moreover, the increase in out-of-field radiation doses with IMRT could be counterbalanced by the decrease in volumes receiving high doses. Clinical studies with short follow-up have not corroborated the hypothesis that IMRT would drastically increase the incidence of second cancers. In children, the risk of radiation-induced carcinogenesis increases from low doses and consequently the relative risk of second cancers after IMRT could be higher than in adults, justifying current developments of proton therapy with priority given to this population. Although only longer follow-up will allow a true assessment of the real impact of these modern techniques on radiation-induced carcinogenesis, a comprehensive risk-adapted strategy will help minimize the probability of second cancers.

  15. Predicting cancer rates in astronauts from animal carcinogenesis studies and cellular markers

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Zhang, Y.; Zhou, H.; Osman, M.; Cha, D.; Kavet, R.; Cuccinotta, F.; Dicello, J. F.; Dillehay, L. E.

    1999-01-01

    The radiation space environment includes particles such as protons and multiple species of heavy ions, with much of the exposure to these radiations occurring at extremely low average dose-rates. Limitations in databases needed to predict cancer hazards in human beings from such radiations are significant and currently do not provide confidence that such predictions are acceptably precise or accurate. In this article, we outline the need for animal carcinogenesis data based on a more sophisticated understanding of the dose-response relationship for induction of cancer and correlative cellular endpoints by representative space radiations. We stress the need for a model that can interrelate human and animal carcinogenesis data with cellular mechanisms. Using a broad model for dose-response patterns which we term the "subalpha-alpha-omega (SAO) model", we explore examples in the literature for radiation-induced cancer and for radiation-induced cellular events to illustrate the need for data that define the dose-response patterns more precisely over specific dose ranges, with special attention to low dose, low dose-rate exposure. We present data for multiple endpoints in cells, which vary in their radiosensitivity, that also support the proposed model. We have measured induction of complex chromosome aberrations in multiple cell types by two space radiations, Fe-ions and protons, and compared these to photons delivered at high dose-rate or low dose-rate. Our data demonstrate that at least three factors modulate the relative efficacy of Fe-ions compared to photons: (i) intrinsic radiosensitivity of irradiated cells; (ii) dose-rate; and (iii) another unspecified effect perhaps related to reparability of DNA lesions. These factors can produce respectively up to at least 7-, 6- and 3-fold variability. These data demonstrate the need to understand better the role of intrinsic radiosensitivity and dose-rate effects in mammalian cell response to ionizing radiation. Such

  16. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Comprehensive progress report, July 1991--June 1994

    SciTech Connect

    Rowley, J.D.

    1994-06-01

    This comprehensive progress report provides a synopsis of major research accomplishments during the years of 1991-1994, including the technical aspects of the project. The objectives and accomplishments are as follows: 1. Defining the chromosome segments associated with radiation and chemically-induced leukemogenesis (treatment-related acute myeloid leukemia, t-AML); A. Continued genetic analysis of chromosomes 5 and 7, B. Correlation of treatment with balanced and unbalanced translocations. 2. Cloning the breakpoints in balanced translocations in t-AML; A. Clone the t(9;11) and t(11;19) breakpoints, B. Clone the t(3,21)(q26,q22) breakpoint, C. Determine the relationship of these translocations to prior exposure to topoisomerase II inhibitors. 3. Compare the breakpoint junctions in patients who have the same translocations in t-AML and AML de novo. 4. Map the scaffold attachment regions in the genes that are involved in balanced translocations in t-AML. Plans for the continuation of present objectives and possible new objectives in consideration of past results are also provided.

  17. A novel in vitro pancreatic carcinogenesis model

    PubMed Central

    Kang, Hyo Jin; Hong, Young Bin; Kim, Hee Jeong; Yi, Yong Weon; Nath, Raghu G.; Chang, Young Soo; Cho, Ho-Chan; Bae, Insoo

    2011-01-01

    Environmental factors (e.g., BaP) have been pointed out as one of the etiologies of pancreatic cancer. However, very limited experimental assays are available to identify pancreatic specific environmental mutagens or susceptibility genes. In this study, we have developed a simple in vitro cell culture model system that can be used to study the molecular and biochemical aspects of carcinogenesis in a near-normal immortalized pancreatic ductal epithelial cell lines. In order to demonstrate that xenobiotic stress response is intact in these cells we employed standard molecular biology techniques. For examples, luciferase reporter and/or real-time quantitative PCR assays were used to determine stress-induced CYP1A1 and CYP1B1 gene expression. Western blotting and immunocytochemistry assays were used to demonstrate that TCDD or BaP could activate AhR signaling. For exploring the carcinogenesis mechanism, we incubated cells with [3H]BaP and determined BaP-DNA binding activity by measuring its radioactivity. BaP-DNA adduct formation was further confirmed by [32P]-postlabeling assay. Finally, we demonstrated the effects of endogenous AhR or BRCA1 in BaP-DNA adduct accumulation in our cell system: As results, no apparent BaP-DNA adduct accumulation by [32P]-postlabeling assay was found in either control-siRNA or AhR-siRNA pretreated cells. On the other hand, a significant increase of BaP-DNA adduct accumulation was found in BRCA1 knockdown cells. In conclusion, we suggest that this in vitro model may provide the feasibility for future studies on the molecular basis of pancreatic ductal cell carcinogenesis caused by dietary mutagens. PMID:21256203

  18. Poly(ADP-ribosyl)ation in carcinogenesis.

    PubMed

    Masutani, Mitsuko; Fujimori, Hiroaki

    2013-12-01

    Cancer develops through diverse genetic, epigenetic and other changes, so-called 'multi-step carcinogenesis', and each cancer harbors different alterations and properties. Here in this article we review how poly(ADP-ribosyl)ation is involved in multi-step and diverse pathways of carcinogenesis. Involvement of poly- and mono-ADP-ribosylation in carcinogenesis has been studied at molecular and cellular levels, and further by animal models and human genetic approaches. PolyADP-ribosylation acts in DNA damage repair response and maintenance mechanisms of genomic stability. Several DNA repair pathways, including base-excision repair and double strand break repair pathways, involve PARP and PARG functions. These care-taker functions of poly(ADP-ribosyl)ation suggest that polyADP-ribosyation may mainly act in a tumor suppressive manner because genomic instability caused by defective DNA repair response could serve as a driving force for tumor progression, leading to invasion, metastasis and relapse of cancer. On the other hand, the new concept of 'synthetic lethality by PARP inhibition' suggests the significance of PARP activities for survival of cancer cells that harbor defects in DNA repair. Accumulating evidence has revealed that some PARP family molecules are involved in various signaling cascades other than DNA repair, including epigenetic and transcriptional regulations, inflammation/immune response and epithelial-mesenchymal transition, suggesting that poly(ADP-ribosyl)ation both promotes and suppresses carcinogenic processes depending on the conditions. Expanding understanding of poly(ADP-ribosyl)ation suggests that strategies to achieve cancer prevention targeting poly(ADP-ribosyl)ation for genome protection against life-long exposure to environmental carcinogens and endogenous carcinogenic stimuli.

  19. Accurate Quantification of Ionospheric State Based on Comprehensive Radiative Transfer Modeling and Optimal Inversion of the OI 135.6-nm Emission

    NASA Astrophysics Data System (ADS)

    Qin, J.; Kamalabadi, F.; Makela, J. J.; Meier, R. J.

    2015-12-01

    Remote sensing of the nighttime OI 135.6-nm emission represents the primary means of quantifying the F-region ionospheric state from optical measurements. Despite its pervasive use for studying aeronomical processes, the interpretation of these emissions as a proxy for ionospheric state remains ambiguous in that the relative contributions of radiative recombination and mutual neutralization to the production and, especially, the effects of scattering and absorption on the transport of the 135.6-nm emissions have not been fully quantified. Moreover, an inversion algorithm, which is robust to varying ionospheric structures under different geophysical conditions, is yet to be developed for statistically optimal characterization of the ionospheric state. In this work, as part of the NASA ICON mission, we develop a comprehensive radiative transfer model from first principle to investigate the production and transport of the nighttime 135.6-nm emissions. The forward modeling investigation indicates that under certain conditions mutual neutralization can contribute up to ~38% to the 135.6-nm emissions. Moreover, resonant scattering and pure absorption can reduce the brightness observed in the limb direction by ~40% while enhancing the brightness in the nadir direction by ~25%. Further analysis shows that without properly addressing these effects in the inversion process, the peak electron density in the F-region ionosphere (NmF2) can be overestimated by up to ~24%. To address these issues, an inversion algorithm that properly accounts for the above-mentioned effects is proposed for accurate quantification of the ionospheric state using satellite measurements. The ill-posedness due to the intrinsic presence of noise in real data is coped with by incorporating proper regularizations that enforce either global smoothness or piecewise smoothness of the solution. Application to model-generated data with different signal-to-noise ratios show that the algorithm has achieved

  20. [Radiation Anticarcinogenesis by Thiazolidine Pro-drug

    NASA Technical Reports Server (NTRS)

    Warters, Raymond L.; Roberts, Jeanette C.; Fain, Heidi

    1999-01-01

    The original goal of this work was to determine the capacity of selected aminothiols to modulate radiation induced cytotoxicity, mutagenesis and carcinogenesis in a human mammary epithelial cell line. The conclusions from this work are that WR-1065 is the "gold standard" for protection against radiation induced cytotoxicity, mutagenesis and carcinogenesis. While a potent radiation protector, WR-1065 is cytotoxic in vitro and in vivo. Our rationale for a study of the thiazolidine pro-drugs was that these compounds are neither toxic in vitro or in vivo. The results obtained during this funding period indicate that the thiazolidine pro-drugs are as potent as WR-1065 as protectors against radiation induced mutation induction, and thus presumably against radiation induced carcinogenesis. Our results indicate that the thiazolidine prodrugs are excellent candidates to test as non-toxic anticarcinogens for protecting astronauts from cancer induction during space travel.

  1. Quantification of nanoscale density fluctuations by electron microscopy: probing cellular alterations in early carcinogenesis

    NASA Astrophysics Data System (ADS)

    Pradhan, Prabhakar; Damania, Dhwanil; Joshi, Hrushikesh M.; Turzhitsky, Vladimir; Subramanian, Hariharan; Roy, Hemant K.; Taflove, Allen; Dravid, Vinayak P.; Backman, Vadim

    2011-04-01

    Most cancers are curable if they are diagnosed and treated at an early stage. Recent studies suggest that nanoarchitectural changes occur within cells during early carcinogenesis and that such changes precede microscopically evident tissue alterations. It follows that the ability to comprehensively interrogate cell nanoarchitecture (e.g., macromolecular complexes, DNA, RNA, proteins and lipid membranes) could be critical to the diagnosis of early carcinogenesis. We present a study of the nanoscale mass-density fluctuations of biological tissues by quantifying their degree of disorder at the nanoscale. Transmission electron microscopy images of human tissues are used to construct corresponding effective disordered optical lattices. The properties of nanoscale disorder are then studied by statistical analysis of the inverse participation ratio (IPR) of the spatially localized eigenfunctions of these optical lattices at the nanoscale. Our results show an increase in the disorder of human colonic epithelial cells in subjects harboring early stages of colon neoplasia. Furthermore, our findings strongly suggest that increased nanoscale disorder correlates with the degree of tumorigenicity. Therefore, the IPR technique provides a practicable tool for the detection of nanoarchitectural alterations in the earliest stages of carcinogenesis. Potential applications of the technique for early cancer screening and detection are also discussed. Originally submitted for the special focus issue on physical oncology.

  2. Dynamic changes in the gene expression profile during rat oral carcinogenesis induced by 4-nitroquinoline 1-oxide

    PubMed Central

    GE, SHUYUN; ZHANG, JI; DU, YANZHI; HU, BIN; ZHOU, ZENGTONG; LOU, JIANING

    2016-01-01

    The typical progression of oral cancer is from hyperplastic epithelial lesions through dysplasia to invasive carcinoma. It is important to investigate malignant oral cancer progression and development in order to determine useful approaches of prevention of dysplastic lesions. The present study aimed to gain insights into the underlying molecular mechanism of oral carcinogenesis by establishing a rat model of oral carcinogenesis using 4-nitroquino-line 1-oxide. Subsequently, transcription profile analysis using an integrating microarray was performed. The dynamic gene expression changes of the six stages of rat oral carcinogenesis (normal, mild epithelial dysplasia, moderate dysplasia, severe dysplasia, carcinoma in situ and oral squamous cell carcinomas) were analyzed using component plane presentations (CPP)-self-organizing map (SOM). Six genes were verified by quantitative polymerase chain reaction, immunohistochemistry and succinate dehydrogenase (SDH) activity assay kit. Numerous differentially expressed genes (DEGs) were identified during rat oral carcinogenesis. CPP-SOM determined that these DEGs were primarily enriched during cell cycle, apoptosis, inflammatory response and tricarboxylic acid cycle, indicating the coordinated regulation of molecular networks. In addition, the expression of specific DEGs, such as janus kinase 3, cyclin-dependent kinase A-1, B-cell chronic lymphocytic leukaemia/lymphoma 2-like 2, nuclear factor-κB, tumor necrosis factor receptor superfamily member 1A, cyclin D1 and SDH were identified to have high concordance with the results from microarray data. The current study demonstrated that oral carcinogenesis is a multi-step and multi-gene process, with a distinct pattern alteration along a continuum of malignant transformation. In addition, this comprehensive investigation provided a theoretical basis for the understanding of the molecular alterations associated with oral carcinogenesis. PMID:26860129

  3. An Overview of Ultraviolet B Radiation-Induced Skin Cancer Chemoprevention by Silibinin

    PubMed Central

    Kumar, Rahul; Deep, Gagan; Agarwal, Rajesh

    2015-01-01

    Skin cancer incidences are rising worldwide, and one of the major causative factors is excessive exposure to solar ultraviolet radiation (UVR). Annually, ~5 million skin cancer patients are treated in United States, mostly with nonmelanoma skin cancer (NMSC), which is also frequent in other Western countries. As sunscreens do not provide adequate protection against deleterious effects of UVR, additional and alternative chemoprevention strategies are urgently needed to reduce skin cancer burden. Over the last couple of decades, extensive research has been conducted to understand the molecular basis of skin carcinogenesis, and to identifying novel agents which could be useful in the chemoprevention of skin cancer. In this regard, several natural non-toxic compounds have shown promising efficacy in preventing skin carcinogenesis at initiation, promotion and progression stages, and are considered important in better management of skin cancer. Consistent with this, we and others have studied and established the notable efficacy of natural flavonolignan silibinin against UVB-induced skin carcinogenesis. Extensive pre-clinical animal and cell culture studies report strong anti-inflammatory, anti-oxidant, DNA damage repair, immune-modulatory and anti-proliferative properties of silibinin. Molecular studies have identified that silibinin targets pleotropic signaling pathways including mitogenic, cell cycle, apoptosis, autophagy, p53, NF-κB, etc. Overall, the skin cancer chemopreventive potential of silibinin is well supported by comprehensive mechanistic studies, suggesting its greater use against UV-induced cellular damages and photocarcinogenesis. PMID:26097804

  4. Acetaldehyde and the genome: beyond nuclear DNA adducts and carcinogenesis.

    PubMed

    Brooks, Philip J; Zakhari, Samir

    2014-03-01

    The designation of acetaldehyde associated with the consumption of alcoholic beverages as "carcinogenic to humans" (Group 1) by the International Agency for Research on Cancer (IARC) has brought renewed attention to the biological effects of acetaldehyde, as the primary oxidative metabolite of alcohol. Therefore, the overall focus of this review is on acetaldehyde and its direct and indirect effects on the nuclear and mitochondrial genome. We first consider different acetaldehyde-DNA adducts, including a critical assessment of the evidence supporting a role for acetaldehyde-DNA adducts in alcohol related carcinogenesis, and consideration of additional data needed to make a conclusion. We also review recent data on the role of the Fanconi anemia DNA repair pathway in protecting against acetaldehyde genotoxicity and carcinogenicity, as well as teratogenicity. We also review evidence from the older literature that acetaldehyde may impact the genome indirectly, via the formation of adducts with proteins that are themselves critically involved in the maintenance of genetic and epigenetic stability. Finally, we note the lack of information regarding acetaldehyde effects on the mitochondrial genome, which is notable since aldehyde dehydrogenase 2 (ALDH2), the primary acetaldehyde metabolic enzyme, is located in the mitochondrion, and roughly 30% of East Asian individuals are deficient in ALDH2 activity due to a genetic variant in the ALDH2 gene. In summary, a comprehensive understanding of all of the mechanisms by which acetaldehyde impacts the function of the genome has implications not only for alcohol and cancer, but types of alcohol related pathologies as well.

  5. Carcinogenesis and therapeutics: the microbiota perspective.

    PubMed

    Tsilimigras, Matthew C B; Fodor, Anthony; Jobin, Christian

    2017-02-22

    Cancer arises from the acquisition of multiple genetic and epigenetic changes in host cells over the span of many years, promoting oncogenic traits and carcinogenesis. Most cancers develop following random somatic alterations of key oncogenic genes, which are favoured by a number of risk factors, including lifestyle, diet and inflammation. Importantly, the environment where tumours evolve provides a unique source of signalling cues that affects cancer cell growth, survival, movement and metastasis. Recently, there has been increased interest in how the microbiota, the collection of microorganisms inhabiting the host body surface and cavities, shapes a micro-environment for host cells that can either promote or prevent cancer formation. The microbiota, particularly the intestinal biota, plays a central role in host physiology, and the composition and activity of this consortium of microorganisms is directly influenced by known cancer risk factors such as lifestyle, diet and inflammation. In this REVIEW, we discuss the pro- and anticarcinogenic role of the microbiota, as well as highlighting the therapeutic potential of microorganisms in tumourigenesis. The broad impacts, and, at times, opposing roles of the microbiota in carcinogenesis serve to illustrate the complex and sometimes conflicted relationship between microorganisms and the host-a relationship that could potentially be harnessed for therapeutic benefits.

  6. A proposed model for endometrial serous carcinogenesis.

    PubMed

    Zheng, Wenxin; Xiang, Li; Fadare, Oluwole; Kong, Beihua

    2011-01-01

    Endometrial serous carcinomas constitute no more than 10% of endometrial adenocarcinomas, but frequently present at an advanced stage and have a significantly worse prognosis than the more common low-grade and intermediate-grade endometrioid adenocarcinomas. The neoplasm's potential for rapid tumor progression and the high mortality that is associated with advanced-stage disease underscore the importance of understanding endometrial serous carcinogenesis so that its precancers can be diagnosed and an effective therapeutic intervention can be administered. In this study, the authors summarize the current state of knowledge on endometrial serous carcinogenesis and propose a model for its development based on recent work from our group and published data from other researchers. In this model, endometrial serous carcinoma arises predominantly in the resting endometrium, manifesting first as p53 immunoreactive, morphologically normal endometrial cells (p53 signatures), evolving to endometrial glandular dysplasia (which is the first morphologically identifiable precursor lesion), then to serous endometrial intraepithelial carcinoma (a carcinoma with a noninvasive growth pattern in the uterus but which is not infrequently associated with extrauterine disease), and finally into fully developed serous carcinoma. Endometrial glandular dysplasia is a lesion, which can be diagnosed by routine microscopic evaluation, whose ablation or removal may potentially offer the opportunity to prevent the development of the associated malignancy. The diagnostic criteria, practical applicability, and evidentiary basis for the delineation of this lesion are studied.

  7. Colonic perianastomotic carcinogenesis in an experimental model

    PubMed Central

    Pérez-Holanda, Sergio; Rodrigo, Luis; Pinyol-Felis, Carme; Vinyas-Salas, Joan

    2008-01-01

    Background To examine the effect of anastomosis on experimental carcinogenesis in the colon of rats. Methods Forty-three 10-week-old male and female Sprague-Dawley rats were operated on by performing an end-to-side ileorectostomy. Group A:16 rats received no treatment. Group B: 27 rats received 18 subcutaneous injections weekly at a dose of 21 mg/kg wt of 1–2 dimethylhydrazine (DMH), from the eighth day after the intervention. Animals were sacrificed between 25–27 weeks. The number of tumours, their localization, size and microscopic characteristics were recorded. A paired chi-squared analysis was performed comparing tumoral induction in the perianastomotic zone with the rest of colon with faeces. Results No tumours appeared in the dimethylhydrazine-free group. The percentage tumoral area was greater in the perianastomotic zone compared to tumours which had developed in the rest of colon with faeces (p = 0.014). Conclusion We found a cocarcinogenic effect due to the creation of an anastomosis, when using an experimental model of colonic carcinogenesis induced by DMH in rats. PMID:18667092

  8. Aurora kinase A in Barrett's carcinogenesis.

    PubMed

    Rugge, Massimo; Fassan, Matteo; Zaninotto, Giovanni; Pizzi, Marco; Giacomelli, Luciano; Battaglia, Giorgio; Rizzetto, Christian; Parente, Paola; Ancona, Ermanno

    2010-10-01

    In Barrett's mucosa, both aneuploidy and TP53 mutations are consistently recognized as markers of an increased risk of Barrett's adenocarcinoma. Overexpression of the mitotic kinase encoding gene (AURKA) results in chromosome instability (assessed from the micronuclei count) and ultimately in aneuploidy. Eighty-seven esophageal biopsy samples representative of all the phenotypic lesions occurring in the multistep process of Barrett's carcinogenesis (gastric metaplasia in 25, intestinal metaplasia in 25, low-grade intraepithelial neoplasia in 16, high-grade intraepithelial neoplasia in 11, and Barrett's adenocarcinoma in 10) were obtained from long segments of Barrett's mucosa. Twenty-five additional biopsy samples of native esophageal mucosa were used for control purposes. In all tissue samples, the immunohistochemical expression of both AURKA and TP53 gene products was scored; and the micronuclei index was calculated. AURKA immunostaining increased progressively and significantly along with dedifferentiation of the histologic phenotype (P < .001). Nine of 10 Barrett's adenocarcinomas showed AURKA immunostaining. AURKA expression correlated significantly with p53 expression and the micronuclei index (both Ps < .001). AURKA overexpression is significantly associated with Barrett's mucosa progressing to Barrett's adenocarcinoma and contributes to esophageal carcinogenesis via chromosome instability. The identification of AURKA as a novel molecular target of cancer progression in Barrett's mucosa provides a lead for the development of new therapeutic approaches in Barrett's mucosa patients.

  9. THE REACTIVE OXYGEN SPECIES (ROS) THEORY OF ARSENIC CARCINOGENESIS

    EPA Science Inventory



    Arsenic is a human carcinogen in skin, lung, liver, urinary bladder
    and kidney. At this time, there is not a scientific consensus on the
    mechanisms/modes of action for arsenic carcinogenesis. Proposed
    mechanisms/modes of action for arsenic carcinogenesi...

  10. THE REACTIVE OXYGEN SPECIES (ROS) THEORY OF ARSENIC CARCINOGENESIS

    EPA Science Inventory

    At this time, there is not a scientific consensus on the mechanisms/modes of action for arsenic carcinogenesis. Proposed mechanisms/modes of action for arsenic carcinogenesis include but are not limited to clastogenic effects, mutation, oxidative stress (via ROS and other chemic...

  11. Tissue distribution of Thorotrast and role of internal irradiation in carcinogenesis.

    PubMed

    Yamasaki, Kyoko; Yamasaki, Aiichi; Tosaki, Mitsuo; Isozumi, Yasuto; Hiai, Hiroshi

    2004-10-01

    Carcinogenesis in Thorotrastosis has been assumed due to direct bombardment by alpha-particle with high linear energy transfer during decay of 232Th. To revisit the mechanism of carcinogenesis by Thorotrast (THR), we examined the tissue distribution of THR granules and two-dimensional distribution of radioactivity in the organs of Thorotrastosis patients and studied their spatial relationship to histopathological changes. The high radioactivity in the patients' organ was predominantly derived from decay of Thorium series and showed unique distribution, while the far lower natural radioactivity was mainly from Uranium series decay and fairly evenly distributed. It was found that a large majority of THR granules were phagocytized by macrophages and were embedded in extensive fibrosis. Cancer was rarely in the center of THR deposition but rather at a distance from the deposits. These observations may indicate that the predominant feature of THR deposition is the tissue damage by direct hit of alpha-particles and subsequent fibrosis. The effect of THR resembles action of toxic chemical agents, as several authors have pointed out. We therefore assume that carcinogenesis in Thorotrastosis is a combination of events, such as regeneration of liver tissue after radiation damage, emission of secondary electrons, ionization of the surrounding tissue, and beta- or gamma-ray from daughter nuclei of Thorium (Th). In this context, the role of alpha-particle is important but more intriguing.

  12. Metal interactions in carcinogenesis: enhancement, inhibition

    PubMed Central

    Nordberg, Gunnar F.; Andersen, Ole

    1981-01-01

    Metals constitute a fundamentally important part of the total human environment. Since human exposure often involves complex mixtures of metal compounds and, possibly, organic compounds which may be carcinogenic per se, interactions between these compounds may add significantly to human cancer risk. Our present knowledge about these kinds of interactions is very limited. The best investigated area is benzo(a)pyrene (BP)-metal oxide particle interactions in respiratory carcinogenesis in the hamster. Metal oxide particles were also shown to modify the carcinogenic effect of nitrosamines. Several reports describe experiments in which selenium compounds exerted a generally anticarcinogenic and antimutagenic activity. Inorganic arsenic compounds, which are accepted to be carcinogenic in man, have so far been negative in animal experiments except for one recent suggested report. Several authors have, however, suggested that these compounds may act as cocarcinogens due to their inhibition of DNA repair, although animal experiments to demonstrate a cocarcinogenic effect of arsenic compounds have been negative so far, except for one preliminary report. The concentration of zinc in the diet seemed to influence both transplanted tumor growth and the carcinogenicity of several organic compounds, and the possibility of a correlation between dietary zinc and certain cancer forms in man has been suggested. Protection against development of Leydigiomas usually induced by cadmium injection was afforded by simultaneous injection of zinc salts. Nickel carcinogenesis has been reported to be antagonized by manganese, and synergism between Ni and organic carcinogens, e.g. BP, has been demonstrated. There is no firm evidence that lead may be a cocarcinogen, although some limited experimental evidence is available. Oxidizing agents have been demonstrated to increase, and reducing agents to antagonize, the mutagenic effect of chromium compounds in vitro. The content of carcinogenic and

  13. Dysregulation of Autophagy Contributes to Anal Carcinogenesis

    PubMed Central

    Carchman, Evie H.; Matkowskyj, Kristina A.; Meske, Louise; Lambert, Paul F.

    2016-01-01

    Introduction Autophagy is an intracellular catabolic process that removes and recycles unnecessary/dysfunctional cellular components, contributing to cellular health and survival. Autophagy is a highly regulated cellular process that responds to several intracellular signals, many of which are deregulated by human papillomavirus (HPV) infection through the expression of HPV-encoded oncoproteins. This adaptive inhibitory response helps prevent viral clearance. A strong correlation remains between HPV infection and the development of squamous cell carcinoma (SCC) of the anus, particularly in HIV positive and other immunosuppressed patients. We hypothesize that autophagy is inhibited by HPV–encoded oncoproteins thereby promoting anal carcinogenesis (Fig 1). Materials and Methods HPV16 transgenic mice (K14E6/E7) and non-transgenic mice (FVB/N), both of which do not spontaneously develop anal tumors, were treated topically with the chemical carcinogen, 7,12-Dimethylbenz[a]anthracene (DMBA), to induce anal cancer. The anuses at different time points of treatment (5, 10, 15 and 20 weeks) were analyzed using immunofluorescence (IF) for two key autophagy marker proteins (LC3β and p62) in addition to histological grading. The anuses from the K14E6/E7 mice were also analyzed for visual evidence of autophagic activity by electron microscopy (EM). To see if there was a correlation to humans, archival anal specimens were assessed histologically for grade of dysplasia and then analyzed for LC3β and p62 protein content. To more directly examine the effect of autophagic inhibition on anal carcinogenesis, nontransgenic mice that do not develop anal cancer with DMBA treatment were treated with a known pharmacologic inhibitor of autophagy, chloroquine, and examined for tumor development and analyzed by IF for autophagic proteins. Results Histologically, we observed the progression of normal anoderm to invasive SCC with DMBA treatment in K14E6/E7 mice but not in nontransgenic

  14. [Mechanisms of asbestos-induced carcinogenesis].

    PubMed

    Toyokuni, Shinya; Jiang, Li; Hu, Qian; Nagai, Hirotaka; Okazaki, Yasumasa; Akatsuka, Shinya; Yamashita, Yoriko

    2011-05-01

    Several types of fibrous stone called asbestos have been an unexpected cause of human cancer in the history. This form of mineral is considered precious in that they are heat-, friction-, and acid-resistant, are obtained easily from mines, and can be modified to any form with many industrial merits. However, it became evident that the inspiration of asbestos causes a rare cancer called malignant mesothelioma. Because of the long incubation period, the peak year for malignant mesothelioma is expected to be 2025 in Japan. Thus, it is necessary to elucidate the mechanisms of asbestos-induced mesothelial carcinogenesis. In this review, we summarize the cutting edge results of our 5-year project funded by a MEXT grant, in which local iron deposition and the characteristics of mesothelial cells are the key issues.

  15. Cadmium and dimethylnitrosamine as synergists in carcinogenesis

    SciTech Connect

    Wade, G.G. Jr.

    1986-01-01

    A two part study was conducted with male Wistar rats to investigate possible synergism in carcinogenesis between Cd and dimethylnitrosamine (DMN). In Series I, rats received an intraperitoneal dose of DMN followed at 4 hours and at 4 days by intramuscular injections of CdCl/sub 2/. Series II rats received a series of intramuscular CdCl/sub 2/ injections over 13 days followed by an intraperitoneal DMN injection 24 hours later. Untreated and single agent controls were incorporated. One year after DMN exposure, both Series show a significant (p < 0.025) synergistic increase in the incidence of renal neoplasia and an additive increase in the incidence of focal atypical hyperplasia (FAH) of renal tubules. Likewise, there was a synergistic increase in the number of altered foci/areas in livers of Series I animals. In addition, Series I rats with combined treatment had a significant increase in tumor incidence at sites other than kidney. Pretreatment with DMN was more synergistic in toxicity than pretreatment with Cd. Series II animals also showed an apparent shift in renal tumor type from mesenchymal and tubular neoplasms to tubular epithelial neoplasms alone. Theories on the origin(s) of malignant transformation are reviewed as is the biologic important of cadmium in the environment and possible mechanisms of synergistic action. This thesis supports (1) the finding of synergism in the occurrence of renal cancer in man associated with cadmium exposure and cigarette smoking, (2) the importance of synergisms in carcinogenesis, (3) the importance of such interaction in the determination of threshold doses, and (4) the role that indirect mechanisms play in carcinogenic activity of cadmium and other heavy metals.

  16. Inflammation, oxidative DNA damage, and carcinogenesis.

    PubMed Central

    Lewis, J G; Adams, D O

    1987-01-01

    Inflammation has long been associated with carcinogenesis, especially in the promotion phase. The mechanism of action of the potent inflammatory agent and skin promoter 12-tetradecanoyl phorbol-13-acetate (TPA) is unknown. It is thought that TPA selectively enhances the growth of initiated cells, and during this process, initiated cells progress to the preneoplastic state and eventually to the malignant phenotype. Many studies support the multistep nature of carcinogenesis, and a significant amount of evidence indicates that more than one genetic event is necessary for neoplastic transformation. Selective growth stimulation of initiated cells by TPA does not explain how further genetic events may occur by chronic exposure to this nongenotoxic agent. We and others have proposed that TPA may work, in part, by inciting inflammation and stimulating inflammatory cells to release powerful oxidants which then induce DNA damage in epidermal cells. Macrophages cocultured with target cells and TPA induce oxidized thymine bases in the target cells. This process is inhibited by both catalase and inhibitors of lipoxygenases, suggesting the involvement of both H2O2 and oxidized lipid products. Furthermore, macrophage populations that release both H2O2 and metabolites of arachidonic acid (AA) are more efficient at inducing oxidative DNA damage in surrounding cells than populations which only release H2O2 or metabolites of AA. In vivo studies demonstrated that SENCAR mice, which are sensitive to promotion by TPA, have a more intense inflammatory reaction in skin than C57LB/6 mice, which are resistant to promotion by TPA. In addition, macrophages from SENCAR mice release more H2O2 and metabolites of AA, and induce more oxidative DNA damage in cocultured cells than macrophages from C57LB/6 mice.(ABSTRACT TRUNCATED AT 250 WORDS) Images FIGURE 8. A FIGURE 8. B PMID:3129286

  17. Residual-QSAR. Implications for genotoxic carcinogenesis

    PubMed Central

    2011-01-01

    Introduction Both main types of carcinogenesis, genotoxic and epigenetic, were examined in the context of non-congenericity and similarity, respectively, for the structure of ligand molecules, emphasizing the role of quantitative structure-activity relationship ((Q)SAR) studies in accordance with OECD (Organization for Economic and Cooperation Development) regulations. The main purpose of this report involves electrophilic theory and the need for meaningful physicochemical parameters to describe genotoxicity by a general mechanism. Residual-QSAR Method The double or looping multiple linear correlation was examined by comparing the direct and residual structural information against the observed activity. A self-consistent equation of observed-computed activity was assumed to give maximum correlation efficiency for those situations in which the direct correlations gave non-significant statistical information. Alternatively, it was also suited to describe slow and apparently non-noticeable cancer phenomenology, with special application to non-congeneric molecules involved in genotoxic carcinogenesis. Application and Discussions The QSAR principles were systematically applied to a given pool of molecules with genotoxic activity in rats to elucidate their carcinogenic mechanisms. Once defined, the endpoint associated with ligand-DNA interaction was used to select variables that retained the main Hansch physicochemical parameters of hydrophobicity, polarizability and stericity, computed by the custom PM3 semiempirical quantum method. The trial and test sets of working molecules were established by implementing the normal Gaussian principle of activities that applies when the applicability domain is not restrained to the congeneric compounds, as in the present study. The application of the residual, self-consistent QSAR method and the factor (or average) method yielded results characterized by extremely high and low correlations, respectively, with the latter resembling

  18. Effect of Dendrobium officinale Extraction on Gastric Carcinogenesis in Rats

    PubMed Central

    Liu, Yan; Lan, Xi-Ming; Xu, Guo-Liang; Sun, You-Zhi; Li, Fei

    2016-01-01

    Dendrobium officinale (Tie Pi Shi Hu in Chinese) has been widely used to treat different diseases in China. Anticancer effect is one of the important effects of Dendrobium officinale. However, the molecular mechanism of its anticancer effect remains unclear. In the present study, gastric carcinogenesis in rats was used to evaluate the effect of Dendrobium officinale on cancer, and its pharmacological mechanism was explored. Dendrobium officinale extracts (4.8 and 2.4 g/kg) were orally administered to the rats of the gastric carcinogenesis model. Compared with the cancer model group, the high dose of Dendrobium officinale extracts significantly inhibited the rate of carcinogenesis. Further analysis revealed that Dendrobium officinale extracts could regulate the DNA damage, oxidative stress, and cytokines related with carcinogenesis and induce cell apoptosis in order to prevent gastric cancer. PMID:28119756

  19. Localized fibrous mesothelioma of pleura following external ionizing radiation therapy

    SciTech Connect

    Bilbey, J.H.; Mueller, N.L.M.; Miller, R.R.; Nelems, B.

    1988-12-01

    Carcinogenesis is a well-known complication of radiation exposure. Ionizing radiation also leads to an increased incidence of benign tumors. A 36-year-old woman had a localized fibrous mesothelioma of the pleura and an ipsilateral breast carcinoma 23 years after receiving external radiation therapy for treatment of a chest wall keloid.

  20. Comfrey (Symphytum Officinale. l.) and Experimental Hepatic Carcinogenesis: A Short-term Carcinogenesis Model Study

    PubMed Central

    Gomes, Maria Fernanda Pereira Lavieri; de Oliveira Massoco, Cristina; Xavier, José Guilherme

    2010-01-01

    Comfrey or Symphytum officinale (L.) (Boraginaceae) is a very popular plant used for therapeutic purposes. Since the 1980s, its effects have been studied in long-term carcinogenesis studies, in which Comfrey extract is administered at high doses during several months and the neoplastic hepatic lesions are evaluated. However, the literature on this topic is very poor considering the studies performed under short-term carcinogenesis protocols, such as the ‘resistant hepatocyte model’ (RHM). In these studies, it is possible to observe easily the phenomena related to the early phases of tumor development, since pre-neoplastic lesions (PNLs) rise in about 1–2 months of chemical induction. Herein, the effects of chronic oral treatment of rats with 10% Comfrey ethanolic extract were evaluated in a RHM. Wistar rats were sequentially treated with N-nitrosodiethylamine (ip) and 2-acetilaminofluorene (po), and submitted to hepatectomy to induce carcinogenesis promotion. Macroscopic/microscopic quantitative analysis of PNL was performed. Non-parametric statistical tests (Mann–Whitney and χ2) were used, and the level of significance was set at P ≤ 0.05. Comfrey treatment reduced the number of pre-neoplastic macroscopic lesions up to 1 mm (P ≤ 0.05), the percentage of oval cells (P = 0.0001) and mitotic figures (P = 0.007), as well as the number of Proliferating Cell Nuclear Antigen (PCNA) positive cells (P = 0.0001) and acidophilic pre-neoplastic nodules (P = 0.05). On the other hand, the percentage of cells presenting megalocytosis (P = 0.0001) and vacuolar degeneration (P = 0.0001) was increased. Scores of fibrosis, glycogen stores and the number of nucleolus organizing regions were not altered. The study indicated that oral treatment of rats with 10% Comfrey alcoholic extract reduced cell proliferation in this model. PMID:18955295

  1. Tumor promoters and cocarcinogens in tobacco carcinogenesis.

    PubMed Central

    Hoffmann, D; Hecht, S S; Wynder, E L

    1983-01-01

    Cigarette smoke induces carcinoma of the larynx in Syrian golden hamsters and is active as a tumor promoter in hamsters pretreated with a low dose of a PAH, nitrosamine, or nitrosamide. These tumorigenic effects are only observed with total smoke, but not with the gas phase alone. This demonstrates that the tumorigenic agents reside primarily in the particulate phase. According to fractionation experiments, a number of four- and five-ring aromatic hydrocarbons serve as the major tumor initiators in tobacco smoke. Tumor promoters reside primarily in weakly polaric neutral subfractions and in the weakly acidic portion of the particulate matter and include certain unsaturated hydrocarbons and phenolic compounds. Cocarcinogenic activity is a characteristic feature of tobacco smoke and its particulates. Among the cocarcinogens formed during combustion are catechols and certain nontumorigenic aromatic hydrocarbons and terpenes. Nicotine may also serve as a cocarcinogen as is indicated by preliminary data. The action of tumor promoters and cocarcinogens in tobacco carcinogenesis, the precursors for tobacco smoke promoters and cocarcinogens, and methods for their reduction in smoke are discussed. Images FIGURE 2. FIGURE 5. PMID:6409604

  2. [Molecular genetics of colorectal cancer and carcinogenesis].

    PubMed

    Panduro Cerda, A; Lima González, G; Villalobos, J J

    1993-01-01

    Genetic and environmental aspects play an important role in the development of colorectal cancer. However, the common molecular alteration in both hereditary and sporadic colon cancer is localized in the APC gene. the APC gene maps in the long arm of chromosome 5 and was discovered in patients with familial adenomatous polyposis (FAP). The search for the APC gene led to the identification of restriction fragment length polymorphisms (RFLPs) in FAP patients. Using these RFLPs in relatives of FAP patients it is possible to make the presymptomatic and prenatal diagnosis. The FAP syndrome is an interesting model of carcinogenesis in vivo. Thus the different stages involved in the FAP syndrome which include hyperproliferative epithelium, adenoma, adenocarcinoma and metastases, have allowed the analysis of molecular alterations in oncogenes and tumor suppressor genes. The APC gene alteration if not inherited, occurs as the earliest molecular alteration in the development of colorectal cancer whereas structural alterations of the genes myc, ras, p53, MCC and DCC are considered to be late events. All these investigations have lead to 1) a better understanding of the ethiology of cancer and 2) early diagnosis of colorectal cancer in both the hereditary and sporadic forms of the disease.

  3. Role of human papillomaviruses in carcinogenesis

    PubMed Central

    Ghittoni, Raffaella; Accardi, Rosita; Chiocca, Susanna; Tommasino, Massimo

    2015-01-01

    The human papillomavirus (HPV) family comprises more than 170 different types that preferentially infect the mucosa of the genitals, upper-respiratory tract, or the skin. The ‘high-risk HPV type’, a sub-group of mucosal HPVs, is the cause of approximately 5% of all human cancers, which corresponds to one-third of all virus-induced tumours. Within the high-risk group, HPV16 is the most oncogenic type, being responsible for approximatively 50% of all worldwide cervical cancers. Many studies suggest that, in addition to the high-risk mucosal HPV types, certain cutaneous HPVs also have a role in the development of non-melanoma skin cancer (NMSC). Functional studies on the HPV early gene products showed that E6 and E7 play a key role in carcinogenesis. These two proteins use multiple mechanisms to evade host immune surveillance, allowing viral persistence, and to deregulate cell cycle and apoptosis control, thus facilitating the accumulation of DNA damage and ultimately cellular transformation. The demonstration that high-risk HPV types are the etiological agents of cervical cancer allowed the implementation in the clinical routine of novel screening strategies for cervical lesions, as well as the development of a very efficient prophylactic vaccine. Because of these remarkable achievements, there is no doubt that in the coming decades we will witness a dramatic reduction of cervical cancer incidence worldwide. PMID:25987895

  4. Exocrine Pancreatic Carcinogenesis and Autotaxin Expression

    PubMed Central

    Kadekar, Sandeep; Silins, Ilona; Korhonen, Anna; Dreij, Kristian; Al-Anati, Lauy; Högberg, Johan; Stenius, Ulla

    2012-01-01

    Exocrine pancreatic cancer is an aggressive disease with an exceptionally high mortality rate. Genetic analysis suggests a causative role for environmental factors, but consistent epidemiological support is scarce and no biomarkers for monitoring the effects of chemical pancreatic carcinogens are available. With the objective to identify common traits for chemicals inducing pancreatic tumors we studied the National Toxicology Program (NTP) bioassay database. We found that male rats were affected more often than female rats and identified eight chemicals that induced exocrine pancreatic tumors in males only. For a hypothesis generating process we used a text mining tool to analyse published literature for suggested mode of actions (MOA). The resulting MOA analysis suggested inflammatory responses as common feature. In cell studies we found that all the chemicals increased protein levels of the inflammatory protein autotaxin (ATX) in Panc-1, MIA PaCa-2 or Capan-2 cells. Induction of MMP-9 and increased invasive migration were also frequent effects, consistent with ATX activation. Testosterone has previously been implicated in pancreatic carcinogenesis and we found that it increased ATX levels. Our data show that ATX is a target for chemicals inducing pancreatic tumors in rats. Several lines of evidence implicate ATX and its product lysophosphatidic acid in human pancreatic cancer. Mechanisms of action may include stimulated invasive growth and metastasis. ATX may interact with hormones or onco- or suppressor-genes often deregulated in exocrine pancreatic cancer. Our data suggest that ATX is a target for chemicals promoting pancreatic tumor development. PMID:22952646

  5. Bioassay of metals for carcinogenesis: whole animals.

    PubMed Central

    Furst, A

    1981-01-01

    Metals have been evaluated as potential carcinogens by administering pure elements or compounds by a large variety of routes. These include mixing the agent in the food, dissolving the test compound in the drinking water, or administering the material by gavage. The respiratory tract routes tested include inhalation, intratracheal instillation, the direct injection of particulates into the pleural cavity, or the implantation of hooks by surgical intervention. The parenteral routes used were intravenous injection, intraperitoneal injection, subcutaneous implantation, as well as intrafemoral and intramuscular injection. This latter route is the most commonly used. There are major objections to the subcutaneous implantations route, and data generated from these experiments are difficult to interpret for the foreign body reaction may give rise also to fibrosarcomas. This then is a nonspecific reaction. Exotic routes tested include intrarenal, intratesticular, and intracranial injections. The endpoints of the carcinogenic reactions are, in the main, sarcomas of certain types with fibrosarcomas predominating. Rhabdomyosarcomas are the next most frequent cancer found, and squamous cell carcinoma may account for less than 2% of the cancers reported. Much more research is necessary to clarify the nature of metal carcinogenesis. Dose-response information is almost nonexistent; the divided dose problem has not been studied adequately, and very little information is available on interspecies reactions. More work is needed to help interpret the mechanism of action. PMID:7274189

  6. Carcinogenesis of Pancreatic Adenocarcinoma: Precursor Lesions

    PubMed Central

    Gnoni, Antonio; Licchetta, Antonella; Scarpa, Aldo; Azzariti, Amalia; Brunetti, Anna Elisabetta; Simone, Gianni; Nardulli, Patrizia; Santini, Daniele; Aieta, Michele; Delcuratolo, Sabina; Silvestris, Nicola

    2013-01-01

    Pancreatic adenocarcinoma displays a variety of molecular changes that evolve exponentially with time and lead cancer cells not only to survive, but also to invade the surrounding tissues and metastasise to distant sites. These changes include: genetic alterations in oncogenes and cancer suppressor genes; changes in the cell cycle and pathways leading to apoptosis; and also changes in epithelial to mesenchymal transition. The most common alterations involve the epidermal growth factor receptor (EGFR) gene, the HER2 gene, and the K-ras gene. In particular, the loss of function of tumor-suppressor genes has been documented in this tumor, especially in CDKN2a, p53, DPC4 and BRCA2 genes. However, other molecular events involved in pancreatic adenocarcinoma pathogenesis contribute to its development and maintenance, specifically epigenetic events. In fact, key tumor suppressors that are well established to play a role in pancreatic adenocarcinoma may be altered through hypermethylation, and oncogenes can be upregulated secondary to permissive histone modifications. Indeed, factors involved in tumor invasiveness can be aberrantly expressed through dysregulated microRNAs. This review summarizes current knowledge of pancreatic carcinogenesis from its initiation within a normal cell until the time that it has disseminated to distant organs. In this scenario, highlighting these molecular alterations could provide new clinical tools for early diagnosis and new effective therapies for this malignancy. PMID:24084722

  7. An Evaluation of Transplacental Carcinogenesis for Human ...

    EPA Pesticide Factsheets

    Risk assessments take into account the sensitivity of the postnatal period to carcinogens through the application of age-dependent adjustment factors (ADAFs) (Barton et al. 2005). The prenatal period is also recognized to be sensitive but is typically not included into risk assessments (NRC, 2009). An analysis by California OEHHA (2008) contrasted prenatal, postnatal and adult sensitivity to 23 different carcinogens across 37 studies. That analysis found a wide range of transplacental sensitivity with some agents nearly 100 fold more potent in utero than in adults while others had an in utero/adult ratio adult only exposure). Five carcinogens had more modest ratios to adult potency in both pre- and postnatal testing (vinyl chloride, ethylnitroso biuret, 3-methylcholanthrene, urethane, diethylnitrosamine, 3-10 fold). Only one chemical showed a pre- vs postnatal divergence (butylnitrosourea, prenataladult). Based upon this limited set of genotoxic carcinogens, it appears that the prenatal period often has a sensitivity that approximates what has been found for postnatal, and the maternal system does not offer substantial protection against transplacental carcinogenesis in most cases. This suggests that the system of ADAFs developed for postnatal exposure may be considered for prenatal exposures as well. An alternative approach may be to calculate cancer risk for the period of pregnancy rather than blend this risk into the calculation of lifetime risk. This

  8. Role of RUNX2 in Breast Carcinogenesis

    PubMed Central

    Wysokinski, Daniel; Blasiak, Janusz; Pawlowska, Elzbieta

    2015-01-01

    RUNX2 is a transcription factor playing the major role in osteogenesis, but it can be involved in DNA damage response, which is crucial for cancer transformation. RUNX2 can interact with cell cycle regulators: cyclin-dependent kinases, pRB and p21Cip1 proteins, as well as the master regulator of the cell cycle, the p53 tumor suppressor. RUNX2 is involved in many signaling pathways, including those important for estrogen signaling, which, in turn, are significant for breast carcinogenesis. RUNX2 can promote breast cancer development through Wnt and Tgfβ signaling pathways, especially in estrogen receptor (ER)-negative cases. ERα interacts directly with RUNX2 and regulates its activity. Moreover, the ERα gene has a RUNX2 binding site within its promoter. RUNX2 stimulates the expression of aromatase, an estrogen producing enzyme, increasing the level of estrogens, which in turn stimulate cell proliferation and replication errors, which can be turned into carcinogenic mutations. Exploring the role of RUNX2 in the pathogenesis of breast cancer can lead to revealing new therapeutic targets. PMID:26404249

  9. Heavy Ion Carcinogenesis and Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Durante, Marco

    2008-01-01

    Prior to the human exploration of Mars or long duration stays on the Earth s moon, the risk of cancer and other diseases from space radiation must be accurately estimated and mitigated. Space radiation, comprised of energetic protons and heavy nuclei, has been show to produce distinct biological damage compared to radiation on Earth, leading to large uncertainties in the projection of cancer and other health risks, while obscuring evaluation of the effectiveness of possible countermeasures. Here, we describe how research in cancer radiobiology can support human missions to Mars and other planets.

  10. Heavy ion carcinogenesis and human space exploration.

    PubMed

    Durante, Marco; Cucinotta, Francis A

    2008-06-01

    Before the human exploration of Mars or long-duration missions on the Earth's moon, the risk of cancer and other diseases from space radiation must be accurately estimated and mitigated. Space radiation, comprised of energetic protons and heavy nuclei, has been shown to produce distinct biological damage compared with radiation on Earth, leading to large uncertainties in the projection of cancer and other health risks, and obscuring evaluation of the effectiveness of possible countermeasures. Here, we describe how research in cancer radiobiology can support human missions to Mars and other planets.

  11. Pulmonary carcinogenesis from plutonium-containing particles

    SciTech Connect

    Thomas, R.G.; Smith, D.M.; Anderson, E.C.

    1980-01-01

    Plutonium administered as an alpha radiation source to the respiratory tracts of Syrian hamsters has resulted in various incidences of neoplasia. Adenomas are the primary lung tumor observed, but adenocarcinomas are also prevalent.

  12. Magnesium: its role in nutrition and carcinogenesis.

    PubMed

    Blaszczyk, Urszula; Duda-Chodak, Aleksandra

    2013-01-01

    Magnesium (Mg2+) plays a key role in many essential cellular processes such as intermediary metabolism, DNA replication and repair, transporting potassium and calcium ions, cell proliferation together with signalling transduction. Dietary sources rich in magnesium are whole and unrefined grains, seeds, cocoa, nuts, almonds and green leafy vegetables. Hard water is also considered to be an important source of magnesium beneficial to human health. The daily dietary intake of magnesium is however frequently found to be below that recommended in Western countries. Indeed, it is recognised that magnesium deficiency may lead to many disorders of the human body, where for instance magnesium depletion is believed to play an important role in the aetiology of the following; cardiovascular disease (including thrombosis, atherosclerosis, ishaemic heart disease, myocardial infarction, hypertension, arrhythmias and congestive heart failure in human), as well as diabetes mellitus, gastrointestinal (GI) tract disease, liver cirrhosis and diseases of the thyroid and parathyroid glands. Insufficient dietary intake of magnesium may also significantly affect the development and exacerbation ofADHD (Attention Deficit- Hyperactivity Disorder) symptoms in children. The known links between magnesium and carcinogenesis still remain unclear and complex, with conflicting results being reported from many experimental, epidemiological and clinical studies; further knowledge is thus required. Mg2+ ions are enzyme cofactors involved in DNA repair mechanisms that maintain genomic stability and fidelity. Any magnesium deficiencies could thereby cause a dysfunction of these systems to occur leading to DNA mutations. Magnesium deficiency may also be associated with inflammation and increased levels of free radicals where both inflammatory mediators and free radicals so arising could cause oxidative DNA damage and therefore tumour formation. The presented review article now provides a summary

  13. Inflammation, oxidative DNA damage, and carcinogenesis

    SciTech Connect

    Lewis, J.G.; Adams, D.O.

    1987-12-01

    Inflammation has long been associated with carcinogenesis, especially in the promotion phase. The mechanism of action of the potent inflammatory agent and skin promoter 12-tetradecanoyl phorbol-13-acetate (TPA) is unknown. It is though that TPA selectively enhances the growth of initiated cells, and during this process, initiated cells progress to the preneoplastic state and eventually to the malignant phenotype. The authors and others have proposed that TPA may work, in part, by inciting inflammation and stimulating inflammatory cells to release powerful oxidants which then induce DNA damage in epidermal cells. Macrophages cocultured with target cells and TPA induce oxidized thymine bases in the target cells. This process is inhibited by both catalase and inhibitors of lipoxygenases, suggesting the involvement of both H/sub 2/O/sub 2/ and oxidized lipid products. In vivo studies demonstrated that SENCAR mice, which are sensitive to promotion by TPA, have a more intense inflammatory reaction in skin that C57LB/6 mice, which are resistant to promotion by TPA. In addition, macrophages from SENCAR mice release more H/sub 2/O/sub 2/ and metabolites of AA, and induce more oxidative DNA damage in cocultured cells than macrophages from C57LB/6 mice. These data support the hypothesis that inflammation and the release of genotoxic oxidants may be one mechanism whereby initiated cells receive further genetic insults. They also further complicate risk assessment by suggesting that some environmental agents may work indirectly by subverting host systems to induce damage rather than maintaining homeostasis.

  14. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    SciTech Connect

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-06-27

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C {r_arrow} A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C {r_arrow} T, two C {r_arrow} A, one C {r_arrow} G, and one A {r_arrow} T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab.

  15. Intercellular communication and human prostate carcinogenesis.

    PubMed

    Carruba, Giuseppe; Stefano, Rosalba; Cocciadiferro, Letizia; Saladino, Francesca; Di Cristina, Antonietta; Tokar, Erik; Quader, Salmann T A; Webber, Mukta M; Castagnetta, Luigi

    2002-06-01

    Gap-junction-mediated intercellular communication (GJIC) is required for completion of embryonic development, tissue homeostasis, and regulation of cell proliferation and death. Although, as emphasized in several reports, defects or disruption of GJIC may be important in carcinogenesis, the potential role of GJIC in the onset and progression of human prostate cancer remains ill-defined. The gap junction channel-forming connexins (Cx) comprise a multigene family of highly conserved proteins that are differentially expressed in a tissue- and development-specific manner; changes in connexin expression are also commonly seen during cellular differentiation. However, when multiple connexins are concurrently expressed, gap junction channels may consist of more than one connexin species. This is important, because only certain pairings give rise to functional channels. In our studies, we investigated GJIC in a panel of both nontumorigenic (RWPE-1) and malignant (RWPE-2, LNCaP, DU-145) human prostate epithelial cells, compared to a normal rat liver epithelial F344 (WB-1) cell line, as it was found to be junctionally proficient. In addition, expression and regulation of Cx43 and Cx32 were also inspected using western blot analysis. The ability of hormones, antihormones, and the antihypertensive drug forskolin to restore GJIC in nontumorigenic and malignant human prostate epithelial cells was examined by the scrape-loading/dye transfer (SL/DT) or fluorescence recovery after photobleaching (FRAP) methods using an Ultima laser cytometer. Results from both assays showed that neither nontumorigenic nor malignant prostate cells have functional GJIC. However, both estrone (E1) and forskolin (FK) induced a significant increase (4.4- and 2.8-fold, respectively) in cell-cell communication only in the RWPE-1 cells. Interestingly, the use of Matrigel, a solubilized basement membrane, as substrate for cell attachment and growth resulted in the rescue of GJIC activity in RWPE-1 cells, as

  16. Age-Related Differences in Susceptibility to Carcinogenesis: A Quantitative Analysis of Empirical Animal Bioassay Data

    PubMed Central

    Hattis, Dale; Goble, Robert; Russ, Abel; Chu, Margaret; Ericson, Jen

    2004-01-01

    In revising cancer risk assessment guidelines, the U.S. Environmental Protection Agency (EPA) analyzed animal cancer bioassay data over different periods of life. In this article, we report an improved analysis of these data (supplemented with some chemical carcinogenesis observations not included in the U.S. EPA’s original analysis) and animal bioassay studies of ionizing radiation. We use likelihood methods to avoid excluding cases where no tumors were observed in specific groups. We express dosage for animals of different weights on a metabolically consistent basis (concentration in air or food, or per unit body weight to the three-quarters power). Finally, we use a system of dummy variables to represent exposures during fetal, preweaning, and weaning–60-day postnatal periods, yielding separate estimates of relative sensitivity per day of dosing in these intervals. Central estimate results indicate a 5- to 60-fold increased carcinogenic sensitivity in the birth–weaning period per dose ÷ (body weight0.75-day) for mutagenic carcinogens and a somewhat smaller increase—centered about 5-fold—for radiation carcinogenesis per gray. Effects were greater in males than in females. We found a similar increased sensitivity in the fetal period for direct-acting nitrosoureas, but no such increased fetal sensitivity was detected for carcinogens requiring metabolic activation. For the birth–weaning period, we found an increased sensitivity for direct administration to the pups similar to that found for indirect exposure via lactation. Radiation experiments indicated that carcinogenic sensitivity is not constant through the “adult” period, but the dosage delivered in 12- to 21-month-old animals appears a few-fold less effective than the comparable dosage delivered in young adults (90–105 days of age). PMID:15289159

  17. Experimental, statistical, and biological models of radon carcinogenesis

    SciTech Connect

    Cross, F.T.

    1991-09-01

    Risk models developed for underground miners have not been consistently validated in studies of populations exposed to indoor radon. Imprecision in risk estimates results principally from differences between exposures in mines as compared to domestic environments and from uncertainties about the interaction between cigarette-smoking and exposure to radon decay products. Uncertainties in extrapolating miner data to domestic exposures can be reduced by means of a broad-based health effects research program that addresses the interrelated issues of exposure, respiratory tract dose, carcinogenesis (molecular/cellular and animal studies, plus developing biological and statistical models), and the relationship of radon to smoking and other copollutant exposures. This article reviews experimental animal data on radon carcinogenesis observed primarily in rats at Pacific Northwest Laboratory. Recent experimental and mechanistic carcinogenesis models of exposures to radon, uranium ore dust, and cigarette smoke are presented with statistical analyses of animal data. 20 refs., 1 fig.

  18. Mobile Technology and Social Media in the Clinical Practice of Young Radiation Oncologists: Results of a Comprehensive Nationwide Cross-sectional Study

    SciTech Connect

    Bibault, Jean-Emmanuel; Leroy, Thomas; Blanchard, Pierre; Biau, Julian; Cervellera, Mathilde; Diaz, Olivia; Faivre, Jean Christophe; and others

    2014-09-01

    Purpose: Social media and mobile technology are transforming the way in which young physicians are learning and practicing medicine. The true impact of such technologies has yet to be evaluated. Methods and Materials: We performed a nationwide cross-sectional survey to better assess how young radiation oncologists used these technologies. An online survey was sent out between April 24, 2013, and June 1, 2013. All residents attending the 2013 radiation oncology French summer course were invited to complete the survey. Logistic regressions were performed to assess predictors of use of these tools in the hospital on various clinical endpoints. Results: In all, 131 of 140 (93.6%) French young radiation oncologists answered the survey. Of these individuals, 93% owned a smartphone and 32.8% owned a tablet. The majority (78.6%) of the residents owning a smartphone used it to work in their department. A total of 33.5% had more than 5 medical applications installed. Only 60.3% of the residents verified the validity of the apps that they used. In all, 82.9% of the residents had a social network account. Conclusions: Most of the residents in radiation oncology use their smartphone to work in their department for a wide variety of tasks. However, the residents do not consistently check the validity of the apps that they use. Residents also use social networks, with only a limited impact on their relationship with their patients. Overall, this study highlights the irruption and the risks of new technologies in the clinical practice and raises the question of a possible regulation of their use in the hospital.

  19. Host cell reactivation studies with epidermal cells of mice sensitive and resistant to carcinogenesis

    SciTech Connect

    Strickland, J.E.; Strickland, A.G.

    1984-03-01

    Primary epidermal cells from AKR, BALB/c, CD-1, and SENCAR mice, listed in order of least to most sensitive to epidermal carcinogenesis by initiation and promotion protocols, were found to be equally competent to ''reactivate'' herpes simplex virus type 1 irradiated by germicidal ultraviolet radiation. Nontumorigenic BALB/c epidermal cell lines selected in vitro for resistance to terminal differentiation after in vivo or in vitro treatment with initiating doses of carcinogens showed virus survival curves similar to those of primary cells. Similarly, primary cultures which were allowed to grow to confluency following a single treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (100 ng/ml) retained normal host cell reactivation. Host cell reactivation studies with mouse dermal fibroblasts could not be done because of the failure of the herpes simplex virus to infect these cells and produce plaques. These results demonstrate that survival of ultraviolet light-damaged virus in primary epidermal cells in culture is unrelated to whether the cells are derived from mice sensitive or resistant to epidermal carcinogenesis. Furthermore, virus survival is not changed by tumor promoter treatment or by treatment with initiating doses of carcinogens which results in differentiation-resistant cells.

  20. Ionizing radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter gives a comprehensive review on ionizing irradiation of fresh fruits and vegetables. Topics include principles of ionizing radiation, its effects on pathogenic and spoilage microorganisms, shelf-life, sensory quality, nutritional and phytochemical composition, as well as physiologic and...

  1. EFFECT OF ARSENICALS ON ULTRAVIOLET-RADIATION-INDUCED GROWTH ARREST AND RELATED SIGNALING EVENTS IN HUMAN KERATINOCYTES

    EPA Science Inventory

    The molecular mechanisms mediating arsenic-induced carcinogenesis are not well understood. The role of confounding factors such as ultraviolet radiation (UV), add another level of complexity to the study of arsenic carcinogenesis and the cancer risk assessment to humans. We hypot...

  2. THE ROLE OF PROTEIN BINDING OF TRIVALENT ARSENICALS IN ARSENIC CARCINOGENESIS AND TOXICITY

    EPA Science Inventory

    Three of the most plausible biological theories of arsenic carcinogenesis are protein binding, oxidative stress and altered DNA methylation. This review presents the role of trivalent arsenicals binding to proteins in arsenic carcinogenesis. Using vacuum filtration based receptor...

  3. Distinctive molecular responses to ultraviolet radiation between keratinocytes and melanocytes

    PubMed Central

    Sun, Xiaoyun; Kim, Arianna; Nakatani, Masashi; Shen, Yao; Liu, Liang

    2017-01-01

    Solar ultraviolet radiation (UVR) is the major risk factor for skin carcinogenesis. To gain new insights into the molecular pathways mediating UVR effects in the skin, we performed comprehensive transcriptomic analyses to identify shared and distinctive molecular responses to UVR between human keratinocytes and melanocytes. Keratinocytes and melanocytes were irradiated with varying doses of UVB (10, 20 and 30 mJ/cm2) then analysed by RNA-Seq at different time points post-UVB radiation (4, 24 and 72 h). Under basal conditions, keratinocytes and melanocytes expressed similar number of genes, although they each expressed a distinctive subset of genes pertaining to their specific cellular identity. Upon UVB radiation, keratinocytes displayed a clear pattern of time- and dose-dependent changes in gene expression that was different from melanocytes. The early UVB-responsive gene set (4 h post-UVR) differed significantly from delayed UVB-responsive gene sets (24 and 72 h). We also identified multiple novel UVB signature genes including PRSS23, SERPINH1, LCE3D and CNFN, which were conserved between melanocyte and keratinocyte lines from different individuals. Taken together, our findings elucidated both common and distinctive molecular features between melanocytes and keratinocytes and uncovered novel UVB signature genes that might be utilized to predict UVB photobiological effects on the skin. PMID:27119462

  4. Correlation of chromosome patterns in human leukemic cells with exposure to chemicals and/or radiation. Comprehensive progress report, July 1991--June 1992

    SciTech Connect

    Rowley, J.D.

    1992-06-01

    This project seeks to defining the chromosome segments associated with radiation induced leukemogenesis (treatment-related acute myeloid leukemia, or t-AML). Towards these goals genetic analysis of human chromosomes 5 and 7 continues to investigate correlation of treatment with balanced and unbalanced chromosomal translocations. Progress is being made in cloning the breakpoints in balanced translocations in t-AML, that is to clone the t(9;11) and t(11;19) breakpoints, to clone the t(3;21)(q26;q22) breakpoints and to determine the relationship of these translocations to prior exposure to topoisomerase II inhibitors. 11 figs. 3 figs.

  5. Imbalance between apoptosis and cell proliferation during early stages of mammary gland carcinogenesis in ACI rats.

    PubMed

    Kutanzi, Kristy R; Koturbash, Igor; Bronson, Roderick T; Pogribny, Igor P; Kovalchuk, Olga

    2010-12-10

    Estrogen and ionizing radiation are well-documented human breast carcinogens, yet the exact mechanisms of their deleterious effects on mammary gland remain to be discerned. Here we analyze the balance between cellular proliferation and apoptosis in the mammary glands of rats exposed to estrogen and X-ray radiation and the combined action of these carcinogenic agents. For the first time, we show that combined exposure to estrogen and radiation has a synergistic effect on cell proliferation in the mammary glands of ACI rats, as evidenced by a substantially greater magnitude of cell proliferation, especially after 12 and 18 weeks of treatment, when compared to mammary glands of rats exposed to estrogen or radiation alone. We also demonstrate that an imbalance between cell proliferation and apoptosis, rather than enhanced cell proliferation or apoptosis suppression alone, may be a driving force for carcinogenesis. Our studies further suggest that compromised functional activity of p53 may be one of the mechanisms responsible for the proliferation/apoptosis imbalance. In sum, the results of our study indicate that evaluation of the extent of cell proliferation and apoptosis before the onset of preneoplastic lesions may be a potential biomarker of breast cancer risk after exposure to breast carcinogens.

  6. OXIDATIVE STRESS AS A POSSIBLE MODE OF ACTION FOR ARSENIC CARCINOGENESIS

    EPA Science Inventory

    Abstract

    Many modes of action for arsenic carcinogenesis have been proposed, but few theories have a substantial mass of supporting data. Three stronger theories of arsenic carcinogenesis are production of chromosomal abnormalities, promotion of carcinogenesis and oxidati...

  7. Comprehension Clinchers

    ERIC Educational Resources Information Center

    Marcell, Barclay

    2006-01-01

    This author, an academic achievement teacher for second and third grade reading and math at Theodore Roosevelt Elementary School in Park Ridge, Illinois, contends that since fluency is such a measurable skill, over-emphasizing decoding and de-emphasizing comprehension results in short-changing students. In this article, she shares several reading…

  8. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis.

    PubMed

    Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo

    2017-03-09

    Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways.

  9. Carcinogenesis explained within the context of a theory of organisms.

    PubMed

    Sonnenschein, Carlos; Soto, Ana M

    2016-10-01

    For a century, the somatic mutation theory (SMT) has been the prevalent theory to explain carcinogenesis. According to the SMT, cancer is a cellular problem, and thus, the level of organization where it should be studied is the cellular level. Additionally, the SMT proposes that cancer is a problem of the control of cell proliferation and assumes that proliferative quiescence is the default state of cells in metazoa. In 1999, a competing theory, the tissue organization field theory (TOFT), was proposed. In contraposition to the SMT, the TOFT posits that cancer is a tissue-based disease whereby carcinogens (directly) and mutations in the germ-line (indirectly) alter the normal interactions between the diverse components of an organ, such as the stroma and its adjacent epithelium. The TOFT explicitly acknowledges that the default state of all cells is proliferation with variation and motility. When taking into consideration the principle of organization, we posit that carcinogenesis can be explained as a relational problem whereby release of the constraints created by cell interactions and the physical forces generated by cellular agency lead cells within a tissue to regain their default state of proliferation with variation and motility. Within this perspective, what matters both in morphogenesis and carcinogenesis is not only molecules, but also biophysical forces generated by cells and tissues. Herein, we describe how the principles for a theory of organisms apply to the TOFT and thus to the study of carcinogenesis.

  10. The genetic/metabolic transformation concept of carcinogenesis

    PubMed Central

    Franklin, Renty B.

    2014-01-01

    The carcinogenesis process is poorly understood and subject to varying concepts and views. A rejuvenated interest has arisen regarding the role of altered cellular intermediary metabolism in the development and progression of cancer. As a result, differing views of the implications of altered metabolism in the development of cancer exist. None of the concepts recognize and incorporate the principles of cell metabolism to cell activity, which are applicable to all cells including the carcinogenesis process. This presentation incorporates a novel concept of carcinogenesis that includes a “genetic/metabolic” transformation that encompasses these principles of cell metabolism to cell activity. The intermediary metabolism transformation is essential to provide the bioenergetic/ synthetic, growth/proliferation, and migration/invasive events of malignancy. The concept invokes an “oncogenetic transformation” for the development of neoplastic cells from their precursor normal cells; and a required “genetic/metabolic” transformation for facilitation of the development of the neoplastic cells to malignant cells with the manifestation of the malignant process. Such a concept reveals stages and events of carcinogenesis that provide approaches for the identification of biomarkers and for development of therapeutic agents. The presentation discusses the contemporary application of genetics and proteomics to altered cellular metabolism in cancer; and underscores the importance of proper integration of genetics and proteomics with biochemical and metabolic studies, and the consequences of inappropriate studies. PMID:22109079

  11. STUDIES INTO THE MECHANISMS OF POTASSIUM BROMATE INDUCED THYROID CARCINOGENESIS

    EPA Science Inventory

    Studies into the Mechanisms of Potassium Bromate Induced Thyroid Carcinogenesis.

    Potassium bromate (KBrO3) occurs in finished drinking water as a by-product of the ozonation disinfection process and has been found to induce thyroid follicular cell tumors in the rat after ...

  12. PROPICONAZOLE-INDUCED CARCINOGENESIS: ROLE OF OXIDATIVE STRESS

    EPA Science Inventory

    Propiconazole is a systemic foliar fungicide with a broad range of activity. Rodents fed with propiconazole at high dose resulted in diminished body weight, increased liver weight of adults and pups, and eventually liver carcinogenesis. In order to unravel the toxic processes inv...

  13. CARCINOGENIC EFFECTS OF LOW DOSES OF IONIZING RADIATION

    EPA Science Inventory

    Carcinogenic Effects of Low Doses of Ionizing Radiation

    R Julian Preston, Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

    The form of the dose-response curve for radiation-induced cancers, particu...

  14. Comprehensive evaluations of cone-beam CT dose in image-guided radiation therapy via GPU-based Monte Carlo simulations.

    PubMed

    Montanari, Davide; Scolari, Enrica; Silvestri, Chiara; Graves, Yan Jiang; Yan, Hao; Cervino, Laura; Rice, Roger; Jiang, Steve B; Jia, Xun

    2014-03-07

    Cone beam CT (CBCT) has been widely used for patient setup in image-guided radiation therapy (IGRT). Radiation dose from CBCT scans has become a clinical concern. The purposes of this study are (1) to commission a graphics processing unit (GPU)-based Monte Carlo (MC) dose calculation package gCTD for Varian On-Board Imaging (OBI) system and test the calculation accuracy, and (2) to quantitatively evaluate CBCT dose from the OBI system in typical IGRT scan protocols. We first conducted dose measurements in a water phantom. X-ray source model parameters used in gCTD are obtained through a commissioning process. gCTD accuracy is demonstrated by comparing calculations with measurements in water and in CTDI phantoms. Twenty-five brain cancer patients are used to study dose in a standard-dose head protocol, and 25 prostate cancer patients are used to study dose in pelvis protocol and pelvis spotlight protocol. Mean dose to each organ is calculated. Mean dose to 2% voxels that have the highest dose is also computed to quantify the maximum dose. It is found that the mean dose value to an organ varies largely among patients. Moreover, dose distribution is highly non-homogeneous inside an organ. The maximum dose is found to be 1-3 times higher than the mean dose depending on the organ, and is up to eight times higher for the entire body due to the very high dose region in bony structures. High computational efficiency has also been observed in our studies, such that MC dose calculation time is less than 5 min for a typical case.

  15. Management of radiation oncology patients with a pacemaker or ICD: a new comprehensive practical guideline in The Netherlands. Dutch Society of Radiotherapy and Oncology (NVRO).

    PubMed

    Hurkmans, Coen W; Knegjens, Joost L; Oei, Bing S; Maas, Ad J J; Uiterwaal, G J; van der Borden, Arnoud J; Ploegmakers, Marleen M J; van Erven, Lieselot

    2012-11-24

    Current clinical guidelines for the management of radiotherapy patients having either a pacemaker or implantable cardioverter defibrillator (both CIEDs: Cardiac Implantable Electronic Devices) do not cover modern radiotherapy techniques and do not take the patient's perspective into account. Available data on the frequency and cause of CIED failure during radiation therapy are limited and do not converge. The Dutch Society of Radiotherapy and Oncology (NVRO) initiated a multidisciplinary task group consisting of clinical physicists, cardiologists, radiation oncologists, pacemaker and ICD technologists to develop evidence based consensus guidelines for the management of CIED patients. CIED patients receiving radiotherapy should be categorised based on the chance of device failure and the clinical consequences in case of failure. Although there is no clear cut-off point nor a clear linear relationship, in general, chances of device failure increase with increasing doses. Clinical consequences of device failures like loss of pacing, carry the most risks in pacing dependent patients. Cumulative dose and pacing dependency have been combined to categorise patients into low, medium and high risk groups. Patients receiving a dose of less than 2 Gy to their CIED are categorised as low risk, unless pacing dependent since then they are medium risk. Between 2 and 10 Gy, all patients are categorised as medium risk, while above 10 Gy every patient is categorised as high risk. Measures to secure patient safety are described for each category. This guideline for the management of CIED patients receiving radiotherapy takes into account modern radiotherapy techniques, CIED technology, the patients' perspective and the practical aspects necessary for the safe management of these patients. The guideline is implemented in The Netherlands in 2012 and is expected to find clinical acceptance outside The Netherlands as well.

  16. Enhanced UV-induced skin carcinogenesis in transgenic mice overexpressing proprotein convertases.

    PubMed

    Fu, Jian; Bassi, Daniel E; Zhang, Jirong; Li, Tianyu; Cai, Kathy Q; Testa, Courtney Lyons; Nicolas, Emmanuelle; Klein-Szanto, Andres J

    2013-02-01

    The proprotein convertases (PCs) furin and PACE4 process numerous substrates involved in tumor growth, invasion, and metastasis. We have previously shown that PCs increase the susceptibility to chemical skin carcinogenesis. Because of the human relevancy of UV radiation in the etiopathogenesis of human skin cancer, we investigated whether or not transgenic mice overexpressing either furin alone or both furin and PACE4 show increased susceptibility to UV carcinogenesis. After backcrossing our previously described furin and PACE4 transgenic lines, targeted to the epidermis, into a SKH-1 background, we exposed both single and double transgenic mice to UV radiation for 34 weeks. The results showed an increase in squamous cell carcinoma (SCC) multiplicity of approximately 70% in the single furin transgenic mouse line SF47 (P < .002) and a 30% increase in the other single transgenic line SF49 when compared to wild-type (WT) SKH-1 mice. Interestingly, there was also an increase in the percentage of high histologic grade SCCs in the transgenic lines compared to the WT mice, i.e., WT = 9%, SF47 = 15%, and SF49 = 26% (P < .02). Targeting both furin and PACE4 to the epidermis in double transgenic mice did not have an additive effect on tumor incidence/multiplicity but did enhance the tumor histopathologic grade, i.e., a significant increase in higher grade SCCs was seen in the bigenic mouse line SPF47 (P < .02). Thus, we observed an increased susceptibility to UV in single furin transgenic mice that was not substantially enhanced in the double furin/PACE4 transgenic mice.

  17. Clock gene Per2 as a controller of liver carcinogenesis

    PubMed Central

    Mteyrek, Ali; Filipski, Elisabeth; Guettier, Catherine; Okyar, Alper; Lévi, Francis

    2016-01-01

    Environmental disruption of molecular clocks promoted liver carcinogenesis and accelerated cancer progression in rodents. We investigated the specific role of clock gene Period 2 (Per2) for liver carcinogenesis and clock-controlled cellular proliferation, genomic instability and inflammation. We assessed liver histopathology, and determined molecular and physiology circadian patterns in mice on chronic diethylnitrosamine (DEN) exposure according to constitutive Per2 mutation. First, we found that Per2m/m liver displayed profound alterations in proliferation gene expression, including c-Myc derepression, phase-advanced Wee1, and arrhythmic Ccnb1 and K-ras mRNA expressions, as well as deregulated inflammation, through arrhythmic liver IL-6 protein concentration, in the absence of any DEN exposure. These changes could then make Per2m/m mice more prone to subsequently develop liver cancers on DEN. Indeed, primary liver cancers were nearly fourfold as frequent in Per2m/m mice as compared to wild-type (WT), 4 months after DEN exposure. The liver molecular clock was severely disrupted throughout the whole carcinogenesis process, including the initiation stage, i.e. within the initial 17 days on DEN. Per2m/m further exhibited increased c-Myc and Ccnb1 mean 24h expressions, lack of P53 response, and arrhythmic ATM, Wee1 and Ccnb1 expressions. DEN-induced tumor related inflammation was further promoted through increased protein concentrations of liver IL-6 and TNF-α as compared to WT during carcinogenesis initiation. Per2 mutation severely deregulated liver gene or protein expressions related to three cancer hallmarks, including uncontrolled proliferation, genomic instability, and tumor promoting inflammation, and accelerated liver carcinogenesis several-fold. Clock gene Per2 acted here as a liver tumor suppressor from initiation to progression. PMID:27494874

  18. Dysregulation of host cellular genes targeted by human papillomavirus (HPV) integration contributes to HPV-related cervical carcinogenesis.

    PubMed

    Zhang, Ruiyang; Shen, Congle; Zhao, Lijun; Wang, Jianliu; McCrae, Malcolm; Chen, Xiangmei; Lu, Fengmin

    2016-03-01

    Integration of human papillomavirus (HPV) viral DNA into the human genome has been postulated as an important etiological event during cervical carcinogenesis. Several recent reports suggested a possible role for such integration-targeted cellular genes (ITGs) in cervical carcinogenesis. Therefore, a comprehensive analysis of HPV integration events was undertaken using data collected from 14 publications, with 499 integration loci on human chromosomes included. It revealed that HPV DNA preferred to integrate into intragenic regions and gene-dense regions of human chromosomes. Intriguingly, the host cellular genes nearby the integration sites were found to be more transcriptionally active compared with control. Furthermore, analysis of the integration sites in the human genome revealed that there were several integration hotspots although all chromosomes were represented. The ITGs identified were found to be enriched in tumor-related terms and pathways using gene ontology and KEGG analysis. In line with this, three of six ITGs tested were found aberrantly expressed in cervical cancer tissues. Among them, it was demonstrated for the first time that MPPED2 could induce HeLa cell and SiHa cell G1/S transition block and cell proliferation retardation. Moreover, "knocking out" the integrated HPV fragment in HeLa cell line decreased expression of MYC located ∼500 kb downstream of the integration site, which provided the first experimental evidence supporting the hypothesis that integrated HPV fragment influence MYC expression via long distance chromatin interaction. Overall, the results of this comprehensive analysis implicated that dysregulation of ITGs caused by viral integration as possibly having an etiological involvement in cervical carcinogenesis.

  19. Radiation-induced thyroid disease

    SciTech Connect

    Maxon, H.R.

    1985-09-01

    Ionizing radiation has been demonstrated to result in a number of changes in the human thyroid gland. At lower radiation dose levels (between 10 and 1500 rads), benign and malignant neoplasms appear to be the dominant effect, whereas at higher dose levels functional changes and thyroiditis become more prevalent. In all instances, the likelihood of the effect is related to the amount and type of radiation exposure, time since exposure, and host factors such as age, sex, and heredity. The author's current approach to the evaluation of patients with past external radiation therapy to the thyroid is discussed. The use of prophylactic thyroxine (T4) therapy is controversial. While T4 therapy may not be useful in preventing carcinogenesis when instituted many years after radiation exposure, theoretically T4 may block TSH secretion and stimulation of damaged cells to undergo malignant transformation when instituted soon after radiation exposure.

  20. SU-F-18C-01: Minimum Detectability Analysis for Comprehensive Sized Based Optimization of Image Quality and Radiation Dose Across CT Protocols

    SciTech Connect

    Smitherman, C; Chen, B; Samei, E

    2014-06-15

    Purpose: This work involved a comprehensive modeling of task-based performance of CT across a wide range of protocols. The approach was used for optimization and consistency of dose and image quality within a large multi-vendor clinical facility. Methods: 150 adult protocols from the Duke University Medical Center were grouped into sub-protocols with similar acquisition characteristics. A size based image quality phantom (Duke Mercury Phantom) was imaged using these sub-protocols for a range of clinically relevant doses on two CT manufacturer platforms (Siemens, GE). The images were analyzed to extract task-based image quality metrics such as the Task Transfer Function (TTF), Noise Power Spectrum, and Az based on designer nodule task functions. The data were analyzed in terms of the detectability of a lesion size/contrast as a function of dose, patient size, and protocol. A graphical user interface (GUI) was developed to predict image quality and dose to achieve a minimum level of detectability. Results: Image quality trends with variations in dose, patient size, and lesion contrast/size were evaluated and calculated data behaved as predicted. The GUI proved effective to predict the Az values representing radiologist confidence for a targeted lesion, patient size, and dose. As an example, an abdomen pelvis exam for the GE scanner, with a task size/contrast of 5-mm/50-HU, and an Az of 0.9 requires a dose of 4.0, 8.9, and 16.9 mGy for patient diameters of 25, 30, and 35 cm, respectively. For a constant patient diameter of 30 cm, the minimum detected lesion size at those dose levels would be 8.4, 5, and 3.9 mm, respectively. Conclusion: The designed CT protocol optimization platform can be used to evaluate minimum detectability across dose levels and patient diameters. The method can be used to improve individual protocols as well as to improve protocol consistency across CT scanners.

  1. Adult stem cell theory of the multi-stage, multi-mechanism theory of carcinogenesis: role of inflammation on the promotion of initiated stem cells.

    PubMed

    Trosko, James E; Tai, Mei-Hui

    2006-01-01

    Inflammation, induced by microbial agents, radiation, endogenous or exogenous chemicals, has been associated with chronic diseases, including cancer. Since carcinogenesis has been characterized as consisting of the 'initiation', 'promotion' and 'progression' phases, the inflammatory process could affect any or all three phases. The stem cell theory of carcinogenesis has been given a revival, in that isolated human adult stem cells have been isolated and shown to be 'targets' for neoplastic transformation. Oct4, a transcription factor, has been associated with adult stem cells, as well as their immortalized and tumorigenic derivatives, but not with the normal differentiated daughters. These data are consistent with the stem cell theory of carcinogenesis. In addition, Gap Junctional Intercellular Communication (GJIC) seems to play a major role in cell growth. Inhibition of GJIC by non-genotoxic chemicals or various oncogenes seems to be the mechanism for the tumor promotion and progression phases of carcinogenesis. Many of the toxins, synthetic non-genotoxicants, and endogenous inflammatory factors have been shown to inhibit GJIC and act as tumor promoters. The inhibition of GJIC might be the mechanism by which the inflammatory process affects cancer and that to intervene during tumor promotion with anti-inflammatory factors might be the most efficacious anti-cancer strategy.

  2. ICRP Publication 131: Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological Protection.

    PubMed

    Niwa, O; Barcellos-Hoff, M H; Globus, R K; Harrison, J D; Hendry, J H; Jacob, P; Martin, M T; Seed, T M; Shay, J W; Story, M D; Suzuki, K; Yamashita, S

    2015-12-01

    This report provides a review of stem cells/progenitor cells and their responses to ionising radiation in relation to issues relevant to stochastic effects of radiation that form a major part of the International Commission on Radiological Protection's system of radiological protection. Current information on stem cell characteristics, maintenance and renewal, evolution with age, location in stem cell 'niches', and radiosensitivity to acute and protracted exposures is presented in a series of substantial reviews as annexes concerning haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. This foundation of knowledge of stem cells is used in the main text of the report to provide a biological insight into issues such as the linear-no-threshold (LNT) model, cancer risk among tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age. Knowledge of the biology and associated radiation biology of stem cells and progenitor cells is more developed in tissues that renew fairly rapidly, such as haematopoietic tissue, intestinal mucosa, and epidermis, although all the tissues considered here possess stem cell populations. Important features of stem cell maintenance, renewal, and response are the microenvironmental signals operating in the niche residence, for which a well-defined spatial location has been identified in some tissues. The identity of the target cell for carcinogenesis continues to point to the more primitive stem cell population that is mostly quiescent, and hence able to accumulate the protracted sequence of mutations necessary to result in malignancy. In addition, there is some potential for daughter progenitor cells to be target cells in particular cases, such as in haematopoietic tissue and in skin. Several biological processes could contribute to protecting stem cells from mutation accumulation: (a) accurate DNA repair; (b) rapidly induced death of injured stem cells

  3. Modelling carcinogenesis after radiotherapy using Poisson statistics: implications for IMRT, protons and ions.

    PubMed

    Jones, Bleddyn

    2009-06-01

    Current technical radiotherapy advances aim to (a) better conform the dose contours to cancers and (b) reduce the integral dose exposure and thereby minimise unnecessary dose exposure to normal tissues unaffected by the cancer. Various types of conformal and intensity modulated radiotherapy (IMRT) using x-rays can achieve (a) while charged particle therapy (CPT)-using proton and ion beams-can achieve both (a) and (b), but at greater financial cost. Not only is the long term risk of radiation related normal tissue complications important, but so is the risk of carcinogenesis. Physical dose distribution plans can be generated to show the differences between the above techniques. IMRT is associated with a dose bath of low to medium dose due to fluence transfer: dose is effectively transferred from designated organs at risk to other areas; thus dose and risk are transferred. Many clinicians are concerned that there may be additional carcinogenesis many years after IMRT. CPT reduces the total energy deposition in the body and offers many potential advantages in terms of the prospects for better quality of life along with cancer cure. With C ions there is a tail of dose beyond the Bragg peaks, due to nuclear fragmentation; this is not found with protons. CPT generally uses higher linear energy transfer (which varies with particle and energy), which carries a higher relative risk of malignant induction, but also of cell death quantified by the relative biological effect concept, so at higher dose levels the frank development of malignancy should be reduced. Standard linear radioprotection models have been used to show a reduction in carcinogenesis risk of between two- and 15-fold depending on the CPT location. But the standard risk models make no allowance for fractionation and some have a dose limit at 4 Gy. Alternatively, tentative application of the linear quadratic model and Poissonian statistics to chromosome breakage and cell kill simultaneously allows estimation of

  4. Neutrons and carcinogenesis: a cautionary tale.

    PubMed

    Hall, E J

    1996-01-01

    The best estimates for radiation induced cancer and leukemia are based on the Japanese survivors of Hiroshima and Nagasaki. With the earlier dosimetry systems of the 1960s, it was possible to drive an RBE (relative biological effectiveness) for neutrons from the Japanese data, because it was thought that there was a significant neutron dose at Hiroshima compared with Nagasaki. The estimated RBE of about 20 was consistent with laboratory estimates for oncogenic transformation in vitro and tumors in animals. The revised dosimetry of the 1980s [DS 86] essentially eliminated the neutron component at Hiroshima, and consequently removed the only neutron RBE estimate based on human data. However, recent neutron activation measurements indicate that there may indeed have been thermal neutrons at Hiroshima, and measurements of the ratio of inter- to intra-chromosomal aberrations in peripheral lymphocytes of survivors also tend to indicate that the biologically effective dose was dominated by neutrons. Another area in which the large biological effectiveness of neutrons assumes importance is the production of photoneutrons in high energy medical linear accelerators (Linacs). An increasing number of accelerators operating in the 18 to 20 MV range are coming into routine clinical use and at this energy, photoneutrons generated largely in the collimators result in a total body dose to the patient. The increased risk of second malignancies must be balanced against the slight improvement in percentage depth doses compared with more conventional machines operating at 6 to 10 MV, below the threshold for photoneutron production.

  5. Carcinogenesis and Inflammatory Effects of Plutonium-Nitrate Retention in an Exposed Nuclear Worker and Beagle Dogs.

    SciTech Connect

    Nielsen, Christopher E.; Wang, Xihai; Robinson, Robert J.; Brooks, Antone L.; Lovaglio, Jamie A.; Patton, Kristin M.; McComish, Stacey; Tolmachev, Sergei Y.; Morgan, William F.

    2014-01-01

    The genetic and inflammatory response pathways elicited following plutonium exposure in archival lung tissue of an occupationally exposed human and experimentally exposed beagle dogs were investigated. These pathways include: tissue injury, apoptosis and gene expression modifications related to carcinogenesis and inflammation. In order to determine which pathways are involved, multiple lung samples from a plutonium exposed worker (Case 0269), a human control (Case 0385), and plutonium exposed beagle dogs were examined using histological staining and immunohistochemistry. Examinations were performed to identify target tissues at risk of radiation-induced fibrosis, inflammation, and carcinogenesis. Case 0269 showed interstitial fibrosis in peripheral and subpleural regions of the lung, but no pulmonary tumors. In contrast, the dogs with similar and higher doses showed pulmonary tumors primarily in brochiolo-alveolar, peripheral and subpleural alveolar regions. The TUNEL assay showed slight elevation of apoptosis in tracheal mucosa, tumor cells, and nuclear debris was present in the inflammatory regions of alveoli and lymph nodes of both the human and the dogs. The expression of apoptosis and a number of chemokine/cytokine genes was slightly but not significantly elevated in protein or gene levels compared to that of the control samples. In the beagles, mucous production was increased in the airway epithelial goblet cells and glands of trachea, and a number of chemokine/cytokine genes showed positive immunoreactivity. This analysis of archival tissue from an accidentally exposed worker and in a large animal model provides valuable information on the effects of long-term retention of plutonium in the respiratory tract and the histological evaluation study may impact mechanistic studies of radiation carcinogenesis.

  6. Raman spectroscopy detects biomolecular changes associated with nanoencapsulated hesperetin treatment in experimental oral carcinogenesis

    NASA Astrophysics Data System (ADS)

    Gurushankar, K.; Gohulkumar, M.; Kumar, Piyush; Krishna, C. Murali; Krishnakumar, N.

    2016-03-01

    Recently it has been shown that Raman spectroscopy possesses great potential in the investigation of biomolecular changes of tumor tissues with therapeutic drug response in a non-invasive and label-free manner. The present study is designed to investigate the antitumor effect of hespertin-loaded nanoparticles (HETNPs) relative to the efficacy of native hesperetin (HET) in modifying the biomolecular changes during 7,12-dimethyl benz(a)anthracene (DMBA)-induced oral carcinogenesis using a Raman spectroscopic technique. Significant differences in the intensity and shape of the Raman spectra between the control and the experimental tissues at 1800-500 cm-1 were observed. Tumor tissues are characterized by an increase in the relative amount of proteins, nucleic acids, tryptophan and phenylalanine and a decrease in the percentage of lipids when compared to the control tissues. Further, oral administration of HET and its nanoparticulates restored the status of the lipids and significantly decreased the levels of protein and nucleic acid content. Treatment with HETNPs showed a more potent antitumor effect than treatment with native HET, which resulted in an overall reduction in the intensity of several biochemical Raman bands in DMBA-induced oral carcinogenesis being observed. Principal component and linear discriminant analysis (PC-LDA), together with leave-one-out cross validation (LOOCV) on Raman spectra yielded diagnostic sensitivities of 100%, 80%, 91.6% and 65% and specificities of 100%, 65%, 60% and 55% for classification of control versus DMBA, DMBA versus DMBA  +  HET, DMBA versus DMBA  +  HETNPs and DMBA  +  HET versus DMBA  +  HETNPs treated tissue groups, respectively. These results further demonstrate that Raman spectroscopy associated with multivariate statistical algorithms could be a valuable tool for developing a comprehensive understanding of the process of biomolecular changes, and could reveal the signatures of the

  7. Fifty years of tobacco carcinogenesis research: from mechanisms to early detection and prevention of lung cancer.

    PubMed

    Hecht, Stephen S; Szabo, Eva

    2014-01-01

    The recognition of the link between cigarette smoking and lung cancer in the 1964 Surgeon General's Report initiated definitive and comprehensive research on the identification of carcinogens in tobacco products and the relevant mechanisms of carcinogenesis. The resultant comprehensive data clearly illustrate established pathways of cancer induction involving carcinogen exposure, metabolic activation, DNA adduct formation, and consequent mutation of critical genes along with the exacerbating influences of inflammation, cocarcinogenesis, and tumor promotion. This mechanistic understanding has provided a framework for the regulation of tobacco products and for the development of relevant tobacco carcinogen and toxicant biomarkers that can be applied in cancer prevention. Simultaneously, the recognition of the link between smoking and lung cancer paved the way for two additional critical approaches to cancer prevention that are discussed here: detection of lung cancer at an early, curable stage, and chemoprevention of lung cancer. Recent successes in more precisely identifying at-risk populations and in decreasing lung cancer mortality with helical computed tomography screening are notable, and progress in chemoprevention continues, although challenges with respect to bringing these approaches to the general population exist. Collectively, research performed since the 1964 Report demonstrates unequivocally that the majority of deaths from lung cancer are preventable.

  8. Inhibitory effects of acetylsalicylic acid on exocrine pancreatic carcinogenesis.

    PubMed

    Yıldız, H; Oztas, H; Yıldız, D; Koc, A; Kalipci, E

    2013-05-01

    We investigated short (6 months) and long (12 months) term inhibitory effects of low (200 ppm) and high (400 ppm) dosages of acetylsalicylic acid (aspirin) on exocrine pancreatic carcinogenesis. It is known that exocrine pancreatic carcinogenesis can be detected by the presence of atypical acinar cell foci (AACF) in pancreas. We investigated possible inhibitory effects of acetylsalicylic acid in an azaserine-treated rat model. AACF were produced in rats by injection with azaserine according to previous studies. Our findings showed that the number, volume and diameter of pancreatic AACF were reduced after acetylsalicylic acid application. These observations suggest that acetylsalicylic acid may exert a protective effect against neoplastic development of pancreatic acinar cells in azaserine injected rats. Our findings corroborate reports in the literature concerning the effects of aspirin in reducing neoplastic development.

  9. The Thymus in Experimental Mammary Carcinogenesis and Polychemotherapy.

    PubMed

    Kazakov, O V; Kabakov, A V; Ishchenko, I Yu; Poveshchenko, A F; Raiter, T V; Strunkin, D N; Michurina, S V; Konenkov, V I

    2017-02-01

    Histological study of structural transformations in the thymus of Wistar females in induced carcinogenesis (N-methyl-N-nitrosourea injection in the right 2-nd mamma) and polychemotherapy (6 months after tumor growth initiation; cyclophosphamide, methotrexate, and 5-fluorouracyl) was carried out. The area of the cortical matter in the thymus decreased 6 months after carcinogenesis induction, the percentage of connective tissue elements and glandular tissue and the counts of immunoblasts and cells with pyknotic nuclei increased, this indicating the development of accidental involution of the thymus. Animals of the experimental tumor+chemotherapy group exhibited morphological signs of lymphocyte migration from the thymus and suppressed activities of the lymphoid and epithelial components (lesser area of connective tissue elements and glandular tissue, lesser density of parenchymatous cell elements, lesser counts of immunoblasts and small lymphocytes, and larger area of the medulla) in comparison with animals without chemotherapy.

  10. Epigenetics in metal carcinogenesis: Nickel, Arsenic, Chromium and Cadmium

    PubMed Central

    Arita, Adriana; Costa, Max

    2010-01-01

    Summary Although carcinogenic metals have been known to disrupt a wide range of cellular processes the precise mechanism by which these exert their carcinogenic effects is not known. Over the last decade or two, studies in the field of metal carcinogenesis suggest that epigenetic mechanisms may play a role in metal-induced carcinogenesis. In this review we summarize the evidence demonstrating that exposure to carcinogenic metals such as nickel, arsenic, chromium, and cadmium can perturb DNA methylation levels as well as global and gene specific histone tail posttranslational modification marks. We also wish to emphasize the importance in understanding that gene expression can be regulated by both genetic and epigenetic mechanisms and both these must be considered when studying the mechanism underlying the toxicity and cell-transforming ability of carcinogenic metals and other toxicants, and aberrant changes in gene expression that occur during disease states such as cancer. PMID:20461219

  11. Cervical Carcinogenesis and Immune Response Gene Polymorphisms: A Review

    PubMed Central

    Mooij, Merel

    2017-01-01

    The local immune response is considered a key determinant in cervical carcinogenesis after persistent infection with oncogenic, high-risk human papillomavirus (HPV) infections. Genetic variation in various immune response genes has been shown to influence risk of developing cervical cancer, as well as progression and survival among cervical cancer patients. We reviewed the literature on associations of immunogenetic single nucleotide polymorphism, allele, genotype, and haplotype distributions with risk and progression of cervical cancer. Studies on HLA and KIR gene polymorphisms were excluded due to the abundance on literature on that subject. We show that multiple genes and loci are associated with variation in risk of cervical cancer. Rather than one single gene being responsible for cervical carcinogenesis, we postulate that variations in the different immune response genes lead to subtle differences in the effectiveness of the antiviral and antitumour immune responses, ultimately leading to differences in risk of developing cervical cancer and progressive disease after HPV infection. PMID:28280748

  12. TRIM Family Proteins: Roles in Autophagy, Immunity, and Carcinogenesis.

    PubMed

    Hatakeyama, Shigetsugu

    2017-01-21

    Tripartite motif (TRIM) family proteins, most of which have E3 ubiquitin ligase activities, have various functions in cellular processes including intracellular signaling, development, apoptosis, protein quality control, innate immunity, autophagy, and carcinogenesis. The ubiquitin system is one of the systems for post-translational modifications, which play crucial roles not only as markers for degradation of target proteins by the proteasome but also as regulators of protein-protein interactions and of the activation of enzymes. Accumulating evidence has shown that TRIM family proteins have unique, important roles and that their dysregulation causes several diseases classified as cancer, immunological disease, or developmental disorders. In this review we focus on recent emerging topics on TRIM proteins in the regulation of autophagy, innate immunity, and carcinogenesis.

  13. Role of nitric oxide in genotoxicity: implication for carcinogenesis.

    PubMed

    Felley-Bosco, E

    1998-03-01

    Reactive oxygen species can initiate carcinogenesis by virtue of their capacity to react with DNA and cause mutations. Recently, it has been suggested that nitric oxide (NO) and its derivatives produced in inflamed tissues could contribute to the carcinogenesis process. Genotoxicity of NO follows its reaction with oxygen and superoxide. It can be due either to direct DNA damage or indirect DNA damage. Direct damage includes DNA base deamination, peroxynitrite-induced adducts formation and single strand breaks in the DNA. Indirect damage is due to the interaction of NO reactive species with other molecules such as amines, thiols and lipids. The efficiency of one pathway or another might depend on the cellular antioxidant status or the presence of free metals.

  14. Human somatic mutation assays as biomarkers of carcinogenesis

    SciTech Connect

    Compton, P.J.E.; Smith, M.T. ); Hooper, K. )

    1991-08-01

    This paper describes four assays that detect somatic gene mutations in humans: the hypoxanthine-guanine phosphoribosyl transferase assay, the glycophorin A assay, the HLA-A assay, and the sickle cell hemoglobin assay. Somatic gene mutations can be considered a biomarker of carcinogenesis, and assays for somatic mutation may assist epidemiologists in studies that attempt to identify factors associated with increased risks of cancer. Practical aspects of the use of these assays are discussed.

  15. Experimental Gastric Carcinogenesis in Cebus apella Nonhuman Primates

    PubMed Central

    Silva, Tanielly Cristina Raiol; Andrade Junior, Edilson Ferreira; Rezende, Alexandre Pingarilho; Carneiro Muniz, José Augusto Pereira; Lacreta Junior, Antonio Carlos Cunha; Assumpção, Paulo Pimentel; Calcagno, Danielle Queiroz; Demachki, Samia; Rabenhorst, Silvia Helena Barem; Smith, Marília de Arruda Cardoso; Burbano, Rommel Rodriguez

    2011-01-01

    The evolution of gastric carcinogenesis remains largely unknown. We established two gastric carcinogenesis models in New-World nonhuman primates. In the first model, ACP03 gastric cancer cell line was inoculated in 18 animals. In the second model, we treated 6 animals with N-methyl-nitrosourea (MNU). Animals with gastric cancer were also treated with Canova immunomodulator. Clinical, hematologic, and biochemical, including C-reactive protein, folic acid, and homocysteine, analyses were performed in this study. MYC expression and copy number was also evaluated. We observed that all animals inoculated with ACP03 developed gastric cancer on the 9th day though on the 14th day presented total tumor remission. In the second model, all animals developed pre-neoplastic lesions and five died of drug intoxication before the development of cancer. The last surviving MNU-treated animal developed intestinal-type gastric adenocarcinoma observed by endoscopy on the 940th day. The level of C-reactive protein level and homocysteine concentration increased while the level of folic acid decreased with the presence of tumors in ACP03-inoculated animals and MNU treatment. ACP03 inoculation also led to anemia and leukocytosis. The hematologic and biochemical results corroborate those observed in patients with gastric cancer, supporting that our in vivo models are potentially useful to study this neoplasia. In cell line inoculated animals, we detected MYC immunoreactivity, mRNA overexpression, and amplification, as previously observed in vitro. In MNU-treated animals, mRNA expression and MYC copy number increased during the sequential steps of intestinal-type gastric carcinogenesis and immunoreactivity was only observed in intestinal metaplasia and gastric cancer. Thus, MYC deregulation supports the gastric carcinogenesis process. Canova immunomodulator restored several hematologic measurements and therefore, can be applied during/after chemotherapy to increase the tolerability and

  16. Cell Selection as Driving Force in Lung and Colon Carcinogenesis

    PubMed Central

    Schöllnberger, Helmut; Beerenwinkel, Niko; Hoogenveen, Rudolf; Vineis, Paolo

    2011-01-01

    Carcinogenesis is the result of mutations and subsequent clonal expansions of mutated, selectively advantageous cells. To investigate the relative contributions of mutation versus cell selection in tumorigenesis, we compared two mathematical models of carcinogenesis in two different cancer types: lung and colon. One approach is based on a population genetics model, the Wright-Fisher process, whereas the other approach is the two-stage clonal expansion model. We compared the dynamics of tumorigenesis predicted by the two models in terms of the time period until the first malignant cell appears, which will subsequently form a tumor. The mean waiting time to cancer has been calculated approximately for the evolutionary colon cancer model. Here, we derive new analytic approximations to the median waiting time for the two-stage lung cancer model and for a multistage approximation to the Wright-Fisher process. Both equations show that the waiting time to cancer is dominated by the selective advantage per mutation and the net clonal expansion rate, respectively, whereas the mutation rate has less effect. Our comparisons support the idea that the main driving force in lung and colon carcinogenesis is Darwinian cell selection. PMID:20656803

  17. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation.

    PubMed

    Li, Wenjuan; Zhang, Chunjing; Ren, Amy; Li, Teena; Jin, Rong; Li, Guohong; Gu, Xin; Shi, Runhua; Zhao, Yunfeng

    2015-01-01

    The M2 isoform of pyruvate kinase M2 (PKM2) has been shown to be up-regulated in human skin cancers. To test whether PKM2 may be a target for chemoprevention, shikonin, a natural product from the root of Lithospermum erythrorhizon and a specific inhibitor of PKM2, was used in a chemically-induced mouse skin carcinogenesis study. The results revealed that shikonin treatment suppressed skin tumor formation. Morphological examinations and immunohistochemical staining of the skin epidermal tissues suggested that shikonin inhibited cell proliferation without inducing apoptosis. Although shikonin alone suppressed PKM2 activity, it did not suppress tumor promoter-induced PKM2 activation in the skin epidermal tissues at the end of the skin carcinogenesis study. To reveal the potential chemopreventive mechanism of shikonin, an antibody microarray analysis was performed, and the results showed that the transcription factor ATF2 and its downstream target Cdk4 were up-regulated by chemical carcinogen treatment; whereas these up-regulations were suppressed by shikonin. In a promotable skin cell model, the nuclear levels of ATF2 were increased during tumor promotion, whereas this increase was inhibited by shikonin. Furthermore, knockdown of ATF2 decreased the expression levels of Cdk4 and Fra-1 (a key subunit of the activator protein 1. In summary, these results suggest that shikonin, rather than inhibiting PKM2 in vivo, suppresses the ATF2 pathway in skin carcinogenesis.

  18. Molecular Genetic Changes Associated With Colorectal Carcinogenesis Are Not Prognostic for Tumor Regression Following Preoperative Chemoradiation of Rectal Carcinoma

    SciTech Connect

    Zauber, N. Peter Marotta, Steven P.; Berman, Errol; Grann, Alison; Rao, Maithili; Komati, Naga; Ribiero, Kezia; Bishop, D. Timothy

    2009-06-01

    Purpose: Preoperative chemotherapy and radiation has become the standard of care for many patients with rectal cancer. The therapy may have toxicity and delays definitive surgery. It would therefore be desirable to identify those cancers that will not regress with preoperative therapy. We assessed a series of rectal cancers for the molecular changes of loss of heterozygosity of the APC and DCC genes, K-ras mutations, and microsatellite instability, changes that have clearly been associated with rectal carcinogenesis. Methods and Materials: Diagnostic colonoscopic biopsies from 53 patients who received preoperative chemotherapy and radiation were assayed using polymerase chain reaction techniques followed by single-stranded conformation polymorphism and DNA sequencing. Regression of the primary tumor was evaluated using the surgically removed specimen. Results: Twenty-three lesions (45%) were found to have a high degree of regression. None of the molecular changes were useful as indicators of regression. Conclusions: Recognized molecular changes critical for rectal carcinogenesis including APC and DCC loss of heterozygosity, K-ras mutations, and microsatellite instability are not useful as indicators of tumor regression following chemoradiation for rectal carcinoma.

  19. (Oncogenic action of ionizing radiation)

    SciTech Connect

    Not Available

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. The carcinogenicity of energetic electrons was determined for comparison with the neon ion results. As in past reports we will describe progress in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) DNA strand breaks in the epidermis as a function of radiation penetration; (3) oncogene activation in radiation-induced rat skin cancers. 72 refs., 6 tabs.

  20. The Interplay of LncRNA-H19 and Its Binding Partners in Physiological Process and Gastric Carcinogenesis

    PubMed Central

    Zhang, Li; Zhou, Yuhang; Huang, Tingting; Cheng, Alfred S. L.; Yu, Jun; Kang, Wei; To, Ka Fai

    2017-01-01

    Long non-coding RNA (lncRNA), a novel and effective modulator in carcinogenesis, has become a study hotspot in recent years. The imprinted oncofetal lncRNA H19 is one of the first identified imprinted lncRNAs with a high expression level in embryogenesis but is barely detectable in most tissues after birth. Aberrant alterations of H19 expression have been demonstrated in various tumors, including gastric cancer (GC), implicating a crucial role of H19 in cancer progression. As one of the top malignancies in the world, GC has already become a serious concern to public health with poor prognosis. The regulatory roles of H19 in gastric carcinogenesis have been explored by various research groups, which leads to the development of GC therapy. This review comprehensively summarizes the current knowledge of H19 in tumorigenesis, especially in GC pathogenesis, with emphasis on the underneath molecular mechanisms depicted from its functional partners. Furthermore, the accumulated knowledge of H19 will provide better understanding on targeted therapy of GC. PMID:28230721

  1. The Interplay of LncRNA-H19 and Its Binding Partners in Physiological Process and Gastric Carcinogenesis.

    PubMed

    Zhang, Li; Zhou, Yuhang; Huang, Tingting; Cheng, Alfred S L; Yu, Jun; Kang, Wei; To, Ka Fai

    2017-02-20

    Long non-coding RNA (lncRNA), a novel and effective modulator in carcinogenesis, has become a study hotspot in recent years. The imprinted oncofetal lncRNA H19 is one of the first identified imprinted lncRNAs with a high expression level in embryogenesis but is barely detectable in most tissues after birth. Aberrant alterations of H19 expression have been demonstrated in various tumors, including gastric cancer (GC), implicating a crucial role of H19 in cancer progression. As one of the top malignancies in the world, GC has already become a serious concern to public health with poor prognosis. The regulatory roles of H19 in gastric carcinogenesis have been explored by various research groups, which leads to the development of GC therapy. This review comprehensively summarizes the current knowledge of H19 in tumorigenesis, especially in GC pathogenesis, with emphasis on the underneath molecular mechanisms depicted from its functional partners. Furthermore, the accumulated knowledge of H19 will provide better understanding on targeted therapy of GC.

  2. Helicobacter pylori infection, gastrin and cyclooxygenase-2 in gastric carcinogenesis.

    PubMed

    Shao, Yun; Sun, Kun; Xu, Wei; Li, Xiao-Lin; Shen, Hong; Sun, Wei-Hao

    2014-09-28

    Gastric cancer is one of the most frequent neoplasms and a main cause of death worldwide, especially in China and Japan. Numerous epidemiological, animal and experimental studies support a positive association between chronic Helicobacter pylori (H. pylori) infection and the development of gastric cancer. However, the exact mechanism whereby H. pylori causes gastric carcinogenesis remains unclear. It has been demonstrated that expression of cyclooxygenase-2 (COX-2) is elevated in gastric carcinomas and in their precursor lesions. In this review, we present the latest clinical and experimental evidence showing the role of gastrin and COX-2 in H. pylori-infected patients and their possible association with gastric cancer risk.

  3. Roles of SPARC in urothelial carcinogenesis, progression and metastasis

    PubMed Central

    Said, Neveen

    2016-01-01

    Secreted Protein Acidic and Rich in Cysteine (SPARC) is a matricellular glycoprotein that is implicated in myriad physiological and pathological conditions characterized by extensive remodeling and plasticity. The functions and disease association of SPARC in cancer is being increasingly appreciated as it plays multi-faceted contextual roles depending on the cancer type, cell of origin and the unique cancer milieu at both primary and metastatic sites. Herein we will review our current knowledge of the role of SPARC in the multistep cascades of urinary bladder carcinogenesis, progression and metastasis from preclinical models and clinical data and shine the light on its prognostic and therapeutic potentials. PMID:27564266

  4. Biological models and statistical interactions: an example from multistage carcinogenesis.

    PubMed

    Siemiatycki, J; Thomas, D C

    1981-12-01

    From the assessment of statistical interaction between risk factors it is tempting to infer the nature of the biologic interaction between the factors. However, the use of statistical analyses of epidemiologic data to infer biologic processes can be misleading. as an example, we consider the multistage model of carcinogenesis. Under this biologic model, it is shown, by means of simple hypothetical examples, that even if carcinogenic factors act independently, some pairs may fit an additive statistical model, some a multiplicative statistical model, and some neither. The elucidation of biological interactions by means of statistical models requires the imaginative and prudent use of inductive and deductive reasoning; it cannot be done mechanically.

  5. Repair of radiation damage in mammalian cells

    SciTech Connect

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis.

  6. Biologically based multistage modeling of radiation effects

    SciTech Connect

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of epidemiologic studies using multistage

  7. The Hedgehog signalling pathway in breast development, carcinogenesis and cancer therapy

    PubMed Central

    2013-01-01

    Despite the progress achieved in breast cancer screening and therapeutic innovations, the basal-like subtype of breast cancer (BLBC) still represents a particular clinical challenge. In order to make an impact on survival in this type of aggressive breast cancer, new targeted therapeutic agents are urgently needed. Aberrant activation of the Hedgehog (Hh) signalling pathway has been unambiguously tied to cancer development and progression in a variety of solid malignancies, and the recent approval of vismodegib, an orally bioavailable small-molecule inhibitor of Smoothened, validates Hh signalling as a valuable therapeutic target. A number of recent publications have highlighted a role for Hh signalling in breast cancer models and clinical specimens. Interestingly, Hh ligand overexpression is associated with the BLBC phenotype and a poor outcome in terms of metastasis and breast cancer-related death. In this review, we provide a comprehensive overview of the canonical Hh signalling pathway in mammals, highlight its roles in mammary gland development and breast carcinogenesis and discuss its potential therapeutic value in BLBC. PMID:23547970

  8. Chemically induced skin carcinogenesis: Updates in experimental models (Review)

    PubMed Central

    NEAGU, MONICA; CARUNTU, CONSTANTIN; CONSTANTIN, CAROLINA; BODA, DANIEL; ZURAC, SABINA; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.

    2016-01-01

    Skin cancer is one of the most common malignancies affecting humans worldwide, and its incidence is rapidly increasing. The study of skin carcinogenesis is of major interest for both scientific research and clinical practice and the use of in vivo systems may facilitate the investigation of early alterations in the skin and of the mechanisms involved, and may also lead to the development of novel therapeutic strategies for skin cancer. This review outlines several aspects regarding the skin toxicity testing domain in mouse models of chemically induced skin carcinogenesis. There are important strain differences in view of the histological type, development and clinical evolution of the skin tumor, differences reported decades ago and confirmed by our hands-on experience. Using mouse models in preclinical testing is important due to the fact that, at the molecular level, common mechanisms with human cutaneous tumorigenesis are depicted. These animal models resemble human skin cancer development, in that genetic changes caused by carcinogens and pro-inflammatory cytokines, and simultaneous inflammation sustained by pro-inflammatory cytokines and chemokines favor tumor progression. Drugs and environmental conditions can be tested using these animal models. keeping in mind the differences between human and rodent skin physiology. PMID:26986013

  9. Genetic background of carcinogenesis in the thyroid gland.

    PubMed

    Lewiński, Andrzej; Wojciechowska, Katarzyna

    2007-04-01

    The process of carcinogenesis is permanently one of the most interesting and significant issues for researchers in different fields of medicine. Therefore, we attempted to bring closer the problem of neoplastic transformation in the thyroid gland. This article covers the latest data about genetic factors, involved in thyroid carcinogenesis. We have presented results of the most recent studies referred to molecular biology of thyroid neoplasms. We have demonstrated not only the genetic background of cancers, derived from the thyroid follicular cell, but also genetic aspects related to medullary thyroid carcinoma and some benign thyroid lesions. The review describes DNA methylation disturbances and the mutations in thyrotropin receptor and G protein genes. Furthermore, we introduce the results of studies performed at our laboratory, concerning mutations in the following protooncogenes: RAS, RET, Trk, MET, and BRAF. Also, we present our data, regarding the loss of heterozygosity (LOH) in the short arm of chromosome 3. Additionally, we discuss overexpression of cyclin D1 gene in benign and malignant thyroid lesions. Previous studies performed at our laboratory indicate the role of IGF-I in the pathogenesis and invasiveness of thyroid cancers. The review indicates that progress in genetics of the thyroid cancer is extremely rapid.

  10. Sewage sludge does not induce genotoxicity and carcinogenesis.

    PubMed

    Silva, Paula Regina Pereira; Barbisan, Luis Fernando; Dagli, Maria Lúcia Zaidan; Saldiva, Paulo Hilário Nascimento

    2012-07-01

    Through a series of experiments, the genotoxic/mutagenic and carcinogenic potential of sewage sludge was assessed. Male Wistar rats were randomly assigned to four groups: Group 1 - negative control; Group 2 - liver carcinogenesis initiated by diethylnitrosamine (DEN; 200 mg/kg i.p.); Group 3 and G4-liver carcinogenesis initiated by DEN and fed 10,000 ppm or 50,000 ppm of sewage sludge. The animals were submitted to a 70% partial hepatectomy at the 3(rd) week. Livers were processed for routine histological analysis and immunohistochemistry, in order to detect glutathione S-transferase positive altered hepatocyte foci (GST-P(+) AHF). Peripheral blood samples for the comet assay were obtained from the periorbital plexus immediately prior to sacrificing. Polychromatic erythrocytes (PCEs) were analyzed in femoral bone-marrow smears, and the frequencies of those micronucleated (MNPCEs) registered. There was no sewage-sludge-induced increase in frequency of either DNA damage in peripheral blood leucocytes, or MNPCEs in the femoral bone marrow. Also, there was no increase in the levels of DNA damage, in the frequency of MNPCEs, and in the development of GST-P AHF when compared with the respective control group.

  11. Oncogenic mechanisms of HOXB13 missense mutations in prostate carcinogenesis

    PubMed Central

    Cardoso, Marta; Maia, Sofia; Paulo, Paula; Teixeira, Manuel R.

    2016-01-01

    The recurrent germline mutation HOXB13 p.(Gly84Glu) (G84E) has recently been identified as a risk factor for prostate cancer. In a recent study, we have performed full sequencing of the HOXB13 gene in 462 Portuguese prostate cancer patients with early-onset and/or familial/hereditary disease, and identified two novel missense mutations, p.(Ala128Asp) (A128D) and p.(Phe240Leu) (F240L), that were predicted to be damaging to protein function. In the present work we aimed to investigate the potential oncogenic role of these mutations, comparing to that of the recurrent G84E mutation and wild-type HOXB13. We induced site-directed mutagenesis in a HOXB13 expression vector and established in vitro cell models of prostate carcinogenesis with stable overexpression of either the wild-type or the mutated HOXB13 variants. By performing in vitro assays we observed that, while the wild-type promotes proliferation, also observed with the F240L variant along with a decrease in apoptosis, the A128D mutation decreases apoptosis and promotes anchorage independent growth. No phenotypic impact was observed for the G84E mutation in the cell line model used. Our data show that specific HOXB13 mutations are involved in the acquisition of different cancer-associated capabilities and further support an oncogenic role for HOXB13 in prostate carcinogenesis. PMID:28050579

  12. Small non-coding RNA deregulation in endometrial carcinogenesis

    PubMed Central

    Ravo, Maria; Cordella, Angela; Rinaldi, Antonio; Bruno, Giuseppina; Alexandrova, Elena; Saggese, Pasquale; Nassa, Giovanni; Giurato, Giorgio; Tarallo, Roberta; Marchese, Giovanna; Rizzo, Francesca; Stellato, Claudia; Biancardi, Rossella; Troisi, Jacopo; Di Spiezio Sardo, Attilio; Zullo, Fulvio; Weisz, Alessandro; Guida, Maurizio

    2015-01-01

    Small non-coding RNAs (sncRNAs) represent a heterogeneous group of <200nt-long transcripts comprising microRNAs, PIWI-interacting RNAs (piRNAs) and small-nucleolar-RNAs (snoRNAs) involved in physiological and pathological processes such as carcinogenesis and tumor progression. Aberrant sncRNA expression in cancer has been associated with specific clinical phenotypes, grading, staging, metastases development and resistance to therapy. Aim of the present work is to study the role of sncRNAs in endometrial carcinogenesis. Changes in sncRNA expression were identified by high-throughput genomic analysis of paired normal, hyperplastic and cancerous endometrial tissues obtained by endometrial biopsies (n = 10). Using smallRNA sequencing and microarrays we identified significant differences in sncRNA expression pattern between normal, hyperplastic and neoplastic endometrium. This led to the definition of a sncRNA signature (129 microRNAs, 2 of which not previously described, 10 piRNAs and 3 snoRNAs) of neoplastic transformation. Functional bioinformatics analysis identified as downstream targets multiple signaling pathways potentially involved in the hyperplastic and neoplastic tissue responses, including Wnt/β-catenin, and ERK/MAPK and TGF-β-Signaling. Considering the regulatory role of sncRNAs, this newly identified sncRNA signature is likely to reflect the events leading to endometrial cancer, which can be exploited to dissect the carcinogenic process including novel biomarkers for early and non-invasive diagnosis of these tumors. PMID:25686835

  13. What gastric cancer proteomic studies show about gastric carcinogenesis?

    PubMed

    Leal, Mariana Ferreira; Wisnieski, Fernanda; de Oliveira Gigek, Carolina; do Santos, Leonardo Caires; Calcagno, Danielle Queiroz; Burbano, Rommel Rodriguez; Smith, Marilia Cardoso

    2016-08-01

    Gastric cancer is a complex, heterogeneous, and multistep disease. Over the past decades, several studies have aimed to determine the molecular factors that lead to gastric cancer development and progression. After completing the human genome sequencing, proteomic technologies have presented rapid progress. Differently from the relative static state of genome, the cell proteome is dynamic and changes in pathologic conditions. Proteomic approaches have been used to determine proteome profiles and identify differentially expressed proteins between groups of samples, such as neoplastic and nonneoplastic samples or between samples of different cancer subtypes or stages. Therefore, proteomic technologies are a useful tool toward improving the knowledge of gastric cancer molecular pathogenesis and the understanding of tumor heterogeneity. This review aimed to summarize the proteins or protein families that are frequently identified by using high-throughput screening methods and which thus may have a key role in gastric carcinogenesis. The increased knowledge of gastric carcinogenesis will clearly help in the development of new anticancer treatments. Although the studies are still in their infancy, the reviewed proteins may be useful for gastric cancer diagnosis, prognosis, and patient management.

  14. [THE ROLE OF ESTROGENS IN THE CARCINOGENESIS OF LUNG CANCER].

    PubMed

    Uchikova, E; Uchikov, A; Dimitrakova, E; Uchikov, P

    2016-01-01

    Morbidity and mortality from lung cancer has dramatically increased in women as compared to men over the past few years. Historically, smoking has been considered the major risk factor for lung cancer regardless of gender. Several recent lines of evidence implicate gender differences in the observed differences in prevalence and histologic type which cannot be explained based on the carcinogenic action of nicotine. Several recent studies underscore the importance of reproductive and hormonal factors in the carcinogenesis of lung cancer Lung cancer morbidity and mortality in Bulgaria was 16.2/100000 women and 14.6/ 100000 women, resp. Lung cancer morbidity in Europe was 39/100000 women. Lung cancer is extremely sensitive to estrogens. The latter act directly or as effect modifiers for the relationship between smoking and lung cancer. Further research examining the relationship between serum estrogen levels and the estrogen receptor expression in normal and tumor lung tissue samples can help elucidate the importance of reproductive and hormonal (exogenous and endogenous) factors in the carcinogenesis of lung cancer.

  15. Langerhans Cells Facilitate UVB-induced Epidermal Carcinogenesis

    PubMed Central

    Lewis, Julia M.; Bürgler, Christina D.; Freudzon, Marianna; Golubets, Kseniya; Gibson, Juliet F.; Filler, Renata B.; Girardi, Michael

    2015-01-01

    Ultraviolet B (UVB) light is considered the major environmental inducer of human keratinocyte DNA mutations, including within the tumor-suppressor gene p53, and chronic exposure is associated with cutaneous squamous cell carcinoma (SCC) formation. Langerhans cells (LC) comprise a dendritic network within the suprabasilar epidermis, yet the role of LC in UVB-induced carcinogenesis is largely unknown. Herein, we show that LC-intact epidermis develops UVB-induced tumors more readily than LC-deficient epidermis. While levels of epidermal cyclopyrimidine dimers (CPD) following acute UVB exposure are equivalent in the presence or absence of LC, chronic UVB-induced p53 mutant clonal islands expand more readily in association with LC which remain largely intact and are preferentially found in proximity to the expanding mutant keratinocyte populations. The observed LC facilitation of mutant p53 clonal expansion is completely αβ and γδ T-cell independent, and is associated with increased intraepidermal expression of interleukin (IL)-22 and the presence of group 3 innate lymphoid cells (ILC3). These data demonstrate that LC play a key role in UVB-induced cutaneous carcinogenesis, and suggest that LC locally stimulate keratinocyte proliferation and innate immune cells that provoke tumor outgrowth. PMID:26053049

  16. Glutaminolysis and carcinogenesis of oral squamous cell carcinoma.

    PubMed

    Cetindis, Marcel; Biegner, Thorsten; Munz, Adelheid; Teriete, Peter; Reinert, Siegmar; Grimm, Martin

    2016-02-01

    Glutaminolysis is a crucial factor for tumor metabolism in the carcinogenesis of several tumors but has not been clarified for oral squamous cell carcinoma (OSCC) yet. Expression of glutaminolysis-related solute carrier family 1, member 5 (SLC1A5)/neutral amino acid transporter (ASCT2), glutaminase (GLS), and glutamate dehydrogenase (GLDH) was analyzed in normal oral mucosa (n = 5), oral precursor lesions (simple hyperplasia, n = 11; squamous intraepithelial neoplasia, SIN I-III, n = 35), and OSCC specimen (n = 42) by immunohistochemistry. SLC1A5/ASCT2 and GLS were significantly overexpressed in the carcinogenesis of OSCC compared with normal tissue, while GLDH was weakly detected. Compared with SIN I-III SLC1A5/ASCT2 and GLS expression were significantly increased in OSCC. GLDH expression did not significantly differ from SIN I-III compared with OSCC. This study shows the first evidence of glutaminolysis-related SLC1A5/ASCT2, GLS, and GLDH expression in OSCC. The very weak GLDH expression indicates that glutamine metabolism is rather related to nucleotide or protein/hexosamine biosynthesis or to the function as an antioxidant (glutathione) than to energy production or generation of lactate through entering the tricarboxylic acid cycle. Overcoming glutaminolysis by targeting c-Myc oncogene (e.g. by natural compounds) and thereby cross-activation of mammalian target of rapamycin complex 1 or SLC1A5/ASCT2, GLS inhibitors may be a useful strategy to sensitize cancer cells to common OSCC cancer therapies.

  17. Sewage sludge does not induce genotoxicity and carcinogenesis

    PubMed Central

    Silva, Paula Regina Pereira; Barbisan, Luis Fernando; Dagli, Maria Lúcia Zaidan; Saldiva, Paulo Hilário Nascimento

    2012-01-01

    Through a series of experiments, the genotoxic/mutagenic and carcinogenic potential of sewage sludge was assessed. Male Wistar rats were randomly assigned to four groups: Group 1 - negative control; Group 2 - liver carcinogenesis initiated by diethylnitrosamine (DEN; 200 mg/kg i.p.); Group 3 and G4-liver carcinogenesis initiated by DEN and fed 10,000 ppm or 50,000 ppm of sewage sludge. The animals were submitted to a 70% partial hepatectomy at the 3rd week. Livers were processed for routine histological analysis and immunohistochemistry, in order to detect glutathione S-transferase positive altered hepatocyte foci (GST-P+ AHF). Peripheral blood samples for the comet assay were obtained from the periorbital plexus immediately prior to sacrificing. Polychromatic erythrocytes (PCEs) were analyzed in femoral bone-marrow smears, and the frequencies of those micronucleated (MNPCEs) registered. There was no sewage-sludge-induced increase in frequency of either DNA damage in peripheral blood leucocytes, or MNPCEs in the femoral bone marrow. Also, there was no increase in the levels of DNA damage, in the frequency of MNPCEs, and in the development of GST-P AHF when compared with the respective control group. PMID:23055806

  18. Viral Carcinogenesis: Factors Inducing DNA Damage and Virus Integration

    PubMed Central

    Chen, Yan; Williams, Vonetta; Filippova, Maria; Filippov, Valery; Duerksen-Hughes, Penelope

    2014-01-01

    Viruses are the causative agents of 10%–15% of human cancers worldwide. The most common outcome for virus-induced reprogramming is genomic instability, including accumulation of mutations, aberrations and DNA damage. Although each virus has its own specific mechanism for promoting carcinogenesis, the majority of DNA oncogenic viruses encode oncogenes that transform infected cells, frequently by targeting p53 and pRB. In addition, integration of viral DNA into the human genome can also play an important role in promoting tumor development for several viruses, including HBV and HPV. Because viral integration requires the breakage of both the viral and the host DNA, the integration rate is believed to be linked to the levels of DNA damage. DNA damage can be caused by both endogenous and exogenous factors, including inflammation induced by either the virus itself or by co-infections with other agents, environmental agents and other factors. Typically, cancer develops years to decades following the initial infection. A better understanding of virus-mediated carcinogenesis, the networking of pathways involved in transformation and the relevant risk factors, particularly in those cases where tumorigenesis proceeds by way of virus integration, will help to suggest prophylactic and therapeutic strategies to reduce the risk of virus-mediated cancer. PMID:25340830

  19. Prevention of colon carcinogenesis by components of dietary fiber.

    PubMed

    Reddy, B S

    1999-01-01

    Cancer of the colon is one of the leading causes of cancer death in Western countries and is increasing rapidly in Japan. Epidemiological and laboratory animal model studies have suggested an inverse relationship between colon cancer risk and intake of fiber-rich foods. The protective effect of dietary fiber which comprises a heterogeneous group of nonstarch polysaccharides such as cellulose, hemicellulose, and pectin and noncarbohydrate substances such as phytic acid depends on the nature and source of fiber in the diet. Laboratory animal models have consistently shown that dietary administration of wheat bran reduced colon tumorigenesis. Human diet intervention studies have demonstrated that supplemental wheat bran in the diet decreased the formation of putative metabolites such as secondary bile acids and diacylglycerol in the colon that have been shown to act as tumor promoters in the colon. Among the components of dietary fiber, especially wheat bran, phytic acid (inositol hexaphosphate) has been studied extensively for its chemopreventive properties against colon carcinogenesis in the laboratory animal models. In studies carried out to date, dietary phytic acid reduced the incidence of colonic aberrant crypt foci, putative preneoplastic lesions in rats. Oral administration of phytic acid was shown to inhibit colon carcinogenesis in rodents during the initiation and postinitiation stages. These studies provide evidence for potential chemopreventive properties of phytic acid against colon cancer. With regard to mode of action, phytic acid acts as an antioxidant, to reduce the rate of cell proliferation and to augment the immune response by enhancing the activity of natural killer (NK) cells.

  20. Role of the chronic bacterial infection in urinary bladder carcinogenesis

    SciTech Connect

    Higgy, N.A.

    1985-01-01

    The purpose of this thesis was to determine whether or not bacterial infection of the urinary bladder had a role in urinary bladder carcinogenesis. To investigate this proposition, four separate studies were conducted. The first study developed an experimental animal model where bacterial infection of the urinary bladder could be introduced and maintained for a period in excess of one year. The method of infection, inoculation of bacteria (Escherichia coli type 04) subserosally into the vesical wall, successfully caused persistent infection in the majority of animals. In the second study the temporal effects of bacterial infection on the induction of urothelial ornithine decarboxylase (ODC) and /sup 3/H-thymidine uptake and DNA synthesis were examined. Bacterial infection of the urinary bladder induced urothelial ODC with a peak in enzyme activity 6 hr after infection./sup 3/H-Thymidine uptake and DNA synthesis peaked 48 hr after infection and coincided with the urothelial hyperplasia that occurred in response to the infection. In the third study the specific bladder carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) was given to rats concurrent with the urinary bacterial infection. In the fourth study rats were administered sodium nitrate and either dibutylamine or piperazine in the drinking water. The infected group developed bladder tumors while none were detected in the non-infected rats. From these studies it may be concluded that bacterial infection may have a significant role in the process of urinary bladder carcinogenesis.

  1. Radiation and the Microenvironment - Tumorigenesis andTherapy

    SciTech Connect

    Barcellos-Hoff, Mary Helen; Park, Catherine; Wright, Eric G.

    2005-10-01

    Radiation rapidly and persistently alters the soluble and insoluble components of the tissue microenvironment. This affects the cell phenotype, tissue composition and the physical interactions and signaling between cells. These alterations in the microenvironment can contribute to carcinogenesis and alter the tissue response to anticancer therapy. Examples of these responses and their implications are discussed with a view to therapeutic intervention.

  2. Deletion of epidermal Rac1 inhibits HPV-8 induced skin papilloma formation and facilitates HPV-8- and UV-light induced skin carcinogenesis.

    PubMed

    Deshmukh, Jayesh; Pofahl, Ruth; Pfister, Herbert; Haase, Ingo

    2016-09-06

    Overexpression and increased activity of the small Rho GTPase Rac1 has been linked to squamous cell carcinoma of the epidermis and mucosa in humans. Targeted deletion of Rac1 or inhibition of Rac1 activity in epidermal keratinocytes reduced papilloma formation in a chemical skin carcinogenesis mouse model. However, a potential role of Rac1 in HPV- and UV-light induced skin carcinogenesis has not been investigated so far, solar UV radiation being an important carcinogen to the skin.To investigate this, we deleted Rac1 or modulated its activity in mice with transgenic expression of Human papilloma virus type-8 (HPV-8) in epidermal keratinocytes. Our data show that inhibition or deletion of Rac1 results in reduced papilloma formation upon UV-irradiation with a single dose, whereas constitutive activation of Rac1 strongly increases papilloma frequency in these mice. Surprisingly, we observed that, upon chronic UV-irradiation, the majority of mice with transgenic expression of HPV-8 and epidermis specific Rac1 deletion developed squamous cell carcinomas. Taken together, our data show that Rac1 exerts a dual role in skin carcinogenesis: its activation is, on one hand, required for HPV-8- and UV-light induced papilloma formation but, on the other, suppresses the development of squamous cell carcinomas.

  3. Deletion of epidermal Rac1 inhibits HPV-8 induced skin papilloma formation and facilitates HPV-8- and UV-light induced skin carcinogenesis

    PubMed Central

    Deshmukh, Jayesh; Pofahl, Ruth; Pfister, Herbert; Haase, Ingo

    2016-01-01

    Overexpression and increased activity of the small Rho GTPase Rac1 has been linked to squamous cell carcinoma of the epidermis and mucosa in humans. Targeted deletion of Rac1 or inhibition of Rac1 activity in epidermal keratinocytes reduced papilloma formation in a chemical skin carcinogenesis mouse model. However, a potential role of Rac1 in HPV- and UV-light induced skin carcinogenesis has not been investigated so far, solar UV radiation being an important carcinogen to the skin. To investigate this, we deleted Rac1 or modulated its activity in mice with transgenic expression of Human papilloma virus type-8 (HPV-8) in epidermal keratinocytes. Our data show that inhibition or deletion of Rac1 results in reduced papilloma formation upon UV-irradiation with a single dose, whereas constitutive activation of Rac1 strongly increases papilloma frequency in these mice. Surprisingly, we observed that, upon chronic UV-irradiation, the majority of mice with transgenic expression of HPV-8 and epidermis specific Rac1 deletion developed squamous cell carcinomas. Taken together, our data show that Rac1 exerts a dual role in skin carcinogenesis: its activation is, on one hand, required for HPV-8- and UV-light induced papilloma formation but, on the other, suppresses the development of squamous cell carcinomas. PMID:27506937

  4. Analysis of the incidence of solid cancer among atomic bomb survivors using a two-stage model of carcinogenesis.

    PubMed

    Kai, M; Luebeck, E G; Moolgavkar, S H

    1997-10-01

    A two-stage stochastic model for carcinogenesis was used to analyze the incidence of cancer of the lung, stomach and colon in the cohort of atomic bomb survivors. We fitted the model assuming that acute exposure to radiation results in the creation of initiated cells that are added to the pool of spontaneously initiated cells. In the cancers analyzed, with the exception of lung cancer in females, we found no evidence that radiation-induced initiation was dependent upon age at exposure. In contrast, we found that spontaneous initiation was dependent upon age at exposure in the cancers analyzed except stomach cancer among males. Because exposure to radiation in this cohort occurred at the same time for all members of the cohort, age at exposure is exactly correlated with birth cohort, and the dependence of spontaneous initiation on age at exposure is a reflection of the cohort effects seen in these cancers in Japan. Even without a dependence of radiation-induced initiation on age at exposure, the two-stage model can explain the temporal behavior of the excess relative risk with age at exposure and time since exposure. In particular, the model predicts that excess relative risk is highest among those exposed as children. Moreover, since radiation-induced initiation is not higher among those exposed as children, the excess relative risk in this group is not due to an inherently higher sensitivity to radiation. Our biologically based approach provides another perspective on the temporal behavior of risk after acute exposure to ionizing radiation.

  5. Animal models of chemical carcinogenesis: driving breakthroughs in cancer research for 100 years

    PubMed Central

    Kemp, Christopher J.

    2016-01-01

    Chemical carcinogenesis studies in animals have directly contributed to a reduction of cancer burden in the human population through their ability to identify carcinogens from the workplace, diet, and environment. Reduced exposure to these carcinogens through lifestyle changes, government regulation, or change in industry practices has reduced cancer incidence in exposed populations. In addition to providing the first experimental evidence for the link between chemical and radiation exposure and cancer, animal models of environmentally induced cancer have and will continue to provide important insight into the causes, mechanisms, and conceptual frameworks of cancer. More recently, combining chemical carcinogens with genetically engineered mouse models (GEMMs) has emerged as an invaluable approach to study the complex interaction between genotype and environment that contributes to cancer development. In the future, animal models of environmentally induced cancer are likely to provide insight into areas such as the epigenetic basis of cancer, genetic modifiers of cancer susceptibility, the systems biology of cancer, inflammation and cancer, and cancer prevention. PMID:26430259

  6. Enhancement of chemical carcinogenesis in mice by systemic effects of ultraviolet irradiation.

    PubMed

    Gensler, H L

    1988-02-01

    The present study was designed to determine the systemic influence of ultraviolet (UVB) irradiation upon subsequent carcinogenesis induced by benzo(a)pyrene. The source of UV irradiation consisted of six Westinghouse FS-40 fluorescent sunlamps. Female BALB/c mice received five 30-min dorsal UVB radiation treatments per week for 13 wk. At the end of 13 wk, irradiated and unirradiated mice received ventral applications of 0.1 or 1.0 mg of benzo(a)pyrene twice weekly for 20 or 10 wk, respectively. At 18 wk after the first benzo(a)pyrene treatment, mice receiving 0-, 0.1-, or 1.0-mg benzo(a)pyrene treatments bore 0, 12, or 29 tumors per group of 18 mice, respectively. Tumor-free survival was significantly shortened in the UV-irradiated hosts as compared with unirradiated hosts, as analyzed by the Kaplan-Meier method of survival analysis. Therefore, ultraviolet irradiation induced a systemic effect which enhanced subsequent tumor induction by benzo(a)pyrene in a manner which was dependent on the dose of benzo(a)pyrene.

  7. Fish models for environmental carcinogenesis: the rainbow trout.

    PubMed Central

    Bailey, G S; Williams, D E; Hendricks, J D

    1996-01-01

    Progress over the past 30 years has revealed many strengths of the rainbow trout as an alternative model for environmental carcinogenesis research. These include low rearing costs, an early life-stage ultrasensitive bioassay, sensitivity to many classes of carcinogen, a well-described tumor pathology, responsiveness to tumor promoters and inhibitors, and a mechanistically informative nonmammalian comparative status. Low-cost husbandry, for example, has permitted statistically challenging tumor study designs with up to 10,000 trout to investigate the quantitative interrelationships among carcinogen dose, anticarcinogen dose, DNA adduct formation, and final tumor outcome. The basic elements of the trout carcinogen bioassay include multiple exposure routes, carcinogen response, husbandry requirements, and pathology. The principal known neoplasms occur in liver (mixed hepatocellular/cholangiocellular adenoma and carcinoma, hepatocellular carcinoma), kidney (nephroblastoma), swim bladder (adenopapilloma), and stomach (adenopapilloma). Trout possess a complex but incompletely characterized array of cytochromes P450, transferases, and other enzymic systems for phase I and phase II procarcinogen metabolism. In general, trout exhibit only limited capacity for DNA repair, especially for removal of bulky DNA adducts. This factor, together with a high capacity for P450 bioactivation and negligible glutathione transferase-mediated detoxication of the epoxide, accounts for the exceptional sensitivity of trout to aflatoxin B1 carcinogenesis. At the gene level, all trout tumors except nephroblastoma exhibit variable and often high incidences of oncogenic Ki-ras gene mutations. Mutations in the trout p53 tumor suppressor gene have yet to be described. There are many aspects of the trout model, especially the lack of complete organ homology, that limit its application as a surrogate for human cancer research. Within these limitations, however, it is apparent that trout and other

  8. Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses

    PubMed Central

    Rana, Sudha; Kumar, Raj; Sultana, Sarwat; Sharma, Rakesh Kumar

    2010-01-01

    Radiation incident involving living organisms is an uncommon but a very serious situation. The first step in medical management including triage is high-throughput assessment of the radiation dose received. Radiation exposure levels can be assessed from viability of cells, cellular organelles such as chromosome and different intermediate metabolites. Oxidative damages by ionizing radiation result in carcinogenesis, lowering of the immune response and, ultimately, damage to the hematopoietic system, gastrointestinal system and central nervous system. Biodosimetry is based on the measurement of the radiation-induced changes, which can correlate them with the absorbed dose. Radiation biomarkers such as chromosome aberration are most widely used. Serum enzymes such as serum amylase and diamine oxidase are the most promising biodosimeters. The level of gene expression and protein are also good biomarkers of radiation. PMID:21829314

  9. Establishing the Role of PPARβ/δ in Carcinogenesis.

    PubMed

    Peters, Jeffrey M; Gonzalez, Frank J; Müller, Rolf

    2015-11-01

    The role of the nuclear hormone receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in carcinogenesis is controversial because conflicting studies indicate that it both inhibits and promotes tumorigenesis. In this review, we focus on recent studies on PPARβ/δ including the significance of increased or decreased PPARβ/δ expression in cancers; a range of opposing mechanisms describing how PPARβ/δ agonists, antagonists, and inverse agonists regulate tumorigenesis and/or whether there may be cell context-specific mechanisms; and whether activating or inhibiting PPARβ/δ is feasible for cancer chemoprevention and/or therapy. Research questions that need to be addressed are highlighted to establish whether PPARβ/δ can be effectively targeted for cancer chemoprevention.

  10. NOTCH1 mutations occur early during cutaneous squamous cell carcinogenesis

    PubMed Central

    South, Andrew P; Purdie, Karin J; Watt, Stephen A; Haldenby, Sam; den Breems, Nicoline; Dimon, Michelle; Arron, Sarah T; Kluk, Michael J; Aster, Jon C; McHugh, Angela; Xue, Dylan J; Dayal, Jasbani HS; Robinson, Kim S; Rizvi, SM Hasan

    2014-01-01

    Cutaneous SCC (cSCC) is the most frequent skin cancer with metastatic potential and can manifest rapidly as a common side effect in patients receiving systemic kinase inhibitors. Here we use massively parallel exome and targeted level sequencing 132 sporadic cSCC, 39 squamoproliferative lesions and cSCC arising in patients receiving the BRAF inhibitor vemurafenib, as well as 10 normal skin samples to identify significant NOTCH1 mutation as an early event in squamous cell carcinogenesis. Bisected vemurafenib induced lesions revealed surprising heterogeneity with different activating HRAS and NOTCH1 mutations identified in two halves of the same cSCC suggesting polyclonal origin. Immunohistochemical analysis using an antibody specific to nuclear NOTCH1 correlates with mutation status in sporadic cSCC and regions of NOTCH1 loss or down-regulation are frequently observed in normal looking skin. Our data indicate that NOTCH1 acts as a gatekeeper in human cSCC. PMID:24662767

  11. Mouse models for the study of colon carcinogenesis

    PubMed Central

    Rosenberg, Daniel W.; Giardina, Charles; Tanaka, Takuji

    2009-01-01

    The study of experimental colon carcinogenesis in rodents has a long history, dating back almost 80 years. There are many advantages to studying the pathogenesis of carcinogen-induced colon cancer in mouse models, including rapid and reproducible tumor induction and the recapitulation of the adenoma–carcinoma sequence that occurs in humans. The availability of recombinant inbred mouse panels and the existence of transgenic, knock-out and knock-in genetic models further increase the value of these studies. In this review, we discuss the general mechanisms of tumor initiation elicited by commonly used chemical carcinogens and how genetic background influences the extent of disease. We will also describe the general features of lesions formed in response to carcinogen treatment, including the underlying molecular aberrations and how these changes may relate to the pathogenesis of human colorectal cancer. PMID:19037092

  12. Thymus in experimental carcinogenesis of the prostate gland.

    PubMed

    Borodin, Yu I; Lomshakov, A A; Astashov, V V; Kazakov, O V; Mayorov, A P; Larionov, P M

    2014-10-01

    We studied structural changes in the prostate gland, thymus, and lymph nodes in CBA mice after transplantation of Ehrlich ascites tumor cells into the prostate gland. On experimental day 5, the number of blood and lymph vessels decreased in the gland; the percentage of connective tissue elements and glandular tissue and the number of immunoblasts in the thymus increased. On day 18, the number of blood vessels in the tumor decreased; the width of the cortex and glandular tissue increased in the thymus, while the number of immunoblasts was reduced. On day 28, tumor infiltration and increased number of lymphatic vessels in its stroma were observed; parenchyma was reduced, and the area of the connective tissue increased in the thymus. These structural changes indicated the development of accidental involution of the thymus during carcinogenesis of the prostate.

  13. Growth-related alterations during liver carcinogenesis: Effect of promoters

    SciTech Connect

    Seglen, P.O.; Gerlyng, P. )

    1990-08-01

    Bromodeoxyuridine labeling of DNA, binuclearity counting, and flow cytometric analysis of isolated hepatocytes and hepatocyte nuclei has been used to assess heptocellular growth patterns related to liver carcinogenesis. Three growth patterns can be distinguished. Mononucleating growth is observed during liver regeneration and after treatment with the tumor promoter 2-acetylaminofluorene (2-AAF) and its analogue 4-AAF. In this growth mode binucleation does not occur, resulting in a decrease in the fraction of binucleated cells. Binucleating growth is observed during normal liver development and after treatment with compounds such as phenobarbital, characterized by progressive polyploidization and maintenance of a binucleated cell fraction. Diploid growth is the growth pattern of neoplastic liver hepatocytes. Most of the cells in neoplastic lesions (foci, nodules, and carcinomas) are diploid, in contrast to the normal liver. Diploid tumor cells have a much higher proliferative activity than tetraploid tumor cells, suggesting that the latter may posses a limited growth potential that makes abrogation of binucleation proliferatively advantageous.

  14. Role of oxidative stress in cadmium toxicity and carcinogenesis

    SciTech Connect

    Liu Jie Qu Wei; Kadiiska, Maria B.

    2009-08-01

    Cadmium (Cd) is a toxic metal, targeting the lung, liver, kidney, and testes following acute intoxication, and causing nephrotoxicity, immunotoxicity, osteotoxicity and tumors after prolonged exposures. Reactive oxygen species (ROS) are often implicated in Cd toxicology. This minireview focused on direct evidence for the generation of free radicals in intact animals following acute Cd overload and discussed the association of ROS in chronic Cd toxicity and carcinogenesis. Cd-generated superoxide anion, hydrogen peroxide, and hydroxyl radicals in vivo have been detected by the electron spin resonance spectra, which are often accompanied by activation of redox sensitive transcription factors (e.g., NF-{kappa}B, AP-1 and Nrf2) and alteration of ROS-related gene expression. It is generally agreed upon that oxidative stress plays important roles in acute Cd poisoning. However, following long-term Cd exposure at environmentally-relevant low levels, direct evidence for oxidative stress is often obscure. Alterations in ROS-related gene expression during chronic exposures are also less significant compared to acute Cd poisoning. This is probably due to induced adaptation mechanisms (e.g., metallothionein and glutathione) following chronic Cd exposures, which in turn diminish Cd-induced oxidative stress. In chronic Cd-transformed cells, less ROS signals are detected with fluorescence probes. Acquired apoptotic tolerance renders damaged cells to proliferate with inherent oxidative DNA lesions, potentially leading to tumorigenesis. Thus, ROS are generated following acute Cd overload and play important roles in tissue damage. Adaptation to chronic Cd exposure reduces ROS production, but acquired Cd tolerance with aberrant gene expression plays important roles in chronic Cd toxicity and carcinogenesis.

  15. Chemopreventive potential of zinc in experimentally induced colon carcinogenesis.

    PubMed

    Dani, Vijayta; Goel, Ajay; Vaiphei, K; Dhawan, D K

    2007-06-15

    The present study was performed to evaluate the efficacy of zinc treatment on colonic antioxidant defense system and histoarchitecture in 1,2-dimethylhydrazine- (DMH) induced colon carcinogenesis in male Sprague-Dawley rats. The rats were segregated into four groups viz., normal control, DMH treated, zinc treated, DMH+zinc treated. Colon carcinogenesis was induced through weekly subcutaneous injections of DMH (30 mg/kg body weight) for 16 weeks. Zinc (in the form of zinc sulphate) was supplemented to rats at a dose level of 227 mg/L in drinking water, ad libitum for the entire duration of the study. Increased tumor incidence, tumor size and number of aberrant crypt foci (ACF) were accompanied by a decrease in lipid peroxidation, glutathione-S-transferase, superoxide dismutase (SOD) and catalase. On the contrary, significantly increased levels of reduced glutathione (GSH) and glutathione reductase (GR) were observed in DMH treated rats. Administration of zinc to DMH treated rats significantly decreased the tumor incidence, tumor size and aberrant crypt foci number with simultaneous enhancement of lipid peroxidation, SOD, catalase and glutathione-S-transferase. Further, the levels of GSH and GR were also decreased following zinc supplementation to DMH treated rats. Well-differentiated signs of dysplasia were evident in colonic tissue sections by DMH administration alone. However, zinc treatment to DMH treated rats greatly restored normalcy in the colonic histoarchitecture, with no apparent signs of neoplasia. EDXRF studies revealed a significant decrease in tissue concentrations of zinc in the colon following DMH treatment, which upon zinc supplementation were recovered to near normal levels. In conclusion, the results of this study suggest that zinc has a positive beneficial effect against chemically induced colonic preneoplastic progression in rats induced by DMH.

  16. The oncogenic action of ionizing radiation on rat skin

    SciTech Connect

    Burns, F.J.; Garte, S.J.

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. Progress is described in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) oncogene activation in radiation-induced rat skin cancers; (3) DNA strand breaks in the epidermis as a function of radiation penetration. 59 refs., 4 tabs.

  17. Comprehensibility maximization and humanly comprehensible representations

    NASA Astrophysics Data System (ADS)

    Kamimura, Ryotaro

    2012-04-01

    In this paper, we propose a new information-theoretic method to measure the comprehensibility of network configurations in competitive learning. Comprehensibility is supposed to be measured by information contained in components in competitive networks. Thus, the increase in information corresponds to the increase in comprehensibility of network configurations. One of the most important characteristics of the method is that parameters can be explicitly determined so as to produce a state where the different types of comprehensibility can be mutually increased. We applied the method to two problems, namely an artificial data set and the ionosphere data from the well-known machine learning database. In both problems, we showed that improved performance could be obtained in terms of all types of comprehensibility and quantization errors. For the topographic errors, we found that updating connection weights prevented them from increasing. Then, the optimal values of comprehensibility could be explicitly determined, and clearer class boundaries were generated.

  18. Involvement of regucalcin as a suppressor protein in human carcinogenesis: insight into the gene therapy.

    PubMed

    Yamaguchi, Masayoshi

    2015-08-01

    Regucalcin, which its gene is located on the X chromosome, plays a multifunctional role as a suppressor protein in cell signal transduction in various types of cells and tissues. The suppression of regucalcin gene expression has been shown to involve in carcinogenesis. Regucalcin gene expression was uniquely downregulated in carcinogenesis of rat liver in vivo, although the expression of other many genes was upregulated, indicating that endogenous regucalcin plays a suppressive role in the development of hepatocarcinogenesis. Overexpression of endogenous regucalcin was found to suppress proliferation of rat cloned hepatoma cells in vitro. Moreover, the regucalcin gene and its protein levels were demonstrated specifically to downregulate in human hepatocellular carcinoma by analysis with multiple gene expression profiles and proteomics. Regucalcin gene expression was also found to suppress in human tumor tissues including kidney, lung, brain, breast and prostate, suggesting that repressed regucalcin gene expression leads to the development of carcinogenesis in various tissues. Regucalcin may play a role as a suppressor protein in carcinogenesis. Overexpression of endogenous regucalcin is suggested to reveal preventive and therapeutic effects on carcinogenesis. Delivery of the regucalcin gene may be a novel useful tool in the gene therapy of carcinogenesis. This review will discuss regarding to an involvement of regucalcin as a suppressor protein in human carcinogenesis in insight into the gene therapy.

  19. The oncogenic action of ionizing radiation on rat skin

    SciTech Connect

    Burns, F.J.

    1991-01-01

    Progress has occurred in several areas corresponding to the specific aims of the proposal: (1) Progression and multiple events in radiation carcinogenesis of rat skin as a function of LET; (2) cell cycle kinetics of irradiated rat epidermis as determined by double labeling and double emulsion autoradiography; (3) oncogene activation detected by in situ hybridization in radiation-induced rat skin tumors; (4) amplification of the c-myc oncogene in radiation-induced rat skin tumors as a function of LET; and (5) transformation of rat skin keratinocytes by ionizing radiation in combination with c-Ki-ras and c-myc oncogenes. 111 refs., 13 figs., 12 tabs.

  20. Comprehension of Discourse Markers and Reading Comprehension

    ERIC Educational Resources Information Center

    Khatib, Mohamad

    2011-01-01

    According to many research findings, the presence of discourse markers (DMs) enhances readers' comprehension of the texts they read. However, there is a paucity of research on the relationship between knowledge of DMs and reading comprehension (RC) and the present study explores the relationship between them. Knowledge of DMs is measured through…

  1. Use of Proteins as Biomarkers and Their Role in Carcinogenesis

    PubMed Central

    Zarogoulidis, Paul; Tsakiridis, Kosmas; Karapantzou, Chrisanthi; Lampaki, Sofia; Kioumis, Ioannis; Pitsiou, Georgia; Papaiwannou, Antonis; Hohenforst-Schmidt, Wolfgang; Huang, Haidong; Kesisis, George; Karapantzos, Ilias; Chlapoutakis, Serafeim; Korantzis, Ippokratis; Mpakas, Andreas; Karavasilis, Vasilis; Mpoukovinas, Ioannis; Li, Qiang; Zarogoulidis, Konstantinos

    2015-01-01

    Summary: Improved diagnostic methods and medical therapies are necessary for early detection and treatment and an improved prognosis. It is thus vital to both examine and evaluate the role of the various existing proteins as biomarkers in carcinogenesis and to assess the contribution of these proteins in anti-cancer activity, for consideration in therapeutic strategies. It is essential to both examine and evaluate the role of the various existing proteins as biomarkers in carcinogenesis and to assess the contribution of these proteins in anti-cancer activity, for consideration in therapeutic strategies. The purpose of this review is twofold. Firstly, it is to evaluate recent data about which proteins can be utilized as biomarkers in carcinogenesis. The proteins reviewed include: CPTP, IL-6, CCN, and S100. Secondly, it is to evaluate the contribution of dietary proteins in cancer activity. Specifically, how whey protein, soy proteins and lectin, a phytochemical could be useful in cancer prevention and treatment. Recent Findings: Whey protein, present in dairy products, is an excellent source of the sulphur amino acid cysteine, the rate limiting substrate in glutathione synthesis. Notably, this protein survives digestion and has been shown to have anti-carcinogenic properties in animal studies. Lectins are phytochemicals present in plant foods, and have active components which alters cancer initiation, promotion and progression. Lectins have been characterized as a useful tool in biochemistry, cell biology, immunology and in diagnostic and therapeutic purposes in cancer research. Soy proteins contain various compounds, including isoflavones, protease inhibitors and protein kinase inhibitors, which have been proven effective in tumor growth inhibition. They have therefore, been greatly emphasized in cancer prevention and treatment. It has been proved that soy food consumption was associated with decreased risk of death and recurrence of breast cancer. CPTP is a

  2. Mesothelial papillary proliferation of the pleura associated with radiation therapy: Does it have a role in the pathogenesis of mesothelioma

    SciTech Connect

    Jagirdar, J.; Frydman, C.; Sakurai, H.; Dumitrescu, O.

    1989-03-01

    Diffuse papillary proliferation of mesothelial cells in the pleura mimicking metastatic carcinoma was seen four weeks following radiation therapy for a Pancoast tumor. Such papillary proliferations are not observed incidentally and are envisioned to occur during asbestos-induced carcinogenesis. We postulate that similar papillary lesions may serve as a link in the pathogenesis of radiation-induced mesotheliomas.

  3. Modulation of Estrogen Chemical Carcinogenesis by Botanical Supplements used for Postmenopausal Women’s Health

    PubMed Central

    Snelten, Courtney S.; Dietz, Birgit; Bolton, Judy L.

    2012-01-01

    Breast cancer risk has been associated with long-term estrogen exposure including traditional hormone therapy (HT, formally hormone replacement therapy). To avoid traditional HT and associated risks, women have been turning to botanical supplements such as black cohosh, red clover, licorice, hops, dong gui, and ginger to relieve menopausal symptoms despite a lack of efficacy evidence. The mechanisms of estrogen carcinogenesis involve both hormonal and chemical pathways. Botanical supplements could protect women from estrogen carcinogenesis by modulating key enzymatic steps [aromatase, P4501B1, P4501A1, catechol-O-methyltransferase (COMT), NAD(P)H quinone oxidoreductase 1 (NQO1), and reactive oxygen species (ROS) scavenging] in estradiol metabolism leading to estrogen carcinogenesis as outlined in Figure 1. This review summarizes the influence of popular botanical supplements used for women’s health on these key steps in the estrogen chemical carcinogenesis pathway, and suggests that botanical supplements may have added chemopreventive benefits by modulating estrogen metabolism. PMID:24223609

  4. Radiation exposure and pregnancy.

    PubMed

    Labant, Amy; Silva, Christina

    2014-01-01

    Radiological exposure from nuclear power reactor accidents, transportation of nuclear waste accidents, industrial accidents, or terrorist activity may be a remote possibility, but it could happen. Nurses must be prepared to evaluate and treat pregnant women and infants who have been exposed to radiation, and to have an understanding of the health consequences of a nuclear or radiological incident. Pregnant women and infants are a special group of patients who need consideration when exposed to radiation. Initial care requires thorough assessment and decisions regarding immediate care needs. Ongoing care is based on type and extent of radiation exposure. With accurate, comprehensive information and education, nurses will be better prepared to help mitigate the effects of radiation exposure to pregnant women and infants following a radiological incident. Information about radiation, health effects of prenatal radiation exposure, assessment, patient care, and treatment of pregnant women and infants are presented.

  5. Differential network analysis reveals dysfunctional regulatory networks in gastric carcinogenesis

    PubMed Central

    Cao, Mu-Shui; Liu, Bing-Ya; Dai, Wen-Tao; Zhou, Wei-Xin; Li, Yi-Xue; Li, Yuan-Yuan

    2015-01-01

    Gastric Carcinoma is one of the most common cancers in the world. A large number of differentially expressed genes have been identified as being associated with gastric cancer progression, however, little is known about the underlying regulatory mechanisms. To address this problem, we developed a differential networking approach that is characterized by including a nascent methodology, differential coexpression analysis (DCEA), and two novel quantitative methods for differential regulation analysis. We first applied DCEA to a gene expression dataset of gastric normal mucosa, adenoma and carcinoma samples to identify gene interconnection changes during cancer progression, based on which we inferred normal, adenoma, and carcinoma-specific gene regulation networks by using linear regression model. It was observed that cancer genes and drug targets were enriched in each network. To investigate the dynamic changes of gene regulation during carcinogenesis, we then designed two quantitative methods to prioritize differentially regulated genes (DRGs) and gene pairs or links (DRLs) between adjacent stages. It was found that known cancer genes and drug targets are significantly higher ranked. The top 4% normal vs. adenoma DRGs (36 genes) and top 6% adenoma vs. carcinoma DRGs (56 genes) proved to be worthy of further investigation to explore their association with gastric cancer. Out of the 16 DRGs involved in two top-10 DRG lists of normal vs. adenoma and adenoma vs. carcinoma comparisons, 15 have been reported to be gastric cancer or cancer related. Based on our inferred differential networking information and known signaling pathways, we generated testable hypotheses on the roles of GATA6, ESRRG and their signaling pathways in gastric carcinogenesis. Compared with established approaches which build genome-scale GRNs, or sub-networks around differentially expressed genes, the present one proved to be better at enriching cancer genes and drug targets, and prioritizing

  6. Role of the Novel Kinase, H51, in Breast Development, Differentiation, and Carcinogenesis

    DTIC Science & Technology

    1999-07-01

    GRANT NUMBER DAMD17-98-1-8235 TITLE: Role of the Novel Kinase, H51, in Breast Development, Differentiation , and Carcinogenesis PRINCIPAL INVESTIGATOR...NUMBERS Role of the Novel Kinase, H51, in Breast Development, Differentiation , and DAMDI7-98-1-8235 Carcinogenesis 6. AUTHOR(S) Douglas B. Stairs 7...expressed in the epithelium of several tissues including the mammary gland. Since many kinases regulate cellular proliferation and differentiation , it

  7. Prototype Biology-Based Radiation Risk Module Project

    NASA Technical Reports Server (NTRS)

    Terrier, Douglas; Clayton, Ronald G.; Patel, Zarana; Hu, Shaowen; Huff, Janice

    2015-01-01

    Biological effects of space radiation and risk mitigation are strategic knowledge gaps for the Evolvable Mars Campaign. The current epidemiology-based NASA Space Cancer Risk (NSCR) model contains large uncertainties (HAT #6.5a) due to lack of information on the radiobiology of galactic cosmic rays (GCR) and lack of human data. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. Our proposed study will compare DNA damage, histological, and cell kinetic parameters after irradiation in normal 2D human cells versus 3D tissue models, and it will use a multi-scale computational model (CHASTE) to investigate various biological processes that may contribute to carcinogenesis, including radiation-induced cellular signaling pathways. This cross-disciplinary work, with biological validation of an evolvable mathematical computational model, will help reduce uncertainties within NSCR and aid risk mitigation for radiation-induced carcinogenesis.

  8. Radiation takes its Toll

    PubMed Central

    Ratikan, Josephine A.; Micewicz, Ewa D.; Xie, Michael W.; Schaue, Dörthe

    2015-01-01

    The ability to recognize and respond to universal molecular patterns on invading microorganisms allows our immune system to stay on high alert, sensing danger to our self-integrity. Our own damaged cells and tissues in pathological situations activate similar warning systems as microbes. In this way, the body is able to mount a response that is appropriate to the danger. Toll-like receptors are at the heart of this pattern recognition system that initiates innate pro-oxidant, pro-inflammatory signaling cascades and ultimately bridges recognition of danger to adaptive immunity. The acute inflammatory lesions that are formed segue into resolution of inflammation, repair and healing or, more dysfunctionally, into chronic inflammation, autoimmunity, excessive tissue damage and carcinogenesis. Redox is at the nexus of this decision making process and is the point at which ionizing radiation initially intercepts to trigger similar responses to self-damage. In this review we discuss our current understanding of how radiation-damaged cells interact with Toll-like receptors and how the immune systems interprets these radiation-induced danger signals in the context of whole-body exposures and during local tumor irradiation. PMID:25819030

  9. Comprehension Before Word Identification

    ERIC Educational Resources Information Center

    Garman, Dorothy

    1977-01-01

    Examines Frank Smith's analysis of the reading process with respect to comprehension, specifically, his assertion that during the reading process, comprehension of meaning precedes word identification. Discusses the implications of Smith's analysis for the teaching of reading. (JM)

  10. NASA Strategy to Safely Live and Work in the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis; Wu, Honglu; Corbin, Barbara; Sulzman, Frank; Kreneck, Sam

    2007-01-01

    This viewgraph document reviews the radiation environment that is a significant potential hazard to NASA's goals for space exploration, of living and working in space. NASA has initiated a Peer reviewed research program that is charged with arriving at an understanding of the space radiation problem. To this end NASA Space Radiation Laboratory (NSRL) was constructed to simulate the harsh cosmic and solar radiation found in space. Another piece of the work was to develop a risk modeling tool that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting risk of carcinogenesis, central nervous system damage, degenerative tissue disease, and acute radiation effects acute radiation effects.

  11. Cell cycle deregulation by methyl isocyanate: Implications in liver carcinogenesis.

    PubMed

    Panwar, Hariom; Raghuram, Gorantla V; Jain, Deepika; Ahirwar, Alok K; Khan, Saba; Jain, Subodh K; Pathak, Neelam; Banerjee, Smita; Maudar, Kewal K; Mishra, Pradyumna K

    2014-03-01

    Liver is often exposed to plethora of chemical toxins. Owing to its profound physiological role and central function in metabolism and homeostasis, pertinent succession of cell cycle in liver epithelial cells is of prime importance to maintain cellular proliferation. Although recent evidence has displayed a strong association between exposures to methyl isocyanate (MIC), one of the most toxic isocyanates, and neoplastic transformation, molecular characterization of the longitudinal effects of MIC on cell cycle regulation has never been performed. Here, we sequentially delineated the status of different proteins arbitrating the deregulation of cell cycle in liver epithelial cells treated with MIC. Our data reaffirms the oncogenic capability of MIC with elevated DNA damage response proteins pATM and γ-H2AX, deregulation of DNA damage check point genes CHK1 and CHK2, altered expression of p53 and p21 proteins involved in cell cycle arrest with perturbation in GADD-45 expression in the treated cells. Further, alterations in cyclin A, cyclin E, CDK2 levels along with overexpression of mitotic spindle checkpoints proteins Aurora A/B, centrosomal pericentrin protein, chromosomal aberrations, and loss of Pot1a was observed. Thus, MIC impacts key proteins involved in cell cycle regulation to trigger genomic instability as a possible mechanism of developmental basis of liver carcinogenesis.

  12. Estrogen Receptors and Their Implications in Colorectal Carcinogenesis

    PubMed Central

    Caiazza, Francesco; Ryan, Elizabeth J.; Doherty, Glen; Winter, Desmond C.; Sheahan, Kieran

    2015-01-01

    Upon binding their cognate receptors, ERα (ESR1) and ERβ (ESR2), estrogens activate intracellular signaling cascades that have important consequences for cellular behavior. Historically linked to carcinogenesis in reproductive organs, estrogens have also been implicated in the pathogenesis of different cancer types of non-reproductive tissues including the colon. ERβ is the predominant estrogen receptor expressed in both normal and malignant colonic epithelium. However, during colon cancer progression, ERβ expression is lost, suggesting that estrogen signaling may play a role in disease progression. Estrogens may in fact exert an anti-tumor effect through selective activation of pro-apoptotic signaling mediated by ERβ, inhibition of inflammatory signals and modulation of the tumor microenvironment. In this review, we analyze the estrogen pathway as a possible therapeutic avenue in colorectal cancer, we report the most recent experimental evidence to explain the cellular and molecular mechanisms of estrogen-mediated protection against colorectal tumorigenesis, and we discuss future challenges and potential avenues for targeted therapy. PMID:25699240

  13. Use of human epidermal cells in the study of carcinogenesis

    SciTech Connect

    Kuroki, T.; Chida, K.; Hosomi, J.; Kondo, S. )

    1989-05-01

    Because of the importance of human cells, particularly human epithelial cells, in cancer research, we have studied certain phases or events of carcinogenesis using human epidermal cells in primary culture. (1) We found that human epidermal cells are capable of metabolizing benzo(a)pyrene. Large inter-individual variations are found in the basal and induced arylhydrocarbon-hydroxylase activities. (2) UV-induced unscheduled DNA synthesis was demonstrated in human epidermal cells on autoradiographs. We also found that DNA repair is defective in epidermal cells isolated from xeroderma pigmentosum by a new explant-outgrowth culture. (3) Human epidermal cells are unique in that there is a large number of binding sites to phorbol esters compared with mouse epidermal cells, but there is no down-regulation. Further, human epidermal cells show essentially negative responses to tumor promoters, i.e., no stimulation of DNA synthesis, sugar uptake, and no induction of ornithine decarboxylase activity. (4) Human epidermal cells contain 1.5 x 10(5) binding sites per cell for epidermal growth factor (EGF), whereas squamous cell carcinomas of skin and oral cavity have larger amounts of EGF receptors in the order of 10(6) per cell. (5) Based on the above results, we attempted to transform human epidermal cells by the treatment with chemical carcinogens, but until now no transformation was obtained. 16 references.

  14. Alert-QSAR. Implications for Electrophilic Theory of Chemical Carcinogenesis

    PubMed Central

    Putz, Mihai V.; Ionaşcu, Cosmin; Putz, Ana-Maria; Ostafe, Vasile

    2011-01-01

    Given the modeling and predictive abilities of quantitative structure activity relationships (QSARs) for genotoxic carcinogens or mutagens that directly affect DNA, the present research investigates structural alert (SA) intermediate-predicted correlations ASA of electrophilic molecular structures with observed carcinogenic potencies in rats (observed activity, A = Log[1/TD50], i.e., ASA=f(X1SA,X2SA,…)). The present method includes calculation of the recently developed residual correlation of the structural alert models, i.e., ARASA=f(A−ASA,X1SA,X2SA,…). We propose a specific electrophilic ligand-receptor mechanism that combines electronegativity with chemical hardness-associated frontier principles, equality of ligand-reagent electronegativities and ligand maximum chemical hardness for highly diverse toxic molecules against specific receptors in rats. The observed carcinogenic activity is influenced by the induced SA-mutagenic intermediate effect, alongside Hansch indices such as hydrophobicity (LogP), polarizability (POL) and total energy (Etot), which account for molecular membrane diffusion, ionic deformation, and stericity, respectively. A possible QSAR mechanistic interpretation of mutagenicity as the first step in genotoxic carcinogenesis development is discussed using the structural alert chemoinformation and in full accordance with the Organization for Economic Co-operation and Development QSAR guidance principles. PMID:21954348

  15. Role of gastrin-peptides in Barrett's and colorectal carcinogenesis.

    PubMed

    Chueca, Eduardo; Lanas, Angel; Piazuelo, Elena

    2012-12-07

    Gastrin is the main hormone responsible for the stimulation of gastric acid secretion; in addition, gastrin and its derivatives exert proliferative and antiapoptotic effects on several cell types. Gastrin synthesis and secretion are increased in certain situations, for example, when proton pump inhibitors are used. The impact of sustained hypergastrinemia is currently being investigated. In vitro experiments and animal models have shown that prolonged hypergastrinemia may be related with higher cancer rates; although, this relationship is less clear in human beings. Higher gastrin levels have been shown to cause hyperplasia of several cell types; yet, the risk for developing cancer seems to be the same in normo- and hypergastrinemic patients. Some tumors also produce their own gastrin, which can act in an autocrine manner promoting tumor growth. Certain cancers are extremely dependent on gastrin to proliferate. Initial research focused only on the effects of amidated gastrins, but there has been an interest in intermediates of gastrin in the last few decades. These intermediates aren't biologically inactive; in fact, they may exert greater effects on proliferation and apoptosis than the completely processed forms. In certain gastrin overproduction states, they are the most abundant gastrin peptides secreted. The purpose of this review is to examine the gastrin biosynthesis process and to summarize the results from different studies evaluating the production, levels, and effects of the main forms of gastrin in different overexpression states and their possible relationship with Barrett's and colorectal carcinogenesis.

  16. Role of EZH2 in oral squamous cell carcinoma carcinogenesis.

    PubMed

    Zhao, Lingbo; Yu, Yang; Wu, Jie; Bai, Jing; Zhao, Yuzhen; Li, Chunming; Sun, Wenjing; Wang, Xiumei

    2014-03-10

    Oral squamous cell carcinoma (OSCC) is a common human malignancy with high incidence rate and poor prognosis. Although the polycomb group protein enhancer of zeste homolog 2 (EZH2) plays a crucial role in cell proliferation and differentiation during the occurrence and development progress of several kinds of malignant tumors, the impact of EZH2 on the development and progression of OSCC is unclear. In this study, we demonstrate that EZH2 is overexpressed in OSCC cells and clinical tissue. With in vitro RNAi analysis, we generated stable EZH2 knocking down cell lines from two OSCC cell lines, with two sh-RNAs targeting to EZH2, respectively. We found that knocking down of EZH2 could decrease the proliferation ability and induce apoptosis of OSCC cells. Moreover, we demonstrated that of EZH2 inhibition decreased the migration and metastasis of OSCC cells. In conclusion, the results of the current study demonstrated an association between EZH2 expression and OSCC cell development. We recommend that EZH2 acts as an oncogene and plays an important role in OSCC carcinogenesis.

  17. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis.

    PubMed

    Weaver, Jamie M J; Ross-Innes, Caryn S; Shannon, Nicholas; Lynch, Andy G; Forshew, Tim; Barbera, Mariagnese; Murtaza, Muhammed; Ong, Chin-Ann J; Lao-Sirieix, Pierre; Dunning, Mark J; Smith, Laura; Smith, Mike L; Anderson, Charlotte L; Carvalho, Benilton; O'Donovan, Maria; Underwood, Timothy J; May, Andrew P; Grehan, Nicola; Hardwick, Richard; Davies, Jim; Oloumi, Arusha; Aparicio, Sam; Caldas, Carlos; Eldridge, Matthew D; Edwards, Paul A W; Rosenfeld, Nitzan; Tavaré, Simon; Fitzgerald, Rebecca C

    2014-08-01

    Cancer genome sequencing studies have identified numerous driver genes, but the relative timing of mutations in carcinogenesis remains unclear. The gradual progression from premalignant Barrett's esophagus to esophageal adenocarcinoma (EAC) provides an ideal model to study the ordering of somatic mutations. We identified recurrently mutated genes and assessed clonal structure using whole-genome sequencing and amplicon resequencing of 112 EACs. We next screened a cohort of 109 biopsies from 2 key transition points in the development of malignancy: benign metaplastic never-dysplastic Barrett's esophagus (NDBE; n=66) and high-grade dysplasia (HGD; n=43). Unexpectedly, the majority of recurrently mutated genes in EAC were also mutated in NDBE. Only TP53 and SMAD4 mutations occurred in a stage-specific manner, confined to HGD and EAC, respectively. Finally, we applied this knowledge to identify high-risk Barrett's esophagus in a new non-endoscopic test. In conclusion, mutations in EAC driver genes generally occur exceptionally early in disease development with profound implications for diagnostic and therapeutic strategies.

  18. Warburg Effect - a Consequence or the Cause of Carcinogenesis?

    PubMed

    Devic, Slobodan

    2016-01-01

    Ever since its discovery (1924) the Warburg effect (aerobic glycolysis) remains an unresolved puzzle: why the aggressive cancer cells "prefer" to use the energetically highly inefficient method of burning the glucose at the cellular level? While in the course of the last 90 years several hypotheses have been suggested, to this date there is no clear explanation of this rather unusual effect. Even though it is commonly assumed that Warburg effect is a consequence of carcinogenesis, yet another hypothesis could be brought up that the cellular switch to aerobic glycolysis may represent the very point in time when a normal cell becomes cancerous. Furthermore, this switch may happen at the point where the fate of pyruvic acid is determined, caused by the inadequate supply of enzymes that promote citric as opposed to lactic acid cycle. Currently, few clinical observations, like low cancer incidence in Type 1 diabetes mellitus and increased cancer incidence in people on high carbohydrate diets might be called upon to support such hypothesis.

  19. Ascorbate Depletion: A Critical Step in Nickel Carcinogenesis?

    PubMed Central

    Salnikow, Konstantin; Kasprzak, Kazimierz S.

    2005-01-01

    Nickel compounds are known to cause respiratory cancer in humans and induce tumors in experimental animals. The underlying molecular mechanisms may involve genotoxic effects; however, the data from different research groups are not easy to reconcile. Here, we challenge the common premise that direct genotoxic effects are central to nickel carcinogenesis and probably to that of other metals. Instead, we propose that it is formation of metal complexes with proteins and other molecules that changes cellular homeostasis and provides conditions for selection of cells with transformed phenotype. This is concordant with the major requirement for nickel carcinogenicity, which is prolonged action on the target tissue. If DNA is not the main nickel target, is there another unique molecule that can be attacked with carcinogenic consequences? Our recent observations indicate that ascorbate may be such a molecule. Nickel depletes intracellular ascorbate, which leads to the inhibition of cellular hydroxylases, manifested by the loss of hypoxia-inducible factor (HIF)-1α and - 2α hydroxylation and hypoxia-like stress. Proline hydroxylation is crucial for collagen and extracellular matrix assembly as well as for assembly of other protein molecules that have collagen-like domains, including surfactants and complement. Thus, the depletion of ascorbate by chronic exposure to nickel could be deleterious for lung cells and may lead to lung cancer. PMID:15866766

  20. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis.

    PubMed

    Xie, Guoxiang; Wang, Xiaoning; Huang, Fengjie; Zhao, Aihua; Chen, Wenlian; Yan, Jingyu; Zhang, Yunjing; Lei, Sha; Ge, Kun; Zheng, Xiaojiao; Liu, Jiajian; Su, Mingming; Liu, Ping; Jia, Wei

    2016-10-15

    Dysregulated bile acids (BAs) are closely associated with liver diseases and attributed to altered gut microbiota. Here, we show that the intrahepatic retention of hydrophobic BAs including deoxycholate (DCA), taurocholate (TCA), taurochenodeoxycholate (TCDCA), and taurolithocholate (TLCA) were substantially increased in a streptozotocin and high fat diet (HFD) induced nonalcoholic steatohepatitis-hepatocellular carcinoma (NASH-HCC) mouse model. Additionally chronic HFD-fed mice spontaneously developed liver tumors with significantly increased hepatic BA levels. Enhancing intestinal excretion of hydrophobic BAs in the NASH-HCC model mice by a 2% cholestyramine feeding significantly prevented HCC development. The gut microbiota alterations were closely correlated with altered BA levels in liver and feces. HFD-induced inflammation inhibited key BA transporters, resulting in sustained increases in intrahepatic BA concentrations. Our study also showed a significantly increased cell proliferation in BA treated normal human hepatic cell lines and a down-regulated expression of tumor suppressor gene CEBPα in TCDCA treated HepG2 cell line, suggesting that several hydrophobic BAs may collaboratively promote liver carcinogenesis.

  1. Warburg Effect - a Consequence or the Cause of Carcinogenesis?

    PubMed Central

    Devic, Slobodan

    2016-01-01

    Ever since its discovery (1924) the Warburg effect (aerobic glycolysis) remains an unresolved puzzle: why the aggressive cancer cells “prefer” to use the energetically highly inefficient method of burning the glucose at the cellular level? While in the course of the last 90 years several hypotheses have been suggested, to this date there is no clear explanation of this rather unusual effect. Even though it is commonly assumed that Warburg effect is a consequence of carcinogenesis, yet another hypothesis could be brought up that the cellular switch to aerobic glycolysis may represent the very point in time when a normal cell becomes cancerous. Furthermore, this switch may happen at the point where the fate of pyruvic acid is determined, caused by the inadequate supply of enzymes that promote citric as opposed to lactic acid cycle. Currently, few clinical observations, like low cancer incidence in Type 1 diabetes mellitus and increased cancer incidence in people on high carbohydrate diets might be called upon to support such hypothesis. PMID:27162540

  2. Comprehension of Connected Discourse.

    ERIC Educational Resources Information Center

    Mosberg, Ludwig; Shima, Fred

    A rationale was developed for researching reading comprehension based on information gain. Previous definitions of comprehension which were reviewed included operational vs. nonoperational and skills vs. processes. Comprehension was viewed as an informational processing event which includes a constellation of cognitive and learning processes. Two…

  3. Comprehensions and Interpretations.

    ERIC Educational Resources Information Center

    Urquhart, Alexander H.

    1987-01-01

    Argues that second-language reading comprehension and its assessment can be usefully divided into two aspects: (1) comprehensions (different levels of comprehension the reader adopts to suit different purposes of reading); and (2) interpretations (different readings of the same text resulting from different background knowledge or preoccupations…

  4. Radiation-induced genomic instability: radiation quality and dose response

    NASA Technical Reports Server (NTRS)

    Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.

    2003-01-01

    Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.

  5. Making the Comprehensive High School Comprehensive

    ERIC Educational Resources Information Center

    Midjaas, Carl Larsen

    1975-01-01

    Three occupational labs (child care, graphic arts, and food service) are featured as examples of vocational facilities in a new comprehensive high school in Troy, Michigan. The article stresses the planning that went into the project's development. (BP)

  6. The Comprehensive Inner Magnetosphere-Ionosphere Model

    NASA Technical Reports Server (NTRS)

    Fok, M.-C.; Buzulukova, N. Y.; Chen, S.-H.; Glocer, A.; Nagai, T.; Valek, P.; Perez, J. D.

    2014-01-01

    Simulation studies of the Earth's radiation belts and ring current are very useful in understanding the acceleration, transport, and loss of energetic particles. Recently, the Comprehensive Ring Current Model (CRCM) and the Radiation Belt Environment (RBE) model were merged to form a Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. CIMI solves for many essential quantities in the inner magnetosphere, including ion and electron distributions in the ring current and radiation belts, plasmaspheric density, Region 2 currents, convection potential, and precipitation in the ionosphere. It incorporates whistler mode chorus and hiss wave diffusion of energetic electrons in energy, pitch angle, and cross terms. CIMI thus represents a comprehensive model that considers the effects of the ring current and plasmasphere on the radiation belts. We have performed a CIMI simulation for the storm on 5-9 April 2010 and then compared our results with data from the Two Wide-angle Imaging Neutral-atom Spectrometers and Akebono satellites. We identify the dominant energization and loss processes for the ring current and radiation belts. We find that the interactions with the whistler mode chorus waves are the main cause of the flux increase of MeV electrons during the recovery phase of this particular storm. When a self-consistent electric field from the CRCM is used, the enhancement of MeV electrons is higher than when an empirical convection model is applied. We also demonstrate how CIMI can be a powerful tool for analyzing and interpreting data from the new Van Allen Probes mission.

  7. Aberrant GLI1 Activation in DNA Damage Response, Carcinogenesis and Chemoresistance

    PubMed Central

    Palle, Komaraiah; Mani, Chinnadurai; Tripathi, Kaushlendra; Athar, Mohammad

    2015-01-01

    The canonical hedgehog (HH) pathway is a multicomponent signaling cascade (HH, protein patched homolog 1 (PTCH1), smoothened (SMO)) that plays a pivotal role during embryonic development through activation of downstream effector molecules, namely glioma-associated oncogene homolog 1 (GLI1), GLI2 and GLI3. Activation of GLIs must be tightly regulated as they modulate target genes which control tissue patterning, stem cell maintenance, and differentiation during development. However, dysregulation or mutations in HH signaling leads to genomic instability (GI) and various cancers, for example, germline mutation in PTCH1 lead to Gorlin syndrome, a condition where patients develop numerous basal cell carcinomas and rarely rhabdomyosarcoma (RMS). Activating mutations in SMO have also been recognized in sporadic cases of medulloblastoma and SMO is overexpressed in many other cancers. Recently, studies in several human cancers have shown that GLI1 expression is independent from HH ligand and canonical intracellular signaling through PTCH and SMO. In fact, this aberrantly regulated GLI1 has been linked to several non-canonical oncogenic growth signals such as Kirsten rat sarcoma viral oncogene homolog (KRAS), avian myelocytomatosis virus oncogene cellular homolog (C-MYC), transforming growth factor β (TGFβ), wingless-type MMTV integration site family (WNT) and β-catenin. Recent studies from our lab and other independent studies demonstrate that aberrantly expressed GLI1 influences the integrity of several DNA damage response and repair signals, and if altered, these networks can contribute to GI and impact tumor response to chemo- and radiation therapies. Furthermore, the ineffectiveness of SMO inhibitors in clinical studies argues for the development of GLI1-specific inhibitors in order to develop effective therapeutic modalities to treat these tumors. In this review, we focus on summarizing current understanding of the molecular, biochemical and cellular basis for

  8. Field cancerization in mammary carcinogenesis - Implications for prevention and treatment of breast cancer.

    PubMed

    Rivenbark, Ashley G; Coleman, William B

    2012-12-01

    The natural history of breast cancer unfolds with the development of ductal carcinoma in situ (DCIS) in normal breast tissue, and evolution of this pre-invasive neoplasm into invasive cancer. The mechanisms that drive these processes are poorly understood, but evidence from the literature suggests that mammary carcinogenesis may occur through the process of field cancerization. Clinical observations are consistent with the idea that (i) DCIS may arise in a field of altered breast epithelium, (ii) narrow surgical margins do not remove the entire altered field (contributing to recurrence and/or disease progression), and (iii) whole-breast radiation therapy is effective in elimination of the residual field of altered cells adjacent to the resected DCIS. Molecular studies suggest that the field of altered breast epithelial cells may carry cancer-promoting genetic mutations (or other molecular alterations) or cancer promoting epimutations (oncogenic alterations in the epigenome). In fact, most breast cancers develop through a succession of molecular events involving both genetic mutations and epimutations. Hence, in hereditary forms of breast cancer, the altered field reflects the entire breast tissue which is composed of cells with a predisposing molecular lesion (such as a BRCA1 mutation). In the example of a BRCA1-mutant patient, it is evident that local resection of a DCIS lesion or localized but invasive cancer will not result in elimination of the altered field. In sporadic breast cancer patients, the mechanistic basis for the altered field may not be so easily recognized. Nonetheless, identification of the nature of field cancerization in a given patient may guide clinical intervention. Thus, patients with DCIS that develops in response to an epigenetic lesion (such as a hypermethylation defect affecting the expression of tumor suppressor genes) might be treated with epigenetic therapy to normalize the altered field and reduce the risk of secondary occurrence of

  9. Relationship of DNA repair processes to mutagenesis and carcinogenesis in mammalian cells. Progress report, August 1, 1977-October 31, 1980

    SciTech Connect

    Evans, H.H.

    1980-10-01

    The objective of this research is to determine the role of DNA repair in mutagenesis and carcinogenesis in mammalian cells. More specifically, mutant strains will be selected which are deficient in various DNA repair pathways. These strains will be studied with regard to (1) the nature of the defect in repair, and (2) the mutability and transformability of the defective cells by various agents as compared to the wild type parental cells. The results to date include progress in the following areas: (1) determination of optimum conditions for growth and maintenance of cells and for quantitative measurement of various cellular parameters; (2) investigation of the effect of holding mutagenized cells for various periods in a density inhibited state on survival and on mutation and transformation frequencies; (3) examination of the repair capabilities of BHK cells, as compared to repair-proficient and repair-deficient human cells and excision-deficient mouse cells, as measured by the reactivation of Herpes simplex virus (HSV) treated with radiation and ethylmethane sulfonate (EMS); (4) initiation of host cell reactivation viral sucide enrichment and screening of survivors of the enrichment for sensitivity to ionizing radiation; and (5) investigation of the toxicity, mutagenicity, and carcinogenicity of various metabolites of 4-nitroquinoline-1-oxide (4-NQO). (ERB)

  10. Carbohydrate digestibility predicts colon carcinogenesis in azoxymethane-treated rats.

    PubMed

    Jacobsen, Helene; Poulsen, Morten; Dragsted, Lars Ove; Ravn-Haren, Gitte; Meyer, Otto; Lindecrona, Rikke Hvid

    2006-01-01

    The purpose of this study was to compare the effect of carbohydrate structure and digestibility on azoxymethane (AOM)-induced colon carcinogenesis. Five groups of male Fischer 344 rats each comprising 30 animals were injected with AOM and fed a high-fat diet with 15% of various carbohydrates. The carbohydrate sources used were sucrose, cornstarch (a linear starch, reference group), potato starch (a branched starch), a short-chained oligofructose (Raftilose), and a long-chained inulin-type fructan (Raftiline). An interim sacrifice was performed after 9 wk to investigate markers of carbohydrate digestibility, including caecal fermentation (caecum weight and pH) and glucose and lipid metabolism [glucose, fructoseamine, HbA1c, triglycerides, and insulin-like growth factor (IGF) 1]. In addition potential early predictors of carcinogenicity [cell proliferation and aberrant crypt foci (ACF)] at 9 wk and their correlation to colon cancer risk after 32 wk were investigated. Tumor incidence was significantly reduced in animals fed oligofructose, and the number of tumors per animal was significantly reduced in animals fed inulin and oligofructose at 32 wk after AOM induction compared to the reference group fed sucrose. Increased caecum weight and decreased caecal pH were seen in groups fed oligofructose, inulin, and potato starch. Plasma triglyceride was decreased in rats fed oligofructose and inulin. Cell proliferation was increased in the proximal colon of rats fed sucrose, oligofructose, and inulin, and the number of cells per crypt decreased in rats fed oligofructose and inulin. The total number of ACF's was unaffected by treatment, and the size and multiplicity of ACF was unrelated to tumor development. It was concluded that less digestible carbohydrates with an early effect on caecum fermentation and plasma triglyceride decreased subsequent tumor incidence and multiplicity. This was unrelated to ACF, cell proliferation, and other markers of glucose and lipid metabolism.

  11. Initiation, promotion, and inhibition of carcinogenesis in rainbow trout

    SciTech Connect

    Bailey, G.; Selivonchick, D.; Hendricks, J.

    1987-04-01

    The identification of etiological agents in feral fish neoplasia epizootics has been hampered in part by the lack of suitable fish models, and complicated by the likely existence of environmental agents which can act to stimulate or reduce population responses to genotoxin insult. The response of fish to tumor inhibitors and promoters, and the underlying mechanisms of modulation, have been studied in the rainbow trout model. Dietary treatment of trout with the compounds indole-3-carbinol (I3C), ..beta..-napthroflavone (BNF), or the polychlorinated biphenyl (PCB) complex Aroclor 1254, before and during exposure to aflatoxin B/sub 1/ (AFB1), was shown to reduce the final incidence of hepatocellular carcinoma after 12 months, compared to fish receiving AFB1 only. By contrast, treatment of trout with BNF or I3C following AFB1 initiation led to a significant enhancement of ultimate tumor response, Similarly, simultaneous treatment of trout with PCB and the carcinogen N-nitrosodiethylamine led to syncarcinogenic enhancement, rather than inhibition, of tumor response. Mechanisms of inhibition of AFB1 carcinogenesis by PCB, BNF, and I3C were investigated. PCB and BNF, but not I3C, are known to be strong inducers of trout cytochrome P448 and associated activities. Dietary induction by BNF or PCB was shown to be accompanied in solvated hepatocytes by considerably altered AFB1 metabolism, and by significantly reduced rates of DNA adduct formation for all three agents. All agents differentially altered in vivo AFB1 pharmacokinetics, enhanced bile elimination of AFB1 as the aflatoxicol-M1 glucuronide, and significantly reduced peak levels of liver DNA adduct formation.

  12. Carcinogenesis: a late effect of irreversible toxic damage during development

    PubMed Central

    Rice, Jerry M.

    1976-01-01

    Intrauterine and early postnatal life are periods of exceptionally high susceptibility to certain kinds of chemical carcinogens. The most potent known transplacental carcinogens are direct acting alkylating agents. Most nonreactive compounds, which require enzymes for metabolic conversion into chemically reactive “proximate carcinogens,” are less effective because the required enzymes are present at low levels in the fetus, and many proximate carcinogens are too reactive to reach the fetus when formed in maternal tissues. Despite this, many carcinogens which require metabolic activation are very active transplancentally, as the intrinsic susceptibility of rapidly dividing fetal cells compensates effectively for comparatively low tissue levels of reactive metabolites. Transplacental carcinogens of all kinds are most effective late in gestation, generally after organogenesis has begun and after the period of greatest susceptibility to teratogens. Only a small number of known carcinogens have been tested for transplacental carcinogenic activity. The great majority of tumors induced transplacentally in the well-studied rodent and lagomorph species (mouse, rat, Syrian hamster, and rabbit) have morphologic features of adult, rather than embryonal, tissues. A given agent tends to induce in a given species largely the same types of tumor when given transplacentally as when administered directly to postweaning animals, unless its carcinogenic effect in the latter is ascribable to some peculiarity of distribution, metabolism, or physiology. In a second species, the spectrum of tumors induced either before of after birth may be quite different. For bioassay of suspected carcinogens, the significance of perinatal carcinogenesis lies in the facts that the fetal and preweaning rodent is an extremely sensitive indicator of carcinogenic activity, and that the facile adaptibility of fetal cells to tissue culture and their rapid expression in vitro of properties of neoplastic

  13. Dynamic model for selective metabolic activation in chemical carcinogenesis

    SciTech Connect

    Selkirk, J.K.; MacLeod, M.C.

    1980-01-01

    Theoretical calculations predict the relative ease of formation of carbonium ions from 7,8-dihydro-7,8-dihydroxybenzo(a)pyrene-9,10-oxide or from either of the 2 symmetrical bay regions of B(e)P, and suggest their attraction to cellular nucleophiles. When both isomers were metabolized by hamster embryo fibroblasts (HEF) and the products analyzed, the results showed that the probable reason for benzo(e)pyrene's lack of carcinogenicity was its metabolic preference to attack the molecule away from the bay-region area. Particularly striking was the absence of any evidence for the formation of a significant amount of B(e)P-9,10-dihydrodiol. This suggests a metabolic basis for the relative lack of carcinogenic and mutagenic activity of B(e)P. The reason for this is not clear but may be due to physical or chemical factors such as membrane solubility or stereochemical requirements of the active site of the enzyme. The bay-region theory of PAH carcinogenesis predicts that carbonium ion formation from 9,10-dihydro-9,10-dihydroxybenzo(e)pyrene-11, 12-oxide, if formed, would be energetically favorable. Thus, the inability of HEF and microcomes to form B(e)P-9,10-dihydrodiol, the precursor of its potentially highly reactive diol-epoxide, would explain the relative inertness of B(e)P in several biological systems. As the subtle biochemical interactions of the various carcinogen intermediates become clarified, it becomes apparent that susceptibility and resistance to malignant transformation are based on a complex set of both chemical and physical parameters. It is becoming clear that metabolism kinetics, membrane interaction, and the role of nuclear metabolism help dictate the passage of the carcinogen and its reactive intermediates into and through the metabolic machinery of the cell. (ERB)

  14. Pediatric Exposures to Ionizing Radiation: Carcinogenic Considerations

    PubMed Central

    Kutanzi, Kristy R.; Lumen, Annie; Koturbash, Igor; Miousse, Isabelle R.

    2016-01-01

    Children are at a greater risk than adults of developing cancer after being exposed to ionizing radiation. Because of their developing bodies and long life expectancy post-exposure, children require specific attention in the aftermath of nuclear accidents and when radiation is used for diagnosis or treatment purposes. In this review, we discuss the carcinogenic potential of pediatric exposures to ionizing radiation from accidental, diagnostic, and therapeutic modalities. Particular emphasis is given to leukemia and thyroid cancers as consequences of accidental exposures. We further discuss the evidence of cancers that arise as a result of radiotherapy and conclude the review with a summary on the available literature on the links between computer tomography (CT) and carcinogenesis. Appropriate actions taken to mitigate or minimize the negative health effects of pediatric exposures to ionizing radiation and future considerations are discussed. PMID:27801855

  15. Evolved Cellular Mechanisms to Respond to Genotoxic Insults: Implications for Radiation-Induced Hematologic Malignancies

    PubMed Central

    Fleenor, Courtney J.; Higa, Kelly; Weil, Michael M.; DeGregori, James

    2015-01-01

    Human exposure to ionizing radiation is highly associated with adverse health effects, including reduced hematopoietic cell function and increased risk of carcinogenesis. The hematopoietic deficits manifest across blood cell types and persist for years after radiation exposure, suggesting a long-lived and multi-potent cellular reservoir for radiation-induced effects. As such, research has focused on identifying both the immediate and latent hematopoietic stem cell responses to radiation exposure. Radiation-associated effects on hematopoietic function and malignancy development have generally been attributed to the direct induction of mutations resulting from radiation-induced DNA damage. Other studies have illuminated the role of cellular programs that both limit and enhance radiation-induced tissue phenotypes and carcinogenesis. In this review, distinct but collaborative cellular responses to genotoxic insults are highlighted, with an emphasis on how these programmed responses impact hematopoietic cellular fitness and competition. These radiation-induced cellular programs include apoptosis, senescence and impaired self-renewal within the hematopoietic stem cell (HSC) pool. In the context of sporadic DNA damage to a cell, these cellular responses act in concert to restore tissue function and prevent selection for adaptive oncogenic mutations. But in the contexts of whole-tissue exposure or whole-body exposure to genotoxins, such as radiotherapy or chemotherapy, we propose that these programs can contribute to long-lasting tissue impairment and increased carcinogenesis. PMID:26414506

  16. Establishment and characterization of a penile cancer cell line, penl1, with a deleterious TP53 mutation as a paradigm of HPV-negative penile carcinogenesis

    PubMed Central

    Li, Zaishang; Deng, Chuangzhong; Wang, Liangjiao; Yu, Xingsu; Liang, Peili; Xie, Qiankun; Chen, Peng; Qin, Zike; Ye, Yunlin; Liu, Zhuowei; Zhou, Fangjian; Zhang, Zhenfeng; Han, Hui

    2016-01-01

    Purpose To establish penile cancer (PeCa) cell lines for the study of molecular mechanisms of carcinogenesis and testing therapeutic reagents. Materials and Methods We successfully established two PeCa cell lines from fresh tumor tissues from 21 cases. One cell line named Penl1 was isolated from a lymph node metastasis (LNM) of penile squamous cell carcinoma (PeSCC), usual type and comprehensively characterized here. Our in-depth characterization analysis of the Penl1 cell line included morphology, tumorigenicity, genetic characteristics, protein expression, biology, and chemosensitivity. Penl1 was authenticated by single tandem repeat (STR) DNA typing. Results Comparative histomorphology, genetic characteristics, and protein expression patterns revealed essential similarities between the cell line and its corresponding LNM. In-depth characterization analysis of Penl1 cell line revealed tumorigenicity in immunodeficient mice, negative human papilloma virus (HPV) and mycoplasma infection, TP53 mutations and sensitivity to cisplatin and epirubicin. STR DNA typing did not match any cell lines within three international cell banks. The limitation of this study is that one patient cannot represent the complete heterogeneity of PeCa, especially primary tumor. Conclusions We established and characterized an HPV-negative and moderately differentiated PeCa cell model with a TP53 missense mutation from a PeSCC, usual type patient. A preliminarily study of carcinogenesis and chemosensitivity suggests that this cell model carries a tumor suppressor gene mutation and is sensitive to chemotherapy drugs. PMID:27351128

  17. Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice.

    PubMed

    Arbeit, J M; Howley, P M; Hanahan, D

    1996-04-02

    High-risk human papillomaviruses (HPVs), including type 16, have been identified as factors in cervical carcinogenesis. However, the presence and expression of the virus per se appear to be insufficient for carcinogenesis. Rather, cofactors most likely are necessary in addition to viral gene expression to initiate neoplasia. One candidate cofactor is prolonged exposure to sex hormones. To examine the possible effects of estrogen on HPV-associated neoplasia, we treated transgenic mice expressing the oncogenes of HPV16 under control of the human keratin-14 promoter (K14-HPV16 transgenic mice) and nontransgenic control mice with slow release pellets of 17beta-estradiol. Squamous carcinomas developed in a multistage pathway exclusively in the vagina and cervix of K14-HPV16 transgenic mice. Estrogen-induced carcinogenesis was accompanied by an incremental increase in the incidence and distribution of proliferating cells solely within the cervical and vaginal squamous epithelium of K14-HPV16 mice. Expression of the HPV transgenes in untreated transgenic mice was detectable only during estrus; estrogen treatment resulted in transgene expression that was persistent but not further upregulated, remaining at low levels at all stages of carcinogenesis. The data demonstrate a novel mechanism of synergistic cooperation between chronic estrogen exposure and the oncogenes of HPV16 that coordinates squamous carcinogenesis in the female reproductive tract of K14-HPV16 transgenic mice.

  18. Both ovarian hormones estrogen and progesterone are necessary for hormonal mammary carcinogenesis in ovariectomized ACI rats.

    PubMed

    Blank, Edward W; Wong, Po-Yin; Lakshmanaswamy, Rajkumar; Guzman, Raphael; Nandi, Satyabrata

    2008-03-04

    August-Copenhagen-Irish (ACI) rats are unique in that the ovary-intact females develop high incidence of mammary cancers induced solely by hormones upon prolonged exposure to high levels of estrogen alone. Studies have also shown that such prolonged exposure to high-dose estrogen results in human-like aneuploid mammary cancers in ovary-intact ACI rats. To determine the role of progesterone in mammary carcinogenesis, six-week-old intact and ovariectomized ACI rats were continuously exposed to low- and high-dose estrogen alone, progesterone alone, low-dose estrogen plus progesterone, and ovariectomized ACI rats with high-dose estrogen plus progesterone. Also, ovariectomized ACI rats were treated with high-dose estrogen plus progesterone plus testosterone to determine the role of the androgen, testosterone, if any, in hormonal mammary carcinogenesis. The results indicate that continuous exposure to high, but not low, concentrations of estrogen alone can induce mammary carcinogenesis in intact but not in ovariectomized rats. Mammary carcinogenesis in ovariectomized ACI rats requires continuous exposure to high concentrations of estrogen and progesterone. The addition of testosterone propionate does not affect tumor incidence in such rats. These results suggest that both ovarian hormones estrogen and progesterone are necessary for mammary carcinogenesis induced solely by hormones in ovariectomized ACI rats. Our results are in agreement with the Women's Health Initiative studies, where treatment of postmenopausal women with estrogen (ERT) alone did not increase the risk of breast cancer, but estrogen and progesterone (HRT) did.

  19. Modulation of IL-1β reprogrammes the tumor microenvironment to interrupt oral carcinogenesis.

    PubMed

    Wu, Tong; Hong, Yun; Jia, Lihua; Wu, Jie; Xia, Juan; Wang, Juan; Hu, Qinchao; Cheng, Bin

    2016-02-01

    Head and neck squamous cell carcinoma (HNSCC) development is a multistage process includes the normal, dysplasia and squamous cell carcinoma (SCC) stages. Recently, increasing evidence has suggested that the tumor microenvironment (TME) is an integral part of malignant transformation. Exploring certain key node genes in TME for future intervention in dysplasia to interrupt oral carcinogenesis was the primary goal of this research. To achieve this goal, systems biology approaches were first applied to the epithelia and fibroblasts collected at sequential stages in a 4-nitroquinoline-1-oxide (4NQO) -induced rat oral carcinogenesis model. Through bioinformatics network construction, IL-1β was identified as one of the key node genes in TME during carcinogenesis. Immunohistochemical staining of human and rat samples demonstrated that IL-1β expression patterns were parallel to the stages of malignant transformation. Silencing IL-1β with lentivirus-delivered shRNA significantly inhibited oral squamous cell carcinoma cell growth both in vivo and in vitro. Based on these findings, we hypothesized that IL-1β may be a chemoprevention target in TME during oral carcinogenesis. Therefore, we targeted IL-1 in the TME by oral mucosal injection of an IL-1 receptor antagonist in 4NQO rats. The results demonstrated that targeting IL-1 could interrupt oral carcinogenesis by reprogramming the TME.

  20. The Role of microRNAs in Helicobacter pylori Pathogenesis and Gastric Carcinogenesis

    PubMed Central

    Noto, Jennifer M.; Peek, Richard M.

    2012-01-01

    Gastric carcinogenesis is a multistep process orchestrated by aberrancies in the genetic and epigenetic regulation of oncogenes and tumor suppressor genes. Chronic infection with Helicobacter pylori is the strongest known risk factor for the development of gastric cancer. H. pylori expresses a spectrum of virulence factors that dysregulate host intracellular signaling pathways that lower the threshold for neoplastic transformation. In addition to bacterial determinants, numerous host and environmental factors increase the risk of gastric carcinogenesis. Recent discoveries have shed new light on the involvement of microRNAs (miRNAs) in gastric carcinogenesis. miRNAs represent an abundant class of small, non-coding RNAs involved in global post-transcriptional regulation and, consequently, play an integral role at multiple steps in carcinogenesis, including cell cycle progression, proliferation, apoptosis, invasion, and metastasis. Expression levels of miRNAs are frequently altered in malignancies, where they function as either oncogenic miRNAs or tumor suppressor miRNAs. This review focuses on miRNAs dysregulated by H. pylori and potential etiologic roles they play in H. pylori-mediated gastric carcinogenesis. PMID:22919587

  1. Radiation dosimetry.

    PubMed Central

    Cameron, J

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists. PMID:2040250

  2. Potential role of mast cells in hamster cheek pouch carcinogenesis.

    PubMed

    Aromando, Romina F; Pérez, Miguel A; Heber, Elisa M; Trivillin, Verónica A; Tomasi, Víctor H; Schwint, Amanda E; Itoiz, María E

    2008-11-01

    During the process of activation, mast cells release products stored in their granules. Tryptase, a protease released from mast cell granules after activation, induces tumor cell proliferation through the activation of PAR-2 (protease activated receptor 2) on the plasma membrane of carcinoma cells. Chemical cancerization (DMBA) of the hamster cheek pouch is the most accepted model of oral cancer. However, there are no reports on the activation of mast cells during experimental carcinogenesis or on the correlation between mast cell activation and cell proliferation. The aim of the present study was to evaluate the potential effect of mast cells on the proliferation of epithelial cells at different times during the cancerization process. Paraffin serial sections of cancerized, tumor-bearing pouches were stained with Alcian Blue-Safranin to identify the different degrees of mast cell activation. Immunohistochemistry was performed to identify BrdU-positive cells to study tumor cell proliferation. Mast cells were counted and grouped into two categories: inactive mast cells AB-S+++ (red) and active mast cells AB+++S- (blue). Mast cell counts were performed in tumor stroma, base of the tumor (connective tissue immediately below the exophytic tumor), connective and muscle tissue underlying the cancerized epithelium (pouch wall) and adventitious tissue underlying the pouch wall. There was a significant increase in the number of mast cells at the base of tumors (p<0.001) compared to the number of mast cells in the wall of the pouch and in tumor stroma. In normal non-cancerized pouches, inactive mast cells were prevalent both in the wall (AB:S=1:2.15; p<0.001) and in the adventitious tissue (AB:S=1:1.6; p<0.004) of the hamster cheek pouch. At most of the experimental times examined, the ratio of active/inactive mast cells (AB/S) in the wall approximated unity and even reverted. The ratio of mast cells was AB:S 1:1.05 at the base of the tumor and 1:0.24 in tumor stroma (p<0

  3. Carcinogenesis Studies of Cresols in Rats and Mice

    PubMed Central

    Sanders, J.M.; Bucher, J.R.; Peckham, J.C.; Kissling, G.E.; Hejtmancik, M.R.; Chhabra, R.S.

    2010-01-01

    Cresols, monomethyl derivatives of phenol, are high production chemicals with potential for human exposure. The three isomeric forms of cresol are used individually or in mixtures as disinfectants, preservatives, and solvents or as intermediates in the production of antioxidants, fragrances, herbicides, insecticides, dyes, and explosives. Carcinogenesis studies were conducted in groups of 50 male F344/N rats and 50 female B6C3F1 mice exposed to a 60:40 mixture of m and p cresols (m-/p-cresol) in feed. Rats and mice were fed diets containing 0, 1500, 5000, or 15,000 ppm and 0, 1000, 3000, or 10,000 ppm, respectively. Survival of each exposed group was similar to that of their respective control group. Mean body weight gains were depressed in rats exposed to 15,000 ppm and in mice exposed to 3000 ppm and higher. A decrease of 25% over that of controls for the final mean body weight in mice exposed to 10,000 ppm appeared to be associated with lack of palatability of the feed. A marginally increased incidence of renal tubule adenoma was observed in the 15,000 ppm-exposed rats. The increased incidence was not statistically significant, but did exceed the range of historical controls. No increased incidence of hyperplasia of the renal tubules was observed; however, a significantly increased incidence of hyperplasia of the transitional epithelium associated with an increased incidence of nephropathy was observed at the high exposure concentration. The only significantly increased incidence of a neoplastic lesion related to cresol exposure observed in these studies was that of squamous cell papilloma in the forestomach of 10,000 ppm-exposed mice. A definitive association with irritation at the site-of-contact could not be made because of limited evidence of injury to the gastric mucosa at the time of necropsy. However, given the minimal chemical-related neoplastic response in these studies, it was concluded that there was no clear evidence of carcinogenicity in male rats

  4. Exploring breast carcinogenesis through integrative genomics and epigenomics analyses.

    PubMed

    Minning, Chin; Mokhtar, Norfilza Mohd; Abdullah, Norlia; Muhammad, Rohaizak; Emran, Nor Aina; Ali, Siti Aishah M D; Harun, Roslan; Jamal, Rahman

    2014-11-01

    There have been many DNA methylation studies on breast cancer which showed various methylation patterns involving tumour suppressor genes and oncogenes but only a few of those studies link the methylation data with gene expression. More data are required especially from the Asian region and to analyse how the epigenome data correlate with the transcriptome. DNA methylation profiling was carried out on 76 fresh frozen primary breast tumour tissues and 25 adjacent non-cancerous breast tissues using the Illumina Infinium(®) HumanMethylation27 BeadChip. Validation of methylation results was performed on 7 genes using either MS-MLPA or MS-qPCR. Gene expression profiling was done on 15 breast tumours and 5 adjacent non-cancerous breast tissues using the Affymetrix GeneChip(®) Human Gene 1.0 ST array. The overlapping genes between DNA methylation and gene expression datasets were further mapped to the KEGG database to identify the molecular pathways that linked these genes together. Supervised hierarchical cluster analysis revealed 1,389 hypermethylated CpG sites and 22 hypomethylated CpG sites in cancer compared to the normal samples. Gene expression microarray analysis using a fold-change of at least 1.5 and a false discovery rate (FDR) at p>0.05 identified 404 upregulated and 463 downregulated genes in cancer samples. Integration of both datasets identified 51 genes with hypermethylation with low expression (negative association) and 13 genes with hypermethylation with high expression (positive association). Most of the overlapping genes belong to the focal adhesion and extracellular matrix-receptor interaction that play important roles in breast carcinogenesis. The present study displayed the value of using multiple datasets in the same set of tissues and how the integrative analysis can create a list of well-focused genes as well as to show the correlation between epigenetic changes and gene expression. These gene signatures can help us understand the epigenetic

  5. Molecular basis of basal cell carcinogenesis in the atomic-bomb survivor population: p53 and PTCH gene alterations.

    PubMed

    Mizuno, Terumi; Tokuoka, Shoji; Kishikawa, Masao; Nakashima, Eiji; Mabuchi, Kiyohiko; Iwamoto, Keisuke S

    2006-11-01

    Epidemiological studies suggest that UV exposure from sunlight is the major etiology for skin cancers, both melanocytic and non-melanocytic. However, the radiation-related risk for skin cancer among atomic bomb survivors of Hiroshima and Nagasaki is primarily derived from the excess risk of basal cell carcinoma (BCC), with no demonstrable excess in squamous cell carcinoma or melanoma. The BCCs in this cohort are therefore unusual in being potentially attributable to two types of radiation-UV and ionizing (IR). BCCs have been associated with PTCH and/or p53 tumor suppressor gene alterations. To investigate the roles of these genes in relation to IR and UV exposures, we analyzed both genes in BCC samples from atomic bomb survivors. We examined 47 tumors, of which 70% had non-silent base-substitution p53 mutations independent of IR or UV exposure. However, the distribution of mutation type depends on UV and/or IR exposure. For example, C-to-T transitions at CpG sites adjacent to pyrimidine-pyrimidine (PyPy) sequences were more prevalent in tumors from UV-exposed than UV-shielded body areas and CpG-mutations at non-PyPy sequences were more prevalent in tumors from UV-shielded body areas with high-IR (>or=1 Gy) than low-IR (<0.2 Gy) exposure. And notably, although p53 deletion-frequencies demonstrated no IR-dose associations, deletions at the PTCH locus were more frequent (79% versus 44%) in tumors with high-IR than low-IR exposure. Moreover, 60% of high-IR tumors harbored both p53 and PTCH abnormalities compared with 23% of low-IR tumors. Therefore, alteration of both genes is likely to play a role in radiation-induced basal cell carcinogenesis.

  6. Spectrum of Physics Comprehension

    ERIC Educational Resources Information Center

    Blasiak, W.; Godlewska, M.; Rosiek, R.; Wcislo, D.

    2012-01-01

    The paper presents the results of research on the relationship between self-assessed comprehension of physics lectures and final grades of junior high school students (aged 13-15), high school students (aged 16-18) and physics students at the Pedagogical University of Cracow, Poland (aged 21). Students' declared level of comprehension was measured…

  7. The Roots of Comprehension

    ERIC Educational Resources Information Center

    Rasinski, Timothy; Padak, Nancy; Newton, Joanna

    2017-01-01

    Wide vocabulary knowledge is associated with proficiency in reading comprehension and scores on tests involving comprehension. Yet assessments show that U.S. students at various grade levels have demonstrated no improvement in their vocabulary knowledge since 2009. Literacy expert Timothy Rasinski and colleagues argue that students need improved…

  8. Comprehension Processes in Reading.

    ERIC Educational Resources Information Center

    Balota, D. A., Ed.; And Others

    Focusing on the process of reading comprehension, this book contains chapters on some central topics relevant to understanding the processes associated with comprehending text. The articles and their authors are as follows: (1) "Comprehension Processes: Introduction" (K. Rayner); (2) "The Role of Meaning in Word Recognition"…

  9. Teaching Main Idea Comprehension.

    ERIC Educational Resources Information Center

    Baumann, James F., Ed.

    Intended to help classroom teachers, curriculum developers, and researchers, this book provides current information on theoretical and instructional aspects of main idea comprehension. Titles and authors are as follows: "The Confused World of Main Idea" (James W. Cunningham and David W. Moore); "The Comprehension of Important…

  10. Scaffolding Reading Comprehension Skills

    ERIC Educational Resources Information Center

    Salem, Ashraf Atta Mohamed Safein

    2017-01-01

    The current study investigates whether English language teachers use scaffolding strategies for developing their students' reading comprehension skills or just for assessing their comprehension. It also tries to demonstrate whether teachers are aware of these strategies or they use them as a matter of habit. A questionnaire as well as structured…

  11. Processes in Reading Comprehension.

    ERIC Educational Resources Information Center

    Ransom, Grayce A.

    This examination of the processes in reading comprehension is divided into seven categories. "Theoretical Foundations" reviews some of the research conducted by Bruner, Piaget, and Bloom in the areas of cognition or comprehension processes of young children. "Development of a Spiraling Reading Curriculum" examines a spiraling taxonomy of reading…

  12. Green tea catechin extract in intervention of chronic breast cell carcinogenesis induced by environmental carcinogens.

    PubMed

    Rathore, Kusum; Wang, Hwa-Chain Robert

    2012-03-01

    Sporadic breast cancers are mainly attributable to long-term exposure to environmental factors, via a multi-year, multi-step, and multi-path process of tumorigenesis involving cumulative genetic and epigenetic alterations in the chronic carcinogenesis of breast cells from a non-cancerous stage to precancerous and cancerous stages. Epidemiologic and experimental studies have suggested that green tea components may be used as preventive agents for breast cancer control. In our research, we have developed a cellular model that mimics breast cell carcinogenesis chronically induced by cumulative exposures to low doses of environmental carcinogens. In this study, we used our chronic carcinogenesis model as a target system to investigate the activity of green tea catechin extract (GTC) at non-cytotoxic levels in intervention of cellular carcinogenesis induced by cumulative exposures to pico-molar 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo[a]pyrene (B[a]P). We identified that GTC, at a non-cytotoxic, physiologically achievable concentration of 2.5 µg/mL, was effective in suppressing NNK- and B[a]P-induced cellular carcinogenesis, as measured by reduction of the acquired cancer-associated properties of reduced dependence on growth factors, anchorage-independent growth, increased cell mobility, and acinar-conformational disruption. We also detected that intervention of carcinogen-induced elevation of reactive oxygen species (ROS), increase of cell proliferation, activation of the ERK pathway, DNA damage, and changes in gene expression may account for the mechanisms of GTC's preventive activity. Thus, GTC may be used in dietary and chemoprevention of breast cell carcinogenesis associated with long-term exposure to low doses of environmental carcinogens.

  13. The Combination of Three Natural Compounds Effectively Prevented Lung Carcinogenesis by Optimal Wound Healing

    PubMed Central

    Guo, Zhenzhen; Ma, Xiaofang; Cao, Ning; Zheng, Yaqiu; Geng, Shengnan; Duan, Yongjian; Han, Guang; Du, Gangjun

    2015-01-01

    The tumor stroma has been described as “normal wound healing gone awry”. We explored whether the restoration of a wound healing-like microenvironment may facilitate tumor healing. Firstly, we screened three natural compounds (shikonin, notoginsenoside R1 and aconitine) from wound healing agents and evaluated the efficacies of wound healing microenvironment for limiting single agent-elicited carcinogenesis and two-stage carcinogenesis. The results showed that three compounds used alone could promote wound healing but had unfavorable efficacy to exert wound healing, and that the combination of three compounds made up treatment disadvantage of a single compound in wound healing and led to optimal wound healing. Although individual treatment with these agents may prevent cancer, they were not effective for the treatment of established tumors. However, combination treatment with these three compounds almost completely prevented urethane-induced lung carcinogenesis and reduced tumor burden. Different from previous studies, we found that urethane-induced lung carcinogenesis was associated with lung injury independent of pulmonary inflammation. LPS-induced pulmonary inflammation did not increase lung carcinogenesis, whereas decreased pulmonary inflammation by macrophage depletion promoted lung carcinogenesis. In addition, urethane damaged wound healing in skin excision wound model, reversed lung carcinogenic efficacy by the combination of three compounds was consistent with skin wound healing. Further, the combination of these three agents reduced the number of lung cancer stem cells (CSCs) by inducing cell differentiation, restoration of gap junction intercellular communication (GJIC) and blockade of the epithelial-to-mesenchymal transition (EMT). Our results suggest that restoration of a wound healing microenvironment represents an effective strategy for cancer prevention. PMID:26599445

  14. Differences and similarities between carbon nanotubes and asbestos fibers during mesothelial carcinogenesis: shedding light on fiber entry mechanism.

    PubMed

    Nagai, Hirotaka; Toyokuni, Shinya

    2012-08-01

    The emergence of nanotechnology represents an important milestone, as it opens the way to a broad spectrum of applications for nanomaterials in the fields of engineering, industry and medicine. One example of nanomaterials that have the potential for widespread use is carbon nanotubes, which have a tubular structure made of graphene sheets. However, there have been concerns that they may pose a potential health risk due to their similarities to asbestos, namely their high biopersistence and needle-like structure. We recently found that despite these similarities, carbon nanotubes and asbestos differ in certain aspects, such as their mechanism of entry into mesothelial cells. In the study, we showed that non-functionalized, multi-walled carbon nanotubes enter mesothelial cells by directly piercing through the cell membrane in a diameter- and rigidity-dependent manner, whereas asbestos mainly enters these cells through the process of endocytosis, which is independent of fiber diameter. In this review, we discuss the key differences, as well as similarities, between asbestos fibers and carbon nanotubes. We also summarize previous reports regarding the mechanism of carbon nanotube entry into non-phagocytic cells. As the entry of fibers into mesothelial cells is a crucial step in mesothelial carcinogenesis, we believe that a comprehensive study on the differences by which carbon nanotubes and asbestos fibers enter into non-phagocytic cells will provide important clues for the safer manufacture of carbon nanotubes through strict regulation on fiber characteristics, such as diameter, surface properties, length and rigidity.

  15. The Role of PPARγ in Helicobacter pylori Infection and Gastric Carcinogenesis

    PubMed Central

    Lee, Jong-Min; Kim, Sung Soo; Cho, Young-Seok

    2012-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that is important in many physiological and pathological processes, such as lipid metabolism, insulin sensitivity, inflammation, cell proliferation, and carcinogenesis. Several studies have shown that PPARγ plays an important role in gastric mucosal injury due to Helicobacter pylori (H. pylori). As H. pylori infection is the main etiologic factor in chronic gastritis and gastric cancer, understanding of the potential roles of PPARγ in H. pylori infection may lead to the development of a therapeutic target. In this paper, the authors discuss the current knowledge on the role of PPARγ in H. pylori infection and its related gastric carcinogenesis. PMID:22936949

  16. Estrogen receptor beta, a possible tumor suppressor involved in ovarian carcinogenesis

    PubMed Central

    Lazennec, Gwendal

    2006-01-01

    Ovarian cancer is one of the leading cause of death from gynecological tumors in women. Several lines of evidence suggest that estrogens may play an important role in ovarian carcinogenesis, through their receptors, ERα and ERβ. Interestingly, malignant ovarian tumors originating from epithelial surface constitute about 90% of ovarian cancers and expressed low levels of ERβ, compared to normal tissues. In addition, restoration of ERβ in ovarian cancer cells, leads to strong inhibition of their proliferation and invasion, while apoptosis is enhanced. In this manuscript, recent data suggesting a possible tumor-suppressor role for ERβ in ovarian carcinogenesis are discussed. PMID:16399219

  17. Chemoprevention of Lung Carcinogenesis in Addicted Smokers and Ex-Smokers

    PubMed Central

    Hecht, Stephen S.; Kassie, Fekadu; Hatsukami, Dorothy K.

    2013-01-01

    Chemoprevention of lung carcinogenesis is one approach to controlling the epidemic of lung cancer caused by cigarette smoking. The target for chemoprevention should be the activities of the multiple carcinogens, toxicants, co-carcinogens, tumor promoters and inflammatory compounds in cigarette smoke. There are presently many agents both synthetic and naturally occurring that prevent lung tumor development in well established animal models. It seems likely that logically constructed mixtures of these agents, developed from the ground up, will be necessary for prevention of lung carcinogenesis PMID:19550424

  18. Ionizing radiation and hematopoietic malignancies

    PubMed Central

    Fleenor, Courtney J; Marusyk, Andriy

    2010-01-01

    Somatic evolution, which underlies tumor progression, is driven by two essential components: (1) diversification of phenotypes through heritable mutations and epigenetic changes and (2) selection for mutant clones which possess higher fitness. Exposure to ionizing radiation (IR) is highly associated with increased risk of carcinogenesis. This link is traditionally attributed to causation of oncogenic mutations through the mutagenic effects of irradiation. On the other hand, potential effects of irradiation on altering fitness and increasing selection for mutant clones are frequently ignored. Recent studies bring the effects of irradiation on fitness and selection into focus, demonstrating that IR exposure results in stable reductions in the fitness of hematopoietic stem and progenitor cell populations. These reductions of fitness are associated with alteration of the adaptive landscape, increasing the selective advantages conferred by certain oncogenic mutations. Therefore, the link between irradiation and carcinogenesis might be more complex than traditionally appreciated: while mutagenic effects of irradiation should increase the probability of occurrence of oncogenic mutations, IR can also work as a tumor promoter, increasing the selective expansion of clones bearing mutations which become advantageous in the irradiation-altered environment, such as activated mutations in Notch1 or disrupting mutations in p53. PMID:20676038

  19. Down-Regulation of DUSP6 Expression in Lung Cancer —Its Mechanism and Potential Role in Carcinogenesis

    PubMed Central

    Okudela, Koji; Yazawa, Takuya; Woo, Tetsukan; Sakaeda, Masashi; Ishii, Jun; Mitsui, Hideaki; Shimoyamada, Hiroaki; Sato, Hanako; Tajiri, Michihiko; Ogawa, Nobuo; Masuda, Munetaka; Takahashi, Takashi; Sugimura, Haruhiko; Kitamura, Hitoshi

    2009-01-01

    Our preliminary studies revealed that oncogenic KRAS (KRAS/V12) dramatically suppressed the growth of immortalized airway epithelial cells (NHBE-T, with viral antigen-inactivated p53 and RB proteins). This process appeared to be a novel event, different from the so-called premature senescence that is induced by either p53 or RB, suggesting the existence of a novel tumor suppressor that functions downstream of oncogenic KRAS. After a comprehensive search for genes whose expression levels were modulated by KRAS/V12, we focused on DUSP6, a pivotal negative feedback regulator of the RAS-ERK pathway. A dominant-negative DUSP6 mutant, however, failed to rescue KRAS/V12-induced growth suppression, but conferred a stronger anchorage-independent growth activity to the surviving subpopulation of cells generated from KRAS/V12-transduced NHBE-T. DUSP6 expression levels were found to be weaker in most lung cancer cell lines than in NHBE-T, and DUSP6 restoration suppressed cellular growth. In primary lung cancers, DUSP6 expression levels decreased as both growth activity and histological grade of the tumor increased. Loss of heterozygosity of the DUSP6 locus was found in 17.7% of cases and was associated with reduced expression levels. These results suggest that DUSP6 is a growth suppressor whose inactivation could promote the progression of lung cancer. We have here identified an important factor involved in carcinogenesis through a comprehensive search for downstream targets of oncogenic KRAS. PMID:19608870

  20. Caspase Deficiency: Involvement in Breast Carcinogenesis and Resistance

    DTIC Science & Technology

    2003-07-01

    triggers CD95 (APO-1/Fas)- and p53-independent apoptosis via activation of caspases in neuroectodermal tumors . Cancer Res. 1997 Nov 1;57(21):4956-64. 4...process involved in homeostasis and the biochemical responses to different anti- tumor therapies. Aberrant expression of other apoptotic regulators...response to several anti-cancer agents, including chemotherapy, radiation- and tumor necrosis factor alpha (TNF-a). Caspase 3 was expressed in MCF-7 cells by

  1. Interruptions disrupt reading comprehension.

    PubMed

    Foroughi, Cyrus K; Werner, Nicole E; Barragán, Daniela; Boehm-Davis, Deborah A

    2015-06-01

    Previous research suggests that being interrupted while reading a text does not disrupt the later recognition or recall of information from that text. This research is used as support for Ericsson and Kintsch's (1995) long-term working memory (LT-WM) theory, which posits that disruptions while reading (e.g., interruptions) do not impair subsequent text comprehension. However, to fully comprehend a text, individuals may need to do more than recognize or recall information that has been presented in the text at a later time. Reading comprehension often requires individuals to connect and synthesize information across a text (e.g., successfully identifying complex topics such as themes and tones) and not just make a familiarity-based decision (i.e., recognition). The goal for this study was to determine whether interruptions while reading disrupt reading comprehension when the questions assessing comprehension require participants to connect and synthesize information across the passage. In Experiment 1, interruptions disrupted reading comprehension. In Experiment 2, interruptions disrupted reading comprehension but not recognition of information from the text. In Experiment 3, the addition of a 15-s time-out prior to the interruption successfully removed these negative effects. These data suggest that the time it takes to process the information needed to successfully comprehend text when reading is greater than that required for recognition. Any interference (e.g., an interruption) that occurs during the comprehension process may disrupt reading comprehension. This evidence supports the need for transient activation of information in working memory for successful text comprehension and does not support LT-WM theory.

  2. Relating space radiation environments to risk estimates

    SciTech Connect

    Curtis, S.B.

    1991-10-01

    This lecture will provide a bridge from the physical energy or LET spectra as might be calculated in an organ to the risk of carcinogenesis, a particular concern for extended missions to the moon or beyond to Mars. Topics covered will include (1) LET spectra expected from galactic cosmic rays, (2) probabilities that individual cell nuclei in the body will be hit by heavy galactic cosmic ray particles, (3) the conventional methods of calculating risks from a mixed environment of high and low LET radiation, (4) an alternate method which provides certain advantages using fluence-related risk coefficients (risk cross sections), and (5) directions for future research and development of these ideas.

  3. Radiation: What determines the risk?

    SciTech Connect

    Mitchel, R.E.J.; Trivedi, A. ||

    1993-12-31

    Radiation, like other DNA damaging agents, can initiate a series of cellular events responsible for cancer development. However, in any individual the risk of cancer arising from a carcinogen exposure is variable, and is not a fixed value dependent only on the dose of carcinogen. This variability in overall risk arises from variability in the probabilities of the intermediate steps of the multistep processes of carcinogenesis. Using cellular and animal model systems, we have shown that deliberate manipulation of these biological processes is possible, and that the risk of cancer from a fixed exposure to a carcinogen can be made to increase or decrease. We have also shown that such changes in risk can result from intervention at times long before or after that carcinogen exposure. These results indicate that the principles of radiation protection can be expanded. We suggest that in addition to offering protection against exposure, radiation protection can include the development of strategies for protection against the ultimate biological consequences of an exposure. Improved understanding of the biology of radiation responses may lead to techniques for deliberate intervention that could be particularly useful in long duration manned space flight.

  4. Disruption of the circadian clock due to the Clock mutation has discrete effects on aging and carcinogenesis

    PubMed Central

    Antoch, Marina P.; Gorbacheva, Victoria Y.; Vykhovanets, Olena; Toshkov, Illia A.; Kondratov, Roman V.; Kondratova, Anna A.; Lee, Choogon; Nikitin, Alexander Yu.

    2009-01-01

    The mammalian circadian system has been implicated in the regulation of various biological processes including those involved in genotoxic stress responses and tumor suppression. Here we report that mice with the functional deficiency in circadian transcription factor CLOCK (Clock/Clock mutant mice) do not display predisposition to tumor formation both during their normal lifespan or when challenged by γ-radiation. This phenotype is consistent with high apoptotic and low proliferation rate in lymphoid tissues of Clock mutant mice and is supported by the gene expression profiling of a number of apoptosis and cell cycle-related genes, as well as by growth inhibition of cells with CLOCK downregulation. At the same time, Clock mutant mice respond to low-dose irradiation by accelerating their aging program, and develop phenotypes that are reminiscent of those in Bmal1-deficient mice. Taken together, our results demonstrate the dichotomy in biological consequences of the disruption of the circadian clock with respect to ageing and cancer. They also highlight the existence of a complex interconnection between ageing, carcinogenesis and individual components of the circadian clock machinery. PMID:18418054

  5. Disruption of the circadian clock due to the Clock mutation has discrete effects on aging and carcinogenesis.

    PubMed

    Antoch, Marina P; Gorbacheva, Victoria Y; Vykhovanets, Olena; Toshkov, Illia A; Kondratov, Roman V; Kondratova, Anna A; Lee, Choogon; Nikitin, Alexander Yu

    2008-05-01

    The mammalian circadian system has been implicated in the regulation of various biological processes including those involved in genotoxic stress responses and tumor suppression. Here we report that mice with the functional deficiency in circadian transcription factor CLOCK (Clock/Clock mutant mice) do not display predisposition to tumor formation both during their normal lifespan or when challenged by gamma- radiation. This phenotype is consistent with high apoptotic and low proliferation rate in lymphoid tissues of Clock mutant mice and is supported by the gene expression profiling of a number of apoptosis and cell cycle-related genes, as well as by growth inhibition of cells with CLOCK downregulation. At the same time, Clock mutant mice respond to low-dose irradiation by accelerating their aging program, and develop phenotypes that are reminiscent of those in Bmal1-deficient mice. Taken together, our results demonstrate the dichotomy in biological consequences of the disruption of the circadian clock with respect to ageing and cancer. They also highlight the existence of a complex interconnection between ageing, carcinogenesis and individual components of the circadian clock machinery.

  6. Radiation Effects: Core Project

    NASA Technical Reports Server (NTRS)

    Dicello, John F.

    1999-01-01

    The risks to personnel in space from the naturally occurring radiations are generally considered to be one of the most serious limitations to human space missions, as noted in two recent reports of the National Research Council/National Academy of Sciences. The Core Project of the Radiation Effects Team for the National Space Biomedical Research Institute is the consequences of radiations in space in order to develop countermeasure, both physical and pharmaceutical, to reduce the risks of cancer and other diseases associated with such exposures. During interplanetary missions, personnel in space will be exposed to galactic cosmic rays, including high-energy protons and energetic ions with atomic masses of iron or higher. In addition, solar events will produce radiation fields of high intensity for short but irregular durations. The level of intensity of these radiations is considerably higher than that on Earth's surface, and the biological risks to astronauts is consequently increased, including increased risks of carcinogenesis and other diseases. This group is examining the risk of cancers resulting from low-dose, low-dose rate exposures of model systems to photons, protons, and iron by using ground-based accelerators which are capable of producing beams of protons, iron, and other heavy ions at energies comparable to those encountered in space. They have begun the first series of experiments using a 1-GeV iron beam at the Brookhaven National Laboratory and 250-MeV protons at Loma Linda University Medical Center's proton synchrotron facility. As part of these studies, this group will be investigating the potential for the pharmaceutical, Tamoxifen, to reduce the risk of breast cancer in astronauts exposed to the level of doses and particle types expected in space. Theoretical studies are being carried out in a collaboration between scientists at NASA's Johnson Space Center and Johns Hopkins University in parallel with the experimental program have provided

  7. Thermal radiative properties: Coatings.

    NASA Technical Reports Server (NTRS)

    Touloukian, Y. S.; Dewitt, D. P.; Hernicz, R. S.

    1972-01-01

    This volume consists, for the most part, of a presentation of numerical data compiled over the years in a most comprehensive manner on coatings for all applications, in particular, thermal control. After a moderately detailed discussion of the theoretical nature of the thermal radiative properties of coatings, together with an overview of predictive procedures and recognized experimental techniques, extensive numerical data on the thermal radiative properties of pigmented, contact, and conversion coatings are presented. These data cover metallic and nonmetallic pigmented coatings, enamels, metallic and nonmetallic contact coatings, antireflection coatings, resin coatings, metallic black coatings, and anodized and oxidized conversion coatings.

  8. Comprehensive rotorcraft analysis methods

    NASA Technical Reports Server (NTRS)

    Stephens, Wendell B.; Austin, Edward E.

    1988-01-01

    The development and application of comprehensive rotorcraft analysis methods in the field of rotorcraft technology are described. These large scale analyses and the resulting computer programs are intended to treat the complex aeromechanical phenomena that describe the behavior of rotorcraft. They may be used to predict rotor aerodynamics, acoustic, performance, stability and control, handling qualities, loads and vibrations, structures, dynamics, and aeroelastic stability characteristics for a variety of applications including research, preliminary and detail design, and evaluation and treatment of field problems. The principal comprehensive methods developed or under development in recent years and generally available to the rotorcraft community because of US Army Aviation Research and Technology Activity (ARTA) sponsorship of all or part of the software systems are the Rotorcraft Flight Simulation (C81), Dynamic System Coupler (DYSCO), Coupled Rotor/Airframe Vibration Analysis Program (SIMVIB), Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD), General Rotorcraft Aeromechanical Stability Program (GRASP), and Second Generation Comprehensive Helicopter Analysis System (2GCHAS).

  9. Spectrum of physics comprehension

    NASA Astrophysics Data System (ADS)

    Blasiak, W.; Godlewska, M.; Rosiek, R.; Wcislo, D.

    2012-05-01

    The paper presents the results of research on the relationship between self-assessed comprehension of physics lectures and final grades of junior high school students (aged 13-15), high school students (aged 16-18) and physics students at the Pedagogical University of Cracow, Poland (aged 21). Students' declared level of comprehension was measured during a physics lecture on a prearranged scale of 1-10 with the use of a personal response system designed for the purpose of this experiment. Through the use of this tool, we obtained about 2000 computer records of students' declared comprehension of a 45 min lecture, which we named ‘the spectrum of comprehension’. In this paper, we present and analyse the correlation between students' declared comprehension of the content presented in the lecture and their final learning results.

  10. Metabolomic analysis reveals altered metabolic pathways in a rat model of gastric carcinogenesis

    PubMed Central

    Gu, Jinping; Hu, Xiaomin; Shao, Wei; Ji, Tianhai; Yang, Wensheng; Zhuo, Huiqin; Jin, Zeyu; Huang, Huiying; Chen, Jiacheng; Huang, Caihua; Lin, Donghai

    2016-01-01

    Gastric cancer (GC) is one of the most malignant tumors with a poor prognosis. Alterations in metabolic pathways are inextricably linked to GC progression. However, the underlying molecular mechanisms remain elusive. We performed NMR-based metabolomic analysis of sera derived from a rat model of gastric carcinogenesis, revealed significantly altered metabolic pathways correlated with the progression of gastric carcinogenesis. Rats were histologically classified into four pathological groups (gastritis, GS; low-grade gastric dysplasia, LGD; high-grade gastric dysplasia, HGD; GC) and the normal control group (CON). The metabolic profiles of the five groups were clearly distinguished from each other. Furthermore, significant inter-metabolite correlations were extracted and used to reconstruct perturbed metabolic networks associated with the four pathological stages compared with the normal stage. Then, significantly altered metabolic pathways were identified by pathway analysis. Our results showed that oxidative stress-related metabolic pathways, choline phosphorylation and fatty acid degradation were continually disturbed during gastric carcinogenesis. Moreover, amino acid metabolism was perturbed dramatically in gastric dysplasia and GC. The GC stage showed more changed metabolite levels and more altered metabolic pathways. Two activated pathways (glycolysis; glycine, serine and threonine metabolism) substantially contributed to the metabolic alterations in GC. These results lay the basis for addressing the molecular mechanisms underlying gastric carcinogenesis and extend our understanding of GC progression. PMID:27527852

  11. Nucleophosmin in the pathogenesis of arsenic-related bladder carcinogenesis revealed by quantitative proteomics

    SciTech Connect

    Chen Shuhui; Wang Yiwen; Hsu Jueliang; Chang Hongyi; Wang Chiyun; Shen Potsun; Chiang Chiwu; Chuang Jingjing; Tsai Hungwen; Gu Powen; Chang Fangchih; Liu Hsiaosheng; Chow Nanhaw

    2010-01-15

    To investigate the molecular mechanisms of arsenic (As)-associated carcinogenesis, we performed proteomic analysis on E7 immortalized human uroepithelial cells after treatment with As in vitro. Quantitative proteomics was performed using stable isotope dimethyl labeling coupled with two-dimensional liquid chromatography peptide separation and mass spectrometry (MS)/MS analysis. Among 285 proteins, a total of 26 proteins were upregulated (ratio > 2.0) and 18 proteins were downregulated (ratio < 0.65) by As treatment, which are related to nucleotide binding, lipid metabolism, protein folding, protein biosynthesis, transcription, DNA repair, cell cycle control, and signal transduction. This study reports the potential significance of nucleophosmin (NPM) in the As-related bladder carcinogenesis. NPM was universally expressed in all of uroepithelial cell lines examined, implying that NPM may play a role in human bladder carcinogenesis. Upregulation of NPM tends to be dose- and time-dependent after As treatment. Expression of NPM was associated with cell proliferation, migration and anti-apoptosis. On the contrary, soy isoflavones inhibited the expression of NPM in vitro. The results suggest that NPM may play a role in the As-related bladder carcinogenesis, and soybean-based foods may have potential in the suppression of As/NPM-related tumorigenesis.

  12. APOPTOSIS AND PROLIFERATION DURING DICHLOROACETIC ACID (DCA) INDUCED HEPTACELLULAR CARCINOGENESIS IN THE F344 MALE RAT

    EPA Science Inventory

    Apoptosis and Proliferation During DicWoroacetic Acid (DCA) Induced Hepatocellular
    Carcinogenesis in the F344 Male Rat

    Chlorine, introduced into public drinking \\\\'ater supplies for disinfection, can react with organic compounds in surface waters to form toxic by-prod...

  13. Fetal cell carcinogenesis of the thyroid: a modified theory based on recent evidence.

    PubMed

    Takano, Toru

    2014-01-01

    Thyroid cancer cells were believed to be generated by multi-step carcinogenesis, in which cancer cells are derived from thyrocytes, via multiple incidences of damage to their genome, especially in oncogenes or anti-oncogenes that accelerate proliferation or foster malignant phenotypes, such as the ability to invade the surrounding tissue or metastasize to distant organs, until a new hypothesis, fetal cell carcinogenesis, was presented. In fetal cell carcinogenesis, thyroid tumor cells are assumed to be derived from three types of fetal thyroid cell which only exist in fetuses or young children, namely, thyroid stem cells (TSCs), thyroblasts and prothyrocytes, by proliferation without differentiation. Genomic alternations, such as RET/PTC and PAX8-PPARγ1 rearrangements and a mutation in the BRAF gene, play an oncogenic role by preventing thyroid fetal cells from differentiating. Fetal cell carcinogenesis effectively explains recent molecular and clinical evidence regarding thyroid cancer, including thyroid cancer initiating cells (TCICs), and it underscores the importance of identifying a stem cells and clarifying the molecular mechanism of organ development in cancer research. It introduces three important concepts, the reverse approach, stem cell crisis and mature and immature cancers. Further, it implies that analysis of a small population of cells in a cancer tissue will be a key technique in establishing future laboratory tests. In the contrary, mass analysis such as gene expression profiling, whole genomic scan, and proteomics analysis may have definite limitations since they can only provide information based on many cells.

  14. Chemopreventive properties of indole-3-carbinol, diindolylmethane and other constituents of cardamom against carcinogenesis.

    PubMed

    Acharya, Asha; Das, Ila; Singh, Sushmita; Saha, Tapas

    2010-06-01

    Oxidative stress results from an imbalance in the production of reactive oxygen species (ROS) and cell's own antioxidant defenses that in part lead to numerous carcinogenesis. Several phytochemicals, derived from vegetables, fruits, herbs and spices, have demonstrated excellent chemopreventive properties against carcinogenesis by regulating the redox status of the cells during oxidative stress. I3C (indole-3-carbinol) and DIM (diindolylmethane) are the phytochemicals that are found in all types of cruciferous vegetables and demonstrated exceptional anti-cancer effects against hormone responsive cancers like breast, prostate and ovarian cancers. Novel analogs of I3C were designed to enhance the overall efficacy, particularly with respect to the therapeutic activity and oral bioavailability and that results in several patent applications on symptoms associated with endometriosis, vaginal neoplasia, cervical dysplasia and mastalgia. Likewise, DIM and its derivatives are patented for treatment and prevention of leiomyomas, HPV infection, respiratory syncytial virus, angiogenesis, atherosclerosis and anti-proliferative actions. On the other hand, phytochemicals in cardamom have not been explored in great details but limonene and cineole demonstrate promising effects against carcinogenesis. Thus studies with selected phytochemicals of cardamom and bioavailability research might lead to many patent applications. This review is focused on the patents generated on the effects of I3C, DIM and selected phytochemicals of cardamom on carcinogenesis.

  15. RECENT ADVANCES IN ARSENIC CARCINOGENESIS: MODES OF ACTION, ANIMAL MODEL SYSTEMS AND METHYLATED ARSENIC METABOLITES

    EPA Science Inventory


    Abstract:

    Recent advances in our knowledge of arsenic carcinogenesis include the development of rat or mouse models for all human organs in which inorganic arsenic is known to cause cancer -skin, lung, urinary bladder, liver and kidney. Tumors can be produced from eit...

  16. Mammary carcinogenesis in rats: basic facts and recent results in Brookhaven

    SciTech Connect

    Shellabarger, C.J.; Stone, J.P.; Holtzman, s.

    1982-01-01

    Some research results from experiments investigating neutron-induced mammary carcinogenesis in rats are presented. The additive effects of neutrons and 3-methylcholanthrene on mammary adenocarcinoma were determined. Synergism between diethylstilbestrol and neutrons was likewise studied. Differences in mammary neoplastic response between strains of laboratory rats was also investigated. (ACR)

  17. CHEMICAL MUTAGENESIS AND CARCINOGENESIS: INCORPORATION OF MECHANISTIC DATA INTO RISK ASSESSMENT

    EPA Science Inventory

    CHEMICAL MUTAGENESIS AND CARCINOGENESIS: INCORPORATION OF MECHANISTIC DATA INTO RISK ASSESSMENT

    The current understanding of cancer as a genetic disease, requiring a specific set of genomic alterations for a normal cell to form a metastatic tumor, has provided the oppor...

  18. Alternative Multiorgan Initiation-Promotion Assay for Chemical Carcinogenesis in the Wistar Rat.

    PubMed

    Solano, Marize de Lourdes Marzo; Rocha, Noeme Souza; Barbisan, Luis Fernando; Franchi, Carla Adriene da Silva; Spinardi-Barbisan, Ana Lúcia Tozzi; de Oliveira, Maria Luiza Cotrim Sartor; Salvadori, Daisy Maria Fávero; Ribeiro, Lúcia Regina; de Camargo, João Lauro Viana

    2016-12-01

    The medium-term multiorgan initiation-promotion chemical bioassay (diethylnitrosamine, methyl-nitrosourea, butyl-hydroxybutylnitrosamine, dihydroxypropylnitrosamine, dimethylhydrazine [DMBDD]) with the Fischer 344 rat was proposed as an alternative to the conventional 2-year carcinogenesis bioassay for regulatory purposes. The acronym DMBDD stands for the names of five genotoxic agents used for initiation of multiorgan carcinogenesis. The Brazilian Agency for the Environment officially recognized a variation of this assay (DMBDD(b)) as a valid method to assess the carcinogenic potential of agrochemicals. Different from the original protocol, this DMBDD(b) is 30-week long, uses Wistar rats and two positive control groups exposed to carcinogenesis promoters sodium phenobarbital (PB) or 2-acetylaminofluorene (2-AAF). This report presents the experience of an academic laboratory with the DMBDD(b) assay and contributes to the establishment of this alternative DMBDD bioassay in a different rat strain. Frequent lesions observed in positive groups to evaluate the promoting potential of pesticides and the immunohistochemical expressions of liver cytochrome P450 (CYP) 2B1/2B2 and CYP1A2 enzymes were assessed. Commonly affected organs were liver, kidney, intestines, urinary bladder, and thyroid. PB promoting activity was less evident than that of 2-AAF, especially in males. This study provides a repository of characteristic lesions occurring in positive control animals submitted to a modified alternative 2-stage multiorgan protocol for carcinogenesis in Wistar rat.

  19. Radiation Therapy

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Radiation Therapy KidsHealth > For Teens > Radiation Therapy A A ... how to cope with side effects. What Is Radiation Therapy? Cancer is a disease that causes cells ...

  20. Low-Dose Mixture Hypothesis of Carcinogenesis Workshop: Scientific Underpinnings and Research Recommendations

    PubMed Central

    Miller, Mark F.; Goodson, William H.; Manjili, Masoud H.; Kleinstreuer, Nicole; Bisson, William H.; Lowe, Leroy

    2016-01-01

    Background: The current single-chemical-as-carcinogen risk assessment paradigm might underestimate or miss the cumulative effects of exposure to chemical mixtures, as highlighted in recent work from the Halifax Project. This is particularly important for chemical exposures in the low-dose range that may be affecting crucial cancer hallmark mechanisms that serve to enable carcinogenesis. Objective: Could ongoing low-dose exposures to a mixture of commonly encountered environmental chemicals produce effects in concert that lead to carcinogenesis? A workshop held at the NIEHS in August 2015 evaluated the scientific support for the low-dose mixture hypothesis of carcinogenesis and developed a research agenda. Here we describe the science that supports this novel theory, identify knowledge gaps, recommend future methodologies, and explore preventative risk assessment and policy decision-making that incorporates cancer biology, environmental health science, translational toxicology, and clinical epidemiology. Discussion and Conclusions: The theoretical merits of the low-dose carcinogenesis hypothesis are well founded with clear biological relevance, and therefore, the premise warrants further investigation. Expert recommendations include the need for better insights into the ways in which noncarcinogenic constituents might combine to uniquely affect the process of cellular transformation (in vitro) and environmental carcinogenesis (in vivo), including investigations of the role of key defense mechanisms in maintaining transformed cells in a dormant state. The scientific community will need to acknowledge limitations of animal-based models in predicting human responses; evaluate biological events leading to carcinogenesis both spatially and temporally; examine the overlap between measurable cancer hallmarks and characteristics of carcinogens; incorporate epigenetic biomarkers, in silico modelling, high-performance computing and high-resolution imaging, microbiome

  1. Mechanism of autophagic regulation in carcinogenesis and cancer therapeutics.

    PubMed

    Panda, Prashanta Kumar; Mukhopadhyay, Subhadip; Das, Durgesh Nandini; Sinha, Niharika; Naik, Prajna Paramita; Bhutia, Sujit K

    2015-03-01

    Autophagy in cancer is an intensely debated concept in the field of translational research. The dual nature of autophagy implies that it can potentially modulate the pro-survival and pro-death mechanisms in tumor initiation and progression. There is a prospective molecular relationship between defective autophagy and tumorigenesis that involves the accumulation of damaged mitochondria and protein aggregates, which leads to the production of reactive oxygen species (ROS) and ultimately causes DNA damage that can lead to genomic instability. Moreover, autophagy regulates necrosis and is followed by inflammation, which limits tumor metastasis. On the other hand, autophagy provides a survival advantage to detached, dormant metastatic cells through nutrient fueling by tumor-associated stromal cells. Manipulating autophagy for induction of cell death, inhibition of protective autophagy at tissue-and context-dependent for apoptosis modulation has therapeutic implications. This review presents a comprehensive overview of the present state of knowledge regarding autophagy as a new approach to treat cancer.

  2. Radiation Protection

    MedlinePlus

    Jump to main content US EPA United States Environmental Protection Agency Search Search Radiation Protection Share Facebook Twitter Google+ Pinterest Contact Us Radiation Protection Document Library View ...

  3. Atmospheric radiation

    SciTech Connect

    Harshvardhan, M.R. )

    1991-01-01

    Studies of atmospheric radiative processes are summarized for the period 1987-1990. Topics discussed include radiation modeling; clouds and radiation; radiative effects in dynamics and climate; radiation budget and aerosol effects; and gaseous absorption, particulate scattering and surface reflection. It is concluded that the key developments of the period are a defining of the radiative forcing to the climate system by trace gases and clouds, the recognition that cloud microphysics and morphology need to be incorporated not only into radiation models but also climate models, and the isolation of a few important unsolved theoretical problems in atmospheric radiation.

  4. Induction of human breast cell carcinogenesis by triclocarban and intervention by curcumin

    SciTech Connect

    Sood, Shilpa; Choudhary, Shambhunath; Wang, Hwa-Chain Robert

    2013-09-06

    Highlights: •Triclocarban exposure induces breast epithelial cell carcinogenesis. •Triclocarban induces the Erk–Nox pathway, ROS elevation, and DNA damage. •Physiological doses of triclocarban induce cellular carcinogenesis. •Non-cytotoxic curcumin blocks triclocarban-induced carcinogenesis and pathways. -- Abstract: More than 85% of breast cancers are sporadic and attributable to long-term exposure to environmental carcinogens and co-carcinogens. To identify co-carcinogens with abilities to induce cellular pre-malignancy, we studied the activity of triclocarban (TCC), an antimicrobial agent commonly used in household and personal care products. Here, we demonstrated, for the first time, that chronic exposure to TCC at physiologically-achievable nanomolar concentrations resulted in progressive carcinogenesis of human breast cells from non-cancerous to pre-malignant. Pre-malignant carcinogenesis was measured by increasingly-acquired cancer-associated properties of reduced dependence on growth factors, anchorage-independent growth and increased cell proliferation, without acquisition of cellular tumorigenicity. Long-term TCC exposure also induced constitutive activation of the Erk–Nox pathway and increases of reactive oxygen species (ROS) in cells. A single TCC exposure induced transient induction of the Erk–Nox pathway, ROS elevation, increased cell proliferation, and DNA damage in not only non-cancerous breast cells but also breast cancer cells. Using these constitutively- and transiently-induced changes as endpoints, we revealed that non-cytotoxic curcumin was effective in intervention of TCC-induced cellular pre-malignancy. Our results lead us to suggest that the co-carcinogenic potential of TCC should be seriously considered in epidemiological studies to reveal the significance of TCC in the development of sporadic breast cancer. Using TCC-induced transient and constitutive endpoints as targets will likely help identify non-cytotoxic preventive

  5. Terpenoids as anti-colon cancer agents - A comprehensive review on its mechanistic perspectives.

    PubMed

    Sharma, Sharada H; Thulasingam, Senthilkumar; Nagarajan, Sangeetha

    2017-01-15

    Multistep model of colon carcinogenesis has provided the framework to advance our understanding of the molecular basis of colon cancer. This multistage process of carcinogenesis takes a long period to transform from a normal epithelial cell to invasive carcinoma. Thus, it provides enough time to intervene the process of carcinogenesis especially through dietary modification. In spite of the in-depth understanding of the colon cancer etiology and pathophysiology and its association with diet, colon cancer remains a major cause of cancer mortality worldwide. Phytochemicals and their derivatives are gaining attention in cancer prevention and treatment strategies because of cancer chemotherapy associated adverse effects. Being the largest group of phytochemicals traditionally used for medicinal purpose in India and China, terpenoids are recently being explored as anticancer agents. Anticancer properties of terpenoids are associated with various mechanisms like counteraction of oxidative stress, potentiating endogenous antioxidants, improving detoxification potential, disrupting cell survival pathways and inducing apoptosis. This review gives a comprehensive idea of naturally occurring terpenoids as useful agents for the prevention of colon cancer with reference to their classes, sources and molecular targets. Based on the explored molecular targets further research in colon cancer chemoprevention is warranted.

  6. 2014 Space Radiation Standing Review Panel

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2015-01-01

    The 2014 Space Radiation Standing Review Panel (from here on referred to as the SRP) participated in a WebEx/teleconference with members of the Space Radiation Program Element, representatives from the Human Research Program (HRP), the National Space Biomedical Research Institute (NSBRI), and NASA Headquarters on November 21, 2014 (list of participants is in Section XI of this report). The SRP reviewed the updated Research Plan for the Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure (Degen Risk). The SRP also received a status update on the Risk of Acute and Late Central Nervous System Effects from Radiation Exposure (CNS Risk), the Risk of Acute Radiation Syndromes Due to Solar Particle Events (ARS Risk), and the Risk of Radiation Carcinogenesis (Cancer Risk). The SRP thought the teleconference was very informative and that the Space Radiation Program Element did a great job of outlining where the Element is with respect to our state of knowledge on the risks of carcinogenesis, central nervous system effects, and the risk of cardiovascular disease and other degenerative tissue effects from exposure to space radiation. The SRP was impressed with the quality of research that is being conducted and the progress the Space Radiation Program Element has made in the past year. While much work has been done, the SRP had a few remaining questions regarding the broad applicability of these findings to a manned deep space mission (in terms of cognitive function, the paradigms were still hippocampal based and also using Alzheimer disease models). The SRP believes that NASA should consider developing an approach to follow astronauts long-term (beyond retirement) for potential side-effects/risks of space exposure that may be unknown. Radiation toxicities often occur decades after exposure, and potential consequences would be missed if intensified exams stop after retirement of the astronauts. In addition, while cancer is one

  7. Polymer-composite materials for radiation protection.

    PubMed

    Nambiar, Shruti; Yeow, John T W

    2012-11-01

    Unwanted exposures to high-energy or ionizing radiation can be hazardous to health. Prolonged or accumulated radiation dosage from either particle-emissions such as alpha/beta, proton, electron, neutron emissions, or high-energy electromagnetic waves such as X-rays/γ rays, may result in carcinogenesis, cell mutations, organ failure, etc. To avoid occupational hazards from these kinds of exposures, researchers have traditionally used heavy metals or their composites to attenuate the radiation. However, protective gear made of heavy metals are not only cumbersome but also are capable of producing more penetrative secondary radiations which requires additional shielding, increasing the cost and the weight factor. Consequently, significant research efforts have been focused toward designing efficient, lightweight, cost-effective, and flexible shielding materials for protection against radiation encountered in various industries (aerospace, hospitals, and nuclear reactors). In this regard, polymer composites have become attractive candidates for developing materials that can be designed to effectively attenuate photon or particle radiation. In this paper, we review the state-of-the-art of polymer composites reinforced with micro/nanomaterials, for their use as radiation shields.

  8. Space radiation health research, 1991-1992

    NASA Technical Reports Server (NTRS)

    Jablin, M. H. (Compiler); Brooks, C. (Compiler); Ferraro, G. (Compiler); Dickson, K. J. (Compiler); Powers, J. V. (Compiler); Wallace-Robinson, J. (Compiler); Zafren, B. (Compiler)

    1993-01-01

    The present volume is a collection of 227 abstracts of radiation research sponsored by the NASA Space Radiation Health Program for the period 1991-1992. Each abstract has been categorized within one of three discipline areas: Physics, Biology and Risk Assessment. Topic areas within each discipline have been assigned as follows: Physics - Atomic Physics, Theory, Cosmic Ray and Astrophysics, Experimental, Environments and Environmental Models, Solar Activity and Prediction, Experiments, Radiation Transport and Shielding, Theory and Model Development, Experimental Studies, and Instrumentation. Biology - Biology, Molecular Biology, Cellular Radiation Biology, Transformation, Mutation, Lethality, Survival, DNA Damage and Repair, Tissue, Organs, and Organisms, In Vivo/In Vitro Systems, Carcinogenesis and Life Shortening, Cataractogenesis, Genetics/Developmental, Radioprotectants, Plants, and Other Effects. Risk Assessment - Risk Assessment, Radiation Health and Epidemiology, Space Flight Radiation Health Physics, Inter- and Intraspecies Extrapolation and Radiation Limits and Standards. Section I contains refereed journals; Section II contains reports/meetings. Keywords and author indices are provided. A collection of abstracts spanning the period 1986-1990 was previously issued as NASA Technical Memorandum 4270.

  9. Pelvic radiation - discharge

    MedlinePlus

    Radiation of the pelvis - discharge; Cancer treatment - pelvic radiation; Prostate cancer - pelvic radiation; Ovarian cancer - pelvic radiation; Cervical cancer - pelvic radiation; Uterine cancer - pelvic radiation; Rectal cancer - ...

  10. Support for comprehensive reuse

    NASA Technical Reports Server (NTRS)

    Basili, V. R.; Rombach, H. D.

    1991-01-01

    Reuse of products, processes, and other knowledge will be the key to enable the software industry to achieve the dramatic improvement in productivity and quality required to satisfy the anticipated growing demands. Although experience shows that certain kinds of reuse can be successful, general success has been elusive. A software life-cycle technology which allows comprehensive reuse of all kinds of software-related experience could provide the means to achieving the desired order-of-magnitude improvements. A comprehensive framework of models, model-based characterization schemes, and support mechanisms for better understanding, evaluating, planning, and supporting all aspects of reuse are introduced.

  11. Encouraging Early Clinical Outcomes With Helical Tomotherapy-Based Image-Guided Intensity-Modulated Radiation Therapy for Residual, Recurrent, and/or Progressive Benign/Low-Grade Intracranial Tumors: A Comprehensive Evaluation

    SciTech Connect

    Gupta, Tejpal

    2012-02-01

    Purpose: To report early clinical outcomes of helical tomotherapy (HT)-based image-guided intensity-modulated radiation therapy (IMRT) in brain tumors of varying shape, size, and location. Materials and Methods: Patients with residual, recurrent, and/or progressive low-grade intracranial and skull-base tumors were treated on a prospective protocol of HT-based IMRT and followed clinicoradiologically. Standardized metrics were used for plan evaluation and outcome analysis. Results: Twenty-seven patients with 30 lesions were treated to a median radiotherapy dose of 54 Gy in 30 fractions. All HT plans resulted in excellent target volume coverage with steep dose-gradients. The mean (standard deviation) dose homogeneity index and conformity index was 0.07 (0.05) and 0.71 (0.08) respectively. At first response assessment, 20 of 30 lesions were stable, whereas 9 showed partial regression. One patient with a recurrent clival chordoma though neurologically stable showed imaging-defined progression, whereas another patient with stable disease on serial imaging had sustained neurologic worsening. With a median follow-up of 19 months (interquartile range, 11-26 months), the 2-year clinicoradiological progression-free survival and overall survival was 93.3% and 100% respectively. Conclusions: Careful selection of radiotherapy technique is warranted for benign/low-grade brain tumors to achieve durable local control with minimum long-term morbidity. Large or complex-shaped tumors benefit most from IMRT. Our early clinical experience of HT-based IMRT for brain tumors has been encouraging.

  12. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.

  13. Cognitive Correlates of Listening Comprehension

    ERIC Educational Resources Information Center

    Kim, Young-Suk; Phillips, Beth

    2014-01-01

    In an effort to understand cognitive foundations of oral language comprehension (i.e., listening comprehension), we examined how inhibitory control, theory of mind, and comprehension monitoring are uniquely related to listening comprehension over and above vocabulary and age. A total of 156 children in kindergarten and first grade from…

  14. Molecular techniques for studying gene expression in carcinogenesis.

    PubMed

    Ahmed, Farid E

    2002-11-01

    Many genes and signaling pathways controlling cell proliferation, death, differentiation, and genomic integrity are involved in cancer development. Various methods are available for detection and quantification of messenger RNA. Older methods such as Northern blots, nuclease protection, plaque hybridization, and slot blots suffer from being inherently serial, measure a single mRNA at a time, or being difficult to automate. New techniques for analysis of gene expression include: (a) comprehensive open systems such as serial analysis of gene expression (SAGE), differential display (DD) analysis, RNA arbitrarily primer (RAP)-PCR, restriction endonucleolytic analysis of differentially expressed sequences (READS), amplified restriction fragment-length polymorphism (AFLP), total gene expression analysis (TOGA), and use of internal standard competitive template primers (CTs) in a quantitative multiplex RT-PCR method [StaRT-(PCR)], and (b) focused closed systems such as: high density cDNA filter hybridization (HDFCA) analysis, suppression subtractive hybridization (SSH), differential screening (DS), several forms of high-density cDNA arrays, or oligonucleotide chips, and tissue microarrays. Sometimes, a combination of these systems is used to enhance the sensitivity and specificity of the assays. While closed systems are excellent for the initial screening of large number of sequences, the value of the information generated is generally limited to an often arbitrarily chosen known sequence. On the other hand, only the open system platform has the potential to evaluate the expression patterns of tens of thousands of genes that have not yet been cloned or partially sequenced in a quantitative manner. A cost analysis of the most commonly used expression technologies is provided. A method for purifying tumors from surrounding stroma and normal tissue employing laser microdissection, and subsequent RNA isolation/amplification from few cells employing sensitive kits are also

  15. Radiation burden from secondary doses to patients undergoing radiation therapy with photons and light ions and radiation doses from imaging modalities.

    PubMed

    Gudowska, I; Ardenfors, O; Toma-Dasu, I; Dasu, A

    2014-10-01

    Ionising radiation is increasingly used for the treatment of cancer, being the source of a considerable fraction of the medical irradiation to patients. With the increasing success rate of cancer treatments and longer life expectancy of the treated patients, the issue of secondary cancer incidence is of growing concern, especially for paediatric patients who may live long after the treatment and be more susceptible to carcinogenesis. Also, additional imaging procedures like computed tomography, kilovoltage and megavoltage imaging and positron emission tomography, alone or in conjunction with radiation therapy, may add to the radiation burden associated with the risk of occurrence of secondary cancers. This work has been based on literature studies and is focussed on the assessment of secondary doses to healthy tissues that are delivered by the use of modern radiation therapy and diagnostic imaging modalities in the clinical environment.

  16. COMPREHENSIVE JUNIOR COLLEGES.

    ERIC Educational Resources Information Center

    NIKITAS, CHRISTUS M.; AND OTHERS

    TO MEET THE STATE'S HIGHER EDUCATION NEEDS, THE NEW HAMPSHIRE JUNIOR COLLEGE COMMISSION DEVELOPED A PLAN OF (1) GRADUAL AND SELECTIVE CONVERSION OF THE STATE'S TECHNICAL AND VOCATIONAL SCHOOLS TO COMPREHENSIVE JUNIOR COLLEGES, (2) SELECTIVE ADDITION OF 2-YEAR PROGRAMS AT THE STATE COLLEGES AND INSTITUTES, AND (3) ESTABLISHMENT OF A STATE…

  17. COMMUNICATION AND COMPREHENSION.

    ERIC Educational Resources Information Center

    TRENAMAN, J.M.

    A SERIES OF BRITISH IMPACT STUDIES DEALT WITH ADULT AUDIENCE CHARACTERISTICS (COMPREHENSION, KNOWLEDGE, INTERESTS, ATTITUDES) AND FACTORS WITHIN THE MEDIUM THAT MAKE FOR EFFECTIVE COMMUNICATION. FIVE DIFFERENT TYPES OF SUBJECT MATTER WERE PRESENTED TO MATCHED SAMPLES OF THE GENERAL PUBLIC BY MEANS OF RADIO, TELEVISION, AND PRINTED ARTICLES. THE…

  18. Cinnarizine: Comprehensive Profile.

    PubMed

    Haress, Nadia G

    2015-01-01

    Cinnarizine is a piperazine derivative with antihistaminic, antiserotonergic, antidopaminergic, and calcium channel-blocking activities. A comprehensive profile was performed on cinnarizine including its description and the different methods of analysis. The 1H NMR and 13C one- and two-dimensional NMR methods were used. In addition, infrared and mass spectral analyses were performed which all confirmed the structure of cinnarizine.

  19. Comprehensive metabolic panel

    MedlinePlus

    Metabolic panel - comprehensive; Chem-20; SMA20; Sequential multi-channel analysis with computer-20; SMAC20; Metabolic panel 20 ... McPherson RA, Pincus MR. Disease/organ panels. McPherson RA, ... . 22nd ed. Philadelphia, PA: Elsevier Saunders; 2011:appendix 7.

  20. Comprehensive Trail Making Test

    ERIC Educational Resources Information Center

    Gray, Rebecca

    2006-01-01

    The Comprehensive Trail Making Test (CTMT) is designed to be used in neuropsychological assessment for the purposes of detecting effects of brain defects and deficits and in tracking progress in rehabilitation. More specific purposes include the detection of frontal lobe deficits, problems with psychomotor speed, visual search and sequencing,…

  1. Designing a Comprehensive Curriculum

    ERIC Educational Resources Information Center

    Faulkner, T. L.

    1970-01-01

    A comprehensive rural "agribusiness industry" curriculum might include: (1) The World of Work (Grade 7 or 8), (2) Vocational Orientation (Grade 9), (3) Basic Agriculture and Industry (Grade 10), (4) Specialized Agribusiness Industry (Grade 11), and (5) Advanced Agribusiness Industry (Grade 12). (DM)

  2. Imagery and Comprehension.

    ERIC Educational Resources Information Center

    Ortiz, Rose

    If people can evoke mental images when listening to a story, they can extend the process by turning words on a printed page into speech and evoke images for the "speech on the page." This is an exercise for reading comprehension that does not come naturally but can be worked on deliberately. A few moments of self-observation, when…

  3. The Comprehensive Health Assessment.

    ERIC Educational Resources Information Center

    Eastern Iowa Community Coll. District, Davenport.

    This report contains information from a fall 1991 health occupations assessment of 1,021 health-related employers in Eastern Iowa and the Illinois Quad Cities area. Twelve chapters present comprehensive results of all surveys; results of 10 labor market survey instruments developed for chiropractic offices, dentists' offices, emergency medical…

  4. Assessing Reading Comprehension

    ERIC Educational Resources Information Center

    Klingner, Janette K.

    2004-01-01

    Generally, experts agree on what good readers do to comprehend text--they connect new text with past experiences, interpret, evaluate, synthesize, and consider alternative interpretations. Yet, traditional measures of reading comprehension only provide a general indicator of how well a student understands text. They do not provide information…

  5. Comprehension Strategy Gloves.

    ERIC Educational Resources Information Center

    Newman, Gayle

    2002-01-01

    Describes the idea of creating a glove for each of the comprehension strategies for use with different text structures. Notes that the gloves serve as a multisensory approach by providing visual clues through icons on each finger and the palm. Discusses three different gloves: the prereading glove, the narrative text structure glove, and the…

  6. Math Sense: Comprehensive Review.

    ERIC Educational Resources Information Center

    Hoyt, Cathy Fillmore

    This book features a comprehensive review of the Math Sense series and is designed to help students gain the range of math skills they need to succeed in life, work, and on standardized tests; overcome math anxiety; discover math as interesting and purposeful; and develop good number sense. Topics covered in this book include whole numbers;…

  7. Writing for Comprehension

    ERIC Educational Resources Information Center

    Wallace, Randy; Pearman, Cathy; Hail, Cindy; Hurst, Beth

    2007-01-01

    Many educators continue to treat reading and writing as separate subjects. In response to this observation, the authors offer four research-based writing strategies that teachers can use to improve student reading comprehension through writing. The writing strategies--"About/Point", "Cubing", "Four Square Graphic Organizer", and "Read," "Respond",…

  8. Overexpression of CRM1: A Characteristic Feature in a Transformed Phenotype of Lung Carcinogenesis and a Molecular Target for Lung Cancer Adjuvant Therapy.

    PubMed

    Gao, Weimin; Lu, Chuanwen; Chen, Lixia; Keohavong, Phouthone

    2015-05-01

    Our previous study showed that chromosome region maintenance 1 (CRM1), a nuclear export receptor for various cancer-associated "cargo" proteins, was important in regulating lung carcinogenesis in response to a tobacco carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The objectives of this study are to comprehensively evaluate the significance of CRM1 in lung cancer development and investigate the therapeutic potential of targeting CRM1 for lung cancer treatment using both in vitro and in vivo models. We showed that CRM1 was overexpressed not only in lung tumor tissues from both lung cancer patients and mice treated with NNK but also in NNK-transformed BEAS-2B human bronchial epithelial cells. Furthermore, stable overexpression of CRM1 in BEAS-2B cells by plasmid vector transfection led to malignant cellular transformation. Moreover, a decreased CRM1 expression level in A549 cells by short hairpin siRNA transfection led to a decreased tumorigenic activity both in vitro and in nude mice, suggesting the potential to target CRM1 for lung cancer treatment. Indeed, we showed that the cytotoxic effects of cisplatin on A549 cells with CRM1 down-regulated by short hairpin siRNA were significantly increased, compared with A549 cells, and the cytotoxic effects of cisplatin became further enhanced when the drug was used in combination with leptomycin B, a CRM1 inhibitor, in both in vitro and in vivo models. Cancer target genes were significantly involved in these processes. These data suggest that CRM1 plays an important role in lung carcinogenesis and provides a novel target for lung cancer adjuvant therapy.

  9. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    SciTech Connect

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki

    2013-11-15

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA.

  10. Occupational lung cancer and smoking: a review in the light of current theories of carcinogenesis.

    PubMed Central

    Chovil, A C

    1979-01-01

    This paper considers modern theories of carcinogenesis as they apply to the induction of lung cancer by tobacco smoking and occupational exposure to carcinogens. Some of the known and postulated factors affecting carcinogenesis are discussed, with particular reference to syncarcinogenesis and thresholds. Factors affecting the intensity of smoking exposure are reviewed, and the generally accepted occupational lung carcinogens are listed. Relative risks for the various carcinogens according to smoking status (where known) are presented. The carcinogens are considered individually, and known or postulated interactions with smoking are discussed. It is concluded that the effects of lung carcinogens can be explained on the basis of current theories that support a rational definition of priorities for the prevention of occupational lung cancer. Images p553-a PMID:387195

  11. Morphological and Molecular Alterations in 1,2 Dimethylhydrazine and Azoxymethane Induced Colon Carcinogenesis in Rats

    PubMed Central

    Perše, Martina; Cerar, Anton

    2011-01-01

    The dimethyhydrazine (DMH) or azoxymethane (AOM) model is a well-established, well-appreciated, and widely used model of experimental colon carcinogenesis. It has many morphological as well as molecular similarities to human sporadic colorectal cancer (CC), which are summarized and discussed in this paper. In addition, the paper combines present knowledge of morphological and molecular features in the multistep development of CC recognized in the DMH/AOM rat model. This understanding is necessary in order to accurately identify and interpret alterations that occur in the colonic mucosa when evaluating natural or pharmacological compounds in DMH/AOM rat colon carcinogenesis. The DMH/AOM model provides a wide range of options for investigating various initiating and environmental factors, the role of specific dietary and genetic factors, and therapeutic options in CC. The limitations of this model and suggested areas in which more research is required are also discussed. PMID:21253581

  12. Defining the role of polyamines in colon carcinogenesis using mouse models

    PubMed Central

    Ignatenko, Natalia A.; Gerner, Eugene W.; Besselsen, David G.

    2011-01-01

    Genetics and diet are both considered important risk determinants for colorectal cancer, a leading cause of death in the US and worldwide. Genetically engineered mouse (GEM) models have made a significant contribution to the characterization of colorectal cancer risk factors. Reliable, reproducible, and clinically relevant animal models help in the identification of the molecular events associated with disease progression and in the development of effictive treatment strategies. This review is focused on the use of mouse models for studying the role of polyamines in colon carcinogenesis. We describe how the available mouse models of colon cancer such as the multiple intestinal neoplasia (Min) mice and knockout genetic models facilitate understanding of the role of polyamines in colon carcinogenesis and help in the development of a rational strategy for colon cancer chemoprevention. PMID:21712957

  13. The pleiotropic roles of transforming growth factor beta inhomeostasis and carcinogenesis of endocrine organs.

    SciTech Connect

    Fleisch, Markus C.; Maxwell, Christopher A.; Barcellos-Hoff,Mary-Helen

    2006-01-13

    Transforming growth factor beta (TGF-beta) is a ubiquitous cytokine that plays a critical role in numerous pathways regulating cellular and tissue homeostasis. TGF-beta is regulated by hormones and is a primary mediator of hormone response in uterus, prostate and mammary gland. This review will address the role of TGF-beta in regulating hormone dependent proliferation and morphogenesis. The subversion of TGF-beta regulation during the processes of carcinogenesis, with particular emphasis on its effects on genetic stability and epithelial to mesenchymal transition (EMT), will also be examined. An understanding of the multiple and complex mechanisms of TGF-beta regulation of epithelial function, and the ultimate loss of TGF-beta function during carcinogenesis, will be critical in the design of novel therapeutic interventions for endocrine-related cancers.

  14. Effects of immunostimulation with OK432, coenzyme Q10, or levamisole on dimethylhydrazine-induced colonic carcinogenesis in rats.

    PubMed

    Suzuki, H; Yamamoto, J; Iwata, Y; Matsumoto, K; Iriyama, K

    1986-03-01

    Effects of immunostimulation with OK432, Coenzyme Q10 (Co-Q10), or levamisole on dimethylhydrazine (DMH)-induced colonic carcinogenesis were investigated in 45 Donryu-rats. The manipulation with one of these immunopotentiators did not prevent DMH-induced colonic carcinogenesis in these rats. However, the number of tumors was significantly reduced and the incidence of invasive carcinomas decreased by immunostimulation. The treatment also reduced the number of lesions with epithelial dysplasia within the flat colonic mucosa.

  15. Chronic exposure to combined carcinogens enhances breast cell carcinogenesis with mesenchymal and stem-like cell properties.

    PubMed

    Pluchino, Lenora Ann; Wang, Hwa-Chain Robert

    2014-01-01

    Breast cancer is the most common type of cancer affecting women in North America and Europe. More than 85% of breast cancers are sporadic and attributable to long-term exposure to small quantities of multiple carcinogens. To understand how multiple carcinogens act together to induce cellular carcinogenesis, we studied the activity of environmental carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo[a]pyrene (B[a]P), and dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) using our breast cell carcinogenesis model. Our study revealed, for the first time, that combined NNK and B[a]P enhanced breast cell carcinogenesis chronically induced by PhIP in both non-cancerous and cancerous breast cells. Co-exposure was more potent than sequential exposure to combined NNK and B[a]P followed by PhIP in inducing carcinogenesis. Initiation of carcinogenesis was measured by transient endpoints induced in a single exposure, while progression of carcinogenesis was measured by acquisition of constitutive endpoints in cumulative exposures. Transient endpoints included DNA damage, Ras-Erk-Nox pathway activation, reactive oxygen species elevation, and increased cellular proliferation. Constitutive endpoints included various cancer-associated properties and signaling modulators, as well as enrichment of cancer stem-like cell population and activation of the epithelial-to-mesenchymal transition program. Using transient and constitutive endpoints as targets, we detected that a combination of the green tea catechins ECG and EGCG, at non-cytotoxic levels, was more effective than individual agents in intervention of cellular carcinogenesis induced by combined NNK, B[a]P, and PhIP. Thus, use of combined ECG and EGCG should be seriously considered for early intervention of breast cell carcinogenesis associated with long-term exposure to environmental and dietary carcinogens.

  16. Chronic Exposure to Combined Carcinogens Enhances Breast Cell Carcinogenesis with Mesenchymal and Stem-Like Cell Properties

    PubMed Central

    Pluchino, Lenora Ann; Wang, Hwa-Chain Robert

    2014-01-01

    Breast cancer is the most common type of cancer affecting women in North America and Europe. More than 85% of breast cancers are sporadic and attributable to long-term exposure to small quantities of multiple carcinogens. To understand how multiple carcinogens act together to induce cellular carcinogenesis, we studied the activity of environmental carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo[a]pyrene (B[a]P), and dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) using our breast cell carcinogenesis model. Our study revealed, for the first time, that combined NNK and B[a]P enhanced breast cell carcinogenesis chronically induced by PhIP in both non-cancerous and cancerous breast cells. Co-exposure was more potent than sequential exposure to combined NNK and B[a]P followed by PhIP in inducing carcinogenesis. Initiation of carcinogenesis was measured by transient endpoints induced in a single exposure, while progression of carcinogenesis was measured by acquisition of constitutive endpoints in cumulative exposures. Transient endpoints included DNA damage, Ras-Erk-Nox pathway activation, reactive oxygen species elevation, and increased cellular proliferation. Constitutive endpoints included various cancer-associated properties and signaling modulators, as well as enrichment of cancer stem-like cell population and activation of the epithelial-to-mesenchymal transition program. Using transient and constitutive endpoints as targets, we detected that a combination of the green tea catechins ECG and EGCG, at non-cytotoxic levels, was more effective than individual agents in intervention of cellular carcinogenesis induced by combined NNK, B[a]P, and PhIP. Thus, use of combined ECG and EGCG should be seriously considered for early intervention of breast cell carcinogenesis associated with long-term exposure to environmental and dietary carcinogens. PMID:25372613

  17. Space Radiation and Risks to Human Health

    NASA Technical Reports Server (NTRS)

    Huff, Janice L.

    2014-01-01

    The radiation environment in space poses significant challenges to human health and is a major concern for long duration manned space missions. Outside the Earth's protective magnetosphere, astronauts are exposed to higher levels of galactic cosmic rays, whose physical characteristics are distinct from terrestrial sources of radiation such as x-rays and gamma-rays. Galactic cosmic rays consist of high energy and high mass nuclei as well as high energy protons; they impart unique biological damage as they traverse through tissue with impacts on human health that are largely unknown. The major health issues of concern are the risks of radiation carcinogenesis, acute and late decrements to the central nervous system, degenerative tissue effects such as cardiovascular disease, as well as possible acute radiation syndromes due to an unshielded exposure to a large solar particle event. The NASA Human Research Program's Space Radiation Program Element is focused on characterization and mitigation of these space radiation health risks along with understanding these risks in context of the other biological stressors found in the space environment. In this overview, we will provide a description of these health risks and the Element's research strategies to understand and mitigate these risks.

  18. Do Perturbed Epithelial-Mesenchymal Interactions Drive Early Stages of Carcinogenesis?

    DTIC Science & Technology

    2005-04-01

    version of holism-author’s note), Altered communication among cells is at the core of the autonomy was understood in terms of ’ totipotency ’, the pos- TOFT...of Cells : Cancer and Control of Cell Proliferation. New York, Springer Verlag, 1999, pp. 99-111 18. Illmensee K, Mintz B: Totipotency and normal...involved in tumorstromal cell interactions as mediators of neoplastic initiation and progression. 15. SUBJECT TERMS Carcinogenesis, tissue transplants

  19. Is it time to advance the chemoprevention of environmental carcinogenesis with microdosing trials?

    PubMed

    Kensler, Thomas W; Groopman, John D

    2009-12-01

    This perspective on Jubert et al. (beginning on page [1015] in this issue of the journal) discusses the use of microdosing with environmental carcinogens to accelerate the evaluation and optimization of chemopreventive interventions. The need for chemoprevention of environmental carcinogenesis is considered, as are the structure of microdosing, or phase 0, trials, technologies required to conduct microdose studies in this context, and ethical concerns. We also reflect on what microdosing studies have taught us to date.

  20. [Xeroderma pigmentosum with repeated facial skin carcinogenesis: report of one case].

    PubMed

    Li, Fang; Jiang, Yin-hua; Zhan, Shi-long

    2012-08-01

    Xeroderma pigmentosum is a relatively rare pigment atrophic autosomal recessive genetic disease, mainly due to defect of DNA excision repair capacity, resulting in ineffective removal of UV-induced pyrimidine dimers, and finally cell damage. This paper reported a case of xeroderma pigmentosum with recurrent episodes of oral and maxillofacial carcinogenesis, and discussed the etiology, pathology, clinical characteristics, classification, diagnosis and treatment methods of Xeroderma pigmentosum.

  1. Epithelial to Stromal Re-Distribution of Primary Cilia during Pancreatic Carcinogenesis

    PubMed Central

    Schimmack, Simon; Kneller, Sarah; Dadabaeva, Nigora; Bergmann, Frank; Taylor, Andrew; Hackert, Thilo; Werner, Jens; Strobel, Oliver

    2016-01-01

    Background The Hedgehog (HH) pathway is a mediator in pancreatic ductal adenocarcinoma (PDAC). Surprisingly, previous studies suggested that primary cilia (PC), the essential organelles for HH signal transduction, were lost in PDAC. The aim of this study was to determine the presence of PC in human normal pancreas, chronic pancreatitis, and during carcinogenesis to PDAC with focus on both epithelia and stroma. Methods PC were analyzed in paraffin sections from normal pancreas, chronic pancreatitis, intraductal papillary-mucinous neoplasia, and PDAC, as well as in primary human pancreatic stellate cells (PSC) and pancreatic cancer cell lines by double immunofluorescence staining for acetylated α-tubuline and γ-tubuline. Co-staining for the HH receptors PTCH1, PTCH2 and SMO was also performed. Results PC are gradually lost during pancreatic carcinogenesis in the epithelium: the fraction of cells with PC gradually and significantly decreased from 32% in ducts of normal pancreas, to 21% in ducts of chronic pancreatitis, to 18% in PanIN1a, 6% in PanIN2, 3% in PanIN3 and to 1.2% in invasive PDAC. However, this loss of PC in the neoplastic epithelium is accompanied by a gain of PC in the surrounding stroma. The fraction of stromal cells with PC significantly increased from 13% around normal ducts to about 30% around PanIN and PDAC. HH-receptors were detected in tumor stroma but not in epithelial cells. PC are also present in PSC and pancreatic cancer cell lines. Conclusion PC are not lost during pancreatic carcinogenesis but re-distributed from the epithelium to the stroma. This redistribution may explain the re-direction of HH signaling towards the stroma during pancreatic carcinogenesis. PMID:27783689

  2. [Mechanisms of plant polyphenols anti-cancer effects. I. Blockade of carcinogenesis initiation].

    PubMed

    Zinov'eva, V N; Spasov, A A

    2012-01-01

    Mechanisms of anti-cancer effects of polyphenols, found in fruits, vegetables, spices and representing parts of daily nutrition, have been considered. These compounds may be the basis for development of cancer preventive preparations. They can block carcinogenesis initiation by inactivation of exogenous or endogenous genotoxic molecules including reactive oxygen species. Another mechanism consists in inhibition of activity and synthesis of carcinogen-metabolizing enzymes. Plant polyphenols also induce expression of antioxidant and detoxification enzymes genes.

  3. Colonic protein fermentation and promotion of colon carcinogenesis by thermolyzed casein

    PubMed Central

    Corpet, Denis E.; Yin, Y.; Zhang, X. M.; Rémésy, C.; Stamp, D.; Medline, A.; Thompson, L.U.; Bruce, W. R.; Archer, M. C.

    1995-01-01

    Thermolyzed casein is known to promote the growth of aberrant crypt foci (ACF) and colon cancer when it is fed to rats that have been initiated with azoxymethane. We speculated that the promotion was a consequence of increased colonic protein fermentation (i.e., that the thermolysis of the casein decreases its digestibility, increases the amount of protein reaching the colon, and increases colonic protein fermentation and that the potentially toxic products of this fermentation promote colon carcinogenesis). We found that the thermolysis of casein reduces its digestibility and increases colonic protein fermentation, as assessed by fecal ammonium and urinary phenol, cresol, and indol-3-ol. Thermolysis of two other proteins, soy and egg white protein, also increases colonic protein fermentation with increased fecal ammonia and urinary phenols, and thermolysis of all three proteins increases the levels of ammonia and butyric, valeric, and i-valeric acids in the cecal contents. We found, however, that the increased protein fermentation observed with thermolysis is not associated with promotion of colon carcinogenesis. With casein, the kinetics of protein fermentation with increasing thermolysis time are clearly different from the kinetics of promotion of ACF growth. The formation of the fermentation products was highest when the protein was thermolyzed for one hour, whereas promotion was highest for protein that had been thermolyzed for two or more hours. With soy and egg white, thermolysis increased colonic protein fermentation but did not promote colon carcinogenesis. Thus, although thermolysis of dietary casein increases colonic protein fermentation, products of this fermentation do not appear to be responsible for the promotion of colon carcinogenesis. Indeed, the results suggest that protein fermentation products do not play an important role in colon cancer promotion. PMID:7603887

  4. In Vivo Testing of Chemopreventive Agents Using the Dog Model of Spontaneous Prostate Carcinogenesis

    DTIC Science & Technology

    2001-03-01

    Pitti-Ferrandi, C. Trivalle, 0. de Lacharriere, S . Nouveau, B. Rakoto-Arison, J.C. Souberbielle, J. Raison, Y. Le Bouc, A. Raynaud , X. Girerd, F...Approved for Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author( s ) and...FUNDING NUMBERS In Vivo Testing of Chemopreventive Agents Using the Dog Model of Spontaneous DAMD1 7-98-1-8550 Prostate Carcinogenesis 6. AUTHOR( S

  5. Resveratrol inhibits estrogen-induced breast carcinogenesis through induction of NRF2-mediated protective pathways

    PubMed Central

    Singh, Bhupendra; Shoulson, Rivka; Chatterjee, Anwesha; Ronghe, Amruta; Bhat, Nimee K.; Dim, Daniel C.; Bhat, Hari K.

    2014-01-01

    The importance of estrogens in the etiology of breast cancer is widely recognized. Estrogen-induced oxidative stress has been implicated in this carcinogenic process. Resveratrol (Res), a natural antioxidant phytoestrogen has chemopreventive effects against a variety of illnesses including cancer. The objective of the present study was to characterize the mechanism(s) of Res-mediated protection against estrogen-induced breast carcinogenesis. Female August Copenhagen Irish rats were treated with 17β-estradiol (E2), Res and Res + E2 for 8 months. Cotreatment of rats with Res and E2 inhibited E2-mediated proliferative changes in mammary tissues and significantly increased tumor latency and reduced E2-induced breast tumor development. Resveratrol treatment alone or in combination with E2 significantly upregulated expression of nuclear factor erythroid 2-related factor 2 (NRF2) in mammary tissues. Expression of NRF2-regulated antioxidant genes NQO1, SOD3 and OGG1 that are involved in protection against oxidative DNA damage was increased in Res- and Res + E2-treated mammary tissues. Resveratrol also prevented E2-mediated inhibition of detoxification genes AOX1 and FMO1. Inhibition of E2-mediated alterations in NRF2 promoter methylation and expression of NRF2 targeting miR-93 after Res treatment indicated Res-mediated epigenetic regulation of NRF2 during E2-induced breast carcinogenesis. Resveratrol treatment also induced apoptosis and inhibited E2-mediated increase in DNA damage in mammary tissues. Increased apoptosis and decreased DNA damage, cell migration, colony and mammosphere formation in Res- and Res + E2-treated MCF-10A cells suggested a protective role of Res against E2-induced mammary carcinogenesis. Small-interfering RNA-mediated silencing of NRF2 inhibited Res-mediated preventive effects on the colony and mammosphere formation. Taken together, these results suggest that Res inhibits E2-induced breast carcinogenesis via induction of NRF2-mediated protective

  6. Do Perturbed Epithelial-Mesenchymal Interactions Drive Early Stages of Carcinogenesis

    DTIC Science & Technology

    2006-04-01

    initiation and progression. BODY: HYPOTHESIS: Are the targets of the carcinogen the genomic DNA of epithelial cells, the stroma, or both? The...The next step will be to explore the role of the stroma in 3-dimensional tissue culture models for carcinogenesis. We have identified novel silkworm ...microarrays. Genome -wide DNA Microarray analysis was performed with RNA extracted from the cleared mammary fat pads of rats treated with vehicle or

  7. Murine susceptibility to two-stage skin carcinogenesis is influenced by the agent used for promotion

    SciTech Connect

    Reiners, J.J. Jr.; Nesnow, S.; Slaga, T.J.

    1984-01-01

    Several approaches were employed to investigate whether murine stock and strain differences in susceptibility to two-stage skin carcinogenesis are due to differences in the metabolism of the initiating aromatic hydrocarbons, or the consequences of the agents used for promotion. A cell-mediated mutagenesis assay was used to quantitatively compare the abilities of cultured newborn SENCAR, DBA/2, C57BL/6 and BALB/c keratinocytes to metabolize dimethylbenz(a)anthracene (DMBA) to mutagenic and cytotoxic metabolites. At equivalent concentrations of DMBA, throughout a 25-fold range in promutagen concentration, C57BL/6, BALB/c and SENCAR keratinocyte-dependent mutant frequencies were very similar and approximately twice DBA/2 keratinocyte-dependent mutant frequencies. In in vivo tumor studies, C57BL/6 mice were more sensitive than SENCAR mice to complete skin carcinogenesis protocols employing repetitive weekly treatments with DMBA and benzo(a)pyrene (BP). At equivalent concentrations of either DMBA or BP, C57BL/6 mice developed carcinomas sooner, and had a greater number of carcinomas per animal. SENCAR mice were very sensitive to two-stage skin carcinogenesis protocols employing BP and DMBA as initiators and benzoyl peroxide and 12-O-tetradecanoylphorbol-13-acetate (TPA) as promoters. C57BL/6 mice were relatively refractory to TPA promotion but sensitive to promotion with benzoyl peroxide. These findings suggest that murine stock and strain-dependent differences in sensitivity to two-stage skin carcinogenesis may not be due to major differences in the metabolism of the initiating hydrocarbons, but are partially the consequences of the agents for promotion. 24 references, 5 figures, 1 table.

  8. Phenotype of preneoplastic and neoplastic liver lesions during spontaneous liver carcinogenesis of LEC rats.

    PubMed

    Sawaki, M; Enomoto, K; Takahashi, H; Nakajima, Y; Mori, M

    1990-10-01

    The incidence and phenotype of preneoplastic and neoplastic liver lesions appearing in LEC rats after recovery from severe hereditary hepatitis were studied in comparison with the liver lesions appearing in chemical liver carcinogenesis. The livers of 168 rats (90 male, 78 female) were stained for seven histochemical markers at different time periods from the 20th week to the 122nd week of life. Glucose-6-phosphatase (G6Pase), adenosine triphosphatase (ATPase) and non-specific esterase (ES) were used as negative markers. Gamma-glutamyltransferase (GGT), glutathione S-transferase placental form (GSTP), esterase isozyme L-1 (L1) and alpha-fetoprotein (AFP) were used as positive markers. The study on the incidence of liver lesions in the LEC rats revealed sequential development of liver foci, nodules and hepatocellular carcinomas (HCCs) similar to those seen in chemically induced liver carcinogenesis. These lesions appeared earlier and more frequently in male LEC rats than in female ones, suggesting the importance of hormonal environment in spontaneous HCC development. The histochemical analysis of spontaneous liver lesions in LEC rats showed that GSTP was the most reliable positive marker as previously reported in chemical liver carcinogenesis. There was no essential difference in the expression of the markers in spontaneous and chemically induced liver lesions except for L1, which is considered to be related to xenobiotic metabolism. The results of this study suggest that both spontaneous and chemically induced liver cancer may develop by passing through phenotypically similar preneoplastic processes. In addition, the LEC rat uniquely showed chronic liver damage (hepatocyte death and regeneration) at the promotion stage of carcinogenesis. Such a natural history of HCC development in LEC rats is similar to that of human HCC which is frequently associated with chronic liver damage. Thus, the LEC rat provides a useful model for studying the process and underlying

  9. Development of the Zebra Danio Model: Carcinogenesis and Gene Transfer Studies

    DTIC Science & Technology

    1996-09-01

    of multiple cells between adjacent sinusoids (Fig. 2.7). The cells tend to be more varied in nuclear and cytoplasmic features than adenoma cells, and...zebrafish to various classes of carcinogens, in this case aflatoxins, by multiple exposure routes, and also to explore the modulation of carcinogenesis by...using multiple exposure routes for nitrosamines (Tsai et al., 199X), and dietary exposure to aflatoxin B, (Tsai and Hendricks, 199X). Methylazoxymethanol

  10. Space Radiation

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2006-01-01

    Astronauts receive the highest occupational radiation exposure. Effective protections are needed to ensure the safety of astronauts on long duration space missions. Increased cancer morbidity or mortality risk in astronauts may be caused by occupational radiation exposure. Acute and late radiation damage to the central nervous system (CNS) may lead to changes in motor function and behavior, or neurological disorders. Radiation exposure may result in degenerative tissue diseases (non-cancer or non-CNS) such as cardiac, circulatory, or digestive diseases, as well as cataracts. Acute radiation syndromes may occur due to occupational radiation exposure.

  11. Iterative framework radiation hybrid mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Building comprehensive radiation hybrid maps for large sets of markers is a computationally expensive process, since the basic mapping problem is equivalent to the traveling salesman problem. The mapping problem is also susceptible to noise, and as a result, it is often beneficial to remove markers ...

  12. Dual preventive benefits of iron elimination by desferal in asbestos-induced mesothelial carcinogenesis.

    PubMed

    Jiang, Li; Chew, Shan-Hwu; Nakamura, Kosuke; Ohara, Yuuki; Akatsuka, Shinya; Toyokuni, Shinya

    2016-07-01

    Asbestos-induced mesothelial carcinogenesis is currently a profound social issue due to its extremely long incubation period and high mortality rate. Therefore, procedures to prevent malignant mesothelioma in people already exposed to asbestos are important. In previous experiments, we established an asbestos-induced rat peritoneal mesothelioma model, which revealed that local iron overload is a major cause of pathogenesis and that the induced genetic alterations are similar to human counterparts. Furthermore, we showed that oral administration of deferasirox modified the histology from sarcomatoid to the more favorable epithelioid subtype. Here, we used i.p. administration of desferal to evaluate its effects on asbestos-induced peritoneal inflammation and iron deposition, as well as oxidative stress. Nitrilotriacetate was used to promote an iron-catalyzed Fenton reaction as a positive control. Desferal significantly decreased peritoneal fibrosis, iron deposition, and nuclear 8-hydroxy-2'-deoxyguanosine levels in mesothelial cells, whereas nitrilotriacetate significantly increased all of them. Desferal was more effective in rat peritoneal mesothelial cells to counteract asbestos-induced cytotoxicity than in murine macrophages (RAW264.7). Furthermore, rat sarcomatoid mesothelioma cells were more dependent on iron for proliferation than rat peritoneal mesothelial cells. Because inflammogenicity of a fiber is proportionally associated with subsequent mesothelial carcinogenesis, iron elimination from the mesothelial environment can confer dual merits for preventing asbestos-induced mesothelial carcinogenesis by suppressing inflammation and mesothelial proliferation simultaneously.

  13. Modification of N-Methyl-N-Nitrosourea initiated bladder carcinogenesis in Wistar rats by terephthalic acid

    SciTech Connect

    Cui Lunbiao; Shi Yuan; Dai Guidong; Pan Hongxin; Chen Jianfeng; Song Ling; Wang Shouling; Chang, Hebron C.; Sheng Hongbing; Wang Xinru . E-mail: xrwang@njmu.edu.cn

    2006-01-15

    The effect of terephthalic acid (TPA) on urinary bladder carcinogenesis was examined. Male Wistar rats were initiated by injection of N-Methyl-N-Nitrosourea (MNU) (20 mg/kg b.w. ip) twice a week for 4 weeks, then given basal diet containing 5% TPA, 5% TPA plus 4% Sodium bicarbonate (NaHCO{sub 3}) or 1% TPA for the next 22 weeks, and then euthanized. 5% TPA treatment induced a high incidence of urinary bladder calculi and a large amount of precipitate. Though 5% TPA plus 4% Sodium bicarbonate (NaHCO{sub 3}) and 1% TPA treatment did not induce urinary bladder calculi formation, they resulted in a moderate increase in urinary precipitate. Histological examination of urinary bladder revealed that MNU-5% TPA treatment resulted in a higher incidence of simple hyperplasia, papillary or nodular hyperplasia (PN hyperplasia), papilloma and cancer than MNU control. MNU-5% TPA plus 4% Sodium bicarbonate (NaHCO{sub 3}) and 1% TPA treatment increased slightly the incidence of simple hyperplasia and PN hyperplasia (not statistically significant). The major elements of the precipitate are phosphorus, potassium, sulfur, chloride, calcium and TPA. The present study indicated that the calculi induced by TPA had a strong promoting activity on urinary bladder carcinogenesis and the precipitate containing calcium terephthalate (CaTPA) may also have weak promoting activity on urinary bladder carcinogenesis.

  14. Chronic Inflammation-Related HPV: A Driving Force Speeds Oropharyngeal Carcinogenesis

    PubMed Central

    Liu, Xin; Ma, Xiangrui; Lei, Zhengge; Feng, Hao; Wang, Shasha; Cen, Xiao; Gao, Shiyu; Jiang, Yaping; Jiang, Jian; Chen, Qianming; Tang, Yajie; Tang, Yaling; Liang, Xinhua

    2015-01-01

    Oropharyngeal squamous cell carcinoma (OPSCC) has been known to be a highly aggressive disease associated with human papilloma virus (HPV) infection. To investigate the relationship between HPV and chronic inflammation in oropharyngeal carcinogenesis, we collected 140 oral mucous fresh specimens including 50 OPSCC patients, 50 cancer in situ, 30 precancerous lesions, and 10 normal oral mucous. Our data demonstrated that there was a significantly higher proportion of severe chronic inflammation in dysplastic epithelia in comparison with that in normal tissues (P<0.001). The positive rate of HPV 16 was parallel with the chronic inflammation degrees from mild to severe inflammation (P<0.05). The positive rate of HPV 16 was progressively improved with the malignant progression of oral mucous (P<0.05). In addition, CD11b+ LIN- HLA-DR-CD33+ MDSCs were a critical cell population that mediates inflammation response and immune suppression in HPV-positive OPSCC. These indicated that persistent chronic inflammation-related HPV infection might drive oropharyngeal carcinogenesis and MDSCs might pay an important role during this process. Thus, a combination of HPV infection and inflammation expression might become a helpful biomedical marker to predict oropharyngeal carcinogenesis. PMID:26193368

  15. Enhancement factor in low-coherence enhanced backscattering and its applications for characterizing experimental skin carcinogenesis

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Xu, Zhengbin; Song, Qinghai; Konger, Raymond L.; Kim, Young L.

    2010-05-01

    We experimentally study potential mechanisms by which the enhancement factor in low-coherence enhanced backscattering (LEBS) can probe subtle variations in radial intensity distribution in weakly scattering media. We use enhanced backscattering of light by implementing either (1) low spatial coherence illumination or (2) multiple spatially independent detections using a microlens array under spatially coherent illumination. We show that the enhancement factor in these configurations is a measure of the integrated intensity within the localized coherence or detection area, which can exhibit strong dependence on small perturbations in scattering properties. To further evaluate the utility of the LEBS enhancement factor, we use a well-established animal model of cutaneous two-stage chemical carcinogenesis. In this pilot study, we demonstrate that the LEBS enhancement factor can be substantially altered at a stage of preneoplasia. Our animal result supports the idea that early carcinogenesis can cause subtle alterations in the scattering properties that can be captured by the LEBS enhancement factor. Thus, the LEBS enhancement factor has the potential as an easily measurable biomarker in skin carcinogenesis.

  16. A stochastic carcinogenesis model incorporating multiple types of genomic instability fitted to colon cancer data.

    PubMed

    Little, Mark P; Vineis, Paolo; Li, Guangquan

    2008-09-21

    A generalization of the two-mutation stochastic carcinogenesis model of Moolgavkar, Venzon and Knudson and certain models constructed by Little [Little, M.P. (1995). Are two mutations sufficient to cause cancer? Some generalizations of the two-mutation model of carcinogenesis of Moolgavkar, Venzon, and Knudson, and of the multistage model of Armitage and Doll. Biometrics 51, 1278-1291] and Little and Wright [Little, M.P., Wright, E.G. (2003). A stochastic carcinogenesis model incorporating genomic instability fitted to colon cancer data. Math. Biosci. 183, 111-134] is developed; the model incorporates multiple types of progressive genomic instability and an arbitrary number of mutational stages. The model is fitted to US Caucasian colon cancer incidence data. On the basis of the comparison of fits to the population-based data, there is little evidence to support the hypothesis that the model with more than one type of genomic instability fits better than models with a single type of genomic instability. Given the good fit of the model to this large dataset, it is unlikely that further information on presence of genomic instability or of types of genomic instability can be extracted from age-incidence data by extensions of this model.

  17. Ultrastructural changes during lung carcinogenesis-modulation by curcumin and quercetin

    PubMed Central

    Wang, Xin; Wang, Lei; Zhang, Hao; Li, Ke; You, Jiqin

    2016-01-01

    The aim of the present study was to examine the effectiveness of curcumin and quercetin in modulating ultrastructural changes during lung carcinogenesis. A total of 24 male laka mice were divided into the normal control, benzo[a]pyrene (BP)-treated, BP+curcumin-treated, BP+quercetin- treated, and BP+curcumin+quercetin-treated groups (n=6 per group). Lung carcinogenesis was induced by a single intraperitoneal injection of BP [100 mg/kg of body weight (b.wt.)]. Curcumin was supplemented to mice at a dose level of 60 mg/kg of b.wt. in drinking water and quercetin was given at a dose level of 40 mg/kg of b.wt. in drinking water. The ultrastructure of BP-treated mice revealed disruptions in cellular integrity together with nuclear deformation and premature mitochondrial aging. Notably, supplementation with phytochemicals individually resulted in improvement of the ultra-histoarchitecture of BP-treated mice although the improvement was much greater with combined supplementation of phytochemicals. Furthermore, BP treatment revealed alterations in lung histoarchitecture, which, however, were improved appreciably following combined supplementation with curcumin and quercetin. The results of the present study show that, combined supplementation with curcumin and quercetin effectively preserved the histoarchitecture as well as ultra-histoarchitecture during BP-induced lung carcinogenesis in mice. PMID:28101199

  18. Epidermal p65/NF-κB signalling is essential for skin carcinogenesis.

    PubMed

    Kim, Chun; Pasparakis, Manolis

    2014-07-01

    The nuclear factor kappa B (NF-κB) signalling pathway exhibits both tumour-promoting and tumour-suppressing functions in different tissues and models of carcinogenesis. In particular in epidermal keratinocytes, NF-κB signalling was reported to exert primarily growth inhibitory and tumour-suppressing functions. Here, we show that mice with keratinocyte-restricted p65/RelA deficiency were resistant to 7, 12-dimethylbenz(a)anthracene (DMBA)-/12-O-tetra decanoylphorbol-13 acetate (TPA)-induced skin carcinogenesis. p65 deficiency sensitized epidermal keratinocytes to DNA damage-induced death in vivo and in vitro, suggesting that inhibition of p65-dependent prosurvival functions prevented tumour initiation by facilitating the elimination of cells carrying damaged DNA. In addition, lack of p65 strongly inhibited TPA-induced epidermal hyperplasia and skin inflammation by suppressing the expression of proinflammatory cytokines and chemokines by epidermal keratinocytes. Therefore, p65-dependent NF-κB signalling in keratinocytes promotes DMBA-/TPA-induced skin carcinogenesis by protecting keratinocytes from DNA damage-induced death and facilitating the establishment of a tumour-nurturing proinflammatory microenvironment.

  19. 65Zn kinetics as a biomarker of DMH induced colon carcinogenesis.

    PubMed

    Chadha, Vijayta Dani; Dhawan, Davinder

    2010-01-01

    Dietary factors are considered crucial for the prevention of initiating events in the multistep progression of colon carcinoma. There is substantial evidence that zinc may play a pivotal role in host defense against several malignancies, including colon cancer. The present study was conducted to evaluate the kinetics of (65)Zn utilization following experimental colon carcinogenesis in rat model. Twenty rats were segregated into two groups viz., untreated control and dimethylhydrazine (DMH) treated. Colon carcinogenesis was established through weekly subcutaneous injections of DMH (30 mg/kg body weight) for 16 weeks. Whole body (65)Zn kinetics followed two compartment kinetics, with Tb(1) representing the initial fast component of the biological half-life and Tb(2), the slower component. The present study revealed a significant depression in the Tb(1) and Tb(2) components of (65)Zn in DMH treated rats. Further, DMH treatment caused a significant increase in the percent uptake values of (65)Zn in the colon, small intestine, kidney and blood, whereas a significant decrease was observed in the liver. Subcellular distribution revealed a significant increase in (65)Zn uptake in the mitochondrial and microsomal fractions following 16 weeks of DMH supplementation. In conclusion, the present study demonstrated a slow mobilization of (65)Zn during promotion of experimentally induced colon carcinogenesis and provides a physiological basis for the role of (65)Zn in colon tumorigenesis, which may have clinical implications in the management of colon cancer.

  20. Chronic Inflammation-Related HPV: A Driving Force Speeds Oropharyngeal Carcinogenesis.

    PubMed

    Liu, Xin; Ma, Xiangrui; Lei, Zhengge; Feng, Hao; Wang, Shasha; Cen, Xiao; Gao, Shiyu; Jiang, Yaping; Jiang, Jian; Chen, Qianming; Tang, Yajie; Tang, Yaling; Liang, Xinhua

    2015-01-01

    Oropharyngeal squamous cell carcinoma (OPSCC) has been known to be a highly aggressive disease associated with human papilloma virus (HPV) infection. To investigate the relationship between HPV and chronic inflammation in oropharyngeal carcinogenesis, we collected 140 oral mucous fresh specimens including 50 OPSCC patients, 50 cancer in situ, 30 precancerous lesions, and 10 normal oral mucous. Our data demonstrated that there was a significantly higher proportion of severe chronic inflammation in dysplastic epithelia in comparison with that in normal tissues (P<0.001). The positive rate of HPV 16 was parallel with the chronic inflammation degrees from mild to severe inflammation (P<0.05). The positive rate of HPV 16 was progressively improved with the malignant progression of oral mucous (P<0.05). In addition, CD11b+ LIN- HLA-DR-CD33+ MDSCs were a critical cell population that mediates inflammation response and immune suppression in HPV-positive OPSCC. These indicated that persistent chronic inflammation-related HPV infection might drive oropharyngeal carcinogenesis and MDSCs might pay an important role during this process. Thus, a combination of HPV infection and inflammation expression might become a helpful biomedical marker to predict oropharyngeal carcinogenesis.

  1. Suppressive function of RKTG on chemical carcinogen-induced skin carcinogenesis in mouse.

    PubMed

    Xie, Xiaoduo; Zhang, Yixuan; Jiang, Yuhui; Liu, Weizhong; Ma, Hong; Wang, Zhenzhen; Chen, Yan

    2008-08-01

    Raf kinase trapping to Golgi (RKTG) is a newly characterized negative regulator of the Ras-Raf-MEK-ERK signaling pathway via sequestrating Raf-1 to the Golgi apparatus. However, little is known about the physiological functions of RKTG in mitogenic pathway and carcinogenesis. Here, we describe a suppressive role of RKTG in skin carcinogenesis by analyzing chemical carcinogen-induced tumorigenesis. Epidermis hyperplasia and proliferation are increased in RKTG-deficient mice (RKTG(-/-)) after acute treatment with 7, 12-dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). Using a two-stage DMBA/TPA carcinogenesis protocol on mouse skin, the number and size of papillomas are increased in RKTG(-/-) mice, accompanied by shortened tumor latency and enhanced keratinocyte proliferation. The regression of the carcinogen-induced tumors is also prolonged in RKTG(-/-) mice. Consistently, the levels of Raf-1 and extracellular signal-regulated kinase phosphorylation in primary keratinocytes as well as skin tumors are elevated when RKTG is disrupted. Collectively, our results indicate that RKTG has a suppressive activity in chemical carcinogen-induced mitogenesis and tumor formation in mouse skin.

  2. Error-prone translesion replication of damaged DNA suppresses skin carcinogenesis by controlling inflammatory hyperplasia

    PubMed Central

    Tsaalbi-Shtylik, Anastasia; Verspuy, Johan W. A.; Jansen, Jacob G.; Rebel, Heggert; Carlée, Leone M.; van der Valk, Martin A.; Jonkers, Jos; de Gruijl, Frank R.; de Wind, Niels

    2009-01-01

    The induction of skin cancer involves both mutagenic and proliferative responses of the epidermis to ultraviolet (UV) light. It is believed that tumor initiation requires the mutagenic replication of damaged DNA by translesion synthesis (TLS) pathways. The mechanistic basis for the induction of proliferation, providing tumor promotion, is poorly understood. Here, we have investigated the role of TLS in the initiation and promotion of skin carcinogenesis, using a sensitive nucleotide excision repair-deficient mouse model that carries a hypomorphic allele of the error-prone TLS gene Rev1. Despite a defect in UV-induced mutagenesis, skin carcinogenesis was accelerated in these mice. This paradoxical phenotype was caused by the induction of inflammatory hyperplasia of the mutant skin that provides strong tumor promotion. The induction of hyperplasia was associated with mild and transient replicational stress of the UV-damaged genome, triggering DNA damage signaling and senescence. The concomitant expression of Interleukin-6 (IL-6) is in agreement with an executive role for IL-6 and possibly other cytokines in the autocrine induction of senescence and the paracrine induction of inflammatory hyperplasia. In conclusion, error-prone TLS suppresses tumor-promoting activities of UV light, thereby controlling skin carcinogenesis. PMID:20007784

  3. Evidence for a role of E-cadherin in suppressing liver carcinogenesis in mice and men.

    PubMed

    Schneider, Marlon R; Hiltwein, Felix; Grill, Jessica; Blum, Helmut; Krebs, Stefan; Klanner, Andrea; Bauersachs, Stefan; Bruns, Christiane; Longerich, Thomas; Horst, David; Brandl, Lydia; de Toni, Enrico; Herbst, Andreas; Kolligs, Frank T

    2014-08-01

    The cell adhesion molecule E-cadherin has critical functions in development and carcinogenesis. Impaired expression of E-cadherin has been associated with disrupted tissue homeostasis, progression of cancer and a worse patient prognosis. So far, the role of E-cadherin in homeostasis and carcinogenesis of the liver is not well understood. By use of a mouse model with liver-specific deletion of E-cadherin and administration of the carcinogen diethylnitrosamine, we demonstrate that loss of E-cadherin expression in hepatocytes results in acceleration of the growth of hepatocellular carcinoma (HCC). In contrast, liver regeneration is not disturbed in mice lacking E-cadherin expression in hepatocytes. In human HCC, we observed four different expression patterns of E-cadherin. Notably, atypical cytosolic expression of E-cadherin was positively correlated with a poorer patient prognosis. The median overall survival of patients with HCC expressing E-cadherin on the membrane only was 221 weeks (95% confidence interval: 51-391) compared with 131 weeks in patients with cytosolic expression (95% confidence interval: 71-191 weeks; P < 0.05). In conclusion, we demonstrate that impaired expression of E-cadherin promotes hepatocellular carcinogenesis and is associated with a worse prognosis in humans.

  4. Epigenetic regulation of human DCLK-1 gene during colon-carcinogenesis: clinical and mechanistic implications

    PubMed Central

    O’Connell, Malaney; Shubhashish, Sarkar

    2016-01-01

    Colorectal carcinogenesis is a multi-step process. While ~25% of colorectal cancers (CRCs) arise in patients with a family history (genetic predisposition), ~75% of CRCs are due to age-associated accumulation of epigenetic alterations which can result in the suppression of key tumor suppressor genes leading to mutations and activation of oncogenic pathways. Sporadic colon-carcinogenesis is facilitated by many molecular pathways of genomic instability which include chromosomal instability (CIN), micro-satellite instability (MSI) and CpG island methylator phenotype (CIMP), leading towards loss of homeostasis and onset of neoplastic transformation. The unopposed activation of Wnt/β-catenin pathways, either due to loss of APC function or up-regulation of related stimulatory pathways, results in unopposed hyperproliferation of colonic crypts, considered the single most important risk factor for colon carcinogenesis. Hypermethylation of CpG islands within the promoters of specific genes can potentially inactivate DNA repair genes and/or critical tumor suppressor genes. Recently, CpG methylation of the 5’ promoter of human (h) DCLK1 gene was reported in many human epithelial cancers, including colorectal cancers (CRCs), resulting in the loss of expression of the canonical long isoform of DCLK1 (DCLK1-L) in hCRCs. Instead, a shorter isoform of DCLK1 (DCLK1-S) was discovered to be expressed in hCRCs, from an alternate β promoter of DCLKL1-gene; the clinical and biological implications of these novel findings, in relation to recent publications is discussed. PMID:27777940

  5. Epigenetic regulation of human DCLK-1 gene during colon-carcinogenesis: clinical and mechanistic implications.

    PubMed

    Singh, Pomila; O'Connell, Malaney; Shubhashish, Sarkar

    2016-01-01

    Colorectal carcinogenesis is a multi-step process. While ~25% of colorectal cancers (CRCs) arise in patients with a family history (genetic predisposition), ~75% of CRCs are due to age-associated accumulation of epigenetic alterations which can result in the suppression of key tumor suppressor genes leading to mutations and activation of oncogenic pathways. Sporadic colon-carcinogenesis is facilitated by many molecular pathways of genomic instability which include chromosomal instability (CIN), micro-satellite instability (MSI) and CpG island methylator phenotype (CIMP), leading towards loss of homeostasis and onset of neoplastic transformation. The unopposed activation of Wnt/β-catenin pathways, either due to loss of APC function or up-regulation of related stimulatory pathways, results in unopposed hyperproliferation of colonic crypts, considered the single most important risk factor for colon carcinogenesis. Hypermethylation of CpG islands within the promoters of specific genes can potentially inactivate DNA repair genes and/or critical tumor suppressor genes. Recently, CpG methylation of the 5' promoter of human (h) DCLK1 gene was reported in many human epithelial cancers, including colorectal cancers (CRCs), resulting in the loss of expression of the canonical long isoform of DCLK1 (DCLK1-L) in hCRCs. Instead, a shorter isoform of DCLK1 (DCLK1-S) was discovered to be expressed in hCRCs, from an alternate β promoter of DCLKL1-gene; the clinical and biological implications of these novel findings, in relation to recent publications is discussed.

  6. Type 2 Diabetes Mellitus and Its Association with the Risk of Pancreatic Carcinogenesis: A Review.

    PubMed

    Biadgo, Belete; Abebe, Molla

    2016-04-25

    The prevalence of diabetes mellitus (DM) and associated diseases such as cancers are substantially increasing worldwide. About 80% of the patients with pancreatic cancer have glucose metabolism alterations. This suggests an association between type 2 DM and pancreatic cancer risk and progression. There are hypotheses that show metabolic links between the diseases, due to insulin resistance, hyperglycemia, hyperinsulinemia, low grade chronic inflammation, and alteration in the insulin-insulin-like growth factor axis. The use of diabetes medications can influence the extent of carcinogenesis of the pancreas. This study briefly reviews recent literature on investigation of metabolic link of type 2 DM, risk of carcinogenesis of the pancreas and their association, as well as the current understanding of metabolic pathways implicated in metabolism and cellular growth. The main finding of this review, although there are discrepancies, is that according to most research long-term DM does not raise the risk of pancreatic cancer. The longest duration of DM may reflect hypoinsulinemia due to treatment for hyperglycemia, but recent onset diabetes was associated with increased risk for pancreatic cancer due to hyperinsulinemia and hyperglycemia. In conclusion, the review demonstrates that type 2 DM and the duration of diabetes pose a risk for pancreatic carcinogenesis, and that there is biological link between the diseases.

  7. Effects of inhaled ammonium sulfate on benzo(a)pyrene carcinogenesis. [Hamster

    SciTech Connect

    Godleski, J.J.; Melnicoff, M.J.; Sadri, S.; Garbeil, P.

    1984-01-01

    The effect of inhaled ammonium sulfate on benzo(a)pyrene carcinogenesis in the lungs of Syrian golden hamsters was studied. Exposure to ammonium sulfate at an airborne concentration 20 times average United States ambient levels resulted in a significant depression of benzo(a)pyrene carcinogenesis in the first 6 mo of the study. However, at 2 yr, the termination of the study, there were no differences in cancer incidence between groups receiving benzo(a)pyrene and benzo(a)pyrene plus ammonium sulfate. In addition, at the concentration studied, inhaled ammonium sulfate did not significantly increase the incidence or severity of pneumonitis or pulmonary fibrosis in the hamster. However, this inhalation did increase the incidence of emphysema but not the severity. The decreased incidence of cancer during the first 6 mo of this study in animals receiving both benzo(a)pyrene and ammonium sulfate suggests that interaction between sulfate and benzo(a)pyrene does occur, but is insufficient to afford long-term protection against the development of cancer. No enhancement of carcinogenesis by benzo(a)pyrene occurs in the presence of inhaled sulfate. 31 references, 5 tables, 2 figures.

  8. Chronic inflammation-associated genomic instability paves the way for human esophageal carcinogenesis

    PubMed Central

    Tian, Dongping; Lei, Zhijin; Chen, Donglin; Xu, Zexin; Su, Min

    2016-01-01

    Chronic inflammation is associated with increased risk of cancer development, whereas the link between chronic inflammation and esophageal carcinogenesis is still obscure heretofore. This study aimed to investigate the relationship between chronic inflammation and DNA damage, as well as the possible role of DNA damage in esophageal carcinogenic process. Endoscopic esophageal biopsies from 109 individuals from Chaoshan littoral, a high-risk region for esophageal squamous cell carcinoma (ESCC), were examined to evaluate the association between chronic inflammation and histological severity, while additional 204 esophageal non-tumor samples from patients with ESCC were collected. Immunohistochemistry was performed to detect the oxidative DNA damage and DNA double-strand breaks (DSBs). Significantly positive correlation was observed between degree of chronic inflammation and esophageal precursor lesions (rs = 0.37, P < 0.01). Immunohistochemical analysis showed that oxidative DNA damage level was positively correlated with the degree of chronic inflammation (rs = 0.21, P < 0.05). Moreover, the level of oxidative DNA damage positively correlated with histological severity (rs = 0.49, P < 0.01). We found that the extent of DSBs was progressively increased with inflammation degree (P < 0.01) and the progression of precancerous lesions (P < 0.001). Collectively, these findings provide evidence linking chronic inflammation-associated genomic instability with esophageal carcinogenesis and suggest possibilities for early detection and intervention of esophageal carcinogenesis. PMID:27028857

  9. Review: the Contribution of both Nature and Nurture to Carcinogenesis and Progression in Solid Tumours.

    PubMed

    Hyndman, Iain Joseph

    2016-04-01

    Cancer is a leading cause of mortality worldwide. Cancer arises due to a series of somatic mutations that accumulate within the nucleus of a cell which enable the cell to proliferate in an unregulated manner. These mutations arise as a result of both endogenous and exogenous factors. Genes that are commonly mutated in cancer cells are involved in cell cycle regulation, growth and proliferation. It is known that both nature and nurture play important roles in cancer development through complex gene-environment interactions; however, the exact mechanism of these interactions in carcinogenesis is presently unclear. Key environmental factors that play a role in carcinogenesis include smoking, UV light and oncoviruses. Angiogenesis, inflammation and altered cell metabolism are important factors in carcinogenesis and are influenced by both genetic and environmental factors. Although the exact mechanism of nature-nurture interactions in solid tumour formation are not yet fully understood, it is evident that neither nature nor nurture can be considered in isolation. By understanding more about gene-environment interactions, it is possible that cancer mortality could be reduced.

  10. Suppression of osteopontin inhibits chemically induced hepatic carcinogenesis by induction of apoptosis in mice

    PubMed Central

    Lee, Su-Hyung; Park, Jun-Won; Woo, Sang-Ho; Go, Du-Min; Kwon, Hyo-Jung; Jang, Ja-June; Kim, Dae-Yong

    2016-01-01

    Previous clinical reports have found elevated osteopontin (OPN) levels in tumor tissues to be indicative of greater malignancy in human hepatocellular carcinoma (HCC). However, the role of OPN on carcinogenesis and its underlying mechanism remain unclear. In the present study, we investigated the oncogenic role of OPN in diethylnitrosamine (DEN)-induced hepatic carcinogenesis in mice. The overall incidence of hepatic tumors at 36 weeks was significantly lower in OPN knockout (KO) mice than in wild-type (WT) mice. Apoptosis was significantly enhanced in OPN KO mice, and was accompanied by the downregulation of epidermal growth factor receptor (EGFR). In the in vitro study, OPN suppression also led to lower mRNA and protein levels of EGFR associated with the downregulation of c-Jun in Hep3B and Huh7 human HCC cells lines, which resulted in increased apoptotic cell death in both cell lines. Moreover, a positive correlation was clearly identified between the expression of OPN and EGFR in human HCC tissues. These data demonstrate that the OPN deficiency reduced the incidence of chemically induced HCC by suppressing EGFR-mediated anti-apoptotic signaling. An important implication of our findings is that OPN positively contributes to hepatic carcinogenesis. PMID:27888617

  11. Inhibition of azoxymethane-induced rat colon carcinogenesis by potassium hydrogen D-glucarate.

    PubMed

    Yoshimi, N; Walaszek, Z; Mori, H; Hanausek, M; Szemraj, J; Slaga, T J

    2000-01-01

    While calcium D-glucarate was shown to inhibit chemical carcinogenesis in various animal models, the effect of potassium hydrogen D-glucarate has not been extensively investigated. In the present study, potassium hydrogen D-glucarate markedly inhibited azoxymethane (AOM)-induced colon carcinogenesis in male F344 rats. Potassium hydrogen D-glucarate (PHG) or potassium hydrogen carbonate (PHC) were administered to rats in a diet (140 mmol/kg). Continual post-initiation treatment with potassium hydrogen D-glucarate reduced both tumor incidence and multiplicity at sacrifice by ca. 60%, while PHC had no effect. amelioration of overexpression of the betaG gene in rat colon carcinomas was observed using RT-PCR and Northern blot analysis. We hypothesize that previously demonstrated conversion of PHG to D-glucaro-1,4-lactone, a potent inhibitor of beta-glucuronidase (betaG), may be responsible for this effect. The mechanism of PHG inhibition of colon carcinogenesis may also involve suppression of cell proliferation and possibly alterations in cholesterol synthesis or cholesterol metabolism to bile acids. In conclusion, PHG possesses excellent potential as a natural, apparently non-toxic inhibitor to prevent colon cancer.

  12. Radiation Induced Genomic Instability

    SciTech Connect

    Morgan, William F.

    2011-03-01

    Radiation induced genomic instability can be observed in the progeny of irradiated cells multiple generations after irradiation of parental cells. The phenotype is well established both in vivo (Morgan 2003) and in vitro (Morgan 2003), and may be critical in radiation carcinogenesis (Little 2000, Huang et al. 2003). Instability can be induced by both the deposition of energy in irradiated cells as well as by signals transmitted by irradiated (targeted) cells to non-irradiated (non-targeted) cells (Kadhim et al. 1992, Lorimore et al. 1998). Thus both targeted and non-targeted cells can pass on the legacy of radiation to their progeny. However the radiation induced events and cellular processes that respond to both targeted and non-targeted radiation effects that lead to the unstable phenotype remain elusive. The cell system we have used to study radiation induced genomic instability utilizes human hamster GM10115 cells. These cells have a single copy of human chromosome 4 in a background of hamster chromosomes. Instability is evaluated in the clonal progeny of irradiated cells and a clone is considered unstable if it contains three or more metaphase sub-populations involving unique rearrangements of the human chromosome (Marder and Morgan 1993). Many of these unstable clones have been maintained in culture for many years and have been extensively characterized. As initially described by Clutton et al., (Clutton et al. 1996) many of our unstable clones exhibit persistently elevated levels of reactive oxygen species (Limoli et al. 2003), which appear to be due dysfunctional mitochondria (Kim et al. 2006, Kim et al. 2006). Interestingly, but perhaps not surprisingly, our unstable clones do not demonstrate a “mutator phenotype” (Limoli et al. 1997), but they do continue to rearrange their genomes for many years. The limiting factor with this system is the target – the human chromosome. While some clones demonstrate amplification of this chromosome and thus lend

  13. CEDR: Comprehensive Epidemiologic Data Resource

    SciTech Connect

    Not Available

    1993-08-01

    The Department of Energy (DOE) and its predecessor agencies have a long history of epidemiologic research programs. The main focus of these programs has been the Health and Mortality Study of the DOE work force. This epidemiologic study began in 1964 with a feasibility study of workers at the Hanford facility. Studies of other populations exposed to radiation have also been supported, including the classic epidemiologic study of radium dial painters and studies of atomic bomb survivors. From a scientific perspective, these epidemiologic research program have been productive, highly credible, and formed the bases for many radiological protection standards. Recently, there has been concern that, although research results were available, the data on which these results were based were not easily obtained by interested investigators outside DOE. Therefore, as part of an effort to integrate and broaden access to its epidemiologic information, the DOE has developed the Comprehensive Epidemiologic Data Resource (CEDR) Program. Included in this effort is the development of a computer information system for accessing the collection of CEDR data and its related descriptive information. The epidemiologic data currently available through the CEDAR Program consist of analytic data sets, working data sets, and their associated documentation files. In general, data sets are the result of epidemiologic studies that have been conducted on various groups of workers at different DOE facilities during the past 30 years.

  14. New measurements for hadrontherapy and space radiation: biology

    NASA Technical Reports Server (NTRS)

    Blakely, E. A.

    2001-01-01

    The dual goals of optimizing clinical efficacy of hadrontherapy and determining radiation risk estimates for space research have intersected to a common focus for investigation of the biological effects of charged particles. This paper briefly highlights recent international progress at accelerator facilities engaged in both biological and clinical studies of the effects of particle beams, primarily protons, carbon and iron ions. Basic mechanisms of molecular, cellular and tissue responses continue under investigation for radiations with a range of ionization densities. Late normal tissue effects, including the risk of cancer in particular, are of importance for both research fields. International cooperation has enhanced the rate of progress as evidenced by recent publications. Specific areas of biomedical research related to the biological radiotoxicity of critical organs (especially the central nervous system), individual radiosensitivities to radiation carcinogenesis, and the analysis of effects in mixed radiation fields still require more research. Recommendations for addressing these issues are made.

  15. New measurements for hadrontherapy and space radiation: biology.

    PubMed

    Blakely, E A

    2001-01-01

    The dual goals of optimizing clinical efficacy of hadrontherapy and determining radiation risk estimates for space research have intersected to a common focus for investigation of the biological effects of charged particles. This paper briefly highlights recent international progress at accelerator facilities engaged in both biological and clinical studies of the effects of particle beams, primarily protons, carbon and iron ions. Basic mechanisms of molecular, cellular and tissue responses continue under investigation for radiations with a range of ionization densities. Late normal tissue effects, including the risk of cancer in particular, are of importance for both research fields. International cooperation has enhanced the rate of progress as evidenced by recent publications. Specific areas of biomedical research related to the biological radiotoxicity of critical organs (especially the central nervous system), individual radiosensitivities to radiation carcinogenesis, and the analysis of effects in mixed radiation fields still require more research. Recommendations for addressing these issues are made.

  16. Relationship of DNA repair processes to mutagenesis and carcinogenesis in mammalian cells. Progress report, November 1, 1979-October 31, 1980

    SciTech Connect

    Evans, H.H.

    1980-10-01

    The objective of this research is to determine the role of DNA repair in mutagenesis and carcinogenesis in mammalian cells. Use of the host-cell reactivation viral suicide enrichment procedure was initiated in the isolation of repair-deficient mutants. Lightly mutagenized BHK cells were infected with irradiated Herpes simplex virus (HSV); several radiation-sensitive strains were isolated among the survivors of the infection. The characterization of these strains is progressing and the enrichments are continuing. That alterations in the frequency of mutation of C3H/10T 1/2 cells, occurring as a result of holding the cells in a confluent state following treatment with ethylmethane sulfonate, parallel the alterations in the frequency of neoplastic transformation was found. The repair capabilities of BHK cells were found to be intermediate in comparison to repair-proficient and -deficient human cells with regard to the reactivation of HSV treated with various inactivating agents. The effect of confluency and of low serum levels on DNA synthesis, as well as the response to the cytotoxic effects of MNNG and acriflavin were determined in BHK cells in preparation for the investigation of the role of DNA repair in mutagenesis and transformation. It was also found that C3H/10T 1/2 cells partially recover from the toxic effects of 4-nitroquinoline-1-oxide if they are held in a confluent state for 6 to 22 hrs following treatment. Addition of catalase did not alleviate the toxic effects of 4-NQO. The cells contain a relatively high endogenous level of this enzyme. (ERB)

  17. SKHIN/Sprd, a new genetically defined inbred hairless mouse strain for UV-induced skin carcinogenesis studies

    PubMed Central

    Perez, Carlos; Parker-Thornburg, Jan; Mikulec, Carol; Kusewitt, Donna F.; Fischer, Susan M.; DiGiovanni, John; Conti, Claudio J.; Benavides, Fernando

    2013-01-01

    Strains of mice vary in their susceptibility to ultra-violet (UV) radiation-induced skin tumors. Some strains of hairless mice (homozygous for the spontaneous Hrhr mutation) are particularly susceptible to these tumors. The skin tumors that develop in hairless mice resemble, both at the morphologic and molecular levels, UV-induced squamous cell carcinomas (SCC) and their precursors in human. The most commonly employed hairless mice belong to the SKH1 stock. However, these mice are outbred and their genetic background is not characterized, which makes them a poor model for genetic studies. We have developed a new inbred strain from outbred SKH1 mice that we named SKHIN/Sprd (now at generation F31). In order to characterize the genetic background of this new strain, we genotyped a cohort of mice at F30 with 92 microsatellites and 140 single nucleotide polymorphisms (SNP) evenly distributed throughout the mouse genome. We also exposed SKHIN/Sprd mice to chronic UV irradiation and showed that they are as susceptible to UV-induced skin carcinogenesis as outbred SKH1 mice. In addition, we proved that, albeit with low efficiency, inbred SKHIN/Sprd mice are suitable for transgenic production by classical pronuclear microinjection. This new inbred strain will be useful for the development of transgenic and congenic strains on a hairless inbred background as well as the establishment of syngeneic tumor cell lines. These new tools can potentially help elucidate a number of features of the cutaneous response to UV irradiation in humans, including the effect of genetic background and modifier genes. PMID:22379968

  18. Epigenetic dysregulation underlies radiation-induced transgenerational genome instability in vivo

    SciTech Connect

    Koturbash, Igor; Baker, Mike; Loree, Jonathan; Kutanzi, Kristy; Hudson, Darryl; Pogribny, Igor; Sedelnikova, Olga; Bonner, William; Kovalchuk, Olga . E-mail: olga.kovalchuk@uleth.ca

    2006-10-01

    Purpose: Although modern cancer radiation therapy has led to increased patient survival rates, the risk of radiation treatment-related complications is becoming a growing problem. Among various complications, radiation also poses a threat to the progeny of exposed parents. It causes transgenerational genome instability that is linked to transgenerational carcinogenesis. Although the occurrence of transgenerational genome instability, which manifests as elevated delayed and nontargeted mutation, has been well documented, the mechanisms by which it arises remain obscure. We hypothesized that epigenetic alterations may play a pivotal role in the molecular etiology of transgenerational genome instability. Methods and Materials: We studied the levels of cytosine DNA methylation in somatic tissues of unexposed offspring upon maternal, paternal, or combined parental exposure. Results: We observed a significant loss of global cytosine DNA methylation in the thymus tissue of the offspring upon combined parental exposure. The loss of DNA methylation was paralleled by a significant decrease in the levels of maintenance (DNMT1) and de novo methyltransferases DNMT3a and 3b and methyl-CpG-binding protein MeCP2. Along with profound changes in DNA methylation, we noted a significant accumulation of DNA strand breaks in thymus, which is a radiation carcinogenesis target organ. Conclusions: The observed changes were indicative of a profound epigenetic dysregulation in the offspring, which in turn could lead to genome destabilization and possibly could serve as precursor for transgenerational carcinogenesis. Future studies are clearly needed to address the cellular and carcinogenic repercussions of those changes.

  19. Comprehensive Epidemiologic Data Resource. Revision 1

    SciTech Connect

    1995-05-01

    The Department of Energy has established the Comprehensive Epidemiologic Data Resource (CEDR) as a public-use data base with the goal of broadening independent access to data collected during studies of the health effects of exposure to radiation and other physical or chemical agents associated with the production of nuclear materials. This catalog is intended for use by any individual interested in obtaining information about, or access to, CEDR data. This catalog provides information that will help users identify and request data file sets of interest.

  20. [Comprehensive therapy of symptomatic vertebral haemangiomas].

    PubMed

    Hrabálek, L

    2010-04-01

    Vertebral haemangiomas (VH) are usually asymptomatic and are often found incidentally at spinal examination by imaging methods. Nevertheless, some haemangiomas can be clinically manifested by various degrees of axial pain and neurological deficit. The aim of this report is to show that this is a complex issue that requires a comprehensive approach to its treatment. The author reports on three patients with aggressive forms of cervical and lumbar VH treated by radiation therapy or vertebroplasty and hemilaminectomy with resection of the intraspinal thoratic component of a tumour. He discusses his findings in relation to the scarce data found on this topic in the literature.

  1. The Chornobyl Accident: A Comprehensive Risk Assessment

    SciTech Connect

    Poyarkov, Victor A.; Vargo, George J.; George J. Vargo

    2000-01-01

    This book provides a comprehensive of the April 1986 Chornobyl Nuclear Power Plant accident and its short and long-term effects in the fourteen years since the accident. Chapters include: cause and description of the accident; the Shelter constructed to contain the remains the destroyed reactor, radioactive wastes arising from the accident, environmental contamination, individual and collective radiation doses, societal aspects, economic impact and conclusions. Appendices on radiological units, the medical consequences of the accident, and a list of acronym and abbreviations are included.

  2. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    PubMed

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  3. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  4. Fifth Warren K. Sinclair Keynote Address: Issues in quantifying the effects of low-level radiation.

    PubMed

    Goodhead, Dudley T

    2009-11-01

    Health risks from exposure to high doses of ionizing radiation are well characterized from epidemiological studies. Uncertainty and controversy remain for extension of these risks to the low doses and low dose rates of particular relevance in the workplace, in medical diagnostics and screening, and from background radiations. In order to make such extrapolations, a number of concepts have been developed for radiation protection, partly on the basis of assumed processes in the mechanisms of radiation carcinogenesis. Included amongst these are the assumptions of a linear no-threshold dose response and simple scaling factors for dose rate and radiation quality. With a progressive reduction in recommended dose limits over the past half century, these approaches have had considerable success in protecting humans. But do they go far enough or, conversely, are they overprotective? Four selected underlying aspects are considered. It is concluded that (1) even the lowest dose of radiation has the capability to cause complex DNA damage that can lead to a variety of permanent cellular changes; (2) the unique clustered characteristics of radiation damage, even at very low doses, enable it to stand out above the much larger quantity of endogenous DNA damage; (3) although a chromosome aberration may represent the rate-limiting initiating event for carcinogenesis, as is often assumed, direct evidence is still lacking; and (4) the extensive influence that dicentric aberrations have had on guiding extrapolations for radiation protection may be substantially misleading. Finally, some comments are offered on aspects that lie outside the current paradigm.

  5. Comprehension Monitoring and Reading Comprehension in Bilingual Students

    ERIC Educational Resources Information Center

    Kolic-Vehovec, Svjetlana; Bajsanski, Igor

    2007-01-01

    This study explored comprehension monitoring, use of reading strategies and reading comprehension of bilingual students at different levels of perceived proficiency in Italian. The participants were bilingual fifth to eighth-grade elementary school students from four Italian schools in Rijeka, Croatia. Students' reading comprehension was assessed.…

  6. Radiation Proctopathy

    PubMed Central

    Grodsky, Marc B.; Sidani, Shafik M.

    2015-01-01

    Radiation therapy is a widely utilized treatment modality for pelvic malignancies, including prostate cancer, rectal cancer, and cervical cancer. Given its fixed position in the pelvis, the rectum is at a high risk for injury secondary to ionizing radiation. Despite advances made in radiation science, up to 75% of the patients will suffer from acute radiation proctitis and up to 20% may experience chronic symptoms. Symptoms can be variable and include diarrhea, bleeding, incontinence, and fistulization. A multitude of treatment options exist. This article summarizes the latest knowledge relating to radiation proctopathy focusing on the vast array of treatment options. PMID:26034407

  7. A Multi-stage Carcinogenesis Model to Investigate Caloric Restriction as a Potential Tool for Post-irradiation Mitigation of Cancer Risk

    PubMed Central

    Tani, Shusuke; Blyth, Benjamin John; Shang, Yi; Morioka, Takamitsu; Kakinuma, Shizuko; Shimada, Yoshiya

    2016-01-01

    The risk of radiation-induced cancer adds to anxiety in low-dose exposed populations. Safe and effective lifestyle changes which can help mitigate excess cancer risk might provide exposed individuals the opportunity to pro-actively reduce their cancer risk, and improve mental health and well-being. Here, we applied a mathematical multi-stage carcinogenesis model to the mouse lifespan data using adult-onset caloric restriction following irradiation in early life. We re-evaluated autopsy records with a veterinary pathologist to determine which tumors were the probable causes of death in order to calculate age-specific mortality. The model revealed that in both irradiated and unirradiated mice, caloric restriction reduced the age-specific mortality of all solid tumors and hepatocellular carcinomas across most of the lifespan, with the mortality rate dependent more on age owing to an increase in the number of predicted rate-limiting steps. Conversely, irradiation did not significantly alter the number of steps, but did increase the overall transition rate between the steps. We show that the extent of the protective effect of caloric restriction is independent of the induction of cancer from radiation exposure, and discuss future avenues of research to explore the utility of caloric restriction as an example of a potential post-irradiation mitigation strategy. PMID:27390741

  8. Lymphocyte chromosomal aberration assay in radiation biodosimetry

    PubMed Central

    Agrawala, Paban K.; Adhikari, J. S.; Chaudhury, N. K.

    2010-01-01

    Exposure to ionizing radiations, whether medical, occupational or accidental, leads to deleterious biological consequences like mortality or carcinogenesis. It is considered that no dose of ionizing radiation exposure is safe. However, once the accurate absorbed dose is estimated, one can be given appropriate medical care and the severe consequences can be minimized. Though several accurate physical dose estimation modalities exist, it is essential to estimate the absorbed dose in biological system taking into account the individual variation in radiation response, so as to plan suitable medical care. Over the last several decades, lots of efforts have been taken to design a rapid and easy biological dosimeter requiring minimum invasive procedures. The metaphase chromosomal aberration assay in human lymphocytes, though is labor intensive and requires skilled individuals, still remains the gold standard for radiation biodosimetry. The current review aims at discussing the human lymphocyte metaphase chromosomal aberration assay and recent developments involving the application of molecular cytogenetic approaches and other technological advancements to make the assay more authentic and simple to use even in the events of mass radiation casualties. PMID:21829315

  9. CPMs: A Kinesthetic Comprehension Strategy

    ERIC Educational Resources Information Center

    Block, Cathy Collins; Parris, Sheri R.; Whiteley, Cinnamon S.

    2008-01-01

    This article discusses a study to determine whether primary grade students can learn comprehension processes via hand motions to portray these mental processes. Comprehension Process Motions (CPMs) were designed to provide students with a way to make abstract comprehension processes more consciously accessible and also to give teachers a way to…

  10. Idiom Comprehension in Aphasic Patients

    ERIC Educational Resources Information Center

    Papagno, Costanza; Tabossi, Patrizia; Colombo, Maria Rosa; Zampetti, Patrizia

    2004-01-01

    Idiom comprehension was assessed in 10 aphasic patients with semantic deficits by means of a string-to-picture matching task. Patients were also submitted to an oral explanation of the same idioms, and to a word comprehension task. The stimuli of this last task were the words following the verb in the idioms. Idiom comprehension was severely…

  11. Assessing Reading Comprehension in Bilinguals

    ERIC Educational Resources Information Center

    August, Diane; Francis, David J.; Hsu, Han-Ya Annie; Snow, Catherine E.

    2006-01-01

    A new measure of reading comprehension, the Diagnostic Assessment of Reading Comprehension (DARC), designed to reflect central comprehension processes while minimizing decoding and language demands, was pilot tested. We conducted three pilot studies to assess the DARC's feasibility, reliability, comparability across Spanish and English,…

  12. Understanding and Teaching Cohesion Comprehension.

    ERIC Educational Resources Information Center

    Irwin, Judith W., Ed.

    Concerned with improving student comprehension of text, this book focuses particularly on teaching students how sentences tie together. Articles in the three sections are grouped as follows: Part 1, What Is Cohesion Comprehension? contains "Cohesion, Coherence, and Comprehension" (Alden J. Moe and Judith W. Irwin); "Identifying…

  13. Priming Ditransitive Structures in Comprehension

    ERIC Educational Resources Information Center

    Arai, Manabu; van Gompel, Roger P. G.; Scheepers, Cristoph

    2007-01-01

    Many studies have shown evidence for syntactic priming during language production (e.g., Bock, 1986). It is often assumed that comprehension and production share similar mechanisms and that priming also occurs during comprehension (e.g., Pickering & Garrod, 2004). Research investigating priming during comprehension (e.g., Branigan et al., 2005 and…

  14. Comprehensive multiplatform collaboration

    NASA Astrophysics Data System (ADS)

    Singh, Kundan; Wu, Xiaotao; Lennox, Jonathan; Schulzrinne, Henning G.

    2003-12-01

    We describe the architecture and implementation of our comprehensive multi-platform collaboration framework known as Columbia InterNet Extensible Multimedia Architecture (CINEMA). It provides a distributed architecture for collaboration using synchronous communications like multimedia conferencing, instant messaging, shared web-browsing, and asynchronous communications like discussion forums, shared files, voice and video mails. It allows seamless integration with various communication means like telephones, IP phones, web and electronic mail. In addition, it provides value-added services such as call handling based on location information and presence status. The paper discusses the media services needed for collaborative environment, the components provided by CINEMA and the interaction among those components.

  15. The role of chemicals and radiation in the etiology of cancer

    SciTech Connect

    Huberman, E.; Barr, S.H.

    1985-01-01

    In this volume, investigators consider the mechanisms of oncogenesis, cell transformation, and carcinogen metabolism and present new findings on chemical and radiation carcinogenesis and chemically induced mutagenesis and chromosomal changes. As background to the studies of chemical and radiation carcinogenesis, the book surveys knowledge of cell transformation and carcinogen metabolism. Among the topics reviewed are the transforming genes involved in human malignancy, the genetics and epigenetics of neoplasia, and the single-hit and multi-hit concepts of hepatocarcinogenesis. Also examined are organ, species, and interindividual differences in carcinogen metabolism; chemical and biochemical dosimetry of genotoxic chemical exposure; and the role of pharmacokinetics and DNA dosimetry in relating in vitro to in vivo actions of N-nitroso compounds.

  16. Cancer Risks Associated with External Radiation From Diagnostic Imaging Procedures

    PubMed Central

    Linet, Martha S.; Slovis, Thomas L.; Miller, Donald L.; Kleinerman, Ruth; Lee, Choonsik; Rajaraman, Preetha; de Gonzalez, Amy Berrington

    2012-01-01

    The 600% increase in medical radiation exposure to the US population since 1980 has provided immense benefit, but potential future cancer risks to patients. Most of the increase is from diagnostic radiologic procedures. The objectives of this review are to summarize epidemiologic data on cancer risks associated with diagnostic procedures, describe how exposures from recent diagnostic procedures relate to radiation levels linked with cancer occurrence, and propose a framework of strategies to reduce radiation from diagnostic imaging in patients. We briefly review radiation dose definitions, mechanisms of radiation carcinogenesis, key epidemiologic studies of medical and other radiation sources and cancer risks, and dose trends from diagnostic procedures. We describe cancer risks from experimental studies, future projected risks from current imaging procedures, and the potential for higher risks in genetically susceptible populations. To reduce future projected cancers from diagnostic procedures, we advocate widespread use of evidence-based appropriateness criteria for decisions about imaging procedures, oversight of equipment to deliver reliably the minimum radiation required to attain clinical objectives, development of electronic lifetime records of imaging procedures for patients and their physicians, and commitment by medical training programs, professional societies, and radiation protection organizations to educate all stakeholders in reducing radiation from diagnostic procedures. PMID:22307864

  17. Cancer risks associated with external radiation from diagnostic imaging procedures.

    PubMed

    Linet, Martha S; Slovis, Thomas L; Miller, Donald L; Kleinerman, Ruth; Lee, Choonsik; Rajaraman, Preetha; Berrington de Gonzalez, Amy

    2012-01-01

    The 600% increase in medical radiation exposure to the US population since 1980 has provided immense benefit, but increased potential future cancer risks to patients. Most of the increase is from diagnostic radiologic procedures. The objectives of this review are to summarize epidemiologic data on cancer risks associated with diagnostic procedures, describe how exposures from recent diagnostic procedures relate to radiation levels linked with cancer occurrence, and propose a framework of strategies to reduce radiation from diagnostic imaging in patients. We briefly review radiation dose definitions, mechanisms of radiation carcinogenesis, key epidemiologic studies of medical and other radiation sources and cancer risks, and dose trends from diagnostic procedures. We describe cancer risks from experimental studies, future projected risks from current imaging procedures, and the potential for higher risks in genetically susceptible populations. To reduce future projected cancers from diagnostic procedures, we advocate the widespread use of evidence-based appropriateness criteria for decisions about imaging procedures; oversight of equipment to deliver reliably the minimum radiation required to attain clinical objectives; development of electronic lifetime records of imaging procedures for patients and their physicians; and commitment by medical training programs, professional societies, and radiation protection organizations to educate all stakeholders in reducing radiation from diagnostic procedures.

  18. The comprehensive peptaibiotics database.

    PubMed

    Stoppacher, Norbert; Neumann, Nora K N; Burgstaller, Lukas; Zeilinger, Susanne; Degenkolb, Thomas; Brückner, Hans; Schuhmacher, Rainer

    2013-05-01

    Peptaibiotics are nonribosomally biosynthesized peptides, which - according to definition - contain the marker amino acid α-aminoisobutyric acid (Aib) and possess antibiotic properties. Being known since 1958, a constantly increasing number of peptaibiotics have been described and investigated with a particular emphasis on hypocrealean fungi. Starting from the existing online 'Peptaibol Database', first published in 1997, an exhaustive literature survey of all known peptaibiotics was carried out and resulted in a list of 1043 peptaibiotics. The gathered information was compiled and used to create the new 'The Comprehensive Peptaibiotics Database', which is presented here. The database was devised as a software tool based on Microsoft (MS) Access. It is freely available from the internet at http://peptaibiotics-database.boku.ac.at and can easily be installed and operated on any computer offering a Windows XP/7 environment. It provides useful information on characteristic properties of the peptaibiotics included such as peptide category, group name of the microheterogeneous mixture to which the peptide belongs, amino acid sequence, sequence length, producing fungus, peptide subfamily, molecular formula, and monoisotopic mass. All these characteristics can be used and combined for automated search within the database, which makes The Comprehensive Peptaibiotics Database a versatile tool for the retrieval of valuable information about peptaibiotics. Sequence data have been considered as to December 14, 2012.

  19. Comprehensive national energy strategy

    SciTech Connect

    1998-04-01

    This Comprehensive National Energy Strategy sets forth a set of five common sense goals for national energy policy: (1) improve the efficiency of the energy system, (2) ensure against energy disruptions, (3) promote energy production and use in ways that respect health and environmental values, (4) expand future energy choices, and (5) cooperate internationally on global issues. These goals are further elaborated by a series of objectives and strategies to illustrate how the goals will be achieved. Taken together, the goals, objectives, and strategies form a blueprint for the specific programs, projects, initiatives, investments, and other actions that will be developed and undertaken by the Federal Government, with significant emphasis on the importance of the scientific and technological advancements that will allow implementation of this Comprehensive National Energy Strategy. Moreover, the statutory requirement of regular submissions of national energy policy plans ensures that this framework can be modified to reflect evolving conditions, such as better knowledge of our surroundings, changes in energy markets, and advances in technology. This Strategy, then, should be thought of as a living document. Finally, this plan benefited from the comments and suggestions of numerous individuals and organizations, both inside and outside of government. The Summary of Public Comments, located at the end of this document, describes the public participation process and summarizes the comments that were received. 8 figs.

  20. Accepting space radiation risks.

    PubMed

    Schimmerling, Walter

    2010-08-01

    The human exploration of space inevitably involves exposure to radiation. Associated with this exposure are multiple risks, i.e., probabilities that certain aspects of an astronaut's health or performance will be degraded. The management of these risks requires that such probabilities be accurately predicted, that the actual exposures be verified, and that comprehensive records be maintained. Implicit in these actions is the fact that, at some point, a decision has been made to accept a certain level of risk. This paper examines ethical and practical considerations involved in arriving at a determination that risks are acceptable, roles that the parties involved may play, and obligations arising out of reliance on the informed consent paradigm seen as the basis for ethical radiation risk acceptance in space.

  1. STUDIES IN WORKMEN'S COMPENSATION AND RADIATION INJURY. VOLUME III, A REPORT ON IONIZING RADIATION RECORD KEEPING.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Washington, DC.

    THE SUCCESSFUL OPERATION OF THE PERMISSIBLE LEVEL CONCEPT OF RADIATION CONTROL NECESSARILY ENTAILS A COMPREHENSIVE SYSTEM UNDER WHICH EXPOSURE MUST BE RECORDED AND EMPLOYEES NOTIFIED OF THEIR EXPOSURE HISTORY. IN AN INVESTIGATION OF RECORD KEEPING NECESSARY TO PROCESS RADIATION CLAIMS, QUESTIONNAIRES OR LETTERS WERE RECEIVED FROM 45 STATE AGENCIES…

  2. Radiation effects in the lung.

    PubMed Central

    Coggle, J E; Lambert, B E; Moores, S R

    1986-01-01

    This article outlines the principles of radiobiology that can explain the time of onset, duration, and severity of the complex reactions of the lung to ionizing radiation. These reactions have been assayed biochemically, cell kinetically, physiologically, and pathologically. Clinical and experimental data are used to describe the acute and late reactions of the lung to both external and internal radiation including pneumonitis, fibrosis and carcinogenesis. Acute radiation pneumonitis, which can be fatal, develops in both humans and animals within 6 months of exposure to doses greater than or equal to 8 Gy of low LET radiation. It is divisible into a latent period lasting up to 4 weeks; an exudative phase (3-8 weeks) and with an acute pneumonitic phase between 2 and 6 months. The latter is an inflammatory reaction with intra-alveolar and septal edema accompanied by epithelial and endothelial desquamation. The critical role of type II pneumonocytes is discussed. One favored hypothesis suggests that the primary response of the lung is an increase in microvascular permeability. The plasma proteins overwhelm the lymphatic and other drainage mechanisms and this elicits the secondary response of type II cell hyperplasia. This, in its turn, produces an excess of surfactant that ultimately causes the fall in compliance, abnormal gas exchange values, and even respiratory failure. The inflammatory early reaction may progress to chronic fibrosis. There is much evidence to suggest that pneumonitis is an epithelial reaction and some evidence to suggest that this early damage may not be predictive of late fibrosis. However, despite detailed work on collagen metabolism, the pathogenesis of radiation fibrosis remains unknown. The data on radiation-induced pulmonary cancer, both in man and experimental animals from both external and internal irradiation following the inhalation of both soluble and insoluble alpha and beta emitting radionuclides are reviewed. Emphasis is placed on

  3. Radiation Effect on Human Tissue

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.; Cruz, Angela; Bors, Karen; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Predicting the occurrence of human cancer following exposure of an epidemiologic population to any agent causing genetic damage is a difficult task. To an approximation, this is because the uncertainty of uniform exposure to the damaging agent, and the uncertainty of uniform processing of that damage within a complex set of biological variables, degrade the confidence of predicting the delayed expression of cancer as a relatively rare event within clinically normal individuals. This situation begs the need for alternate controlled experimental models that are predictive for the development of human cancer following exposures to agents causing genetic damage. Such models historically have not been of substantial proven value. It is more recently encouraging, however, that developments in molecular and cell biology have led to an expanded knowledge of human carcinogenesis, and of molecular markers associated with that process. It is therefore appropriate to consider new laboratory models developed to accomodate that expanded knowledge in order to assess the cancer risks associated with exposures to genotoxic agents. When ionizing radiation of space is the genotoxic agent, then a series of additional considerations for human cancer risk assessment must also be applied. These include the dose of radiation absorbed by tissue at different locations in the body, the quality of the absorbed radiation, the rate at which absorbed dose accumulates in tissue, the way in which absorbed dose is measured and calculated, and the alterations in incident radiation caused by shielding materials. It is clear that human cancer risk assessment for damage caused by ionizing radiation is a multidisciplinary responsibility, and that within this responsibility no single discipline can hold disproportionate sway if a risk assessment model of radiation-induced human cancer is to be developed that has proven value. Biomolecular and cellular markers from the work reported here are considered

  4. Spatially resolved optical and ultrastructural properties of colorectal and pancreatic field carcinogenesis observed by inverse spectroscopic optical coherence tomography

    PubMed Central

    Yi, Ji; Radosevich, Andrew J.; Stypula-Cyrus, Yolanda; Mutyal, Nikhil N.; Azarin, Samira Michelle; Horcher, Elizabeth; Goldberg, Michael J.; Bianchi, Laura K.; Bajaj, Shailesh; Roy, Hemant K.; Backman, Vadim

    2014-01-01

    Abstract. Field carcinogenesis is the initial stage of cancer progression. Understanding field carcinogenesis is valuable for both cancer biology and clinical medicine. Here, we used inverse spectroscopic optical coherence tomography to study colorectal cancer (CRC) and pancreatic cancer (PC) field carcinogenesis. Depth-resolved optical and ultrastructural properties of the mucosa were quantified from histologically normal rectal biopsies from patients with and without colon adenomas (n=85) as well as from histologically normal peri-ampullary duodenal biopsies from patients with and without PC (n=22). Changes in the epithelium and stroma in CRC field carcinogenesis were separately quantified. In both compartments, optical and ultra-structural alterations were consistent. Optical alterations included lower backscattering (μb) and reduced scattering (μs′) coefficients and higher anisotropy factor g. Ultrastructurally pronounced alterations were observed at length scales up to ∼450  nm, with the shape of the mass density correlation function having a higher shape factor D, thus implying a shift to larger length scales. Similar alterations were found in the PC field carcinogenesis despite the difference in genetic pathways and etiologies. We further verified that the chromatin clumping in epithelial cells and collagen cross-linking caused D to increase in vitro and could be among the mechanisms responsible for the observed changes in epithelium and stroma, respectively. PMID:24643530

  5. Thrombospondin-2 overexpression in the skin of transgenic mice reduces the susceptibility to chemically-induced multistep skin carcinogenesis

    PubMed Central

    Kunstfeld, Rainer; Hawighorst, Thomas; Streit, Michael; Hong, Young-Kwon; Nguyen, Lynh; Brown, Lawrence F.; Detmar, Michael

    2014-01-01

    Background We have previously reported stromal upregulation of the endogenous angiogenesis inhibitor thrombospondin-2 (TSP-2) during multistep carcinogenesis, and we found accelerated and enhanced skin angiogenesis and carcinogenesis in TSP-2 deficient mice. Goals To investigate whether enhanced levels of TSP-2 might protect from skin cancer development. Methods We established transgenic mice with targeted overexpression of TSP-2 in the skin and subjected hemizygous TSP-2 transgenic mice and their wild-type littermates to a chemical skin carcinogenesis regimen. Results TSP-2 transgenic mice showed a significantly delayed onset of tumor formation compared to wild-type mice, whereas the ratio of malignant conversion to squamous cell carcinomas was comparable in both genotypes. Computer-assisted morphometric analysis of blood vessels revealed pronounced tumor angiogenesis already in the early stages of carcinogenesis in wild type mice. TSP-2 overexpression significantly reduced tumor blood vessel density in transgenic mice but had no overt effect on LYVE-1 positive lymphatic vessels. The percentage of desmin surrounded, mature tumor-associated blood vessels and the degree of epithelial differentiation remained unaffected. The antiangiogenic effect of transgenic TSP-2 was accompanied by a significantly increased number of apoptotic tumor cells in transgenic mice. Conclusion Our results demonstrate that enhanced levels of TSP-2 in the skin result in reduced susceptibility to chemically-induced skin carcinogenesis and identify TSP-2 as a new target for the prevention of skin cancer. PMID:24507936

  6. Effects of adlay on azoxymethane-induced colon carcinogenesis in rats.

    PubMed

    Shih, Chun-Kuang; Chiang, Wenchang; Kuo, Min-Liang

    2004-08-01

    Adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) is a grass crop used in traditional Chinese medicine and as a nutritious food. It has been reported that adlay has anti-inflammatory and anti-tumor activity. Cyclooxygenase-2 (COX-2) is an inducible enzyme functionally related to both inflammation and colon carcinogenesis and is the target of many chemopreventive agents. This study investigated the effect of adlay on colon carcinogenesis and COX-2 expression. In a short-term experiment, male F344 rats were fed diets containing different doses of dehulled adlay and received the colon-specific carcinogen, azoxymethane (AOM), by intraperitoneal injection. All rats were killed after 5 weeks of feeding, and the colons were examined for the preneoplastic lesion, aberrant crypt foci (ACF). Dietary dehulled adlay at levels of 10%, 20%, or 40% significantly reduced the numbers of ACF and aberrant crypts. Dehulled adlay reduced the number of ACF of different sizes but did not affect the crypt multiplicity. Most ACF were found in the middle and distal colons; dehulled adlay significantly suppressed the formation of ACF in the middle colon. In a long-term experiment, male F344 rats were fed diets containing different doses of dehulled adlay and injected with AOM. All rats were killed after 52 weeks of feeding, and colons were examined for tumors and COX-2 protein expression. The results indicated that dehulled adlay did not inhibit colon tumors in spite of a slight suppressing effect in the proximal colon. Rats fed diets containing 20% dehulled adlay had less COX-2 protein expression in both proximal and distal colon tumors. The inconsistent effects between COX-2 protein expression and tumor outcome may be due to regional differences in the colon and the malignancy of the tumors. These findings suggest that dehulled adlay suppresses early events in colon carcinogenesis but not the formation of tumors.

  7. Effect of light/dark regimen on N-nitrosoethylurea-induced transplacental carcinogenesis in rats.

    PubMed

    Beniashvili, D S; Benjamin, S; Baturin, D A; Anisimov, V N

    2001-02-10

    Pregnant females were randomly subdivided into three groups (24 rats per group) and kept at the 12:12 h light/dark regimen (group 1), at the constant light illumination (24 h a day, group 2) or at the continuous darkness (group 3). N-nitrosoethylurea (NEU) has been injected into the tail vein of all rats (80 mg/kg) on the 18-19th day of the pregnancy. After the delivery the lacting dams and their progeny during the lactation period (1 month after delivery) were kept also at the three different light/dark regimens. Then all offspring from each group was kept at the 12:12 h light/dark regimen, males and females separately, and were observed until natural death. The exposure to constant light significantly promoted the transplacental carcinogenesis whereas the exposure to constant darkness inhibited it. The incidence of total tumors, tumors of both a peripheral nervous system and kidney was 2.6; 2.5 and 8.5 times higher, and survival significantly shorter, correspondingly, in rats from the group 2 exposed to the constant light regimen as compared to the group 1 (12:12 h light/dark regimen) (P<0.05). On the other hand, the exposure to the continuous darkness during the pregnancy and the lactation period significantly inhibited the transplacental carcinogenesis in the offspring of rats treated with NEU. The incidence of total tumors, tumors of a peripheral nervous system was by 2.4 and 2.7 times less, and survival longer, respectively, in exposed to the darkness rats from the group 3 as compared to the group 1 (12:12 h light/dark regimen) (P<0.05). Thus, our data firstly have shown the modifying effect of light-dark regimen on the realization of the transplacental carcinogenesis induced by NEU in rats.

  8. Antioxidant butylated hydroxyanisole inhibits estrogen-induced breast carcinogenesis in female ACI rats.

    PubMed

    Singh, Bhupendra; Mense, Sarah M; Remotti, Fabrizio; Liu, Xinhua; Bhat, Hari K

    2009-01-01

    Exposure to estrogens is suggested to be a risk factor in human breast cancer development. The mechanisms underlying estrogen-induced cancer have not been fully elucidated. Both estrogen receptor (ER)-mediated proliferative processes and ER-independent generation of oxidative stress are suggested to play important roles in estrogen-induced breast carcinogenesis. In the current study, we investigated the role of oxidative stress in breast carcinogenesis using the ACI rat model of mammary tumorigenesis. Female ACI rats were treated with 17beta-estradiol (E(2)), butylated hydroxyanisole (BHA), or a combination of E(2) + BHA for up to 240 days. Cotreatment of rats with E(2) + BHA reduced estrogen-induced breast tumor development with tumor incidence of 24%, a significant decrease relative to E(2) where tumor incidence was 82%. Proliferative changes in the breast tissue of E(2) + BHA-treated animals were similar to those observed in E(2)-treated animals. Tissue levels of 8-isoprostane, a marker of oxidant stress, as well as the activities of antioxidant enzymes including glutathione peroxidase, superoxide dismutase, and catalase were quantified in the breast tissues of rats treated with E(2) + BHA and compared to activity levels found in E(2)-treated animals and respective age-matched controls. Cotreatment with BHA inhibited E(2)-mediated increases in 8-isoprostane levels as well as activities of antioxidant enzymes. In summary, these data suggest that estrogen-mediated oxidant stress plays a critical role in the development of estrogen-dependent breast cancers and BHA inhibits E(2)-dependent breast carcinogenesis by decreasing oxidant stress.

  9. Long non-coding RNA HOTAIR promotes carcinogenesis and invasion of gastric adenocarcinoma

    SciTech Connect

    Lee, Na Keum; Lee, Jung Hwa; Park, Chan Hyuk; Yu, Dayeon; Lee, Yong Chan; Cheong, Jae-Ho; Noh, Sung Hoon; Lee, Sang Kil

    2014-08-22

    Highlights: • HOTAIR expression was tested in fifty patients with gastric cancer. • Cell proliferation was measured after HOTAIR silencing in gastric cancer cell line. • siRNA–HOTAIR suppresses cell invasiveness and capacity of migration. • Knock down of HOTAR leads to decreased expression of EMT markers. • Inhibition of HOTAIR induces apoptosis and cell cycle arrest. - Abstract: Gastric cancer is one of the major causes of cancer death worldwide; however, the mechanism of carcinogenesis is complex and poorly understood. Long non-coding RNA HOTAIR (HOX transcript antisense RNA) recently emerged as a promoter of metastasis in various cancers including gastric cancer. Here we investigated the impact of HOTAIR on apoptosis, cell proliferation and cell cycle to dissect the carcinogenesis of gastric cancer. We examined the mechanism of invasion and metastasis and analyzed the clinical significance of HOTAIR. Downregulation of HOTAIR was confirmed by two different siRNAs. The expression of HOTAIR was significantly elevated in various gastric cancer cell lines and tissues compared to normal control. si-HOTAIR significantly reduced viability in MKN 28, MKN 74, and KATO III cells but not in AGS cells. si-HOTAIR induced apoptosis in KATO III cells. Lymphovascular invasion and lymph node metastasis were more common in the high level of HOTAIR group. si-HOTAIR significantly decreased invasiveness and migration. si-HOTAIR led to differential expression of epithelial to mesenchymal transition markers. We found that HOTAIR was involved in inhibition of apoptosis and promoted invasiveness, supporting a role for HOTAIR in carcinogenesis and progression of gastric cancer.

  10. Iron and thiols as two major players in carcinogenesis: friends or foes?

    PubMed

    Toyokuni, Shinya

    2014-01-01

    Iron is the most abundant metal in the human body and mainly works as a cofactor for proteins such as hemoglobin and various enzymes. No independent life forms on earth can survive without iron. However, excess iron is intimately associated with carcinogenesis by increasing oxidative stress via its catalytic activity to generate hydroxyl radicals. Biomolecules with redox-active sulfhydryl function(s) (thiol compounds) are necessary for the maintenance of mildly reductive cellular environments to counteract oxidative stress, and for the execution of redox reactions for metabolism and detoxification. Involvement of glutathione S-transferase and thioredoxin has long attracted the attention of cancer researchers. Here, I update recent findings on the involvement of iron and thiol compounds during carcinogenesis and in cancer cells. It is now recognized that the cystine/glutamate transporter (antiporter) is intimately associated with ferroptosis, an iron-dependent, non-apoptotic form of cell death, observed in cancer cells, and also with cancer stem cells; the former with transporter blockage but the latter with its stabilization. Excess iron in the presence of oxygen appears the most common known mutagen. Ironically, the persistent activation of antioxidant systems via genetic alterations in Nrf2 and Keap1 also contributes to carcinogenesis. Therefore, it is difficult to conclude the role of iron and thiol compounds as friends or foes, which depends on the quantity/distribution and induction/flexibility, respectively. Avoiding further mutation would be the most helpful strategy for cancer prevention, and myriad of efforts are being made to sort out the weaknesses of cancer cells.

  11. Nano-architectural alterations in mucus layer fecal colonocytes in field carcinogenesis: potential for screening.

    PubMed

    Roy, Hemant K; Damania, Dhwanil P; DelaCruz, Mart; Kunte, Dhananjay P; Subramanian, Hariharan; Crawford, Susan E; Tiwari, Ashish K; Wali, Ramesh K; Backman, Vadim

    2013-10-01

    Current fecal tests (occult blood, methylation, DNA mutations) target minute amounts of tumor products among a large amount of fecal material and thus have suboptimal performance. Our group has focused on exploiting field carcinogenesis as a modality to amplify the neoplastic signal. Specifically, we have shown that endoscopically normal rectal brushings have striking nano-architectural alterations which are detectable using a novel optical technique, partial wave spectroscopic microscopy (PWS). We therefore wished to translate this approach to a fecal assay. We examined mucus layer fecal colonocytes (MLFC) at preneoplastic and neoplastic time points (confirmed with rat colonoscopy) in the azoxymethane (AOM)-treated rat model and conducted PWS analysis to derive the nano-architectural parameter, disorder strength (Ld). We confirmed these results with studies in a genetic model (the Pirc rat). We showed that MLFC appeared microscopically normal, consistent with field carcinogenesis. Ld was elevated at an early time point (5 weeks post-AOM injection, effect size = 0.40, P = 0.024) and plateaued before adenoma formation (10 weeks post-AOM, effect size = 0.66, P = 0.001), with no dramatic increase once tumors developed. We replicated these data in the preneoplastic Pirc rat with an effect size in the MLFC that replicated the rectal brushings (increase vs. age-matched controls of 62% vs. 74%, respectively). We provide the first demonstration of a biophotonics approach to fecal assay. Furthermore, targeting the nano-architectural changes of field carcinogenesis rather than the detection of tumor products may provide a novel paradigm for colorectal cancer screening.

  12. Metabolic reprogramming and dysregulated metabolism: cause, consequence and/or enabler of environmental carcinogenesis?

    PubMed Central

    Robey, R.Brooks; Weisz, Judith; Kuemmerle, Nancy; Salzberg, Anna C.; Berg, Arthur; Brown, Dustin G.; Kubik, Laura; Palorini, Roberta; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Colacci, Annamaria; Mondello, Chiara; Raju, Jayadev; Woodrick, Jordan; Scovassi, A.Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Salem, Hosni K.; Amedei, Amedeo; Hamid, Roslida A.; Williams, Graeme P.; Lowe, Leroy; Meyer, Joel; Martin, Francis L.; Bisson, William H.; Chiaradonna, Ferdinando; Ryan, Elizabeth P.

    2015-01-01

    Environmental contributions to cancer development are widely accepted, but only a fraction of all pertinent exposures have probably been identified. Traditional toxicological approaches to the problem have largely focused on the effects of individual agents at singular endpoints. As such, they have incompletely addressed both the pro-carcinogenic contributions of environmentally relevant low-dose chemical mixtures and the fact that exposures can influence multiple cancer-associated endpoints over varying timescales. Of these endpoints, dysregulated metabolism is one of the most common and recognizable features of cancer, but its specific roles in exposure-associated cancer development remain poorly understood. Most studies have focused on discrete aspects of cancer metabolism and have incompletely considered both its dynamic integrated nature and the complex controlling influences of substrate availability, external trophic signals and environmental conditions. Emerging high throughput approaches to environmental risk assessment also do not directly address the metabolic causes or consequences of changes in gene expression. As such, there is a compelling need to establish common or complementary frameworks for further exploration that experimentally and conceptually consider the gestalt of cancer metabolism and its causal relationships to both carcinogenesis and the development of other cancer hallmarks. A literature review to identify environmentally relevant exposures unambiguously linked to both cancer development and dysregulated metabolism suggests major gaps in our understanding of exposure-associated carcinogenesis and metabolic reprogramming. Although limited evidence exists to support primary causal roles for metabolism in carcinogenesis, the universality of altered cancer metabolism underscores its fundamental biological importance, and multiple pleiomorphic, even dichotomous, roles for metabolism in promoting, antagonizing or otherwise enabling the

  13. PHLPP2 Downregulation Contributes to Lung Carcinogenesis Following B[a]P/B[a]PDE Exposure

    PubMed Central

    Huang, Haishan; Pan, Xiaofu; Jin, Honglei; Li, Yang; Zhang, Lin; Yang, Caili; Liu, Pei; Liu, Ya; Chen, Lili; Li, Jingxia; Zhu, Junlan; Zeng, Xingruo; Fu, Kai; Chen, Guorong; Gao, Jimin; Huang, Chuanshu

    2015-01-01

    Purpose The carcinogenic capacity of B[a]P/B[a]PDE is supported by epidemiologic studies. However, the molecular mechanisms responsible for B[a]P/B[a]PDE-caused lung cancer have not been well investigated. We evaluated here the role of novel target PHLPP2 in lung inflammation and carcinogenesis upon B[a]P/B[a]PDE exposure. Experimental Design We used the Western blotting, RT-PCR, [35S]methionine pulse and immunohistochemistry staining to determine PHLPP2 downregulation following B[a]P/B[a]PDE exposure. Both B[a]PDE-induced Beas-2B cell transformation model and B[a]P-caused mouse lung cancer model were used to elucidate the mechanisms leading to PHLPP2 downregulation and lung carcinogenesis. The important findings were also extended to in vivo human studies. Results We found that B[a]P/B[a]PDE exposure downregulated PHLPP2 expression in human lung epithelial cells in vitro and in mouse lung tissues in vivo. The ectopic expression of PHLPP2 dramatically inhibited cell transformation upon B[a]PDE exposure. Mechanistic studies showed that miR-205 induction was crucial for inhibition of PHLPP2 protein translation by targeting PHLPP2-3′-UTR. Interestingly, PHLPP2 expression was inversely associated with tumor necrosis factor alpha (TNFα) expression, with low PHLPP2 and high TNFα expression in lung cancer tissues compared with the paired adjacent normal lung tissues. Additional studies revealed that PHLPP2 exhibited its antitumorigenic effect of B[a]P/B[a]PDE through the repression of inflammatory TNFα transcription. Conclusions Our studies not only first time identify PHLPP2 downregulation by lung carcinogen B[a]P/B[a]PDE, but also elucidate a novel molecular mechanisms underlying lung inflammation and carcinogenesis upon B[a]P/B[a]PDE exposure. PMID:25977341

  14. TGF-β/Smad signaling during hepatic fibro-carcinogenesis (review).

    PubMed

    Yoshida, Katsunori; Murata, Miki; Yamaguchi, Takashi; Matsuzaki, Koichi

    2014-10-01

    After hepatitis virus infection, plasma transforming growth factor (TGF)-β increases in either the acute or chronic inflammatory microenvironment. Although TGF-β is upregulated in patients with hepatocellular carcinoma, it is one of the most potent growth inhibitors for hepatocytes. This cytokine also upregulates extracellular matrix (ECM) production of hepatic stellate cells. Therefore, TGF-β is considered to be the major factor regulating liver carcinogenesis and accelerating liver fibrosis. Smad2 and Smad3 act as the intracellular mediators of TGF-β signal transduction pathway. We have generated numerous antibodies against individual phosphorylation sites in Smad2/3, and identified 3 types of phosphorylated forms (phospho-isoforms): COOH-terminally phosphorylated Smad2/3 (pSmad2C and pSmad3C), linker phosphorylated Smad2/3 (pSmad2L and pSmad3L) and dually phosphorylated Smad2/3 (pSmad2L/C and pSmad3L/C). These Smad phospho-isoforms are categorized into 3 groups: cytostatic pSmad3C signaling, mitogenic pSmad3L signaling and invasive/fibrogenic pSmad2L/C signaling. In this review, we describe differential regulation of TGF-β/Smad signaling after acute or chronic liver injuries. In addition, we consider how chronic inflammation associated with hepatitis virus infection promotes hepatic fibrosis and carcinogenesis (fibro-carcinogenesis), focusing on alteration of Smad phospho-isoform signaling. Finally, we show reversibility of Smad phospho-isoform signaling after therapy against hepatitis virus infection.

  15. Prevention by alpha-difluoromethylornithine of skin carcinogenesis and immunosuppression induced by ultraviolet irradiation.

    PubMed

    Gensler, H L

    1991-01-01

    Administration of alpha-difluoromethylornithine (DFMO) to mice was found to inhibit both the cutaneous carcinogenesis and the immunosuppression induced by ultraviolet B (UVB) irradiation. BALB/cAnNTacfBR mice were given 1% F2MeOrn in their drinking water throughout the experiment. After 3 weeks, mice received UVB irradiation consisting of five 30-min exposures per week to banks of six FS40 Westinghouse sunlamps. In the photocarcinogenesis study, mice received a total dose of approximately 1273 kJ m-2. Skin cancer incidence in UV-irradiated mice was 38% 28 weeks after the first UV exposure; DFMO reduced this incidence to 9% (P = 0.025, log-rank test). Although DFMO has been demonstrated to be chemopreventive of chemical carcinogenesis, this is the first report that it is effective against cancers induced by a physical carcinogen. The immunosuppression induced by UVB irradiation prevents the host from rejecting antigenic, syngeneic UV-induced tumors, which normal mice can reject. The level of immunosuppression in UV-irradiated mice treated with DFMO was measured by a passive-transfer assay. Splenocytes from UV-irradiated mice to naive mice prevented the recipients from rejecting 20/24 UV-induced tumor challenges, whereas splenocytes from UV-irradiated mice treated with DFMO did not prevent recipients from rejecting such challenges (2/24 grew). The difference between these values was significant (P less than 0.001, two-sample test for binomial proportions). Phenotypic analysis of splenocytes used in the passive transfer, using a biotin-avidin-immunoperoxidase technique, revealed that DFMO treatment prevented the reduction of Ia expression normally seen in UV-irradiated mice. Thus, administration of DFMO reduced skin carcinogenesis and immunosuppression induced by UVB irradiation.

  16. Metabolic reprogramming and dysregulated metabolism: cause, consequence and/or enabler of environmental carcinogenesis?

    PubMed

    Robey, R Brooks; Weisz, Judith; Kuemmerle, Nancy B; Salzberg, Anna C; Berg, Arthur; Brown, Dustin G; Kubik, Laura; Palorini, Roberta; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Colacci, Annamaria; Mondello, Chiara; Raju, Jayadev; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Salem, Hosni K; Amedei, Amedeo; Hamid, Roslida A; Williams, Graeme P; Lowe, Leroy; Meyer, Joel; Martin, Francis L; Bisson, William H; Chiaradonna, Ferdinando; Ryan, Elizabeth P

    2015-06-01

    Environmental contributions to cancer development are widely accepted, but only a fraction of all pertinent exposures have probably been identified. Traditional toxicological approaches to the problem have largely focused on the effects of individual agents at singular endpoints. As such, they have incompletely addressed both the pro-carcinogenic contributions of environmentally relevant low-dose chemical mixtures and the fact that exposures can influence multiple cancer-associated endpoints over varying timescales. Of these endpoints, dysregulated metabolism is one of the most common and recognizable features of cancer, but its specific roles in exposure-associated cancer development remain poorly understood. Most studies have focused on discrete aspects of cancer metabolism and have incompletely considered both its dynamic integrated nature and the complex controlling influences of substrate availability, external trophic signals and environmental conditions. Emerging high throughput approaches to environmental risk assessment also do not directly address the metabolic causes or consequences of changes in gene expression. As such, there is a compelling need to establish common or complementary frameworks for further exploration that experimentally and conceptually consider the gestalt of cancer metabolism and its causal relationships to both carcinogenesis and the development of other cancer hallmarks. A literature review to identify environmentally relevant exposures unambiguously linked to both cancer development and dysregulated metabolism suggests major gaps in our understanding of exposure-associated carcinogenesis and metabolic reprogramming. Although limited evidence exists to support primary causal roles for metabolism in carcinogenesis, the universality of altered cancer metabolism underscores its fundamental biological importance, and multiple pleiomorphic, even dichotomous, roles for metabolism in promoting, antagonizing or otherwise enabling the

  17. Protective Effect of Lactobacillus casei on DMH-Induced Colon Carcinogenesis in Mice.

    PubMed

    Irecta-Nájera, Cesar Antonio; Del Rosario Huizar-López, María; Casas-Solís, Josefina; Castro-Félix, Patricia; Santerre, Anne

    2017-03-18

    The administration of probiotics is a promising approach to reduce the prevalence of colon cancer, a multifactorial disease, with hereditary factors, as well as environmental lifestyle-related risk factors. Biogenic polyamines, putrescine, spermidine, and spermine are small cationic molecules with great roles in cell proliferation and differentiation as well as regulation of gene expression. Ornithine decarboxylase is the first rate-limiting enzyme for polyamine synthesis, and upregulation of ornithine decarboxylase activity and polyamine metabolism has been associated with abnormal cell proliferation. This paper is focused on studying the protective role of Lactobacillus casei ATCC 393 in a chemically induced mouse model of colon carcinogenesis, directing our attention on aberrant crypt foci as preneoplastic markers, and on polyamine metabolism as a possible key player in carcinogenesis. BALB/c mice were administered 1,2-dimethylhydrazine dihydrochloride (DMH) to induce colon cancer (20 mg/kg body weight, subcutaneous, twice a week for 24 weeks). L. casei ATCC 393 was given orally (10(6) CFU, twice a week), 2 weeks before DMH administration. Hematoxylin and eosin staining, high-performance liquid chromatography, and Western blotting were used to evaluate aberrant crypt foci, urinary polyamines, and ornithine decarboxylase expression in the colon. The experimental data showed that the preventive administration of L. casei ATCC 393 may delay the onset of cancer as it significantly reduced the number of DMH-induced aberrant crypt foci, the levels of putrescine, and the expression of ornithine decarboxylase. Hence, this probiotic strain has a prospective role in protection against colon carcinogenesis, and its antimutagenic activity may be associated with the maintenance of polyamine metabolism.

  18. Bystander effect induced by UV radiation; why should we be interested?

    PubMed

    Widel, Maria

    2012-11-14

    The bystander effect, whose essence is an interaction of cells directly subjected to radiation with adjacent non-subjected cells, via molecular signals, is an important component of ionizing radiation action. However, knowledge of the bystander effect in the case of ultraviolet (UV) radiation is quite limited. Reactive oxygen and nitrogen species generated by UV in exposed cells induce bystander effects in non-exposed cells, such as reduction in clonogenic cell survival and delayed cell death, oxidative DNA damage and gene mutations, induction of micronuclei, lipid peroxidation and apoptosis. Although the bystander effect after UV radiation has been recognized in cell culture systems, its occurrence in vivo has not been studied. However, solar UV radiation, which is the main source of UV in the environment, may induce in human dermal tissue an inflammatory response and immune suppression, events which can be considered as bystander effects of UV radiation. The oxidative damage to DNA, genomic instability and the inflammatory response may lead to carcinogenesis. UV radiation is considered one of the important etiologic factors for skin cancers, basal- and squamous-cell carcinomas and malignant melanoma. Based on the mechanisms of actions it seems that the UV-induced bystander effect can have some impact on skin damage (carcinogenesis?), and probably on cells of other tissues. The paper reviews the existing data about the UV-induced bystander effect and discusses a possible implication of this phenomenon for health risk. 

  19. Radiator technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    1993-01-01

    Radiator technology is discussed in the context of the Civilian Space Technology Initiative's (CSTI's) high capacity power-thermal management project. The CSTI project is a subset of a project to develop a piloted Mars nuclear electric propulsion (NEP) vehicle. The following topics are presented in vugraph form: advanced radiator concepts; heat pipe codes and testing; composite materials; radiator design and integration; and surface morphology.

  20. Hawking radiation

    NASA Astrophysics Data System (ADS)

    Parentani, Renaud; Spindel, Philippe

    2011-12-01

    Hawking radiation is the thermal radiation predicted to be spontaneously emitted by black holes. It arises from the steady conversion of quantum vacuum fluctuations into pairs of particles, one of which escaping at infinity while the other is trapped inside the black hole horizon. It is named after the physicist Stephen Hawking who derived its existence in 1974. This radiation reduces the mass of black holes and is therefore also known as black hole evaporation.

  1. Biology relevant to space radiation

    SciTech Connect

    Fry, R.J.M.

    1996-08-01

    The biological effects of the radiations to which mankind on earth are exposed are becoming known with an increasing degree of detail. This knowledge is the basis of the estimates of risk that, in turn, fosters a comprehensive and evolving radiation protection system. The substantial body of information has been, and is being, applied to questions about the biological effects of radiation is space and the associated risk estimates. The purpose of this paper is not to recount all the biological effect of radiation but to concentrate on those that may occur as a result from exposure to the radiations encountered in space. In general, the biological effects of radiation in space are the same as those on earth. However, the evidence that the effects on certain tissues by the heaviest-charged particles can be interpreted on the basis of our knowledge about other high-LET radiation is equivocal. This specific question will be discussed in greater detail later. It is important to point out the that there are only limited data about the effects on humans of two components of the radiations in space, namely protons and heavy ions. Thus predictions of effects on space crews are based on experimental systems exposed on earth at rates and fluences that are higher than those in space and one the effects of gamma or x rays with estimates of the equivalent doses using quality factors.

  2. Isolating of Target Genes for NKX3.1 in Prostate Carcinogenesis

    DTIC Science & Technology

    2005-03-01

    leads to the aberrant expression of target genes that ultimately contribute to prostate carcinogenesis. Therefore, identification of Nkx3. 1 target...stainin on e te o tesr prostate hist log .(Band - . (C a .. ( 2 (M -P) Ki6 s shows . celula pr lf rto in c( ssi Fg1.prosthate cane r progresin is enh...in the context of an MMTV-c-neu transgene, whereas p27kiP1 are also important, such as the recent identification of its role nullizygosityforp27kipN

  3. Human papillomavirus-induced carcinogenesis and the ubiquitin-proteasome system.

    PubMed

    Scheffner, Martin; Whitaker, Noel J

    2003-02-01

    Certain types of human papillomaviruses have been etiologically associated with malignant lesions, most notably with cervical cancer. The major oncoproteins of these cancer-associated viruses are encoded by the viral E6 and E7 genes. Thorough characterization of these oncoproteins and their interaction with cellular proteins has shown that both E6 and E7 exploit the ubiquitin-proteasome system to degrade and, thus, to functionally inactivate negative cell-regulatory proteins including members of the p110(RB) family and p53. This act of piracy is assumed to contribute to both the efficient propagation of HPVs and HPV-induced carcinogenesis.

  4. Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications.

    PubMed

    Cao, Yi

    2015-09-01

    Environmental pollution is one of the main causes of human cancer. Exposures to environmental carcinogens result in genetic and epigenetic alterations which induce cell transformation. Epigenetic changes caused by environmental pollution play important roles in the development and progression of environmental pollution-related cancers. Studies on DNA methylation are among the earliest and most conducted epigenetic research linked to cancer. In this review, the roles of DNA methylation in carcinogenesis and their significance in clinical medicine were summarized, and the effects of environmental pollutants, particularly air pollutants, on DNA methylation were introduced. Furthermore, prospective applications of DNA methylation to environmental pollution detection and cancer prevention were discussed.

  5. Carcinogenesis of Nitrated Toluenes and Benzenes Skin and Lung Tumor Assays in Mice

    DTIC Science & Technology

    1985-05-01

    SLAGA ET AL. NAY 85 ORNL -TOX-82-1 UNCLASSIFIED DOE-IRG-40-i~i6-79 F/G 6/29 N LmhmhhII -4I LI 1. .6 I1.8 111jj 12511 .4 I1 . MICROCOPY RESOLUTION TEST...November 1979--March 1983 SKIN AND LUNG TUMOR ASSAYS IN MICE 6. PERFORMING ORG. REPORT NUMBER - ORNL TOX 82-i 7. AUTI4OR(a) S. CONTRACT OR GRANT NUMBER...mouse Ure than UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGErIYIon Data Ento.e) QI AD ORNL /TM-9645 P CARCINOGENESIS OF NITRATED TOLUENES AND

  6. Carcinogenesis of the Oral Cavity: Environmental Causes and Potential Prevention by Black Raspberry.

    PubMed

    El-Bayoumy, Karam; Chen, Kun-Ming; Zhang, Shang-Min; Sun, Yuan-Wan; Amin, Shantu; Stoner, Gary; Guttenplan, Joseph B

    2017-01-17

    Worldwide, cancers of the oral cavity and pharynx comprise the sixth most common malignancies. Histologically, more than 90% of oral cancers are squamous cell carcinoma (SCC). Epidemiologic data strongly support the role of exogenous factors such as tobacco, alcohol, and human papilloma virus infection as major causative agents. Avoidance of risk factors has only been partially successful, and survival rates have not improved despite advances in therapeutic approaches. Therefore, new or improved approaches to prevention and/or early detection are critical. Better understanding of the mechanisms of oral carcinogenesis can assist in the development of novel biomarkers for early detection and strategies for disease prevention. Toward this goal, several animal models for carcinogenesis in the oral cavity have been developed. Among these are xenograft, and transgenic animal models, and others employing the synthetic carcinogens such as 7,12-dimethylbenz[a]anthracene in hamster cheek pouch and 4-nitroquinoline-N-oxide in rats and mice. Additional animal models employing environmental carcinogens such as benzo[a]pyrene and N'-nitrosonornicotine have been reported. Each model has certain advantages and disadvantages. Models that (1) utilize environmental carcinogens, (2) reflect tumor heterogeneity, and (3) accurately represent the cellular and molecular changes involved in the initiation and progression of oral cancer in humans could provide a realistic platform. To achieve this goal, we introduced a novel nonsurgical mouse model to study oral carcinogenesis induced by dibenzo[a,l]pyrene (DB[a,l]P), an environmental pollutant and tobacco smoke constituent, and its diol epoxide metabolite (±)-anti-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]pyrene [(±)-anti-DB[a,l]PDE]. On the basis of a detailed comparison of oral cancer induced by DB[a,l]P with that induced by the other above-mentioned oral carcinogens with respect to dose, duration, species and

  7. Chemical and Molecular Biological Aspects of Alkylhydrazine-Induced Carcinogenesis in Human Cells in vitro

    DTIC Science & Technology

    1981-09-01

    hydrazine and its simple alkyl derivatives in carcinogenesis has been reviewed ( 1 ). In several species of rodents 1,2- dimethylhydrazine 4 (I,2-DMH) has...Pharmacy I For the Period September 1 , 1980 - August 31, 1981 C:O AIR FORCE OFFICE OF SCIENTIFIC RESEARCH Research Directorate of Life Sciences mI Bolling...Air Force Base SWashington, D.C. 20332 Contract No. F49620-80-C-0086 "II September, 1981 m’ed for publi"e reeasoe; " 1 12 2•t9ibution unlimited. 1 ’. I Q

  8. The potential influence of radiation-induced microenvironments in neoplastic progression

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Ionizing radiation is a complete carcinogen, able both to initiate and promote neoplastic progression and is a known carcinogen of human and murine mammary gland. Tissue response to radiation is a composite of genetic damage, cell death and induction of new gene expression patterns. Although DNA damage is believed to initiate carcinogenesis, the contribution of these other aspects of radiation response are beginning to be explored. Our studies demonstrate that radiation elicits rapid and persistent global alterations in the mammary gland microenvironment. We postulate that radiation-induced microenvironments may affect epithelial cells neoplastic transformation by altering their number or susceptibility. Alternatively, radiation induced microenvironments may exert a selective force on initiated cells and/or be conducive to progression. A key impetus for these studies is the possibility that blocking these events could be a strategy to interrupt neoplastic progression.

  9. Final Technical Report for the grant entitled "Genetic Factors Affecting Susceptibility to Low-Dose Radiation"

    SciTech Connect

    Morgan, William, F., Ph.D., D.Sc.

    2006-11-22

    The goal of this proposal was to test the hypothesis that mice heterozygous for the Nijmegen Breakage Syndrome (NBS1) gene are genetically susceptible to low doses of ionizing radiation. The rationale for this is that patients with NBS are radiation sensitive, because of defects in cellular responses to radiation induced genetic damage and haploinsufficiency at this genetic locus provides the potential for genetic susceptibility to low doses of ionizing radiation. Wild type and heterozygous NBS1 mice were irradiated and followed over their lifetime for radiation induced genomic instability, carcinogenesis and non-specific life shorten