Science.gov

Sample records for radiation diffuse radiation

  1. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  2. Diffuse UV Background Radiation

    NASA Astrophysics Data System (ADS)

    Conn Henry, Richard; Murthy, J.

    2012-01-01

    The diffuse UV sky is expected to glow with significant amounts of starlight that is scattered from the interstellar dust. The albedo and scattering pattern of the dust in the ultraviolet are both well established, and are both fairly independent of wavelength from 912 Å to 3000 Å. We present 1943 Voyager spectra of the diffuse cosmic background radiation from 500 Å to 1200 Å, and we compare their brightnesses, and their distribution on the sky, to those observed (Murthy et al., ApJ 724, 1389, 2010) from the GALEX mission at longer wavelengths (1530 Å). Significant differences appear, suggesting that background radiation components in addition to dust-scattered starlight may be present in both spectral regions.

  3. Diffuse gamma radiation

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Simpson, G. A.; Thompson, D. J.

    1977-01-01

    An examination of the intensity, energy spectrum, and spatial distribution of the diffuse gamma-radiation observed by SAS-2 satellite away from the galactic plane in the energy range above 35 MeV has shown that it consists of two components. One component is generally correlated with galactic latitudes, the atomic hydrogen column density was deduced from 21 cm measurements, and the continuum radio emission, believed to be synchrotron emission. It has an energy spectrum similar to that in the plane and joins smoothly to the intense radiation from the plane. It is therefore presumed to be of galactic origin. The other component is apparently isotropic, at least on a coarse scale, and has a steep energy spectrum. No evidence is found for a cosmic ray halo surrounding the galaxy in the shape of a sphere or oblate spheroid with galactic dimensions. Constraints for a halo model with significantly larger dimensions are set on the basis of an upper limit to the gamma-ray anisotropy.

  4. Diffuse Cosmic Infrared Background Radiation

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2002-01-01

    The diffuse cosmic infrared background (CIB) consists of the cumulative radiant energy released in the processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In this lecture I will review the observational data that provided the first detections and limits on the CIB, and the theoretical studies explaining the origin of this background. Finally, I will also discuss the relevance of this background to the universe as seen in high energy gamma-rays.

  5. Unstructured Polyhedral Mesh Thermal Radiation Diffusion

    SciTech Connect

    Palmer, T.S.; Zika, M.R.; Madsen, N.K.

    2000-07-27

    Unstructured mesh particle transport and diffusion methods are gaining wider acceptance as mesh generation, scientific visualization and linear solvers improve. This paper describes an algorithm that is currently being used in the KULL code at Lawrence Livermore National Laboratory to solve the radiative transfer equations. The algorithm employs a point-centered diffusion discretization on arbitrary polyhedral meshes in 3D. We present the results of a few test problems to illustrate the capabilities of the radiation diffusion module.

  6. Measurements of the diffuse ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Fix, John D.; Craven, John D.; Frank, Louis A.

    1989-01-01

    The imaging instrumentation on the Dynamics Explorer 1 satellite has been used to measure the intensity of the diffuse ultraviolet radiation on two great circles about the sky. It is found that the isotropic component of the diffuse ultraviolet radiation (possibly of extragalactic origin) has an intensity of 530 + or - 80 units (a unit is 1 photon per sq cm s A sr) at a wavelength of 150 nm. The Galactic component of the diffuse ultraviolet radiation has a dependence on Galactic latitude which requires strongly forward scattering particles if it is produced by dust above the Galactic plane.

  7. Diffusion processes in general relativistic radiating spheres

    SciTech Connect

    Barreto, W.; Herrera, L.; Santos, N.O.; Universidad Central de Venezuela, Caracas; Observatorio Nacional do Brasil, Rio de Janeiro )

    1989-09-01

    The influence of diffusion processes on the dynamics of general relativistic radiating spheres is systematically studied by means of two examples. Differences between the streaming-out limit and the diffusion limit are exhibited, for both models, through the evolution curves of dynamical variables. In particular it is shown the Bondi mass decreases, for both models, in the diffusion limit as compared with its value at the streaming-out regime. 15 refs.

  8. Diffuse ionizing radiation within HH jets

    SciTech Connect

    Esquivel, A.; Raga, A. C. E-mail: raga@nucleares.unam.mx

    2013-12-20

    We present numerical hydrodynamical simulations of a time-dependent ejection velocity precessing jet. The parameters used in our models correspond to a high excitation Herbig-Haro object, such as HH 80/81. We have included the transfer of ionizing radiation produced within the shocked regions of the jet. The radiative transfer is computed with a ray-tracing scheme from all the cells with an emissivity above a certain threshold. We show the development of a radiative precursor, and compare the morphology with a model without the diffuse radiation. Our simulations show that the morphology of the Hα emission is affected considerably if the diffuse ionizing radiation is accounted for. The predicted Hα position-velocity diagram (i.e., spatially resolved emission line profiles) from a model with the transfer of ionizing radiation has a relatively strong component at zero velocity, corresponding to the radiative precursor. Qualitatively similar 'zero velocity components' are observed in HH 80/81 and in the jet from Sanduleak's star in the Large Magellanic Cloud.

  9. The diffuse component of erythemal ultraviolet radiation.

    PubMed

    Silva, Abel A

    2015-11-01

    The diffuse (Dif) component of ultraviolet radiation (UVR) plays an important role in the daily exposure of humans to solar radiation. This study proposes a semi-empirical method to obtain the Dif component of the erythemal dose rate, or the erythemally weighted irradiance, (EDRDif) calculated from synchronized measurements of the Dif component of UVR (UVDif) and the global (G) irradiances of both UVR (UVG) and the erythemal dose rate (EDRG). Since the study was conducted in the tropics, results involve a wide range of solar zenith angles to which EDRDif is seasonally dependent. Clouds are the main atmospheric agent affecting Dif radiation. The ratio between Dif and G (Dif/G) showed a quadratic dependence on cloud cover with a coefficient of determination r(2) = 0.79. The maxima of EDRDif were mainly above the moderate range (>137.5 mW m(-2)) of the UV-Index and reached the extreme range (>262.5 mW m(-2)) for the spring-summer period. The fraction of the global daily erythemal dose (daily EDG) corresponding to Dif radiation (daily EDDif) ranged from 936 J m(-2) to 5053 J m(-2) and averaged 2673 J m(-2). Daily EDDif corresponded to at least 48% of daily EDG for a practically cloudless sky. Therefore, Dif radiation is a real threat. Lighter skin people (types I and II) can get sunburnt in a couple of minutes under such an incidence of radiation. Moreover, accumulative harm can affect all skin types.

  10. Diffusion models for Jupiter's radiation belt

    NASA Technical Reports Server (NTRS)

    Jacques, S. A.; Davis, L., Jr.

    1972-01-01

    Solutions are given for the diffusion of trapped particles in a planetary magnetic field in which the first and second adiabatic invariants are preserved but the third is not, using as boundary conditions a fixed density at the outer boundary (the magnetopause) and a zero density at an inner boundary (the planetary surface). Losses to an orbiting natural satellite are included and an approximate evaluation is made of the effects of the synchrotron radiation on the energy of relativistic electrons. Choosing parameters appropriate to Jupiter, the electrons required to produce the observed synchrotron radiation are explained. If a speculative mechanism in which the diffusion is driven by ionospheric wind is the true explanation of the electrons producing the synchrotron emission it can be concluded that Jupiter's inner magnetosphere is occupied by an energetic proton flux that would be a serious hazard to spacecraft.

  11. Radiation

    NASA Video Gallery

    Outside the protective cocoon of Earth's atmosphere, the universe is full of harmful radiation. Astronauts who live and work in space are exposed not only to ultraviolet rays but also to space radi...

  12. Gas phase radiative effects in diffusion flames

    NASA Astrophysics Data System (ADS)

    Bedir, Hasan

    Several radiation models are evaluated for a stagnation point diffusion flame of a solid fuel in terms of accuracy and computational time. Narrowband, wideband, spectral line weighted sum of gray gases (SLWSGG), and gray gas models are included in the comparison. Radiative heat flux predictions by the nongray narrowband, wideband, and SLWSGG models are found to be in good agreement with each other, whereas the gray gas models are found to be inaccurate. The narrowband model, the most complex among the models evaluated, is then applied first to a solid fuel and second to a pure gaseous diffusion flame. A polymethylmethacrylate (PMMA) diffusion flame in a stagnation point geometry is solved with the narrowband model with COsb2, Hsb2O, and MMA vapor included in participating species. A detailed account of the emission and absorption from these species as well as the radiative heat fluxes are given as a function of the stretch rate. It is found that at low stretch rate the importance of radiation is increased due to an increase in the optical thickness, and a decrease in the conductive heat flux. Results show that COsb2 is the biggest emitter and absorber in the flame, MMA vapor is the second and Hsb2O is the least important. A pure gaseous flame in an opposed jet configuration is solved with the narrowband radiation model with CO as the fuel, and Osb2 as the oxidizer. Detailed. chemical kinetics and transport are incorporated into the combustion model with the use of the CHEMKIN and TRANSPORT software packages. The governing equations are solved with a modified version of the OPPDIF code. Dry and wet CO flames as well as COsb2 dilution are studied. Comparison of the results with and without the consideration of radiation reveals that the radiation is important for the whole flammable range of dry CO flames and for the low stretch rates of wet flames. Without the consideration of radiation the temperature and the species mole fractions (especially of minor species

  13. Automatic actinometric system for diffuse radiation measurement

    NASA Astrophysics Data System (ADS)

    Litwiniuk, Agnieszka; Zajkowski, Maciej

    2015-09-01

    Actinometric station is using for measuring solar of radiation. The results are helpful in determining the optimal position of solar panels relative to the Sun, especially in today's world, when the energy coming from the Sun and other alternative sources of energy become more and more popular. Polish climate does not provide as much energy as in countries in southern Europe, but it is possible to increase the amount of energy produced by appropriate arrangement of photovoltaic panels. There is the possibility of forecasting the amount of produced energy, the cost-effectiveness and profitability of photovoltaic installations. This implies considerable development opportunities for domestic photovoltaic power plants. This article presents description of actinometric system for diffuse radiation measurement, which is equipped with pyranometer - thermopile temperature sensor, amplifier AD620, AD Converter ADS1110, microcontroller Atmega 16, SD card, GPS module and LCD screen.

  14. Adaptive Implicit Non-Equilibrium Radiation Diffusion

    SciTech Connect

    Philip, Bobby; Wang, Zhen; Berrill, Mark A; Rodriguez Rodriguez, Manuel; Pernice, Michael

    2013-01-01

    We describe methods for accurate and efficient long term time integra- tion of non-equilibrium radiation diffusion systems: implicit time integration for effi- cient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while control- ling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  15. Spectrometer system for diffuse extreme ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Labov, Simon E.

    1989-01-01

    A unique grazing incidence spectrometer system has been designed to study diffuse line emission between 80 and 650 A with 10-30 A resolution. The minimum detectable emission line strength during a 5-min observation ranges from 100-2000 ph/sq cm sec str. The instrument uses mechanically ruled reflection gratings placed in front of a linear array of mirrors. These mirrors focus the spectral image on microchannel plate detectors located behind thin filters. The field of view is 40 min of arc by 15 deg, and there is no spatial imaging. This instrument has been fabricated, calibrated, and successfully flown on a sounding rocket to observe the astronomical background radiation.

  16. Diffuse galactic annihilation radiation from supernova nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Higdon, J. C.

    1985-01-01

    The propagation of MeV positrons in the outer ejecta of type I supernovae was investigated. It was found that the positrons created at times of approx 100 days propagated along magnetic field lines in the outer ejecta without any appreciable pitch-angle scattering or excitation of hydromagnetic waves. The lack of significant pitch-angle scattering is well consistent with models of wave excitation and scattering by resonant interactions. This occurs because time periods to scatter the particles or to excite waves are significantly longer than escape times. Thus it is expected that, when positrons are not coupled to the ejecta by Coulomb collisions, they escape from the relatively cold, dense ejecta and reside predominantly in the tenuous, hotter, shock-heated interstellar gas. In the tenuous shock-heated gas the positron lifetime against annihilation is much greater than lifetimes in the dense ejectra. Thus the production of steady-state diffuse annihilation radiation by some fraction of these escaped positrons seems probable.

  17. Diffuser for intravessels radiation based on plastic fiber

    NASA Astrophysics Data System (ADS)

    Pich, Justyna; Grobelny, Andrzej; Beres-Pawlik, Elzbieta

    2006-03-01

    Laser radiation is used in such contemporary medicine as: sport medicine, gynecology etc. Because of many radiations inside the system, there is a need of an element, which allows to supply the place of illness with energy. The dimensions of this element are often small and the one that meets these conditions is diffuser.

  18. Three-temperature plasma shock solutions with gray radiation diffusion

    NASA Astrophysics Data System (ADS)

    Johnson, B. M.; Klein, R. I.

    2016-04-01

    The effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation. Since the radiation heats the electrons on length scales that are much longer than the electron-ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.

  19. Three-temperature plasma shock solutions with gray radiation diffusion

    DOE PAGESBeta

    Johnson, Bryan M.; Klein, Richard I.

    2016-04-19

    Here we discuss the effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation.more » Since the radiation heats the electrons on length scales that are much longer than the electron–ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.« less

  20. Discrete diffusion Monte Carlo for frequency-dependent radiative transfer

    SciTech Connect

    Densmore, Jeffrey D; Kelly, Thompson G; Urbatish, Todd J

    2010-11-17

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.

  1. Radiation Diffusion: An Overview of Physical and Numerical Concepts

    SciTech Connect

    Graziani, F R

    2005-01-14

    An overview of the physical and mathematical foundations of radiation transport is given. Emphasis is placed on how the diffusion approximation and its transport corrections arise. An overview of the numerical handling of radiation diffusion coupled to matter is also given. Discussions center on partial temperature and grey methods with comments concerning fully implicit methods. In addition finite difference, finite element and Pert representations of the div-grad operator is also discussed

  2. Diffuse solar radiation and associated meteorological parameters in India

    NASA Astrophysics Data System (ADS)

    Bhattacharya, A. B.; Kar, S. K.; Bhattacharya, R.

    1996-10-01

    Solar diffuse radiation data including global radiation, shortwave and longwave balances, net radiation and sunshine hours have been extensively analyzed to study the variation of diffuse radiation with turbidity and cloud discharges appearing in the form of atmospherics over the tropics. Results of surface radiation measurements at Calcutta, Poona, Delhi and Madras are presented together with some meteorological parameters. The monthly values of diffuse radiation and the monthly ratios of diffuse to global solar radiation have been examined, with a special emphasis in relation to the noise level of atmospherics at Calcutta in the very low frequency band. The results exhibit some definite seasonal changes which appear to be in close agreement with one another. Acknowledgements. We gratefully appreciate the on-line DMSP database facility at APL (Newell et al., 1991) from which this study has benefited greatly. We wish to thank E. Friis-Christensen for his encouragement and useful discussions. A. Y. would like to thank the Danish Meteorological Institute, where this work was done, for its hospitality during his stay there and the Nordic Baltic Scholarship Scheme for its financial support of this stay. Topical Editor K.-H. Glassmeier thanks M. J. Engebretson and H. Lühr for their help in evaluating this paper.--> Correspondence to: A. Yahnin-->

  3. Radiative Extinction of Gaseous Spherical Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Santa, K. J.; Chao, B. H.; Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.

    2007-01-01

    Radiative extinction of spherical diffusion flames was investigated experimentally and numerically. The experiments involved microgravity spherical diffusion flames burning ethylene and propane at 0.98 bar. Both normal (fuel flowing into oxidizer) and inverse (oxidizer flowing into fuel) flames were studied, with nitrogen supplied to either the fuel or the oxygen. Flame conditions were chosen to ensure that the flames extinguished within the 2.2 s of available test time; thus extinction occurred during unsteady flame conditions. Diagnostics included color video and thin-filament pyrometry. The computations, which simulated flow from a porous sphere into a quiescent environment, included detailed chemistry, transport and radiation, and yielded transient results. Radiative extinction was observed experimentally and simulated numerically. Extinction time, peak temperature, and radiative loss fraction were found to be independent of flow rate except at very low flow rates. Radiative heat loss was dominated by the combustion products downstream of the flame and was found to scale with flame surface area, not volume. For large transient flames the heat release rate also scaled with surface area and thus the radiative loss fraction was largely independent of flow rate. Peak temperatures at extinction onset were about 1100 K, which is significantly lower than for kinetic extinction. One observation of this work is that while radiative heat losses can drive transient extinction, this is not because radiative losses are increasing with time (flame size) but rather because the heat release rate is falling off as the temperature drops.

  4. Stability of Stationary Solutions of the Multifrequency Radiation Diffusion Equations

    SciTech Connect

    Hald, O H; Shestakov, A I

    2004-01-20

    A nondimensional model of the multifrequency radiation diffusion equation is derived. A single material, ideal gas, equation of state is assumed. Opacities are proportional to the inverse of the cube of the frequency. Inclusion of stimulated emission implies a Wien spectrum for the radiation source function. It is shown that the solutions are uniformly bounded in time and that stationary solutions are stable. The spatially independent solutions are asymptotically stable, while the spatially dependent solutions of the linearized equations approach zero.

  5. The diffuse component of the cosmic X-radiation

    NASA Technical Reports Server (NTRS)

    Boldt, E. A.; Garmire, C.

    1978-01-01

    The A-2 experiment on HEAO-1 is specifically developed to study the diffuse radiation of the entire X-ray sky over a wide bandwidth, covering both the soft X-ray emission from nearby regions of the galaxy and the isotropic hard X-radiation indicative of remote extragalactic origins. A partial conclusion from the experiment is that a hot thermal plasma, on a scale comparable to that of the universe, may be the principal source of hard X-radiation characteristic of the extragalactic sky. Some key features of this background were defined.

  6. Theoretical and Numerical Investigation of Radiative Extinction of Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Ray, Anjan

    1996-01-01

    The influence of soot radiation on diffusion flames was investigated using both analytical and numerical techniques. Soot generated in diffusion flames dominate the flame radiation over gaseous combustion products and can significantly lower the temperature of the flame. In low gravity situations there can be significant accumulation of soot and combustion products in the vicinity of the primary reaction zone owing to the absence of any convective buoyant flow. Such situations may result in substantial suppression of chemical activities in a flame, and the possibility of a radiative extinction may also be anticipated. The purpose of this work was to not only investigate the possibility of radiative extinction of a diffusion flame but also to qualitatively and quantitatively analyze the influence of soot radiation on a diffusion flame. In this study, first a hypothetical radiative loss profile of the form of a sech(sup 2) was assumed to influence a pure diffusion flame. It was observed that the reaction zone can, under certain circumstances, move through the radiative loss zone and locate itself on the fuel side of the loss zone contrary to our initial postulate. On increasing the intensity and/or width of the loss zone it was possible to extinguish the flame, and extinction plots were generated. In the presence of a convective flow, however, the movement of the temperature and reaction rate peaks indicated that the flame behavior is more complicated compared to a pure diffusional flame. A comprehensive model of soot formation, oxidation and radiation was used in a more involved analysis. The soot model of Syed, Stewart and Moss was used for soot nucleation and growth and the model of Nagle and Strickland-Constable was used for soot oxidation. The soot radiation was considered in the optically thin limit. An analysis of the flame structure revealed that the radiative loss term is countered both by the reaction term and the diffusion term. The essential balance for

  7. Diffusion tensor imaging of the optic radiations after optic neuritis.

    PubMed

    Kolbe, Scott; Bajraszewski, Clare; Chapman, Caron; Nguyen, Tan; Mitchell, Peter; Paine, Mark; Butzkueven, Helmut; Johnston, Leigh; Kilpatrick, Trevor; Egan, Gary

    2012-09-01

    Trans-synaptic degeneration could exacerbate neurodegeneration in multiple sclerosis (MS). We aimed to assess whether anterograde trans-synaptic degeneration could be identified in the primary visual pathway in vivo. Diffusion tensor imaging (DTI) was used to assess the optic radiations in 15 patients with previous optic nerve inflammation and 9 healthy volunteers. A probabilistic atlas of the optic radiations was created from healthy diffusion tractography data. Lengthwise profiles for DTI parameters (axial [λ(||) ], radial [λ(⟂) ] and mean diffusivity [MD], fractional anisotropy [FA] and the angle of deviation of the principal eigenvector [α]) were analyzed for patients and controls. Patients also underwent multifocal visual evoked potential (mfVEP) assessments to characterize the latency and amplitude of cortical potentials. Correlations were performed between mfVEP latency and amplitude in the left and right visual hemi-fields and DTI parameters in the contra-lateral optic radiations. Patients displayed a significant decrease in λ(||) within the body of both optic radiations, which significantly correlated with loss of mfVEP amplitude. Abnormal λ(⟂) and FA were detected bilaterally throughout the optic radiations in patients but the abnormality was not associated with amplitude reduction or latency prolongation of the mfVEP. An abnormal α value was observed in the left optic radiations of patients, and the α value in the body of the optic radiations also correlated with mfVEP amplitude loss. The assocation between bilateral DTI abnormalities within the optic radiations and loss of afferent electrical activity could indicate anterograde trans-synaptic degeneration occurs following optic neuritis.

  8. Implicit solution of large-scale radiation diffusion problems

    SciTech Connect

    Brown, P N; Graziani, F; Otero, I; Woodward, C S

    2001-01-04

    In this paper, we present an efficient solution approach for fully implicit, large-scale, nonlinear radiation diffusion problems. The fully implicit approach is compared to a semi-implicit solution method. Accuracy and efficiency are shown to be better for the fully implicit method on both one- and three-dimensional problems with tabular opacities taken from the LEOS opacity library.

  9. Comparison of the Radiative Two-Flux and Diffusion Approximations

    NASA Technical Reports Server (NTRS)

    Spuckler, Charles M.

    2006-01-01

    Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and

  10. Fires increase Amazon forest productivity through increases in diffuse radiation

    NASA Astrophysics Data System (ADS)

    Rap, A.; Spracklen, D. V.; Mercado, L.; Reddington, C. L.; Haywood, J. M.; Ellis, R. J.; Phillips, O. L.; Artaxo, P.; Bonal, D.; Restrepo Coupe, N.; Butt, N.

    2015-06-01

    Atmospheric aerosol scatters solar radiation increasing the fraction of diffuse radiation and the efficiency of photosynthesis. We quantify the impacts of biomass burning aerosol (BBA) on diffuse radiation and plant photosynthesis across Amazonia during 1998-2007. Evaluation against observed aerosol optical depth allows us to provide lower and upper BBA emissions estimates. BBA increases Amazon basin annual mean diffuse radiation by 3.4-6.8% and net primary production (NPP) by 1.4-2.8%, with quoted ranges driven by uncertainty in BBA emissions. The enhancement of Amazon basin NPP by 78-156 Tg C a-1 is equivalent to 33-65% of the annual regional carbon emissions from biomass burning. This NPP increase occurs during the dry season and acts to counteract some of the observed effect of drought on tropical production. We estimate that 30-60 Tg C a-1 of this NPP enhancement is within woody tissue, accounting for 8-16% of the observed carbon sink across mature Amazonian forests.

  11. Radiation from Gas-Jet Diffusion Flames in Microgravity Environments

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Edelman, Raymond B.; Sotos, Raymond G.; Stocker, Dennis P.

    1991-01-01

    This paper presents the first demonstration of quantitative flame-radiation measurement in microgravity environments, with the objective of studying the influences and characteristics of radiative transfer on the behavior of gas-jet diffusion flames with possible application to spacecraft fire detection. Laminar diffusion flames of propane, burning in quiescent air at atmospheric pressure, are studied in the 5.18-Second Zero-Gravity Facility of NASA Lewis Research Center. Radiation from these flames is measured using a wide-view angle, thermopile-detector radiometer, and comparisons are made with normal-gravity flames. The results show that the radiation level is significantly higher in microgravity compared to normal-gravity environments due to larger flame size, enhanced soot formation, and entrapment of combustion products in the vicinity of the flame. These effects are the consequences of the removal of buoyancy which makes diffusion the dominant mechanism of transport. The results show that longer test times may be needed to reach steady state in microgravity environments.

  12. Pulsar and diffuse contributions to the observed galactic gamma radiation

    NASA Technical Reports Server (NTRS)

    Harding, A. K.; Stecker, F. W.

    1980-01-01

    With the acquisition of satellite data on the energy spectrum of galactic gamma-radiation, it is clear that such radiation has a multicomponent nature. A calculation of the pulsar gamma ray emission spectrum is used together with a statistical analysis of recent data on 328 known pulsars to make a new determination of the pulsar contribution to galactic gamma ray emission. The contributions from diffuse interstellar cosmic ray induced production mechanisms to the total emission are then reexamined. It is concluded that pulsars may account for a significant fraction of galactic gamma ray emission.

  13. Diffuse Radiation from the Aquila Rift

    NASA Astrophysics Data System (ADS)

    Jyothy, S. N.; Murthy, Jayant; Karuppath, Narayanankutty; Sujatha, N. V.

    2015-12-01

    We present an analysis of the diffuse ultraviolet (UV) background in a low latitude region near the Aquila Rift based on observations made by the Galaxy Evolution Explorer (GALEX). The UV background is at a level of about 2000 ph cm-2 s-1 sr-1 Å-1 with no correlation with either the Galactic latitude or the 100 μm infrared (IR) emission. Rather, the UV emission falls off with distance from the bright B2 star HIP 88149, which is in the centre of the field. We have used a Monte Carlo model to derive an albedo of 0.6-0.7 in the UV with a phase function asymmetry factor (g) of 0.2-0.4. The value for the albedo is dependent on the dust distribution while g is determined by the extent of the halo.

  14. Analytic expressions for ULF wave radiation belt radial diffusion coefficients

    PubMed Central

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K

    2014-01-01

    We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440

  15. An Exact Solution of the Linearized Multifrequency Radiation Diffusion Equation

    SciTech Connect

    Shestakov, A

    2002-02-01

    An exact solution, based on Fourier and Laplace (FL) transforms, is developed for a linearization of the system modeling the multifrequency radiation diffusion and matter energy balance equations. The model uses an ideal gas equation of state. Opacities are proportional to the inverse of the cube of the frequency, thereby simulating free-free transitions. The solution is obtained in terms of integrals over the FL coefficients of the initial conditions and explicit sources. Results are presented for two special cases. (1) No sources, initially cold radiation field, and a localized matter energy profile. (2) Initially cold matter and radiation fields and a source of matter energy extending over finite space and time intervals.

  16. The origin of the diffuse background gamma-radiation

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Puget, J. L.

    1974-01-01

    Recent observations have now provided evidence for diffuse background gamma radiation extending to energies beyond 100 MeV. There is some evidence of isotropy and implied cosmological origin. Significant features in the spectrum of this background radiation have been observed which provide evidence for its origin in nuclear processes in the early stages of the big-band cosmology and tie in these processes with galaxy fromation theory. A crucial test of the theory may lie in future observations of the background radiation in the 100 MeV to 100 GeV energy range which may be made with large orbiting spark-chamber satellite detectors. A discussion of the theoretical interpretations of present data, their connection with baryon symmetric cosmology and galaxy formation theory, and the need for future observations are given.

  17. The origin of the diffuse background gamma radiation

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Puget, J. L.

    1974-01-01

    Recent observations provided evidence for diffuse background gamma radiation extending to energies beyond 100 MeV, and evidence of isotropy and implied cosmological origin. Significant features in the spectrum of this background radiation were observed which provide evidence for its origin in nuclear processes in the early stages of big-bang cosmology, and connect these processes with the galaxy formation theory. A test of the theory is in future observations of the background radiation in the 100 MeK to 100 GeV energy range which are made with large orbiting spark-chamber satellite detectors. The theoretical interpretations of present data, their connection with baryon-symmetric cosmology and galaxy formation theory, and the need for future observations are discussed.

  18. THE MYSTERY OF THE COSMIC DIFFUSE ULTRAVIOLET BACKGROUND RADIATION

    SciTech Connect

    Henry, Richard Conn; Murthy, Jayant; Overduin, James; Tyler, Joshua E-mail: jmurthy@yahoo.com E-mail: 97tyler@cardinalmail.cua.edu

    2015-01-01

    The diffuse cosmic background radiation in the Galaxy Evolution Explorer far-ultraviolet (FUV, 1300-1700 Å) is deduced to originate only partially in the dust-scattered radiation of FUV-emitting stars: the source of a substantial fraction of the FUV background radiation remains a mystery. The radiation is remarkably uniform at both far northern and far southern Galactic latitudes and increases toward lower Galactic latitudes at all Galactic longitudes. We examine speculation that this might be due to interaction of the dark matter with the nuclei of the interstellar medium, but we are unable to point to a plausible mechanism for an effective interaction. We also explore the possibility that we are seeing radiation from bright FUV-emitting stars scattering from a ''second population'' of interstellar grains—grains that are small compared with FUV wavelengths. Such grains are known to exist, and they scatter with very high albedo, with an isotropic scattering pattern. However, comparison with the observed distribution (deduced from their 100 μm emission) of grains at high Galactic latitudes shows no correlation between the grains' location and the observed FUV emission. Our modeling of the FUV scattering by small grains also shows that there must be remarkably few such ''smaller'' grains at high Galactic latitudes, both north and south; this likely means simply that there is very little interstellar dust of any kind at the Galactic poles, in agreement with Perry and Johnston. We also review our limited knowledge of the cosmic diffuse background at ultraviolet wavelengths shortward of Lyα—it could be that our ''second component'' of the diffuse FUV background persists shortward of the Lyman limit and is the cause of the reionization of the universe.

  19. VOYAGER OBSERVATIONS OF THE DIFFUSE FAR-ULTRAVIOLET RADIATION FIELD

    SciTech Connect

    Murthy, Jayant; Henry, Richard Conn; Holberg, Jay B.

    2012-03-01

    The two Voyager spacecraft have completed their planetary exploration mission and are now probing the outer realms of the heliosphere. The Voyager ultraviolet spectrometers continued to operate well after the Voyager 2 Neptune encounter in 1989. We present a complete database of diffuse radiation observations made by both Voyagers: a total of 1943 spectra (500-1600 A) scattered throughout the sky. These include observations of dust-scattered starlight, emission lines from the hot interstellar medium, and a number of locations where no diffuse radiation was detected, with the very low upper limit of about 25 photons cm{sup -2} s{sup -1} sr{sup -1} A{sup -1}. Many of these observations were from late in the mission when there was significantly less contribution from interplanetary emission lines and thus less contamination of the interstellar signal.

  20. [Radiation diagnosis of diffuse lung diseases: Part I].

    PubMed

    Stashuk, G A; Dubrova, S E

    2005-01-01

    Based on the data on 150 patients with diffuse lung diseases, the authors present the X-ray and computed topographic semiotics of changes in lung tissue in a number of diseases from this group. The differential diagnosis of diffuse lung diseases has certain difficulties whose solution is association with the application of complex radiation studies (digital fluorography, classical X-ray study, X-ray computed tomography, and magnetic resonance imaging). These techniques not only assess the status of the parenchyma of the lung and the extent of a process, but also permit a follow-up monitoring and evaluation of the efficiency of the therapy performed.

  1. Modelling thermal radiation in buoyant turbulent diffusion flames

    NASA Astrophysics Data System (ADS)

    Consalvi, J. L.; Demarco, R.; Fuentes, A.

    2012-10-01

    This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.

  2. Understanding Coupling of Global and Diffuse Solar Radiation with Climatic Variability

    NASA Astrophysics Data System (ADS)

    Hamdan, Lubna

    Global solar radiation data is very important for wide variety of applications and scientific studies. However, this data is not readily available because of the cost of measuring equipment and the tedious maintenance and calibration requirements. Wide variety of models have been introduced by researchers to estimate and/or predict the global solar radiations and its components (direct and diffuse radiation) using other readily obtainable atmospheric parameters. The goal of this research is to understand the coupling of global and diffuse solar radiation with climatic variability, by investigating the relationships between these radiations and atmospheric parameters. For this purpose, we applied multilinear regression analysis on the data of National Solar Radiation Database 1991--2010 Update. The analysis showed that the main atmospheric parameters that affect the amount of global radiation received on earth's surface are cloud cover and relative humidity. Global radiation correlates negatively with both variables. Linear models are excellent approximations for the relationship between atmospheric parameters and global radiation. A linear model with the predictors total cloud cover, relative humidity, and extraterrestrial radiation is able to explain around 98% of the variability in global radiation. For diffuse radiation, the analysis showed that the main atmospheric parameters that affect the amount received on earth's surface are cloud cover and aerosol optical depth. Diffuse radiation correlates positively with both variables. Linear models are very good approximations for the relationship between atmospheric parameters and diffuse radiation. A linear model with the predictors total cloud cover, aerosol optical depth, and extraterrestrial radiation is able to explain around 91% of the variability in diffuse radiation. Prediction analysis showed that the linear models we fitted were able to predict diffuse radiation with efficiency of test adjusted R2 values

  3. A study of the diffuse galactic gamma radiation

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.

    1984-01-01

    The observed diffuse galactic gamma radiation is compared to that predicted from galactic cosmic ray interactions with galactic matter and photons, assuming that on a broad scale the galactic cosmic rays in the plane are correlated with matter density. Recent considerations of the galactic diffuse matter distribution, particularly the molecular hydrogen, the galactic photon density, and a revised cosmic ray galactic scale height, are included. The predictions are compared to the observational gamma ray longitude distributions, the latitude distribution, and energy spectrum, including the COS-B satellite results, and the COS-B background estimate. Considering the uncertainties, the agreement between the theoretical predictions and the gamma ray data seems generally reasonable, suggesting that the general concepts are likely to be correct. Both the results determined here alone and in conjunction with other work calculating source functions assuming only cosmic ray matter contributions indicate no necessity for a significant point source contribution to the diffuse gamma radiation in the energy range being considered (E(gamma)10 MeV). Previously announced in STAR as N84-18151

  4. A study of the diffuse galactic gamma radiation

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.

    1984-01-01

    The observed diffuse galactic gamma radiation is compared to that predicted from galactic cosmic ray interactions with galactic matter and photons, assuming that on a broad scale the galactic cosmic rays in the plane are correlated with matter density. Recent considerations of the galactic diffuse matter distribution, particularly the molecular hydrogen, the galactic photon density, and a revised cosmic ray galactic scale height, are included. The predictions are compared to the observational gamma ray longitude distributions, the latitude distribution, and energy spectrum, including the COS-B satellite results, and the COS-B background estimate. Considering the uncertainties, the agreement between the theoretical predictions and the gamma ray data seems generally reasonable, suggesting that the general concepts are likely to be correct. Both the results determined here alone and in conjunction with other work calculating source functions assuming only cosmic ray matter contributions indicate no necessity for a significant point source contribution to the diffuse gamma radiation in the energy range being considered (E(gamma)10 MeV).

  5. The Gamma-ray galactic diffuse radiation and Cerenkov telescopes

    SciTech Connect

    Chardonnet, P. |; Salati, P. ||; Silk, J.; Grenier, I.; Smoot, G.

    1995-12-01

    By using the PYTHIA version of the Lund Monte Carlo program, we study the photon yield of proton-proton collisions in the energy range between 10 GeV and 1 TeV. The resulting photon spectrum turns out to scale roughly with incident energy. Then, by folding the energy spectrum of cosmic-ray protons with the distribution of HI and CO, the Galactic diffuse emission of {gamma}-rays above 100 GeV is mapped. Prospects for observing that diffuse radiation with atmospheric Cerenkov telescopes are discussed. Present instruments are able to detect the {gamma}-ray glow of the Galactic center. The latter will be mapped by the next generation of telescopes if their energy threshold is decreased. However, a detailed survey of the Galactic ridge will be a real challenge, even in the long term. The MILAGRO project seems more appropriate. Finally, we investigate the {gamma}-ray emission from weakly interacting massive particles clustering at the Galactic center. It has been speculated that those species are a major component of the halo dark matter. We show that their {gamma}-ray signal is swamped in the Galactic diffuse radiation and cannot be observed at TeV energies. {copyright} {ital 1995 The American Astronomical Society.}

  6. Inward diffusion and loss of radiation belt protons

    NASA Astrophysics Data System (ADS)

    Selesnick, R. S.; Baker, D. N.; Jaynes, A. N.; Li, X.; Kanekal, S. G.; Hudson, M. K.; Kress, B. T.

    2016-03-01

    Radiation belt protons in the kinetic energy range 24 to 76 MeV are being measured by the Relativistic Electron Proton Telescope on each of the two Van Allen Probes. Data have been processed for the purpose of studying variability in the trapped proton intensity during October 2013 to August 2015. For the lower energies (≲32 MeV), equatorial proton intensity near L = 2 showed a steady increase that is consistent with inward diffusion of trapped solar protons, as shown by positive radial gradients in phase space density at fixed values of the first two adiabatic invariants. It is postulated that these protons were trapped with enhanced efficiency during the 7 March 2012 solar proton event. A model that includes radial diffusion, along with known trapped proton source and loss processes, shows that the observed average rate of increase near L = 2 is predicted by the same model diffusion coefficient that is required to form the entire proton radiation belt, down to low L, over an extended (˜103 year) interval. A slower intensity decrease for lower energies near L = 1.5 may also be caused by inward diffusion, though it is faster than predicted by the model. Higher-energy (≳40 MeV) protons near the L = 1.5 intensity maximum are from cosmic ray albedo neutron decay. Their observed intensity is lower than expected by a factor ˜2, but the discrepancy is resolved by adding an unspecified loss process to the model with a mean lifetime ˜120 years.

  7. Soot and Radiation Measurements in Microgravity Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.

    1996-01-01

    The subject of soot formation and radiation heat transfer in microgravity jet diffusion flames is important not only for the understanding of fundamental transport processes involved but also for providing findings relevant to spacecraft fire safety and soot emissions and radiant heat loads of combustors used in air-breathing propulsion systems. Our objectives are to measure and model soot volume fraction, temperature, and radiative heat fluxes in microgravity jet diffusion flames. For this four-year project, we have successfully completed three tasks, which have resulted in new research methodologies and original results. First is the implementation of a thermophoretic soot sampling technique for measuring particle size and aggregate morphology in drop-tower and other reduced gravity experiments. In those laminar flames studied, we found that microgravity soot aggregates typically consist of more primary particles and primary particles are larger in size than those under normal gravity. Comparisons based on data obtained from limited samples show that the soot aggregate's fractal dimension varies within +/- 20% of its typical value of 1.75, with no clear trends between normal and reduced gravity conditions. Second is the development and implementation of a new imaging absorption technique. By properly expanding and spatially-filtering the laser beam to image the flame absorption on a CCD camera and applying numerical smoothing procedures, this technique is capable of measuring instantaneous full-field soot volume fractions. Results from this technique have shown the significant differences in local soot volume fraction, smoking point, and flame shape between normal and reduced gravity flames. We observed that some laminar flames become open-tipped and smoking under microgravity. The third task we completed is the development of a computer program which integrates and couples flame structure, soot formation, and flame radiation analyses together. We found good

  8. 'Averaged' Diffusion of Radiation in Spectral Lines intra Interjacent Plasma-Gas Layer

    SciTech Connect

    Demura, A. V.; Demchenko, G. V.

    2008-10-22

    The approximate model of 'averaged diffusion' for resonance radiation transfer is introduced. It allows to reduce computational efforts preserving satisfactory accuracy while modeling divertor plasmas.

  9. Newton-Krylov methods applied to nonequilibrium radiation diffusion

    SciTech Connect

    Knoll, D.A.; Rider, W.J.; Olsen, G.L.

    1998-03-10

    The authors present results of applying a matrix-free Newton-Krylov method to a nonequilibrium radiation diffusion problem. Here, there is no use of operator splitting, and Newton`s method is used to convert the nonlinearities within a time step. Since the nonlinear residual is formed, it is used to monitor convergence. It is demonstrated that a simple Picard-based linearization produces a sufficient preconditioning matrix for the Krylov method, thus elevating the need to form or store a Jacobian matrix for Newton`s method. They discuss the possibility that the Newton-Krylov approach may allow larger time steps, without loss of accuracy, as compared to an operator split approach where nonlinearities are not converged within a time step.

  10. Separating the effects of phenology and diffuse radiation on gross primary productivity in winter wheat

    NASA Astrophysics Data System (ADS)

    Williams, Ian N.; Riley, William J.; Kueppers, Lara M.; Biraud, Sebastien C.; Torn, Margaret S.

    2016-07-01

    Gross primary productivity (GPP) has been reported to increase with the fraction of diffuse solar radiation, for a given total irradiance. The correlation between GPP and diffuse radiation suggests effects of diffuse radiation on canopy light-use efficiency, but potentially confounding effects of vegetation phenology have not been fully explored. We applied several approaches to control for phenology, using 8 years of eddy-covariance measurements of winter wheat in the U.S. Southern Great Plains. The apparent enhancement of daily GPP due to diffuse radiation was reduced from 260% to 75%, after subsampling over the peak growing season or by subtracting a 15 day moving average of GPP, suggesting a role of phenology. The diffuse radiation effect was further reduced to 22% after normalizing GPP by a spectral reflectance index to account for phenological variations in leaf area index LAI and canopy photosynthetic capacity. Canopy photosynthetic capacity covaries with diffuse fraction at a given solar irradiance at this site because both factors are dependent on day of year or solar zenith angle. Using a two-leaf Sun-shaded canopy radiative transfer model, we confirmed that the effects of phenological variations in photosynthetic capacity can appear qualitatively similar to the effects of diffuse radiation on GPP and therefore can be difficult to distinguish using observations. The importance of controlling for phenology when inferring diffuse radiation effects on GPP raises new challenges and opportunities for using radiation measurements to improve carbon cycle models.

  11. Influence of Diffused Solar Radiation on the Solar Concentrating System of a Plant Shoot Configuration

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya

    Investigation of a plant shoot configuration is used to obtain valuable information concerning the received light system. Additionally, analysis results concerning a plant shoot configuration interaction with direct solar radiation were taken from a past study. However, in order to consider a plant shoot as a received sunlight system, it is necessary to understand the received light characteristics of both direct solar radiation and diffused solar radiation. Under a clear sky, the ratio of direct solar radiation to diffused solar radiation is large. However, under a clouded sky, the amount of diffused solar radiation becomes larger. Therefore, in this paper, we investigate the received light characteristics of a plant shoot configuration under the influence of diffused solar radiation. As a result, we clarify the relationship between the amount of diffused solar radiation and the amount of received light as a function of the characteristics of the plant shoot configuration. In order to obtain diffused solar radiation, it is necessary to correspond to the radiation of the multi-directions. In the analysis, the characteristic of the difference in arrangement of the top leaf and the other leaf was obtained. Therefore, in analysis, leaves other than the top were distributed in the wide range.

  12. [Simulation and validation of diffuse radiation in Qianyanzhou area, Jiangxi, China].

    PubMed

    Han Jia-yin; Li, Sheng-gong; Zhang, Lei-ming; Wen, Xue-fa; Li, Qing-kang; Wang, Hui-min

    2015-10-01

    Accurate estimation of diffuse radiation is of great significance for evaluating its effect on terrestrial ecosystem carbon exchange. Based on the observed diffuse radiation data in the meteorological observation field in mid-subtropical Qianyanzhou, Jiangxi, China from March 1, 2012 to February 28, 2013, the simulated results of five widely used diffuse radiation decomposition models (Reindl-1, Reindl-2, Reindl-3, Boland, BRL) were validated. The results indicated that, on the 30 min scale, all of the five models could well simulate the diffuse radiation of this area overall. But the effect of models decreased significantly with the rising of clearness index (kt). Especially when kt>0.75, each model was.unable to simulate diffuse radiation in the region. Regarding the simulation of seasonal change of diffuse radiation, the five models could simulate diffuse radiation well in most months. Relative deviation between simulated and observed values of yearly diffuse radiation of five models had a maximum of 7.1% (BRL), a minimum of 0.04% (Reindl-1), and an average of 3.6%. The simulated values of the five models appeared to be overestimated in the summer when radiation was strongest, temperature was highest, and precipitation was relatively low. For example, in July, the diffuse radiation was overestimated by 14.5%-28.2%, 21.2% on average. This was primarily due to the. method of estimating diffuse radiation under the condition of high kt. The uncertainty requires further evaluation in the model application. Considering the results of validation, simulation precision and the accessibility of input variables, the order of the simulation performance of five models was BRL>Reindl-3>Reindl-2>Reindl-1 >Boland. PMID:26995906

  13. Step-by-Step Simulation of Radiation of Radiation Chemistry Using Green Functions for Diffusion-Influenced Reactions

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2011-01-01

    The irradiation of biological systems leads to the formation of radiolytic species such as H(raised dot), (raised dot)OH, H2, H2O2, e(sup -)(sub aq), etc.[1]. These species react with neighboring molecules, which result in damage in biological molecules such as DNA. Radiation chemistry is there for every important to understand the radiobiological consequences of radiation[2]. In this work, we discuss an approach based on the exact Green Functions for diffusion-influenced reactions which may be used to simulate radiation chemistry and eventually extended to study more complex systems, including DNA.

  14. Resonant electron diffusion as a saturation process of the synchrotron maser instability. [of auroral kilometric radiation

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Kuo, S. P.

    1986-01-01

    The theory of resonant electron diffusion as an effective saturation process of the auroral kilometric radiation has been formulated. The auroral kilometric radiation is assumed to be amplified by the synchrotron maser instability that is driven by an electron distribution of the loss-cone type. The calculated intensity of the saturated radiation is found to have a significantly lower value in comparison with that caused by the quasi-linear diffusion process as an alternative saturation process. This indicates that resonant electron diffusion dominates over quasi-linear diffusion in saturating the synchrotron maser instability.

  15. Increased diffuse radiation fraction does not significantly accelerate plant growth

    NASA Astrophysics Data System (ADS)

    Angert, Alon; Krakauer, Nir

    2010-05-01

    A recent modelling study (Mercado et al., 2009) claims that increased numbers of scattering aerosols are responsible for a substantial fraction of the terrestrial carbon sink in recent decades because higher diffuse light fraction enhances plant net primary production (NPP). Here we show that observations of atmospheric CO2 seasonal cycle and tree ring data indicate that the relation between diffuse light and NPP is actually quite weak on annual timescales. The inconsistency of these data with the modelling results may arise because the relationships used to quantify the enhancement of NPP were calibrated with eddy covariance measurements of hourly carbon uptake. The effect of diffuse-light fraction on carbon uptake could depend on timescale, since this effect varies rapidly as sun angle and cloudiness change, and since plants can respond dynamically over various timescales to change in incoming radiation. Volcanic eruptions, such as the eruption of Mount Pinatubo in 1991, provide the best available tests for the effect of an annual-scale increase in the diffuse light fraction. Following the Pinatubo Eruption, in 1992 and 1993, a sharp decrease in the atmospheric CO2 growth rate was observed. This could have resulted from enhanced plant carbon uptake. Mercado et al. (2009) argue that largely as a result of the (volcanic aerosol driven) increase in diffuse light fraction, NPP was elevated in 1992, particularly between 25° N-45° N where annual NPP was modelled to be ~0.8 PgC (~10%) above average. In a previous study (Angert et al., 2004) a biogeochemical model (CASA) linked to an atmospheric tracer model (MATCH), was used to show that a diffuse-radiation driven increase in NPP in the extratropics will enhance carbon uptake mostly in summer, leading to a lower CO2 seasonal minimum. Here we use a 'toy model' to show that this conclusion is general and model-independent. The model shows that an enhanced sink of 0.8 PgC, similar to that modelled by Mercado et al. (2009

  16. Effects of Refractive Index and Diffuse or Specular Boundaries on a Radiating Isothermal Layer

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1994-01-01

    Equilibrium temperatures of an absorbing-emitting layer were obtained for exposure to incident radiation and with the layer boundaries either specular or diffuse. For high refractive indices the surface condition can influence the radiative heat balance if the layer optical thickness is small. Hence for a spectrally varying absorption coefficient the layer temperature is affected if there is significant radiative energy in the spectral range with a small absorption coefficient. Similar behavior was obtained for transient radiative cooling of a layer where the results are affected by the initial temperature and hence the fraction of energy radiated in the short wavelength region where the absorption coefficient is small. The results are a layer without internal scattering. If internal scattering is significant, the radiation reaching the internal surface of a boundary is diffused and the effect of the two different surface conditions would become small.

  17. Detailed modeling analysis for soot formation and radiation in microgravity gas jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Tong, LI; Greenberg, Paul S.

    1995-01-01

    Radiation heat transfer in combustion systems has been receiving increasing interest. In the case of hydrocarbon fuels, a significant portion of the radiation comes from soot particles, justifying the need for detailed soot formation model and radiation transfer calculations. For laminar gas jet diffusion flames, results from this project (4/1/91 8/22/95) and another NASA study show that flame shape, soot concentration, and radiation heat fluxes are substantially different under microgravity conditions. Our emphasis is on including detailed soot transport models and a detailed solution for radiation heat transfer, and on coupling them with the flame structure calculations. In this paper, we will discuss the following three specific areas: (1) Comparing two existing soot formation models, and identifying possible improvements; (2) A simple yet reasonably accurate approach to calculating total radiative properties and/or fluxes over the spectral range; and (3) Investigating the convergence of iterations between the flame structure solver and the radiation heat transfer solver.

  18. Soot formation and radiation in turbulent jet diffusion flames under normal and reduced gravity conditions

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Tong, LI; Sun, Jun; Greenberg, Paul S.; Griffin, Devon W.

    1993-01-01

    Most practical combustion processes, as well as fires and explosions, exhibit some characteristics of turbulent diffusion flames. For hydrocarbon fuels, the presence of soot particles significantly increases the level of radiative heat transfer from flames. In some cases, flame radiation can reach up to 75 percent of the heat release by combustion. Laminar diffusion flame results show that radiation becomes stronger under reduced gravity conditions. Therefore, detailed soot formation and radiation must be included in the flame structure analysis. A study of sooting turbulent diffusion flames under reduced-gravity conditions will not only provide necessary information for such practical issues as spacecraft fire safety, but also develop better understanding of fundamentals for diffusion combustion. In this paper, a summary of the work to date and of future plans is reported.

  19. Data From HANE-Generated Radiation Belts and the Origin of Diffusion Theory

    SciTech Connect

    Winske, Dan

    2012-07-16

    In this presentation we briefly review some of the published data regarding the artificial radiation belts produced by the Starfish and R2 high altitude nuclear explosions in 1962. The data showed slow temporal variations of the belts in altitude (L) and pitch angle ({alpha}) that could be modeled as a diffusion process. That early work formed the basis for more complex radiation belt diffusion models that are in use at present.

  20. Radiation enhanced diffusion of cesium, strontium, and europium in silicon carbide

    NASA Astrophysics Data System (ADS)

    Dwaraknath, S. S.; Was, G. S.

    2016-06-01

    The radiation enhanced diffusion (RED) of three key fission products in SiC: cesium, europium, and strontium was investigated following ion irradiation at a damage rate of 4.6 × 10-4 dpa s-1 at temperatures between 900° C and 1100° C. The radiation enhancement of diffusion was as large as 107 at 900° C, and dropped to a value of 1 by 1300° C for all but cesium grain boundary diffusion. Strontium and cesium exhibited several orders of magnitude enhancement for both mechanisms. Europium enhancement was greatest at 900° C, but dropped to the thermal rates at 1100° C for both mechanisms. The trends in the RED mechanism correlated well with the point defect concentrations suggesting that both carbon and silicon vacancy concentrations are important for fission product diffusion. These constitute the first radiation-enhanced diffusion measurements of strontium, cesium and europium in SiC.

  1. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    PubMed Central

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q.-G.; Zhou, X.-Z.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y.-X.; Gao, Zhonglei; He, Zhaoguo; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Wygant, J. R.

    2015-01-01

    Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons. PMID:26690250

  2. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons.

    PubMed

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q-G; Zhou, X-Z; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y-X; Gao, Zhonglei; He, Zhaoguo; Baker, D N; Spence, H E; Reeves, G D; Blake, J B; Wygant, J R

    2015-01-01

    Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons. PMID:26690250

  3. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    SciTech Connect

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q. -G.; Zhou, X. -Z.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y. -X.; Gao, Zhonglei; He, Zhaoguo; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Wygant, J. R.

    2015-12-22

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.

  4. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE PAGESBeta

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q. -G.; Zhou, X. -Z.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y. -X.; Gao, Zhonglei; et al

    2015-12-22

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  5. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons.

    PubMed

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q-G; Zhou, X-Z; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y-X; Gao, Zhonglei; He, Zhaoguo; Baker, D N; Spence, H E; Reeves, G D; Blake, J B; Wygant, J R

    2015-01-01

    Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.

  6. Diffuse radiation increases global ecosystem-level water-use efficiency

    NASA Astrophysics Data System (ADS)

    Moffat, A. M.; Reichstein, M.; Cescatti, A.; Knohl, A.; Zaehle, S.

    2012-12-01

    Current environmental changes lead not only to rising atmospheric CO2 levels and air temperature but also to changes in air pollution and thus the light quality of the solar radiation reaching the land-surface. While rising CO2 levels are thought to enhance photosynthesis and closure of stomata, thus leading to relative water savings, the effect of diffuse radiation on transpiration by plants is less clear. It has been speculated that the stimulation of photosynthesis by increased levels of diffuse light may be counteracted by higher transpiration and consequently water depletion and drought stress. Ultimately, in water co-limited systems, the overall effect of diffuse radiation will depend on the sensitivity of canopy transpiration versus photosynthesis to diffuse light, i.e. whether water-use efficiency changes with relative levels of diffuse light. Our study shows that water-use efficiency increases significantly with higher fractions of diffuse light. It uses the ecosystem-atmosphere gas-exchange observations obtained with the eddy covariance method at 29 flux tower sites. In contrast to previous global studies, the analysis is based directly on measurements of diffuse radiation. Its effect on water-use efficiency was derived by analyzing the multivariate response of carbon and water fluxes to radiation and air humidity using a purely empirical approach based on artificial neural networks. We infer that per unit change of diffuse fraction the water-use efficiency increases up to 40% depending on diffuse fraction levels and ecosystem type. Hence, in regions with increasing diffuse radiation positive effects on primary production are expected even under conditions where water is co-limiting productivity.

  7. A multigrid Newton-Krylov method for flux-limited radiation diffusion

    SciTech Connect

    Rider, W.J.; Knoll, D.A.; Olson, G.L.

    1998-09-01

    The authors focus on the integration of radiation diffusion including flux-limited diffusion coefficients. The nonlinear integration is accomplished with a Newton-Krylov method preconditioned with a multigrid Picard linearization of the governing equations. They investigate the efficiency of the linear and nonlinear iterative techniques.

  8. Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis

    PubMed Central

    van der Walt, Anneke; Butzkueven, Helmut; Klistorner, Alexander; Egan, Gary F.; Kilpatrick, Trevor J.

    2016-01-01

    Previous studies have reported diffusion tensor imaging (DTI) changes within the optic radiations of patients after optic neuritis (ON). We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1). We measured DTI parameters [fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of −2.6% per annum (control = −0.51%; p = 0.006). Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R = 0.450, p = 0.006; RD: R = −0.428, p = 0.009; MD: R = −0.365, p = 0.029). In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R = 0.489, p = 0.039). In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage. PMID:27555964

  9. Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis.

    PubMed

    Kolbe, Scott C; van der Walt, Anneke; Butzkueven, Helmut; Klistorner, Alexander; Egan, Gary F; Kilpatrick, Trevor J

    2016-01-01

    Previous studies have reported diffusion tensor imaging (DTI) changes within the optic radiations of patients after optic neuritis (ON). We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1). We measured DTI parameters [fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of -2.6% per annum (control = -0.51%; p = 0.006). Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R = 0.450, p = 0.006; RD: R = -0.428, p = 0.009; MD: R = -0.365, p = 0.029). In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R = 0.489, p = 0.039). In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage.

  10. Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis.

    PubMed

    Kolbe, Scott C; van der Walt, Anneke; Butzkueven, Helmut; Klistorner, Alexander; Egan, Gary F; Kilpatrick, Trevor J

    2016-01-01

    Previous studies have reported diffusion tensor imaging (DTI) changes within the optic radiations of patients after optic neuritis (ON). We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1). We measured DTI parameters [fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of -2.6% per annum (control = -0.51%; p = 0.006). Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R = 0.450, p = 0.006; RD: R = -0.428, p = 0.009; MD: R = -0.365, p = 0.029). In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R = 0.489, p = 0.039). In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage. PMID:27555964

  11. Disentangling leaf area and environmental effects on the response of the net ecosystem CO2 exchange to diffuse radiation.

    PubMed

    Wohlfahrt, Georg; Hammerle, Albin; Haslwanter, Alois; Bahn, Michael; Tappeiner, Ulrike; Cernusca, Alexander

    2008-08-01

    There is an ongoing discussion about why the net ecosystem CO2 exchange (NEE) of some ecosystems is less sensitive to diffuse radiation than others and about the role other environmental factors play in determining the response of NEE to diffuse radiation. Using a six-year data set from a temperate mountain grassland in Austria we show that differences between ecosystems may be reconciled based on their green area index (GAI; square meter green plant area per square meter ground area) - the sensitivity to diffuse radiation increasing with GAI. Our data suggest diffuse radiation to have a negligible influence on NEE below a GAI of 2 m(2) m(-2). Changes in air/soil temperature and air humidity concurrent with the fraction of diffuse radiation were found to amplify the sensitivity of the investigated temperate mountain grassland ecosystem to diffuse radiation.

  12. A study of the diffuse galactic gamma radiation

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.

    1982-01-01

    Assuming cosmic rays pervade the Galaxy, they necessarily produced high energy gamma-rays as they interact with the instellar matter and photons. The cosmic ray nucleon interactions five rise to gamma rays primarily through the decay of pi mesons, giving a unique spectrum with a maximum at approximately 68 MeV. Cosmic ray electrons produce gamma rays through bremsstrahlung, but with a markedly different energy spectral shape, one which decreases monotonically with energy. Cosmic ray electrons also interact with the interstellar starlight, optical and infrared photons, and the blackbody radiation through the Compton process. A model of galactic gamma ray production is discussed, and the predicted spatial distribution and energy spectra are presented. Considering the uncertainty in the point source contributions, the agreement between the theoretical predictions and the gamma ray data seems quite reasonable.

  13. Diffusion and radiation in magnetized collisionless plasmas with small-scale Whistler turbulence

    NASA Astrophysics Data System (ADS)

    Keenan, Brett D.; Medvedev, Mikhail V.

    2016-04-01

    > Magnetized high-energy-density plasmas can often have strong electromagnetic fluctuations whose correlation scale is smaller than the electron Larmor radius. Radiation from the electrons in such plasmas - which markedly differs from both synchrotron and cyclotron radiation - is tightly related to their energy and pitch-angle diffusion. In this paper, we present a comprehensive theoretical and numerical study of particle transport in cold, `small-scale' Whistler-mode turbulence and its relation to the spectra of radiation simultaneously produced by these particles. We emphasize that this relation is a superb diagnostic tool of laboratory, astrophysical, interplanetary and solar plasmas with a mean magnetic field and strong small-scale turbulence.

  14. Measurements of soot production and thermal radiation from confined turbulent jet diffusion flames of methane

    SciTech Connect

    Brookes, S.J.; Moss, J.B.

    1999-01-01

    Turbulent methane/air jet diffusion flames at atmospheric and elevated pressure have been studied experimentally to provide data for coupled thermal radiation and soot production model development and validation. Although methane is only lightly sooting at atmospheric pressure, at elevated pressure the soot yield increases greatly. This allows the creation of a highly radiating flame, of moderate optical depth, within a laboratory scale rig. Spatially resolved flame properties needed for model validation have been measured at 1 and 3 atm. These measurements include detailed maps of mean mixture fraction, mean temperature, mean soot volume fraction, and mean and instantaneous spectrally resolved, path integrated radiation intensity.

  15. Radiative diffusivity factors in cirrus and stratocumulus clouds: Application to two-stream models

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Flatau, P. J.; Tsay, S.-C.; Hein, Paul F.

    1990-01-01

    A diffusion-like description of radiative transfer in clouds and the free atmosphere is often used. The two stream model is probably the best known example of such a description. The main idea behind the approach is that only the first few moments of radiance are needed to describe the radiative field correctly. Integration smooths details of the angular distribution of specific intensity and it is assumed that the closure parameters of the theory (diffusivity factors) are only weakly dependent on the distribution. The diffusivity factors are investigated using the results obtained from both Stratocumulus and Cirrus phases of FIRE experiment. A new theoretical framework is described in which two (upwards and downwards) diffusivity factors are used and a detailed multistream model is used to provide further insight about both the diffusivity factors and their dependence on scattering properties of clouds.

  16. Implicit Solution of Non-Equilibrium Radiation Diffusion Including Reactive Heating Source in Material Energy Equation

    SciTech Connect

    Shumaker, D E; Woodward, C S

    2005-05-03

    In this paper, the authors investigate performance of a fully implicit formulation and solution method of a diffusion-reaction system modeling radiation diffusion with material energy transfer and a fusion fuel source. In certain parameter regimes this system can lead to a rapid conversion of potential energy into material energy. Accuracy in time integration is essential for a good solution since a major fraction of the fuel can be depleted in a very short time. Such systems arise in a number of application areas including evolution of a star and inertial confinement fusion. Previous work has addressed implicit solution of radiation diffusion problems. Recently Shadid and coauthors have looked at implicit and semi-implicit solution of reaction-diffusion systems. In general they have found that fully implicit is the most accurate method for difficult coupled nonlinear equations. In previous work, they have demonstrated that a method of lines approach coupled with a BDF time integrator and a Newton-Krylov nonlinear solver could efficiently and accurately solve a large-scale, implicit radiation diffusion problem. In this paper, they extend that work to include an additional heating term in the material energy equation and an equation to model the evolution of the reactive fuel density. This system now consists of three coupled equations for radiation energy, material energy, and fuel density. The radiation energy equation includes diffusion and energy exchange with material energy. The material energy equation includes reaction heating and exchange with radiation energy, and the fuel density equation includes its depletion due to the fuel consumption.

  17. Comparative radiation resistance, temperature dependence and performance of diffused junction indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Ghandhi, S. K.; Borrego, J. M.

    1987-01-01

    Indium phosphide solar cells whose p-n junctions were processed by the open tube capped diffusion and by the closed tube uncapped diffusion of sulfur into Czochralski-grown p-type substrates are compared. Differences found in radiation resistance were attributed to the effects of increased base dopant concentration. Both sets of cells showed superior radiation resistance to that of gallium arsenide cells, in agreement with previous results. No correlation was, however, found between the open-circuit voltage and the temperature dependence of the maximum power.

  18. Building global and diffuse solar radiation series and assessing decadal trends in Girona (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Calbó, Josep; González, Josep-Abel; Sanchez-Lorenzo, Arturo

    2016-05-01

    Measurement of solar radiation was initiated in Girona, northeast of the Iberian Peninsula, in the late 1980s. Initially, two pyranometers were installed, one of them equipped with a shadowband for measuring the diffuse component. Two other pyranometers currently exist, both ventilated and one of them shadowed, with a sphere, and a pyrheliometer for measuring direct radiation. Additional instruments for other shortwave and longwave components, clouds, and atmospheric aerosols have been installed in recent years. The station is subject to daily inspection, data are saved at high temporal resolution, and instruments are periodically calibrated, all in accordance with the directions of the Baseline Surface Radiation Network. The present paper describes how the entire series of global solar radiation (1987-2014) and diffuse radiation (1994-2014) were built, including the quality control process. Appropriate corrections to the diffuse component were made when a shadowband was employed to make measurements. Analysis of the series reveals that annual mean global irradiance presents a statistically significant increase of 2.5 W m-2 (1.4 %) decade-1 (1988-2014 period), mainly due to what occurs in summer (5.6 W m-2 decade-1). These results constitute the first assessment of solar radiation trends for the northeastern region of the Iberian Peninsula and are consistent with trends observed in the regional surroundings and also by satellite platforms, in agreement with the global brightening phenomenon. Diffuse radiation has decreased at -1.3 W m-2 (-2 %) decade-1 (1994-2014 period), which is a further indication of the reduced cloudiness and/or aerosol load causing the changes.

  19. Radiation enteritis

    MedlinePlus

    Radiation enteropathy; Radiation-induced small bowel injury; Post-radiation enteritis ... Radiation therapy uses high-powered x-rays, particles, or radioactive seeds to kill cancer cells. The therapy ...

  20. Process of defect formation and diffusion in metals induced by laser radiation

    NASA Astrophysics Data System (ADS)

    Zvonkov, Alexander D.; Boranbaeva, H. M.

    1990-10-01

    There have been conducted researches for the presence of defects in specimens of repined carbonyl iron after the treatment by continuous radiation of C02-laser under subcritical conditions. High degree of presence of the defects is characterized by appearance of cellular dislocation structure and by considerable oversaturation of vacancies. There have been also investigated the conditions of realization of an accelerated diffusion of boron in iron and steels in treating by continuous radiation of CD2-- laser. It was revealed that the boron redistribution from the previously created layer of borides on the metal surface is accomplished in steels to the depthes of up to 3 mm. The accelerated oxygen diffusion stimulated by the laser radiation has been investigated on the basis of the obtained results of the process of internal oxidation of alloy Cu-Sn (0. 55 at 7. ). There has been proposed the model of process of accelerated transport. 2. FORMATION OF DEFECTS IN CARBONYL IRON UNDER CONTINUOUS LASER RADIATION The investigation of the defect formation under the continuous laser radiation 10. 6 sam) was conducted with the specimens (4x0. 8x80) mm of carbonyl iron 0. 008 C 0. 047 Mn Al + Si + S) refined in hydrogen atmosphere. The laser treatment was accomplished without flashing the metal surface. Treatment characteristics: radiation power P (0. 25-1. 1 kV. Specimen displacement speed under the laser beam V (10-2. 5) mm/s

  1. A scheme for radiation pressure and photon diffusion with the M1 closure in RAMSES-RT

    NASA Astrophysics Data System (ADS)

    Rosdahl, J.; Teyssier, R.

    2015-06-01

    We describe and test an updated version of radiation-hydrodynamics in the RAMSES code, that includes three new features: (i) radiation pressure on gas, (ii) accurate treatment of radiation diffusion in an unresolved optically thick medium, and (iii) relativistic corrections that account for Doppler effects and work done by the radiation to first order in v/c. We validate the implementation in a series of tests, which include a morphological assessment of the M1 closure for the Eddington tensor in an astronomically relevant setting, dust absorption in an optically semithick medium, direct pressure on gas from ionizing radiation, convergence of our radiation diffusion scheme towards resolved optical depths, correct diffusion of a radiation flash and a constant luminosity radiation, and finally, an experiment from Davis et al. of the competition between gravity and radiation pressure in a dusty atmosphere, and the formation of radiative Rayleigh-Taylor instabilities. With the new features, RAMSES-RT can be used for state-of-the-art simulations of radiation feedback from first principles, on galactic and cosmological scales, including not only direct radiation pressure from ionizing photons, but also indirect pressure via dust from multiscattered IR photons reprocessed from higher-energy radiation, both in the optically thin and thick limits.

  2. An Experimental and Theoretical Study of Radiative Extinction of Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind

    1995-01-01

    The objective of this research was to experimentally and theoretically investigate the radiation-induced extinction of gaseous diffusion flames in microgravity. The microgravity conditions were required because radiation-induced extinction is generally not possible in 1-g but is highly likely in microgravity. In 1-g, the flame-generated particulates (e.g. soot) and gaseous combustion products that are responsible for flame radiation, are swept away from the high temperature reaction zone by the buoyancy-induced flow and a steady state is developed. In microgravity, however, the absence of buoyancy-induced flow which transports the fuel and the oxidizer to the combustion zone and removes the hot combustion products from it enhances the flame radiation due to: (1) transient build-up of the combustion products in the flame zone which increases the gas radiation, and (2) longer residence time makes conditions appropriate for substantial amounts of soot to form which is usually responsible for most of the radiative heat loss. Numerical calculations conducted during the course of this work show that even non-radiative flames continue to become "weaker" (diminished burning rate per unit flame area) due to reduced rates of convective and diffusive transport. Thus, it was anticipated that radiative heat loss may eventually extinguish the already "weak" microgravity diffusion flame. While this hypothesis appears convincing and our numerical calculations support it, experiments for a long enough microgravity time could not be conducted during the course of this research to provide an experimental proof. Space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in microgravity will burn indefinitely. It was hoped that radiative extinction can be experimentally shown by the aerodynamically stabilized gaseous diffusion flames where the fuel supply rate was externally controlled. While substantial progress toward this

  3. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    SciTech Connect

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Solomakhin, V B

    2012-04-30

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the {approx}10{sup 3} - 5 Multiplication-Sign 10{sup 4} W cm{sup -2} range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.

  4. Secondary production of neutral pi-mesons and the diffuse galactic gamma radiation

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.

    1986-01-01

    Isobaric and scaling model predictions of the secondary spectra of neutral pi-mesons produced in proton-proton collisions, at energies between threshold and a few GeV, are compared on the basis of accelerator data and found to show the isobaric model to be superior. This model is accordingly used, in conjuction with a scaling model representation at high energies, in a recalculation of the pi exp (0) gamma-radiation's contribution to the diffuse galactic gamma background; the cosmic ray-induced production of photons (whose energy exceeds 100 MeV) by such radiation occurs at a rate of 1.53 x 10 to the -25 photons/(s-H atom). These results are compared with previous calculations of this process as well as with COS-B observations of the diffuse galactic gamma-radiation.

  5. An anisotropic model of diffuse solar radiation with application to an optimization of compound parabolic collectors

    NASA Astrophysics Data System (ADS)

    Perez, R. R.

    Based on a simple geometrical description of the sky hemisphere and the magnitude of the horizontal diffuse radiation, a model for estimating diffuse radiation impinging on sloping surfaces was developed. Tests against data show that substantial improvement is achieved over the classical isotropic model for any collector slope or orientation. Improvement is found for instantaneous as well as accumulated data. The application of the model to compound parabolic collectors (CPC) accounts partly for the role played by forward scattered radiation in the total energy they receive. An optimization of CPC's geometrical characteristics is performed for photovoltaic generation in the area of Albany, NY. This calculation is used to assess the relative effects of meteorological conditions and economic assumptions or optimum concentration values, and provides the reader with information pertaining to the variation of the cost of electrical energy produced as a function of the cost of silicon solar cells.

  6. A comparative study of methods for computing the diffuse radiation viewfactors for complex structures

    NASA Technical Reports Server (NTRS)

    Emery, A. F.; Johansson, O.; Lobo, M.; Abrous, A.

    1988-01-01

    Several different numerical methods for calculating diffuse radiation viewfactors are described. Each is applied to a range of surface configurations, from almost completely unobstructed to a dense set of intersecting surfaces. The speed, accuracy and unique characteristics are discussed in order to define optimal methods for different surface geometries.

  7. Using a simple apparatus to measure direct and diffuse photosynthetically active radiation at remote locations.

    PubMed

    Cruse, Michael J; Kucharik, Christopher J; Norman, John M

    2015-01-01

    Plant canopy interception of photosynthetically active radiation (PAR) drives carbon dioxide (CO2), water and energy cycling in the soil-plant-atmosphere system. Quantifying intercepted PAR requires accurate measurements of total incident PAR above canopies and direct beam and diffuse PAR components. While some regional data sets include these data, e.g. from Atmospheric Radiation Measurement (ARM) Program sites, they are not often applicable to local research sites because of the variable nature (spatial and temporal) of environmental variables that influence incoming PAR. Currently available instrumentation that measures diffuse and direct beam radiation separately can be cost prohibitive and require frequent adjustments. Alternatively, generalized empirical relationships that relate atmospheric variables and radiation components can be used but require assumptions that increase the potential for error. Our goal here was to construct and test a cheaper, highly portable instrument alternative that could be used at remote field sites to measure total, diffuse and direct beam PAR for extended time periods without supervision. The apparatus tested here uses a fabricated, solar powered rotating shadowband and other commercially available parts to collect continuous hourly PAR data. Measurements of total incident PAR had nearly a one-to-one relationship with total incident radiation measurements taken at the same research site by an unobstructed point quantum sensor. Additionally, measurements of diffuse PAR compared favorably with modeled estimates from previously published data, but displayed significant differences that were attributed to the important influence of rapidly changing local environmental conditions. The cost of the system is about 50% less than comparable commercially available systems that require periodic, but not continual adjustments. Overall, the data produced using this apparatus indicates that this instrumentation has the potential to support

  8. Using a Simple Apparatus to Measure Direct and Diffuse Photosynthetically Active Radiation at Remote Locations

    PubMed Central

    Cruse, Michael J.; Kucharik, Christopher J.; Norman, John M.

    2015-01-01

    Plant canopy interception of photosynthetically active radiation (PAR) drives carbon dioxide (CO2), water and energy cycling in the soil-plant-atmosphere system. Quantifying intercepted PAR requires accurate measurements of total incident PAR above canopies and direct beam and diffuse PAR components. While some regional data sets include these data, e.g. from Atmospheric Radiation Measurement (ARM) Program sites, they are not often applicable to local research sites because of the variable nature (spatial and temporal) of environmental variables that influence incoming PAR. Currently available instrumentation that measures diffuse and direct beam radiation separately can be cost prohibitive and require frequent adjustments. Alternatively, generalized empirical relationships that relate atmospheric variables and radiation components can be used but require assumptions that increase the potential for error. Our goal here was to construct and test a cheaper, highly portable instrument alternative that could be used at remote field sites to measure total, diffuse and direct beam PAR for extended time periods without supervision. The apparatus tested here uses a fabricated, solar powered rotating shadowband and other commercially available parts to collect continuous hourly PAR data. Measurements of total incident PAR had nearly a one-to-one relationship with total incident radiation measurements taken at the same research site by an unobstructed point quantum sensor. Additionally, measurements of diffuse PAR compared favorably with modeled estimates from previously published data, but displayed significant differences that were attributed to the important influence of rapidly changing local environmental conditions. The cost of the system is about 50% less than comparable commercially available systems that require periodic, but not continual adjustments. Overall, the data produced using this apparatus indicates that this instrumentation has the potential to support

  9. Multifrequency radiation diffusion equations for homogeneous, refractive, lossy media and their interface conditions

    SciTech Connect

    Shestakov, Aleksei I.

    2013-06-15

    We derive time-dependent multifrequency diffusion equations for homogeneous, refractive lossy media. The equations are applicable for a domain composed of several materials with distinct refractive indexes. In such applications, the fundamental radiation variable, the intensity I, is discontinuous across material interfaces. The diffusion equations evolve a variable ξ, the integral of I over all directions divided by the square of the refractive index. Attention is focused on boundary and internal interface conditions for ξ. For numerical solutions using finite elements, it is shown that at material interfaces, the usual diffusion coefficient 1/3κ of the multifrequency equation, where κ is the opacity, is modified by a tensor diffusion term consisting of integrals of the reflectivity. Numerical results are presented. For a single material simulation, the ξ equations yield the same result as diffusion equations that evolve the spectral radiation energy density. A second simulation solves a test problem that models radiation transport in a domain comprised of materials with different refractive indexes. Results qualitatively agree with those previously published.

  10. Diffuse gamma radiation. [intensity, energy spectrum and spatial distribution from SAS 2 observations

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Simpson, G. A.; Thompson, D. J.

    1978-01-01

    Results are reported for an investigation of the intensity, energy spectrum, and spatial distribution of the diffuse gamma radiation detected by SAS 2 away from the galactic plane in the energy range above 35 MeV. The gamma-ray data are compared with relevant data obtained at other wavelengths, including 21-cm emission, radio continuum radiation, and the limited UV and radio information on local molecular hydrogen. It is found that there are two quite distinct components to the diffuse radiation, one of which shows a good correlation with the galactic matter distribution and continuum radiation, while the other has a much steeper energy spectrum and appears to be isotropic at least on a coarse scale. The galactic component is interpreted in terms of its implications for both local and more distant regions of the Galaxy. The apparently isotropic radiation is discussed partly with regard to the constraints placed on possible models by the steep energy spectrum, the observed intensity, and an upper limit on the anisotropy.

  11. Pulsar and diffuse contributions to observed galactic gamma radiation

    NASA Technical Reports Server (NTRS)

    Harding, A. K.; Stecker, F. W.

    1981-01-01

    The first calculation of a gamma-ray production spectrum from pulsars in the Galaxy, along with a statistical analysis of data on 328 known radio pulsars, are presented. The implications of this point source contribution to the general interpretation of the observed galactic gamma-ray spectrum are indicated. The contributions from diffuse interstellar cosmic-ray induced production mechanisms are then re-examined, concluding that pulsars may be contributing significantly to the galactic gamma-ray emission.

  12. Radiation Heat Transfer Between Diffuse-Gray Surfaces Using Higher Order Finite Elements

    NASA Technical Reports Server (NTRS)

    Gould, Dana C.

    2000-01-01

    This paper presents recent work on developing methods for analyzing radiation heat transfer between diffuse-gray surfaces using p-version finite elements. The work was motivated by a thermal analysis of a High Speed Civil Transport (HSCT) wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining the finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Traditional methods for calculating surface-to-surface radiation are based on assumptions that are not appropriate for p-version finite elements. Two methods for determining internal radiation heat transfer are developed for one and two-dimensional p-version finite elements. In the first method, higher-order elements are divided into a number of sub-elements. Traditional methods are used to determine radiation heat flux along each sub-element and then mapped back to the parent element. In the second method, the radiation heat transfer equations are numerically integrated over the higher-order element. Comparisons with analytical solutions show that the integration scheme is generally more accurate than the sub-element method. Comparison to results from traditional finite elements shows that significant reduction in the number of elements in the mesh is possible using higher-order (p-version) finite elements.

  13. Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics

    SciTech Connect

    Cleveland, Mathew A. Gentile, Nick

    2015-06-15

    This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy and performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.

  14. Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Cleveland, Mathew A.; Gentile, Nick

    2015-06-01

    This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy and performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.

  15. Radial diffusion models of energetic electrons and Jupiter's synchrotron radiation. I - Steady state solution

    NASA Astrophysics Data System (ADS)

    de Pater, I.; Goertz, C. K.

    1990-01-01

    The results of a computer code modeling of the radial diffusion of equatorially confined energetic electrons in Jupiter's inner magnetosphere are compared with spacecraft as well as ground-based radio (synchrotron radiation) data. It is found that the synchrotron radiation spectrum cannot be reproduced without a significant hardening of the electron spectrum between L = 3 and L = 1.5. This hardening may be due to energy degradation by Jupiter's ring particles. The calculations also suggest that there may be larger-sized material outside Jupiter's ring up to L of about 4 or Io's orbit.

  16. Differences in Brainstem Fiber Tract Response to Radiation: A Longitudinal Diffusion Tensor Imaging Study

    SciTech Connect

    Uh, Jinsoo; Merchant, Thomas E.; Li, Yimei; Feng, Tianshu; Gajjar, Amar; Ogg, Robert J.; Hua, Chiaho

    2013-06-01

    Purpose: To determine whether radiation-induced changes in white matter tracts are uniform across the brainstem. Methods and Materials: We analyzed serial diffusion tensor imaging data, acquired before radiation therapy and over 48 to 72 months of follow-up, from 42 pediatric patients (age 6-20 years) with medulloblastoma. FSL software (FMRIB, Oxford, UK) was used to calculate fractional anisotropy (FA) and axial, radial, and mean diffusivities. For a consistent identification of volumes of interest (VOIs), the parametric maps of each patient were transformed to a standard brain space (MNI152), on which we identified VOIs including corticospinal tract (CST), medial lemniscus (ML), transverse pontine fiber (TPF), and middle cerebellar peduncle (MCP) at the level of pons. Temporal changes of DTI parameters in VOIs were compared using a linear mixed effect model. Results: Radiation-induced white matter injury was marked by a decline in FA after treatment. The decline was often accompanied by decreased axial diffusivity, increased radial diffusivity, or both. This implied axonal damage and demyelination. We observed that the magnitude of the changes was not always uniform across substructures of the brainstem. Specifically, the changes in DTI parameters for TPF were more pronounced than in other regions (P<.001 for FA) despite similarities in the distribution of dose. We did not find a significant difference among CST, ML, and MCP in these patients (P>.093 for all parameters). Conclusions: Changes in the structural integrity of white matter tracts, assessed by DTI, were not uniform across the brainstem after radiation therapy. These results support a role for tract-based assessment in radiation treatment planning and determination of brainstem tolerance.

  17. An Experimental and Theoretical Study of Radiative Extinction of Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind; Wichman, Indrek; Guenther, Mark; Ray, Anjan; Agrawal, Sanjay

    1993-01-01

    In a recent paper on 'Observations of candle flames under various atmospheres in microgravity' by Ross et al., it was found that for the same atmosphere, the burning rate per unit wick surface area and the flame temperature were considerably reduced in microgravity as compared with normal gravity. Also, the flame (spherical in microgravity) was much thicker and further removed from the wick. It thus appears that the flame becomes 'weaker' in microgravity due to the absence of buoyancy generated flow which serves to transport the oxidizer to the combustion zone and remove the hot combustion products from it. The buoyant flow, which may be characterized by the strain rate, assists the diffusion process to execute these essential functions for the survival of the flame. Thus, the diffusion flame is 'weak' at very low strain rates and as the strain rate increases the flame is initially 'strengthened' and eventually it may be 'blown out'. The computed flammability boundaries of T'ien show that such a reversal in material flammability occurs at strain rates around 5 sec. At very low or zero strain rates, flame radiation is expected to considerably affect this 'weak' diffusion flame because: (1) the concentration of combustion products which participate in gas radiation is high in the flame zone; and (2) low strain rates provide sufficient residence time for substantial amounts of soot to form which is usually responsible for a major portion of the radiative heat loss. We anticipate that flame radiation will eventually extinguish this flame. Thus, the objective of this project is to perform an experimental and theoretical investigation of radiation-induced extinction of diffusion flames under microgravity conditions. This is important for spacecraft fire safety.

  18. Uncertainty in assessment of radiation-induced diffusion index changes in individual patients

    NASA Astrophysics Data System (ADS)

    Nazem-Zadeh, Mohammad-Reza; Chapman, Christopher H.; Lawrence, Theodore S.; Tsien, Christina I.; Cao, Yue

    2013-06-01

    The purpose of this study is to evaluate repeatability coefficients of diffusion tensor indices to assess whether longitudinal changes in diffusion indices were true changes beyond the uncertainty for individual patients undergoing radiation therapy (RT). Twenty-two patients who had low-grade or benign tumors and were treated by partial brain radiation therapy (PBRT) participated in an IRB-approved MRI protocol. The diffusion tensor images in the patients were acquired pre-RT, week 3 during RT, at the end of RT, and 1, 6, and 18 months after RT. As a measure of uncertainty, repeatability coefficients (RC) of diffusion indices in the segmented cingulum, corpus callosum, and fornix were estimated by using test-retest diffusion tensor datasets from the National Biomedical Imaging Archive (NBIA) database. The upper and lower limits of the 95% confidence interval of the estimated RC from the test and retest data were used to evaluate whether the longitudinal percentage changes in diffusion indices in the segmented structures in the individual patients were beyond the uncertainty and thus could be considered as true radiation-induced changes. Diffusion indices in different white matter structures showed different uncertainty ranges. The estimated RC for fractional anisotropy (FA) ranged from 5.3% to 9.6%, for mean diffusivity (MD) from 2.2% to 6.8%, for axial diffusivity (AD) from 2.4% to 5.5%, and for radial diffusivity (RD) from 2.9% to 9.7%. Overall, 23% of the patients treated by RT had FA changes, 44% had MD changes, 50% had AD changes, and 50% had RD changes beyond the uncertainty ranges. In the fornix, 85.7% and 100% of the patients showed changes beyond the uncertainty range at 6 and 18 months after RT, demonstrating that radiation has a pronounced late effect on the fornix compared to other segmented structures. It is critical to determine reliability of a change observed in an individual patient for clinical decision making. Assessments of the repeatability and

  19. Uncertainty in assessment of radiation-induced diffusion index changes in individual patients.

    PubMed

    Nazem-Zadeh, Mohammad-Reza; Chapman, Christopher H; Lawrence, Theodore S; Tsien, Christina I; Cao, Yue

    2013-06-21

    The purpose of this study is to evaluate repeatability coefficients of diffusion tensor indices to assess whether longitudinal changes in diffusion indices were true changes beyond the uncertainty for individual patients undergoing radiation therapy (RT). Twenty-two patients who had low-grade or benign tumors and were treated by partial brain radiation therapy (PBRT) participated in an IRB-approved MRI protocol. The diffusion tensor images in the patients were acquired pre-RT, week 3 during RT, at the end of RT, and 1, 6, and 18 months after RT. As a measure of uncertainty, repeatability coefficients (RC) of diffusion indices in the segmented cingulum, corpus callosum, and fornix were estimated by using test-retest diffusion tensor datasets from the National Biomedical Imaging Archive (NBIA) database. The upper and lower limits of the 95% confidence interval of the estimated RC from the test and retest data were used to evaluate whether the longitudinal percentage changes in diffusion indices in the segmented structures in the individual patients were beyond the uncertainty and thus could be considered as true radiation-induced changes. Diffusion indices in different white matter structures showed different uncertainty ranges. The estimated RC for fractional anisotropy (FA) ranged from 5.3% to 9.6%, for mean diffusivity (MD) from 2.2% to 6.8%, for axial diffusivity (AD) from 2.4% to 5.5%, and for radial diffusivity (RD) from 2.9% to 9.7%. Overall, 23% of the patients treated by RT had FA changes, 44% had MD changes, 50% had AD changes, and 50% had RD changes beyond the uncertainty ranges. In the fornix, 85.7% and 100% of the patients showed changes beyond the uncertainty range at 6 and 18 months after RT, demonstrating that radiation has a pronounced late effect on the fornix compared to other segmented structures. It is critical to determine reliability of a change observed in an individual patient for clinical decision making. Assessments of the repeatability and

  20. Influence of diffusion on photoinduced electron transfer. [laser radiation

    SciTech Connect

    Song, L.; Dorfman, R.C.; Swallen, S.F.; Fayer, M.D. )

    1991-05-02

    Electron transfer from an optically excited donor (rubrene) to randomly distributed acceptors (duroquinone) has been investigated experimentally. The forward electron-transfer process under the influence of diffusion in liquid solution (diethyl sebacate) is compared with that in solid solution (sucrose octaacetate). Steady-state fluorescence yield and time-resolved fluorescence measurements were used to measure the excited-state population of the donor (rubrene). The parameters were used to analyze the electron-transfer dynamics under a variety of acceptor concentrations. The agreement between theoretical predictions and experiments is very good. The forward transfer parameters (a{sub f} and R{sub 0}) in liquid solution are almost identical with those obtained in solid solution.

  1. Modeling Suomi-NPP VIIRS Solar Diffuser Degradation due to Space Radiation

    NASA Astrophysics Data System (ADS)

    Shao, X.; Cao, C.

    2014-12-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi-NPP uses a solar diffuser (SD) as on-board radiometric calibrator for the reflective solar band (RSB) calibration. Solar diffuser is made of Spectralon (one type of fluoropolymer) and was chosen because of its controlled reflectance in the VIS-NIR-SWIR region and its near-Lambertian reflectance profile. Spectralon is known to degrade in reflectance at the blue end of the spectrum due to exposure to space radiations such as solar UV radiation and energetic protons. These space radiations can modify the Spectralon surface through breaking C-C and C-F bonds and scissioning or cross linking the polymer, which causes the surface roughness and degrades its reflectance. VIIRS uses a SDSM (Solar Diffuser Stability Monitor) to monitor the change in the Solar Diffuser reflectance in the 0.4 - 0.94 um wavelength range and provide a correction to the calibration constants. The H factor derived from SDSM reveals that reflectance of 0.4 to 0.6um channels of VIIRS degrades faster than the reflectance of longer wavelength RSB channels. A model is developed to derive characteristic parameters such as mean SD surface roughness height and autocovariance length of SD surface roughness from the long term spectral degradation of SD reflectance as monitored by SDSM. These two parameters are trended to assess development of surface roughness of the SD over the operation period of VIIRS.

  2. A moving mesh finite difference method for equilibrium radiation diffusion equations

    NASA Astrophysics Data System (ADS)

    Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian

    2015-10-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor-corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.

  3. A moving mesh finite difference method for equilibrium radiation diffusion equations

    SciTech Connect

    Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian

    2015-10-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.

  4. Evaluating Contextual Processing in Diffusion MRI: Application to Optic Radiation Reconstruction for Epilepsy Surgery

    PubMed Central

    Tax, Chantal M. W.; Duits, Remco; Vilanova, Anna; ter Haar Romeny, Bart M.; Hofman, Paul; Wagner, Louis; Leemans, Alexander; Ossenblok, Pauly

    2014-01-01

    Diffusion MRI and tractography allow for investigation of the architectural configuration of white matter in vivo, offering new avenues for applications like presurgical planning. Despite the promising outlook, there are many pitfalls that complicate its use for (clinical) application. Amongst these are inaccuracies in the geometry of the diffusion profiles on which tractography is based, and poor alignment with neighboring profiles. Recently developed contextual processing techniques, including enhancement and well-posed geometric sharpening, have shown to result in sharper and better aligned diffusion profiles. However, the research that has been conducted up to now is mainly of theoretical nature, and so far these techniques have only been evaluated by visual inspection of the diffusion profiles. In this work, the method is evaluated in a clinically relevant application: the reconstruction of the optic radiation for epilepsy surgery. For this evaluation we have developed a framework in which we incorporate a novel scoring procedure for individual pathways. We demonstrate that, using enhancement and sharpening, the extraction of an anatomically plausible reconstruction of the optic radiation from a large amount of probabilistic pathways is greatly improved in three healthy controls, where currently used methods fail to do so. Furthermore, challenging reconstructions of the optic radiation in three epilepsy surgery candidates with extensive brain lesions demonstrate that it is beneficial to integrate these methods in surgical planning. PMID:25077946

  5. Diffusion tensor imaging of occult injury of optic radiation following optic neuritis in multiple sclerosis

    PubMed Central

    Chen, Jiafeng; Zhu, Lijun; Li, He; Lu, Ziwen; Chen, Xin; Fang, Shaokuan

    2016-01-01

    Multiple sclerosis (MS) is easily detected by routine magnetic resonance imaging (MRI). However, it is not possible to detect early or occult lesions in MS by routine MRI, and this may explain the inconsistency between the severity of the lesions found by MRI and the degree of clinical disability of patients with MS. The present study included 10 patients with relapsing-remitting MS and 10 healthy volunteers. Each patient underwent routine 3.0 T MRI, diffusion tensor imaging (DTI), and diffusion tensor tractography (DTT). Optic nerve and optic radiation were analyzed by DTI and DTT. The fractional anisotropy (FA), mean diffusivity (MD), λ//, and λ┴ values were measured. In the 10 patients with MS, 7 optic nerves were affected, and 13 optic nerves were not affected. Cranial MRI showed that optic nerve thickening and hyperintensity occurred in 2 patients with MS. In the directionally encoded color maps, a hypointensive green signal in the optic nerve was observed in 3 patients with MS. The FA values were significantly lower and the MD, λ//, and λ┴ values were significantly higher in the affected and unaffected optic nerves and optic radiations in patients with MS in comparison with controls (P<0.05). There were no significant differences in these values between the affected and unaffected optic nerves and optic radiation in patients with MS (P>0.05). Diffusion tensor imaging is sensitive in the detection of occult injury of the optic nerve and optic radiation following optic neuritis. Diffusion tensor imaging may be a useful tool for the early diagnosis, treatment and management of MS. PMID:27703508

  6. Generation of Z mode radiation by diffuse auroral electron precipitation

    NASA Technical Reports Server (NTRS)

    Dusenbery, P. B.; Lyons, L. R.

    1985-01-01

    The generation of Z mode waves by diffuse auroral electron precipitation is investigated assuming that a loss cone exists in the upgoing portion of the distribution due to electron interactions with the atmosphere. The waves are generated at frequencies above, but very near, the local electron cyclotron frequency omega(e) and at wave normal angles larger than 90 deg. In agreement with Hewitt et al. (1983), the group velocity is directed downward in regions where the ratio of the upper hybrid frequency omega(pe) to Omega(e) is less than 0.5, so that Z mode waves excited above a satellite propagate toward it and away from the upper hybrid resonance. Z mode waves are excited in a frequency band between Omega(e) and about 1.02 Omega(e), and with maximum growth rates of about 0.001 Omega(e). The amplification length is about 100 km, which allows Z mode waves to grow to the intensities observed by high-altitude satellites.

  7. Polarization radiation in the planetary atmosphere delimited by a heterogeneous diffusely reflecting surface

    NASA Technical Reports Server (NTRS)

    Strelkov, S. A.; Sushkevich, T. A.

    1983-01-01

    Spatial frequency characteristics (SFC) and the scattering functions were studied in the two cases of a uniform horizontal layer with absolutely black bottom, and an isolated layer. The mathematical model for these examples describes the horizontal heterogeneities in a light field with regard to radiation polarization in a three dimensional planar atmosphere, delimited by a heterogeneous surface with diffuse reflection. The perturbation method was used to obtain vector transfer equations which correspond to the linear and nonlinear systems of polarization radiation transfer. The boundary value tasks for the vector transfer equation that is a parametric set and one dimensional are satisfied by the SFC of the nonlinear system, and are expressed through the SFC of linear approximation. As a consequence of the developed theory, formulas were obtained for analytical calculation of albedo in solving the task of dissemination of polarization radiation in the planetary atmosphere with uniform Lambert bottom.

  8. An Experimental and Theoretical Study of Radiative Extinction of Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Wichman, Indrek S.

    1993-01-01

    The objective of this work is to investigate the radiation-induced rich extinction limits for diffusion flames. Radiative extinction is caused by the formation of particulates (e.g., soot) that drain chemical energy from the flame. We examine (mu)g conditions because there is a strong reason to believe that radiation-induced rich-limit extinction is not possible under normal-gravity conditions. In normal- g, the hot particulates formed in the fuel-rich flames are swept upward by buoyancy, out of the flame to the region above it, where their influence on the flame is negligible. However, in (mu)g the particulates remain in the flame vicinity, creating a strong energy sink that can, under suitable conditions, cause flame extinction.

  9. The diffusion of radiation in moving media. IV. Flux vector, effective opacity, and expansion opacity

    NASA Astrophysics Data System (ADS)

    Wehrse, R.; Baschek, B.; von Waldenfels, W.

    2003-04-01

    For a given velocity and temperature field in a differentially moving 3D medium, the vector of the radiative flux is derived in the diffusion approximation. Due to the dependence of the velocity gradient on the direction, the associated effective opacity in general is a tensor. In the limit of small velocity gradients analytical expression are obtained which allow us to discuss the cases when the direction of the flux vector deviates from that of the temperature gradient. Furthermore the radiative flux is calculated for infinitely sharp, Poisson distributed spectral lines resulting in simple expressions that provide basic insight into the effect of the motions. In particular, it is shown how incomplete line lists affect the radiative flux as a function of the velocity gradient. Finally, the connection between our formalism and the concept of the expansion opacity introduced by Karp et al. (\\cite{karp}) is discussed.

  10. Radiation Therapy

    MedlinePlus

    Radiation therapy is a cancer treatment. It uses high doses of radiation to kill cancer cells and stop them from ... half of all cancer patients receive it. The radiation may be external, from special machines, or internal, ...

  11. Radiation Therapy

    MedlinePlus

    ... people who have radiation therapy may feel more tired than usual, not feel hungry, or lose their ... of radiation therapy include: Fatigue. Fatigue, or feeling tired, is the most common side effect of radiation ...

  12. Radiation therapy

    MedlinePlus

    ... Because radiation is most harmful to quickly growing cells, radiation therapy damages cancer cells more than normal cells. ... cells from growing and dividing, and leads to cell death. Radiation therapy is used to fight many types of ...

  13. Effects of Radiative Diffusion on Thin Flux Tubes in Turbulent Solar-like Convection

    NASA Astrophysics Data System (ADS)

    Weber, M. A.; Fan, Y.

    2015-05-01

    We study the combined effects of convection and radiative diffusion on the evolution of thin magnetic flux tubes in the solar interior. Radiative diffusion is the primary supplier of heat to convective motions in the lower convection zone, and it results in a heat input per unit volume of magnetic flux tubes that has been ignored by many previous thin flux tube studies. We use a thin flux tube model subject to convection taken from a rotating spherical shell of turbulent, solar-like convection as described by Weber, Fan, and Miesch ( Astrophys. J. 741, 11, 2011; Solar Phys. 287, 239, 2013), now taking into account the influence of radiative heating on 1022 Mx flux tubes, corresponding to flux tubes of large active regions. Our simulations show that flux tubes of ≤ 60 kG that are subject to solar-like convective flows do not anchor in the overshoot region, but rather drift upward because of the increased buoyancy of the flux tube earlier in its evolution, which results from including radiative diffusion. Flux tubes of magnetic field strengths ranging from 15 kG to 100 kG have rise times of ≤ 0.2 years and exhibit a Joy's Law tilt-angle trend. Our results suggest that radiative heating is an effective mechanism by which flux tubes can escape from the stably stratified overshoot region. Moreover, flux tubes do not necessarily need to be anchored in the overshoot region to produce emergence properties similar to those of active regions on the Sun.

  14. Step-by-Step Simulation of Radiation Chemistry Using Green Functions for Diffusion-Influenced Reactions

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2011-01-01

    Radiolytic species are formed approximately 1 ps after the passage of ionizing radiation through matter. After their formation, they diffuse and chemically react with other radiolytic species and neighboring biological molecules, leading to various oxidative damage. Therefore, the simulation of radiation chemistry is of considerable importance to understand how radiolytic species damage biological molecules [1]. The step-by-step simulation of chemical reactions is difficult, because the radiolytic species are distributed non-homogeneously in the medium. Consequently, computational approaches based on Green functions for diffusion-influenced reactions should be used [2]. Recently, Green functions for more complex type of reactions have been published [3-4]. We have developed exact random variate generators of these Green functions [5], which will allow us to use them in radiation chemistry codes. Moreover, simulating chemistry using the Green functions is which is computationally very demanding, because the probabilities of reactions between each pair of particles should be evaluated at each timestep [2]. This kind of problem is well adapted for General Purpose Graphic Processing Units (GPGPU), which can handle a large number of similar calculations simultaneously. These new developments will allow us to include more complex reactions in chemistry codes, and to improve the calculation time. This code should be of importance to link radiation track structure simulations and DNA damage models.

  15. Atmospheric radiation

    SciTech Connect

    Harshvardhan, M.R. )

    1991-01-01

    Studies of atmospheric radiative processes are summarized for the period 1987-1990. Topics discussed include radiation modeling; clouds and radiation; radiative effects in dynamics and climate; radiation budget and aerosol effects; and gaseous absorption, particulate scattering and surface reflection. It is concluded that the key developments of the period are a defining of the radiative forcing to the climate system by trace gases and clouds, the recognition that cloud microphysics and morphology need to be incorporated not only into radiation models but also climate models, and the isolation of a few important unsolved theoretical problems in atmospheric radiation.

  16. Asymptotic diffusion limit of cell temperature discretisation schemes for thermal radiation transport

    NASA Astrophysics Data System (ADS)

    Smedley-Stevenson, Richard P.; McClarren, Ryan G.

    2015-04-01

    This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as 'source tilting'. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange-Eulerian) hydrodynamics schemes.

  17. Asymptotic diffusion limit of cell temperature discretisation schemes for thermal radiation transport

    SciTech Connect

    Smedley-Stevenson, Richard P.; McClarren, Ryan G.

    2015-04-01

    This paper attempts to unify the asymptotic diffusion limit analysis of thermal radiation transport schemes, for a linear-discontinuous representation of the material temperature reconstructed from cell centred temperature unknowns, in a process known as ‘source tilting’. The asymptotic limits of both Monte Carlo (continuous in space) and deterministic approaches (based on linear-discontinuous finite elements) for solving the transport equation are investigated in slab geometry. The resulting discrete diffusion equations are found to have nonphysical terms that are proportional to any cell-edge discontinuity in the temperature representation. Based on this analysis it is possible to design accurate schemes for representing the material temperature, for coupling thermal radiation transport codes to a cell centred representation of internal energy favoured by ALE (arbitrary Lagrange–Eulerian) hydrodynamics schemes.

  18. The grand unified photon spectrum: A coherent view of the diffuse extragalactic background radiation

    NASA Technical Reports Server (NTRS)

    Ressell, M. Ted; Turner, Michael S.

    1989-01-01

    The spectrum of diffuse extragalactic background radiation (DEBRA) at wavelengths from 10(exp 5) to 10(exp -24) cm is presented in a coherent fashion. Each wavelength region, from the radio to ultra-high energy photons and cosmic rays, is treated both separately and as part of the grand unified photon spectrum (GUPS). A discussion of, and references to, the relevant literature for each wavelength region is included. This review should provide a useful tool for those interested in diffuse backgrounds, the epoch of galaxy formation, astrophysical/cosmological constraints to particle properties, exotic early Universe processes, and many other astrophysical and cosmological enterprises. As a worked example, researchers derive the cosmological constraints to an unstable-neutrino spies (with arbitrary branching ratio to a radiative decay mode) that follow from the GUPS.

  19. Solar UV-B in tropical forest gaps: Analysis using direct and diffuse radiation

    SciTech Connect

    Flint, S.D.; Caldwell, M.M.

    1995-06-01

    Experiments with natural levels of solar ultraviolet-B radiation (UV-B) have recently shown inhibition of the growth of some tropical forest tree seedlings. A knowledge of forest radiation environments is needed to help assess UV-B effects in natural situations. Although forest canopies strongly attenuate solar radiation, treefall gaps provide a very different radiation environment. We simultaneously measured both UV-B and photosynthetically active radiation (PAR) in forest gaps on Barro Colorado Island, Panama. Outside the forest, UV-B is predominately diffuse even under clear sky conditions. In sunflecks of small forest gaps, most of the UV-B was in the direct beam component. Compared to conditions outside the forest, the UV-B in these sunflecks was low relative to PAR. Shaded portions of the gap, in contrast, had proportionately high levels of UV-B relative to PAR. There are indications in the literature that relatively low UV-B levels may be effective under low PFD. Seasonal trends of PAR and UV-B in different locations in gaps can be inferred from hemispherical canopy photographs.

  20. The dependence on solar elevation of the correlation between monthly average hourly diffuse and global radiation

    SciTech Connect

    Soler, A. )

    1988-01-01

    In the present work, the dependence on {anti {gamma}} of the correlation between {anti K}{sub d} = {anti I}{sub d}/{anti I}{sub O} and {anti K}{sub t} = {anti I}/{anti I}{sub o} is studied, {anti I}, {anti I}{sub d}, and {anti I}{sub o} respectively being the monthly average hourly values of the global, diffuse, and extraterrestrial radiation, all of them on a horizontal surface, and {anti {gamma}} the solar elevation at midhour. The dependence is studied for Uccle for the following sky conditions. Condition A: clear skies (fraction of possible sunshine = 1) and the maximum values of direct radiation measured during the period considered (each of the hours before or after the solar noon for which radiation is received); Condition B corresponding to all the values of radiation measured when the sunshine fraction is 1 during the period considered; Condition C; corresponding to all the data collected, independently of the state of the sky; Condition D: corresponding to overcast skies ({anti I} = {anti I}{sub d}). From the available values of {anti I} and {anti I}{sub d} (monthly average hourly direct radiation on a horizontal surface), values of {anti K}{sub d} and {anti K}{sub t} for 5{degree} {le} {anti {gamma}} {le} 45{degree} and {Delta} {anti {gamma}} = 5{degree} are calculated using Newton's divided difference interpolation formula.

  1. The pitch angle diffusion by stochastic motion in the Earth's radiation belt

    NASA Astrophysics Data System (ADS)

    Choi, C.; Dokgo, K.; Kang, S. B.; Choi, E. J.; Min, K. W.; Hwang, J.; Park, Y. D.

    2014-12-01

    The motion of electron in the presence of the linearly polarized electromagnetic (EM) wave propagating along the uniform magnetic field (B0), which can be treated as electromagnetic ion cyclotron (EMIC) wave is investigated. There can be two resonances between the electron and the Doppler shifted EM wave which one is R mode resonance and the other is L mode. We show the stochastic motion of electrons with the Poincaré's surface of section plot as the wave amplitude increases. Then we explain theoretically the electron precipitation by pitch angle diffusion. The pitch angle diffusion coefficient is calculated for Earth's radiation belt from the dynamics of stochastic electrons. It is also compared with quasi-linear diffusion coefficient for EMIC wave. Furthermore it is found that the precipitation time of electron by pitch angle diffusion is about a few minutes for EMIC wave.

  2. Diffusion mechanisms in Ir-coated Re for high-temperature, radiation-cooled rocket thrusters

    NASA Technical Reports Server (NTRS)

    Hamilton, J. C.; Yang, N. Y. C.; Clift, W. M.; Boehme, D. R.; Mccarty, K. F.

    1991-01-01

    Materials used for radiation-cooled rocket thrusters must be capable of surviving under extreme conditions of high temperatures and oxidizing environments. Thruster chambers were developed using chemical-vapor-deposited (CVD) Re coated with CVD Ir on the inside surface which is exposed to hot combustion gases. Ir serves as an oxidation barrier protecting the Re which maintains structural integrity at high temperatures. In order to predict and extend the performance limits of these Ir-coated Re thrusters, the diffusion kinetics of CVD materials at temperature are studied. Thruster end ring sections were examined using electron microprobe analysis both before and after exposure to high temperature vacuum environments. The resulting elemental maps for Re, Ir, and Mo in the near-surface region allow identification of diffusion mechanisms operating at these temperatures. Line scans for Ir and Re were fit using a diffusion model to extract relevant diffusion constants. The fastest diffusion process is seen to be grain boundary diffusion with Re diffusing down grain boundaries in the Ir overlayer. The measured dependence of the diffusion rate on temperature will allow prediction of operating lifetimes for these thrusters.

  3. Pelvic radiation - discharge

    MedlinePlus

    Radiation of the pelvis - discharge; Cancer treatment - pelvic radiation; Prostate cancer - pelvic radiation; Ovarian cancer - pelvic radiation; Cervical cancer - pelvic radiation; Uterine cancer - pelvic radiation; Rectal cancer - ...

  4. A Radiation Chemistry Code Based on the Greens Functions of the Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Wu, Honglu

    2014-01-01

    Ionizing radiation produces several radiolytic species such as.OH, e-aq, and H. when interacting with biological matter. Following their creation, radiolytic species diffuse and chemically react with biological molecules such as DNA. Despite years of research, many questions on the DNA damage by ionizing radiation remains, notably on the indirect effect, i.e. the damage resulting from the reactions of the radiolytic species with DNA. To simulate DNA damage by ionizing radiation, we are developing a step-by-step radiation chemistry code that is based on the Green's functions of the diffusion equation (GFDE), which is able to follow the trajectories of all particles and their reactions with time. In the recent years, simulations based on the GFDE have been used extensively in biochemistry, notably to simulate biochemical networks in time and space and are often used as the "gold standard" to validate diffusion-reaction theories. The exact GFDE for partially diffusion-controlled reactions is difficult to use because of its complex form. Therefore, the radial Green's function, which is much simpler, is often used. Hence, much effort has been devoted to the sampling of the radial Green's functions, for which we have developed a sampling algorithm This algorithm only yields the inter-particle distance vector length after a time step; the sampling of the deviation angle of the inter-particle vector is not taken into consideration. In this work, we show that the radial distribution is predicted by the exact radial Green's function. We also use a technique developed by Clifford et al. to generate the inter-particle vector deviation angles, knowing the inter-particle vector length before and after a time step. The results are compared with those predicted by the exact GFDE and by the analytical angular functions for free diffusion. This first step in the creation of the radiation chemistry code should help the understanding of the contribution of the indirect effect in the

  5. Impact of Changes in Diffuse Radiation on the Global Land Carbon Sink, 1901-2100

    NASA Astrophysics Data System (ADS)

    Mercado, L.; Bellouin, N.; Sitch, S.; Boucher, O.; Huntingford, C.; Wild, M.; Cox, P. M.

    2009-04-01

    Recent observational and theoretical studies have shown that changes in surface radiation that lead to increasing diffuse surface irradiance, enhance plant photosynthesis (Gu et al., 2003, Niyogi et al., 2004, Oliveira et al., 2007, Roderick et al., 2001). Solar radiation reaching the land surface has changed over the industrial era due to aerosols emitted from volcanoes and various anthropogenic sources (Kvalevag and Myhre, 2007). Such changes in total surface radiation are accompanied by changes in direct and diffuse surface solar radiation. Current global climate-carbon models do include the effects of changes in total surface radiation on the land biosphere but neglect the positive effects of increasing diffuse fraction on plant photosynthesis. In this study we estimate for the first time, the impact of variations in diffuse fraction on the land carbon sink using a global model (Mercado et al., 2007) modified to account for the effects of variations in both direct and diffuse radiation on canopy photosynthesis. We use meteorological forcing from the Climate Research Unit Data set. Additionally short wave and photosynthetic active radiation are reconstructed from the Hadley centre climate model, which accounts for the scattering and absorption of light by tropospheric and stratospheric aerosols and change in cloud properties due to indirect aerosol effects. References Gu L.H., Baldocchi D.D., Wofsy S.C., Munger J.W., Michalsky J.J., Urbanski S.P. & Boden T.A. (2003) Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science, 299, 2035-2038. M. M. Kvalevag and G. Myhre, J. Clim. 20, 4874 (2007). Mercado L.M., Huntingford C., Gash J.H.C., Cox P.M. & Jogireddy V. (2007) Improving the representation of radiation interception and photosynthesis for climate model applications. Tellus Series B-Chemical and Physical Meteorology, 59, 553-565. Niyogi D., Chang H.I., Saxena V.K., Holt T., Alapaty K., Booker F., Chen F., Davis K

  6. An experimental and theoretical study of radiative extinction of diffusion flames

    NASA Technical Reports Server (NTRS)

    Wichman, Indrek S.; Atreya, A.

    1994-01-01

    Our work was primarily theoretical and numerical. We investigated the simplified modeling of heat losses in diffusion flames, then we 'ramped up' the level of complexity in each successive study until the final chapter discussed the general problem of soot/flame interaction. With regard to the specific objective of studying radiative extinction, we conclude that in the steady case a self-extinguishing zero-g flame is unlikely to occur. The soot volume fractions are too small. On the other hand, our work does provide rational means for assessing the mixture of chemical energy release and radiative heat release. It also provides clues for suitable 'tailoring' this balance. Thus heat fluxes to surrounding surfaces can be substantially increased by exploiting and modifying its sooting capability.

  7. Dynamic Implicit 3D Adaptive Mesh Refinement for Non-Equilibrium Radiation Diffusion

    SciTech Connect

    Philip, Bobby; Wang, Zhen; Berrill, Mark A; Rodriguez Rodriguez, Manuel; Pernice, Michael

    2014-01-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multiphysics systems: implicit time integration for efficient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent linear solver convergence.

  8. Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames

    SciTech Connect

    Brookes, S.J.; Moss, J.B.

    1999-03-01

    Computational modeling of well-documented jet diffusion flames, burning methane at atmospheric and elevated pressure, is presented. The main emphasis of the work is on the intimate coupling between the soot production of rate and the flame radiative heat loss. This coupling is found to be vital for flame soot prediction. A number of methods for closing soot production source terms in the turbulent flow are presented and assessed. In particular it is shown that the degree of correlation assumed between soot particles and their oxidizing species exerts a large influence on both the growth of the soot and its subsequent burnout. Finally, predictions of the mean radiative emission spectra from these flames are presented.

  9. The predictive capacity of apparent diffusion coefficient (ADC) in response assessment of brain metastases following radiation.

    PubMed

    Jakubovic, Raphael; Zhou, Stephanie; Heyn, Chris; Soliman, Hany; Zhang, Liyang; Aviv, Richard; Sahgal, Arjun

    2016-03-01

    To investigate the predictive capacity of the apparent diffusion coefficient (ADC) as a biomarker of radiation response in brain metastases. Seventy brain metastases from 42 patients treated with either stereotactic radiosurgery or whole brain radiotherapy were imaged at baseline, 1 week, and 1 month post-treatment using diffusion-weighted MRI. Mean and median relative ADC for metastases was calculated by normalizing ADC measurements to baseline ADC. At 1 year post-treatment, or last available follow-up MRI, volume criteria determined final tumour response status. Uni- and multivariate analysis was used to account for factors associated with tumour response at 1 week and 1 month. A generalized estimating equations model took into consideration multiple tumours per subject. Optimal thresholds that distinguished responders from non-responders, as well as sensitivity and specificity were determined by receiver operator characteristic analysis and Youden's index. Lower relative ADC values distinguished responders from non-responders at 1 week and 1 month (P < 0.05). Optimal cut-off values for response were 1.060 at 1 week with a sensitivity and specificity of 75.0 and 56.3 %, respectively. At 1 month, the cut-off was 0.971 with a sensitivity and specificity of 70.0 and 68.8 %, respectively. A multivariate general estimating equations analysis identified no prior radiation [odds ratio (OR) 0.211 and 0.137, P = 0.033 and 0.0177], and a lower median relative ADC at 1 week and 1 month (OR 0.619 and 0.694, P = 0.0036 and 0.005), as predictors of tumour response. Lower relative ADC values at 1 week and 1 month following radiation distinguished responders from non-responders and may be a promising biomarker of early radiation response.

  10. Mid- to Far-Infrared Spectral Energy Distribution of the Diffuse Galactic Radiation

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi; Tokura, Daisuke; Sakon, Itsuki; Tajiri, Yuka Y.; Takagi, Toshinobu; Shibai, Hiroshi

    2007-01-01

    Mid-infrared (MIR; 12-60 μm) diffuse emission in the Galactic plane and the Carina Nebula is investigated relative to the far-infrared (FIR; >=100 μm) emission. Observations show that the ratio of the 12 μm emission to the total FIR intensity is more or less constant in the Galactic plane but exhibits a slight decrease followed by an increase as the FIR color becomes bluer in the Carina Nebula. The constancy is compatible with predictions from models of stochastic heating of very small grains or infrared fluorescence of polycyclic aromatic hydrocarbons. The decrease can be attributed to a weakening of the unidentified infrared band emission in strong radiation fields. Contrarily, the ratio of the 25 and 60 μm emission to FIR intensity increases linearly with field strength, which is incompatible with the model predictions. The Carina Nebula data show a much bluer FIR color than the Galactic plane, whereas the ratio of MIR to FIR emission is in a range similar to that of the plane. We interpret these characteristics in terms of a superposition of emission from dust grains in various radiation field strengths. The linear increase can be accounted for by an increasing contribution from emission by dust grains in strong radiation environments, whereas the shift in FIR color between the Galactic plane and the Carina Nebula can be attributed to different contributions from grains in weak radiation fields. Other possibilities, such as the effect of multiphoton processes, variations in the incident radiation spectrum, and possible contributions from iron grains, have also been examined, but none can account for the observations consistently. Applications of the present model to external galaxies are also discussed.

  11. Noninvasive diffuse optical monitoring of head and neck tumor blood flow and oxygenation during radiation delivery

    PubMed Central

    Dong, Lixin; Kudrimoti, Mahesh; Cheng, Ran; Shang, Yu; Johnson, Ellis L.; Stevens, Scott D.; Shelton, Brent J.; Yu, Guoqiang

    2012-01-01

    This study explored using a novel diffuse correlation spectroscopy (DCS) flow-oximeter to noninvasively monitor blood flow and oxygenation changes in head and neck tumors during radiation delivery. A fiber-optic probe connected to the DCS flow-oximeter was placed on the surface of the radiologically/clinically involved cervical lymph node. The DCS flow-oximeter in the treatment room was remotely operated by a computer in the control room. From the early measurements, abnormal signals were observed when the optical device was placed in close proximity to the radiation beams. Through phantom tests, the artifacts were shown to be caused by scattered x rays and consequentially avoided by moving the optical device away from the x-ray beams. Eleven patients with head and neck tumors were continually measured once a week over a treatment period of seven weeks, although there were some missing data due to the patient related events. Large inter-patient variations in tumor hemodynamic responses were observed during radiation delivery. A significant increase in tumor blood flow was observed at the first week of treatment, which may be a physiologic response to hypoxia created by radiation oxygen consumption. Only small and insignificant changes were found in tumor blood oxygenation, suggesting that oxygen utilizations in tumors during the short period of fractional radiation deliveries were either minimal or balanced by other effects such as blood flow regulation. Further investigations in a large patient population are needed to correlate the individual hemodynamic responses with the clinical outcomes for determining the prognostic value of optical measurements. PMID:22312579

  12. Frequency and quality of radiation monitoring of construction workers at two gaseous diffusion plants.

    PubMed

    Bingham, Eula; Ringen, Knut; Dement, John; Cameron, Wilfrid; McGowan, William; Welch, Laura; Quinn, Patricia

    2006-09-01

    Construction workers were and are considered temporary workers at many construction sites. Since World War II, large numbers of construction workers were employed at U.S. Department of Energy nuclear weapons sites for periods ranging from a few days to over 30 years. These workers performed tasks during new construction and maintenance, repair, renovation, and demolition of existing facilities. Such tasks may involve emergency situations, and may entail opportunities for significant radiation exposures. This paper provides data from interviews with more than 750 construction workers at two gaseous diffusion plants (GDPs) at Paducah, Kentucky, and Portsmouth, Ohio regarding radiation monitoring practices. The aim was to determine the extent to which workers believed they were monitored during tasks involving potential radiation exposures. The adequacy of monitoring practices is important for two reasons: (a) Protecting workers from exposures: Construction workers were employed by sub-contractors, and may frequently been excluded from safety and health programs provided to permanent employees; and (b) Supporting claims for compensation: The Energy Employees Occupational Illness Compensation Program Act (EEOICPA) requires dose reconstruction of radiation exposures for most workers who file a claim regarding cancer. The use of monitoring data for radiation to qualify a worker means that there should be valid and complete monitoring during the work time at the various nuclear plants or workers may be unfairly denied compensation. The worker interviews from Paducah and Portsmouth were considered especially useful because these sites were designated as Special Exposure Cohorts (SECs) and the workers did not have to have a dose reconstruction to qualify for compensation for most cancers. Therefore, their responses were less likely to be affected by compensation concerns. Interview questions included asking for information regarding whether monitoring was performed, how

  13. Space Radiation

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2006-01-01

    Astronauts receive the highest occupational radiation exposure. Effective protections are needed to ensure the safety of astronauts on long duration space missions. Increased cancer morbidity or mortality risk in astronauts may be caused by occupational radiation exposure. Acute and late radiation damage to the central nervous system (CNS) may lead to changes in motor function and behavior, or neurological disorders. Radiation exposure may result in degenerative tissue diseases (non-cancer or non-CNS) such as cardiac, circulatory, or digestive diseases, as well as cataracts. Acute radiation syndromes may occur due to occupational radiation exposure.

  14. Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion

    NASA Astrophysics Data System (ADS)

    Cui, Xia; Yuan, Guang-wei; Shen, Zhi-jun

    2016-05-01

    Motivated by providing well-behaved fully discrete schemes in practice, this paper extends the asymptotic analysis on time integration methods for non-equilibrium radiation diffusion in [2] to space discretizations. Therein studies were carried out on a two-temperature model with Larsen's flux-limited diffusion operator, both the implicitly balanced (IB) and linearly implicit (LI) methods were shown asymptotic-preserving. In this paper, we focus on asymptotic analysis for space discrete schemes in dimensions one and two. First, in construction of the schemes, in contrast to traditional first-order approximations, asymmetric second-order accurate spatial approximations are devised for flux-limiters on boundary, and discrete schemes with second-order accuracy on global spatial domain are acquired consequently. Then by employing formal asymptotic analysis, the first-order asymptotic-preserving property for these schemes and furthermore for the fully discrete schemes is shown. Finally, with the help of manufactured solutions, numerical tests are performed, which demonstrate quantitatively the fully discrete schemes with IB time evolution indeed have the accuracy and asymptotic convergence as theory predicts, hence are well qualified for both non-equilibrium and equilibrium radiation diffusion.

  15. Radiative heating of interstellar grains falling toward the solar nebula: 1-D diffusion calculations.

    PubMed

    Simonelli, D P; Pollack, J B; McKay, C P

    1997-02-01

    As the dense molecular cloud that was the precursor of our Solar System was collapsing to form a protosun and the surrounding solar-nebula accretion disk, infalling interstellar grains were heated much more effectively by radiation from the forming protosun than by radiation from the disk's accretion shock. Accordingly, we have estimated the temperatures experienced by these infalling grains using radiative diffusion calculations whose sole energy source is radiation from the protosun. Although the calculations are 1-dimensional, they make use of 2-D, cylindrically symmetric models of the density structure of a collapsing, rotating cloud. The temperature calculations also utilize recent models for the composition and radiative properties of interstellar grains (Pollack et al. 1994. Astrophys. J. 421, 615-639), thereby allowing us to estimate which grain species might have survived, intact, to the disk accretion shock and what accretion rates and molecular-cloud rotation rates aid that survival. Not surprisingly, we find that the large uncertainties in the free parameter values allow a wide range of grain-survival results: (1) For physically plausible high accretion rates or low rotation rates (which produce small accretion disks), all of the infalling grain species, even the refractory silicates and iron, will vaporize in the protosun's radiation field before reaching the disk accretion shock. (2) For equally plausible low accretion rates or high rotation rates (which produce large accretion disks), all non-ice species, even volatile organics, will survive intact to the disk accretion shock. These grain-survival conclusions are subject to several limitations which need to be addressed by future, more sophisticated radiative-transfer models. Nevertheless, our results can serve as useful inputs to models of the processing that interstellar grains undergo at the solar nebula's accretion shock, and thus help address the broader question of interstellar inheritance in

  16. Diffusion of fission products and radiation damage in SiC

    NASA Astrophysics Data System (ADS)

    Malherbe, Johan B.

    2013-11-01

    A major problem with most of the present nuclear reactors is their safety in terms of the release of radioactivity into the environment during accidents. In some of the future nuclear reactor designs, i.e. Generation IV reactors, the fuel is in the form of coated spherical particles, i.e. TRISO (acronym for triple coated isotropic) particles. The main function of these coating layers is to act as diffusion barriers for radioactive fission products, thereby keeping these fission products within the fuel particles, even under accident conditions. The most important coating layer is composed of polycrystalline 3C-SiC. This paper reviews the diffusion of the important fission products (silver, caesium, iodine and strontium) in SiC. Because radiation damage can induce and enhance diffusion, the paper also briefly reviews damage created by energetic neutrons and ions at elevated temperatures, i.e. the temperatures at which the modern reactors will operate, and the annealing of the damage. The interaction between SiC and some fission products (such as Pd and I) is also briefly discussed. As shown, one of the key advantages of SiC is its radiation hardness at elevated temperatures, i.e. SiC is not amorphized by neutrons or bombardment at substrate temperatures above 350 °C. Based on the diffusion coefficients of the fission products considered, the review shows that at the normal operating temperatures of these new reactors (i.e. less than 950 °C) the SiC coating layer is a good diffusion barrier for these fission products. However, at higher temperatures the design of the coated particles needs to be adapted, possibly by adding a thin layer of ZrC.

  17. A Monte Carlo synthetic-acceleration method for solving the thermal radiation diffusion equation

    NASA Astrophysics Data System (ADS)

    Evans, Thomas M.; Mosher, Scott W.; Slattery, Stuart R.; Hamilton, Steven P.

    2014-02-01

    We present a novel synthetic-acceleration-based Monte Carlo method for solving the equilibrium thermal radiation diffusion equation in three spatial dimensions. The algorithm performance is compared against traditional solution techniques using a Marshak benchmark problem and a more complex multiple material problem. Our results show that our Monte Carlo method is an effective solver for sparse matrix systems. For solutions converged to the same tolerance, it performs competitively with deterministic methods including preconditioned conjugate gradient and GMRES. We also discuss various aspects of preconditioning the method and its general applicability to broader classes of problems.

  18. Evaluating a three dimensional model of diffuse photosynthetically active radiation in maize canopies

    NASA Astrophysics Data System (ADS)

    Wang, Xiping; Guo, Yan; Li, Baoguo; Wang, Xiyong; Ma, Yuntao

    2006-07-01

    Diffuse photosynthetically active radiation (DPAR) is important during overcast days and for plant parts shaded from the direct beam radiation. Simulation of DPAR interception by individual plant parts of a canopy, separately from direct beam photosynthetically active radiation (PAR), may give important insights into plant ecology. This paper presents a model to simulate the interception of DPAR in plant canopies. A sub-model of a virtual maize canopy was reconstructed. Plant surfaces were represented as small triangular facets positioned according to three-dimensionally (3D) digitized data collected in the field. Then a second sub-model to simulate the 3D DPAR distribution in the canopy was developed by dividing the sky hemisphere into a grid of fine cells that allowed for the anisotropic distribution of DPAR over the sky hemisphere. This model, DSHP (Dividing Sky Hemisphere with Projecting), simulates which DSH (Divided Sky Hemisphere) cells are directly visible from a facet in the virtual canopy, i.e. not obscured by other facets. The DPAR reaching the center of a facet was calculated by summing the amounts of DPAR present in every DSH cell. The distribution of DPAR in a canopy was obtained from the calculated DPARs intercepted by all facets in the canopy. This DSHP model was validated against DPAR measurements made in an actual maize ( Zea mays L.) canopy over selected days during the early filling stage. The simulated and measured DPAR at different canopy depths showed a good agreement with a R 2 equaling 0.78 ( n=120).

  19. Installation of a variable-angle spectrometer system for monitoring diffuse and global solar radiation

    NASA Astrophysics Data System (ADS)

    Ormachea, O.; Abrahamse, A.; Tolavi, N.; Romero, F.; Urquidi, O.; Pearce, J. M.; Andrews, R.

    2013-11-01

    We report on the design and installation of a spectrometer system for monitoring solar radiation in Cochabamba, Bolivia. Both the light intensity and the spectral distribution affect the power produced by a photovoltaic device. Local variations in the solar spectrum (especially compared to the AM1.5 standard) may have important implications for device optimization and energy yield estimation. The spectrometer system, based on an Ocean Optics USB4000 (300-900nm) spectrometer, was designed to increase functionality. Typically systems only record the global horizontal radiation. Our system moves a fiber-optic cable 0-90 degrees and takes measurements in 9 degree increments. Additionally, a shadow band allows measurement of the diffuse component of the radiation at each position. The electronic controls utilize an Arduino UNO microcontroller to synchronizes the movement of two PAP bipolar (stepper) motors with the activation of the spectrometer via an external trigger. The spectrometer was factory calibrated for wavelength and calibrated for absolute irradiance using a Sellarnet SL1-Cal light source. We present preliminary results from data taken March-June, 2013, and comment on implications for PV devices in Cochabamba.

  20. Radiation Exposure

    MedlinePlus

    Radiation is energy that travels in the form of waves or high-speed particles. It occurs naturally in sunlight. Man-made radiation is used in X-rays, nuclear weapons, nuclear power plants and cancer treatment. If you are exposed to small amounts of radiation over a ...

  1. Modeling Heat Conduction and Radiation Transport with the Diffusion Equation in NIF ALE-AMR

    SciTech Connect

    Fisher, A C; Bailey, D S; Kaiser, T B; Gunney, B N; Masters, N D; Koniges, A E; Eder, D C; Anderson, R W

    2009-10-06

    The ALE-AMR code developed for NIF is a multi-material hydro-code that models target assembly fragmentation in the aftermath of a shot. The combination of ALE (Arbitrary Lagrangian Eulerian) hydro with AMR (Adaptive Mesh Refinement) allows the code to model a wide range of physical conditions and spatial scales. The large range of temperatures encountered in the NIF target chamber can lead to significant fluxes of energy due to thermal conduction and radiative transport. These physical effects can be modeled approximately with the aid of the diffusion equation. We present a novel method for the solution of the diffusion equation on a composite mesh in order to capture these physical effects.

  2. Simulation of energy-dependent electron diffusion processes in the Earth's outer radiation belt

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Li, W.; Thorne, R. M.; Nishimura, Y.; Zhang, X.-J.; Reeves, G. D.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Henderson, M. G.; Spence, H. E.; Baker, D. N.; Blake, J. B.; Fennell, J. F.; Angelopoulos, V.

    2016-05-01

    The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth's radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron Proton Telescope (REPT) instruments on board the Van Allen Probes exhibit a rapid enhancement followed by a slow diffusive movement in differential energy fluxes, and the radial extent to which electrons can penetrate into depends on energy with closer penetration toward the Earth at lower energies than higher energies. We incorporate radial diffusion, local acceleration, and loss processes due to whistler mode wave observations to perform a 3-D diffusion simulation. Our simulation results demonstrate that chorus waves cause electron flux increase by more than 1 order of magnitude during the first 18 h, and the subsequent radial extents of the energetic electrons during the storm recovery phase are determined by the coupled radial diffusion and the pitch angle scattering by EMIC waves and plasmaspheric hiss. The radial diffusion caused by ULF waves and local plasma wave scattering are energy dependent, which lead to the observed electron flux variations with energy dependences. This study suggests that plasma wave distributions in the inner magnetosphere are crucial for the energy-dependent intrusions of several hundred keV to several MeV electrons.

  3. Monte-Carlo Radiative Transfer Model of the Diffuse Galactic Light

    NASA Astrophysics Data System (ADS)

    Seon, Kwang-Il

    2015-02-01

    Monte-Carlo radiative models of the diffuse Galactic light (DGL) in our Galaxy are calcu-lated using the dust radiative transfer code MoCafe, which is three-dimensional and takes full account of multiple scattering. The code is recently updated to use a fast voxel traversal algorithm, which has dramatically increased the computing speed. The radiative transfer models are calculated with the gen-erally accepted dust scale-height of 0.1 kpc. The stellar scale-heights are assumed to be 0.1 or 0.35 kpc, appropriate for far-ultraviolet (FUV) and optical wavelengths, respectively. The face-on optical depth, measured perpendicular to the Galactic plane, is also varied from 0.2 to 0.6, suitable to the optical to FUV wavelengths, respectively. We find that the DGL at high Galactic latitudes is mostly due to backward or large-angle scattering of starlight originating from the local stars within a radial distance of r < 0.5 kpc from the Earth. On the other hand, the DGL measured in the Galactic plane is mostly due to stars at a distance range that corresponds to an optical depth of -1 measured from the Earth. Therefore, the low-latitude DGL at the FUV wavelength band would be mostly caused by the stars located at a distance of r . 0.5 kpc and the optical DGL near the Galactic plane mainly originates from stars within a distance range of 1 . r . 2 kpc. We also calculate the radiative transfer models in a clumpy two-phase medium. The clumpy two-phase models provide lower intensities at high Galactic latitudes compared to the uniform density models, because of the lower effective optical depth in clumpy media. However, no significant difference in the intensity at the Galactic plane is found.

  4. Radiation Proctopathy

    PubMed Central

    Grodsky, Marc B.; Sidani, Shafik M.

    2015-01-01

    Radiation therapy is a widely utilized treatment modality for pelvic malignancies, including prostate cancer, rectal cancer, and cervical cancer. Given its fixed position in the pelvis, the rectum is at a high risk for injury secondary to ionizing radiation. Despite advances made in radiation science, up to 75% of the patients will suffer from acute radiation proctitis and up to 20% may experience chronic symptoms. Symptoms can be variable and include diarrhea, bleeding, incontinence, and fistulization. A multitude of treatment options exist. This article summarizes the latest knowledge relating to radiation proctopathy focusing on the vast array of treatment options. PMID:26034407

  5. Radiation proctopathy.

    PubMed

    Grodsky, Marc B; Sidani, Shafik M

    2015-06-01

    Radiation therapy is a widely utilized treatment modality for pelvic malignancies, including prostate cancer, rectal cancer, and cervical cancer. Given its fixed position in the pelvis, the rectum is at a high risk for injury secondary to ionizing radiation. Despite advances made in radiation science, up to 75% of the patients will suffer from acute radiation proctitis and up to 20% may experience chronic symptoms. Symptoms can be variable and include diarrhea, bleeding, incontinence, and fistulization. A multitude of treatment options exist. This article summarizes the latest knowledge relating to radiation proctopathy focusing on the vast array of treatment options. PMID:26034407

  6. Combination of magnetic resonance imaging and diffuse optical spectroscopy to predict radiation response in the breast: an exploratory pilot study

    NASA Astrophysics Data System (ADS)

    Klifa, C.; Hattangadi, J.; Watkins, M.; Li, A.; Sakata, T.; Tromberg, B.; Hylton, N.; Park, C.

    2007-02-01

    Radiation therapy (RT) is a standard treatment after lumpectomy for breast cancer, involving a typical course of approximately 6-7 weeks of daily treatment. Many women find this cumbersome and costly, and therefore many are left with the option of mastectomy. Many groups are now investigating novel ways to deliver RT, by using different techniques and shortening the course of treatment. However, the efficacy and side effects of these strategies are not known. In this project, we wish to develop noninvasive imaging tools that would allow us to measure radiation dose effects in women with breast cancer. We hope this will lead to new ways to identify individuals who may not need radiation therapy, who may safely be treated with new accelerated techniques, or who should be treated with the standard radiation therapy approach. We propose to study the effect of radiation therapy using a combination of two imaging modalities: 1) magnetic resonance imaging (MRI) which will provide detailed information on breast structures and blood vessels and 2) near infra-red diffuse optical spectroscopy (DOS), which measures local biologic properties of breast tissue. Our hypothesis is that by using a combination of modalities we will be able to better characterize radiation effects in breast tissue, by measuring differences between the radiated and non-irradiated breast. The development of novel non-invasive tools providing information about how individuals respond to radiation therapy can lead to important improvement of radiation treatment, and ultimately help guide individualized treatment programs in the future.

  7. New self-similar radiation-hydrodynamics solutions in the high-energy density, equilibrium diffusion limit

    NASA Astrophysics Data System (ADS)

    Lane, Taylor K.; McClarren, Ryan G.

    2013-09-01

    This work presents semi-analytic solutions to a radiation-hydrodynamics problem of a radiation source driving an initially cold medium. Our solutions are in the equilibrium diffusion limit, include material motion and allow for radiation-dominated situations where the radiation energy is comparable to (or greater than) the material internal energy density. As such, this work is a generalization of the classical Marshak wave problem that assumes no material motion and that the radiation energy is negligible. Including radiation energy density in the model serves to slow down the wave propagation. The solutions provide insight into the impact of radiation energy and material motion, as well as present a novel verification test for radiation transport packages. As a verification test, the solution exercises the radiation-matter coupling terms and their v/c treatment without needing a hydrodynamics solve. An example comparison between the self-similar solution and a numerical code is given. Tables of the self-similar solutions are also provided.

  8. Antibacterial properties of Au doped polycarbonate synthesized by gamma radiation assisted diffusion method

    NASA Astrophysics Data System (ADS)

    Hareesh, K.; Deore, Avinash V.; Dahiwale, S. S.; Sanjeev, Ganesh; Kanjilal, D.; Ojha, Sunil; Dhole, N. A.; Kodam, K. M.; Bhoraskar, V. N.; Dhole, S. D.

    2015-07-01

    Gold (Au)-Polycarbonate (PC) matrix was prepared by gamma radiation assisted diffusion of Au nanoparticles in PC matrix. UV-Visible spectroscopy showed the surface plasmon resonance around 550 nm which corresponds to Au and this peak shift towards lower wavelength i.e. blue shift indicating the decrease in particle size of Au. Rutherford Backscattering (RBS) experiment confirmed the diffusion of Au in PC and depth of diffusion is found to be around 0.85 μm. X-ray Diffractogram (XRD) results also revealed the diffusion of Au in PC where the peak observed at 2θ∼38.29° which correspond to the FCC structure. Scanning Electron Microscope (SEM) images showed the hexagonal shaped Au nanoparticles and average particle size is found to be around 110 nm. These samples also showed anti-bacterial properties with both gram positive and gram negative bacteria's and revealed the inhibition of the overall growth of the bacteria with gamma dose.

  9. Racial Differences in Diffusion of Intensity-Modulated Radiation Therapy for Localized Prostate Cancer.

    PubMed

    Cobran, Ewan K; Chen, Ronald C; Overman, Robert; Meyer, Anne-Marie; Kuo, Tzy-Mey; O'Brien, Jonathon; Sturmer, Til; Sheets, Nathan C; Goldin, Gregg H; Penn, Dolly C; Godley, Paul A; Carpenter, William R

    2016-09-01

    Intensity-modulated radiation therapy (IMRT), an innovative treatment option for prostate cancer, has rapidly diffused over the past decade. To inform our understanding of racial disparities in prostate cancer treatment and outcomes, this study compared diffusion of IMRT in African American (AA) and Caucasian American (CA) prostate cancer patients during the early years of IMRT diffusion using the Surveillance, Epidemiology and End Results (SEER)-Medicare linked database. A retrospective cohort of 947 AA and 10,028 CA patients diagnosed with localized prostate cancer from 2002 through 2006, who were treated with either IMRT or non-IMRT as primary treatment within 1 year of diagnoses was constructed. Logistic regression was used to examine potential differences in diffusion of IMRT in AA and CA patients, while adjusting for socioeconomic and clinical covariates. A significantly smaller proportion of AA compared with CA patients received IMRT for localized prostate cancer (45% vs. 53%, p < .0001). Racial differences were apparent in multivariable analysis though did not achieve statistical significance, as time and factors associated with race (socioeconomic, geographic, and tumor related factors) explained the preponderance of variance in use of IMRT. Further research examining improved access to innovative cancer treatment and technologies is essential to reducing racial disparities in cancer care.

  10. Radiation Chemistry

    NASA Astrophysics Data System (ADS)

    Wojnárovits, L.

    Ionizing radiation causes chemical changes in the molecules of the interacting medium. The initial molecules change to new molecules, resulting in changes of the physical, chemical, and eventually biological properties of the material. For instance, water decomposes to its elements H2 and O2. In polymers, degradation and crosslinking take place. In biopolymers, e.g., DNS strand breaks and other alterations occur. Such changes are to be avoided in some cases (radiation protection), however, in other cases they are used for technological purposes (radiation processing). This chapter introduces radiation chemistry by discussing the sources of ionizing radiation (radionuclide sources, machine sources), absorption of radiation energy, techniques used in radiation chemistry research, and methods of absorbed energy (absorbed dose) measurements. Radiation chemistry of different classes of inorganic (water and aqueous solutions, inorganic solids, ionic liquids (ILs)) and organic substances (hydrocarbons, halogenated compounds, polymers, and biomolecules) is discussed in concise form together with theoretical and experimental backgrounds. An essential part of the chapter is the introduction of radiation processing technologies in the fields of polymer chemistry, food processing, and sterilization. The application of radiation chemistry to nuclear technology and to protection of environment (flue gas treatment, wastewater treatment) is also discussed.

  11. Measurements and Modeling of Soot Formation and Radiation in Microgravity Jet Diffusion Flames. Volume 4

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Tong, Li; Greenberg, Paul S.

    1996-01-01

    This is a computational and experimental study for soot formation and radiative heat transfer in jet diffusion flames under normal gravity (1-g) and microgravity (0-g) conditions. Instantaneous soot volume fraction maps are measured using a full-field imaging absorption technique developed by the authors. A compact, self-contained drop rig is used for microgravity experiments in the 2.2-second drop tower facility at NASA Lewis Research Center. On modeling, we have coupled flame structure and soot formation models with detailed radiation transfer calculations. Favre-averaged boundary layer equations with a k-e-g turbulence model are used to predict the flow field, and a conserved scalar approach with an assumed Beta-pdf are used to predict gaseous species mole fraction. Scalar transport equations are used to describe soot volume fraction and number density distributions, with formation and oxidation terms modeled by one-step rate equations and thermophoretic effects included. An energy equation is included to couple flame structure and radiation analyses through iterations, neglecting turbulence-radiation interactions. The YIX solution for a finite cylindrical enclosure is used for radiative heat transfer calculations. The spectral absorption coefficient for soot aggregates is calculated from the Rayleigh solution using complex refractive index data from a Drude- Lorentz model. The exponential-wide-band model is used to calculate the spectral absorption coefficient for H20 and C02. It is shown that when compared to results from true spectral integration, the Rosseland mean absorption coefficient can provide reasonably accurate predictions for the type of flames studied. The soot formation model proposed by Moss, Syed, and Stewart seems to produce better fits to experimental data and more physically sound than the simpler model by Khan et al. Predicted soot volume fraction and temperature results agree well with published data for a normal gravity co-flow laminar

  12. Soot formation, transport, and radiation in unsteady diffusion flames : LDRD final report.

    SciTech Connect

    Suo-Anttila, Jill Marie; Williams, Timothy C.; Shaddix, Christopher R.; Jensen, Kirk A.; Blevins, Linda Gail; Kearney, Sean Patrick; Schefer, Robert W.

    2004-10-01

    Fires pose the dominant risk to the safety and security of nuclear weapons, nuclear transport containers, and DOE and DoD facilities. The thermal hazard from these fires primarily results from radiant emission from high-temperature flame soot. Therefore, it is necessary to understand the local transport and chemical phenomena that determine the distributions of soot concentration, optical properties, and temperature in order to develop and validate constitutive models for large-scale, high-fidelity fire simulations. This report summarizes the findings of a Laboratory Directed Research and Development (LDRD) project devoted to obtaining the critical experimental information needed to develop such constitutive models. A combination of laser diagnostics and extractive measurement techniques have been employed in both steady and pulsed laminar diffusion flames of methane, ethylene, and JP-8 surrogate burning in air. For methane and ethylene, both slot and coannular flame geometries were investigated, as well as normal and inverse diffusion flame geometries. For the JP-8 surrogate, coannular normal diffusion flames were investigated. Soot concentrations, polycyclic aromatic hydrocarbon (PAH) laser-induced fluorescence (LIF) signals, hydroxyl radical (OH) LIF, acetylene and water vapor concentrations, soot zone temperatures, and the velocity field were all successfully measured in both steady and unsteady versions of these various flames. In addition, measurements were made of the soot microstructure, soot dimensionless extinction coefficient (&), and the local radiant heat flux. Taken together, these measurements comprise a unique, extensive database for future development and validation of models of soot formation, transport, and radiation.

  13. Derivation and Solution of Multifrequency Radiation Diffusion Equations for Homogeneous Refractive Lossy Media

    SciTech Connect

    Shestakov, A I; Vignes, R M; Stolken, J S

    2010-01-05

    Starting from the radiation transport equation for homogeneous, refractive lossy media, we derive the corresponding time-dependent multifrequency diffusion equations. Zeroth and first moments of the transport equation couple the energy density, flux and pressure tensor. The system is closed by neglecting the temporal derivative of the flux and replacing the pressure tensor by its diagonal analogue. The system is coupled to a diffusion equation for the matter temperature. We are interested in modeling annealing of silica (SiO{sub 2}). We derive boundary conditions at a planar air-silica interface taking account of reflectivities. The spectral dimension is discretized into a finite number of intervals leading to a system of multigroup diffusion equations. Three simulations are presented. One models cooling of a silica slab, initially at 2500 K, for 10 s. The other two are 1D and 2D simulations of irradiating silica with a CO{sub 2} laser, {lambda} = 10.59 {micro}m. In 2D, we anneal a disk (radius = 0.4, thickness = 0.4 cm) with a laser, Gaussian profile (r{sub 0} = 0.5 mm for 1/e decay).

  14. Radiator technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    1993-01-01

    Radiator technology is discussed in the context of the Civilian Space Technology Initiative's (CSTI's) high capacity power-thermal management project. The CSTI project is a subset of a project to develop a piloted Mars nuclear electric propulsion (NEP) vehicle. The following topics are presented in vugraph form: advanced radiator concepts; heat pipe codes and testing; composite materials; radiator design and integration; and surface morphology.

  15. Hawking radiation

    NASA Astrophysics Data System (ADS)

    Parentani, Renaud; Spindel, Philippe

    2011-12-01

    Hawking radiation is the thermal radiation predicted to be spontaneously emitted by black holes. It arises from the steady conversion of quantum vacuum fluctuations into pairs of particles, one of which escaping at infinity while the other is trapped inside the black hole horizon. It is named after the physicist Stephen Hawking who derived its existence in 1974. This radiation reduces the mass of black holes and is therefore also known as black hole evaporation.

  16. The heating of diffuse dust at large scale in AGNs: a radiative transfer model study

    NASA Astrophysics Data System (ADS)

    Fritz, Jacopo; De Looze, Ilse; Baes, Maarten; Camps, Peter; Saftly, Waad; Pérez Villegas, Angeles; Rivaz-Sánchez, Mariana; Stalevski, Marko; Hatziminaoglou, Evanthia

    2016-08-01

    The panchromatic, broad-band, spectral energy distribution (SED) of galaxies is usually modelled by combining together the theoretical spectra of its emission components: stars in the optical/near-infrared, and thermal emission by dust -heated by the stellar radiation field- in the infrared. SED fitting codes such as MAGPHYS and CIGALE are capable to automatically fit observed multiwavelength data of galaxies, providing a set of galactic properties as a result. The situation gets somehow complicated when Active Galaxies (both local, low-luminosity Seyferts, and the bright QSOs) are considered. Very often, in fact, their observed near- and mid-infrared (NIR and MIR, respectively) SED is dominated by the emission of hot dust located close to the supermassive, active black hole which powers the bulk of their luminosity. Hence, a third component must be added to the set of theoretical SEDs: that of the molecular torus which surrounds the disk of gas accreting onto the supermassive black hole. The standard way to do it, is to simply add such models to the observed SED, until the MIR gap is filled. This implicitly assumes that the AGN has no influence whatsoever on the dust properties on scales larger than that of the torus (~few pc). I am investigating whether this assumption is valid, in which cases, and under which circumstances the AGN provides a non negligible contribution to the interstellar radiation field heating the diffuse dust in galaxies. This is accomplished by means of radiative transfer models which take into account the most relevant characteristics of the problem: the relative dust-stars distribution and the very wide range of spatial scales involved.

  17. Study of a non-diffusing radiochromic gel dosimeter for 3D radiation dose imaging

    NASA Astrophysics Data System (ADS)

    Marsden, Craig Michael

    2000-12-01

    This thesis investigates the potential of a new radiation gel dosimeter, based on nitro-blue tetrazolium (NBTZ) suspended in a gelatin mold. Unlike all Fricke based gel dosimeters this dosimeter does not suffer from diffusive loss of image stability. Images are obtained by an optical tomography method. Nitro blue tetrazolium is a common biological indicator that when irradiated in an aqueous medium undergoes reduction to a highly colored formazan, which has an absorbance maximum at 525nm. Tetrazolium is water soluble while the formazan product is insoluble. The formazan product sticks to the gelatin matrix and the dose image is maintained for three months. Methods to maximize the sensitivity of the system were evaluated. It was found that a chemical detergent, Triton X-100, in combination with sodium formate, increased the dosimeter sensitivity significantly. An initial G-value of formazan production for a dosimeter composed of 1mM NBTZ, gelatin, and water was on the order of 0.2. The addition of Triton and formate produced a G-value in excess of 5.0. The effects of NBTZ, triton, formate, and gel concentration were all investigated. All the gels provided linear dose vs. absorbance plots for doses from 0 to >100 Gy. It was determined that gel concentration had minimal if any effect on sensitivity. Sensitivity increased slightly with increasing NBTZ concentration. Triton and formate individually and together provided moderate to large increases in dosimeter sensitivity. The dosimeter described in this work can provide stable 3D radiation dose images for all modalities of radiation therapy equipment. Methods to increase sensitivity are developed and discussed.

  18. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

    SciTech Connect

    B. Philip; Z. Wang; M.A. Berrill; M. Birke; M. Pernice

    2014-04-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton–Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  19. A new, coupled transport-diffusion method for radiative transfer calculations

    SciTech Connect

    Wollaber, A. B.; Warsa, J. S.

    2013-07-01

    We derive and present a new frequency- and angle-integrated low-order system of equations designed to enhance the accuracy of a coupled, high-order (transport) solution of the thermal radiative transfer equations. In particular, our new low-order system is designed to use intensity-weighted opacities and anisotropic diffusion coefficients generated by a solution of the Implicit Monte Carlo (IMC) equations in order to predict the spatial dependence of the material temperature and radiation energies in the ensuing time cycle. The predicted temperature solution can then be exploited to generate appropriately time-centered opacities, specific heats, and Planck emission spectra for the upcoming IMC solution. Additionally, the relatively inexpensive solution of the low-order system can be iteratively solved to recommend an adaptive time step size before the IMC solution is computed. A test implementation has been implemented using existing software available from the Jayenne and Capsaicin projects at Los Alamos National Laboratory. We present initial results from a new driver code that has integrated these stochastic and deterministic software packages. (authors)

  20. Directional Degradation of Spectralon Diffuser Under Ionizing Radiation for Calibration of Space-Based Sensors

    NASA Technical Reports Server (NTRS)

    Georgiev, G. T.; Butler, J. J.; Kowalewski, M. G.; Ding, L.

    2012-01-01

    Assessment of the effect of Vacuum Ultra Violet (VUV) irradiation on the Bidirectional Reflectance Distribution Function (BRDF) of Spectralon is presented in this paper. The sample was a 99% white Spectralon calibration standard irradiated with VUV source positioned at 60o off the irradiation direction for a total of 20 hours. The BRDF before and after VUV irradiation was measured and compared at number of wavelengths in the UV, VIS and IR. Non-isotropic directional degradation of Spectralon diffuser under ionizing radiation was detected at different BRDF measurement geometries primarily at UV spectral range. The 8o directional/hemispherical reflectance of the same sample was also measured and compared from 200nm to 2500nm. Index Terms BRDF, Reflectance, Multiangular, Spectralon, Remote Sensing

  1. Solution of the nonlinear multifrequency radiation diffusion equations using pseudo transient continuation

    SciTech Connect

    Shestakov, A

    2004-02-05

    Computer codes simulating high energy density physics consist of modules for distinct physical processes, e.g., compressible hydrodynamics and radiation transport. For the latter, one model assumes tight coupling between radiation and matter. The dependent variables are the spectral radiation energy density u(x,v,t) and the matter temperature T(x,t), where x, v, and T denote position, frequency, and time, respectively.

  2. Angularly Adaptive P1 - Double P0 Flux-Limited Diffusion Solutions of Non-Equilibrium Grey Radiative Transfer Problems

    SciTech Connect

    Brantley, P S

    2006-08-08

    The double spherical harmonics angular approximation in the lowest order, i.e. double P{sub 0} (DP{sub 0}), is developed for the solution of time-dependent non-equilibrium grey radiative transfer problems in planar geometry. Although the DP{sub 0} diffusion approximation is expected to be less accurate than the P{sub 1} diffusion approximation at and near thermodynamic equilibrium, the DP{sub 0} angular approximation can more accurately capture the complicated angular dependence near a non-equilibrium radiation wave front. In addition, the DP{sub 0} approximation should be more accurate in non-equilibrium optically thin regions where the positive and negative angular domains are largely decoupled. We develop an adaptive angular technique that locally uses either the DP{sub 0} or P{sub 1} flux-limited diffusion approximation depending on the degree to which the radiation and material fields are in thermodynamic equilibrium. Numerical results are presented for two test problems due to Su and Olson and to Ganapol and Pomraning for which semi-analytic transport solutions exist. These numerical results demonstrate that the adaptive P{sub 1}-DP{sub 0} diffusion approximation can yield improvements in accuracy over the standard P{sub 1} diffusion approximation, both without and with flux-limiting, for non-equilibrium grey radiative transfer.

  3. Angularly Adaptive P1-Double P0 Flux-Limited Diffusion Solutions of Non-Equilibrium Grey Radiative Transfer Problems

    SciTech Connect

    Brantley, P S

    2005-12-13

    The double spherical harmonics angular approximation in the lowest order, i.e. double P{sub 0} (DP{sub 0}), is developed for the solution of time-dependent non-equilibrium grey radiative transfer problems in planar geometry. Although the DP{sub 0} diffusion approximation is expected to be less accurate than the P{sub 1} diffusion approximation at and near thermodynamic equilibrium, the DP{sub 0} angular approximation can more accurately capture the complicated angular dependence near a non-equilibrium radiation wave front. In addition, the DP{sub 0} approximation should be more accurate in non-equilibrium optically thin regions where the positive and negative angular domains are largely decoupled. We develop an adaptive angular technique that locally uses either the DP{sub 0} or P{sub 1} flux-limited diffusion approximation depending on the degree to which the radiation and material fields are in thermodynamic equilibrium. Numerical results are presented for two test problems due to Su and Olson and to Ganapol and Pomraning for which semi-analytic transport solutions exist. These numerical results demonstrate that the adaptive P{sub 1}-DP{sub 0} diffusion approximation can yield improvements in accuracy over the standard P{sub 1} diffusion approximation, both without and with flux-limiting, for non-equilibrium grey radiative transfer.

  4. Modeling the impacts of solar radiation partitioning into direct and diffuse fractions for the global water cycle

    NASA Astrophysics Data System (ADS)

    Oliveira, Paulo J. C.; Davin, Edouard L.; Seneviratne, Sonia I.

    2010-05-01

    Incident solar radiation at the Earth's surface affects plant photosynthesis and evapotranspiration, and consequently the global water budget. Observations from 1960-1990's across the Northern Hemisphere suggest that increased aerosol loadings from industrialization led not only to a decline in the intensity of solar radiation at the surface (global dimming), but also to a higher fraction of scattered light, which enhanced plant photosynthesis and the land carbon sink, with probable concurrent impacts on the water cycle. Thus, we used the NCAR Community Land Model (version 3.5) to perform global offline simulations and study the effects of the imposition of changes to radiation partitioning in diffuse and direct fractions on trends in evapotranspiration and runoff. We find that most modeled land surface variables respond to an increased-diffuse simulation where the relative fraction of radiation is changed globally at a high rate of increased diffuse as reported by some observation stations. Increased-diffuse partitioning causes a rise in total ET in all regions, an effect of opposite sign but smaller absolute value than that resulting from global dimming. Evapotranspiration rises by over 0.5 watt/m2 per decade in the tropics, due to increased shaded leaf stomatal conductance, with an opposite effect noted elsewhere due to lower ground evaporation. In the eastern U.S.A. and the Amazon basin, decadal trend anomalies in evapotranspiration for increased-diffuse radiation change reach 25-30% the absolute magnitude of those caused by dimming. Reductions to river runoff are modest nearly everywhere outside the Amazon. Understanding the mechanisms behind the interactions between solar radiation and the various land-surface components will help the development of climate models, improving predictions, in particular regarding changes in terrestrial hydrologic resources.

  5. Pitch-angle diffusion of electrons through growing and propagating along a magnetic field electromagnetic wave in Earth's radiation belts

    SciTech Connect

    Choi, C.-R. Dokgo, K.; Min, K.-W.; Woo, M.-H.; Choi, E.-J.; Hwang, J.; Park, Y.-D.; Lee, D.-Y.

    2015-06-15

    The diffusion of electrons via a linearly polarized, growing electromagnetic (EM) wave propagating along a uniform magnetic field is investigated. The diffusion of electrons that interact with the growing EM wave is investigated through the autocorrelation function of the parallel electron acceleration in several tens of electron gyration timescales, which is a relatively short time compared with the bounce time of electrons between two mirror points in Earth's radiation belts. Furthermore, the pitch-angle diffusion coefficient is derived for the resonant and non-resonant electrons, and the effect of the wave growth on the electron diffusion is discussed. The results can be applied to other problems related to local acceleration or the heating of electrons in space plasmas, such as in the radiation belts.

  6. Measurements to Elucidate the Mechanism of Thermal and Radiation Enhanced Diffusion of Cesium, Europium, and Strontium in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Dwaraknath, Shyam S.

    Containment of fission products (FP) within the TRISO fuel particle is critical to the success of the very high temperature reactor (VHTR). Over sixty years of experience developing and testing this fuel has yet to identify the mechanism by which several key fission products (cesium, europium, and strontium) escape through intact SiC at temperatures between 900C and 1,300C. A novel diffusion couple was developed that was successful in making the first measurements of fission product diffusion in SiC. This design allows for the isolation of thermal diffusion and investigation of radiation enhanced diffusion using ion irradiation as a simulant for neutron radiation damage. The thermal and radiation enhanced diffusion of cesium, europium, and strontium were measured between 900°C and 1,300°C. The ion irradiation significantly enhanced the diffusion of all three fission products with enhancement factors ranging from 100x to 107x over thermal diffusion. All three fission products exhibits mixed diffusion kinetics between 900°C and 1,300°C under purely thermal conditions, and between 900°C and 1,100°C under ion irradiation. This indicates that both bulk and grain boundary diffusion are active mechanisms for fission product release. A defect reaction model indicates that fission product diffusion can occur on both the silicon or carbon sub-lattices. Comparison of cesium diffusion with the literature suggests that the best quality TRISO fuel should exhibit minimal cesium release and that cesium release is a good indicator of TRISO fuel failure.

  7. Understanding Radiation.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Radiation is a natural energy force that has been a part of the environment since the Earth was formed. It takes various forms, none of which can be smelled, tasted, seen, heard, or felt. Nevertheless, scientists know what it is, where it comes from, how to measure and detect it, and how it affects people. Cosmic radiation from outer space and…

  8. Radiation detector

    DOEpatents

    Fultz, B.T.

    1980-12-05

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  9. Radiation detector

    DOEpatents

    Fultz, Brent T.

    1983-01-01

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  10. Time-independent hybrid enrichment for finite element solution of transient conduction–radiation in diffusive grey media

    SciTech Connect

    Mohamed, M. Shadi; Seaid, Mohammed; Trevelyan, Jon; Laghrouche, Omar

    2013-10-15

    We investigate the effectiveness of the partition-of-unity finite element method for transient conduction–radiation problems in diffusive grey media. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary diffusion approximation to the radiation in grey media. The coupled equations are integrated in time using a semi-implicit method in the finite element framework. We show that for the considered problems, a combination of hyperbolic and exponential enrichment functions based on an approximation of the boundary layer leads to improved accuracy compared to the conventional finite element method. It is illustrated that this approach can be more efficient than using h adaptivity to increase the accuracy of the finite element method near the boundary walls. The performance of the proposed partition-of-unity method is analyzed on several test examples for transient conduction–radiation problems in two space dimensions.

  11. A case study of view-factor rectification procedures for diffuse-gray radiation enclosure computations

    NASA Technical Reports Server (NTRS)

    Taylor, Robert P.; Luck, Rogelio

    1995-01-01

    The view factors which are used in diffuse-gray radiation enclosure calculations are often computed by approximate numerical integrations. These approximately calculated view factors will usually not satisfy the important physical constraints of reciprocity and closure. In this paper several view-factor rectification algorithms are reviewed and a rectification algorithm based on a least-squares numerical filtering scheme is proposed with both weighted and unweighted classes. A Monte-Carlo investigation is undertaken to study the propagation of view-factor and surface-area uncertainties into the heat transfer results of the diffuse-gray enclosure calculations. It is found that the weighted least-squares algorithm is vastly superior to the other rectification schemes for the reduction of the heat-flux sensitivities to view-factor uncertainties. In a sample problem, which has proven to be very sensitive to uncertainties in view factor, the heat transfer calculations with weighted least-squares rectified view factors are very good with an original view-factor matrix computed to only one-digit accuracy. All of the algorithms had roughly equivalent effects on the reduction in sensitivity to area uncertainty in this case study.

  12. Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy

    DOE PAGESBeta

    Miller, Michael K.; Parish, Chad M.; Bei, Hongbin

    2014-12-18

    Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti–Y–O-enriched nanoclusters and solute clusters, which drives themore » mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. Furthermore, the result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures.« less

  13. Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy

    SciTech Connect

    Miller, Michael K.; Parish, Chad M.; Bei, Hongbin

    2014-12-18

    Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti–Y–O-enriched nanoclusters and solute clusters, which drives the mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. Furthermore, the result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures.

  14. Hourly global and diffuse radiation of Lagos, Nigeria-correlation with some atmospheric parameters

    SciTech Connect

    Chendo, M.A.C.; Maduekwe, A.A.L. )

    1994-03-01

    The influence of four climatic parameters on the hourly diffuse fraction in Lagos, Nigeria, has been studied. Using data for two years, new correlations were established. The standard error of the Liu and Jordan-type equation was reduced by 12.83% when solar elevation, ambient temperature, and relative humidity were used together as predictor variables for the entire data set. Ambient temperature and relative humidity proved to be very important variables for predicting the diffuse fraction of the solar radiation passing through the humid atmosphere of the coastal and tropic city of Lagos. Seasonal analysis carried out with the data showed improvements on the standard errors for the new seasonal correlations. In the case of the dry season, the improvement was 18.37%, whole for the wet season, this was 12.37%. Comparison with existing correlations showed that the performance of the one parameter model (namely K[sub t]), of Orgill and Hollands and Reindl, Beckman, and Duffie were very different from the Liu and Jordan-type model obtained for Lagos.

  15. Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy

    NASA Astrophysics Data System (ADS)

    Miller, M. K.; Parish, C. M.; Bei, H.

    2015-07-01

    Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti-Y-O-enriched nanoclusters and solute clusters, which drives the mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. The result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures.

  16. Impacts of diffuse radiation on light use efficiency across terrestrial ecosystems based on Eddy covariance observation in China.

    PubMed

    Huang, Kun; Wang, Shaoqiang; Zhou, Lei; Wang, Huimin; Zhang, Junhui; Yan, Junhua; Zhao, Liang; Wang, Yanfen; Shi, Peili

    2014-01-01

    Ecosystem light use efficiency (LUE) is a key factor of production models for gross primary production (GPP) predictions. Previous studies revealed that ecosystem LUE could be significantly enhanced by an increase on diffuse radiation. Under large spatial heterogeneity and increasing annual diffuse radiation in China, eddy covariance flux data at 6 sites across different ecosystems from 2003 to 2007 were used to investigate the impacts of diffuse radiation indicated by the cloudiness index (CI) on ecosystem LUE in grassland and forest ecosystems. Our results showed that the ecosystem LUE at the six sites was significantly correlated with the cloudiness variation (0.24 ≤ R(2) ≤ 0.85), especially at the Changbaishan temperate forest ecosystem (R(2) = 0.85). Meanwhile, the CI values appeared more frequently between 0.8 and 1.0 in two subtropical forest ecosystems (Qianyanzhou and Dinghushan) and were much larger than those in temperate ecosystems. Besides, cloudiness thresholds which were favorable for enhancing ecosystem carbon sequestration existed at the three forest sites, respectively. Our research confirmed that the ecosystem LUE at the six sites in China was positively responsive to the diffuse radiation, and the cloudiness index could be used as an environmental regulator for LUE modeling in regional GPP prediction.

  17. Radiation dosimeter

    DOEpatents

    Fox, Richard J.

    1983-01-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  18. Radiation dosimeter

    DOEpatents

    Fox, R.J.

    1981-09-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  19. Solar radiation on Mars

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Flood, Dennis J.

    1989-01-01

    Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. Presented here is a procedure and solar radiation related data from which the diurnally, hourly and daily variation of the global, direct beam and diffuse insolation on Mars are calculated. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.

  20. Radiation Hydrodynamics

    SciTech Connect

    Castor, J I

    2003-10-16

    The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is to distinguish

  1. Comptonization of diffuse ambient radiation by a relativistic jet: The source of gamma rays from blazars?

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rees, Martin J.

    1994-01-01

    Recent Energy Gamma Ray Experiment Telescope (EGRET) observations of blazars have revealed strong, variable gamma-ray fluxes with no signatures of gamma-ray absorption by pair production. This radiation probably originates from the inner parts of relativistic jets which are aimed nearly toward us. On sub-parsec scales, the jet will be pervaded by radiation from the broad-line region, as well as by photons from the central continuum source (some of which will be scattered by thermal plasma). In a frame moving with the relativistic outflow, the energy of this ambient radiation would be enhanced. This radiation would be Comptonized by both cold and relativistic electrons in the jet, yielding (in the observer's frame) a collimated beam of X-rays and gamma rays. On the assumption that this process dominates self-Comptonization of synchrotron radiation, we develop a self-consistent model for variable gamma-ray emission, involving a single population of relativistic electrons accelerated by a disturbance in the jet. The spectral break between the X-ray and gamma-ray band, observed in 3C 279 and deduced for other blazars, results from inefficient radiative cooling of lower energy electrons. The existence of such a break strongly favors a model involving Comptonization of an external radiation field over a synchrotron self-Compton model. We derive constraints on such model parameters as the location and speed of the source, its dimensions and internal physical parameters, the maximum photon energies produced in the source, and the density and distribution of ambient radiation. Finally, we discuss how observations might discriminate between our model and alternative ones invoking Comptonization of ambient radiation.

  2. Chlorine Diffusion in Uranium Dioxide: Thermal Effects versus Radiation Enhanced Effects

    SciTech Connect

    Pipon, Yves; Moncoffre, Nathalie; Bererd, Nicolas; Jaffrezic, Henri; Raimbault, Louis; Scheidegger, Andre M.; Carlot, Gaelle

    2007-07-01

    =(Dt)1/2, the diffusion distance after 3 years is L=17 {mu}m. It results that there is a great probability for the chlorine contained in the UO{sub 2} grains to have reached the grain boundaries after 3 years, in the core of the fuel rod as well as at its periphery. Moreover, diffusion and concentration of chlorine at grain boundaries has been evidenced using SIMS mapping. Our results indicate therefore, that, during reactor operation and after, the majority of {sup 36}Cl is likely to have moved to grain boundaries, rim and gap. This fraction might then significantly contribute to the rapid or instant release of chlorine. This could have important consequences for safety assessment. During reactor operation, chlorine ({sup 35}Cl), an impurity of the nuclear fuel, is activated into {sup 36}Cl, a long lived mobile isotope. Because of its long half life and its mobility, this isotope may contribute significantly to the instant release fraction under disposal conditions. Thermal annealing of Cl implanted UO{sub 2} sintered pellets show that it is mobile from temperatures as low as 1273 K (E{sub a} = 4.3 eV). Chlorine diffusion induced by irradiation with fission products preserves a thermally activated contribution. The radiation induced defects significantly enhance chlorine migration. (authors)

  3. Healthful radiation.

    PubMed

    Agard, E T

    1997-01-01

    This title of this article sounds paradoxical to most people because the general public is not fully aware of the many benefits radiation has brought to people's healthcare. Radiation has provided the most effective means of noninvasive diagnosis of many diseases, thus reducing the need for exploratory surgery, at significantly reduced risks. Furthermore, radiotherapy has been effective in treating many diseases without surgical removal of the diseased part. The breast is one excellent example of the benefits of radiation in both diagnosis and treatment with preservation. Yet the public still regards radiation as mysterious and dangerous, while trained experts regard it as beneficial with manageable risks. This article suggests ways of presenting this material to the public in a manner that is interesting and informative. PMID:8972833

  4. Radiation sickness

    MedlinePlus

    ... process so that they do not cause radiation injury to others. This may complicate the first aid and resuscitation process. Check the person's breathing and pulse. Start CPR , if necessary. Remove the person's clothing and place ...

  5. Healthful radiation

    SciTech Connect

    Agard, E.T.

    1997-01-01

    This title of this article sounds paradoxical to most people because the general public is not fully aware of the many benefits radiation has brought to people`s healthcare. Radiation has provided the most effective means of noninvasive diagnosis of many diseases, thus reducing the need for exploratory surgery, at significantly reduced risks. Furthermore, radiotherapy has been effective in treating many diseases without surgical removal of the diseased part. The breast is one excellent example of the benefits of radiation in both diagnosis and treatment with preservation. Yet the public still regards radiation as mysterious and dangerous, while trained experts regard it as beneficial with manageable risks. This article suggests ways of presenting this material to the public in a manner that is interesting and informative. 11 refs.

  6. Radiation Therapy

    MedlinePlus

    ... Radiation (also called x-rays, gamma rays, or photons) either kills tumor cells directly or interferes with ... treatment per day, five days a week, for two to seven weeks. Potiential Side Effects Most people ...

  7. Radiation-Induced Changes in Normal Appearing White Matter in Patients with Cerebral Tumors: A Diffusion Tensor Imaging Study

    PubMed Central

    Nagesh, V.; Tsien, C.I.; Chenevert, T.L.; Ross, B.D.; Lawrence, T.S.; Junck, L.; Cao, Y.

    2008-01-01

    Purpose: To quantify radiation-induced changes in normal appearing white matter (NAWM) before, during and after radiation therapy (RT) in cerebral tumor patients. Methods and Materials: Twenty-five patients with low-grade glioma, high-grade glioma or benign tumor treated with RT were studied using diffusion tensor MRI. The biologically corrected doses ranged from 50 to 81 Gy. Temporal changes were assessed before, during, and till 45 weeks after start of RT. The mean diffusivity of water , fractional anisotropy (FA) of diffusion, diffusivity perpendicular (λ⊥) and parallel (λ∥) to white matter fibers were calculated in normal-appearing genu and splenium of the corpus callosum. Results: In the genu and splenium, FA decreased and , λ∥, and λ⊥ increased linearly and significantly over time (p< 0.01). At 45 weeks after start of RT, λ⊥ increased ∼30% in the genu and splenium, while λ∥ increased 5% in the genu and 9% in the splenium, suggesting demyelination is predominant. The increases in λ⊥ and λ∥ were dose-dependent starting at 3 weeks and continuing to 32 weeks from the start of RT. The dose-dependent increase in λ⊥ and λ∥ were not sustained after 32 weeks indicating the transition from the focal to diffuse effects. Conclusions: The acute and sub-acute changes in normal appearing white matter fibers indicate radiation-induced demyelination and mild structural degradation of axonal fibers. The structural changes after RT are progressive, with early dose-dependent demyelination and subsequent diffuse dose-independent demyelination and mild axonal degradation. DT-MR imaging is potentially a marker for assessment of radiation-induced white matter injury. PMID:18313524

  8. The diffuse galactic gamma radiation - The Compton contribution and component separation by energy interval and galactic coordinates

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Fichtel, C. E.

    1981-01-01

    The diffuse high-energy galactic gamma radiation to be expected from cosmic ray interactions with matter and photons is considered with particular emphasis on the contribution of Compton radiation from cosmic ray electrons. The intensity, spectrum and spatial distribution of the expected galactic gamma radiation are estimated based on models of the matter, cosmic ray and photon distributions to take into account the contributions of bremsstrahlung, high-energy cosmic-ray nucleon and interstellar matter interactions as well as Compton interactions between cosmic ray electrons and background photons. Results suggest that the Compton gamma ray contribution from cosmic ray electron interactions with galactic visible and infrared photons is substantially larger than previously believed. Analysis of the energy spectra and latitude dependence of the various sources reveals that the Compton radiation, bremsstrahlung and nuclear cosmic ray-matter interaction radiation should be separable, with Compton radiation dominating at energies from 10 to 100 MeV at galactic latitudes greater than several degrees. Results demonstrate the potential of gamma ray observations in studies of galactic structure, cosmic ray electrons and galactic photon density.

  9. A theoretical analysis of the influence of turbulence on radiative emission in turbulent diffusion flames of methane

    NASA Astrophysics Data System (ADS)

    Coelho, P. J.

    2012-06-01

    A theoretical analysis is reported to quantify the increase of radiative emission due to turbulence for methane diffusion flames burning in air. The instantaneous thermochemical state of the reactive mixture is described by a flamelet model and a detailed chemical mechanism. Mean values of the absorption coefficient, blackbody radiation intensity and radiative emission are evaluated for different turbulence levels by assuming the pdf shape of mixture fraction. The results show that turbulent fluctuations generally contribute to reduce the Planck mean absorption coefficient of the medium, in contrast with the blackbody radiation intensity, which is significantly increased by turbulence. If the turbulence level is relatively small, the influence of turbulence on the absorption coefficient is marginal. Otherwise, fluctuations of the absorption coefficient of the medium should be taken into account. The mean radiative emission is underestimated if turbulent fluctuations are fully ignored and overestimated if only temperature fluctuations are considered, while neglecting fluctuations of the absorption coefficient of the medium, the error being generally higher in the latter case. The effects of turbulence on radiative emission are stronger in the fuel-lean region and close to stoichiometric conditions than in the fuel-rich region.

  10. Radiation Transport

    SciTech Connect

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  11. Radiation Sensor

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Claypack is a cost-effective portable system developed by Barringer Research Ltd. for rapid on-site analysis of clay minerals. It is an adaptation of a hand-held rationing radiometer. By measuring the intensity of reflected radiation, the device discriminates among different minerals present in a sample. It simultaneously analyzes radiation intensities in two separate bands of the spectrum, and calculates the ratio of one to the other. The "reflectance ratio" is computer processed and displayed in digital form.

  12. Radiation enteritis.

    PubMed

    Harb, Ali H; Abou Fadel, Carla; Sharara, Ala I

    2014-01-01

    Radiation enteritis continues to be a major health concern in recipients of radiation therapy. The incidence of radiation enteritis is expected to continue to rise during the coming years paralleling the unprecedented use of radiotherapy in pelvic cancers. Radiation enteritis can present as either an acute or chronic syndrome. The acute form presents within hours to days of radiation exposure and typically resolves within few weeks. The chronic form may present as early as 2 months or as long as 30 years after exposure. Risk factors can be divided into patient and treatment-related factors. Chronic radiation enteritis is characterized by progressive obliterative endarteritis with exaggerated submucosal fibrosis and can manifest by stricturing, formation of fistulae, local abscesses, perforation, and bleeding. In the right clinical context, diagnosis can be confirmed by cross-sectional imaging, flexible or video capsule endoscopy. Present treatment strategies are directed primarily towards symptom relief and management of emerging complications. Recently, however, there has been a shift towards rational drug design based on improved understanding of the molecular basis of disease in an effort to limit the fibrotic process and prevent organ damage.

  13. The Radiation Transport Conundrum in Radiation Hydrodynamics

    SciTech Connect

    Castor, J I

    2005-03-18

    The summary of this paper is: (1) The conundrum in the title is whether to treat radiation in the lab frame or the comoving frame in a radiation-hydrodynamic problem; (2) Several of the difficulties are associated with combining a somewhat relativistic treatment of radiation with a non-relativistic treatment of hydrodynamics; (3) The principal problem is a tradeoff between easily obtaining the correct diffusion limit and describing free-streaming radiation with the correct wave speed; (4) The computational problems of the comoving-frame formulation in more than one dimension, and the difficulty of obtaining both exact conservation and full u/c accuracy argue against this method; (5) As the interest in multi-D increases, as well as the power of computers, the lab-frame method is becoming more attractive; and (6) The Monte Carlo method combines the advantages of both lab-frame and comoving-frame approaches, its only disadvantage being cost.

  14. Celestial diffuse gamma radiation above 30 MeV observed by SAS-2

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Hartman, R. C.

    1973-01-01

    The Small Astronomy Satellite (SAS)-2, launched on November 15, 1972, carried into orbit a 32-deck magnetic-core digitized spark chamber gamma ray telescope to study celestial gamma radiation in the energy range above 30 MeV. In the study of several regions with b sub 2 15 deg, a finite, diffuse flux of gamma rays with a steep energy spectrum in the energy region from 35 to 200 MeV is observed. Representing the energy spectrum by a power law of the form dJ/dE = AE to - alpha power over this energy range, alpha is found along with the integral flux above 100 MeV. Combining this result with existing low energy gamma ray data yields an energy spectrum which is not a simple power law in energy, as in the X-ray region, but which demonstrates first an increase and then a decrease in slope, consistent within uncertainties with that predicted by cosmological theories, including the continuous production of high energy gamma rays primarily from neutral pi mesons throughout the history of the universe.

  15. Construction of accuracy-preserving surrogate for the eigenvalue radiation diffusion and/or transport problem

    SciTech Connect

    Wang, C.; Abdel-Khalik, H. S.

    2012-07-01

    The construction of surrogate models for high fidelity models is now considered an important objective in support of all engineering activities which require repeated execution of the simulation, such as verification studies, validation exercises, and uncertainty quantification. The surrogate must be computationally inexpensive to allow its repeated execution, and must be computationally accurate in order for its predictions to be credible. This manuscript introduces a new surrogate construction approach that reduces the dimensionality of the state solution via a range-finding algorithm from linear algebra. It then employs a proper orthogonal decomposition-like approach to solve for the reduced state. The algorithm provides an upper bound on the error resulting from the reduction. Different from the state-of-the-art, the new approach allows the user to define the desired accuracy a priori which controls the maximum allowable reduction. We demonstrate the utility of this approach using an eigenvalue radiation diffusion model, where the accuracy is selected to match machine precision. Results indicate that significant reduction is possible for typical reactor assembly models, which are currently considered expensive given the need to employ very fine mesh many group calculations to ensure the highest possible fidelity for the downstream core calculations. Given the potential for significant reduction in the computational cost, we believe it is possible to rethink the manner in which homogenization theory is currently employed in reactor design calculations. (authors)

  16. Fast linear solver for radiative transport equation with multiple right hand sides in diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.

    2015-12-01

    It is well known that radiative transfer equation (RTE) provides more accurate tomographic results than its diffusion approximation (DA). However, RTE-based tomographic reconstruction codes have limited applicability in practice due to their high computational cost. In this article, we propose a new efficient method for solving the RTE forward problem with multiple light sources in an all-at-once manner instead of solving it for each source separately. To this end, we introduce here a novel linear solver called block biconjugate gradient stabilized method (block BiCGStab) that makes full use of the shared information between different right hand sides to accelerate solution convergence. Two parallelized block BiCGStab methods are proposed for additional acceleration under limited threads situation. We evaluate the performance of this algorithm with numerical simulation studies involving the Delta-Eddington approximation to the scattering phase function. The results show that the single threading block RTE solver proposed here reduces computation time by a factor of 1.5-3 as compared to the traditional sequential solution method and the parallel block solver by a factor of 1.5 as compared to the traditional parallel sequential method. This block linear solver is, moreover, independent of discretization schemes and preconditioners used; thus further acceleration and higher accuracy can be expected when combined with other existing discretization schemes or preconditioners.

  17. Effects of Radiative and Diffusive Transport Processes on Premixed Flames near Flammability Limits

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, Angel; Ronney, Paul D.

    1991-01-01

    A study of the mechanisms of flammability limits and the dynamics of flame extinguishment in premixed gas flames is described, a novel feature of which is the use of diluent gases having a wide range of radiative and diffusive transport properties. This feature enables an assessment of the importance of volumetric heat losses and Lewis number effects on these mechanisms. Additionally, effects of flame dynamics and flame front curvature are studied by employing spherically expanding flames obtained in a microgravity environment whereby natural convection is eliminated. New diagnostics include chamber pressure measurements and the first reported species concentration measurements in a microgravity combustion experiment. The limit mechanisms and extinguishment phenomena are found to be strongly influenced by the combined effects of radiant heat loss, Lewis number and flame curvature. Two new and as yet not well understood phenomena are reported: 'double flames' in rich H2-O2-CO2 mixtures and an 'inverse flammability region' in rich C3H8-O2-CO2 mixtures.

  18. Radiation enteritis and radiation scoliosis

    SciTech Connect

    Shah, M.; Eng, K.; Engler, G.L.

    1980-09-01

    Any patient with radiation scoliosis should be suspected of having a visceral lesion as well. Chronic radiation enteritis may be manifested by intestinal obstruction, fistulas, perforation, and hemorrhage. Intestinal obstruction is the most common complication, and must be differentiated from postoperative cast or from spinal-traction syndrome. Obstruction that does not respond promptly to conservative measures must be treated surgically. Irradiated bowel is ischemic, and necrosis with spontaneous perforation can only be avoided with early diagnosis and surgical intervention.

  19. Radiation Belt Radial Diffusion Coefficients Derived From Ground-based and In-situ ULF Wave Measurements

    NASA Astrophysics Data System (ADS)

    Mann, I. R.; Rae, J.; Ozeke, L.; Murphy, K. R.; Milling, D. K.; Chan, A. A.; Elkington, S. R.

    2010-12-01

    Ultra Low Frequency (ULF) wave power in the Pc5 period band is thought to play an important role in the dynamics, acceleration and transport of energetic electrons in the outer radiation belt. Current estimates of radial diffusion coefficients are typically derived empirically and characterised in terms of Kp. Using the results from a statistical analysis of ground-based and in-situ electric- and magnetic field power spectral densities as a function of solar wind speed, MLT and L-shell we compile statistical representations for the transport under a diffusive approximation. Electric diffusion rates are calculated using ground-based data from the CARISMA magnetometer network and mapped into in-situ equatorial electric fields using the Ozeke et al. [2009] model. These diffusion rates are compared to those derived from the THEMIS satellites and from previously published CRRES estimates. We find an excellent comparison between the ground-based estimates and in-situ observations. Interestingly the ground-based Pc5 power spectra show evidence of mHz spectral power peaks consistent with those observed on CRRES, and consistent with a role for field line resonances in radial diffusion. We further calculate the magnetic diffusion coefficients using data from THEMIS and GOES, and compare with previous AMPTE estimates. Overall such analysis provides a wave power based method for calculating diffusive transport using observed wave fields. Future in-situ radiation belt missions such as the Canadian Space Agency Outer Radiation Belt Injection, Transport, Acceleration and Loss Satellite (ORBITALS) will enable these physics-based models to be tested and will provide an excellent complement to the single point measurements available from the satellites.

  20. Radiation-Induced Changes in Normal-Appearing White Matter in Patients With Cerebral Tumors: A Diffusion Tensor Imaging Study

    SciTech Connect

    Nagesh, Vijaya Tsien, Christina I.; Chenevert, Thomas L.; Ross, Brian D.; Lawrence, Theodore S.; Junick, Larry; Cao Yue

    2008-03-15

    Purpose: To quantify the radiation-induced changes in normal-appearing white matter before, during, and after radiotherapy (RT) in cerebral tumor patients. Methods and Materials: Twenty-five patients with low-grade glioma, high-grade glioma, or benign tumor treated with RT were studied using diffusion tensor magnetic resonance imaging. The biologically corrected doses ranged from 50 to 81 Gy. The temporal changes were assessed before, during, and to 45 weeks after the start of RT. The mean diffusivity of water (), fractional anisotropy of diffusion, diffusivity perpendicular ({lambda}{sub perpendicular}) and parallel ({lambda}{sub parallel}) to white matter fibers were calculated in normal-appearing genu and splenium of the corpus callosum. Results: In the genu and splenium, fractional anisotropy decreased and , {lambda}{sub parallel}, {lambda}{sub -perpendicular} increased linearly and significantly with time (p < 0.01). At 45 weeks after the start of RT, {lambda}{sub -perpendicular} had increased {approx}30% in the genu and splenium, and {lambda}{sub parallel} had increased 5% in the genu and 9% in the splenium, suggesting that demyelination is predominant. The increases in {lambda}{sub perpendicular} and {lambda}{sub parallel} were dose dependent, starting at 3 weeks and continuing to 32 weeks from the start of RT. The dose-dependent increase in {lambda}{sub perpendicular} and {lambda}{sub parallel} was not sustained after 32 weeks, indicating the transition from focal to diffuse effects. Conclusion: The acute and subacute changes in normal-appearing white matter fibers indicate radiation-induced demyelination and mild structural degradation of axonal fibers. The structural changes after RT are progressive, with early dose-dependent demyelination and subsequent diffuse dose-independent demyelination and mild axonal degradation. Diffusion tensor magnetic resonance imaging is potentially a biomarker for the assessment of radiation-induced white matter injury.

  1. Validity of reduced radiation dose for localized diffuse large B-cell lymphoma showing a good response to chemotherapy.

    PubMed

    Koiwai, Keiichiro; Sasaki, Shigeru; Yoshizawa, Eriko; Ina, Hironobu; Fukazawa, Ayumu; Sakai, Katsuya; Ozawa, Takesumi; Matsushita, Hirohide; Kadoya, Masumi

    2014-03-01

    To evaluate the validity of a decrease in the radiation dose for patients who were good responders to chemotherapy for localized diffuse large B-cell lymphoma (DLBCL), 91 patients with localized DLBCL who underwent radiotherapy after multi-agent chemotherapy from 1988-2008 were reviewed. Exclusion criteria were as follows: central nervous system or nasal cavity primary site, or Stage II with bulky tumor (≥10 cm). Of these patients, 62 were identified as good responders to chemotherapy. They were divided into two groups receiving either a higher or a lower radiation dose (32-50.4 Gy or 15-30.6 Gy, respectively). There were no statistically significant differences between the lower and higher dose groups in progression-free survival, locoregional progression-free survival or overall survival. Adaptation of decreased radiation dose may be valid for localized DLBCL patients who show a good response to chemotherapy. PMID:24187329

  2. Radiation Oncology Treatment Team

    MedlinePlus

    ... Upper GI What is Radiation Therapy? Find a Radiation Oncologist Last Name: Facility: City: State: Zip Code: ... who specializes in using radiation to treat cancer . Radiation Oncologists Radiation oncologists are the doctors who will ...

  3. Radiation Therapy (For Parents)

    MedlinePlus

    ... 5 Things to Know About Zika & Pregnancy Radiation Therapy KidsHealth > For Parents > Radiation Therapy Print A A ... many questions and concerns about it. About Radiation Therapy In radiation therapy, high-energy radiation from X- ...

  4. Brain radiation - discharge

    MedlinePlus

    Radiation - brain - discharge; Cancer-brain radiation; Lymphoma - brain radiation; Leukemia - brain radiation ... Decadron) while you are getting radiation to the brain. It may make you hungrier, cause leg swelling ...

  5. Effects of the partitioning of diffuse and direct solar radiation on satellite-based modeling of crop gross primary production

    NASA Astrophysics Data System (ADS)

    Xin, Qinchuan; Gong, Peng; Suyker, Andrew E.; Si, Yali

    2016-08-01

    Modeling crop gross primary production (GPP) is critical to understanding the carbon dynamics of agro-ecosystems. Satellite-based studies have widely used production efficiency models (PEM) to estimate cropland GPP, wherein light use efficiency (LUE) is a key model parameter. One factor that has not been well considered in many PEMs is that canopy LUE could vary with illumination conditions. This study investigates how the partitioning of diffuse and direct solar radiation influences cropland GPP using both flux tower and satellite data. The field-measured hourly LUE under cloudy conditions was 1.50 and 1.70 times higher than that under near clear-sky conditions for irrigated corn and soybean, respectively. We applied a two-leaf model to simulate the canopy radiative transfer process, where modeled photosynthetically active radiation (PAR) absorbed by canopy agreed with tower measurements (R2 = 0.959 and 0.914 for corn and soybean, respectively). Derived canopy LUE became similar after accounting for the impact of light saturation on leaf photosynthetic capacity under varied illumination conditions. The impacts of solar radiation partitioning on satellite-based modeling of crop GPP was examined using vegetation indices (VI) derived from MODIS data. Consistent with the field modeling results, the relationship between daily GPP and PAR × VI under varied illumination conditions showed different patterns in terms of regression slope and intercept. We proposed a function to correct the influences of direct and diffuse radiation partitioning and the explained variance of flux tower GPP increased in all experiments. Our results suggest that the non-linear response of leaf photosynthesis to light absorption contributes to higher canopy LUE on cloudy days than on clear days. We conclude that accounting for the impacts of solar radiation partitioning is necessary for modeling crop GPP on a daily or shorter basis.

  6. Radiation cataract.

    PubMed

    Kleiman, N J

    2012-01-01

    Until very recently, ocular exposure guidelines were based on the assumption that radiation cataract is a deterministic event requiring threshold doses generally greater than 2 Gy. This view was, in part, based on older studies which generally had short follow-up periods, failed to take into account increasing latency as dose decreased, had relatively few subjects with doses below a few Gy, and were not designed to detect early lens changes. Newer findings, including those in populations exposed to much lower radiation doses and in subjects as diverse as astronauts, medical workers, atomic bomb survivors, accidentally exposed individuals, and those undergoing diagnostic or radiotherapeutic procedures, strongly suggest dose-related lens opacification at significantly lower doses. These observations resulted in a recent re-evaluation of current lens occupational exposure guidelines, and a proposed lowering of the presumptive radiation cataract threshold to 0.5 Gy/year and the occupational lens exposure limit to 20 mSv/year, regardless of whether received as an acute, protracted, or chronic exposure. Experimental animal studies support these conclusions and suggest a role for genotoxicity in the development of radiation cataract. Recent findings of a low or even zero threshold for radiation-induced lens opacification are likely to influence current research efforts and directions concerning the cellular and molecular mechanisms underlying this pathology. Furthermore, new guidelines are likely to have significant implications for occupational and/or accidental exposure, and the need for occupational eye protection (e.g. in fields such as interventional medicine).

  7. Radiation damage of contact structures with diffusion barriers exposed to irradiation with {sup 60}Co{gamma}-ray photons

    SciTech Connect

    Belyaev, A. E.; Boltovets, N. S.; Konakova, R. V. Milenin, V. V.; Sveshnikov, Yu. N.; Sheremet, V. N.

    2010-04-15

    The effect of ionizing radiation of {sup 60}Co {gamma}-ray photons in the dose range 10{sup 4}-2 x 10{sup 9} rad on metal-semiconductor Au-ZrB{sub x}-AlGaN/GaN and Au-TiB{sub x}-Al-Ti-n-GaN contacts and Au-ZrB{sub x}-n-GaN Schottky diodes is examined. The contacts with the TiB{sub x} and ZrB{sub x} diffusion barriers do not degrade under the effect of ionizing radiation if the dose does not exceed 10{sup 8} rad. The Au-ZrB{sub x}-n-GaN Schottky diodes remain stable in the dose range 10{sup 4}-10{sup 6} rad. As the radiation dose is increased to {>=}10{sup 8} rad, the damage to the contact metallization increases and is accompanied by formation of through pores, which is conducive to accumulation of oxygen at the Au-ZrB{sub x}(TiB{sub x}) interfaces and to an increase in mass transport of atoms in contact-forming layers. In this case, irradiation-caused degradation of the Schottky diodes is observed. Possible mechanisms of radiation damage of contact structures with diffusion barriers are analyzed.

  8. Experimental measurements of a prototype high concentration Fresnel lens CPV module for the harvesting of diffuse solar radiation.

    PubMed

    Yamada, Noboru; Okamoto, Kazuya

    2014-01-13

    A prototype concentrator photovoltaic (CPV) module with high solar concentration, an added low-cost solar cell, and an adjoining multi-junction solar cell is fabricated and experimentally demonstrated. In the present CPV module, the low cost solar cell captures diffuse solar radiation penetrating the concentrator lens and the multi-junction cell captures concentrated direct solar radiation. On-sun test results show that the electricity generated by a Fresnel lens-based CPV module with an additional crystalline silicon solar cell is greater than that for a conventional CPV module by a factor of 1.44 when the mean ratio of diffuse normal irradiation to global normal irradiation at the module aperture is 0.4. Several fundamental optical characteristics are presented for the present module.

  9. Diffusion-weighted and PET/MR Imaging after Radiation Therapy for Malignant Head and Neck Tumors.

    PubMed

    Varoquaux, Arthur; Rager, Olivier; Dulguerov, Pavel; Burkhardt, Karim; Ailianou, Angeliki; Becker, Minerva

    2015-01-01

    Interpreting imaging studies of the irradiated neck constitutes a challenge because of radiation therapy-induced tissue alterations, the variable appearances of recurrent tumors, and functional and metabolic phenomena that mimic disease. Therefore, morphologic magnetic resonance (MR) imaging, diffusion-weighted (DW) imaging, positron emission tomography with computed tomography (PET/CT), and software fusion of PET and MR imaging data sets are increasingly used to facilitate diagnosis in clinical practice. Because MR imaging and PET often yield complementary information, PET/MR imaging holds promise to facilitate differentiation of tumor recurrence from radiation therapy-induced changes and complications. This review focuses on clinical applications of DW and PET/MR imaging in the irradiated neck and discusses the added value of multiparametric imaging to solve diagnostic dilemmas. Radiologists should understand key features of radiation therapy-induced tissue alterations and potential complications seen at DW and PET/MR imaging, including edema, fibrosis, scar tissue, soft-tissue necrosis, bone and cartilage necrosis, cranial nerve palsy, and radiation therapy-induced arteriosclerosis, brain necrosis, and thyroid disorders. DW and PET/MR imaging also play a complementary role in detection of residual and recurrent disease. Interpretation pitfalls due to technical, functional, and metabolic phenomena should be recognized and avoided. Familiarity with DW and PET/MR imaging features of expected findings, potential complications, and treatment failure after radiation therapy increases diagnostic confidence when interpreting images of the irradiated neck. Online supplemental material is available for this article. PMID:26252192

  10. R-CHOP with dose-attenuated radiation therapy could induce good prognosis in gastric diffuse large B cell lymphoma

    PubMed Central

    2012-01-01

    Background The treatment strategy for gastric diffuse large cell lymphoma (DLBCL) has not been standardized in such as to the cycles of chemotherapy, dose of radiation, or necessity for the surgery. Although the results of CHOP or R-CHOP treatments have demonstrated the good prognosis, the treatments have been controversial in many cases. Methods We retrospectively analyzed 40 gastric DLBCL patients receiving chemotherapy with or without radiation in our institute. Those in stages II-IV were treated with six cycles of R-CHOP without radiation; for those in stage I, we administered three cycles of R-CHOP with radiation. Results The three-year overall survival (OS) and progression-free survival (PFS) rates were 95.2 and 91.8%, respectively. Those in stage I obtained 100% of OS. The radiation dose prescribed was 30.6 Gy for CR cases and 39.6 to 40 Gy for PR after chemotherapy. Although survival rates tended to correlate with staging groups or age-adjusted IPI classifications, multivariate statistical analysis did not show clear differences. All 14 patients with initial bleeding were successfully managed without surgery during treatment. Conclusion R-CHOP therapy was very effective for gastric DLBCL. It may be not necessary to use more than 30.6 Gy of radiotherapy in the highly chemo-sensitive cases. Less toxic treatments should be made available to gastric DLBCL patients. PMID:23210663

  11. Diffusion tensor imaging tractography of the optic radiation for epilepsy surgical planning: a comparison of two methods.

    PubMed

    Winston, Gavin P; Mancini, Laura; Stretton, Jason; Ashmore, Jonathan; Symms, Mark R; Duncan, John S; Yousry, Tarek A

    2011-11-01

    The optic radiation is a key white matter structure at risk during epilepsy surgery involving the temporal, parietal or occipital lobes. It shows considerable anatomical variability, cannot be delineated on clinical MRI sequences and damage may cause a disabling visual field deficit. Diffusion tensor imaging tractography allows non-invasive mapping of this pathway. Numerous methods have been published but direct comparison is difficult as patient, acquisition and analysis parameters differ. Two methods for delineating the optic radiation were applied to 6 healthy controls and 4 patients with epileptogenic lesions near the optic radiation. By comparing methods with the same datasets, many of the parameters could be controlled. The first method was previously developed to accurately identify Meyer's loop for planning anterior temporal lobe resection. The second aimed to address limitations of this method by using a more automated technique to reduce operator time and to depict the entire optic radiation. Whilst the core of the tract was common to both methods, there was significant variability between the methods. Method 1 gave a more consistent depiction of Meyer's loop with fewer spurious tracts. Method 2 gave a better depiction of the entire optic radiation, particularly in more posterior portions, but did not identify Meyer's loop in one patient. These results show that whilst tractography is a promising technique, there is significant variability depending on the method chosen even when the majority of parameters are fixed. Different methods may need to be chosen for surgical planning depending on the individual clinical situation.

  12. Diffusion tensor imaging tractography of the optic radiation for epilepsy surgical planning: A comparison of two methods

    PubMed Central

    Winston, Gavin P.; Mancini, Laura; Stretton, Jason; Ashmore, Jonathan; Symms, Mark R.; Duncan, John S.; Yousry, Tarek A.

    2011-01-01

    Summary The optic radiation is a key white matter structure at risk during epilepsy surgery involving the temporal, parietal or occipital lobes. It shows considerable anatomical variability, cannot be delineated on clinical MRI sequences and damage may cause a disabling visual field deficit. Diffusion tensor imaging tractography allows non-invasive mapping of this pathway. Numerous methods have been published but direct comparison is difficult as patient, acquisition and analysis parameters differ. Two methods for delineating the optic radiation were applied to 6 healthy controls and 4 patients with epileptogenic lesions near the optic radiation. By comparing methods with the same datasets, many of the parameters could be controlled. The first method was previously developed to accurately identify Meyer's loop for planning anterior temporal lobe resection. The second aimed to address limitations of this method by using a more automated technique to reduce operator time and to depict the entire optic radiation. Whilst the core of the tract was common to both methods, there was significant variability between the methods. Method 1 gave a more consistent depiction of Meyer's loop with fewer spurious tracts. Method 2 gave a better depiction of the entire optic radiation, particularly in more posterior portions, but did not identify Meyer's loop in one patient. These results show that whilst tractography is a promising technique, there is significant variability depending on the method chosen even when the majority of parameters are fixed. Different methods may need to be chosen for surgical planning depending on the individual clinical situation. PMID:21885257

  13. Diffusion-weighted and PET/MR Imaging after Radiation Therapy for Malignant Head and Neck Tumors.

    PubMed

    Varoquaux, Arthur; Rager, Olivier; Dulguerov, Pavel; Burkhardt, Karim; Ailianou, Angeliki; Becker, Minerva

    2015-01-01

    Interpreting imaging studies of the irradiated neck constitutes a challenge because of radiation therapy-induced tissue alterations, the variable appearances of recurrent tumors, and functional and metabolic phenomena that mimic disease. Therefore, morphologic magnetic resonance (MR) imaging, diffusion-weighted (DW) imaging, positron emission tomography with computed tomography (PET/CT), and software fusion of PET and MR imaging data sets are increasingly used to facilitate diagnosis in clinical practice. Because MR imaging and PET often yield complementary information, PET/MR imaging holds promise to facilitate differentiation of tumor recurrence from radiation therapy-induced changes and complications. This review focuses on clinical applications of DW and PET/MR imaging in the irradiated neck and discusses the added value of multiparametric imaging to solve diagnostic dilemmas. Radiologists should understand key features of radiation therapy-induced tissue alterations and potential complications seen at DW and PET/MR imaging, including edema, fibrosis, scar tissue, soft-tissue necrosis, bone and cartilage necrosis, cranial nerve palsy, and radiation therapy-induced arteriosclerosis, brain necrosis, and thyroid disorders. DW and PET/MR imaging also play a complementary role in detection of residual and recurrent disease. Interpretation pitfalls due to technical, functional, and metabolic phenomena should be recognized and avoided. Familiarity with DW and PET/MR imaging features of expected findings, potential complications, and treatment failure after radiation therapy increases diagnostic confidence when interpreting images of the irradiated neck. Online supplemental material is available for this article.

  14. Synchrotron radiation

    SciTech Connect

    Knotek, M.L.

    1987-01-01

    Synchrotron radiation has had a revolutionary effect on a broad range of scientific studies, from physics, chemistry and metallurgy to biology, medicine and geoscience. The situation during the last decade has been one of very rapid growth, there is a great vitality to the field and a capability has been given to a very broad range of scientific disciplines which was undreamed of just a decade or so ago. Here we will discuss some of the properties of synchrotron radiation that makes it so interesting and something of the sources in existence today including the National Synchrotron Light Source (NSLS). The NSLS is one of the new facilities built specifically for synchrotron radiation research and the model that was developed there for involvement of the scientific community is a good one which provides some good lessons for these facilities and others.

  15. RADIATION INTEGRATOR

    DOEpatents

    Glass, F.M.; Wilson, H.N.

    1959-02-17

    Radiation detecting and measuring systems, particularly a compact, integrating, background monitor, are discussed. One of the principal features of the system is the use of an electrometer tube where the input of the tube is directly connected to an electrode of the radiation detector and a capacitor is coupled to the tube input. When a predetermined quantity of radiation has been integrated, a trigger signal is fed to a recorder and a charge is delivered to the capacitor to render the tube inoperative. The capacitor is then recharged for the next period of operation. With this arrangement there is a substantial reduction in lead lengths and the principal components may be enclosed and hermetically sealed to insure low leakage.

  16. Radiation receiver

    DOEpatents

    Hunt, Arlon J.

    1983-01-01

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  17. Radiation receiver

    DOEpatents

    Hunt, A.J.

    1983-09-13

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

  18. Distinction Between Recurrent Glioma and Radiation Injury Using Magnetic Resonance Spectroscopy in Combination With Diffusion-Weighted Imaging

    SciTech Connect

    Zeng, Q.-S. . E-mail: nanwushan@yahoo.com; Li, C.-F.; Liu Hong; Zhen, J.-H.; Feng, D.-C.

    2007-05-01

    Purpose: The aim of this study was to explore the diagnostic effectiveness of magnetic resonance (MR) spectroscopy with diffusion-weighted imaging on the evaluation of the recurrent contrast-enhancing areas at the site of treated gliomas. Methods and Materials: In 55 patients who had new contrast-enhancing lesions in the vicinity of the previously resected and irradiated high-grade gliomas, two-dimensional MR spectroscopy and diffusion-weighted imaging were performed. Spectral data for N-acetylaspartate (NAA), choline (Cho), creatine (Cr), lipid (Lip), and lactate (Lac) were analyzed in conjunction with the apparent diffusion coefficient (ADC) in all patients. Diagnosis of these lesions was assigned by means of follow-up or histopathology. Results: The Cho/NAA and Cho/Cr ratios were significantly higher in recurrent tumor than in regions of radiation injury (p < 0.01). The ADC value and ADC ratios (ADC of contrast-enhancing lesion to matching structure in the contralateral hemisphere) were significantly higher in radiation injury regions than in recurrent tumor (p < 0.01). With MR spectroscopic data, two variables (Cho/NAA and Cho/Cr ratios) were shown to differentiate recurrent glioma from radiation injury, and 85.5% of total subjects were correctly classified into groups. However, with discriminant analysis of MR spectroscopy imaging plus diffusion-weighted imaging, three variables (Cho/NAA, Cho/Cr, and ADC ratio) were identified and 96.4% of total subjects were correctly classified. There was a significant difference between the diagnostic accuracy of the two discriminant analyses (Chi-square = 3.96, p = 0.046). Conclusion: Using discriminant analysis, this study found that MR spectroscopy in combination with ADC ratio, rather than ADC value, can improve the ability to differentiate recurrent glioma and radiation injury.

  19. RADIATION SOURCES

    DOEpatents

    Brucer, M.H.

    1958-04-15

    A novel long-lived source of gamma radiation especially suitable for calibration purposes is described. The source of gamma radiation is denoted mock iodine131, which comprises a naixture of barium-133 and cesium-137. The barium and cesium are present in a barium-cesium ratio of approximately 5.7/1 to 14/1, uniformly dispersed in an ion exchange resin and a filter surrounding the resin comprised of a material of atomic number below approximately 51, and substantially 0.7 to 0.9 millimeter thick.

  20. Radiation dermatitis

    SciTech Connect

    Shack, R.B.; Lynch, J.B.

    1987-04-01

    Even in this era of modern radiotherapy, injuries associated with the medical and industrial use of radiation devices will continue to pose a difficult problem for the reconstructive surgeon. It must be borne in mind that the single most serious hazard to surgery in irradiated tissue is the lodgement of bacteria in tissue rendered avascular by the radiation and the secondary necrosis from the infection itself. The basic principles of wound management must be augmented by thorough knowledge of the use of well-vascularized muscle and musculocutaneous flap to provide adequate, blood-rich, soft-tissue coverage.

  1. Repetitively pulsed UV radiation source based on a run-away electron preionised diffuse discharge in nitrogen

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh; Burachenko, A. G.; Lomaev, M. I.; Panchenko, A. N.; Tarasenko, V. F.

    2015-04-01

    An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ~4 ns and a rise time of ~2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 - 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of the plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr.

  2. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies.

    PubMed

    Johnston, Michael B; Herz, Laura M

    2016-01-19

    values extracted from OPTP measurements and their dependence on perovskite composition and morphology. The significance of the reviewed charge-carrier recombination and mobility parameters is subsequently evaluated in terms of the charge-carrier diffusion lengths and radiative efficiencies that may be obtained for such hybrid perovskites. We particularly focus on calculating such quantities in the limit of ultra-low trap-related recombination, which has not yet been demonstrated but could be reached through further advances in material processing. We find that for thin films of hybrid lead iodide perovskites with typical charge-carrier mobilities of ∼30cm(2)/(V s), charge-carrier diffusion lengths at solar (AM1.5) irradiation are unlikely to exceed ∼10 μm even if all trap-related recombination is eliminated. We further examine the radiative efficiency for hybrid lead halide perovskite films and show that if high efficiencies are to be obtained for intermediate charge-carrier densities (n ≈ 10(14) cm(-3)) trap-related recombination lifetimes will have to be enhanced well into the microsecond range. PMID:26653572

  3. Differential Effects of Radiation and Age on Diffusion Tensor Imaging in Rats

    PubMed Central

    Peiffer, Ann M; Shi, Lei; Olson, John; Brunso-Bechtold, Judy K

    2010-01-01

    Greater than 50% of adults and ∼100% of children who survive >6 months after fractionated partial or whole-brain radiotherapy develop cognitive impairments. Noninvasive methods are needed for detecting and tracking the radiation-induced brain injury associated with these impairments. Using magnetic resonance imaging, we sought to detect structural changes associated with brain injury in our rodent model of fractionated whole-brain irradiation (fWBI) induced cognitive impairment and to compare those changes with alterations that occur during the aging process. Middle aged rats were given a clinically relevant dose of fWBI (40 Gy: two 5 Gy fractions/wk for 4 wk) and scanned approximately one year post-irradiation to obtain whole-brain T2 and diffusion tensor images (DTI); control groups of sham-irradiated age-matched and young rats were also scanned. No gross structural changes were evident in the T2 structural images, and no detectable fWBI-induced DTI changes in fractional anisotropy (FA) were found in heavily myelinated white matter (corpus callosum, cingulum, and deep cortical white matter). However, significant fWBI-induced variability in FA distribution was present in the superficial parietal cortex due to an fWBI-induced decline in FA in the more anterior slices through parietal cortex. Young rats had significantly lower FA values relative to both groups of older rats, but only within the corpus callosum. These findings suggest that targets of the fWBI-induced change in this model may be the less myelinated or unmyelinated axons, extracellular matrix, or synaptic fields rather than heavily myelinated tracts. PMID:20599817

  4. Radiation accidents

    SciTech Connect

    Saenger, E.L.

    1986-09-01

    It is essential that emergency physicians understand ways to manage patients contaminated by radioactive materials and/or exposed to external radiation sources. Contamination accidents require careful surveys to identify the metabolic pathway of the radionuclides to guide prognosis and treatment. The level of treatment required will depend on careful surveys and meticulous decontamination. There is no specific therapy for the acute radiation syndrome. Prophylactic antibodies are desirable. For severely exposed patients treatment is similar to the supportive care given to patients undergoing organ transplantation. For high-dose extremity injury, no methods have been developed to reverse the fibrosing endarteritis that eventually leads to tissue death so frequently found with this type of injury. Although the Three Mile Island episode of March 1979 created tremendous public concern, there were no radiation injuries. The contamination outside the reactor building and the release of radioiodine were negligible. The accidental fuel element meltdown at Chernobyl, USSR, resulted in many cases of acute radiation syndrome. More than 100,000 people were exposed to high levels of radioactive fallout. The general principles outlined here are applicable to accidents of that degree of severity.

  5. Radiation accidents.

    PubMed

    Saenger, E L

    1986-09-01

    It is essential that emergency physicians understand ways to manage patients contaminated by radioactive materials and/or exposed to external radiation sources. Contamination accidents require careful surveys to identify the metabolic pathway of the radionuclides to guide prognosis and treatment. The level of treatment required will depend on careful surveys and meticulous decontamination. There is no specific therapy for the acute radiation syndrome. Prophylactic antibodies are desirable. For severely exposed patients treatment is similar to the supportive care given to patients undergoing organ transplantation. For high-dose extremity injury, no methods have been developed to reverse the fibrosing endarteritis that eventually leads to tissue death so frequently found with this type of injury. Although the Three Mile Island episode of March 1979 created tremendous public concern, there were no radiation injuries. The contamination outside the reactor building and the release of radioiodine were negligible. The accidental fuel element meltdown at Chernobyl, USSR, resulted in many cases of acute radiation syndrome. More than 100,000 people were exposed to high levels of radioactive fallout. The general principles outlined here are applicable to accidents of that degree of severity. PMID:3526994

  6. Radiation Models

    ERIC Educational Resources Information Center

    James, W. G. G.

    1970-01-01

    Discusses the historical development of both the wave and the corpuscular photon model of light. Suggests that students should be informed that the two models are complementary and that each model successfully describes a wide range of radiation phenomena. Cites 19 references which might be of interest to physics teachers and students. (LC)

  7. Radiation Emergencies

    MedlinePlus

    ... enough, it can cause premature aging or even death. Although there are no guarantees of safety during a radiation emergency, you can take actions to protect yourself. You should have a disaster plan. Being prepared can help reduce fear, anxiety and losses. If you do experience a ...

  8. Synchrotron radiation and diffusive shock acceleration - A short review and GRB perspective

    SciTech Connect

    Karlica, Mile

    2015-12-17

    In this talk we present the sponge” model and its possible implications on the GRB afterglow light curves. “Sponge” model describes source of GRB afterglow radiation as fragmented GRB ejecta where bubbles move through the rarefied medium. In the first part of the talk a short introduction to synchrotron radiation and Fermi acceleration was presented. In the assumption that X-ray luminosity of GRB afterglow phase comes from the kinetic energy losses of clouds in ejecta medium radiated as synchrotron radiation we solved currently very simple equation of motion to find which combination of cloud and medium regime describes the afterglow light curve the best. We proposed for the first step to watch simple combinations of expansion regimes for both bubbles and surrounding medium. The closest case to the numerical fit of GRB 150403A with time power law index k = 1.38 is the combination of constant bubbles and Sedov like expanding medium with time power law index k = 1.25. Of course the question of possible mixture of variuos regime combinations is still open within this model.

  9. Simulation of radiation driven fission gas diffusion in UO2, ThO2 and PuO2

    DOE PAGESBeta

    Cooper, Michael William D.; Stanek, Christopher Richard; Turnbull, James Anthony; Uberuaga, Blas P.; Andersson, David Anders

    2016-09-16

    Below 1000 K it is thought that fission gas diffusion in nuclear fuel during irradiation occurs through atomic mixing due to radiation damage. Here we present a molecular dynamics (MD) study of Xe, Kr, Th, U, Pu and O diffusion due to irradiation. It is concluded that the ballistic phase does not sufficiently account for the experimentally observed diffusion. Thermal spike simulations are used to confirm that electronic stopping remedies the discrepancy with experiment and the predicted diffusivities lie within the scatter of the experimental data. Here, our results predict that the diffusion coefficients are ordered such that D*0 >more » D*Kr > D*Xe > D*U. For all species >98.5% of diffusivity is accounted for by electronic stopping. Fission gas diffusivity was not predicted to vary significantly between ThO2, UO2 and PuO2, indicating that this process would not change greatly for mixed oxide fuels.« less

  10. Diffuse Optical Spectroscopy for the Quantitative Assessment of Acute Ionizing Radiation Induced Skin Toxicity Using a Mouse Model

    PubMed Central

    Chin, Lee; Korpela, Elina; Kim, Anthony; Yohan, Darren; Niu, Carolyn; Wilson, Brian C.; Liu, Stanley K.

    2016-01-01

    Acute skin toxicities from ionizing radiation (IR) are a common side effect from therapeutic courses of external beam radiation therapy (RT) and negatively impact patient quality of life and long term survival. Advances in the understanding of the biological pathways associated with normal tissue toxicities have allowed for the development of interventional drugs, however, current response studies are limited by a lack of quantitative metrics for assessing the severity of skin reactions. Here we present a diffuse optical spectroscopic (DOS) approach that provides quantitative optical biomarkers of skin response to radiation. We describe the instrumentation design of the DOS system as well as the inversion algorithm for extracting the optical parameters. Finally, to demonstrate clinical utility, we present representative data from a pre-clinical mouse model of radiation induced erythema and compare the results with a commonly employed visual scoring. The described DOS method offers an objective, high through-put evaluation of skin toxicity via functional response that is translatable to the clinical setting. PMID:27284926

  11. Quantitative monitoring of radiation induced skin toxicities in nude mice using optical biomarkers measured from diffuse optical reflectance spectroscopy

    PubMed Central

    Yohan, Darren; Kim, Anthony; Korpela, Elina; Liu, Stanley; Niu, Carolyn; Wilson, Brian C; Chin, Lee CL

    2014-01-01

    Monitoring the onset of erythema following external beam radiation therapy has the potential to offer a means of managing skin toxicities via biological targeted agents – prior to full progression. However, current skin toxicity scoring systems are subjective and provide at best a qualitative evaluation. Here, we investigate the potential of diffuse optical spectroscopy (DOS) to provide quantitative metrics for scoring skin toxicity. A DOS fiberoptic reflectance probe was used to collect white light spectra at two probing depths using two short fixed source-collector pairs with optical probing depths sensitive to the skin surface. The acquired spectra were fit to a diffusion theory model of light transport in tissue to extract optical biomarkers (hemoglobin concentration, oxygen saturation, scattering power and slope) from superficial skin layers of nude mice, which were subjected to erythema inducing doses of ionizing radiation. A statistically significant increase in oxygenated hemoglobin (p < 0.0016) was found in the skin post-irradiation – confirming previous reports. More interesting, we observed for the first time that the spectral scattering parameters, A (p = 0.026) and k (p = 0.011), were an indicator of erythema at day 6 and could potentially serve as an early detection optical biomarker of skin toxicity. Our data suggests that reflectance DOS may be employed to provide quantitative assessment of skin toxicities following curative doses of external beam radiation. PMID:24876997

  12. On the Green's function of the partially diffusion-controlled reversible ABCD reaction for radiation chemistry codes

    SciTech Connect

    Plante, Ianik; Devroye, Luc

    2015-09-15

    Several computer codes simulating chemical reactions in particles systems are based on the Green's functions of the diffusion equation (GFDE). Indeed, many types of chemical systems have been simulated using the exact GFDE, which has also become the gold standard for validating other theoretical models. In this work, a simulation algorithm is presented to sample the interparticle distance for partially diffusion-controlled reversible ABCD reaction. This algorithm is considered exact for 2-particles systems, is faster than conventional look-up tables and uses only a few kilobytes of memory. The simulation results obtained with this method are compared with those obtained with the independent reaction times (IRT) method. This work is part of our effort in developing models to understand the role of chemical reactions in the radiation effects on cells and tissues and may eventually be included in event-based models of space radiation risks. However, as many reactions are of this type in biological systems, this algorithm might play a pivotal role in future simulation programs not only in radiation chemistry, but also in the simulation of biochemical networks in time and space as well.

  13. On the Green's function of the partially diffusion-controlled reversible ABCD reaction for radiation chemistry codes

    NASA Astrophysics Data System (ADS)

    Plante, Ianik; Devroye, Luc

    2015-09-01

    Several computer codes simulating chemical reactions in particles systems are based on the Green's functions of the diffusion equation (GFDE). Indeed, many types of chemical systems have been simulated using the exact GFDE, which has also become the gold standard for validating other theoretical models. In this work, a simulation algorithm is presented to sample the interparticle distance for partially diffusion-controlled reversible ABCD reaction. This algorithm is considered exact for 2-particles systems, is faster than conventional look-up tables and uses only a few kilobytes of memory. The simulation results obtained with this method are compared with those obtained with the independent reaction times (IRT) method. This work is part of our effort in developing models to understand the role of chemical reactions in the radiation effects on cells and tissues and may eventually be included in event-based models of space radiation risks. However, as many reactions are of this type in biological systems, this algorithm might play a pivotal role in future simulation programs not only in radiation chemistry, but also in the simulation of biochemical networks in time and space as well.

  14. Hybrid model of light propagation in random media based on the time-dependent radiative transfer and diffusion equations

    NASA Astrophysics Data System (ADS)

    Fujii, Hiroyuki; Okawa, Shinpei; Yamada, Yukio; Hoshi, Yoko

    2014-11-01

    Numerical modeling of light propagation in random media has been an important issue for biomedical imaging, including diffuse optical tomography (DOT). For high resolution DOT, accurate and fast computation of light propagation in biological tissue is desirable. This paper proposes a space-time hybrid model for numerical modeling based on the radiative transfer and diffusion equations (RTE and DE, respectively) in random media under refractive-index mismatching. In the proposed model, the RTE and DE regions are separated into space and time by using a crossover length and the time from the ballistic regime to the diffusive regime, ρDA~10/μt‧ and tDA~20/vμt‧ where μt‧ and v represent a reduced transport coefficient and light velocity, respectively. The present model succeeds in describing light propagation accurately and reduces computational load by a quarter compared with full computation of the RTE.

  15. Discontinuous finite element solution of the radiation diffusion equation on arbitrary polygonal meshes and locally adapted quadrilateral grids

    SciTech Connect

    Ragusa, Jean C.

    2015-01-01

    In this paper, we propose a piece-wise linear discontinuous (PWLD) finite element discretization of the diffusion equation for arbitrary polygonal meshes. It is based on the standard diffusion form and uses the symmetric interior penalty technique, which yields a symmetric positive definite linear system matrix. A preconditioned conjugate gradient algorithm is employed to solve the linear system. Piece-wise linear approximations also allow a straightforward implementation of local mesh adaptation by allowing unrefined cells to be interpreted as polygons with an increased number of vertices. Several test cases, taken from the literature on the discretization of the radiation diffusion equation, are presented: random, sinusoidal, Shestakov, and Z meshes are used. The last numerical example demonstrates the application of the PWLD discretization to adaptive mesh refinement.

  16. Benefit of Consolidative Radiation Therapy for Primary Bone Diffuse Large B-Cell Lymphoma

    SciTech Connect

    Tao, Randa; Allen, Pamela K.; Rodriguez, Alma; Shihadeh, Ferial; Pinnix, Chelsea C.; Arzu, Isadora; Reed, Valerie K.; Oki, Yasuhiro; Westin, Jason R.; Fayad, Luis E.; Medeiros, L. Jeffrey; Dabaja, Bouthaina

    2015-05-01

    Purpose: Outcomes for patients with diffuse large B-cell lymphoma (DLBCL) differ according to the site of presentation. With effective chemotherapy, the need for consolidative radiation therapy (RT) is controversial. We investigated the influence of primary bone presentation and receipt of consolidative RT on progression-free survival (PFS) and overall survival (OS) in patients with DLBCL. Methods and Materials: We identified 102 patients with primary bone DLBCL treated consecutively from 1988 through 2013 and extracted clinical, pathologic, and treatment characteristics from the medical records. Survival outcomes were calculated by the Kaplan-Meier method, with factors affecting survival determined by log-rank tests. Univariate and multivariate analyses were done with a Cox regression model. Results: The median age was 55 years (range, 16-87 years). The most common site of presentation was in the long bones. Sixty-five patients (63%) received R-CHOP–based chemotherapy, and 74 (72%) received rituximab. RT was given to 67 patients (66%), 47 with stage I to II and 20 with stage III to IV disease. The median RT dose was 44 Gy (range, 24.5-50 Gy). At a median follow-up time of 82 months, the 5-year PFS and OS rates were 80% and 82%, respectively. Receipt of RT was associated with improved 5-year PFS (88% RT vs 63% no RT, P=.0069) and OS (91% vs 68%, P=.0064). On multivariate analysis, the addition of RT significantly improved PFS (hazard ratio [HR] = 0.14, P=.014) with a trend toward an OS benefit (HR=0.30, P=.053). No significant difference in PFS or OS was found between patients treated with 30 to 35 Gy versus ≥36 Gy (P=.71 PFS and P=.31 OS). Conclusion: Patients with primary bone lymphoma treated with standard chemotherapy followed by RT can have excellent outcomes. The use of consolidative RT was associated with significant benefits in both PFS and OS.

  17. Influence of radiation on double conjugate diffusion in a porous cavity

    NASA Astrophysics Data System (ADS)

    Azeem, Khan, T. M. Yunus; Badruddin, Irfan Anjum; Nik-Ghazali, N.; Idris, Mohd Yamani Idna

    2016-05-01

    The current work highlights the effect of radiation on the conjugate heat and mass transfer in a square porous cavity having a solid wall. The solid wall is placed at the center of cavity. The left surface of cavity is maintained at higher temperature Tw and concentration Cw whereas the right surface is maintained at Tc and Cc such that Tw>Tc and Cw>Cc. The top and bottom surfaces are adiabatic. The governing equations are solved with the help of finite element method by making use of triangular elements. The results are discussed with respect to two different heights of solid wall inside the porous medium along with the radiation parameter.

  18. Radiation Therapy for Cancer

    MedlinePlus

    ... What is radiation therapy? Radiation therapy uses high-energy radiation to shrink tumors and kill cancer cells ( ... is a measure of the amount of radiation energy absorbed by 1 kilogram of human tissue. Different ...

  19. Chest radiation - discharge

    MedlinePlus

    Radiation - chest - discharge; Cancer - chest radiation; Lymphoma - chest radiation ... When you have radiation treatment for cancer, your body goes through changes. About 2 weeks after your first treatment: It may be hard ...

  20. Risk Factors: Radiation

    Cancer.gov

    Radiation of certain wavelengths, called ionizing radiation, has enough energy to damage DNA and cause cancer. Ionizing radiation includes radon, x-rays, gamma rays, and other forms of high-energy radiation.

  1. Acute Radiation Syndrome

    MedlinePlus

    ... Dictionary Radiation Emergencies & Your Health Possible Health Effects Contamination and Exposure Acute Radiation Syndrome (ARS) Cutaneous Radiation ... Decision Making in Radiation Emergencies Protective Actions Internal Contamination Clinical Reference (ICCR) Application Psychological First Aid in ...

  2. Quantifying equation-of-state and opacity errors using integrated supersonic diffusive radiation flow experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Guymer, T. M.; Moore, A. S.; Morton, J.; Kline, J. L.; Allan, S.; Bazin, N.; Benstead, J.; Bentley, C.; Comley, A. J.; Cowan, J.; Flippo, K.; Garbett, W.; Hamilton, C.; Lanier, N. E.; Mussack, K.; Obrey, K.; Reed, L.; Schmidt, D. W.; Stevenson, R. M.; Taccetti, J. M.; Workman, J.

    2015-04-01

    A well diagnosed campaign of supersonic, diffusive radiation flow experiments has been fielded on the National Ignition Facility. These experiments have used the accurate measurements of delivered laser energy and foam density to enable an investigation into SESAME's tabulated equation-of-state values and CASSANDRA's predicted opacity values for the low-density C8H7Cl foam used throughout the campaign. We report that the results from initial simulations under-predicted the arrival time of the radiation wave through the foam by ≈22%. A simulation study was conducted that artificially scaled the equation-of-state and opacity with the intended aim of quantifying the systematic offsets in both CASSANDRA and SESAME. Two separate hypotheses which describe these errors have been tested using the entire ensemble of data, with one being supported by these data.

  3. Quantifying equation-of-state and opacity errors using integrated supersonic diffusive radiation flow experiments on the National Ignition Facility

    SciTech Connect

    Guymer, T. M. Moore, A. S.; Morton, J.; Allan, S.; Bazin, N.; Benstead, J.; Bentley, C.; Comley, A. J.; Garbett, W.; Reed, L.; Stevenson, R. M.; Kline, J. L.; Cowan, J.; Flippo, K.; Hamilton, C.; Lanier, N. E.; Mussack, K.; Obrey, K.; Schmidt, D. W.; Taccetti, J. M.; and others

    2015-04-15

    A well diagnosed campaign of supersonic, diffusive radiation flow experiments has been fielded on the National Ignition Facility. These experiments have used the accurate measurements of delivered laser energy and foam density to enable an investigation into SESAME's tabulated equation-of-state values and CASSANDRA's predicted opacity values for the low-density C{sub 8}H{sub 7}Cl foam used throughout the campaign. We report that the results from initial simulations under-predicted the arrival time of the radiation wave through the foam by ≈22%. A simulation study was conducted that artificially scaled the equation-of-state and opacity with the intended aim of quantifying the systematic offsets in both CASSANDRA and SESAME. Two separate hypotheses which describe these errors have been tested using the entire ensemble of data, with one being supported by these data.

  4. Hypofractionation vs Conventional Radiation Therapy for Newly Diagnosed Diffuse Intrinsic Pontine Glioma: A Matched-Cohort Analysis

    SciTech Connect

    Janssens, Geert O.; Jansen, Marc H.; Nowak, Peter J.; Oldenburger, Foppe R.; Bouffet, Eric; Kamphuis-van Ulzen, Karin; Lindert, Erik J. van; Schieving, Jolanda H.; Boterberg, Tom; Kaspers, Gertjan J.; Gidding, Corrie E.; Hargrave, Darren

    2013-02-01

    Purpose: Despite conventional radiation therapy, 54 Gy in single doses of 1.8 Gy (54/1.8 Gy) over 6 weeks, most children with diffuse intrinsic pontine glioma (DIPG) will die within 1 year after diagnosis. To reduce patient burden, we investigated the role of hypofractionation radiation therapy given over 3 to 4 weeks. A 1:1 matched-cohort analysis with conventional radiation therapy was performed to assess response and survival. Methods and Materials: Twenty-seven children, aged 3 to 14, were treated according to 1 of 2 hypofractionation regimens over 3 to 4 weeks (39/3 Gy, n=16 or 44.8/2.8 Gy, n=11). All patients had symptoms for {<=}3 months, {>=}2 signs of the neurologic triad (cranial nerve deficit, ataxia, long tract signs), and characteristic features of DIPG on magnetic resonance imaging. Twenty-seven patients fulfilling the same diagnostic criteria and receiving at least 50/1.8 to 2.0 Gy were eligible for the matched-cohort analysis. Results: With hypofractionation radiation therapy, the overall survival at 6, 9, and 12 months was 74%, 44%, and 22%, respectively. Progression-free survival at 3, 6, and 9 months was 77%, 43%, and 12%, respectively. Temporary discontinuation of steroids was observed in 21 of 27 (78%) patients. No significant difference in median overall survival (9.0 vs 9.4 months; P=.84) and time to progression (5.0 vs 7.6 months; P=.24) was observed between hypofractionation vs conventional radiation therapy, respectively. Conclusions: For patients with newly diagnosed DIPG, a hypofractionation regimen, given over 3 to 4 weeks, offers equal overall survival with less treatment burden compared with a conventional regimen of 6 weeks.

  5. Change in Diffusing Capacity After Radiation as an Objective Measure for Grading Radiation Pneumonitis in Patients Treated for Non-Small-Cell Lung Cancer

    SciTech Connect

    Lopez Guerra, Jose Luis; Gomez, Daniel; Zhuang Yan; Levy, Lawrence B.; Eapen, George; Liu Hongmei; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing

    2012-08-01

    Purpose: Scoring of radiation pneumonitis (RP), a dose-limiting toxicity after thoracic radiochemotherapy, is subjective and thus inconsistent among studies. Here we investigated whether the extent of change in diffusing capacity of the lung for carbon monoxide (DLCO) after radiation therapy (RT) for non-small-cell lung cancer (NSCLC) could be used as an objective means of quantifying RP. Patients and Methods: We analyzed potential correlations between DLCO and RP in 140 patients who received definitive RT ({>=}60 Gy) with or without chemotherapy for primary NSCLC. All underwent DLCO analysis before and after RT. Post-RT DLCO values within 1 week of the RP diagnosis (Grade 0, 1, 2, or 3) were selected and compared with that individual's preradiation values. Percent reductions in DLCO and RP grade were compared by point biserial correlation in the entire patient group and in subgroups stratified according to various clinical factors. Results: Patients experiencing Grade 0, 1, 2, or 3 RP had median percentage changes in DLCO after RT of 10.7%, 13%, 22.1%, or 35.2%. Percent reduction in DLCO correlated with RP Grade {<=}1 vs. {>=}2 (p = 0.0004). This association held for the following subgroups: age {>=}65 years, advanced stage, smokers, use of chemotherapy, volume of normal lung receiving at least 20 Gy {>=}30%, and baseline DLCO or forced expiratory volume in 1 second {>=}60%. Conclusions: By correlating percent change in DLCO from pretreatment values at the time of diagnosis of RP with RP grade, we were able to identify categories of RP based on the change in DLCO. These criteria provide a basis for an objective scoring system for RP based on change in DLCO.

  6. Comparative study of spectral diffuse-only and diffuse-specular radiative transfer models and field-collected data in the LWIR

    NASA Astrophysics Data System (ADS)

    Stoyanov, Dimitar M.; Marciniak, Michael A.; Meola, Joseph

    2015-09-01

    The sensitivity of hyper-spectral remote sensing to the directional reflectance of surfaces was studied using both laboratory and field measurements. Namely, the effects of the specular- and diffuse-reflectance properties of a set of eight samples, ranging from high to low in both total reflectance and specularity, on diffuse-only and diffusespecular radiative transfer models in the long-wave infrared (LWIR, 7-14-μm wavelength) were studied. The samples were measured in the field as a set of eight panels, each in two orientations, with surface normal pointing toward zenith and tipped at 45° from zenith. The field-collected data also included down-welling spectral sky radiance at several angles from zenith to the horizon, ground spectral radiance, panel spectral radiances in both orientations, Infragold® spectral radiances in both orientations near each panel location, and panel temperatures. Laboratory measurements included spectral hemispherical, specular and diffuse directional reflectance (HDR, SDR and DDR) for each sample for several reflectance angles with respect to the surface normal. The diffuse-only radiative transfer model used the HDR data, while the diffuse-specular model used the SDR and DDR data. Both calculated spectral reflected and self-emitted radiances for each panel, using the field-collected sky radiance data to avoid uncertainties associated with atmospheric models. The modeled spectral radiances were then compared to the field-collected values to quantify differences in moving from an HDR-based model to an SDR/DDR model in the LWIR for a variety of surface-reflectance types.

  7. A faster algorithm for smoothed particle hydrodynamics with radiative transfer in the flux-limited diffusion approximation

    NASA Astrophysics Data System (ADS)

    Whitehouse, Stuart C.; Bate, Matthew R.; Monaghan, Joe J.

    2005-12-01

    We describe a new, faster implicit algorithm for solving the radiation hydrodynamics equations in the flux-limited diffusion approximation for smoothed particle hydrodynamics. This improves on the method elucidated in Whitehouse and Bate by using a Gauss-Seidel iterative method rather than iterating over the exchange of energy between pairs of particles. The new algorithm is typically many thousands of times faster than the old one, which will enable more complex problems to be solved. The new algorithm is tested using the same tests performed by Turner and Stone for ZEUS-2D, and repeated by Whitehouse and Bate.

  8. First Order Chemical Reaction Effects on Exponentially Accelerated Vertical Plate with Variable Mass Diffusion in the Presence of Thermal Radiation

    NASA Astrophysics Data System (ADS)

    Muthucumaraswamy, R.; Lakshmi, C. S.

    2015-05-01

    Effects of transfer of mass and free convection on the flow field of an incompressible viscous fluid past an exponentially accelerated vertical plate with variable surface temperature and mass diffusion are studied. Results for velocity, concentration, temperature are obtained by solving governing equations using the Laplace transform technique. It is observed that the velocity increases with decreasing values of the chemical reaction parameter or radiation parameter. But the trend is just reversed with respect to the time parameter. The skin friction is also studied.

  9. Shortwave Radiation

    NASA Technical Reports Server (NTRS)

    Klassen, Steve; Bugbee, Bruce

    2005-01-01

    Accurate shortwave radiation data is critical to evapotranspiration (ET) models used for developing irrigation schedules to optimize crop production while saving water, minimizing fertilizer, herbicide, and pesticide applications, reducing soil erosion, and protecting surface and ground water quality. Low cost silicon cell pyranometers have proven to be sufficiently accurate and robust for widespread use in agricultural applications under unobstructed daylight conditions. More expensive thermopile pyranometers are required for use as calibration standards and measurements under light with unique spectral properties (electric lights, under vegetation, in greenhouses and growth chambers). Routine cleaning, leveling, and annual calibration checks will help to ensure the integrity of long-term data.

  10. A Monte Carlo Synthetic-Acceleration Method for Solving the Thermal Radiation Diffusion Equation

    SciTech Connect

    Evans, Thomas M; Mosher, Scott W; Slattery, Stuart

    2014-01-01

    We present a novel synthetic-acceleration based Monte Carlo method for solving the equilibrium thermal radiation diusion equation in three dimensions. The algorithm performance is compared against traditional solution techniques using a Marshak benchmark problem and a more complex multiple material problem. Our results show that not only can our Monte Carlo method be an eective solver for sparse matrix systems, but also that it performs competitively with deterministic methods including preconditioned Conjugate Gradient while producing numerically identical results. We also discuss various aspects of preconditioning the method and its general applicability to broader classes of problems.

  11. Radiation protection in space.

    PubMed

    Reitz, G; Facius, R; Sandler, H

    1995-01-01

    Radiation environment, basic concepts of radiation protection, and specific aspects of the space radiation field are reviewed. The discussion of physico-chemical and subcellular radiation effects includes mechanisms of radiation action and cellular consequences. The discussion of radiobiological effects includes unique aspects of HZE particle effects, space flight findings, terrestrial findings, analysis of somatic radiation effects and effects on critical organs, and early and delayed effects. Other topics include the impact of the space flight environment, measurement of radiation exposure, establishing radiation protection limits, limitations in establishing space-based radiation exposure limits, radiation protection measures, and recommendations. PMID:11541474

  12. A Radiation Chemistry Code Based on the Green's Function of the Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Wu, Honglu

    2014-01-01

    Stochastic radiation track structure codes are of great interest for space radiation studies and hadron therapy in medicine. These codes are used for a many purposes, notably for microdosimetry and DNA damage studies. In the last two decades, they were also used with the Independent Reaction Times (IRT) method in the simulation of chemical reactions, to calculate the yield of various radiolytic species produced during the radiolysis of water and in chemical dosimeters. Recently, we have developed a Green's function based code to simulate reversible chemical reactions with an intermediate state, which yielded results in excellent agreement with those obtained by using the IRT method. This code was also used to simulate and the interaction of particles with membrane receptors. We are in the process of including this program for use with the Monte-Carlo track structure code Relativistic Ion Tracks (RITRACKS). This recent addition should greatly expand the capabilities of RITRACKS, notably to simulate DNA damage by both the direct and indirect effect.

  13. Diffuse sky radiation influences the relationship between canopy PRI and shadow fraction

    NASA Astrophysics Data System (ADS)

    Mõttus, Matti; Takala, Tuure L. H.; Stenberg, Pauline; Knyazikhin, Yuri; Yang, Bin; Nilson, Tiit

    2015-07-01

    The Photochemical Reflectance Index (PRI) of green leaves is an indicator of photosynthetic downregulation: when the photosynthetic apparatus is close to the saturation limit, PRI becomes dependent on light conditions. Therefore, by measuring the PRI of leaves under different local irradiance conditions, it should be possible to determine the saturation level of the leaves and obtain information on the light use efficiency (LUE) of a vegetation canopy. The dependence of PRI on the ratio of sunlit to shaded foliage (quantified by the canopy shadow fraction) in the field of view of an instrument has been used to remotely measure canopy LUE on clear days. However, besides photosynthetic downregulation, the dependence of canopy PRI on shadow fraction is affected by the blue sky radiation caused by scattering in the atmosphere. To quantify this effect on remotely sensed PRI, we present the underlying definitions relating leaf and canopy PRI and perform the required calculations for typical midsummer conditions in Central Finland. We demonstrate that the effect of blue sky radiation on the variation of PRI with canopy shadow fraction is similar in shape and magnitude to that of LUE variations reported in literature.

  14. A diffusive radiation hydrodynamics code, xRage, is implemented to compare radiation flow with experimental data from the Omega laser facility

    NASA Astrophysics Data System (ADS)

    Vandervort, Robert; Elgin, Laura; Farag, Ebraheem; Mussack, Katie; Baumgaertel, Jessica Ann; Keiter, Paul; Klein, Sallee; Orban, Christopher; Drake, R. Paul

    2015-11-01

    A sound speed discrepancy between solar models and data collected using helioseismology exists. The sound speed discrepancy is the most pronounced at the base of the convective zone (CZ) for otherwise consistent solar models. One potential solution is that the opacity models for important elements such as carbon, nitrogen and oxygen are incomplete. At these high energy-density conditions few relevant opacity measurements exist to compare to the models. Only relatively recently have user facilities been able to reach the temperatures and densities that resemble the convective zone base. It is our long term goal to determine the opacities of carbon, nitrogen and oxygen at the relevant conditions. Preliminary testing has occurred at the Omega Laser Facility in Rochester, New York. Presented are the results of the shots taken on April 22, 2015. A half hohlraum was used to drive a supersonic radiation front through a dominantly carbon, CRF, foam. These results are compared to diffusive xRage simulations. (LA-UR-15-25495)

  15. The Impact of Buoyancy and Flame Structure on Soot, Radiation and NOx Emissions from a Turbulent Diffusion Flame

    NASA Technical Reports Server (NTRS)

    Kennedy, I. M.; Kollman, W.; VanderWal, R. L.

    1999-01-01

    It is hypothesized that the spatial structure of a turbulent diffusion flame plays an important role in determining the emissions of radiative energy, soot and NO, from a combustor. This structure, manifested in the two point statistics, is influenced by buoyancy. Radiation, soot and NOx emissions are the cumulative result of processes that occur throughout a flame. For example, radiation fluxes along a line of sight can be found from summing up the contributions from sources in individual pockets of hot soot that emit, and from sinks in cold soot that absorb. Soot and NOx are both the results of slow chemistry and are not equilibrium products. The time that is available for production and burnout is crucial in determining the eventual emissions of these pollutants. Turbulence models generally rely on a single point closure of the appropriate time averaged equations. Hence, spatial information is lost and needs to be modeled using solution variables such as turbulence kinetic energy and dissipation rate, often with the assumption of isotropy. However, buoyancy can affect the physical structure of turbulent flames and can change the spatial extent of soot bearing regions. Theoretical comparisons with models are best done in the limit of infinite Froude number because the inclusion of buoyancy in flow models introduces significant uncertainties. Hence, LII measurements of soot, measurements of radiation fluxes from soot, Particle Imaging Velocimetry (PIV) of the flow field and measurements of post flame NOX will be carried out on the NASA Lewis 2.2 sec drop tower and eventually on the parabolic flight aircraft. The drop rig will be a modified version of a unit that has been successfully used at Lewis in the past.

  16. Involved-Lesion Radiation Therapy After Chemotherapy in Limited-Stage Head-and-Neck Diffuse Large B Cell Lymphoma

    SciTech Connect

    Yu, Jeong Il; Nam, Heerim; Ahn, Yong Chan; Kim, Won Seog; Park, Keunchil; Kim, Seok Jin

    2010-10-01

    Purpose: To report treatment outcomes after combined-modality therapy in patients with Stage I/II head-and-neck (HN) diffuse large B cell lymphoma (DLBL). Methods and Materials: Eighty-six eligible patients received sequential chemotherapy and involved-lesion radiation therapy from 1995 to 2006. After a median of four cycles of CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) or rituximab-plus-CHOP chemotherapy, a median of 41.4 Gy was delivered to the known initial gross lesion with adequate margin (2 to 3 cm). Results: After a median follow-up of 57 months, eight treatment failures were observed: distant metastasis in 8 patients; and locoregional failure in 4 patients. Among the 4 patients with locoregional failure, 3 presented with in-field failures, and 1 both in-field and out-of-field failure (contralateral neck). Rates of overall survival (OS) and freedom from progression (FFP) at 10 years were 74.1% and 88.9%, respectively. There was no severe side effect except 1 patient with Grade 3 mucositis during and after completion of radiation therapy. Multivariate analyses showed that absence of B symptom (p = 0.022) and normal lactate dehydrogenase (p = 0.017) were related to favorable OS, age >60 years (p = 0.033) was related to favorable FFP, and international prognostic index of 0 or 1 was related to favorable OS (p = 0.003) and FFP (p = 0.03). Conclusion: This study demonstrated that patients with Stage I/II HN DLBL did not need whole-neck irradiation. Involved-lesion radiation therapy might reduce radiation toxicity with favorable treatment results.

  17. ANOMALOUS DIFFUSE INTERSTELLAR BANDS IN THE SPECTRUM OF HERSCHEL 36. II. ANALYSIS OF RADIATIVELY EXCITED CH{sup +}, CH, AND DIFFUSE INTERSTELLAR BANDS

    SciTech Connect

    Oka, Takeshi; Welty, Daniel E.; Johnson, Sean; York, Donald G.; Hobbs, L. M.; Dahlstrom, Julie

    2013-08-10

    Absorption spectra toward Herschel 36 (Her 36) for the A-bar{sup 1}{Pi} Leftwards-Open-Headed-Arrow X-tilde{sup 1}{Sigma} transitions of CH{sup +} in the J = 1 excited rotational level and for the A-bar{sup 2}{Delta} Leftwards-Open-Headed-Arrow X-tilde{sup 2}{Pi} transitions of CH in the J = 3/2 excited fine structure level have been analyzed. These excited levels are above their ground levels by 40.1 K and {approx}25.7 K and indicate high radiative temperatures of the environment of 14.6 K and 6.7 K, respectively. The effect of the high radiative temperature is more spectacular in some diffuse interstellar bands (DIBs) observed toward Her 36; remarkable extended tails toward red (ETRs) were observed. We interpret these ETRs as being due to a small decrease of the rotational constants upon excitation of the excited electronic states. Along with radiative pumping of a great many high-J rotational levels, this causes the ETRs. In order to study this effect quantitatively, we have developed a model calculation in which the effects of collisions and radiation are treated simultaneously. The simplest case of linear molecules is considered. It has been found that the ETR is reproduced if the fraction of the variation of the rotational constant, {beta} {identical_to} (B' - B)/B, is sufficiently high (3%-5%) and the radiative temperature is high (T{sub r} > 50 K). Although modeling for general molecules is beyond the scope of this paper, the results indicate that the prototypical DIBs {lambda}5780.5, {lambda}5797.1, and {lambda}6613.6 which show the pronounced ETRs are due to polar molecules that are sensitive to the radiative excitation. The requirement of high {beta} favors relatively small molecules with three to six heavy atoms. DIBs {lambda}5849.8, {lambda}6196.0, and {lambda}6379.3 that do not show the pronounced ETRs are likely due to non-polar molecules or large polar molecules with small {beta}.

  18. [Solar cosmic radiation and the radiation hazard of space flight].

    PubMed

    Miroshnichenko, L I

    1983-01-01

    Present-day data on the spectrum of solar radiation in the source and near the Earth are discussed as applied to the radiation safety of crewmembers and electronics onboard manned and unmanned spacecraft. It is shown that the slope of the solar radiation spectrum changes (flattens) in the low energy range. Quantitative information about absolute solar radiation fluxes near the Earth is summarized in relation to the most significant flares of 1956--1978. The time-related evolution of the solar radiation spectrum in the interplanetary space is described in quantitative terms (as illustrated by the solar flare of 28 September 1961). It is indicated that the nonmonotonic energy dependence of the transport path of solar radiation in the interplanetary space should be taken into consideration. It is demonstrated that the diffusion model of propagation can be verified using solar radiation measurements in space flights.

  19. Radiation Insulation

    NASA Technical Reports Server (NTRS)

    1993-01-01

    An aluminized polymer film is a highly effective radiation barrier for both manned and unmanned spacecraft. Variations of this space-devised material are also used as an energy conservation technique for homes and offices. One commercial company, Tech 2000 (formerly Buckeye Radiant Barrier), markets 'Super R' Radiant Barrier, which finds its origins in the Apollo Mission programs. The material is placed between wall studs and exterior facing before siding or in new roof installation, between roof support and roof sheathing. Successful retrofit installations have included schools and shrink wrap ovens. The radiant barrier blocks 95 percent of radiant energy, thus retaining summer heat and blocking winter cold. Suppliers claim utility bill reductions of 20 percent or more.

  20. RADIATION DOSIMETER

    DOEpatents

    Balkwell, W.R. Jr.; Adams, G.D. Jr.

    1960-05-10

    An improvement was made in the determination of amounts of ionizing radiation, particularly low-energy beta particles of less than 1000 rad total dose by means of fluid-phase dosimeter employing a stabilized-- sensitized ferrous-ferric colorimetric system in a sulphuric acid medium. The improvement in the dosimeter consists of adding to the ferrous-ferric system in concentrations of 10/sub -2/ to 10/sup -4/M an organic compound having one or more carboxylic or equivalent groups, such compounds being capable of chelating or complexing the iron ions in the solution. Suitable sensitizing and stabilizing agents are benzoic, phthalic, salicylic, malonic, lactic, maleic, oxalic, citric, succinic, phenolic tartaric, acetic, and adipic acid, as well as other compounds which are added to the solution alone or in certain combinations. As in conventional fluid-phase dosimeters, the absorbed dosage is correlated with a corresponding change in optical density at particular wavelengths of the solution.

  1. Radiation Insulation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Apollo and subsequent spacecraft have had highly effective radiation barriers; made of aluminized polymer film, they bar or let in heat to maintain consistent temperatures inside. Tech 2000, formerly Quantum International Corporation used the NASA technology in its insulating materials, Super "Q" Radiant Barrier, for home, industry and mobile applications. The insulation combines industrial aluminum foil overlaid around a core of another material, usually propylene or mylar. The outer layer reflects up to 97 percent of heat; the central layer creates a thermal break in the structure and thus allows low radiant energy emission. The Quantum Cool Wall, used in cars and trucks, takes up little space while providing superior insulation, thus reducing spoilage and costs. The panels can also dampen sound and engine, exhaust and solar heat.

  2. Radiation dosimeters

    DOEpatents

    Hoelsher, James W.; Hegland, Joel E.; Braunlich, Peter F.; Tetzlaff, Wolfgang

    1992-01-01

    Radiation dosimeters and dosimeter badges. The dosimeter badges include first and second parts which are connected to join using a securement to produce a sealed area in which at least one dosimeter is held and protected. The badge parts are separated to expose the dosimeters to a stimulating laser beam used to read dose exposure information therefrom. The badge is constructed to allow automated disassembly and reassembly in a uniquely fitting relationship. An electronic memory is included to provide calibration and identification information used during reading of the dosimeter. Dosimeter mounts which reduce thermal heating requirements are shown. Dosimeter constructions and production methods using thin substrates and phosphor binder-layers applied thereto are also taught.

  3. RADIATION COUNTER

    DOEpatents

    Goldsworthy, W.W.

    1958-02-01

    This patent relates to a radiation counter, and more particularly, to a scintillation counter having high uniform sensitivity over a wide area and capable of measuring alpha, beta, and gamma contamination over wide energy ranges, for use in quickly checking the contami-nation of personnel. Several photomultiplier tubes are disposed in parallel relationship with a light tight housing behind a wall of scintillation material. Mounted within the housing with the photomultipliers are circuit means for producing an audible sound for each pulse detected, and a range selector developing a voltage proportional to the repetition rate of the detected pulses and automatically altering its time constant when the voltage reaches a predetermined value, so that manual range adjustment of associated metering means is not required.

  4. A multigroup diffusion solver using pseudo transient continuation for a radiation-hydrodynamic code with patch-based AMR

    SciTech Connect

    Shestakov, Aleksei I. Offner, Stella S.R.

    2008-01-10

    We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with Adaptive Mesh Refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation ({psi}tc). We analyze the magnitude of the {psi}tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichlet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the 'partial temperature' scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of {psi}tc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory and demonstrates

  5. A Multigroup diffusion solver using pseudo transient continuation for a radiation-hydrodynamic code with patch-based AMR

    SciTech Connect

    Shestakov, A I; Offner, S R

    2006-09-21

    We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with adaptive mesh refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation ({Psi}tc). We analyze the magnitude of the {Psi}tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the 'partial temperature' scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of {Psi}tc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory and demonstrates

  6. A multigroup diffusion solver using pseudo transient continuation for a radiation-hydrodynamic code with patch-based AMR

    NASA Astrophysics Data System (ADS)

    Shestakov, Aleksei I.; Offner, Stella S. R.

    2008-01-01

    We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with Adaptive Mesh Refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate "level-solve" packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation (Ψtc). We analyze the magnitude of the Ψtc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichlet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the "partial temperature" scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of Ψtc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory and demonstrates the

  7. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  8. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  9. The implications of the COBE diffuse microwave radiation results for cosmic strings

    NASA Technical Reports Server (NTRS)

    Bennett, David P.; Stebbins, Albert; Bouchet, Francois R.

    1992-01-01

    We compare the anisotropies in the cosmic microwave background radiation measured by the COBE experiment to those predicted by cosmic string theories. We use an analytic model for the Delta T/T power spectrum that is based on our previous numerical simulations of strings, under the assumption that cosmic strings are the sole source of the measured anisotropy. This implies a value for the string mass per unit length of 1.5 +/- 0.5 x 10 exp -6 C-squared/G. This is within the range of values required for cosmic strings to successfully seed the formation of large-scale structures in the universe. These results clearly encourage further studies of Delta T/T and large-scale structure in the cosmic string model.

  10. Albedo and flux extinction coefficient of impure snow for diffuse shortwave radiation

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Mo, T.; Wang, J. R.; Chang, A. T. C.

    1981-01-01

    Impurities enter a snowpack as a result of fallout of scavenging by falling snow crystals. Albedo and flux extinction coefficient of soot contaminated snowcovers were studied using a two stream approximation of the radiative transfer equation. The effect of soot was calculated by two methods: independent scattering by ice grains and impurities and average refractive index for ice grains. Both methods predict a qualitatively similar effect of soot; the albedo is decreased and the extinction coefficient is increased compared to that for pure snow in the visible region; the infrared properties are largely unaffected. Quantitatively, however, the effect of soot is more pronounced in the average refractive index method. Soot contamination provides a qualitative explanation for several snow observations.

  11. Diffusion Tensor Imaging of Normal-Appearing White Matter as Biomarker for Radiation-Induced Late Delayed Cognitive Decline

    SciTech Connect

    Chapman, Christopher H.; Nagesh, Vijaya; Sundgren, Pia C.; Buchtel, Henry; Chenevert, Thomas L.; Junck, Larry; Lawrence, Theodore S.; Tsien, Christina I.; Cao, Yue

    2012-04-01

    Purpose: To determine whether early assessment of cerebral white matter degradation can predict late delayed cognitive decline after radiotherapy (RT). Methods and Materials: Ten patients undergoing conformal fractionated brain RT participated in a prospective diffusion tensor magnetic resonance imaging study. Magnetic resonance imaging studies were acquired before RT, at 3 and 6 weeks during RT, and 10, 30, and 78 weeks after starting RT. The diffusivity variables in the parahippocampal cingulum bundle and temporal lobe white matter were computed. A quality-of-life survey and neurocognitive function tests were administered before and after RT at the magnetic resonance imaging follow-up visits. Results: In both structures, longitudinal diffusivity ({lambda}{sub Double-Vertical-Line }) decreased and perpendicular diffusivity ({lambda}{sub Up-Tack }) increased after RT, with early changes correlating to later changes (p < .05). The radiation dose correlated with an increase in cingulum {lambda}{sub Up-Tack} at 3 weeks, and patients with >50% of cingula volume receiving >12 Gy had a greater increase in {lambda}{sub Up-Tack} at 3 and 6 weeks (p < .05). The post-RT changes in verbal recall scores correlated linearly with the late changes in cingulum {lambda}{sub Double-Vertical-Line} (30 weeks, p < .02). Using receiver operating characteristic curves, early cingulum {lambda}{sub Double-Vertical-Line} changes predicted for post-RT changes in verbal recall scores (3 and 6 weeks, p < .05). The neurocognitive test scores correlated significantly with the quality-of-life survey results. Conclusions: The correlation between early diffusivity changes in the parahippocampal cingulum and the late decline in verbal recall suggests that diffusion tensor imaging might be useful as a biomarker for predicting late delayed cognitive decline.

  12. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  13. Diffuse gas in the interstellar medium: Studies involving coupled ionization, radiation and dynamics

    SciTech Connect

    Slavin, J.D.

    1990-01-01

    A study is presented of the consequences of a conductive boundary on the Local Cloud, the warm low density region immediately surrounding the Sun. The evaporation of the cloud is modeled assuming steady flow. The soft x ray and EUV emission from the interface are calculated and compared with observations. It is found that the emission in the softest x ray band, the Be band, is harder than that of an equilibrium, normal abundance, 10(exp 6)K plasma. The results are also presented of a 1-D (spherical symmetry) numerical simulation of the evolution of a supernova remnant in a homogeneous medium with a 5 micro-G magnetic field and density of 0.2/cu cm. The remnant evolution was followed from the early Sedov-Taylor phase through the final collapse of the hot bubble after 5.5 x 10(exp 6) years. It was found that the evolution of the remnant, once it has become radiative, differs substantially from the equivalent field-free case, having a smaller interior hot bubble and thicker cold shell. Examples of calculated EUV and FUV emission spectra from the hot bubble are presented and their observability discussed.

  14. Disrupting NOTCH Slows Diffuse Intrinsic Pontine Glioma Growth, Enhances Radiation Sensitivity, and Shows Combinatorial Efficacy with Bromodomain Inhibition

    PubMed Central

    Taylor, Isabella C.; Hütt-Cabezas, Marianne; Brandt, William D.; Kambhampati, Madhuri; Nazarian, Javad; Chang, Howard T.; Warren, Katherine E.; Eberhart, Charles G.; Raabe, Eric H.

    2015-01-01

    NOTCH regulates stem cells during normal development and stem-like cells in cancer but the roles of NOTCH in the lethal pediatric brain tumor diffuse intrinsic pontine glioma (DIPG) remain unknown. Because DIPGs express stem cell factors such as SOX2 and MYCN, we hypothesized that NOTCH activity would be critical for DIPG growth. We determined that primary DIPGs expressed high levels of NOTCH receptors, ligands, and downstream effectors. Treatment of the DIPG cell lines JHH-DIPG1 and SF7761 with the γ-secretase inhibitor MRK003 suppressed the level of the NOTCH effectors HES1, HES4, HES5, inhibited DIPG growth by 75%, and caused a 3-fold induction of apoptosis. Short hairpin RNAs targeting the canonical NOTCH pathway caused similar effects. Pre-treatment of DIPG cells with MRK003 suppressed clonogenic growth by more than 90% and enhanced the efficacy of radiation therapy. The high level of MYCN in DIPG led us to test sequential therapy with the bromodomain inhibitor JQ1 and MRK003, and we found that JQ1 and MRK003 inhibited DIPG growth and induced apoptosis. Together, these results suggest that dual targeting of NOTCH and MYCN in DIPG may be an effective therapeutic strategy in DIPG and that adding a γ-secretase inhibitor during radiation therapy may be efficacious initially or during re-irradiation. PMID:26115193

  15. Spectroscopy of diffuse light in dust clouds. Scattered light and the solar neighbourhood radiation field

    NASA Astrophysics Data System (ADS)

    Lehtinen, K.; Mattila, K.

    2013-01-01

    Context. The optical surface brightness of dark nebulae is mainly due to scattering of integrated starlight by classical dust grains. It contains information on the impinging interstellar radiation field, cloud structure, and grain scattering properties. We have obtained spectra of the scattered light from 3500 to 9000 Å in two globules, the Thumbprint Nebula and DC 303.8-14.2. Aims. We use observations of the scattered light to study the impinging integrated starlight spectrum as well as the scattered Hα and other line emissions from all over the sky. We search also for the presence of other than scattered light in the two globules. Methods. We obtained long-slit spectra encompassing the whole globule plus adjacent sky in a one-slit setting, thus enabling efficient elimination of airglow and other foreground sky components. We calculated synthetic integrated starlight spectra for the solar neighbourhood using HIPPARCOS-based stellar distributions and the spectral library of Pickles. Results. Spectra are presented separately for the bright rims and dark cores of the globules. The continuum spectral energy distributions and absorption line spectra can be well modelled with the synthetic integrated starlight spectra. Emission lines of Hα +[N II], Hβ, and [S II] are detected and are interpreted in terms of scattered light plus an in situ warm ionized medium component behind the globules. We detected an excess of emission over the wavelength range 5200-8000 Å in DC 303.8-14.2 but the nature of this emission remains open. Based on observations collected at the European Southern Observatory, Chile, under programme ESO No. 073.C-0239(A). Appendix A is available in electronic form at http://www.aanda.org.

  16. Solar radiation on inclined surfaces

    NASA Astrophysics Data System (ADS)

    1980-05-01

    Mean monthly values of daily shortwave radiation on inclined surfaces are presented for 13 locations in India. Values of direct, diffuse sky, reflected, and total shortwave radiation incident on an inclined surface are given for 9 slope angles (measured from the horizontal) and 8 aspects. All the data are computed using measured values of the total shortwave radiation on a horizontal surface according to the techniques described. Maximum and minimum values of direct solar radiation during each month are underlined and marked by asterisk respectively. Actual and potential users of radiation data, particularly those in the fields of agriculture, horticulture, forestry, architecture, heating and ventilating engineering, and photovoltaic systems, it is hoped, would find this publication useful in planning and designing of solar radiation devices.

  17. Uncertainty analysis of diffuse-gray radiation enclosure problems: A hypersensitive case study

    NASA Technical Reports Server (NTRS)

    Taylor, Robert P.; Luck, Rogelio; Hodge, B. K.; Steele, W. Glenn

    1993-01-01

    An uncertainty analysis of diffuse-gray enclosure problems is presented. The genesis was a diffuse-gray enclosure problem which proved to be hypersensitive to the specification of view factors. This genesis is discussed in some detail. The uncertainty analysis is presented for the general diffuse-gray enclosure problem and applied to the hypersensitive case study. It was found that the hypersensitivity could be greatly reduced by enforcing both closure and reciprocity for the view factors. The effects of uncertainties in the surface emissivities and temperatures are also investigated.

  18. Interaction of ring current and radiation belt protons with ducted plasmaspheric hiss. 1: Diffusion coefficients and timescales

    NASA Technical Reports Server (NTRS)

    Kozyra, J. U.; Rasmussen, C. E.; Miller, R. H.; Lyons, L. R.

    1994-01-01

    Protons that are convected into the inner magnetosphere in response to enhanced magnetic activity can resonate with ducted plasmaspheric hiss in the outer plasmasphere via an anomalous Doppler-shifted cyclotron resonance. Plasmaspheric hiss is a right-hand-polarized electromagnetic emission that is observed to fill the plasmasphere on a routine basis. When plasmaspheric hiss is confined within field-aligned ducts or guided along density gradients, wave normal angles remain largely below 45 deg. This allows resonant interactions with ions at typical ring current and radiation belt energies to take place. Such field-aligned ducts have been observed both within the plasmasphere and in regions outside of the plasmasphere. Wave intensities are estimated using statistical information from studies of detached plasma regions. Diffusion coefficients are presented for a range of L shells and proton energies for a fixed wave distribution. Harmonic resonances in the range N = +/-100 are considered in order to include interactions between hiss at 100 Hz to 2 kHz frequencies, and protons in the energy range between approximately 10 keV and 1000 keV. Diffusion timescales are estimated to be of the order of tens of days and comparable to or shorter than lifetimes for Coulomb decay and charge exchange losses over most of the energy and spatial ranges of interest.

  19. Radiation Critical Readiness Review

    NASA Technical Reports Server (NTRS)

    Misek, William

    2010-01-01

    This slide presentation reviews the radiation preparedness and radiation monitors on the International Space Station (ISS). It includes information on the Tissue Equivalent Proportional Counter (TEPC), Radiation Area Monitors, Extra-Vehicular Charged Particle Directional Spectrometer (EV-CPDS), and the space radiation analysis group.

  20. Radiation and People

    ERIC Educational Resources Information Center

    Freilich, Florence G.

    1970-01-01

    Describes the development of radiation as a tool of medicine. Includes topics on history of radiation, electromagnetic spectrum, X-ray tubes, high energy machines, radioactive sources, artificial radioactivity, radioactive scanning, units, present radiation background, and effect of radiation on living tissue. (DS)

  1. Advanced radiator concepts

    NASA Technical Reports Server (NTRS)

    Diem-Kirsop, P. S.

    1985-01-01

    The liquid droplet radiator and the liquid belt radiator currently under study by the NASA LeRC are discussed. These advanced concepts offer benefits in reduced mass, compact stowage, and ease of deployment. Operation and components of the radiators are described, heat transfer characteristics are discussed, and critical technologies are identified. The impact of the radiators on large power systems is also assessed.

  2. Radiation transport calculations for cosmic radiation.

    PubMed

    Endo, A; Sato, T

    2012-01-01

    The radiation environment inside and near spacecraft consists of various components of primary radiation in space and secondary radiation produced by the interaction of the primary radiation with the walls and equipment of the spacecraft. Radiation fields inside astronauts are different from those outside them, because of the body's self-shielding as well as the nuclear fragmentation reactions occurring in the human body. Several computer codes have been developed to simulate the physical processes of the coupled transport of protons, high-charge and high-energy nuclei, and the secondary radiation produced in atomic and nuclear collision processes in matter. These computer codes have been used in various space radiation protection applications: shielding design for spacecraft and planetary habitats, simulation of instrument and detector responses, analysis of absorbed doses and quality factors in organs and tissues, and study of biological effects. This paper focuses on the methods and computer codes used for radiation transport calculations on cosmic radiation, and their application to the analysis of radiation fields inside spacecraft, evaluation of organ doses in the human body, and calculation of dose conversion coefficients using the reference phantoms defined in ICRP Publication 110.

  3. Radiation transport calculations for cosmic radiation.

    PubMed

    Endo, A; Sato, T

    2012-01-01

    The radiation environment inside and near spacecraft consists of various components of primary radiation in space and secondary radiation produced by the interaction of the primary radiation with the walls and equipment of the spacecraft. Radiation fields inside astronauts are different from those outside them, because of the body's self-shielding as well as the nuclear fragmentation reactions occurring in the human body. Several computer codes have been developed to simulate the physical processes of the coupled transport of protons, high-charge and high-energy nuclei, and the secondary radiation produced in atomic and nuclear collision processes in matter. These computer codes have been used in various space radiation protection applications: shielding design for spacecraft and planetary habitats, simulation of instrument and detector responses, analysis of absorbed doses and quality factors in organs and tissues, and study of biological effects. This paper focuses on the methods and computer codes used for radiation transport calculations on cosmic radiation, and their application to the analysis of radiation fields inside spacecraft, evaluation of organ doses in the human body, and calculation of dose conversion coefficients using the reference phantoms defined in ICRP Publication 110. PMID:23089013

  4. Wireless radiation sensor

    DOEpatents

    Lamberti, Vincent E.; Howell, Jr, Layton N.; Mee, David K.; Kress, Reid L.

    2016-08-09

    Disclosed is a sensor for detecting radiation. The sensor includes a ferromagnetic metal and a radiation sensitive material coupled to the ferromagnetic metal. The radiation sensitive material is operable to change a tensile stress of the ferromagnetic metal upon exposure to radiation. The radiation is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.

  5. Interrogating the Effects of Radiation Damage Annealing on Helium Diffusion Kinetics in Apatite

    NASA Astrophysics Data System (ADS)

    Willett, C. D.; Fox, M.; Shuster, D. L.

    2015-12-01

    Apatite (U-Th)/He thermochronology is commonly used to study landscape evolution and potential links between climate, erosion and tectonics. The technique relies on a quantitative understanding of (i) helium diffusion kinetics in apatite, (ii) an evolving 4He concentration, (iii) accumulating damage to the crystal lattice caused by radioactive decay[1], and (iv) the thermal annealing of such damage[2],[3], which are each functions of both time and temperature. Uncertainty in existing models of helium diffusion kinetics has resulted in conflicting conclusions, especially in settings involving burial heating through geologic time. The effects of alpha recoil damage annealing are currently assumed to follow the kinetics of fission track annealing (e.g., reference [3]), although this assumption is difficult to fully validate. Here, we present results of modeling exercises and a suite of experiments designed to interrogate the effects of damage annealing on He diffusivity in apatite that are independent of empirical calibrations of fission track annealing. We use the existing experimental results for Durango apatite[2] to develop and calibrate a new function that predicts the effects of annealing temperature and duration on measured diffusivity. We also present a suite of experiments conducted on apatite from Sierra Nevada, CA granite to establish whether apatites with different chemical compositions have the same behavior as Durango apatite. Crystals were heated under vacuum to temperatures between 250 and 500°C for 1, 10, or 100 hours. The samples were then irradiated with ~220 MeV protons to produce spallogenic 3He, the diffusant then used in step-heating diffusion experiments. We compare the results of these experiments and model calibrations to existing models. Citations: [1]Shuster, D., Flowers R., and Farley K., (2006), EPSL 249(3-4), 148-161; [2]Shuster, D. and Farley, K., (2009), GCA 73 (1), 6183-6196; [3]Flowers, R., Ketcham, R., Shuster, D. and Farley, K

  6. Influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and CO18O exchanges

    NASA Astrophysics Data System (ADS)

    Still, C. J.; Riley, W. J.; Biraud, S. C.; Noone, D. C.; Buenning, N. H.; Randerson, J. T.; Torn, M. S.; Welker, J.; White, J. W. C.; Vachon, R.; Farquhar, G. D.; Berry, J. A.

    2009-03-01

    This study evaluates the potential impact of clouds on ecosystem CO2 and CO2 isotope fluxes ("isofluxes") in two contrasting ecosystems (a broadleaf deciduous forest and a C4 grassland) in a region for which cloud cover, meteorological, and isotope data are available for driving the isotope-enabled land surface model (ISOLSM). Our model results indicate a large impact of clouds on ecosystem CO2 fluxes and isofluxes. Despite lower irradiance on partly cloudy and cloudy days, predicted forest canopy photosynthesis was substantially higher than on clear, sunny days, and the highest carbon uptake was achieved on the cloudiest day. This effect was driven by a large increase in light-limited shade leaf photosynthesis following an increase in the diffuse fraction of irradiance. Photosynthetic isofluxes, by contrast, were largest on partly cloudy days, as leaf water isotopic composition was only slightly depleted and photosynthesis was enhanced, as compared to adjacent clear-sky days. On the cloudiest day, the forest exhibited intermediate isofluxes: although photosynthesis was highest on this day, leaf-to-atmosphere isofluxes were reduced from a feedback of transpiration on canopy relative humidity and leaf water. Photosynthesis and isofluxes were both reduced in the C4 grass canopy with increasing cloud cover and diffuse fraction as a result of near-constant light limitation of photosynthesis. These results suggest that some of the unexplained variation in global mean δ18O of CO2 may be driven by large-scale changes in clouds and aerosols and their impacts on diffuse radiation, photosynthesis, and relative humidity.

  7. The influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and CO18O exhanges

    SciTech Connect

    Still, C.J.; Riley, W.J.; Biraud, S.C.; Noone, D.C.; Buenning, N.H.; Randerson, J.T.; Torn, M.S.; Welker, J.; White, J.W.C.; Vachon, R.; Farquhar, G.D.; Berry, J.A.

    2009-05-01

    This study evaluates the potential impact of clouds on ecosystem CO{sub 2} and CO{sub 2} isotope fluxes ('isofluxes') in two contrasting ecosystems (a broadleaf deciduous forest and a C{sub 4} grassland), in a region for which cloud cover, meteorological, and isotope data are available for driving the isotope-enabled land surface model, ISOLSM. Our model results indicate a large impact of clouds on ecosystem CO{sub 2} fluxes and isofluxes. Despite lower irradiance on partly cloudy and cloudy days, predicted forest canopy photosynthesis was substantially higher than on clear, sunny days, and the highest carbon uptake was achieved on the cloudiest day. This effect was driven by a large increase in light-limited shade leaf photosynthesis following an increase in the diffuse fraction of irradiance. Photosynthetic isofluxes, by contrast, were largest on partly cloudy days, as leaf water isotopic composition was only slightly depleted and photosynthesis was enhanced, as compared to adjacent clear sky days. On the cloudiest day, the forest exhibited intermediate isofluxes: although photosynthesis was highest on this day, leaf-to-atmosphere isofluxes were reduced from a feedback of transpiration on canopy relative humidity and leaf water. Photosynthesis and isofluxes were both reduced in the C{sub 4} grass canopy with increasing cloud cover and diffuse fraction as a result of near-constant light limitation of photosynthesis. These results suggest that some of the unexplained variation in global mean {delta}{sup 18}O of CO{sub 2} may be driven by large-scale changes in clouds and aerosols and their impacts on diffuse radiation, photosynthesis, and relative humidity.

  8. Radiation induced brain injury: assessment of white matter tracts in a pre-clinical animal model using diffusion tensor MR imaging.

    PubMed

    Wang, Silun; Qiu, Deqiang; So, Kwok-Fai; Wu, Ed X; Leung, Lucullus H T; Gu, Jing; Khong, Pek-Lan

    2013-03-01

    We aim to study radiation induced white matter injury in a pre-clinical model using Diffusion tensor MR imaging (DTI). Nineteen 12-week old Sprague-Dawley rats were irradiated to the right hemisphere using a linear accelerator. The dose distribution map was coregistered to the DTI map to generate the actual radiation dose to each white matter tract. Rats underwent longitudinal DTI scans at five time points from 4 to 48 weeks post-radiation with histological evaluations. Fractional anisotropy (FA) of the external capsule, fornix, cerebral peduncle, anterior commissure, optic tract and optic nerve was evaluated. Radiation dose was highest at the ipsilateral external capsule and fornix (29.4 ± 1.3 and 29.8 ± 1.1 Gy, respectively). Optic nerve received 50 % dose to the external capsule and other white matter tracts received 80 % dose. Significantly lower FA was firstly found in the ipsilateral external capsule at 4 weeks post-radiation and in the ipsilateral fornix at 40 weeks post-radiation compared to the contralateral side. Significantly lower FA was found in contralateral optic nerve compared to ipsilateral optic nerve at 48 weeks post-radiation despite ipsilateral optic nerves receiving higher radiation dose than contralateral optic nerve (p = 0.021). No differences were found in other white matter regions until 48 weeks. Histology indicated demyelination, axonal degeneration and coagulative necrosis in all injured white matter. DTI can serve as a promising tool for assessment of radiation induced white matter injury and regional radiosensitivity of white matter tracts. PMID:23334608

  9. Radial diffusion in Saturn's radiation belts - A modeling analysis assuming satellite and ring E absorption

    NASA Technical Reports Server (NTRS)

    Hood, L. L.

    1983-01-01

    A modeling analysis is carried out of six experimental phase space density profiles for nearly equatorially mirroring protons using methods based on the approach of Thomsen et al. (1977). The form of the time-averaged radial diffusion coefficient D(L) that gives an optimal fit to the experimental profiles is determined under the assumption that simple satellite plus Ring E absorption of inwardly diffusing particles and steady-state radial diffusion are the dominant physical processes affecting the proton data in the L range that is modeled. An extension of the single-satellite model employed by Thomsen et al. to a model that includes multisatellite and ring absorption is described, and the procedures adopted for estimating characteristic satellite and ring absorption times are defined. The results obtained in applying three representative solid-body absorption models to evaluate D(L) in the range where L is between 4 and 16 are reported, and a study is made of the sensitivity of the preferred amplitude and L dependence for D(L) to the assumed model parameters. The inferred form of D(L) is then compared with that which would be predicted if various proposed physical mechanisms for driving magnetospheric radial diffusion are operative at Saturn.

  10. Radiation protection guidelines for radiation emergencies

    SciTech Connect

    Lessard, E.T.; Meinhold, C.B.

    1986-01-01

    The system of dose limitation and present guidance for emergency workers and guidance for intervention on behalf of the public are discussed. There are three elements for the system of dose limitation: justification, optimization and dose limits. The first element is basically a political process in this country. Justification is based on a risk-benefit analysis, and justification of the use of radioactive materials or radiation is generally not within the authority of radiation protection managers. Radiation protection managers typically assess detriments or harm caused by radiation exposure and have very little expertise in assessing the benefits of a particular practice involving nuclear material.

  11. SAS-2 observations of celestial diffuse gamma radiation above 30 MeV

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Kniffen, D. A.; Hartman, R. C.

    1974-01-01

    The small astronomy satellite, SAS-2, used a 32-deck magnetic core digitized spark chamber to study gamma rays with energies above 30 MeV. Data for four regions of the sky away from the galactic plane were analyzed. These regions show a finite, diffuse flux of gamma rays with a steep energy spectrum, and the flux is uniform over all the regions. Represented by a power law, the differential energy spectrum shows an index of 2.5 + or - 0.4. The steep SAS-2 spectrum and the lower energy data are reasonably consistent with a neutral pion gamma-ray spectrum which was red-shifted (such as that proposed by some cosmological theories). It is concluded that the diffuse celestial gamma ray spectrum observed presents the possibility of cosmological studies and possible evidence for a residual cosmic ray density, and supports the galactic superclusters of matter and antimatter remaining from baryon-symmetric big bang.

  12. Hazard calculations of diffuse reflected laser radiation for the SELENE program

    NASA Technical Reports Server (NTRS)

    Miner, Gilda A.; Babb, Phillip D.

    1993-01-01

    The hazards from diffuse laser light reflections off water clouds, ice clouds, and fog and from possible specular reflections off ice clouds were assessed with the American National Standards (ANSI Z136.1-1986) for the free-electron-laser parameters under consideration for the Segmented Efficient Laser Emission for Non-Nuclear Electricity (SELENE) Program. Diffuse laser reflection hazards exist for water cloud surfaces less than 722 m in altitude and ice cloud surfaces less than 850 m in altitude. Specular reflections from ice crystals in cirrus clouds are not probable; however, any specular reflection is a hazard to ground observers. The hazard to the laser operators and any ground observers during heavy fog conditions is of such significant magnitude that the laser should not be operated in fog.

  13. Relationships between diffuse reflectance and vegetation canopy variables based on the radiative transfer theory

    NASA Technical Reports Server (NTRS)

    Park, J. K.; Deering, D. W.

    1981-01-01

    Out of the lengthy original expression of the diffuse reflectance formula, simple working equations were derived by employing characteristic parameters, which are independent of the canopy coverage and identifiable by field observations. The typical asymptotic nature of reflectance data that is usually observed in biomass studies was clearly explained. The usefulness of the simplified equations was demonstrated by the exceptionally close fit of the theoretical curves to two separately acquired data sets for alfalfa and shortgrass prairie canopies.

  14. The diffuse far-ultraviolet cosmic background radiation field observed from the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Murthy, J.; Henry, R. C.; Feldman, P. D.; Tennyson, P. D.

    1989-01-01

    The paper presents 17-A resolution spectra of the diffuse far-ultraviolet (1200-1700 A) cosmic background in eight regions of the sky obtained from the Johns Hopkins University UVX experiment aboard the Space Shuttle Columbia (STS-61C) in January 1986. A spectrally flat background is found with brightnesses between 100 and 700 + or - 200 photons/sq cm s sr A, with some evidence for spatial variations, but not for the high-intensity regions found by other experiments.

  15. The diffuse galactic gamma radiation: The Compton contribution and component separation by energy interval and galactic coordinates

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Fichtel, C.

    1981-01-01

    The radiation to be expected from cosmic ray interactions with matter and photons was examined. Particular emphasis is placed on the Compton emission. Both the photon density in and near the visible region and that in the region are deduced from the estimates of the emission functions throughout the Galaxy. The blackbody radiation is also included in the estimate of the total Compton emission. The result suggests that the gamma ray Compton radiation from cosmic ray ineractions with galactic visible and infrared photons is substantially larger than previously believed.

  16. SAS-2 observations of the diffuse gamma radiation in the galactic latitude interval from 10 to 90 deg in both hemispheres

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Ogelman, H. B.; Ozel, M. E.; Tumer, T.

    1977-01-01

    An analysis of all the second Small Astronomy Satellite (SAS-2) gamma-ray data for galactic latitudes higher than 10 deg in both hemispheres has shown that the intensity varies with galactic latitude, being larger near 10 deg than 90 deg. For energies above 100 MeV the gamma-ray data are consistent with a latitude distribution of the form I(b) = C1 + C2/sin b, with the second term being dominant. This result suggests that the radiation above 100 MeV is coming largely from local regions of the galactic disk. Between 35 and 100 MeV, a similar equation is also a good representation of the data, but here the two terms are comparable. These results indicate that the diffuse radiation above 35 MeV consists of two parts, one with a relatively hard galactic component and the other an isotropic steep spectral component which extrapolates back well to the low-energy (less than 10 MeV) diffuse radiation. The steepness of the diffuse isotropic component places significant constraints on possible theoretical models of this radiation.

  17. SAS-2 observations of the diffuse gamma radiation in the galactic latitude interval 10 deg absolute b or equal to 90 deg

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Oegelman, H. B.; Oezel, M. E.; Tuemer, T.

    1977-01-01

    An analysis of all of the second small astronomy satellite gamma-ray data for galactic latitudes with the absolute value of b 10 deg has shown that the intensity varies with galactic latitude, being larger near 10 deg than 90 deg. For energies above 100 MeV the gamma-ray data are consistent with a latitude distribution of the form I(b) = C sub 1 + C sub 2/sin b, with the second term being dominant. This result suggests that the radiation above 100 MeV is coming largely from local regions of the galactic disk. Between 35 and 100 MeV, a similar equation is also a good representation of the data, but here the two terms are comparable. These results indicate that the diffuse radiation above 35 MeV consists of two parts, one with a relatively hard galactic component and the other an isotropic, steep spectral component which extrapolates back well to the low energy diffuse radiation. The steepness of the diffuse isotropic component places significant constraints on possible theoretical models of this radiation.

  18. Trends of the sunshine duration and diffuse radiation percentage on sunny days in urban agglomerations of China during 1960-2005.

    PubMed

    Fu, Chuanbo; Dan, Li; Chen, Youlong; Tang, Jiaxiang

    2015-08-01

    The long-term observational data of sunshine duration (SD) and diffuse radiation percentage (defined as diffuse solar radiation/total solar radiation, DRP) on sunny days during 1960-2005 were analyzed in 7 urban agglomerations and the whole of China. The results show that the sunny sunshine duration (SSD) has decreased significantly except at a few stations over northwestern China in the past 46 years. An obvious decrease of the SSD is found in eastern China, with the trend coefficients lower than -0.8. Accompanied by the SSD decline, the sunny diffuse radiation percentage (SDRP) in most stations shows obvious increasing trends during the 46 years. The averaged SDRP over China has increased 2.33% per decade, while the averaged SSD shows a decrease of -0.13 hr/day per decade. The correlation coefficient between SDRP and SSD is -0.88. SSD decreased over urban agglomerations (small to large city clusters) in the past 46 years, especially in large cities and medium cities, due to the strong anthropogenic activities and air pollution represented by aerosol option depth (AOD) and tropospheric column NO2 (TroNO2). On the regional scale, SSD has an opposite trend from SDRP during 1960 to 2005, and the variation trends of regional mean values of SSD and SDRP in southeastern China are more pronounced than those in northwestern China.

  19. Numerical investigation on heat transfer in power-law fluids with variable thermal diffusivity in the presence of viscous dissipation and radiation

    NASA Astrophysics Data System (ADS)

    Li, Botong; Zheng, Liancun; Zhang, Xinxin

    2012-09-01

    This paper presents a numerical investigation on heat transfer in power-law fluids aligned with a semi-infinite plate in the presence of viscous dissipation and radiation. The effects of power-law viscosity on temperature field are taken into account by assuming that the thermal diffusivity varies as a function of velocity gradient. Since the problem is very complex to solve analytically, a similarity transformation based on the least square approximation principle and shooting technique may be a considerable approach. The effects of generalized Prandtl number, viscous dissipation and radiation on the heat transfer are tabulated.

  20. Difference Between IR Radiation Spectra of Ethanol in Free Diffusion Combustion Regime and Regime Influenced by an Air Flow in Modeling of a Fire Tornado

    NASA Astrophysics Data System (ADS)

    Sherstobitov, M. V.; Tsvyk, R. Sh.

    2013-06-01

    Results of experimental investigations of liquid fuel combustion in the regime of a twisted jet (model of a fire tornado) are presented. Flame radiation spectra were registered. In the chosen spectral range of registration (2.2-4.8 μm), six spectral intervals were clearly traced in which the main portion of radiated energy was concentrated. Using the ratio of the sums of spectral intensities in the vicinities of the 6th and 3rd maxima, we successfully distinguished the regimes of modeled fire tornado and free diffusion fuel combustion.

  1. Plutonium radiation surrogate

    DOEpatents

    Frank, Michael I.

    2010-02-02

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  2. Introduction to radiation transport

    SciTech Connect

    Olson, G.L.

    1998-12-31

    This lecture will present time-dependent radiation transport where the radiation is coupled to a static medium, i.e., the material is not in motion. In reality, radiation exerts a pressure on the materials it propagates through and will accelerate the material in the direction of the radiation flow. This fully coupled problem with radiation transport and materials in motion is referred to as radiation-hydrodynamics (or in a shorthand notation: rad-hydro) and is beyond the scope of this lecture.

  3. Diffuse optical measurements of head and neck tumor hemodynamics for early prediction of radiation therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dong, Lixin; Kudrimoti, Mahesh; Irwin, Daniel; Chen, Li; Shang, Yu; Li, Xingzhe; Stevens, Scott D.; Shelton, Brent J.; Yu, Guoqiang

    2016-03-01

    Radiation therapy is a principal modality for head and neck cancers and its efficacy depends on tumor hemodynamics. Our laboratory developed a hybrid diffuse optical instrument allowing for simultaneous measurements of tumor blood flow and oxygenation. In this study, the clinically involved cervical lymph node was monitored by the hybrid instrument once a week over the treatment period of seven weeks. Based on treatment outcomes within one year, patients were classified into a complete response group (CR) and an incomplete response group (IR) with remote metastasis and/or local recurrence. A linear mixed models was used to compare tumor hemodynamic responses to the treatment between the two groups. Interestingly, we found that human papilloma virus (HPV-16) status largely affected tumor hemodynamic responses. For HPV-16 negative tumors, significant differences in blood flow index (BFI, p = 0.007) and reduced scattering coefficient (μs', p = 0.0005) were observed between the two groups; IR tumors exhibited higher μs' values and a continuous increase in BFI over the treatment period. For HPV-16 positive tumors, oxygenated hemoglobin concentration ([HbO2]) and blood oxygen saturation (StO2) were significant different (p = 0.003 and 0.01, respectively); IR group showed lower [HbO2] and StO2. Our results imply HPV-16 negative tumors with higher density of vasculature (μs') and higher blood flow show poor responses to radiotherapy and HPV-16 positive tumors with lower tissue oxygenation level (lower StO2 and [HbO2]) exhibit poor treatment outcomes. Our diffuse optical measurements show the great potential for early prediction of radiotherapy in head and neck cancers.

  4. Post-deformation shape-recovery behavior of vitamin E-diffused, radiation crosslinked polyethylene acetabular components.

    PubMed

    Takahashi, Yasuhito; Tateiwa, Toshiyuki; Shishido, Takaaki; Masaoka, Toshinori; Kubo, Kosuke; Yamamoto, Kengo

    2016-10-01

    The in-vivo progression of creep and wear in ultra-high molecular weight polyethylene (UHMWPE) acetabular liners has been clinically evaluated by measuring radiographic penetration of femoral heads. In such clinical assessments, however, viscoelastic strain relaxation has been rarely considered after a removal of hip joint loading, potentially leading to an underestimation of the penetrated thickness. The objective of this study was to investigate shape-recovery behavior of pre-compressed, radiation crosslinked and antioxidant vitamin E-diffused UHMWPE acetabular liners, and also to characterize the effects of varying their internal diameter (ID) and wall thickness (WT). We applied uniaxial compression to the UHMWPE specimens of various ID (28, 32, 36mm) and WT (4.8, 6.8, 8.9mm) for 4320min under the constant load of 3000N, and subsequently monitored the strain-relaxation behavior as a function of time after unloading. It was observed that there was a considerable shape recovery of the components after removal of the external static load. Reducing ID and WT significantly accelerated the rate of creep strain recovery, and varying WT was more sensitive to the recovery behavior than ID. Creep deformation of the tested liners recovered mostly within the first 300min after unloading. Note that approximately half of the total recovery amount proceeded just within 5min after unloading. These results suggest a remarkably high capability of shape recovery of vitamin E-diffused highly crosslinked UHMWPE. In conclusion, the time-dependent shape recovering and the diameter-thickness effect on its behavior should be carefully considered when the postoperative penetration is quantified in highly crosslinked UHMWPE acetabular liners (especially on the non-weight bearing radiographs). PMID:27454526

  5. Empirical relationship between Kubelka-Munk and radiative transfer coefficients for extracting optical parameters of tissues in diffusive and nondiffusive regimes

    NASA Astrophysics Data System (ADS)

    Roy, Arindam; Ramasubramaniam, Rajagopal; Gaonkar, Harshavardhan A.

    2012-11-01

    Kubelka-Munk (K-M) theory is a phenomenological light transport theory that provides analytical expressions for reflectance and transmittance of diffusive substrates such as tissues. Many authors have derived relations between coefficients of K-M theory and that of the more fundamental radiative transfer equations. These relations are valid only in diffusive light transport regime where scattering dominates over absorption. They also fail near boundaries where incident beams are not diffusive. By measuring total transmittance and total reflectance of tissue phantoms with varying optical parameters, we have obtained empirical relations between K-M coefficients and the radiative transport coefficients for integrating sphere-based spectrophotometers that use uniform, nondiffusive incident beams. Our empirical relations show that the K-M scattering coefficients depend only on reduced scattering coefficient (μs‧), whereas the K-M absorption coefficient depends on both absorption (μa) and reduced scattering (μs‧) coefficients of radiative transfer theory. We have shown that these empirical relations are valid in both the diffusive and nondiffusive regimes and can predict total reflectance within an error of 10%. They also can be used to solve the inverse problem of obtaining multiple optical parameters such as chromophore concentration and tissue thickness from the measured reflectance spectra with a maximum accuracy of 90% to 95%.

  6. Cell Radiation Experiment System

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    2010-01-01

    The cell radiation experiment system (CRES) is a perfused-cell culture apparatus, within which cells from humans or other animals can (1) be maintained in homeostasis while (2) being exposed to ionizing radiation during controlled intervals and (3) being monitored to determine the effects of radiation and the repair of radiation damage. The CRES can be used, for example, to determine effects of drug, radiation, and combined drug and radiation treatments on both normal and tumor cells. The CRES can also be used to analyze the effects of radiosensitive or radioprotectant drugs on cells subjected to radiation. The knowledge gained by use of the CRES is expected to contribute to the development of better cancer treatments and of better protection for astronauts, medical-equipment operators, and nuclear-power-plant workers, and others exposed frequently to ionizing radiation.

  7. Radiation effects in space

    SciTech Connect

    Fry, R.J.M.

    1986-01-01

    The paper discusses the radiation environment in space that astronauts are likely to be exposed to. Emphasis is on proton and HZE particle effects. Recommendations for radiation protection guidelines are presented. (ACR)

  8. Radiation Exposure and Cancer

    MedlinePlus

    ... what we know about these types of high-energy radiation and how they affect cancer risk. Cancer Compensation Programs for People Exposed to Radiation as Part of Nuclear Weapons Testing Between 1945 and 1962, several countries ...

  9. Radiation Protection Handbook

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A handbook which sets forth the Kennedy Space Center radiation protection policy is presented. The book also covers administrative direction and guidance on organizational and procedural requirements of the program. Only ionizing radiation is covered.

  10. What Is Radiation Shielding?

    NASA Video Gallery

    Kerry Lee, NASA Orion radiation system manager, explains how radiation shielding is used to block harmful particles coming into the spacecraft without producing secondary particles that can cause e...

  11. Hybrid radiator cooling system

    DOEpatents

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  12. External radiation surveillance

    SciTech Connect

    Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report describes how external radiation was measured, how surveys were performed, and the results of these measurements and surveys. External radiation exposure rates were measured at locations on and off the Hanford Site using thermoluminescent dosimeters (TLD). External radiation and contamination surveys were also performed with portable radiation survey instruments at locations on and around the Hanford Site.

  13. [Estimation of Diffuse Attenuation Coefficient of Photosynthetically Active Radiation in Xin'anjiang Reservoir Based on Landsat 8 Data].

    PubMed

    Zhang, Yi-bo; Zhang, Yun-lin; Zha, Yong; Shi, Kun; Zhou, Yong-qiang; Liu, Ming-liang

    2015-12-01

    Photosynthetically active radiation (PAR) is defined as the wavelength band of 400 to 700 nm, representing most of the visible solar radiation that could be used for photosynthesis. PAR is attenuated by the absorption and scattering of nonpigment suspended matter, chromophoric dissolved organic matter and phytoplankton, and it plays an important role in determining the density and distribution of aquatic organisms. This study developed an empirical model and presented the spatial-temporal distribution of PAR diffuse attenuation coefficient [Kd (PAR)] for the slightly turbid Xin'anjiang Reservoir based on the in situ ground data and the matching Landsat 8 data. The results showed that the three-hand combinational model of Kd ( PAR) using Band 2, Band 3 and Band 8 could give a reasonable and acceptable estimation accuracy with a determination coefficient of 0. 87. Independent dataset was used to validate the model with a mean relative error of 9.16% and a root mean square error of 0.06 m⁻¹. Therefore, the three-band combination using Landsat 8 data could be used to accurately estimate Kd (PAR) in the slightly turbid Xin'anjiang Reservoir. Kd (PAR) exhibited significant seasonal and spatial differences. Kd (PAR) was higher in autumn (September-November) and summer (June-August) with the average Kd (PAR) of (0.82 ± 0.60) m⁻¹ and (0.77 ± 0.41) m⁻¹, but lower in winter (December-February) and spring (March-May) with the average Kd (PAR) of (0.56 ± 0.50) m⁻¹ and (0.40 ± 0.45 ) m⁻¹, respectively. Spatially, Kd (PAR) ranged from 0.002 to 13.86 m⁻¹ with an average of (0.64 ± 0.49) m⁻¹. The temporal heterogeneity of Kd (PAR) was mainly caused by the seasonal rainfall and seasonal growth of phytoplankton. The spatial heterogeneity was mainly caused by suspended matter concentration derived from watershed inputs and human dredging activity. PMID:27011976

  14. Radiation port dermatophytosis

    SciTech Connect

    Rosen, T.; Dupuy, J.; Maor, M.; Altman, A.

    1988-12-01

    We report two cases in which dermatophytic infection developed almost entirely within a radiation field mimicking an acute radiation effect. Radiotherapists and dermatologists should be aware of this possibility and be able to differentiate it from radiation dermatitis. Topical antifungal agents are the recommended treatment after diagnosis is established.

  15. JPL Radiation Effects Facilities

    NASA Technical Reports Server (NTRS)

    Thorbourn, Dennis

    2013-01-01

    Radiation Effects Group investigates the effects of space radiation on present and future microelectronic and optoelectronic technologies, evaluate the risk of using them in specific space missions, and recommend component and design techniques for JPL and NASA programs to reduce reliability risk from space radiation.

  16. Spacecraft radiator systems

    NASA Technical Reports Server (NTRS)

    Anderson, Grant A. (Inventor)

    2012-01-01

    A spacecraft radiator system designed to provide structural support to the spacecraft. Structural support is provided by the geometric "crescent" form of the panels of the spacecraft radiator. This integration of radiator and structural support provides spacecraft with a semi-monocoque design.

  17. Research Update: Reactively sputtered nanometer-thin ZrN film as a diffusion barrier between Al and boron layers for radiation detector applications

    NASA Astrophysics Data System (ADS)

    Golshani, Negin; Mohammadi, V.; Schellevis, H.; Beenakker, C. I. M.; Ishihara, R.

    2014-10-01

    In this paper, optimization of the process flow for PureB detectors is investigated. Diffusion barrier layers between a boron layer and the aluminum interconnect can be used to enhance the performance and visual appearance of radiation detectors. Few nanometers-thin Zirconium Nitride (ZrN) layer deposited by reactive sputtering in a mixture of Ar/N2, is identified as a reliable diffusion barrier with better fabrication process compatibility than others. The barrier properties of this layer have been tested for different boron layers deposited at low and high temperatures with extensive optical microscopy analyses, electron beam induced current, SEM, and electrical measurements. This study demonstrated that spiking behavior of pure Al on Si can be prevented by the thin ZrN layer thus improving the performance of the radiation detectors fabricated using boron layer.

  18. Research Update: Reactively sputtered nanometer-thin ZrN film as a diffusion barrier between Al and boron layers for radiation detector applications

    SciTech Connect

    Golshani, Negin Mohammadi, V.; Schellevis, H.; Beenakker, C. I. M.; Ishihara, R.

    2014-10-01

    In this paper, optimization of the process flow for PureB detectors is investigated. Diffusion barrier layers between a boron layer and the aluminum interconnect can be used to enhance the performance and visual appearance of radiation detectors. Few nanometers-thin Zirconium Nitride (ZrN) layer deposited by reactive sputtering in a mixture of Ar/N{sub 2}, is identified as a reliable diffusion barrier with better fabrication process compatibility than others. The barrier properties of this layer have been tested for different boron layers deposited at low and high temperatures with extensive optical microscopy analyses, electron beam induced current, SEM, and electrical measurements. This study demonstrated that spiking behavior of pure Al on Si can be prevented by the thin ZrN layer thus improving the performance of the radiation detectors fabricated using boron layer.

  19. Radiation protection in space

    SciTech Connect

    Blakely, E.A.; Fry, R.J.M.

    1995-02-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space.

  20. PERSONAL RADIATION MONITOR

    DOEpatents

    Dilworth, R.H.; Borkowski, C.J.

    1961-12-26

    A transistorized, fountain pen type radiation monitor to be worn on the person is described. Radiation produces both light flashes in a small bulb and an audible warning tone, the frequency of both the tone and light flashes being proportional to radiation intensity. The device is powered by a battery and a blocking oscillator step-up power supply The oscillator frequency- is regulated to be proportional to the radiation intensity, to provide adequate power in high radiation fields, yet minimize battery drain at low operating intensities. (AEC)

  1. Radiation detection system

    DOEpatents

    Nelson, Melvin A.; Davies, Terence J.; Morton, III, John R.

    1976-01-01

    A radiation detection system which utilizes the generation of Cerenkov light in and the transmission of that light longitudinally through fiber optic wave guides in order to transmit intelligence relating to the radiation to a remote location. The wave guides are aligned with respect to charged particle radiation so that the Cerenkov light, which is generated at an angle to the radiation, is accepted by the fiber for transmission therethrough. The Cerenkov radiation is detected, recorded, and analyzed at the other end of the fiber.

  2. RADIATION WAVE DETECTOR

    DOEpatents

    Wouters, L.F.

    1958-10-28

    The detection of the shape and amplitude of a radiation wave is discussed, particularly an apparatus for automatically indicating at spaced lntervals of time the radiation intensity at a flxed point as a measure of a radiation wave passing the point. The apparatus utilizes a number of photomultiplier tubes surrounding a scintillation type detector, For obtainlng time spaced signals proportional to radiation at predetermined intervals the photolnultiplier tubes are actuated ln sequence following detector incidence of a predetermined radiation level by electronic means. The time spaced signals so produced are then separately amplified and relayed to recording means.

  3. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Carter, J. R., Jr.; Tada, H. Y.

    1973-01-01

    A method is presented for predicting the degradation of a solar array in a space radiation environment. Solar cell technology which emphasizes the cell parameters that degrade in a radiation environment, is discussed along with the experimental techniques used in the evaluation of radiation effects. Other topics discussed include: theoretical aspects of radiation damage, methods for developing relative damage coefficients, nature of the space radiation environment, method of calculating equivalent fluence from electron and proton energy spectrums and relative damage coefficients, and comparison of flight data with estimated degradation.

  4. On the energy dependence of the radial diffusion coefficient and spectra of inner radiation belt particles - Analytic solutions and comparison with numerical results

    NASA Technical Reports Server (NTRS)

    Westphalen, H.; Spjeldvik, W. N.

    1982-01-01

    A theoretical method by which the energy dependence of the radial diffusion coefficient may be deduced from spectral observations of the particle population at the inner edge of the earth's radiation belts is presented. This region has previously been analyzed with numerical techniques; in this report an analytical treatment that illustrates characteristic limiting cases in the L shell range where the time scale of Coulomb losses is substantially shorter than that of radial diffusion (L approximately 1-2) is given. It is demonstrated both analytically and numerically that the particle spectra there are shaped by the energy dependence of the radial diffusion coefficient regardless of the spectral shapes of the particle populations diffusing inward from the outer radiation zone, so that from observed spectra the energy dependence of the diffusion coefficient can be determined. To insure realistic simulations, inner zone data obtained from experiments on the DIAL, AZUR, and ESRO 2 spacecraft have been used as boundary conditions. Excellent agreement between analytic and numerical results is reported.

  5. Radiation protection and instrumentation

    NASA Technical Reports Server (NTRS)

    Bailey, J. V.

    1975-01-01

    Radiation was found not to be an operational problem during the Apollo program. Doses received by the crewmen of Apollo missions 7 through 17 were small because no major solar-particle events occurred during those missions. One small event was detected by a radiation sensor outside the Apollo 12 spacecraft, but no increase in radiation dose to the crewmen inside the spacecraft was detected. Radiation protection for the Apollo program was focused on both the peculiarities of the natural space radiation environment and the increased prevalence of manmade radiation sources on the ground and onboard the spacecraft. Radiation-exposure risks to crewmen were assessed and balanced against mission gain to determine mission constraints. Operational radiation evaluation required specially designed radiation detection systems onboard the spacecraft in addition to the use of satellite data, solar observatory support, and other liaison. Control and management of radioactive sources and radiation-generating equipment was important in minimizing radiation exposure of ground-support personnel, researchers, and the Apollo flight and backup crewmen.

  6. Preservation of the optic radiations based on comparative analysis of diffusion tensor imaging tractography and anatomical dissection

    PubMed Central

    Nooij, Roland P.; Hoving, Eelco W.; van Hulzen, Arjen L. J.; Cornelissen, Frans W.; Renken, Remco J.

    2015-01-01

    Background: Visualization of the precise course of the visual pathways is relevant to prevent damage that may inflict visual field deficits during neurosurgical resections. In particular the optic radiations (OR) are susceptible to such damage during neurosurgery. Cortical pathways can be mapped in vivo, by using Diffusion Tensor Imaging (DTI). Visualization of these pathways would be potentially helpful to prevent neurosurgical visual morbidity. In this study an anatomical dissection of the visual pathways was compared to DTI fiber tractography (DTI-FT) data of four human brains. The feasibility of a definition of a Safety Zone is investigated. Methods: Four adult brains were dissected using Klingler's fiber dissection method, which allowed preparation of the OR. Measurements before and after dissection were used to establish distances from the cortex to the OR. DTI-scans were also obtained from these brains to determine the same distances. Results: Measurements from specific landmark points on the cortex to the lateral border of the OR were performed in four brains. Analysis through DTI tractography corresponded with the dissection results. Based on the combined results of both dissection and DTI-FT, we defined a quantitative surgical Safety Zone with respect to various anatomical landmarks (in particular the ventricle system). Conclusion: We conclude that there is a good correlation between the visualizations of the optic pathways based on dissection and DTI. Furthermore, we conclude that defining a neurosurgical Safety Zone which could preserve the integrity of the OR during surgery, based on the combination of DTI-FT images and dissection is feasible. PMID:26300739

  7. Gas particle radiator

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    The performance of a new space radiator concept, the gas particle radiator (GPR), is studied. The GPR uses a gas containing submicron particles as the radiating medium contained between the radiator's emitting surface and a transparent window. For a modest volume fraction of submicron particles and gas thickness, it is found that the emissivity is determined by the window transmittance. The window must have a high transmittance in the infrared and be structurally strong enough to contain the gas-particle mixture. When the GPR is compared to a proposed titanium wall, potassium heat pipe radiator, with both radiators operating at a power level of 1.01 MW at 775 K, it is found that the GPR mass is 31 percent lower than that of the heat pipe radiator.

  8. Americans' Average Radiation Exposure

    SciTech Connect

    NA

    2000-08-11

    We live with radiation every day. We receive radiation exposures from cosmic rays, from outer space, from radon gas, and from other naturally radioactive elements in the earth. This is called natural background radiation. It includes the radiation we get from plants, animals, and from our own bodies. We also are exposed to man-made sources of radiation, including medical and dental treatments, television sets and emission from coal-fired power plants. Generally, radiation exposures from man-made sources are only a fraction of those received from natural sources. One exception is high exposures used by doctors to treat cancer patients. Each year in the United States, the average dose to people from natural and man-made radiation sources is about 360 millirem. A millirem is an extremely tiny amount of energy absorbed by tissues in the body.

  9. Synchrotron radiation from protons

    SciTech Connect

    Dutt, S.K.

    1992-12-01

    Synchrotron radiation from protons, though described by the same equations as the radiation from electrons, exhibits a number of interesting features on account of the parameters reached in praxis. In this presentation, we shall point out some of the features relating to (i) normal synchrotron radiation from dipoles in proton machines such as the High Energy Booster and the Superconducting Super Collider; (ii) synchrotron radiation from short dipoles, and its application to light monitors for proton machines, and (iii) synchrotron radiation from undulators in the limit when, the deflection parameter is much smaller than unity. The material for this presentation is taken largely from the work of Hofmann, Coisson, Bossart, and their collaborators, and from a paper by Kim. We shall emphasize the qualitative aspects of synchrotron radiation in the cases mentioned above, making, when possible, simple arguments for estimating the spectral and angular properties of the radiation. Detailed analyses can be found in the literature.

  10. Solar Radiation Empirical Quality Assessment

    1994-03-01

    The SERIQC1 subroutine performs quality assessment of one, two, or three-component solar radiation data (global horizontal, direct normal, and diffuse horizontal) obtained from one-minute to one-hour integrations. Included in the package is the QCFIT tool to derive expected values from historical data, and the SERIQC1 subroutine to assess the quality of measurement data.

  11. Radiation processing of polyethylene

    NASA Astrophysics Data System (ADS)

    Barlow, A.; Biggs, J. W.; Meeks, L. A.

    This paper covers two areas (a) the use of high energy radiation for the synthesis and improvement of polymer properties and (b) the formulation of radiation curable compounds for automotive/appliance wire applications and high voltage insulation. The first part discusses the use of gamma radiation for the bulk polymerization of ethylene and the properties of the polymer produced. The use of low dose radiation to increase polymer molecular weight and modify polydispersity is also described together with its projected operational cost. An update is provided of the cost savings that can be realized when using radiation crosslinked heavy duty film, which expands its applications, compared with noncrosslinked materials. The second section of the paper considers the advantages and disadvantages of radiation vs. peroxide curing of wire and cable compounds. The formulation of a radiation curable, automotive/appliance wire compound is discussed together with the interactions between the various ingredients; i.e., base resin, antioxidants, flame retardant filler, coupling agents, processing aids and radiation to achieve the desired product. In addition, the general property requirements of a radiation curable polyethylene for high voltage insulation are discussed; these include crosslinking efficiency, thermal stability, wet tree resistance and satisfactory dielectric properties. Preliminary data generated in the development of a 230KV radiation crosslinked polyethylene insulation are included.

  12. Radiation physics, biophysics, and radiation biology

    SciTech Connect

    Hall, E.J.; Zaider, M.

    1993-05-01

    Research at the Center for Radiological Research is a multidisciplenary blend of physics, chemistry and biology aimed at understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. The focus is increased on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights of the program from the past year are described. A mathematical model describing the production of single-strand and double-strand breaks in DNA as a function radiation quality has been completed. For the first time Monte Carlo techniques have been used to obtain directly the spatial distribution of DNA moieties altered by radiation. This information was obtained by including the transport codes a realistic description of the electronic structure of DNA. We have investigated structure activity relationships for the potential oncogenicity of a new generation of bioreductive drugs that function as hypoxic cytotoxins. Experimental and theoretical investigation of the inverse dose rate effect, whereby medium LET radiations actually produce an c effect when the dose is protracted, is now at a point where the basic mechanisms are reasonably understood and the complex interplay between dose, dose rate and radiation quality which is necessary for the effect to be present can now be predicted at least in vitro. In terms of early radiobiological damage, a quantitative link has been established between basic energy deposition and locally multiply damaged sites, the radiochemical precursor of DNA double strand breaks; specifically, the spatial and energy deposition requirements necessary to form LMDs have been evaluated. For the first time, a mechanically understood biological fingerprint'' of high-LET radiation has been established. Specifically measurement of the ratio of inter-to intra-chromosomal aberrations produces a unique signature from alpha-particles or neutrons.

  13. Effects of Diffuse Light on Radiation Use Efficiency of Two Anthurium Cultivars Depend on the Response of Stomatal Conductance to Dynamic Light Intensity

    PubMed Central

    Li, Tao; Kromdijk, Johannes; Heuvelink, Ep; van Noort, F. R.; Kaiser, Elias; Marcelis, Leo F. M.

    2016-01-01

    The stimulating effect of diffuse light on radiation use efficiency (RUE) of crops is often explained by the more homogeneous spatial light distribution, while rarely considering differences in temporal light distribution at leaf level. This study investigated whether diffuse light effects on crop RUE can be explained by dynamic responses of leaf photosynthesis to temporal changes of photosynthetic photon flux density (PPFD). Two Anthurium andreanum cultivars (‘Pink Champion’ and ‘Royal Champion’) were grown in two glasshouses covered by clear (control) and diffuse glass, with similar light transmission. On clear days, diffusing the light resulted in less temporal fluctuations of PPFD. Stomatal conductance (gs) varied strongly in response to transient PPFD in ‘Royal Champion,’ whereas it remained relatively constant in ‘Pink Champion.’ Instantaneous net leaf photosynthesis (Pn) in both cultivars approached steady state Pn in diffuse light treatment. In control treatment this only occurred in ‘Pink Champion.’ These cultivar differences were reflected by a higher RUE (8%) in ‘Royal Champion’ in diffuse light treatment compared with control, whereas no effect on RUE was observed in ‘Pink Champion.’ We conclude that the stimulating effect of diffuse light on RUE depends on the stomatal response to temporal PPFD fluctuations, which response is cultivar dependent. PMID:26870071

  14. Effects of Diffuse Light on Radiation Use Efficiency of Two Anthurium Cultivars Depend on the Response of Stomatal Conductance to Dynamic Light Intensity.

    PubMed

    Li, Tao; Kromdijk, Johannes; Heuvelink, Ep; van Noort, F R; Kaiser, Elias; Marcelis, Leo F M

    2016-01-01

    The stimulating effect of diffuse light on radiation use efficiency (RUE) of crops is often explained by the more homogeneous spatial light distribution, while rarely considering differences in temporal light distribution at leaf level. This study investigated whether diffuse light effects on crop RUE can be explained by dynamic responses of leaf photosynthesis to temporal changes of photosynthetic photon flux density (PPFD). Two Anthurium andreanum cultivars ('Pink Champion' and 'Royal Champion') were grown in two glasshouses covered by clear (control) and diffuse glass, with similar light transmission. On clear days, diffusing the light resulted in less temporal fluctuations of PPFD. Stomatal conductance (g s) varied strongly in response to transient PPFD in 'Royal Champion,' whereas it remained relatively constant in 'Pink Champion.' Instantaneous net leaf photosynthesis (P n) in both cultivars approached steady state P n in diffuse light treatment. In control treatment this only occurred in 'Pink Champion.' These cultivar differences were reflected by a higher RUE (8%) in 'Royal Champion' in diffuse light treatment compared with control, whereas no effect on RUE was observed in 'Pink Champion.' We conclude that the stimulating effect of diffuse light on RUE depends on the stomatal response to temporal PPFD fluctuations, which response is cultivar dependent.

  15. Earth Radiation Measurement Science

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis

    2000-01-01

    This document is the final report for NASA Grant NAG1-1959, 'Earth Radiation Measurement Science'. The purpose of this grant was to perform research in this area for the needs of the Clouds and Earth Radiant Energy System (CERES) project and for the Earth Radiation Budget Experiment (ERBE), which are bing conducted by the Radiation and Aerosols Branch of the Atmospheric Sciences Division of Langley Research Center. Earth Radiation Measurement Science investigates the processes by which measurements are converted into data products. Under this grant, research was to be conducted for five tasks: (1) Point Response Function Measurements; (2) Temporal Sampling of Outgoing Longwave Radiation; (3) Spatial Averaging of Radiation Budget Data; (4) CERES Data Validation and Applications; and (5) ScaRaB Data Validation and Application.

  16. Errors inducing radiation overdoses.

    PubMed

    Grammaticos, Philip C

    2013-01-01

    There is no doubt that equipments exposing radiation and used for therapeutic purposes should be often checked for possibly administering radiation overdoses to the patients. Technologists, radiation safety officers, radiologists, medical physicists, healthcare providers and administration should take proper care on this issue. "We must be beneficial and not harmful to the patients", according to the Hippocratic doctrine. Cases of radiation overdose are often reported. A series of cases of radiation overdoses have recently been reported. Doctors who were responsible, received heavy punishments. It is much better to prevent than to treat an error or a disease. A Personal Smart Card or Score Card has been suggested for every patient undergoing therapeutic and/or diagnostic procedures by the use of radiation. Taxonomy may also help. PMID:24251304

  17. RADIATION WAVE DETECTION

    DOEpatents

    Wouters, L.F.

    1960-08-30

    Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.

  18. Effects of soot absorption coefficient-Planck function correlation on radiative heat transfer in oxygen-enriched propane turbulent diffusion flame

    NASA Astrophysics Data System (ADS)

    Consalvi, J. L.; Nmira, F.

    2016-03-01

    The main objective of this article is to quantify the influence of the soot absorption coefficient-Planck function correlation on radiative loss and flame structure in an oxygen-enhanced propane turbulent diffusion flame. Calculations were run with and without accounting for this correlation by using a standard k-ε model and the steady laminar flamelet model (SLF) coupled to a joint Probability Density Function (PDF) of mixture fraction, enthalpy defect, scalar dissipation rate, and soot quantities. The PDF transport equation is solved by using a Stochastic Eulerian Field (SEF) method. The modeling of soot production is carried out by using a flamelet-based semi-empirical acetylene/benzene soot model. Radiative heat transfer is modeled by using a wide band correlated-k model and turbulent radiation interactions (TRI) are accounted for by using the Optically-Thin Fluctuation Approximation (OTFA). Predicted soot volume fraction, radiant wall heat flux distribution and radiant fraction are in good agreement with the available experimental data. Model results show that soot absorption coefficient and Planck function are negatively correlated in the region of intense soot emission. Neglecting this correlation is found to increase significantly the radiative loss leading to a substantial impact on flame structure in terms of mean and rms values of temperature. In addition mean and rms values of soot volume fraction are found to be less sensitive to the correlation than temperature since soot formation occurs mainly in a region where its influence is low.

  19. Comparison of Implicit Schemes to Solve Equations of Radiation Hydrodynamics with a Flux-limited Diffusion Approximation: Newton--Raphson, Operator Splitting, and Linearization

    NASA Astrophysics Data System (ADS)

    Tetsu, Hiroyuki; Nakamoto, Taishi

    2016-03-01

    Radiation is an important process of energy transport, a force, and a basis for synthetic observations, so radiation hydrodynamics (RHD) calculations have occupied an important place in astrophysics. However, although the progress in computational technology is remarkable, their high numerical cost is still a persistent problem. In this work, we compare the following schemes used to solve the nonlinear simultaneous equations of an RHD algorithm with the flux-limited diffusion approximation: the Newton-Raphson (NR) method, operator splitting, and linearization (LIN), from the perspective of the computational cost involved. For operator splitting, in addition to the traditional simple operator splitting (SOS) scheme, we examined the scheme developed by Douglas & Rachford (DROS). We solve three test problems (the thermal relaxation mode, the relaxation and the propagation of linear waves, and radiating shock) using these schemes and then compare their dependence on the time step size. As a result, we find the conditions of the time step size necessary for adopting each scheme. The LIN scheme is superior to other schemes if the ratio of radiation pressure to gas pressure is sufficiently low. On the other hand, DROS can be the most efficient scheme if the ratio is high. Although the NR scheme can be adopted independently of the regime, especially in a problem that involves optically thin regions, the convergence tends to be worse. In all cases, SOS is not practical.

  20. RHOBOT: Radiation hardened robotics

    SciTech Connect

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  1. Galactic plane gamma-radiation

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Kniffen, D. A.; Thompson, D. J.; Fichtel, C. E.; Ogelman, H. B.; Tumer, T.; Ozel, M. E.

    1979-01-01

    Analysis of the SAS 2 data together with the COS B results shows that the distribution of galactic gamma-radiation has several similarities to that of other large-scale tracers of galactic structure. The radiation is primarily confined to a thin disc which exhibits offsets from b = 0 degrees similar to warping at radio frequencies. The principal distinction of the gamma-radiation is a stronger contrast in intensity between the region from 310 to 45 degrees in longitude and the regions away from the center that can be attributed to a variation in cosmic-ray density as a function of position in Galaxy. The diffuse galactic gamma-ray energy spectrum shows no significant variation in direction, and the spectrum seen along the plane is the same as that for the galactic component of the gamma-radiation at high altitudes. The uniformity of the galactic gamma-ray spectrum, the smooth decrease in intensity as a function of altitude, and the absence of any galactic gamma-ray sources at high altitudes indicate a diffuse origin for bulk of the galactic gamma-radiation rather than a collection of localized sources.

  2. Simple Waves in Ideal Radiation Hydrodynamics

    SciTech Connect

    Johnson, B M

    2008-09-03

    In the dynamic diffusion limit of radiation hydrodynamics, advection dominates diffusion; the latter primarily affects small scales and has negligible impact on the large scale flow. The radiation can thus be accurately regarded as an ideal fluid, i.e., radiative diffusion can be neglected along with other forms of dissipation. This viewpoint is applied here to an analysis of simple waves in an ideal radiating fluid. It is shown that much of the hydrodynamic analysis carries over by simply replacing the material sound speed, pressure and index with the values appropriate for a radiating fluid. A complete analysis is performed for a centered rarefaction wave, and expressions are provided for the Riemann invariants and characteristic curves of the one-dimensional system of equations. The analytical solution is checked for consistency against a finite difference numerical integration, and the validity of neglecting the diffusion operator is demonstrated. An interesting physical result is that for a material component with a large number of internal degrees of freedom and an internal energy greater than that of the radiation, the sound speed increases as the fluid is rarefied. These solutions are an excellent test for radiation hydrodynamic codes operating in the dynamic diffusion regime. The general approach may be useful in the development of Godunov numerical schemes for radiation hydrodynamics.

  3. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, M.; Watson, E.B.; Acocella, J.

    1986-11-04

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10[sup 7] rad, the coloration resistant glass does not lose transparency. 3 figs.

  4. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, Minoru; Watson, E. Bruce; Acocella, John

    1986-01-01

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

  5. [Space radiation biology].

    PubMed

    Takahashi, A; Ohnishi, T

    2001-03-01

    Astronauts were constantly exposed to space radiation containing various kinds of energy with a low-dose rate during long-term stays in space. Therefore, it is important to judge correctly the biological effect of space radiation for human health. In addition, research for space radiation might give us useful information concerning birth and evolution of lives on the earth. Here, we described a view of the future about space experiments at an International Space Station. Therefore, we desire to educate the space researcher of the next generation for importance of research for space radiation. PMID:12101375

  6. Rotating bubble membrane radiator

    DOEpatents

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  7. Potential theory of radiation

    NASA Technical Reports Server (NTRS)

    Chiu, Huei-Huang

    1989-01-01

    A theoretical method is being developed by which the structure of a radiation field can be predicted by a radiation potential theory, similar to a classical potential theory. The introduction of a scalar potential is justified on the grounds that the spectral intensity vector is irrotational. The vector is also solenoidal in the limits of a radiation field in complete radiative equilibrium or in a vacuum. This method provides an exact, elliptic type equation that will upgrade the accuracy and the efficiency of the current CFD programs required for the prediction of radiation and flow fields. A number of interesting results emerge from the present study. First, a steady state radiation field exhibits an optically modulated inverse square law distribution character. Secondly, the unsteady radiation field is structured with two conjugate scalar potentials. Each is governed by a Klein-Gordon equation with a frictional force and a restoring force. This steady potential field structure and the propagation of radiation potentials are consistent with the well known results of classical electromagnetic theory. The extension of the radiation potential theory for spray combustion and hypersonic flow is also recommended.

  8. Flexible radiator system

    NASA Technical Reports Server (NTRS)

    Oren, J. A.

    1982-01-01

    The soft tube radiator subsystem is described including applicable system requirements, the design and limitations of the subsystem components, and the panel manufacturing method. The soft tube radiator subsystem is applicable to payloads requiring 1 to 12 kW of heat rejection for orbital lifetimes per mission of 30 days or less. The flexible radiator stowage volume required is about 60% and the system weight is about 40% of an equivalent heat rejection rigid panel. The cost should also be considerably less. The flexible radiator is particularly suited to shuttle orbiter sortie payloads and also whose mission lengths do not exceed the 30 day design life.

  9. Charms of radiation research.

    SciTech Connect

    Inokuti, M.; Physics

    2005-01-01

    Most of my professional efforts over nearly five decades have been devoted to radiation research, that is, studies of the physical, chemical, and biological actions of high-energy radiation on matter. (By the term 'high-energy radiation' I mean here x rays, .GAMMA. rays, neutrons, and charged particles of high enough energies to produce ionization in matter. I exclude visible light, infrared waves, microwaves, and sound waves.) Charms of radiation research lie in its interdisciplinary character; although my training was in basic physics, the scope of my interest has gradually increased to cover many other areas, to my deep satisfaction. High-energy radiation is an important component of the universe, and of our environment. It often provides an effective avenue for characterizing matter and understanding its behavior. Near Earth's surface this radiation is normally present in exceptionally low quantity, and yet it plays a significant role in some atmospheric phenomena such as auroras, and also in the evolution of life. The recent advent of various devices for producing high-energy radiation has opened up the possibility of many applications, including medical and industrial uses. I have worked on some aspects of those uses. At every opportunity to address a broad audience I try to convey a sense of intellectual fun, together with some of the elements of the basic science involved. A goal of radiation education might be to make the word 'radiation' as common and familiar as words such as 'fire' and 'electricity' through increased usage.

  10. Radiation physics, biophysics, and radiation biology

    SciTech Connect

    Hall, E.J.

    1992-05-01

    The following research programs from the Center for Radiological Research of Columbia University are described: Design and development of a new wall-less ultra miniature proportional counter for nanodosimetry; some recent measurements of ionization distributions for heavy ions at nanometer site sizes with a wall-less proportional counter; a calculation of exciton energies in periodic systems with helical symmetry: application to a hydrogen fluoride chain; electron energy-loss function in polynucleotide and the question of plasmon excitation; a non-parametric, microdosimetric-based approach to the evaluation of the biological effects of low doses of ionizing radiation; high-LET radiation risk assessment at medium doses; high-LET radiobiological effects: increased lesion severity or increased lesion proximity; photoneutrons generated by high energy medical linacs; the biological effectiveness of neutrons; implications for radiation protection; molecular characterization of oncogenes induced by neutrons; and the inverse dose-rate effect for oncogenic transformation by charged particles is LET dependent.

  11. Velocity diffusion and radiation trapping force in a one-dimensional expansion of cold atomic clouds in a magneto-optical trap

    SciTech Connect

    Pradhan, S.; Mayya, Y. S.; Jagatap, B. N.

    2007-09-15

    We experimentally investigate one-dimensional (1D) expansion of a cold cloud of cesium atoms in orthogonal 2D configuration of near resonant laser beams by temporally modulating a pair of counterpropagating trapping beams of a magneto-optical trap (MOT). The cloud is observed to undergo ballistic expansion followed by superballistic explosive growth due to the fluctuations of the 2D radiation force. A model based on the theory of Brownian motion is developed and a comparison of experiments with theory is shown to provide a direct measure of the velocity diffusion coefficient. We also observe sudden contraction of the cloud immediately after switching off the pair of trapping beams, which provides direct evidence for the existence of the radiation trapping force in a MOT.

  12. Earth radiation pressure effects on satellites

    NASA Technical Reports Server (NTRS)

    Knocke, P. C.; Ries, J. C.; Tapley, B. D.

    1988-01-01

    A diffuse-earth radiation force model is presented, which includes a latitudinally varying representation of the shortwave and longwave radiation of the terrestrial sphere. Applications to various earth satellites indicate that this force, in particular the shortwave component, can materially affect the recovery of estimated parameters. Earth radiation pressure cannot explain the anomalous deceleration of LAGEOS, but can produce significant along track accelerations on satellites with highly eccentric orbits. Analyses of GEOS-1 tracking data confirm this result.

  13. An introduction to radiation protection

    SciTech Connect

    Martin, A.; Harbison, S.A.

    1986-01-01

    This book presents an account of the nature of hazards presented by ionizing radiation and the methods of protection. Topics covered are as follows: the structure of matter; radioactivity and radiation; radiation units; biological effects of radiation; natural and man-made radiation; the system of dose limitation; radiation detection and measurement; the external radiation hazard; the internal radiation hazard; nuclear reactor health physics; radioactive waste; x-rays and radiography; radiation protection in medicine; legislation and other regulations related to radiological protection; health physics laboratory techniques; radiological emergencies; and the organization and administration of health physics services.

  14. Radiation-induced pneumothorax

    SciTech Connect

    Epstein, D.M.; Littman, P.; Gefter, W.B.; Miller, W.T.; Raney, R.B. Jr.

    1983-01-01

    Pneumothorax is an uncommon complication of radiation therapy to the chest. The proposed pathogenesis is radiation-induced fibrosis promoting subpleural bleb formation that ruptures resulting in pneumothorax. We report on two young patients with primary sarcomas without pulmonary metastases who developed spontaneous pneumothorax after irradiation. Neither patient had antecedent radiographic evidence of pulmonary fibrosis.

  15. On Blackbody Radiation.

    ERIC Educational Resources Information Center

    Jain, Pushpendra K.

    1991-01-01

    The interrelationship between the various forms of the Planck radiation equation is discussed. A differential equation that gives intensity or energy density of radiation per unit wavelength or per unit frequency is emphasized. The Stefan-Boltzmann Law and the change in the glow of a hot body with temperature are also discussed. (KR)

  16. Ultraviolet radiation changes

    NASA Technical Reports Server (NTRS)

    Mckenzie, Richard L.; Frederick, John E.; Ilyas, Mohammad; Filyushkin, V.; Wahner, Andreas; Stamnes, K.; Muthusubramanian, P.; Blumthaler, M.; Roy, Colin E.; Madronich, Sasha

    1991-01-01

    A major consequence of ozone depletion is an increase in solar ultraviolet (UV) radiation received at the Earth's surface. This chapter discusses advances that were made since the previous assessment (World Meteorological Organization (WMO)) to our understanding of UV radiation. The impacts of these changes in UV on the biosphere are not included, because they are discussed in the effects assessment.

  17. Concrete radiation shielding

    SciTech Connect

    Kaplan, M.F.

    1989-01-01

    This book presents an introduction to the aspects of nuclear physics relevant to concrete technology. It covers a variety of materials that may be used to produce concrete for radiation shielding. Details of the physical, mechanical, and nuclear properties of these concretes are provided, and their applications in nuclear waste storage, shelter design, and reactor shielding are described. Radiation shield design considerations are addressed.

  18. Instrument for assaying radiation

    DOEpatents

    Coleman, Jody Rustyn; Farfan, Eduardo B.

    2016-03-22

    An instrument for assaying radiation includes a flat panel detector having a first side opposed to a second side. A collimated aperture covers at least a portion of the first side of the flat panel detector. At least one of a display screen or a radiation shield may cover at least a portion of the second side of the flat panel detector.

  19. Radiation in the universe

    NASA Technical Reports Server (NTRS)

    Stuhlinger, Ernst; Truemper, Joachim; Weisskopf, Martin

    1992-01-01

    When Wilhelm Conrad Roentgen discovered radiation one hundred years ago, it seemed that what was discovered was one of the rarest and most volatile members of the family of the basic modules of our natural world. Today cosmologists report that a substantial part of the universe's radiation energy consists of X-rays, which travel through cosmic space with the speed of light.

  20. Radiation-resistant microorganism

    DOEpatents

    Fliermans, Carl B.

    2010-06-15

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  1. Radiation-resistant microorganism

    DOEpatents

    Fliermans, Carl B.

    2007-01-09

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  2. Radiative Flux Analysis

    DOE Data Explorer

    Long, Chuck [NOAA

    2008-05-14

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  3. The Planck Radiation Functions.

    ERIC Educational Resources Information Center

    Larsen, Russell D.

    1985-01-01

    Blackbody radiation is used as an example to illustrate that oversimplification in teaching quantum ideas can result in later misunderstanding. Although textbooks give Planck's distribution function in terms of wavelength, there are actually 12 different radiation functions. Some of the more interesting ones are given and discussed. (JN)

  4. Treatment of Radiation Injury

    PubMed Central

    Akita, Sadanori

    2014-01-01

    Significance: Radiation exposure as a result of radiation treatment, accident, or terrorism may cause serious problems such as deficiency due to necrosis or loss of function, fibrosis, or intractable ulcers in the tissues and organs. When the skin, bone, oral mucous membrane, guts, or salivary glands are damaged by ionizing radiation, the management and treatment are very lengthy and difficult. Critical Issues: In severe and irreversible injuries, surgery remains the mainstay of treatment. Several surgical procedures, such as debridement, skin grafting, and local and free-vascularized flaps, are widely used. Recent Advances: In specific cases of major morbidity or in high-risk patients, a newly developed therapy using a patient's own stem cells is safe and effective. Adipose tissue, normally a rich source of mesenchymal stem cells, which are similar to those from the bone marrow, can be harvested, since the procedure is easy, and abundant tissue can be obtained with minimal invasiveness. Future Directions: Based on the molecular basis of radiation injuries, several prospective treatments are under development. Single-nucleotide polymorphisms focus on an individual's sensitivity to radiation in radiogenomics, and the pathology of radiation fibrosis or the effect of radiation on wound healing is being studied and will lead to new insight into the treatment of radiation injuries. Protectors and mitigators are being actively investigated in terms of the timing of administration or dose. PMID:24761339

  5. Space Radiation Risk Assessment

    NASA Astrophysics Data System (ADS)

    Blakely, E.

    Evaluation of potential health effects from radiation exposure during and after deep space travel is important for the future of manned missions To date manned missions have been limited to near-Earth orbits with the moon our farthest distance from earth Historical space radiation career exposures for astronauts from all NASA Missions show that early missions involved total exposures of less than about 20 mSv With the advent of Skylab and Mir total career exposure levels increased to a maximum of nearly 200 mSv Missions in deep space with the requisite longer duration of the missions planned may pose greater risks due to the increased potential for exposure to complex radiation fields comprised of a broad range of radiation types and energies from cosmic and unpredictable solar sources The first steps in the evaluation of risks are underway with bio- and physical-dosimetric measurements on both commercial flight personnel and international space crews who have experience on near-earth orbits and the necessary theoretical modeling of particle-track traversal per cell including the contributing effects of delta-rays in particle exposures An assumption for biologic effects due to exposure of radiation in deep space is that they differ quantitatively and qualitatively from that on earth The dose deposition and density pattern of heavy charged particles are very different from those of sparsely ionizing radiation The potential risks resulting from exposure to radiation in deep space are cancer non-cancer and genetic effects Radiation from

  6. Synchrotron Radiation II.

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Synchrotron radiation is a unique form of radiation that spans the electro-magnetic spectrum from X-rays through the ultraviolet and visible into the infrared. Tunable monochromators enable scientists to select a narrow band of wavelengths at any point in the spectrum. (Author/BB)

  7. Global radiation oncology waybill

    PubMed Central

    Muñoz-Garzón, Victor; Rovirosa, Ángeles; Ramos, Alfredo

    2013-01-01

    Background/aim Radiation oncology covers many different fields of knowledge and skills. Indeed, this medical specialty links physics, biology, research, and formation as well as surgical and clinical procedures and even rehabilitation and aesthetics. The current socio-economic situation and professional competences affect the development and future or this specialty. The aim of this article was to analyze and highlight the underlying pillars and foundations of radiation oncology, indicating the steps implicated in the future developments or competences of each. Methods This study has collected data from the literature and includes highlights from discussions carried out during the XVII Congress of the Spanish Society of Radiation Oncology (SEOR) held in Vigo in June, 2013. Most of the aspects and domains of radiation oncology were analyzed, achieving recommendations for the many skills and knowledge related to physics, biology, research, and formation as well as surgical and clinical procedures and even supportive care and management. Results Considering the data from the literature and the discussions of the XVII SEOR Meeting, the “waybill” for the forthcoming years has been described in this article including all the aspects related to the needs of radiation oncology. Conclusions Professional competences affect the development and future of this specialty. All the types of radio-modulation are competences of radiation oncologists. On the other hand, the pillars of Radiation Oncology are based on experience and research in every area of Radiation Oncology. PMID:24416572

  8. Radiation-induced disease.

    PubMed

    Bobrow, M

    1993-01-01

    The term radiation covers a wide spectrum of forms of energy, most of which have at one stage or another been suspected of causing human ill health. In general, study of the effects of radiation on health involves a mix of scientific disciplines, from population epidemiology to physics, which are seldom if ever found in a single scientist. As a result, interdisciplinary communication is of the utmost importance, and is a potent source of misunderstanding and misinformation. The forms of radiation which have been most specifically associated with health effects include ionizing and ultraviolet radiation. Claimed effects of electromagnetic and microwave radiation (excluding thermal effects) are too indefinite for detailed consideration. Ionizing radiation is a well-documented mutagen, which clearly causes cancers in humans, and human exposure has been increased by atomic weapons testing and medical and industrial uses of radioactivity. There is also a growing awareness of the possible role of some types of natural radiation, such as radon, in causing disease. Ultraviolet radiation is also associated with cancers, and is suspected of involvement in the increasing incidence of skin cancers in European populations. Factors thought to underlie recent changes in exposure to these mutagens are discussed.

  9. Sources of pulsed radiation

    SciTech Connect

    Sauer, M.C. Jr.

    1981-01-01

    Characteristics of various sources of pulsed radiation are examined from the viewpoint of their importance to the radiation chemist, and some examples of uses of such sources are mentioned. A summary is given of the application of methods of physical dosimetry to pulsed sources, and the calibration of convenient chemical dosimeters by physical dosimetry is outlined. 7 figures, 1 table.

  10. Radiation treatment of pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Dám, A. M.; Gazsó, L. G.; Kaewpila, S.; Maschek, I.

    1996-03-01

    Product specific doses were calculated for pharmaceuticals to be radiation treated. Radio-pasteurization dose were determined for some heat sensitive pharmaceutical basic materials (pancreaton, neopancreatin, neopancreatin USP, duodenum extract). Using the new recommendation (ISO standards, Method 1) dose calculations were performed and radiation sterilization doses were determined for aprotinine and heparine Na.

  11. Radiation: Doses, Effects, Risks.

    ERIC Educational Resources Information Center

    Lean, Geoffrey, Ed.

    Few scientific issues arouse as much public controversy as the effects of radiation. This booklet is an attempt to summarize what is known about radiation and provide a basis for further discussion and debate. The first four chapters of the booklet are based on the most recent reports to the United Nations' General Assembly by the United Nations…

  12. Electromagnetic radiation detector

    DOEpatents

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  13. Microcircuit radiation effects databank

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Radiation test data submitted by many testers is collated to serve as a reference for engineers who are concerned with and have some knowledge of the effects of the natural radiation environment on microcircuits. Total dose damage information and single event upset cross sections, i.e., the probability of a soft error (bit flip) or of a hard error (latchup) are presented.

  14. Radiation effects in space

    SciTech Connect

    Fry, R.J.M.

    1987-07-01

    As more people spend more time in space, and the return to the moon and exploratory missions are considered, the risks require continuing examination. The effects of microgravity and radiation are two potential risks in space. These risks increase with increasing mission duration. This document considers the risk of radiation effects in space workers and explorers. 17 refs., 1 fig., 4 tabs.

  15. Dynamic modeling of radiation belt electrons by radial diffusion simulation for a 2 month interval following the 24 March 1991 storm injection

    NASA Astrophysics Data System (ADS)

    Chu, Feifei; Hudson, Mary K.; Haines, Paul; Shprits, Yuri

    2010-03-01

    Diffusive radial transport of radiation belt electrons with variable outer boundary is computed using Brautigam and Albert (2000) diffusion coefficients parameterized by Kp, modeling power level at ULF wave frequencies in the range of MeV electron drift periods. We analyzed radial diffusion during a relatively quiet 2 month interval following the 24 March 1991, prompt injection to form a new radiation belt at L* = 2.5. The radial diffusion calculation is initialized with a computed phase space density (PSD) profile using differential flux values from the CRRES HEEF instrument, covering 0.65-7.5 MeV. The outer boundary phase space density is updated using Los Alamos National Laboratory (LANL) GEO satellite fluxes, changing the ratio of PSD relative to a quiet day by assuming the outer boundary is changing proportional to the flux at a LANL GEO satellite. The location of the plasmapause Lp* is computed using a Kp-dependent formula separating different loss rates inside and outside the plasmapause. A series of simulations for different values of the first invariant is performed for this 2 month period. The flux is then interpolated to find electron flux at a fixed energy, 1 MeV, in order to compare with the CRRES satellite 1 MeV flux. Radial diffusion appears to be the dominant mechanism for this 2 month interval, which contains moderate storms (∣Dst∣ $\\lesssim$ 100). Modulation of fluxes measured by CRRES compare well with simulations of the outer zone flux peak at L* = 3-4 for moderate high-speed stream-driven storms, along with persistence and slow decay of the new population of electrons injected on 24 March 1991, into L* = 2.5. The strongest storm of the 2 month interval (Dst = -105 nT) produced a flux dropout, which is not well-captured by the model, suggesting that improvements to the Kp-parameterized loss model are needed for larger storms.

  16. RADIATION BIOLOGY: CONCEPTS FOR RADIATION PROTECTION

    EPA Science Inventory

    ABSTRACT

    The opportunity to write a historical review of the field of radiation biology allows for the viewing of the development and maturity of a field of study, thereby being able to provide the appropriate context for the earlier years of research and its findings. The...

  17. Fundamentals of Radiation Dosimetry

    NASA Astrophysics Data System (ADS)

    Bos, Adrie J. J.

    2011-05-01

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  18. Radiation and health*

    PubMed Central

    Lindell, B.

    1987-01-01

    Radiation has been a source of fascination and concern ever since Wilhelm Konrad Röntgen discovered X-rays on 8 November 1895. Over the years, health workers as well as the public have been concerned about medical uses of X-rays, the presence of radon in buildings, radioactive waste from nuclear power stations, fallout from nuclear test explosions, radioactive consumer products, microwave ovens, and many other sources of radiation. Most recently, the tragic accident at the Chernobyl nuclear power station in the USSR, and the subsequent contamination over most of Europe, has again wakened interest and concern and also reminded us about a number of misconceptions about radiation. This article describes the essentials about radiation (especially ionizing radiation) and its health effects. PMID:3496982

  19. Radiation Effects In Space

    SciTech Connect

    Tripathi, Ram K.

    2011-06-01

    Protecting space missions from severe exposures from radiation, in general, and long duration/deep space human missions, in particular, is a critical design driver, and could be a limiting factor. The space radiation environment consists of galactic cosmic rays (GCR), solar particle events (SPE), trapped radiation, and includes ions of all the known elements over a very broad energy range. These ions penetrate spacecraft materials producing nuclear fragments and secondary particles that damage biological tissues and microelectronic devices. One is required to know how every element (and all isotopes of each element) in the periodic table interacts and fragments on every other element in the same table as a function of kinetic energy ranging over many decades. In addition, the accuracy of the input information and database, in general and nuclear data in particular, impacts radiation exposure health assessments and payload penalty. After a brief review of effects of space radiation on materials and electronics, human space missions to Mars is discussed.

  20. Fundamentals of Radiation Dosimetry

    SciTech Connect

    Bos, Adrie J. J.

    2011-05-05

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  1. Radiation protection in space.

    PubMed

    Blakely, E A; Fry, R J

    1995-08-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in our knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared with previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers, including space travelers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space. PMID:7480625

  2. Underwater radiation detector

    DOEpatents

    Kruse, Lyle W.; McKnight, Richard P.

    1986-01-01

    A detector apparatus for differentiating between gamma and neutron radiation is provided. The detector includes a pair of differentially shielded Geiger-Mueller tubes. The first tube is wrapped in silver foil and the second tube is wrapped in lead foil. Both the silver and lead foils allow the passage of gamma rays at a constant rate in a gamma ray only field. When neutrons are present, however, the silver activates and emits beta radiation that is also detected by the silver wrapped Geiger-Mueller tube while the radiation detected by the lead wrapped Geiger-Mueller tube remains constant. The amount of radiation impinging on the separate Geiger-Mueller tubes is then correlated in order to distinguish between the neutron and gamma radiations.

  3. Deployable Heat Pipe Radiator

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1975-01-01

    A 1.2- by 1.8-m variable conductance heat pipe radiator was designed, built, and tested. The radiator has deployment capability and can passively control Freon-21 fluid loop temperatures under varying loads and environments. It consists of six grooved variable conductance heat pipes attached to a 0.032-in. aluminum panel. Heat is supplied to the radiator via a fluid header or a single-fluid flexible heat pipe header. The heat pipe header is an artery design that has a flexible section capable of bending up to 90 degrees. Radiator loads as high as 850 watts were successfully tested. Over a load variation of 200 watts, the outlet temperature of the Freon-21 fluid varied by 7 F. An alternate control system was also investigated which used a variable conductance heat pipe header attached to the heat pipe radiator panel.

  4. Nuclear radiation actuated valve

    DOEpatents

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  5. A computational study of radiation and gravity effect on temperature and soot formation in a methane air co-flow diffusion flame

    NASA Astrophysics Data System (ADS)

    Bhowal, Arup Jyoti; Mandal, Bijan Kumar

    2016-07-01

    An effort has been made for a quantitative assessment of the soot formed under steady state in a methane air co flow diffusion flame by a numerical simulation at normal gravity and at lower gravity levels of 0.5 G, 0.1 G and 0.0001 G (microgravity). The peak temperature at microgravity is reduced by about 50 K than that at normal gravity level. There is an augmentation of soot formation at lower gravity levels. Peak value at microgravity multiplies by a factor of ˜7 of that at normal gravity. However, if radiation is not considered, soot formation is found to be much more.

  6. Ultraviolet-radiation-curable paints

    SciTech Connect

    Grosset, A M; Su, W F.A.; Vanderglas, E

    1981-09-30

    In product finishing lines, ultraviolet radiation curing of paints on prefabricated structures could be more energy efficient than curing by natural gas fired ovens, and could eliminate solvent emission. Diffuse ultraviolet light can cure paints on three dimensional metal parts. In the uv curing process, the spectral output of radiation sources must complement the absorption spectra of pigments and photoactive agents. Photosensitive compounds, such as thioxanthones, can photoinitiate unsaturated resins, such as acrylated polyurethanes, by a free radical mechanism. Newly developed cationic photoinitiators, such as sulfonium or iodonium salts (the so-called onium salts) of complex metal halide anions, can be used in polymerization of epoxy paints by ultraviolet light radiation. One-coat enamels, topcoats, and primers have been developed which can be photoinitiated to produce hard, adherent films. This process has been tested in a laboratory scale unit by spray coating these materials on three-dimensional objects and passing them through a tunnel containing uv lamps.

  7. Atomistic modeling of intrinsic and radiation-enhanced fission gas (Xe) diffusion in UO2±x: Implications for nuclear fuel performance modeling

    NASA Astrophysics Data System (ADS)

    Andersson, D. A.; Garcia, P.; Liu, X.-Y.; Pastore, G.; Tonks, M.; Millett, P.; Dorado, B.; Gaston, D. R.; Andrs, D.; Williamson, R. L.; Martineau, R. C.; Uberuaga, B. P.; Stanek, C. R.

    2014-08-01

    Based on density functional theory (DFT) and empirical potential calculations, the diffusivity of fission gas atoms (Xe) in UO2 nuclear fuel has been calculated for a range of non-stoichiometry (i.e. UO2±x), under both out-of-pile (no irradiation) and in-pile (irradiation) conditions. This was achieved by first deriving expressions for the activation energy that account for the type of trap site that the fission gas atoms occupy, which includes the corresponding type of mobile cluster, the charge state of these defects and the chemistry acting as boundary condition. In the next step DFT calculations were used to estimate migration barriers and internal energy contributions to the thermodynamic properties and calculations based on empirical potentials were used to estimate defect formation and migration entropies (i.e. pre-exponentials). The diffusivities calculated for out-of-pile conditions as function of the UO2±x non-stoichiometry were used to validate the accuracy of the diffusion models and the DFT calculations against available experimental data. The Xe diffusivity is predicted to depend strongly on the UO2±x non-stoichiometry due to a combination of changes in the preferred Xe trap site and in the concentration of uranium vacancies enabling Xe diffusion, which is consistent with experiments. After establishing the validity of the modeling approach, it was used for studying Xe diffusion under in-pile conditions, for which experimental data is very scarce. The radiation-enhanced Xe diffusivity is compared to existing empirical models. Finally, the predicted fission gas diffusion rates were implemented in the BISON fuel performance code and fission gas release from a Risø fuel rod irradiation experiment was simulated.

  8. Atomistic modeling of intrinsic and radiation-enhanced fission gas (Xe) diffusion in UO2 +/- x: Implications for nuclear fuel performance modeling

    SciTech Connect

    Giovanni Pastore; Michael R. Tonks; Derek R. Gaston; Richard L. Williamson; David Andrs; Richard Martineau

    2014-03-01

    Based on density functional theory (DFT) and empirical potential calculations, the diffusivity of fission gas atoms (Xe) in UO2 nuclear fuel has been calculated for a range of non-stoichiometry (i.e. UO2x), under both out-of-pile (no irradiation) and in-pile (irradiation) conditions. This was achieved by first deriving expressions for the activation energy that account for the type of trap site that the fission gas atoms occupy, which includes the corresponding type of mobile cluster, the charge state of these defects and the chemistry acting as boundary condition. In the next step DFT calculations were used to estimate migration barriers and internal energy contributions to the thermodynamic properties and calculations based on empirical potentials were used to estimate defect formation and migration entropies (i.e. pre-exponentials). The diffusivities calculated for out-of-pile conditions as function of the UO2x nonstoichiometrywere used to validate the accuracy of the diffusion models and the DFT calculations against available experimental data. The Xe diffusivity is predicted to depend strongly on the UO2x non-stoichiometry due to a combination of changes in the preferred Xe trap site and in the concentration of uranium vacancies enabling Xe diffusion, which is consistent with experiments. After establishing the validity of the modeling approach, it was used for studying Xe diffusion under in-pile conditions, for which experimental data is very scarce. The radiation-enhanced Xe diffusivity is compared to existing empirical models. Finally, the predicted fission gas diffusion rates were implemented in the BISON fuel performance code and fission gas release from a Risø fuel rod irradiation experiment was simulated. 2014 Elsevier B.V. All rights

  9. Three-dimensional diffusion of non-sorbing species in porous sandstone: computer simulation based on X-ray microtomography using synchrotron radiation.

    PubMed

    Nakashima, Yoshito; Nakano, Tsukasa; Nakamura, Koichi; Uesugi, Kentaro; Tsuchiyama, Akira; Ikeda, Susumu

    2004-10-01

    The diffusion pathways of porous sandstone were examined by a three-dimensional (3-D) imaging technique based on X-ray computed tomography (CT) using the SPring-8 (Super Photon ring-8 GeV, Hyogo, Japan) synchrotron radiation facility. The analysis was undertaken to develop better understanding of the diffusion pathways in natural rock as a key factor in clarifying the detailed mechanism of the diffusion of radionuclides and water molecules through the pore spaces of natural barriers in underground nuclear waste disposal facilities. A cylindrical sample (diameter 4 mm, length 6 mm) of sandstone (porosity 0.14) was imaged to obtain a 3-D image set of 450(3) voxels=2.62(3) mm(3). Through cluster-labeling analysis of the 3-D image set, it was revealed that 89% of the pore space forms a single large pore-cluster responsible for macroscopic diffusive transport, while only 11% of the pore space is made up of isolated pores that are not involved in long-range diffusive transport. Computer simulations of the 3-D diffusion of non-sorbing random walkers in the largest pore cluster were performed to calculate the surface-to-volume ratio of the pore, tortuosity (diffusion coefficient in free space divided by that in porous rock). The results showed that (i) the simulated surface-to-volume ratio is about 60% of the results obtained by conventional pulsed-field-gradient proton nuclear magnetic resonance (NMR) laboratory experiments and (ii) the simulated tortuosity is five to seven times larger than the results of laboratory diffusion experiments using non-sorbing I(-) and Br(-). These discrepancies are probably attributed to the intrinsic sample heterogeneity and limited spatial resolution of the CT system. The permeability was also estimated based on the NMR diffusometry theory using the results of the random walk simulations via the Kozeny-Carman equation. The estimated permeability involved an error of about 20% compared with the permeability measured by the conventional

  10. [Remote radiation planning support system].

    PubMed

    Atsumi, Kazushige; Nakamura, Katsumasa; Yoshidome, Satoshi; Shioyama, Yoshiyuki; Sasaki, Tomonari; Ohga, Saiji; Yoshitake, Tadamasa; Shinoto, Makoto; Asai, Kaori; Sakamoto, Katsumi; Hirakawa, Masakazu; Honda, Hiroshi

    2012-08-01

    We constructed a remote radiation planning support system between Kyushu University Hospital (KUH) in Fukuoka and Kyushu University Beppu Hospital (KBH) in Oita. Between two institutions, radiology information system for radiotherapy division (RT-RIS) and radiation planning system (RTPS) were connected by virtual private network (VPN). This system enables the radiation oncologists at KUH to perform radiotherapy planning for the patients at KBH. The detail of the remote radiation planning support system in our institutions is as follows: The radiation oncologist at KBH performs radiotherapy planning and the data of the patients are sent anonymously to the radiation oncologists at KUH. The radiation oncologists at KUH receive the patient's data, access to RTPS at KBH, verify or change the radiation planning at KBH: Radiation therapy is performed at KBH according to the confirmed plan by the radiation oncologists at KUH. Our remote radiation planning system is useful for providing radiation therapy with safety and accuracy.

  11. Radiation Therapy for Lung Cancer

    MedlinePlus

    ... whether surgery will be helpful for you EXTERNAL BEAM RADIATION THER APY External beam radiation therapy is the safe delivery of high- ... your cancer. A linear accelerator focuses the radiation beam to a precise location in your body for ...

  12. [Efficacy of CHOP+/-Rituximab-like therapy plus radiation therapy for patients with diffuse large B-cell lymphoma stage I].

    PubMed

    Ueda, Kyoko; Yokoyama, Masahiro; Asai, Hiroaki; Koudaira, Makoto; Yamada, Syuhei; Katsube, Atsushi; Mishima, Yuko; Sakajiri, Sakura; Takeuchi, Kengo; Saotome, Takashi; Terui, Yasuhito; Takahashi, Syunji; Hatake, Kiyohiko

    2010-05-01

    Clinically, R-CHOP-like therapy plus radiation therapy is commonly performed for patients with limited stage diffuse large B-cell lymphoma. However, the efficacy and the safety of the management have not been evaluated properly. In particular, we have few definitive reports about patients with stage I DLBCL. This time we evaluated the effect of CHOP+/-R-like therapy plus radiation therapy, by analyzing 28 patients with stage I DLBCL, retrospectively. 15 patients were treated with the RCHOP-like therapy, and 13 received CHOP-like therapy combined with radiation therapy. A complete response was observed in all of the patients. With a median follow-up time of 14 months, 1-year progression-free survival (PFS) was 100%, and the 1-year overall survival (OS) was 100% for the patients receiving the R-CHOP-like therapy. With a median follow-up time of 68 months, 5-year PFS was 84. 6%, and 5-year OS was 100% for patients receiving the CHOP-like therapy. Since the followup time was not enough and the patient numbers were too few, the benefit of the addition of Rituximab to the CHOP therapy could not be clarified. We need to assess the safety and the efficacy of the combined modality therapy for patients with limited-stage DLBCL by a larger prospective study. PMID:20495315

  13. [Basis of radiation protection].

    PubMed

    Roth, J; Schweizer, P; Gückel, C

    1996-06-29

    After an introduction, three selected contributions to the 10th Course on Radiation Protection held at the University Hospital of Basel are presented. The principles of radiation protection and new Swiss legislation are discussed as the basis for radiological protection. Ways are proposed of reducing radiation exposure while optimizing the X-ray picture with a minimum dose to patient and personnel. Radiation effects from low doses. From the beginning, life on this planet has been exposed to ionizing radiation from natural sources. For about one century additional irradiation has reached us from man-made sources as well. In Switzerland the overall annual radiation exposure from ambient and man-made sources amounts to about 4 mSv. The terrestrial and cosmic radiation and natural radionuclids in the body cause about 1.17 mSv (29%). As much as 1.6 mSv (40%) results from exposure to radon and its progenies, primarily inside homes. Medical applications contribute approximately 1 mSv (26%) to the annual radiation exposure and releases from atomic weapons, nuclear facilities and miscellaneous industrial operations yield less than 0.12 mSv (< 5%) to the annual dose. Observations of detrimental radiation effects from intermediate to high doses are challenged by observations of biopositive adaptive responses and hormesis following low dose exposure. The important question, whether cellular adaptive response or hormesis could cause beneficial effects to the human organism that would outweigh the detrimental effects attributed to low radiation doses, remains to be resolved. Whether radiation exerts a detrimental, inhibitory, modifying or even beneficial effect is likely to result from identical molecular lesions but to depend upon their quantity, localization and time scale of initiation, as well as the specific responsiveness of the cellular systems involved. For matters of radiation protection the bionegative radiation effects are classified as deterministic effects or

  14. Radiation-induced enteropathy

    SciTech Connect

    Sher, M.E.; Bauer, J. )

    1990-02-01

    The incidence of chronic radiation enteritis appears to have risen in recent years due to the increasing utilization of radiotherapy for abdominal and pelvic malignancies. The etiology, pathogenesis, and management of radiation enteritis are discussed. Two case reports exemplify the progressive nature of the disease. Case 1 demonstrates the classical picture of multiple exacerbations and remissions of partial small bowel obstruction and the eventual need for surgical management ten years after radiation therapy. Case 2 presents the more severe sequelae of an acute perforation with a 14-yr latency period. Predisposing factors in the progression of radiation injury include excessive radiation, underlying cardiovascular disease, fixation of the bowel, and an asthenic habitus. In both cases, radiation injury was localized to a discrete segment of bowel; therefore, resection with a primary end-to-end anastomosis was performed. In addition, diseased bowel was eliminated and, therefore, would not cause further complications such as intractable bleeding or fistula formation. The review focuses on current knowledge which may be applied to the treatment and prevention of radiation enteritis.

  15. Beneficial uses of radiation

    SciTech Connect

    Fox, M.R.

    1991-10-01

    An overall decline in technical literacy within the American public has come at a time when technological advances are accelerating in the United States and around the world. This had led to a large communication gulf between the general public and the technologists. Nowhere is this more evident then with the topic of radiation. Regrettably, too few people know about sources of radiation, the pervasiveness, amounts, and variabilities, and do not have a true understanding of the environment in which we live. Nor do many people know that radiation has been used in beneficial ways for decades around the world. While the general public does not know of the scientific applications to which radiation has been deployed, it nevertheless had benefited tremendously from these efforts. Thanks to the well know properties of radiation, scientific ingenuity has found many uses of radiation in chemical and agricultural research, biomedical research, in the diagnoses and treatment of hundreds of types of diseases, in industrial applications, food irradiation, and many others. This paper provides a sample of the types of uses to which radiation has been used to help advance the betterment of humankind.

  16. Modifying Radiation Damage

    PubMed Central

    Kim, Kwanghee; McBride, William H.

    2011-01-01

    Radiation leaves a fairly characteristic footprint in biological materials, but this is rapidly all but obliterated by the canonical biological responses to the radiation damage. The innate immune recognition systems that sense “danger” through direct radiation damage and through associated collateral damage set in motion a chain of events that, in a tissue compromised by radiation, often unwittingly result in oscillating waves of molecular and cellular responses as tissues attempt to heal. Understanding “nature’s whispers” that inform on these processes will lead to novel forms of intervention targeted more precisely towards modifying them in an appropriate and timely fashion so as to improve the healing process and prevent or mitigate the development of acute and late effects of normal tissue radiation damage, whether it be accidental, as a result of a terrorist incident, or of therapeutic treatment of cancer. Here we attempt to discuss some of the non-free radical scavenging mechanisms that modify radiation responses and comment on where we see them within a conceptual framework of an evolving radiation-induced lesion. PMID:20583981

  17. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments Database

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  18. Inverted Apatite (U-Th)/He and Fission-track Dates from the Rae craton, Baffin Island, Canada and Implications for Apatite Radiation Damage-He Diffusivity Models

    NASA Astrophysics Data System (ADS)

    Ault, A. K.; Reiners, P. W.; Thomson, S. N.; Miller, G. H.

    2015-12-01

    Coupled apatite (U-Th)/He and fission-track (AFT) thermochronology data from the same sample can be used to decipher complex low temperature thermal histories and evaluate compatibility between these two methods. Existing apatite He damage-diffusivity models parameterize radiation damage annealing as fission-track annealing and yield inverted apatite He and AFT dates for samples with prolonged residence in the He partial retention zone. Apatite chemistry also impacts radiation damage and fission-track annealing, temperature sensitivity, and dates in both systems. We present inverted apatite He and AFT dates from the Rae craton, Baffin Island, Canada, that cannot be explained by apatite chemistry or existing damage-diffusivity and fission track models. Apatite He dates from 34 individual analyses from 6 samples range from 237 ± 44 Ma to 511 ± 25 Ma and collectively define a positive date-eU relationship. AFT dates from these same samples are 238 ± 15 Ma to 350 ± 20 Ma. These dates and associated track length data are inversely correlated and define the left segment of a boomerang diagram. Three of the six samples with 20-90 ppm eU apatite grains yield apatite He and AFT dates inverted by 300 million years. These samples have average apatite Cl chemistry of ≤0.02 wt.%, with no correlation between Cl content and Dpar. Thermal history simulations using geologic constraints, an apatite He radiation damage accumulation and annealing model, apatite He dates with the range of eU values, and AFT date and track length data, do not yield any viable time-temperature paths. Apatite He and AFT data modeled separately predict thermal histories with Paleozoic-Mesozoic peaks reheating temperatures differing by ≥15 °C. By modifying the parameter controlling damage annealing (Rmr0) from the canonical 0.83 to 0.5-0.6, forward models reproduce the apatite He date-eU correlation and AFT dates with a common thermal history. Results imply apatite radiation damage anneals at

  19. Human radiation tolerance

    NASA Technical Reports Server (NTRS)

    Lushbaugh, C. C.

    1974-01-01

    The acute radiation syndrome in man is clinically bounded by death at high dose levels and by the prodromal syndrome of untoward physiological effects at minimal levels of clinically effective exposure. As in lower animals, man experiences principally three acute modes of death from radiation exposure (Bond et al., 1965). These are known collectively as the lethal radiation syndromes: central nervous system death, gastrointestinal death, and hematopoietic death. The effect of multiple exposure on lethality, the effect of multiple exposure on hematopoietic recovery, and quantitative aspects of cell and tissue repair are discussed.

  20. Radiation and Health

    NASA Astrophysics Data System (ADS)

    Evans, Albert; Blanchard, Karen

    2007-10-01

    This is a shortened version of the Science Teachers' Workshop offered free of charge to primary and secondary teachers at a location of their choice, covering fundamentals of nuclear radiation, natural and man-made sources of radiation, biological effects and risks to health, radioactive waste management, and radiation safety management and regulation. The course includes a hands-on demonstration of use of Geiger Counters, which are given without cost to participants for use in their classes. A CD and notebook of class material are issued to each student. Lunch will be provided.

  1. Radiation and Health

    NASA Astrophysics Data System (ADS)

    Evans, Albert E.

    2008-03-01

    This is a shortened version of the Science Teachers' Workshop offered free of charge to primary and secondary teachers at a location of their choice, covering fundamentals of nuclear radiation, natural and man-made sources of radiation, biological effects and risks to health, radioactive waste management, and radiation safety management and regulation. The course includes a hands-on demonstration of use of Geiger Counters, which are given without cost to participants for use in their classes. A CD and notebook of class material are issued to each student. Lunch will be provided. Limited to 20 participants.

  2. METHOD FOR MEASURING RADIATION

    DOEpatents

    Roesch, W.C.; McCall, R.C.

    1961-11-21

    A method for measuring an unknown integrated quantity of radiation with a condenser ionization chamber is described. The chamber is initially charged to a predetermined voltage by a voltage source. The chamber is then removed from the source and exposed to an unknown quantity of radiation for a period of time. The quantity of radiation to which the chamber was exposed is then measured by detecting the magnitude of the pulse of current necessary to recharge the chamber of its initial value through a suitable impedance. The current pulse is amplified and measured directly by a suitable pulse height analyzing system. (AEC)

  3. Miniaturized radiation chirper

    DOEpatents

    Umbarger, C. John; Wolf, Michael A.

    1980-01-01

    The disclosure relates to a miniaturized radiation chirper for use with a small battery supplying on the order of 5 volts. A poor quality CdTe crystal which is not necessarily suitable for high resolution gamma ray spectroscopy is incorporated with appropriate electronics so that the chirper emits an audible noise at a rate that is proportional to radiation exposure level. The chirper is intended to serve as a personnel radiation warning device that utilizes new and novel electronics with a novel detector, a CdTe crystal. The resultant device is much smaller and has much longer battery life than existing chirpers.

  4. Microcircuit radiation effects databank

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This databank is the collation of radiation test data submitted by many testers and serves as a reference for engineers who are concerned with and have some knowledge of the effects of the natural radiation environment on microcircuits. It contains radiation sensitivity results from ground tests and is divided into two sections. Section A lists total dose damage information, and section B lists single event upset cross sections, I.E., the probability of a soft error (bit flip) or of a hard error (latchup).

  5. Radiative forcing of climate

    NASA Technical Reports Server (NTRS)

    Ramanswamy, V.; Shine, Keith; Leovy, Conway; Wang, Wei-Chyung; Rodhe, Henning; Wuebbles, Donald J.; Ding, M.; Lelieveld, Joseph; Edmonds, Jae A.; Mccormick, M. Patrick

    1991-01-01

    An update of the scientific discussions presented in Chapter 2 of the Intergovernmental Panel on Climate Change (IPCC) report is presented. The update discusses the atmospheric radiative and chemical species of significance for climate change. There are two major objectives of the present update. The first is an extension of the discussion on the Global Warming Potentials (GWP's), including a reevaluation in view of the updates in the lifetimes of the radiatively active species. The second important objective is to underscore major developments in the radiative forcing of climate due to the observed stratospheric ozone losses occurring between 1979 and 1990.

  6. Composition for radiation shielding

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.

  7. [Health disorders caused by radiation].

    PubMed

    Frischauf, H

    1984-01-01

    The rapid development and distribution of radiation sources has given rise to an "Energy Pollution" paralleling the chemical contamination of the environment. It has become necessary to establish limits for the "non-ionizing radiation" as well as for the ionizing radiation to which attention has been given for a long time. The non-ionizing radiation now includes the non-ionizing electromagnetic waves - radio frequency, micro waves, optical radiation - and ultrasound. Specific effects of these different radiation qualities caused by variation in biochemical and biophysical characteristics of tissues as well as the related biological changes and the mechanism of radiation effects are discussed shortly. Some commonly occurring radiation sources are quoted.

  8. Synchrotron radiation sources and research

    SciTech Connect

    Teng, L.C.

    1995-12-31

    This is an introduction and a review of Synchrotron Radiation sources and the research performed using synchrotron radiation. I will begin with a brief discussion of the two principal uses of particle storage rings: for colliding beams (Collider) and for synchrotron radiation (Radiator). Then I will concentrate on discussions of synchrotron radiation topics, starting with a historical account, followed by descriptions of the features of the storage ring and the features of the radiation from the simplest source -- the bending magnet. I will then discuss the special insertion device sources -- wigglers and undulators -- and their radiations, and end with a brief general account of the research and other applications of synchrotron radiation.

  9. DNI measurements in the South of Portugal: Long term results through direct comparison with global and diffuse radiation measurements and existing time series

    NASA Astrophysics Data System (ADS)

    Cavaco, A.; Canhoto, P.; Costa, M. J.; Collares-Pereira, M.

    2016-05-01

    The present work describes the measurement effort for direct normal irradiance (DNI) evaluation in the sunny south of Portugal, with a network of eight radiation measurement stations in several locations (including Évora) providing a good coverage of the region. This new initiative for DNI measurement will still need many years (typically 10 or more) to produce a time series which can claim having long term statistical value. This problem can, however, be temporarily mitigated by measuring DNI at the same time as GHI and DHI, in a place where long term series dating back, already exist for those two. It so happens that a long term series (20 years) of global and diffuse solar irradiation exists for the location Évora. So the expectation is to establish correlations with the goal of attributing at least some long term statistical significance to the short and recent DNI series. The paper describes the setup of the measuring stations and presents the preliminary measurements obtained. It further presents the first correlations of monthly averages between normal beam (DNI), global and diffuse radiation. It then uses these correlations, admittedly without acceptable statistical significance (short series of less than one year of measured data), to exemplify how to get a prediction of long term DNI for Évora. This preliminary obtained value is compared to that predicted by the commercial data from Meteonorm.

  10. Laboratory optical spectroscopy of the thiophenoxy radical and its profile simulation as a diffuse interstellar band based on rotational distribution by radiation and collisions

    SciTech Connect

    Araki, Mitsunori; Niwayama, Kei; Tsukiyama, Koichi

    2014-11-01

    The gas-phase optical absorption spectrum of the thiophenoxy radical (C{sub 6}H{sub 5}S), a diffuse interstellar band (DIB) candidate molecule, was observed in the discharge of thiophenol using a cavity ringdown spectrometer. The ground-state rotational constants of the thiophenoxy radical were theoretically calculated, and the excited-state rotational constants were determined from the observed rotational profile. The rotational profile of a near prolate molecule having C {sub 2v} symmetry was simulated on the basis of a rotational distribution model by radiation and collisions. Although the simulated profile did not agree with the observed DIBs, the upper limit of the column density for the thiophenoxy radical in the diffuse clouds toward HD 204827 was evaluated to be 2 × 10{sup 13} cm{sup –2}. The profile simulation indicates that rotational distribution by radiation and collisions is important to reproduce a rotational profile for a DIB candidate and that the near prolate C {sub 2v} molecule is a possible candidate for DIB with a band width variation dependent on the line of sight.

  11. Reproducing the observed energy-dependent structure of Earth's electron radiation belts during storm recovery with an event-specific diffusion model

    NASA Astrophysics Data System (ADS)

    Ripoll, J.-F.; Reeves, G. D.; Cunningham, G. S.; Loridan, V.; Denton, M.; Santolík, O.; Kurth, W. S.; Kletzing, C. A.; Turner, D. L.; Henderson, M. G.; Ukhorskiy, A. Y.

    2016-06-01

    We present dynamic simulations of energy-dependent losses in the radiation belt "slot region" and the formation of the two-belt structure for the quiet days after the 1 March storm. The simulations combine radial diffusion with a realistic scattering model, based data-driven spatially and temporally resolved whistler-mode hiss wave observations from the Van Allen Probes satellites. The simulations reproduce Van Allen Probes observations for all energies and L shells (2-6) including (a) the strong energy dependence to the radiation belt dynamics (b) an energy-dependent outer boundary to the inner zone that extends to higher L shells at lower energies and (c) an "S-shaped" energy-dependent inner boundary to the outer zone that results from the competition between diffusive radial transport and losses. We find that the characteristic energy-dependent structure of the radiation belts and slot region is dynamic and can be formed gradually in ~15 days, although the "S shape" can also be reproduced by assuming equilibrium conditions. The highest-energy electrons (E > 300 keV) of the inner region of the outer belt (L ~ 4-5) also constantly decay, demonstrating that hiss wave scattering affects the outer belt during times of extended plasmasphere. Through these simulations, we explain the full structure in energy and L shell of the belts and the slot formation by hiss scattering during storm recovery. We show the power and complexity of looking dynamically at the effects over all energies and L shells and the need for using data-driven and event-specific conditions.

  12. Radiation-damage-controlled He diffusion and 4He/3He spectra in apatite: an example of mutually consistent results from the Grand Canyon (Invited)

    NASA Astrophysics Data System (ADS)

    Farley, K. A.; Flowers, R. M.

    2009-12-01

    Recent work indicates that He diffusion from apatite is impeded by the accumulation of radiation damage from actinide decay. Supporting evidence includes laboratory diffusion measurements as well as (U-Th)/He dates positively correlated with effective uranium (eU) concentration in certain geologic situations. Here we investigate whether the radiation damage effect can be identified in 4He concentration profiles, as it must be if the system behaves as we anticipate. Apatites from nearby igneous basement samples in the Upper Gorge of the Grand Canyon showing a strong date-eU correlation were proton irradiated, step-heated, and analyzed for 4He/3He spectra. The low eU apatites with younger He dates yielded nearly flat spectra, while the high eU apatites with older He dates yielded highly rounded spectra (see Figure). This implies that the higher eU apatites were partially retaining He while the lower eU apatites were still acting as an open system. Using the RDAAM kinetic model (Flowers et al. 2009) and local geologic constraints we confirm that this behavior is consistent with the observed differences in date and eU, providing compelling evidence that both the He dates and the 4He profiles are sensitive to radiation damage accumulation. Equally importantly, the combination of multiple samples with differing eU and thus differing 4He/3He spectra yields remarkably tight constraints on the time-temperature path experienced by these rocks, from ~90oC down to < 30oC.

  13. Solar radiation on Mars: Update 1991

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data are presented from which the daily variation of the global, direct beam and diffuse insolation on Mars are calculated. Given the optical depth of the Mars atmosphere, the global radiation is calculated from the normalized net flux function based on multiple wavelength and multiple scattering of the solar radiation. The direct beam was derived from the optical depth using Beer's law, and the diffuse component was obtained from the difference of the global and the direct beam radiation. The optical depths of the Mars atmosphere were derived from images taken of the Sun with a special diode on the cameras used on the two Viking Landers.

  14. Radiation-Induced Bioradicals

    NASA Astrophysics Data System (ADS)

    Lahorte, Philippe; Mondelaers, Wim

    This chapter represents the second part of a review in which the production and application of radiation-induced radicals in biological matter are discussed. In part one the general aspects of the four stages (physical, physicochemical, chemical and biological) of interaction of radiation with matter in general and biological matter in particular, were discussed. Here an overview is presented of modem technologies and theoretical methods available for studying these radiation effects. The relevance is highlighted of electron paramagnetic resonance spectroscopy and quantum chemical calculations with respect to obtaining structural information on bioradicals, and a survey is given of the research studies in this field. We also discuss some basic aspects of modem accelerator technologies which can be used for creating radicals and we conclude with an overview of applications of radiation processing in biology and related fields such as biomedical and environmental engineering, food technology, medicine and pharmacy.

  15. Radiation and Society

    ERIC Educational Resources Information Center

    Shaw, Edward I.

    1974-01-01

    Presents a discussion of the risks, to society, from radiation-associated technologies and urges that science teachers help the public understand the decision-making process relative to nuclear power as well as the problems and alternatives. (PEB)

  16. Tin Can Radiation Detector.

    ERIC Educational Resources Information Center

    Crull, John L.

    1986-01-01

    Provides instructions for making tin can radiation detectors from empty aluminum cans, aluminum foil, clear plastic, copper wire, silica gel, and fine, unwaxed dental floss put together with tape or glue. Also provides suggestions for activities using the detectors. (JN)

  17. Nanotechnology in radiation oncology.

    PubMed

    Wang, Andrew Z; Tepper, Joel E

    2014-09-10

    Nanotechnology, the manipulation of matter on atomic and molecular scales, is a relatively new branch of science. It has already made a significant impact on clinical medicine, especially in oncology. Nanomaterial has several characteristics that are ideal for oncology applications, including preferential accumulation in tumors, low distribution in normal tissues, biodistribution, pharmacokinetics, and clearance, that differ from those of small molecules. Because these properties are also well suited for applications in radiation oncology, nanomaterials have been used in many different areas of radiation oncology for imaging and treatment planning, as well as for radiosensitization to improve the therapeutic ratio. In this article, we review the unique properties of nanomaterials that are favorable for oncology applications and examine the various applications of nanotechnology in radiation oncology. We also discuss the future directions of nanotechnology within the context of radiation oncology.

  18. Microwave Radiation Detector

    NASA Technical Reports Server (NTRS)

    Lesh, J. R.

    1984-01-01

    Direct photon detector responds to microwave frequencies. Method based on trapped-ion frequency-generation standards proposed to detect radio-frequency (RF) radiation at 40.5 GHz. Technique used for directdetection (RF) communication, radar, and radio astronomy.

  19. Portal radiation monitor

    DOEpatents

    Kruse, Lyle W.

    1985-01-01

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  20. Portal radiation monitor

    DOEpatents

    Kruse, L.W.

    1982-03-23

    A portal radiation monitor combines .1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  1. Radiation Tolerant Antifuse FPGA

    NASA Technical Reports Server (NTRS)

    Wang, Jih-Jong; Cronquist, Brian; McCollum, John; Parker, Wanida; Katz, Rich; Kleyner, Igor; Day, John H. (Technical Monitor)

    2002-01-01

    The total dose performance of the antifuse FPGA for space applications is summarized. Optimization of the radiation tolerance in the fabless model is the main theme. Mechanisms to explain the variation in different products are discussed.

  2. Volcanic Aerosol Radiative Properties

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew

    2015-01-01

    Large sporadic volcanic eruptions inject large amounts of sulfur bearing gases into the stratosphere which then get photochemically converted to sulfuric acid aerosol droplets that exert a radiative cooling effect on the global climate system lasting for several years.

  3. The Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Bourdarie, Sebastien; Xapsos, Michael A.

    2008-01-01

    The effects of the space radiation environment on spacecraft systems and instruments are significant design considerations for space missions. Astronaut exposure is a serious concern for manned missions. In order to meet these challenges and have reliable, cost-effective designs, the radiation environment must be understood and accurately modeled. The nature of the environment varies greatly between low earth orbits, higher earth orbits and interplanetary space. There are both short-term and long-term variations with the phase of the solar cycle. In this paper we concentrate mainly on charged particle radiations. Descriptions of the radiation belts and particles of solar and cosmic origin are reviewed. An overview of the traditional models is presented accompanied by their application areas and limitations. This is followed by discussion of some recent model developments.

  4. Nanotechnology in Radiation Oncology

    PubMed Central

    Wang, Andrew Z.; Tepper, Joel E.

    2014-01-01

    Nanotechnology, the manipulation of matter on atomic and molecular scales, is a relatively new branch of science. It has already made a significant impact on clinical medicine, especially in oncology. Nanomaterial has several characteristics that are ideal for oncology applications, including preferential accumulation in tumors, low distribution in normal tissues, biodistribution, pharmacokinetics, and clearance, that differ from those of small molecules. Because these properties are also well suited for applications in radiation oncology, nanomaterials have been used in many different areas of radiation oncology for imaging and treatment planning, as well as for radiosensitization to improve the therapeutic ratio. In this article, we review the unique properties of nanomaterials that are favorable for oncology applications and examine the various applications of nanotechnology in radiation oncology. We also discuss the future directions of nanotechnology within the context of radiation oncology. PMID:25113769

  5. Radiation Exposure and Pregnancy

    MedlinePlus

    ... Instruction concerning prenatal radiation exposure. Washington, DC: U.S. Nuclear Regulatory Commission; NUREG 8.13, Revision 3; June 1999. The Health Physics Society is a nonprofit scientific professional organization whose ...

  6. Space radiation studies

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1986-01-01

    Instrument design and data analysis expertise was provided in support of several space radiation monitoring programs. The Verification of Flight Instrumentation (VFI) program at NASA included both the Active Radiation Detector (ARD) and the Nuclear Radiation Monitor (NRM). Design, partial fabrication, calibration and partial data analysis capability to the ARD program was provided, as well as detector head design and fabrication, software development and partial data analysis capability to the NRM program. The ARD flew on Spacelab-1 in 1983, performed flawlessly and was returned to MSFC after flight with unchanged calibration factors. The NRM, flown on Spacelab-2 in 1985, also performed without fault, not only recording the ambient gamma ray background on the Spacelab, but also recording radiation events of astrophysical significance.

  7. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  8. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  9. Lecture on Thermal Radiation

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.

    2006-01-01

    This lecture will cover solar thermal radiation, particularly as it relates to the high energy solar processes that are the subject of this summer school. After a general review of thermal radiation from the Sun and a discussion of basic definitions, the various emission and absorption mechanisms will be described including black-body emission, bremsstrahlung, free-bound, and atomic line emissions of all kinds. The bulk of the time will be spent discussing the observational characteristics of thermal flare plasma and what can be learned about the flare energy release process from observations of the thermal radiation at all wavelengths. Information that has been learned about the morphology, temperature distribution, and composition of the flare plasma will be presented. The energetics of the thermal flare plasma will be discussed in relation to the nonthermal energy of the particles accelerated during the flare. This includes the total energy, the radiated and conductive cooling processes, and the total irradiated energy.

  10. Ionizing radiation detector

    DOEpatents

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  11. External Radiation Therapy

    MedlinePlus Videos and Cool Tools

    Narrator: When the cancer is not completely contained in the prostate or when the patient is older the treatment that is frequently used ... There are different forms of radiation for prostate cancer. They really boil down to two different types. ...

  12. Breast radiation - discharge

    MedlinePlus

    ... during cancer treatment Eating extra calories when sick - adults Lymphedema - self-care Radiation therapy - questions to ask your doctor Safe eating during cancer treatment When you have diarrhea When you have nausea and vomiting Update Date ...

  13. [Genetic effects of radiation].

    PubMed

    Nakamura, Nori

    2012-03-01

    This paper is a short review of genetic effect of radiation. This includes methods and results of a large-scale genetic study on specific loci in mice and of various studies in the offspring of atomic-bomb survivors. As for the latter, there is no results obtained which suggest the effect of parental exposure to radiation. Further, in recent years, studies are conducted to the offspring born to parents who were survivors of childhood cancers. In several reports, the mean gonad dose is quite large whereas in most instances, the results do not indicate genetic effect following parental exposure to radiation. Possible reasons for the difficulties in detecting genetic effect of radiation are discussed. PMID:22514926

  14. Pregnancy and Radiation Exposure

    MedlinePlus

    ... had that might impact the development of their sperm or their eggs (ova) and their risk of ... your concerns with them. Radiation Exposure to the Sperm from Diagnostic X-Ray Studies There are no ...

  15. Radiation hardness characteristics of Si-PIN radiation detectors

    NASA Astrophysics Data System (ADS)

    Jeong, Manhee; Jo, Woo Jin; Kim, Han Soo; Ha, Jang Ho

    2015-06-01

    The Korea Atomic Energy Research Institute (KAERI) has fabricated Si-PIN radiation detectors with low leakage current, high resistivity (>11 kΩ cm) and low capacitance for high-energy physics and X-ray spectroscopy. Floating-zone (FZ) 6-in. diameter N-type silicon wafers, with <1 1 1> crystal orientation and 675 μm thick, were used in the detector fabrication. The active areas are 3 mm×3 mm, 5 mm×5 mm and 10 mm×10 mm. We used a double deep-diffused structure at the edge of the active area for protection from the surface leakage path. We also compared the electrical performance of the Si-PIN detector with anti-reflective coating (ARC). For a detector with an active area of 3 mm×3 mm, the leakage current is about 1.9 nA and 7.4 nA at a 100 V reverse bias voltage, and 4.6 pF and 4.4 pF capacitance for the detector with and without an ARC, respectively. In addition, to compare the energy resolution in terms of radiation hardness, we measured the energy spectra with 57Co and 133Ba before the irradiation. Using developed preamplifiers (KAERI-PA1) that have ultra-low noise and high sensitivity, and a 3 mm×3 mm Si-PIN radiation detector, we obtained energy resolutions with 122 keV of 57Co and 81 keV of 133Ba of 0.221 keV and 0.261 keV, respectively. After 10, 100, 103, 104 and 105 Gy irradiation, we tested the characteristics of the radiation hardness on the Si-PIN radiation detectors in terms of electrical and energy spectra performance changes. The fabricated Si-PIN radiation detectors are working well under high dose irradiation conditions.

  16. Radiation detection system

    DOEpatents

    Whited, R.C.

    A system for obtaining improved resolution in relatively thick semiconductor radiation detectors, such as HgI/sub 2/, which exhibit significant hole trapping. Two amplifiers are used: the first measures the charge collected and the second the contribution of the electrons to the charge collected. The outputs of the two amplifiers are utilized to unfold the total charge generated within the detector in response to a radiation event.

  17. Radiative Transitions in Charmonium

    SciTech Connect

    Jozef Dudek; Robert Edwards; David Richards

    2005-10-01

    The form factors for the radiative transitions between charmonium mesons are investigated. We employ an anisotropic lattice using a Wilson gauge action, and domain-wall fermion action. We extrapolate the form factors to Q{sup 2} = 0, corresponding to a real photon, using quark-model-inspired functions. Finally, comparison is made with photocouplings extracted from the measured radiative widths, where known. Our preliminary results find photocouplings commensurate with these experimentally extracted values.

  18. Torticollis following radiation therapy

    SciTech Connect

    Landan, I.; Cullis, P.A.

    1987-01-01

    A patient with adenocarcinoma in the apical portion of the lung producing a Pancoast's syndrome developed torticollis a few months after receiving a course of radiation therapy (5,040 rad) to his upper chest and neck. We describe this case, in which local radiation fibrosis of the neck muscles and perhaps segmental demyelination of the 11th cranial nerve resulted in peripheral nervous system lesion causing torticollis.

  19. Auditing radiation sterilization facilities

    NASA Astrophysics Data System (ADS)

    Beck, Jeffrey A.

    The diversity of radiation sterilization systems available today places renewed emphasis on the need for thorough Quality Assurance audits of these facilities. Evaluating compliance with Good Manufacturing Practices is an obvious requirement, but an effective audit must also evaluate installation and performance qualification programs (validation_, and process control and monitoring procedures in detail. The present paper describes general standards that radiation sterilization operations should meet in each of these key areas, and provides basic guidance for conducting QA audits of these facilities.

  20. Method of enhancing radiation response of radiation detection materials

    DOEpatents

    Miller, Steven D.

    1997-01-01

    The present invention is a method of increasing radiation response of a radiation detection material for a given radiation signal by first pressurizing the radiation detection material. Pressurization may be accomplished by any means including mechanical and/or hydraulic. In this application, the term "pressure" includes fluid pressure and/or mechanical stress.

  1. Fabric space radiators

    SciTech Connect

    Antoniak, Z.I.; Krotiuk, W.J.; Webb, B.J.; Prater, J.T.; Bates, J.M.

    1988-01-01

    Future Air Force space missions will require thermal radiators that both survive in the hostile space environment and stow away for minimal bulk during launch. Advances in all aspects of radiator design, construction, and analysis will be necessary to enable such future missions. Currently, the best means for obtaining high strength along with flexibility is through structures known as fabrics. The development of new materials and bonding techniques has extended the application range of fabrics into areas traditionally dominated by monolithic and/or metallic structures. Given that even current spacecraft heat rejection considerations tend to dominate spacecraft design and mass, the larger and more complex designs of the future face daunting challenges in thermal control. Ceramic fabrics bonded to ultra-thin metal liners (foils) have the potential of achieving radiator performance levels heretofore unattainable, and of readily matching the advances made in other branches of spacecraft design. The research effort documented here indicates that both pumped loops and heat pipes constructed in ceramic fabrics stand to benefit in multiple ways. Flexibility and low mass are the main advantages exhibited by fabric radiators over conventional metal ones. We feel that fabric radiators have intrinsic merits not possessed by any other radiator design and need to be researched further. 26 refs., 16 figs., 17 tabs.

  2. Electrostatic space radiation shielding

    NASA Astrophysics Data System (ADS)

    Tripathi, R.; Wilson, J. W.; Youngquist, R. C.

    For the success of NASA s new vision for space exploration to Moon Mars and beyond exposures from the hazards of severe space radiation in deep space long duration missions is a must solve problem The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions The exploration beyond low Earth orbit LEO to enable routine access of space will require protection from the hazards of the accumulated exposures of space radiation Galactic Cosmic Rays GCR and Solar Particle Events SPE and minimizing the production of secondary radiation is a great advantage There is a need to look to new horizons for newer technologies The present investigation revisits electrostatic active radiation shielding and explores the feasibility of using the electrostatic shielding in concert with the state-of-the-art materials shielding and protection technologies The full space radiation environment has been used for the first time to explore the feasibility of electrostatic shielding The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons Conclusions will be drawn should the electrostatic shielding be successful for the future directions of space radiation protection

  3. Electrostatic space radiation shielding

    NASA Astrophysics Data System (ADS)

    Tripathi, Ram K.; Wilson, John W.; Youngquist, Robert C.

    2008-09-01

    For the success of NASA’s new vision for space exploration to Moon, Mars and beyond, exposures from the hazards of severe space radiation in deep space long duration missions is ‘a must solve’ problem. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. There is a need to look to new horizons for newer technologies. The present investigation revisits electrostatic active radiation shielding and explores the feasibility of using the electrostatic shielding in concert with the state-of-the-art materials shielding and protection technologies. The full space radiation environment has been used, for the first time, to explore the feasibility of electrostatic shielding. The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons. Conclusions are drawn for the future directions of space radiation protection.

  4. Radiation effects in space.

    PubMed

    Fry, R J

    1986-01-01

    The radiation protection guidelines of the National Aeronautics and Space Administration (NASA) are under review by Scientific Committee 75 of the National Council Protection and Measurements. The re-evaluation of the current guidelines is necessary, first, because of the increase in information about radiation risks since 1970 when the original recommendations were made and second, the population at risk has changed. For example, women have joined the ranks of the astronauts. Two types of radiation, protons and heavy ions, are of particular concern in space. Unfortunately, there is less information about the effects on tissues and cancer by these radiations than by other radiations. The choice of Quality Factors (Q) for obtaining dose equivalents for these radiations, is an important aspect of the risk estimate for space travel. There are not sufficient data for the induction of late effects by either protons or by heavy ions. The current information suggests a RBE for the relative protons of about 1, whereas, a RBE of 20 for tumor induction by heavy ions, such as iron-56, appears appropriate. The recommendations for the dose equivalent career limits for skin and the lens of the eye have been reduced but the 30-day and annual limits have been raised.

  5. Packet personal radiation monitor

    DOEpatents

    Phelps, James E.

    1989-01-01

    A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiation events, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible "chirp". The rate of the "chirps" is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field.

  6. Numerical Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Kalkofen, Wolfgang

    2009-07-01

    Preface; Introduction; Part I. Operator Perturbation: 1. Survey of operator perturbation methods W. Kalkofen; 2. Line formation in expanding atmospheres: multilevel calculations using approximate lambda operators W. R. Hamann; 3. Stellar atmospheres in non-LTE: model construction and line formation calculations using approximate lambda operators K. Werner; 4. Acceleration of convergence L. H. Auer; 5. Line formation in a time-dependent atmosphere W. Kalkofen; 6. Iterative solution of multilevel transfer problems Eugene H. Avrett and Rudolf Loeser; 7. An algorithm for the simultaneous solution of thousands of transfer equations under global constraints Lawrence S. Anderson; 8. Operator perturbation for differential equations W. Kalkofen; Part II. Polarised Radiation: 9. A gentle introduction to polarised radiative transfer David E. Rees; 10. Non-LTE polarised radiative transfer in special lines David E. Rees and Graham A. Murphy; 11. Transfer of polarised radiation using 4x4 matrices E. Landi Degli'Innocenti; 12. Radiative transfer in the presence of strong magnetic fields A. A. van Ballegooijen; 13. An integral operator technique of radiative transfer in spherical symmetry A. Peraiah; 14. Discrete ordinate matrix method M. Schmidt and R. Wehrse.

  7. Radiation analysis devices, radiation analysis methods, and articles of manufacture

    DOEpatents

    Roybal, Lyle Gene

    2010-06-08

    Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.

  8. Radiation Sensitization in Cancer Therapy.

    ERIC Educational Resources Information Center

    Greenstock, Clive L.

    1981-01-01

    Discusses various aspects of radiation damage to biological material, including free radical mechanisms, radiation sensitization and protection, tumor hypoxia, mechanism of hypoxic cell radiosensitization, redox model for radiation modification, sensitizer probes of cellular radiation targets, pulse radiolysis studies of free radical kinetics,…

  9. Radiation health research, 1986 - 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A collection of 225 abstracts of radiation research sponsored by NASA during the period 1986 through 1990 is reported. Each abstract was categorized within one of four discipline areas: physics, biology, risk assessment, and microgravity. Topic areas within each discipline were assigned as follows: Physics - atomic physics, nuclear science, space radiation, radiation transport and shielding, and instrumentation; Biology - molecular biology, cellular radiation biology, tissue, organs and organisms, radioprotectants, and plants; Risk assessment - radiation health and epidemiology, space flight radiation health physics, inter- and intraspecies extrapolation, and radiation limits and standards; and Microgravity. When applicable subareas were assigned for selected topic areas. Keywords and author indices are provided.

  10. Radiation in Particle Simulations

    SciTech Connect

    More, R; Graziani, F; Glosli, J; Surh, M

    2010-11-19

    Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of megabars to thousands of gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present four methods that attempt a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The first method applies the Lienard-Weichert solution of Maxwell's equations for a classical particle whose motion is assumed to be known. The second method expands the electromagnetic field in normal modes (planewaves in a box with periodic boundary-conditions) and solves the equation for wave amplitudes coupled to the particle motion. The third method is a hybrid molecular dynamics/Monte Carlo (MD/MC) method which calculates radiation emitted or absorbed by electron-ion pairs during close collisions. The fourth method is a generalization of the third method to include small clusters of particles emitting radiation during close encounters: one electron simultaneously hitting two ions, two electrons simultaneously hitting one ion, etc. This approach is inspired by the virial expansion method of equilibrium statistical mechanics. Using a combination of these methods we believe it is possible to do atomic-scale particle simulations of

  11. Bile Duct (Cholangiocarcinoma) Cancer: Radiation Therapy

    MedlinePlus

    ... form of radiation for bile duct cancer. External beam radiation therapy (EBRT) This type of radiation therapy ... determine the correct angles for aiming the radiation beams and the proper dose of radiation. The treatment ...

  12. Radiation delivery system and method

    DOEpatents

    Sorensen, Scott A.; Robison, Thomas W.; Taylor, Craig M. V.

    2002-01-01

    A radiation delivery system and method are described. The system includes a treatment configuration such as a stent, balloon catheter, wire, ribbon, or the like, a portion of which is covered with a gold layer. Chemisorbed to the gold layer is a radiation-emitting self-assembled monolayer or a radiation-emitting polymer. The radiation delivery system is compatible with medical catheter-based technologies to provide a therapeutic dose of radiation to a lesion following an angioplasty procedure.

  13. Status of LDEF radiation modeling

    NASA Technical Reports Server (NTRS)

    Watts, John W.; Armstrong, T. W.; Colborn, B. L.

    1995-01-01

    The current status of model prediction and comparison with LDEF radiation dosimetry measurements is summarized with emphasis on major results obtained in evaluating the uncertainties of present radiation environment model. The consistency of results and conclusions obtained from model comparison with different sets of LDEF radiation data (dose, activation, fluence, LET spectra) is discussed. Examples where LDEF radiation data and modeling results can be utilized to provide improved radiation assessments for planned LEO missions (e.g., Space Station) are given.

  14. Reducing Radiation Damage

    SciTech Connect

    Blankenbecler, Richard

    2006-06-05

    This talk describes the use of a modified treatment sequence, i.e., radiation dose, geometry, dwell time, etc., to mitigate some of the deleterious effects of cancer radiotherapy by utilizing natural cell repair processes. If bad side effects can be reduced, a more aggressive therapy can be put into place. Cells contain many mechanisms that repair damage of various types. If the damage can not be repaired, cells will undergo apoptosis (cell death). Data will be reviewed that support the fact that a small dose of radiation will activate damage repair genes within a cell. Once the mechanisms are fully active, they will efficiently repair the severe damage from a much larger radiation dose. The data ranges from experiments on specific cell cultures using microarray (gene chip) techniques to experiments on complete organisms. The suggested effect and treatment is consistent with the assumption that all radiation is harmful, no matter how small the dose. Nevertheless, the harm can be reduced. These mechanisms need to be further studied and characterized. In particular, their time dependence needs to be understood before the proposed treatment can be optimized. Under certain situations it is also possible that the deleterious effects of chemotherapy can be mitigated and the damage to radiation workers can be reduced.

  15. Radiation source search toolkit

    NASA Astrophysics Data System (ADS)

    Young, Jason S.

    The newly developed Radiation Source Search Toolkit (RSST) is a toolkit for generating gamma-ray spectroscopy data for use in the testing of source search algorithms. RSST is designed in a modular fashion to allow for ease of use while still maintaining accuracy in developing the output spectra. Users are allowed to define a real-world path for mobile radiation detectors to travel as well as radiation sources for possible detection. RSST can accept measured or simulated radiation spectrum data for generation into a source search simulation. RSST handles traversing the path, computing distance related attenuation, and generating the final output spectra. RSST also has the ability to simulate anisotropic shielding as well as traffic conditions that would impede a ground-based detection platform in a real-world scenario. RSST provides a novel fusion between spectral data and geospatial source search data generation. By utilizing the RSST, researchers can easily generate multiple datasets for testing detection algorithms without the need for actual radiation sources and mobile detector platforms.

  16. Remote radiation dosimetry

    DOEpatents

    Braunlich, Peter F.; Tetzlaff, Wolfgang; Hegland, Joel E.; Jones, Scott C.

    1991-01-01

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission.

  17. Packet personal radiation monitor

    DOEpatents

    Phelps, J.E.

    1988-03-31

    A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiatonevents, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible ''chirp''. The rate of the ''chirps'' is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field. 2 figs.

  18. Remote radiation dosimetry

    DOEpatents

    Braunlich, P.F.; Tetzlaff, W.; Hegland, J.E.; Jones, S.C.

    1991-03-12

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via a transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission. 8 figures.

  19. AREA RADIATION MONITOR

    DOEpatents

    Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.

    1962-06-12

    S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)

  20. Radiative Forcing by Contrails

    NASA Technical Reports Server (NTRS)

    Meerkoetter, R.; Schumann, U.; Doelling, D. R.; Nakajima, T.; Tsushima, Y.

    1999-01-01

    A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmospheres The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, mid-latitude, and subarctic summer and winter atmospheres Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 W/m(exp 2)a daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover.

  1. Synchrotron Radiation Workshop (SRW)

    2013-03-01

    "Synchrotron Radiation Workshop" (SRW) is a physical optics computer code for calculation of detailed characteristics of Synchrotron Radiation (SR) generated by relativistic electrons in magnetic fields of arbitrary configuration and for simulation of the radiation wavefront propagation through optical systems of beamlines. Frequency-domain near-field methods are used for the SR calculation, and the Fourier-optics based approach is generally used for the wavefront propagation simulation. The code enables both fully- and partially-coherent radiation propagation simulations inmore » steady-state and in frequency-/time-dependent regimes. With these features, the code has already proven its utility for a large number of applications in infrared, UV, soft and hard X-ray spectral range, in such important areas as analysis of spectral performances of new synchrotron radiation sources, optimization of user beamlines, development of new optical elements, source and beamline diagnostics, and even complete simulation of SR based experiments. Besides the SR applications, the code can be efficiently used for various simulations involving conventional lasers and other sources. SRW versions interfaced to Python and to IGOR Pro (WaveMetrics), as well as cross-platform library with C API, are available.« less

  2. Synchrotron Radiation Workshop (SRW)

    SciTech Connect

    Chubar, O.; Elleaume, P.

    2013-03-01

    "Synchrotron Radiation Workshop" (SRW) is a physical optics computer code for calculation of detailed characteristics of Synchrotron Radiation (SR) generated by relativistic electrons in magnetic fields of arbitrary configuration and for simulation of the radiation wavefront propagation through optical systems of beamlines. Frequency-domain near-field methods are used for the SR calculation, and the Fourier-optics based approach is generally used for the wavefront propagation simulation. The code enables both fully- and partially-coherent radiation propagation simulations in steady-state and in frequency-/time-dependent regimes. With these features, the code has already proven its utility for a large number of applications in infrared, UV, soft and hard X-ray spectral range, in such important areas as analysis of spectral performances of new synchrotron radiation sources, optimization of user beamlines, development of new optical elements, source and beamline diagnostics, and even complete simulation of SR based experiments. Besides the SR applications, the code can be efficiently used for various simulations involving conventional lasers and other sources. SRW versions interfaced to Python and to IGOR Pro (WaveMetrics), as well as cross-platform library with C API, are available.

  3. Ocular temperature elevation induced by threshold in vivo exposure to 1090-nm infrared radiation and associated heat diffusion

    NASA Astrophysics Data System (ADS)

    Yu, Zhaohua; Schulmeister, Karl; Talebizadeh, Nooshin; Kronschläger, Martin; Söderberg, Per G.

    2014-10-01

    An in vivo exposure to 197 W/cm2 1090-nm infrared radiation (IRR) requires a minimum 8 s for cataract induction. The present study aims to determine the ocular temperature evolution and the associated heat flow at the same exposure conditions. Two groups of 12 rats were unilaterally exposed within the dilated pupil with a close to collimated beam between lens and retina. Temperature was recorded with thermocouples. Within 5 min after exposure, the lens light scattering was measured. In one group, the temperature rise in the exposed eye, expressed as a confidence interval (0.95), was 11±3°C at the limbus, 16±6°C in the vitreous behind lens, and 16±7°C on the sclera next to the optic nerve, respectively. In the other group, the temperature rise in the exposed eye was 9±1°C at the limbus and 26±11°C on the sclera next to the optic nerve, respectively. The difference of forward light scattering between exposed and contralateral not exposed eye was 0.01±0.09 tEDC. An exposure to 197 W/cm2 1090-nm IRR for 8 s induces a temperature increase of 10°C at the limbus and 26°C close to the retina. IRR cataract is probably of thermal origin.

  4. Ocular temperature elevation induced by threshold in vivo exposure to 1090-nm infrared radiation and associated heat diffusion.

    PubMed

    Yu, Zhaohua; Schulmeister, Karl; Talebizadeh, Nooshin; Kronschläger, Martin; Söderberg, Per G

    2014-01-01

    An in vivo exposure to 197  W/cm 2 1090-nm infrared radiation (IRR) requires a minimum 8 s for cataract induction. The present study aims to determine the ocular temperature evolution and the associated heat flow at the same exposure conditions. Two groups of 12 rats were unilaterally exposed within the dilated pupil with a close to collimated beam between lens and retina. Temperature was recorded with thermocouples. Within 5 min after exposure, the lens light scattering was measured. In one group, the temperature rise in the exposed eye, expressed as a confidence interval (0.95), was 11±3°C at the limbus, 16±6°C in the vitreous behind lens, and 16±7°C on the sclera next to the optic nerve, respectively. In the other group, the temperature rise in the exposed eye was 9±1°C at the limbus and 26±11°C on the sclera next to the optic nerve, respectively. The difference of forward light scattering between exposed and contralateral not exposed eye was 0.01±0.09 tEDC. An exposure to 197  W/cm 2 1090-nm IRR for 8 s induces a temperature increase of 10°C at the limbus and 26°C close to the retina. IRR cataract is probably of thermal origin.

  5. Radiation oncology (Vol. 2)

    SciTech Connect

    Phillips, T.L.; Wara, W.

    1987-01-01

    This volume of the Radiation Oncology series features update reports on the current status of primary therapy for lung cancer and the role of radiation therapy in the treatment of hepatomas. Other articles describe the use of stereotaxic interstitial implantation in the treatment of malignant brain tumors and discuss the indications for and results of radiation as the primary or adjuvant treatment of large bowel cancer. Reports on new technological developments examine the biological basis and clinical potential of local-regional hyperthermia and photodynamic therapy. Included are reviews of the role of magnetic resonance imaging in the diagnostic evaluation of cancer and of three-dimensional treatment planning for high energy external beam radiotherapy.

  6. Radiation-associated thyrotoxicosis

    SciTech Connect

    Katayama, S.; Shimaoka, K.; Osman, G.

    1986-10-01

    We studied 154 consecutive patients with a diagnosis of thyrotoxicosis seen at Roswell Park Memorial Institute from 1963 to 1982. The retrospective review of the clinical materials revealed that 23 (15%) had a previous history of therapeutic radiation for various diseases. The radiation dose ranged from several to 3600 rads to the thyroid with a mean latency of 14.2 +/- 3.0 years. In 11 out of 16 patients who were tested for antithyroglobulin and antimicrosomal showed positive titers of either or both antibodies (69%). In a small number of patients, thyroid stimulating immunoglobulins were studied; long-acting thyroid stimulators (LATS) were positive in one of six tested and thyrotrophin binding inhibitory immunoglobulins (TBII) in five of eight. The radiation-associated thyroidal dysfunction appears to be associated with the organ-specific autoimmune processes and could manifest as either hypo- or hyperfunction of the gland.

  7. Audible radiation monitor

    SciTech Connect

    Odell, D.M.C.

    1992-12-31

    This invention consists of a method and apparatus for monitoring ionizing radiation comprising radiation detectors in electrical connection with an isotopic analyzer and a device for producing chords to which each isotope is mapped so that the device produces a unique chord for each isotope. Preferably the chords are pleasing to the ear, except for chords representing unexpected isotopes, and are louder or softer depending on the level of radioactivity produced by each isotope, and musical instrument voices may be simulated in producing the chords as an aid to distinguishing similar-sounding chords. Because of the representation by chords, information regarding the level and composition of the radiation in an area can be conveyed to workers in that area more effectively and yet without distracting them.

  8. Radiation rate meter development

    SciTech Connect

    Thacker, L.H.

    1989-01-01

    We are still in a very preliminary stage of examining the potentials of a new series of instruments which may be inexpensive and versatile enough to complement, or conceivably even replace, electroscope dosimeters in Civil Defense and other situations requiring radiation monitoring by the general public. These instruments were developed to provide a qualitative signal so simple to interpret that anyone can tell immediately whether they are in a dangerous radiation field, and whether they are moving into a hotter area or a cooler area. A second goal in the development has been to produce the simplest possible device at minimum cost, without compromise in effectiveness. In the simplest implementation the device is essentially a very inexpensive version of the much older Personal Radiation Monitor (PRM).

  9. Precision synchrotron radiation detectors

    SciTech Connect

    Levi, M.; Rouse, F.; Butler, J.; Jung, C.K.; Lateur, M.; Nash, J.; Tinsman, J.; Wormser, G.; Gomez, J.J.; Kent, J.

    1989-03-01

    Precision detectors to measure synchrotron radiation beam positions have been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 /mu/m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely-aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. Also, detectors of synchrotron radiation using the charge developed by the ejection of Compton-recoil electrons from an array of fine wires are being developed. 4 refs., 5 figs., 1 tab.

  10. Pediatric radiation oncology

    SciTech Connect

    Halperin, E.C.; Kun, L.E.; Constine, L.S.; Tarbell, N.J.

    1989-01-01

    This text covers all aspects of radiation therapy for treatment of pediatric cancer. The book describes the proper use of irradiation in each of the malignancies of childhood, including tumors that are rarely encountered in adult practice. These include acute leukemia; supratentorial brain tumors; tumors of the posterior fossa of the brain and spinal canal; retinoblastoma and optic nerve glioma; neuroblastoma; Hodgkin's disease; malignant lymphoma; Ewing's sarcoma; osteosarcoma; rhabdomyosarcoma; Desmoid tumor; Wilms' tumor; liver and biliary tumors; germ cell and stromal cell tumors of the gonads; endocrine, aerodigestive tract, and breast tumors; Langerhans' cell histiocytosis; and skin cancer and hemangiomas. For each type of malignancy, the authors describe the epidemiology, common presenting signs and symptoms, staging, and proper diagnostic workup. Particular attention is given to the indications for radiation therapy and the planning of a course of radiotherapy, including the optimal radiation dose, field size, and technique.

  11. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  12. Audible radiation monitor

    DOEpatents

    Odell, Daniel M. C.

    1993-01-01

    A method and apparatus for monitoring ionizing radiation comprising radiation detectors in electrical connection with an isotopic analyzer and a device for producing chords to which each isotope is mapped so that the device produces a unique chord for each isotope. Preferably the chords are pleasing to the ear, except for chords representing unexpected isotopes, and are louder or softer depending on the level of radioactivity produced by each isotope, and musical instrument voices may be simulated in producing the chords as an aid to distinguishing similar-sounding chords. Because of the representation by chords, information regarding the level and composition of the radiation in an area can be conveyed to workers in that area more effectively and yet without distracting them.

  13. String radiative backreaction

    SciTech Connect

    Battye, R.A.; Shellard, E.P. |

    1995-12-01

    We discuss radiative backreaction for global strings described by the Kalb-Ramond action with an analogous derivation to that for the point electron in classical electrodynamics. We show how local corrections to the equations of motion allow one to separate the self-field of the string from that of the radiation field. Modifications to this {open_quote}{open_quote}local backreaction approximation{close_quote}{close_quote} circumvent the runaway solutions, allowing these corrections to be used to evolve string trajectories numerically. Comparisons are made with analytic and numerical radiation calculations from previous work and the merits and limitations of this approach are discussed. {copyright} {ital 1995 The American Physical Society.}

  14. New radiative shocks experiment

    NASA Astrophysics Data System (ADS)

    Leygnac, S.; Bouquet, S.; Stehlé, C.; Benuzzi, A.; Boireau, J.-P.; Chièze, J.-P.; Grandjouan, N.; Huser, G.; Koenig, M.; Malka, V.; Merdji, H.; Michaut, C.; Thais, F.; Vinci, T.

    2002-06-01

    An experimental study of shocks with astrophysical relevance is performed with the high energy density laser of the LULI, at the Ecole Polytechnique. The peculiarity of these shocks is the strong coupling between radiation and hydrodynamics which leads to a structure governed by a radiative precursor. A new experiment has been performed this year where we have observed shocks identified as radiative shocks. We study them in various experimental configurations (several speeds and geometries of the medium where the shock propagates, allowing a quasi-planar or a quasi-spherical expansion). From the measurements it is possible to infer several features of the shock such as the speed, the electronic density, the geometrical shape and spectroscopic informations. The results will be studied with numerical simulations.

  15. Composition for radiation shielding

    DOEpatents

    Kronberg, J.W.

    1994-08-02

    A composition for use as a radiation shield is disclosed. The shield has a depleted uranium core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container. 2 figs.

  16. Radiation litigation: future issues

    SciTech Connect

    Jose, D.E.

    1989-02-01

    Scientists and regulators have successfully been able to control exposures to man-made ionizing radiation so that mankind has been able to enjoy its vast benefits without experiencing the significant harm which would occur from high doses. However, thousands of lawsuits have been filed claiming that low occupational levels of ionizing radiation have caused cancer and other illnesses. It will be decades before the legal system determines the rules of law which will apply to this new type of lawsuit and the effects which these cases will have upon those persons who work with sources of ionizing radiation. This article explores some of the issues which are expected to arise as these cases work their way through the courts.

  17. LDEF Satellite Radiation Analyses

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1996-01-01

    This report covers work performed by Science Applications International Corporation (SAIC) under contract NAS8-39386 from the NASA Marshall Space Flight Center entitled LDEF Satellite Radiation Analyses. The basic objective of the study was to evaluate the accuracy of present models and computational methods for defining the ionizing radiation environment for spacecraft in Low Earth Orbit (LEO) by making comparisons with radiation measurements made on the Long Duration Exposure Facility (LDEF) satellite, which was recovered after almost six years in space. The emphasis of the work here is on predictions and comparisons with LDEF measurements of induced radioactivity and Linear Energy Transfer (LET) measurements. These model/data comparisons have been used to evaluate the accuracy of current models for predicting the flux and directionality of trapped protons for LEO missions.

  18. Radiation effects in materials

    NASA Astrophysics Data System (ADS)

    Dauphin, J.

    1994-01-01

    In contrast to electronic components, materials are, in general, quite resistant to the conditions encountered in space from the point of view of radiation effects. There exist however some groups of materials which can cause concern, particularly when they are used on the outside of spacecraft. These include fluorinated polymers, oxide glasses and paints. Normally only very sensitive properties like the thermo-optical ones may be significantly degraded in near earth space. The extremely used geostationary orbit is the most dangerous in this respect. Another characteristic of materials is that degration is a complex phenomenon, of which particulate radiation is not the only cause. Synergistic effects are the rule and the influence of the complete space environment including temperature, UV radiation, particles, contamination, etc. must be assessed. This strongly complicates the ground simulation experiments.

  19. Space radiation protection issues.

    PubMed

    Kronenberg, Amy; Cucinotta, Francis A

    2012-11-01

    The complex charged particle environments in space pose considerable challenges with regard to potential health consequences that can impact mission design and crew selection. The lack of knowledge of the biological effects of different ions in isolation and in combination is a particular concern because the risk uncertainties are very high for both cancer and non-cancer late effects. Reducing the uncertainties is of high priority. Two principal components of space radiation each raise different concerns. Solar particle events (SPE) occur sporadically and are comprised primarily of low- to moderate-energy protons. Galactic cosmic radiation (GCR) is isotropic and relatively invariant in dose rate. GCR is also dominated by protons, but the energy range is wider than in SPE. In addition, the contribution of other light and heavy ions to the health risks from GCR must be addressed. This paper will introduce the principal issues under consideration for space radiation protection. PMID:23032885

  20. Dosimetry for radiation processing

    NASA Astrophysics Data System (ADS)

    Miller, Arne

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both by international organizations (IAEA) and national laboratories have helped to improve the reliability of dose measurements. Several dosimeter systems like calorimetry, perspex, and radiochromic dye films are being improved and new systems have emerged, e.g. spectrophotometry of dichromate solution for reference and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading to traceable and reliable dosimetry are discussed.

  1. Aerothermodynamic radiation studies

    NASA Technical Reports Server (NTRS)

    Donohue, K.; Reinecke, W. G.; Rossi, D.; Marinelli, W. J.; Krech, R. H.; Caledonia, G. E.

    1991-01-01

    We have built and made operational a 6 in. electric arc driven shock tube which alloys us to study the non-equilibrium radiation and kinetics of low pressure (0.1 to 1 torr) gases processed by 6 to 12 km/s shock waves. The diagnostic system allows simultaneous monitoring of shock radiation temporal histories by a bank of up to six radiometers, and spectral histories with two optical multi-channel analyzers. A data set of eight shots was assembled, comprising shocks in N2 and air at pressures between 0.1 and 1 torr and velocities of 6 to 12 km/s. Spectrally resolved data was taken in both the non-equilibrium and equilibrium shock regions on all shots. The present data appear to be the first spectrally resolved shock radiation measurements in N2 performed at 12 km/s. The data base was partially analyzed with salient features identified.

  2. Small Active Radiation Monitor

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2004-01-01

    A device, named small active radiation monitor, allows on-orbit evaluations during periods of increased radiation, after extravehicular activities, or at predesignated times for crews on such long-duration space missions as on the International Space Station. It also permits direct evaluation of biological doses, a task now performed using a combination of measurements and potentially inaccurate simulations. Indeed the new monitor can measure a full array of radiation levels, from soft x-rays to hard galactic cosmic-ray particles. With refinement, it will benefit commercial (nuclear power-plant workers, airline pilots, medical technicians, physicians/dentists, and others) and military personnel as well as the astronauts for whom thermoluminescent dosimeters are inadequate. Civilian and military personnel have long since graduated from film badges to thermoluminescent dosimeters. Once used, most dosimeters must be returned to a central facility for processing, a step that can take days or even weeks. While this suffices for radiation workers for whom exposure levels are typically very low and of brief duration, it does not work for astronauts. Even in emergencies and using express mail, the results can often be delayed by as much as 24 hours. Electronic dosimeters, which are the size of electronic oral thermometers, and tattlers, small electronic dosimeters that sound an alarm when the dose/dose rate exceeds preset values, are also used but suffer disadvantages similar to those of thermoluminescent dosimeters. None of these devices fully answers the need of rapid monitoring during the space missions. Instead, radiation is monitored by passive detectors, which are read out after the missions. Unfortunately, these detectors measure only the absorbed dose and not the biologically relevant dose equivalent. The new monitor provides a real-time readout, a time history of radiation exposures (both absorbed dose and biologically relevant dose equivalent), and a count of the

  3. Saturn Radiation (SATRAD) Model

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.; Ratliff, J. M.; Evans, R. W.

    2005-01-01

    The Saturnian radiation belts have not received as much attention as the Jovian radiation belts because they are not nearly as intense-the famous Saturnian particle rings tend to deplete the belts near where their peak would occur. As a result, there has not been a systematic development of engineering models of the Saturnian radiation environment for mission design. A primary exception is that of Divine (1990). That study used published data from several charged particle experiments aboard the Pioneer 1 1, Voyager 1, and Voyager 2 spacecraft during their flybys at Saturn to generate numerical models for the electron and proton radiation belts between 2.3 and 13 Saturn radii. The Divine Saturn radiation model described the electron distributions at energies between 0.04 and 10 MeV and the proton distributions at energies between 0.14 and 80 MeV. The model was intended to predict particle intensity, flux, and fluence for the Cassini orbiter. Divine carried out hand calculations using the model but never formally developed a computer program that could be used for general mission analyses. This report seeks to fill that void by formally developing a FORTRAN version of the model that can be used as a computer design tool for missions to Saturn that require estimates of the radiation environment around the planet. The results of that effort and the program listings are presented here along with comparisons with the original estimates carried out by Divine. In addition, Pioneer and Voyager data were scanned in from the original references and compared with the FORTRAN model s predictions. The results were statistically analyzed in a manner consistent with Divine s approach to provide estimates of the ability of the model to reproduce the original data. Results of a formal review of the model by a panel of experts are also presented. Their recommendations for further tests, analyses, and extensions to the model are discussed.

  4. Radiation in Particle Simulations

    SciTech Connect

    More, R M; Graziani, F R; Glosli, J; Surh, M

    2009-06-15

    Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of Megabars to thousands of Gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present four methods that attempt a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The first method applies the Lienard-Weichert solution of Maxwell's equations for a classical particle whose motion is assumed to be known (section 3). The second method expands the electromagnetic field in normal modes (plane-waves in a box with periodic boundary-conditions) and solves the equation for wave amplitudes coupled to the particle motion (section 4). The third method is a hybrid MD/MC (molecular dynamics/Monte Carlo) method which calculates radiation emitted or absorbed by electron-ion pairs during close collisions (section 5). The fourth method is a generalization of the third method to include small clusters of particles emitting radiation during close encounters: one electron simultaneously hitting two ions, two electrons simultaneously hitting one ion, etc.(section 6). This approach is inspired by the Virial expansion method of equilibrium statistical mechanics.

  5. Radiation Hazard Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA technology has made commercially available a new, inexpensive, conveniently-carried device for protection, of people exposed to potentially dangerous levels of microwave radiation. Microwaves are radio emissions of extremely high frequency. They can be hazardous but the degree of hazard is not yet well understood. Generally, it is believed that low intensity radiation of short duration is not harmful but that exposure to high levels can induce deep internal burns, affecting the circulatory and nervous systems, and particularly the eyes. The Department of Labor's Occupational Safety and Health Administration (OSHA) has established an allowable safe threshold of exposure. However, people working near high intensity sources of microwave energy-for example, radar antennas and television transmitters-may be unknowingly exposed to radiation levels beyond the safe limit. This poses not only a personal safety problem but also a problem for employers in terms of productivity loss, workman's compensation claims and possible liability litigation. Earlier-developed monitoring devices which warn personnel of dangerous radiation levels have their shortcomings. They can be cumbersome and awkward to use while working. They also require continual visual monitoring to determine if a person is in a dangerous area of radiation, and they are relatively expensive, another deterrent to their widespread adoption. In response to the need for a cheaper and more effective warning system, Jet Propulsion Laboratory developed, under NASA auspices, a new, battery-powered Microwave Radiation Hazard Detector. To bring the product to the commercial market, California Institute Research Foundation, the patent holder, granted an exclusive license to Cicoil Corporation, Chatsworth, California, an electronic components manufacturer.

  6. The Role of Diffusion-Weighted Magnetic Resonance Imaging in the Treatment Response Evaluation of Hepatocellular Carcinoma Patients Treated With Radiation Therapy

    SciTech Connect

    Yu, Jeong Il; Park, Hee Chul; Lim, Do Hoon; Choi, Yunseon; Jung, Sang Hoon; Paik, Seung Woon; Kim, Seong Hyun; Jeong, Woo Kyoung; Kim, Young Kon

    2014-07-15

    Purpose: We investigated the role of diffusion-weighted magnetic resonance imaging (DW MRI) as a response evaluation indicator for hepatocellular carcinoma (HCC) treated with radiation therapy (RT). Methods and Materials: Inclusion criteria of this retrospective study were DW MRI acquisition within 1 month before and 3 to 5 months after RT. In total, 48 patients were enrolled. Two radiation oncologists measured the apparent diffusion coefficient (ADC). Possible predictive factors, including alteration of the ADC value before and 3 to 5 month after RT, in relation to local progression-free survival (LPFS) were analyzed and compared. Results: Three months after RT, 6 patients (12.5%) showed a complete response, and 27 patients (56.3%) showed a partial response when evaluated using the modified response evaluation criteria in solid tumors (mRECIST). The average ADC ± SD values were 1.21 ± 0.27 ( × 10{sup −3} mm{sup 2}/s) before and 1.41 ± 0.36 ( × 10{sup −3} mm{sup 2}/s) after RT (P<.001). The most significant prognostic factor related to LPFS was mRECIST (P<.001). The increment of ADC value (≥20%) was also a significant factor (P=.02), but RECIST (version 1.1; P=.11) was not. When RECIST was combined with the increment of ADC value (≥20%), the LPFS rates were significantly different between the groups (P=.004), and the area under the curve value (0.745) was comparable with that of mRECIST (0.765). Conclusions: ADC value change before and after RT in HCC was closely related to LPFS. ADC value and RECIST may substitute for mRECIST in patients who cannot receive contrast agents.

  7. Radiation monitor for liquids

    DOEpatents

    Koster, J.E.; Bolton, R.D.

    1999-03-02

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  8. Thermal radiative properties: Coatings.

    NASA Technical Reports Server (NTRS)

    Touloukian, Y. S.; Dewitt, D. P.; Hernicz, R. S.

    1972-01-01

    This volume consists, for the most part, of a presentation of numerical data compiled over the years in a most comprehensive manner on coatings for all applications, in particular, thermal control. After a moderately detailed discussion of the theoretical nature of the thermal radiative properties of coatings, together with an overview of predictive procedures and recognized experimental techniques, extensive numerical data on the thermal radiative properties of pigmented, contact, and conversion coatings are presented. These data cover metallic and nonmetallic pigmented coatings, enamels, metallic and nonmetallic contact coatings, antireflection coatings, resin coatings, metallic black coatings, and anodized and oxidized conversion coatings.

  9. Radiation Detectors and Art

    NASA Astrophysics Data System (ADS)

    Denker, Andrea

    The use of radiation detectors in the analysis of art objects represents a very special application in a true interdisciplinary field. Radiation detectors employed in this field detect, e.g., x-rays, γ-rays, β particles, and protons. Analyzed materials range from stones, metals, over porcelain to paintings. The available nondestructive and noninvasive analytical methods cover a broad range of techniques. Hence, for the sake of brevity, this chapter will concentrate on few techniques: Proton Induced X-ray Emission (PIXE) and Proton Induced γ-ray Emission (PIGE).

  10. Radiation monitoring at Belle

    NASA Astrophysics Data System (ADS)

    Žontar, D.; Belle SVD Monitoring Group

    2003-03-01

    High beam currents at the KEK B factory lead to high radiation background (order of 100 krad/y, consisting mostly of spent electrons/positrons) around the interaction point where the silicon vertex detector is located. In order to monitor the background conditions close to the interaction point a radiation monitoring system has been developed and installed. It is based on 16 monitoring modules containing RadFET chip (containing 4 sensors) for measurement of total accumulated dose and PIN diodes for measurement of instantaneous dose rate.

  11. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Tada, H. Y.; Carter, J. R., Jr.

    1977-01-01

    Solar cell theory cells are manufactured, and how they are modeled mathematically is reviewed. The interaction of energetic charged particle radiation with solar cells is discussed in detail and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Finally, an extensive body of data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence is presented.

  12. ATHENA radiation model

    SciTech Connect

    Shumway, R.W.

    1987-10-01

    The ATHENA computer program has many features that make it desirable to use as a space reactor evaluation tool. One of the missing features was a surface-to-surface thermal radiation model. A model was developed that allows any of the regular ATHENA heat slabs to radiate to any other heat slab. The view factors and surface emissivities must be specified by the user. To verify that the model was properly accounting for radiant energy transfer, two different types of test calculations were performed. Both calculations have excellent results. The updates have been used on both the INEL CDC-176 and the Livermore Cray. 7 refs., 2 figs., 6 tabs.

  13. RADIATION MEASURING DEVICES

    DOEpatents

    Bouricius, G.M.B.; Rusch, G.K.

    1960-03-22

    A radiation-measuring device is described having an a-c output. The apparatus has a high-energy particle source responsive to radiation flux disposed within a housing having a pair of collector plates. A potential gradient between the source and collector plates causes ions to flow to the plates. By means of electrostatic or magnetic deflection elements connected to an alternating potential, the ions are caused to flow alternately to each of the collector plates causing an a-c signal thereon.

  14. Radiation monitor for liquids

    DOEpatents

    Koster, James E.; Bolton, Richard D.

    1999-01-01

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  15. LDEF Satellite Radiation Analyses

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1996-01-01

    Model calculations and analyses have been carried out to compare with several sets of data (dose, induced radioactivity in various experiment samples and spacecraft components, fission foil measurements, and LET spectra) from passive radiation dosimetry on the Long Duration Exposure Facility (LDEF) satellite, which was recovered after almost six years in space. The calculations and data comparisons are used to estimate the accuracy of current models and methods for predicting the ionizing radiation environment in low earth orbit. The emphasis is on checking the accuracy of trapped proton flux and anisotropy models.

  16. Modification of radiation response

    SciTech Connect

    Suit, H.D.

    1984-01-01

    There has been a substantial and intense interest by laboratory and clinical investigators in the development of agents which modify the response of tissue to radiation differentially so as to increase the effect on tumor relative to normal tissue. These have included efforts to increase the response of tumor or to decrease response of normal tissue. The plan of this presentation is to: define radiation response modifiers; consider the impact of response modifiers on dose response curves; comment on problems inherent in assessment of results of clinical trials of response modifiers; and review briefly results of several trials of: sensitizers of hypoxic cells (hyperbaric oxygen, chemical sensitizer), pyrimidine analogs, and protectors.

  17. Wireless passive radiation sensor

    SciTech Connect

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  18. Pretreatment prediction of brain tumors' response to radiation therapy using high b-value diffusion-weighted MRI.

    PubMed

    Mardor, Yael; Roth, Yiftach; Ochershvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael

    2004-01-01

    Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm(2) to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, R(D), reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and R(D) were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P <.002 and r = 0.77, P <.001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy.

  19. Pretreatment Prediction of Brain Tumors' Response to Radiation Therapy Using High b-Value Diffusion-Weighted MRI1

    PubMed Central

    Mardor, Yael; Roth, Yiftach; Ocherashvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael

    2004-01-01

    Abstract Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm2 to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, RD, reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and RD were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P < .002 and r = 0.77, P < .001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy. PMID:15140402

  20. Critical behavior in radiation damaged systems

    NASA Astrophysics Data System (ADS)

    Arends, A. R.; Hohenemser, C.; Suter, R. M.

    1980-09-01

    Perturbed angular distribution (PAD) measurements of Bleck et al. of the critical behavior of63Ni Ni,66Cu Ni, and67Zn Ni have been reanalyzed, and shown to be insufficiently asymptotic to permit deduction of meaningful critical exponents. Via experiments on implanted111In Ni, done with and without annealing of radiation damage, and by comparison to diffused111In Ni, it is suggested that unannealed radiation damage can produce serious systematic errors in critical exponents.