Science.gov

Sample records for radiation effects dosimetry

  1. Radiation dosimetry.

    PubMed Central

    Cameron, J

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists. PMID:2040250

  2. Distribution effectiveness for space radiation dosimetry

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1975-01-01

    A simplified risk basis and a theory of hematological response are presented and applied to the problem of dosimetry in the manned space program. Unlike previous studies, the current work incorporates radiation exposure distribution effects into its definition of dose equivalent. The fractional cell lethality model for prediction of hematological response is integral in the analysis.

  3. Radiation dosimetry and biophysical models of space radiation effects

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wu, Honglu; Shavers, Mark R.; George, Kerry

    2003-01-01

    Estimating the biological risks from space radiation remains a difficult problem because of the many radiation types including protons, heavy ions, and secondary neutrons, and the absence of epidemiology data for these radiation types. Developing useful biophysical parameters or models that relate energy deposition by space particles to the probabilities of biological outcomes is a complex problem. Physical measurements of space radiation include the absorbed dose, dose equivalent, and linear energy transfer (LET) spectra. In contrast to conventional dosimetric methods, models of radiation track structure provide descriptions of energy deposition events in biomolecules, cells, or tissues, which can be used to develop biophysical models of radiation risks. In this paper, we address the biophysical description of heavy particle tracks in the context of the interpretation of both space radiation dosimetry and radiobiology data, which may provide insights into new approaches to these problems.

  4. Effect of respiratory motion on internal radiation dosimetry

    SciTech Connect

    Xie, Tianwu; Zaidi, Habib

    2014-11-01

    Purpose: Estimation of the radiation dose to internal organs is essential for the assessment of radiation risks and benefits to patients undergoing diagnostic and therapeutic nuclear medicine procedures including PET. Respiratory motion induces notable internal organ displacement, which influences the absorbed dose for external exposure to radiation. However, to their knowledge, the effect of respiratory motion on internal radiation dosimetry has never been reported before. Methods: Thirteen computational models representing the adult male at different respiratory phases corresponding to the normal respiratory cycle were generated from the 4D dynamic XCAT phantom. Monte Carlo calculations were performed using the MCNP transport code to estimate the specific absorbed fractions (SAFs) of monoenergetic photons/electrons, the S-values of common positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124), and the absorbed dose of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) in 28 target regions for both the static (average of dynamic frames) and dynamic phantoms. Results: The self-absorbed dose for most organs/tissues is only slightly influenced by respiratory motion. However, for the lung, the self-absorbed SAF is about 11.5% higher at the peak exhale phase than the peak inhale phase for photon energies above 50 keV. The cross-absorbed dose is obviously affected by respiratory motion for many combinations of source-target pairs. The cross-absorbed S-values for the heart contents irradiating the lung are about 7.5% higher in the peak exhale phase than the peak inhale phase for different positron-emitting radionuclides. For {sup 18}F-FDG, organ absorbed doses are less influenced by respiratory motion. Conclusions: Respiration-induced volume variations of the lungs and the repositioning of internal organs affect the self-absorbed dose of the lungs and cross-absorbed dose between organs in internal radiation dosimetry. The dynamic

  5. Fundamentals of Radiation Dosimetry

    SciTech Connect

    Bos, Adrie J. J.

    2011-05-05

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  6. Fundamentals of Radiation Dosimetry

    NASA Astrophysics Data System (ADS)

    Bos, Adrie J. J.

    2011-05-01

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  7. Dosimetry for quantitative analysis of low dose ionizing radiation effects on humans in radiation therapy patients

    SciTech Connect

    Lehmann, J; Stern, R L; Daly, T P; Schwieter, C W; Jones, G E; Arnold, M L; Hartmann-Siantar, C L; Goldberg, Z

    2004-04-20

    We have successfully developed a practical approach to predicting the location of skin surface dose at potential biopsy sites that receive 1 cGy and 10 cGy, respectively, in support of in vivo biologic dosimetry in humans. This represents a significant technical challenge as the sites lie on the patient surface out side the radiation fields. The PEREGRINE Monte Carlo simulation system was used to model radiation dose delivery and TLDs were used for validation on a phantom and confirmation during patient treatment. In the developmental studies the Monte Carlo simulations consistently underestimated the dose at the biopsy site by approximately 15% for a realistic treatment configuration, most likely due to lack of detail in the simulation of the linear accelerator outside the main beam line. Using a single, thickness-independent correction factor for the clinical calculations, the average of 36 measurements for the predicted 1 cGy point was 0.985 cGy (standard deviation: 0.110 cGy) despite patient breathing motion and other real world challenges. Since the 10 cGy point is situated in the region of high dose gradient at the edge of the field, patient motion had a greater effect and the six measured points averaged 5.90 cGy (standard deviation: 1.01 cGy), a difference that is equivalent to approximately a 6 mm shift on the patient's surface.

  8. Small fields: Nonequilibrium radiation dosimetry

    SciTech Connect

    Das, Indra J.; Ding, George X.; Ahnesjoe, Anders

    2008-01-15

    Advances in radiation treatment with beamlet-based intensity modulation, image-guided radiation therapy, and stereotactic radiosurgery (including specialized equipments like CyberKnife, Gamma Knife, tomotherapy, and high-resolution multileaf collimating systems) have resulted in the use of reduced treatment fields to a subcentimeter scale. Compared to the traditional radiotherapy with fields {>=}4x4 cm{sup 2}, this can result in significant uncertainty in the accuracy of clinical dosimetry. The dosimetry of small fields is challenging due to nonequilibrium conditions created as a consequence of the secondary electron track lengths and the source size projected through the collimating system that are comparable to the treatment field size. It is further complicated by the prolonged electron tracks in the presence of low-density inhomogeneities. Also, radiation detectors introduced into such fields usually perturb the level of disequilibrium. Hence, the dosimetric accuracy previously achieved for standard radiotherapy applications is at risk for both absolute and relative dose determination. This article summarizes the present knowledge and gives an insight into the future procedures to handle the nonequilibrium radiation dosimetry problems. It is anticipated that new miniature detectors with controlled perturbations and corrections will be available to meet the demand for accurate measurements. It is also expected that the Monte Carlo techniques will increasingly be used in assessing the accuracy, verification, and calculation of dose, and will aid perturbation calculations of detectors used in small and highly conformal radiation beams.

  9. Analysis of MIR-18 results for physical and biological dosimetry: radiation shielding effectiveness in LEO

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Williams, J. R.; Dicello, J. F.

    2000-01-01

    We compare models of radiation transport and biological response to physical and biological dosimetry results from astronauts on the Mir space station. Transport models are shown to be in good agreement with physical measurements and indicate that the ratio of equivalent dose from the Galactic Cosmic Rays (GCR) to protons is about 3/2:1 and that this ratio will increase for exposures to internal organs. Two biological response models are used to compare to the Mir biodosimetry for chromosome aberration in lymphocyte cells; a track-structure model and the linear-quadratic model with linear energy transfer (LET) dependent weighting coefficients. These models are fit to in vitro data for aberration formation in human lymphocytes by photons and charged particles. Both models are found to be in reasonable agreement with data for aberrations in lymphocytes of Mir crew members: however there are differences between the use of LET dependent weighting factors and track structure models for assigning radiation quality factors. The major difference in the models is the increased effectiveness predicted by the track model for low charge and energy ions with LET near 10 keV/micrometers. The results of our calculations indicate that aluminum shielding, although providing important mitigation of the effects of trapped radiation, provides no protective effect from the galactic cosmic rays (GCR) in low-earth orbit (LEO) using either equivalent dose or the number of chromosome aberrations as a measure until about 100 g/cm 2 of material is used.

  10. Initial radiation dosimetry at Hiroshima and Nagasaki

    SciTech Connect

    Loewe, W.E.

    1983-09-01

    The dosimetry of A-bomb survivors at Hiroshima and Nagasaki is discussed in light of the new dosimetry developed in 1980 by the author. The important changes resulting from the new dosimetry are the ratios of neutron to gamma doses, particularly at Hiroshima. The implications of these changes in terms of epidemiology and radiation protection standards are discussed. (ACR)

  11. Remote radiation dosimetry

    DOEpatents

    Braunlich, Peter F.; Tetzlaff, Wolfgang; Hegland, Joel E.; Jones, Scott C.

    1991-01-01

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission.

  12. Remote radiation dosimetry

    DOEpatents

    Braunlich, P.F.; Tetzlaff, W.; Hegland, J.E.; Jones, S.C.

    1991-03-12

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via a transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission. 8 figures.

  13. [Instrumental radiofrequency electromagnetic radiation dosimetry: general principals and modern methodology].

    PubMed

    Perov, S Iu; Kudriashov, Iu B; Rubtsova, N B

    2012-01-01

    The modern experimental radiofrequency electromagnetic field dosimetry approach has been considered. The main principles of specific absorbed rate measurement are analyzed for electromagnetic field biological effect assessment. The general methodology of specific absorbed rate automated dosimetry system applied to establish the compliance of radiation sources with the safety standard requirements (maximum permissible levels and base restrictions) is described.

  14. Review of the near-earth space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Guo, Jianming; Chen, Xiaoqian; Li, Shiyou

    2016-07-01

    The near-earth space radiation environment has a great effect to the spacecraft and maybe do harm to the astronaut's health. Thus, how to measure the radiation has become a serious challenge. In order to provide sufficient protection both for astronauts and for instruments on-board, dose equivalent and linear energy transfer should be measured instead of merely measuring total radiation dose. This paper reviews the methods of radiation measurement and presents a brief introduction of dosimetry instruments. The method can be divided into two different kinds, i.e., positive dosimetry and passive dosimetry. The former usually includes electronic devices which can be used for data storage and can offer simultaneous monitoring on space radiation. The passive dosimetry has a much simple structure, and need extra operation after on-orbit missions for measuring. To get more reliable data of radiation dosimetry, various instruments and methods had been applied in the spacecrafts and the manned spacecrafts in particular. The outlook of the development in the space radiation dosimetry measurement is also presented.

  15. Radiation dosimetry onboard the International Space Station ISS.

    PubMed

    Berger, Thomas

    2008-01-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is onboard the International Space Station (ISS) is accomplished to one part as "operational" dosimetry accomplished to one part as "operational" dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on "scientific" dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities.

  16. EDITORIAL: Special issue on radiation dosimetry Special issue on radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Sharpe, Peter

    2009-04-01

    This special issue of Metrologia on radiation dosimetry is the second in a trilogy on the subject of ionizing radiation measurements, a field that is overseen by Sections I, II and III of the CIPM's Consultative Committee for Ionizing Radiation (CCRI). The work of Section II, on radionuclide metrology, was covered in issue 44(4), published in 2007, and that of Section III, on neutron metrology, will be covered in a special issue to be published shortly. This issue covers the work of Section I (x-rays and γ rays, and charged particles). The proposal to publish special issues of Metrologia covering the work of the CCRI Sections was first made in 2003 and refined at the two subsequent meetings of the CCRI in 2005 and 2007. The overall aim is to present the work of the CCRI to a wider metrological audience and to highlight the relevance and importance of the field. The main focus of our special issue on dosimetry metrology is on the 'state of the art' in the various areas covered, with an indication of the current developments taking place and the problems and challenges that remain. Where appropriate, this is set in a brief historical context, although it is not the aim to give a historical review. The need for accurate measurement has been appreciated from the pioneering days of the use of ionizing radiation in the early 20th century, particularly in the fields of diagnostic and therapeutic medicine. Over the years, the range of applications for ionizing radiation has expanded both in scope and in the types and energies of radiation employed. This has led to the need to develop a wide variety of measurement techniques and standards covering fields ranging from the low doses experienced in environmental and protection applications to the extremely high doses used in industrial processing. The different types of radiation employed give rise to the need for dose measurements in radiation beams whose effective penetration through a material such as water ranges from a

  17. Dosimetry of ionising radiation in modern radiation oncology

    NASA Astrophysics Data System (ADS)

    Kron, Tomas; Lehmann, Joerg; Greer, Peter B.

    2016-07-01

    Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these.

  18. Proton minibeam radiation therapy: Experimental dosimetry evaluation

    SciTech Connect

    Peucelle, C.; Martínez-Rovira, I.; Prezado, Y.; Nauraye, C.; Patriarca, A.; Hierso, E.; Fournier-Bidoz, N.

    2015-12-15

    Purpose: Proton minibeam radiation therapy (pMBRT) is a new radiotherapy (RT) approach that allies the inherent physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. This dosimetry work aims at demonstrating the feasibility of the technical implementation of pMBRT. This has been performed at the Institut Curie - Proton Therapy Center in Orsay. Methods: Proton minibeams (400 and 700 μm-width) were generated by means of a brass multislit collimator. Center-to-center distances between consecutive beams of 3200 and 3500 μm, respectively, were employed. The (passive scattered) beam energy was 100 MeV corresponding to a range of 7.7 cm water equivalent. Absolute dosimetry was performed with a thimble ionization chamber (IBA CC13) in a water tank. Relative dosimetry was carried out irradiating radiochromic films interspersed in a IBA RW3 slab phantom. Depth dose curves and lateral profiles at different depths were evaluated. Peak-to-valley dose ratios (PVDR), beam widths, and output factors were also assessed as a function of depth. Results: A pattern of peaks and valleys was maintained in the transverse direction with PVDR values decreasing as a function of depth until 6.7 cm. From that depth, the transverse dose profiles became homogeneous due to multiple Coulomb scattering. Peak-to-valley dose ratio values extended from 8.2 ± 0.5 at the phantom surface to 1.08 ± 0.06 at the Bragg peak. This was the first time that dosimetry in such small proton field sizes was performed. Despite the challenge, a complete set of dosimetric data needed to guide the first biological experiments was achieved. Conclusions: pMBRT is a novel strategy in order to reduce the side effects of RT. This works provides the experimental proof of concept of this new RT method: clinical proton beams might allow depositing a (high) uniform dose in a brain tumor located in the center of the brain (7.5 cm depth

  19. NCRP PROGRAM AREA COMMITTEE 6: RADIATION DOSIMETRY AND MEASUREMENTS

    PubMed Central

    Simon, Steven L.; Zeman, Gary H.

    2015-01-01

    Program Area Committee (PAC) 6 of the National Council on Radiation Protection and Measurements provides guidance for radiation measurements and dosimetry – one of the most fundamental scientific areas of the Council’s expertise. Seminal reports published by PAC 6 over many decades have documented the scientific and technical foundations of radiation measurements and dosimetry for generations of radiation scientists and radiation protection professionals. Ongoing work of PAC 6 is driven by advancing technology such as development of new types of instruments, biodosimetry and nanotechnology; by evolving understanding of radiation hazards such as effects on lens of the eye, and risks as from some high-dose medical imaging procedures; and by new situations faced in the modern socio-political environment including radiological and nuclear threats. The activities of PAC 6 are intended to formulate and document the dosimetric framework for radiological science to address these ever emerging challenges. PMID:26717161

  20. NCRP Program Area Committee 6: Radiation Measurements and Dosimetry.

    PubMed

    Simon, Steven L; Zeman, Gary H

    2016-02-01

    Program Area Committee (PAC) 6 of the National Council on Radiation Protection and Measurements provides guidance for radiation measurements and dosimetry--one of the most fundamental scientific areas of the Council's expertise. Seminal reports published by PAC 6 over many decades have documented the scientific and technical foundations of radiation measurements and dosimetry for generations of radiation scientists and radiation protection professionals. Ongoing work of PAC 6 is driven by advancing technology, such as development of new types of instruments, biodosimetry and nanotechnology; by evolving understanding of radiation hazards, such as effects on the lens of the eye and risks as from some high-dose medical imaging procedures; and by new situations faced in the modern socio-political environment including radiological and nuclear threats. The activities of PAC 6 are intended to formulate and document the dosimetric framework for radiological science to address these ever-emerging challenges.

  1. Bayesian Methods for Radiation Detection and Dosimetry

    SciTech Connect

    Peter G. Groer

    2002-09-29

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed compartmental activities. From the estimated probability densities of the model parameters we were able to derive the densities for compartmental activities for a two compartment catenary model at different times. We also calculated the average activities and their standard deviation for a simple two compartment model.

  2. Radiation accident dosimetry on plastics by EPR spectrometry.

    PubMed

    Trompier, F; Bassinet, C; Clairand, I

    2010-02-01

    In case of acute exposure to ionizing radiation, the dose absorbed by the victims has to be rapidly and accurately assessed in order to choose an appropriate medical treatment. Tooth enamel and bone biopsies measured by EPR spectrometry are often used as dose indicators, due to the good radiation sensitivity and the stability of EPR radiation-sensitive signals. Nevertheless, the invasive sampling of teeth and bones limits the application of this technique to retrospective dosimetry. Therefore, we have investigated an alternative non-invasive methodology. We have surveyed with EPR spectrometry the dosimetric properties of the plastics that can be found in personal effects such as glasses (CR-39, polycarbonate), mobile phones (PMMA, polycarbonate), watches and buttons. Dose response, signal stability and effects of storage conditions were investigated. Significant signal fading limits the use for radiation accident dosimetry. Few plastics present the required characteristics to be used in case of a radiation accident.

  3. Reconstructive dosimetry for cutaneous radiation syndrome

    PubMed Central

    Lima, C.M.A.; Lima, A.R.; Degenhardt, Ä.L.; Valverde, N.J.; Da Silva, F.C.A.

    2015-01-01

    According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry. PMID:26445332

  4. Subwavelength films for standoff radiation dosimetry

    SciTech Connect

    Alvine, Kyle J.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan L.; Suter, Jonathan D.

    2015-05-22

    We present optical subwavelength nanostructure architecture suitable for standoff radiation dosimetry with remote optical readout in the visible or infrared spectral regions. To achieve this, films of subwavelength structures are fabricated over several square inches via the creation of a 2D non-close packed (NCP) array template of radiation-sensitive polymeric nanoparticles, followed by magnetron sputtering of a metallic coating to form a 2D array of separated hemispherical nanoscale metallic shells. The nanoshells are highly reflective at resonance in the visible or infrared depending on design. These structures and their behavior are based on the open ring resonator (ORR) architecture and have their analog in resonant inductive-capacitive (LC) circuits, which display a resonance wavelength that is inversely proportional to the square root of the product of the inductance and capacitance. Therefore, any modification of the nanostructure material properties due to radiation alters the inductive or capacitive behavior of the subwavelength features, which in turn changes their optical properties resulting in a shift in the optical resonance. This shift in resonance may be remotely interrogated actively using either laser illumination or passively by hyperspectral or multispectral sensing with broadband illumination. These structures may be designed to be either anisotropic or isotropic, which can also offer polarization-sensitive interrogation. We present experimental measurements of a radiation induced shift in the optical resonance of a subwavelength film after exposure to an absorbed dose of gamma radiation from 2 Mrad up to 62 Mrad demonstrating the effect. Interestingly the resonance shift is non-monotonic for this material system and possible radiation damage mechanisms to the nanoparticles are discussed.

  5. Subwavelength films for standoff radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Alvine, Kyle J.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan; Suter, Jonathan D.

    2015-05-01

    We present optical subwavelength nanostructure architecture suitable for standoff radiation dosimetry with remote optical readout in the visible or infrared spectral regions. To achieve this, films of subwavelength structures are fabricated over several square inches via the creation of a 2D non-close packed (NCP) array template of radiationsensitive polymeric nanoparticles, followed by magnetron sputtering of a metallic coating to form a 2D array of separated hemispherical nanoscale metallic shells. The nanoshells are highly reflective at resonance in the visible or infrared depending on design. These structures and their behavior are based on the open ring resonator (ORR) architecture and have their analog in resonant inductive-capacitive (LC) circuits, which display a resonance wavelength that is inversely proportional to the square root of the product of the inductance and capacitance. Therefore, any modification of the nanostructure material properties due to radiation alters the inductive or capacitive behavior of the subwavelength features, which in turn changes their optical properties resulting in a shift in the optical resonance. This shift in resonance may be remotely interrogated actively using either laser illumination or passively by hyperspectral or multispectral sensing with broadband illumination. These structures may be designed to be either anisotropic or isotropic, which can also offer polarization-sensitive interrogation. We present experimental measurements of a radiation induced shift in the optical resonance of a subwavelength film after exposure to an absorbed dose of gamma radiation from 2 Mrad up to 62 Mrad demonstrating the effect. Interestingly the resonance shift is non-monotonic for this material system and possible radiation damage mechanisms to the nanoparticles are discussed.

  6. Space radiation dosimetry using bubble detectors.

    PubMed

    Ing, H; Mortimer, A

    1994-10-01

    Bubble detectors--a new development in radiation detection--has only recently been used for radiation measurements in space. One important characteristic of the bubble detector is that it operates on a phenomenon which bears considerable resemblance to biological response. Recent experimental results from irradiating bubble detectors with high-energy heavy ions point to the need to re-examine the methodology used for assessing space radiation and the relevance of conventional quantities such as dose equivalent for space dosimetry. It may be that biological hazard associated with the intensely ionizing events--associated with nuclear fragmentation but delivering relatively small dose equivalent--may be much more important than that associated with lightly ionizing events which comprise the bulk of the conventional radiation dose equivalent.

  7. International cooperative effort to establish dosimetry standardization for radiation processing

    SciTech Connect

    Farrar, H. IV

    1989-01-01

    Radiation processing is a rapidly developing technology with numerous applications in food treatment, sterilization, and polymer modification. The effectiveness of the process depends, however, on the proper application of dose and its measurement. These aspects are being considered by a wide group of experts from around the world who have joined together to write a comprehensive set of standards for dosimetry for radiation processing. Originally formed in 1984 to develop standards for food processing dosimetry, the group has now expanded into a full subcommittee of the American Society for Testing and Materials (ASTM), with 97 members from 19 countries. The scope of the standards now includes dosimetry for all forms of radiation processing. The group has now completed and published four standards, and is working on an additional seven. Three are specifically for food applications and the others are for all radiation applications, including food processing. Together, this set of standards will specify acceptable guidelines and methods for accomplishing the required irradiation treatment, and will be available for adoption by national regulatory agencies in their procedures and protocols. 1 tab.

  8. The radiation dosimetry of intrathecally administered radionuclides

    SciTech Connect

    Stabin, M.G.; Evans, J.F.

    1999-01-01

    The radiation dose to the spine, spinal cord, marrow, and other organs of the body from intrathecal administration of several radiopharmaceuticals was studied. Anatomic models were developed for the spine, spinal cerebrospinal fluid (CSF), spinal cord, spinal skeleton, cranial skeleton, and cranial CSF. A kinetic model for the transport of CSF was used to determine residence times in the CSF; material leaving the CSF was thereafter assumed to enter the bloodstream and follow the kinetics of the radiopharmaceutical as if intravenously administered. The radiation transport codes MCNP and ALGAMP were used to model the electron and photon transport and energy deposition. The dosimetry of Tc-99m DTPA and HSA, In-111 DTPA, I-131 HSA, and Yb-169 DTPA was studied. Radiation dose profiles for the spinal cord and marrow in the spine were developed and average doses to all other organs were estimated, including dose distributions within the bone and marrow.

  9. Effect of Cerebellum Radiation Dosimetry on Cognitive Outcomes in Children With Infratentorial Ependymoma

    SciTech Connect

    Merchant, Thomas E.; Sharma, Shelly; Xiong, Xiaoping; Wu, Shengjie; Conklin, Heather

    2014-11-01

    Purpose: Cognitive decline is a recognized effect of radiation therapy (RT) in children treated for brain tumors. The importance of the cerebellum and its contribution to cognition have been recognized; however, the effect of RT on cerebellum-linked neurocognitive deficits has yet to be explored. Methods and Materials: Seventy-six children (39 males) at a median 3.3 years of age (range, 1-17 years old) were irradiated for infratentorial ependymoma from 1997 to 2008. The total prescribed dose was 54 to 59.4 Gy administered to the postoperative tumor bed with 5- or 10-mm clinical target volume margin. Age-appropriate cognitive and academic testing was performed prior to the start of RT and was then repeated at 6 months and annually throughout 5 years. The anterior and posterior cerebellum and other normal brain volumes were contoured on postcontrast, T1-weighted postoperative magnetic resonance images registered to treatment planning computed tomography images. Mean doses were calculated and used with time after RT and other clinical covariates to model their effect on neurocognitive test scores. Results: Considering only the statistically significant rates in longitudinal changes for test scores and models that included mean dose, there was a correlation between mean infratentorial dose and intelligence quotient (IQ; −0.190 patients/Gy/year; P=.001), math (−0.164 patients/Gy/year; P=.010), reading (−0.137 patients/Gy/year; P=.011), and spelling scores (−0.147 patients/Gy/year; P=.012), where Gy was measured as the difference between the mean dose received by an individual patient and the mean dose received by the patient group. There was a correlation between mean anterior cerebellum dose and IQ scores (−0.116 patients/Gy/year; P=.042) and mean posterior cerebellum dose and IQ (−0.150 patients/Gy/year; P=.002), math (−0.120 patients/Gy/year; P=.023), reading (−0.111 patients/Gy/year; P=.012), and spelling (−0.117 patients/Gy/year; P=.015

  10. EURADOS strategic research agenda: vision for dosimetry of ionising radiation

    PubMed Central

    Rühm, W.; Fantuzzi, E.; Harrison, R.; Schuhmacher, H.; Vanhavere, F.; Alves, J.; Bottollier Depois, J. F.; Fattibene, P.; Knežević, Ž.; Lopez, M. A.; Mayer, S.; Miljanić, S.; Neumaier, S.; Olko, P.; Stadtmann, H.; Tanner, R.; Woda, C.

    2016-01-01

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises—based on input from EURADOS Working Groups (WGs) and Voting Members—five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org). PMID:25752758

  11. Neutron dosimetry and radiation damage calculations for HFBR

    SciTech Connect

    Greenwood, L.R.; Ratner, R.T.

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  12. Basic principles in the radiation dosimetry of nuclear medicine.

    PubMed

    Stabin, Michael; Xu, Xie George

    2014-05-01

    The basic principles of the use of radiation dosimetry in nuclear medicine are reviewed. The basic structure of the main mathematical equations are given and formal dosimetry systems are discussed. An extensive overview of the history and current status of anthropomorphic models (phantoms) is given. The sources and magnitudes of uncertainties in calculated internal dose estimates are reviewed.

  13. A practical three-dimensional dosimetry system for radiation therapy

    SciTech Connect

    Guo Pengyi; Adamovics, John; Oldham, Mark

    2006-10-15

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE trade mark sign ) and a commercial optical computed tomography (CT) scanning system (OCTOPUS trade mark sign ). PRESAGE trade mark sign is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE trade mark sign /OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of {<=}1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R{sup 2} value of 0.9979 and a standard error of estimation of {approx}1%) relative to independent measurement. The overall performance of the PRESAGE trade mark sign /OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC[reg] EBT film and the calculated dose from a commissioned planning system. The 'measured' dose distribution in a cylindrical PRESAGE trade mark sign dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE trade mark sign , EBT and calculated dose distributions, showed full

  14. A practical three-dimensional dosimetry system for radiation therapy.

    PubMed

    Guo, Pengyi; Adamovics, John; Oldham, Mark

    2006-10-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE) and a commercial optical computed tomography (CT) scanning system (OCTOPUS). PRESAGE is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE/OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of < or = 1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R2 value of 0.9979 and a standard error of estimation of approximately 1%) relative to independent measurement. The overall performance of the PRESAGE/OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC EBT film and the calculated dose from a commissioned planning system. The "measured" dose distribution in a cylindrical PRESAGE dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE, EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE dosimeter (approximately 90% of radius). The EBT and PRESAGE distributions agreed

  15. Film Dosimetry for Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Benites-Rengifo, J.; Martínez-Dávalos, A.; Celis, M.; Lárraga, J.

    2004-09-01

    Intensity Modulated Radiation Therapy (IMRT) is an oncology treatment technique that employs non-uniform beam intensities to deliver highly conformal radiation to the targets while minimizing doses to normal tissues and critical organs. A key element for a successful clinical implementation of IMRT is establishing a dosimetric verification process that can ensure that delivered doses are consistent with calculated ones for each patient. To this end we are developing a fast quality control procedure, based on film dosimetry techniques, to be applied to the 6 MV Novalis linear accelerator for IMRT of the Instituto Nacional de Neurología y Neurocirugía (INNN) in Mexico City. The procedure includes measurements of individual fluence maps for a limited number of fields and dose distributions in 3D using extended dose-range radiographic film. However, the film response to radiation might depend on depth, energy and field size, and therefore compromise the accuracy of measurements. In this work we present a study of the dependence of Kodak EDR2 film's response on the depth, field size and energy, compared with those of Kodak XV2 film. The first aim is to devise a fast and accurate method to determine the calibration curve of film (optical density vs. doses) commonly called a sensitometric curve. This was accomplished by using three types of irradiation techniques: Step-and-shoot, dynamic and static fields.

  16. The MCART radiation physics core: the quest for radiation dosimetry standardization.

    PubMed

    Kazi, Abdul M; MacVittie, Thomas J; Lasio, Giovanni; Lu, Wei; Prado, Karl L

    2014-01-01

    Dose-related radiobiological research results can only be compared meaningfully when radiation dosimetry is standardized. To this purpose, the National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Medical Countermeasures Against Radiological Threats (MCART) consortium recently created a Radiation Physics Core (RPC) as an entity to assume responsibility of standardizing radiation dosimetry practices among its member laboratories. The animal research activities in these laboratories use a variety of ionizing photon beams from several irradiators such as 250-320 kVp x-ray generators, Cs irradiators, Co teletherapy machines, and medical linear accelerators (LINACs). In addition to this variety of sources, these centers use a range of irradiation techniques and make use of different dose calculation schemes to conduct their experiments. An extremely important objective in these research activities is to obtain a Dose Response Relationship (DRR) appropriate to their respective organ-specific models of acute and delayed radiation effects. A clear and unambiguous definition of the DRR is essential for the development of medical countermeasures. It is imperative that these DRRs are transparent between centers. The MCART RPC has initiated the establishment of standard dosimetry practices among member centers and is introducing a Remote Dosimetry Monitoring Service (RDMS) to ascertain ongoing quality assurance. This paper will describe the initial activities of the MCART RPC toward implementing these standardization goals. It is appropriate to report a summary of initial activities with the intent of reporting the full implementation at a later date.

  17. [Computational radiofrequency electromagnetic field dosimetry in evaluation of biological effects].

    PubMed

    Perov, S Iu; Kudryashov, Iu B; Rubtsova, N B

    2012-01-01

    Given growing computational resources, radiofrequency electromagnetic field dosimetry is becoming more vital in the study of biological effects of non-ionizing electromagnetic radiation. The study analyzes numerical methods which are used in theoretical dosimetry to assess the exposure level and specific absorption rate distribution. The advances of theoretical dosimetry are shown. Advantages and disadvantages of different methods are analyzed in respect to electromagnetic field biological effects. The finite-difference time-domain method was implemented in detail; also evaluated were possible uncertainties of complex biological structure simulation for bioelectromagnetic investigations.

  18. Proceedings of the third conference on radiation protection and dosimetry

    SciTech Connect

    Swaja, R.E.; Sims, C.S.; Casson, W.H.

    1991-10-01

    The Third Conference on Radiation Protection and Dosimetry was held during October 21--24, 1991, at the Sheraton Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection, and providing them with sufficient information to evaluate their programs. To meet these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical session included external dosimetry, internal dosimetry, instruments, accident dosimetry, regulations and standards, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. Individual reports are processed separately on the database.

  19. Applications of Cherenkov Light Emission for Dosimetry in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Glaser, Adam Kenneth

    Since its discovery in the 1930's, the Cherenkov effect has been paramount in the development of high-energy physics research. It results in light emission from charged particles traveling faster than the local speed of light in a dielectric medium. The ability of this emitted light to describe a charged particle's trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, only recently has the phenomenon been considered in the practical context of medical physics and radiation therapy dosimetry, where Cherenkov light is induced by clinical x-ray photon, electron, and proton beams. To investigate the relationship between this phenomenon and dose deposition, a Monte Carlo plug-in was developed within the Geant4 architecture for medically-oriented simulations (GAMOS) to simulate radiation-induced optical emission in biological media. Using this simulation framework, it was determined that Cherenkov light emission may be well suited for radiation dosimetry of clinically used x-ray photon beams. To advance this application, several novel techniques were implemented to realize the maximum potential of the signal, such as time-gating for maximizing the signal to noise ratio (SNR) and Cherenkov-excited fluorescence for generating isotropic light release in water. Proof of concept experiments were conducted in water tanks to demonstrate the feasibility of the proposed method for two-dimensional (2D) projection imaging, three-dimensional (3D) parallel beam tomography, large field of view 3D cone beam tomography, and video-rate dynamic imaging of treatment plans for a number of common radiotherapy applications. The proposed dosimetry method was found to have a number of unique advantages, including but not limited to its non-invasive nature, water-equivalence, speed, high-resolution, ability to provide full 3D data, and potential to yield data in-vivo. Based on

  20. Radiation dosimetry using three-dimensional optical random access memories

    NASA Technical Reports Server (NTRS)

    Moscovitch, M.; Phillips, G. W.

    2001-01-01

    Three-dimensional optical random access memories (3D ORAMs) are a new generation of high-density data storage devices. Binary information is stored and retrieved via a light induced reversible transformation of an ensemble of bistable photochromic molecules embedded in a polymer matrix. This paper describes the application of 3D ORAM materials to radiation dosimetry. It is shown both theoretically and experimentally, that ionizing radiation in the form of heavy charged particles is capable of changing the information originally stored on the ORAM material. The magnitude and spatial distribution of these changes are used as a measure of the absorbed dose, particle type and energy. The effects of exposure on 3D ORAM materials have been investigated for a variety of particle types and energies, including protons, alpha particles and 12C ions. The exposed materials are observed to fluoresce when exposed to laser light. The intensity and the depth of the fluorescence is dependent on the type and energy of the particle to which the materials were exposed. It is shown that these effects can be modeled using Monte Carlo calculations. The model provides a better understanding of the properties of these materials. which should prove useful for developing systems for charged particle and neutron dosimetry/detector applications. c2001 Published by Elsevier Science B.V.

  1. Space radiation dosimetry in low-Earth orbit and beyond.

    PubMed

    Benton, E R; Benton, E V

    2001-09-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars.

  2. Space radiation dosimetry in low-Earth orbit and beyond

    NASA Technical Reports Server (NTRS)

    Benton, E. R.; Benton, E. V.

    2001-01-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars. c2001 Elsevier Science B.V. All rights reserved.

  3. Space radiation dosimetry in low-Earth orbit and beyond

    NASA Astrophysics Data System (ADS)

    Benton, E. R.; Benton, E. V.

    2001-09-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars.

  4. Radiation dosimetry for the Gemini program

    NASA Technical Reports Server (NTRS)

    Richmond, R. G.

    1972-01-01

    The principal source of radiation for low-earth-orbit, low inclination space flights is in the area of the South Atlantic magnetic anomaly. None of the Gemini dose measurements reported in the paper are of high enough intensity to be considered hazardous. There is a trend toward larger doses as missions are flown higher and longer. Extended orbital operations between 1400 and 4400 kilometers would encounter high interior radiation levels. Pronounced spacecraft geometry effects have been measured in manned spacecraft. Instrumentation for radiation measurements on Gemini spacecraft is described.

  5. Third conference on radiation protection and dosimetry. Program and abstracts

    SciTech Connect

    1991-01-01

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  6. Personnel radiation dosimetry symposium: program and abstracts

    SciTech Connect

    Not Available

    1984-10-01

    The purpose was to provide applied and research dosimetrists with sufficient information to evaluate the status and direction of their programs relative to the latest guidelines and techniques. A technical program was presented concerning experience, requirements, and advances in gamma, beta, and neutron personnel dosimetry.

  7. Radiation protection and dosimetry issues in the medical applications of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Vaz, Pedro

    2014-11-01

    The technological advances that occurred during the last few decades paved the way to the dissemination of CT-based procedures in radiology, to an increasing number of procedures in interventional radiology and cardiology as well as to new techniques and hybrid modalities in nuclear medicine and in radiotherapy. These technological advances encompass the exposure of patients and medical staff to unprecedentedly high dose values that are a cause for concern due to the potential detrimental effects of ionizing radiation to the human health. As a consequence, new issues and challenges in radiological protection and dosimetry in the medical applications of ionizing radiation have emerged. The scientific knowledge of the radiosensitivity of individuals as a function of age, gender and other factors has also contributed to raising the awareness of scientists, medical staff, regulators, decision makers and other stakeholders (including the patients and the public) for the need to correctly and accurately assess the radiation induced long-term health effects after medical exposure. Pediatric exposures and their late effects became a cause of great concern. The scientific communities of experts involved in the study of the biological effects of ionizing radiation have made a strong case about the need to undertake low dose radiation research and the International System of Radiological Protection is being challenged to address and incorporate issues such as the individual sensitivities, the shape of dose-response relationship and tissue sensitivity for cancer and non-cancer effects. Some of the answers to the radiation protection and dosimetry issues and challenges in the medical applications of ionizing radiation lie in computational studies using Monte Carlo or hybrid methods to model and simulate particle transport in the organs and tissues of the human body. The development of sophisticated Monte Carlo computer programs and voxel phantoms paves the way to an accurate

  8. Age-dependent small-animal internal radiation dosimetry.

    PubMed

    Xie, Tianwu; Zaidi, Habib

    2013-09-01

    Rats at various ages were observed to present with different radiosensitivity and bioavailability for radiotracers commonly used in preclinical research. We evaluated the effect of age-induced changes in body weight on radiation dose calculations. A series of rat models at different age periods were constructed based on the realistic four-dimensional digital rat whole-body (ROBY) computational model. Particle transport was simulated using the MCNPX Monte Carlo code. Absorbed fractions (AFs) and specific absorbed fraction (SAFs) of monoenergetic photons/electrons and S values of eight positron-emitting radionuclides were calculated. The SAFs and S values for most source-target pairs were inversely correlated with body weight. Differences between F-18 S values for most source-target pairs were between -1.5% and -2%/10 g difference in body weight for different computational models. For specific radiotracers, the radiation dose to organs presents a negative correlation with rat body weight. The SAFs for monoenergetic photons/electrons and S values for common positron-emitting radionuclides can be exploited in the assessment of radiation dose delivered to rats at different ages and weights. The absorbed dose to organs is significantly higher in the low-weight young rat model than in the adult model, which would result in steep secondary effects and might be a noteworthy issue in laboratory animal internal dosimetry.

  9. Fostering a culture of interprofessional education for radiation therapy and medical dosimetry students

    SciTech Connect

    Lavender, Charlotte Miller, Seth; Church, Jessica; Chen, Ronald C.; Muresan, Petronella A.; Adams, Robert D.

    2014-04-01

    A less-studied aspect of radiation therapy and medical dosimetry education is experiential learning through attendance at interprofessional conferences. University of North Carolina radiation therapy and medical dosimetry students regularly attended morning conferences and daily pretreatment peer review, including approximately 145 hours of direct interaction with medical attending physicians and residents, medical physicists, and other faculty. We herein assessed the effect of their participation in these interprofessional conferences on knowledge and communication. The students who graduated from our radiation therapy and medical dosimetry programs who were exposed to the interprofessional education initiative were compared with those who graduated in the previous years. The groups were compared with regard to their knowledge (as assessed by grades on end-of-training examinations) and team communication (assessed via survey). The results for the 2 groups were compared via exact tests. There was a trend for the examination scores for the 2012 cohort to be higher than for the 2007 to 2011 groups. Survey results suggested that students who attended the interprofessional education sessions were more comfortable speaking with attending physicians, residents, physicists, and faculty compared with earlier students who did not attend these educational sessions. Interprofessional education, particularly vertical integration, appears to provide an enhanced educational experience both in regard to knowledge (per the examination scores) and in building a sense of communication (via the survey results). Integration of interprofessional education into radiation therapy and medical dosimetry educational programs may represent an opportunity to enrich the learning experience in multiple ways and merits further study.

  10. Fostering a culture of interprofessional education for radiation therapy and medical dosimetry students.

    PubMed

    Lavender, Charlotte; Miller, Seth; Church, Jessica; Chen, Ronald C; Muresan, Petronella A; Adams, Robert D

    2014-01-01

    A less-studied aspect of radiation therapy and medical dosimetry education is experiential learning through attendance at interprofessional conferences. University of North Carolina radiation therapy and medical dosimetry students regularly attended morning conferences and daily pretreatment peer review, including approximately 145 hours of direct interaction with medical attending physicians and residents, medical physicists, and other faculty. We herein assessed the effect of their participation in these interprofessional conferences on knowledge and communication. The students who graduated from our radiation therapy and medical dosimetry programs who were exposed to the interprofessional education initiative were compared with those who graduated in the previous years. The groups were compared with regard to their knowledge (as assessed by grades on end-of-training examinations) and team communication (assessed via survey). The results for the 2 groups were compared via exact tests. There was a trend for the examination scores for the 2012 cohort to be higher than for the 2007 to 2011 groups. Survey results suggested that students who attended the interprofessional education sessions were more comfortable speaking with attending physicians, residents, physicists, and faculty compared with earlier students who did not attend these educational sessions. Interprofessional education, particularly vertical integration, appears to provide an enhanced educational experience both in regard to knowledge (per the examination scores) and in building a sense of communication (via the survey results). Integration of interprofessional education into radiation therapy and medical dosimetry educational programs may represent an opportunity to enrich the learning experience in multiple ways and merits further study.

  11. Internal radiation dosimetry for clinical testing of radiolabeled monoclonal antibodies

    SciTech Connect

    Fisher, D.R.; Durham, J.S.; Hui, T.E.; Hill, R.L.

    1990-11-01

    In gauging the efficacy of radiolabeled monoclonal antibodies in cancer treatment, it is important to know the amount of radiation energy absorbed by tumors and normal tissue per unit administered activity. This paper describes methods for estimating absorbed doses to human tumors and normal tissues, including intraperitoneal tissue surfaces, red marrow, and the intestinal tract from incorporated radionuclides. These methods use the Medical Internal Radiation Dose (MIRD) scheme; however, they also incorporate enhancements designed to solve specific dosimetry problems encountered during clinical studies, such as patient-specific organ masses obtained from computerized tomography (CT) volumetrics, estimates of the dose to tumor masses within normal organs, and multicellular dosimetry for studying dose inhomogeneities in solid tumors. Realistic estimates of absorbed dose are provided within the short time requirements of physicians so that decisions can be made with regard to patient treatment and procurement of radiolabeled antibodies. Some areas in which further research could improve dose assessment are also discussed. 16 refs., 3 figs.

  12. Effect of Brain Stem and Dorsal Vagus Complex Dosimetry on Nausea and Vomiting in Head and Neck Intensity-Modulated Radiation Therapy

    SciTech Connect

    Ciura, Katherine; McBurney, Michelle; Nguyen, Baongoc; Pham, Mary; Rebueno, Neal; Fuller, Clifton D.; Guha-Thakurta, Nandita; Rosenthal, David I.

    2011-04-01

    Intensity-modulated radiation therapy (IMRT) is becoming the treatment of choice for many head and neck cancer patients. IMRT reduces some toxicities by reducing radiation dose to uninvolved normal tissue near tumor targets; however, other tissues not irradiated using previous 3D techniques may receive clinically significant doses, causing undesirable side effects including nausea and vomiting (NV). Irradiation of the brainstem, and more specifically, the area postrema and dorsal vagal complex (DVC), has been linked to NV. We previously reported preliminary hypothesis-generating dose effects associated with NV in IMRT patients. The goal of this study is to relate brainstem dose to NV symptoms. We retrospectively studied 100 consecutive patients that were treated for oropharyngeal cancer with IMRT. We contoured the brainstem, area postrema, and DVC with the assistance of an expert diagnostic neuroradiologist. We correlated dosimetry for the 3 areas contoured with weekly NV rates during IMRT. NV rates were significantly higher for patients who received concurrent chemotherapy. Post hoc analysis demonstrated that chemoradiation cases exhibited a trend towards the same dose-response relationship with both brainstem mean dose (p = 0.0025) and area postrema mean dose (p = 0.004); however, both failed to meet statistical significance at the p {<=} 0.002 level. Duration of toxicity was also greater for chemoradiation patients, who averaged 3.3 weeks with reported Common Terminology Criteria for Adverse Events (CTC-AE), compared with an average of 2 weeks for definitive RT patients (p = 0.002). For definitive RT cases, no dose-response trend could be ascertained. The mean brainstem dose emerged as a key parameter of interest; however, no one dose parameter (mean/median/EUD) best correlated with NV. This study does not address extraneous factors that would affect NV incidence, including the use of antiemetics, nor chemotherapy dose schedule specifics before and during RT. A

  13. Proceedings of the second conference on radiation protection and dosimetry

    SciTech Connect

    Swaja, R. E.; Sims, C. S.

    1988-11-01

    The Second Conference on Radiation Protection and Dosimetry was held during October 31--November 3, 1988, at the Holiday Inn, Crowne Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To facilitate meeting these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical sessions included external dosimetry, internal dosimetry, calibration, standards and regulations, instrumentation, accreditation and test programs, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. This document provides a summary of the conference technical program and a partial collection of full papers for the oral presentations in order of delivery. Individual papers were processed separately for the data base.

  14. High LET, passive space radiation dosimetry and spectrometry

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.; Keegan, R. P.; Frigo, L. A.; Sanner, D.; Rowe, V.

    1995-01-01

    The development of high linear energy transfer (LET), passive radiation dosimetry and spectrometry is needed for the purpose of accurate determination of equivalent doses and assessment of health risks to astronauts on long duration missions. Progress in the following research areas is summerized: intercomparisons of cosmic ray equivalent dose and LET spectra measurements between STS missions and between astronauts; increases LET spectra measurement accuracy with ATAS; space radiation measurements for intercomparisons of passive (PNTD, TLD, TRND, Emulsion) and active (TEPC, RME-111) dosimeters; interaction of cosmic ray particles with nuclei in matter; radiation measurements after long duration space exposures; ground based dosimeter calibrations; neutron detector calibrations; radiation measurements on Soviet/Russian spacecraft; space radiation measurements under thin shielding; and space radiation.

  15. High LET, passive space radiation dosimetry and spectrometry

    SciTech Connect

    Benton, E.V.; Frank, A.L.; Benton, E.R.; Keegan, R.P.; Frigo, L.A.; Sanner, D.; Rowe, V.

    1995-03-01

    The development of high linear energy transfer (LET), passive radiation dosimetry and spectrometry is needed for the purpose of accurate determination of equivalent doses and assessment of health risks to astronauts on long duration missions. Progress in the following research areas is summerized: intercomparisons of cosmic ray equivalent dose and LET spectra measurements between STS missions and between astronauts; increases LET spectra measurement accuracy with ATAS; space radiation measurements for intercomparisons of passive (PNTD, TLD, TRND, Emulsion) and active (TEPC, RME-111) dosimeters; interaction of cosmic ray particles with nuclei in matter; radiation measurements after long duration space exposures; ground based dosimeter calibrations; neutron detector calibrations; radiation measurements on Soviet/Russian spacecraft; space radiation measurements under thin shielding; and space radiation. Separate abstracts were prepared for articles from this report.

  16. Radiofrequency Radiation Dosimetry Handbook. 4th Edition

    DTIC Science & Technology

    1986-10-01

    State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO. 62202F 7757 01 95 11. TITLE...density, as planewave A can be. Since near-field radiation fields vary so much from one radiation source to another, near-field dosi- metric data for...specific sources could not be given; only near-field SAR data for simple illustrative radiation fields were presented. The purpose of this fourth

  17. METHOD AND MEANS FOR RADIATION DOSIMETRY

    DOEpatents

    Shulte, J.W.; Suttle, J.F.

    1958-02-18

    This patent relates to a method and device for determining quantities of gamma radiation and x radiation by exposing to such radiation a mature of a purified halogenated hydrocarbon chosen from the class consisting of chloroform, bromoform, tetrachloroethane and 1,1,2trichloroethane, and a minor quantity of a sensitizer chosen from the class consisting of oxygen, benzoyl peroxide, sodium peroxide, and nitrobenzene, the proportion of the sensitizer being at least about 10/sup -5/ moles per cubic centimeter of halogenated hydrocarbon, the total amount of sensitizer depending upon the range of radiation to be measured, and chemically measuring the amount of decomposition generated by the irradiation of the sensitized halogenated hydrocarbon.

  18. Electromagnetic and heat transfer computations for non-ionizing radiation dosimetry.

    PubMed

    Samaras, T; Regli, P; Kuster, N

    2000-08-01

    Reliable information on the heat distribution inside biological tissues is essential for the planning and optimization of experiments which aim to study the effects of non-ionizing radiation (NIR). In electrodynamics, the finite-difference time-domain (FDTD) technique has become the dominant technique for radiofrequency dosimetry. In order to obtain the electromagnetic field and heat distributions within the same simulation run without changing discretization, a heat diffusion solver has been directly integrated into an advanced electrodynamic FDTD kernel. The implementation enables both coupled and sequential simulations. It also includes the ability to work with complex bodies and to accelerate heat diffusion. This paper emphasizes the importance of this combination in the field of NIR dosimetry. Two examples from this area are given: the validation of dosimetry with temperature probes and the estimation of the highest thermal load during bioexperiments.

  19. Method and means for radiation dosimetry

    DOEpatents

    Shulte, J. W.; Suttle, J. F.

    1960-10-18

    A precise dosimeter for and x radiations is designed in which a reproducible response to radiation is achieved by controlling the amount of sensitizer. The sensitizer is present in a halogenated hydrocarbon system and is a leuco base of certain dyestuffs. This patent is related to U. S. Patent No. 2,824,234. (D.L.C.)

  20. Radiation dosimetry for bolus administration of oxygen-15-water

    SciTech Connect

    Brihaye, C.; Depresseux, J.C.; Comar, D.

    1995-04-01

    The authors describe the development of a biokinetic model which permits an estimation of organ activities and the dosimetry of a bolus of {sup 15}O-water. The aim of this study was to estimate time-activity functions and deduce the cumulated activities in different organs so that the radiation absorbed dose values can be estimated. The model used includes the right heart chambers, lungs, left heart chambers, brain, liver, kidneys, muscles, gasrointestinal tract and the remainder of the body. Activity in an organ will decay by physical decay with the decay constant, {gamma}, and can diffuse in the organ. An exception is the heart, where blood is ejected from the heart chambers. Depending on the location of the organ in relation to the blood sampling point, organ activities can be calculated by convolution or deconvolution. The radiation absorbed dose values were estimated and an effective dose equivalent H{sub E} of 1.16 {mu}Sv/MBq (4.32 mrem/mCi) as well as an effective dose E of 1.15 {mu}Sv/MBq (4.25 mrem/mCi) were calculated. The cumulated activities in select organs measured by PET gave good agreement with the values calculated by this model. The values of effective dose equivalent and effective dose for bolus administration of {sup 15}O-water calculated from the absorbed doses estimated by the proposed kinetic model are almost three times higher than those previously published. A total of 8700 MBq (235 mCi) of {sup 15}O-water can be administered if an effective dose of 10 mSv (1 rem) is accepted. 32 refs., 5 figs., 2 tabs.

  1. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments Database

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  2. The effects of cosmic particle radiation on pocket mice aboard Apollo XVII: VII. Cosmic ray particle dosimetry and trajectory tracing.

    PubMed

    Cruty, M R; Benton, E V; Turnbill, C E; Philpott, D E

    1975-04-01

    Five pocket mice (Perognathus longimembris) were flown on Apollo XVII, each with a solid-state (plastic) nuclear track detector implanted beneath its scalp. The subscalp detectors were sensitive to HZE cosmic ray particles with a LET larger than or equal to 0.15 million electron volts per micrometer (MeV/mjm). A critical aspect of the dosimetry of the experiment involved tracing individual particle trajectories through each mouse head from particle tracks registered in the individual subscalp detectors, thereby establishing a one-to-one correspondence between a trajectory location in the tissue and the presence or absence of a lesion. The other major aspect was the identification of each registered particle. An average of 16 particles with Z larger than or equal to 6 and 2.2 particles with Z larger than or equal to 20 were found per detector. The track density, 29 tracks/cm2, when adjusted for detection volume, was in agreement with the photographic emulsion data from an area dosimeter located next to the flight package.

  3. KCl:Dy phosphor for thermoluminescence dosimetry of ionizing radiation.

    PubMed

    Bhujbal, P M; Dhoble, S J

    2013-01-01

    The thermoluminescence (TL) characterizations of γ-irradiated KCl:Dy phosphor for radiation dosimetry are reported. All phosphors were synthesized via a wet chemical route. Minimum fading of TL intensity is recorded in the prepared material. TL in samples containing different concentrations of Dy impurity was studied at different γ-irradiation doses. Peak TL intensities varied sublinearly with γ-ray dose in all samples, but were linear between 0.08 to 0.75 kGy for the KCl:Dy (0.1 mol%) sample. This material may be useful for dosimetry within this range of γ-ray dose. TL peak height was found to be dependant on the concentration (0.05-0.5 mol%) of added Dy in the host.

  4. Nuclear data needs for radiation protection and therapy dosimetry

    SciTech Connect

    Chadwick, M.B.; DeLuca, P.M. Jr.; Haight, R.C.

    1995-12-31

    New nuclear data are required for improved neutron and proton radiotherapy treatment planning as well as future applications of high-energy particle accelerators. Modern neutron radiotherapy employs energies extending to 70 MeV, while industrial applications such as transmutation and tritium breeding may generate neutrons exceeding energies of 100 MeV. Secondary neutrons produced by advanced proton therapy facilities can have energies as high as 250 MeV. Each use requires nuclear data for transport calculations and analysis of radiation effects (dosimetry). We discuss the nuclear data needs supportive of these applications including the different information requirements. As data in this energy region are sparse and likely to remain so, advanced nuclear model calculations can provide some of the needed information. ln this context, we present new evaluated nuclear data for C, N, and O. Additional experimental information, including integral and differential data, are required to confirm these results and to bound further calculations. We indicate the required new data to be measured and the difficulties in carrying out such experiments.

  5. Dosimetry and techniques for simultaneous hyperthermia and external beam radiation therapy.

    PubMed

    Straube, W L; Klein, E E; Moros, E G; Low, D A; Myerson, R J

    2001-01-01

    An increased biological effect is realized when hyperthermia and radiation therapy are combined simultaneously. To take advantage of this effect, techniques have been developed that combine existing hyperthermia devices with a linear accelerator. This allows concomitant delivery of either ultrasound or microwave hyperthermia with photon radiation therapy. Two techniques have been used clinically: the orthogonal technique, in which the microwave or ultrasound beam and the radiation beam are orthogonal to one another, and the en face technique, in which the ultrasound or microwave beam and the radiation beam travel into the tumour through the same treatment window. The en face technique has necessitated the development of special attachments so that the hyperthermia device can be mounted to the linear accelerator and so that non-uniform portions of the hyperthermia device can be removed from the radiation beam. For microwave therapy, applicators are mounted onto the linear accelerator using the compensating filter tray holder. For ultrasound, special reflector devices are mounted to a frame that is mounted onto the compensating filter tray holder of the linear accelerator. Because the linear accelerator is an isocentric device, the height of the radiation source is fixed, and this has necessitated specially designed devices so that the ultrasound support system is compatible with the linear accelerator. The treatment setups for both the en face technique and the orthogonal technique require the interaction of both hyperthermia and radiation therapy personnel and equipment. The dosimetry and day-to-day operations for each technique are unique. The simulation for the en face technique is much different from the simulation of a normal radiation treatment and requires the presence of a hyperthermia physicist. Also, for the en face technique, the attenuation of the microwave applicator and the thickness and attenuation of the ultrasound reflector system are taken into

  6. Radiation Dosimetry via Automated Fluorescence Microscopy

    NASA Technical Reports Server (NTRS)

    Castleman, Kenneth R.; Schulze, Mark

    2005-01-01

    A developmental instrument for assessment of radiation-induced damage in human lymphocytes includes an automated fluorescence microscope equipped with a one or more chargecoupled- device (CCD) video camera(s) and circuitry to digitize the video output. The microscope is also equipped with a three-axis translation stage that includes a rotation stage, and a rotary tray that holds as many as thirty specimen slides. The figure depicts one version of the instrument. Once the slides have been prepared and loaded into the tray, the instrument can operate unattended. A computer controls the operation of the stage, tray, and microscope, and processes the digital fluorescence-image data to recognize and count chromosomes that have been broken, presumably by radiation. The design and method of operation of the instrument exploit fluorescence in situ hybridization (FISH) of metaphase chromosome spreads, which is a technique that has been found to be valuable for monitoring the radiation dose to circulating lymphocytes. In the specific FISH protocol used to prepare specimens for this instrument, metaphase lymphocyte cultures are chosen for high mitotic index and highly condensed chromosomes, then several of the largest chromosomes are labeled with three of four differently colored whole-chromosome-staining dyes. The three dyes, which are used both individually and in various combinations, are fluorescein isothiocyanate (FITC), Texas Red (or equivalent), and Cy5 (or equivalent); The fourth dye 4',6-diamidino- 2-phenylindole (DAPI) is used as a counterstain. Under control by the computer, the microscope is automatically focused on the cells and each slide is scanned while the computer analyzes the DAPI-fluorescence images to find the metaphases. Each metaphase field is recentered in the field of view and refocused. Then a four-color image (more precisely, a set of images of the same view in the fluorescent colors of the four dyes) is acquired. By use of pattern

  7. Effect of Normal Lung Definition on Lung Dosimetry and Lung Toxicity Prediction in Radiation Therapy Treatment Planning

    SciTech Connect

    Wang, Weili; Xu, Yaping; Schipper, Matthew; Matuszak, Martha M.; Ritter, Timothy; Cao, Yue; Ten Haken, Randall K.; Kong, Feng-Ming

    2013-08-01

    Purpose: This study aimed to compare lung dose–volume histogram (DVH) parameters such as mean lung dose (MLD) and the lung volume receiving ≥20 Gy (V20) of commonly used definitions of normal lung in terms of tumor/target subtraction and to determine to what extent they differ in predicting radiation pneumonitis (RP). Methods and Materials: One hundred lung cancer patients treated with definitive radiation therapy were assessed. The gross tumor volume (GTV) and clinical planning target volume (PTV{sub c}) were defined by the treating physician and dosimetrist. For this study, the clinical target volume (CTV) was defined as GTV with 8-mm uniform expansion, and the PTV was defined as CTV with an 8-mm uniform expansion. Lung DVHs were generated with exclusion of targets: (1) GTV (DVH{sub G}); (2) CTV (DVH{sub C}); (3) PTV (DVH{sub P}); and (4) PTV{sub c} (DVH{sub Pc}). The lung DVHs, V20s, and MLDs from each of the 4 methods were compared, as was their significance in predicting radiation pneumonitis of grade 2 or greater (RP2). Results: There are significant differences in dosimetric parameters among the various definition methods (all Ps<.05). The mean and maximum differences in V20 are 4.4% and 12.6% (95% confidence interval 3.6%-5.1%), respectively. The mean and maximum differences in MLD are 3.3 Gy and 7.5 Gy (95% confidence interval, 1.7-4.8 Gy), respectively. MLDs of all methods are highly correlated with each other and significantly correlated with clinical RP2, although V20s are not. For RP2 prediction, on the receiver operating characteristic curve, MLD from DVH{sub G} (MLD{sub G}) has a greater area under curve of than MLD from DVH{sub C} (MLD{sub C}) or DVH{sub P} (MLD{sub P}). Limiting RP2 to 30%, the threshold is 22.4, 20.6, and 18.8 Gy, for MLD{sub G}, MLD{sub C}, and MLD{sub P}, respectively. Conclusions: The differences in MLD and V20 from various lung definitions are significant. MLD from the GTV exclusion method may be more accurate in

  8. Phantom dosimetry calculations for use in radiation-effects correlations. Technical report, 1 April 1983-30 July 1984

    SciTech Connect

    Kaul, D.C.; Roberts, J.A.; Egbert, S.D.

    1984-07-30

    Models corresponding to an adult Rhesus Monkey and a simple analogue were created in combinatorial geometry for use in Monte Carlo radiation-transport calculations. The complex monkey phantom is based on anatomical measurements of a sectioned cadaver. Adjoint Monte Carlo calculations were performed to obtain the energy- and angle-differential adjoint fluence for the mid-head, mid-thorax locations in both phantoms and active marrow in the complex monkey phantom. The results were also convoluted with free-field spectra for two TRIGA reactor exposure room configurations at the Armed Forces Radiobiological Research Institute, using the VCS code system. Comparisons are made between calculated and measured KERMA values in the simple phantom. Good agreement is obtained. However, it is found that good agreement cannot be obtained using simple scalar coupling.

  9. Novel Multicompartment 3-Dimensional Radiochromic Radiation Dosimeters for Nanoparticle-Enhanced Radiation Therapy Dosimetry

    SciTech Connect

    Alqathami, Mamdooh; Blencowe, Anton; Yeo, Un Jin; Doran, Simon J.; Qiao, Greg; Geso, Moshi

    2012-11-15

    Purpose: Gold nanoparticles (AuNps), because of their high atomic number (Z), have been demonstrated to absorb low-energy X-rays preferentially, compared with tissue, and may be used to achieve localized radiation dose enhancement in tumors. The purpose of this study is to introduce the first example of a novel multicompartment radiochromic radiation dosimeter and to demonstrate its applicability for 3-dimensional (3D) dosimetry of nanoparticle-enhanced radiation therapy. Methods and Materials: A novel multicompartment phantom radiochromic dosimeter was developed. It was designed and formulated to mimic a tumor loaded with AuNps (50 nm in diameter) at a concentration of 0.5 mM, surrounded by normal tissues. The novel dosimeter is referred to as the Sensitivity Modulated Advanced Radiation Therapy (SMART) dosimeter. The dosimeters were irradiated with 100-kV and 6-MV X-ray energies. Dose enhancement produced from the interaction of X-rays with AuNps was calculated using spectrophotometric and cone-beam optical computed tomography scanning by quantitatively comparing the change in optical density and 3D datasets of the dosimetric measurements between the tissue-equivalent (TE) and TE/AuNps compartments. The interbatch and intrabatch variability and the postresponse stability of the dosimeters with AuNps were also assessed. Results: Radiation dose enhancement factors of 1.77 and 1.11 were obtained using 100-kV and 6-MV X-ray energies, respectively. The results of this study are in good agreement with previous observations; however, for the first time we provide direct experimental confirmation and 3D visualization of the radiosensitization effect of AuNps. The dosimeters with AuNps showed small (<3.5%) interbatch variability and negligible (<0.5%) intrabatch variability. Conclusions: The SMART dosimeter yields experimental insights concerning the spatial distributions and elevated dose in nanoparticle-enhanced radiation therapy, which cannot be performed using any of

  10. Application of Cerenkov radiation generated in plastic optical fibers for therapeutic photon beam dosimetry.

    PubMed

    Jang, Kyoung Won; Yagi, Takahiro; Pyeon, Cheol Ho; Yoo, Wook Jae; Shin, Sang Hun; Jeong, Chiyoung; Min, Byung Jun; Shin, Dongho; Misawa, Tsuyoshi; Lee, Bongsoo

    2013-02-01

    A Cerenkov fiber-optic dosimeter (CFOD) is fabricated using plastic optical fibers to measure Cerenkov radiation induced by a therapeutic photon beam. We measured the Cerenkov radiation generated in optical fibers in various irradiation conditions to evaluate the usability of Cerenkov radiation for a photon beam therapy dosimetry. As a results, the spectral peak of Cerenkov radiation was measured at a wavelength of 515 nm, and the intensity of Cerenkov radiation increased linearly with increasing irradiated length of the optical fiber. Also, the intensity peak of Cerenkov radiation was measured in the irradiation angle range of 30 to 40 deg. In the results of Monte Carlo N-particle transport code simulations, the relationship between fluxes of electrons over Cerenkov threshold energy and energy deposition of a 6 MV photon beam had a nearly linear trend. Finally, percentage depth doses for the 6 MV photon beam could be obtained using the CFOD and the results were compared with those of an ionization chamber. Here, the mean dose difference was about 0.6%. It is anticipated that the novel and simple CFOD can be effectively used for measuring depth doses in radiotherapy dosimetry.

  11. Effects of water on fingernail electron paramagnetic resonance dosimetry

    PubMed Central

    Zhang, Tengda; Zhao, Zhixin; Zhang, Haiying; Zhai, Hezheng; Ruan, Shuzhou; Jiao, Ling; Zhang, Wenyi

    2016-01-01

    Electron paramagnetic resonance (EPR) is a promising biodosimetric method, and fingernails are sensitive biomaterials to ionizing radiation. Therefore, kinetic energy released per unit mass (kerma) can be estimated by measuring the level of free radicals within fingernails, using EPR. However, to date this dosimetry has been deficient and insufficiently accurate. In the sampling processes and measurements, water plays a significant role. This paper discusses many effects of water on fingernail EPR dosimetry, including disturbance to EPR measurements and two different effects on the production of free radicals. Water that is unable to contact free radicals can promote the production of free radicals due to indirect ionizing effects. Therefore, varying water content within fingernails can lead to varying growth rates in the free radical concentration after irradiation—these two variables have a linear relationship, with a slope of 1.8143. Thus, EPR dosimetry needs to be adjusted according to the water content of the fingernails of an individual. When the free radicals are exposed to water, the eliminating effect will appear. Therefore, soaking fingernail pieces in water before irradiation, as many researchers have previously done, can cause estimation errors. In addition, nails need to be dehydrated before making accurately quantitative EPR measurements. PMID:27342838

  12. Preclinical radiation dosimetry for the novel SV2A radiotracer [18F]UCB-H

    PubMed Central

    2013-01-01

    Background [18F]UCB-H was developed as a novel radiotracer with a high affinity for synaptic vesicle protein 2A, the binding site for the antiepileptic levetiracetam. The objectives of this study were to evaluate the radiation dosimetry of [18F]UCB-H in a preclinical trial and to determine the maximum injectable dose according to guidelines for human biomedical research. The radiation dosimetry was derived by organ harvesting and dynamic micro positron emission tomography (PET) imaging in mice, and the results of both methods were compared. Methods Twenty-four male C57BL-6 mice were injected with 6.96 ± 0.81 MBq of [18F]UCB-H, and the biodistribution was determined by organ harvesting at 2, 5, 10, 30, 60, and 120 min (n = 4 for each time point). Dynamic microPET imaging was performed on five male C57BL-6 mice after the injection of 9.19 ± 3.40 MBq of [18F]UCB-H. A theoretical dynamic bladder model was applied to simulate urinary excretion. Human radiation dose estimates were derived from animal data using the International Commission on Radiological Protection 103 tissue weighting factors. Results Based on organ harvesting, the urinary bladder wall, liver and brain received the highest radiation dose with a resulting effective dose of 1.88E-02 mSv/MBq. Based on dynamic imaging an effective dose of 1.86E-02 mSv/MBq was calculated, with the urinary bladder wall and liver (brain was not in the imaging field of view) receiving the highest radiation. Conclusions This first preclinical dosimetry study of [18F]UCB-H showed that the tracer meets the standard criteria for radiation exposure in clinical studies. The dose-limiting organ based on US Food and Drug Administration (FDA) and European guidelines was the urinary bladder wall for FDA and the effective dose for Europe with a maximum injectable single dose of approximately 325 MBq was calculated. Although microPET imaging showed significant deviations from organ harvesting, the Pearson’s correlation coefficient

  13. ELECTRON PARAMAGNETIC RESONANCE DOSIMETRY FOR A LARGE-SCALE RADIATION INCIDENT

    PubMed Central

    Swartz, Harold M.; Flood, Ann Barry; Williams, Benjamin B.; Dong, Ruhong; Swarts, Steven G.; He, Xiaoming; Grinberg, Oleg; Sidabras, Jason; Demidenko, Eugene; Gui, Jiang; Gladstone, David J.; Jarvis, Lesley A.; Kmiec, Maciej M.; Kobayashi, Kyo; Lesniewski, Piotr N.; Marsh, Stephen D.P.; Matthews, Thomas P.; Nicolalde, Roberto J.; Pennington, Patrick M.; Raynolds, Timothy; Salikhov, Ildar; Wilcox, Dean E.; Zaki, Bassem I.

    2013-01-01

    With possibilities for radiation terrorism and intensified concerns about nuclear accidents since the recent Fukushima Daiichi event, the potential exposure of large numbers of individuals to radiation that could lead to acute clinical effects has become a major concern. For the medical community to cope with such an event and avoid overwhelming the medical care system, it is essential to identify not only individuals who have received clinically significant exposures and need medical intervention but also those who do not need treatment. The ability of electron paramagnetic resonance to measure radiation-induced paramagnetic species, which persist in certain tissues (e.g., teeth, fingernails, toenails, bone, and hair), has led this technique to become a prominent method for screening significantly exposed individuals. Although the technical requirements needed to develop this method for effective application in a radiation event are daunting, remarkable progress has been made. In collaboration with General Electric, and through funding committed by the Biomedical Advanced Research and Development Authority, electron paramagnetic resonance tooth dosimetry of the upper incisors is being developed to become a Food and Drug Administration-approved and manufacturable device designed to carry out triage for a threshold dose of 2 Gy. Significant progress has also been made in the development of electron paramagnetic resonance nail dosimetry based on measurements of nails in situ under point-of-care conditions, and in the near future this may become a second field-ready technique. Based on recent progress in measurements of nail clippings, we anticipate that this technique may be implementable at remotely located laboratories to provide additional information when the measurements of dose on site need to be supplemented. We conclude that electron paramagnetic resonance dosimetry is likely to be a useful part of triage for a large-scale radiation incident. PMID:22850230

  14. A semiconductor radiation imaging pixel detector for space radiation dosimetry.

    PubMed

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.

  15. Modeling radiation dosimetry to predict cognitive outcomes in pediatric patients with CNS embryonal tumors including medulloblastoma

    SciTech Connect

    Merchant, Thomas E. . E-mail: thomas.merchant@stjude.org; Kiehna, Erin N.; Li Chenghong; Shukla, Hemant; Sengupta, Saikat; Xiong Xiaoping; Gajjar, Amar; Mulhern, Raymond K.

    2006-05-01

    Purpose: Model the effects of radiation dosimetry on IQ among pediatric patients with central nervous system (CNS) tumors. Methods and Materials: Pediatric patients with CNS embryonal tumors (n = 39) were prospectively evaluated with serial cognitive testing, before and after treatment with postoperative, risk-adapted craniospinal irradiation (CSI) and conformal primary-site irradiation, followed by chemotherapy. Differential dose-volume data for 5 brain volumes (total brain, supratentorial brain, infratentorial brain, and left and right temporal lobes) were correlated with IQ after surgery and at follow-up by use of linear regression. Results: When the dose distribution was partitioned into 2 levels, both had a significantly negative effect on longitudinal IQ across all 5 brain volumes. When the dose distribution was partitioned into 3 levels (low, medium, and high), exposure to the supratentorial brain appeared to have the most significant impact. For most models, each Gy of exposure had a similar effect on IQ decline, regardless of dose level. Conclusions: Our results suggest that radiation dosimetry data from 5 brain volumes can be used to predict decline in longitudinal IQ. Despite measures to reduce radiation dose and treatment volume, the volume that receives the highest dose continues to have the greatest effect, which supports current volume-reduction efforts.

  16. Genetic and molecular dosimetry of HZE radiation (US-1 RADIAT)

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Schubert, W. W.; Kazarians, G. A.; Richards, G. F.; Benton, E. V.; Benton, E. R.; Henke, R. P.

    1995-01-01

    In order to estimate radiation exposure in space, experiments were conducted during the 1st International Microgravity Laboratory (IML-1) mission in order to isolate genetic changes in animal cells caused by cosmic rays. The space measurements were evaluated against results from synthetic cosmic rays produced by particle accelerators on the ground. The biological material used was the tiny soil nematode, Caenorhabditis elegans. The measurements were made by thermoluminescent detectors and plastic nuclear track detectors. The development and the chromosome mechanics in microgravity were studied, and the mutagenesis induced by radiation exposure was analyzed. The results showed that there are no obvious differences in the development, behavior and chromosome mechanics, as a function of gravity unloading (reproduction, self-fertilization and mating of males with hermaphrodites, gross anatomy, symmetry and gametogenesis, pairing, disjoining and recombination of chromosomes). A variety of mutants were isolated, and it was noted that mutants isolated from regions of identified high particles were more severely affected than those isolated by random screening. Linear energy transfer particles seem to favor large scale genetic lesions.

  17. TU-H-BRB-01: Physics and Dosimetry for Radiation Countermeasure Research.

    PubMed

    Bourland, J

    2016-06-01

    The US government has substantial research and development activities underway for medical countermeasures that will insure the long-term safety and survival of the country's population after unfortunate large-scale biological, chemical and radiological and nuclear events. Preparedness includes research and development of medical countermeasures to address radiation-induced cutaneous and internal injury from radiation and nuclear events as well as for minimizing radiation risks incurred during and after travel in space. Other important research and development efforts include the repurposing of countermeasures and development of radioprotectors and mitigators to improve the outcome of radiation treatment. Participating agencies include NIAID, BARDA, NCI, and NASA, with examples of research and development funding that includes the Centers for Medical Countermeasures against Radiation (CMCR) consortia (NIAID) and primary and sub-contracts with commercial entities (BARDA). Each of these programs requires substantial medical and health physics effort in collaboration with biology colleagues to provide a range of radiation sources, dosimetry instrumentation and assessment methods, and animal models for specific radiation-induced effects and injuries. Radiation countermeasure activities for government agencies will be reviewed, the importance of model development will be stressed, example radiation countermeasure research projects will be reviewed, and the roles for medical physicists will be discussed.

  18. GENII: The Hanford Environmental Radiation Dosimetry Software System: Volume 2, Users' manual: Hanford Environmental Dosimetry Upgrade Project

    SciTech Connect

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-11-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). The purpose of this coupled system of computer codes is to analyze environmental contamination of, air, water, or soil. This is accomplished by calculating radiation doses to individuals or populations. GENII is described in three volumes of documentation. This second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. The first volume describes the theoretical considerations of the system. The third volume is a Code Maintenance Manual for the user who requires knowledge of code detail. It includes logic diagrams, global dictionary, worksheets, example hand calculations, and listings of the code and its associated data libraries. 27 refs., 17 figs., 23 tabs.

  19. GENII (Generation II): The Hanford Environmental Radiation Dosimetry Software System: Volume 3, Code maintenance manual: Hanford Environmental Dosimetry Upgrade Project

    SciTech Connect

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-09-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). This coupled system of computer codes is intended for analysis of environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil, on through the calculation of radiation doses to individuals or populations. GENII is described in three volumes of documentation. This volume is a Code Maintenance Manual for the serious user, including code logic diagrams, global dictionary, worksheets to assist with hand calculations, and listings of the code and its associated data libraries. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. 7 figs., 5 tabs.

  20. New 3D Silicon detectors for dosimetry in Microbeam Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Lerch, M. L. F.; Dipuglia, A.; Cameron, M.; Fournier, P.; Davis, J.; Petasecca, M.; Cornelius, I.; Perevertaylo, V.; Rosenfeld, A. B.

    2017-01-01

    Microbeam Radiation Therapy (MRT) involves the use of a spatially fractionated beam of synchrotron generated X-rays to treat tumours. MRT treatment is delivered via an array of high dose ‘peaks’ separated by low dose ‘valleys’. A good Peak to Valley Dose Ratio (PVDR) is an important indicator of successful treatment outcomes. MRT dosimetry requires a radiation hard detector with high spatial resolution, large dynamic range, which is ideally real-time and tissue equivalent. We have developed a Silicon Strip Detector (SSD) and very recently, a new 3D MESA SSD to meet the very stringent requirements of MRT dosimetry. We have compared these detectors through the characterisation of the MRT radiation field at the Australian Synchrotron Imaging and Medical Beamline. The EPI SSD was able to measure the microbeam profiles and PVDRs, however the effective spatial resolution was limited by the detector alignment options available at the time. The geometry of the new 3D MESA SSD is less sensitive to this alignment restriction was able to measure the microbeam profiles within 2 μm of that expected. The 3D MESA SSD measured PVDRs were possibly affected by undesired and slow charge collection outside the sensitive volume and additional scattering from the device substrate.

  1. WE-AB-BRB-12: Nanoscintillator Fiber-Optic Detector System for Microbeam Radiation Therapy Dosimetry

    SciTech Connect

    Rivera, J; Dooley, J; Chang, S; Belley, M; Yoshizumi, T; Stanton, I; Langloss, B; Therien, M

    2015-06-15

    Purpose: Microbeam Radiation Therapy (MRT) is an experimental radiation therapy that has demonstrated a higher therapeutic ratio than conventional radiation therapy in animal studies. There are several roadblocks in translating the promising treatment technology to clinical application, one of which is the lack of a real-time, high-resolution dosimeter. Current clinical radiation detectors have poor spatial resolution and, as such, are unsuitable for measuring microbeams with submillimeter-scale widths. Although GafChromic film has high spatial resolution, it lacks the real-time dosimetry capability necessary for MRT preclinical research and potential clinical use. In this work we have demonstrated the feasibility of using a nanoscintillator fiber-optic detector (nanoFOD) system for real-time MRT dosimetry. Methods: A microplanar beam array is generated using a x-ray research irradiator and a custom-made, microbeam-forming collimator. The newest generation nanoFOD has an effective size of 70 µm in the measurement direction and was calibrated against a kV ion chamber (RadCal Accu-Pro) in open field geometry. We have written a computer script that performs automatic data collection with immediate background subtraction. A computer-controlled detector positioning stage is used to precisely measure the microbeam peak dose and beam profile by translating the stage during data collection. We test the new generation nanoFOD system, with increased active scintillation volume, against the previous generation system. Both raw and processed data are time-stamped and recorded to enable future post-processing. Results: The real-time microbeam dosimetry system worked as expected. The new generation dosimeter has approximately double the active volume compared to the previous generation resulting in over 900% increase in signal. The active volume of the dosimeter still provided the spatial resolution that meets the Nyquist criterion for our microbeam widths. Conclusion: We have

  2. OSL studies of alkali fluoroperovskite single crystals for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Raja, A.; Madhusoodanan, U.; Annalakshmi, O.; Ramasamy, P.

    2016-08-01

    This paper presents a preliminary investigation of the optically stimulated luminescence (OSL) of alkali fluoroperovskite single crystals for radiation dosimetry. The perovskite-like KMgF3, NaMgF3 and LiBaF3 polycrystalline compounds doped with rare earths (Eu2+ and Ce3+) were synthesized by standard solid state reaction technique. Phase purity of the synthesized compounds was analyzed by powder X-ray diffraction technique. Single crystals of these compounds have been grown from melt by using vertical Bridgman-Stockbarger method. The Linearly Modulated OSL and Continuous Wave OSL measurements were performed in these alkali fluorides using blue light stimulation. Thermal bleaching experiments have shown that OSL signals originate from traps which are unstable near 200 °C, thus proving the suitability of the signals for dosimetric purposes. Optical bleaching measurements were also performed for these fluoride samples. OSL dose response was studied as a function of dose which was found to increase with beta dose.

  3. Designing and Dosimetry of a Shield for Photon Fields of Radiation Therapy in Oral Cavity Cancer.

    PubMed

    Jabbari, Keyvan; Senobari, Somayeh; Roayaei, Mahnaz; Rostampour, Masoumeh

    2015-01-01

    The cancer of oral cavity is related to lesions of mucous membrane of tongue and gum that can be treated with radiation therapy. A lateral photon field can be used to treat this kind of tumor, which has a side-effect on normal tissue in the opposite side of the oral cavity. In this study the dosimetric effect of the various shields in oral cavity is evaluated. In this study, a special phantom similar to the structure of oral cavity with capability of film dosimetry was designed and constructed. The various shield slabs were made of five materials: Lead, Plexiglas, Acrylic resin, Silicon and Plaster. For irradiation, Cobalt 60 (60Co) and 6 MV photon beams were used. The film dosimetry before and after the shield was performed using GAFCHROMIC EBT2 films. The film before the shield measures the magnitude of backscattering radiation from the shield. The prescribed dose was 150 cGy. Results showed that 3 cm of the lead in both energies had the maximum absorption of radiation. The absorbed dose to opposite side of shield for 6 MV photon beams and 60Co were 21 and 32 cGy, respectively. The minimum attenuation on radiation was observed in silicon shield for which the dose of opposite side were 116 and 147 cGy for 6 MV and 60Co respectively. The maximum backscattered dose was measured 177 cGy and 219 cGy using 3 cm thickness of lead, which was quite considerable. The minimum backscattering where for acrylic resin 101 and 118 cGy for 6 MV and cobalt. In this study, it was concluded that the amount of backscattering for 3 cm Lead shield is quite considerable and increases the dose significantly. A composite layer of shield with 1-2 cm lead and 1 cm acrylic resin can have the protective effect and low backscattering radiation at the same time.

  4. Designing and Dosimetry of a Shield for Photon Fields of Radiation Therapy in Oral Cavity Cancer

    PubMed Central

    Jabbari, Keyvan; Senobari, Somayeh; Roayaei, Mahnaz; Rostampour, Masoumeh

    2015-01-01

    The cancer of oral cavity is related to lesions of mucous membrane of tongue and gum that can be treated with radiation therapy. A lateral photon field can be used to treat this kind of tumor, which has a side-effect on normal tissue in the opposite side of the oral cavity. In this study the dosimetric effect of the various shields in oral cavity is evaluated. In this study, a special phantom similar to the structure of oral cavity with capability of film dosimetry was designed and constructed. The various shield slabs were made of five materials: Lead, Plexiglas, Acrylic resin, Silicon and Plaster. For irradiation, Cobalt 60 (60Co) and 6 MV photon beams were used. The film dosimetry before and after the shield was performed using GAFCHROMIC EBT2 films. The film before the shield measures the magnitude of backscattering radiation from the shield. The prescribed dose was 150 cGy. Results showed that 3 cm of the lead in both energies had the maximum absorption of radiation. The absorbed dose to opposite side of shield for 6 MV photon beams and 60Co were 21 and 32 cGy, respectively. The minimum attenuation on radiation was observed in silicon shield for which the dose of opposite side were 116 and 147 cGy for 6 MV and 60Co respectively. The maximum backscattered dose was measured 177 cGy and 219 cGy using 3 cm thickness of lead, which was quite considerable. The minimum backscattering where for acrylic resin 101 and 118 cGy for 6 MV and cobalt. In this study, it was concluded that the amount of backscattering for 3 cm Lead shield is quite considerable and increases the dose significantly. A composite layer of shield with 1–2 cm lead and 1 cm acrylic resin can have the protective effect and low backscattering radiation at the same time. PMID:26120570

  5. Micro-Mini & Nano-Dosimetry & Innovative Technologies in Radiation Therapy (MMND&ITRO2016)

    NASA Astrophysics Data System (ADS)

    2017-01-01

    The biennial MMND (formerly MMD) - IPCT workshops, founded in collaboration with Memorial Sloan Kettering Cancer Center (MSKCC) in 2001, has become an important international multidisciplinary forum for the discussion of advanced dosimetric technology for radiation therapy quality assurance (QA) and space science, as well as advanced technologies for prostate cancer treatment. In more recent years, the interests of participants and the scope of the workshops have extended far beyond prostate cancer treatment alone to include all aspects of radiation therapy, radiation science and technology. We therefore decided to change the name in 2016 to Innovative Technologies in Radiation Oncology (ITRO). MMND ITRO 2016 was held on 26-31 January, 2016 at the beautiful Wrest Point Hotel in Hobart, Tasmania and attracted an outstanding international faculty and nearly 200 delegates from 18 countries (http://mmnditro2016.com/) The MMND 2016 program continued to cover advanced medical physics aspects of IMRT, IGRT, VMAT, SBRT, MRI LINAC, innovative brachytherapy, and synchrotron MRT. The demand for sophisticated real time and high temporal and spatial resolution (down to the submillimetre scale) dosimetry methods and instrumentation for end–to-end QA for these radiotherapy technologies is increasing. Special attention was paid to the contribution of advanced imaging and the application of nanoscience to the recent improvements in imaging and radiotherapy. The last decade has seen great progress in charged particle therapy technology which has spread throughout the world and attracted strong current interest in Australia. This demands a better understanding of the fundamental aspects of ion interactions with biological tissue and the relative biological effectiveness (RBE) of protons and heavy ions. The further development of computational and experimental micro-and nano-dosimetry for ions has important application in radiobiology based treatment planning and space radiation

  6. Three-dimensional radiation dosimetry for gamma knife using a gel dosimeter

    NASA Astrophysics Data System (ADS)

    Hussain, Kazi Muazzam

    The use of three-dimensional radiation dosimetry has been limited. With the use of water phantoms and ionization chambers, it has been possible to determine three dimensional dose distributions on a gross scale for cobalt 60 and linear accelerator sources. This method has been somewhat useful for traditional radiotherapy. There is, however, a need for more precise dosimetry, particularly with stereotactic radiosurgery. Most gamma knife facilities use either thermoluminescant dosimetry or film, neither of which provides three dimensional dose distributions. To overcome this limitation, we have developed a gel dosimetry system that relies on the production of a ferric ion-xylenol orange colored complex. This work demonstrates the use of laser light and a detector to quantify radiation-induced colorimetric changes in absorbance for the gel dosimeter. The absorbance has been reconstructed by the back projection technique to demonstrate the applicability of the gel dosimeter to gamma knife 3D-dose distributions.

  7. Radiation hardness of the storage phosphor europium doped potassium chloride for radiation therapy dosimetry

    SciTech Connect

    Driewer, Joseph P.; Chen, Haijian; Osvet, Andres; Low, Daniel A.; Li, H. Harold

    2011-08-15

    Purpose: An important property of a reusable dosimeter is its radiation hardness, that is, its ability to retain its dosimetric merits after irradiation. The radiation hardness of europium doped potassium chloride (KCl:Eu{sup 2+}), a storage phosphor material recently proposed for radiation therapy dosimetry, is examined in this study. Methods: Pellet-style KCl:Eu{sup 2+} dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study. The pellets were exposed by a 6 MV photon beam or in a high dose rate {sup 137}Cs irradiator. Macroscopic properties, such as radiation sensitivity, dose response linearity, and signal stability, were studied with a laboratory photostimulated luminescence (PSL) readout system. Since phosphor performance is related to the state of the storage centers and the activator, Eu{sup 2+}, in the host lattice, spectroscopic and temporal measurements were carried out in order to explore radiation-induced changes at the microscopic level. Results: KCl:Eu{sup 2+} dosimeters retained approximately 90% of their initial signal strength after a 5000 Gy dose history. Dose response was initially supralinear over the dose range of 100-700 cGy but became linear after 60 Gy. Linearity did not change significantly in the 0-5000 Gy dose history spanned in this study. Annealing high dose history chips resulted in a return of supralinearity and a recovery of sensitivity. There were no significant changes in the PSL stimulation spectra, PSL emission spectra, photoluminescence spectra, or luminescence lifetime, indicating that the PSL signal process remains intact after irradiation but at a reduced efficiency due to reparable radiation-induced perturbations in the crystal lattice. Conclusions: Systematic studies of KCl:Eu{sup 2+} material are important for understanding how the material can be optimized for radiation therapy dosimetry purposes. The data presented here indicate that KCl:Eu{sup 2+} exhibits strong radiation hardness and

  8. SU-D-213-06: Dosimetry of Modulated Electron Radiation Therapy Using Fricke Gel Dosimeter

    SciTech Connect

    Gawad, M Abdel; Elgohary, M; Hassaan, M; Emam, M; Desouky, O; Eldib, A; Ma, C

    2015-06-15

    Purpose: Modulated electron radiation therapy (MERT) has been proposed as an effective modality for treatment of superficial targets. MERT utilizes multiple beams of different energies which are intensity modulated to deliver optimized dose distribution. Energy independent dosimeters are thus needed for quantitative evaluations of MERT dose distributions and measurements of absolute doses delivered to patients. Thus in the current work we study the feasibility of Fricke gel dosimeters in MERT dosimetry. Methods: Batches of radiation sensitive Fricke gel is fabricated and poured into polymethyl methacrylate cuvettes. The samples were irradiated in solid water phantom and a thick layer of bolus was used as a buildup. A spectrophotometer system was used for measuring the color changes (the absorbance) before and after irradiation and then we calculate net absorbance. We constructed calibration curves to relate the measured absorbance in terms of absorbed dose for all available electron energies. Dosimetric measurements were performed for mixed electron beam delivery and we also performed measurement for segmented field delivery with the dosimeter placed at the junction of two adjacent electron beams of different energies. Dose measured by our gel dosimetry is compared to that calculation from our precise treatment planning system. We also initiated a Monte Carlo study to evaluate the water equivalence of our dosimeters. MCBEAM and MCSIM codes were used for treatment head simulation and phantom dose calculation. PDDs and profiles were calculated for electron beams incident on a phantom designed with 1cm slab of Fricke gel. Results: The calibration curves showed no observed energy dependence with all studied electron beam energies. Good agreement was obtained between dose calculated and that obtained by gel dosimetry. Monte Carlo results illustrated the tissue equivalency of our Gel dosimeters. Conclusion: Fricke Gel dosimeters represent a good option for the dosimetric

  9. (Biological dosimetry)

    SciTech Connect

    Sega, G.A.

    1990-11-06

    The traveler participated in an International Symposium on Trends in Biological Dosimetry and presented an invited paper entitled, Adducts in sperm protamine and DNA vs mutation frequency.'' The purpose of the Symposium was to examine the applicability of new methods to study quantitatively the effects of xenobiotic agents (radiation and chemicals) on molecular, cellular and organ systems, with special emphasis on human biological dosimetry. The general areas covered at the meeting included studies on parent compounds and metabolites; protein adducts; DNA adducts; gene mutations; cytogenetic end-points and reproductive methods.

  10. Workshop report on atomic bomb dosimetry-residual radiation exposure: recent research and suggestions for future studies.

    PubMed

    Kerr, George D; Egbert, Stephen D; Al-Nabulsi, Isaf; Beck, Harold L; Cullings, Harry M; Endo, Satoru; Hoshi, Masaharu; Imanaka, Tetsuji; Kaul, Dean C; Maruyama, Satoshi; Reeves, Glen I; Ruehm, Werner; Sakaguchi, Aya; Simon, Steven L; Spriggs, Gregory D; Stram, Daniel O; Tonda, Tetsuji; Weiss, Joseph F; Weitz, Ronald L; Young, Robert W

    2013-08-01

    There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewed at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.

  11. Workshop Report on Atomic Bomb Dosimetry--Residual Radiation Exposure: Recent Research and Suggestions for Future Studies

    SciTech Connect

    2013-06-06

    There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewed at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.

  12. Developing a high performance superoxide dismutase based electrochemical biosensor for radiation dosimetry of thallium 201

    NASA Astrophysics Data System (ADS)

    Salem, Fatemeh; Tavakoli, Hassan; Sadeghi, Mahdi; Riazi, Abbas

    2014-09-01

    To develop a new biosensor for measurement of superoxide free radical generated in radiolysis reaction, three combinations of SOD-based biosensors including Au/Cys/SOD, Au/GNP/Cys/SOD and Au/GNP/Cys/SOD/Chit were fabricated. In these biosensors Au, GNP, Cys, SOD and Chit represent gold electrode, gold nano-particles, cysteine, superoxide dismutase and chitosan, respectively. For biosensors fabrication, SOD, GNP, Cys and Chit were immobilized at the surface of gold electrode. Cyclic voltametry and chronoamperometry were utilized for evaluation of biosensors performances. The results showed that Au/GNP/Cys/SOD/Chit has significantly better responses compared to Au/Cys/SOD and Au/GNP/Cys/SOD. As a result, this biosensor was selected for dosimetry of ionizing radiation. For this purpose, thallium 201 at different volumes was added to buffer phosphate solution in electrochemical cell. To obtain analytical parameters of Au/GNP/Cys/SOD/Chit, calibration curve was sketched. The results showed that this biosensor has a linear response in the range from 0.5 to 4 Gy, detection limit 0.03 μM. It also has a proper sensitivity (0.6038 nA/Gy), suitable long term stability and cost effective as well as high function for radiation dosimetry.

  13. Dosimetry in radiation processing in the U.S.S.R.

    NASA Astrophysics Data System (ADS)

    Generalova, V. V.; Gurskii, M. N.; Pikaev, A. K.

    The paper is devoted to the methods of dosimetry used in radiation processing in the USSR. The information on film, solid state and liquid dosimeters is presented. The special attention is paid to the dosimeters that are lot produced. The examples of the application of dosimeters in different radiation technological processes are described. The aspects of standartization of dosimetric measurements are discussed.

  14. Thermoluminescence characteristics of Ge-doped optical fibers with different dimensions for radiation dosimetry.

    PubMed

    Begum, Mahfuza; Rahman, A K M Mizanur; Abdul-Rashid, H A; Yusoff, Z; Begum, Mahbuba; Mat-Sharif, K A; Amin, Y M; Bradley, D A

    2015-06-01

    Important thermoluminescence (TL) properties of five (5) different core sizes Ge-doped optical fibers have been studied to develop new TL material with better response. These are drawn from same preform applying different speed and tension during drawing phase to produce Ge-doped optical fibers with five (5) different core sizes. The results of the investigations are also compared with most commonly used standard TLD-100 chips (LiF:Mg,Ti) and commercial multimode Ge-doped optical fiber (Yangtze Optical Fiber, China). Scanning Electron Microscope (SEM) and EDX analysis of the fibers are also performed to map Ge distribution across the deposited region. Standard Gamma radiation source in Secondary Standard Dosimetry Lab (SSDL) was used for irradiation covering dose range from 1Gy to 10Gy. The essential dosimetric parameters that have been studied are TL linearity, reproducibility and fading. Prior to irradiation all samples ∼0.5cm length are annealed at temperature of 400°C for 1h period to standardize their sensitivities and background. Standard TLD-100 chips are also annealed for 1h at 400°C and subsequently 2h at 100°C to yield the highest sensitivity. TL responses of these fibers show linearity over a wide gamma radiation dose that is an important property for radiation dosimetry. Among all fibers used in this study, 100μm core diameter fiber provides highest response that is 2.6 times than that of smallest core (20μm core) optical fiber. These fiber-samples demonstrate better response than commercial multi-mode optical fiber and also provide low degree of fading about 20% over a period of fifteen days for gamma radiation. Effective atomic number (Zeff) is found in the range (13.25-13.69) which is higher than soft tissue (7.5) however within the range of human-bone (11.6-13.8). All the fibers can also be re-used several times as a detector after annealing. TL properties of the Ge-doped optical fibers indicate promising applications in ionizing radiation

  15. Acute radiation disease and biological dosimetry in 1993.

    PubMed

    Vorobiev, A I

    1997-01-01

    Mankind is at risk for accidental exposure to ionizing radiation. The experience in evaluating and treating victims of radiation exposure is briefly reviewed based upon accidents occurring over the past 25 years. Individual cases of acute toxicities to the skin, gastrointestinal tract, liver and bone marrow are presented. Biodosimetry (utilizing chromosome analysis of peripheral blood lymphocytes and bone marrow and electron spin resonance spectrometry of dental enamel) has been utilized in radiation accidents to assess individual dose. Variability in the dose of ionizing radiation received is typical among the population affected by the Chernobyl accident. Whereas the acute radiation syndrome resulting in a high mortality has been well-documented, little information is available regarding the effects of chronic, low-level exposure from the Chernobyl accident.

  16. Radiation dosimetry predicts IQ after conformal radiation therapy in pediatric patients with localized ependymoma

    SciTech Connect

    Merchant, Thomas E. . E-mail: thomas.merchant@stjude.org; Kiehna, Erin N.; Li Chenghong; Xiong Xiaoping; Mulhern, Raymond K.

    2005-12-01

    Purpose: To assess the effects of radiation dose-volume distribution on the trajectory of IQ development after conformal radiation therapy (CRT) in pediatric patients with ependymoma. Methods and Materials: The study included 88 patients (median age, 2.8 years {+-} 4.5 years) with localized ependymoma who received CRT (54-59.4 Gy) that used a 1-cm margin on the postoperative tumor bed. Patients were evaluated with tests that included IQ measures at baseline (before CRT) and at 6, 12, 24, 36, 48, and 60 months. Differential dose-volume histograms (DVH) were derived for total-brain, supratentorial-brain, and right and left temporal-lobe volumes. The data were partitioned into three dose intervals and integrated to create variables that represent the fractional volume that received dose over the specified intervals (e.g., V{sub 0-20Gy}, V{sub 20-40Gy}, V{sub 40-65Gy}) and modeled with clinical variables to develop a regression equation to estimate IQ after CRT. Results: A total of 327 IQ tests were performed in 66 patients with infratentorial tumors and 20 with supratentorial tumors. The median follow-up was 29.4 months. For all patients, IQ was best estimated by age (years) at CRT; percent volume of the supratentorial brain that received doses between 0 and 20 Gy, 20 and 40 Gy, and 40 and 65 Gy; and time (months) after CRT. Age contributed significantly to the intercept (p > 0.0001), and the dose-volume coefficients were statistically significant (V{sub 0-20Gy}, p = 0.01; V{sub 20-40Gy}, p < 0.001; V{sub 40-65Gy}, p = 0.04). A similar model was developed exclusively for patients with infratentorial tumors but not supratentorial tumors. Conclusion: Radiation dosimetry can be used to predict IQ after CRT in patients with localized ependymoma. The specificity of models may be enhanced by grouping according to tumor location.

  17. Internal radiation dosimetry of orally administered radiotracers for the assessment of gastrointestinal motility.

    PubMed

    Yeong, Chai-Hong; Ng, Kwan-Hoong; Abdullah, Basri Johan Jeet; Chung, Lip-Yong; Goh, Khean-Lee; Perkins, Alan Christopher

    2014-12-01

    Radionuclide imaging using (111)In, (99m)Tc and (153)Sm is commonly undertaken for the clinical investigation of gastric emptying, intestinal motility and whole gut transit. However the documented evidence concerning internal radiation dosimetry for such studies is not readily available. This communication documents the internal radiation dosimetry for whole gastrointestinal transit studies using (111)In, (99m)Tc and (153)Sm labeled formulations. The findings were compared to the diagnostic reference levels recommended by the United Kingdom Administration of Radioactive Substances Advisory Committee, for gastrointestinal transit studies.

  18. Intrinsic Dosimetry: Elemental Composition Effects on the Thermoluminescence of Commercial Borosilicate Glass

    SciTech Connect

    Richard A. Clark; J. David Robertson; Jon M. Schwantes

    2013-12-01

    Intrinsic dosimetry is the method of measuring total absorbed dose received by the walls of a container holding radioactive material. By considering this dose in tandem with the physical characteristics of the radioactive material housed within the container, this method can provide enhanced pathway information for interdicted radioactive samples. Thermoluminescence (TL) dosimetry was used to measure ionizing radiation dose effects on stock borosilicate glass. Differences in TL glow curve shape and intensity were observed for glasses from different geographical origins. The different TL signatures strongly correlated with the concentration of alkaline earth metals and the ratio of sodium to the total amount of alkali metal present in the borosilicate glass.

  19. Intrinsic Dosimetry. Elemental Composition Effects on the Thermoluminescence of Commercial Borosilicate Glass

    SciTech Connect

    Clark, Richard A.; Robertson, J. David; Schwantes, Jon M.

    2013-07-05

    Intrinsic dosimetry is the method of measuring total absorbed dose received by the walls of a container holding radioactive material. By considering this dose in tandem with the physical characteristics of the radioactive material housed within the container, this method can provide enhanced pathway information for interdicted radioactive samples. Thermoluminescence (TL) dosimetry was used to measure ionizing radiation dose effects on stock borosilicate glass. Differences in TL glow curve shape and intensity were observed for glasses from different geographical origins. The different TL signatures strongly correlated with the concentration of alkaline earth metals and the ratio of sodium to the total amount of alkali metal present in the borosilicate glass.

  20. The Application of FLUKA to Dosimetry and Radiation Therapy

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Andersen, Victor; Pinsky, Lawrence; Ferrari, Alfredo; Battistoni, Giusenni

    2005-01-01

    Monte Carlo transport codes like FLUKA are useful for many purposes, and one of those is the simulation of the effects of radiation traversing the human body. In particular, radiation has been used in cancer therapy for a long time, and recently this has been extended to include heavy ion particle beams. The advent of this particular type of therapy has led to the need for increased capabilities in the transport codes used to simulate the detailed nature of the treatment doses to the Y O U S tissues that are encountered. This capability is also of interest to NASA because of the nature of the radiation environment in space.[l] While in space, the crew members bodies are continually being traversed by virtually all forms of radiation. In assessing the risk that this exposure causes, heavy ions are of primary importance. These arise both from the primary external space radiation itself, as well as fragments that result from interactions during the traversal of that radiation through any intervening material including intervening body tissue itself. Thus the capability to characterize the details of the radiation field accurately within a human body subjected to such external 'beams" is of critical importance.

  1. Fourth conference on radiation protection and dosimetry: Proceedings, program, and abstracts

    SciTech Connect

    Casson, W.H.; Thein, C.M.; Bogard, J.S.

    1994-10-01

    This Conference is the fourth in a series of conferences organized by staff members of Oak Ridge National Laboratory in an effort to improve communication in the field of radiation protection and dosimetry. Scientists, regulators, managers, professionals, technologists, and vendors from the United States and countries around the world have taken advantage of this opportunity to meet with their contemporaries and peers in order to exchange information and ideas. The program includes over 100 papers in 9 sessions, plus an additional session for works in progress. Papers are presented in external dosimetry, internal dosimetry, radiation protection programs and assessments, developments in instrumentation and materials, environmental and medical applications, and on topics related to standards, accreditation, and calibration. Individual papers are indexed separately on EDB.

  2. The history and principles of chemical dosimetry for 3-D radiation fields: gels, polymers and plastics.

    PubMed

    Doran, Simon J

    2009-03-01

    Over recent decades, modern protocols of external beam radiotherapy have been developed that involve very steep dose gradients and are thus extremely sensitive to errors in treatment delivery. A recent credentialling study by the Radiological Physics Center at the MD Anderson Cancer Center (Texas, USA) has noted potentially significant inaccuracies in test treatments at a variety of institutions. 3-D radiation dosimetry (often referred to as "gel dosimetry") may have an important role in commissioning new treatment protocols, to help prevent this type of error. This article discusses the various techniques of 3-D radiation dosimetry, with a focus on the types of radiosensitive samples used and on the optical computed tomography readout technique.

  3. PHYSICAL FACTORS AND DOSIMETRY IN THE MARSHALL ISLAND RADIATION EXPOSURES

    DTIC Science & Technology

    FALLOUT, *RADIATION HAZARDS, *RADIOCHEMISTRY, DOSE RATE, PERSONNEL, RADIATION, RADIATION MONITORS, DOSAGE , EXPOSURE (PHYSIOLOGY), EXPOSURE METERS, EXPERIMENTAL DATA, ENERGY, TIME, GAMMA RAY SPECTROSCOPY, BETA DECAY, PHOTONS.

  4. Using polyvinyl chloride dyed with bromocresol purple in radiation dosimetry.

    PubMed

    Kattan, Munzer; al Kassiri, Haroun; Daher, Yarob

    2011-02-01

    Polyvinyl chloride (PVC) dyed with bromocresol purple was investigated as a high-dose radiation dosimeter. The absorbance at 417 nm depends linearly on the dose below 50 kGy. The response depends neither on dose rate nor on the irradiation temperature. The effects of post-irradiation storage in the dark and in indirect sunlight are also discussed.

  5. EPR dosimetry in a mixed neutron and gamma radiation field.

    PubMed

    Trompier, F; Fattibene, P; Tikunov, D; Bartolotta, A; Carosi, A; Doca, M C

    2004-01-01

    Suitability of Electron Paramagnetic Resonance (EPR) spectroscopy for criticality dosimetry was evaluated for tooth enamel, mannose and alanine pellets during the 'international intercomparison of criticality dosimetry techniques' at the SILENE reactor held in Valduc in June 2002, France. These three materials were irradiated in neutron and gamma-ray fields of various relative intensities and spectral distributions in order to evaluate their neutron sensitivity. The neutron response was found to be around 10% for tooth enamel, 45% for mannose and between 40 and 90% for alanine pellets according their type. According to the IAEA recommendations on the early estimate of criticality accident absorbed dose, analyzed results show the EPR potentiality and complementarity with regular criticality techniques.

  6. Micro-Fabricated Solid-State Radiation Detectors for Active Personal Dosimetry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Chen, Liang-Yu

    2007-01-01

    Active radiation dosimetry is important to human health and equipment functionality for space applications outside the protective environment of a space station or vehicle. This is especially true for long duration missions to the moon, where the lack of a magnetic field offers no protection from space radiation to those on extravehicular activities. In order to improve functionality, durability and reliability of radiation dosimeters for future NASA lunar missions, single crystal silicon carbide devices and scintillating fiber detectors are currently being investigated for applications in advanced extravehicular systems. For many years, NASA Glenn Research Center has led significant efforts in silicon carbide semiconductor technology research and instrumentation research for sensor applications under extreme conditions. This report summarizes the technical progress and accomplishments toward characterization of radiation-sensing components for the recommendation of their fitness for advanced dosimetry development.

  7. Development of a geometry-based respiratory motion–simulating patient model for radiation treatment dosimetry

    PubMed Central

    Zhang, Juying; Xu, X. George; Shi, Chengyu; Fuss, Martin

    2009-01-01

    Temporal and spatial anatomic changes caused by respiration during radiation treatment delivery can lead to discrepancies between prescribed and actual radiation doses. The present paper documents a study to construct a respiratory-motion-simulating, four-dimensional (4D) anatomic and dosimetry model for the study of the dosimetric effects of organ motion for various radiation treatment plans and delivery strategies. The non-uniform rational B-splines (NURBS) method has already been used to reconstruct a three-dimensional (3D) VIP-Man (“visible photographic man”) model that can reflect the deformation of organs during respiration by using time-dependent equations to manipulate surface control points. The EGS4 (Electron Gamma Shower, version 4) Monte Carlo code is then used to apply the 4D model to dose simulation. We simulated two radiation therapy delivery scenarios: gating treatment and 4D image-guided treatment. For each delivery scenario, we developed one conformal plan and one intensity-modulated radiation therapy plan. A lesion in the left lung was modeled to investigate the effect of respiratory motion on radiation dose distributions. Based on target dose–volume histograms, the importance of using accurate gating to improve the dose distribution is demonstrated. The results also suggest that, during 4D image-guided treatment delivery, monitoring of the patient’s breathing pattern is critical. This study demonstrates the potential of using a “standard” motion-simulating patient model for 4D treatment planning and motion management. PMID:18449164

  8. The PUR Experiment on the EXPOSE-R facility: biological dosimetry of solar extraterrestrial UV radiation

    NASA Astrophysics Data System (ADS)

    Bérces, A.; Egyeki, M.; Fekete, A.; Horneck, G.; Kovács, G.; Panitz, C.

    2015-01-01

    The aim of our experiment Phage and Uracil Response was to extend the use of bacteriophage T7 and uracil biological dosimeters for measuring the biologically effective ultraviolet (UV) dose in the harsh extraterrestrial radiation conditions. The biological detectors were exposed in vacuum-tightly cases in the European Space Agency (ESA) astrobiological exposure facility attached to the external platform of Zvezda (EXPOSE-R). EXPOSE-R took off to the International Space Station (ISS) in November 2008 and was installed on the External platform of the Russian module Zvezda of the ISS in March 2009. Our goal was to determine the dose-effect relation for the formation of photoproducts (i.e. damage to phage DNA and uracil, respectively). The extraterrestrial solar UV radiation ranges over the whole spectrum from vacuum-UV (λ<200 nm) to UVA (315 nm<λ<400 nm), which causes photolesions (photoproducts) in the nucleic acids/their components either by photoionization or excitation. However, these wavelengths cause not only photolesions but in a wavelength-dependent efficiency the reversion of some photolesions, too. Our biological detectors measured in situ conditions the resultant of both reactions induced by the extraterrestrial UV radiation. From this aspect the role of the photoreversion in the extension of the biological UV dosimetry are discussed.

  9. On the Retirement of E.P. Goldfinch, Founder of Radiation Protection Dosimetry

    SciTech Connect

    McDonald, Joseph C.; Horowitz, Yigal S.

    2004-08-01

    This special issue of Radiation Protection Dosimetry commemorates the many years of service Eddie has dedicated to the international radiation protection community. Beginning with its first issue in 1981, Eddie led RPD to its current prominence with a guiding hand and Solomon-like wisdom, coupled with keen common sense which will be sorely missed. But, there is no doubt that the journal he created will continue to flourish in the foreseeable future.

  10. Biological dosimetry of ionizing radiation: Evaluation of the dose with cytogenetic methodologies by the construction of calibration curves

    NASA Astrophysics Data System (ADS)

    Zafiropoulos, Demetre; Facco, E.; Sarchiapone, Lucia

    2016-09-01

    In case of a radiation accident, it is well known that in the absence of physical dosimetry biological dosimetry based on cytogenetic methods is a unique tool to estimate individual absorbed dose. Moreover, even when physical dosimetry indicates an overexposure, scoring chromosome aberrations (dicentrics and rings) in human peripheral blood lymphocytes (PBLs) at metaphase is presently the most widely used method to confirm dose assessment. The analysis of dicentrics and rings in PBLs after Giemsa staining of metaphase cells is considered the most valid assay for radiation injury. This work shows that applying the fluorescence in situ hybridization (FISH) technique, using telomeric/centromeric peptide nucleic acid (PNA) probes in metaphase chromosomes for radiation dosimetry, could become a fast scoring, reliable and precise method for biological dosimetry after accidental radiation exposures. In both in vitro methods described above, lymphocyte stimulation is needed, and this limits the application in radiation emergency medicine where speed is considered to be a high priority. Using premature chromosome condensation (PCC), irradiated human PBLs (non-stimulated) were fused with mitotic CHO cells, and the yield of excess PCC fragments in Giemsa stained cells was scored. To score dicentrics and rings under PCC conditions, the necessary centromere and telomere detection of the chromosomes was obtained using FISH and specific PNA probes. Of course, a prerequisite for dose assessment in all cases is a dose-effect calibration curve. This work illustrates the various methods used; dose response calibration curves, with 95% confidence limits used to estimate dose uncertainties, have been constructed for conventional metaphase analysis and FISH. We also compare the dose-response curve constructed after scoring of dicentrics and rings using PCC combined with FISH and PNA probes. Also reported are dose response curves showing scored dicentrics and rings per cell, combining

  11. PREFACE: 7th International Conference on 3D Radiation Dosimetry (IC3DDose)

    NASA Astrophysics Data System (ADS)

    Thwaites, David; Baldock, Clive

    2013-06-01

    IC3DDose 2013, the 7th International Conference on 3D Radiation Dosimetry held in Sydney, Australia from 4-8 November 2012, grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The aim of the first workshop was to bring together individuals, both researchers and users, with an interest in 3D radiation dosimetry techniques, with a mix of presentations from basic science to clinical applications, which has remained an objective for all of the meetings. One rationale of DosGel99 was stated as supporting the increasing clinical implementation of gel dosimetry, as the technique appeared, at that time, to be leaving the laboratories of gel dosimetry enthusiasts and entering clinical practice. Clearly by labelling the first workshop as the 1st, there was a vision of a continuing series, which has been fulfilled. On the other hand, the expectation of widespread clinical use of gel dosimetry has perhaps not been what was hoped for and anticipated. Nevertheless the rapidly increasing demand for advanced high-precision 3D radiotherapy technology and techniques has continued apace. The need for practical and accurate 3D dosimetry methods for development and quality assurance has only increased. By the 6th meeting, held in South Carolina in 2010, the Conference Scientific Committee recognised the wider developments in 3D systems and methods and decided to widen the scope, whilst keeping the same span from basic science to applications. This was signalled by a change of name from 'Dosgel' to 'IC3DDose', a name that has continued to this latest conference. The conference objectives were: to enhance the quality and accuracy of

  12. Optically stimulated luminescence dosimetry performance of natural Brazilian topaz exposed to beta radiation.

    PubMed

    Bernal, R; Souza, D N; Valerio, M E G; Cruz-Vázquez, C; Barboza-Flores, M

    2006-01-01

    Optically stimulated luminescence (OSL) has become the technique of choice in many areas of dosimetry. Natural materials like topaz are available in large quantities in Brazil and other countries. They have been studied to investigate the possibility of use its thermoluminescence (TL) properties for dosimetric applications. In this work, we investigate the possibility of utilising the OSL properties of natural Brazilian topaz in dosimetry. Bulk topaz samples were exposed to doses up to 100 Gy of beta radiation and the integrated OSL as a function of the dose showed linear behaviour. The fading occurs in the first 20 min after irradiation but it is <6% of the integrated OSL measured shortly after exposure. We conclude that natural colourless topaz is a very suitable phosphor for OSL dosimetry.

  13. What happens when spins meet for ionizing radiation dosimetry?

    NASA Astrophysics Data System (ADS)

    Pavoni, Juliana F.; Neves-Junior, Wellington F. P.; Baffa, Oswaldo

    2016-07-01

    Electron spin resonance (ESR) and magnetic resonance imaging (MRI) can be used to measure radiation dose deposited in different milieu through its effects. Radiation can break chemical bonds and if they produce stable free radicals, ESR can measure their concentration through their spins and a dose can be inferred. Ionizing radiation can also promote polymerization and in this case proton relaxation times can be measured and an image weighed by T2 can be produced giving spatial information about dose. A review of the basics of these applications is presented concluding with an end-to-end test using a composite Gel-Alanine phantom to validate 3-dimensionally dose distribution delivered in a simulation of Volume Modulated Arch Therapy on the simultaneous treatment of multiple brain metastases. The results obtained with the gel and alanine dosimeters are consistent with the expected by the treatment planning system, showing the potential of this multidosimetric approach and validating dosimetrically the multiple brain metastases treatment using VMAT.

  14. The Impact of Iterative Reconstruction on Computed Tomography Radiation Dosimetry: Evaluation in a Routine Clinical Setting

    PubMed Central

    Moorin, Rachael E.; Gibson, David A. J.; Forsyth, Rene K.; Fox, Richard

    2015-01-01

    Purpose To evaluate the effect of introduction of iterative reconstruction as a mandated software upgrade on radiation dosimetry in routine clinical practice over a range of computed tomography examinations. Methods Random samples of scanning data were extracted from a centralised Picture Archiving Communication System pertaining to 10 commonly performed computed tomography examination types undertaken at two hospitals in Western Australia, before and after the introduction of iterative reconstruction. Changes in the mean dose length product and effective dose were evaluated along with estimations of associated changes to annual cancer incidence. Results We observed statistically significant reductions in the effective radiation dose for head computed tomography (22–27%) consistent with those reported in the literature. In contrast the reductions observed for non-contrast chest (37–47%); chest pulmonary embolism study (28%), chest/abdominal/pelvic study (16%) and thoracic spine (39%) computed tomography. Statistically significant reductions in radiation dose were not identified in angiographic computed tomography. Dose reductions translated to substantial lowering of the lifetime attributable risk, especially for younger females, and estimated numbers of incident cancers. Conclusion Reduction of CT dose is a priority Iterative reconstruction algorithms have the potential to significantly assist with dose reduction across a range of protocols. However, this reduction in dose is achieved via reductions in image noise. Fully realising the potential dose reduction of iterative reconstruction requires the adjustment of image factors and forgoing the noise reduction potential of the iterative algorithm. Our study has demonstrated a reduction in radiation dose for some scanning protocols, but not to the extent experimental studies had previously shown or in all protocols expected, raising questions about the extent to which iterative reconstruction achieves dose

  15. [Benchmark experiment to verify radiation transport calculations for dosimetry in radiation therapy].

    PubMed

    Renner, Franziska

    2016-09-01

    Monte Carlo simulations are regarded as the most accurate method of solving complex problems in the field of dosimetry and radiation transport. In (external) radiation therapy they are increasingly used for the calculation of dose distributions during treatment planning. In comparison to other algorithms for the calculation of dose distributions, Monte Carlo methods have the capability of improving the accuracy of dose calculations - especially under complex circumstances (e.g. consideration of inhomogeneities). However, there is a lack of knowledge of how accurate the results of Monte Carlo calculations are on an absolute basis. A practical verification of the calculations can be performed by direct comparison with the results of a benchmark experiment. This work presents such a benchmark experiment and compares its results (with detailed consideration of measurement uncertainty) with the results of Monte Carlo calculations using the well-established Monte Carlo code EGSnrc. The experiment was designed to have parallels to external beam radiation therapy with respect to the type and energy of the radiation, the materials used and the kind of dose measurement. Because the properties of the beam have to be well known in order to compare the results of the experiment and the simulation on an absolute basis, the benchmark experiment was performed using the research electron accelerator of the Physikalisch-Technische Bundesanstalt (PTB), whose beam was accurately characterized in advance. The benchmark experiment and the corresponding Monte Carlo simulations were carried out for two different types of ionization chambers and the results were compared. Considering the uncertainty, which is about 0.7 % for the experimental values and about 1.0 % for the Monte Carlo simulation, the results of the simulation and the experiment coincide.

  16. PREFACE: 8th International Conference on 3D Radiation Dosimetry (IC3DDose)

    NASA Astrophysics Data System (ADS)

    Olsson, Lars E.; Bäck, S.; Ceberg, Sofie

    2015-01-01

    IC3DDose 2014, the 8th International Conference on 3D Radiation Dosimetry was held in Ystad, Sweden, from 4-7 September 2014. This grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The 7th and last meeting was held in Sydney, Australia from 4-8 November 2012. It is worth remembering that the conference series started at the very beginning of the intensity modulated radiotherapy era and that the dosimeters being developed then were, to some extent, ahead of the clinical need of radiotherapy. However, since then the technical developments in radiation therapy have been dramatic, with dynamic treatments, including tracking, gating and volumetric modulated arc therapy, widely introduced in the clinic with the need for 3D dosimetry thus endless. This was also reflected by the contributions at the meeting in Ystad. Accordingly the scope of the meeting has also broadened to IC3DDOSE - I See Three-Dimensional Dose. A multitude of dosimetry techniques and radiation detectors are now represented, all with the common denominator: three-dimensional or 3D. Additionally, quality assurance (QA) procedures and other aspects of clinical dosimetry are represented. The implementation of new dosimetric techniques in radiotherapy is a process that needs every kind of caution, carefulness and thorough validation. Therefore, the clinical needs, reformulated as the aims for IC3DDOSE - I See Three-Dimensional Dose, are: • Enhance the quality and accuracy of radiation therapy treatments through improved clinical dosimetry. • Investigate and understand the dosimetric challenges of modern radiation treatment techniques. • Provide

  17. Two-parametric model of electron beam in computational dosimetry for radiation processing

    NASA Astrophysics Data System (ADS)

    Lazurik, V. M.; Lazurik, V. T.; Popov, G.; Zimek, Z.

    2016-07-01

    Computer simulation of irradiation process of various materials with electron beam (EB) can be applied to correct and control the performances of radiation processing installations. Electron beam energy measurements methods are described in the international standards. The obtained results of measurements can be extended by implementation computational dosimetry. Authors have developed the computational method for determination of EB energy on the base of two-parametric fitting of semi-empirical model for the depth dose distribution initiated by mono-energetic electron beam. The analysis of number experiments show that described method can effectively consider random displacements arising from the use of aluminum wedge with a continuous strip of dosimetric film and minimize the magnitude uncertainty value of the electron energy evaluation, calculated from the experimental data. Two-parametric fitting method is proposed for determination of the electron beam model parameters. These model parameters are as follow: E0 - energy mono-energetic and mono-directional electron source, X0 - the thickness of the aluminum layer, located in front of irradiated object. That allows obtain baseline data related to the characteristic of the electron beam, which can be later on applied for computer modeling of the irradiation process. Model parameters which are defined in the international standards (like Ep- the most probably energy and Rp - practical range) can be linked with characteristics of two-parametric model (E0, X0), which allows to simulate the electron irradiation process. The obtained data from semi-empirical model were checked together with the set of experimental results. The proposed two-parametric model for electron beam energy evaluation and estimation of accuracy for computational dosimetry methods on the base of developed model are discussed.

  18. Accurate patient dosimetry of kilovoltage cone-beam CT in radiation therapy

    SciTech Connect

    Ding, George X.; Duggan, Dennis M.; Coffey, Charles W.

    2008-03-15

    The increased utilization of x-ray imaging in image-guided radiotherapy has dramatically improved the radiation treatment and the lives of cancer patients. Daily imaging procedures, such as cone-beam computed tomography (CBCT), for patient setup may significantly increase the dose to the patient's normal tissues. This study investigates the dosimetry from a kilovoltage (kV) CBCT for real patient geometries. Monte Carlo simulations were used to study the kV beams from a Varian on-board imager integrated into the Trilogy accelerator. The Monte Carlo calculated results were benchmarked against measurements and good agreement was obtained. The authors developed a novel method to calibrate Monte Carlo simulated beams with measurements using an ionization chamber in which the air-kerma calibration factors are obtained from an Accredited Dosimetry Calibration Laboratory. The authors have introduced a new Monte Carlo calibration factor, f{sub MCcal}, which is determined from the calibration procedure. The accuracy of the new method was validated by experiment. When a Monte Carlo simulated beam has been calibrated, the simulated beam can be used to accurately predict absolute dose distributions in the irradiated media. Using this method the authors calculated dose distributions to patient anatomies from a typical CBCT acquisition for different treatment sites, such as head and neck, lung, and pelvis. Their results have shown that, from a typical head and neck CBCT, doses to soft tissues, such as eye, spinal cord, and brain can be up to 8, 6, and 5 cGy, respectively. The dose to the bone, due to the photoelectric effect, can be as much as 25 cGy, about three times the dose to the soft tissue. The study provides detailed information on the additional doses to the normal tissues of a patient from a typical kV CBCT acquisition. The methodology of the Monte Carlo beam calibration developed and introduced in this study allows the user to calculate both relative and absolute

  19. Operation Upshot-Knothole. Project 29. 1. Comparison and evaluation of dosimetry methods applicable to gamma radiation, Nevada Proving Ground. Report for March-June 1953

    SciTech Connect

    Taplin, G.V.; Sigoloff, S.C.; Douglas, C.H.; Paglia, D.E.; Heller, C.J.

    1984-10-31

    The three major objectives and parts of this project were to compare and evaluate the accuracy and practicality of chemical vs film and other methods of gamma dosimetry for radiations encountered under bomb conditions at sites receiving (1) either prompt- or residual-gamma exposures or mixtures of both, (2) only residualgamma radiations, either neutron induced or from fission-product fallout, and (3) mixed neutron-gamma irradiation plus correlation with biological effects.

  20. Problems of component discrimination in space radiation dosimetry.

    PubMed

    Schaefer, H J

    1975-06-18

    Resolving the LET spectrum of environmental radiation in space for assessing dose equivalents creates special problems due to superposition effects. Three components of the radiation field in space, trapped protons, tissue disintegration stars, and neutrons, contribute the bulk of the total dose equivalent. While lack of discrimination of neutron recoil and trapped primary protons does not interfere with correct determination of the combined dose equivalent as such, the simultaneous bursts of several low-energy protons and alpha particles from tissue disintegration stars completely defy LET-resolution with conventional instrumentation. So far, the tissue star dose has been determined only semiquantitatively from nuclear emulsion data. The neutron spectrum in space shows a markedly higher relative fluence in the region beyond 5 MeV than the fission neutron spectrum. Therefore, its LET spectrum centers less heavily on LET values near the proton Bragg Peak. This would call for assigning a QF value of less than 10 to the neutron dose in space. Still more serious shortcomings exist with regard to LET interpretation of heavy primaries.

  1. EBT GAFCHROMIC{sup TM} film dosimetry in compensator-based intensity modulated radiation therapy

    SciTech Connect

    Vaezzadeh, Seyedali; Allahverdi, Mahmoud; Nedaie, Hasan A.; Ay, Mohammadreza; Shirazi, Alireza; Yarahmadi, Mehran

    2013-07-01

    The electron benefit transfer (EBT) GAFCHROMIC films possess a number of features making them appropriate for high-quality dosimetry in intensity-modulated radiation therapy (IMRT). Compensators to deliver IMRT are known to change the beam-energy spectrum as well as to produce scattered photons and to contaminate electrons; therefore, the accuracy and validity of EBT-film dosimetry in compensator-based IMRT should be investigated. Percentage-depth doses and lateral-beam profiles were measured using EBT films in perpendicular orientation with respect to 6 and 18 MV photon beam energies for: (1) different thicknesses of cerrobend slab (open, 1.0, 2.0, 4.0, and 6.0 cm), field sizes (5×5, 10×10, and 20×20 cm{sup 2}), and measurement depths (D{sub max}, 5.0 and 10.0 cm); and (2) step-wedged compensator in a solid phantom. To verify results, same measurements were implemented using a 0.125 cm{sup 3} ionization chamber in a water phantom and also in Monte Carlo simulations using the Monte Carlo N-particle radiation transport computer code. The mean energy of photons was increased due to beam hardening in comparison with open fields at both 6 and 18 MV energies. For a 20×20 cm{sup 2} field size of a 6 MV photon beam and a 6.0 cm thick block, the surface dose decreased by about 12% and percentage-depth doses increased up to 3% at 30.0 cm depth, due to the beam-hardening effect induced by the block. In contrast, at 18 MV, the surface dose increased by about 8% and depth dose reduced by 3% at 30.0 cm depth. The penumbral widths (80% to 20%) increase with block thickness, field size, and beam energy. The EBT film results were in good agreement with the ionization chamber dose profiles and Monte Carlo N-particle radiation transport computer code simulation behind the step-wedged compensator. Also, there was a good agreement between the EBT-film and the treatment-planning results on the anthropomorphic phantom. The EBT films can be accurately used as a 2D dosimeter for dose

  2. BREN Tower: A Monument to the Material Culture of Radiation Dosimetry Research

    SciTech Connect

    Susan Edwards

    2008-05-30

    With a height of more than 1,500 feet, the BREN (Bare Reactor Experiment, Nevada) Tower dominates the surrounding desert landscape of the Nevada Test Site. Associated with the nuclear research and atmospheric testing programs carried out during the 1950s and 1960s, the tower was a vital component in a series of experiments aimed at characterizing radiation fields from nuclear detonations. Research programs conducted at the tower provided the data for the baseline dosimetry studies crucial to determining the radiation dose rates received by the atomic bomb survivors of Hiroshima and Nagasaki, Japan. Today, BREN Tower stands as a monument to early dosimetry research and one of the legacies of the Cold War.

  3. Small Radiation Beam Dosimetry for Radiosurgery of Trigeminal Neuralgia: One Case Analysis

    NASA Astrophysics Data System (ADS)

    García-Garduño, O. A.; Lárraga-Gutiérrez, J. M.; Rodríguez-Villafuerte, M.; Martínez-Dávalos, A.; Moreno-Jiménez, S.; Suárez-Campos, J. J.; Celis, M. A.

    2008-08-01

    The use of small radiation beams for trigeminal neuralgia (TN) treatment requires high precision and accuracy in dose distribution calculations and delivery. Special attention must be kept on the type of detector to be used. In this work, the use of GafChromic EBT® radiochromic and X-OMAT V2 radiographic films for small radiation beam characterization is reported. The dosimetric information provided by the films (total output factors, tissue maximum ratios and off axis ratios) is compared against measurements with a shielded solid state (diode) reference detector. The film dosimetry was used for dose distribution calculations for the treatment of trigeminal neuralgia radiosurgery. Comparison of the isodose curves shows that the dosimetry produced with the X-OMAT radiographic film overestimates the dose distributions in the penumbra region.

  4. Small Radiation Beam Dosimetry for Radiosurgery of Trigeminal Neuralgia: One Case Analysis

    SciTech Connect

    Garcia-Garduno, O. A.; Larraga-Gutierrez, J. M.; Rodriguez-Villafuerte, M.; Martinez-Davalos, A.; Moreno-Jimenez, S.; Suarez-Campos, J. J.; Celis, M. A.

    2008-08-11

    The use of small radiation beams for trigeminal neuralgia (TN) treatment requires high precision and accuracy in dose distribution calculations and delivery. Special attention must be kept on the type of detector to be used. In this work, the use of GafChromic EBT registered radiochromic and X-OMAT V2 radiographic films for small radiation beam characterization is reported. The dosimetric information provided by the films (total output factors, tissue maximum ratios and off axis ratios) is compared against measurements with a shielded solid state (diode) reference detector. The film dosimetry was used for dose distribution calculations for the treatment of trigeminal neuralgia radiosurgery. Comparison of the isodose curves shows that the dosimetry produced with the X-OMAT radiographic film overestimates the dose distributions in the penumbra region.

  5. Monte Carlo modeling in CT-based geometries: dosimetry for biological modeling experiments with particle beam radiation

    PubMed Central

    Diffenderfer, Eric S.; Dolney, Derek; Schaettler, Maximilian; Sanzari, Jenine K.; Mcdonough, James; Cengel, Keith A.

    2014-01-01

    The space radiation environment imposes increased dangers of exposure to ionizing radiation, particularly during a solar particle event (SPE). These events consist primarily of low energy protons that produce a highly inhomogeneous dose distribution. Due to this inherent dose heterogeneity, experiments designed to investigate the radiobiological effects of SPE radiation present difficulties in evaluating and interpreting dose to sensitive organs. To address this challenge, we used the Geant4 Monte Carlo simulation framework to develop dosimetry software that uses computed tomography (CT) images and provides radiation transport simulations incorporating all relevant physical interaction processes. We found that this simulation accurately predicts measured data in phantoms and can be applied to model dose in radiobiological experiments with animal models exposed to charged particle (electron and proton) beams. This study clearly demonstrates the value of Monte Carlo radiation transport methods for two critically interrelated uses: (i) determining the overall dose distribution and dose levels to specific organ systems for animal experiments with SPE-like radiation, and (ii) interpreting the effect of random and systematic variations in experimental variables (e.g. animal movement during long exposures) on the dose distributions and consequent biological effects from SPE-like radiation exposure. The software developed and validated in this study represents a critically important new tool that allows integration of computational and biological modeling for evaluating the biological outcomes of exposures to inhomogeneous SPE-like radiation dose distributions, and has potential applications for other environmental and therapeutic exposure simulations. PMID:24309720

  6. Monte Carlo modeling in CT-based geometries: dosimetry for biological modeling experiments with particle beam radiation.

    PubMed

    Diffenderfer, Eric S; Dolney, Derek; Schaettler, Maximilian; Sanzari, Jenine K; McDonough, James; Cengel, Keith A

    2014-03-01

    The space radiation environment imposes increased dangers of exposure to ionizing radiation, particularly during a solar particle event (SPE). These events consist primarily of low energy protons that produce a highly inhomogeneous dose distribution. Due to this inherent dose heterogeneity, experiments designed to investigate the radiobiological effects of SPE radiation present difficulties in evaluating and interpreting dose to sensitive organs. To address this challenge, we used the Geant4 Monte Carlo simulation framework to develop dosimetry software that uses computed tomography (CT) images and provides radiation transport simulations incorporating all relevant physical interaction processes. We found that this simulation accurately predicts measured data in phantoms and can be applied to model dose in radiobiological experiments with animal models exposed to charged particle (electron and proton) beams. This study clearly demonstrates the value of Monte Carlo radiation transport methods for two critically interrelated uses: (i) determining the overall dose distribution and dose levels to specific organ systems for animal experiments with SPE-like radiation, and (ii) interpreting the effect of random and systematic variations in experimental variables (e.g. animal movement during long exposures) on the dose distributions and consequent biological effects from SPE-like radiation exposure. The software developed and validated in this study represents a critically important new tool that allows integration of computational and biological modeling for evaluating the biological outcomes of exposures to inhomogeneous SPE-like radiation dose distributions, and has potential applications for other environmental and therapeutic exposure simulations.

  7. Preclinical acute toxicity, biodistribution, pharmacokinetics, radiation dosimetry and microPET imaging studies of [(18)F]fluorocholine in mice.

    PubMed

    Silveira, Marina B; Ferreira, Soraya M Z M D; Nascimento, Leonardo T C; Costa, Flávia M; Mendes, Bruno M; Ferreira, Andrea V; Malamut, Carlos; Silva, Juliana B; Mamede, Marcelo

    2016-10-01

    [(18)F]Fluorocholine ([(18)F]FCH) has been proven to be effective in prostate cancer. Since [(18)F]FCH is classified as a new radiopharmaceutical in Brazil, preclinical safety and efficacy data are required to support clinical trials and to obtain its approval. The aim of this work was to perform acute toxicity, biodistribution, pharmacokinetics, radiation dosimetry and microPET imaging studies of [(18)F]FCH. The results could support its use in nuclear medicine as an important piece of work for regulatory in Brazil.

  8. Risks of circulatory diseases among Mayak PA workers with radiation doses estimated using the improved Mayak Worker Dosimetry System 2008.

    PubMed

    Moseeva, Maria B; Azizova, Tamara V; Grigoryeva, Evgenia S; Haylock, Richard

    2014-05-01

    The new Mayak Worker Dosimetry System 2008 (MWDS-2008) was published in 2013 and supersedes the Doses-2005 dosimetry system for Mayak Production Association (PA) workers. It provides revised external and internal dose estimates based on the updated occupational history data. Using MWDS-2008, a cohort of 18,856 workers first employed at one of the main Mayak PA plants during 1948-1972 and followed up to 2005 was identified. Incidence and mortality risks from ischemic heart disease (IHD) (International Classification of Diseases (ICD)-9 codes 410-414) and from cerebrovascular diseases (CVD) (ICD-9 codes 430-438) were examined in this cohort and compared with previously published risk estimates in the same cohort based on the Doses-2005 dosimetry system. Significant associations were observed between doses from external gamma-rays and IHD and CVD incidence and also between internal doses from alpha-radiation and IHD mortality and CVD incidence. The estimates of excess relative risk (ERR)/Gy were consistent with those estimates from the previous studies based on Doses-2005 system apart from the relationship between CVD incidence and internal liver dose where the ERR/Gy based on MWDS-2008 was just over three times higher than the corresponding estimate based on Doses-2005 system. Adjustment for smoking status did not show any effect on the estimates of risk from internal alpha-particle exposure.

  9. Space radiation dosimetry: An optically stimulated luminescence radiation detector for low-Earth orbit

    NASA Astrophysics Data System (ADS)

    Gaza, Ramona

    Scope and method of study. The purpose of this study was to investigate Al2O3:C as a potential optically stimulated luminescence (OSL) radiation detector for Low-Earth Orbit. The OSL response of Al2O3:C was characterized in terms of its luminescence efficiency for a variety of heavy charged particles (HCPs) with features similar to those found in space. The HCP irradiations were performed using the HIMAC accelerator at Chiba (Japan), the proton facility at Loma Linda (CA) and the NSRL facility at Brookhaven (NY). The OSL curves were further investigated to obtain information about the 'mean efficiency' and 'mean LET', parameters that needed to assess the absorbed dose and the dose equivalent. This analysis was applied for simulated mixed radiation fields (ICCHIBAN) and actual space radiation exposures (i.e., STS-105, BRADOS, and TRACER). In parallel, the thermoluminescence response of dosimetry materials LiF:Mg,Ti and CaF2:Tm was also studied. Findings and conclusions. The OSL efficiency of Al2O 3:C exposed to HCPs was found to decrease with increasing linear energy transfer (LET) for the investigated LET range (i.e., from 0.4 keV/mum to 459 keV/mum). For simulated mixed radiation fields with a strong low-LET component, the results indicated that the OSL calibration methods (i.e., tau-method and R-method) can be used with good accuracy to obtain information about the absorbed dose and the dose equivalent. Nevertheless, for mixed fields with a strong high-LET component these methods will give larger errors when estimating the absorbed dose and the dose equivalent. For actual space radiation exposures, the results indicated that different materials/calibration methods (i.e., the LiF:Mg,Ti/HTR-method and the CaF2:Tm/peak 5 + 6/peak 3-method) give different results in terms of 'mean efficiency' and 'mean LET'. This was explained by suggesting that none of the above calibration methods can give information about the true average LET of the incident radiation, but rather

  10. High resolution 3D dosimetry for microbeam radiation therapy using optical CT

    NASA Astrophysics Data System (ADS)

    McErlean, C.; Bräuer-Krisch, E.; Adamovics, J.; Leach, M. O.; Doran, S. J.

    2015-01-01

    Optical Computed Tomography (CT) is a promising technique for dosimetry of Microbeam Radiation Therapy (MRT), providing high resolution 3D dose maps. Here different MRT irradiation geometries are visualised showing the potential of Optical CT as a tool for future MRT trials. The Peak-to-Valley dose ratio (PVDR) is calculated to be 7 at a depth of 3mm in the radiochromic dosimeter PRESAGE®. This is significantly lower than predicted values and possible reasons for this are discussed.

  11. GENII: The Hanford Environmental Radiation Dosimetry Software System: Volume 1, Conceptual representation

    SciTech Connect

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-12-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). The purpose of this coupled system of computer codes is to analyze environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil. This is accomplished by calculating radiation doses to individuals or populations. GENII is described in three volumes of documentation. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. The third volume is a Code Maintenance Manual for the user who requires knowledge of code detail. It includes code logic diagrams, global dictionary, worksheets, example hand calculations, and listings of the code and its associated data libraries. 72 refs., 15 figs., 34 tabs.

  12. ASSESSMENT OF UNCERTAINTY IN THE RADIATION DOSES FOR THE TECHA RIVER DOSIMETRY SYSTEM

    SciTech Connect

    Napier, Bruce A.; Degteva, M. O.; Anspaugh, L. R.; Shagina, N. B.

    2009-10-23

    In order to provide more accurate and precise estimates of individual dose (and thus more precise estimates of radiation risk) for the members of the ETRC, a new dosimetric calculation system, the Techa River Dosimetry System-2009 (TRDS-2009) has been prepared. The deterministic version of the improved dosimetry system TRDS-2009D was basically completed in April 2009. Recent developments in evaluation of dose-response models in light of uncertain dose have highlighted the importance of different types of uncertainties in the development of individual dose estimates. These include uncertain parameters that may be either shared or unshared within the dosimetric cohort, and also the nature of the type of uncertainty as aleatory or epistemic and either classical or Berkson. This report identifies the nature of the various input parameters and calculational methods incorporated in the Techa River Dosimetry System (based on the TRDS-2009D implementation), with the intention of preparing a stochastic version to estimate the uncertainties in the dose estimates. This report reviews the equations, databases, and input parameters, and then identifies the author’s interpretations of their general nature. It presents the approach selected so that the stochastic, Monte-Carlo, implementation of the dosimetry System - TRDS-2009MC - will provide useful information regarding the uncertainties of the doses.

  13. Energy absorption buildup factors, exposure buildup factors and Kerma for optically stimulated luminescence materials and their tissue equivalence for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Singh, Vishwanath P.; Badiger, N. M.

    2014-11-01

    Optically stimulated luminescence (OSL) materials are sensitive dosimetric materials used for precise and accurate dose measurement for low-energy ionizing radiation. Low dose measurement capability with improved sensitivity makes these dosimeters very useful for diagnostic imaging, personnel monitoring and environmental radiation dosimetry. Gamma ray energy absorption buildup factors and exposure build factors were computed for OSL materials using the five-parameter Geometric Progression (G-P) fitting method in the energy range 0.015-15 MeV for penetration depths up to 40 mean free path. The computed energy absorption buildup factor and exposure buildup factor values were studied as a function of penetration depth and incident photon energy. Effective atomic numbers and Kerma relative to air of the selected OSL materials and tissue equivalence were computed and compared with that of water, PMMA and ICRU standard tissues. The buildup factors and kerma relative to air were found dependent upon effective atomic numbers. Buildup factors determined in the present work should be useful in radiation dosimetry, medical diagnostics and therapy, space dosimetry, accident dosimetry and personnel monitoring.

  14. Micrometer-resolved film dosimetry using a microscope in microbeam radiation therapy

    SciTech Connect

    Bartzsch, Stefan Oelfke, Uwe; Lott, Johanna; Welsch, Katrin; Bräuer-Krisch, Elke

    2015-07-15

    Purpose: Microbeam radiation therapy (MRT) is a still preclinical tumor therapy approach that uses arrays of a few tens of micrometer wide parallel beams separated by a few 100 μm. The production, measurement, and planning of such radiation fields are a challenge up to now. Here, the authors investigate the feasibility of radiochromic film dosimetry in combination with a microscopic readout as a tool to validate peak and valley doses in MRT, which is an important requirement for a future clinical application of the therapy. Methods: Gafchromic{sup ®} HD-810 and HD-V2 films are exposed to MRT fields at the biomedical beamline ID17 of the European Synchrotron Radiation Facility (ESRF) and are afterward scanned with a microscope. The measured dose is compared with Monte Carlo calculations. Image analysis tools and film handling protocols are developed that allow accurate and reproducible dosimetry. The performance of HD-810 and HD-V2 films is compared and a detailed analysis of the resolution, noise, and energy dependence is carried out. Measurement uncertainties are identified and analyzed. Results: The dose was measured with a resolution of 5 × 1000 μm{sup 2} and an accuracy of 5% in the peak and between 10% and 15% in the valley region. As main causes for dosimetry uncertainties, statistical noise, film inhomogeneities, and calibration errors were identified. Calibration errors strongly increase at low doses and exceeded 3% for doses below 50 and 70 Gy for HD-V2 and HD-810 films, respectively. While the grain size of both film types is approximately 2 μm, the statistical noise in HD-V2 is much higher than in HD-810 films. However, HD-810 films show a higher energy dependence at low photon energies. Conclusions: Both film types are appropriate for dosimetry in MRT and the microscope is superior to the microdensitometer used before at the ESRF with respect to resolution and reproducibility. However, a very careful analysis of the image data is required

  15. Impact of Track Structure Effects on Shielding and Dosimetry

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Schimmerling, W.; Kim, M. Y.

    1999-01-01

    Galactic cosmic rays (GCR) consisting of nuclei of all the known elements with kinetic energies extending from tens to millions of MeV pose a significant health hazard to future deep space operations. Even half of the radiation exposures expected in ISS will result from GCR components. The biological actions of these radiations are known to depend on the details of the energy deposition (not just linear energy transfer, LET, but the lateral dispersion of energy deposition about the particle track). Energy deposits in tissues are dominated by the transfer of tens to hundreds of eV to the tissue's atomic electrons. In the case of low LET radiations, the collisions are separated by large dimensions compared to the size of important biomolecular structures. If such events are also separated in time, then the radiation adds little to the background of radicals occurring from ordinary metabolic processes and causes little or no biological injury. Hence, dose rate is a strong determinant of the action of low LET exposures. The GCR exposures are dominated by ions of high charge and energy (HZE) characterized by many collisions with atomic electrons over biomolecular dimensions, resulting in high radical- density events associated with a few isolated ion paths through the cell and minimal dose rate dependence at ordinary exposure levels. The HZE energy deposit declines quickly laterally and merges with the background radical density in the track periphery for which the exact lateral distribution of the energy deposit is the determinant of the biological injury. Although little data exists on human exposures from HZE radiations, limited studies in mice and mammalian cell cultures allow evaluation of the effects of track structure on shield attenuation properties and evaluation of implications for dosimetry. The most complete mammalian cell HZE exposure data sets have been modeled including the C3H10T1/2 survival and transformation data of Yang et al., the V79 survival and

  16. Three-dimensional dosimetry of small megavoltage radiation fields using radiochromic gels and optical CT scanning.

    PubMed

    Babic, Steven; McNiven, Andrea; Battista, Jerry; Jordan, Kevin

    2009-04-21

    The dosimetry of small fields as used in stereotactic radiotherapy, radiosurgery and intensity-modulated radiation therapy can be challenging and inaccurate due to partial volume averaging effects and possible disruption of charged particle equilibrium. Consequently, there exists a need for an integrating, tissue equivalent dosimeter with high spatial resolution to avoid perturbing the radiation beam and artificially broadening the measured beam penumbra. In this work, radiochromic ferrous xylenol-orange (FX) and leuco crystal violet (LCV) micelle gels were used to measure relative dose factors (RDFs), percent depth dose profiles and relative lateral beam profiles of 6 MV x-ray pencil beams of diameter 28.1, 9.8 and 4.9 mm. The pencil beams were produced via stereotactic collimators mounted on a Varian 2100 EX linear accelerator. The gels were read using optical computed tomography (CT). Data sets were compared quantitatively with dosimetric measurements made with radiographic (Kodak EDR2) and radiochromic (GAFChromic EBT) film, respectively. Using a fast cone-beam optical CT scanner (Vista), corrections for diffusion in the FX gel data yielded RDFs that were comparable to those obtained by minimally diffusing LCV gels. Considering EBT film-measured RDF data as reference, cone-beam CT-scanned LCV gel data, corrected for scattered stray light, were found to be in agreement within 0.5% and -0.6% for the 9.8 and 4.9 mm diameter fields, respectively. The validity of the scattered stray light correction was confirmed by general agreement with RDF data obtained from the same LCV gel read out with a laser CT scanner that is less prone to the acceptance of scattered stray light. Percent depth dose profiles and lateral beam profiles were found to agree within experimental error for the FX gel (corrected for diffusion), LCV gel (corrected for scattered stray light), and EBT and EDR2 films. The results from this study reveal that a three-dimensional dosimetry method utilizing

  17. Computational dosimetry

    SciTech Connect

    Siebert, B.R.L.; Thomas, R.H.

    1996-01-01

    The paper presents a definition of the term ``Computational Dosimetry`` that is interpreted as the sub-discipline of computational physics which is devoted to radiation metrology. It is shown that computational dosimetry is more than a mere collection of computational methods. Computational simulations directed at basic understanding and modelling are important tools provided by computational dosimetry, while another very important application is the support that it can give to the design, optimization and analysis of experiments. However, the primary task of computational dosimetry is to reduce the variance in the determination of absorbed dose (and its related quantities), for example in the disciplines of radiological protection and radiation therapy. In this paper emphasis is given to the discussion of potential pitfalls in the applications of computational dosimetry and recommendations are given for their avoidance. The need for comparison of calculated and experimental data whenever possible is strongly stressed.

  18. Dosimetry associated with exposure to non-ionizing radiation: very low frequency to microwaves.

    PubMed

    Guy, A W

    1987-12-01

    The interpretation of the effects in biological systems exposed to electromagnetic (EM) fields requires knowledge of the internal fields and absorbed energy. The quantification of the specific absorption rate (SAR) is called dosimetry. The SAR given in units of watts per kilogram is a complex function of the source configuration, shape and size of the exposed subjects, orientation of the subject with respect to the source, and the frequency. The average and maximum SAR in the exposed subject may vary over many orders of magnitude for a given exposure level. In order to relate observed biological effects in exposed laboratory animals to safe exposure levels for man, both the fields within the environment and SAR within the exposed tissues must be determined. The environmental fields and the SAR can often be determined from EM theory, but in most cases one must rely on instrumentation such as field survey meters for quantifying the exposure fields and electric field probes, thermocouples, thermistors, fiber optic probes, thermography, and calorimetry for quantifying the SAR in the tissues or equivalent models. A combination of techniques, each valid for a particular model over a particular frequency range, have been used to determine average and peak SARs in humans and animals exposed to plane wave radiation. Though it has been considerably more difficult to quantify these quantities for near field and partial-body exposure conditions, progress is continually being made in this area.

  19. A method for estimating occupational radiation dose to individuals, using weekly dosimetry data

    SciTech Connect

    Mitchell, T.J.; Ostrouchov, G.; Frome, E.L.; Kerr, G.D.

    1993-12-01

    Statistical analyses of data from epidemiologic studies of workers exposed to radiation have been based on recorded annual radiation doses. It is usually assumed that the annual dose values are known exactly, although it is generally recognized that the data contain uncertainty due to measurement error and bias. We propose the use of a probability distribution to describe an individual`s dose during a specific period of time. Statistical methods for estimating this dose distribution are developed. The methods take into account the ``measurement error`` that is produced by the dosimetry system, and the bias that was introduced by policies that lead to right censoring of small doses as zero. The method is applied to a sample of dose histories obtained from hard copy dosimetry records at Oak Ridge National Laboratory (ORNL). The result of this evaluation raises serious questions about the validity of the historical personnel dosimetry data that is currently being used in low-dose studies of nuclear industry workers. In particular, it appears that there was a systematic underestimation of doses for ORNL workers. This could result in biased estimates of dose-response coefficients and their standard errors.

  20. X-Tream: a novel dosimetry system for Synchrotron Microbeam Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Petasecca, M.; Cullen, A.; Fuduli, I.; Espinoza, A.; Porumb, C.; Stanton, C.; Aldosari, A. H.; Bräuer-Krisch, E.; Requardt, H.; Bravin, A.; Perevertaylo, V.; Rosenfeld, A. B.; Lerch, M. L. F.

    2012-07-01

    Microbeam Radiation Therapy (MRT) is a radiation treatment technique under development for inoperable brain tumors. MRT is based on the use of a synchrotron generated X-ray beam with an extremely high dose rate ( ~ 20 kGy/sec), striated into an array of X-ray micro-blades. In order to advance to clinical trials, a real-time dosimeter with excellent spatial resolution must be developed for absolute dosimetry. The design of a real-time dosimeter for such a radiation scenario represents a significant challenge due to the high photon flux and vertically striated radiation field, leading to very steep lateral dose gradients. This article analyses the striated radiation field in the context of the requirements for temporal dosimetric measurements and presents the architecture of a new dosimetry system based on the use of silicon detectors and fast data acquisition electronic interface. The combined system demonstrates micrometer spatial resolution and microsecond real time readout with accurate sensitivity and linearity over five orders of magnitude of input signal. The system will therefore be suitable patient treatment plan verification and may also be expanded for in-vivo beam monitoring for patient safety during the treatment.

  1. Construction of mouse phantoms from segmented CT scan data for radiation dosimetry studies

    NASA Astrophysics Data System (ADS)

    Welch, D.; Harken, A. D.; Randers-Pehrson, G.; Brenner, D. J.

    2015-05-01

    We present the complete construction methodology for an anatomically accurate mouse phantom made using materials which mimic the characteristics of tissue, lung, and bone for radiation dosimetry studies. Phantoms were constructed using 2 mm thick slices of tissue equivalent material which was precision machined to clear regions for insertion of lung and bone equivalent material where appropriate. Images obtained using a 3D computed tomography (CT) scan clearly indicate regions of tissue, lung, and bone that match their position within the original mouse CT scan. Additionally, radiographic films are used with the phantom to demonstrate dose mapping capabilities. The construction methodology presented here can be quickly and easily adapted to create a phantom of any specific small animal given a segmented CT scan of the animal. These physical phantoms are a useful tool to examine individual organ dose and dosimetry within mouse systems that are complicated by density inhomogeneity due to bone and lung regions.

  2. Construction of mouse phantoms from segmented CT scan data for radiation dosimetry studies.

    PubMed

    Welch, D; Harken, A D; Randers-Pehrson, G; Brenner, D J

    2015-05-07

    We present the complete construction methodology for an anatomically accurate mouse phantom made using materials which mimic the characteristics of tissue, lung, and bone for radiation dosimetry studies. Phantoms were constructed using 2 mm thick slices of tissue equivalent material which was precision machined to clear regions for insertion of lung and bone equivalent material where appropriate. Images obtained using a 3D computed tomography (CT) scan clearly indicate regions of tissue, lung, and bone that match their position within the original mouse CT scan. Additionally, radiographic films are used with the phantom to demonstrate dose mapping capabilities. The construction methodology presented here can be quickly and easily adapted to create a phantom of any specific small animal given a segmented CT scan of the animal. These physical phantoms are a useful tool to examine individual organ dose and dosimetry within mouse systems that are complicated by density inhomogeneity due to bone and lung regions.

  3. Description of modular devices for the measurement of external dosimetry in radiation protection.

    PubMed

    Genicot, Jean Louis; Boogers, Eric; Van Iersel, Mark

    2015-04-01

    In 2002 the Group of Radiation Dosimetry and Calibration of the Belgian Nuclear Research Centre (SCK•CEN) has developed an experimental device based on the optically stimulated luminescence (OSL) working with Al2O3:C detectors (TLD-500 and Luxel) stimulated with an argon laser. A set of devices made from different modules have been developed to permit external dosimetry measurements with thermoluminescence (TL) and OSL techniques under different conditions. This study describes these measurement devices that can be made with these modules and some of the characteristics of the different systems. These devices present several advantages in terms of measurement possibilities: a small number of modules allow the use of different detection materials (Al2O3:C, BeO, quartz electronic components and tiles) and different measurement methods (TL, CW-OSL and pulsed OSL). Some applications are commented.

  4. Construction of mouse phantoms from segmented CT scan data for radiation dosimetry studies

    PubMed Central

    Welch, D; Harken, A D; Randers-Pehrson, G; Brenner, D J

    2015-01-01

    We present the complete construction methodology for an anatomically accurate mouse phantom made using materials which mimic the characteristics of tissue, lung, and bone for radiation dosimetry studies. Phantoms were constructed using 2 mm thick slices of tissue equivalent material which was precision machined to clear regions for insertion of lung and bone equivalent material where appropriate. Images obtained using a 3D computed tomography (CT) scan clearly indicate regions of tissue, lung, and bone that match their position within the original mouse CT scan. Additionally, radiographic films are used with the phantom to demonstrate dose mapping capabilities. The construction methodology presented here can be quickly and easily adapted to create a phantom of any specific small animal given a segmented CT scan of the animal. These physical phantoms are a useful tool to examine individual organ dose and dosimetry within mouse systems that are complicated by density inhomogeneity due to bone and lung regions. PMID:25860401

  5. Space radiation dosimetry on US and Soviet manned missions

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.; Benton, E. V.

    1995-01-01

    Radiation measurements obtained on board U.S. and Soviet spacecraft are presented and discussed. A considerable amount of data has now been collected and analyzed from measurements with a variety of detector types in low-Earth orbit. The objectives of these measurements have been to investigate the dose and Linear Energy Transfer (LET) spectra within the complex shielding of large spacecraft. The shielding modifies the external radiation (trapped protons, electrons, cosmic ray nuclei) which, in turn, is quite dependent on orbital parameters (altitude, inclination). For manned flights, these measurements provide a crew exposure record and a data base for future spacecraft design and flight planning. For the scientific community they provide useful information for planning and analyzing data from experiments with high sensitivity to radiation. In this paper, results of measurements by both passive and active detectors are described. High-LET spectra measurements were obtained by means of plastic nuclear track detectors (PNTD's) while thermoluminescent dosimeters (TLD's) measured the dose.

  6. Experimental assessment of gold nanoparticle-mediated dose enhancement in radiation therapy beams using electron spin resonance dosimetry

    NASA Astrophysics Data System (ADS)

    Wolfe, T.; Guidelli, E. J.; Gómez, J. A.; Baffa, O.; Nicolucci, P.

    2015-06-01

    In this work, we aim to experimentally assess increments of dose due to nanoparticle-radiation interactions via electron spin resonance (ESR) dosimetry performed with a biological-equivalent sensitive material. We employed 2-Methyl-Alanine (2MA) in powder form to compose the radiation sensitive medium embedding gold nanoparticles (AuNPs) 5 nm in diameter. Dosimeters manufactured with 0.1% w/w of AuNPs or no nanoparticles were irradiated with clinically utilized 250 kVp orthovoltage or 6 MV linac x-rays in dosimetric conditions. Amplitude peak-to-peak (App) at the central ESR spectral line was used for dosimetry. Dose-response curves were obtained for samples with or without nanoparticles and each energy beam. Dose increments due to nanoparticles were analyzed in terms of absolute dose enhancements (DEs), calculated as App ratios for each dose/beam condition, or relative dose enhancement factors (DEFs) calculated as the slopes of the dose-response curves. Dose enhancements were observed to present an amplified behavior for small doses (between 0.1-0.5 Gy), with this effect being more prominent with the kV beam. For doses between 0.5-5 Gy, dose-independent trends were observed for both beams, stable around (2.1   ±   0.7) and (1.3   ±   0.4) for kV and MV beams, respectively. We found DEFs of (1.62   ±   0.04) or (1.27   ±   0.03) for the same beams. Additionally, we measured no interference between AuNPs and the ESR apparatus, including the excitation microwaves, the magnetic fields and the paramagnetic radicals. 2MA was demonstrated to be a feasible paramagnetic radiation-sensitive material for dosimetry in the presence of AuNPs, and ESR dosimetry a powerful experimental method for further verifications of increments in nanoparticle-mediated doses of biological interest. Ultimately, gold nanoparticles can cause significant and detectable dose enhancements in biological-like samples irradiated at both

  7. An investigation of PRESAGE® 3D dosimetry for IMRT and VMAT radiation therapy treatment verification

    NASA Astrophysics Data System (ADS)

    Jackson, Jake; Juang, Titania; Adamovics, John; Oldham, Mark

    2015-03-01

    The purpose of this work was to characterize three formulations of PRESAGE® dosimeters (DEA-1, DEA-2, and DX) and to identify optimal readout timing and procedures for accurate in-house 3D dosimetry. The optimal formulation and procedure was then applied for the verification of an intensity modulated radiation therapy (IMRT) and a volumetric modulated arc therapy (VMAT) treatment technique. PRESAGE® formulations were studied for their temporal stability post-irradiation, sensitivity, and linearity of dose response. Dosimeters were read out using a high-resolution optical-CT scanner. Small volumes of PRESAGE® were irradiated to investigate possible differences in sensitivity for large and small volumes (‘volume effect’). The optimal formulation and read-out technique was applied to the verification of two patient treatments: an IMRT plan and a VMAT plan. A gradual decrease in post-irradiation optical-density was observed in all formulations with DEA-1 exhibiting the best temporal stability with less than 4% variation between 2-22 h post-irradiation. A linear dose response at the 4 h time point was observed for all formulations with an R2 value >0.99. A large volume effect was observed for DEA-1 with sensitivity of the large dosimeter being ~63% less than the sensitivity of the cuvettes. For the IMRT and VMAT treatments, the 3D gamma passing rates for 3%/3 mm criteria using absolute measured dose were 99.6 and 94.5% for the IMRT and VMAT treatments, respectively. In summary, this work shows that accurate 3D dosimetry is possible with all three PRESAGE® formulations. The optimal imaging windows post-irradiation were 3-24 h, 2-6 h, and immediately for the DEA-1, DEA-2, and DX formulations, respectively. Because of the large volume effect, small volume cuvettes are not yet a reliable method for calibration of larger dosimeters to absolute dose. Finally, PRESAGE® is observed to be a useful method of 3D verification when careful consideration is given

  8. An investigation of PRESAGE® 3D dosimetry for IMRT and VMAT radiation therapy treatment verification

    PubMed Central

    Jackson, Jake; Juang, Titania; Adamovics, John; Oldham, Mark

    2016-01-01

    The purpose of this work was to characterize three formulations of PRESAGE® dosimeters (DEA-1, DEA-2, and DX) and to identify optimal readout timing and procedures for accurate in-house 3D dosimetry. The optimal formulation and procedure was then applied for the verification of an intensity modulated radiation therapy (IMRT) and a volumetric modulated arc therapy (VMAT) treatment technique. PRESAGE® formulations were studied for their temporal stability postirradiation, sensitivity, and linearity of dose response. Dosimeters were read out using a high-resolution optical-CT scanner. Small volumes of PRESAGE® were irradiated to investigate possible differences in sensitivity for large and small volumes (‘volume effect’). The optimal formulation and read-out technique was applied to the verification of two patient treatments: an IMRT plan and a VMAT plan. A gradual decrease in post-irradiation optical-density was observed in all formulations with DEA-1 exhibiting the best temporal stability with less than 4% variation between 2–22 h post-irradiation. A linear dose response at the 4 h time point was observed for all formulations with an R2 value >0.99. A large volume effect was observed for DEA-1 with sensitivity of the large dosimeter being ~63% less than the sensitivity of the cuvettes. For the IMRT and VMAT treatments, the 3D gamma passing rates for 3%/3 mm criteria using absolute measured dose were 99.6 and 94.5% for the IMRT and VMAT treatments, respectively. In summary, this work shows that accurate 3D dosimetry is possible with all three PRESAGE® formulations. The optimal imaging windows post-irradiation were 3–24 h, 2–6 h, and immediately for the DEA-1, DEA-2, and DX formulations, respectively. Because of the large volume effect, small volume cuvettes are not yet a reliable method for calibration of larger dosimeters to absolute dose. Finally, PRESAGE® is observed to be a useful method of 3D verification when careful consideration is given to the

  9. Biodistribution and radiation dosimetry for the tau tracer (18)F-THK-5351 in healthy human subjects.

    PubMed

    Hsiao, Ing-Tsung; Lin, Kun-Ju; Huang, Kuo-Lun; Huang, Chin-Chang; Chen, Han-Shiuan; Wey, Shiaw-Pyng; Yen, Tzu-Chen; Okamura, Nobuyuki; Hsu, Jung-Lung

    2017-03-23

    (18)F-THK-5351 is a novel radiotracer that demonstrates high binding selectivity and affinity for tau pathology and exhibits better pharmacokinetics in the living brain than previous THK tau probes. The aim of the present study was to estimate the radiation dose of (18)F-THK-5351 in humans and to compare the clinical radiation dosimetry results to estimations published previously with preclinical data. Methods: Serial whole-body positron emission tomography/computed tomography (PET/CT) imaging was performed for 240 min on 12 healthy volunteers after injecting (18)F-THK-5351 (mean administered activity: 377.8 ± 14.0 MBq, range: 340-397 MBq). The bladder and gallbladder were delineated on PET images, while the other organs were delineated on CT images. Voided urine activity was recorded. The decay-corrected and normalized (18)F-THK-5351 activity of 15 source organ regions as a function of time was entered into the OLINDA/EXM software to calculate the effective dose for each subject following the medical internal radiation dosimetry schema. Results: Overall, the (18)F-THK-5351 injection was well tolerated. The highest mean initial uptakes at 10 min post-injection were measured in the liver (11.4 ± 2.0%), lung (5.7 ± 2.1%), intestine (3.4 ± 0.8%), and kidney (1.4 ± 0.3%). The highest mean absorbed doses of radiation were in the gallbladder wall (242.2 ± 105.2 µGy/MBq), upper large intestine (90.0 ± 15.8 µGy/MBq), small intestine (79.5 ± 13.8 µGy/MBq), and liver (55.8 ± 6.1 µGy/MBq). The resultant whole-body effective dose was 22.7 ± 1.3 µSv/MBq. Conclusion: Our results suggest that a routine injection of 370 MBq of (18)F-THK-5351 would lead to an estimated effective dose of 8.4 mSv; hence, (18)F-THK-5351 shows similar radiation burdens to other commonly used clinical tracers. Our findings in humans were compatible with recently published preclinical dosimetry data extrapolated from mice.

  10. Characterization of the effect of MRI on Gafchromic film dosimetry.

    PubMed

    Reyhan, Meral L; Chen, Ting; Zhang, Miao

    2015-11-01

    Magnetic resonance (MR) imaging of Gafchromic film causes perturbation to absolute dosimetry measurements; the purpose of this work was to characterize the perturbation and develop a correction method for it. Three sets of Gafchromic EBT2 film were compared: radiation (control), radiation followed by MR imaging (RAD+B), and MR imaging followed by radiation (B+RAD). The T1-weighted and T2-weighted MR imaging was performed using a 1.5T scanner with the films wedged between two chicken legs. Doses from 0 to 800 cGy were delivered with a 6MV linac. The time interval between radiation and MR imaging was less than 10 min. Film calibration was generated from the red channel. Microscopic imaging was performed on two pieces of film. The effect of specific absorption rate (SAR) was determined by exposing another three sets of films to low, medium, and high levels of SAR through a series of pulse sequences. No discernible preferential alignment was detected on the microscopic images of the irradiated film exposed to MRI. No imaging artifacts were introduced by Gafchromic film on any MR images. On average, 4% dose difference was observed between B+RAD or RAD+B and the control, using the same calibration curve. The pixel values between the B+RAD or RAD+B and the control films were found to follow a linear relationship pixel(Control)=1.02×pixel(B+RAD or RAD+B). By applying this correction, the average dose error was reduced to approximately 2%. The SAR experiment revealed a dose overestimation with increasing SAR even when the correction was applied. It was concluded that MR imaging introduces perturbation on Gafchromic film dose measurements by 4% on average, compared to calibrating the film without the presence of MRI. This perturbation can be corrected by applying a linear correction to the pixel values. Additionally, Gafchromic film did not introduce any imaging artifacts in any of the MR images acquired. PACS number: 87.50.cm.

  11. Bibliographical database of radiation biological dosimetry and risk assessment: Part 1, through June 1988

    SciTech Connect

    Straume, T.; Ricker, Y.; Thut, M.

    1988-08-29

    This database was constructed to support research in radiation biological dosimetry and risk assessment. Relevant publications were identified through detailed searches of national and international electronic databases and through our personal knowledge of the subject. Publications were numbered and key worded, and referenced in an electronic data-retrieval system that permits quick access through computerized searches on publication number, authors, key words, title, year, and journal name. Photocopies of all publications contained in the database are maintained in a file that is numerically arranged by citation number. This report of the database is provided as a useful reference and overview. It should be emphasized that the database will grow as new citations are added to it. With that in mind, we arranged this report in order of ascending citation number so that follow-up reports will simply extend this document. The database cite 1212 publications. Publications are from 119 different scientific journals, 27 of these journals are cited at least 5 times. It also contains reference to 42 books and published symposia, and 129 reports. Information relevant to radiation biological dosimetry and risk assessment is widely distributed among the scientific literature, although a few journals clearly dominate. The four journals publishing the largest number of relevant papers are Health Physics, Mutation Research, Radiation Research, and International Journal of Radiation Biology. Publications in Health Physics make up almost 10% of the current database.

  12. Genetic and molecular dosimetry of HZE radiation (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.

    1992-01-01

    The objectives of the study are to determine the kinetics of production and to characterize the unique aspects of genetic and developmental lesion induced in animal cells by radiation present in the space environment. Special attention is given to heavy charged particles. The organism Caenorhabditis elegans, a simple nematode, is used as a model system for a coordinated set of ground-based and flight experiments.

  13. The radiation oncology workforce: A focus on medical dosimetry

    SciTech Connect

    Robinson, Gregg F.; Mobile, Katherine; Yu, Yan

    2014-07-01

    The 2012 Radiation Oncology Workforce survey was conducted to assess the current state of the entire workforce, predict its future needs and concerns, and evaluate quality improvement and safety within the field. This article describes the dosimetrist segment results. The American Society for Radiation Oncology (ASTRO) Workforce Subcommittee, in conjunction with other specialty societies, conducted an online survey targeting all segments of the radiation oncology treatment team. The data from the dosimetrist respondents are presented in this article. Of the 2573 dosimetrists who were surveyed, 890 responded, which resulted in a 35% segment response rate. Most respondents were women (67%), whereas only a third were men (33%). More than half of the medical dosimetrists were older than 45 years (69.2%), whereas the 45 to 54 years age group represented the highest percentage of respondents (37%). Most medical dosimetrists stated that their workload was appropriate (52%), with respondents working a reported average of 41.7 ± 4 hours per week. Overall, 86% of medical dosimetrists indicated that they were satisfied with their career, and 69% were satisfied in their current position. Overall, 61% of respondents felt that there was an oversupply of medical dosimetrists in the field, 14% reported that supply and demand was balanced, and the remaining 25% felt that there was an undersupply. The medical dosimetrists' greatest concerns included documentation/paperwork (78%), uninsured patients (80%), and insufficient reimbursement rates (87%). This survey provided an insight into the dosimetrist perspective of the radiation oncology workforce. Though an overwhelming majority has conveyed satisfaction concerning their career, the study allowed a spotlight to be placed on the profession's current concerns, such as insufficient reimbursement rates and possible oversupply of dosimetrists within the field.

  14. Criteria for Personal Dosimetry in Mixed Radiation Fields in Space,

    DTIC Science & Technology

    1974-09-16

    of neutrons has not been reported on any manned mussion. Only limited data on thermal neutrons recorded with activation f9 ils and on a small section...the center. The bottom graph shows the distribution for neutron recoil protons from thermal fission of U-235 as reported by Kronenberg and Murphy (3...an equilibrium spectrum is established. For neutrons of galactic radiation, the equilibrium spectrum is a wide continuum extending from thermal to

  15. History of International Workshop on Mini-Micro- and Nano- Dosimetry (MMND) and Innovation Technologies in Radiation Oncology (ITRO)

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Anatoly B.; Zaider, Marco; Yamada, Josh; Zelefsky, Michael J.

    2017-01-01

    The biannual MMND (former MMD) - IPCT workshops was founded in collaboration between the Centre for Medical Radiation Physics, University of Wollongong and the Memorial Sloan Kettering Cancer Center (MSKCC) in 2001 and has become an important international multidisciplinary forum for the discussion of advanced quality assurance (QA) dosimetry technology for radiation therapy and space science, as well as advanced technologies for clinical cancer treatment.

  16. Ultrasound Thermometry for Therapy-level Radiation Dosimetry

    NASA Astrophysics Data System (ADS)

    Taylor, Courtney

    2010-03-01

    Radiation oncology is the process of administering a specified dose of radiation to a patient currently receiving treatment for a form of cancer. In this process, it is vital to know the delivered dose for a given radiation beam to correctly treat a patient. The primary reference standard for absorbed dose is established using water calorimetry. The absorbed dose, typically of order 1 Gy (J/kg) at therapy levels, is realized by measuring sub-millikelvin temperature changes using a thermistor in a sensitive Wheatstone bridge. Ultrasound technology has been investigated as an alternative to thermistor measurements since the speed of sound propagation in water varies with temperature. With ultrasonic time-of-flight and highly sensitive phase detection techniques, temperature sensitivity comparable to that of the thermistor bridge has been achieved without introducing non-water materials into the test area. A single ultrasound transducer transmitting and receiving at 5.0 MHz throughout the length of the water phantom, and the phase change of the sound wave was used to determine temperature increase from an irradiative source at specified depths of the phantom. In this experiment, the exposure period was varied from 15s to 160s cyclically by modulating a heat lamp, and a profile of the measured temperature response as a function of the period was obtained using Fourier analysis. Due to the large temperature gradient in the water phantom, measurements are prone to convection which was indeed observed and will be discussed.

  17. Space radiation dosimetry on US and Soviet manned missions

    SciTech Connect

    Parnell, T.A.; Benton, E.V.

    1995-03-01

    Radiation measurements obtained on board U.S. and Soviet spacecraft are presented and discussed. A considerable amount of data has now been collected and analyzed from measurements with a variety of detector types in low-Earth orbit. The objectives of these measurements have been to investigate the dose and Linear Energy Transfer (LET) spectra within the complex shielding of large spacecraft. The shielding modifies the external radiation (trapped protons, electrons, cosmic ray nuclei) which, in turn, is quite dependent on orbital parameters (altitude, inclination). For manned flights, these measurements provide a crew exposure record and a data base for future spacecraft design and flight planning. For the scientific community they provide useful information for planning and analyzing data from experiments with high sensitivity to radiation. In this paper, results of measurements by both passive and active detectors are described. High-LET spectra measurements were obtained by means of plastic nuclear track detectors (PNTD`s) while thermoluminescent dosimeters (TLD`s) measured the dose.

  18. A Novel Technique for Performing Space Based Radiation Dosimetry Using DNA: Results from GRaDEx-I and the Design of GRaDEx-II

    NASA Technical Reports Server (NTRS)

    Ritter, Joe; Branly, R.; Theodorakis, C.; Bickham, J.; Swartz, C.; Friedfeld, R.; Ackerman, E.; Carruthers, C.; DiGirolamo, A.; Faranda, J.; Howard, E.; Bruno, C.

    1999-01-01

    Because of the large amounts of cosmic radiation in the space environment relative to that on earth, the effects of radiation on the physiology of astronauts is of major concern. Doses of radiation which can cause acute or chronic biological effects are to be avoided, therefore determination of the amount of radiation exposure encountered during space flight and assessment of its impact on biological systems is critical. Quantifying the radiation dosage and damage to biological systems, especially to humans during repetitive high altitude flight and during long duration space flight is important for several reasons. Radiation can cause altered biosynthesis and long term genotoxicity resulting in cancer and birth defects, etc. Radiation damage to biological systems depends in a complex way on incident radiation species and their energy spectra. Typically non-biological, i.e. film or electronic monitoring systems with narrow energy band sensitivity are used to perform dosimetry and then results are extrapolated to biological models. For this reason it may be desirable to perform radiation dosimetry by using biological molecules e.g. DNA or RNA strands as passive sensors. A lightweight genotoxicology experiment was constructed to determine the degree to which in-vitro naked DNA extracted from tissues of a variety of vertebrate organisms is damaged by exposure to radiation in a space environment. The DNA is assayed by means of agarose gel electrophoresis to determine damage such as strand breakage caused by high momentum particles and photons, and base oxidation caused by free radicals. The length distribution of DNA fragments is directly correlated with the radiation dose. It is hoped that a low mass, low cost, passive biological system to determine dose-response relationship (increase in strand breaks with increase in exposure) can be developed to perform radiation dosimetry in support of long duration space flight, and to predict negative effects on biological

  19. A Novel Technique for Performing Space Based Radiation Dosimetry Using DNA-Results from GRaDEx-I and the Design of GRaDEx-II

    NASA Technical Reports Server (NTRS)

    Ritter, Joe; Branly, R.; Theodorakis, C.; Bickham, J.; Swartz, C.; Friedfeld, R.; Ackerman, E.; Carruthers, C.; DiGirolamo, A.; Faranda, J.

    1999-01-01

    Because of the large amounts of cosmic radiation in the space environment relative to that on earth, the effects of radiation on the physiology of astronauts is of major concern. Doses of radiation which can cause acute or chronic biological effects are to be avoided, therefore determination of the amount of radiation exposure encountered during space flight and assessment of its impact on biological systems is critical. Quantifying the radiation dosage and damage to biological systems, especially to humans during repetitive high altitude flight and during long duration space flight is important for several reasons. Radiation can cause altered biosynthesis and long term genotoxicity resulting in cancer and birth defects etc. Radiation damage to biological systems depends in a complex way on incident radiation species and their energy spectra. Typically non-biological, i.e. film or electronic monitoring systems with narrow energy band sensitivity are used to perform dosimetry and then results are extrapolated to biological models. For this reason it may be desirable to perform radiation dosimetry by using biological molecules e.g. DNA or RNA strands as passive sensors. A lightweight genotoxicology experiment was constructed to determine the degree to which in vitro naked DNA extracted from tissues of a variety of vertebrate organisms is damaged by exposure to radiation in a space environment. The DNA is assayed by means of agarose gel electrophoresis to determine damage such as strand breakage caused by high momentum particles and photons, and base oxidation caused by free radicals. The length distribution of DNA fragments is directly correlated with the radiation dose. It is hoped that a low mass, low cost, passive biological system to determine dose response relationship (increase in strand breaks with increase in exposure) can be developed to perform radiation dosimetry in support of long duration space flight, and to predict negative effects on biological

  20. Radiation effects.

    PubMed

    Preston, R J

    2012-01-01

    International Commission on Radiological Protection (ICRP) Committee 1 (C1) considers the risk of induction of cancer and heritable disease; the underlying mechanisms of radiation action; and the risks, severity, and mechanisms of induction of tissue reactions (formerly 'deterministic effects'). C1 relies upon the interpretation of current knowledge of radio-epidemiological studies; current information on the underlying mechanisms of diseases and radiation-induced disease; and current radiobiological studies at the whole animal, tissue, cell, and molecular levels. This overview will describe the activities of C1 in the context of the 2007 Recommendations of ICRP. In particular, the conclusions from the most recent C1 Task Group deliberations on radon and lung cancer, and tissue reactions will be discussed. Other activities are described in summary fashion to illustrate those areas that C1 judge to be likely to influence the development of the risk estimates and nominal risk coefficients used for radiation protection purposes.

  1. Gene expression-based dosimetry by dose and time in mice following acute radiation exposure.

    PubMed

    Tucker, James D; Divine, George W; Grever, William E; Thomas, Robert A; Joiner, Michael C; Smolinski, Joseph M; Auner, Gregory W

    2013-01-01

    Rapid and reliable methods for performing biological dosimetry are of paramount importance in the event of a large-scale nuclear event. Traditional dosimetry approaches lack the requisite rapid assessment capability, ease of use, portability and low cost, which are factors needed for triaging a large number of victims. Here we describe the results of experiments in which mice were acutely exposed to (60)Co gamma rays at doses of 0 (control) to 10 Gy. Blood was obtained from irradiated mice 0.5, 1, 2, 3, 5, and 7 days after exposure. mRNA expression levels of 106 selected genes were obtained by reverse-transcription real time PCR. Stepwise regression of dose received against individual gene transcript expression levels provided optimal dosimetry at each time point. The results indicate that only 4-7 different gene transcripts are needed to explain ≥ 0.69 of the variance (R(2)), and that receiver-operator characteristics, a measure of sensitivity and specificity, of ≥ 0.93 for these statistical models were achieved at each time point. These models provide an excellent description of the relationship between the actual and predicted doses up to 6 Gy. At doses of 8 and 10 Gy there appears to be saturation of the radiation-response signals with a corresponding diminution of accuracy. These results suggest that similar analyses in humans may be advantageous for use in a field-portable device designed to assess exposures in mass casualty situations.

  2. Gene Expression-Based Dosimetry by Dose and Time in Mice Following Acute Radiation Exposure

    PubMed Central

    Tucker, James D.; Divine, George W.; Grever, William E.; Thomas, Robert A.; Joiner, Michael C.; Smolinski, Joseph M.; Auner, Gregory W.

    2013-01-01

    Rapid and reliable methods for performing biological dosimetry are of paramount importance in the event of a large-scale nuclear event. Traditional dosimetry approaches lack the requisite rapid assessment capability, ease of use, portability and low cost, which are factors needed for triaging a large number of victims. Here we describe the results of experiments in which mice were acutely exposed to 60Co gamma rays at doses of 0 (control) to 10 Gy. Blood was obtained from irradiated mice 0.5, 1, 2, 3, 5, and 7 days after exposure. mRNA expression levels of 106 selected genes were obtained by reverse-transcription real time PCR. Stepwise regression of dose received against individual gene transcript expression levels provided optimal dosimetry at each time point. The results indicate that only 4–7 different gene transcripts are needed to explain ≥ 0.69 of the variance (R2), and that receiver-operator characteristics, a measure of sensitivity and specificity, of ≥ 0.93 for these statistical models were achieved at each time point. These models provide an excellent description of the relationship between the actual and predicted doses up to 6 Gy. At doses of 8 and 10 Gy there appears to be saturation of the radiation-response signals with a corresponding diminution of accuracy. These results suggest that similar analyses in humans may be advantageous for use in a field-portable device designed to assess exposures in mass casualty situations. PMID:24358280

  3. The new radiation dosimetry for the A-bombs in Hiroshima and Nagasaki

    SciTech Connect

    Kerr, G.D.

    1988-08-18

    Extensive work has been conducted over the past few years to reassess all aspects of the radiation dosimetry for the A-bombs in Hiroshima and Nagasaki. This work has included reviews of the bomb yields, source terms, air transport of neutrons and gamma rays, neutron-induced radioactivity and thermoluminescence in exposed materials, shielding of individuals by buildings, and calculations of organ doses. The results of these theoretical and experimental activities have led to the development of a new dosimetry system which is designated as the Dosimetry System 1986 (DS86). New DS86 estimates of tissue kerma in air and absorbed dose to fifteen organs are available for 94,787 survivors who were either outside and unshielded, outside and shielded by houses, or inside and shielded by houses (64,408 in Hiroshima and 30,379 in Nagasaki). The organ doses are calculated on an age-dependent basis as follows: infants (less than 3 years old at the time of bombing, ATB), children (3 to 12 years old ATB), and adults (more than 12 years old ATB). Work in progress includes the extension of the DS86 system to Nagasaki survivors who were shielded either by terrain or by factory buildings.

  4. Alanine-EPR as a transfer standard dosimetry system for low energy X radiation

    NASA Astrophysics Data System (ADS)

    Khoury, H. J.; da Silva, E. J.; Mehta, K.; de Barros, V. S.; Asfora, V. K.; Guzzo, P. L.; Parker, A. G.

    2015-11-01

    The purpose of this paper is to evaluate the use of alanine-EPR as a transfer standard dosimetry system for low energy X radiation, such as that in RS-2400, which operates in the range from 25 to 150 kV and 2 to 45 mA. Two types of alanine dosimeters were investigated. One is a commercial alanine pellets from Aérial-Centre de Ressources Technologiques, France and one was prepared in our laboratory (LMRI-DEN/UFPE). The EPR spectra of the irradiated dosimeters were recorded in the Nuclear Energy Department of UFPE, using a Bruker EMX10 EPR spectrometer operating in the X-band. The alanine-EPR dosimetry system was calibrated in the range of 20-220 Gy in this X-ray field, against an ionization chamber calibrated at the relevant X-ray energy with traceability to PTB. The results showed that both alanine dosimeters presented a linear dose response the same sensitivity, when the EPR signal was normalized to alanine mass. The total uncertainty in the measured dose was estimated to be about 3%. The results indicate that it is possible to use the alanine-EPR dosimetry system for validation of a low-energy X ray irradiator, such as RS-2400.

  5. Review on the characteristics of radiation detectors for dosimetry and imaging

    NASA Astrophysics Data System (ADS)

    Seco, Joao; Clasie, Ben; Partridge, Mike

    2014-10-01

    The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general

  6. WE-AB-BRB-03: Real-Time Volumetric Scintillation Dosimetry for Radiation Therapy.

    PubMed

    Beddar, S

    2016-06-01

    Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability of water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on.

  7. WE-AB-BRB-01: Memorial Introduction; Storage Phosphor Panels for Radiation Therapy Dosimetry.

    PubMed

    Li, H

    2016-06-01

    Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability of water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on.

  8. Radiation dosimetry at the BNL Medical Research Reactor

    SciTech Connect

    Holden, N.E.; Reciniello, R.N.; Greenberg, D.D.; Hu, J.P.

    1998-11-01

    The Medical Research Reactor, BMRR, at the Brookhaven National Laboratory, BNL, is a three megawatt, 3 MW, heterogeneous, tank-type, light water cooled and moderated, graphite reflected reactor, which was designed for biomedical studies, and became operational in 1959. It provides thermal and epithermal neutron beams suitable for research studies such as radiation therapy of various types of tumors. At the present time, the major program at BMRR is Boron Neutron Capture Therapy, BNCT. Modifications have been made to the BMRR to significantly increase the available epithermal neutron flux density to a patient in clinical trials of BNCT. The data indicate that the flux density and dose rate are concentrated in the center of the beam, the patient absorbs neutrons rather than gamma radiation and as noted previously even with the increasing flux values, gamma-ray dose received by the attending personnel has remained minimal. Flux densities in the center of the thermal port and epithermal port beams have been characterized with an agreement between the measurements and the calculations.

  9. Summary of current radiation dosimetry results on manned spacecraft.

    PubMed

    Benton, E V

    1984-01-01

    Measurements of radiation exposures aboard manned space flights of various altitudes, orbital inclinations and durations were performed by means of passive radiation detectors, thermoluminescent detectors (TLD's), and in some cases by active electronic counters. The TLD's and electronic counters covered the lower portion of the LET (linear energy transfer) spectra, while the nuclear track detectors measured high-LET produced by HZE particles. In Spacelab (SL-1), TLD's recorded a range of 102 to 190-millirad, yielding an average low-LET dose rate of 11.2 mrad per day inside the module, about twice the dose rate measured on previous space shuttle flights. Because of a higher inclination of the SL-1 orbit (57 degrees versus 28.5 degrees for previous shuttle flights), substantial fluxes of highly ionizing HZE particles were also observed, yielding an overall average mission dose-equivalent of about 135 millirem, about three times higher than measured an previous shuttle missions. A dose rate more than an order of magnitude higher than for any other space shuttle light was obtained for mission STS-41C, reflecting the highest orbital altitude to date of 519 km.

  10. Parallel beam optical tomography apparatus for 3D radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Krstajic, Nikola; Doran, Simon J.

    2005-06-01

    Since the discovery of X rays radiotherapy has had the same aim - to deliver a precisely measured dose of radiation to a defined tumour volume with minimal damage to surrounding healthy tissue. Recent developments in radiotherapy such as intensity modulated radiotherapy (IMRT) can generate complex shapes of dose distributions. Until recently it has not been possible to verify that the delivered dose matches the planned dose. However, one often wants to know the real three-dimensional dose distribution. Three-dimensional radiation dosimeters have been developed since the early 1980s. Most chemical formulations involve a radiosensitive species immobilised in space by gelling agent. Magnetic Resonance Imaging (MRI) and optical techniques have been the most successful gel scanning techniques so far. Optical techniques rely on gels changing colour once irradiated. Parallel beam optical tomography has been developed at the University of Surrey since the late 1990s. The apparatus involves light emitting diode light source collimated to a wide (12cm) parallel beam. The beam is attenuated or scattered (depending on the chemical formulation) as it passes through the gel. Focusing optics projects the beam onto a CCD chip. The dosimeter sits on a rotation stage. The tomography scan involves continuously rotating the dosimeter and taking CCD images. Once the dosimeter has been rotated over 180 degrees the images are processed by filtered back projection. The work presented discusses the optics of the apparatus in more detail.

  11. Initial Results from the Radiation Dosimetry Experiment (RaD-X) Balloon Flight Mission

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.

    2015-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. The four dosimeters flown on the RaD-X science payload are a Hawk version 3.0 Tissue Equivalent Proportional Counter (TEPC) manufactured by Far West Technologies, a Liulin dosimeter-spectrometer produced by the Solar Research and Technology Institute, Bulgarian Academy of Sciences, a total ionizing dose detector manufactured by Teledyne Microelectronic Technologies, and the RaySure detector provided by the University of Surrey.

  12. Floating Gate sensor for in-vivo dosimetry in radiation therapies. Design and first characterization.

    NASA Astrophysics Data System (ADS)

    Faigon, A.; Martinez Vazquez, I.; Carbonetto, S.; García Inza, M.; G

    2017-01-01

    A floating gate dosimeter was designed and fabricated in a standard CMOS technology. The design guides and characterization are presented. The characterization included the controlled charging by tunneling of the floating gate, and its discharging under irradiation while measuring the transistor drain current whose change is the measure of the absorbed dose. The resolution of the obtained device is close to 1 cGy satisfying the requirements for most radiation therapies dosimetry. Pending statistical proofs, the dosimeter is a potential candidate for wide in-vivo control of radiotherapy treatments.

  13. Characterization of a parallel beam CCD optical-CT apparatus for 3D radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Krstajić, Nikola; Doran, Simon J.

    2006-12-01

    This paper describes the initial steps we have taken in establishing CCD based optical-CT as a viable alternative for 3-D radiation dosimetry. First, we compare the optical density (OD) measurements from a high quality test target and variable neutral density filter (VNDF). A modulation transfer function (MTF) of individual projections is derived for three positions of the sinusoidal test target within the scanning tank. Our CCD is then characterized in terms of its signal-to-noise ratio (SNR). Finally, a sample reconstruction of a scan of a PRESAGETM (registered trademark of Heuris Pharma, NJ, Skillman, USA.) dosimeter is given, demonstrating the capabilities of the apparatus.

  14. Radiation dosimetry in digital breast tomosynthesis: Report of AAPM Tomosynthesis Subcommittee Task Group 223

    SciTech Connect

    Sechopoulos, Ioannis; Sabol, John M.; Berglund, Johan; Bolch, Wesley E.; Brateman, Libby; Christodoulou, Emmanuel; Goodsitt, Mitchell; Flynn, Michael; Geiser, William; Kyle Jones, A.; Lo, Joseph Y.; Paul Segars, W.; Maidment, Andrew D. A.; Nishino, Kazuyoshi; Nosratieh, Anita; and others

    2014-09-15

    The radiation dose involved in any medical imaging modality that uses ionizing radiation needs to be well understood by the medical physics and clinical community. This is especially true of screening modalities. Digital breast tomosynthesis (DBT) has recently been introduced into the clinic and is being used for screening for breast cancer in the general population. Therefore, it is important that the medical physics community have the required information to be able to understand, estimate, and communicate the radiation dose levels involved in breast tomosynthesis imaging. For this purpose, the American Association of Physicists in Medicine Task Group 223 on Dosimetry in Tomosynthesis Imaging has prepared this report that discusses dosimetry in breast imaging in general, and describes a methodology and provides the data necessary to estimate mean breast glandular dose from a tomosynthesis acquisition. In an effort to maximize familiarity with the procedures and data provided in this Report, the methodology to perform the dose estimation in DBT is based as much as possible on that used in mammography dose estimation.

  15. Evaluation of a 3D diamond detector for medical radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Kanxheri, K.; Servoli, L.; Oh, A.; Munoz Sanchez, F.; Forcolin, G. T.; Murphy, S. A.; Aitkenhead, A.; Moore, C. J.; Morozzi, A.; Passeri, D.; Bellini, M.; Corsi, C.; Lagomarsino, S.; Sciortino, S.

    2017-01-01

    Synthetic diamond has several properties that are particularly suited to applications in medical radiation dosimetry. It is tissue equivalent, not toxic and shows a high resistance to radiation damage, low leakage current and stability of response. It is an electrical insulator, robust and realizable in small size; due to these features there are several examples of diamond devices, mainly planar single-crystalline chemical vapor depositation (sCVD) diamond, used for relative dose measurement in photon beams. Thanks to a new emerging technology, diamond devices with 3-dimensional structures are produced by using laser pulses to create graphitic paths in the diamond bulk. The necessary bias voltage to operate such detector decreases considerably while the signal response and radiation resistance increase. In order to evaluate the suitability of this new technology for measuring the dose delivered by radiotherapy beams in oncology a 3D polycrystalline (pCVD) diamond detector designed for single charged particle detection has been tested and the photon beam profile has been studied. The good linearity and high sensitivity to the dose observed in the 3D diamond, opens the way to the possibility of realizing a finely segmented device with the potential for dose distribution measurement in a single exposure for small field dosimetry that nowadays is still extremely challenging.

  16. Ion-kill dosimetry

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

    2001-01-01

    Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

  17. Overview of the Radiation Dosimetry Experiment (RaD-X) flight mission

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher J.

    2016-11-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission addresses the need to reduce the uncertainty in predicting human exposure to cosmic radiation in the aircraft environment. Measurements were taken that characterize the dosimetric properties of cosmic ray primaries, the ultimate source of aviation radiation exposure, and the cosmic ray secondary radiations that are produced and transported to aviation altitudes. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. RaD-X was successfully launched from Fort Sumner, New Mexico (34.5°N, 104.2°W), on 25 September 2015. Over 18 h of science data were obtained from a total of four different type dosimeters at altitudes above 20 km. The RaD-X flight mission was supported by laboratory radiation exposure testing of the balloon flight dosimeters and also by coordinated radiation measurements taken on ER-2 and commercial aircraft. This paper provides the science background and motivation for the RaD-X flight mission, a brief description of the balloon flight profile and the supporting aircraft flights, and a summary of the articles included in the RaD-X special collection and their contributions to the science goals of the RaD-X mission.

  18. Radiation dosimetry in radiotherapy: a model for an extrinsic optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Mignani, Anna G.; Romano, Salvatore; Fusi, Franco; Mencaglia, Andrea A.

    1998-06-01

    The success of radiotherapy relies on the on-line monitoring of the dose of radiation to which the tumor and its adjacent tissues are exposed. Conventional thermoluminescence dosimeters provide only off-line monitoring, since they determine the radiation dosage after completion of the exposure. In order to overcome this limitation, optical fiber sensors have been proposed, which allow for a minimally invasive, real time and continuous monitoring of the delivered which allow for a minimally invasive, real time and continuous monitoring of the delivered dosage. These sensors make use of radio-transducers which are coupled at the end of a radiation-resistant fiber link, so as to obtain a radiation-induced intensity modulation. Typical radio-transducers are: (1) phosphors, which are stimulated to produce a visible luminescence linearly related to the radiation exposure; (2) heavy-metal-doped fiber sections, which undergo an intensity attenuation in the presence of radiation; (3) radiochromic dyes, which exhibit radiation-modulated optical absorption spectra. This paper presents preliminary test of radiation dosimetry performed by means of an extrinsic optical fiber sensor which makes use of a radiochromic film as radio-transducer. The spectral behavior of the transducer allows for two- wavelength differential measurements, so as to obtain a reference intensity-based sensor output.

  19. Overview of the Radiation Dosimetry Experiment (RaD-X) Flight Mission

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission addresses the need to reduce the uncertainty in predicting human exposure to cosmic radiation in the aircraft environment. Measurements were taken that characterize the dosimetric properties of cosmic ray primaries, the ultimate source of aviation radiation exposure, and the cosmic ray secondary radiations that are produced and transported to aviation altitudes. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. RaD-X was successfully launched from Fort Sumner, New Mexico (34.5 N, 104.2 W), on 25 September 2015. Over 18 h of science data were obtained from a total of four different type dosimeters at altitudes above 20 km. The RaD-X flight mission was supported by laboratory radiation exposure testing of the balloon flight dosimeters and also by coordinated radiation measurements taken on ER-2 and commercial aircraft. This paper provides the science background and motivation for the RaD-X flight mission, a brief description of the balloon flight profile and the supporting aircraft flights, and a summary of the articles included in the RaD-X special collection and their contributions to the science goals of the RaD-X mission.

  20. Biodistribution and Radiation Dosimetry for a Probe Targeting Prostate-Specific Membrane Antigen for Imaging and Therapy

    PubMed Central

    Herrmann, Ken; Bluemel, Christina; Weineisen, Martina; Schottelius, Margret; Wester, Hans-Jürgen; Czernin, Johannes; Eberlein, Uta; Beykan, Seval; Lapa, Constantin; Riedmiller, Hubertus; Krebs, Markus; Kropf, Saskia; Schirbel, Andreas; Buck, Andreas K.; Lassmann, Michael

    2016-01-01

    Prostate-specific membrane antigen (PSMA) is a promising target for diagnosis and treatment of prostate cancer. EuK-Subkff-68Ga-DOTAGA (68Ga-PSMA Imaging & Therapy [PSMA I&T]) is a recently introduced PET tracer for imaging PSMA expression in vivo. Whole-body distribution and radiation dosimetry of this new probe were evaluated. Methods Five patients with a history of prostate cancer were injected intravenously with 91–148 MBq of 68Ga-PSMA I&T (mean ± SD, 128 ± 23 MBq). After an initial series of rapid whole-body scans, 3 static whole-body scans were acquired at 1, 2, and 4 h after tracer injection. Time-dependent changes of the injected activity per organ were determined. Mean organ-absorbed doses and effective doses were calculated using OLINDA/EXM. Results Injection of 150 MBq of 68Ga-PSMA I&T resulted in an effective dose of 3.0 mSv. The kidneys were the critical organ (33 mGy), followed by the urinary bladder wall and spleen (10 mGy each), salivary glands (9 mGy each), and liver (7 mGy). Conclusion 68Ga-PSMA I&T exhibits a favorable dosimetry, delivering organ doses that are comparable to (kidneys) or lower than those delivered by 18F-FDG. PMID:25883128

  1. Trends in Radiation Dosimetry: preliminary overview of active growth areas, research trends and hot topics from 2011-2015

    NASA Astrophysics Data System (ADS)

    Baldock, C.

    2017-01-01

    The themes and trends of the radiation dosimetry research field were bibliometrically explored by way of co-occurrence term maps using the titles and abstracts text corpora from the Web of Science database for the period from 2011 to 2015. Visualisation of similarities was used by way of the VOSviewer visualization tool to generate cluster maps of radiation dosimetry knowledge domains and the associated citation impact of topics within the domains. Heat maps were then generated to assist in the understanding of active growth areas, research trends, and emerging and hot topics.

  2. [New dosimetry system based on the thermoluminescence method for evaluation of ionizing radiation doses to workers of the health centers].

    PubMed

    Urban, Paweł; Skubacz, Krystian

    2015-01-01

    In different areas of industry, science and in the greater extend medicine, plenty of devices intended for production of ionizing radiation or containing sources of such radiation found application. Such situation causes the necessity to control such kind of hazards. Currently, the most popular technique for detection of ionizing radiation is the method based on the thermoluminescence phenomena. Within the frame of this work, a new Panasonic's dosimetry system based on thermoluminescence dosimeters, intended for assessment of doses in mixed radiation fields of various energies is presented. In addition, the measured dosimetry quantities and problems connected with monitoring of radiation hazard in mixed fields (commonly present in medical sector) are characterized. In orderto verify measurement capabilities of the new system the irradiations of dosimeters with ionizing radiation of different energies have been done.

  3. Application of the planar-scanning technique to the near-field dosimetry of millimeter-wave radiators.

    PubMed

    Zhao, Jianxun; Lu, Hongmin; Deng, Jun

    2015-02-01

    The planar-scanning technique was applied to the experimental measurement of the electric field and power flux density (PFD) in the exposure area close to the millimeter-wave (MMW) radiator. In the near-field region, the field and PFD were calculated from the plane-wave spectrum of the field sampled on a scan plane far from the radiator. The measurement resolution was improved by reducing the spatial interval between the field samples to a fraction of half the wavelength and implementing multiple iterations of the fast Fourier transform. With the reference to the results from the numerical calculation, an experimental evaluation of the planar-scanning measurement was made for a 50 GHz radiator. Placing the probe 1 to 3 wavelengths from the aperture of the radiator, the direct measurement gave the near-field data with significant differences from the numerical results. The planar-scanning measurement placed the probe 9 wavelengths away from the aperture and effectively reduced the maximum and averaged differences in the near-field data by 70.6% and 65.5%, respectively. Applied to the dosimetry of an open-ended waveguide and a choke ring antenna for 60 GHz exposure, the technique proved useful to the measurement of the PFD in the near-field exposure area of MMW radiators.

  4. Absorbed radiation dosimetry of the D3-specific PET radioligand [18F]FluorTriopride estimated using rodent and nonhuman primate

    PubMed Central

    Laforest, Richard; Karimi, Morvarid; Moerlein, Stephen M; Xu, Jinbin; Flores, Hubert P; Bognar, Christopher; Li, Aixiao; Mach, Robert H; Perlmutter, Joel S; Tu, Zhude

    2016-01-01

    [18F]FluorTriopride ([18F]FTP) is a dopamine D3-receptor preferring radioligand with potential for investigation of neuropsychiatric disorders including Parkinson disease, dystonia and schizophrenia. Here we estimate human radiation dosimetry for [18F]FTP based on the ex-vivo biodistribution in rodents and in vivo distribution in nonhuman primates. Biodistribution data were generated using male and female Sprague-Dawley rats injected with ~370 KBq of [18F]FTP and euthanized at 5, 30, 60, 120, and 240 min. Organs of interest were dissected, weighed and assayed for radioactivity content. PET imaging studies were performed in two male and one female macaque fascicularis administered 143-190 MBq of [18F]FTP and scanned whole-body in sequential sections. Organ residence times were calculated based on organ time activity curves (TAC) created from regions of Interest. OLINDA/EXM 1.1 was used to estimate human radiation dosimetry based on scaled organ residence times. In the rodent, the highest absorbed radiation dose was the upper large intestines (0.32-0.49 mGy/MBq), with an effective dose of 0.07 mSv/MBq in males and 0.1 mSv/MBq in females. For the nonhuman primate, however, the gallbladder wall was the critical organ (1.81 mGy/MBq), and the effective dose was 0.02 mSv/MBq. The species discrepancy in dosimetry estimates for [18F]FTP based on rat and primate data can be attributed to the slower transit of tracer through the hepatobiliary track of the primate compared to the rat, which lacks a gallbladder. Out findings demonstrate that the nonhuman primate model is more appropriate model for estimating human absorbed radiation dosimetry when hepatobiliary excretion plays a major role in radiotracer elimination. PMID:28078183

  5. Absorbed radiation dosimetry of the D3-specific PET radioligand [(18)F]FluorTriopride estimated using rodent and nonhuman primate.

    PubMed

    Laforest, Richard; Karimi, Morvarid; Moerlein, Stephen M; Xu, Jinbin; Flores, Hubert P; Bognar, Christopher; Li, Aixiao; Mach, Robert H; Perlmutter, Joel S; Tu, Zhude

    2016-01-01

    [(18)F]FluorTriopride ([(18)F]FTP) is a dopamine D3-receptor preferring radioligand with potential for investigation of neuropsychiatric disorders including Parkinson disease, dystonia and schizophrenia. Here we estimate human radiation dosimetry for [(18)F]FTP based on the ex-vivo biodistribution in rodents and in vivo distribution in nonhuman primates. Biodistribution data were generated using male and female Sprague-Dawley rats injected with ~370 KBq of [(18)F]FTP and euthanized at 5, 30, 60, 120, and 240 min. Organs of interest were dissected, weighed and assayed for radioactivity content. PET imaging studies were performed in two male and one female macaque fascicularis administered 143-190 MBq of [(18)F]FTP and scanned whole-body in sequential sections. Organ residence times were calculated based on organ time activity curves (TAC) created from regions of Interest. OLINDA/EXM 1.1 was used to estimate human radiation dosimetry based on scaled organ residence times. In the rodent, the highest absorbed radiation dose was the upper large intestines (0.32-0.49 mGy/MBq), with an effective dose of 0.07 mSv/MBq in males and 0.1 mSv/MBq in females. For the nonhuman primate, however, the gallbladder wall was the critical organ (1.81 mGy/MBq), and the effective dose was 0.02 mSv/MBq. The species discrepancy in dosimetry estimates for [(18)F]FTP based on rat and primate data can be attributed to the slower transit of tracer through the hepatobiliary track of the primate compared to the rat, which lacks a gallbladder. Out findings demonstrate that the nonhuman primate model is more appropriate model for estimating human absorbed radiation dosimetry when hepatobiliary excretion plays a major role in radiotracer elimination.

  6. Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications

    PubMed Central

    Pradhan, A. S.; Lee, J. I.; Kim, J. L.

    2008-01-01

    During the last 10 years, optically stimulated luminescence (OSL) has emerged as a formidable competitor not only to thermoluminescence dosimetry (TLD) but also to several other dosimetry systems. Though a large number of materials have been synthesized and studied for OSL, Al2O3:C continues to dominate the dosimetric applications. Re-investigations of OSL in BeOindicate that this material might provide an alternative to Al2O3:C. Study of OSL of electronic components of mobile phones and ID cards appears to have opened up a feasibility of dosimetry and dose reconstruction using the electronic components of gadgets of everyday use in the events of unforeseen situations of radiological accidents, including the event of a dirty bomb by terrorist groups. Among the newly reported materials, a very recent development of NaMgF3:Eu2+ appears fascinating because of its high OSL sensitivity and tolerable tissue equivalence. In clinical dosimetry, an OSL as a passive dosimeter could do all that TLD can do, much faster with a better or at least the same efficiency; and in addition, it provides a possibility of repeated readout unlike TLD, in which all the dose information is lost in a single readout. Of late, OSL has also emerged as a practical real-time dosimeter for in vivo measurements in radiation therapy (for both external beams and brachytherapy) and in various diagnostic radiological examinations including mammography and CT dosimetry. For in vivo measurements, a probe of Al2O3:C of size of a fraction of a millimeter provides the information on both the dose rate and the total dose from the readout of radioluminescence and OSL signals respectively, from the same probe. The availability of OSL dosimeters in various sizes and shapes and their performance characteristics as compared to established dosimeters such as plastic scintillation dosimeters, diode detectors, MOSFET detectors, radiochromic films, etc., shows that OSL may soon become the first choice for point dose

  7. Radiation Dosimetry Study in Dental Enamel of Human Tooth Using Electron Paramagnetic Resonance

    NASA Astrophysics Data System (ADS)

    De, Tania; Romanyukha, Alex; Pass, Barry; Misra, Prabhakar

    2009-07-01

    Electron paramagnetic resonance (EPR) dosimetry of tooth enamel is used for individual dose reconstruction following radiation accidents. The purpose of this study is to develop a rapid, minimally invasive technique of obtaining a sample of dental enamel small enough to not disturb the structure and functionality of a tooth and to improve the sensitivity of the spectral signals using X-band (9.4 GHz) and Q-band (34 GHz) EPR technique. In this study EPR measurements in X-band were performed on 100 mg isotropic powdered enamel samples and Q-band was performed on 4 mg, 1×1×3 mm enamel biopsy samples. All samples were obtained from discarded teeth collected during normal dental treatment. To study the variation of the Radiation-Induced Signal (RIS) at different orientations in the applied magnetic field, samples were placed in the resonance cavity for Q-band EPR. X-band EPR measurements were performed on 100 mg isotropic powdered enamel samples. In X-band spectra, the RIS is distinct from the "native" radiation-independent signal only for doses >0.5 Gy. Q-band, however, resolves the RIS and "native" signals and improves sensitivity by a factor of 20, enabling measurements in 2-4 mg tooth enamel samples, as compared to 100 mg for X-band. The estimated lower limit of Q-band dose measurement is 0.5 Gy. Q-band EPR enamel dosimetry results in greater sensitivity and smaller sample size through enhanced spectral resolution. Thus, this can be a valuable technique for population triage in the event of detonation of a radiation dispersal device ("dirty" bomb) or other radiation event with massive casualties. Further, the small 4 mg samples can be obtained by a minimally-invasive biopsy technique.

  8. Dosimetry of environmental radiation--a report on the achievements of EURADOS WG3.

    PubMed

    Wissmann, F; Sáez Vergara, J C

    2006-01-01

    Owing to the fact that a nuclear accident is a border-crossing problem, all national active monitoring systems should measure the same quantity with a comparable level of precision. Also, the sensitivity of the systems must be such that sudden changes in the environmental dose rate are recognised and a radiological incident is clearly identified. Thus, international intercomparisons of the so-called Early Warning Systems are the best method to assure high quality measurements. Supported by the European Commission within the scope of the 4th and 5th Framework Programmes, intercomparisons of these Early Warning Systems were organised by European Radiation Dosimetry (EURADOS) Working Group 3 (WG3) in 1999 and 2002. The methods developed for this purpose are based on controlled irradiation of the systems and the determination of their responses to secondary cosmic radiation. One of the major problems turned out to be the correct subtraction of the internal background. Investigating this problem was only possible by carrying out measurements at almost zero dose rate, as available in the Underground Laboratory for Dosimetry and Spectrometry (UDO) maintained by Physikalisch-Technische Bundesanstalt. Progress was also achieved with regard to including in situ gamma spectroscopy systems in the 2002 intercomparison. For these systems, the UDO irradiation facility provides a unique possibility to measure the spectral responses to monoenergetic photons.

  9. Radiation dosimetry measurements during U.S. Space Shuttle missions with the RME-III

    NASA Technical Reports Server (NTRS)

    Golightly, M. J.; Hardy, K.; Quam, W.

    1994-01-01

    Time-resolved radiation dosimetry measurements inside the crew compartment have been made during recent Shuttle missions with the U.S. Air Force Radiation Monitoring Equipment-III (RME-III), a portable battery-powered four-channel tissue equivalent proportional counter. Results from the first six missions are presented and discussed. Half of the missions had orbital inclinations of 28.5 degrees with the remainder at inclinations of 57 degrees or greater; altitudes ranged from 300 to 600 km. The determined dose equivalent rates ranged from 70 to 5300 microSv/day. The RME-III measurements are in good agreement with other dosimetry measurements made aboard the vehicles. Measurements indicate that medium- and high-LET particles contribute less than 2% of the particle fluence for all missions, but up to 50% of the dose equivalent, depending on the spacecraft's altitude and orbital inclination. Isocontours of fluence, dose and dose equivalent rate have been developed from measurements made during the STS-28 mission. The drift rate of the South Atlantic Anomaly is estimated to be 0.49 degrees W/yr and 0.12 degrees N/yr. The calculated trapped proton and GCR dose for the STS-28 mission was significantly lower than the measured values.

  10. Biodistribution and radiation dosimetry of radioiodinated hypericin as a cancer therapeutic.

    PubMed

    Cona, Marlein Miranda; Koole, Michel; Feng, Yuanbo; Liu, Yewei; Verbruggen, Alfons; Oyen, Raymond; Ni, Yicheng

    2014-03-01

    Iodine-131‑labeled monoiodohypericin (131I‑Hyp) is a necrosis avid compound used as a complementary anticancer agent. Herein, the biodistribution in rats with re-perfused partial liver infarction (RPLI) was used to estimate its human internal radiation dosimetry. Iodine-123‑labeled monoiodohypericin (123I-Hyp) as a safer surrogate for 131I-Hyp was prepared with iodogen as oxidant. Determination of radiochemical yield and purification was performed by high performance liquid chromatography (HPLC). To control aggregation, the formulation was macroscopically and microscopically examined. Biodistribution of 123I-Hyp was studied in RPLI rats (n=18) at 4, 24 and 48 h post-injection. Tissue gamma counting (TGC), autoradiography and histology were performed. Dosimetry of 131I-Hyp in hepatic necrosis and in normal human organs was estimated using biodistribution data of 123I-Hyp, the Organ Level Internal Dose Assessment/Exponential Modeling (OLINDA/EXM®), a sphere model and male and female phantoms. A radiochemical yield of 95% was achieved in labeling of 123I-Hyp with a radiochemical purity of 99% after HPLC purification. In the Hyp added formulation, no macroscopic but minimal microscopic aggregation was observed. By TGC, selective accumulation in hepatic infarction and low uptake in viable liver of 123I‑Hyp/Hyp were detected, as confirmed by autoradiography and histology. Significantly higher doses of 131I-Hyp were delivered to necrotic (276‑93,600 mGy/MBq) than to viable (4.2 mGy/MBq) liver (P<0.05). In normal organs, 123I‑Hyp was eliminated within 24 h except for relatively high levels in the lungs and thyroid. Hepatobiliary elimination was a major pathway of 123I-Hyp causing high activity in the intestines. For both genders, dosimetry showed the longest residence time of 131I-Hyp in the remainder, followed by the lungs, intestines and thyroid. The highest absorbed radiation dose was seen in necrotic tissues and the shortest residence times and lowest

  11. Alanine Dosimetry Accurately Determines Radiation Dose in Nonhuman Primates

    DTIC Science & Technology

    2007-10-01

    b) utility of CIP in managing postirradiation infection related to bacterial translocation from the alimentary canal, and (c) side effects of...irradiated ani- mals. Support for this work was provided by National Institute of Allergy and Infectious Diseases (NIAID) contract #Y1-A1-4827-01 and by...al. 1954; Wise, et al. 1968). Under normal conditions, these bacteria are nonpathogenic inhabitants of the alimentary canal but, in immunocom

  12. Workshop Report on Atomic Bomb Dosimetry--Review of Dose Related Factors for the Evaluation of Exposures to Residual Radiation at Hiroshima and Nagasaki.

    PubMed

    Kerr, George D; Egbert, Stephen D; Al-Nabulsi, Isaf; Bailiff, Ian K; Beck, Harold L; Belukha, Irina G; Cockayne, John E; Cullings, Harry M; Eckerman, Keith F; Granovskaya, Evgeniya; Grant, Eric J; Hoshi, Masaharu; Kaul, Dean C; Kryuchkov, Victor; Mannis, Daniel; Ohtaki, Megu; Otani, Keiko; Shinkarev, Sergey; Simon, Steven L; Spriggs, Gregory D; Stepanenko, Valeriy F; Stricklin, Daniela; Weiss, Joseph F; Weitz, Ronald L; Woda, Clemens; Worthington, Patricia R; Yamamoto, Keiko; Young, Robert W

    2015-12-01

    Groups of Japanese and American scientists, supported by international collaborators, have worked for many years to ensure the accuracy of the radiation dosimetry used in studies of health effects in the Japanese atomic bomb survivors. Reliable dosimetric models and systems are especially critical to epidemiologic studies of this population because of their importance in the development of worldwide radiation protection standards. While dosimetry systems, such as Dosimetry System 1986 (DS86) and Dosimetry System 2002 (DS02), have improved, the research groups that developed them were unable to propose or confirm an additional contribution by residual radiation to the survivor's total body dose. In recognition of the need for an up-to-date review of residual radiation exposures in Hiroshima and Nagasaki, a half-day technical session was held for reports on newer studies at the 59 th Annual HPS Meeting in 2014 in Baltimore, MD. A day-and-a-half workshop was also held to provide time for detailed discussion of the newer studies and to evaluate their potential use in clarifying the residual radiation exposure to atomic bomb survivors at Hiroshima and Nagasaki. The process also involved a re-examination of very early surveys of radioisotope emissions from ground surfaces at Hiroshima and Nagasaki and early reports of health effects. New insights were reported on the potential contribution to residual radiation from neutron-activated radionuclides in the airburst's dust stem and pedestal and in unlofted soil, as well as from fission products and weapon debris from the nuclear cloud. However, disparate views remain concerning the actual residual radiation doses received by the atomic bomb survivors at different distances from the hypocenter. The workshop discussion indicated that measurements made using thermal luminescence and optically stimulated luminescence, like earlier measurements, especially in very thin layers of the samples, could be expanded to detect possible

  13. Radiation dosimetry from breast milk excretion of radioiodine and pertechnetate

    SciTech Connect

    Hedrick, W.R.; Di Simone, R.N.; Keen, R.L.

    1986-10-01

    Measurements were made of the activity in samples of breast milk obtained from a patient with postpartum thyroiditis following administration of (/sup 123/I)sodium iodide and subsequently (99mTc)pertechnetate 24 hr later. Both /sup 123/I and 99mTc were found to be excreted exponentially with an effective half-life of 5.8 hr and 2.8 hr, respectively. Less than 10% of the activity was incorporated into breast-milk protein. After administration of (/sup 123/I)sodium iodide breast feeding should be discontinued for 24-36 hr to reduce the absorbed dose to the child's thyroid.

  14. Evaluation of detectors for the small field measurements used for clinical radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Markovic, Miljenko

    Advanced radiation therapy treatments with very small field sizes are complex. Increasingly higher doses delivered in single or few fractions are being commonly used for the treatments of the small target volume. Absolute or relative small field dosimetry is difficult due to radiation transport. Therefore it is very important to understand characteristics of the small field, detector selection as well as correction factors that have to be taken into account for the accurate measurements. Reducing uncertainty in relative dose measurement and modeling dose on treatment planning systems are factors contributing to the accuracy of the small field radiation treatments. Several challenges in small field dosimetry arise because of the lack of lateral charge particle equilibrium as well as the occlusion of the direct photon beam source and collimator settings. Presence of low-density media in irradiation geometry does complicate dosimetry even more. All those conditions are representing the challenge when it comes to dosimetric measurements. Size and construction are crucial when it comes to choice of the detector. Depending on beam energy, resolving the beam profile and penumbra for the small field sizes are a challenge and practically impossible with detectors commonly used in clinics. With decreasing field size and due to changes in particle spectrum, variations in radiological parameters have to be taken into account. To measure percent depth dose, tissue maximum ratios, tissue phantom ratios as well as output factors for the small field size experimental studies and Monte Carlo simulations have been conducted to determine appropriate detectors for the measurements. The primary goal of Specific Aim 1 was experimental quantification of the performance parameters for single detectors used for dosimetric verification of the small fields in radiotherapy. The proposed method and qualitative value for appropriate detectors selection defined by field size has been set. The

  15. Fiber optic probes based on silver-only coated hollow glass waveguides for ionizing beam radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash; Liu, Haoyang; Melzer, Jeffrey E.; Taleei, Reza; Harrington, James A.; Kassaee, Alireza; Zhu, Timothy C.; Finlay, Jarod C.

    2016-03-01

    Čerenkov contamination is a significant issue in radiation detection by fiber-coupled scintillators. To enhance the scintillation signal transmission while minimizing Čerenkov contamination, we designed a fiber probe using a silver-only coated hollow waveguide (HWG). The HWG tip with inserted scintillator, embedded in tissue mimicking phantoms, was irradiated with clinical electron and photon beams. Optical spectra of irradiated tips were taken using a fiber spectrometer, and the signal was deconvolved with a linear fitting algorithm. The resultant decomposed spectra of the scintillator with and without Čerenkov correction were in good agreement with measurements performed by an electron diode and ion chamber for electron and photon beam dosimetry, respectively, indicating the minimal effect of Čerenkov contamination. Compared with a silver/dielectric coated HWG fiber dosimeter design we observed higher signal transmission in our design based on the use of silver-only HWG.

  16. Performance characteristics of a gated fiber-optic-coupled dosimeter in high-energy pulsed photon radiation dosimetry.

    PubMed

    Tanyi, James A; Krafft, Shane P; Ushino, Toshihide; Huston, Alan L; Justus, Brian L

    2010-02-01

    Fiber-optic-coupled dosimeters (FOCDs) are a new class of in vivo dosimetry systems that are finding increased clinical applications. Utility of FOCDs has been limited in dosimetric applications due Cerenkov-ray signal contamination. The current study reports on the characterization of a novel FOCD, with a gated detection system for the discrimination and effective elimination of the direct contribution of Cerenkov radiation, for use in the radiotherapeutic realm. System reproducibility, linearity and output dependence on dose rate, energy, field size, and temperature response were characterized for 6, 10, and 15MV photon energies. The system exhibited a linear response to absorbed dose ranging from 1 to 2400cGy and showed little dependence to dose rate variations. Overall system reproducibility was 0.52% with no field-geometry and temperature dependence.

  17. Germanium-doped optical fiber for real-time radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Mizanur Rahman, A. K. M.; Zubair, H. T.; Begum, Mahfuza; Abdul-Rashid, H. A.; Yusoff, Z.; Ung, N. M.; Mat-Sharif, K. A.; Wan Abdullah, W. S.; Amouzad Mahdiraji, Ghafour; Amin, Y. M.; Maah, M. J.; Bradley, D. A.

    2015-11-01

    Over the past three decades growing demand for individualized in vivo dosimetry and subsequent dose verification has led to the pursuit of newer, novel and economically feasible materials for dosimeters. These materials are to facilitate features such as real-time sensing and fast readouts. In this paper, purposely composed SiO2:Ge optical fiber is presented as a suitable candidate for dosimetry. The optical fiber is meant to take advantage of the RL/OSL technique, providing both online remote monitoring of dose rate, and fast readouts for absorbed dose. A laboratory-assembled OSL reader has been used to acquire the RL/OSL response to LINAC irradiations (6 MV photons). The notable RL characteristics observed include constant level of luminescence for the same dose rate (providing better consistency compared to TLD-500), and linearity of response in the radiotherapy range (1 Gy/min to 6 Gy/min). The OSL curve was found to conform to an exponential decay characteristic (illumination with low LED source). The Ge doping resulted in an effective atomic number, Zeff, of 13.5 (within the bone equivalent range). The SiO2:Ge optical fiber sensor, with efficient coupling, can be a viable solution for in vivo dosimetry, besides a broad range of applications.

  18. Radiation dosimetry of 12 MV photons from a CGR Therac 20 MeV Saturne linear accelerator.

    PubMed

    Nair, R P

    1984-10-01

    Typically useful clinical radiation dosimetry characteristics of 12 MV photon beams from a CGR Therac 20 MeV Saturne linear accelerator are briefly outlined. Central axis percent depth dose data are compared with other published data. Beam profiles for small, medium and large fields are delineated to show the uniformity of beams at various depths.

  19. Ion storage dosimetry

    NASA Astrophysics Data System (ADS)

    Mathur, V. K.

    2001-09-01

    The availability of a reliable, accurate and cost-effective real-time personnel dosimetry system is fascinating to radiation workers. Electronic dosimeters are contemplated to meet this demand of active dosimetry. The development of direct ion storage (DIS) dosimeters, a member of the electronic dosimeter family, for personnel dosimetry is also an attempt in this direction. DIS dosimeter is a hybrid of the well-established technology of ion chambers and the latest advances in data storage using metal oxide semiconductor field effect transistor (MOSFET) analog memory device. This dosimeter is capable of monitoring legal occupational radiation doses of gamma, X-rays, beta and neutron radiation. Similar to an ion chamber, the performance of the dosimeter for a particular application can be optimized through the selection of appropriate wall materials. The use of the floating gate of a MOSFET as one of the electrodes of the ion chamber allows the miniaturization of the device to the size of a dosimetry badge and avoids the use of power supplies during dose accumulation. The concept of the device, underlying physics and the design of the DIS dosimeter are discussed. The results of preliminary testing of the device are also provided.

  20. SU-E-QI-15: Single Point Dosimetry by Means of Cerenkov Radiation Energy Transfer (CRET)

    SciTech Connect

    Volotskova, O; Jenkins, C; Xing, L

    2014-06-15

    Purpose: Cerenkov light is generated when a charged particles with energy greater then 250 keV, moves faster than the speed of light in a given medium. Both x-ray photons and electrons produce optical Cerenkov photons during the static megavoltage linear accelerator (LINAC) operational mode. Recently, Cerenkov radiation gained considerable interest as possible candidate as a new imaging modality. Optical signals generated by Cerenkov radiation may act as a surrogate for the absorbed superficial radiation dose. We demonstrated a novel single point dosimetry method for megavoltage photon and electron therapy utilizing down conversion of Cerenkov photons. Methods: The custom build signal characterization system was used: a sample holder (probe) with adjacent light tight compartments was connected via fiber-optic cables to a photon counting photomultiplier tube (PMT). One compartment contains a medium only while the other contains medium and red-shifting nano-particles (Q-dots, nanoclusters). By taking the difference between the two signals (Cerenkov photons and CRET photons) we obtain a measure of the down-converted light, which we expect to be proportional to dose as measured with an adjacent ion chamber. Experimental results are compared to Monte Carlo simulations performed using the GEANT4 code. Results: The signal correlation between CR signal, CRET readings and dose produced by LINAC at a single point were investigated. The experimental results were compared with simulations. The dose linearity, signal to noise ratio and dose rate dependence were tested with custom build CRET based probe. Conclusion: Performance characteristics of the proposed single point CRET based probe were evaluated. The direct use of the induced Cerenkov emission and CRET in an irradiated single point volume as an indirect surrogate for the imparted dose was investigated. We conclude that CRET is a promising optical based dosimetry method that offers advantages over those already proposed.

  1. Radiation Dosimetry and Biodistribution of the TSPO Ligand 11C-DPA-713 in Humans

    PubMed Central

    Endres, Christopher J.; Coughlin, Jennifer M.; Gage, Kenneth L.; Watkins, Crystal C.; Kassiou, Michael; Pomper, Martin G.

    2012-01-01

    Whole-body PET/CT was used to characterize the radiation dosimetry of 11C-DPA-713, a specific PET ligand for the assessment of translocator protein. Methods: Six healthy control subjects, 3 men and 3 women, underwent whole-body dynamic PET scans after bolus injection of 11C-DPA-713. Subjects were scanned from head to mid thigh with 7 passes performed, with a total PET acquisition of approximately 100 min. Time-activity curves were generated in organs with visible tracer uptake, and tissue residence times were calculated. Whole-body dosimetry was calculated using OLINDA 1.1 software, assuming no voiding. Results: The absorbed dose is highest in the lungs, spleen, kidney, and pancreas. The lungs were determined to be the dose-limiting organ, with an average absorbed dose of 2.01 × 10−2 mSv/MBq (7.43 × 10−2 rem/mCi). On the basis of exposure limits outlined in the U.S. Food and Drug Administration Code of Federal Regulations (21CFR361.1), the single-dose limit for 11C-DPA-713 radiotracer injection is 2,487.6 MBq (67.3 mCi). Conclusion: 11C-DPA-713 has an uptake pattern that is consistent with the biodistribution of translocator protein and yields a dose burden that is comparable to that of other 11C-labeled PET tracers. PMID:22241913

  2. Thin film tritium dosimetry

    DOEpatents

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  3. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    SciTech Connect

    Rasouli, C.; Pourshahab, B.; Rasouli, H.; Hosseini Pooya, S. M.; Orouji, T.

    2014-05-15

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points – three TLDs per point – to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  4. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak.

    PubMed

    Rasouli, C; Pourshahab, B; Hosseini Pooya, S M; Orouji, T; Rasouli, H

    2014-05-01

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points--three TLDs per point--to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  5. Dosimetry and Risk Assessment: Fundamental Concepts

    SciTech Connect

    Fisher, Darrell R.

    2005-12-29

    Radiation dosimetry is important for characterizing radiation exposures and for risk assessment. In a medical setting, dosimetry is important for evaluating the safety of administered radiopharmaceuticals and for planning the safe administration of therapeutic radionuclides. Environmental dosimetry helps establish the safety of radionuclide releases from electric power production and other human activities. Internal and external dosimetry help us understand the consequences of radiation exposure. The absorbed dose is the fundamental quantity in radiation dosimetry from which all other operational values in radiation protection are obtained. Equivalent dose to tissue and effective dose to the whole body are derivatives of absorbed dose and constructs of risk. Mathematical systems supported by computer software facilitate dose calculations and make it possible to estimate internal dose based on bioassay or other biokinetic data. Risk coefficients for radiation-induced cancer rely primarily on data from animal studies and long-term observations of the Hiroshima and Nagasaki bomb survivors. Low-dose research shows that mechanisms of radiation interactions with tissue are dose-dependent, but the resulting biological effects are not necessarily linear with absorbed dose. Thus, the analysis of radiation effects and associated risks must account for the influences of microscopic energy distributions at the cellular level, dose-rate, cellular repair of sub-lethal radiation damage, and modifying factors such as bystander effects, adaptive response, and genomic instability.

  6. Characterizing thermoluminescence properties of calcium halophosphate fluorescent coating powder for radiation dosimetry.

    PubMed

    Inyang, E P; Taleatu, B A; Oketayo, O O; Mokobia, C E; Adenodi, R A; Balogun, E A

    2011-01-01

    The thermoluminescence (TL) and other properties of calcium halophosphate fluorescent coating powder were studied in detail with the sole aim of ascertaining its suitability for use as a dosimetric material. The shape of the glow curve (peaks at about 125 degrees C and 350 degrees C) as well as its fairly linear dose response even at very high doses are indicative of its suitability. Optical properties of the material were studied using Infrared spectroscopy (IR) and UV-Visible spectrophotometry. The IR spectrum shows a prominent peak at 3425.9 cm(-1) indicating the presence of OH and N-H bonds. The material absorbs sharply at wavelength between 196 nm and 220 nm. The material exhibits high transmittance at various peaks with corresponding wavelengths from 300 to 831 nm. This material can also find application in radiation therapy associated with very high accident dosimetry as well as in material testing.

  7. Radiation dosimetry using decreasing TL intensity in a few variety of silicate crystals.

    PubMed

    Watanabe, Shigueo; Cano, Nilo F; Gundu Rao, T K; Oliveira, Letícia M; Carmo, Lucas S; Chubaci, Jose F D

    2015-11-01

    This study shows that there are some ionic crystals which after irradiation with high gamma dose Dm and subsequent irradiation with low doses ranging up to 500Gy present a decreasing TL intensity as dose increases. This interesting feature can be used as a calibration curve in radiation dosimetry. Such behavior can be found in green quartz, three varieties of beryl and pink tourmaline. In all these silicate crystals it can be shown that irradiation with increasing γ-dose there is a dose Dm for which the TL intensity is maximum. Of course, Dm varies depending on the crystal and irradiated crystal with the dose Dm is stable. If one of these crystals is taken and irradiated with doses from low values up to 400-500Gy, a curve of decreasing TL intensity is obtained; such a curve can be used as a calibration curve.

  8. Development and validation of a GEANT4 radiation transport code for CT dosimetry.

    PubMed

    Carver, D E; Kost, S D; Fernald, M J; Lewis, K G; Fraser, N D; Pickens, D R; Price, R R; Stabin, M G

    2015-04-01

    The authors have created a radiation transport code using the GEANT4 Monte Carlo toolkit to simulate pediatric patients undergoing CT examinations. The focus of this paper is to validate their simulation with real-world physical dosimetry measurements using two independent techniques. Exposure measurements were made with a standard 100-mm CT pencil ionization chamber, and absorbed doses were also measured using optically stimulated luminescent (OSL) dosimeters. Measurements were made in air with a standard 16-cm acrylic head phantom and with a standard 32-cm acrylic body phantom. Physical dose measurements determined from the ionization chamber in air for 100 and 120 kVp beam energies were used to derive photon-fluence calibration factors. Both ion chamber and OSL measurement results provide useful comparisons in the validation of the Monte Carlo simulations. It was found that simulated and measured CTDI values were within an overall average of 6% of each other.

  9. Synthesis and luminescence properties of KSrPO4:Eu2+ phosphor for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Palan, C. B.; Bajaj, N. S.; Omanwar, S. K.

    2016-05-01

    The KSrPO4:Eu phosphor was synthesized via solid state method. The structural and morphological characterizations were done through XRD (X-ray diffraction) and SEM (Scanning Electronic Microscope). Additionally, the photoluminescence (PL), thermoluminescence (TL) and optically Stimulated luminescence (OSL) properties of powder KSrPO4:Eu were studied. The PL spectra show blue emission under near UV excitation. It was advocated that KSrPO4:Eu phosphor not only show OSL sensitivity (0.47 times) but also gives faster decay in OSL signals than that of Al2O3:C (BARC) phosphor. The TL glow curve consist of two shoulder peaks and the kinetics parameters such as activation energy and frequency factors were determined by using peak shape method and also photoionization cross-sections of prepared phosphor was calculated. The radiation dosimetry properties such as minimum detectable dose (MDD), dose response and reusability were reported.

  10. Boundary Electron and Beta Dosimetry-Quantification of the Effects of Dissimilar Media on Absorbed Dose

    NASA Astrophysics Data System (ADS)

    Nunes, Josane C.

    1991-02-01

    This work quantifies the changes effected in electron absorbed dose to a soft-tissue equivalent medium when part of this medium is replaced by a material that is not soft -tissue equivalent. That is, heterogeneous dosimetry is addressed. Radionuclides which emit beta particles are the electron sources of primary interest. They are used in brachytherapy and in nuclear medicine: for example, beta -ray applicators made with strontium-90 are employed in certain ophthalmic treatments and iodine-131 is used to test thyroid function. More recent medical procedures under development and which involve beta radionuclides include radioimmunotherapy and radiation synovectomy; the first is a cancer modality and the second deals with the treatment of rheumatoid arthritis. In addition, the possibility of skin surface contamination exists whenever there is handling of radioactive material. Determination of absorbed doses in the examples of the preceding paragraph requires considering boundaries of interfaces. Whilst the Monte Carlo method can be applied to boundary calculations, for routine work such as in clinical situations, or in other circumstances where doses need to be determined quickly, analytical dosimetry would be invaluable. Unfortunately, few analytical methods for boundary beta dosimetry exist. Furthermore, the accuracy of results from both Monte Carlo and analytical methods has to be assessed. Although restricted to one radionuclide, phosphorus -32, the experimental data obtained in this work serve several purposes, one of which is to provide standards against which calculated results can be tested. The experimental data also contribute to the relatively sparse set of published boundary dosimetry data. At the same time, they may be useful in developing analytical boundary dosimetry methodology. The first application of the experimental data is demonstrated. Results from two Monte Carlo codes and two analytical methods, which were developed elsewhere, are compared

  11. The UF family of hybrid phantoms of the developing human fetus for computational radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Maynard, Matthew R.; Geyer, John W.; Aris, John P.; Shifrin, Roger Y.; Bolch, Wesley

    2011-08-01

    Historically, the development of computational phantoms for radiation dosimetry has primarily been directed at capturing and representing adult and pediatric anatomy, with less emphasis devoted to models of the human fetus. As concern grows over possible radiation-induced cancers from medical and non-medical exposures of the pregnant female, the need to better quantify fetal radiation doses, particularly at the organ-level, also increases. Studies such as the European Union's SOLO (Epidemiological Studies of Exposed Southern Urals Populations) hope to improve our understanding of cancer risks following chronic in utero radiation exposure. For projects such as SOLO, currently available fetal anatomic models do not provide sufficient anatomical detail for organ-level dose assessment. To address this need, two fetal hybrid computational phantoms were constructed using high-quality magnetic resonance imaging and computed tomography image sets obtained for two well-preserved fetal specimens aged 11.5 and 21 weeks post-conception. Individual soft tissue organs, bone sites and outer body contours were segmented from these images using 3D-DOCTOR™ and then imported to the 3D modeling software package Rhinoceros™ for further modeling and conversion of soft tissue organs, certain bone sites and outer body contours to deformable non-uniform rational B-spline surfaces. The two specimen-specific phantoms, along with a modified version of the 38 week UF hybrid newborn phantom, comprised a set of base phantoms from which a series of hybrid computational phantoms was derived for fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. The methodology used to construct the series of phantoms accounted for the following age-dependent parameters: (1) variations in skeletal size and proportion, (2) bone-dependent variations in relative levels of bone growth, (3) variations in individual organ masses and total fetal masses and (4) statistical percentile variations in

  12. Hanford Technical Basis for Multiple Dosimetry Effective Dose Methodology

    SciTech Connect

    Hill, Robin L.; Rathbone, Bruce A.

    2010-08-01

    The current method at Hanford for dealing with the results from multiple dosimeters worn during non-uniform irradiation is to use a compartmentalization method to calculate the effective dose (E). The method, as documented in the current version of Section 6.9.3 in the 'Hanford External Dosimetry Technical Basis Manual, PNL-MA-842,' is based on the compartmentalization method presented in the 1997 ANSI/HPS N13.41 standard, 'Criteria for Performing Multiple Dosimetry.' With the adoption of the ICRP 60 methodology in the 2007 revision to 10 CFR 835 came changes that have a direct affect on the compartmentalization method described in the 1997 ANSI/HPS N13.41 standard, and, thus, to the method used at Hanford. The ANSI/HPS N13.41 standard committee is in the process of updating the standard, but the changes to the standard have not yet been approved. And, the drafts of the revision of the standard tend to align more with ICRP 60 than with the changes specified in the 2007 revision to 10 CFR 835. Therefore, a revised method for calculating effective dose from non-uniform external irradiation using a compartmental method was developed using the tissue weighting factors and remainder organs specified in 10 CFR 835 (2007).

  13. Evaluation of a fast method of EPID-based dosimetry for intensity modulated radiation therapy

    PubMed Central

    Nelms, Benjamin E.; Rasmussen, Karl H.; Tomé, Wolfgang A.

    2010-01-01

    Electronic portal imaging devices (EPIDs) could potentially be useful for Intensity Modulated Radiation Therapy (IMRT) QA. The data density, high resolution, large active area, and efficiency of the MV EPID make it an attractive option. However, EPIDs were designed to be effective imaging devices, but not dosimeters, and as a result they do not measure dose in tissue-equivalent materials. EPIDose (Sun Nuclear, Melbourne, FL) is a tool designed for the use of EPIDs in IMRT QA that uses raw MV EPID images (no additional build-up and independent of gantry angle, but with dark and flood field corrections applied) to estimate absolute dose planes normal to the beam axis in a homogeneous media, i.e. similar to conventional IMRT QA methods. However, because of the inherent challenges of the EPID-based dosimetry, validating and commissioning such a system must be done very carefully, exploring the range of use cases and using well-proven “standards” for comparison. In this work, a multi-institutional study was performed to verify accurate EPID image to dose plane conversion over a variety of conditions. Converted EPID images were compared to 2D diode array absolute dose measurements for one hundred and eighty eight (188) fields from twenty eight (28) clinical IMRT treatment plans generated using a number of commercially available treatment planning systems (TPS) covering various treatment sites including prostate, head and neck, brain, and lung. The data included three beam energies (6, 10, and 15 MV) and both step-and-shoot and dynamic MLC fields. Out of 26,207 points of comparison over 188 fields analyzed the average overall field pass rate was 99.7% when 3mm/3% DTA criteria were used (range 94.0-100 per field). The pass rates for more stringent criteria were 97.8% for 2mm/2% DTA (range 82.0-100 per field), and 84.6% for 1mm/1% DTA (range 54.7-100 per field). Individual patient specific sites as well as different beam energies followed similar trends to the overall

  14. A wireless transmission low-power radiation sensor for in vivo dosimetry

    NASA Astrophysics Data System (ADS)

    Fuschino, F.; Gabrielli, A.; Baldazzi, G.; Campana, R.; Valentinetti, S.; Crepaldi, M.; Demarchi, D.; Villani, G.

    2014-02-01

    The aim of the paper is to illustrate the design and the performance of a microelectronic circuit composed of a dosimeter, an oscillator, a modulator, a transmitter and an antenna. The device was designed for specific in vivo dosimetry applications. However, the layout area of less than 1 mm2 makes it suitable for a large variety of applications, from spot radiation monitoring systems in medicine to accurate measurements of radiation level in high-energy physics experiments. Moreover, due to its extremely low-power budget, it might be also of interest for space applications. The chip embeds a re-programmable floating-gate transistor configured as a radiation sensor and a read-out circuit. Prototype chips have been fabricated and tested exploiting a commercial 180 nm, four-metal CMOS technology. Characterization tests of the performance of the Ultra-Wide Band transmission are summarized. The dosimeter prototype has an estimated sensitivity of 1 mV/rad within a total absorbed dose range up to 10 krad. The read-out circuit is powered with 3.3 V and the total power consumption is very low, i.e. about 165 μW, making it also upgradable with a remote power system.

  15. Verification of intensity modulated radiation therapy beams using a tissue equivalent plastic scintillator dosimetry system

    NASA Astrophysics Data System (ADS)

    Petric, Martin Peter

    This thesis describes the development and implementation of a novel method for the dosimetric verification of intensity modulated radiation therapy (IMRT) fields with several advantages over current techniques. Through the use of a tissue equivalent plastic scintillator sheet viewed by a charge-coupled device (CCD) camera, this method provides a truly tissue equivalent dosimetry system capable of efficiently and accurately performing field-by-field verification of IMRT plans. This work was motivated by an initial study comparing two IMRT treatment planning systems. The clinical functionality of BrainLAB's BrainSCAN and Varian's Helios IMRT treatment planning systems were compared in terms of implementation and commissioning, dose optimization, and plan assessment. Implementation and commissioning revealed differences in the beam data required to characterize the beam prior to use with the BrainSCAN system requiring higher resolution data compared to Helios. This difference was found to impact on the ability of the systems to accurately calculate dose for highly modulated fields, with BrainSCAN being more successful than Helios. The dose optimization and plan assessment comparisons revealed that while both systems use considerably different optimization algorithms and user-control interfaces, they are both capable of producing substantially equivalent dose plans. The extensive use of dosimetric verification techniques in the IMRT treatment planning comparison study motivated the development and implementation of a novel IMRT dosimetric verification system. The system consists of a water-filled phantom with a tissue equivalent plastic scintillator sheet built into the top surface. Scintillation light is reflected by a plastic mirror within the phantom towards a viewing window where it is captured using a CCD camera. Optical photon spread is removed using a micro-louvre optical collimator and by deconvolving a glare kernel from the raw images. Characterization of this

  16. Epid cine acquisition mode for in vivo dosimetry in dynamic arc radiation therapy

    NASA Astrophysics Data System (ADS)

    Fidanzio, Andrea; Mameli, Alessandra; Placidi, Elisa; Greco, Francesca; Stimato, Gerardina; Gaudino, Diego; Ramella, Sara; D'Angelillo, Rolando; Cellini, Francesco; Trodella, Lucio; Cilla, Savino; Grimaldi, Luca; D'Onofrio, Guido; Azario, Luigi; Piermattei, Angelo

    2008-02-01

    In this paper the cine acquisition mode of an electronic portal imaging device (EPID) has been calibrated and tested to determine the in vivo dose for dynamic conformal arc radiation therapy (DCAT). The EPID cine acquisition mode, that allows a frame acquisition rate of one image every 1.66 s, was studied with a monitor unit rate equal to 100 UM/min. In these conditions good signal stability, ±1% (2SD) evaluated during three months, signal reproducibility within ±0.8% (2SD) and linearity with dose and dose rate within ±1% (2SD) were obtained. The transit signal, St, (due to the transmitted beam below the phantom) measured by the EPID cine acquisition mode was used to determine, (i) a set of correlation functions, F(w,L), defined as the ratio between St and the dose at half thickness, Dm, measured in solid water phantoms of different thicknesses, w and with square fields of side L, (ii) a set of factors, f(d,L), that take into account the different X-ray scatter contribution from the phantom to the St signal as a function of the variation, d, of the air gap between the phantom and the EPID. The reconstruction of the isocenter dose, Diso, for DCAT was obtained convolving the transit signal values, obtained at different gantry angles, with the respective reconstruction factors determined by a house-made software. The method was tested with cylindrical and anthropomorphic phantoms and the results show that the reconstructed Diso values can be obtained with an accuracy within ±2.5% in cylindrical phantom and within ±3.4% for anthropomorphic phantom. In conclusion, the transit dosimetry by EPID was assessed to be adequate to perform DCAT in vivo dosimetry, that is not realizable with the other traditional techniques. Moreover, the method proposed here could be implemented to supply in vivo dose values in real time.

  17. Retrospective assessment of radiation exposure using biological dosimetry: chromosome painting, electron paramagnetic resonance and the glycophorin a mutation assay.

    PubMed

    Kleinerman, R A; Romanyukha, A A; Schauer, D A; Tucker, J D

    2006-07-01

    Biological monitoring of dose can contribute important, independent estimates of cumulative radiation exposure in epidemiological studies, especially in studies in which the physical dosimetry is lacking. Three biodosimeters that have been used in epidemiological studies to estimate past radiation exposure from external sources will be highlighted: chromosome painting or FISH (fluorescence in situ hybridization), the glycophorin A somatic mutation assay (GPA), and electron paramagnetic resonance (EPR) with teeth. All three biodosimeters have been applied to A-bomb survivors, Chernobyl clean-up workers, and radiation workers. Each biodosimeter has unique advantages and limitations depending upon the level and type of radiation exposure. Chromosome painting has been the most widely applied biodosimeter in epidemiological studies of past radiation exposure, and results of these studies provide evidence that dose-related translocations persist for decades. EPR tooth dosimetry has been used to validate dose models of acute and chronic radiation exposure, although the present requirement of extracted teeth has been a disadvantage. GPA has been correlated with physically based radiation dose after high-dose, acute exposures but not after low-dose, chronic exposures. Interindividual variability appears to be a limitation for both chromosome painting and GPA. Both of these techniques can be used to estimate the level of past radiation exposure to a population, whereas EPR can provide individual dose estimates of past exposure. This paper will review each of these three biodosimeters and compare their application in selected epidemiological studies.

  18. Radiation-related posterior lenticular opacities in Hiroshima and Nagasaki atomic bomb survivors based on the DS86 dosimetry system

    SciTech Connect

    Otake, M.; Schull, W.J. )

    1990-01-01

    This paper investigates the quantitative relationship of ionizing radiation to the occurrence of posterior lenticular opacities among the survivors of the atomic bombings of Hiroshima and Nagasaki suggested by the DS86 dosimetry system. DS86 doses are available for 1983 (93.4%) of the 2124 atomic bomb survivors analyzed in 1982. The DS86 kerma neutron component for Hiroshima survivors is much smaller than its comparable T65DR component, but still 4.2-fold higher (0.38 Gy at 6 Gy) than that in Nagasaki (0.09 Gy at 6 Gy). Thus, if the eye is especially sensitive to neutrons, there may yet be some useful information on their effects, particularly in Hiroshima. The dose-response relationship has been evaluated as a function of the separately estimated gamma-ray and neutron doses. Among several different dose-response models without and with two thresholds, we have selected as the best model the one with the smallest x2 or the largest log likelihood value associated with the goodness of fit. The best fit is a linear gamma-linear neutron relationship which assumes different thresholds for the two types of radiation. Both gamma and neutron regression coefficients for the best fitting model are positive and highly significant for the estimated DS86 eye organ dose.

  19. Radiation-related posterior lenticular opacities in Hiroshima and Nagasaki atomic bomb survivors based on the DS86 dosimetry system.

    PubMed

    Otake, M; Schull, W J

    1990-01-01

    This paper investigates the quantitative relationship of ionizing radiation to the occurrence of posterior lenticular opacities among the survivors of the atomic bombings of Hiroshima and Nagasaki suggested by the DS86 dosimetry system. DS86 doses are available for 1983 (93.4%) of the 2124 atomic bomb survivors analyzed in 1982. The DS86 kerma neutron component for Hiroshima survivors is much smaller than its comparable T65DR component, but still 4.2-fold higher (0.38 Gy at 6 Gy) than that in Nagasaki (0.09 Gy at 6 Gy). Thus, if the eye is especially sensitive to neutrons, there may yet be some useful information on their effects, particularly in Hiroshima. The dose-response relationship has been evaluated as a function of the separately estimated gamma-ray and neutron doses. Among several different dose-response models without and with two thresholds, we have selected as the best model the one with the smallest x2 or the largest log likelihood value associated with the goodness of fit. The best fit is a linear gamma-linear neutron relationship which assumes different thresholds for the two types of radiation. Both gamma and neutron regression coefficients for the best fitting model are positive and highly significant for the estimated DS86 eye organ dose.

  20. Effect of contrast agent administration on consequences of dosimetry and biology in radiotherapy planning

    NASA Astrophysics Data System (ADS)

    Lo, Ching-Jung; Yang, Pei-Ying; Chao, Tsi-Chian; Tu, Shu-Ju

    2015-06-01

    In the treatment planning of radiation therapy, patients may be administrated with contrast media in CT scanning to assist physicians for accurate delineation of the target or organs. However, contrast media are not used in patients during the treatment delivery. In particular, contrast media contain materials with high atomic numbers and dosimetric variations may occur between scenarios where contrast media are present in treatment planning and absent in treatment delivery. In this study we evaluate the effect of contrast media on the dosimetry and biological consequence. An analytical phantom based on AAPM TG 119 and five sets of CT images from clinical patients are included. Different techniques of treatment planning are considered, including 1-field AP, 2-field AP+PA, 4-field box, 7-field IMRT, and RapidArc. RapidArc is a recent technique of volumetric modulated arc therapy and is used in our study of contrast media in clinical scenarios. The effect of RapidArc on dosimetry and biological consequence for administration of contrast media in radiotherapy is not discussed previously in literature. It is shown that dose difference is reduced as the number of external beams is increased, suggesting RapidArc may be favored to be used in the treatment planning enhanced by contrast media. Linear trend lines are fitted for assessment of percent dose differences in the planning target volume versus concentrations of contrast media between plans where contrast media are present and absent, respectively.

  1. A quantification of the effectiveness of EPID dosimetry and software-based plan verification systems in detecting incidents in radiotherapy

    SciTech Connect

    Bojechko, Casey; Phillps, Mark; Kalet, Alan; Ford, Eric C.

    2015-09-15

    Purpose: Complex treatments in radiation therapy require robust verification in order to prevent errors that can adversely affect the patient. For this purpose, the authors estimate the effectiveness of detecting errors with a “defense in depth” system composed of electronic portal imaging device (EPID) based dosimetry and a software-based system composed of rules-based and Bayesian network verifications. Methods: The authors analyzed incidents with a high potential severity score, scored as a 3 or 4 on a 4 point scale, recorded in an in-house voluntary incident reporting system, collected from February 2012 to August 2014. The incidents were categorized into different failure modes. The detectability, defined as the number of incidents that are detectable divided total number of incidents, was calculated for each failure mode. Results: In total, 343 incidents were used in this study. Of the incidents 67% were related to photon external beam therapy (EBRT). The majority of the EBRT incidents were related to patient positioning and only a small number of these could be detected by EPID dosimetry when performed prior to treatment (6%). A large fraction could be detected by in vivo dosimetry performed during the first fraction (74%). Rules-based and Bayesian network verifications were found to be complimentary to EPID dosimetry, able to detect errors related to patient prescriptions and documentation, and errors unrelated to photon EBRT. Combining all of the verification steps together, 91% of all EBRT incidents could be detected. Conclusions: This study shows that the defense in depth system is potentially able to detect a large majority of incidents. The most effective EPID-based dosimetry verification is in vivo measurements during the first fraction and is complemented by rules-based and Bayesian network plan checking.

  2. The Australian radiation protection and nuclear safety agency megavoltage photon thermoluminescence dosimetry postal audit service 2007-2010.

    PubMed

    Oliver, C P; Butler, D J; Webb, D V

    2012-03-01

    The Australian radiation protection and nuclear safety agency (ARPANSA) has continuously provided a level 1 mailed thermoluminescence dosimetry audit service for megavoltage photons since 2007. The purpose of the audit is to provide an independent verification of the reference dose output of a radiotherapy linear accelerator in a clinical environment. Photon beam quality measurements can also be made as part of the audit in addition to the output measurements. The results of all audits performed between 2007 and 2010 are presented. The average of all reference beam output measurements calculated as a clinically stated dose divided by an ARPANSA measured dose is 0.9993. The results of all beam quality measurements calculated as a clinically stated quality divided by an ARPANSA measured quality is 1.0087. Since 2011 the provision of all auditing services has been transferred from the Ionizing Radiation Standards section to the Australian Clinical Dosimetry Service (ACDS) which is currently housed within ARPANSA.

  3. 1989 IEEE Annual Conference on Nuclear and Space Radiation Effects, 26th, Marco Island, FL, July 25-29, 1989, Proceedings. Part 1

    NASA Technical Reports Server (NTRS)

    Ochoa, Agustin, Jr. (Editor)

    1989-01-01

    Various papers on nuclear science are presented. The general topics addressed include: basic mechanics of radiation effects, dosimetry and energy-dependent effects, hardness assurance and testing techniques, spacecraft charging and space radiation effects, EMP/SGEMP/IEMP phenomena, device radiation effects and hardening, radiation effects on isolation technologies, IC radiation effects and hardening, and single-event phenomena.

  4. Advances in a framework to compare bio-dosimetry methods for triage in large-scale radiation events

    PubMed Central

    Flood, Ann Barry; Boyle, Holly K.; Du, Gaixin; Demidenko, Eugene; Nicolalde, Roberto J.; Williams, Benjamin B.; Swartz, Harold M.

    2014-01-01

    Planning and preparation for a large-scale nuclear event would be advanced by assessing the applicability of potentially available bio-dosimetry methods. Using an updated comparative framework the performance of six bio-dosimetry methods was compared for five different population sizes (100–1 000 000) and two rates for initiating processing of the marker (15 or 15 000 people per hour) with four additional time windows. These updated factors are extrinsic to the bio-dosimetry methods themselves but have direct effects on each method's ability to begin processing individuals and the size of the population that can be accommodated. The results indicate that increased population size, along with severely compromised infrastructure, increases the time needed to triage, which decreases the usefulness of many time intensive dosimetry methods. This framework and model for evaluating bio-dosimetry provides important information for policy-makers and response planners to facilitate evaluation of each method and should advance coordination of these methods into effective triage plans. PMID:24729594

  5. Methods to estimate solar radiation dosimetry in coral reefs using remote sensed, modeled, and in situ data.

    PubMed

    Barron, Mace G; Vivian, Deborah N; Yee, Susan H; Santavy, Deborah L

    2009-04-01

    Solar irradiance has been increasingly recognized as an important determinant of bleaching in coral reefs, but measurements of solar radiation exposure within coral reefs have been relatively limited. Solar radiation dosimetry within multiple coral reef areas of South Florida was assessed using remote sensed, modeled, and measured values during a minor bleaching event during August 2005. Coral reefs in the Dry Tortugas and Upper Keys had similar diffuse downwelling attenuation coefficients (Kd, m(-1)), whereas Kd values were significantly greater in the Middle and Lower Keys. Mean 1% attenuation depths varied by reef region for ultraviolet B (UVB; 9.7 to 20 m), ultraviolet A (UVA; 22 to 40 m) and visible (27 to 43 m) solar radiation. Solar irradiances determined from remote sensed data were significantly correlated with measured values, but were generally overestimated at the depth of corals. Solar irradiances modeled using an atmospheric radiative transfer model parameterized with site specific approximations of cloud cover showed close agreement with measured values. Estimated daily doses (W h/m(2)) of UVB (0.01-19), UVA (2-360) and visible (29-1,653) solar radiation varied with coral depth (2 to 24 m) and meteorological conditions. These results indicate large variation in solar radiation dosimetry within coral reefs that may be estimated with reasonable accuracy using regional Kd measurements and radiative transfer modeling.

  6. Radiation doses for pregnant women in the late pregnancy undergoing fetal-computed tomography: a comparison of dosimetry and Monte Carlo simulations.

    PubMed

    Matsunaga, Yuta; Kawaguchi, Ai; Kobayashi, Masanao; Suzuki, Shigetaka; Suzuki, Shoichi; Chida, Koichi

    2016-09-19

    The purposes of this study were (1) to compare the radiation doses for 320- and 80-row fetal-computed tomography (CT), estimated using thermoluminescent dosimeters (TLDs) and the ImPACT Calculator (hereinafter referred to as the "CT dosimetry software"), for a woman in her late pregnancy and her fetus and (2) to estimate the overlapped fetal radiation dose from a 320-row CT examination using two different estimation methods of the CT dosimetry software. The direct TLD data in the present study were obtained from a previous study. The exposure parameters used for TLD measurements were entered into the CT dosimetry software, and the appropriate radiation dose for the pregnant woman and her fetus was estimated. When the whole organs (e.g., the colon, small intestine, and ovaries) and the fetus were included in the scan range, the difference in the estimated doses between the TLD measurement and the CT dosimetry software measurement was <1 mGy (<23 %) in both CT units. In addition, when the whole organs were within the scan range, the CT dosimetry software was used for evaluating the fetal radiation dose and organ-specific doses for the woman in the late pregnancy. The conventional method using the CT dosimetry software cannot take into account the overlap between volumetric sections. Therefore, the conventional method using a 320-row CT unit in a wide-volume mode might result in the underestimation of radiation doses for the fetus and the colon, small intestine, and ovaries.

  7. SU-C-BRE-04: Microbeam-Radiation-Therapy (MRT): Characterizing a Novel MRT Device Using High Resolution 3D Dosimetry

    SciTech Connect

    Li, Q; Juang, T; Bache, S; Chang, S; Oldham, M

    2014-06-15

    Purpose: The feasibility of MRT has recently been demonstrated utilizing a new technology of Carbon-Nano-Tube(CNT) field emission x-ray sources.This approach can deliver very high dose(10's of Gy) in narrow stripes(sub-mm) of radiation which enables the study of novel radiation treatment approaches. Here we investigate the application of highresolution (50um isotropic) PRESAGE/Optical-CT 3D dosimetry techniques to characterize the radiation delivered in this extremely dosimetrically challenging scenario. Methods: The CNT field emission x-ray source irradiator comprises of a linear cathode array and a novel collimator alignment system. This allows a precise delivery of high-energy small beams up to 160 kVp. A cylindrical dosimeter (∼2.2cm in height ∼2.5cm in diameter) was irradiated by CNT MRT delivering 3 strips of radiation with a nominal entrance dose of 32 Gy.A second dosimeter was irradiated with similar entrance dose, with a regular x-ray irradiator collimated to microscopical strip-beams. 50um (isotropic) 3D dosimetry was performed using an in-house optical-CT system designed and optimized for high resolution imaging (including a stray light deconvolution correction).The percentage depth dose (PDD), peak-to-valley ratio (PVR) and beam width (FWHM) data were obtained and analyzed in both cases. Results: High resolution 3D images were successfully achieved with the prototype system, enabling extraction of PDD and dose profiles. The PDDs for the CNT irradiation showed pronounced attenuation, but less build-up effect than that from the multibeam irradiation. The beam spacing between the three strips has an average value of 0.9mm while that for the 13 strips is 1.5 mm at a depth of 16.5 mm. The stray light corrected image shows line profiles with reduced noise and consistent PVR values. Conclusion: MRT dosimetry is extremely challenging due to the ultra small fields involved.This preliminary application of a novel, ultra-high resolution, optical-CT 3D

  8. (Biological dosimetry)

    SciTech Connect

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  9. A study of four radiochromic films currently used for (2D) radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Yao, Tiantian; Luthjens, Leonard H.; Gasparini, Alessia; Warman, John M.

    2017-04-01

    We have measured the dose, D, and dose rate, D', dependences of the radiation-induced change in optical absorption of four radiochromic films currently used for (2D) dosimetry: GafChromic® types EBT3, MD-V3, HD-V2 and HD-810. We have irradiated the films using two 60Co γ-ray sources with dose rates of 2 and 30 Gy/min and a 200 kVp X-ray source with dose rates from 0.2 to 1.0 Gy/min. The 48-bit RGB image files of the films, obtained using an Epson V700 flatbed scanner, were color-channel separated and the red, green and blue pixel levels, P(D), were determined using ImageJ software. The relationship P(D)/P(0)=[1+hD/m]/[1+D/m] is found to provide a good description of the dose dependence for all four films at all dose rates. The parameter h is the "plateau level" of P(D)/P(0) approached at high doses, i.e. P(∞)/P(0). The parameter m is the "median-dose" for which P(D)/P(0)(1+h)/2 which is the half point in the dynamic range of the particular film. The best-fit values of m over the dose rate range from 0.2 to 25 Gy/min using the red pixels were 1.42±0.03, 11.1±0.4, 63.6±0.9 and 60.6±1.6 Gy for EBT3, MD-V3, HD-V2 and HD-810 respectively. Using the green pixels the median dose is 1.8 times larger for the first 3 films and 2.5 times larger for HD-810. The blue pixels are considered unsuitable for dosimetry because of the large value of h (>0.4) and the resulting small dynamic range.

  10. Validation of QuickScan dicentric chromosome analysis for high throughput radiation biological dosimetry.

    PubMed

    Flegal, F N; Devantier, Y; Marro, L; Wilkins, R C

    2012-02-01

    Currently, the dicentric chromosome assay (DCA) is used to estimate radiation doses to individuals following accidental radiological and nuclear overexposures when traditional dosimetry methods are not available. While being an exceptionally sensitive method for estimating doses by radiation, conventional DCA is time-intensive and requires highly trained expertise for analysis. For this reason, in a mass casualty situation, triage-quality conventional DCA struggles to provide dose estimations in a timely manner for triage purposes. In Canada, a new scoring technique, termed DCA QuickScan, has been devised to increase the throughput of this assay. DCA QuickScan uses traditional DCA sample preparation methods while adapting a rapid scoring approach. In this study, both conventional and QuickScan methods of scoring the DCA assay were compared for accuracy and sensitivity. Dose response curves were completed on four different donors based on the analysis of 1,000 metaphases or 200 events at eight to nine dose points by eight different scorers across two laboratories. Statistical analysis was performed on the data to compare the two methods within and across the laboratories and to test their respective sensitivities for dose estimation. This study demonstrated that QuickScan is statistically similar to conventional DCA analysis and is capable of producing dose estimates as low as 0.1 Gy but up to six times faster. Therefore, DCA QuickScan analysis can be used as a sensitive and accurate method for scoring samples for radiological biodosimetry in mass casualty situations or where faster dose assessment is required.

  11. Digital holographic interferometry: A novel optical calorimetry technique for radiation dosimetry

    SciTech Connect

    Cavan, Alicia; Meyer, Juergen

    2014-02-15

    Purpose: To develop and demonstrate the proof-of-principle of a novel optical calorimetry method to determine radiation absorbed dose in a transparent medium. Methods: The calorimetric property of water is measured during irradiation by means of an interferometer, which detects temperature-induced changes in the refractive index that can be mathematically related to absorbed dose. The proposed method uses a technique called digital holographic interferometry (DHI), which comprises an optical laser interferometer setup and consecutive physical reconstruction of the recorded wave fronts by means of the Fresnel transform. This paper describes the conceptual framework and provides the mathematical basis for DHI dosimetry. Dose distributions from a high dose rate Brachytherapy source were measured by a prototype optical setup to demonstrate the feasibility of the approach. Results: The developed DHI dosimeter successfully determined absorbed dose distributions in water in the region adjacent to a high dose rate Brachytherapy source. A temperature change of 0.0381 K across a distance of 6.8 mm near the source was measured, corresponding to a dose of 159.3 Gy. The standard deviation in a typical measurement set was ±3.45 Gy (corresponding to an uncertainty in the temperature value of ±8.3 × 10{sup −4} K). The relative dose fall off was in agreement with treatment planning system modeled data. Conclusions: First results with a prototype optical setup and a Brachytherapy source demonstrate the proof-of-principle of the approach. The prototype achieves high spatial resolution of approximately 3 × 10{sup −5} m. The general approach is fundamentally independent of the radiation type and energy. The sensitivity range determined indicates that the method is predominantly suitable for high dose rate applications. Further work is required to determine absolute dose in all three dimensions.

  12. Thermoluminescent properties of Ni and Co doped synthetic, high pressure, high temperature diamonds: application to ionising radiation dosimetry.

    PubMed

    Benabdesselam, M; Iacconi, P; Gheeraert, E; Kanda, H; Lapraz, D; Briand, D

    2002-01-01

    An investigation of the thermoluminescence (TL) properties of high pressure, high temperature (HPHT) synthetic diamond crystals grown under diluted nickel or cobalt as solvent catalysts is reported. After a study of TL properties of 6 different samples, it is shown that a crystal grown with Ni+2%Ti and annealed at 2100 K presents an intense glow peak at around 490 K. This peak is characterised by a broad emission band centred at 530 nm (2.34 eV). This crystal presents a significant, reproducible and linear TL response relative to the absorbed dose up to an X ray air kerma of 10 Gy. All these features make this material suitable for ionising radiation dosimetry. A similar study is made on another crystal grown from pure Co, and a comparative review of the results does show that for dosimetry work, Ni-containing diamonds are more appropriate than those grown from Co catalyst.

  13. NASA astronaut dosimetry: Implementation of scalable human phantoms and benchmark comparisons of deterministic versus Monte Carlo radiation transport

    NASA Astrophysics Data System (ADS)

    Bahadori, Amir Alexander

    Astronauts are exposed to a unique radiation environment in space. United States terrestrial radiation worker limits, derived from guidelines produced by scientific panels, do not apply to astronauts. Limits for astronauts have changed throughout the Space Age, eventually reaching the current National Aeronautics and Space Administration limit of 3% risk of exposure induced death, with an administrative stipulation that the risk be assured to the upper 95% confidence limit. Much effort has been spent on reducing the uncertainty associated with evaluating astronaut risk for radiogenic cancer mortality, while tools that affect the accuracy of the calculations have largely remained unchanged. In the present study, the impacts of using more realistic computational phantoms with size variability to represent astronauts with simplified deterministic radiation transport were evaluated. Next, the impacts of microgravity-induced body changes on space radiation dosimetry using the same transport method were investigated. Finally, dosimetry and risk calculations resulting from Monte Carlo radiation transport were compared with results obtained using simplified deterministic radiation transport. The results of the present study indicated that the use of phantoms that more accurately represent human anatomy can substantially improve space radiation dose estimates, most notably for exposures from solar particle events under light shielding conditions. Microgravity-induced changes were less important, but results showed that flexible phantoms could assist in optimizing astronaut body position for reducing exposures during solar particle events. Finally, little overall differences in risk calculations using simplified deterministic radiation transport and 3D Monte Carlo radiation transport were found; however, for the galactic cosmic ray ion spectra, compensating errors were observed for the constituent ions, thus exhibiting the need to perform evaluations on a particle

  14. Radiation Dosimetry Experiment (RaD-X): High-Altitude Balloon Flight Mission for Improving the NAIRAS Model

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Alston, Erica J.; Straume, Tore; Gersey, Brad; Lusby, Terry C.; Norman, Ryan B.; Gronoff, Guillaume P.; Tobiska, W. Kent; Wilkins, Rick

    2015-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. One of the main goals of the RaD-X mission is to improve aviation radiation model characterization of cosmic ray primaries by taking dosimetric measurements above the Pfotzer maximum before the production of secondary particles occurs. The second goal of the RaD-X mission is to facilitate the pathway toward real-time, data assimilative predictions of atmospheric cosmic radiation exposure by identifying and characterizing low-cost radiation measurement solutions.

  15. SU-E-J-17: A Study of Accelerator-Induced Cerenkov Radiation as a Beam Diagnostic and Dosimetry Tool

    SciTech Connect

    Bateman, F; Tosh, R

    2014-06-01

    Purpose: To investigate accelerator-induced Cerenkov radiation imaging as a possible beam diagnostic and medical dosimetry tool. Methods: Cerenkov emission produced by clinical accelerator beams in a water phantom was imaged using a camera system comprised of a high-sensitivity thermoelectrically-cooled CCD camera coupled to a large aperture (f/0.75) objective lens with 16:1 magnification. This large format lens allows a significant amount of the available Cerenkov light to be collected and focused onto the CCD camera to form the image. Preliminary images, obtained with 6 MV photon beams, used an unshielded camera mounted horizontally with the beam normal to the water surface, and confirmed the detection of Cerenkov radiation. Several improvements were subsequently made including the addition of radiation shielding around the camera, and altering of the beam and camera angles to give a more favorable geometry for Cerenkov light collection. A detailed study was then undertaken over a range of electron and photon beam energies and dose rates to investigate the possibility of using this technique for beam diagnostics and dosimetry. Results: A series of images were obtained at a fixed dose rate over a range of electron energies from 6 to 20 MeV. The location of maximum intensity was found to vary linearly with the energy of the beam. A linear relationship was also found between the light observed from a fixed point on the central axis and the dose rate for both photon and electron beams. Conclusion: We have found that the analysis of images of beam-induced Cerenkov light in a water phantom has potential for use as a beam diagnostic and medical dosimetry tool. Our future goals include the calibration of the light output in terms of radiation dose and development of a tomographic system for 3D Cerenkov imaging in water phantoms and other media.

  16. ``In vivo'' Dosimetry in Tangential and Axilosupraclavicular Radiation Fields for Breast Cancer Postmastectomy''

    NASA Astrophysics Data System (ADS)

    García, Heredia A.; Ruiz, Trejo C. G.; Gamboa de Buen, I.; Poitevin, Chacón M. A.; Flores, J. M. Castro; Rodríguez, M. Ponce; Ángeles, Zaragoza S. O.; Buenfil, Burgos A. E.

    2008-08-01

    This work is an "in vivo" dosimetry study for breast cancer patients, treated with external radiotherapy. Patients who have suffered a modified radical mastectomy have been included in the study. Measurements will be made with thermoluminescent dosimeters and with radiochromic films. Such dosimetry will let us know the dose distribution in the zone which the applied beams overlap and compare the measureddose with that calculated one using the Eclipse 6.5 (Varian) planning system.

  17. 'In vivo' Dosimetry in Tangential and Axilosupraclavicular Radiation Fields for Breast Cancer Postmastectomy

    SciTech Connect

    Garcia, Heredia A.; Ruiz, Trejo C. G.; Buenfil, Burgos A. E.; Gamboa de Buen, I.; Poitevin, Chacon M. A.; Flores, J. M. Castro; Rodriguez, M. Ponce; Angeles, Zaragoza S. O.

    2008-08-11

    This work is an 'in vivo' dosimetry study for breast cancer patients, treated with external radiotherapy. Patients who have suffered a modified radical mastectomy have been included in the study. Measurements will be made with thermoluminescent dosimeters and with radiochromic films. Such dosimetry will let us know the dose distribution in the zone which the applied beams overlap and compare the measureddose with that calculated one using the Eclipse 6.5 (Varian) planning system.

  18. Dosimetry measurements using Timepix in mixed radiation fields induced by heavy ions; comparison with standard dosimetry methods

    PubMed Central

    Ploc, Ondrej; Kubancak, Jan; Sihver, Lembit; Uchihori, Yukio; Jakubek, Jan; Ambrozova, Iva; Molokanov, Alexander; Pinsky, Lawrence

    2014-01-01

    Objective of our research was to explore capabilities of Timepix for its use as a single dosemeter and LET spectrometer in mixed radiation fields created by heavy ions. We exposed it to radiation field (i) at heavy ion beams at HIMAC, Chiba, Japan, (ii) in the CERN's high-energy reference field (CERF) facility at Geneva, France/Switzerland, (iii) in the exposure room of the proton therapy laboratory at JINR, Dubna, Russia, and (iv) onboard aircraft. We compared the absolute values of dosimetric quantities obtained with Timepix and with other dosemeters and spectrometers like tissue-equivalent proportional counter (TEPC) Hawk, silicon detector Liulin, and track-etched detectors (TEDs).

  19. A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction

    PubMed Central

    Xu, X George; Bednarz, Bryan; Paganetti, Harald

    2014-01-01

    It has been long known that patients treated with ionizing radiation carry a risk of developing a second cancer in their lifetimes. Factors contributing to the recently renewed concern about the second cancer include improved cancer survival rate, younger patient population as well as emerging treatment modalities such as intensity-modulated radiation treatment (IMRT) and proton therapy that can potentially elevate secondary exposures to healthy tissues distant from the target volume. In the past 30 years, external-beam treatment technologies have evolved significantly, and a large amount of data exist but appear to be difficult to comprehend and compare. This review article aims to provide readers with an understanding of the principles and methods related to scattered doses in radiation therapy by summarizing a large collection of dosimetry and clinical studies. Basic concepts and terminology are introduced at the beginning. That is followed by a comprehensive review of dosimetry studies for external-beam treatment modalities including classical radiation therapy, 3D-conformal x-ray therapy, intensity-modulated x-ray therapy (IMRT and tomotherapy) and proton therapy. Selected clinical data on second cancer induction among radiotherapy patients are also covered. Problems in past studies and controversial issues are discussed. The needs for future studies are presented at the end. PMID:18540047

  20. Ramifications of target motion in localization and dosimetry for stereotactic body radiation therapy

    NASA Astrophysics Data System (ADS)

    Tanyi, James Ayuk

    2005-11-01

    Several key analytical/experimental studies have been conducted to quantify the magnitude of the consequential effect of motion both at the level of target localization and characterization and dose delivery. In the imaging front, Chen et al., 2004 showed that distortions along the axis of motion could result in (1) target lengthening or shortening, (2) target over- or under- estimation, and (3) displacement of reference target centroid by as much as the amplitude of the motion of a target. The authors concluded that the geometric distortion depended on motion phase, motion amplitude, and scan speed, phase being the primary determinant of the resulting type of distortion. In the dosimetry front, Yang et al., 1997 investigated the interplay effect in tomotherapy delivery. Yu et al ., 1998 and Jiang et al., 2003 investigated the interplay effect for MLC-based IMRT. To supplement current understanding of the effects of motion, this study will be divided into two steps. (1) Characterization of potential systematic errors introduced into a patient plan if appropriate steps are not taken to eliminate, or at least, minimize, tumor motion. (2) Quantification of the accuracy of delivering large dose fractions compared to small dose fractions with constant motion period. Actual measurements are performed on a dynamic anthropomorphic phantom. To not base claims regarding accuracy of equipment, quality of dose distributions, and dose tolerance on the virtual computer simulation of the treatment plan, a suitable dosimeter is identified and its response characterized for use in dose measurements.

  1. Video-rate optical dosimetry and dynamic visualization of IMRT and VMAT treatment plans in water using Cherenkov radiation

    SciTech Connect

    Glaser, Adam K. E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Davis, Scott C.; Zhang, Rongxiao; Pogue, Brian W. E-mail: Brian.W.Pogue@dartmouth.edu; Fox, Colleen J.; Gladstone, David J.

    2014-06-15

    Purpose: A novel technique for optical dosimetry of dynamic intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 (TG-119) C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank doped with the fluorophore quinine sulfate. The ICCD acquisition was gated to the Linac target trigger pulse to reduce background light artifacts, read out for a single radiation pulse, and binned to a resolution of 512 × 512 pixels. The resulting videos were analyzed temporally for various regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR), and summed to obtain an overall light intensity distribution, which was compared to the expected dose distribution from the TPS using a gamma-index analysis. Results: The chosen camera settings resulted in 23.5 frames per second dosimetry videos. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.9% and 96.2% agreement between the experimentally captured Cherenkov light distribution and expected TPS dose distribution based upon a 3%/3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans, respectively. Conclusions: The results from this initial study demonstrate the first documented use of Cherenkov radiation for video-rate optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real

  2. The effects of high ambient radon on thermoluminescence dosimetry readings.

    PubMed

    Harvey, John A; Kearfott, Kimberlee J

    2011-11-01

    The effect of a high level of ambient (222)Rn gas on thermoluminescence dosemeters (TLDs) is examined. Groups of LiF:Mg,Ti and CaF(2):Dy TLDs were exposed to (222)Rn under controlled environmental conditions over ∼7 d using a luminous (226)Ra aircraft dial. LiF:Mg,Ti TLDs were tested bare, and both types were tested mounted in cards used for environmental dosimetry and mounted in cards enclosed in plastic badges. A passive continuous radon monitor was used to measure the (222)Rn level in the small chamber during the experiments. The data were analysed to determine the relationship between the integrated (222)Rn level and the TLD response. Although both LiF:Mg,Ti and CaF(2):Dy TLDs showed a strong response to (222)Rn, the badges prevented measurable radon detection by the TLDs within. The TLDs were not used to directly measure the radon concentration; rather, a correction for its influence was desired.

  3. An internal radiation dosimetry computer program, IDAC 2.0, for estimation of patient doses from radiopharmaceuticals.

    PubMed

    Andersson, M; Johansson, L; Minarik, D; Mattsson, S; Leide-Svegborn, S

    2014-12-01

    The internal dosimetry computer program internal dose assessment by computer (IDAC) for calculations of absorbed doses to organs and tissues as well as effective doses to patients from examinations with radiopharmaceuticals has been developed. The new version, IDAC2.0, incorporates the International Commission on Radiation Protection (ICRP)/ICRU computational adult male and female voxel phantoms and decay data from the ICRP publication 107. Instead of only 25 source and target regions, calculation can now be made with 63 source regions to 73 target regions. The major advantage of having the new phantom is that the calculations of the effective doses can be made with the latest tissue weighting factors of ICRP publication 103. IDAC2.0 uses the ICRP human alimentary tract (HAT) model for orally administrated activity and for excretion through the gastrointestinal tract and effective doses have been recalculated for radiopharmaceuticals that are orally administered. The results of the program are consistent with published data using the same specific absorption fractions and also compared with published data from the same computational phantoms but with segmentation of organs leading to another set of specific absorption fractions. The effective dose is recalculated for all the 34 radiopharmaceuticals that are administered orally and has been published by the ICRP. Using the new HAT model, new tissue weighting factors and the new adult computational voxel phantoms lead to an average effective dose of half of its earlier estimated value. The reduction mainly depends on electron transport simulations to walled organs and the transition from the stylised phantom with unrealistic interorgan distances to more realistic voxel phantoms.

  4. Potential of Hybrid Computational Phantoms for Retrospective Heart Dosimetry After Breast Radiation Therapy: A Feasibility Study

    SciTech Connect

    Moignier, Alexandra; Derreumaux, Sylvie; Broggio, David; Beurrier, Julien; Chea, Michel; Boisserie, Gilbert; Franck, Didier; Aubert, Bernard; Mazeron, Jean-Jacques

    2013-02-01

    Purpose: Current retrospective cardiovascular dosimetry studies are based on a representative patient or simple mathematic phantoms. Here, a process of patient modeling was developed to personalize the anatomy of the thorax and to include a heart model with coronary arteries. Methods and Materials: The patient models were hybrid computational phantoms (HCPs) with an inserted detailed heart model. A computed tomography (CT) acquisition (pseudo-CT) was derived from HCP and imported into a treatment planning system where treatment conditions were reproduced. Six current patients were selected: 3 were modeled from their CT images (A patients) and the others were modelled from 2 orthogonal radiographs (B patients). The method performance and limitation were investigated by quantitative comparison between the initial CT and the pseudo-CT, namely, the morphology and the dose calculation were compared. For the B patients, a comparison with 2 kinds of representative patients was also conducted. Finally, dose assessment was focused on the whole coronary artery tree and the left anterior descending coronary. Results: When 3-dimensional anatomic information was available, the dose calculations performed on the initial CT and the pseudo-CT were in good agreement. For the B patients, comparison of doses derived from HCP and representative patients showed that the HCP doses were either better or equivalent. In the left breast radiation therapy context and for the studied cases, coronary mean doses were at least 5-fold higher than heart mean doses. Conclusions: For retrospective dose studies, it is suggested that HCP offers a better surrogate, in terms of dose accuracy, than representative patients. The use of a detailed heart model eliminates the problem of identifying the coronaries on the patient's CT.

  5. Implementation of talairach atlas based automated brain segmentation for radiation therapy dosimetry.

    PubMed

    Popple, R A; Griffith, H R; Sawrie, S M; Fiveash, J B; Brezovich, I A

    2006-02-01

    Radiotherapy for brain cancer inevitably results in irradiation of uninvolved brain. While it has been demonstrated that irradiation of the brain can result in cognitive deficits, dose-volume relationships are not well established. There is little work correlating a particular cognitive deficit with dose received by the region of the brain responsible for the specific cognitive function. One obstacle to such studies is that identification of brain anatomy is both labor intensive and dependent on the individual performing the segmentation. Automatic segmentation has the potential to be both efficient and consistent. Brains2 is a software package developed by the University of Iowa for MRI volumetric studies. It utilizes MR images, the Talairach atlas, and an artificial neural network (ANN) to segment brain images into substructures in a standardized manner. We have developed a software package, Brains2DICOM, that converts the regions of interest identified by Brains2 into a DICOM radiotherapy structure set. The structure set can be imported into a treatment planning system for dosimetry. We demonstrated the utility of Brains2DICOM using a test case, a 34-year-old man with diffuse astrocytoma treated with three-dimensional conformal radiotherapy. Brains2 successfully applied the Talairach atlas to identify the right and left frontal, parietal, temporal, occipital, subcortical, and cerebellum regions. Brains2 was not successful in applying the ANN to identify small structures, such as the hippocampus and caudate. Further work is necessary to revise the ANN or to develop new methods for identification of small structures in the presence of disease and radiation induced changes. The segmented regions-of-interest were transferred to our commercial treatment planning system using DICOM and dose-volume histograms were constructed. This method will facilitate the acquisition of data necessary for the development of normal tissue complication probability (NTCP) models that

  6. From ``micro`` to ``macro`` internal dosimetry

    SciTech Connect

    Fisher, D.R.

    1994-06-01

    Radiation dose is the amount of radiation energy deposited per unit mass of absorbing tissue. Internal dosimetry applies to assessments of dose to internal organs from penetrating radiation sources outside the body and from radionuclides taken into the body. Dosimetry is essential for correlating energy deposition with biological effects that are observed when living tissues are irradiated. Dose-response information provides the basis for radiation protection standards and risk assessment. Radiation interactions with living matter takes place on a microscopic scale, and the manifestation of damage may be evident at the cellular, multi-cellular, and even organ levels of biological organization. The relative biological effectiveness of ionization radiation is largely determined by the spatial distribution of energy deposition events within microscopic as well as macroscopic biological targets of interest. The spatial distribution of energy imparted is determined by the spatial distribution of radionuclides and properties of the emitted charged-particle radiation involved. The nonuniformity of energy deposition events in microscopic volumes, particularly from high linear energy transfer (LET) radiation, results in large variations in the amount of energy imparted to very small volumes or targets. Microdosimetry is the study of energy deposition events at the cellular level. Macrodosimetry is a term for conventional dose averaging at the tissue or organ level. In between is a level of dosimetry sometimes referred to as multi-cellular dosimetry. The distinction between these terms and their applications in assessment of dose from internally deposited radionuclides is described.

  7. Improved Radiation Dosimetry/Risk Estimates to Facilitate Environmental Management of Plutonium Contaminated Sites

    SciTech Connect

    Scott, Bobby R.; Cheng, Yung-Sung; Zhou, Yue; Tokarskaya, Zoya B.; Zhuntova, Galina V.

    2003-06-11

    Our Phase II research evaluated health risks associated with inhaled plutonium. Our research objectives were to: (1) extend our stochastic model for deposition of plutonium in the respiratory tract to include additional key variability and uncertainty; (2) generate and analyze risk distributions for deterministic effects in the lung from inhaled plutonium that reflect risk model uncertainty; (3) acquire an improved understanding of key physiological effects of inhaled plutonium, based on evaluations of clinical data (e.g., hematological, respiratory function, chromosomal aberrations in lymphocytes) for Mayak workers in Russia who inhaled plutonium-239; (4) develop biological dosimetry for plutonium-239 that was inhaled by some Mayak workers (with unknown intake) based on clinical data for other workers with known plutonium-239 intake; (5) critically evaluate the validity of the linear no-threshold (LNT) risk model as it relates to cancer risks from inhaled plutonium-239 (base d on Mayak worker data); and (6) evaluate respirator filter penetration frequencies for airborne plutonium aerosols using surrogate high-density metals.

  8. The effect of patient inhomogeneities in oesophageal 192Ir HDR brachytherapy: a Monte Carlo and analytical dosimetry study.

    PubMed

    Anagnostopoulos, G; Baltas, D; Pantelis, E; Papagiannis, P; Sakelliou, L

    2004-06-21

    The effect of patient inhomogeneities surrounding the oesophagus on the dosimetry planning of an upper thoracic oesophageal 192Ir HDR brachytherapy treatment is studied. The MCNPX Monte Carlo code is used for dosimetry in a patient-equivalent phantom geometry and results are compared in terms of isodose contours as well as dose volume histograms with corresponding calculations by a contemporary treatment planning system software featuring a full TG-43 dose calculation algorithm (PLATO BPS version 14.2.4). It is found that the presence of patient inhomogeneities does not alter the delivery of the planned dose distribution to the planning treatment volume. Regarding the organs at risk, the common practice of current treatment planning systems (TPSs) to consider the patient geometry as a homogeneous water medium leads to a dose overestimation of up to 13% to the spinal cord and an underestimation of up to 15% to the sternum bone. These findings which correspond to the dose region of about 5-10% of the prescribed dose could only be of significance when brachytherapy is used as a boost to external beam therapy. Additionally, an analytical dosimetry model, which is efficient in calculating dose in mathematical phantoms containing inhomogeneity shells of materials of radiobiological interest, is utilized for dosimetry in the patient-equivalent inhomogeneous phantom geometry. Analytical calculations in this work are in good agreement with corresponding Monte Carlo results within the bone inhomogeneities of spinal cord and sternum bone but, like treatment planning system calculations, the model fails to predict the dose distribution in the proximal lung surface as well as within the lungs just as the TPS does, due to its inherent limitation in treating lateral scatter and backscatter radiation.

  9. The UF family of reference hybrid phantoms for computational radiation dosimetry.

    PubMed

    Lee, Choonsik; Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna; Williams, Jonathan L; Bolch, Wesley E

    2010-01-21

    Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms-those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR. NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros. The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference organ

  10. The UF family of reference hybrid phantoms for computational radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna; Williams, Jonathan L.; Bolch, Wesley E.

    2010-01-01

    Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms—those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR™. NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros™. The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference

  11. COMPUTATIONAL LYMPHATIC NODE MODELS IN PEDIATRIC AND ADULT HYBRID PHANTOMS FOR RADIATION DOSIMETRY

    PubMed Central

    Lee, Choonsik; Lamart, Stephanie; Moroz, Brian E.

    2013-01-01

    We developed models of lymphatic nodes for 6 pediatric and 2 adult hybrid computational phantoms to calculate the lymphatic node dose estimates from external and internal radiation exposures. We derived the number of lymphatic nodes from the recommendations in International Commission on Radiological Protection (ICRP) Publications 23 and 89 at 16 cluster locations for the lymphatic nodes: extrathoracic, cervical, thoracic (upper and lower), breast (left and right), mesentery (left and right), axillary (left and right), cubital (left and right), inguinal (left and right), and popliteal (left and right), for different ages (newborn, 1-, 5-, 10-, 15-year-old, and adult). We modeled each lymphatic node within the voxel format of the hybrid phantoms by assuming that all nodes have identical size derived from published data except narrow cluster sites. The lymph nodes were generated by the following algorithm: (1) selection of the lymph node site among the 16 cluster sites; (2) random sampling of the location of the lymph node within a spherical space centered at the chosen cluster site; (3) creation of the sphere or ovoid of tissue representing the node based on lymphatic node characteristics defined in ICRP Publications 23 and 89. We created lymph nodes until the pre-defined number of lymphatic nodes at the selected cluster site was reached. This algorithm was applied to pediatric (newborn, 1-, 5-, and 10-year-old male, and 15-year-old males) and adult male and female ICRP-compliant hybrid phantoms after voxelization. To assess the performance of our models for internal dosimetry, we calculated dose conversion coefficients, called S values, for selected organs and tissues with Iodine-131 distributed in 6 lymphatic node cluster sites using MCNPX2.6, a well validated Monte Carlo radiation transport code. Our analysis of the calculations indicates that the S values were significantly affected by the location of the lymph node clusters and that the values increased for

  12. Computational lymphatic node models in pediatric and adult hybrid phantoms for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lamart, Stephanie; Moroz, Brian E.

    2013-03-01

    We developed models of lymphatic nodes for six pediatric and two adult hybrid computational phantoms to calculate the lymphatic node dose estimates from external and internal radiation exposures. We derived the number of lymphatic nodes from the recommendations in International Commission on Radiological Protection (ICRP) Publications 23 and 89 at 16 cluster locations for the lymphatic nodes: extrathoracic, cervical, thoracic (upper and lower), breast (left and right), mesentery (left and right), axillary (left and right), cubital (left and right), inguinal (left and right) and popliteal (left and right), for different ages (newborn, 1-, 5-, 10-, 15-year-old and adult). We modeled each lymphatic node within the voxel format of the hybrid phantoms by assuming that all nodes have identical size derived from published data except narrow cluster sites. The lymph nodes were generated by the following algorithm: (1) selection of the lymph node site among the 16 cluster sites; (2) random sampling of the location of the lymph node within a spherical space centered at the chosen cluster site; (3) creation of the sphere or ovoid of tissue representing the node based on lymphatic node characteristics defined in ICRP Publications 23 and 89. We created lymph nodes until the pre-defined number of lymphatic nodes at the selected cluster site was reached. This algorithm was applied to pediatric (newborn, 1-, 5-and 10-year-old male, and 15-year-old males) and adult male and female ICRP-compliant hybrid phantoms after voxelization. To assess the performance of our models for internal dosimetry, we calculated dose conversion coefficients, called S values, for selected organs and tissues with Iodine-131 distributed in six lymphatic node cluster sites using MCNPX2.6, a well validated Monte Carlo radiation transport code. Our analysis of the calculations indicates that the S values were significantly affected by the location of the lymph node clusters and that the values increased for

  13. A computational tool for patient specific dosimetry and radiobiological modeling of selective internal radiation therapy with (90)Y microspheres.

    PubMed

    Kalantzis, Georgios; Leventouri, Theodora; Apte, Aditiya; Shang, Charles

    2015-11-01

    In recent years we have witnessed tremendous progress in selective internal radiation therapy. In clinical practice, quite often, radionuclide therapy is planned using simple models based on standard activity values or activity administered per unit body weight or surface area in spite of the admission that radiation-dose methods provide more accurate dosimetric results. To address that issue, the authors developed a Matlab-based computational software, named Patient Specific Yttrium-90 Dosimetry Toolkit (PSYDT). PSYDT was designed for patient specific voxel-based dosimetric calculations and radiobiological modeling of selective internal radiation therapy with (90)Y microspheres. The developed toolkit is composed of three dimensional dose calculations for both bremsstrahlung and beta emissions. Subsequently, radiobiological modeling is performed on a per-voxel basis and cumulative dose volume histograms (DVHs) are generated. In this report we describe the functionality and visualization features of PSYDT.

  14. 3D dosimetry estimation for selective internal radiation therapy (SIRT) using SPECT/CT images: a phantom study

    NASA Astrophysics Data System (ADS)

    Debebe, Senait A.; Franquiz, Juan; McGoron, Anthony J.

    2015-03-01

    Selective Internal Radiation Therapy (SIRT) is a common way to treat liver cancer that cannot be treated surgically. SIRT involves administration of Yttrium - 90 (90Y) microspheres via the hepatic artery after a diagnostic procedure using 99mTechnetium (Tc)-macroaggregated albumin (MAA) to detect extrahepatic shunting to the lung or the gastrointestinal tract. Accurate quantification of radionuclide administered to patients and radiation dose absorbed by different organs is of importance in SIRT. Accurate dosimetry for SIRT allows optimization of dose delivery to the target tumor and may allow for the ability to assess the efficacy of the treatment. In this study, we proposed a method that can efficiently estimate radiation absorbed dose from 90Y bremsstrahlung SPECT/CT images of liver and the surrounding organs. Bremsstrahlung radiation from 90Y was simulated using the Compton window of 99mTc (78keV at 57%). 99mTc images acquired at the photopeak energy window were used as a standard to examine the accuracy of dosimetry prediction by the simulated bremsstrahlung images. A Liqui-Phil abdominal phantom with liver, stomach and two tumor inserts was imaged using a Philips SPECT/CT scanner. The Dose Point Kernel convolution method was used to find the radiation absorbed dose at a voxel level for a three dimensional dose distribution. This method will allow for a complete estimate of the distribution of radiation absorbed dose by tumors, liver, stomach and other surrounding organs at the voxel level. The method provides a quantitative predictive method for SIRT treatment outcome and administered dose response for patients who undergo the treatment.

  15. Final Report Summary: Radiation dosimetry of Cu-64-labeled radiotherapy agents using PET [Positron Emission Tomography

    SciTech Connect

    Anderson, Carolyn J.; Cutler, P.D.

    2002-09-01

    This project began in 1996, and was completed in July 2001. The overall goals were to compare various methods of dosimetry of PET imaging agents, as well as develop more optimal methods. One of the major accomplishments of this grant was the human PET imaging studies of a positron-emitting radiopharmaceutical for somatostatin-receptor imaging, and subsequent dosimetry calculations resulting from this study. In addition, we collaborated with Darrell Fisher and Edmund Hui to develop a MIRD-hamster program for calculating hamster organ and tumor dosimetry in hamster models. Progress was made towards a point kernel approach to more accurately determining absorbed doses to normal organs, as well as towards co-registration of PET and MRI images. This report focuses on the progress made in the last 15 months of the grant, which in general is a summary of the progress over the 5 years the project was ongoing.

  16. Study of the secondary neutral radiation in proton therapy: Toward an indirect in vivo dosimetry

    SciTech Connect

    Carnicer, A.; Letellier, V.; Rucka, G.; Angellier, G.; Sauerwein, W.; Herault, J.

    2012-12-15

    Purpose: Secondary particles produced in the collision of protons with beam modifiers are of concern in proton therapy. Nevertheless, secondary radiation can provide information on the dosimetric parameters through its dependency on the modulating accessories (range shifter and range modulating wheel). Relatively little data have been reported in the literature for low-energy proton beams. The present study aims at characterizing the neutron and photon secondary radiation at the low-energy proton therapy facility of the Centre Antoine Lacassagne (CAL), and studying their correlation to the dosimetric parameters to explore possible practical uses of secondary radiation in the treatment quality for proton therapy. Methods: The Monte Carlo code MCNPX was used to simulate the proton therapy facility at CAL. Neutron and photon fluence, {Phi}, and ambient dose equivalent per proton dose, H*(10)/D, were determined across the horizontal main plane spanning the whole treatment room. H*(10)/D was also calculated at two positions of the treatment room where dosimetric measurements were performed for validation of the Monte Carlo calculations. Calculations and measurements were extended to 100 clinical spread-out Bragg Peaks (SOBPs) covering the whole range of therapeutic dose rates (D/MU) employed at CAL. In addition, the values of D and MU were also calculated for each SOBP and the results analyzed to study the relationship between secondary radiation and dosimetric parameters. Results: The largest production of the secondary particles takes place at the modulating devices and the brass collimators located along the optical bench. Along the beam line and off the beam axis to 2.5 m away, H*(10)/D values ranged from 5.4 {mu}Sv/Gy to 5.3 mSv/Gy for neutrons, and were 1 order of magnitude lower for photons. H*(10)/D varied greatly with the distance and angle to the beam axis. A variation of a factor of 5 was found for the different range of modulations (SOBPs). The ratios

  17. Design and Fabrication of Kidney Phantoms for Internal Radiation Dosimetry Using 3D Printing Technology.

    PubMed

    Tran-Gia, Johannes; Schlögl, Susanne; Lassmann, Michael

    2016-12-01

    Currently, the validation of multimodal quantitative imaging and absorbed dose measurements is impeded by the lack of suitable, commercially available anthropomorphic phantoms of variable sizes and shapes. To demonstrate the potential of 3-dimensional (3D) printing techniques for quantitative SPECT/CT imaging, a set of kidney dosimetry phantoms and their spherical counterparts was designed and manufactured with a fused-deposition-modeling 3D printer. Nuclide-dependent SPECT/CT calibration factors were determined to assess the accuracy of quantitative imaging for internal renal dosimetry.

  18. In vivo dosimetry for estimation of effective doses in multislice CT coronary angiography

    SciTech Connect

    De Denaro, M.; Bregant, P.; Severgnini, M.; De Guarrini, F.

    2007-10-15

    In vivo dosimetry represents a technique that has been widely employed to evaluate the dose to the patient mainly in radiotherapy. Considering the increment in dose to the population due to new high-dose multislice CT examinations, such as coronary angiography, it is becoming important to more accurately know the dose to the patient. The desire to know patient dose extends even to radiological examinations. Thermoluminescent dosimeters are considered the gold standard for in vivo dosimetry, but their use is time consuming. A rapid, less labor-intensive method has been developed to perform in vivo dosimetry using radiochromic film positioned next to the patient's skin. Multislice CT scanners allow the estimation of the effective dose to the patient from the dose length product (DLP) parameter, the value of which is displayed on the acquisition console, simply multiplying the DLP by published conversion factors. The method represents only an approximation based on standard size circular phantoms and neglects the actual size of the patient. More accurate evaluations can be carried out using software-based Monte Carlo simulations. However, these methods do not consider possible dose reduction techniques, such as automatic tube-current modulation. For 22 patients effective doses measured by in vivo dosimetry and calculated by software were compared. The technique of using in vivo dosimetry measured with radiochromic film appears a promising procedure for improving the assessment of the effective dose to the patient.

  19. Radiation effects in space

    SciTech Connect

    Fry, R.J.M.

    1986-01-01

    The paper discusses the radiation environment in space that astronauts are likely to be exposed to. Emphasis is on proton and HZE particle effects. Recommendations for radiation protection guidelines are presented. (ACR)

  20. Small Field: dosimetry in electron disequilibrium region

    NASA Astrophysics Data System (ADS)

    Zhu, Timothy C.

    2010-11-01

    Small fields are more commonly used for radiation therapy because of the development of IMRT, stereotactic radiosurgery, and other special equipments such as Cyberknife and Tomotherapy. The dosimetry in the sub-centimeter field can result in substantial uncertainties because of the presence of electron disequilibrium due to the large dose gradients in the field. It is further complicated by the introduction of various radiation detectors, which usually perturb the conditions of disequilibrium. Hence additional corrections are required to maintain the dosimetric accuracy previously achieved for standard radiation dosimetry. A review of small field dosimetry provides some insights into the methods to characterize the detector convolution kernel and other methods to characterize detector perturbation effect.

  1. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2005-02-25

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  2. Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry.

    PubMed

    Krstajić, Nikola; Doran, Simon J

    2006-04-21

    Optical tomography of gel dosimeters is a promising and cost-effective avenue for quality control of radiotherapy treatments such as intensity-modulated radiotherapy (IMRT). Systems based on a laser coupled to a photodiode have so far shown the best results within the context of optical scanning of radiosensitive gels, but are very slow ( approximately 9 min per slice) and poorly suited to measurements that require many slices. Here, we describe a fast, three-dimensional (3D) optical computed tomography (optical-CT) apparatus, based on a broad, collimated beam, obtained from a high power LED and detected by a charged coupled detector (CCD). The main advantages of such a system are (i) an acquisition speed approximately two orders of magnitude higher than a laser-based system when 3D data are required, and (ii) a greater simplicity of design. This paper advances our previous work by introducing a new design of focusing optics, which take information from a suitably positioned focal plane and project an image onto the CCD. An analysis of the ray optics is presented, which explains the roles of telecentricity, focusing, acceptance angle and depth-of-field (DOF) in the formation of projections. A discussion of the approximation involved in measuring the line integrals required for filtered backprojection reconstruction is given. Experimental results demonstrate (i) the effect on projections of changing the position of the focal plane of the apparatus, (ii) how to measure the acceptance angle of the optics, and (iii) the ability of the new scanner to image both absorbing and scattering gel phantoms. The quality of reconstructed images is very promising and suggests that the new apparatus may be useful in a clinical setting for fast and accurate 3D dosimetry.

  3. The angular dependence of a two dimensional monolithic detector array for dosimetry in small radiation fields

    NASA Astrophysics Data System (ADS)

    Stansook, N.; Petasecca, M.; Utitsarn, K.; Newall, M.; Metcalfe, P.; Carolan, M.; Lerch, M.; Rosenfeld, A. B.

    2017-01-01

    The purpose of this study is to investigate the directional dependence of a two dimensional monolithic detector array (M512) under 6 MV photon irradiation and to evaluate the effect of field size on angular dependence. Square fields of sizes: 3x3 cm2 and 10x10 cm2 were measured at the iso-centre of a cylindrical phantom. Beam angles with incidences from 00- 1800 in increments of 150 were used to investigate the central pixel angular response of M512, normalized to the pixel response for normal (0°) beam incidence. The angular response of the detector was compared to the response of EBT3 radiochromic film in the identical geometric orientation. The maximum angular dependence was observed at the angle 90°±15° to be -18.62% and -17.70% for the field sizes 3x3 cm2 and 10x10 cm2, respectively. The angular dependence of M512 showed no significant difference between field sizes of 3x3 cm2 and 10x10 cm2 (p>0.05). The maximum dose difference measured by the central pixel of M512 and EBT3 for all angles are -20% for 3x3 cm2 field size and -18.58% for the 10x10 cm2 field. The diode array’s size and packaging effects the angular response of the detector. The angular correction factor is necessary to apply to increase accuracy in dosimetry for arc treatment delivery.

  4. Anthropomorphic Phantom Radiation Dosimetry at the NATO Standard Reference Point at Aberdeen Proving Ground,

    DTIC Science & Technology

    1987-04-01

    will have a non-isotropic angular dependance . Thus, for free-field dosimetry, while the bubble detector results could be directly transformed * into...these experiments was the bubble dosimeter temperature dependance . In all experiments, the phantom was surrounded by a tent arrangement (see figs) in

  5. Summary of radiation dosimetry results on U.S. and Soviet manned spacecraft.

    PubMed

    Benton, E V

    1986-01-01

    Measurements of the radiation environment aboard U.S. and Soviet manned spacecraft are reviewed and summarized. Data obtained mostly from passive and some active radiation detectors now exist for the case of low Earth-orbit missions. Major uncertainties still exist for space exposure in high altitude, high inclination, geostationary orbits, in connection with solar effects and that of shielding. Data from active detectors flown in Spacelabs 1 and 2 suggest that a variety of phenomena must be understood before the effects of long-term exposure at the space-station type of orbit and shielding can be properly assessed.

  6. Plasma miRNA as biomarkers for assessment of total-body radiation exposure dosimetry.

    PubMed

    Cui, Wanchang; Ma, Jinfang; Wang, Yulei; Biswal, Shyam

    2011-01-01

    The risk of radiation exposure, due to accidental or malicious release of ionizing radiation, is a major public health concern. Biomarkers that can rapidly identify severely-irradiated individuals requiring prompt medical treatment in mass-casualty incidents are urgently needed. Stable blood or plasma-based biomarkers are attractive because of the ease for sample collection. We tested the hypothesis that plasma miRNA expression profiles can accurately reflect prior radiation exposure. We demonstrated using a murine model that plasma miRNA expression signatures could distinguish mice that received total body irradiation doses of 0.5 Gy, 2 Gy, and 10 Gy (at 6 h or 24 h post radiation) with accuracy, sensitivity, and specificity of above 90%. Taken together, these data demonstrate that plasma miRNA profiles can be highly predictive of different levels of radiation exposure. Thus, plasma-based biomarkers can be used to assess radiation exposure after mass-casualty incidents, and it may provide a valuable tool in developing and implementing effective countermeasures.

  7. Development and characterization of remote radiation dosimetry systems using optically stimulated luminescence of alumina:carbon and potassium bromide:europium

    NASA Astrophysics Data System (ADS)

    Klein, David Matthew

    Scope and Method of Study. To develop and test the performance of two different dosimetry systems; one for in situ, high-sensitivity, inexpensive environmental monitoring, and another for near-real-time medical dosimetry. The systems are based on remote interrogation of the optically stimulated luminescence (OSL) from Al2O3:C and KBr:Eu single crystal dosimeters (exposed to environmental and medical radiation fields, respectively) via fiber optic cables. The environmental system was tested in lab conditions using various radioactive sources including 60Co, 90 Sr, 137Cs, and 226Ra, as well as with 232Th-enriched soil stimulant. The medical system was tested under various diagnostic x-ray systems, including fluoroscopy and computed tomography (CT) machines, as well as with high dose rate 192Ir brachytherapy sources and 232 MeV proton therapy beams under simulated treatment conditions. Findings and Conclusions. The environmental system was shown to achieve sensitivity high enough for measuring an OSL signal resulting from a dose of ˜1 muGy, which is equivalent to ˜12 hours of natural background radiation. This sensitivity allows for monitoring of the radiation characteristics of a natural environment more rapidly and/or less expensively than existing methods, such as soil sampling and in situ gamma spectroscopy. The KBr:Eu-based medical system results show that the near-real-time data acquisition during irradiation allows for rapid quality assurance (QA) measurements that benefits from high spatial resolution. These features are not present in most current standard dosimeters such as thermoluminescent detectors and pencil ionization chambers. The dosimeter does exhibit energy dependence, and a sensitization during high dose rate procedures. As a result, a model has been proposed that provides a description of the possible mechanisms that govern the transfer of electrons and holes within KBr:Eu during OSL measurement at room temperature. Correction factors for these

  8. Comparison between X-rays spectra and their effective energies in small animal CT tomographic imaging and dosimetry.

    PubMed

    Hamdi, Mahdjoub; Mimi, Malika; Bentourkia, M'hamed

    2017-03-01

    Small animal CT imaging and dosimetry usually rely on X-ray radiation produced by X-ray tubes. These X-rays typically cover a large energy range. In this study, we compared poly-energetic X-ray spectra against estimated equivalent (effective) mono-energetic beams with the same number of simulated photons for small animal CT imaging and dosimetry applications. Two poly-energetic X-ray spectra were generated from a tungsten anode at 50 and 120 kVp. The corresponding effective mono-energetic beams were established as 36 keV for the 50 kVp spectrum and 49.5 keV for the 120 kVp spectrum. To assess imaging applications, we investigated the spatial resolution by a tungsten wire, and the contrast-to-noise ratio in a reference phantom and in a realistic mouse phantom. For dosimetry investigation, we calculated the absorbed dose in a segmented digital mouse atlas in the skin, fat, heart and bone tissues. Differences of 2.1 and 2.6% in spatial resolution were respectively obtained between the 50 and 120 kVp poly-energetic spectra and their respective 36 and 49.5 keV mono-energetic beams. The differences in contrast-to-noise ratio between the poly-energetic 50 kVp spectrum and its corresponding mono-energetic 36 keV beam for air, fat, brain and bone were respectively -2.9, -0.2, 11.2 and -4.8%, and similarly between the 120 kVp and its effective energy 49.5 keV: -11.3, -20.2, -4.2 and -13.5%. Concerning the absorbed dose, for the lower X-ray beam energies, 50 kVp against 36 keV, the poly-energetic radiation doses were higher than the mono-energetic doses. Instead, for the higher X-ray beam energies, 120 kVp and 49.5 keV, the absorbed dose to the bones and lungs were higher for the mono-energetic 49.5 keV. The intensity and energy of the X-ray beam spectrum have an impact on both imaging and dosimetry in small animal studies. Simulations with mono-energetic beams should take into account these differences in order to study biological effects or to be compared to

  9. Cell specific radiation dosimetry in skeleton from life-span carcinogenesis studies. Final report

    SciTech Connect

    Webster, S.S.J.

    1993-04-05

    The osteogenic sarcoma is the dominant life-threatening pathology in lifespan studies of beagles exposed to alpha-emitting bone-seeking radionuclides. It was deduced from these studies that certain skeletal sites are more prone to develop tumors. This project sought to determine the bone cells at risk and their cell-specific radiation dose. The cell-specific radiation dose values are related to loss and high Ra-226 and Pu-239 induced osteogenic sarcoma sites, to test different dose response hypothesis and predict the extent of effects in humans.

  10. Cell specific radiation dosimetry in skeleton from life-span carcinogenesis studies

    SciTech Connect

    Webster, S.S.J.

    1993-04-05

    The osteogenic sarcoma is the dominant life-threatening pathology in lifespan studies of beagles exposed to alpha-emitting bone-seeking radionuclides. It was deduced from these studies that certain skeletal sites are more prone to develop tumors. This project sought to determine the bone cells at risk and their cell-specific radiation dose. The cell-specific radiation dose values are related to loss and high Ra-226 and Pu-239 induced osteogenic sarcoma sites, to test different dose response hypothesis and predict the extent of effects in humans.

  11. Improved radiation dosimetry/risk estimates to facilitate environmental management of plutonium contaminated sites. 1998 annual progress report

    SciTech Connect

    Scott, B.R.

    1998-06-01

    'The objective of this research is to evaluate distributions of possible alpha radiation doses to the lung, bone, and liver and associated health-risk distributions for plutonium (Pu) inhalation-exposure scenarios relevant to environmental management of PuO{sub 2}-contaminated sites. Currently available dosimetry/risk models do not apply to exposure scenarios where, at most, a small number of highly radioactive PuO{sub 2} particles are inhaled (stochastic exposure [SE] paradigm). For the SE paradigm, risk distributions are more relevant than point estimates of risk. The focus of the research is on the SE paradigm and on high specific activity, alpha-emitting (HSA-aE) particles such as 238 PuO{sub 2} . The scientific goal is to develop a stochastic respiratory tract dosimetry/risk computer model for evaluating the desired absorbed dose distributions and associated health-risk distributions, for Department of Energy (DOE) workers and members of the public. This report summarizes results after 1 year of a 2-year project.'

  12. natural background radiation dosimetry in the highest altitude region of Iran.

    PubMed

    Shahbazi-Gahrouei, Daryoush

    2003-09-01

    The natural background radiation has been measured in one of the highest altitude regions (Zagros Mountains), Chaharmahal and Bakhtiari province, in the south west of Iran. The outdoors-environmental monitoring exposure rate of radiation was measured in 200 randomly chosen regions using portable Geiger-Muller and scintillation detectors. Eight measurements were made in each region and an average value was used to calculate the exposure rate from natural background radiation. The average exposure rate was found to be 0.246 microGy/h and the annual average effective dose equivalent was found to be 0.49 mSv. An overall population-weighted mean outdoor dose rate was calculated to be 49 nGy/h, which is higher than the world-wide mean value of 44 nGy/h, as reported by UNSCEAR in 1998, and is comparable to the annual effective dose equivalent of 0.38 mSv. A good correlation between the altitude and the exposure rate was observed, as the higher altitude regions have higher natural background radiation levels.

  13. Toward high sensitivity ESR dosimetry of mammal teeth: the effect of chemical treatment.

    PubMed

    Toyoda, Shin; Imata, Hiroko; Romanyukha, Alexander; Hoshi, Masaharu

    2006-02-01

    Investigations were conducted into chemical treatments suitable for concentrating enamel from cow teeth. Cow teeth could be used as alternative to human teeth for retrospective dosimetry when human teeth are not available. It is essential to remove dentin from tooth enamel for low dose radiation dosimetry in order to avoid interference to the ESR signal from organic radicals. Increasing the period of chemical treatment with KOH and NaOH reduced the signal intensity of the organic radicals. The sensitivity of the dosimetric signal from inorganic radicals increased slightly with length of treatment with NaOH, which is consistent with removal of dentin, and rose to a maximum of 20% after 5 h with KOH (40 degrees C).

  14. Effect of chemical composition and density of the pelvic structure in intracavitary brachytherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Chávez-Aguilera, N.; Torres-García, E.; Mitsoura, E.

    2011-03-01

    High dose rate (HDR) and low dose rate (LDR) intracavitary brachytherapies dosimetry in clinical practice are typically performed by commercial treatment planning systems. However, these systems do not fully consider the heterogeneities present in the real structure of the patient. The aim of this work is to obtain isodose curves and surfaces around the usual array of sources used in LDR ( 137Cs) and HDR ( 192Ir) intracavitary brachytherapy by Monte Carlo simulation, considering the real anatomic structure, density and chemical composition of media and tissues from the female pelvic region. The structural information was obtained from computed tomography images in the DICOM format. A voxel phantom (VP) was developed to perform ionizing radiation transport, considering the gamma spectrum of 137Cs and 192Ir. The absorbed dose was computed within each voxel of 2×2×3 mm 3. Four materials were considered in the VP—air, fat, muscle tissue and bone; however, one material per voxel was defined. Results show and quantify the effect of density and chemical composition of the medium on the absorbed dose distribution. According to them, the treatment planning systems underestimate the absorbed dose by 8% approximately for both radionuclides. In a heterogeneous medium, the absorbed dose distribution of 192Ir is more irregular than that of 137Cs but spatially better defined.

  15. Radiation effects in space

    SciTech Connect

    Fry, R.J.M.

    1987-07-01

    As more people spend more time in space, and the return to the moon and exploratory missions are considered, the risks require continuing examination. The effects of microgravity and radiation are two potential risks in space. These risks increase with increasing mission duration. This document considers the risk of radiation effects in space workers and explorers. 17 refs., 1 fig., 4 tabs.

  16. Protocol for emergency EPR dosimetry in fingernails

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is an increased need for after-the fact dosimetry because of the high risk of radiation exposures due to terrorism or accidents. In case of such an event, a method is needed to make measurements of dose in a large number of individuals rapidly and with sufficient accuracy to facilitate effect...

  17. Three-dimensional radiation dosimetry using polymer gel and solid radiochromic polymer: From basics to clinical applications

    PubMed Central

    Watanabe, Yoichi; Warmington, Leighton; Gopishankar, N

    2017-01-01

    Accurate dose measurement tools are needed to evaluate the radiation dose delivered to patients by using modern and sophisticated radiation therapy techniques. However, the adequate tools which enable us to directly measure the dose distributions in three-dimensional (3D) space are not commonly available. One such 3D dose measurement device is the polymer-based dosimeter, which changes the material property in response to radiation. These are available in the gel form as polymer gel dosimeter (PGD) and ferrous gel dosimeter (FGD) and in the solid form as solid plastic dosimeter (SPD). Those are made of a continuous uniform medium which polymerizes upon irradiation. Hence, the intrinsic spatial resolution of those dosimeters is very high, and it is only limited by the method by which one converts the dose information recorded by the medium to the absorbed dose. The current standard methods of the dose quantification are magnetic resonance imaging, optical computed tomography, and X-ray computed tomography. In particular, magnetic resonance imaging is well established as a method for obtaining clinically relevant dosimetric data by PGD and FGD. Despite the likely possibility of doing 3D dosimetry by PGD, FGD or SPD, the tools are still lacking wider usages for clinical applications. In this review article, we summarize the current status of PGD, FGD, and SPD and discuss the issue faced by these for wider acceptance in radiation oncology clinic and propose some directions for future development.

  18. Nanoparticle-aided Radiation Therapy: Micro-dosimetry and Evaluation of the Mediators Producing Biological Damage

    NASA Astrophysics Data System (ADS)

    Paudel, Nava Raj

    Radiation therapy has been established as a standard technique for cancer treatment. Advances in nanotechnology have enabled the application of many new approaches in the diagnosis and treatment of cancer. Achievement of selective enhancement in radiation dose deposition within a targeted tumor, while sparing surrounding normal structures, remains a challenge and one of the major objectives of cancer-related research. This objective can be realized by the insertion of high atomic number (Z) materials in the tumor site. Due to their high atomic number (Z=79) and favorable biological compatibility, gold nanoparticles (AuNPs) have been found very promising in this respect. Another candidate material, platinum (Z=78), offering very similar radiation interaction properties to gold and exhibiting additional cytotoxic effects, has been exploited in chemotherapeutic agents for a long time. We explore the radiation effects near the interface of gold and platinum with tissue under a wide range of energies with Monte Carlo (MC) simulations. Our studies show that AuNPs and PtNPs (platinum nanoparticles) can offer a useful dose enhancement effect even in high energy radiotherapy beams, which can be important when critical structures are located close to the tumor. Our MC calculated dose enhancement increase of about 50% due to the removal of the flattening filter from the path of the photon beam of Varian TrueBeam accelerator suggests that flattening-filter-free beams are better suited for nanoparticle-aided radiation therapy. Also, the increase in dose enhancement with the tumor depth suggests that nanopartcle-aided radiation therapy can yield a better outcome while treating deep-seated tumors. Experimental microdosimetry is a non-trivial task, demanding detectors with small sensitive volumes to achieve a high spatial resolution. We have developed a microdosimetry technique utilizing an inexpensive in-house-built photodetector for the measurement of dose in a narrow high dose

  19. 39th Lauriston S. Taylor Lecture: Dosimetry of Internal Emitters: Contribution of Radiation Protection Bodies and Radiological Events.

    PubMed

    Eckerman, Keith F

    2016-02-01

    Since the early days of the Manhattan Engineer District, Oak Ridge National Laboratory (ORNL) has served to advance the dosimetry models used to set protection standards for radionuclides taken into the body. Throughout the years, this effort benefited significantly from ORNL staff's active participation in national and international scientific bodies. The first such interaction was in 1946 with the National Committee on Radiation Protection (NCRP), chaired by L.S. Taylor, which led to the 1949 to 1953 series of tripartite conferences of experts from Canada, the United Kingdom, and the United States. These conferences addressed the need for standardization of dosimetry models and led to the establishment of an anatomic and physiologic model called "Standard Man," a precursor of the reference worker defined in Publication 23 of the International Commission on Radiological Protection (ICRP). Standard Man was used in setting the maximum permissible concentrations in air and water published in NBS Handbook 52 and subsequent reports by NCRP and ICRP. K.Z. Morgan, then director of the Health Physics Division at ORNL, participated in the tripartite conferences and subsequently established ORNL as a modeling and computational resource for development of radiation protection standards. ORNL's role expanded with participation in the work of the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. Results of interactions with the MIRD Committee are evident in the radiation protection guidance for internal emitters in ICRP Publication 30. The annual limit on intake and derived air concentration values tabulated in Publication 30 were computed by an ORNL-based task group of ICRP Committee 2. A few years after the appearance of Publication 30, the Chernobyl nuclear reactor accident made clear the need to develop standard dosimetry models for pre-adult ages as members of the public. In the late 1980s, ICRP began an effort to extend its reference

  20. Historical review of personnel dosimetry development and its use in radiation protection programs at Hanford 1944 to the 1980s

    SciTech Connect

    Wilson, R.H.

    1987-02-01

    This document is an account of the personnel dosimetry programs as they were developed and practiced at Hanford from their inception in 1943 to 1944 to the 1980s. This history is divided into sections covering the general categories of external and internal measurement methods, in vivo counting, radiation exposure recordkeeping, and calibration of personnel dosimeters. The reasons and circumstances surrounding the inception of these programs at Hanford are discussed. Information about these programs was obtained from documents, letters, and memos that are available in our historical records; the personnel files of many people who participated in these programs; and from the recollections of many long-time, current, and past Hanford employees. For the most part, the history of these programs is presented chronologically to relate their development and use in routine Hanford operations. 131 refs., 38 figs., 23 tabs.

  1. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications.

    PubMed

    Sarrut, David; Bardiès, Manuel; Boussion, Nicolas; Freud, Nicolas; Jan, Sébastien; Létang, Jean-Michel; Loudos, George; Maigne, Lydia; Marcatili, Sara; Mauxion, Thibault; Papadimitroulas, Panagiotis; Perrot, Yann; Pietrzyk, Uwe; Robert, Charlotte; Schaart, Dennis R; Visvikis, Dimitris; Buvat, Irène

    2014-06-01

    In this paper, the authors' review the applicability of the open-source GATE Monte Carlo simulation platform based on the GEANT4 toolkit for radiation therapy and dosimetry applications. The many applications of GATE for state-of-the-art radiotherapy simulations are described including external beam radiotherapy, brachytherapy, intraoperative radiotherapy, hadrontherapy, molecular radiotherapy, and in vivo dose monitoring. Investigations that have been performed using GEANT4 only are also mentioned to illustrate the potential of GATE. The very practical feature of GATE making it easy to model both a treatment and an imaging acquisition within the same framework is emphasized. The computational times associated with several applications are provided to illustrate the practical feasibility of the simulations using current computing facilities.

  2. Development of europium doped BaSO{sub 4} TL OSL dual phosphor for radiation dosimetry applications

    SciTech Connect

    Patle, Anita Patil, R. R.; Kulkarni, M. S.; Bhatt, B. C.

    2015-08-28

    This paper presents the results on the preparation and characterization of Europium-doped Barium sulfate (BaSO{sub 4}: Eu) TL /OSL dual phosphor. The OSL sensitivity was found to be 11% of the commercially available Al{sub 2}O{sub 3}: C, using area integration method. The sample also shows good TL sensitivity and the dosimetric peak appears around 190°C with a shoulder at 282°C. After OSL readout, No change in the TL glow curve is observed. Since the observed TL peaks are not responsible for the observed OSL, good OSL as well as TL sensitivity and low fading will make this phosphor suitable for applications in radiation dosimetry using OSL as well as TL.

  3. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications

    SciTech Connect

    Sarrut, David; Bardiès, Manuel; Marcatili, Sara; Mauxion, Thibault; Boussion, Nicolas; Freud, Nicolas; Létang, Jean-Michel; Jan, Sébastien; Maigne, Lydia; Perrot, Yann; Pietrzyk, Uwe; Robert, Charlotte; and others

    2014-06-15

    In this paper, the authors' review the applicability of the open-source GATE Monte Carlo simulation platform based on the GEANT4 toolkit for radiation therapy and dosimetry applications. The many applications of GATE for state-of-the-art radiotherapy simulations are described including external beam radiotherapy, brachytherapy, intraoperative radiotherapy, hadrontherapy, molecular radiotherapy, and in vivo dose monitoring. Investigations that have been performed using GEANT4 only are also mentioned to illustrate the potential of GATE. The very practical feature of GATE making it easy to model both a treatment and an imaging acquisition within the same frameworkis emphasized. The computational times associated with several applications are provided to illustrate the practical feasibility of the simulations using current computing facilities.

  4. A-bomb survivor dosimetry update

    SciTech Connect

    Loewe, W.E.

    1982-06-01

    A-bomb survivor data have been generally accepted as applicable. Also, the initial radiations have tended to be accepted as the dominant radiation source for all survivors. There was general acceptance of the essential reliability of both the biological effects data and the causative radiation dose values. There are considerations casting doubt on these acceptances, but very little quantification of th implied uncertainties has been attempted. The exception was A-bomb survivor dosimetry, where free-field kerma values for initial radiations were thought to be accurate to about 30%, and doses to individual survivors were treated as effectively error-free. In 1980, a major challenge to the accepted A-bomb survivor dosimetry was announced, and was quickly followed by a succession of explanations and displays showing the soundness of that challenge. In fact, a complete replacement set of free-field kerma values was provided which was suitable for use in constructing an entire new dosimetry for Hiroshima and Nagasaki. The new values showed many changes greater than the accepted 30% uncertainty. An approximate new dosimetry was indeed constructed, and used to convert existing leukemia cause-and-effect data from the old to the new dose values, by way of assessing the impact. (ERB)

  5. Duality of solar UV-B radiation and relevant dosimetry: vitamin D synthesis versus skin erythema

    NASA Astrophysics Data System (ADS)

    Terenetskaya, Irina P.

    2003-06-01

    Solar ultraviolet radiation (UVR) gives rise to beneficial or adverse health effects depending on the dose. Excessive UV exposures are associated with acute and chronic health effect but in appropriate doses UV sunlight is advisable. Important biological function of UVR is initiation of endogenous synthesis of vitamin D in human skin. A useful method based on an in vitro model of vitamin D synthesis ('D-dosimeter') has been specially developed to measure the vitamin D synthetic capacity of sunlight in situ. For the first time laboratory and field tests have been performed to link commonly used erythemal units (MEDs) and previtamin D accumulation.

  6. Microcircuit radiation effects databank

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Radiation test data submitted by many testers is collated to serve as a reference for engineers who are concerned with and have some knowledge of the effects of the natural radiation environment on microcircuits. Total dose damage information and single event upset cross sections, i.e., the probability of a soft error (bit flip) or of a hard error (latchup) are presented.

  7. Radiation: Doses, Effects, Risks.

    ERIC Educational Resources Information Center

    Lean, Geoffrey, Ed.

    Few scientific issues arouse as much public controversy as the effects of radiation. This booklet is an attempt to summarize what is known about radiation and provide a basis for further discussion and debate. The first four chapters of the booklet are based on the most recent reports to the United Nations' General Assembly by the United Nations…

  8. Patient dosimetry for 90Y selective internal radiation treatment based on 90Y PET imaging.

    PubMed

    Ng, Sherry C; Lee, Victor H; Law, Martin W; Liu, Rico K; Ma, Vivian W; Tso, Wai Kuen; Leung, To Wai

    2013-09-06

    Until recently, the radiation dose to patients undergoing the 90Y selective internal radiation treatment (SIRT) procedure is determined by applying the partition model to 99mTc MAA pretreatment scan. There can be great uncertainty in radiation dose calculated from this approach and we presented a method to compute the 3D dose distributions resulting from 90Y SIRT based on 90Y positron emission tomography (PET) imaging. Five 90Y SIRT treatments were retrospectively analyzed. After 90Y SIRT, patients had 90Y PET/CT imaging within 6 hours of the procedure. To obtain the 3D dose distribution of the patients, their respective 90Y PET images were convolved with a Monte Carlo generated voxel dose kernel. The sensitivity of the PET/CT scanner for 90Y was determined through phantom studies. The 3D dose distributions were then presented in DICOM RT dose format. By applying the linear quadratic model to the dose data, we derived the biologically effective dose and dose equivalent to 2 Gy/fraction delivery, taking into account the spatial and temporal dose rate variations specific for SIRT. Based on this data, we intend to infer tumor control probability and risk of radiation induced liver injury from SIRT by comparison with established dose limits. For the five cases, the mean dose to target ranged from 51.7 ± 28.6 Gy to 163 ± 53.7 Gy. Due to the inhomogeneous nature of the dose distribution, the GTVs were not covered adequately, leading to very low values of tumor control probability. The mean dose to the normal liver ranged from 21.4 ± 30.7 to 36.7 ± 25.9 Gy. According to QUANTEC recommendation, a patient with primary liver cancer and a patient with metastatic liver cancer has more than 5% risk of radiotherapy-induced liver disease (RILD).

  9. Biological dosimetry by the triage dicentric chromosome assay: potential implications for treatment of acute radiation syndrome in radiological mass casualties.

    PubMed

    Romm, Horst; Wilkins, Ruth C; Coleman, C Norman; Lillis-Hearne, Patricia K; Pellmar, Terry C; Livingston, Gordon K; Awa, Akio A; Jenkins, Mark S; Yoshida, Mitsuaki A; Oestreicher, Ursula; Prasanna, Pataje G S

    2011-03-01

    Biological dosimetry is an essential tool for estimating radiation dose. The dicentric chromosome assay (DCA) is currently the tool of choice. Because the assay is labor-intensive and time-consuming, strategies are needed to increase throughput for use in radiation mass casualty incidents. One such strategy is to truncate metaphase spread analysis for triage dose estimates by scoring 50 or fewer metaphases, compared to a routine analysis of 500 to 1000 metaphases, and to increase throughput using a large group of scorers in a biodosimetry network. Previously, the National Institutes for Allergies and Infectious Diseases (NIAID) and the Armed Forces Radiobiology Research Institute (AFRRI) sponsored a double-blinded interlaboratory comparison among five established international cytogenetic biodosimetry laboratories to determine the variability in calibration curves and in dose measurements in unknown, irradiated samples. In the present study, we further analyzed the published data from this previous study to investigate how the number of metaphase spreads influences dose prediction accuracy and how this information could be of value in the triage and management of people at risk for the acute radiation syndrome (ARS). Although, as expected, accuracy decreased with lower numbers of metaphase spreads analyzed, predicted doses by the laboratories were in good agreement and were judged to be adequate to guide diagnosis and treatment of ARS. These results demonstrate that for rapid triage, a network of cytogenetic biodosimetry laboratories can accurately assess doses even with a lower number of scored metaphases.

  10. Automated DICOM metadata and volumetric anatomical information extraction for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Papamichail, D.; Ploussi, A.; Kordolaimi, S.; Karavasilis, E.; Papadimitroulas, P.; Syrgiamiotis, V.; Efstathopoulos, E.

    2015-09-01

    Patient-specific dosimetry calculations based on simulation techniques have as a prerequisite the modeling of the modality system and the creation of voxelized phantoms. This procedure requires the knowledge of scanning parameters and patients’ information included in a DICOM file as well as image segmentation. However, the extraction of this information is complicated and time-consuming. The objective of this study was to develop a simple graphical user interface (GUI) to (i) automatically extract metadata from every slice image of a DICOM file in a single query and (ii) interactively specify the regions of interest (ROI) without explicit access to the radiology information system. The user-friendly application developed in Matlab environment. The user can select a series of DICOM files and manage their text and graphical data. The metadata are automatically formatted and presented to the user as a Microsoft Excel file. The volumetric maps are formed by interactively specifying the ROIs and by assigning a specific value in every ROI. The result is stored in DICOM format, for data and trend analysis. The developed GUI is easy, fast and and constitutes a very useful tool for individualized dosimetry. One of the future goals is to incorporate a remote access to a PACS server functionality.

  11. US plant and radiation dosimetry experiments flown on the Soviet satellite Cosmos 1129

    NASA Technical Reports Server (NTRS)

    Heinrich, M. R. (Editor); Souza, K. A. (Editor)

    1981-01-01

    Experiments included: 30 young male Wistar SPF rats used for wide range physiological studies; experiments with plants, fungi, insects, and mammalian tissue cultures; radiation physics experiments; a heat convection study; a rat embryology experiment in which an attempt was made to breed 2 male and 5 female rats during the flight; and fertile quail eggs used to determine the effects of spaceflight on avian embryogenesis. Specimens for US experiments were initially prepared at the recovery site or in Moscow and transferred to US laboratories for complete analyses. An overview of the mission focusing on preflight, on orbit, and postflight activities pertinent to the fourteen US experiments aboard Cosmos 1129 is presented.

  12. Effects of random dosimetry errors and the use of data on acute symptoms for dosimetry evaluation

    SciTech Connect

    Gilbert, E.S.

    1983-09-01

    Two approaches are used to address questions regarding dose measurement errors. The first is to describe and compare the effects of random error for several dose treatments including the use of grouped and ungrouped data, and analyses with and without truncation at 600 rad. It is found that the ways in which measurement error is most likely to mislead are through downward bias in the estimated regression coefficients and through distortion of the shape of the dose response curve. The second approach makes use of data on acute symptons to identify survivors in particular shielding situations or locations whose dose estimates may be especially biased or subject to unusual amounts of random error. It is found that the dose-response curves for acute symptoms differ considerably by many of the factors studied, but it is not possible to separate differences resulting from varying degrees of random error from systematic bias. The analyses also suggest that doses of Hiroshima survivors are in general better estimated than doses of Nagasaki survivors, a situation which could easily bias city comparisons. 17 references.

  13. Radiation-dosimetry and chemical-toxicity considerations for /sup 99/Tc

    SciTech Connect

    Coffey, J.L.; Hayes, R.L.; Rafter, J.J.; Watson, E.E.; Carlton, J.E.

    1982-01-01

    Technetium-99 (T/sub 1/2/ = 2.13 x 10/sup 5/ y) is produced in the fission of /sup 235/U and /sup 239/Pu. Technitium-99 has been found to contaminate some areas of the uranium re-enrichment process. ICRP-30 Part 2 gives the Annual Limit on Intake (ALI) for /sup 99/Tc as 2 x 10/sup 8/ Bq (5.4 mCi) for class D inhaled material (IC80). The ICRP states clearly that ALIs are based on radiation risk only and that chemical toxicity is not considered (IC79). No data wer found on the chemical toxicity of /sup 99/Tc, possibly because there are no stable isotopes of technetium with which to study the toxicity, although, because of its long T/sub 1/2/, /sup 99/Tc can, for all practical purposes, be considered stable. The ALI values for /sup 99/Tc are based on data obtained using high specific activity /sup 99m/Tc (T/sub 1/2/ = 6 h) and /sup 95m/Tc (T/sub 1/2/ = 61 days). Since the specific activities of /sup 99/Tc and Na/sup 99/TcO/sub 4/ are quite low (17 mCi/g and 9 mCi/g, respectively) and /sup 99/Tc is available in abundant supply, we have attempted to assess the relative radiation and chemical hazards that are associated with this radionuclide. The approach in this study was (1) to study the effect of chemical dose on the whole body retention of /sup 99/Tc sodium pertechnetate in rats and to relate these effects to the radiation dose and the ALI and (2) to compare the chemical toxicity of /sup 99/Tc sodium pertechnetate with the ALI at different chemical dose levels.

  14. A method for evaluating treatment quality using in vivo EPID dosimetry and statistical process control in radiation therapy.

    PubMed

    Fuangrod, Todsaporn; Greer, Peter B; Simpson, John; Zwan, Benjamin J; Middleton, Richard H

    2017-03-13

    authors have demonstrated the capability of the method for both treatment specific QA and continuing quality improvement. Practical implications The proposed method is a valuable tool for assessing the accuracy of treatment delivery whilst also improving treatment quality and patient safety. Originality/value Assessing in vivo EPID dosimetry with SPC can be used to improve the quality of radiation treatment for cancer patients.

  15. Radiative transfer dynamo effect

    NASA Astrophysics Data System (ADS)

    Munirov, Vadim R.; Fisch, Nathaniel J.

    2017-01-01

    Magnetic fields in rotating and radiating astrophysical plasma can be produced due to a radiative interaction between plasma layers moving relative to each other. The efficiency of current drive, and with it the associated dynamo effect, is considered in a number of limits. It is shown here, however, that predictions for these generated magnetic fields can be significantly higher when kinetic effects, previously neglected, are taken into account.

  16. Radiative transfer dynamo effect

    DOE PAGES

    Munirov, Vadim R.; Fisch, Nathaniel J.

    2017-01-17

    Here, magnetic fields in rotating and radiating astrophysical plasma can be produced due to a radiative interaction between plasma layers moving relative to each other. The efficiency of current drive, and with it the associated dynamo effect, is considered in a number of limits. It is shown here, however, that predictions for these generated magnetic fields can be significantly higher when kinetic effects, previously neglected, are taken into account.

  17. Image-based dosimetry for selective internal radiation therapy (SIRT) using yttrium-90 microspheres

    NASA Astrophysics Data System (ADS)

    Selwyn, Reed G.

    90Y-loaded microspheres are currently used as a palliative treatment for patients with primary and metastatic solid liver tumors. These microspheres contain radioactive 90Y, which decays via beta-minus transition to 90Zr. While the normal liver receives about 75% of its blood supply from the portal vein, hepatic tumors receive their blood supply almost exclusively from the hepatic artery. Taking advantage of this unique blood flow, radioactive microspheres are injected into the hepatic artery resulting in a preferential distribution to tumor sites within the liver. Studies show that the single best prognostic indicator for patient response is the tumor-to-normal tissue (T:N) activity uptake ratio. However, 90Y emits very few photons its broad bremsstrahlung spectrum leads to diffuse, low resolution images, which are insufficient for accurate T:N quantification. Thus, the first objective was to develop a PET-labeled microsphere as a surrogate for the therapeutic microsphere to provide accurate biodistribution information. Furthermore, patient outcome is also suspected to be linked to the mean tumor dose and tumor dose volume histogram. Therefore, a second objective was to develop and validate a method to calculate the dose distribution within the tumor and normal liver tissue. Computer software that generates three-dimensional (3D) dose distributions was validated by comparing results to experimental measurements. The novel development of a 3D gel dosimeter will be discussed as well as a new protocol for 2D film dosimetry. Both dosimetry methods were validated but only film provided the desired accuracy. The overall accuracy of the dose distribution depends on the uncertainty of the 90Y assay, which can extend to 15% at 1sigma. Therefore, the third objective was to develop an accurate non-destructive assay of 90Y. To this end, a new 90Y positron branching ratio was measured and a clinically relevant transfer standard was developed. In summation, this thesis will

  18. Retrospective dosimetry after criticality accidents using low-frequency EPR: a study of whole human teeth irradiated in a mixed neutron and gamma-radiation field.

    PubMed

    Zdravkova, M; Crokart, N; Trompier, F; Asselineau, B; Gallez, B; Gaillard-Lecanu, E; Debuyst, R

    2003-08-01

    In the context of accidental or intentional radiation exposures (nuclear terrorism), it is essential to separate rapidly those individuals with substantial exposures from those with exposures that do not constitute an immediate threat to health. Low-frequency electron paramagnetic resonance (EPR) spectroscopy provides the potential advantage of making accurate and sensitive measurements of absorbed radiation dose in teeth without removing the teeth from the potential victims. Up to now, most studies focused on the dose-response curves obtained for gamma radiation. In radiation accidents, however, the contribution of neutrons to the total radiation dose should not be neglected. To determine how neutrons contribute to the apparent dose estimated by EPR dosimetry, extracted whole human teeth were irradiated at the SILENE reactor in a mixed neutron and gamma-radiation field simulating criticality accidents. The teeth were irradiated in free air as well as in a paraffin head phantom. Lead screens were also used to eliminate to a large extent the contribution of the gamma radiation to the dose received by the teeth. The EPR signals, obtained with a low-frequency (1.2 GHz) spectrometer, were compared to dosimetry measurements at the same location. The contribution of neutrons to the EPR dosimetric signal was negligible in the range of 0 to 10 Gy and was rather small (neutron/gamma-ray sensitivity in the range 0-0.2) at higher doses. This indicates that the method essentially provides information on the dose received from the gamma-ray component of the radiation.

  19. Protocol for emergency EPR dosimetry in fingernails.

    PubMed

    Trompier, F; Kornak, L; Calas, C; Romanyukha, A; Leblanc, B; Mitchell, C A; Swartz, H M; Clairand, I

    2007-08-01

    There is an increased need for after-the-fact dosimetry because of the high risk of radiation exposures due to terrorism or accidents. In case of such an event, a method is needed to make measurements of dose in a large number of individuals rapidly and with sufficient accuracy to facilitate effective medical triage. Dosimetry based on EPR measurements of fingernails potentially could be an effective tool for this purpose. This paper presents the first operational protocols for EPR fingernail dosimetry, including guidelines for collection and storage of samples, parameters for EPR measurements, and the method of dose assessment. In a blinded test of this protocol application was carried out on nails freshly sampled and irradiated to 4 and 20 Gy; this protocol gave dose estimates with an error of less than 30%.

  20. Radiation dosimetry for NCT facilities at the Brookhaven Medical Research Reactor

    SciTech Connect

    Holden, N.E.; Hu, J.P.; Greenberg, D.D.; Reciniello, R.N.

    1998-12-31

    Brookhaven Medical Research Reactor (BMRR) is a 3 mega-watt (MW) heterogeneous, tank-type, light water cooled and moderated, graphite reflected reactor, which was designed for medical and biological studies and became operational in 1959. Over time, the BMRR was modified to provide thermal and epithermal neutron beams suitable for research studies. NCT studies have been performed at both the epithermal neutron irradiation facility (ENIF) on the east side of the BMRR reactor core and the thermal neutron irradiation facility (TNIF) on the west side of the core. Neutron and gamma-ray dosimetry performed from 1994 to the present in both facilities are described and the results are presented and discussed.

  1. Ultraviolet radiation (UVR) dosimetry system and the use of Ge-doped silica optical fibres

    NASA Astrophysics Data System (ADS)

    Abdul Rahman, Ahmad Taufek; Abu Bakar, Noor Khairunnisa; Chandra Paul, Mukul; Bradley, D. A.

    2014-11-01

    Previous studies have shown that over exposure to ultraviolet radiation (UVR), either from sunlight or artificial sources, can cause severe biological effects including cataracts, photokeratitis and skin cancer. In this respect, there exists the need to introduce a sensitive UV dosimetric material capable of measuring radiation dose to high accuracy in order to deliver UVR safely and efficiently. Present study has focussed on the investigation of the potential thermoluminescent (TL) sensitivity of commercially available germanium (Ge)-doped silica (SiO2) optical fibres subjected to UVR. The main interest of this study is to find out whether these doped SiO2 optical fibres can be used as a sensible integrator of environmental UV exposures. In the present study, commercially available Ge-doped SiO2 optical fibres have been used with a core diameter of 11 μm (CorActive, Canada), 23 μm (Central Glass and Ceramic Research Institute Kolkata, India) and 50 μm (Central Glass and Ceramic Research Institute Kolkata, India) and a cladding diameter of 125±0.1 μm, irradiated over a wide range of UV dose. Results have shown that these fibres exhibit a linear dose response (with correlation coefficient better than 0.9852). The 50 μm fibre produces greater TL response than that obtained for 11- and 23 μm fibres. The TL results are compared with that of the well-established TL dosimeter material lithium fluoride.

  2. 4.2 Methods for Internal Dosimetry

    NASA Astrophysics Data System (ADS)

    Noßke, D.; Mattsson, S.; Johansson, L.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.2 Methods for Internal Dosimetry' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy' with the contents:

  3. Microcircuit radiation effects databank

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This databank is the collation of radiation test data submitted by many testers and serves as a reference for engineers who are concerned with and have some knowledge of the effects of the natural radiation environment on microcircuits. It contains radiation sensitivity results from ground tests and is divided into two sections. Section A lists total dose damage information, and section B lists single event upset cross sections, I.E., the probability of a soft error (bit flip) or of a hard error (latchup).

  4. Synthesis and thermoluminescence of LaAlO3:Pr(3+) to UVC radiation dosimetry.

    PubMed

    Morales-Hernández, A; Zarate-Medina, J; Contreras-García, M E; Azorín-Nieto, J; Rivera-Montalvo, T

    2016-12-01

    Thermoluminescent (TL) response of trivalent praseodymium ion doped lanthanum aluminate (LaAlO3:Pr(3+)) obtained by Pechini method and Spray Dryer was studied. TL response of LaAlO3:Pr(3+) powders submitted at 1600°C exhibited one peak centered at 157°C. Sensitivity of LaAlO3:Pr(3+) was improved in around 90 times compared with undoped LaAlO3. TL response as a function of wavelength showed a maximum in 230nm. Dosimetric characteristics of LaAlO3:Pr(3+) under UVR radiation effects were analyzed. Evaluation of activation energy was obtained by Glow Fit v.1.3 software. Experimental results about thermoluminescent characteristics of LaAlO3:Pr(3+) suggest as good candidate to be employed as a complementary thermoluminescent device with other TL phosphors as aluminum oxide.

  5. Comparative dosimetry of radon in mines and homes. Panel of dosimetric assumptions affecting the application of radon risk estimates, Board on Radiation Effects Research, Commission on Life Sciences, National Research Council

    SciTech Connect

    Not Available

    1991-01-01

    The National Academy study addresses a topic of widespread attention since the discovery in 1984 of a worker found to be contaminated with radon in his home. Scientists have long understood the dangers of exposure to radon and its progeny and have analyzed the effects of exposure of these radionuclides in underground miner populations. However, extensive analyses on effects of radon exposure in the home are only now being performed. This study evaluates available data, describes uncertainties and attempts to translate dosimetric information related mine worker exposure to risk information regarding home radon exposures. The Academy's compilation and evaluation of the data are, as usual, pain-staking and thorough. Their discussions of uncertainties is helpful and careful to describe the boundaries and limitations of their results. The dosimetric model which resulted from their comparative evaluation is clearly presented. Risk assessors concerned about residential exposures to radionuclides will find this study useful.

  6. Estimating the effective density of engineered nanomaterials for in vitro dosimetry

    PubMed Central

    DeLoid, Glen; Cohen, Joel M.; Darrah, Tom; Derk, Raymond; Wang, Liying; Pyrgiotakis, Georgios; Wohlleben, Wendel; Demokritou, Philip

    2014-01-01

    The need for accurate in vitro dosimetry remains a major obstacle to the development of cost-effective toxicological screening methods for engineered nanomaterials. An important key to accurate in vitro dosimetry is the characterization of sedimentation and diffusion rates of nanoparticles suspended in culture media, which largely depend upon the effective density and diameter of formed agglomerates in suspension. Here we present a rapid and inexpensive method for accurately measuring the effective density of nano-agglomerates in suspension. This novel method is based on the volume of the pellet obtained by bench-top centrifugation of nanomaterial suspensions in a packed cell volume tube, and is validated against gold-standard analytical ultracentrifugation data. This simple and cost-effective method allows nanotoxicologists to correctly model nanoparticle transport, and thus attain accurate dosimetry in cell culture systems, which will greatly advance the development of reliable and efficient methods for toxicological testing and investigation of nano-bio interactions in vitro. PMID:24675174

  7. Jaw Dysfunction Related to Pterygoid and Masseter Muscle Dosimetry After Radiation Therapy in Children and Young Adults With Head-and-Neck Sarcomas

    SciTech Connect

    Krasin, Matthew J.; Wiese, Kristin M.; Spunt, Sheri L.; Hua, Chia-ho; Daw, Najat; Navid, Fariba; Davidoff, Andrew M.; McGregor, Lisa; Merchant, Thomas E.; Kun, Larry E.; McCrarey, Lola; and others

    2012-01-01

    Purpose: To investigate the relationship between jaw function, patient and treatment variables, and radiation dosimetry of the mandibular muscles and joints in children and young adults receiving radiation for soft-tissue and bone sarcomas. Methods and Materials: Twenty-four pediatric and young adult patients with head-and-neck sarcomas were treated on an institutional review board-approved prospective study of focal radiation therapy for local tumor control. Serial jaw depression measurements were related to radiation dosimetry delivered to the medial and lateral pterygoid muscles, masseter muscles, and temporomandibular joints to generate mathematical models of jaw function. Results: Baseline jaw depression was only influenced by the degree of surgical resection. In the first 12 weeks from initiation of radiation, surgical procedures greater than a biopsy, administration of cyclophosphamide containing chemotherapy regimes, and large gross tumor volumes adversely affected jaw depression. Increasing dose to the pterygoid and masseter muscles above 40 Gy predicted loss of jaw function over the full course of follow-up. Conclusions: Clinical and treatment factors are related to initial and subsequent jaw dysfunction. Understanding these complex interactions and the affect of specific radiation doses may help reduce the risk for jaw dysfunction in future children and young adults undergoing radiation therapy for the management of soft-tissue and bone sarcomas.

  8. Fourth international radiopharmaceutical dosimetry symposium

    SciTech Connect

    Schlafke-Stelson, A.T.; Watson, E.E.

    1986-04-01

    The focus of the Fourth International Radiopharmaceutical Dosimetry Symposium was to explore the impact of current developments in nuclear medicine on absorbed dose calculations. This book contains the proceedings of the meeting including the edited discussion that followed the presentations. Topics that were addressed included the dosimetry associated with radiolabeled monoclonal antibodies and blood elements, ultrashort-lived radionuclides, and positron emitters. Some specific areas of discussion were variations in absorbed dose as a result of alterations in the kinetics, the influence of radioactive contaminants on dose, dose in children and in the fetus, available instrumentation and techniques for collecting the kinetic data needed for dose calculation, dosimetry requirements for the review and approval of new radiopharmaceuticals, and a comparison of the effect on the thyroid of internal versus external irradiation. New models for the urinary blader, skeleton including the active marrow, and the blood were presented. Several papers dealt with the validity of traditional ''average-organ'' dose estimates to express the dose from particulate radiation that has a short range in tissue. These problems are particularly important in the use of monoclonal antibodies and agents used to measure intracellular functions. These proceedings have been published to provide a resource volume for anyone interested in the calculation of absorbed radiation dose.

  9. Radiation Dosimetry of Intratumoral Injection of Radionuclides into Human Breast Cancer

    DTIC Science & Technology

    2005-07-01

    Giving GIMA through the needle into the breast cancer tumor may result in pain at the injection site and or infection. GIMA have radiation particles...this study is about the same as 1-2 chest x-rays. You may experience pain , bleeding, and/or bruising from the blood draws. You may faint and/or... pain at the injection site and or infection. Ga-68 GIMA have radiation particles attached to them. Radiation may increase the chance of developing

  10. Dosimetry of the Atomic Bomb Survivors

    SciTech Connect

    Sinclair, W.K.; Failla, P.

    1981-12-01

    A brief account of the presentations and discussions at the Late Effects Workshop on Dosimetry of the Atomic Bomb Survivors held in conjunction with the 29th Annual Meeting of the Radiation Reserch Society in Minneapolis, MN, on May 32, 1981 is presented. The following five papers are briefly reviewed: 1)Radiobiological significance of the Hiroshima/Nagasaki data by V.P. Bond; 2)Revised Dose Estimates at Hiroshima and Nagasaki, by W.E. Loewe; 3)Review of dosimetry for the Japanese atomic bomb survivors by G.D. Kerr; 4)Ichiban: numberoriginal studies, by J. Auxier; and 5)NCRP's involvement in the Hiroshima and Nagasaki Dosimetry, by H.O. Wyckoff. (JMT)

  11. Biodistribution and radiation dosimetry of 11C-labelled docetaxel in cancer patients

    PubMed Central

    Hendrikse, N. Harry; Smit, Egbert F.; Mooijer, Martien P. J.; Rijnders, Anneloes Y.; Gerritsen, Winald R.; van der Hoeven, Jacobus J. M.; Windhorst, Albert D.; Lammertsma, Adriaan A.; Lubberink, Mark

    2010-01-01

    Purpose Docetaxel is an important chemotherapeutic agent used for the treatment of several cancer types. As radiolabelled anticancer agents provide a potential means for personalized treatment planning, docetaxel was labelled with the positron emitter 11C. Non-invasive measurements of [11C]docetaxel uptake in organs and tumours may provide additional information on pharmacokinetics and pharmacodynamics of the drug docetaxel. The purpose of the present study was to determine the biodistribution and radiation absorbed dose of [11C]docetaxel in humans. Methods Biodistribution of [11C]docetaxel was measured in seven patients (five men and two women) with solid tumours using PET/CT. Venous blood samples were collected to measure activity in blood and plasma. Regions of interest (ROI) for various source organs were defined on PET (high [11C]docetaxel uptake) or CT (low [11C]docetaxel uptake). ROI data were used to generate time-activity curves and to calculate percentage injected dose and residence times. Radiation absorbed doses were calculated according to the MIRD method using OLINDA/EXM 1.0 software. Results Gall bladder and liver demonstrated high [11C]docetaxel uptake, whilst uptake in brain and normal lung was low. The percentage injected dose at 1 h in the liver was 47 ± 9%. [11C]docetaxel was rapidly cleared from plasma and no radiolabelled metabolites were detected. [11C]docetaxel uptake in tumours was moderate and highly variable between tumours. Conclusion The effective dose of [11C]docetaxel was 4.7 µSv/MBq. As uptake in normal lung is low, [11C]docetaxel may be a promising tracer for tumours in the thoracic region. PMID:20508935

  12. A new water-equivalent 2D plastic scintillation detectors array for the dosimetry of megavoltage energy photon beams in radiation therapy

    SciTech Connect

    Guillot, Mathieu; Beaulieu, Luc; Archambault, Louis; Beddar, Sam; Gingras, Luc

    2011-12-15

    Purpose: The objective of this work is to present a new 2D plastic scintillation detectors array (2D-PSDA) designed for the dosimetry of megavoltage (MV) energy photon beams in radiation therapy and to characterize its basic performance. Methods: We developed a 2D detector array consisting of 781 plastic scintillation detectors (PSDs) inserted into a plane of a water-equivalent phantom. The PSDs were distributed on a 26 x 26 cm{sup 2} grid, with an interdetector spacing of 10 mm, except for two perpendicular lines centered on the detection plane, where the spacing was 5 mm. Each PSD was made of a 1 mm diameter by 3 mm long cylindrical polystyrene scintillating fiber coupled to a clear nonscintillating plastic optical fiber. All of the light signals emitted by the PSDs were read simultaneously with an optical system at a rate of one measurement per second. We characterized the performance of the optical system, the angular dependency of the device, and the perturbation of dose distributions caused by the hundreds of PSDs inserted into the phantom. We also evaluated the capacity of the system to monitor complex multileaf collimator (MLC) sequences such as those encountered in step-and-shoot intensity modulated radiation therapy (IMRT) plans. We compared our results with calculations performed by a treatment planning system and with measurements taken with a 2D ionization chamber array and with a radiochromic film. Results: The detector array that we developed allowed us to measure doses with an average precision of better than 1% for cumulated doses equal to or greater than 6.3 cGy. Our results showed that the dose distributions produced by the 6-MV photon beam are not perturbed (within {+-}1.1%) by the presence of the hundreds of PSDs located into the phantom. The results also showed that the variations in the beam incidences have little effect on the dose response of the device. For all incidences tested, the passing rates of the gamma tests between the 2D-PSDA and

  13. Dosimetry experiences and lessons learned for radiation dose assessment in Korean nuclear power plants.

    PubMed

    Choi, Jong Rak; Kim, Hee Geun; Kong, Tae Young; Son, Jung Kwon

    2013-07-01

    Since the first Korean nuclear power plant (NPP), Kori 1, commenced operation in 1978, a total of 21 NPPs had been put into operation in Korea by the end of 2011. Radiation doses of NPP workers have been periodically evaluated and controlled within the prescribed dose limit. Radiation dose assessment is carried out monthly by reading personal dosemeters for external radiation exposure, which have traceability in compliance with strict technical guidelines. In the case of the internal radiation exposure, workers who have access to the possible area of polluted air are also evaluated for their internal dose after maintenance task. In this article, the overall situation and experience for the assessment and distribution of radiation doses in Korean NPPs is described.

  14. Radiation dosimetry measurements with real time radiation monitoring device (RRMD)-II in Space Shuttle STS-79.

    PubMed

    Sakaguchi, T; Doke, T; Hayashi, T; Kikuchi, J; Hasebe, N; Kashiwagi, T; Takashima, T; Takahashi, K; Nakano, T; Nagaoka, S; Takahashi, S; Yamanaka, H; Yamaguchi, K; Badhwar, G D

    1997-12-01

    The real-time measurement of radiation environment was made with an improved real-time radiation monitoring device (RRMD)-II onboard Space Shuttle STS-79 (S/MM#4: 4th Shuttle MIR Mission, at an inclination angle of 51.6 degrees and an altitude of 250-400km) for 199 h during 17-25 September, 1996. The observation of the detector covered the linear energy transfer (LET) range of 3.5-6000 keV/micrometer. The Shuttle orbital profile in this mission was equivalent to that of the currently planned Space Station, and provided an opportunity to investigate variations in count rate and dose equivalent rate depending on altitude, longitude, and latitude in detail. Particle count rate and dose equivalent rate were mapped geographically during the mission. Based on the map of count rate, an analysis was made by dividing whole region into three regions: South Atlantic Anomaly (SAA) region, high latitude region and other regions. The averaged absorbed dose rate during the mission was 39.3 microGy/day for a LET range of 3.5-6000 keV/micrometer. The corresponding average dose equivalent rates during the mission are estimated to be 293 microSv/day with quality factors from International Commission on Radiological Protection (ICRP)-Pub. 60 and 270 microSv/day with quality factors from ICRP-Pub. 26. The effective quality factors for ICRP-Pub. 60 and 26 are 7.45 and 6.88, respectively. From the present data for particles of LET > 3.5keV/micrometer, we conclude that the average dose equivalent rate is dominated by the contribution of galactic cosmic ray (GCR) particles. The dose-detector depth dependence was also investigated.

  15. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  16. TOPICAL REVIEW: Polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Baldock, C.; De Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K. B.; Oldham, M.; Schreiner, L. J.

    2010-03-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.

  17. SU-E-T-512: Intrinsic Characteristics of the Nine Detectors and Evaluation of Their Performance in Non-Equilibrium Radiation Dosimetry

    SciTech Connect

    Markovic, M; Stathakis, S; Jurkovic, I; Papanikolaou, N; Mavroidis, P

    2015-06-15

    Purpose The aim for the study was to compare intrinsic characteristics of the nine detectors and evaluate their performance in non-equilibrium radiation dosimetry. Methods The intrinsic characteristics of the nine detectors that were evaluated are based on the composition and size of the active volume, operating voltage, initial recombination of the collected charge, temperature, the effective cross section of the detectors. The shortterm stability and collection efficiency has been investigated. The minimum radiation detection sensitivity and detectors leakage current has been measured. The sensitivity to changes in energy spectrum as well as change in incident beam angles were measured an analyzed. Results The short-term stability of the measurements within every detector showed consistency in the measured values with the highest value of the standard deviation of the mean not exceeding 0.5%. Air ion chamber detectors showed minimum sensitivity to change in incident beam angles while diode detectors underestimated measurements up to 16%. Comparing the slope of the tangents for detector’s sensitivity curve, diode detectors illustrate more sensitivity to change in photon spectrum than ion chamber detectors. The change in radiation detection sensitivity with increase in dose delivered has been observed for semiconductor detectors with maximum deviation 0.01% for doses between 1 Gy and 10 Gy. Leakage current has been mainly influenced by bias voltage (ion chamber detectors) and room light intensity (diode detectors). With dose per pulse varying from 1.47E−4 to 5.1E−4 Gy/pulse the maximum change in collection efficiency was 1.4% for the air ion chambers up to 8% for liquid filled ion chamber. Conclusion Broad range of measurements performed showed all the detectors susceptible to some limitations and while they are suitable for use in broad scope of applications, careful selection has to be made for particular range of measurements.

  18. MO-F-CAMPUS-I-05: Radiation Dosimetry of 99mTc-IDA-D-[c(RGDfK)]2, a SPECT Agent for Angiogenesis Imaging

    SciTech Connect

    Kim, J

    2015-06-15

    Purpose: Tc-99m labeled IDA-D-[c(RGDfK){sub 2} ( {sup 99m}Tc-RGD) is a recently developed radiotracer for gamma camera or single photon emission computed tomography (SPECT) imaging and promising agent for the visualization of angiogenesis. In this study, we investigated the internal radiation dosimetry of {sup 99m}Tc-RGD in humans. Methods: Six normal controls (F:M=4:2; 68.3±3.2 years; 56.5±10.7 kg) were participated in this study. Simultaneous anterior and posterior scans of whole-body were performed using dual head gamma camera system. Before the emission scan, transmission scan was performed just before injection of {sup 99m}Tc-RGD using Co-57 flood source. After an intravenous injection of 388.7±29.3 MBq of {sup 99m}Tc-RGD, six serial emission scans were performed at 0, 1, 2, 4, 8 and 24 hours post-injection. The anterior and posterior images were geometrically averaged and attenuation correction was applied using transmission scan image. Regions of interest (ROIs) were drawn on liver, gallbladder, kidneys, urinary bladder, spleen, brain, and large intestine. Time activity curves were obtained from serial emission scan and ROIs. The number of disintegrations per unit activity administered (residence time) were calculated from the area under the curve of time activity curves and injected dose of each patient. Finally, the radiation dose for each organ and effective doses were obtained using OLINDA/EXM 1.1 software and residence time. Results: High radiation doses were reported on renal and biliary excretion tracks such as urinary bladder wall, upper large intestine, kidneys, liver and gallbladder wall and their doses were 19.15±6.84, 19.28±4.78, 15.67±0.90, 9.13±1.71 and 9.09±2.03 µGy/MBq, respectively. The effective dose and effective dose equivalent were 5.08±0.53 and 7.11±0.58 µSv/MBq, respectively. Conclusion: We evaluated the radiation dose of 99mTc-RGD, which has an acceptable effective radiation dose compare to the other Tc-99m labeled radio-tracers.

  19. Human radiation dosimetry of 6-[{sup 18}F]FDG predicted from preclinical studies

    SciTech Connect

    Muzic, Raymond F.; Chandramouli, Visvanathan; Hatami, Ahmad; Huang, Hsuan-Ming; Wu, Chunying; Ismail-Beigi, Faramarz

    2014-03-15

    Purpose: The authors are developing 6-[{sup 18}F]fluoro-6-deoxy-D-glucose (6-[{sup 18}F]FDG) as an in vivo tracer of glucose transport. While 6-[{sup 18}F]FDG has the same radionuclide half-life as 2-[{sup 18}F]fluoro-2-deoxy-D-glucose (2-[{sup 18}F]FDG) which is ubiquitously used for PET imaging, 6-[{sup 18}F]FDG has special biologic properties and different biodistributions that make it preferable to 2-[{sup 18}F]FDG for assessing glucose transport. In preparation for 6-[{sup 18}F]FDG use in human PET scanning, the authors would like to determine the amount of 6-[{sup 18}F]FDG to inject while maintaining radiation doses in a safe range. Methods: Rats were injected with 6-[{sup 18}F]FDG, euthanized at specified times, and tissues were collected and assayed for activity content. For each tissue sample, the percent of injected dose per gram was calculated and extrapolated to that for humans in order to construct predicted time-courses. Residence times were calculated as areas under the curves and were used as inputs to OLINDA/EXM in order to calculate the radiation doses. Results: Unlike with 2-[{sup 18}F]FDG for which the urinary bladder wall receives the highest absorbed dose due to urinary excretion, with 6-[{sup 18}F]FDG there is little urinary excretion and osteogenic cells and the liver are predicted to receive the highest absorbed doses: 0.027 mGy/MBq (0.100 rad/mCi) and 0.018 mGy/MBq (0.066 rad/mCi), respectively. Also, the effective dose from 6-[{sup 18}F]FDG, i.e., 0.013 mSv/MBq (0.046 rem/mCi), is predicted to be approximately 30% lower than that from 2-[{sup 18}F]FDG. Conclusions: 6-[{sup 18}F]FDG will be safe for use in the PET scanning of humans.

  20. Considerations regarding the implementation of EPR dosimetry for the population in the vicinity of Semipalatinsk nuclear test site based on experience from other radiation accidents.

    PubMed

    Skvortsov, Valeriy; Ivannikov, Alexander; Tikunov, Dimitri; Stepanenko, Valeriy; Borysheva, Natalie; Orlenko, Sergey; Nalapko, Mikhail; Hoshi, Masaharu

    2006-02-01

    General aspects of applying the method of retrospective dose estimation by electron paramagnetic resonance spectroscopy of human tooth enamel (EPR dosimetry) to the population residing in the vicinity of the Semipalatinsk nuclear test site are analyzed and summarized. The analysis is based on the results obtained during 20 years of investigations conducted in the Medical Radiological Research Center regarding the development and practical application of this method for wide-scale dosimetrical investigation of populations exposed to radiation after the Chernobyl accident and other radiation accidents.

  1. 1992 IEEE Annual Conference on Nuclear and Space Radiation Effects, 29th, New Orleans, LA, July 13-17, 1992, Proceedings

    NASA Technical Reports Server (NTRS)

    Van Vonno, Nick W. (Editor)

    1992-01-01

    The papers presented in this volume provide an overview of recent theoretical and experimental research related to nuclear and space radiation effects. Topics dicussed include single event phenomena, radiation effects in particle detectors and associated electronics for accelerators, spacecraft charging, and space environments and effects. The discussion also covers hardness assurance and testing techniques, electromagnetic effects, radiation effects in devices and integrated circuits, dosimetry and radiation facilities, isolation techniques, and basic mechanisms.

  2. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry.

    PubMed

    Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B

    2015-07-01

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  3. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry

    SciTech Connect

    Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B.

    2015-07-15

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor’s trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  4. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B.

    2015-07-01

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  5. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems

    SciTech Connect

    Farah, J. Trompier, F.; Mares, V.; Schinner, K.; Wielunski, M.; Romero-Expósito, M.; Domingo, C.; Trinkl, S.; Dufek, V.; Klodowska, M.; Liszka, M.; Stolarczyk, L.; Olko, P.; Kubancak, J.; and others

    2015-05-15

    Purpose: To characterize stray radiation around the target volume in scanning proton therapy and study the performance of active neutron monitors. Methods: Working Group 9 of the European Radiation Dosimetry Group (EURADOS WG9—Radiation protection in medicine) carried out a large measurement campaign at the Trento Centro di Protonterapia (Trento, Italy) in order to determine the neutron spectra near the patient using two extended-range Bonner sphere spectrometry (BSS) systems. In addition, the work focused on acknowledging the performance of different commercial active dosimetry systems when measuring neutron ambient dose equivalents, H{sup ∗}(10), at several positions inside (8 positions) and outside (3 positions) the treatment room. Detectors included three TEPCs—tissue equivalent proportional counters (Hawk type from Far West Technology, Inc.) and six rem-counters (WENDI-II, LB 6411, RadEye™ NL, a regular and an extended-range NM2B). Meanwhile, the photon component of stray radiation was deduced from the low-lineal energy transfer part of TEPC spectra or measured using a Thermo Scientific™ FH-40G survey meter. Experiments involved a water tank phantom (60 × 30 × 30 cm{sup 3}) representing the patient that was uniformly irradiated using a 3 mm spot diameter proton pencil beam with 10 cm modulation width, 19.95 cm distal beam range, and 10 × 10 cm{sup 2} field size. Results: Neutron spectrometry around the target volume showed two main components at the thermal and fast energy ranges. The study also revealed the large dependence of the energy distribution of neutrons, and consequently of out-of-field doses, on the primary beam direction (directional emission of intranuclear cascade neutrons) and energy (spectral composition of secondary neutrons). In addition, neutron mapping within the facility was conducted and showed the highest H{sup ∗}(10) value of ∼51 μSv Gy{sup −1}; this was measured at 1.15 m along the beam axis. H{sup ∗}(10) values

  6. Radiation Dosimetry Experiment (RaD-X): High-Altitude Balloon Flight Mission for Improving the Nairas Aviation Radiation Model

    NASA Astrophysics Data System (ADS)

    Mays, M. L.; Luhmann, J. G.; Odstrcil, D.; Schwadron, N.; Gorby, M.; Bain, H. M.; Mewaldt, R. A.; Gold, R. E.

    2014-12-01

    In preparation for Solar Probe Plus and Solar Orbiter we consider a series of SEP modeling experiments based on the global MHD WSA-ENLIL model. The models include the Solar Energetic Particle Model (SEPMOD) (Luhmann et al., 2007; 2010) and the Earth-Moon-Mars Radiation Environment Module (EMMREM) (Schwadron et al., 2010)). WSA-ENLIL provides a time-dependent background heliospheric description including CME-like clouds which can generate shocks during their propagation. SEPMOD makes use of the ENLIL-provided magnetic topologies of observer-connected magnetic field lines and all plasma and shock properties along those field lines. The model injects protons onto a sequence observer field lines at intensities dependent on the connected shock source strength which are then integrated at the observer to approximate the proton flux. EMMREM couples with MHD models such as ENLIL and computes energetic particle distributions based on the focused transport equation along a Lagrangian grid of nodes that propagate out with the solar wind. In this presentation we compare SEP modeling results with data, and consider SEP variability in longitude and latitude. Additionally we study the relative importance of observer-connectivity to the solar source and shock locations, as derived from ENLIL. We evaluate the shock geometry and compare model-derived shock parameters with those observed. Finally, we test the effect of the seed population on the resulting profiles.

  7. TU-G-213-03: IEC Subcommittee 62C (Equipment for Radiotherapy, Nuclear Medicine and Radiation Dosimetry): Recent and Active Projects

    SciTech Connect

    Culberson, W.

    2015-06-15

    The International Electrotechnical Commission (IEC) writes standards that manufacturers of electrical equipment must comply with. Medical electrical equipment, such as medical imaging, radiation therapy, and radiation dosimetry devices, fall under Technical Committee 62. Of particular interest to medical physicists are the standards developed within Subcommittees (SC) 62B, which addresses diagnostic radiological imaging equipment, and 62C, which addresses equipment for radiation therapy, nuclear medicine and dosimetry. For example, a Working Group of SC 62B is responsible for safety and quality assurance standards for CT scanners and a Working Group of SC 62C is responsible for standards that set requirements for dosimetric safety and accuracy of linacs and proton accelerators. IEC standards thus have an impact on every aspect of a medical physicist’s job, including equipment testing, shielding design, room layout, and workflow. Consequently, it is imperative that US medical physicists know about existing standards, as well as have input on those under development or undergoing revision. The structure of the IEC and current standards development work will be described in detail. The presentation will explain how US medical physicists can learn about IEC standards and contribute to their development. Learning Objectives: Learn about the structure of the IEC and the influence that IEC standards have on the design of equipment for radiology and radiation therapy. Learn about the mechanisms by which the US participates in the development and revision of standards. Understand the specific requirements of several standards having direct relevance to diagnostic and radiation therapy physicists.

  8. Fifth international radiopharmaceutical dosimetry symposium

    SciTech Connect

    Watson, E.E.; Schlafke-Stelson, A.T.

    1992-05-01

    This meeting was held to exchange information on how to get better estimates of the radiation absorbed dose. There seems to be a high interest of late in patient dosimetry; discussions were held in the light of revised risk estimates for radiation. Topics included: Strategies of Dose Assessment; Dose Estimation for Radioimmunotherapy; Dose Calculation Techniques and Models; Dose Estimation for Positron Emission Tomography (PET); Kinetics for Dose Estimation; and Small Scale Dosimetry and Microdosimetry. (VC)

  9. Silicon-based three-dimensional microstructures for radiation dosimetry in hadrontherapy

    NASA Astrophysics Data System (ADS)

    Guardiola, C.; Quirion, D.; Pellegrini, G.; Fleta, C.; Esteban, S.; Cortés-Giraldo, M. A.; Gómez, F.; Solberg, T.; Carabe, A.; Lozano, M.

    2015-07-01

    In this work, we propose a solid-state-detector for use in radiation microdosimetry. This device improves the performance of existing dosimeters using customized 3D-cylindrical microstructures etched inside silicon. The microdosimeter consists of an array of micro-sensors that have 3D-cylindrical electrodes of 15 μm diameter and a depth of 5 μm within a silicon membrane, resulting in a well-defined micrometric radiation sensitive volume. These microdetectors have been characterized using an 241Am source to assess their performance as radiation detectors in a high-LET environment. This letter demonstrates the capability of this microdetector to be used to measure dose and LET in hadrontherapy centers for treatment plan verification as part of their patient-specific quality control program.

  10. Silicon-based three-dimensional microstructures for radiation dosimetry in hadrontherapy

    SciTech Connect

    Guardiola, C. Solberg, T.; Carabe, A.; Quirion, D.; Pellegrini, G.; Fleta, C.; Esteban, S.; Lozano, M.; Cortés-Giraldo, M. A.; Gómez, F.

    2015-07-13

    In this work, we propose a solid-state-detector for use in radiation microdosimetry. This device improves the performance of existing dosimeters using customized 3D-cylindrical microstructures etched inside silicon. The microdosimeter consists of an array of micro-sensors that have 3D-cylindrical electrodes of 15 μm diameter and a depth of 5 μm within a silicon membrane, resulting in a well-defined micrometric radiation sensitive volume. These microdetectors have been characterized using an {sup 241}Am source to assess their performance as radiation detectors in a high-LET environment. This letter demonstrates the capability of this microdetector to be used to measure dose and LET in hadrontherapy centers for treatment plan verification as part of their patient-specific quality control program.

  11. Proton Radiotherapy for Pediatric Bladder/Prostate Rhabdomyosarcoma: Clinical Outcomes and Dosimetry Compared to Intensity-Modulated Radiation Therapy

    SciTech Connect

    Cotter, Shane E.; Herrup, David A.; Friedmann, Alison; Macdonald, Shannon M.; Pieretti, Raphael V.; Robinson, Gregoire; Adams, Judith; Tarbell, Nancy J.; Yock, Torunn I.

    2011-12-01

    Purpose: In this study, we report the clinical outcomes of 7 children with bladder/prostate rhabdomyosarcoma (RMS) treated with proton radiation and compare proton treatment plans with matched intensity-modulated radiation therapy (IMRT) plans, with an emphasis on dose savings to reproductive and skeletal structures. Methods and Materials: Follow-up consisted of scheduled clinic appointments at our institution or direct communication with the treating physicians for referred patients. Each proton radiotherapy plan used for treatment was directly compared to an IMRT plan generated for the study. Clinical target volumes and normal tissue volumes were held constant to facilitate dosimetric comparisons. Each plan was optimized for target coverage and normal tissue sparing. Results: Seven male patients were treated with proton radiotherapy for bladder/prostate RMS at the Massachusetts General Hospital between 2002 and 2008. Median age at treatment was 30 months (11-70 months). Median follow-up was 27 months (10-90 months). Four patients underwent a gross total resection prior to radiation, and all patients received concurrent chemotherapy. Radiation doses ranged from 36 cobalt Gray equivalent (CGE) to 50.4 CGE. Five of 7 patients were without evidence of disease and with intact bladders at study completion. Target volume dosimetry was equivalent between the two modalities for all 7 patients. Proton radiotherapy led to a significant decrease in mean organ dose to the bladder (25.1 CGE vs. 33.2 Gy; p = 0.03), testes (0.0 CGE vs. 0.6 Gy; p = 0.016), femoral heads (1.6 CGE vs. 10.6 Gy; p = 0.016), growth plates (21.7 CGE vs. 32.4 Gy; p = 0.016), and pelvic bones (8.8 CGE vs. 13.5 Gy; p = 0.016) compared to IMRT. Conclusions: This study provides evidence of significant dose savings to normal structures with proton radiotherapy compared to IMRT and is well tolerated in this patient population. The long-term impact of these reduced doses can be tested in future studies

  12. Relationship between student selection criteria and learner success for medical dosimetry students.

    PubMed

    Baker, Jamie; Tucker, Debra; Raynes, Edilberto; Aitken, Florence; Allen, Pamela

    2016-01-01

    Medical dosimetry education occupies a specialized branch of allied health higher education. Noted international shortages of health care workers, reduced university funding, limitations on faculty staffing, trends in learner attrition, and increased enrollment of nontraditional students force medical dosimetry educational leadership to reevaluate current admission practices. Program officials wish to select medical dosimetry students with the best chances of successful graduation. The purpose of the quantitative ex post facto correlation study was to investigate the relationship between applicant characteristics (cumulative undergraduate grade point average (GPA), science grade point average (SGPA), prior experience as a radiation therapist, and previous academic degrees) and the successful completion of a medical dosimetry program, as measured by graduation. A key finding from the quantitative study was the statistically significant positive correlation between a student׳s previous degree and his or her successful graduation from the medical dosimetry program. Future research investigations could include a larger research sample, representative of more medical dosimetry student populations, and additional studies concerning the relationship of previous work as a radiation therapist and the effect on success as a medical dosimetry student. Based on the quantitative correlation analysis, medical dosimetry leadership on admissions committees could revise student selection rubrics to place less emphasis on an applicant׳s undergraduate cumulative GPA and increase the weight assigned to previous degrees.

  13. Relationship between student selection criteria and learner success for medical dosimetry students

    SciTech Connect

    Baker, Jamie; Tucker, Debra; Raynes, Edilberto; Aitken, Florence; Allen, Pamela

    2016-04-01

    Medical dosimetry education occupies a specialized branch of allied health higher education. Noted international shortages of health care workers, reduced university funding, limitations on faculty staffing, trends in learner attrition, and increased enrollment of nontraditional students force medical dosimetry educational leadership to reevaluate current admission practices. Program officials wish to select medical dosimetry students with the best chances of successful graduation. The purpose of the quantitative ex post facto correlation study was to investigate the relationship between applicant characteristics (cumulative undergraduate grade point average (GPA), science grade point average (SGPA), prior experience as a radiation therapist, and previous academic degrees) and the successful completion of a medical dosimetry program, as measured by graduation. A key finding from the quantitative study was the statistically significant positive correlation between a student's previous degree and his or her successful graduation from the medical dosimetry program. Future research investigations could include a larger research sample, representative of more medical dosimetry student populations, and additional studies concerning the relationship of previous work as a radiation therapist and the effect on success as a medical dosimetry student. Based on the quantitative correlation analysis, medical dosimetry leadership on admissions committees could revise student selection rubrics to place less emphasis on an applicant's undergraduate cumulative GPA and increase the weight assigned to previous degrees.

  14. Concerted Uranium Research in Europe (CURE): toward a collaborative project integrating dosimetry, epidemiology and radiobiology to study the effects of occupational uranium exposure.

    PubMed

    Laurent, Olivier; Gomolka, Maria; Haylock, Richard; Blanchardon, Eric; Giussani, Augusto; Atkinson, Will; Baatout, Sarah; Bingham, Derek; Cardis, Elisabeth; Hall, Janet; Tomasek, Ladislav; Ancelet, Sophie; Badie, Christophe; Bethel, Gary; Bertho, Jean-Marc; Bouet, Ségolène; Bull, Richard; Challeton-de Vathaire, Cécile; Cockerill, Rupert; Davesne, Estelle; Ebrahimian, Teni; Engels, Hilde; Gillies, Michael; Grellier, James; Grison, Stephane; Gueguen, Yann; Hornhardt, Sabine; Ibanez, Chrystelle; Kabacik, Sylwia; Kotik, Lukas; Kreuzer, Michaela; Lebacq, Anne Laure; Marsh, James; Nosske, Dietmar; O'Hagan, Jackie; Pernot, Eileen; Puncher, Matthew; Rage, Estelle; Riddell, Tony; Roy, Laurence; Samson, Eric; Souidi, Maamar; Turner, Michelle C; Zhivin, Sergey; Laurier, Dominique

    2016-06-01

    The potential health impacts of chronic exposures to uranium, as they occur in occupational settings, are not well characterized. Most epidemiological studies have been limited by small sample sizes, and a lack of harmonization of methods used to quantify radiation doses resulting from uranium exposure. Experimental studies have shown that uranium has biological effects, but their implications for human health are not clear. New studies that would combine the strengths of large, well-designed epidemiological datasets with those of state-of-the-art biological methods would help improve the characterization of the biological and health effects of occupational uranium exposure. The aim of the European Commission concerted action CURE (Concerted Uranium Research in Europe) was to develop protocols for such a future collaborative research project, in which dosimetry, epidemiology and biology would be integrated to better characterize the effects of occupational uranium exposure. These protocols were developed from existing European cohorts of workers exposed to uranium together with expertise in epidemiology, biology and dosimetry of CURE partner institutions. The preparatory work of CURE should allow a large scale collaborative project to be launched, in order to better characterize the effects of uranium exposure and more generally of alpha particles and low doses of ionizing radiation.

  15. SU-E-T-665: Radiochromic Film Quenching Effect Reduction for Proton Beam Dosimetry

    SciTech Connect

    Aldelaijan, S; Alzorkany, F; Moftah, B; Alrumayan, F; Seuntjens, J; Lewis, D; Devic, S

    2015-06-15

    Purpose: Depending on the useful dose range in which radiochromic films operate, number of different radiochromic film models have been designed. The impact of different film models on quenching effect for percent depth dose (PDD) measurements in proton beams has been investigated. Methods: Calibrated PTW Markus ionization chamber was used to measure PDD and beam output for 26.5 MeV protons produced by CS30 cyclotron. An aluminum cylinder was added in front of the beam exit serving as a radiation shutter. The measured signal was normalized to a monitor chamber reading and subsequently scaled by ratio of water-to-air stopping powers at given depth, while the effective depth of measurements was scaled by ratios of material-to-water physical densities and CSDA ranges. Output was measured in water at 2.1 mm reference-depth in the plateau upstream from the Bragg peak. Following the TRS-398 reference dosimetry protocol for proton beams, the output was calibrated in water. Three radiochromic film models (EBT, EBT3 and HD-V2) were calibrated within Lexan phantom positioned at the same water-equivalent depth. Thicknesses of films sensitive layers were 34 µm, 30 µm and 8 µm, respectively. Small film pieces (1 x 2 cm{sup 2}) were positioned within polyethylene phantom along the beam central axis with an angulation of 5° for PDD measurements. Results: While the output of the proton beam was found to be around 7 Gy/sec, the actual value of the output per monitor chamber reading (2.32 Gy/nC) was used for reference-dose irradiations during film calibration. Dose ratios at the Bragg peak relative to the reference-depth were 3.88, 2.52, 2.19, and 2.02 for the Markus chamber, HD-V2, EBT3, and EBT film models, respectively. Conclusion: Results at hand suggest that quenching effect is reduced when a radiochromic film model with smaller sensitive layer thickness is used for PDD measurements in proton beams. David Lewis is the owner of RCF Consulting, LLC.

  16. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2009-08-28

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document.

  17. Radiation effects on microstructure and EPR signal of yttrium oxide rods

    NASA Astrophysics Data System (ADS)

    Santos, S. C.; Rodrigues, O., Jr.; Campos, L. L.

    2017-02-01

    Designing nanostructured materials with high dosimetric efficiency is a great challenge in radiation dosimetry research. From rare-earth series, yttrium oxide is considered as excellent host matrix for rare-earth ions, leading to formation of advanced functional materials with optical, mechanical, chemical, and thermal properties notably improved. Nevertheless, there is a lack of information which correlates microstructural characteristics and performance of rare earths. This work aims to evaluate the radiation effects on microstructure and EPR signal of Y2O3 rods produced by colloidal processing followed by sintering at 1600°C/4h in air. Ceramic rods were exposed to gamma radiation with doses up to 100kGy. Microstructural and dosimetric characterizations were performed by XRD, SEM and EPR techniques. Yttrium oxide rods as sintered exhibited dense microstructure (96.6% theoretical density) and linear EPR dose response behaviour for wide dose range. These results reveal that yttrium oxide is a promising material for radiation dosimetry.

  18. The effect of isotope on the dosimetry of inhaled plutonium oxide

    SciTech Connect

    Guilmette, R.A., Griffith, W.C.; Hickman, A.W.

    1991-12-31

    Results of experimental studies in which animals inhaled {sup 238}PuO{sub 2} or {sup 239}PuO{sub 2} aerosols have shown that the biokinetics and associated radiation dose patterns for these two isotopes differ significantly due to differences in in-vivo solubility caused by the 260-fold difference in specific activity between {sup 238}PuO{sub 2} and {sup 239}PuO{sub 2}. We have adapted a biokinetics and dosimetry model derived from results of the ITRI dog studies to humans and have calculated dose commitments and annual limits on intake (ALI) for both Pu isotopes. Our results show that the ALI calculated in this study is one-third that for class Y {sup 238}Pu from ICRP 30, and one-half or equal to that for class Y {sup 239}Pu, depending on how activity in the thoracic lymph nodes is treated dosimetrically.

  19. Genetic effects of ionizing radiation--some questions with no answers.

    PubMed

    Mosse, Irma B

    2012-10-01

    There are a lot of questions about genetic effects of ionizing radiation, the main one is does ionizing radiation induce mutations in humans? There is no direct evidence that exposure of parents to radiation leads to excess heritable disease in offspring. What is the difference between human and other species in which radiation induced mutations are easily registered? During evolution germ cell selection ex vivo has been changed to a selection in vivo and we cannot observe such selection of radiation damaged cells in human. Low radiation doses - are they harmful or beneficial? The "hormesis" phenomenon as well as radioadaptive response proves positive effects of low radiation dose. Can analysis of chromosomal aberration rate in lymphocytes be used for dosimetry? Many uncontrolled factors may be responsible for significant mistakes of this method. Why did evolution preserve the bystander effect? This paper is discussion one and its goal is to pay attention on some effects of ionizing radiation.

  20. Improved Radiation Dosimetry/Risk Estimates to Facilitate Environmental Management of Plutonium-Contaminated Sites

    SciTech Connect

    Scott, Bobby R.; Tokarskaya, Zoya B.; Zhuntova, Galina V.; Osovets, Sergey V.; Syrchikov, Victor A., Belyaeva, Zinaida D.

    2007-12-14

    This report summarizes 4 years of research achievements in this Office of Science (BER), U.S. Department of Energy (DOE) project. The research described was conducted by scientists and supporting staff at Lovelace Respiratory Research Institute (LRRI)/Lovelace Biomedical and Environmental Research Institute (LBERI) and the Southern Urals Biophysics Institute (SUBI). All project objectives and goals were achieved. A major focus was on obtaining improved cancer risk estimates for exposure via inhalation to plutonium (Pu) isotopes in the workplace (DOE radiation workers) and environment (public exposures to Pu-contaminated soil). A major finding was that low doses and dose rates of gamma rays can significantly suppress cancer induction by alpha radiation from inhaled Pu isotopes. The suppression relates to stimulation of the body's natural defenses, including immunity against cancer cells and selective apoptosis which removes precancerous and other aberrant cells.

  1. Dosimetry in steep dose-rate gradient radiation fields: A challenge in clinical applications

    NASA Astrophysics Data System (ADS)

    Massillon-JL, G.

    2010-12-01

    The fundamental goal of radiotherapy is to reduce the damage to normal tissue and optimize the dose to the tumor with an associated high probability of cure. Because of this, an accurate and precise knowledge of the radiation dose distribution delivered around the tumor volume during radiotherapy treatments such as stereotactic radiosurgery, intensity modulated radiotherapy or brachytherapy with low-energy X-ray and beta particle sources is of great importance. However, in each of these radiation fields, there exists a steep dose-rate gradient which makes it very difficult to perform accurate dose measurements. In this work, the physics phenomena involved in the energy absorption for each of these situations are discussed, and a brief revision of what the Medical Physics community is doing is presented.

  2. Dosimetry in steep dose-rate gradient radiation fields: A challenge in clinical applications

    SciTech Connect

    Massillon-JL, G.

    2010-12-07

    The fundamental goal of radiotherapy is to reduce the damage to normal tissue and optimize the dose to the tumor with an associated high probability of cure. Because of this, an accurate and precise knowledge of the radiation dose distribution delivered around the tumor volume during radiotherapy treatments such as stereotactic radiosurgery, intensity modulated radiotherapy or brachytherapy with low-energy X-ray and beta particle sources is of great importance. However, in each of these radiation fields, there exists a steep dose-rate gradient which makes it very difficult to perform accurate dose measurements. In this work, the physics phenomena involved in the energy absorption for each of these situations are discussed, and a brief revision of what the Medical Physics community is doing is presented.

  3. Neutron and y-Ray Radiation Killing of Bacillus Species Spores: Dosimetry, Quantitation, and Validation Techniques

    DTIC Science & Technology

    1996-04-01

    ml of sterile 4.0% BBL soybean casein digest agar medium (Trypticase Soybean Agar ( TSA ) 11043) were added to each plate . Multiple lots of TSA obtained...from Becton Dickinson Microbiology Systems, Cockeysville, MD, were used throughout this study. The autoclaved TSA was cooled to 45-50’ C in a water...exposure fields available in the AFRRI reactor (14). The quantitative microbiologic and radiation dosimetric techniques in this report may be used to

  4. Radiation Dosimetry from Intratumoral Injection of Radionuclides in Human Breast Cancer

    DTIC Science & Technology

    2004-07-01

    treatment of solid tumors and development of new treatment strategies. 14. SUBJECT TERMS 15. NUMBER OF PAGES 123 Breast Cancer 16. PRICE CODE 17...locoregional radionuclide treatment in the breast , similar strategies can be designed for other radiopharmaceuticals and for other solid tumors. Page 9...confirmed the usefulness of sealed radionuclides as internal radiation sources for locoregional adjuvant treatment of breast cancer, as demonstrated by

  5. The UF Family of hybrid phantoms of the pregnant female for computational radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Maynard, Matthew R.; Long, Nelia S.; Moawad, Nash S.; Shifrin, Roger Y.; Geyer, Amy M.; Fong, Grant; Bolch, Wesley E.

    2014-08-01

    Efforts to assess in utero radiation doses and related quantities to the developing fetus should account for the presence of the surrounding maternal tissues. Maternal tissues can provide varying levels of protection to the fetus by shielding externally-emitted radiation or, alternatively, can become sources of internally-emitted radiation following the biokinetic uptake of medically-administered radiopharmaceuticals or radionuclides located in the surrounding environment—as in the case of the European Union’s SOLO project (Epidemiological Studies of Exposed Southern Urals Populations). The University of Florida had previously addressed limitations in available computational phantom representation of the developing fetus by constructing a series of hybrid computational fetal phantoms at eight different ages and three weight percentiles. Using CT image sets of pregnant patients contoured using 3D-DOCTORTM, the eight 50th percentile fetal phantoms from that study were systematically combined in RhinocerosTM with the UF adult non-pregnant female to yield a series of reference pregnant female phantoms at fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. Deformable, non-uniform rational B-spline surfaces were utilized to alter contoured maternal anatomy in order to (1) accurately position and orient each fetus and surrounding maternal tissues and (2) match target masses of maternal soft tissue organs to reference data reported in the literature.

  6. Non-reference condition correction factor kNR of typical radiation detectors applied for the dosimetry of high-energy photon fields in radiotherapy.

    PubMed

    Chofor, Ndimofor; Harder, Dietrich; Poppe, Björn

    2012-09-01

    According to accepted dosimetry protocols, the "radiation quality correction factor"k(Q) accounts for the energy-dependent changes of detector responses under the conditions of clinical dosimetry for high-energy photon radiations. More precisely, a factor k(QR) is valid under reference conditions, i.e. at a point on the beam axis at depth 10 cm in a large water phantom, for 10×10 cm(2) field size, SSD 100 cm and the given radiation quality with quality index Q. Therefore, a further correction factor k(NR) has been introduced to correct for the influences of spectral quality changes when detectors are used under non-reference conditions such as other depths, field sizes and off-axis distances, while under reference conditions k(NR) is normalized to unity. In this paper, values of k(NR) are calculated for 6 and 15 MV photon beams, using published data of the energy-dependent responses of various radiation detectors to monoenergetic photon radiations, and weighting these responses with validated photon spectra of clinical high-energy photon beams from own Monte-Carlo-calculations for a wide variation of the non-reference conditions within a large water phantom. Our results confirm the observation by Scarboro et al. [26] that k(NR) can be represented by a unique function of the mean energy Em, weighted by the spectral photon fluence. Accordingly, the numerical variations of Em with depth, field size and off-axis distance have been provided. Throughout all considered conditions, the deviations of the k(NR) values from unity are at most 2% for a Farmer type ion chamber, and they remain below 15% for the thermoluminescent detectors LiF:Mg,Ti and LiF:Mg,Cu,P. For the shielded diode EDP-10, k(NR) varies from unity up to 20%, while the unshielded diode EDD-5 shows deviations up to 60% in the peripheral region. Thereby, the restricted application field of unshielded diodes has been clarified. For small field dosimetry purposes k(NR) can be converted into k(NCSF), the non

  7. Report from the dosimetry working group to CEDR project management

    SciTech Connect

    Fix, J J

    1994-08-01

    On August 2, 1989, Admiral Watkins, Secretary of the US Department of Energy (DOE), presented a four-point program designed to enhance the DOE epidemiology program. One part of this program was the establishment of a Comprehensive Epidemiologic Data Resource (CEDR) to facilitate independent research to validate and supplement DOE research on human health effects. A Dosimetry Working Group was formed during May 1991 to evaluate radiation dose variables and associated documentation that would be most useful to researchers for retrospective and prospective studies. The Working Group consisted of thirteen individuals with expertise and experience in health physics, epidemiology, dosimetry, computing, and industrial hygiene. A final report was delivered to CEDR Project Management during February 1992. The report contains a number of major recommendations concerning collection, interpretation, and documentation of dosimetry data to maximize their usefulness to researchers using CEDR for examining possible health effects of occupational exposure to ionizing radiation.

  8. The impact of possible modifications to the DS86 dosimetry on neutron risk and relative biological effectiveness.

    PubMed

    Hunter, Nezahat; Charles, Monty W

    2002-12-01

    The current DS86 dosimetry system for the Japanese bomb survivors indicates that neutron doses were so low that they prevent the direct derivation of any useful estimates of neutron risk. However, the large body of thermal neutron activation measurements carried out over many years in Hiroshima and Nagasaki appear to indicate that current DS86 neutron doses may have been significantly underestimated in Hiroshima. An earlier companion paper has provided an update of neutron activation measurements. While a large body of data appears to support a significant increase, there is ongoing debate and review regarding its validity. However, as yet, there are no detailed, peer-reviewed, published refutations of the neutron activation data which appear to support an increase in neutron doses. In this paper, we consider the impact of possible future revisions in the DS86 dosimetry on radiation risk estimates. We consider the extreme range of possibilities from maintaining the existing DS86 values, to changes in neutron doses in accord with the majority of existing neutron activation data. We have used the latest cancer incidence data and cancer mortality data for the A-bomb survivors, and neutron doses have been modified using a neutron revision factor (NRF) in line with the latest thermal neutron activation measurements in Hiroshima. In contrast to previous analyses, a nonlinear relationship between log(NRF) and slant range has been used which better represents the data beyond slant ranges of approximately 1 km. The impact on the evaluation of neutron relative biological effectiveness (RBE) and gamma radiation risk estimates has been assessed. While DS86 neutron doses are too low to allow any useful direct evaluation of neutron risk or neutron RBE, it becomes possible to derive more meaningful values if neutron doses are increased in Hiroshima in line with the broad range of thermal neutron activation measurements. The uncertainties are smallest for the cancer incidence data

  9. Effects Of Radiation On Elastomers

    NASA Technical Reports Server (NTRS)

    Bouquet, Frank L.

    1988-01-01

    Report provides data on effects of radiation on elastomers. Quantifies effects by giving minimum radiation levels to induce changes of 1 percent and 25 percent in given properties. Electrical, mechanical, and chemical properties included in data. Combined effects of heat and radiation briefly considered. Data summarized in graphic form useful to designers.

  10. Radiation effect on implanted pacemakers

    SciTech Connect

    Pourhamidi, A.H.

    1983-10-01

    It was previously thought that diagnostic or therapeutic ionizing radiation did not have an adverse effect on the function of cardiac pacemakers. Recently, however, some authors have reported damaging effect of therapeutic radiation on cardiac pulse generators. An analysis of a recently-extracted pacemaker documented the effect of radiation on the pacemaker pulse generator.

  11. ESR spectrometry: a future-oriented tool for dosimetry and dating.

    PubMed

    Regulla, Dieter F

    2005-02-01

    ESR spectroscopy is currently taking root as a key technology in dosimetry, dating and imaging. In dosimetry, it competes with cytometry in the fields of biological dosimetry and retrospective dosimetry, leads in high-level reference and routine dosimetry, is high-ranking among the methods to identify radiation preserved foods, represents a method of choice to date geological, archaeological and paleontological materials back millions of years, and has demonstrated capacity for imaging. Further scientific and technological progress as predicted in the recent past (Appl. Radiat. Isot. 52 (2000) 1023) is reviewed here. Additionally, the review is expanded to include international reports and recommendations on ESR dosimetry and dose reconstruction, under way at the American Society for Testing and Materials (ASTM), the International Organisation of Standards (ISO), the International Atomic Energy Agency (IAEA) and the International Commission on Radiation Units and Measurements (ICRU). Emphasis is placed on interpretation of tooth enamel doses in terms of organ and effective doses, using CT-based virtual humans. The future of EPR spectroscopy for in situ dose measurements is noted, depicting a non-destructive in vivo dosimetry applicable directly to individuals, but also to hominid and animal fossils for direct dating.

  12. Dosimetry in brain tumor phantom at 15 MV 3D conformal radiation therapy

    PubMed Central

    2013-01-01

    Glioblastoma multiforme (GBM) is the most common, aggressive, highly malignant and infiltrative of all brain tumors with low rate of control. The main goal of this work was to evaluate the spatial dose distribution into a GBM simulator inside a head phantom exposed to a 15 MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Such phantom holds the following synthetic structures: brain and spinal cord, skull, cervical and thoracic vertebrae, jaw, hyoid bone, laryngeal cartilages, head and neck muscles and skin. Computer tomography (CT) of the simulator was taken, capturing a set of contrasted references. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples at coronal, sagittal-anterior and sagittal-posterior positions, inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, measured at coronal section, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. And, as final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. PMID:23829593

  13. Dosimetry of secondary cosmic radiation up to an altitude of 30 km.

    PubMed

    Wissmann, F; Burda, O; Khurana, S; Klages, T; Langner, F

    2014-10-01

    Dosimetric measurements in the field of secondary cosmic radiation were extensively made during the last years. Since the majority of these measurements were performed on-board passenger aircraft at altitudes between 10 and 12 km, measurements at higher altitudes are desirable for the verification of the legal dose assessment procedures for aircrew. A simple solution is to use a high-altitude balloon that reaches altitudes as high as 30 km. In this work, it is shown that the dose rate profile up to 30 km can be measured with acceptable uncertainties using a Si-detector.

  14. SU-E-T-62: A Preliminary Experience of Using EPID Transit Dosimetry for Monitoring Daily Dose Variations in Radiation Treatment Delivery

    SciTech Connect

    Yao, R; Chisela, W

    2015-06-15

    Purpose: To investigate the use of EPID transit dosimetry for monitoring daily dose variations in radiation treatment delivery. Methods: A patient with head and neck cancer treated using nine field IMRT beams was used in this study. The prescription was 45 Gy in 25 fractions. A KV CBCT was acquired before each treatment on a Varian NTX linear accelerator. Integrated images using MV EPID were acquired for each treatment beam. Planning CT images, treatment plan, and daily integrated images were imported into a commercial QA software Dosimetry Check (v4r4 Math Resolutions, LLC, Columbia, MD) to calculate 3D dose of the day assuming 25 fractions treatment. Planning CT images were deformed and registered to each daily CBCT using Varian SmartAdapt (v11.MR2). ROIs were then propagated from planning CT to daily CBCT. The correlation between maximum, average dose of ROIs and ROI volume, center of mass shift, Dice Similarity Coefficient (DSC) were investigated. Results: Not all parameters investigated showed strong correlations. For PTV and CTV, the average dose has inverse correlation with their volume change (correlation coefficient −0.52, −0.50, respectively) and DSC (−0.59, −0.59, respectively). The average dose of right parotid has correlation with its volume change (0.56). The maximum dose of spinal cord has correlation with the center of mass superior-inferior shift (0.52) and inverse correlation with the center of mass anterior-posterior shift (−0.73). Conclusion: Transit dosimetry using EPID images collected during treatment delivery offers great potential to monitor daily dose variations due to patient anatomy change, motion, and setup errors in radiation treatment delivery. It can provide a patient-specific QA tool valuable for adaptive radiation therapy. Further work is needed to validate the technique.

  15. Long-Term Dosimetry of Solar UV Radiation in Antarctica with Spores of Bacillus subtilis

    PubMed Central

    Puskeppeleit, Monika; Quintern, Lothar E.; el Naggar, Saad; Schott, Jobst-Ulrich; Eschweiler, Ute; Horneck, Gerda; Bücker, Horst

    1992-01-01

    The main objective was to assess the influence of the seasonal stratospheric ozone depletion on the UV climate in Antarctica by using a biological test system. This method is based on the UV sensitivity of a DNA repair-deficient strain of Bacillus subtilis (TKJ 6321). In our field experiment, dried layers of B. subtilis spores on quartz discs were exposed in different seasons in an exposure box open to solar radiation at the German Antarctic Georg von Neumayer Station (70°37′S, 8°22′W). The UV-induced loss of the colony-forming ability was chosen as the biological end point and taken as a measure for the absorbed biologically harmful UV radiation. Inactivation constants were calculated from the resulting dose-response curves. The results of field experiments performed in different seasons indicate a strongly season-dependent trend of the daily UV-B level. Exposures performed at extremely depleted ozone concentrations (October 1990) gave higher biologically harmful UV-B levels than expected from the calculated season-dependent trend, which was determined at normal ozone values. These values were similar to values which were measured during the Antarctic summer, indicating that the depleted ozone column thickness has an extreme influence on the biologically harmful UV climate on ground. PMID:16348742

  16. Dosimetry for a study of low-dose radiation cataracts among Chernobyl clean-up workers.

    PubMed

    Chumak, V V; Worgul, B V; Kundiyev, Y I; Sergiyenko, N M; Vitte, P M; Medvedovsky, C; Bakhanova, E V; Junk, A K; Kyrychenko, O Y; Musijachenko, N V; Sholom, S V; Shylo, S A; Vitte, O P; Xu, S; Xue, X; Shore, R E

    2007-05-01

    A cohort of 8,607 Ukrainian Chernobyl clean-up workers during 1986-1987 was formed to study cataract formation after ionizing radiation exposure. Study eligibility required the availability of sufficient exposure information to permit the reconstruction of doses to the lens of the eye. Eligible groups included civilian workers, such as those who built the "sarcophagus" over the reactor, Chernobyl Nuclear Power Plant Workers, and military reservists who were conscripted for clean-up work. Many of the official doses for workers were estimates, because only a minority wore radiation badges. For 106 military workers, electron paramagnetic resonance (EPR) measurements of extracted teeth were compared with the recorded doses as the basis to adjust the recorded gamma-ray doses and provide estimates of uncertainties. Beta-particle doses to the lens were estimated with an algorithm devised to take into account the nature and location of Chernobyl work, time since the accident, and protective measures taken. A Monte Carlo routine generated 500 random estimates for each individual from the uncertainty distributions of the gamma-ray dose and of the ratio of beta-particle to gamma-ray doses. The geometric mean of the 500 combined beta-particle and gamma-ray dose estimates for each individual was used in the data analyses. The median estimated lens dose for the cohort was 123 mGy, while 4.4% received >500 mGy.

  17. Radiation dosimetry for the adult female and fetus from iodine-131 administration in hyperthyroidism

    SciTech Connect

    Stabin, M.G.; Watson, E.E.; Marcus, C.S.; Salk, R.D. )

    1991-05-01

    Through a study of the iodine kinetics of 127 patients, we have developed radiation dose estimates to major organs and the fetus for patients with varying degrees of hyperthyroidism. We observed a negative correlation between maximum thyroid uptake and biologic half-time of iodine in the thyroid and used this correlation to predict the biologic half-time at fixed values of maximum thyroid uptake. Dose estimates to the bladder, gonads, marrow, thyroid, uterus, and whole body were estimated for maximum thyroid uptakes from 20% to 100%. Bladder dose varied from 0.6 to 1.0 mGy/MBq and dose to the uterus varied from 0.036 to 0.063 mGy/MBq under different model assumptions. Dose estimates to the fetus and fetal thyroid were approximated at all stages of pregnancy. Average fetal dose was a maximum between 0 and 2 mo of pregnancy, with the maximum ranging from 0.048 mGy/MBq to 0.083 mGy/MBq, depending on model assumptions. Some radiation risks for irradiation of the fetus and the fetal thyroid are discussed.

  18. The application of thermoluminescence dosimetry in X-ray energy discrimination.

    PubMed

    Nelson, V K; Holloway, L; McLean, I D

    2015-12-01

    Clinical dosimetry requires an understanding of radiation energy to accurately determine the delivered dose. For many situations this is known, however there are also many situations where the radiation energy is not well known, thus limiting dosimetric accuracy. This is the case in personnel dosimetry where thermo luminescent (TL) dosimetry is the method of choice. Traditionally beam energy characteristics in personnel dosimetry are determined through discrimination with the use of various filters fitted within a radiation monitor. The presence of scattered and characteristic radiation produced by these metallic filters, however, can compromise the results. In this study the TL response of five materials TLD100, TLD100H, TLD200, TLD400 and TLD500, was measured at various X-ray energies. The TL sensitivity ratio for various combinations of materials as a function of X-ray energy was calculated. The results indicate that in personal dosimetry a combination of three or more TL detector system has a better accuracy of estimation of effective radiation energy of an X-ray beam than some of the current method of employed for energy estimation and has the potential to improve the accuracy in dose determination in a variety of practical situations. The development of this method also has application in other fields including quality assurance of the orthovoltage therapy machines, dosimetry intercomparisons of kilovoltage X-ray beams, and measurement of the dose to critical organs outside a treatment field of a megavoltage therapy beam.

  19. Radiation Effects: Core Project

    NASA Technical Reports Server (NTRS)

    Dicello, John F.

    1999-01-01

    The risks to personnel in space from the naturally occurring radiations are generally considered to be one of the most serious limitations to human space missions, as noted in two recent reports of the National Research Council/National Academy of Sciences. The Core Project of the Radiation Effects Team for the National Space Biomedical Research Institute is the consequences of radiations in space in order to develop countermeasure, both physical and pharmaceutical, to reduce the risks of cancer and other diseases associated with such exposures. During interplanetary missions, personnel in space will be exposed to galactic cosmic rays, including high-energy protons and energetic ions with atomic masses of iron or higher. In addition, solar events will produce radiation fields of high intensity for short but irregular durations. The level of intensity of these radiations is considerably higher than that on Earth's surface, and the biological risks to astronauts is consequently increased, including increased risks of carcinogenesis and other diseases. This group is examining the risk of cancers resulting from low-dose, low-dose rate exposures of model systems to photons, protons, and iron by using ground-based accelerators which are capable of producing beams of protons, iron, and other heavy ions at energies comparable to those encountered in space. They have begun the first series of experiments using a 1-GeV iron beam at the Brookhaven National Laboratory and 250-MeV protons at Loma Linda University Medical Center's proton synchrotron facility. As part of these studies, this group will be investigating the potential for the pharmaceutical, Tamoxifen, to reduce the risk of breast cancer in astronauts exposed to the level of doses and particle types expected in space. Theoretical studies are being carried out in a collaboration between scientists at NASA's Johnson Space Center and Johns Hopkins University in parallel with the experimental program have provided

  20. Pediatric radiation dosimetry for positron-emitting radionuclides using anthropomorphic phantoms

    SciTech Connect

    Xie, Tianwu; Bolch, Wesley E.; Lee, Choonsik; Zaidi, Habib

    2013-10-15

    Purpose: Positron emission tomography (PET) plays an important role in the diagnosis, staging, treatment, and surveillance of clinically localized diseases. Combined PET/CT imaging exhibits significantly higher sensitivity, specificity, and accuracy than conventional imaging when it comes to detecting malignant tumors in children. However, the radiation dose from positron-emitting radionuclide to the pediatric population is a matter of concern since children are at a particularly high risk when exposed to ionizing radiation.Methods: The authors evaluate the absorbed fractions and specific absorbed fractions (SAFs) of monoenergy photons/electrons as well as S-values of 9 positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124) in 48 source regions for 10 anthropomorphic pediatric hybrid models, including the reference newborn, 1-, 5-, 10-, and 15-yr-old male and female models, using the Monte Carlo N-Particle eXtended general purpose Monte Carlo transport code.Results: The self-absorbed SAFs and S-values for most organs were inversely related to the age and body weight, whereas the cross-dose terms presented less correlation with body weight. For most source/target organ pairs, Rb-82 and Y-86 produce the highest self-absorbed and cross-absorbed S-values, respectively, while Cu-64 produces the lowest S-values because of the low-energy and high-frequency of electron emissions. Most of the total self-absorbed S-values are contributed from nonpenetrating particles (electrons and positrons), which have a linear relationship with body weight. The dependence of self-absorbed S-values of the two annihilation photons varies to the reciprocal of 0.76 power of the mass, whereas the self-absorbed S-values of positrons vary according to the reciprocal mass.Conclusions: The produced S-values for common positron-emitting radionuclides can be exploited for the assessment of radiation dose delivered to the pediatric population from various PET

  1. Remote optical fiber dosimetry

    NASA Astrophysics Data System (ADS)

    Huston, A. L.; Justus, B. L.; Falkenstein, P. L.; Miller, R. W.; Ning, H.; Altemus, R.

    2001-09-01

    Optical fibers offer a unique capability for remote monitoring of radiation in difficult-to-access and/or hazardous locations. Optical fiber sensors can be located in radiation hazardous areas and optically interrogated from a safe distance. A variety of remote optical fiber radiation dosimetry methods have been developed. All of the methods take advantage of some form of radiation-induced change in the optical properties of materials such as: radiation-induced darkening due to defect formation in glasses, luminescence from native defects or radiation-induced defects, or population of metastable charge trapping centers. Optical attenuation techniques are used to measure radiation-induced darkening in fibers. Luminescence techniques include the direct measurement of scintillation or optical excitation of radiation-induced luminescent defects. Optical fiber radiation dosimeters have also been constructed using charge trapping materials that exhibit thermoluminescence or optically stimulated luminescence (OSL).

  2. Radiation dosimetry of iodine-123 HEAT, an alpha-1 receptor imaging agent

    SciTech Connect

    Thomas, K.D.; Greer, D.M.; Couch, M.W.; Williams, C.M.

    1987-11-01

    Biologic distribution data in the rat were obtained for the alpha-1 adrenoceptor imaging agent (+/-) 2-(beta-(iodo-4-hydroxyphenyl)ethylaminomethyl)tetralone (HEAT) labeled with (/sup 123/I). The major excretory routes were through the liver (67%) and the kidney (33%). Internal radiation absorbed dose estimates to nine source organs, total body, the GI tract, gonads, and red bone marrow were calculated for the human using the physical decay data for (/sup 123/I). The critical organ was found to be the lower large intestine, receiving 1.1 rad per mCi of (/sup 123/I)HEAT administered. The total-body dose was found to be 58 mrad per mCi.

  3. Cherenkov radiation dosimetry in water tanks - video rate imaging, tomography and IMRT & VMAT plan verification

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.; Glaser, Adam K.; Zhang, Rongxiao; Gladstone, David J.

    2015-01-01

    This paper presents a survey of three types of imaging of radiation beams in water tanks for comparison to dose maps. The first was simple depth and lateral profile verification, showing excellent agreement between Cherenkov and planned dose, as predicted by the treatment planning system for a square 5cm beam. The second approach was 3D tomography of such beams, using a rotating water tank with camera attached, and using filtered backprojection for the recovery of the 3D volume. The final presentation was real time 2D imaging of IMRT or VMAT treatments in a water tank. In all cases the match to the treatment planning system was within what would be considered acceptable for clinical medical physics acceptance.

  4. A reference radiation facility for dosimetry at flight altitude and in space.

    PubMed

    Ferrari, A; Mitaroff, A; Silari, M

    2001-01-01

    A reference facility for the intercomparison of active and passive detectors in high-energy neutron fields is available at CERN since 1993. A positive charged hadron beam (a mixture of protons and pions) with momentum of 120 GeV/c hits a copper target, 50 cm thick and 7 cm in diameter. The secondary particles produced in the interaction are filtered by a shielding of either 80 cm of concrete or 40 cm of iron. Behind the iron shielding, the resulting neutron spectrum has a maximum at about 1 MeV, with an additional high-energy component. Behind the concrete shielding, the neutron spectrum has a pronounced maximum at about 70 MeV and resembles the high-energy component of the radiation field created by cosmic rays at commercial flight altitudes. The facility is used for a variety of investigations with active and passive neutron dosimeters. Its use for measurements related to the space programme is discussed.

  5. Optical CT scanner for in-air readout of gels for external radiation beam 3D dosimetry.

    PubMed

    Ramm, Daniel; Rutten, Thomas P; Shepherd, Justin; Bezak, Eva

    2012-06-21

    Optical CT scanners for a 3D readout of externally irradiated radiosensitive hydrogels currently require the use of a refractive index (RI) matching liquid bath to obtain suitable optical ray paths through the gel sample to the detector. The requirement for a RI matching liquid bath has been negated by the design of a plastic cylindrical gel container that provides parallel beam geometry through the gel sample for the majority of the projection. The design method can be used for various hydrogels. Preliminary test results for the prototype laser beam scanner with ferrous xylenol-orange gel show geometric distortion of 0.2 mm maximum, spatial resolution limited to beam spot size of about 0.4 mm and 0.8% noise (1 SD) for a uniform irradiation. Reconstruction of a star pattern irradiated through the cylinder walls demonstrates the suitability for external beam applications. The extremely simple and cost-effective construction of this optical CT scanner, together with the simplicity of scanning gel samples without RI matching fluid increases the feasibility of using 3D gel dosimetry for clinical external beam dose verifications.

  6. Radiation-induced defects in strontium carbonate rod for EPR dosimetry applications

    NASA Astrophysics Data System (ADS)

    Rushdi, M. A. H.; Abdel-Fattah, A. A.; Soliman, Y. S.

    2017-02-01

    The radiation-induced defects in strontium carbonate (SrCO3) rod dosimeter in the dose range of 2.5 Gy-25 kGy was investigated using electron paramagnetic resonance (EPR) technique. The EPR spectra of γ-irradiated strontium carbonate (SC) rods exhibit a strong EPR signal with the spectroscopic splitting g-factor 2.008 and a weak signal at g-factor 2.003. This signal increases with increasing irradiation dose. The dose-response function has a good linearity in the low dose range of 2.5-500 Gy and slight sub-linearity in the high dose range of 0.5-25 kGy. The dosimeter is nearly humidity independent in the level of 33-77% relative humidity during irradiation. The temperature coefficient of the dose-response function is 0.22% per °C in the temperature range of 20-40 °C. The rod dosimeter exhibits a maximum deviation from water equivalency by 7% in the energy range of 0.3-5 MeV. The overall uncertainty of dose determination using SC dosimeter is 5.2% and 4.54% (2σ) for low and high dose range, respectively.

  7. Bone structural parameters, dosimetry, and relative radiation risk in the beagle skeleton

    SciTech Connect

    Polig, E.; Jee, W.S. )

    1989-10-01

    A variety of morphometric and histomorphometric parameters such as the mass of bone and marrow, bone surface areas, percentage of bone volume, percentage of the surface that is trabecular, and percentage of surfaces that are forming and resting are calculated for all major parts of the beagle skeleton. The total bone surface of the beagle is estimated at 2.9 m2 with 53.7% of the surface area being associated with trabecular bone. There are about 4.5 x 10(9) bone-lining cells and about 1 x 10(9) osteoblasts. From the fractional retention in each part of the skeleton, the initial surface concentration of 239Pu after a single injection of 592 Bq/kg body wt (0.016 microCi/kg) on resting surfaces and at sites of bone formation is calculated for various values of the affinity ratios of trabecular/cortical and forming/resting surfaces. These estimated concentrations then yield dose rates as well as cumulative and collective doses to bone-lining cells and osteoblasts in the different parts of the skeleton. On the assumption that the relative risk of tumor induction is proportional to the collective dose to either bone-lining cells or osteoblasts, the frequency of tumor occurrence is calculated and compared to observed frequencies. Both hypotheses yield approximate agreement with experimental data for different ratios of trabecular/cortical radiation sensitivity, although the differences between some bones are statistically significant.

  8. Effect of spine hardware on small spinal stereotactic radiosurgery dosimetry

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Yang, James N.; Li, Xiaoqiang; Tailor, Ramesh; Vassilliev, Oleg; Brown, Paul; Rhines, Laurence; Chang, Eric

    2013-10-01

    Monte Carlo (MC) modeling of a 6 MV photon beam was used to study the dose perturbation from a titanium rod 5 mm in diameter in various small fields range from 2 × 2 to 5 × 5 cm2. The results showed that the rod increased the dose to water by ˜6% at the water-rod interface because of electron backscattering and decreased the dose by ˜7% in the shadow of the rod because of photon attenuation. The Pinnacle3 treatment planning system calculations matched the MC results at the depths more than 1 cm past the rod when the correct titanium density of 4.5 g cm-3 was used, but significantly underestimated the backscattering dose at the water-rod interface. A CT-density table with a top density of 1.82 g cm-3 (cortical bone) is a practical way to reduce the dosimetric error from the artifacts by preventing high density assignment to them, but can underestimates the attenuation by the titanium rod by 6%. However, when multi-beam with intensity modulation is used in actual patient spinal stereotactic radiosurgery treatment, the dosimetric effect of assigning 4.5 instead of 1.82 g cm-3 to titanium implants is complicated. It ranged from minimal effect to 2% dose difference affecting 15% target volume in the study. When hardware is in the beam path, density override to the titanium hardware is recommended.

  9. Internal dosimetry technical basis manual

    SciTech Connect

    Not Available

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

  10. Effect of spine hardware on small spinal stereotactic radiosurgery dosimetry.

    PubMed

    Wang, Xin; Yang, James N; Li, Xiaoqiang; Tailor, Ramesh; Vassilliev, Oleg; Brown, Paul; Rhines, Laurence; Chang, Eric

    2013-10-07

    Monte Carlo (MC) modeling of a 6 MV photon beam was used to study the dose perturbation from a titanium rod 5 mm in diameter in various small fields range from 2 × 2 to 5 × 5 cm(2). The results showed that the rod increased the dose to water by ∼6% at the water-rod interface because of electron backscattering and decreased the dose by ∼7% in the shadow of the rod because of photon attenuation. The Pinnacle(3) treatment planning system calculations matched the MC results at the depths more than 1 cm past the rod when the correct titanium density of 4.5 g cm(-3) was used, but significantly underestimated the backscattering dose at the water-rod interface. A CT-density table with a top density of 1.82 g cm(-3) (cortical bone) is a practical way to reduce the dosimetric error from the artifacts by preventing high density assignment to them, but can underestimates the attenuation by the titanium rod by 6%. However, when multi-beam with intensity modulation is used in actual patient spinal stereotactic radiosurgery treatment, the dosimetric effect of assigning 4.5 instead of 1.82 g cm(-3) to titanium implants is complicated. It ranged from minimal effect to 2% dose difference affecting 15% target volume in the study. When hardware is in the beam path, density override to the titanium hardware is recommended.

  11. MAGIC-type polymer gel for three-dimensional dosimetry: intensity-modulated radiation therapy verification.

    PubMed

    Gustavsson, Helen; Karlsson, Anna; Bäck, Sven A J; Olsson, Lars E; Haraldsson, Pia; Engström, Per; Nyström, Håkan

    2003-06-01

    A new type of polymer gel dosimeter, which responds well to absorbed dose even when manufactured in the presence of normal levels of oxygen, was recently described by Fong et al. [Phys. Med. Biol. 46, 3105-3113 (2001)] and referred to by the acronym MAGIC. The aim of this study was to investigate the feasibility of using this new type of gel for intensity-modulated radiation therapy (IMRT) verification. Gel manufacturing was carried out in room atmosphere under normal levels of oxygen. IMRT inverse treatment planning was performed using the Helios software. The gel was irradiated using a linear accelerator equipped with a dynamic multileaf collimator, and intensity modulation was achieved using sliding window technique. The response to absorbed dose was evaluated using magnetic resonance imaging. Measured and calculated dose distributions were compared with regard to in-plane isodoses and dose volume histograms. In addition, the spatial and dosimetric accuracy was evaluated using the gamma formalism. Good agreement between calculated and measured data was obtained. In the isocenter plane, the 70% and 90% isodoses acquired using the different methods are mostly within 2 mm, with up to 3 mm disagreement at isolated points. For the planning target volume (PTV), the calculated mean relative dose was 96.8 +/- 2.5% (1 SD) and the measured relative mean dose was 98.6 +/- 2.2%. Corresponding data for an organ at risk was 34.4 +/- 0.9% and 32.7 +/- 0.7%, respectively. The gamma criterion (3 mm spatial/3% dose deviation) was fulfilled for 94% of the pixels in the target region. Discrepancies were found in hot spots the upper and lower parts of the PTV, where the measured dose was up to 11% higher than calculated. This was attributed to sub optimal scatter kernels used in the treatment planning system dose calculations. Our results indicate great potential for IMRT verification using MAGIC-type polymer gel.

  12. Practical dosimetry methods for the determination of effective skin and breast dose for a modern CT system, incorporating partial irradiation and prospective cardiac gating

    PubMed Central

    Loader, R J; Gosling, O; Roobottom, C; Morgan-Hughes, G; Rowles, N

    2012-01-01

    Objective For CT coronary angiography (CTCA), a generic chest conversion factor returns a significant underestimate of effective dose. The aim of this manuscript is to communicate new dosimetry methods to calculate weighted CT dose index (CTDIw), effective dose, entrance surface dose (ESD) and organ dose to the breast for prospectively gated CTCA. Methods CTDIw in 32 cm diameter Perspex phantom was measured using an adapted technique, accounting for the segmented scan characteristic. Gafchromic XRCT film (International Speciality Products, New Jersey, NJ) was used to measure the distribution and magnitude of ESD. Breast dose was measured using high sensitivity metal oxide semiconductor field-effect transistors and compared to the computer based imaging performance assessment of CT scanners (ImPACT) dosimetry calculations. Results For a typical cardiac scan the mean ESD remained broadly constant (7–9 mGy) when averaged over the circumference of the Perspex phantom. Typical absorbed dose to the breast with prospectively gated protocols was within the range 2–15 mGy. The subsequent lifetime attributable risk (LAR) of cancer incidence to the breast was found at 0.01–0.06 for a 20-year-old female. This compares favourably to 100 mGy (LAR ∼0.43) for a retrospectively gated CTCA. Conclusions Care must be taken when considering radiation dosimetry associated with prospectively gated scanning for CTCA and a method has been conveyed to account for this. Breast doses for prospectively gated CTCA are an order of magnitude lower than retrospectively gated scans. Optimisation of cardiac protocols is expected to show further dose reduction. PMID:21896660

  13. The effect of skin thickness determined using breast CT on mammographic dosimetry

    SciTech Connect

    Huang Shihying; Boone, John M.; Yang, Kai; Kwan, Alexander L. C.; Packard, Nathan J.

    2008-04-15

    The effect of breast skin thickness on dosimetry in mammography was investigated. Breast computed tomography (CT) acquisition techniques, combined with algorithms designed for determining specific breast metrics, were useful for estimating skin thickness. A radial-geometry edge detection scheme was implemented on coronal reconstructed breast CT (bCT) images to measure the breast skin thickness. Skin thickness of bilateral bCT volume data from 49 women and unilateral bCT volume data from 2 women (10 healthy women and 41 women with BIRADS 4 and 5 diagnoses) was robustly measured with the edge detection scheme. The mean breast skin thickness ({+-}inter-breast standard deviation) was found to be 1.45{+-}0.30 mm. Since most current published normalized glandular dose (D{sub gN}) coefficients are based on the assumption of a 4-mm breast skin thickness, the D{sub gN} values computed with Monte Carlo techniques will increase up to 18% due to the thinner skin layers (e.g., 6-cm 50% glandular breast, 28 kVp Mo-Mo spectrum). The thinner skin dimensions found in this study suggest that the current D{sub gN} values used for mammographic dosimetry lead to a slight underestimate in glandular dose.

  14. The US radiation dosimetry standards for 60Co therapy level beams, and the transfer to the AAPM accredited dosimetry calibration laboratories.

    PubMed

    Minniti, R; Chen-Mayer, H; Seltzer, S M; Huq, M Saiful; Bryson, L; Slowey, T; Micka, J A; DeWerd, L A; Wells, N; Hanson, W F; Ibbott, G S

    2006-04-01

    This work reports the transfer of the primary standard for air kerma from the National Institute of Standards and Technology (NIST) to the secondary laboratories accredited by the American Association of Physics in Medicine (AAPM). This transfer, performed in August of 2003, was motivated by the recent revision of the NIST air-kerma standards for 60Co gamma-ray beams implemented on July 1, 2003. The revision involved a complete recharacterization of the two NIST therapy-level 60Co gamma-ray beam facilities, resulting in new values for the air-kerma rates disseminated by the NIST. Some of the experimental aspects of the determination of the new air-kerma rates are briefly summarized here; the theoretical aspects have been described in detail by Seltzer and Bergstrom ["Changes in the U.S. primary standards for the air-kerma from gamma-ray beams," J. Res. Natl. Inst. Stand. Technol. 108, 359-381 (2003)]. The standard was transferred to reference-class chambers submitted by each of the AAPM Accredited Dosimetry Calibration Laboratories (ADCLs). These secondary-standard instruments were then used to characterize the 60Co gamma-ray beams at the ADCLs. The values of the response (calibration coefficient) of the ADCL secondary-standard ionization chambers are reported and compared to values obtained prior to the change in the NIST air-kerma standards announced on July 1, 2003. The relative change is about 1.1% for all of these chambers, and this value agrees well with the expected change in chambers calibrated at the NIST or at any secondary-standard laboratory traceable to the new NIST standard.

  15. Quantitative imaging of (124)I with PET/ CT in pretherapy lesion dosimetry. Effects impairing image quantification and their corrections.

    PubMed

    Jentzen, W; Freudenberg, L; Bockisch, A

    2011-02-01

    Iodine-131-labelled agents are successfully used in cancer treatment. In the pretherapy dosimetry approach, positron emission tomography/computed tomography (PET/CT) using (124)I provides a modality to estimate absorbed dose to tumours and can be considered as the preferred imaging method for this purpose in (131)I radiopharmaceutical therapies. For accurate dosimetry, serial measurements of activity concentrations (ACs) over an appropriate time period are necessary. Consequently, accurate AC determination is of paramount importance in PET/CT-based lesion dosimetry using (124)I-labelled agents. After presenting an historical overview of (124)I clinical application, this review focuses on factors impairing PET image quantification accuracy and on methods of correcting for these effects. Specifically, the emission of prompt gamma photons in the (124)I decay process that are detected in coincidence with each other and with the annihilation photon, and the low (124)I positron branching ration of only 23% raise concerns regarding image quantification accuracy. This review discusses this prompt gamma effect, its impact and approaches to correct for this phenomenon. In (124)I lesion dosimetry, recovery coefficients (RCs) are commonly used to compensate primarily for partial-volume effect but also, in a simplistic way, for prompt gamma coincidence effect; the main methodological factors affecting the RC-corrected (124)I AC are described. Finally, special issues in image (124)I quantification are reviewed, including coadministration of high therapeutic activities of 131I, shine-through artefact, and transmission-contamination effect occurring in stand-alone PET systems.

  16. The International Reactor Dosimetry File.

    SciTech Connect

    DUNFORD, CHARLIE

    2008-08-07

    Version 01 The International Reactor Dosimetry File (IRDF-2002) contains recommended neutron cross-section data to be used for reactor neutron dosimetry by foil activation and subsequent neutron spectrum unfolding. It also contains selected recom�mended values for radiation damage cross-sections and benchmark neutron spectra. Two related programs available from NEADB and RSICC are: SPECTER-ANL (PSR-263) & STAY’SL (PSR-113).

  17. Studies in Ultrasonic Dosimetry.

    NASA Astrophysics Data System (ADS)

    Zitouni, Abderrachid

    The widespread use of ultrasonic devices in both industry and medicine confirms the great importance of ultrasound as a source of nonionizing radiation. The biological effects of this type of radiation are not completely known up to today, and the need for proper dosimetry is evident. Previous work in the field has been limited to the determination of ultrasonic energy deposition by attenuation measurements of traveling sound waves in homogenized specimens. Alternatively, observed effects were correlated to the output of the source. The objective of this work was to correlate the absorption properties of sound absorbing media to their elastic properties and deduce a correlation between the sonic absorption coefficient and the corresponding Young's modulus. Energy deposition measurements were performed in isotropic rubber samples and in anisotropic meat specimens by the use of the thermocouple probe method which measures the absorbed energy directly. Elasticity measurements were performed for the different types of materials used. The Young's modulus for each type was deduced from defletion measurements on rectangular strips when subjected to successive forces of varying magnitude. The final experimental results showed the existence of a linear relationship between the absorption coefficient of a given elastic material and the inverse square root of its Young's modulus.

  18. Patient-specific internal radionuclide dosimetry.

    PubMed

    Tsougos, Ioannis; Loudos, George; Georgoulias, Panagiotis; Theodorou, Kiki; Kappas, Constantin

    2010-02-01

    The development of patient-specific treatment planning systems is of outmost importance in the development of radionuclide dosimetry, taking into account that quantitative three-dimensional nuclear medical imaging can be used in this regard. At present, the established method for dosimetry is based on the measurement of the biokinetics by serial gamma-camera scans, followed by calculations of the administered activity and the residence times, resulting in the radiation-absorbed doses of critical organs. However, the quantification of the activity in different organs from planar data is hampered by inaccurate attenuation and scatter correction as well as because of background and organ overlay. In contrast, dosimetry based on quantitative three-dimensional data can be more accurate and allows an individualized approach, provided that all effects that degrade the quantitative content of the images have been corrected for. In addition, inhomogeneous organ accumulation of the radionuclide can be detected and possibly taken into account. The aim of this work is to provide adequate information on internal emitter dosimetry and a state-of-the-art review of the current methodology and future trends.

  19. Reactor Dosimetry State of the Art 2008

    NASA Astrophysics Data System (ADS)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  20. Retrospective Biological Dosimetry at Low and High Doses of Radiation and Radioiodine Impact on Individual Susceptibility to Ionizing Radiation

    PubMed Central

    Cebulska-Wasilewska, Antonina; Krzysiek, Mateusz; Krajewska, Grażyna; Stępień, Artur; Krajewski, Paweł

    2017-01-01

    Iodine-131 (I-131) is often used in thyroid diagnostics and therapy. External and internal exposure to radioiodine can lead to molecular and cellular damage in peripheral blood lymphocytes. The aim of this study was to explore the influence of low and high doses of I-131 on susceptibility to ionizing radiation. Study groups consisted of 30 individuals free of thyroid diseases, 41 patients exposed diagnostically to low doses of I-131, and 37 hyperthyroidism patients exposed therapeutically to high doses. The standardized DNA repair competence assay was used to test the efficacy of the fast DNA repair process in G0 cells. Cytogenetic preparations were made in fresh blood samples before and after challenging cells in vitro with X-ray dose. The frequency of sister chromatid exchanges (SCE) and percentage of cells with significantly elevated numbers of SCE were used as cytogenetic biomarkers associated to homologous recombination and compared to reported earlier cytogenetic biomarkers of cancer risk. Strong individual variation in the biomarkers is observed in all investigated groups before and after challenging. Nevertheless, the efficiency of post challenging fast repair is significantly high in the patients exposed to diagnostic I-131 doses than in unexposed control group and linked to decreased cytogenetic damage. However, 5 weeks after administration of therapeutic doses, significant increases of unrepaired post challenging DNA and cytogenetic damages were observed indicating a health risk. Results also suggest that the appearance of cancers in immediate families might influence DNA repair differently in patients exposed to low than to high doses. PMID:28250909

  1. Effect of different breathing patterns in the same patient on stereotactic ablative body radiotherapy dosimetry for primary renal cell carcinoma: A case study

    SciTech Connect

    Pham, Daniel; Kron, Tomas; Foroudi, Farshad; Siva, Shankar

    2013-10-01

    Stereotactic ablative body radiotherapy (SABR) for primary renal cell carcinoma (RCC) targets requires motion management strategies to verify dose delivery. This case study highlights the effect of a change in patient breathing amplitude on the dosimetry to organs at risk and target structures. A 73-year-old male patient was planned for receiving 26 Gy of radiation in 1 fraction of SABR for a left primary RCC. The patient was simulated with four-dimensional computed tomography (4DCT) and the tumor internal target volume (ITV) was delineated using the 4DCT maximum intensity projection. However, the initially planned treatment was abandoned at the radiation oncologist's discretion after pretreatment cone-beam CT (CBCT) motion verification identified a greater than 50% reduction in superior to inferior diaphragm motion as compared with the planning 4DCT. This patient was resimulated with respiratory coaching instructions. To assess the effect of the change in breathing on the dosimetry to the target, each plan was recalculated on the data set representing the change in breathing condition. A change from smaller to larger breathing showed a 46% loss in planning target volume (PTV) coverage, whereas a change from larger breathing to smaller breathing resulted in an 8% decrease in PTV coverage. ITV coverage was similarly reduced by 8% in both scenarios. This case study highlights the importance of tools to verify breathing motion prior to treatment delivery. 4D image guided radiation therapy verification strategies should focus on not only verifying ITV margin coverage but also the effect on the surrounding organs at risk.

  2. Effect of different breathing patterns in the same patient on stereotactic ablative body radiotherapy dosimetry for primary renal cell carcinoma: a case study.

    PubMed

    Pham, Daniel; Kron, Tomas; Foroudi, Farshad; Siva, Shankar

    2013-01-01

    Stereotactic ablative body radiotherapy (SABR) for primary renal cell carcinoma (RCC) targets requires motion management strategies to verify dose delivery. This case study highlights the effect of a change in patient breathing amplitude on the dosimetry to organs at risk and target structures. A 73-year-old male patient was planned for receiving 26Gy of radiation in 1 fraction of SABR for a left primary RCC. The patient was simulated with four-dimensional computed tomography (4DCT) and the tumor internal target volume (ITV) was delineated using the 4DCT maximum intensity projection. However, the initially planned treatment was abandoned at the radiation oncologist's discretion after pretreatment cone-beam CT (CBCT) motion verification identified a greater than 50% reduction in superior to inferior diaphragm motion as compared with the planning 4DCT. This patient was resimulated with respiratory coaching instructions. To assess the effect of the change in breathing on the dosimetry to the target, each plan was recalculated on the data set representing the change in breathing condition. A change from smaller to larger breathing showed a 46% loss in planning target volume (PTV) coverage, whereas a change from larger breathing to smaller breathing resulted in an 8% decrease in PTV coverage. ITV coverage was similarly reduced by 8% in both scenarios. This case study highlights the importance of tools to verify breathing motion prior to treatment delivery. 4D image guided radiation therapy verification strategies should focus on not only verifying ITV margin coverage but also the effect on the surrounding organs at risk.

  3. Human Biodistribution and Radiation Dosimetry of (18)F-Clofarabine, a PET Probe Targeting the Deoxyribonucleoside Salvage Pathway.

    PubMed

    Barrio, Martin J; Spick, Claudio; Radu, Caius G; Lassmann, Michael; Eberlein, Uta; Allen-Auerbach, Martin; Schiepers, Christiaan; Slavik, Roger; Czernin, Johannes; Herrmann, Ken

    2017-03-01

    (18)F-clofarabine, a nucleotide purine analog, is a substrate for deoxycytidine kinase (dCK), a key enzyme in the deoxyribonucleoside salvage pathway. (18)F-clofarabine might be used to measure dCK expression and thus serve as a predictive biomarker for tumor responses to dCK-dependent prodrugs or small-molecule dCK inhibitors, respectively. As a prerequisite for clinical translation, we determined the human whole-body and organ dosimetry of (18)F-clofarabine. Methods: Five healthy volunteers were injected intravenously with 232.4 ± 1.5 MBq of (18)F-clofarabine. Immediately after tracer injection, a dynamic scan of the entire chest was acquired for 30 min. This was followed by 3 static whole-body scans at 45, 90, and 135 min after tracer injection. Regions of interest were drawn around multiple organs on the CT scan and copied to the PET scans. Organ activity was determined and absorbed dose was estimated with OLINDA/EXM software. Results: The urinary bladder (critical organ), liver, kidney, and spleen exhibited the highest uptake. For an activity of 250 MBq, the absorbed doses in the bladder, liver, kidney, and spleen were 58.5, 6.6, 6.3, and 4.3 mGy, respectively. The average effective dose coefficient was 5.1 mSv. Conclusion: Our results hint that (18)F-clofarabine can be used safely in humans to measure tissue dCK expression. Future studies will determine whether (18)F-clofarabine may serve as a predictive biomarker for responses to dCK-dependent prodrugs or small-molecule dCK inhibitors.

  4. Measurements of radiation exposure of dentistry students during their radiological training using thermoluminescent dosimetry.

    PubMed

    Loya, M; Sanín, L H; González, P R; Ávila, O; Duarte, R; Ojeda, S L; Montero-Cabrera, M E

    2016-01-01

    Exposure among dentistry students has not been assessed or regulated in Mexico. This work assessed the average exposure of 35 dentistry students during their training with the aid of LiF:Mg,Cu,P+PTFE thermoluminescent dosimeters. For the students in the roles of dentist and observers, maximum accumulated equivalent dose obtained was 2.59±0.11 and 4.64±0.39 mSv, respectively. Students in the role as patients received a maximum accumulated effective dose of 28.41±0.31 mSv. If compared to occupational dose limits, this latter value is 56% of the recommended value of 50 mSv in any year. It was found that in all cases, values of equivalent dose to the women breasts were equal to the background dose. Results are discussed and compared to previous published work. Suggested recommendations were given to authorities in order to minimize exposure of the students in the role as patients.

  5. Dosimetry at the Los Alamos Critical Experiments Facility: Past, present, and future

    SciTech Connect

    Malenfant, R.E.

    1993-10-01

    Although the primary reason for the existence of the Los Alamos Critical Experiments Facility is to provide basic data on the physics of systems of fissile material, the physical arrangements and ability to provide sources of radiation have led to applications for all types of radiation dosimetry. In the broad definition of radiation phenomena, the facility has provided sources to evaluate biological effects, radiation shielding and transport, and measurements of basic parameters such as the evaluation of delayed neutron parameters. Within the last 15 years, many of the radiation measurements have been directed to calibration and intercomparison of dosimetry related to nuclear criticality safety. Future plans include (1) the new applications of Godiva IV, a bare-metal pulse assembly, for dosimetry (including an evaluation of neutron and gamma-ray room return); (2) a proposal to relocate the Health Physics Research Reactor from the Oak Ridge National Laboratory to Los Alamos, which will provide the opportunity to continue the application of a primary benchmark source to radiation dosimetry; and (3) a proposal to employ SHEBA, a low-enrichment solution assembly, for accident dosimetry and evaluation.

  6. TH-C-17A-03: Dynamic Visualization and Dosimetry of IMRT and VMAT Treatment Plans by Video-Rate Imaging of Cherenkov Radiation in Pure Water

    SciTech Connect

    Glaser, A; Andreozzi, J; Davis, S; Zhang, R; Fox, C; Gladstone, D; Pogue, B

    2014-06-15

    Purpose: A novel optical dosimetry technique for the QA and verification of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) radiotherapy plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: An intensified CCD camera (ICCD) was used to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank. The ICCD acquisition was gated to the Linac, operated for single pulse imaging, and binned to a resolution of 512×512 pixels. The resulting videos were analyzed temporally for regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR) and summed to obtain an overall light distribution, which was compared to the expected dose distribution from the TPS using a gammaindex analysis. Results: The chosen camera settings resulted in data at 23.5 frames per second. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.2% and 95.6% agreement between the light distribution and expected TPS dose distribution based upon a 3% / 3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans respectively. Conclusion: The results from this initial study demonstrate the first documented use of Cherenkov radiation for optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real-time nature of the acquisition, and upon future refinement may prove to be a robust and novel dosimetry method with both research and clinical applications. NIH R01CA109558 and R21EB017559.

  7. Development of a novel proton dosimetry system using an array of fiber-optic Cerenkov radiation sensors.

    PubMed

    Son, Jaeman; Kim, Meyoung; Shin, Dongho; Hwang, Uijung; Lee, Sebyeong; Lim, Youngkyung; Park, Jeonghoon; Park, Sung yong; Cho, Kwanho; Kim, Daeyong; Jang, Kyoung Won; Yoon, Myonggeun

    2015-12-01

    This study describes the development and evaluation of a new dosimetric system for proton therapy using an array of fiber-optic Cerenkov radiation sensors (AFCRS). The AFCRS was superior to a conventional, multi-layer ion chamber (MLIC) system in real-time data acquisition and cost effectiveness.

  8. Changes in Functional Lung Regions During the Course of Radiation Therapy and Their Potential Impact on Lung Dosimetry for Non-Small Cell Lung Cancer

    SciTech Connect

    Meng, Xue; Frey, Kirk; Matuszak, Martha; Paul, Stanton; Ten Haken, Randall; Yu, Jinming; Kong, Feng-Ming

    2014-05-01

    Purpose: To study changes in functional activity on ventilation (V)/perfusion (Q) single-photon emission computed tomography (SPECT) during radiation therapy (RT) and explore the impact of such changes on lung dosimetry in patients with non-small cell lung cancer (NSCLC). Methods and Materials: Fifteen NSCLC patients with centrally located tumors were enrolled. All patients were treated with definitive RT dose of ≥60 Gy. V/Q SPECT-CT scans were performed prior to and after delivery of 45 Gy of fractionated RT. SPECT images were used to define temporarily dysfunctional regions of lung caused by tumor or other potentially reversible conditions as B3. The functional lung (FL) was defined on SPECT by 2 separate approaches: FL1, a threshold of 30% of the maximum uptake of the patient's lung; and FL2, FL1 plus B3 region. The impact of changes in FL between initiation of RT and delivery of 45 Gy on lung dosimetry were analyzed. Results: Fourteen patients (93%) had larger FL2 volumes than FL1 pre-RT (P<.001). Dysfunctional lung became functional in 11 patients (73%) on V SPECT and in 10 patients (67%) on Q SPECT. The dosimetric parameters generated from CT-based anatomical lung had significantly lower values in FL1 than FL2, with a median reduction in the volume of lung receiving a dose of at least 20 Gy (V{sub 20}) of 3%, 5.6%, and mean lung dose of 0.95 and 1.55 on V and Q SPECT respectively. Conclusions: Regional ventilation and perfusion function improve significantly during RT in centrally located NSCLC. Lung dosimetry values vary notably between different definitions of functional lung.

  9. Dosimetry and evaluating the effect of treatment parameters on the leakage of multi leaf collimators in ONCOR linear accelerators

    PubMed Central

    Jabbari, Keyvan; Akbari, Muhaddeseh; Tavakoli, Mohamad Bagher; Amouheidari, Alireza

    2016-01-01

    Background: One of the standard equipment in medical linear accelerators is multi-leaf collimators (MLCs); which is used as a replacement for lead shielding. MLC's advantages are a reduction of the treatment time, the simplicity of treatment, and better dose distribution. The main disadvantage of MLC is the radiation leakages from the edges and between the leaves. The purpose of this study was to determine the effect of various treatment parameters in the magnitude of MLC leakage in linear accelerators. Materials and Methods: This project was performed with ONCOR Siemens linear accelerators. The amount of radiation leakage was determined by film dosimetry method. The films were Kodak-extended dose range-2, and the beams were 6 MV and 18 MV photons. In another part of the experiment, the fluctuation of the leakage was measured at various depths and fields. Results: The amount of leakage was generally up to 1.5 ± 0.2% for both energies. The results showed that the level of the leakage and the amount of dose fluctuation depends on the field size and depth of measurement. The amount of the leakage fluctuations in all energies was decreased with increasing of field size. The variation of the leakage versus field size was similar to the inverse of scattering collimator factor. Conclusions: The amount of leakage was more for 18 MV compare to 6 MV The percentage of the leakage for both energies is less than the 5% value which is recommended by protocols. The fluctuation of the MLC leakage reduced by increasing the field size and depth. PMID:28217631

  10. WE-D-210-04: Radiation-Induced Polymerization of Ultrasound Contrast Agents in View of Non-Invasive Dosimetry in External Beam Radiation Therapy

    SciTech Connect

    Callens, M; Verboven, E; Van Den Abeele, K; D’Agostino, E; Pfeiffer, H; D’hooge, J

    2015-06-15

    Purpose: Ultrasound contrast agents (UCA’s) based on gas-filled microbubbles encapsulated by an amphiphilic shell are well established as safe and effective echo-enhancers in diagnostic imaging. In view of an alternative application of UCA’s, we investigated the use of targeted microbubbles as radiation sensors for external beam radiation therapy. As radiation induces permanent changes in the microbubble’s physico-chemical properties, a robust measure of these changes can provide a direct or indirect estimate of the applied radiation dose. For instance, by analyzing the ultrasonic dispersion characteristics of microbubble distributions before and after radiation treatment, an estimate of the radiation dose at the location of the irradiated volume can be made. To increase the radiation sensitivity of microbubbles, polymerizable diacetylene molecules can be incorporated into the shell. This study focuses on characterizing the acoustic response and quantifying the chemical modifications as a function of radiation dose. Methods: Lipid/diacetylene microbubbles were irradiated with a 6 MV photon beam using dose levels in the range of 0–150 Gy. The acoustic response of the microbubbles was monitored by ultrasonic through-transmission measurements in the range of 500 kHz to 20 MHz, thereby providing the dispersion relations of the phase velocity, attenuation and nonlinear coefficient. In addition, the radiation-induced chemical modifications were quantified using UV-VIS spectroscopy. Results: UV-VIS spectroscopy measurements indicate that ionizing radiation induces the polymerization of diacetylenes incorporated in the microbubble shell. The polymer yield strongly depends on the shell composition and the radiation-dose. The acoustic response is inherently related to the visco-elastic properties of the shell and is strongly influenced by the shell composition and the physico-chemical changes in the environment. Conclusion: Diacetylene-containing microbubbles are

  11. NOTE: The effect of user-defined variables on dosimetry consistency in Gamma Knife planning

    NASA Astrophysics Data System (ADS)

    Ma, Lijun; Chin, Lawrence S.; Shepard, David; Amin, Pradip; Slawson, Robert

    2000-05-01

    We report a dosimetric variation caused by a user-defined variable for the Leksell Gamma Knife planning system. Treatment plans of 31 randomly selected patients were studied retrospectively to determine the dosimetric effects in the dose prescription and computation as a result of dose matrix positioning in the Leksell Gamma Plan (LGP, Version 4.12). Phantom studies with ion chamber measurements were carried out to validate the accuracy of the computation results. An average overdose of 2% was found due to the variations in the user-defined dose matrix position for the studied cases. In the extreme, the overdose value was as high as 5% with an over-treatment time exceeding 2 min. The phantom measurements were found to agree with the LGP calculation within 0.5%. An adaptive method was developed and demonstrated in this study to eliminate such dosimetry variations.

  12. Biological dosimetry to determine the UV radiation climate inside the MIR station and its role in vitamin D biosynthesis

    NASA Astrophysics Data System (ADS)

    Rettberg, P.; Horneck, G.; Zittermann, A.; Heer, M.

    1998-11-01

    The vitamin D synthesis in the human skin, is absolutely dependent on UVB radiation. Natural UVB from sunlight is normally absent in the closed environment of a space station like MIR. Therefore it was necessary to investigate the UV radiation climate inside the station resulting from different lamps as well as from occasional solar irradiation behind a UV-transparent quartz window. Biofilms, biologically weighting and integrating UV dosimeters successfully applied on Earth (e.g. in Antarctica) and in space (D-2, Biopan I) were used to determine the biological effectiveness of the UV radiation climate at different locations in the space station. Biofilms were also used to determine the personal UV dose of an individual cosmonaut. These UV data were correlated with the concentration of vitamin D in the cosmonaut's blood and the dietary vitamin D intake. The results showed that the UV radiation climate inside the Mir station is not sufficient for an adequate supply of vitamin D, which should therefore be secured either by vitamin D supplementat and/or by the regular exposure to special UV lamps like those in sun-beds. The use of natural solar UV radiation through the quartz window for `sunbathing' is dangerous and should be avoided even for short exposure periods.

  13. 1986 Annual Conference on Nuclear and Space Radiation Effects, 23rd, Providence, RI, July 21-23, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Ellis, Thomas D. (Editor)

    1986-01-01

    The present conference on the effects of nuclear and space radiation on electronic hardware gives attention to topics in the basic mechanisms of radiation effects, dosimetry and energy-dependent effects, electronic device radiation hardness assurance, SOI/SOS radiation effects, spacecraft charging and space radiation, IC radiation effects and hardening, single-event upset (SEU) phenomena and hardening, and EMP/SGEMP/IEMP phenomena. Specific treatments encompass the generation of interface states by ionizing radiation in very thin MOS oxides, the microdosimetry of meson energy deposited on 1-micron sites in Si, total dose radiation and engineering studies, plasma interactions with biased concentrator solar cells, the transient imprint memory effect in MOS memories, mechanisms leading to SEU, and the vaporization and breakdown of thin columns of water.

  14. An evaluation of the external radiation exposure dosimetry and calculation of maximum permissible concentration values for airborne materials containing 18F, 15O, 13N, 11C and 133Xe.

    PubMed

    Piltingsrud, H V; Gels, G L

    1985-11-01

    To better understand the dose equivalent (D.E.) rates produced by airborne releases of gaseous positron-emitting radionuclides under various conditions of cloud size, a study of the external radiation exposure dosimetry of these radionuclides, as well as negatron, gamma and x-ray emitting 133Xe, was undertaken. This included a calculation of the contributions to D.E. as a function of cloud radii, at tissue depths of 0.07 mm (skin), 3 mm (lens of eye) and 10 mm (whole body) from both the particulate and photon radiations emitted by these radionuclides. Estimates of maximum permissible concentration (MPC) values were also calculated based on the calculated D.E. rates and current regulations for personnel radiation protection (CFR84). Three continuous air monitors, designed for use with 133Xe, were evaluated for applications in monitoring air concentrations of the selected positron emitters. The results indicate that for a given radionuclide and for a cloud greater than a certain radius, personnel radiation dosimeters must respond acceptably to only the photon radiations emitted by the radionuclide to provide acceptable personnel dosimetry. For clouds under that radius, personnel radiation dosimeters must also respond acceptably to the positron or negatron radiations to provide acceptable personnel dosimetry. It was found that two out of the three air concentration monitors may be useful for monitoring air concentrations of the selected positron emitters.

  15. Personalized image-based radiation dosimetry for routine clinical use in peptide receptor radionuclide therapy: pretherapy experience.

    PubMed

    Celler, Anna; Grimes, Joshua; Shcherbinin, Sergey; Piwowarska-Bilska, Hanna; Birkenfeld, Bozena

    2013-01-01

    Patient-specific dose calculations are not routinely performed for targeted radionuclide therapy procedures, partly because they are time consuming and challenging to perform. However, it is becoming widely recognized that a personalized dosimetry approach can help plan treatment and improve understanding of the dose-response relationship. In this chapter, we review the procedures and essential elements of an accurate internal dose calculation and propose a simplified approach that is aimed to be practical for use in a busy nuclear medicine department.

  16. Effect of brachytherapy technique and patient characteristics on cervical cancer implant dosimetry

    SciTech Connect

    Anker, Christopher J.; O'Donnell, Kristen; Boucher, Kenneth M.; Gaffney, David K.

    2013-01-01

    Our purpose was to evaluate the relationship between brachytherapy technique and patient characteristics on dose to organs-at-risk (OARs) in patients undergoing high dose rate (HDR) brachytherapy for cervical cancer. From 1998 to 2008, 31 patients with cervical cancer with full dosimetric data were identified who received definitive external-beam radiation and HDR brachytherapy with tandem and ovoid applicators. Doses were recorded at point A, the International Commission on Radiation Units and Measurements (ICRU)-38 rectal point, the ICRU-38 bladder point, the vaginal surface, and the pelvic sidewall. Generalized estimating equations were used to determine the significance of changes in OAR to point A dose ratios with differences in brachytherapy technique or patient characteristics. Patients underwent a median of 5 brachytherapy procedures (range, 3 to 5), with a total of 179 procedures for 31 patients. For all brachytherapy treatments, the average ratios between the doses for the rectal, bladder, vaginal surface, and pelvic sidewall reference points to those at point A were 0.49, 0.59, 1.15, and 0.17, respectively. In general, decreased OAR dose was associated with a lower stage, younger age, increased ovoid size, increased tandem length, and earlier implant number. Increased tandem curvature significantly increased bladder dose and decreased rectal dose. Intravenous anesthesia usage was not correlated with improved dosimetry. This study allowed identification of patient and procedure characteristics influencing OAR dosing. Although the advent of 3-dimensional (3D) image-guided brachytherapy will bring new advances in treatment optimization, the actual technique involved at the time of the brachytherapy implant procedure will remain important.

  17. Heavy-ion dosimetry

    SciTech Connect

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained.

  18. WAZA-ARI: computational dosimetry system for X-ray CT examinations. I. Radiation transport calculation for organ and tissue doses evaluation using JM phantom.

    PubMed

    Takahashi, Fumiaki; Sato, Kaoru; Endo, Akira; Ono, Koji; Yoshitake, Takayasu; Hasegawa, Takayuki; Katsunuma, Yasushi; Ban, Nobuhiko; Kai, Michiaki

    2011-07-01

    A web system of WAZA-ARI is being developed to assess radiation dose to a patient in a computed tomography examination. WAZA-ARI uses one of organ dose data sets corresponding to the options selected by a user to describe examination conditions. The organ dose data have been derived by the Particle and Heavy Ion Transport code system, combined with Japanese male (JM) phantom. The configuration of JM phantom is adjusted to the averaged JM adult. In addition, a new phantom is introduced by removing arms from JM phantom to take into account for dose calculations in torso examinations. Some of the organ doses by JM phantom without arms are compared with results obtained by using a MIRD-type phantom, which was applied in some previous dosimetry systems.

  19. Effects of gamma radiation on perfluorinated polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Stajanca, Pavol; Mihai, Laura; Sporea, Dan; Neguţ, Daniel; Sturm, Heinz; Schukar, Marcus; Krebber, Katerina

    2016-08-01

    The paper presents the first complex study of gamma radiation effects on a low-loss perfluorinated polymer optical fiber (PF-POF) based on Cytop® polymer. Influence of gamma radiation on fiber's optical, mechanical and climatic performance is investigated. The radiation-induced attenuation (RIA) in the visible and near-infrared region (0.4 μm-1.7 μm) is measured and its origins are discussed. Besides attenuation increase, radiation is also shown to decrease the thermal degradation stability of the fiber and to increase its susceptibility to water. With regard to complex fiber transmission performance upon irradiation, the optimal operation wavelength region of PF-POF-based systems intended for use in radiation environments is determined to be around 1.1 μm. On the other hand, the investigated fiber holds potential for low-cost RIA-based optical fiber dosimetry applications with sensitivity as high as 260 dBm-1/kGy in the visible region.

  20. EURAMET.RI(I)-S7 comparison of alanine dosimetry systems for absorbed dose to water measurements in gamma- and x-radiation at radiotherapy levels

    NASA Astrophysics Data System (ADS)

    Garcia, Tristan; Anton, Mathias; Sharpe, Peter

    2012-01-01

    The National Physical Laboratory (NPL), the Physikalisch-Technische Bundesanstalt (PTB) and the Laboratoire National Henri Becquerel (LNE-LNHB) are involved in the European project 'External Beam Cancer Therapy', a project of the European Metrology Research Programme. Within this project, the electron paramagnetic resonance (EPR)/alanine dosimetric method has been chosen for performing measurements in small fields such as those used in IMRT (intensity modulated radiation therapy). In this context, these three National Metrology Institutes (NMI) wished to compare the result of their alanine dosimetric systems (detector, modus operandi etc) at radiotherapy dose levels to check their consistency. This EURAMET.RI(I)-S7 comparison has been performed with the support of the Bureau International des Poids et Mesures (BIPM) which collected and distributed the results as a neutral organization, to ensure the comparison was 'blind'. Irradiations have been made under reference conditions by each laboratory in a 60Co beam and in an accelerator beam (10 MV or 12 MV) in a water phantom of 30 cm × 30 cm × 30 cm in a square field of 10 cm × 10 cm at the reference depth. Irradiations have been performed at known values of absorbed dose to water (Dw) within 10% of nominal doses of 5 Gy and 10 Gy, i.e. between 4.5 Gy and 5.5 Gy and between 9 Gy and 11 Gy, respectively. Each participant read out their dosimeters and assessed the doses using their own protocol (calibration curve, positioning device etc) as this comparison aims at comparing the complete dosimetric process. The results demonstrate the effectiveness of the EPR/alanine dosimetry systems operated by National Metrology Institutes as a method of assuring therapy level doses with the accuracy required. The maximum deviation in the ratio of measured to applied dose is less than 1%. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key

  1. Optical tomography for radiation dosimetry and treatment plan verification by videographic imaging of ferrous sulphate xylenol orange gelatin dosimeters

    NASA Astrophysics Data System (ADS)

    Wolodzko, John George

    1999-08-01

    Recent advances in computer and radiation delivery technologies have led to new and complex methods in radiotherapy which involve the deposition of radiation in the human body at high doses or dose rates. Both these and more traditional approaches to radiotherapy would benefit from a means to provide detailed information about the distribution of radiation dose in multiple dimensions for the purposes of treatment planning and verification. Several investigations have been carried out over the past few years to evaluate the utility of various formulations of ferrous sulphate, or Fricke, get dosimeters in the measurement of radiation fields. These have been proposed to be of particular value in the determination of three-dimensional radiation dose distributions associated with emerging and complex approaches to cancer treatment such as `gamma knife', pencil beam, stereotactic, or conformal radiotherapies. Hitherto, the emphasis in the majority of approaches has been on measuring the difference in effect on paramagnetic properties between the initial ferrous ion concentration of the solution, and the ferric ions which a produced following irradiation. Although many positive and confirmative results have been published regarding this method, it relies on access to clinical MRI units for imaging the irradiated gel; an expensive and logistical challenge for the majority of potential users. We report here a study carried out to determine the feasibility of analyzing one form of this dosimeter through tomographic reconstruction of two-dimensional optical projections acquired using an ordinary, diffuse light source, video camera, standard tomographic reconstruction software, and other components designed and/or assembled by the author. Qualitative, quantitative and statistical analyses yield highly linear and reproducible results with r2 from regression analyses typically on the order of 0.98. Comparisons of the measured dose distribution patterns to the treatment plan

  2. Radiation effects on bacterial cells

    NASA Technical Reports Server (NTRS)

    Powers, E. L.

    1968-01-01

    Study reveals the physicochemical and biochemical mechanisms which alter or modify the effects of high-energy radiation on living cells. An in-depth discussion is presented emphasizing the importance of optimizing bacterial treatment with glycerol.

  3. Quantification of gamma-H2AX foci in human lymphocytes: a method for biological dosimetry after ionizing radiation exposure.

    PubMed

    Roch-Lefèvre, Sandrine; Mandina, Tania; Voisin, Pascale; Gaëtan, Gruel; Mesa, Jorge Ernesto Gonzàlez; Valente, Marco; Bonnesoeur, Pierre; García, Omar; Voisin, Philippe; Roy, Laurence

    2010-08-01

    Recent studies have suggested that visualization of gamma-H2AX nuclear foci can be used to estimate exposure to very low doses of ionizing radiation. Although this approach is widely used for various purposes, its suitability for individual human biodosimetry has not yet been assessed. We therefore conducted such an assessment with the help of available software for observing and automatically scoring gamma-H2AX foci. The presence of gamma-H2AX foci was evaluated in human peripheral blood lymphocytes exposed ex vivo to gamma rays in a dose range of 0.02 to 2 Gy. We analyzed the response of gamma-H2AX to ionizing radiation in relation to dose, time after exposure, and individual variability. We constructed dose-effect calibration curves at 0.5, 8 and 16 h after exposure and evaluated the threshold of detection of the technique. The results show the promise of automatic gamma-H2AX scoring for a reliable assessment of radiation doses in a dose range of 0.6 Gy to 2 Gy up to 16 h after exposure. This gamma-H2AX-based assay may be useful for biodosimetry, especially for triage to distinguish promptly among individuals the ones who have received negligible doses from those with significantly exposures who are in need of immediate medical attention. However, additional in vivo experiments are needed for validation.

  4. Ultraviolet radiation effects

    NASA Technical Reports Server (NTRS)

    Slemp, Wayne S.

    1989-01-01

    Solar ultraviolet testing was not developed which will provide highly accelerated (20 to 50X) exposures that correlate to flight test data. Additional studies are required to develop an exposure methodology which will assure that accelerated testing can be used for qualification of materials and coatings for long duration space flight. Some conclusions are listed: Solar UV radiation is present in all orbital environments; Solar UV does not change in flux with orbital altitude; UV radiation can degrade most coatings and polymeric films; Laboratory UV simulation methodology is needed for accelerated testing to 20 UV solar constants; Simulation of extreme UV (below 200 nm) is needed to evaluate requirements for EUV in solar simulation.

  5. Radiation Effects in Zircon

    SciTech Connect

    Ewing, Rodney C.; Meldrum, Alkiviathes; Wang, L. M.; Weber, William J.; Corrales, Louis R.

    2003-12-11

    The widespread distribution of zircon in the continental crust, its tendency to concentrate trace elements, particularly lanthanides and actinides, its use in age-dating, and its resistance to chemical and physical degradation have made zircon the most important accessory mineral in geologic studies. Because zircon is highly refractory, it also has important industrial applications, including its use as a lining material in high-temperature furnaces. However, during the past decade, zircon has also been proposed for advanced technology applications, such as a durable material for the immobilization of plutonium or, when modified by ion-beam irradiation, as an optic waveguide material. In all of these applications, the change in properties as a function of increasing radiation dose is of critical importance. In this chapter, we summarize the state-of-knowledge on the radiation damage accumulation process in zircon.

  6. International intercomparison for criticality dosimetry: the case of biological dosimetry.

    PubMed

    Roy, L; Buard, V; Delbos, M; Durand, V; Paillole, N; Grégoire, E; Voisin, P

    2004-01-01

    The Institute of Radiation Protection and Nuclear Safety (IRSN) organized a biological dosimetry international intercomparison with the purpose of comparing (i) dicentrics yield produced in human lymphocytes; (ii) the gamma and neutron dose estimate according to the corresponding laboratory calibration curve. The experimental reactor SILENE was used with different configurations: bare source 4 Gy, lead shield 1 and 2 Gy and a 60Co source 2 Gy. An increasing variation of dicentric yield per cell was observed between participants when there were more damages in the samples. Doses were derived from the observed dicentric rates according to the dose-effect relationship provided by each laboratory. Differences in dicentric rate values are more important than those in the corresponding dose values. The doses obtained by the participants were found to be in agreement with the given physical dose within 20%. The evaluation of the respective gamma and neutron dose was achieved only by four laboratories, with some small variations among them.

  7. Neutron personnel dosimetry

    SciTech Connect

    Griffith, R.V.

    1981-06-16

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments. (ACR)

  8. Radiation-induced cardiovascular effects

    NASA Astrophysics Data System (ADS)

    Tapio, Soile

    Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.

  9. Dosimetry for Radiopharmaceutical Therapy

    PubMed Central

    Sgouros, George; Hobbs, Robert F.

    2014-01-01

    Radiopharmaceutical therapy (RPT) involves the use of radionuclides that are either conjugated to tumor-targeting agents (eg, nanoscale constructs, antibodies, peptides, and small molecules) or concentrated in tissue through natural physiological mechanisms that occur predominantly in neoplastic or otherwise targeted cells (eg, Graves disease). The ability to collect pharmacokinetic data by imaging and use this to perform dosimetry calculations for treatment planning distinguishes RPT from other systemic treatment modalities. Treatment planning has not been widely adopted, in part, because early attempts to relate dosimetry to outcome were not successful. This was partially because a dosimetry methodology appropriate to risk evaluation rather than efficacy and toxicity was being applied to RPT. The weakest links in both diagnostic and therapeutic dosimetry are the accuracy of the input and the reliability of the radiobiological models used to convert dosimetric data to the relevant biologic end points. Dosimetry for RPT places a greater demand on both of these weak links. To date, most dosimetric studies have been retrospective, with a focus on tumor dose-response correlations rather than prospective treatment planning. In this regard, transarterial radioembolization also known as intra-arterial radiation therapy, which uses radiolabeled (90Y) microspheres of glass or resin to treat lesions in the liver holds much promise for more widespread dosimetric treatment planning. The recent interest in RPT with alpha-particle emitters has highlighted the need to adopt a dosimetry methodology that specifically accounts for the unique aspects of alpha particles. The short range of alpha-particle emitters means that in cases in which the distribution of activity is localized to specific functional components or cell types of an organ, the absorbed dose will be equally localized and dosimetric calculations on the scale of organs or even voxels (~5 mm) are no longer sufficient

  10. Development of Fast and Highly Efficient Gas Ionization Chamber For Patient Imaging and Dosimetry in Radiation Therapy

    SciTech Connect

    R. Hinderler; H. Keller; T.R. Mackie; M.L. Corradini

    2003-09-08

    In radiation therapy of cancer, more accurate delivery techniques spur the need for improved patient imaging during treatment. To this purpose, the megavoltage radiation protocol that is used for treatment is also used for imaging.

  11. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2007-03-12

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Minor

  12. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2011-04-04

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  13. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2010-04-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  14. Evaluating noncancer effects of trichloroethylene: dosimetry, mode of action, and risk assessment.

    PubMed Central

    Barton, H A; Clewell, H J

    2000-01-01

    Alternatives for developing chronic exposure limits for noncancer effects of trichloroethylene (TCE) were evaluated. These alternatives were organized within a framework for dose-response assessment--exposure:dosimetry (pharmacokinetics):mode of action (pharmacodynamics): response. This framework provides a consistent structure within which to make scientific judgments about available information, its interpretation, and use. These judgments occur in the selection of critical studies, internal dose metrics, pharmacokinetic models, approaches for interspecies extrapolation of pharmacodynamics, and uncertainty factors. Potentially limiting end points included developmental eye malformations, liver effects, immunotoxicity, and kidney toxicity from oral exposure and neurological, liver, and kidney effects by inhalation. Each end point was evaluated quantitatively using several methods. Default analyses used the traditional no-observed adverse effect level divided by uncertainty factors and the benchmark dose divided by uncertainty factors methods. Subsequently, mode-of-action and pharmacokinetic information were incorporated. Internal dose metrics were estimated using a physiologically based pharmacokinetic (PBPK) model for TCE and its major metabolites. This approach was notably useful with neurological and kidney toxicities. The human PBPK model provided estimates of human exposure doses for the internal dose metrics. Pharmacodynamic data or default assumptions were used for interspecies extrapolation. For liver and neurological effects, humans appear no more sensitive than rodents when internal dose metrics were considered. Therefore, the interspecies uncertainty factor was reduced, illustrating that uncertainty factors are a semiquantitative approach fitting into the organizational framework. Incorporation of pharmacokinetics and pharmacodynamics can result in values that differ significantly from those obtained with the default methods. PMID:10807562

  15. Assessment and Implications of Scattered Microbeam and Broadbeam Synchrotron Radiation for Bystander Effect Studies.

    PubMed

    Lobachevsky, Pavel; Ivashkevich, Alesia; Forrester, Helen B; Stevenson, Andrew W; Hall, Chris J; Sprung, Carl N; Martin, Olga A

    2015-12-01

    Synchrotron radiation is an excellent tool for investigating bystander effects in cell and animal models because of the well-defined and controllable configuration of the beam. Although synchrotron radiation has many advantages for such studies compared to conventional radiation, the contribution of dose exposure from scattered radiation nevertheless remains a source of concern. Therefore, the influence of scattered radiation on the detection of bystander effects induced by synchrotron radiation in biological in vitro models was evaluated. Radiochromic XRQA2 film-based dosimetry was employed to measure the absorbed dose of scattered radiation in cultured cells at various distances from a field exposed to microbeam radiotherapy and broadbeam X-ray radiation. The level of scattered radiation was dependent on the distance, dose in the target zone and beam mode. The number of γ-H2AX foci in cells positioned at the same target distances was measured and used as a biodosimeter to evaluate the absorbed dose. A correlation of absorbed dose values measured by the physical and biological methods was identified. The γ-H2AX assay successfully quantitated the scattered radiation in the range starting from 10 mGy and its contribution to the observed radiation-induced bystander effect.

  16. Analysis of current assessments and perspectives of ESR tooth dosimetry for radiation dose reconstruction of the population residing near the Semipalatinsk nuclear test site.

    PubMed

    Romanyukha, Alex; Schauer, David A; Malikov, Yurii K

    2006-02-01

    Between 1949 and 1989 the Semipalatinsk nuclear test site (SNTS), an area of 19,000 square km in northeastern Kazakhstan, was the location of over 400 nuclear test explosions with a total explosive energy of 6.6 Mt TNT (trinitrotoluene or trotyl) equivalent. It is estimated that the bulk of the radiation exposure to the population resulted from three tests, conducted in 1949, 1951, and 1953 although estimations of radiation doses received by the local population have varied significantly. Analysis of the published ESR dose reconstruction results for residents of the villages near the SNTS show that they do not correlate well with other methods of dose assessment (e.g. model dose calculation and thermo luminescence dosimetry (TLD) in bricks). The most significant difference in dose estimations was found for the population of Dolon, which was exposed as result of the first Soviet nuclear test in 1949. Published results of ESR measurements in tooth enamel are considerably lower than other dose estimations. Detailed analysis of these results is provided and a possible explanation for this discrepancy and ways to eliminate it are suggested.

  17. Quantum dosimetry and online visualization of X-ray and charged particle radiation in commercial aircraft at operational flight altitudes with the pixel detector Timepix

    NASA Astrophysics Data System (ADS)

    Granja, Carlos; Pospisil, Stanislav

    2014-07-01

    We investigate the application of the hybrid semiconductor pixel detector Timepix for precise characterization, quantum sensitivity dosimetry and visualization of the charged particle radiation and X-ray field inside commercial aircraft at operational flight altitudes. The quantum counting capability and granularity of Timepix provides the composition and spectral-characteristics of the X-ray and charged-particle field with high sensitivity, wide dynamic range, high spatial resolution and particle type resolving power. For energetic charged particles the direction of trajectory and linear energy transfer can be measured. The detector is operated by the integrated readout interface FITPix for power, control and data acquisition together with the software package Pixelman for online visualization and real-time data processing. The compact and portable radiation camera can be deployed remotely being controlled simply by a laptop computer. The device performs continuous monitoring and accurate time-dependent measurements in wide dynamic range of particle fluxes, deposited energy, absorbed dose and equivalent dose rates. Results are presented for in-flight measurements at altitudes up to 12 km in various flights selected in the period 2006-2013.

  18. SU-F-18C-09: Assessment of OSL Dosimeter Technology in the Validation of a Monte Carlo Radiation Transport Code for CT Dosimetry

    SciTech Connect

    Carver, D; Kost, S; Pickens, D; Price, R; Stabin, M

    2014-06-15

    Purpose: To assess the utility of optically stimulated luminescent (OSL) dosimeter technology in calibrating and validating a Monte Carlo radiation transport code for computed tomography (CT). Methods: Exposure data were taken using both a standard CT 100-mm pencil ionization chamber and a series of 150-mm OSL CT dosimeters. Measurements were made at system isocenter in air as well as in standard 16-cm (head) and 32-cm (body) CTDI phantoms at isocenter and at the 12 o'clock positions. Scans were performed on a Philips Brilliance 64 CT scanner for 100 and 120 kVp at 300 mAs with a nominal beam width of 40 mm. A radiation transport code to simulate the CT scanner conditions was developed using the GEANT4 physics toolkit. The imaging geometry and associated parameters were simulated for each ionization chamber and phantom combination. Simulated absorbed doses were compared to both CTDI{sub 100} values determined from the ion chamber and to CTDI{sub 100} values reported from the OSLs. The dose profiles from each simulation were also compared to the physical OSL dose profiles. Results: CTDI{sub 100} values reported by the ion chamber and OSLs are generally in good agreement (average percent difference of 9%), and provide a suitable way to calibrate doses obtained from simulation to real absorbed doses. Simulated and real CTDI{sub 100} values agree to within 10% or less, and the simulated dose profiles also predict the physical profiles reported by the OSLs. Conclusion: Ionization chambers are generally considered the standard for absolute dose measurements. However, OSL dosimeters may also serve as a useful tool with the significant benefit of also assessing the radiation dose profile. This may offer an advantage to those developing simulations for assessing radiation dosimetry such as verification of spatial dose distribution and beam width.

  19. Radiation effects on human heredity.

    PubMed

    Nakamura, Nori; Suyama, Akihiko; Noda, Asao; Kodama, Yoshiaki

    2013-01-01

    In experimental organisms such as fruit flies and mice, increased frequencies in germ cell mutations have been detected following exposure to ionizing radiation. In contrast, there has been no clear evidence for radiation-induced germ cell mutations in humans that lead to birth defects, chromosome aberrations, Mendelian disorders, etc. This situation exists partly because no sensitive and practical genetic marker is available for human studies and also because the number of people exposed to large doses of radiation and subsequently having offspring was small until childhood cancer survivors became an important study population. In addition, the genome of apparently normal individuals seems to contain large numbers of alterations, including dozens to hundreds of nonfunctional alleles. With the number of mutational events in protein-coding genes estimated as less than one per genome after 1 gray (Gy) exposure, it is unsurprising that genetic effects from radiation have not yet been detected conclusively in humans.

  20. Harmful effects of ultraviolet radiation

    SciTech Connect

    Not Available

    1989-07-21

    Tanning for cosmetic purposes by sunbathing or by using artificial tanning devices is widespread. The hazards associated with exposure to ultraviolet radiation are of concern to the medical profession. Depending on the amount and form of the radiation, as well as on the skin type of the individual exposed, ultraviolet radiation causes erythema, sunburn, photodamage (photoaging), photocarcinogenesis, damage to the eyes, alteration of the immune system of the skin, and chemical hypersensitivity. Skin cancers most commonly produced by ultraviolet radiation are basal and squamous cell carcinomas. There also is much circumstantial evidence that the increase in the incidence of cutaneous malignant melanoma during the past half century is related to increased sun exposure, but this has not been proved. Effective and cosmetically acceptable sunscreen preparations have been developed that can do much to prevent or reduce most harmful effects to ultraviolet radiation if they are applied properly and consistently. Other safety measures include (1) minimizing exposure to ultraviolet radiation, (2) being aware of reflective surfaces while in the sun, (3) wearing protective clothing, (4) avoiding use of artificial tanning devices, and (5) protecting infants and children.

  1. Photostimulable Storage Phosphor Dosimetry

    NASA Astrophysics Data System (ADS)

    Frye, Douglas Mahaffey Danks

    The feasibility of employing alkaline earth sulfide based photostimulable storage phosphors for relative dosimetry in radiation oncology has been investigated. The dosimetric characteristics, radiologic characteristics, and spacial sensitivity of calcium sulfide and strontium sulfide based phosphors were determined. Dosimetric characteristics were explored by cavity theory calculation, Monte Carlo simulation, and physical measurement. Dosimetric characteristics obtained with cavity theory and Monte Carlo simulations agree well. The dose perturbation of the phosphor base materials were comparable to those produced by clinical dosimeter materials over the energy region employed in radiation oncology. Dose perturbation in regions downstream of the phosphor were measured with a variety of clinical dosimeters and compared with simulation results. The results of the measurements and simulations agreed within the uncertainty levels of the simulations and the measurements. Radiological characteristics of sensitivity, fading, dose response, dose rate response, and energy dependence of response were studied with an experimental phosphor output reader. Relative sensitivity was found to be dependent upon the mass thickness of phosphor layer. Fading was quantified for the calcium sulfide phosphor, with a half time of 2300 minutes. The strontium sulfide sample exhibited some fading, however, the regression lines yielded low correlation coefficients. A linear dose response over the range of doses employed in radiation oncology was obtained for both phosphors. No significant dose rate dependence of response was measured for the phosphors. The phosphor's energy dependence of response paralleled the dose perturbation relative to water predicted by cavity theory and simulations. Spatial sensitivity was demonstrated with an experimental phosphor scanner. The phosphors exhibited spatial sensitivity, however, infrared scattering/piping in the transparent substrate appeared to cause

  2. Annual Conference on Nuclear and Space Radiation Effects, 15th, University of New Mexico, Albuquerque, N. Mex., July 18-21, 1978, Proceedings

    NASA Technical Reports Server (NTRS)

    Simons, M.

    1978-01-01

    Radiation effects in MOS devices and circuits are considered along with radiation effects in materials, space radiation effects and spacecraft charging, SGEMP, IEMP, EMP, fabrication of radiation-hardened devices, radiation effects in bipolar devices and circuits, simulation, energy deposition, and dosimetry. Attention is given to the rapid anneal of radiation-induced silicon-sapphire interface charge trapping, cosmic ray induced errors in MOS memory cells, a simple model for predicting radiation effects in MOS devices, the response of MNOS capacitors to ionizing radiation at 80 K, trapping effects in irradiated and avalanche-injected MOS capacitors, inelastic interactions of electrons with polystyrene, the photoelectron spectral yields generated by monochromatic soft X radiation, and electron transport in reactor materials.

  3. Radiation effects program

    NASA Astrophysics Data System (ADS)

    1985-09-01

    No existing LINAC Based Beam Heating facility comes within a factor of ten of the needs of a high heating rate thermodynamic properties research facility. The facility could be built at the Naval Research Lab. for a cost in the neighborhood of 2 million dollars. The 10 MeV electron beam would not produce any serious radioactivity but would provide unprecedented beam power for such other applications as food processing, sewer treatment, materials curing, radiation hardness assurance, etc. One can always achieve lower current densities by scattering the beam and moving the device under test further away from the scatterer. In this case one must rely on the TLD readings to indicate the dose rate at the point of interest. For general utility with the beam covering about four TLD's fairly evenly one can claim that the NRL LINAC can produce a maximum dose rate of about 6 x 10 to the 10th power rads (Si) per second for a pulse length of 1.5 microseconds, and about 1.4 x 10 to the 11th power rads (Si) per second in a 50 nanosecond pulse. In both cases the beam area is about 0.4 square centimeters.

  4. Radiation effects in ceramics

    NASA Astrophysics Data System (ADS)

    Hobbs, Linn W.; Clinard, Frank W.; Zinkle, Steven J.; Ewing, Rodney C.

    1994-10-01

    Ceramics represent a large class of solids with a wide spectrum of applicability, whose structures range from simple to complex, whose bonding runs from highly ionic to almost entirely covalent and, in some cases, partially metallic, and whose band structures yield wide-gap insulators, narrow-gap semiconductors or even superconductors. These solids exhibit responses to irradiation which are more complex than those for metals. In ceramic materials, atomic displacements can be produced by direct momentum transfer to often more than one distinguishable sublattice, and in some cases radiolytically by electronic excitations, and result in point defects which are in general not simple. Radiation-induced defect interaction, accumulation and aggregation modes differ significantly from those found in metals. Amorphization is a frequent option in response to high-density defect perturbation and is strongly related to structural topology. These fundamental responses to irradiation result in significant changes to important applicable properties, such as strength, toughness, electrical and thermal conductivities, dielectric response and optical behavior. The understanding of such phenomena is less well-understood than the simple responses of metals but is being increasingly driven by critical applications in fusion energy production, nuclear waste disposal and optical communications.

  5. Radiation effect on polyesters

    NASA Astrophysics Data System (ADS)

    Mitomo, Hiroshi; Watanabe, Yuhei; Yoshii, Fumio; Makuuchi, Keizo

    1995-08-01

    Poly(3-hydroxybutyrate)(PHB) and its copolymer poly(3-hydroxybutyrate-3-hydroxyvalerate) [P(HB-HV)] were irradiated with γ-rays in air or vacuum. Polymer chain scission occurred and resulted in depression of melting points ( Tm), glass-transition temperatures ( Tg) and number-average molecular weight ( overlineMn). Decrease in overlineMn of the sample irradiated in vacuum was smaller than that irradiated in air, implying introduction of crosslinking. The Tm and Tg of samples irradiated in air were inversely proportional to overlineMn. Their biodegradability was clearly promoted with decreasing overlineMn. Radiation grafting of methyl methacrylate (MMA) or 2-hydroxyethyl methacrylate (HEMA) was carried out by in-source polymerization. Degree of grafting ( Xg) increased as irradiation dose increased and leveled off around 5 kGy. The Xg of PHB grafted was lower than that of P(HB-HV) because of higher crystallinity of the former. Crosslinking between the grafted PMMA chains was easily formed. Biodegradability of both polymers steeply decreased by introduction of MMA grafting, while that of polymers grafted with HEMA increased at first because of improvement of wettability then steeply decreased with increasing Xg of HEMA.

  6. UV effects in tooth enamel and their possible application in EPR dosimetry with front teeth.

    PubMed

    Sholom, S; Desrosiers, M; Chumak, V; Luckyanov, N; Simon, S L; Bouville, A

    2010-02-01

    The effects of ultraviolet (UV) radiation on ionizing radiation biodosimetry were studied in human tooth enamel samples using the technique of electron paramagnetic resonance (EPR) in X-band. For samples in the form of grains, UV-specific EPR spectra were spectrally distinct from those produced by exposure to gamma radiation. From larger enamel samples, the UV penetration depth was determined to be in the 60-120 mum range. The difference in EPR spectra from UV exposure and from exposure to gamma radiation samples was found to be a useful marker of UV equivalent dose (defined as the apparent contribution to the gamma dose in mGy that results from UV radiation absorption) in tooth enamel. This concept was preliminarily tested on front teeth from inhabitants of the region of the Semipalatinsk Nuclear Test Site (Kazakhstan) who might have received some exposure to gamma radiation from the nuclear tests conducted there as well as from normal UV radiation in sunlight. The technique developed here to quantify and subtract the UV contribution to the measured tooth is currently limited to cumulative dose measurements with a component of UV equivalent dose equal to or greater than 300 mGy.

  7. UV EFFECTS IN TOOTH ENAMEL AND THEIR POSSIBLE APPLICATION IN EPR DOSIMETRY WITH FRONT TEETH

    PubMed Central

    Sholom, S.; Desrosiers, M.; Chumak, V.; Luckyanov, N.; Simon, S.L.; Bouville, A.

    2009-01-01

    The effects of ultraviolet (UV) radiation on ionizing radiation biodosimetry were studied in human tooth enamel samples using the technique of electron paramagnetic resonance (EPR) in X-band. For samples in the form of grains, UV-specific EPR spectra were spectrally distinct from that produced by exposure to gamma radiation. From larger enamel samples, the UV penetration depth was determined to be in the 60–120 μm range. The difference in EPR spectra from UV exposure and from exposure to gamma radiation samples was found to be a useful marker of UV equivalent dose (defined as the apparent contribution to the gamma dose in mGy that results from UV radiation absorption) in tooth enamel. This concept was preliminarily tested on front teeth from inhabitants of the region of the Semipalatinsk Nuclear Test Site (Kazakhstan) who might have received some exposure to gamma radiation from the nuclear tests conducted there as well as from normal UV radiation in sunlight. The technique developed here to quantify and subtract the UV contribution to the measured tooth is currently limited to cumulative dose measurements with a component of UV equivalent dose equal to or greater than 300 mGy. PMID:20065706

  8. Uranium Dispersion & Dosimetry Model.

    SciTech Connect

    MICHAEL,; MOMENI, H.

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for application to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.

  9. Fast neutron dosimetry

    SciTech Connect

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  10. Survivors and scientists: Hiroshima, Fukushima, and the Radiation Effects Research Foundation, 1975-2014.

    PubMed

    Lindee, Susan

    2016-04-01

    In this article, I reflect on the Radiation Effects Research Foundation and its ongoing studies of long-term radiation risk. Originally called the Atomic Bomb Casualty Commission (1947-1975), the Radiation Effects Research Foundation has carried out epidemiological research tracking the biomedical effects of radiation at Hiroshima and Nagasaki for almost 70 years. Radiation Effects Research Foundation scientists also played a key role in the assessment of populations exposed at Chernobyl and are now embarking on studies of workers at the Fukushima Daiichi Nuclear Power Plant. I examine the role of estimating dosimetry in post-disaster epidemiology, highlight how national identity and citizenship have mattered in radiation risk networks, and track how participants interpreted the relationships between nuclear weapons and nuclear energy. Industrial interests in Japan and the United States sought to draw a sharp line between the risks of nuclear war and the risks of nuclear power, but the work of the Radiation Effects Research Foundation (which became the basis of worker protection standards for the industry) and the activism of atomic bomb survivors have drawn these two nuclear domains together. This is so particularly in the wake of the Fukushima disaster, Japan's 'third atomic bombing'. The Radiation Effects Research Foundation is therefore a critical node in a complex global network of scientific institutions that adjudicate radiation risk and proclaim when it is present and when absent. Its history, I suggest, can illuminate some properties of modern disasters and the many sciences that engage with them.

  11. The Chernobyl experience in the area of retrospective dosimetry.

    PubMed

    Chumak, Vadim V

    2012-03-01

    The Chernobyl accident, which occurred on 26 April 1986 at a nuclear power plant located less than 150 km north of Kiev, was the largest nuclear accident to date. The unprecedented scale of the accident was determined not only by the amount of released activity, but also by the number of workers and of the general public involved, and therefore exposed to increased doses of ionising radiation. Due to the unexpected and large scale of the accident, dosimetry techniques and practices were far from the optimum; personal dosimetry of cleanup workers (liquidators) was not complete, and there were no direct measurements of the exposures of members of the public. As a result, an acute need for retrospective dose assessment was dictated by radiation protection and research considerations. In response, substantial efforts have been made to reconstruct doses for the main exposed cohorts, using a broad variety of newly developed methods: analytical, biological and physical (electron paramagnetic resonance spectroscopy of teeth, thermoluminescence of quartz) and modelling. This paper reviews the extensive experience gained by the National Research Center for Radiation Medicine, Academy of Medical Sciences, Ukraine in the field of retrospective dosimetry of large cohorts of exposed population and professionals. These dose reconstruction projects were implemented, in particular, in the framework of epidemiological studies, designed to follow-up the medical consequences of the Chernobyl accident and study health effects of ionizing radiation, particularly Ukrainian-American studies of cataracts and leukaemia among liquidators.

  12. All about FAX: a Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Khoury, H. J.; Vieira, J. W.; Loureiro, E. C. M.; Lima, V. J. M.; Lima, F. R. A.; Hoff, G.

    2004-12-01

    The International Commission on Radiological Protection (ICRP) has created a task group on dose calculations, which, among other objectives, should replace the currently used mathematical MIRD phantoms by voxel phantoms. Voxel phantoms are based on digital images recorded from scanning of real persons by computed tomography or magnetic resonance imaging (MRI). Compared to the mathematical MIRD phantoms, voxel phantoms are true to the natural representations of a human body. Connected to a radiation transport code, voxel phantoms serve as virtual humans for which equivalent dose to organs and tissues from exposure to ionizing radiation can be calculated. The principal database for the construction of the FAX (Female Adult voXel) phantom consisted of 151 CT images recorded from scanning of trunk and head of a female patient, whose body weight and height were close to the corresponding data recommended by the ICRP in Publication 89. All 22 organs and tissues at risk, except for the red bone marrow and the osteogenic cells on the endosteal surface of bone ('bone surface'), have been segmented manually with a technique recently developed at the Departamento de Energia Nuclear of the UFPE in Recife, Brazil. After segmentation the volumes of the organs and tissues have been adjusted to agree with the organ and tissue masses recommended by ICRP for the Reference Adult Female in Publication 89. Comparisons have been made with the organ and tissue masses of the mathematical EVA phantom, as well as with the corresponding data for other female voxel phantoms. The three-dimensional matrix of the segmented images has eventually been connected to the EGS4 Monte Carlo code. Effective dose conversion coefficients have been calculated for exposures to photons, and compared to data determined for the mathematical MIRD-type phantoms, as well as for other voxel phantoms.

  13. Consistency of external dosimetry in epidemiologic studies of nuclear workers

    SciTech Connect

    Fix, J.J.; Gilbert, E.S.

    1991-10-01

    To make the best use of available epidemiologic data in assessing risks from exposure to low-level radiation, it is important that biases and uncertainties in estimated doses be understood and documented. With this understanding, analyses of mortality data can be strengthened by including the use of correction factors where judged appropriate, excluding portions of the data where uncertainty in dose estimates is judged to be very large, and conducting sensitivity analyses to examine the effect of alternative assumptions about dosimetry errors and biases on results. It is hoped that the pooling of data from several epidemiologic studies and improved understanding of dosimetry will lead to better estimates of radiation risks. 10 refs., 4 tabs.

  14. Effect of environmental factors on film badge dosimetry readings of dental office personnel

    SciTech Connect

    Collett, W.K.; Kaugars, G.E.; Broga, D.W. )

    1990-12-01

    Inadvertent exposure of film badges to environmental factors may produce fogging of the film and yield higher radiation exposure readings. Common environmental factors in everyday living were studied to assess their effect on film badge readings. Only heat appeared to have any significant effect, because moisture, chemicals, pressure, cold temperature, and non-work-related electromagnetic radiation did not substantially alter film badge readings. Therefore not all unexplained high readings on personnel film badge reports may be due to heat or other common environmental factors evaluated in this study.

  15. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2010-01-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Maintenance and distribution of controlled hard copies of the

  16. Solid-State Personal Dosimetry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.

    2005-01-01

    This document is a web site page, and a data sheet about Personal protection (i.e., space suits) presented to the Radiation and Micrometeoroid Mitigation Technology Focus Group meeting. The website describes the work of the PI to improve solid state personal radiation dosimetry. The data sheet presents work on the active personal radiation detection system that is to provide real-time local radiation exposure information during EVA. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.

  17. Effect of Edema on Postimplant Dosimetry in Prostate Brachytherapy Using CT/MRI Fusion

    SciTech Connect

    Tanaka, Osamu Hayashi, Shinya; Matsuo, Masayuki; Nakano, Masahiro; Uno, Hiromi; Ohtakara, Kazuhiro; Miyoshi, Toshiharu; Deguchi, Takashi; Hoshi, Hiroaki

    2007-10-01

    Purpose: To investigate the time course of prostatic edema and the effect on the dose-volume histograms of the prostate for patients treated with brachytherapy. Methods and Materials: A total of 74 patients with prostate cancer were enrolled in this prospective study. A transrectal ultrasound-based preplan was performed 4 weeks before implantation and computed tomography/magnetic resonance imaging fusion-based postimplant dosimetry was performed on the day after implantation (Day 1) and 30 days after implantation (Day 30). The prostate volume, prostate volume covered by 100% of the prescription dose (V{sub 100}), and dose covering 90% of the prostate (D{sub 90}) were evaluated with prostatic edema over time. Results: Prostatic edema was greatest on Day 1, with the mean prostate volume 36% greater than the preplan transrectal ultrasound-based volume; it thereafter decreased over time. It was 9% greater than preplan volume on Day 30. The V{sub 100} increased 5.7% from Day 1 to Day 30, and the D{sub 90} increased 13.1% from Day 1 to Day 30. The edema ratio (postplan/preplan) on Day 1 of low-quality implants with a V{sub 100} of <80% was significantly greater than that of intermediate- to high-quality implants (>80% V{sub 100}; p = 0.0272). The lower V{sub 100} on Day 1 showed a greater increase from Day 1 to Day 30. A V{sub 100} on Day 1 of >92% is unlikely to increase >0% during the interval studied. Conclusion: Low-quality implants on Day 1 were highly associated with edema; however, such a low-quality implant on Day 1, with significant edema, tended to improve by Day 30. If a high-quality implant (V100 >92%) can be obtained on Day 1, a re-examination is no longer necessary.

  18. Radiation effects on video imagers

    NASA Astrophysics Data System (ADS)

    Yates, G. J.; Bujnosek, J. J.; Jaramillo, S. A.; Walton, R. B.; Martinez, T. M.; Black, J. P.

    Radiation sensitivity of several photoconductive, photoemissive, and solid state silicon-based video imagers was measured by analyzing stored photocharge induced by irradiation with continuous and pulsed sources of high energy photons and neutrons. Transient effects as functions of absorbed dose, dose rate, fluences, and ionizing particle energy are presented.

  19. Radiation effects on video imagers

    NASA Astrophysics Data System (ADS)

    Yates, G. J.; Bujnosek, J. J.; Jaramillo, S. A.; Walton, R. B.; Martinez, T. M.

    1986-02-01

    Radiation senstivity of several photoconductive, photoemissive, and solid state silicon-based video imagers was measured by analysing stored photo-charge induced by irradiation with continuous and pulsed sources of high energy photons and neutrons. Transient effects as functions of absorbed dose, dose rate, fluences, and ionizing particle energy are presented.

  20. 10 CFR 35.50 - Training for Radiation Safety Officer.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... radioactivity, radiation biology, and radiation dosimetry; or (2)(i) Hold a master's or doctor's degree in... the use and measurement of radioactivity; (D) Radiation biology; and (E) Radiation dosimetry; and...

  1. 10 CFR 35.50 - Training for Radiation Safety Officer.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... radioactivity, radiation biology, and radiation dosimetry; or (2)(i) Hold a master's or doctor's degree in... to the use and measurement of radioactivity; (D) Radiation biology; and (E) Radiation dosimetry;...

  2. 10 CFR 35.50 - Training for Radiation Safety Officer.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... radioactivity, radiation biology, and radiation dosimetry; or (2)(i) Hold a master's or doctor's degree in... to the use and measurement of radioactivity; (D) Radiation biology; and (E) Radiation dosimetry;...

  3. 10 CFR 35.50 - Training for Radiation Safety Officer.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... radioactivity, radiation biology, and radiation dosimetry; or (2)(i) Hold a master's or doctor's degree in... the use and measurement of radioactivity; (D) Radiation biology; and (E) Radiation dosimetry; and...

  4. SU-C-12A-04: Diagnostic Imaging Research Using Decedents as a Proxy for the Living: Are Radiation Dosimetry and Tissue Property Measurements Affected by Post-Mortem Changes?

    SciTech Connect

    Sandoval, D; Heintz, P; Weber, W; Melo, D; Adolphi, N; Hatch, P

    2014-06-01

    Purpose: Radiation dose (RD) from diagnostic imaging is a growing public health concern. Implanting dosimeters is a more accurate way to assess organ dose, relative to commonly used mathematical estimations. However, performing accurate dosimetry using live subjects is hindered by patient motion and safety considerations, which limit the RD and placement of implanted dosimeters. Performing multiple scans on the same subject would be the ideal way to assess the impact of dose reduction on image quality; however, performing multiple non-standard-of-care scans on live subjects for dosimetry and image quality measurements is generally prohibited by IRB committees. Our objective is to assess whether RD and tissue property (TP) measurements in post-mortem (PM) subjects are sufficiently similar to those in live subjects to justify the use of deceased subjects in future dosimetry and image quality studies. Methods: 4 MOSFET radiation dosimeters were placed enterically in each subject (2 sedated Rhesus Macaques) to measure the RD at 4 levels (carina, lung, heart, and liver) during CT scanning. The CT protocol was performed ante-mortem (AM) and 2 and 3 hours PM. For TP analysis, additional scans were taken at 24 hours PM. To compare AM and PM TP, regions-of-interest were drawn on selected organs and the average CT density with standard deviation (in units of HU) were taken; additionally, visual comparisons of images were made at each PM interval. Results: No significant difference was observed in 8 of 9 measurements comparing AM and PM RD. Only one measurement (liver of the first subject) showed a significant difference (7% lower on PM measurement), possibly due to subject re-positioning. Initial TP visual and quantitative analyses show little to no change PM. Conclusion: Our results suggest that realistic radiation dosimetry and image quality measurements based on tissue properties can be performed reliably on recently deceased subjects.

  5. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1997-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size resolved aerosol microphysics and chemistry. Both profiles included pollution haze layer from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core.

  6. Radiation Effects in Graphite

    SciTech Connect

    Burchell, Timothy D

    2012-01-01

    The requirements for a solid moderator are reviewed and the reasons that graphite has become the solid moderator of choice discussed. The manufacture and properties of some currently available near-isotropic and isotropic grades are described. The major features of a graphite moderated reactors are briefly outlined. Displacement damage and the induced structural and dimensional changes in graphite are described. Recent characterization work on nano-carbons and oriented pyrolytic graphites that have shed new light on graphite defect structures are reviewed, and the effect of irradiation temperature on the defect structures is highlighted. Changes in the physical properties of nuclear graphite caused by neutron irradiation are reported. Finally, the importance of irradiation induced creep is presented, along with current models and their deficiencies.

  7. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  8. Microbeam Radiation Therapy: Tissue Dose Penetration and BANG-Gel Dosimetry of Thick-Beams' Array Intelacing

    SciTech Connect

    Dilmanian, F.; Romanelli, P; Zhong, Z; Wang, R; Wagshul, M; Kalef-Ezra, J; Maryanski, M; Rosen, E; Anschel, D

    2008-01-01

    The tissue-sparing effect of parallel, thin (narrower than 100em) synchrotron-generated X-ray planar beams (microbeams) in healthy tissues including the central nervous system (CNS) is known since early 1990s. This, together with a remarkable preferential tumoricidal effect of such beam arrays observed at high doses, has been the basis for labeling the method microbeam radiation therapy (MRT). Recent studies showed that beams as thick as 0.68mm ('thick microbeams') retain part of their sparing effect in the rat's CNS, and that two such orthogonal microbeams arrays can be interlaced to produce an unsegmented field at the target, thus producing focal targeting. We measured the half-value layer (HVL) of our 120-keV median-energy beam in water phantoms, and we irradiated stereotactically bis acrylamide nitrogen gelatin (BANG)-gel-filled phantoms, including one containing a human skull, with interlaced microbeams and imaged them with MRI. A 43-mm water HVL resulted, together with an adequately large peak-to-valley ratio of the microbeams' three-dimensional dose distribution in the vicinity of the 20mmx20mmx20mm target deep into the skull. Furthermore, the 80-20% dose falloff was a fraction of a millimeter as predicted by Monte Carlo simulations. We conclude that clinical MRT will benefit from the use of higher beam energies than those used here, although the current energy could serve certain neurosurgical applications. Furthermore, thick microbeams particularly when interlaced present some advantages over thin microbeams in that they allow the use of higher beam energies and they could conceivably be implemented with high power orthovoltage X-ray tubes.

  9. The artefacts of radiochromic film dosimetry with flatbed scanners and their causation by light scattering from radiation-induced polymers.

    PubMed

    Schoenfeld, Andreas A; Poppinga, Daniela; Harder, Dietrich; Doerner, Karl-Joachim; Poppe, Bjoern

    2014-07-07

    Optical experiments and theoretical considerations have been undertaken in order to understand the causes of the 'orientation effect' and the 'parabola effect', the artefacts impairing the desired light absorption measurement on radiochromic EBT3 films with flatbed scanners. EBT3 films exposed to doses up to 20.9 Gy were scanned with an Epson Expression 10000XL flatbed scanner in landscape and portrait orientation. The horizontally and vertically polarized light components of the scanner were determined, and another Epson Expression 10000XL flatbed scanner was disassembled to examine its optical components. The optical properties of exposed and unexposed EBT3 films were studied with incident polarized and unpolarized white light, and the transmitted red light was investigated for its polarization and scattering properties including the distribution of the scattering angles. Neutral density filters were studied for comparison. Guidance was sought from the theory of light scattering from rod-like macromolecular structures. The drastic dose-dependent variation of the transmitted total light current as function of the orientation of front and rear polarizers, interpreted by light scattering theory, shows that the radiation-induced polymerization of the monomers of EBT3 films produces light scattering oscillators preferably polarized at right angles with the coating direction of the film. The directional distribution of the scattered light is partly anisotropic, with a preferred scattering plane at right angles with the coating direction, indicating light scattering from stacks of coherently vibrating oscillators piled up along the monomer crystals. The polyester carrier film also participates in these effects. The 'orientation' and 'parabola' artefacts due to flatbed scanning of radiochromic films can be explained by the interaction of the polarization-dependent and anisotropic light scattering from exposed and unexposed EBT3 films with the quantitative difference

  10. Mitigation of Space Radiation Effects

    NASA Astrophysics Data System (ADS)

    Atwell, William

    2012-02-01

    During low earth orbit and deep space missions, humans and spacecraft systems are exposed to high energy particles emanating from basically three sources: geomagnetically-trapped protons and electrons (Van Allen Belts), extremely high energy galactic cosmic radiation (GCR), and solar proton events (SPEs). The particles can have deleterious effects if not properly shielded. For humans, there can be a multitude of harmful effects depending on the degree of exposure. For spacecraft systems, especially electronics, the effects can range from single event upsets (SEUs) to catastrophic effects such as latchup and burnout. In addition, some materials, radio-sensitive experiments, and scientific payloads are subject to harmful effects. To date, other methods have been proposed such as electrostatic and electromagnetic shielding, but these approaches have not proven feasible due to cost, weight, and safety issues. The only method that has merit and has been effective is bulk or parasitic shielding. In this paper, we discuss in detail the sources of the space radiation environment, spacecraft, human, and onboard systems modeling methodologies, transport of these particles through shielding materials, and the calculation of the dose effects. In addition, a review of the space missions to date and a discussion of the space radiation mitigation challenges for lunar and deep space missions such as lunar outposts and human missions to Mars are presented.

  11. Capacitance-Based Dosimetry of Co-60 Radiation using Fully-Depleted Silicon-on-Insulator Devices

    PubMed Central

    Li, Yulong; Porter, Warren M.; Ma, Rui; Reynolds, Margaret A.; Gerbi, Bruce J.; Koester, Steven J.

    2015-01-01

    The capacitance based sensing of fully-depleted silicon-on-insulator (FDSOI) variable capacitors for Co-60 gamma radiation is investigated. Linear response of the capacitance is observed for radiation dose up to 64 Gy, while the percent capacitance change per unit dose is as high as 0.24 %/Gy. An analytical model is developed to study the operational principles of the varactors and the maximum sensitivity as a function of frequency is determined. The results show that FDSOI varactor dosimeters have potential for extremely-high sensitivity as well as the potential for high frequency operation in applications such as wireless radiation sensing. PMID:27840451

  12. MIRD Pamphlet No. 21: A Generalized Schema for Radiopharmaceutical Dosimetry-Standardization of Nomenclature

    SciTech Connect

    Bolch, W E; Eckerman, Keith F; Sgouros, George; Thomas, Steven R.

    2009-03-01

    The internal dosimetry schema of the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine has provided a broad framework for assessment of the absorbed dose to whole organs, tissue subregions, voxelized tissue structures, and individual cellular compartments for use in both diagnostic and therapeutic nuclear medicine. The schema was originally published in 1968, revised in 1976, and republished in didactic form with comprehensive examples as the MIRD primer in 1988 and 1991. The International Commission on Radiological Protection (ICRP) is an organization that also supplies dosimetric models and technical data, for use in providing recommendations for limits on ionizing radiation exposure to workers and members of the general public. The ICRP has developed a dosimetry schema similar to that of the MIRD Committee but has used different terminology and symbols for fundamental quantities such as the absorbed fraction, specific absorbed fraction, and various dose coefficients. The MIRD Committee objectives for this pamphlet are 3-fold: to restate its schema for assessment of absorbed dose in a manner consistent with the needs of both the nuclear medicine and the radiation protection communities, with the goal of standardizing nomenclature; to formally adopt the dosimetry quantities equivalent dose and effective dose for use in comparative evaluations of potential risks of radiation-induced stochastic effects to patients after nuclear medicine procedures; and to discuss the need to identify dosimetry quantities based on absorbed dose that address deterministic effects relevant to targeted radionuclide therapy.

  13. Radiation effects in spacecraft electronics

    NASA Technical Reports Server (NTRS)

    Raymond, James P.

    1989-01-01

    Effects on the internal spacecraft electronics due to exposure to the natural and enhanced space radiation environment will be reviewed. The emphasis will be placed on the description of the nature of both the exposure environment and failure mechanisms in semiconductors. Understanding both the system environment and device effects is critical in the use of laboratory simulation environments to obtain the data necessary to design and qualify components for successful application.

  14. Radiation Effects in Refractory Alloys

    NASA Astrophysics Data System (ADS)

    Zinkle, Steven J.; Wiffen, F. W.

    2004-02-01

    In order to achieve the required low reactor mass per unit electrical power for space reactors, refractory alloys are essential due to their high operating temperature capability that in turn enables high thermal conversion efficiencies. One of the key issues associated with refractory alloys is their performance in a neutron irradiation environment. The available radiation effects data are reviewed for alloys based on Mo, W, Re, Nb and Ta. The largest database is associated with Mo alloys, whereas Re, W and Ta alloys have the least available information. Particular attention is focused on Nb-1Zr, which is a proposed cladding and structural material for the reactor in the Jupiter Icy Moons Orbiter (JIMO) project. All of the refractory alloys exhibit qualitatively similar temperature-dependent behavior. At low temperatures up to ~0.3TM, where TM is the melting temperature, the dominant effect of radiation is to produce pronounced radiation hardening and concomitant loss of ductility. The radiation hardening also causes a dramatic decrease in the fracture toughness of the refractory alloys. These low temperature radiation effects occur at relatively low damage levels of ~0.1 displacement per atom, dpa (~2×1024 n/m2, E>0.1 MeV). As a consequence, operation at low temperatures in the presence of neutron irradiation must be avoided for all refractory alloys. At intermediate temperatures (0.3 to 0.6 TM), void swelling and irradiation creep are the dominant effects of irradiation. The amount of volumetric swelling associated with void formation in refractory alloys is generally within engineering design limits (<5%) even for high neutron exposures (>>10 dpa). Very little experimental data exist on irradiation creep of refractory alloys, but data for other body centered cubic alloys suggest that the irradiation creep will produce negligible deformation for near-term space reactor applications.

  15. Methods to Estimate Solar Radiation Dosimetry in Coral Reefs Using Remote Sensed, Modeled, and in Situ Data.

    EPA Science Inventory

    Solar irradiance has been increasingly recognized as an important determinant of bleaching in coral reefs, but measurements of solar radiation exposure within coral reefs have been relatively limited. Solar irradiance and diffuse down welling attenuation coefficients (Kd, m-1) we...

  16. Criteria for personal dosimetry in mixed radiation fields in space. [analyzing trapped protons, tissue disintegration stars, and neutrons

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.

    1974-01-01

    The complexity of direct reading and passive dosimeters for monitoring radiation is studied to strike the right balance of compromise to simplify the monitoring procedure. Trapped protons, tissue disintegration stars, and neutrons are analyzed.

  17. Extension of the biological effective dose to the MIRD schema and possible implications in radionuclide therapy dosimetry

    SciTech Connect

    Baechler, Sebastien; Hobbs, Robert F.; Prideaux, Andrew R.; Wahl, Richard L.; Sgouros, George

    2008-03-15

    In dosimetry-based treatment planning protocols, patients with rapid clearance of the radiopharmaceutical require a larger amount of initial activity than those with slow clearance to match the absorbed dose to the critical organ. As a result, the dose-rate to the critical organ is higher in patients with rapid clearance and may cause unexpected toxicity compared to patients with slow clearance. In order to account for the biological impact of different dose-rates, radiobiological modeling is beginning to be applied to the analysis of radionuclide therapy patient data. To date, the formalism used for these analyses is based on kinetics derived from activity in a single organ, the target. This does not include the influence of other source organs to the dose and dose-rate to the target organ. As a result, only self-dose irradiation in the target organ contributes to the dose-rate. In this work, the biological effective dose (BED) formalism has been extended to include the effect of multiple source organ contributions to the net dose-rate in a target organ. The generalized BED derivation has been based on the Medical Internal Radionuclide Dose Committee (MIRD) schema assuming multiple source organs following exponential effective clearance of the radionuclide. A BED-based approach to determine the largest safe dose to critical organs has also been developed. The extended BED formalism is applied to red marrow dosimetry, as well as kidney dosimetry considering the cortex and the medulla separately, since both those organs are commonly dose limiting in radionuclide therapy. The analysis shows that because the red marrow is an early responding tissue (high {alpha}/{beta}), it is less susceptible to unexpected toxicity arising from rapid clearance of high levels of administered activity in the marrow or in the remainder of the body. In kidney dosimetry, the study demonstrates a complex interplay between clearance of activity in the cortex and the medulla, as well as the

  18. Thermal effects in radiation processing

    SciTech Connect

    Zagorski, Z.P.

    1984-10-21

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation.

  19. The effects of incidence angle on film dosimetry and their consequences in IMRT dose verification

    SciTech Connect

    Srivastava, R. P.; De Wagter, C.

    2012-10-15

    Purpose: The dosimetric accuracy of EDR2 radiographic film has been rigorously assessed in regular and intensity modulated beams for various incidence angles, including the parallel and perpendicular orientation. There clearly exists confusion in literature regarding the effect of film orientation. The primary aim is to clarify potential sources of the confusion and to gain physical insight into the film orientation effect with a link to radiochromic film as well. Methods: An inverse pyramid IMRT field, consisting of six regular and elongated 3 Multiplication-Sign 20 cm{sup 2} field segments, was studied in perpendicular and parallel orientation. Assessment of film self-perturbation and intrinsic directional sensitivity were also included in the experiments. Finally, the authors investigated the orientational effect in composite beams in the two extreme orientations, i.e., perpendicular and parallel. Results: The study of an inverse pyramid dose profile revealed good agreement between the perpendicular film and the diamond detector within 0.5% in the low-scatter regions for both 6 and 18 MV. The parallel oriented film demonstrated a 3% under-response at 5-cm (6 MV) depth against the perpendicular orientation, but both orientations over responded equally in the central region, which received only scattered dose, at both 5- and 20-cm depths. In a regular 6-MV 5 Multiplication-Sign 5 cm{sup 2} field, a 4.1% lower film response was observed in the parallel orientation compared to perpendicular orientation. The under response gradually increased to 6% when reducing the field size to 0.5 Multiplication-Sign 5 cm{sup 2}. On the other hand, the film showed a 1.7% lower response in parallel orientation for the large field size of 20 Multiplication-Sign 20 cm{sup 2} at 5-cm depth but the difference disappeared at 10 cm. At 18 MV, similar but somewhat lower differences were found between the two orientations. The directional sensitivity of the film diminishes with increasing

  20. (18)F-tetrafluoroborate ((18)F-TFB), a PET probe for imaging sodium-iodide symporter expression: Whole-body biodistribution, safety and radiation dosimetry in thyroid cancer patients.

    PubMed

    O' Doherty, Jim; Jauregui-Osoro, Maite; Brothwood, Teresa; Szyszko, Teresa; Marsden, Paul; O' Doherty, Michael; Cook, Gary; Blower, Philip; Lewington, Val

    2017-04-06

    Rationale: We report the safety, biodistribution and internal radiation dosimetry, in humans with thyroid cancer, of (18)F-tetrafluoroborate ((18)F-TFB), a novel PET radioligand for imaging the human sodium/iodide symporter (hNIS). Methods: Serial whole-body PET scans of 5 subjects with recently diagnosed with thyroid cancer were acquired prior to surgery for up to 4 hours after injection of 184 ± 15 MBq of (18)F-TFB. Activity was determined in whole blood, plasma and urine. Mean organ absorbed doses and effective doses were calculated via quantitative image analysis and using OLINDA/EXM software. Results: Images showed high uptake of (18)F-TFB in known areas of high hNIS expression (thyroid, salivary glands and stomach). Excretion was predominantly renal. No adverse effects in relation to safety of the radiopharmaceutical were observed. The effective dose was 0.0326 ± 0.0018 mSv/MBq. The critical tissues/organs receiving the highest mean sex-averaged absorbed doses were thyroid (0.135 ± 0.079 mSv/MBq), stomach (0.069 ± 0.022 mSv/MBq) and salivary glands (parotids 0.031 ± 0.011 mSv/MBq, submandibular 0.061 ± 0.031 mSv/MBq). Other organs of interest were the bladder (0.102 ± 0.046 mSv/MBq) and kidneys (0.029 ± 0.009 mSv/MBq). Conclusion: Imaging using (18)F-TFB imparts a radiation exposure similar in magnitude to many other (18)F--labeled radiotracers. (18)F-TFB shows a similar biodistribution to (99m)Tc-pertechnetate, a known non-organified hNIS tracer, and is pharmacologically and radiobiologically safe in humans. Phase 2 trials as a hNIS imaging agent are warranted.

  1. A review of instruments and methods for dosimetry in space

    NASA Astrophysics Data System (ADS)

    Caffrey, Jarvis A.; Hamby, D. M.

    2011-02-01

    Instruments and methods recently used for space radiation dosimetry are reviewed for the purposes of comparison and reference. Passive detection methods mentioned include track-etch, luminescent, nuclear emulsion, and metal foil detectors. These can provide a reliable source of data for all types of radiation, but often require processing that cannot occur in space. Experimental methods of LET determination using TLDs, such as the high temperature peak ratio (HTR) method, are also discussed. Portable readout passive detectors including Pille, MOSFET, and bubble detector systems provide a novel alternative to traditional passive detectors, but research is more limited and their widespread use has yet to be established. Active detectors including DOSTEL, CPDS, RRMD-III, TEPC, R-16, BBND, and the Liulin series are examined for technical details. These instruments allow the determination of dose in real-time, and some can determine LET of incident particles by measuring energy deposition over a known path-length, but size and power consumption limit their practical use for dosimetry. Improved neutron dosimetry and development of a small active or portable readout personnel dosimeter capable of accurate LET determination are important steps for managing the effects of long-term exposure to the space radiation environment.

  2. Overview on radiation effects in electronics

    SciTech Connect

    Dawes, W.R. Jr. )

    1989-01-01

    The radiation spectrum constituents of interest to microelectronics are prompt gamma or x-ray, total dose, neutrons (or protons), and cosmic radiation. Each of these constituents has a unique effect upon microelectronic components and requires unique techniques to improve the microelectronic radiation tolerance to such an exposure. This paper reviews the radiation effects associated with the natural space and nuclear reactor radiation environment, that is to say, total dose, neutrons, and cosmic rays. 2 refs., 6 figs.

  3. Radiation effects in reconfigurable FPGAs

    NASA Astrophysics Data System (ADS)

    Quinn, Heather

    2017-04-01

    Field-programmable gate arrays (FPGAs) are co-processing hardware used in image and signal processing. FPGA are programmed with custom implementations of an algorithm. These algorithms are highly parallel hardware designs that are faster than software implementations. This flexibility and speed has made FPGAs attractive for many space programs that need in situ, high-speed signal processing for data categorization and data compression. Most commercial FPGAs are affected by the space radiation environment, though. Problems with TID has restricted the use of flash-based FPGAs. Static random access memory based FPGAs must be mitigated to suppress errors from single-event upsets. This paper provides a review of radiation effects issues in reconfigurable FPGAs and discusses methods for mitigating these problems. With careful design it is possible to use these components effectively and resiliently.

  4. Long-term epidemiological studies of atomic bomb survivors in Hiroshima and Nagasaki: study populations, dosimetry and summary of health effects.

    PubMed

    Okubo, Toshiteru

    2012-10-01

    The Radiation Effects Research Foundation succeeded 28 years' worth of activities of the Atomic Bomb Casualty Commission on long-term epidemiological studies in Hiroshima and Nagasaki. It has three major cohorts of atomic bomb survivors, i.e. the Life Span Study (LSS) of 120,000 people, the In Utero Cohort of 3600 and the Second Generation Study (F(1)) of 77,000. The LSS and F(1) studies include a periodic health examination for each sub-cohort, i.e. the Adult Health Study and the F(1) Clinical Study, respectively. An extensive individual dose estimation was conducted and the system was published as the Dosimetry System established in 2002 (DS02). As results of these studies, increases of cancers in relation to dose were clearly shown. Increases of other mortality causes were also observed, including heart and respiratory diseases. There has been no evidence of genetic effects in the survivors' children, including cancer and other multi-factorial diseases. The increase in the expected mortality number in the next 10 y would allow the analyses of further details of the observed effects related to atomic bomb exposures.

  5. Cooperative Radiation Effects Simulation Program.

    DTIC Science & Technology

    1980-12-16

    Continue an teers* aide if necovawy and identify by block number) Computer modeling Energy deposition Helium diffusion Deuterium diffusion Heavy ion...melting in a titanium- gettered argon atmosphere. A 3-mm thick slice was cut from the center of each arc-melt button and rolled to 0.1-mm thick foil from...International Conference on Radiation Effects and Tritium Technology for Fusion Reactors, Gatlinburg, Tennessee, 1-3 October 1975, Vol. II, pp. 250-279

  6. Practical neutron dosimetry at high energies

    SciTech Connect

    McCaslin, J.B.; Thomas, R.H.

    1980-10-01

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently.

  7. The radiation dosimetry of a quartz viewer irradiated with a 4.5 MeV proton beam

    NASA Astrophysics Data System (ADS)

    Ouyasathian, Kalong

    The present dissertation describes a procedure to measure the radiation dose received by an accelerator operator who uses a quartz viewer to locate an ion beam. This procedure consists of the following steps: (i) A solid-state gamma radiation detector was calibrated to determine its efficiency and its energy scale. (ii) The calibrated detector was used to measure the gamma energy spectrum obtained when bombarding the viewer with the ion beam. This measurement was normalized, that is, beam current and measurement duration were determined. (iii) Individual gamma energy lines were extracted from the gamma spectrum and the respective energies and emission rates were obtained. Energies were checked with known transitions in silicon and oxygen, to ensure correct identification. (iv) The Compton gamma energy spectrum generated by the primary gamma rays was determined using a Compton code. (v) Finally the charged-ion bremsstrahlung spectrum was obtained using the formalism of Alder et. al. In this dissertation several prospective contributors to the radiation dose have been checked and were found to be insignificant. They were: the radiation dose due to x-rays generated by Compton electrons and the radiation dose generated by electrons produced by collisions with the incident ions. With a proton energy of 4.5 MeV the eye dose equivalent was determined at 0 and 90 degrees to the proton beam. At 0 degree with a proton fluence rate of 8.9 x 1011 protons/s the dose was 8.7 x 10-3 rem/hr. At 90 degrees with a proton fluence rate of 1.1 x 1012 protons/s the dose was 8.1 x 10-3 rem/hr.

  8. SU-E-T-368: Effect of a Strong Magnetic Field On Select Radiation Dosimeters

    SciTech Connect

    Mathis, M; Wen, Z; Tailor, R; Sawakuchi, G; Flint, D; Beddar, S; Ibbott, G

    2014-06-01

    Purpose: To determine the effect of a strong magnetic field on TLD-100, OSLD (Al{sub 2}O{sub 2}:C), and PRESAGE dosimetry devices. This study will help to determine which types of dosimeters can be used for quality assurance and in-vivo dosimetry measurements in a magnetic resonance imaginglinear accelerator (MRI-linac) system. Methods: The dosimeters were separated into two categories which were either exposed or not exposed to a strong magnetic field. In each category a set of dosimeters was irradiated with 0, 2, or 6 Gy. To expose the dosimeters to a magnetic field the samples in that category were place in a Bruker small animal magnetic resonance scanner at a field strength slightly greater than 2.5 T for at least 1 hour preirradiation and at least 1 hour post-irradiation. Irradiations were performed with a 6 MV x-ray beam from a Varian TrueBeam linac with 10×10 cm{sup 2} field at a 600 MU/min dose rate. The samples that received no radiation dose were used as control detectors. Results: The readouts of the dosimeters which were not exposed to a strong magnetic field were compared with the measurements of the dosimetry devices which were exposed to a magnetic field. No significant differences (less than 2% difference) in the performance of TLD, OSLD, or PRESAGE dosimeters due to exposure to a strong magnetic field were observed. Conclusion: Exposure to a strong magnetic field before and after irradiation does not appear to change the dosimetric properties of TLD, OSLD, or PRESAGE which indicates that these dosimeters have potential for use in quality assurance and in-vivo dosimetry in a MRI-linac. We plan to further test the effect of magnetic fields on these devices by irradiating them in the presence of a magnetic fields similar to those produced by a MRI-linac system. Elekta-MD Anderson Cancer Center Research Agreement.

  9. EPR dosimetry of teeth in past and future accidents: a prospective look at a retrospective method

    SciTech Connect

    Haskell, E.H.; Kenner, G.H.; Hayes, R.B.; Chumak, V.; Shalom, S.

    1996-01-01

    Electron paramagnetic resonance spectroscopy (EPR) of tooth enamel is a relatively new technique for retrospective dosimetry that in the past two years has seen increasing effort towards its development and evaluation. Efforts have centered on determining the accuracy which may be achieved with current measurement techniques as well as the minimum doses detectable. The study was focused on evaluating some factors which influence the accuracy of EPR dosimetry of enamel. Reported are studies on sample intercomparisions, instrumental considerations, and effects of dental x-rays, environmental sunlight and ultraviolet radiation.

  10. EPR tooth dosimetry as a tool for validation of retrospective doses: an end-user perspective.

    PubMed

    Bhat, Mohandas

    2005-02-01

    The US Department of Energy (DOE) is co-funding several studies on health effects of radiation in Southern Urals in Russia and on Chernobyl liquidators in Ukraine. Obtaining dose-response relationships is central to all these studies. In order to validate retrospective doses estimated by various methods, Electron paramagnetic Resonance (EPR) tooth dosimetry, considered by many as a gold standard, was attempted. The EPR technique, however, has some limitations. This paper discusses the potential pitfalls of using EPR tooth dosimetry, and some potential solutions.

  11. Dosimetry implant for treating restenosis and hyperplasia

    DOEpatents

    Srivastava, Suresh; Gonzales, Gilbert R; Howell, Roger W; Bolch, Wesley E; Adzic, Radoslav

    2014-09-16

    The present invention discloses a method of selectively providing radiation dosimetry to a subject in need of such treatment. The radiation is applied by an implant comprising a body member and .sup.117mSn electroplated at selected locations of the body member, emitting conversion electrons absorbed immediately adjacent selected locations while not affecting surrounding tissue outside of the immediately adjacent area.

  12. (Biological effects of atomic radiation)

    SciTech Connect

    Selby, P.B.

    1990-06-01

    The traveler attended the thirty-ninth session of UNSCEAR, where he took part in the meetings of the Biological Subgroup and the Working Group of the full UNSCEAR Committee. He listened to the discussion of the many documents under preparation and provided advice on questions related to genetics. He was extensively involved in discussion of the document entitled Hereditary effects of radiation.'' During the discussion of that document, he served as the rapporteur of the Biological Subgroup. Important contacts were made with many internationally prominent scientists involved in radiation protection and risk evaluation. Since mouse data, many of them collected in the ORNL Biology Division, form a major component of genetic risk estimation, the traveler was able to provide first-hand information and to play an active role in the deliberations.

  13. Effects of radiation on carbapenems

    NASA Astrophysics Data System (ADS)

    Tepe, Semra; Polat, Mustafa; Korkmaz, Mustafa

    In the present work, effects of gamma radiation on solid meropenem trihydrate (MPT), which is the active ingredient of carbapenem antibiotics, were investigated by electron spin resonance (ESR) spectroscopy. Irradiated MPT presents an ESR spectrum consisting of many resonance peaks. Heights measured with respect to the spectrum baseline of these resonance peaks were used to explore the evolutions of the radicalic species responsible for the experimental spectrum under different conditions. Variations of the denoted 11 peak heights with microwave power, sample temperature and applied radiation doses and decay of the involved radicalic species at room and at high temperatures were studied. On the basis of the results derived from these studies, a molecular model consisting of the presence of four different radicalic species was proposed, and spectroscopic parameters of these species were calculated through spectrum simulation calculations. The dosimetric potential of MPT was also explored and it was concluded that MPT presents the characteristics of normal and accidental dosimetric materials.

  14. Joint USNRC/EC consequence uncertainty study: The ingestion pathway, dosimetry and health effects expert judgment elicitations and results

    SciTech Connect

    Harper, F.; Goossens, L.; Abbott, M.

    1996-08-01

    The US Nuclear Regulatory Commission (USNRC) and the European Commission (EC) have conducted a formal expert judgment elicitation jointly to systematically collect the quantitative information needed to perform consequence uncertainty analyses on a broad set of commercial nuclear power plants. Information from three sets of joint US/European expert panels was collected and processed. Information from the three sets of panels was collected in the following areas: in the phenomenological areas of atmospheric dispersion and deposition, in the areas of ingestion pathways and external dosimetry, and in the areas of health effects and internal dosimetry. This exercise has demonstrated that the uncertainty for particular issues as measured by the ratio of the 95th percentile to the 5th percentile can be extremely large (orders of magnitude), or rather small (factor of two). This information has already been used by many of the experts that were involved in this process in areas other than the consequence uncertainty field. The benefit to the field of radiological consequences is just beginning as the results of this study are published and made available to the consequence community.

  15. TU-F-201-00: Radiochromic Film Dosimetry Update

    SciTech Connect

    2015-06-15

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to) external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.

  16. Monte Carlo Investigation on the Effect of Heterogeneities on Strut Adjusted Volume Implant (SAVI) Dosimetry

    NASA Astrophysics Data System (ADS)

    Koontz, Craig

    Breast cancer is the most prevalent cancer for women with more than 225,000 new cases diagnosed in the United States in 2012 (ACS, 2012). With the high prevalence, comes an increased emphasis on researching new techniques to treat this disease. Accelerated partial breast irradiation (APBI) has been used as an alternative to whole breast irradiation (WBI) in order to treat occult disease after lumpectomy. Similar recurrence rates have been found using ABPI after lumpectomy as with mastectomy alone, but with the added benefit of improved cosmetic and psychological results. Intracavitary brachytherapy devices have been used to deliver the APBI prescription. However, inability to produce asymmetric dose distributions in order to avoid overdosing skin and chest wall has been an issue with these devices. Multi-lumen devices were introduced to overcome this problem. Of these, the Strut-Adjusted Volume Implant (SAVI) has demonstrated the greatest ability to produce an asymmetric dose distribution, which would have greater ability to avoid skin and chest wall dose, and thus allow more women to receive this type of treatment. However, SAVI treatments come with inherent heterogeneities including variable backscatter due to the proximity to the tissue-air and tissue-lung interfaces and variable contents within the cavity created by the SAVI. The dose calculation protocol based on TG-43 does not account for heterogeneities and thus will not produce accurate dosimetry; however Acuros, a model-based dose calculation algorithm manufactured by Varian Medical Systems, claims to accurately account for heterogeneities. Monte Carlo simulation can calculate the dosimetry with high accuracy. In this thesis, a model of the SAVI will be created for Monte Carlo, specifically using MCNP code, in order to explore the affects of heterogeneities on the dose distribution. This data will be compared to TG-43 and Acuros calculated dosimetry to explore their accuracy.

  17. Impact of dose rate on accuracy of intensity modulated radiation therapy plan delivery using the pretreatment portal dosimetry quality assurance and setting up the workflow at hospital levels

    PubMed Central

    Kaviarasu, Karunakaran; Raj, N. Arunai Nambi; Murthy, K. Krishna; Babu, A. Ananda Giri; Prasad, Bhaskar Laxman Durga

    2015-01-01

    The aim of this study was to examine the impact of dose rate on accuracy of intensity modulated radiation therapy (IMRT) plan delivery by comparing the gamma agreement between the calculated and measured portal doses by pretreatment quality assurance (QA) using electronic portal imaging device dosimetry and creating a workflow for the pretreatment IMRT QA at hospital levels. As the improvement in gamma agreement leads to increase in the quality of IMRT treatment delivery, gamma evaluation was carried out for the calculated and the measured portal images for the criteria of 3% dose difference and 3 mm distance-to-agreement (DTA). Three gamma parameters: Maximum gamma, average gamma, and percentage of the field area with a gamma value>1.0 were analyzed. Three gamma index parameters were evaluated for 40 IMRT plans (315 IMRT fields) which were calculated for 400 monitor units (MU)/min dose rate and maximum multileaf collimator (MLC) speed of 2.5 cm/s. Gamma parameters for all 315 fields are within acceptable limits set at our center. Further, to improve the gamma results, we set an action level for this study using the mean and standard deviation (SD) values from the 315 fields studied. Forty out of 315 IMRT fields showed low gamma agreement (gamma parameters>2 SD as per action level of the study). The parameters were recalculated and reanalyzed for the dose rates of 300, 400 and 500 MU/min. Lowering the dose rate helped in getting an enhanced gamma agreement between the calculated and measured portal doses of complicated fields. This may be attributed to the less complex motion of MLC over time and the MU of the field/segment. An IMRT QA work flow was prepared which will help in improving the quality of IMRT delivery. PMID:26865759

  18. SU-E-T-87: A TG-100 Appr