Sample records for radiation estimation models

  1. Estimating solar radiation for plant simulation models

    NASA Technical Reports Server (NTRS)

    Hodges, T.; French, V.; Leduc, S.

    1985-01-01

    Five algorithms producing daily solar radiation surrogates using daily temperatures and rainfall were evaluated using measured solar radiation data for seven U.S. locations. The algorithms were compared both in terms of accuracy of daily solar radiation estimates and terms of response when used in a plant growth simulation model (CERES-wheat). Requirements for accuracy of solar radiation for plant growth simulation models are discussed. One algorithm is recommended as being best suited for use in these models when neither measured nor satellite estimated solar radiation values are available.

  2. Novel applications of the temporal kernel method: Historical and future radiative forcing

    NASA Astrophysics Data System (ADS)

    Portmann, R. W.; Larson, E.; Solomon, S.; Murphy, D. M.

    2017-12-01

    We present a new estimate of the historical radiative forcing derived from the observed global mean surface temperature and a model derived kernel function. Current estimates of historical radiative forcing are usually derived from climate models. Despite large variability in these models, the multi-model mean tends to do a reasonable job of representing the Earth system and climate. One method of diagnosing the transient radiative forcing in these models requires model output of top of the atmosphere radiative imbalance and global mean temperature anomaly. It is difficult to apply this method to historical observations due to the lack of TOA radiative measurements before CERES. We apply the temporal kernel method (TKM) of calculating radiative forcing to the historical global mean temperature anomaly. This novel approach is compared against the current regression based methods using model outputs and shown to produce consistent forcing estimates giving confidence in the forcing derived from the historical temperature record. The derived TKM radiative forcing provides an estimate of the forcing time series that the average climate model needs to produce the observed temperature record. This forcing time series is found to be in good overall agreement with previous estimates but includes significant differences that will be discussed. The historical anthropogenic aerosol forcing is estimated as a residual from the TKM and found to be consistent with earlier moderate forcing estimates. In addition, this method is applied to future temperature projections to estimate the radiative forcing required to achieve those temperature goals, such as those set in the Paris agreement.

  3. Developing a new solar radiation estimation model based on Buckingham theorem

    NASA Astrophysics Data System (ADS)

    Ekici, Can; Teke, Ismail

    2018-06-01

    While the value of solar radiation can be expressed physically in the days without clouds, this expression becomes difficult in cloudy and complicated weather conditions. In addition, solar radiation measurements are often not taken in developing countries. In such cases, solar radiation estimation models are used. Solar radiation prediction models estimate solar radiation using other measured meteorological parameters those are available in the stations. In this study, a solar radiation estimation model was obtained using Buckingham theorem. This theory has been shown to be useful in predicting solar radiation. In this study, Buckingham theorem is used to express the solar radiation by derivation of dimensionless pi parameters. This derived model is compared with temperature based models in the literature. MPE, RMSE, MBE and NSE error analysis methods are used in this comparison. Allen, Hargreaves, Chen and Bristow-Campbell models in the literature are used for comparison. North Dakota's meteorological data were used to compare the models. Error analysis were applied through the comparisons between the models in the literature and the model that is derived in the study. These comparisons were made using data obtained from North Dakota's agricultural climate network. In these applications, the model obtained within the scope of the study gives better results. Especially, in terms of short-term performance, it has been found that the obtained model gives satisfactory results. It has been seen that this model gives better accuracy in comparison with other models. It is possible in RMSE analysis results. Buckingham theorem was found useful in estimating solar radiation. In terms of long term performances and percentage errors, the model has given good results.

  4. Improving the S-Shape Solar Radiation Estimation Method for Supporting Crop Models

    PubMed Central

    Fodor, Nándor

    2012-01-01

    In line with the critical comments formulated in relation to the S-shape global solar radiation estimation method, the original formula was improved via a 5-step procedure. The improved method was compared to four-reference methods on a large North-American database. According to the investigated error indicators, the final 7-parameter S-shape method has the same or even better estimation efficiency than the original formula. The improved formula is able to provide radiation estimates with a particularly low error pattern index (PIdoy) which is especially important concerning the usability of the estimated radiation values in crop models. Using site-specific calibration, the radiation estimates of the improved S-shape method caused an average of 2.72 ± 1.02 (α = 0.05) relative error in the calculated biomass. Using only readily available site specific metadata the radiation estimates caused less than 5% relative error in the crop model calculations when they were used for locations in the middle, plain territories of the USA. PMID:22645451

  5. Radiation absorbed by a vertical cylinder in complex outdoor environments under clear sky conditions

    NASA Astrophysics Data System (ADS)

    Krys, S. A.; Brown, R. D.

    1990-06-01

    Research was conducted into the estimation of radiation absorbed by a vertical cylinder in complex outdoor environments under clear sky conditions. Two methods of estimation were employed: a cylindrical radiation thermometer (CRT) and model developed by Brown and Gillespie (1986), and the weather station model. The CRT produced an integrated temperature reading from which the radiant environment could be estimated successfully given simultaneous measurements of air temperature and wind speed. The CRT estimates compared to the measured radiation gave a correlation coefficient of 0.9499, SE=19.8 W/m2, α=99.9%. The physically-based equations (weather station model)require the inputs of data from a near by weather station and site characteristics to estimate radiation absorbed by a vertical cylinder. The correlation coefficient for the weather station model is 0.9529, SE=16.8 W/m2, α=99.9%. This model estimates short wave and long wave radiation separately; hence, this allowed further comparison to measured values. The short wave radiation was very successfully estimated: R=0.9865, SE=10.0 W/m2, α=99.9%. The long wave radiation estimates were also successful: R=0.8654, SE=15.7 W/m2, and α=99.9%. Though the correlation coefficient and standard error may suggest inaccuracy to the micrometeorologist, these estimation techniques would be extremely useful as predictors of human thermal comfort which is not a precise measure buut defined by a range. The reported methods require little specialized knowledge of micrometeorology and are vehicles for the designers of outdoor spaces to measure accurately the inherent radiant environment of outdoor spaces and provide a measurement technique to simulate or model the effect of various landscape elements on planned environments.

  6. A Temperature-Based Model for Estimating Monthly Average Daily Global Solar Radiation in China

    PubMed Central

    Li, Huashan; Cao, Fei; Wang, Xianlong; Ma, Weibin

    2014-01-01

    Since air temperature records are readily available around the world, the models based on air temperature for estimating solar radiation have been widely accepted. In this paper, a new model based on Hargreaves and Samani (HS) method for estimating monthly average daily global solar radiation is proposed. With statistical error tests, the performance of the new model is validated by comparing with the HS model and its two modifications (Samani model and Chen model) against the measured data at 65 meteorological stations in China. Results show that the new model is more accurate and robust than the HS, Samani, and Chen models in all climatic regions, especially in the humid regions. Hence, the new model can be recommended for estimating solar radiation in areas where only air temperature data are available in China. PMID:24605046

  7. Estimating shortwave solar radiation using net radiation and meteorological measurements

    USDA-ARS?s Scientific Manuscript database

    Shortwave radiation has a wide variety of uses in land-atmosphere interactions research. Actual evapotranspiration estimation that involves stomatal conductance models like Jarvis and Ball-Berry require shortwave radiation to estimate photon flux density. However, in most weather stations, shortwave...

  8. The Revised Space Environment Models in CREME-MC: A Replacement for CREME96

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Barghouty, Abdulnasser F.; Mendenhall, Marcus H.; Reed, Robert A.; Sierawski, Brian; Watts, John W.; Weller, Robert A.

    2010-01-01

    The CREME96 model has been available on the WWW for more than 10 years now. While principally for the estimation of radiation effects on spacecraft electronics, it contains space radiation environment models that have been used for instrument design calculations, estimation of instrumental background, estimation of radiation hazards and many other purposes. Because of the evolution of electronic part design we have found it necessary to revise CREME96, creating CREME-MC. As part of this revision, we are revising and extending the environmental models in CREME96. This talk will describe the revised radiation environment models that are being made available in CREME-MC

  9. Estimation of Solar Radiation on Building Roofs in Mountainous Areas

    NASA Astrophysics Data System (ADS)

    Agugiaro, G.; Remondino, F.; Stevanato, G.; De Filippi, R.; Furlanello, C.

    2011-04-01

    The aim of this study is estimating solar radiation on building roofs in complex mountain landscape areas. A multi-scale solar radiation estimation methodology is proposed that combines 3D data ranging from regional scale to the architectural one. Both the terrain and the nearby building shadowing effects are considered. The approach is modular and several alternative roof models, obtained by surveying and modelling techniques at varying level of detail, can be embedded in a DTM, e.g. that of an Alpine valley surrounded by mountains. The solar radiation maps obtained from raster models at different resolutions are compared and evaluated in order to obtain information regarding the benefits and disadvantages tied to each roof modelling approach. The solar radiation estimation is performed within the open-source GRASS GIS environment using r.sun and its ancillary modules.

  10. Performance assessment of different day-of-the-year-based models for estimating global solar radiation - Case study: Egypt

    NASA Astrophysics Data System (ADS)

    Hassan, Gasser E.; Youssef, M. Elsayed; Ali, Mohamed A.; Mohamed, Zahraa E.; Shehata, Ali I.

    2016-11-01

    Different models are introduced to predict the daily global solar radiation in different locations but there is no specific model based on the day of the year is proposed for many locations around the world. In this study, more than 20 years of measured data for daily global solar radiation on a horizontal surface are used to develop and validate seven models to estimate the daily global solar radiation by day of the year for ten cities around Egypt as a case study. Moreover, the generalization capability for the best models is examined all over the country. The regression analysis is employed to calculate the coefficients of different suggested models. The statistical indicators namely, RMSE, MABE, MAPE, r and R2 are calculated to evaluate the performance of the developed models. Based on the validation with the available data, the results show that the hybrid sine and cosine wave model and 4th order polynomial model have the best performance among other suggested models. Consequently, these two models coupled with suitable coefficients can be used for estimating the daily global solar radiation on a horizontal surface for each city, and also for all the locations around the studied region. It is believed that the established models in this work are applicable and significant for quick estimation for the average daily global solar radiation on a horizontal surface with higher accuracy. The values of global solar radiation generated by this approach can be utilized in the design and estimation of the performance of different solar applications.

  11. Implementation of a subcanopy solar radiation model on a forested headwater basin in the Southern Appalachians to estimate riparian canopy density and stream insolation for stream temperature models

    NASA Astrophysics Data System (ADS)

    Belica, L.; Petras, V.; Iiames, J. S., Jr.; Caldwell, P.; Mitasova, H.; Nelson, S. A. C.

    2016-12-01

    Water temperature is a key aspect of water quality and understanding how the thermal regimes of forested headwater streams may change in response to climatic and land cover changes is increasingly important to scientists and resource managers. In recent years, the forested mountain watersheds of the Southeastern U.S. have experienced changing climatic patterns as well as the loss of a keystone riparian tree species and anticipated hydrologic responses include lower summer stream flows and decreased stream shading. Solar radiation is the main source of thermal energy to streams and a key parameter in heat-budget models of stream temperature; a decrease in flow volume combined with a reduction in stream shading during summer have the potential to increase stream temperatures. The high spatial variability of forest canopies and the high spatio-temporal variability in sky conditions make estimating the solar radiation reaching small forested headwater streams difficult. The Subcanopy Solar Radiation Model (SSR) (Bode et al. 2014) is a GIS model that generates high resolution, spatially explicit estimates of solar radiation by incorporating topographic and vegetative shading with a light penetration index derived from leaf-on airborne LIDAR data. To evaluate the potential of the SSR model to provide estimates of stream insolation to parameterize heat-budget models, it was applied to the Coweeta Basin in the Southern Appalachians using airborne LIDAR (NCALM 2009, 1m resolution). The LIDAR derived canopy characteristics were compared to current hyperspectral images of the canopy for changes and the SSR estimates of solar radiation were compared with pyranometer measurements of solar radiation at several subcanopy sites during the summer of 2016. Preliminary results indicate the SSR model was effective in identifying variations in canopy density and light penetration, especially in areas associated with road and stream corridors and tree mortality. Current LIDAR data and more solar radiation measurements are needed to fully validate the accuracy of the SSR model in Southern Appalachian forests, but initial results suggest the high resolution, spatially explicit estimates of solar radiation can improve solar radiation parameter estimates in deterministic models of stream temperature in forested landscapes.

  12. Temperature based daily incoming solar radiation modeling based on gene expression programming, neuro-fuzzy and neural network computing techniques.

    NASA Astrophysics Data System (ADS)

    Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.

    2012-04-01

    The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the phenomenon which shows the relationship between the input and output parameters. This study provided new alternatives for solar radiation estimation based on temperatures.

  13. Solar and Net Radiation for Estimating Potential Evaporation from Three Vegetation Canopies

    Treesearch

    D.M. Amatya; R.W. Skaggs; G.W. Cheschier; G.P. Fernandez

    2000-01-01

    Solar and net radiation data are frequent/y used in estimating potential evaporation (PE) from various vegetative surfaces needed for water balance and hydrologic modeling studies. Weather parameters such as air temperature, relative humidity, wind speed, solar radiation, and net radiation have been continuously monitored using automated sensors to estimate PE for...

  14. Estimation of available global solar radiation using sunshine duration over South Korea

    NASA Astrophysics Data System (ADS)

    Das, Amrita; Park, Jin-ki; Park, Jong-hwa

    2015-11-01

    Besides designing a solar energy system, accurate insolation data is also a key component for many biological and atmospheric studies. But solar radiation stations are not widely available due to financial and technical limitations; this insufficient number affects the spatial resolution whenever an attempt is made to construct a solar radiation map. There are several models in literature for estimating incoming solar radiation using sunshine fraction. Seventeen of such models among which 6 are linear and 11 non-linear, have been chosen for studying and estimating solar radiation on a horizontal surface over South Korea. The better performance of a non-linear model signifies the fact that the relationship between sunshine duration and clearness index does not follow a straight line. With such a model solar radiation over 79 stations measuring sunshine duration is computed and used as input for spatial interpolation. Finally monthly solar radiation maps are constructed using the Ordinary Kriging method. The cross validation results show good agreement between observed and predicted data.

  15. Comparison of human radiation exchange models in outdoor areas

    NASA Astrophysics Data System (ADS)

    Park, Sookuk; Tuller, Stanton E.

    2011-10-01

    Results from the radiation components of seven different human thermal exchange models/methods are compared. These include the Burt, COMFA, MENEX, OUT_SET* and RayMan models, the six-directional method and the new Park and Tuller model employing projected area factors ( f p) and effective radiation area factors ( f eff) determined from a sample of normal- and over-weight Canadian Caucasian adults. Input data include solar and longwave radiation measured during a clear summer day in southern Ontario. Variations between models came from differences in f p and f eff and different estimates of longwave radiation from the open sky. The ranges between models for absorbed solar, net longwave and net all-wave radiation were 164, 31 and 187 W m-2, respectively. These differentials between models can be significant in total human thermal exchange. Therefore, proper f p and f eff values should be used to make accurate estimation of radiation on the human body surface.

  16. [Simulation model for estimating the cancer care infrastructure required by the public health system].

    PubMed

    Gomes Junior, Saint Clair Santos; Almeida, Rosimary Terezinha

    2009-02-01

    To develop a simulation model using public data to estimate the cancer care infrastructure required by the public health system in the state of São Paulo, Brazil. Public data from the Unified Health System database regarding cancer surgery, chemotherapy, and radiation therapy, from January 2002-January 2004, were used to estimate the number of cancer cases in the state. The percentages recorded for each therapy in the Hospital Cancer Registry of Brazil were combined with the data collected from the database to estimate the need for services. Mixture models were used to identify subgroups of cancer cases with regard to the length of time that chemotherapy and radiation therapy were required. A simulation model was used to estimate the infrastructure required taking these parameters into account. The model indicated the need for surgery in 52.5% of the cases, radiation therapy in 42.7%, and chemotherapy in 48.5%. The mixture models identified two subgroups for radiation therapy and four subgroups for chemotherapy with regard to mean usage time for each. These parameters allowed the following estimated infrastructure needs to be made: 147 operating rooms, 2 653 operating beds, 297 chemotherapy chairs, and 102 radiation therapy devices. These estimates suggest the need for a 1.2-fold increase in the number of chemotherapy services and a 2.4-fold increase in the number of radiation therapy services when compared with the parameters currently used by the public health system. A simulation model, such as the one used in the present study, permits better distribution of health care resources because it is based on specific, local needs.

  17. Estimating crop biophysical properties from remote sensing data by inverting linked radiative transfer and ecophysiological models

    USDA-ARS?s Scientific Manuscript database

    Remote sensing technology can rapidly provide spatial information on crop growth status, which ideally could be used to invert radiative transfer models or ecophysiological models for estimating a variety of crop biophysical properties. However, the outcome of the model inversion procedure will be ...

  18. Estimation of photosynthetically available radiation (PAR) from OCEANSAT-I OCM using a simple atmospheric radiative transfer model

    NASA Astrophysics Data System (ADS)

    Tripathy, Madhumita; Raman, Mini; Chauhan, Prakash

    2015-10-01

    Photosynthetically available radiation (PAR) is an important variable for radiation budget, marine and terrestrial ecosystem models. OCEANSAT-1 Ocean Color Monitor (OCM) PAR was estimated using two different methods under both clear and cloudy sky conditions. In the first approach, aerosol optical depth (AOD) and cloud optical depth (COD) were estimated from OCEANSAT-1 OCM TOA (top-of-atmosphere) radiance data on a pixel by pixel basis and PAR was estimated from extraterrestrial solar flux for fifteen spectral bands using a radiative transfer model. The second approach used TOA radiances measured by OCM in the PAR spectral range to compute PAR. This approach also included surface albedo and cloud albedo as inputs. Comparison between OCEANSAT-1 OCM PAR at noon with in situ measured PAR shows that root mean square difference was 5.82% for the method I and 7.24% for the method II in daily time scales. Results indicate that methodology adopted to estimate PAR from OCEANSAT-1 OCM can produce reasonably accurate PAR estimates over the tropical Indian Ocean region. This approach can be extended to OCEANSAT-2 OCM and future OCEANSAT-3 OCM data for operational estimation of PAR for regional marine ecosystem applications.

  19. Measurement of surface physical properties and radiation balance for KUREX-91 study

    NASA Technical Reports Server (NTRS)

    Walter-Shea, Elizabeth A.; Blad, Blaine L.; Mesarch, Mark A.; Hays, Cynthia J.

    1992-01-01

    Biophysical properties and radiation balance components were measured at the Streletskaya Steppe Reserve of the Russian Republic in July 1991. Steppe vegetation parameters characterized include leaf area index (LAI), leaf angle distribution, mean tilt angle, canopy height, leaf spectral properties, leaf water potential, fraction of absorbed photosynthetically active radiation (APAR), and incoming and outgoing shortwave and longwave radiation. Research results, biophysical parameters, radiation balance estimates, and sun-view geometry effects on estimating APAR are discussed. Incoming and outgoing radiation streams are estimated using bidirectional spectral reflectances and bidirectional thermal emittances. Good agreement between measured and modeled estimates of the radiation balance were obtained.

  20. ESTIMATING SOLAR RADIATION EXPOSURE IN WETLANDS USING RADIATION MODELS, FIELD DATA, AND GEOGRAPHIC INFORMATION SYSTEMS

    EPA Science Inventory

    This seminar will describe development of methods for the estimation of solar radiation doses in wetlands. The methodology presents a novel approach to incorporating aspects of solar radiation dosimetry that have historically received limited attention. These include effects of a...

  1. Observationally constrained estimates of carbonaceous aerosol radiative forcing.

    PubMed

    Chung, Chul E; Ramanathan, V; Decremer, Damien

    2012-07-17

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon.

  2. Observationally constrained estimates of carbonaceous aerosol radiative forcing

    PubMed Central

    Chung, Chul E.; Ramanathan, V.; Decremer, Damien

    2012-01-01

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm-2, to be compared with the Intergovernmental Panel on Climate Change’s estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm-2. This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm-2 (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm-2, thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon. PMID:22753522

  3. Accurate Satellite-Derived Estimates of Tropospheric Ozone Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Schoeberl, Mark R.; Vasilkov, Alexander P.; Oreopoulos, Lazaros; Platnick, Steven; Livesey, Nathaniel J.; Levelt, Pieternel F.

    2008-01-01

    Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the instantaneous radiative forcing from tropospheric O3 for January and July 2005. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our estimates reflect the total forcing due to tropospheric O3. We focus specifically on the magnitude and spatial structure of the cloud effect on both the shortand long-wave radiative forcing. The estimates presented here can be used to validate present day O3 radiative forcing produced by models.

  4. Evaluation of simple model for net radiation estimates above various vegetation covers

    NASA Astrophysics Data System (ADS)

    Hlavinka, P.; Trnka, M.; Fischer, M.; Kucera, J.; Mozny, M.; Zalud, Z.

    2010-09-01

    The main objective of submitted study was to calibrate and verify the simple model for net radiation (Rn) estimates during the growing periods of selected agricultural crops. In the same time the soil heat flux (G) measurements were analysed. The model needs incoming solar radiation, air temperature, vapor pressure measurements and information about albedo as input. The net radiation is determined as difference between the incoming net shortwave radiation (Rns) and the outgoing net longwave radiation (Rnl). The Rns is estimated from incoming solar radiation using albedo. The Rnl is estimated from daily maximum and minimum temperature, vapour pressure, incoming solar radiation and derived clear-sky radiation. The accuracy of the model was assessed on the basis of radiation balance measurements (by Net radiometer Schenk 8110) at two experimental stations in the Czech Republic (i.e. Polkovice 49°23´ (N), 17°17´ (E), 205 m a.s.l.; Domanínek 49°32´ (N), 16°15´ (E), 544 m a.s.l.) during the years 2009 and 2010. The parameter G was measured by Hukseflux Thermal Sensor HFP01. For the purpose of mentioned analyses the measurements were conducted during the growing season of spring barley, winter wheat, winter rape, grass, poplars and above field after harvest of cereals (after/without tillage). These covers are very common type of surface within agricultural landscape in Central Europe. The enhanced method of Rn and G estimation were then used for the SoilClim model runs. The present version of SoilClim uses very simple algorithm for radiation balance and should be modified to be closer to reality. Namely the estimates of reference evapotranspiration (ETo), actual evapotranspiration (ETa) and soil water content could be substantially improved by this way. Acknowledgement: We gratefully acknowledge the support of the Grant Agency of the Czech Republic (no. 521/09/P479) and Research plan No. MSM6215648905 "Biological and technological aspects of sustainability of controlled ecosystems and their adaptability to climate change" .

  5. Quantifying Cancer Risk from Radiation.

    PubMed

    Keil, Alexander P; Richardson, David B

    2017-12-06

    Complex statistical models fitted to data from studies of atomic bomb survivors are used to estimate the human health effects of ionizing radiation exposures. We describe and illustrate an approach to estimate population risks from ionizing radiation exposure that relaxes many assumptions about radiation-related mortality. The approach draws on developments in methods for causal inference. The results offer a different way to quantify radiation's effects and show that conventional estimates of the population burden of excess cancer at high radiation doses are driven strongly by projecting outside the range of current data. Summary results obtained using the proposed approach are similar in magnitude to those obtained using conventional methods, although estimates of radiation-related excess cancers differ for many age, sex, and dose groups. At low doses relevant to typical exposures, the strength of evidence in data is surprisingly weak. Statements regarding human health effects at low doses rely strongly on the use of modeling assumptions. © 2017 Society for Risk Analysis.

  6. Measuring and modeling near-surface reflected and emitted radiation fluxes at the FIFE site

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Walter-Shea, Elizabeth A.; Starks, Patrick J.; Vining, Roel C.; Hays, Cynthia J.; Mesarch, Mark A.

    1990-01-01

    Information is presented pertaining to the measurement and estimation of reflected and emitted components of the radiation balance. Information is included about reflectance and transmittance of solar radiation from and through the leaves of some grass and forb prairie species, bidirectional reflectance from a prairie canopy is discussed and measured and estimated fluxes are described of incoming and outgoing longwave and shortwave radiation. Results of the study showed only very small differences in reflectances and transmittances for the adaxial and abaxial surfaces of grass species in the visible and infrared wavebands, but some differences in the infrared wavebands were noted for the forbs. Reflectance from the prairie canopy changed as a function of solar and view zenith angles in the solar principal plane with definite asymmetry about nadir. The surface temperature of prairie canopies was found to vary by as much as 5 C depending on view zenith and azimuth position and on the solar azimuth. Aerodynamic temperature calculated from measured sensible heat fluxes ranged from 0 to 3 C higher than nadir-viewed temperatures. Models were developed to estimate incoming and reflected shortwave radiation from data collected with a Barnes Modular Multiband Radiometer. Several algorithms for estimating incoming longwave radiation were evaluated and compared to actual measures of that parameter. Net radiation was calculated using the estimated components of the shortwave radiation streams, determined from the algorithms developed, and from the longwave radiation streams provided by the Brunt, modified Deacon, and the Stefan-Boltzmann models. Estimates of net radiation were compared to measured values and found to be within the measurement error of the net radiometers used in the study.

  7. A history of presatellite investigations of the earth's radiation budget

    NASA Technical Reports Server (NTRS)

    Hunt, G. E.; Kandel, R.; Mecherikunnel, A. T.

    1986-01-01

    The history of radiation budget studies from the early twentieth century to the advent of the space age is reviewed. By the beginning of the 1960's, accurate radiative models had been developed capable of estimating the global and zonally averaged components of the radiation budget, though great uncertainty in the derived parameters existed due to inaccuracy of the data describing the physical parameters used in the model, associated with clouds, the solar radiation, and the gaseous atmospheric absorbers. Over the century, the planetary albedo estimates had reduced from 89 to 30 percent.

  8. Aerosol Direct Radiative Effects and Heating in the New Era of Active Satellite Observations

    NASA Astrophysics Data System (ADS)

    Matus, Alexander V.

    Atmospheric aerosols impact the global energy budget by scattering and absorbing solar radiation. Despite their impacts, aerosols remain a significant source of uncertainty in our ability to predict future climate. Multi-sensor observations from the A-Train satellite constellation provide valuable observational constraints necessary to reduce uncertainties in model simulations of aerosol direct effects. This study will discuss recent efforts to quantify aerosol direct effects globally and regionally using CloudSat's radiative fluxes and heating rates product. Improving upon previous techniques, this approach leverages the capability of CloudSat and CALIPSO to retrieve vertically resolved estimates of cloud and aerosol properties critical for accurately evaluating the radiative impacts of aerosols. We estimate the global annual mean aerosol direct effect to be -1.9 +/- 0.6 W/m2, which is in better agreement with previously published estimates from global models than previous satellite-based estimates. Detailed comparisons against a fully coupled simulation of the Community Earth System Model, however, reveal that this agreement on the global annual mean masks large regional discrepancies between modeled and observed estimates of aerosol direct effects related to model biases in cloud cover. A low bias in stratocumulus cloud cover over the southeastern Pacific Ocean, for example, leads to an overestimate of the radiative effects of marine aerosols. Stratocumulus clouds over the southeastern Atlantic Ocean can enhance aerosol absorption by 50% allowing aerosol layers to remain self-lofted in an area of subsidence. Aerosol heating is found to peak at 0.6 +/- 0.3 K/day an altitude of 4 km in September when biomass burning reaches a maximum. Finally, the contributions of observed aerosols components are evaluated to estimate the direct radiative forcing of anthropogenic aerosols. Aerosol forcing is computed using satellite-based radiative kernels that describe the sensitivity of shortwave fluxes in response to aerosol optical depth. The direct radiative forcing is estimated to be -0.21 W/m2 with the largest contributions from pollution that is partially offset by a positive forcing from smoke aerosols. The results from these analyses provide new benchmarks on the global radiative effects of aerosols and offer new insights for improving future assessments.

  9. An improved Ångström-type model for estimating solar radiation over the Tibetan Plateau

    USDA-ARS?s Scientific Manuscript database

    Sunshine- and temperature-based empirical models are widely used for solar radiation estimation over the world, but the coefficients of the models are mostly site-dependent. The coefficients are expected to vary more under complex terrain conditions than under flat terrains. To test this hypothesis,...

  10. Solar Radiation Estimated Through Mesoscale Atmospheric Modeling over Northeast Brazil

    NASA Astrophysics Data System (ADS)

    de Menezes Neto, Otacilio Leandro; Costa, Alexandre Araújo; Ramalho, Fernando Pinto; de Maria, Paulo Henrique Santiago

    2009-03-01

    The use of renewable energy sources, like solar, wind and biomass is rapidly increasing in recent years, with solar radiation as a particularly abundant energy source over Northeast Brazil. A proper quantitative knowledge of the incoming solar radiation is of great importance for energy planning in Brazil, serving as basis for developing future projects of photovoltaic power plants and solar energy exploitation. This work presents a methodology for mapping the incoming solar radiation at ground level for Northeast Brazil, using a mesoscale atmospheric model (Regional Atmospheric Modeling System—RAMS), calibrated and validated using data from the network of automatic surface stations from the State Foundation for Meteorology and Water Resources from Ceará (Fundação Cearense de Meteorologia e Recursos Hídricos- FUNCEME). The results showed that the model exhibits systematic errors, overestimating surface radiation, but that, after the proper statistical corrections, using a relationship between the model-predicted cloud fraction, the ground-level observed solar radiation and the incoming solar radiation estimated at the top of the atmosphere, a correlation of 0.92 with a confidence interval of 13.5 W/m2 is found for monthly data. Using this methodology, we found an estimate for annual average incoming solar radiation over Ceará of 215 W/m2 (maximum in October: 260 W/m2).

  11. Theoretical and Observational Determination of Global and Regional Radiation Budget, Forcing and Feedbacks at the Top-of-Atmosphere and Surface

    NASA Technical Reports Server (NTRS)

    Loeb, Norman G.

    2004-01-01

    Report consists of: 1. List of accomplishments 2. List of publications 3. Abstracts of published or submitted papers and 4. Subject invention disclosure. The accomplishments of the grant listed are: 1. Improved the third-order turbulence closure in cloud resolving models to remove the liquid water oscillation. 2. Used the University of California-Los Angeles (UCLA) large-eddy simulation (LES) model to provide data for radiation transfer testing. 3. Revised shortwave k-distribution models based on HITRAN 2000. 4. Developed a gamma-weighted two-stream radiative transfer model for radiation budget estimate applications. 5. Estimated the effect of spherical geometry to the earth radiation budget. 6. Estimated top-of-atmosphere irradiance over snow and sea ice surfaces. 7. Estimated the aerosol direct radiative effect at the top of the atmosphere. 8. Estimated the top-of-atmosphere reflectance of the clear-sky molecular atmosphere over ocean. 9. Developed and validated new set of Angular Distribution Models for the CERES TRMM satellite instrument (tropical) 10. Developed and validated new set of Angular Distribution Models for the CERES Terra satellite instrument (global) 11. Quantified the top-of-atmosphere direct radiative effect of aerosols over global oceans from merged CERES and MODIS observations 12 Clarified the definition of TOA flux reference level for radiation budget studies 13. Developed new algorithm for unfaltering CERES measured radiances 14. Used multiangle POLDER measurements to produce narrowband angular distribution models and examine the effect of scene identification errors on TOA albedo estimates 15. Developed and validated a novel algorithm called the Multidirectional Reflectance Matching (MRM) model for inferring TOA albedos from ice clouds using multi-angle satellite measurements. 16. Developed and validated a novel algorithm called the Multidirectional Polarized Reflectance Matching (MPRM) model for inferring particle shapes from ice clouds using multi-angle polarized satellite measurements. 17. Developed 4 advanced light scattering models including the three-dimensional (3D) uniaxial perfectly matched layer (UPML) finite-difference time-domain (FDTD) model. 18. Develop sunglint in situ measurement and study reflectance distribution in the sunglint area. 19. Lead a balloon-borne radiometer TOA albedo validation effort. 20. Developed a CERES surface UVB, UVA, and UV index product.

  12. Assessment of global solar radiation to examine the best locations to install a PV system in Tunisia

    NASA Astrophysics Data System (ADS)

    Belkilani, Kaouther; Ben Othman, Afef; Besbes, Mongi

    2018-02-01

    The study of the solar radiation is the starting point of any investigation for a new energy, to study and search the best location to install a PV system. A very important factor in the assessment of solar potential is the availability of data for global solar radiation that must be coherent and of high quality. In this paper, we analyze the estimation result of the monthly global solar radiation for three different locations, Bizerte in Northern Tunisia, Kairouan in Middle Eastern Tunisia, and Tozeur in Southern Tunisia, measured on the surface by the National Institute of Meteorology and the meteorological year irradiation based on satellite imagery result PVGIS radiation databases. To get the right measurements with minimum error, we propose a numerical model used to calculate the global solar radiation in the indicated three sites. The results show that the model can estimate the global solar radiation (kWh/m²) at a specific station and over most area of Tunisia. The model gives a good estimation for solar radiation where error between the measured values and those calculated are negligible.

  13. Infection Casualty Estimation (ICE) Model: Predicting Sepsis in Nuclear Detonation Burn Patient Populations using Procalcitonin as a Biomarker

    DTIC Science & Technology

    2017-06-06

    environments may be injured or killed from the primary blast wave, thermal pulse and ionizing radiation . Burn casualties surviving the initial blast wave are...32]/1.8 degree Celsius (oC) degree Fahrenheit (oF) [T(oF) + 459.67]/1.8 kelvin (K) Radiation activity of radionuclides [curie (Ci)] 3.7 × 1010...develop casualty estimation models for improvised nuclear device (IND) scenarios. The HSRDIPT team has developed health effects models of radiation , burn

  14. Host Model Uncertainty in Aerosol Radiative Forcing Estimates - The AeroCom Prescribed Experiment

    NASA Astrophysics Data System (ADS)

    Stier, P.; Kinne, S.; Bellouin, N.; Myhre, G.; Takemura, T.; Yu, H.; Randles, C.; Chung, C. E.

    2012-04-01

    Anthropogenic and natural aerosol radiative effects are recognized to affect global and regional climate. However, even for the case of identical aerosol emissions, the simulated direct aerosol radiative forcings show significant diversity among the AeroCom models (Schulz et al., 2006). Our analysis of aerosol absorption in the AeroCom models indicates a larger diversity in the translation from given aerosol radiative properties (absorption optical depth) to actual atmospheric absorption than in the translation of a given atmospheric burden of black carbon to the radiative properties (absorption optical depth). The large diversity is caused by differences in the simulated cloud fields, radiative transfer, the relative vertical distribution of aerosols and clouds, and the effective surface albedo. This indicates that differences in host model (GCM or CTM hosting the aerosol module) parameterizations contribute significantly to the simulated diversity of aerosol radiative forcing. The magnitude of these host model effects in global aerosol model and satellites retrieved aerosol radiative forcing estimates cannot be estimated from the diagnostics of the "standard" AeroCom forcing experiments. To quantify the contribution of differences in the host models to the simulated aerosol radiative forcing and absorption we conduct the AeroCom Prescribed experiment, a simple aerosol model and satellite retrieval intercomparison with prescribed highly idealised aerosol fields. Quality checks, such as diagnostic output of the 3D aerosol fields as implemented in each model, ensure the comparability of the aerosol implementation in the participating models. The simulated forcing variability among the models and retrievals is a direct measure of the contribution of host model assumptions to the uncertainty in the assessment of the aerosol radiative effects. We will present the results from the AeroCom prescribed experiment with focus on the attribution to the simulated variability to parametric and structural model uncertainties. This work will help to prioritise areas for future model improvements and ultimately lead to uncertainty reduction.

  15. Estimating radiative feedbacks from stochastic fluctuations in surface temperature and energy imbalance

    NASA Astrophysics Data System (ADS)

    Proistosescu, C.; Donohoe, A.; Armour, K.; Roe, G.; Stuecker, M. F.; Bitz, C. M.

    2017-12-01

    Joint observations of global surface temperature and energy imbalance provide for a unique opportunity to empirically constrain radiative feedbacks. However, the satellite record of Earth's radiative imbalance is relatively short and dominated by stochastic fluctuations. Estimates of radiative feedbacks obtained by regressing energy imbalance against surface temperature depend strongly on sampling choices and on assumptions about whether the stochastic fluctuations are primarily forced by atmospheric or oceanic variability (e.g. Murphy and Forster 2010, Dessler 2011, Spencer and Braswell 2011, Forster 2016). We develop a framework around a stochastic energy balance model that allows us to parse the different contributions of atmospheric and oceanic forcing based on their differing impacts on the covariance structure - or lagged regression - of temperature and radiative imbalance. We validate the framework in a hierarchy of general circulation models: the impact of atmospheric forcing is examined in unforced control simulations of fixed sea-surface temperature and slab ocean model versions; the impact of oceanic forcing is examined in coupled simulations with prescribed ENSO variability. With the impact of atmospheric and oceanic forcing constrained, we are able to predict the relationship between temperature and radiative imbalance in a fully coupled control simulation, finding that both forcing sources are needed to explain the structure of the lagged-regression. We further model the dependence of feedback estimates on sampling interval by considering the effects of a finite equilibration time for the atmosphere, and issues of smoothing and aliasing. Finally, we develop a method to fit the stochastic model to the short timeseries of temperature and radiative imbalance by performing a Bayesian inference based on a modified version of the spectral Whittle likelihood. We are thus able to place realistic joint uncertainty estimates on both stochastic forcing and radiative feedbacks derived from observational records. We find that these records are, as of yet, too short to be useful in constraining radiative feedbacks, and we provide estimates of how the uncertainty narrows as a function of record length.

  16. Influence of aerosols on surface reaching spectral irradiance and introduction to a new technique of estimating aerosol radiative forcing from high resolution spectral flux measurements

    NASA Astrophysics Data System (ADS)

    Rao, Roshan

    2016-04-01

    Aerosol radiative forcing estimates with high certainty are required in climate change studies. The approach in estimating the aerosol radiative forcing by using the chemical composition of aerosols is not effective as the chemical composition data with radiative properties are not widely available. We look into the approach where ground based spectral radiation flux measurement is made and along with an Radtiative transfer (RT) model, radiative forcing is estimated. Measurements of spectral flux were made using an ASD spectroradiometer with 350 - 1050 nm wavelength range and a 3nm resolution during around 54 clear-sky days during which AOD range was around 0.01 to 0.7. Simultaneous measurements of black carbon were also made using Aethalometer (Magee Scientific) which ranged from around 1.5 ug/m3 to 8 ug/m3. The primary study involved in understanding the sensitivity of spectral flux due to change in individual aerosol species (Optical properties of Aerosols and Clouds (OPAC) classified aerosol species) using the SBDART RT model. This made us clearly distinguish the influence of different aerosol species on the spectral flux. Following this, a new technique has been introduced to estimate an optically equivalent mixture of aerosol species for the given location. The new method involves matching different combinations of aerosol species in OPAC model and RT model as long as the combination which gives the minimum root mean squared deviation from measured spectral flux is obtained. Using the optically equivalent aerosol mixture and RT model, aerosol radiative forcing is estimated. Also an alternate method to estimate the spectral SSA is discussed. Here, the RT model, the observed spectral flux and spectral AOD is used. Spectral AOD is input to RT model and SSA is varied till the minimum root mean squared difference between observed and simulated spectral flux from RT model is obtained. The methods discussed are limited to clear sky scenes and its accuracy to derive an optically equivalent aerosol mixture reduces when diffuse component of flux increases. In our analysis, RT model clearly shows that direct component of spectral flux is more sensitive to different aerosol species than total spectral flux which is also supported by our observed data.

  17. Validation and application of MODIS-derived clean snow albedo and dust radiative forcing

    NASA Astrophysics Data System (ADS)

    Rittger, K. E.; Bryant, A. C.; Seidel, F. C.; Bair, E. H.; Skiles, M.; Goodale, C. E.; Ramirez, P.; Mattmann, C. A.; Dozier, J.; Painter, T.

    2012-12-01

    Snow albedo is an important control on snowmelt. Though albedo evolution of aging snow can be roughly modeled from grain growth, dust and other light absorbing impurities are extrinsic and therefore must be measured. Estimates of clean snow albedo and surface radiative forcing from impurities, which can be inferred from MODIS 500 m surface reflectance products, can provide this driving data for snowmelt models. Here we use MODSCAG (MODIS snow covered area and grain size) to estimate the clean snow albedo and MODDRFS (MODIS dust radiative forcing of snow) to estimate the additional absorbed solar radiation from dust and black carbon. With its finer spatial (20 m) and spectral (10 nm) resolutions, AVIRIS provides a way to estimate the accuracy of MODIS products and understand variability of snow albedo at a finer scale that we explore though a range of topography. The AVIRIS database includes images from late in the accumulation season through the melt season when we are most interested in changes in snow albedo. In addition to the spatial validation, we employ the best estimate of albedo from MODIS in an energy balance reconstruction model to estimate the maximum snow water equivalent. MODDRFS calculates radiative forcing only in pixels that are completely snow-covered, so we spatially interpolate the product to estimate the forcing in all pixels where MODSCAG has given us estimates of clean snow albedo. Comparisons with snow pillows and courses show better agreement when the radiative forcing from absorbing impurities is included in the energy balance reconstruction.

  18. Evaluation of Multispectral Based Radiative Transfer Model Inversion to Estimate Leaf Area Index in Wheat

    USDA-ARS?s Scientific Manuscript database

    Leaf area index (LAI) is a critical variable for predicting the growth and productivity of crops. Remote sensing estimates of LAI have relied upon empirical relationships between spectral vegetation indices and ground measurements that are costly to obtain. Radiative transfer model inversion based o...

  19. Simulation study of geometric shape factor approach to estimating earth emitted flux densities from wide field-of-view radiation measurements

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.; Green, R. N.

    1980-01-01

    A study was performed on the use of geometric shape factors to estimate earth-emitted flux densities from radiation measurements with wide field-of-view flat-plate radiometers on satellites. Sets of simulated irradiance measurements were computed for unrestricted and restricted field-of-view detectors. In these simulations, the earth radiation field was modeled using data from Nimbus 2 and 3. Geometric shape factors were derived and applied to these data to estimate flux densities on global and zonal scales. For measurements at a satellite altitude of 600 km, estimates of zonal flux density were in error 1.0 to 1.2%, and global flux density errors were less than 0.2%. Estimates with unrestricted field-of-view detectors were about the same for Lambertian and non-Lambertian radiation models, but were affected by satellite altitude. The opposite was found for the restricted field-of-view detectors.

  20. NASA Models of Space Radiation Induced Cancer, Circulatory Disease, and Central Nervous System Effects

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Chappell, Lori J.; Kim, Myung-Hee Y.

    2013-01-01

    The risks of late effects from galactic cosmic rays (GCR) and solar particle events (SPE) are potentially a limitation to long-term space travel. The late effects of highest concern have significant lethality including cancer, effects to the central nervous system (CNS), and circulatory diseases (CD). For cancer and CD the use of age and gender specific models with uncertainty assessments based on human epidemiology data for low LET radiation combined with relative biological effectiveness factors (RBEs) and dose- and dose-rate reduction effectiveness factors (DDREF) to extrapolate these results to space radiation exposures is considered the current "state-of-the-art". The revised NASA Space Risk Model (NSRM-2014) is based on recent radio-epidemiology data for cancer and CD, however a key feature of the NSRM-2014 is the formulation of particle fluence and track structure based radiation quality factors for solid cancer and leukemia risk estimates, which are distinct from the ICRP quality factors, and shown to lead to smaller uncertainties in risk estimates. Many persons exposed to radiation on earth as well as astronauts are life-time never-smokers, which is estimated to significantly modify radiation cancer and CD risk estimates. A key feature of the NASA radiation protection model is the classification of radiation workers by smoking history in setting dose limits. Possible qualitative differences between GCR and low LET radiation increase uncertainties and are not included in previous risk estimates. Two important qualitative differences are emerging from research studies. The first is the increased lethality of tumors observed in animal models compared to low LET radiation or background tumors. The second are Non- Targeted Effects (NTE), which include bystander effects and genomic instability, which has been observed in cell and animal models of cancer risks. NTE's could lead to significant changes in RBE and DDREF estimates for GCR particles, and the potential effectiveness of radiation mitigator's. The NSRM- 2014 approaches to model radiation quality dependent lethality and NTE's will be described. CNS effects include both early changes that may occur during long space missions and late effects such as Alzheimer's disease (AD). AD effects 50% of the population above age 80-yr, is a degenerative disease that worsens with time after initial onset leading to death, and has no known cure. AD is difficult to detect at early stages and the small number of low LET epidemiology studies undertaken have not identified an association with low dose radiation. However experimental studies in mice suggest GCR may lead to early onset AD. We discuss modeling approaches to consider mechanisms whereby radiation would lead to earlier onset of occurrence of AD. Biomarkers of AD include amyloid beta (A(Beta)) plaques, and neurofibrillary tangles (NFT) made up of aggregates of the hyperphosphorylated form of the micro-tubule associated, tau protein. Related markers include synaptic degeneration, dentritic spine loss, and neuronal cell loss through apoptosis. Radiation may affect these processes by causing oxidative stress, aberrant signaling following DNA damage, and chronic neuroinflammation. Cell types to be considered in multi-scale models are neurons, astrocytes, and microglia. We developed biochemical and cell kinetics models of DNA damage signaling related to glycogen synthase kinase-3(Beta) (GSK3(Beta)) and neuroinflammation, and considered multi-scale modeling approaches to develop computer simulations of cell interactions and their relationships to A(Beta) plaques and NFTs. Comparison of model results to experimental data for the age specific development of A(Beta) plaques in transgenic mice will be discussed.

  1. [ESTIMATION OF IONIZING RADIATION EFFECTIVE DOSES IN THE INTERNATIONAL SPACE STATION CREWS BY THE METHOD OF CALCULATION MODELING].

    PubMed

    Mitrikas, V G

    2015-01-01

    Monitoring of the radiation loading on cosmonauts requires calculation of absorbed dose dynamics with regard to the stay of cosmonauts in specific compartments of the space vehicle that differ in shielding properties and lack means of radiation measurement. The paper discusses different aspects of calculation modeling of radiation effects on human body organs and tissues and reviews the effective dose estimates for cosmonauts working in one or another compartment over the previous period of the International space station operation. It was demonstrated that doses measured by a real or personal dosimeters can be used to calculate effective dose values. Correct estimation of accumulated effective dose can be ensured by consideration for time course of the space radiation quality factor.

  2. Review of NASA approach to space radiation risk assessments for Mars exploration.

    PubMed

    Cucinotta, Francis A

    2015-02-01

    Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described.

  3. Sea ice-atmospheric interaction: Application of multispectral satellite data in polar surface energy flux estimates

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Key, J.; Maslanik, J.; Schweiger, A.

    1993-01-01

    This is the third annual report on: Sea Ice-Atmosphere Interaction - Application of Multispectral Satellite Data in Polar Surface Energy Flux Estimates. The main emphasis during the past year was on: radiative flux estimates from satellite data; intercomparison of satellite and ground-based cloud amounts; radiative cloud forcing; calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible channels and comparison of two satellite derived albedo data sets; and on flux modeling for leads. Major topics covered are arctic clouds and radiation; snow and ice albedo, and leads and modeling.

  4. Landscape-Scale Soil Carbon Inventories by Microclimate Decomposition

    NASA Astrophysics Data System (ADS)

    Beaudette, D. E.; O'Geen, A. T.

    2008-12-01

    Estimation of carbon stocks in rangeland and foothill ecosystems is poised to become an important service once legislation regulating greenhouse gas emissions is passed. Trading of carbon credits and greenhouse gas emission/sequestration budgets for vegetated areas is largely dependent on an accurate and scale- dependent inventory of existing conditions. Soil survey presents one possible resource for surface carbon stocks, however these data are usually not mapped at the landscape-scale. Soil-landscape modeling techniques have been successfully used in several instances to predict the spatial variation in soil carbon. Most of these studies have used site exposure (aspect angle) as a categorical proxy for terrain-induced microclimate. Our objective was to model parameters related to soil microclimate (soil temperature and moisture) for the production of detailed maps of soil carbon and organic matter quality (i.e. C:N ratio). We used a solar radiation model and long-term monitoring of soil moisture and temperature to generate several models of soil microclimate. Parameterization of the ESRA (European Solar Radiation Atlas) solar radiation model (clear-sky version) was accomplished with daily estimates of the Linke turbidity factor, using local pyranometer measurements (11 year record). Our estimated daily radiance values correlated well with local weather station data (R2 = 0.965, p < 0.001). This model is included in the popular, open source GRASS GIS. A preliminary study based on 35 sites, spanning two contrasting landform types (and lithology), revealed a statistically significant relationship between annual radiation load and carbon (R2 = 0.75, p < 0.001). A highly significant relationship between C:N ratio and annual radiation load was identified as well (R2 = 0.99, p < 0.001). Solar radiation models are simple to use, and have the potential to refine previous soil-landscape modeling efforts that relied on aspect class or angle. Models linking surface processes with microclimate can be used to directly generate estimates of carbon, or used to down-scale soil survey-based estimates.

  5. Estimating radiation dose to organs of patients undergoing conventional and novel multidetector CT exams using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Angel, Erin

    Advances in Computed Tomography (CT) technology have led to an increase in the modality's diagnostic capabilities and therefore its utilization, which has in turn led to an increase in radiation exposure to the patient population. As a result, CT imaging currently constitutes approximately half of the collective exposure to ionizing radiation from medical procedures. In order to understand the radiation risk, it is necessary to estimate the radiation doses absorbed by patients undergoing CT imaging. The most widely accepted risk models are based on radiosensitive organ dose as opposed to whole body dose. In this research, radiosensitive organ dose was estimated using Monte Carlo based simulations incorporating detailed multidetector CT (MDCT) scanner models, specific scan protocols, and using patient models based on accurate patient anatomy and representing a range of patient sizes. Organ dose estimates were estimated for clinical MDCT exam protocols which pose a specific concern for radiosensitive organs or regions. These dose estimates include estimation of fetal dose for pregnant patients undergoing abdomen pelvis CT exams or undergoing exams to diagnose pulmonary embolism and venous thromboembolism. Breast and lung dose were estimated for patients undergoing coronary CTA imaging, conventional fixed tube current chest CT, and conventional tube current modulated (TCM) chest CT exams. The correlation of organ dose with patient size was quantified for pregnant patients undergoing abdomen/pelvis exams and for all breast and lung dose estimates presented. Novel dose reduction techniques were developed that incorporate organ location and are specifically designed to reduce close to radiosensitive organs during CT acquisition. A generalizable model was created for simulating conventional and novel attenuation-based TCM algorithms which can be used in simulations estimating organ dose for any patient model. The generalizable model is a significant contribution of this work as it lays the foundation for the future of simulating TCM using Monte Carlo methods. As a result of this research organ dose can be estimated for individual patients undergoing specific conventional MDCT exams. This research also brings understanding to conventional and novel close reduction techniques in CT and their effect on organ dose.

  6. NASA space cancer risk model-2014: Uncertainties due to qualitative differences in biological effects of HZE particles

    NASA Astrophysics Data System (ADS)

    Cucinotta, Francis

    Uncertainties in estimating health risks from exposures to galactic cosmic rays (GCR) — comprised of protons and high-energy and charge (HZE) nuclei are an important limitation to long duration space travel. HZE nuclei produce both qualitative and quantitative differences in biological effects compared to terrestrial radiation leading to large uncertainties in predicting risks to humans. Our NASA Space Cancer Risk Model-2012 (NSCR-2012) for estimating lifetime cancer risks from space radiation included several new features compared to earlier models from the National Council on Radiation Protection and Measurements (NCRP) used at NASA. New features of NSCR-2012 included the introduction of NASA defined radiation quality factors based on track structure concepts, a Bayesian analysis of the dose and dose-rate reduction effectiveness factor (DDREF) and its uncertainty, and the use of a never-smoker population to represent astronauts. However, NSCR-2012 did not include estimates of the role of qualitative differences between HZE particles and low LET radiation. In this report we discuss evidence for non-targeted effects increasing cancer risks at space relevant HZE particle absorbed doses in tissue (<0.2 Gy), and for increased tumor lethality due to the propensity for higher rates of metastatic tumors from high LET radiation suggested by animal experiments. The NSCR-2014 model considers how these qualitative differences modify the overall probability distribution functions (PDF) for cancer mortality risk estimates from space radiation. Predictions of NSCR-2014 for International Space Station missions and Mars exploration will be described, and compared to those of our earlier NSCR-2012 model.

  7. A new method to estimate average hourly global solar radiation on the horizontal surface

    NASA Astrophysics Data System (ADS)

    Pandey, Pramod K.; Soupir, Michelle L.

    2012-10-01

    A new model, Global Solar Radiation on Horizontal Surface (GSRHS), was developed to estimate the average hourly global solar radiation on the horizontal surfaces (Gh). The GSRHS model uses the transmission function (Tf,ij), which was developed to control hourly global solar radiation, for predicting solar radiation. The inputs of the model were: hour of day, day (Julian) of year, optimized parameter values, solar constant (H0), latitude, and longitude of the location of interest. The parameter values used in the model were optimized at a location (Albuquerque, NM), and these values were applied into the model for predicting average hourly global solar radiations at four different locations (Austin, TX; El Paso, TX; Desert Rock, NV; Seattle, WA) of the United States. The model performance was assessed using correlation coefficient (r), Mean Absolute Bias Error (MABE), Root Mean Square Error (RMSE), and coefficient of determinations (R2). The sensitivities of parameter to prediction were estimated. Results show that the model performed very well. The correlation coefficients (r) range from 0.96 to 0.99, while coefficients of determination (R2) range from 0.92 to 0.98. For daily and monthly prediction, error percentages (i.e. MABE and RMSE) were less than 20%. The approach we proposed here can be potentially useful for predicting average hourly global solar radiation on the horizontal surface for different locations, with the use of readily available data (i.e. latitude and longitude of the location) as inputs.

  8. Estimation of Multiple Parameters over Vegetated Surfaces by Integrating Optical-Thermal Remote Sensing Observations

    NASA Astrophysics Data System (ADS)

    Ma, H.

    2016-12-01

    Land surface parameters from remote sensing observations are critical in monitoring and modeling of global climate change and biogeochemical cycles. Current methods for estimating land surface parameters are generally parameter-specific algorithms and are based on instantaneous physical models, which result in spatial, temporal and physical inconsistencies in current global products. Besides, optical and Thermal Infrared (TIR) remote sensing observations are usually separated to use based on different models , and the Middle InfraRed (MIR) observations have received little attention due to the complexity of the radiometric signal that mixes both reflected and emitted fluxes. In this paper, we proposed a unified algorithm for simultaneously retrieving a total of seven land surface parameters, including Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), land surface albedo, Land Surface Temperature (LST), surface emissivity, downward and upward longwave radiation, by exploiting remote sensing observations from visible to TIR domain based on a common physical Radiative Transfer (RT) model and a data assimilation framework. The coupled PROSPECT-VISIR and 4SAIL RT model were used for canopy reflectance modeling. At first, LAI was estimated using a data assimilation method that combines MODIS daily reflectance observation and a phenology model. The estimated LAI values were then input into the RT model to simulate surface spectral emissivity and surface albedo. Besides, the background albedo and the transmittance of solar radiation, and the canopy albedo were also calculated to produce FAPAR. Once the spectral emissivity of seven MODIS MIR to TIR bands were retrieved, LST can be estimated from the atmospheric corrected surface radiance by exploiting an optimization method. At last, the upward longwave radiation were estimated using the retrieved LST, broadband emissivity (converted from spectral emissivity) and the downward longwave radiation (modeled by MODTRAN). These seven parameters were validated over several representative sites with different biome type, and compared with MODIS and GLASS product. Results showed that this unified inversion algorithm can retrieve temporally complete and physical consistent land surface parameters with high accuracy.

  9. Impact of Precipitating Ice Hydrometeors on Longwave Radiative Effect Estimated by a Global Cloud-System Resolving Model

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Wen; Seiki, Tatsuya; Kodama, Chihiro; Satoh, Masaki; Noda, Akira T.

    2018-02-01

    Satellite observation and general circulation model (GCM) studies suggest that precipitating ice makes nonnegligible contributions to the radiation balance of the Earth. However, in most GCMs, precipitating ice is diagnosed and its radiative effects are not taken into account. Here we examine the longwave radiative impact of precipitating ice using a global nonhydrostatic atmospheric model with a double-moment cloud microphysics scheme. An off-line radiation model is employed to determine cloud radiative effects according to the amount and altitude of each type of ice hydrometeor. Results show that the snow radiative effect reaches 2 W m-2 in the tropics, which is about half the value estimated by previous studies. This effect is strongly dependent on the vertical separation of ice categories and is partially generated by differences in terminal velocities, which are not represented in GCMs with diagnostic precipitating ice. Results from sensitivity experiments that artificially change the categories and altitudes of precipitating ice show that the simulated longwave heating profile and longwave radiation field are sensitive to the treatment of precipitating ice in models. This study emphasizes the importance of incorporating appropriate treatments for the radiative effects of precipitating ice in cloud and radiation schemes in GCMs in order to capture the cloud radiative effects of upper level clouds.

  10. Grid2: A Program for Rapid Estimation of the Jovian Radiation Environment: A Numeric Implementation of the GIRE2 Jovian Radiation Model for Estimating Trapped Radiation for Mission Concept Studies

    NASA Technical Reports Server (NTRS)

    Evans, R. W.; Brinza, D. E.

    2014-01-01

    Grid2 is a program that utilizes the Galileo Interim Radiation Electron model 2 (GIRE2) Jovian radiation model to compute fluences and doses for Jupiter missions. (Note: The iterations of these two softwares have been GIRE and GIRE2; likewise Grid and Grid2.) While GIRE2 is an important improvement over the original GIRE radiation model, the GIRE2 model can take as long as a day or more to compute these quantities for a complete mission. Grid2 fits the results of the detailed GIRE2 code with a set of grids in local time and position thereby greatly speeding up the execution of the model--minutes as opposed to days. The Grid2 model covers the time period from 1971 to 2050and distances of 1.03 to 30 Jovian diameters (Rj). It is available as a direct-access database through a FORTRAN interface program. The new database is only slightly larger than the original grid version: 1.5 gigabytes (GB) versus 1.2 GB.

  11. First observation-based estimates of cloud-free aerosol radiative forcing across China

    Treesearch

    Zhanqing Li; Kwon-Ho Lee; Yuesi Wang; Jinyuan Xin; Wei-Min Hao

    2010-01-01

    Heavy loading of aerosols in China is widely known, but little is known about their impact on regional radiation budgets, which is often expressed as aerosol radiative forcing (ARF). Cloud‐free direct ARF has either been estimated by models across the region or determined at a handful of locations with aerosol and/or radiation measurements. In this study, ARF...

  12. RAD-ADAPT: Software for modelling clonogenic assay data in radiation biology.

    PubMed

    Zhang, Yaping; Hu, Kaiqiang; Beumer, Jan H; Bakkenist, Christopher J; D'Argenio, David Z

    2017-04-01

    We present a comprehensive software program, RAD-ADAPT, for the quantitative analysis of clonogenic assays in radiation biology. Two commonly used models for clonogenic assay analysis, the linear-quadratic model and single-hit multi-target model, are included in the software. RAD-ADAPT uses maximum likelihood estimation method to obtain parameter estimates with the assumption that cell colony count data follow a Poisson distribution. The program has an intuitive interface, generates model prediction plots, tabulates model parameter estimates, and allows automatic statistical comparison of parameters between different groups. The RAD-ADAPT interface is written using the statistical software R and the underlying computations are accomplished by the ADAPT software system for pharmacokinetic/pharmacodynamic systems analysis. The use of RAD-ADAPT is demonstrated using an example that examines the impact of pharmacologic ATM and ATR kinase inhibition on human lung cancer cell line A549 after ionizing radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Model evaluation of the radiative and temperature effects of the ozone content changes in the global atmosphere of 1980's

    NASA Technical Reports Server (NTRS)

    Karol, Igor L.; Frolkis, Victor A.

    1994-01-01

    Radiative and temperature effects of the observed ozone and greenhouse gas atmospheric content changes in 1980 - 1990 are evaluated using the two-dimensional energy balance radiative-convective model of the zonally and annually averaged troposphere and stratosphere. Calculated radiative flux changes for standard conditions quantitatively agree with their estimates in WMO/UNEP 1991 review. Model estimates indicate rather small influence of ozone depletion in the lower stratosphere on the greenhouse tropospheric warming rate, being more significant in the non-tropical Southern Hemisphere. The calculated cooling of the lower stratosphere is close to the observed temperature trends there in the last decade.

  14. Urban surface energy fluxes based on remotely-sensed data and micrometeorological measurements over the Kansai area, Japan

    NASA Astrophysics Data System (ADS)

    Sukeyasu, T.; Ueyama, M.; Ando, T.; Kosugi, Y.; Kominami, Y.

    2017-12-01

    The urban heat island is associated with land cover changes and increases in anthropogenic heat fluxes. Clear understanding of the surface energy budget at urban area is the most important for evaluating the urban heat island. In this study, we develop a model based on remotely-sensed data for the Kansai area in Japan and clarify temporal transitions and spatial distributions of the surface energy flux from 2000 to 2016. The model calculated the surface energy fluxes based on various satellite and GIS products. The model used land surface temperature, surface emissivity, air temperature, albedo, downward shortwave radiation and land cover/use type from the moderate resolution imaging spectroradiometer (MODIS) under cloud free skies from 2000 to 2016 over the Kansai area in Japan (34 to 35 ° N, 135 to 136 ° E). Net radiation was estimated by a radiation budget of upward/downward shortwave and longwave radiation. Sensible heat flux was estimated by a bulk aerodynamic method. Anthropogenic heat flux was estimated by the inventory data. Latent heat flux was examined with residues of the energy budget and parameterization of bulk transfer coefficients. We validated the model using observed fluxes from five eddy-covariance measurement sites: three urban sites and two forested sites. The estimated net radiation roughly agreed with the observations, but the sensible heat flux were underestimated. Based on the modeled spatial distributions of the fluxes, the daytime net radiation in the forested area was larger than those in the urban area, owing to higher albedo and land surface temperatures in the urban area than the forested area. The estimated anthropogenic heat flux was high in the summer and winter periods due to increases in energy-requirements.

  15. Radiative Efficiency of Collisionless Accretion

    NASA Astrophysics Data System (ADS)

    Gruzinov, Andrei V.

    1998-07-01

    The radiative efficiency, η≡L/Ṁc2, of a slowly accreting black hole is estimated using a two-temperature model of accretion. The radiative efficiency depends on the magnetic field strength near the Schwarzschild radius. For weak magnetic fields, i.e., β-1 ≡ B2/8πp <~ 10-3, the low efficiency η ~ 10-4 that is assumed in some theoretical models is achieved. For β-1 > 10-3, a significant fraction of viscous heat is dissipated by electrons and radiated away resulting in η > 10-4. At equipartition magnetic fields, β-1 ~ 1, we estimate η ~ 10-1.

  16. Practical simplifications for radioimmunotherapy dosimetric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, S.; DeNardo, G.L.; O`Donnell, R.T.

    1999-01-01

    Radiation dosimetry is potentially useful for assessment and prediction of efficacy and toxicity for radionuclide therapy. The usefulness of these dose estimates relies on the establishment of a dose-response model using accurate pharmacokinetic data and a radiation dosimetric model. Due to the complexity in radiation dose estimation, many practical simplifications have been introduced in the dosimetric modeling for clinical trials of radioimmunotherapy. Although research efforts are generally needed to improve the simplifications used at each stage of model development, practical simplifications are often possible for specific applications without significant consequences to the dose-response model. In the development of dosimetric methodsmore » for radioimmunotherapy, practical simplifications in the dosimetric models were introduced. This study evaluated the magnitude of uncertainty associated with practical simplifications for: (1) organ mass of the MIRD phantom; (2) radiation contribution from target alone; (3) interpolation of S value; (4) macroscopic tumor uniformity; and (5) fit of tumor pharmacokinetic data.« less

  17. Spectral estimates of solar radiation intercepted by corn canopies

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Daughtry, C. S. T.; Gallo, K. P.

    1982-01-01

    Reflectance factor data were acquired with a Landsat band radiometer throughout two growing seasons for corn (Zea mays L.) canopies differing in planting dates, populations, and soil types. Agronomic data collected included leaf area index (LAI), biomass, development stage, and final grain yields. The spectral variable, greenness, was associated with 78 percent of the variation in LAI over all treatments. Single observations of LAI or greenness have limited value in predicting corn yields. The proportions of solar radiation intercepted (SRI) by these canopies were estimated using either measured LAI or greenness. Both SRI estimates, when accumulated over the growing season, accounted for approximately 65 percent of the variation in yields. Models which simulated the daily effects of weather and intercepted solar radiation on growth had the highest correlations to grain yields. This concept of estimating intercepted solar radiation using spectral data represents a viable approach for merging spectral and meteorological data for crop yield models.

  18. Influence of inhomogeneous surface heat capacity on the estimation of radiative response coefficients in a two-zone energy balance model

    NASA Astrophysics Data System (ADS)

    Park, Jungmin; Choi, Yong-Sang

    2018-04-01

    Observationally constrained values of the global radiative response coefficient are pivotal to assess the reliability of modeled climate feedbacks. A widely used approach is to measure transient global radiative imbalance related to surface temperature changes. However, in this approach, a potential error in the estimate of radiative response coefficients may arise from surface inhomogeneity in the climate system. We examined this issue theoretically using a simple two-zone energy balance model. Here, we dealt with the potential error by subtracting the prescribed radiative response coefficient from those calculated within the two-zone framework. Each zone was characterized by the different magnitude of the radiative response coefficient and the surface heat capacity, and the dynamical heat transport in the atmosphere between the zones was parameterized as a linear function of the temperature difference between the zones. Then, the model system was forced by randomly generated monthly varying forcing mimicking time-varying forcing like an observation. The repeated simulations showed that inhomogeneous surface heat capacity causes considerable miscalculation (down to -1.4 W m-2 K-1 equivalent to 31.3% of the prescribed value) in the global radiative response coefficient. Also, the dynamical heat transport reduced this miscalculation driven by inhomogeneity of surface heat capacity. Therefore, the estimation of radiative response coefficients using the surface temperature-radiation relation is appropriate for homogeneous surface areas least affected by the exterior.

  19. Global Soil Moisture Estimation from L-Band Satellite Data: The Impact of Radiative Transfer Modeling in Assimilation and Retrieval Systems

    NASA Technical Reports Server (NTRS)

    De Lannoy, Gabrielle; Reichle, Rolf; Gruber, Alexander; Bechtold, Michel; Quets, Jan; Vrugt, Jasper; Wigneron, Jean-Pierre

    2018-01-01

    The SMOS and SMAP missions have collected a wealth of global L-band Brightness temperature (Tb) observations. The retrieval of surface Soil moisture estimates, and the estimation of other geophysical Variables, such as root-zone soil moisture and temperature, via data Assimilation into land surface models largely depends on accurate Radiative transfer modeling (RTM). This presentation will focus on various configuration aspects of the RTM (i) for the inversion of SMOS Tb to surface soil moisture, and (ii) for the forward modeling as part of a SMOS Tb data assimilation System to estimate a consistent set of geophysical land surface Variables, using the GEOS-5 Catchment Land Surface Model.

  20. Observations of enhanced aerosol longwave radiative forcing over an urban environment

    NASA Astrophysics Data System (ADS)

    Panicker, A. S.; Pandithurai, G.; Safai, P. D.; Kewat, S.

    2008-02-01

    Collocated measurements of sun/sky radiance, aerosol chemical composition and radiative fluxes have been utilized to estimate longwave aerosol radiative forcing over Pune, an Indian urban site during dry winter [Dec2004 to Feb2005] by two methods. Hybrid method which uses observed downwelling and modeled upwelling longwave fluxes for different aerosol loadings yielded a surface forcing of 9.4 Wm-2. Model approach includes utilization of skyradiometer derived spectral aerosol optical properties in the visible and near infra-red wavelengths, modeled aerosol properties in 1.2-40 μm using observed soot and chemical composition data, MODIS water vapor and TOMS column ozone in a radiative transfer model. Estimates from model method showed longwave enhancement of 6.5 and 8.2 Wm-2 at the surface with tropical model atmosphere and temporally varying profiles of temperature and humidity, respectively. Study reveals that about 25% of the aerosol shortwave cooling is being compensated by increase in longwave radiation due to aerosol absorption.

  1. ULTRAVIOLET RADIATION IN NORTH AMERICAN LAKES: ATTENUATION ESTIMATES FROM DOC MEASUREMENTS AND IMPLICATIONS FOR PLANKTON COMMUNITIES

    EPA Science Inventory

    Climate warming in North America is likely to be accompanied by changes in other environmental stresses such as UV-B radiation. We apply an empirical model to available DOC (dissolved organic C) data to estimate the depths to which 1% of surface UV-B and UV-A radiation penetrate ...

  2. Temporal variability patterns in solar radiation estimations

    NASA Astrophysics Data System (ADS)

    Vindel, José M.; Navarro, Ana A.; Valenzuela, Rita X.; Zarzalejo, Luis F.

    2016-06-01

    In this work, solar radiation estimations obtained from a satellite and a numerical weather prediction model in mainland Spain have been compared. Similar comparisons have been formerly carried out, but in this case, the methodology used is different: the temporal variability of both sources of estimation has been compared with the annual evolution of the radiation associated to the different study climate zones. The methodology is based on obtaining behavior patterns, using a Principal Component Analysis, following the annual evolution of solar radiation estimations. Indeed, the adjustment degree to these patterns in each point (assessed from maps of correlation) may be associated with the annual radiation variation (assessed from the interquartile range), which is associated, in turn, to different climate zones. In addition, the goodness of each estimation source has been assessed comparing it with data obtained from the radiation measurements in ground by pyranometers. For the study, radiation data from Satellite Application Facilities and data corresponding to the reanalysis carried out by the European Centre for Medium-Range Weather Forecasts have been used.

  3. Estimating Longwave Atmospheric Emissivity in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Ebrahimi, S.; Marshall, S. J.

    2014-12-01

    Incoming longwave radiation is an important source of energy contributing to snow and glacier melt. However, estimating the incoming longwave radiation from the atmosphere is challenging due to the highly varying conditions of the atmosphere, especially cloudiness. We analyze the performance of some existing models included a physically-based clear-sky model by Brutsaert (1987) and two different empirical models for all-sky conditions (Lhomme and others, 2007; Herrero and Polo, 2012) at Haig Glacier in the Canadian Rocky Mountains. Models are based on relations between readily observed near-surface meteorological data, including temperature, vapor pressure, relative humidity, and estimates of shortwave radiation transmissivity (i.e., clear-sky or cloud-cover indices). This class of models generally requires solar radiation data in order to obtain a proxy for cloud conditions. This is not always available for distributed models of glacier melt, and can have high spatial variations in regions of complex topography, which likely do not reflect the more homogeneous atmospheric longwave emissions. We therefore test longwave radiation parameterizations as a function of near-surface humidity and temperature variables, based on automatic weather station data (half-hourly and mean daily values) from 2004 to 2012. Results from comparative analysis of different incoming longwave radiation parameterizations showed that the locally-calibrated model based on relative humidity and vapour pressure performs better than other published models. Performance is degraded but still better than standard cloud-index based models when we transfer the model to another site, roughly 900 km away, Kwadacha Glacier in the northern Canadian Rockies.

  4. The role of global cloud climatologies in validating numerical models

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN

    1991-01-01

    Reliable estimates of the components of the surface radiation budget are important in studies of ocean-atmosphere interaction, land-atmosphere interaction, ocean circulation and in the validation of radiation schemes used in climate models. The methods currently under consideration must necessarily make certain assumptions regarding both the presence of clouds and their vertical extent. Because of the uncertainties in assumed cloudiness, all these methods involve perhaps unacceptable uncertainties. Here, a theoretical framework that avoids the explicit computation of cloud fraction and the location of cloud base in estimating the surface longwave radiation is presented. Estimates of the global surface downward fluxes and the oceanic surface net upward fluxes were made for four months (April, July, October and January) in 1985 to 1986. These estimates are based on a relationship between cloud radiative forcing at the top of the atmosphere and the surface obtained from a general circulation model. The radiation code is the version used in the UCLA/GLA general circulation model (GCM). The longwave cloud radiative forcing at the top of the atmosphere as obtained from Earth Radiation Budget Experiment (ERBE) measurements is used to compute the forcing at the surface by means of the GCM-derived relationship. This, along with clear-sky fluxes from the computations, yield maps of the downward longwave fluxes and net upward longwave fluxes at the surface. The calculated results are discussed and analyzed. The results are consistent with current meteorological knowledge and explainable on the basis of previous theoretical and observational works; therefore, it can be concluded that this method is applicable as one of the ways to obtain the surface longwave radiation fields from currently available satellite data.

  5. NASA Space Radiation Program Integrative Risk Model Toolkit

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  6. Direct Aerosol Radiative Forcing from Combined A-Train Observations - Preliminary Comparisons with AeroCom Models and Pathways to Observationally Based All-sky Estimates

    NASA Astrophysics Data System (ADS)

    Redemann, J.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Russell, P. B.; LeBlanc, S. E.; Vaughan, M.; Ferrare, R. A.; Hostetler, C. A.; Rogers, R. R.; Burton, S. P.; Torres, O.; Remer, L. A.; Stier, P.; Schutgens, N.

    2014-12-01

    We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). For the first time, we present comparisons of our multi-sensor aerosol direct radiative forcing estimates to values derived from a subset of models that participated in the latest AeroCom initiative. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.

  7. Atmospheric response and feedback to radiative forcing from biomass burning in tropical South America

    Treesearch

    Yongqiang Liu

    2005-01-01

    Simulations are performed to understand the importance of smoke from biomass burning in tropical South America to regional radiation and climate. The National Center for Atmospheric Research (NCAR) regional climate model coupled with the NCAR column radiative model is used to estimate smoke direct radiative forcing and consequent atmospheric perturbations during a...

  8. Consistency between satellite-derived and modeled estimates of the direct aerosol effect.

    PubMed

    Myhre, Gunnar

    2009-07-10

    In the Intergovernmental Panel on Climate Change Fourth Assessment Report, the direct aerosol effect is reported to have a radiative forcing estimate of -0.5 Watt per square meter (W m(-2)), offsetting the warming from CO2 by almost one-third. The uncertainty, however, ranges from -0.9 to -0.1 W m(-2), which is largely due to differences between estimates from global aerosol models and observation-based estimates, with the latter tending to have stronger (more negative) radiative forcing. This study demonstrates consistency between a global aerosol model and adjustment to an observation-based method, producing a global and annual mean radiative forcing that is weaker than -0.5 W m(-2), with a best estimate of -0.3 W m(-2). The physical explanation for the earlier discrepancy is that the relative increase in anthropogenic black carbon (absorbing aerosols) is much larger than the overall increase in the anthropogenic abundance of aerosols.

  9. Effect of the route of administration on the biodistribution of radioiodinated OV-TL 3 F(ab')2 in experimental ovarian cancer.

    PubMed

    Tibben, J G; Massuger, L F; Boerman, O C; Borm, G F; Claessens, R A; Corstens, F H

    1994-11-01

    The effect of the route administration on the distribution of radioiodinated OV-TL 3 F(ab')2 was studied in Balb/c female mice with intraperitoneal or subcutaneous ovarian carcinoma xenografts. In the intraperitoneal tumour model in which both ascites and solid tumour deposits were present, intraperitoneal administration resulted in a lower estimated radiation dose to blood as compared with intravenous administration. In this model normalization to equal estimated radiation doses to blood for both routes of administration indicated that a twice as high estimated radiation dose can be guided to solid intraperitoneal tumour deposits following intraperitoneal administration. Evacuation of ascitic tumour cells prior to monoclonal antibody injection further increased the estimated radiation dose to solid intraperitoneal tumour deposits following intraperitoneal delivery. Following simultaneous intravenous and intraperitoneal injection of the monoclonal antibody, tissue uptake showed no relevant differences in the subcutaneous tumour model. Overall, the intraperitoneal route of administration was found to be the best choice for therapeutic delivery of iodine-131 labelled monoclonal antibodies.

  10. Influence of aerosols on surface reaching spectral irradiance and introduction to a new technique for estimating aerosol radiative forcing from spectral flux measurements

    NASA Astrophysics Data System (ADS)

    Rao, R. R.

    2015-12-01

    Aerosol radiative forcing estimates with high certainty are required in climate change studies. The approach in estimating the aerosol radiative forcing by using the chemical composition of aerosols is not effective as the chemical composition data with radiative properties are not widely available. In this study we look into the approach where ground based spectral radiation flux measurements along with an RT model is used to estimate radiative forcing. Measurements of spectral flux were made using an ASD spectroradiometer with 350 - 1050 nm wavelength range and 3nm resolution for around 54 clear-sky days during which AOD range was around 0.1 to 0.7. Simultaneous measurements of black carbon were also made using Aethalometer (Magee Scientific) which ranged from around 1.5 ug/m3 to 8 ug/m3. All the measurements were made in the campus of Indian Institute of Science which is in the heart of Bangalore city. The primary study involved in understanding the sensitivity of spectral flux to change in the mass concentration of individual aerosol species (Optical properties of Aerosols and Clouds -OPAC classified aerosol species) using the SBDART RT model. This made us clearly distinguish the region of influence of different aerosol species on the spectral flux. Following this, a new technique has been introduced to estimate an optically equivalent mixture of aerosol species for the given location. The new method involves an iterative process where the mixture of aerosol species are changed in OPAC model and RT model is run as long as the mixture which mimics the measured spectral flux within 2-3% deviation from measured spectral flux is obtained. Using the optically equivalent aerosol mixture and RT model aerosol radiative forcing is estimated. The new method is limited to clear sky scenes and its accuracy to derive an optically equivalent aerosol mixture reduces when diffuse component of flux increases. Our analysis also showed that direct component of spectral flux is more sensitive to different aerosol species than total spectral flux which was also supported by our observed data.

  11. Evaluation on newly developed high resolution of surface solar radiation from MTSAT observations for the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Niu, X.; Yang, K.; Tang, W.; Qin, J.

    2015-12-01

    Neither surface measurement nor existing remote sensing products of the Surface Solar Radiation (SSR) can meet the application requirements of hydrological and land process modeling in the Tibetan Plateau (TP). High resolution (hourly; 0.1⁰) of SSR estimates have been derived recently from the geostationary satellite observations - the Multi-functional Transport Satellite (MTSAT). This SSR estimation is based on updating an existing physical model, the UMD-SRB (University of Maryland Surface Radiation Budget) which is the basis of the well-known GEWEX-SRB model. In the updated framework introduced is the high-resolution Global Land Surface Broadband Albedo Product (GLASS) with spatial continuity. The developed SSR estimates are demonstrated at different temporal resolutions over the TP and are evaluated against ground observations and other satellite products from: (1) China Meteorological Administration (CMA) radiation stations in TP; (2) three TP radiation stations contributed from the Institute of Tibetan Plateau Research; (3) and the universal used satellite products (i.e. ISCCP-FD, GEWEX-SRB) in relatively low spatial resolution (0.5º-2.5º) and temporal resolution (3-hourly, daily, or monthly).

  12. [Effect of the ISS Russian segment configuration on the service module radiation environment].

    PubMed

    Mitrikas, V G

    2011-01-01

    Mathematical modeling of variations in the Service module radiation environment as a function of ISS Russian segment configuration was carried out using models of the RS modules and a spherical humanoid phantom. ISS reconfiguration impacted significantly only the phantom brought into the transfer compartment (ExT). The Radiation Safety Service prohibition for cosmonauts to stay in this compartment during solar flare events remains valid. In all other instances, error of dose estimation is higher as compared to dose value estimation with consideration for ISS RS reconfiguration.

  13. Internally Consistent MODIS Estimate of Aerosol Clear-Sky Radiative Effect Over the Global Oceans

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Kaufman, Yoram J.

    2004-01-01

    Modern satellite remote sensing, and in particular the MODerate resolution Imaging Spectroradiometer (MODIS), offers a measurement-based pathway to estimate global aerosol radiative effects and aerosol radiative forcing. Over the Oceans, MODIS retrieves the total aerosol optical thickness, but also reports which combination of the 9 different aerosol models was used to obtain the retrieval. Each of the 9 models is characterized by a size distribution and complex refractive index, which through Mie calculations correspond to a unique set of single scattering albedo, assymetry parameter and spectral extinction for each model. The combination of these sets of optical parameters weighted by the optical thickness attributed to each model in the retrieval produces the best fit to the observed radiances at the top of the atmosphere. Thus the MODIS Ocean aerosol retrieval provides us with (1) An observed distribution of global aerosol loading, and (2) An internally-consistent, observed, distribution of aerosol optical models that when used in combination will best represent the radiances at the top of the atmosphere. We use these two observed global distributions to initialize the column climate model by Chou and Suarez to calculate the aerosol radiative effect at top of the atmosphere and the radiative efficiency of the aerosols over the global oceans. We apply the analysis to 3 years of MODIS retrievals from the Terra satellite and produce global and regional, seasonally varying, estimates of aerosol radiative effect over the clear-sky oceans.

  14. Space Radiation Cancer Risk Projections and Uncertainties - 2010

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Chappell, Lori J.

    2011-01-01

    Uncertainties in estimating health risks from galactic cosmic rays greatly limit space mission lengths and potential risk mitigation evaluations. NASA limits astronaut exposures to a 3% risk of exposure-induced death and protects against uncertainties using an assessment of 95% confidence intervals in the projection model. Revisions to this model for lifetime cancer risks from space radiation and new estimates of model uncertainties are described here. We review models of space environments and transport code predictions of organ exposures, and characterize uncertainties in these descriptions. We summarize recent analysis of low linear energy transfer radio-epidemiology data, including revision to Japanese A-bomb survivor dosimetry, longer follow-up of exposed cohorts, and reassessments of dose and dose-rate reduction effectiveness factors. We compare these projections and uncertainties with earlier estimates. Current understanding of radiation quality effects and recent data on factors of relative biological effectiveness and particle track structure are reviewed. Recent radiobiology experiment results provide new information on solid cancer and leukemia risks from heavy ions. We also consider deviations from the paradigm of linearity at low doses of heavy ions motivated by non-targeted effects models. New findings and knowledge are used to revise the NASA risk projection model for space radiation cancer risks.

  15. Sparse Matrix Motivated Reconstruction of Far-Field Radiation Patterns

    DTIC Science & Technology

    2015-03-01

    method for base - station antenna radiation patterns. IEEE Antennas Propagation Magazine. 2001;43(2):132. 4. Vasiliadis TG, Dimitriou D, Sergiadis JD...algorithm based on sparse representations of radiation patterns using the inverse Discrete Fourier Transform (DFT) and the inverse Discrete Cosine...patterns using a Model- Based Parameter Estimation (MBPE) technique that reduces the computational time required to model radiation patterns. Another

  16. Galactic cosmic ray radiation levels in spacecraft on interplanetary missions

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.; Nealy, J. E.; Townsend, L. W.; Wilson, J. W.; Wood, J.S.

    1994-01-01

    Using the Langley Research Center Galactic Cosmic Ray (GCR) transport computer code (HZETRN) and the Computerized Anatomical Man (CAM) model, crew radiation levels inside manned spacecraft on interplanetary missions are estimated. These radiation-level estimates include particle fluxes, LET (Linear Energy Transfer) spectra, absorbed dose, and dose equivalent within various organs of interest in GCR protection studies. Changes in these radiation levels resulting from the use of various different types of shield materials are presented.

  17. Aerosol in the Upper Troposphere Lower Stratosphere, decadal Simulations of Radiative Forcing using the Chemistry Circulation Model EMAC and MIPAS, GOMOS, IASI and other Satellite Data

    NASA Astrophysics Data System (ADS)

    Bruehl, C.; Schallock, J.; Lelieveld, J.; Bingen, C.; Robert, C. E.; Hoepfner, M.; Clarisse, L.

    2017-12-01

    The atmospheric chemistry - general circulation model EMAC with a modal interactive aerosol module is used to estimate radiative effects of UTLS aerosol for the ENVISAT period 2002 to 2012 in the framework of SPARC/SSIRC. Volcanic SO2 injections by about 230 explosive volcano eruptions are estimated mostly from MIPAS limb observations. For periods of data gaps, injected SO2 is estimated indirectly from extinctions observed by GOMOS. GOMOS extinctions in the UTLS and the seasonal component of radiative forcing can be only reproduced by the model if a comprehensive treatment of desert dust and organic and black carbon is included. Upward transport of particles and gases by the Asian Monsoon appears to contribute importantly. The time series of simulated stratospheric aerosol optical depth and radiative forcing agree with the corresponding quantities derived from different satellite data sets. Comparisons of total aerosol optical depth with IASI show that tropospheric and stratospheric aerosol in the model are consistently and realistically represented.

  18. Reduction of uncertainty in global black carbon direct radiative forcing constrained by observations

    NASA Astrophysics Data System (ADS)

    Wang, R.; Balkanski, Y.; Boucher, O.; Ciais, P.; Schuster, G. L.; Chevallier, F.; Samset, B. H.; Valari, M.; Liu, J.; Tao, S.

    2017-12-01

    Black carbon (BC) absorbs sunlight and contributes to global warming. However, the size of this effect, namely the direct radiative forcing (DRF), ranges from +0.1 to +1.0 W m-2, largely due to discrepancies between modeled and observed BC radiation absorption. Studies that adjusted emissions to correct biases of models resulted in a revised upward estimate of the BC DRF. However, the observation-based BC RF was not optimized against observations in a rigorous mathematical manner, because uncertainties in emissions and the representativeness errors due to use of coarse-resolution models were not fully assessed. Here we simulated the absorption of solar radiation by BC from all sources at the 10-km resolution by combining a nested aerosol model with a downscaling method. The normalized mean bias in BC radiation absorption was reduced from -51% to -24% in Asia and from -57% to -50% elsewhere. We applied a Bayesian method that account for model, representativeness and observational uncertainties to estimate the BC RF and its uncertainty. Using the high-resolution model reduces uncertainty in BC DRF from -101%/+152% to -70%/+71% over Asia and from -83%/+108% to -64%/+68% over other continental regions. We derived an observation-based BC DRF of 0.61 Wm-2 (0.16 to 1.40 as 90% confidence) as our best estimate.

  19. Saturn Radiation (SATRAD) Model

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.; Ratliff, J. M.; Evans, R. W.

    2005-01-01

    The Saturnian radiation belts have not received as much attention as the Jovian radiation belts because they are not nearly as intense-the famous Saturnian particle rings tend to deplete the belts near where their peak would occur. As a result, there has not been a systematic development of engineering models of the Saturnian radiation environment for mission design. A primary exception is that of Divine (1990). That study used published data from several charged particle experiments aboard the Pioneer 1 1, Voyager 1, and Voyager 2 spacecraft during their flybys at Saturn to generate numerical models for the electron and proton radiation belts between 2.3 and 13 Saturn radii. The Divine Saturn radiation model described the electron distributions at energies between 0.04 and 10 MeV and the proton distributions at energies between 0.14 and 80 MeV. The model was intended to predict particle intensity, flux, and fluence for the Cassini orbiter. Divine carried out hand calculations using the model but never formally developed a computer program that could be used for general mission analyses. This report seeks to fill that void by formally developing a FORTRAN version of the model that can be used as a computer design tool for missions to Saturn that require estimates of the radiation environment around the planet. The results of that effort and the program listings are presented here along with comparisons with the original estimates carried out by Divine. In addition, Pioneer and Voyager data were scanned in from the original references and compared with the FORTRAN model s predictions. The results were statistically analyzed in a manner consistent with Divine s approach to provide estimates of the ability of the model to reproduce the original data. Results of a formal review of the model by a panel of experts are also presented. Their recommendations for further tests, analyses, and extensions to the model are discussed.

  20. Space radiation and cardiovascular disease risk

    PubMed Central

    Boerma, Marjan; Nelson, Gregory A; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Koturbash, Igor; Hauer-Jensen, Martin

    2015-01-01

    Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy. PMID:26730293

  1. Space radiation and cardiovascular disease risk.

    PubMed

    Boerma, Marjan; Nelson, Gregory A; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Koturbash, Igor; Hauer-Jensen, Martin

    2015-12-26

    Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy.

  2. Evaluation of different models to estimate the global solar radiation on inclined surface

    NASA Astrophysics Data System (ADS)

    Demain, C.; Journée, M.; Bertrand, C.

    2012-04-01

    Global and diffuse solar radiation intensities are, in general, measured on horizontal surfaces, whereas stationary solar conversion systems (both flat plate solar collector and solar photovoltaic) are mounted on inclined surface to maximize the amount of solar radiation incident on the collector surface. Consequently, the solar radiation incident measured on a tilted surface has to be determined by converting solar radiation from horizontal surface to tilted surface of interest. This study evaluates the performance of 14 models transposing 10 minutes, hourly and daily diffuse solar irradiation from horizontal to inclined surface. Solar radiation data from 8 months (April to November 2011) which include diverse atmospheric conditions and solar altitudes, measured on the roof of the radiation tower of the Royal Meteorological Institute of Belgium in Uccle (Longitude 4.35°, Latitude 50.79°) were used for validation purposes. The individual model performance is assessed by an inter-comparison between the calculated and measured solar global radiation on the south-oriented surface tilted at 50.79° using statistical methods. The relative performance of the different models under different sky conditions has been studied. Comparison of the statistical errors between the different radiation models in function of the clearness index shows that some models perform better under one type of sky condition. Putting together different models acting under different sky conditions can lead to a diminution of the statistical error between global measured solar radiation and global estimated solar radiation. As models described in this paper have been developed for hourly data inputs, statistical error indexes are minimum for hourly data and increase for 10 minutes and one day frequency data.

  3. Spinning projectile's attitude measurement with LW infrared radiation under sea-sky background

    NASA Astrophysics Data System (ADS)

    Xu, Miaomiao; Bu, Xiongzhu; Yu, Jing; He, Zilu

    2018-05-01

    With the further development of infrared radiation research in sea-sky background and the requirement of spinning projectile's attitude measurement, the sea-sky infrared radiation field is used to carry out spinning projectile's attitude angle instead of inertial sensors. Firstly, the generation mechanism of sea-sky infrared radiation is analysed. The mathematical model of sea-sky infrared radiation is deduced in LW (long wave) infrared 8 ∼ 14 μm band by calculating the sea surface and sky infrared radiation. Secondly, according to the movement characteristics of spinning projectile, the attitude measurement model of infrared sensors on projectile's three axis is established. And the feasibility of the model is analysed by simulation. Finally, the projectile's attitude calculation algorithm is designed to improve the attitude angle estimation accuracy. The results of semi-physical experiments show that the segmented interactive algorithm estimation error of pitch and roll angle is within ±1.5°. The attitude measurement method is effective and feasible, and provides accurate measurement basis for the guidance of spinning projectile.

  4. Integration of a radiation biomarker into modeling of thyroid carcinogenesis and post-Chernobyl risk assessment.

    PubMed

    Kaiser, Jan Christian; Meckbach, Reinhard; Eidemüller, Markus; Selmansberger, Martin; Unger, Kristian; Shpak, Viktor; Blettner, Maria; Zitzelsberger, Horst; Jacob, Peter

    2016-12-01

    Strong evidence for the statistical association between radiation exposure and disease has been produced for thyroid cancer by epidemiological studies after the Chernobyl accident. However, limitations of the epidemiological approach in order to explore health risks especially at low doses of radiation appear obvious. Statistical fluctuations due to small case numbers dominate the uncertainty of risk estimates. Molecular radiation markers have been searched extensively to separate radiation-induced cancer cases from sporadic cases. The overexpression of the CLIP2 gene is the most promising of these markers. It was found in the majority of papillary thyroid cancers (PTCs) from young patients included in the Chernobyl tissue bank. Motivated by the CLIP2 findings we propose a mechanistic model which describes PTC development as a sequence of rate-limiting events in two distinct paths of CLIP2-associated and multistage carcinogenesis. It integrates molecular measurements of the dichotomous CLIP2 marker from 141 patients into the epidemiological risk analysis for about 13 000 subjects from the Ukrainian-American cohort which were exposed below age 19 years and were put under enhanced medical surveillance since 1998. For the first time, a radiation risk has been estimated solely from marker measurements. Cross checking with epidemiological estimates and model validation suggests that CLIP2 is a marker of high precision. CLIP2 leaves an imprint in the epidemiological incidence data which is typical for a driver gene. With the mechanistic model, we explore the impact of radiation on the molecular landscape of PTC. The model constitutes a unique interface between molecular biology and radiation epidemiology. © The Author 2016. Published by Oxford University Press.

  5. Estimation of Regional Evapotranspiration Using Remotely Sensed Land Surface Temperature. Part 2: Application of Equilibrium Evaporation Model to Estimate Evapotranspiration by Remote Sensing Technique. [Japan

    NASA Technical Reports Server (NTRS)

    Kotoda, K.; Nakagawa, S.; Kai, K.; Yoshino, M. M.; Takeda, K.; Seki, K.

    1985-01-01

    In a humid region like Japan, it seems that the radiation term in the energy balance equation plays a more important role for evapotranspiration then does the vapor pressure difference between the surface and lower atmospheric boundary layer. A Priestley-Taylor type equation (equilibrium evaporation model) is used to estimate evapotranspiration. Net radiation, soil heat flux, and surface temperature data are obtained. Only temperature data obtained by remotely sensed techniques are used.

  6. Placental transfer of radiopharmaceuticals and dosimetry in pregnancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, J.R.; Stabin, M.G.; Sparks, R.B.

    The calculation of radiation dose estimates to the fetus is often important in nuclear medicine. To obtain the best estimates of radiation dose to the fetus, the best biological and physical models should be employed. In this paper, after identification of radiopharmaceuticals often administered to women of childbearing age, the most recent data available on the placental crossover of these radiopharmaceuticals was used (with standard kinetic models describing the maternal distribution and retention and with the best available physical models) to obtain fetal dose estimates for these radiopharmaceuticals were identified as those most commonly administered to women of childbearing years.more » The literature yielded information on placental crossover of 15 radiopharmaceuticals, from animal or human data. Radiation dose estimates are presented in early pregnancy and at 3-, 6-, and 9-months gestation for these radiopharmaceuticals, as well as for many others used in nuclear medicine (the latter considering only maternal organ contributions to fetal dose). 46 refs., 1 fig., 5 tabs.« less

  7. Defining Top-of-Atmosphere Flux Reference Level for Earth Radiation Budget Studies

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Kato, S.; Wielicki, B. A.

    2002-01-01

    To estimate the earth's radiation budget at the top of the atmosphere (TOA) from satellite-measured radiances, it is necessary to account for the finite geometry of the earth and recognize that the earth is a solid body surrounded by a translucent atmosphere of finite thickness that attenuates solar radiation differently at different heights. As a result, in order to account for all of the reflected solar and emitted thermal radiation from the planet by direct integration of satellite-measured radiances, the measurement viewing geometry must be defined at a reference level well above the earth s surface (e.g., 100 km). This ensures that all radiation contributions, including radiation escaping the planet along slant paths above the earth s tangent point, are accounted for. By using a field-of- view (FOV) reference level that is too low (such as the surface reference level), TOA fluxes for most scene types are systematically underestimated by 1-2 W/sq m. In addition, since TOA flux represents a flow of radiant energy per unit area, and varies with distance from the earth according to the inverse-square law, a reference level is also needed to define satellite-based TOA fluxes. From theoretical radiative transfer calculations using a model that accounts for spherical geometry, the optimal reference level for defining TOA fluxes in radiation budget studies for the earth is estimated to be approximately 20 km. At this reference level, there is no need to explicitly account for horizontal transmission of solar radiation through the atmosphere in the earth radiation budget calculation. In this context, therefore, the 20-km reference level corresponds to the effective radiative top of atmosphere for the planet. Although the optimal flux reference level depends slightly on scene type due to differences in effective transmission of solar radiation with cloud height, the difference in flux caused by neglecting the scene-type dependence is less than 0.1%. If an inappropriate TOA flux reference level is used to define satellite TOA fluxes, and horizontal transmission of solar radiation through the planet is not accounted for in the radiation budget equation, systematic errors in net flux of up to 8 W/sq m can result. Since climate models generally use a plane-parallel model approximation to estimate TOA fluxes and the earth radiation budget, they implicitly assume zero horizontal transmission of solar radiation in the radiation budget equation, and do not need to specify a flux reference level. By defining satellite-based TOA flux estimates at a 20-km flux reference level, comparisons with plane-parallel climate model calculations are simplified since there is no need to explicitly correct plane-parallel climate model fluxes for horizontal transmission of solar radiation through a finite earth.

  8. Space Radiation and Human Exposures, A Primer.

    PubMed

    Nelson, Gregory A

    2016-04-01

    The space radiation environment is a complex field comprised primarily of charged particles spanning energies over many orders of magnitude. The principal sources of these particles are galactic cosmic rays, the Sun and the trapped radiation belts around the earth. Superimposed on a steady influx of cosmic rays and a steady outward flux of low-energy solar wind are short-term ejections of higher energy particles from the Sun and an 11-year variation of solar luminosity that modulates cosmic ray intensity. Human health risks are estimated from models of the radiation environment for various mission scenarios, the shielding of associated vehicles and the human body itself. Transport models are used to propagate the ambient radiation fields through realistic shielding levels and materials to yield radiation field models inside spacecraft. Then, informed by radiobiological experiments and epidemiology studies, estimates are made for various outcome measures associated with impairments of biological processes, losses of function or mortality. Cancer-associated risks have been formulated in a probabilistic model while management of non-cancer risks are based on permissible exposure limits. This article focuses on the various components of the space radiation environment and the human exposures that it creates.

  9. REVIEW OF DRAFT REVISED BLUE BOOK ON ESTIMATING ...

    EPA Pesticide Factsheets

    In 1994, EPA published a report, referred to as the “Blue Book,” which lays out EPA’s current methodology for quantitatively estimating radiogenic cancer risks. A follow-on report made minor adjustments to the previous estimates and presented a partial analysis of the uncertainties in the numerical estimates. In 2006, the National Research Council of the National Academy of Sciences released a report on the health risks from exposure to low levels of ionizing radiation. Cosponsored by the EPA and several other Federal agencies, Health Risks from Exposure to Low Levels of Ionizing Radiation BEIR VII Phase 2 (BEIR VII) primarily addresses cancer and genetic risks from low doses of low-LET radiation. In the draft White Paper: Modifying EPA Radiation Risk Models Based on BEIR VII (White Paper), ORIA proposed changes in EPA’s methodology for estimating radiogenic cancers, based on the contents of BEIR VII and some ancillary information. For the most part, it proposed to adopt the models and methodology recommended in BEIR VII; however, certain modifications and expansions are considered to be desirable or necessary for EPA’s purposes. EPA sought advice from the Agency’s Science Advisory Board on the application of BEIR VII and on issues relating to these modifications and expansions in the Advisory on EPA’s Draft White Paper: Modifying EPA Radiation Risk Models Based on BEIR VII (record # 83044). The SAB issued its Advisory on Jan. 31, 2008 (EPA-SAB-08-

  10. Joint nonparametric correction estimator for excess relative risk regression in survival analysis with exposure measurement error

    PubMed Central

    Wang, Ching-Yun; Cullings, Harry; Song, Xiao; Kopecky, Kenneth J.

    2017-01-01

    SUMMARY Observational epidemiological studies often confront the problem of estimating exposure-disease relationships when the exposure is not measured exactly. In the paper, we investigate exposure measurement error in excess relative risk regression, which is a widely used model in radiation exposure effect research. In the study cohort, a surrogate variable is available for the true unobserved exposure variable. The surrogate variable satisfies a generalized version of the classical additive measurement error model, but it may or may not have repeated measurements. In addition, an instrumental variable is available for individuals in a subset of the whole cohort. We develop a nonparametric correction (NPC) estimator using data from the subcohort, and further propose a joint nonparametric correction (JNPC) estimator using all observed data to adjust for exposure measurement error. An optimal linear combination estimator of JNPC and NPC is further developed. The proposed estimators are nonparametric, which are consistent without imposing a covariate or error distribution, and are robust to heteroscedastic errors. Finite sample performance is examined via a simulation study. We apply the developed methods to data from the Radiation Effects Research Foundation, in which chromosome aberration is used to adjust for the effects of radiation dose measurement error on the estimation of radiation dose responses. PMID:29354018

  11. Sensitivity Analysis of Median Lifetime on Radiation Risks Estimates for Cancer and Circulatory Disease amongst Never-Smokers

    NASA Technical Reports Server (NTRS)

    Chappell, Lori J.; Cucinotta, Francis A.

    2011-01-01

    Radiation risks are estimated in a competing risk formalism where age or time after exposure estimates of increased risks for cancer and circulatory diseases are folded with a probability to survive to a given age. The survival function, also called the life-table, changes with calendar year, gender, smoking status and other demographic variables. An outstanding problem in risk estimation is the method of risk transfer between exposed populations and a second population where risks are to be estimated. Approaches used to transfer risks are based on: 1) Multiplicative risk transfer models -proportional to background disease rates. 2) Additive risk transfer model -risks independent of background rates. In addition, a Mixture model is often considered where the multiplicative and additive transfer assumptions are given weighted contributions. We studied the influence of the survival probability on the risk of exposure induced cancer and circulatory disease morbidity and mortality in the Multiplicative transfer model and the Mixture model. Risks for never-smokers (NS) compared to the average U.S. population are estimated to be reduced between 30% and 60% dependent on model assumptions. Lung cancer is the major contributor to the reduction for NS, with additional contributions from circulatory diseases and cancers of the stomach, liver, bladder, oral cavity, esophagus, colon, a portion of the solid cancer remainder, and leukemia. Greater improvements in risk estimates for NS s are possible, and would be dependent on improved understanding of risk transfer models, and elucidating the role of space radiation on the various stages of disease formation (e.g. initiation, promotion, and progression).

  12. Simulation studies of wide and medium field of view earth radiation data analysis

    NASA Technical Reports Server (NTRS)

    Green, R. N.

    1978-01-01

    A parameter estimation technique is presented to estimate the radiative flux distribution over the earth from radiometer measurements at satellite altitude. The technique analyzes measurements from a wide field of view (WFOV), horizon to horizon, nadir pointing sensor with a mathematical technique to derive the radiative flux estimates at the top of the atmosphere for resolution elements smaller than the sensor field of view. A computer simulation of the data analysis technique is presented for both earth-emitted and reflected radiation. Zonal resolutions are considered as well as the global integration of plane flux. An estimate of the equator-to-pole gradient is obtained from the zonal estimates. Sensitivity studies of the derived flux distribution to directional model errors are also presented. In addition to the WFOV results, medium field of view results are presented.

  13. A hybrid numerical prediction scheme for solar radiation estimation in un-gauged catchments.

    NASA Astrophysics Data System (ADS)

    Shamim, M. A.; Bray, M.; Ishak, A. M.; Remesan, R.; Han, D.

    2009-09-01

    The importance of solar radiation on earth's surface is depicted in its wide range of applications in the fields of meteorology, agricultural sciences, engineering, hydrology, crop water requirements, climatic changes and energy assessment. It is quite random in nature as it has to go through different processes of assimilation and dispersion while on its way to earth. Compared to other meteorological parameters, solar radiation is quite infrequently measured, for example, the worldwide ratio of stations collecting solar radiation to those collecting temperature is 1:500 (Badescu, 2008). Researchers, therefore, have to rely on indirect techniques of estimation that include nonlinear models, artificial intelligence (e.g. neural networks), remote sensing and numerical weather predictions (NWP). This study proposes a hybrid numerical prediction scheme for solar radiation estimation in un-gauged catchments. It uses the PSU/NCAR's Mesoscale Modelling system (MM5) (Grell et al., 1995) to parameterise the cloud effect on extraterrestrial radiation by dividing the atmosphere into four layers of very high (6-12 km), high (3-6 km), medium (1.5-3) and low (0-1.5) altitudes from earth. It is believed that various cloud forms exist within each of these layers. An hourly time series of upper air pressure and relative humidity data sets corresponding to all of these layers is determined for the Brue catchment, southwest UK, using MM5. Cloud Index (CI) was then determined using (Yang and Koike, 2002): 1 p?bi [ (Rh - Rh )] ci =------- max 0.0,---------cri dp pbi - ptipti (1- Rhcri) where, pbi and pti represent the air pressure at the top and bottom of each layer and Rhcri is the critical value of relative humidity at which a certain cloud type is formed. Output from a global clear sky solar radiation model (MRM v-5) (Kambezidis and Psiloglu, 2008) is used along with meteorological datasets of temperature and precipitation and astronomical information. The analysis is aided by the Gamma Test (GT). GT is a newly developed algorithm (Koncar, 1997; Agalbjorn, et al.1997) that helps in estimating the best mean squared error (MSE), for a given combination of inputs when modelling an unseen data. The study also explores the ability of GT to determine the optimum data length and optimum number of nearest neighbours for nonlinear modelling of global solar radiation in un-gauged catchments. Artificial neural networks (ANN) and Local linear regression based nonlinear models have been used to test the proposed methodology and the results have shown a high degree of correlation between the observed and estimated solar radiation data. It is believed that this study will initiate further exploration of GT for improving informed data and model selection. References Badescu V., (2008), Modelling Solar radiation at the Earth's Surface, Springer-Verlag Berlin Heidelberg. Grell G. A., Dhudia J. and Stauffer D. R. (1995), A description of fifth generation Penn Stat/NCAR Mesoscale Model (MM5). In NCAR/TN-398 + STR, NCAR Technical Note. Pp. 74-76. Yang K. and Koike T. (2002) Estimating surface solar radiation from upper air humidity. Solar Energy, Vol. 7, 2. pp. 177-186. Kambezidis H. D. and Psiloglou B. E. (2008), The Meteorological Radiation Model (MRM): Advancements and Applications in Modelling solar radiation on earth's surface, Springer-Verlag Berlin Heidelberg. Končar N., (1997), Optimization methodologies for direct inverse neurocontrol. PhD thesis, Department of Computing, Imperial College of Science, Technology and Medicine, University of London. Agalbjörn S, Končar N, Jones A. J., (1997), A note on the gamm test, Neural Computing and Applications 5(1997) p-131

  14. Improvement of Risk Assessment from Space Radiation Exposure for Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Atwell, Bill; Ponomarev, Artem L.; Nounu, Hatem; Hussein, Hesham; Cucinotta, Francis A.

    2007-01-01

    Protecting astronauts from space radiation exposure is an important challenge for mission design and operations for future exploration-class and long-duration missions. Crew members are exposed to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). If sufficient protection is not provided the radiation risk to crew members from SPEs could be significant. To improve exposure risk estimates and radiation protection from SPEs, detailed variations of radiation shielding properties are required. A model using a modern CAD tool ProE (TM), which is the leading engineering design platform at NASA, has been developed for this purpose. For the calculation of radiation exposure at a specific site, the cosine distribution was implemented to replicate the omnidirectional characteristic of the 4 pi particle flux on a surface. Previously, estimates of doses to the blood forming organs (BFO) from SPEs have been made using an average body-shielding distribution for the bone marrow based on the computerized anatomical man model (CAM). The development of an 82-point body-shielding distribution at BFOs made it possible to estimate the mean and variance of SPE doses in the major active marrow regions. Using the detailed distribution of bone marrow sites and implementation of cosine distribution of particle flux is shown to provide improved estimates of acute and cancer risks from SPEs.

  15. Estimating the direct radiative forcing due to haze from the 1997 forest fires in Indonesia

    NASA Astrophysics Data System (ADS)

    Davison, P. S.; Roberts, D. L.; Arnold, R. T.; Colvile, R. N.

    2004-05-01

    The El Niño event of 1997-1998 caused a severe reduction of rainfall in Indonesia that promoted the spread of forest fires, leading to a pervasive haze in the region. Here we use fire coverage data from the 1997 World Fire Atlas with a review of other available data and literature to estimate the distribution of particulate emissions from August to November 1997 and the particle size and radiative properties. Our preferred estimate of the total particulate emissions is approximately 41 Tg. The emissions have been used to drive an atmospheric model to simulate the distribution of the haze and its direct radiative effect, with and without allowing for the effects of the smoke on the atmospheric evolution. Model diagnostics of the aerosol and its radiative impact are compared with measurements and output from other models. Large decreases in the incident solar flux at the surface are obtained in the region. The simulated global mean shortwave radiative forcing at the top of the atmosphere, averaged over the 4 months, is -0.32 Wm-2. The accuracy of this calculation is discussed, and the importance of the Indonesian fires in particular and of biomass burning in general is assessed.

  16. Long-wave radiative forcing due to desert dust

    NASA Astrophysics Data System (ADS)

    Gunn, L. N.; Collins, W.

    2011-12-01

    Radiative forcing due to aerosols has been identified by the IPCC as a major contributor to the total radiative forcing uncertainty budget. Optically thick plumes of dust and pollutants extending out from Africa and Asia can be lifted into the middle troposphere and often are transported over synoptic length scales. These events can decrease the upwelling long-wave fluxes at the top of the atmosphere, especially in the mid-infrared "window". Although the long-wave effects of dust are included in model simulations, they are hard to validate in the absence of satellite-driven global estimates. Using hyper spectral satellite measurements (from NASA's AIRS instrument) it is possible to estimate the effect of dust on the outgoing long-wave radiation directly from the measured spectra, by differencing the simulated clear sky radiance spectra (which are calculated using ECMWF analysis) and the observed dust filled radiance spectra (observations from AIRS). We will summarize this method and show global estimates of the dust radiative effect in the long-wave. These global estimates will be used to validate GCM model output and help us to improve our understanding of dust in the global energy budget.

  17. Simulation study of a geometric shape factor technique for estimating earth-emitted radiant flux densities from wide-field-of-view radiation measurements

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.; Green, R. N.

    1980-01-01

    Geometric shape factors were computed and applied to satellite simulated irradiance measurements to estimate Earth emitted flux densities for global and zonal scales and for areas smaller than the detector field of view (FOV). Wide field of view flat plate detectors were emphasized, but spherical detectors were also studied. The radiation field was modeled after data from the Nimbus 2 and 3 satellites. At a satellite altitude of 600 km, zonal estimates were in error 1.0 to 1.2 percent and global estimates were in error less than 0.2 percent. Estimates with unrestricted field of view (UFOV) detectors were about the same for Lambertian and limb darkening radiation models. The opposite was found for restricted field of view detectors. The UFOV detectors are found to be poor estimators of flux density from the total FOV and are shown to be much better as estimators of flux density from a circle centered at the FOV with an area significantly smaller than that for the total FOV.

  18. Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.

    NASA Astrophysics Data System (ADS)

    Gubler, S.; Gruber, S.; Purves, R. S.

    2012-06-01

    As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR) and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR). In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB) stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM) in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night. We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD) and the relative root mean squared deviance (RMSD) of the clear-sky global SDR scatter between between -2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations to local conditions reduces MBD and RMSD strongly compared to using the published values of the parameters, resulting in relative MBD and RMSD of less than 5% respectively 10% for the best parameterizations. The best results to estimate cloud transmissivity during nighttime were obtained by linearly interpolating the average of the cloud transmissivity of the four hours of the preceeding afternoon and the following morning. Model uncertainty can be caused by different errors such as code implementation, errors in input data and in estimated parameters, etc. The influence of the latter (errors in input data and model parameter uncertainty) on model outputs is determined using Monte Carlo. Model uncertainty is provided as the relative standard deviation σrel of the simulated frequency distributions of the model outputs. An optimistic estimate of the relative uncertainty σrel resulted in 10% for the clear-sky direct, 30% for diffuse, 3% for global SDR, and 3% for the fitted all-sky LDR.

  19. Application of computational models to estimate organ radiation dose in rainbow trout from uptake of molybdenum-99 with comparison to iodine-131.

    PubMed

    Martinez, N E; Johnson, T E; Pinder, J E

    2016-01-01

    This study compares three anatomical phantoms for rainbow trout (Oncorhynchus mykiss) for the purpose of estimating organ radiation dose and dose rates from molybdenum-99 ((99)Mo) uptake in the liver and GI tract. Model comparison and refinement is important to the process of determining accurate doses and dose rates to the whole body and the various organs. Accurate and consistent dosimetry is crucial to the determination of appropriate dose-effect relationships for use in environmental risk assessment. The computational phantoms considered are (1) a geometrically defined model employing anatomically relevant organ size and location, (2) voxel reconstruction of internal anatomy obtained from CT imaging, and (3) a new model utilizing NURBS surfaces to refine the model in (2). Dose Conversion Factors (DCFs) for whole body as well as selected organs of O. mykiss were computed using Monte Carlo modeling and combined with empirical models for predicting activity concentration to estimate dose rates and ultimately determine cumulative radiation dose (μGy) to selected organs after several half-lives of (99)Mo. The computational models provided similar results, especially for organs that were both the source and target of radiation (less than 30% difference between all models). Values in the empirical model as well as the 14 day cumulative organ doses determined from (99)Mo uptake are compared to similar models developed previously for (131)I. Finally, consideration is given to treating the GI tract as a solid organ compared to partitioning it into gut contents and GI wall, which resulted in an order of magnitude difference in estimated dose for most organs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Estimating net solar radiation using Landsat Thematic Mapper and digital elevation data

    NASA Technical Reports Server (NTRS)

    Dubayah, R.

    1992-01-01

    A radiative transfer algorithm is combined with digital elevation and satellite reflectance data to model spatial variability in net solar radiation at fine spatial resolution. The method is applied to the tall-grass prairie of the 16 x 16 sq km FIFE site (First ISLSCP Field Experiment) of the International Satellite Land Surface Climatology Project. Spectral reflectances as measured by the Landsat Thematic Mapper (TM) are corrected for atmospheric and topographic effects using field measurements and accurate 30-m digital elevation data in a detailed model of atmosphere-surface interaction. The spectral reflectances are then integrated to produce estimates of surface albedo in the range 0.3-3.0 microns. This map of albedo is used in an atmospheric and topographic radiative transfer model to produce a map of net solar radiation. A map of apparent net solar radiation is also derived using only the TM reflectance data, uncorrected for topography, and the average field-measured downwelling solar irradiance. Comparison with field measurements at 10 sites on the prairie shows that the topographically derived radiation map accurately captures the spatial variability in net solar radiation, but the apparent map does not.

  1. Space Radiation Cancer, Circulatory Disease and CNS Risks for Near Earth Asteroid and Mars Missions: Uncertainty Estimates for Never-Smokers

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Chappell, Lori J.; Wang, Minli; Kim, Myung-Hee

    2011-01-01

    The uncertainties in estimating the health risks from galactic cosmic rays (GCR) and solar particle events (SPE) are a major limitation to the length of space missions and the evaluation of potential risk mitigation approaches. NASA limits astronaut exposures to a 3% risk of exposure induced cancer death (REID), and protects against uncertainties in risks projections using an assessment of 95% confidence intervals after propagating the error from all model factors (environment and organ exposure, risk coefficients, dose-rate modifiers, and quality factors). Because there are potentially significant late mortality risks from diseases of the circulatory system and central nervous system (CNS) which are less well defined than cancer risks, the cancer REID limit is not necessarily conservative. In this report, we discuss estimates of lifetime risks from space radiation and new estimates of model uncertainties are described. The key updates to the NASA risk projection model are: 1) Revised values for low LET risk coefficients for tissue specific cancer incidence, with incidence rates transported to an average U.S. population to estimate the probability of Risk of Exposure Induced Cancer (REIC) and REID. 2) An analysis of smoking attributable cancer risks for never-smokers that shows significantly reduced lung cancer risk as well as overall cancer risks from radiation compared to risk estimated for the average U.S. population. 3) Derivation of track structure based quality functions depends on particle fluence, charge number, Z and kinetic energy, E. 4) The assignment of a smaller maximum in quality function for leukemia than for solid cancers. 5) The use of the ICRP tissue weights is shown to over-estimate cancer risks from SPEs by a factor of 2 or more. Summing cancer risks for each tissue is recommended as a more accurate approach to estimate SPE cancer risks. 6) Additional considerations on circulatory and CNS disease risks. Our analysis shows that an individual s history of smoking exposure has a larger impact on GCR risk estimates than amounts of radiation shielding or age at exposure (amongst adults). Risks for never-smokers compared to the average U.S. population are estimated to be reduced between 30% and 60% dependent on model assumptions. Lung cancer is the major contributor to the reduction for never-smokers, with additional contributions from circulatory diseases and cancers of the stomach, liver, bladder, oral cavity and esophagus, and leukemia. The relative contribution of CNS risks to the overall space radiation detriment is potentially increased for never-smokers such as most astronauts. Problems in estimating risks for former smokers and the influence of second-hand smoke are discussed. Compared to the LET approximation, the new track structure derived radiation quality functions lead to a reduced risk for relativistic energy particles and increased risks for intermediate energy particles. Revised estimates for the number of safe days in space at solar minimum for heavy shielding conditions are described for never-smokers and the average U.S. population. Results show that missions to near Earth asteroids (NEA) or Mars violate NASA's radiation safety standards with the current levels of uncertainties. Greater improvements in risk estimates for never-smokers are possible, and would be dependent on improved understanding of risk transfer models, and elucidating the role of space radiation on the various stages of disease formation (e.g. initiation, promotion, and progression).

  2. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom prescribed intercomparison study

    NASA Astrophysics Data System (ADS)

    Stier, P.; Schutgens, N. A. J.; Bian, H.; Boucher, O.; Chin, M.; Ghan, S.; Huneeus, N.; Kinne, S.; Lin, G.; Myhre, G.; Penner, J. E.; Randles, C.; Samset, B.; Schulz, M.; Yu, H.; Zhou, C.

    2012-09-01

    Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in nine participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.51 W m-2 and the inter-model standard deviation is 0.70 W m-2, corresponding to a relative standard deviation of 15%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.26 W m-2, and the standard deviation increases to 1.21 W m-2, corresponding to a significant relative standard deviation of 96%. However, the top-of-atmosphere forcing variability owing to absorption is low, with relative standard deviations of 9% clear-sky and 12% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment, demonstrates that host model uncertainties could explain about half of the overall sulfate forcing diversity of 0.13 W m-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention.

  3. Methodology to estimate variations in solar radiation reaching densely forested slopes in mountainous terrain.

    PubMed

    Sypka, Przemysław; Starzak, Rafał; Owsiak, Krzysztof

    2016-12-01

    Solar radiation reaching densely forested slopes is one of the main factors influencing the water balance between the atmosphere, tree stands and the soil. It also has a major impact on site productivity, spatial arrangement of vegetation structure as well as forest succession. This paper presents a methodology to estimate variations in solar radiation reaching tree stands in a small mountain valley. Measurements taken in three inter-forest meadows unambiguously showed the relationship between the amount of solar insolation and the shading effect caused mainly by the contour of surrounding tree stands. Therefore, appropriate knowledge of elevation, aspect and tilt angles of the analysed planes had to be taken into consideration during modelling. At critical times, especially in winter, the diffuse and reflected components of solar radiation only reached some of the sites studied as the beam component of solar radiation was totally blocked by the densely forested mountain slopes in the neighbourhood. The cross-section contours and elevation angles of all obstructions are estimated from a digital surface model including both digital elevation model and the height of tree stands. All the parameters in a simplified, empirical model of the solar insolation reaching a given horizontal surface within the research valley are dependent on the sky view factor (SVF). The presented simplified, empirical model and its parameterisation scheme should be easily adaptable to different complex terrains or mountain valleys characterised by diverse geometry or spatial orientation. The model was developed and validated (R 2  = 0.92 , σ = 0.54) based on measurements taken at research sites located in the Silesian Beskid Mountain Range. A thorough understanding of the factors determining the amount of solar radiation reaching woodlands ought to considerably expand the knowledge of the water exchange balance within forest complexes as well as the estimation of site productivity.

  4. Testing the Two-Layer Model for Correcting Near Cloud Reflectance Enhancement Using LES SHDOM Simulated Radiances

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Marshak, Alexander; Varnai, Tamas; Levy, Robert

    2016-01-01

    A transition zone exists between cloudy skies and clear sky; such that, clouds scatter solar radiation into clear-sky regions. From a satellite perspective, it appears that clouds enhance the radiation nearby. We seek a simple method to estimate this enhancement, since it is so computationally expensive to account for all three-dimensional (3-D) scattering processes. In previous studies, we developed a simple two-layer model (2LM) that estimated the radiation scattered via cloud-molecular interactions. Here we have developed a new model to account for cloud-surface interaction (CSI). We test the models by comparing to calculations provided by full 3-D radiative transfer simulations of realistic cloud scenes. For these scenes, the Moderate Resolution Imaging Spectroradiometer (MODIS)-like radiance fields were computed from the Spherical Harmonic Discrete Ordinate Method (SHDOM), based on a large number of cumulus fields simulated by the University of California, Los Angeles (UCLA) large eddy simulation (LES) model. We find that the original 2LM model that estimates cloud-air molecule interactions accounts for 64 of the total reflectance enhancement and the new model (2LM+CSI) that also includes cloud-surface interactions accounts for nearly 80. We discuss the possibility of accounting for cloud-aerosol radiative interactions in 3-D cloud-induced reflectance enhancement, which may explain the remaining 20 of enhancements. Because these are simple models, these corrections can be applied to global satellite observations (e.g., MODIS) and help to reduce biases in aerosol and other clear-sky retrievals.

  5. Breast cancer risk from different mammography screening practices.

    PubMed

    Bijwaard, Harmen; Brenner, Alina; Dekkers, Fieke; van Dillen, Teun; Land, Charles E; Boice, John D

    2010-09-01

    Mammography screening is an accepted procedure for early detection of breast tumors among asymptomatic women. Since this procedure involves the use of X rays, it is itself potentially carcinogenic. Although there is general consensus about the benefit of screening for older women, screening practices differ between countries. In this paper radiation risks for these different practices are estimated using a new approach. We model breast cancer induction by ionizing radiation in a cohort of patients exposed to frequent X-ray examinations. The biologically based, mechanistic model provides a better foundation for the extrapolation of risks to different mammography screening practices than empirical models do. The model predicts that the excess relative risk (ERR) doubles when screening starts at age 40 instead of 50 and that a continuation of screening at ages 75 and higher carries little extra risk. The number of induced fatal breast cancers is estimated to be considerably lower than derived from epidemiological studies and from internationally accepted radiation protection risks. The present findings, if used in a risk-benefit analysis for mammography screening, would be more favorable to screening than estimates currently recommended for radiation protection. This has implications for the screening ages that are currently being reconsidered in several countries.

  6. Use of A-Train Aerosol Observations to Constrain Direct Aerosol Radiative Effects (DARE) Comparisons with Aerocom Models and Uncertainty Assessments

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rozenhaimer, M.; LeBlanc, S.; Vaughan, M.; Stier, P.; Schutgens, N.

    2017-01-01

    We describe a technique for combining multiple A-Train aerosol data sets, namely MODIS spectral AOD (aerosol optical depth), OMI AAOD (absorption aerosol optical depth) and CALIOP aerosol backscatter retrievals (hereafter referred to as MOC retrievals) to estimate full spectral sets of aerosol radiative properties, and ultimately to calculate the 3-D distribution of direct aerosol radiative effects (DARE). We present MOC results using almost two years of data collected in 2007 and 2008, and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the MODIS Collection 6 AOD data derived with the dark target and deep blue algorithms has extended the coverage of the MOC retrievals towards higher latitudes. The MOC aerosol retrievals agree better with AERONET in terms of the single scattering albedo (ssa) at 441 nm than ssa calculated from OMI and MODIS data alone, indicating that CALIOP aerosol backscatter data contains information on aerosol absorption. We compare the spatio-temporal distribution of the MOC retrievals and MOC-based calculations of seasonal clear-sky DARE to values derived from four models that participated in the Phase II AeroCom model intercomparison initiative. Overall, the MOC-based calculations of clear-sky DARE at TOA over land are smaller (less negative) than previous model or observational estimates due to the inclusion of more absorbing aerosol retrievals over brighter surfaces, not previously available for observationally-based estimates of DARE. MOC-based DARE estimates at the surface over land and total (land and ocean) DARE estimates at TOA are in between previous model and observational results. Comparisons of seasonal aerosol property to AeroCom Phase II results show generally good agreement best agreement with forcing results at TOA is found with GMI-MerraV3. We discuss sampling issues that affect the comparisons and the major challenges in extending our clear-sky DARE results to all-sky conditions. We present estimates of clear-sky and all-sky DARE and show uncertainties that stem from the assumptions in the spatial extrapolation and accuracy of aerosol and cloud properties, in the diurnal evolution of these properties, and in the radiative transfer calculations.

  7. Technical Evaluation of the NASA Model for Cancer Risk to Astronauts Due to Space Radiation

    NASA Technical Reports Server (NTRS)

    2012-01-01

    At the request of NASA, the National Research Council's (NRC's) Committee for Evaluation of Space Radiation Cancer Risk Model1 reviewed a number of changes that NASA proposes to make to its model for estimating the risk of radiation-induced cancer in astronauts. The NASA model in current use was last updated in 2005, and the proposed model would incorporate recent research directed at improving the quantification and understanding of the health risks posed by the space radiation environment. NASA's proposed model is defined by the 2011 NASA report Space Radiation Cancer Risk Projections and Uncertainties--2010 . The committee's evaluation is based primarily on this source, which is referred to hereafter as the 2011 NASA report, with mention of specific sections or tables. The overall process for estimating cancer risks due to low linear energy transfer (LET) radiation exposure has been fully described in reports by a number of organizations. The approaches described in the reports from all of these expert groups are quite similar. NASA's proposed space radiation cancer risk assessment model calculates, as its main output, age- and gender-specific risk of exposure-induced death (REID) for use in the estimation of mission and astronaut-specific cancer risk. The model also calculates the associated uncertainties in REID. The general approach for estimating risk and uncertainty in the proposed model is broadly similar to that used for the current (2005) NASA model and is based on recommendations by the National Council on Radiation Protection and Measurements. However, NASA's proposed model has significant changes with respect to the following: the integration of new findings and methods into its components by taking into account newer epidemiological data and analyses, new radiobiological data indicating that quality factors differ for leukemia and solid cancers, an improved method for specifying quality factors in terms of radiation track structure concepts as opposed to the previous approach based on linear energy transfer, the development of a new solar particle event (SPE) model, and the updates to galactic cosmic ray (GCR) and shielding transport models. The newer epidemiological information includes updates to the cancer incidence rates from the life span study (LSS) of the Japanese atomic bomb survivors, transferred to the U.S. population and converted to cancer mortality rates from U.S. population statistics. In addition, the proposed model provides an alternative analysis applicable to lifetime never-smokers (NSs). Details of the uncertainty analysis in the model have also been updated and revised. NASA's proposed model and associated uncertainties are complex in their formulation and as such require a very clear and precise set of descriptions. The committee found the 2011 NASA report challenging to review largely because of the lack of clarity in the model descriptions and derivation of the various parameters used. The committee requested some clarifications from NASA throughout its review and was able to resolve many, but not all, of the ambiguities in the written description.

  8. Two ultraviolet radiation datasets that cover China

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Hu, Bo; Wang, Yuesi; Liu, Guangren; Tang, Liqin; Ji, Dongsheng; Bai, Yongfei; Bao, Weikai; Chen, Xin; Chen, Yunming; Ding, Weixin; Han, Xiaozeng; He, Fei; Huang, Hui; Huang, Zhenying; Li, Xinrong; Li, Yan; Liu, Wenzhao; Lin, Luxiang; Ouyang, Zhu; Qin, Boqiang; Shen, Weijun; Shen, Yanjun; Su, Hongxin; Song, Changchun; Sun, Bo; Sun, Song; Wang, Anzhi; Wang, Genxu; Wang, Huimin; Wang, Silong; Wang, Youshao; Wei, Wenxue; Xie, Ping; Xie, Zongqiang; Yan, Xiaoyuan; Zeng, Fanjiang; Zhang, Fawei; Zhang, Yangjian; Zhang, Yiping; Zhao, Chengyi; Zhao, Wenzhi; Zhao, Xueyong; Zhou, Guoyi; Zhu, Bo

    2017-07-01

    Ultraviolet (UV) radiation has significant effects on ecosystems, environments, and human health, as well as atmospheric processes and climate change. Two ultraviolet radiation datasets are described in this paper. One contains hourly observations of UV radiation measured at 40 Chinese Ecosystem Research Network stations from 2005 to 2015. CUV3 broadband radiometers were used to observe the UV radiation, with an accuracy of 5%, which meets the World Meteorology Organization's measurement standards. The extremum method was used to control the quality of the measured datasets. The other dataset contains daily cumulative UV radiation estimates that were calculated using an all-sky estimation model combined with a hybrid model. The reconstructed daily UV radiation data span from 1961 to 2014. The mean absolute bias error and root-mean-square error are smaller than 30% at most stations, and most of the mean bias error values are negative, which indicates underestimation of the UV radiation intensity. These datasets can improve our basic knowledge of the spatial and temporal variations in UV radiation. Additionally, these datasets can be used in studies of potential ozone formation and atmospheric oxidation, as well as simulations of ecological processes.

  9. Applications of Machine Learning for Radiation Therapy.

    PubMed

    Arimura, Hidetaka; Nakamoto, Takahiro

    2016-01-01

    Radiation therapy has been highly advanced as image guided radiation therapy (IGRT) by making advantage of image engineering technologies. Recently, novel frameworks based on image engineering technologies as well as machine learning technologies have been studied for sophisticating the radiation therapy. In this review paper, the author introduces several researches of applications of machine learning for radiation therapy. For examples, a method to determine the threshold values for standardized uptake value (SUV) for estimation of gross tumor volume (GTV) in positron emission tomography (PET) images, an approach to estimate the multileaf collimator (MLC) position errors between treatment plans and radiation delivery time, and prediction frameworks for esophageal stenosis and radiation pneumonitis risk after radiation therapy are described. Finally, the author introduces seven issues that one should consider when applying machine learning models to radiation therapy.

  10. Application of Multivariate Modeling for Radiation Injury Assessment: A Proof of Concept

    PubMed Central

    Bolduc, David L.; Villa, Vilmar; Sandgren, David J.; Ledney, G. David; Blakely, William F.; Bünger, Rolf

    2014-01-01

    Multivariate radiation injury estimation algorithms were formulated for estimating severe hematopoietic acute radiation syndrome (H-ARS) injury (i.e., response category three or RC3) in a rhesus monkey total-body irradiation (TBI) model. Classical CBC and serum chemistry blood parameters were examined prior to irradiation (d 0) and on d 7, 10, 14, 21, and 25 after irradiation involving 24 nonhuman primates (NHP) (Macaca mulatta) given 6.5-Gy 60Co Υ-rays (0.4 Gy min−1) TBI. A correlation matrix was formulated with the RC3 severity level designated as the “dependent variable” and independent variables down selected based on their radioresponsiveness and relatively low multicollinearity using stepwise-linear regression analyses. Final candidate independent variables included CBC counts (absolute number of neutrophils, lymphocytes, and platelets) in formulating the “CBC” RC3 estimation algorithm. Additionally, the formulation of a diagnostic CBC and serum chemistry “CBC-SCHEM” RC3 algorithm expanded upon the CBC algorithm model with the addition of hematocrit and the serum enzyme levels of aspartate aminotransferase, creatine kinase, and lactate dehydrogenase. Both algorithms estimated RC3 with over 90% predictive power. Only the CBC-SCHEM RC3 algorithm, however, met the critical three assumptions of linear least squares demonstrating slightly greater precision for radiation injury estimation, but with significantly decreased prediction error indicating increased statistical robustness. PMID:25165485

  11. A-Train Aerosol Observations Preliminary Comparisons with AeroCom Models and Pathways to Observationally Based All-Sky Estimates

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Livingston, J.; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; LeBlanc, S.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.; hide

    2014-01-01

    We have developed a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. We compare the spatio-temporal distribution of our multi-sensor aerosol retrievals and calculations of seasonal clear-sky aerosol radiative forcing based on the aerosol retrievals to values derived from four models that participated in the latest AeroCom model intercomparison initiative. We find significant inter-model differences, in particular for the aerosol single scattering albedo, which can be evaluated using the multi-sensor A-Train retrievals. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.

  12. Kinetic modeling of the photocatalytic degradation of clofibric acid in a slurry reactor.

    PubMed

    Manassero, Agustina; Satuf, María Lucila; Alfano, Orlando Mario

    2015-01-01

    A kinetic study of the photocatalytic degradation of the pharmaceutical clofibric acid is presented. Experiments were carried out under UV radiation employing titanium dioxide in water suspension. The main reaction intermediates were identified and quantified. Intrinsic expressions to represent the kinetics of clofibric acid and the main intermediates were derived. The modeling of the radiation field in the reactor was carried out by Monte Carlo simulation. Experimental runs were performed by varying the catalyst concentration and the incident radiation. Kinetic parameters were estimated from the experiments by applying a non-linear regression procedure. Good agreement was obtained between model predictions and experimental data, with an error of 5.9 % in the estimations of the primary pollutant concentration.

  13. Method to estimate the electron temperature and neutral density in a plasma from spectroscopic measurements using argon atom and ion collisional-radiative models.

    PubMed

    Sciamma, Ella M; Bengtson, Roger D; Rowan, W L; Keesee, Amy; Lee, Charles A; Berisford, Dan; Lee, Kevin; Gentle, K W

    2008-10-01

    We present a method to infer the electron temperature in argon plasmas using a collisional-radiative model for argon ions and measurements of electron density to interpret absolutely calibrated spectroscopic measurements of argon ion (Ar II) line intensities. The neutral density, and hence the degree of ionization of this plasma, can then be estimated using argon atom (Ar I) line intensities and a collisional-radiative model for argon atoms. This method has been tested for plasmas generated on two different devices at the University of Texas at Austin: the helicon experiment and the helimak experiment. We present results that show good correlation with other measurements in the plasma.

  14. Regional scale net radiation estimation by means of Landsat and TERRA/AQUA imagery and GIS modeling

    NASA Astrophysics Data System (ADS)

    Cristóbal, J.; Ninyerola, M.; Pons, X.; Llorens, P.; Poyatos, R.

    2009-04-01

    Net radiation (Rn) is one of the most important variables for the estimation of surface energy budget and is used for various applications including agricultural meteorology, climate monitoring and weather prediction. Moreover, net radiation is an essential input variable for potential as well as actual evapotranspiration modeling. Nowadays, radiometric measurements provided by Remote Sensing and GIS analysis are the technologies used to compute net radiation at regional scales in a feasible way. In this study we present a regional scale estimation of the daily Rn on clear days, (Catalonia, NE of the Iberian Peninsula), using a set of 22 Landsat images (17 Landsat-5 TM and 5 Landsat-7 ETM+) and 171 TERRA/AQUA images MODIS from 2000 to 2007 period. TERRA/AQUA MODIS images have been downloaded by means of the EOS Gateway. We have selected three different types of products which contain the remote sensing data we have used to model daily Rn: daily LST product, daily calibrated reflectances product and daily atmospheric water vapour product. Landsat-5 TM images have been corrected by means of conventional techniques based on first order polynomials taking into account the effect of land surface relief using a Digital Elevation Model, obtaining an RMS less than 30 m. Radiometric correction of Landsat non-thermal bands has been done following the methodology proposed by Pons and Solé (1994), which allows to reduce the number of undesired artifacts that are due to the effects of the atmosphere or to the differential illumination which is, in turn, due to the time of the day, the location in the Earth and the relief (zones being more illuminated than others, shadows, etc). Atmospheric correction of Landsat thermal band has been carried out by means of a single-channel algorithm improvement developed by Cristóbal et al. (2009) and the land surface emissivity computed by means of the methodology proposed by Sobrino and Raissouni (2000). Rn has been estimated through the balance among the net shortwave radiation Rn and the net longwave radiation. In addition, two types of approaches have been carried out for its determination: the estimation of the variables implied in the calculation of Rn at daily level (Rndl); and the calculation of the Rn at the time of satellite pass (Rni) and its subsequent conversion to daily Rn by means of the Rn ratio. Net shortwave radiation has been computed by means of albedo and a solar radiation model obtained through a DEM following the methodology of Pons and Ninyerola (2008).This methodology takes into account the position of the Sun, the angles of incidence, the projected shadows and the distance from the Earth to the Sun at one hour intervals. The diffuse radiation is estimated from the direct radiaton and the exoatmospheric direct solar irradiance is estimated with the Page equation (1986) and fitted by Baldasano et al. (1994). Net longwave radiation has been calculated through land surface temperature and emissivity, atmospheric water vapour and air temperature. Air temperature has been modeled by means of multiple regression analysis and GIS interpolation using ground meteorological stations. Finally, air emissivity has been computed using air temperature models and atmospheric water vapour following the methodology developed by Dilley and O'Brien (1998). Finally, models have been validated through a set of 13 ground meteorological standard stations and an experimental station placed in a Mediterranean mountain area over a Pinus sylvestris stand. Obtained results show a mean RMSE of 20 W m-2 in the case of Landsat and a mean RMSE of 22 W m-2 in the case of TERRA/AQUA MODIS, being these results in agreement with other published results, but also offering better RMSE in some cases. Keywords: Net radiation, Landsat, TERRA/AQUA MODIS, GIS modeling, regional scale.

  15. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low-dose-rate dose to the bone marrow (mean = 2.5 Gy) was consistent with the measured ERR (0.62, 95% Cl =-0.2 to 1.9). Conclusions: An extended, biologically based model for leukemia that includes HSC initiation, inactivation, proliferation, and, uniquely for leukemia, long-range HSC migration predicts, %Kith reasonable accuracy, risks for radiationinduced leukemia associated with exposure to therapeutic doses of radiation.

  16. Estimating Canopy Dark Respiration for Crop Models

    NASA Technical Reports Server (NTRS)

    Monje Mejia, Oscar Alberto

    2014-01-01

    Crop production is obtained from accurate estimates of daily carbon gain.Canopy gross photosynthesis (Pgross) can be estimated from biochemical models of photosynthesis using sun and shaded leaf portions and the amount of intercepted photosyntheticallyactive radiation (PAR).In turn, canopy daily net carbon gain can be estimated from canopy daily gross photosynthesis when canopy dark respiration (Rd) is known.

  17. Regression model for estimating inactivation of microbial aerosols by solar radiation.

    PubMed

    Ben-David, Avishai; Sagripanti, Jose-Luis

    2013-01-01

    The inactivation of pathogenic aerosols by solar radiation is relevant to public health and biodefense. We investigated whether a relatively simple method to calculate solar diffuse and total irradiances could be developed and used in environmental photobiology estimations instead of complex atmospheric radiative transfer computer programs. The second-order regression model that we developed reproduced 13 radiation quantities calculated for equinoxes and solstices at 35(°) latitude with a computer-intensive and rather complex atmospheric radiative transfer program (MODTRAN) with a mean error <6% (2% for most radiation quantities). Extending the application of the regression model from a reference latitude and date (chosen as 35° latitude for 21 March) to different latitudes and days of the year was accomplished with variable success: usually with a mean error <15% (but as high as 150% for some combination of latitudes and days of year). This accuracy of the methodology proposed here compares favorably to photobiological experiments where the microbial survival is usually measured with an accuracy no better than ±0.5 log10 units. The approach and equations presented in this study should assist in estimating the maximum time during which microbial pathogens remain infectious after accidental or intentional aerosolization in open environments. © Published 2013. This article is a U.S. Government work and is in the public domain in the USA. Photochemistry and Photobiology © 2013 The American Society of Photobiology.

  18. Study on inverse estimation of radiative properties from directional radiances by using statistical RPSO algorithm

    NASA Astrophysics Data System (ADS)

    Han, Kuk-Il; Kim, Do-Hwi; Choi, Jun-Hyuk; Kim, Tae-Kuk; Shin, Jong-Jin

    2016-09-01

    Infrared signals are widely used to discriminate objects against the background. Prediction of infrared signal from an object surface is essential in evaluating the detectability of the object. Appropriate and easy method of procurement of the radiative properties such as the surface emissivity, bidirectional reflectivity is important in estimating infrared signals. Direct measurement can be a good choice but a costly and time consuming way of obtaining the radiative properties for surfaces coated with many different newly developed paints. Especially measurement of the bidirectional reflectivity usually expressed by the bidirectional reflectance distribution function (BRDF) is the most costly job. In this paper we are presenting an inverse estimation method of the radiative properties by using the directional radiances from the surface of concern. The inverse estimation method used in this study is the statistical repulsive particle swarm optimization (RPSO) algorithm which uses the randomly picked directional radiance data emitted and reflected from the surface. In this paper, we test the proposed inverse method by considering the radiation from a steel plate surface coated with different paints at a clear sunny day condition. For convenience, the directional radiance data from the steel plate within a spectral band of concern are obtained from the simulation using the commercial software, RadthermIR, instead of the field measurement. A widely used BRDF model called as the Sandford-Robertson(S-R) model is considered and the RPSO process is then used to find the best fitted model parameters for the S-R model. The results obtained from this study show an excellent agreement with the reference property data used for the simulation for directional radiances. The proposed process can be a useful way of obtaining the radiative properties from field measured directional radiance data for surfaces coated with or without various kinds of paints of unknown radiative properties.

  19. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 1; Method and Uncertainties

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.

    2004-01-01

    A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating/drying profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and non-convective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud resolving model simulations, and from the Bayesian formulation itself. Synthetic rain rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in instantaneous rain rate estimates at 0.5 deg resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. These errors represent about 70-90% of the mean random deviation between collocated passive microwave and spaceborne radar rain rate estimates. The cumulative algorithm error in TMI estimates at monthly, 2.5 deg resolution is relatively small (less than 6% at 5 mm/day) compared to the random error due to infrequent satellite temporal sampling (8-35% at the same rain rate).

  20. A machine learning approach to estimation of downward solar radiation from satellite-derived data products: An application over a semi-arid ecosystem in the U.S.

    PubMed

    Zhou, Qingtao; Flores, Alejandro; Glenn, Nancy F; Walters, Reggie; Han, Bangshuai

    2017-01-01

    Shortwave solar radiation is an important component of the surface energy balance and provides the principal source of energy for terrestrial ecosystems. This paper presents a machine learning approach in the form of a random forest (RF) model for estimating daily downward solar radiation flux at the land surface over complex terrain using MODIS (MODerate Resolution Imaging Spectroradiometer) remote sensing data. The model-building technique makes use of a unique network of 16 solar flux measurements in the semi-arid Reynolds Creek Experimental Watershed and Critical Zone Observatory, in southwest Idaho, USA. Based on a composite RF model built on daily observations from all 16 sites in the watershed, the model simulation of downward solar radiation matches well with the observation data (r2 = 0.96). To evaluate model performance, RF models were built from 12 of 16 sites selected at random and validated against the observations at the remaining four sites. Overall root mean square errors (RMSE), bias, and mean absolute error (MAE) are small (range: 37.17 W/m2-81.27 W/m2, -48.31 W/m2-15.67 W/m2, and 26.56 W/m2-63.77 W/m2, respectively). When extrapolated to the entire watershed, spatiotemporal patterns of solar flux are largely consistent with expected trends in this watershed. We also explored significant predictors of downward solar flux in order to reveal important properties and processes controlling downward solar radiation. Based on the composite RF model built on all 16 sites, the three most important predictors to estimate downward solar radiation include the black sky albedo (BSA) near infrared band (0.858 μm), BSA visible band (0.3-0.7 μm), and clear day coverage. This study has important implications for improving the ability to derive downward solar radiation through a fusion of multiple remote sensing datasets and can potentially capture spatiotemporally varying trends in solar radiation that is useful for land surface hydrologic and terrestrial ecosystem modeling.

  1. A machine learning approach to estimation of downward solar radiation from satellite-derived data products: An application over a semi-arid ecosystem in the U.S.

    PubMed Central

    Flores, Alejandro; Glenn, Nancy F.; Walters, Reggie; Han, Bangshuai

    2017-01-01

    Shortwave solar radiation is an important component of the surface energy balance and provides the principal source of energy for terrestrial ecosystems. This paper presents a machine learning approach in the form of a random forest (RF) model for estimating daily downward solar radiation flux at the land surface over complex terrain using MODIS (MODerate Resolution Imaging Spectroradiometer) remote sensing data. The model-building technique makes use of a unique network of 16 solar flux measurements in the semi-arid Reynolds Creek Experimental Watershed and Critical Zone Observatory, in southwest Idaho, USA. Based on a composite RF model built on daily observations from all 16 sites in the watershed, the model simulation of downward solar radiation matches well with the observation data (r2 = 0.96). To evaluate model performance, RF models were built from 12 of 16 sites selected at random and validated against the observations at the remaining four sites. Overall root mean square errors (RMSE), bias, and mean absolute error (MAE) are small (range: 37.17 W/m2-81.27 W/m2, -48.31 W/m2-15.67 W/m2, and 26.56 W/m2-63.77 W/m2, respectively). When extrapolated to the entire watershed, spatiotemporal patterns of solar flux are largely consistent with expected trends in this watershed. We also explored significant predictors of downward solar flux in order to reveal important properties and processes controlling downward solar radiation. Based on the composite RF model built on all 16 sites, the three most important predictors to estimate downward solar radiation include the black sky albedo (BSA) near infrared band (0.858 μm), BSA visible band (0.3–0.7 μm), and clear day coverage. This study has important implications for improving the ability to derive downward solar radiation through a fusion of multiple remote sensing datasets and can potentially capture spatiotemporally varying trends in solar radiation that is useful for land surface hydrologic and terrestrial ecosystem modeling. PMID:28777811

  2. Surface daytime net radiation estimation using artificial neural networks

    DOE PAGES

    Jiang, Bo; Zhang, Yi; Liang, Shunlin; ...

    2014-11-11

    Net all-wave surface radiation (R n) is one of the most important fundamental parameters in various applications. However, conventional R n measurements are difficult to collect because of the high cost and ongoing maintenance of recording instruments. Therefore, various empirical R n estimation models have been developed. This study presents the results of two artificial neural network (ANN) models (general regression neural networks (GRNN) and Neuroet) to estimate R n globally from multi-source data, including remotely sensed products, surface measurements, and meteorological reanalysis products. R n estimates provided by the two ANNs were tested against in-situ radiation measurements obtained frommore » 251 global sites between 1991–2010 both in global mode (all data were used to fit the models) and in conditional mode (the data were divided into four subsets and the models were fitted separately). Based on the results obtained from extensive experiments, it has been proved that the two ANNs were superior to linear-based empirical models in both global and conditional modes and that the GRNN performed better and was more stable than Neuroet. The GRNN estimates had a determination coefficient (R 2) of 0.92, a root mean square error (RMSE) of 34.27 W·m –2 , and a bias of –0.61 W·m –2 in global mode based on the validation dataset. In conclusion, ANN methods are a potentially powerful tool for global R n estimation.« less

  3. Radiation dosimetry and biophysical models of space radiation effects

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wu, Honglu; Shavers, Mark R.; George, Kerry

    2003-01-01

    Estimating the biological risks from space radiation remains a difficult problem because of the many radiation types including protons, heavy ions, and secondary neutrons, and the absence of epidemiology data for these radiation types. Developing useful biophysical parameters or models that relate energy deposition by space particles to the probabilities of biological outcomes is a complex problem. Physical measurements of space radiation include the absorbed dose, dose equivalent, and linear energy transfer (LET) spectra. In contrast to conventional dosimetric methods, models of radiation track structure provide descriptions of energy deposition events in biomolecules, cells, or tissues, which can be used to develop biophysical models of radiation risks. In this paper, we address the biophysical description of heavy particle tracks in the context of the interpretation of both space radiation dosimetry and radiobiology data, which may provide insights into new approaches to these problems.

  4. Measurements and Modeling of Total Solar Irradiance in X-class Solar Flares

    NASA Technical Reports Server (NTRS)

    Moore, Christopher S.; Chamberlin, Phillip Clyde; Hock, Rachel

    2014-01-01

    The Total Irradiance Monitor (TIM) from NASA's SOlar Radiation and Climate Experiment can detect changes in the total solar irradiance (TSI) to a precision of 2 ppm, allowing observations of variations due to the largest X-class solar flares for the first time. Presented here is a robust algorithm for determining the radiative output in the TIM TSI measurements, in both the impulsive and gradual phases, for the four solar flares presented in Woods et al., as well as an additional flare measured on 2006 December 6. The radiative outputs for both phases of these five flares are then compared to the vacuum ultraviolet (VUV) irradiance output from the Flare Irradiance Spectral Model (FISM) in order to derive an empirical relationship between the FISM VUV model and the TIM TSI data output to estimate the TSI radiative output for eight other X-class flares. This model provides the basis for the bolometric energy estimates for the solar flares analyzed in the Emslie et al. study.

  5. Novel approach for computing photosynthetically active radiation for productivity modeling using remotely sensed images in the Great Plains, United States

    USGS Publications Warehouse

    Singh, Ramesh K.; Liu, Shu-Guang; Tieszen, Larry L.; Suyker, Andrew E.; Verma, Shashi B.

    2012-01-01

    Gross primary production (GPP) is a key indicator of ecosystem performance, and helps in many decision-making processes related to environment. We used the Eddy covariancelight use efficiency (EC-LUE) model for estimating GPP in the Great Plains, United States in order to evaluate the performance of this model. We developed a novel algorithm for computing the photosynthetically active radiation (PAR) based on net radiation. A strong correlation (R2=0.94,N=24) was found between daily PAR and Landsat-based mid-day instantaneous net radiation. Though the Moderate Resolution Spectroradiometer (MODIS) based instantaneous net radiation was in better agreement (R2=0.98,N=24) with the daily measured PAR, there was no statistical significant difference between Landsat based PAR and MODIS based PAR. The EC-LUE model validation also confirms the need to consider biological attributes (C3 versus C4 plants) for potential light use efficiency. A universal potential light use efficiency is unable to capture the spatial variation of GPP. It is necessary to use C3 versus C4 based land use/land cover map for using EC-LUE model for estimating spatiotemporal distribution of GPP.

  6. Use of MODIS Sensor Images Combined with Reanalysis Products to Retrieve Net Radiation in Amazonia

    PubMed Central

    de Oliveira, Gabriel; Brunsell, Nathaniel A.; Moraes, Elisabete C.; Bertani, Gabriel; dos Santos, Thiago V.; Shimabukuro, Yosio E.; Aragão, Luiz E. O. C.

    2016-01-01

    In the Amazon region, the estimation of radiation fluxes through remote sensing techniques is hindered by the lack of ground measurements required as input in the models, as well as the difficulty to obtain cloud-free images. Here, we assess an approach to estimate net radiation (Rn) and its components under all-sky conditions for the Amazon region through the Surface Energy Balance Algorithm for Land (SEBAL) model utilizing only remote sensing and reanalysis data. The study period comprised six years, between January 2001–December 2006, and images from MODIS sensor aboard the Terra satellite and GLDAS reanalysis products were utilized. The estimates were evaluated with flux tower measurements within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) project. Comparison between estimates obtained by the proposed method and observations from LBA towers showed errors between 12.5% and 16.4% and 11.3% and 15.9% for instantaneous and daily Rn, respectively. Our approach was adequate to minimize the problem related to strong cloudiness over the region and allowed to map consistently the spatial distribution of net radiation components in Amazonia. We conclude that the integration of reanalysis products and satellite data, eliminating the need for surface measurements as input model, was a useful proposition for the spatialization of the radiation fluxes in the Amazon region, which may serve as input information needed by algorithms that aim to determine evapotranspiration, the most important component of the Amazon hydrological balance. PMID:27347957

  7. Use of MODIS Sensor Images Combined with Reanalysis Products to Retrieve Net Radiation in Amazonia.

    PubMed

    de Oliveira, Gabriel; Brunsell, Nathaniel A; Moraes, Elisabete C; Bertani, Gabriel; Dos Santos, Thiago V; Shimabukuro, Yosio E; Aragão, Luiz E O C

    2016-06-24

    In the Amazon region, the estimation of radiation fluxes through remote sensing techniques is hindered by the lack of ground measurements required as input in the models, as well as the difficulty to obtain cloud-free images. Here, we assess an approach to estimate net radiation (Rn) and its components under all-sky conditions for the Amazon region through the Surface Energy Balance Algorithm for Land (SEBAL) model utilizing only remote sensing and reanalysis data. The study period comprised six years, between January 2001-December 2006, and images from MODIS sensor aboard the Terra satellite and GLDAS reanalysis products were utilized. The estimates were evaluated with flux tower measurements within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) project. Comparison between estimates obtained by the proposed method and observations from LBA towers showed errors between 12.5% and 16.4% and 11.3% and 15.9% for instantaneous and daily Rn, respectively. Our approach was adequate to minimize the problem related to strong cloudiness over the region and allowed to map consistently the spatial distribution of net radiation components in Amazonia. We conclude that the integration of reanalysis products and satellite data, eliminating the need for surface measurements as input model, was a useful proposition for the spatialization of the radiation fluxes in the Amazon region, which may serve as input information needed by algorithms that aim to determine evapotranspiration, the most important component of the Amazon hydrological balance.

  8. Estimated radiation exposure of German commercial airline cabin crew in the years 1960-2003 modeled using dose registry data for 2004-2015.

    PubMed

    Wollschläger, Daniel; Hammer, Gaël Paul; Schafft, Thomas; Dreger, Steffen; Blettner, Maria; Zeeb, Hajo

    2018-05-01

    Exposure to ionizing radiation of cosmic origin is an occupational risk factor in commercial aircrew. In a historic cohort of 26,774 German aircrew, radiation exposure was previously estimated only for cockpit crew using a job-exposure matrix (JEM). Here, a new method for retrospectively estimating cabin crew dose is developed. The German Federal Radiation Registry (SSR) documents individual monthly effective doses for all aircrew. SSR-provided doses on 12,941 aircrew from 2004 to 2015 were used to model cabin crew dose as a function of age, sex, job category, solar activity, and male pilots' dose; the mean annual effective dose was 2.25 mSv (range 0.01-6.39 mSv). In addition to an inverse association with solar activity, exposure followed age- and sex-dependent patterns related to individual career development and life phases. JEM-derived annual cockpit crew doses agreed with SSR-provided doses for 2004 (correlation 0.90, 0.40 mSv root mean squared error), while the estimated average annual effective dose for cabin crew had a prediction error of 0.16 mSv, equaling 7.2% of average annual dose. Past average annual cabin crew dose can be modeled by exploiting systematic external influences as well as individual behavioral determinants of radiation exposure, thereby enabling future dose-response analyses of the full aircrew cohort including measurement error information.

  9. Calibration of GOES-derived solar radiation data using a distributed network of surface measurements in Florida, USA

    USGS Publications Warehouse

    Sumner, David M.; Pathak, Chandra S.; Mecikalski, John R.; Paech, Simon J.; Wu, Qinglong; Sangoyomi, Taiye; Babcock, Roger W.; Walton, Raymond

    2008-01-01

    Solar radiation data are critically important for the estimation of evapotranspiration. Analysis of visible-channel data derived from Geostationary Operational Environmental Satellites (GOES) using radiative transfer modeling has been used to produce spatially- and temporally-distributed datasets of solar radiation. An extensive network of (pyranometer) surface measurements of solar radiation in the State of Florida has allowed refined calibration of a GOES-derived daily integrated radiation data product. This refinement of radiation data allowed for corrections of satellite sensor drift, satellite generational change, and consideration of the highly-variable cloudy conditions that are typical of Florida. To aid in calibration of a GOES-derived radiation product, solar radiation data for the period 1995–2004 from 58 field stations that are located throughout the State were compiled. The GOES radiation product was calibrated by way of a three-step process: 1) comparison with ground-based pyranometer measurements on clear reference days, 2) correcting for a bias related to cloud cover, and 3) deriving month-by-month bias correction factors. Pre-calibration results indicated good model performance, with a station-averaged model error of 2.2 MJ m–2 day–1 (13 percent). Calibration reduced errors to 1.7 MJ m–2 day–1 (10 percent) and also removed time- and cloudiness-related biases. The final dataset has been used to produce Statewide evapotranspiration estimates.

  10. Studies of the net surface radiative flux from satellite radiances during FIFE

    NASA Technical Reports Server (NTRS)

    Frouin, Robert

    1993-01-01

    Studies of the net surface radiative flux from satellite radiances during First ISLSCP Field Experiment (FIFE) are presented. Topics covered include: radiative transfer model validation; calibration of VISSR and AVHRR solar channels; development and refinement of algorithms to estimate downward solar and terrestrial irradiances at the surface, including photosynthetically available radiation (PAR) and surface albedo; verification of these algorithms using in situ measurements; production of maps of shortwave irradiance, surface albedo, and related products; analysis of the temporal variability of shortwave irradiance over the FIFE site; development of a spectroscopy technique to estimate atmospheric total water vapor amount; and study of optimum linear combinations of visible and near-infrared reflectances for estimating the fraction of PAR absorbed by plants.

  11. Comparison of measured brightness temperatures from SMOS with modelled ones from ORCHIDEE and H-TESSEL over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Barella-Ortiz, Anaïs; Polcher, Jan; de Rosnay, Patricia; Piles, Maria; Gelati, Emiliano

    2017-01-01

    L-band radiometry is considered to be one of the most suitable techniques to estimate surface soil moisture (SSM) by means of remote sensing. Brightness temperatures are key in this process, as they are the main input in the retrieval algorithm which yields SSM estimates. The work exposed compares brightness temperatures measured by the SMOS mission to two different sets of modelled ones, over the Iberian Peninsula from 2010 to 2012. The two modelled sets were estimated using a radiative transfer model and state variables from two land-surface models: (i) ORCHIDEE and (ii) H-TESSEL. The radiative transfer model used is the CMEM. Measured and modelled brightness temperatures show a good agreement in their temporal evolution, but their spatial structures are not consistent. An empirical orthogonal function analysis of the brightness temperature's error identifies a dominant structure over the south-west of the Iberian Peninsula which evolves during the year and is maximum in autumn and winter. Hypotheses concerning forcing-induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for the weak spatial correlations at the moment. Further hypotheses are proposed and will be explored in a forthcoming paper. The analysis of spatial inconsistencies between modelled and measured TBs is important, as these can affect the estimation of geophysical variables and TB assimilation in operational models, as well as result in misleading validation studies.

  12. Ionizing radiation calculations and comparisons with LDEF data

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.; Watts, J. W., Jr.

    1992-01-01

    In conjunction with the analysis of LDEF ionizing radiation dosimetry data, a calculational program is in progress to aid in data interpretation and to assess the accuracy of current radiation models for future mission applications. To estimate the ionizing radiation environment at the LDEF dosimeter locations, scoping calculations for a simplified (one dimensional) LDEF mass model were made of the primary and secondary radiations produced as a function of shielding thickness due to trapped proton, galactic proton, and atmospheric (neutron and proton cosmic ray albedo) exposures. Preliminary comparisons of predictions with LDEF induced radioactivity and dose measurements were made to test a recently developed model of trapped proton anisotropy.

  13. Estimate of Space Radiation-Induced Cancer Risks for International Space Station Orbits

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Atwell, William; Cucinotta, Francis A.; Yang, Chui-hsu

    1996-01-01

    Excess cancer risks from exposures to space radiation are estimated for various orbits of the International Space Station (ISS). Organ exposures are computed with the transport codes, BRYNTRN and HZETRN, and the computerized anatomical male and computerized anatomical female models. Cancer risk coefficients in the National Council on Radiation Protection and Measurements report No. 98 are used to generate lifetime excess cancer incidence and cancer mortality after a one-month mission to ISS. The generated data are tabulated to serve as a quick reference for assessment of radiation risk to astronauts on ISS missions.

  14. Spectral estimates of intercepted solar radiation by corn and soybean canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Brooks, C. C.; Daughtry, C. S. T.; Bauer, M. E.; Vanderbilt, V. C.

    1982-01-01

    Attention is given to the development of methods for combining spectral and meteorological data in crop yield models which are capable of providing accurate estimates of crop condition and yields throughout the growing season. The present investigation is concerned with initial tests of these concepts using spectral and agronomic data acquired in controlled experiments. The data were acquired at the Purdue University Agronomy Farm, 10 km northwest of West Lafayette, Indiana. Data were obtained throughout several growing seasons for corn and soybeans. Five methods or models for predicting yields were examined. On the basis of the obtained results, it is concluded that estimating intercepted solar radiation using spectral data is a viable approach for merging spectral and meteorological data in crop yield models.

  15. Dose–Volume Relationships Associated With Temporal Lobe Radiation Necrosis After Skull Base Proton Beam Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Mark W., E-mail: markmcdonaldmd@gmail.com; Indiana University Health Proton Therapy Center, Bloomington, Indiana; Linton, Okechukwu R.

    Purpose: We evaluated patient and treatment parameters correlated with development of temporal lobe radiation necrosis. Methods and Materials: This was a retrospective analysis of a cohort of 66 patients treated for skull base chordoma, chondrosarcoma, adenoid cystic carcinoma, or sinonasal malignancies between 2005 and 2012, who had at least 6 months of clinical and radiographic follow-up. The median radiation dose was 75.6 Gy (relative biological effectiveness [RBE]). Analyzed factors included gender, age, hypertension, diabetes, smoking status, use of chemotherapy, and the absolute dose:volume data for both the right and left temporal lobes, considered separately. A generalized estimating equation (GEE) regression analysis evaluatedmore » potential predictors of radiation necrosis, and the median effective concentration (EC50) model estimated dose–volume parameters associated with radiation necrosis. Results: Median follow-up time was 31 months (range 6-96 months) and was 34 months in patients who were alive. The Kaplan-Meier estimate of overall survival at 3 years was 84.9%. The 3-year estimate of any grade temporal lobe radiation necrosis was 12.4%, and for grade 2 or higher radiation necrosis was 5.7%. On multivariate GEE, only dose–volume relationships were associated with the risk of radiation necrosis. In the EC50 model, all dose levels from 10 to 70 Gy (RBE) were highly correlated with radiation necrosis, with a 15% 3-year risk of any-grade temporal lobe radiation necrosis when the absolute volume of a temporal lobe receiving 60 Gy (RBE) (aV60) exceeded 5.5 cm{sup 3}, or aV70 > 1.7 cm{sup 3}. Conclusions: Dose–volume parameters are highly correlated with the risk of developing temporal lobe radiation necrosis. In this study the risk of radiation necrosis increased sharply when the temporal lobe aV60 exceeded 5.5 cm{sup 3} or aV70 > 1.7 cm{sup 3}. Treatment planning goals should include constraints on the volume of temporal lobes receiving higher dose. The EC50 model provides suggested dose–volume temporal lobe constraints for conventionally fractionated high-dose skull base radiation therapy.« less

  16. Potential impacts of radon, terrestrial gamma and cosmic rays on childhood leukemia in France: a quantitative risk assessment.

    PubMed

    Laurent, Olivier; Ancelet, Sophie; Richardson, David B; Hémon, Denis; Ielsch, Géraldine; Demoury, Claire; Clavel, Jacqueline; Laurier, Dominique

    2013-05-01

    Previous epidemiological studies and quantitative risk assessments (QRA) have suggested that natural background radiation may be a cause of childhood leukemia. The present work uses a QRA approach to predict the excess risk of childhood leukemia in France related to three components of natural radiation: radon, cosmic rays and terrestrial gamma rays, using excess relative and absolute risk models proposed by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Both models were developed from the Life Span Study (LSS) of Japanese A-bomb survivors. Previous risk assessments were extended by considering uncertainties in radiation-related leukemia risk model parameters as part of this process, within a Bayesian framework. Estimated red bone marrow doses cumulated during childhood by the average French child due to radon, terrestrial gamma and cosmic rays are 4.4, 7.5 and 4.3 mSv, respectively. The excess fractions of cases (expressed as percentages) associated with these sources of natural radiation are 20 % [95 % credible interval (CI) 0-68 %] and 4 % (95 % CI 0-11 %) under the excess relative and excess absolute risk models, respectively. The large CIs, as well as the different point estimates obtained under these two models, highlight the uncertainties in predictions of radiation-related childhood leukemia risks. These results are only valid provided that models developed from the LSS can be transferred to the population of French children and to chronic natural radiation exposures, and must be considered in view of the currently limited knowledge concerning other potential risk factors for childhood leukemia. Last, they emphasize the need for further epidemiological investigations of the effects of natural radiation on childhood leukemia to reduce uncertainties and help refine radiation protection standards.

  17. Implementation of a Brown Carbon Parameterization in the Community Earth System Model (CESM): Model Validation, Estimation of Brown Carbon Radiative Effect, and Climate Impact

    NASA Astrophysics Data System (ADS)

    Brown, Hunter Y.

    A recent development in the representation of aerosols in climate models is the realization that some components of organic carbon (OC), emitted from biomass and biofuel burning, can have a significant contribution to short-wave radiation absorption in the atmosphere. The absorbing fraction of OC is referred to as brown carbon (BrC). This study introduces one of the first implementations of BrC into the Community Earth System Model (CESM), using a parameterization for BrC absorption described in Saleh et al. (2014). 9-year experiments are run (2003-2011) with prescribed emissions and sea surface temperatures to analyze the effect of BrC in the atmosphere. Model validation is conducted via model comparison to single-scatter albedo (SSA) and aerosol optical depth from the Aerosol Robotic Network (AERONET), as well as comparison with a laboratory derived parameterization for SSA dependent on the (black carbon (BC))/(BC+OC) ratio in biomass burning emissions. These comparisons reveal a model underestimation of SSA in biomass burning regions for both default and BrC model runs. Global annual average radiative effects are calculated due to aerosol-radiation interactions (REari; 0.13+/-0.021 W m -2), aerosol-cloud interactions (REaci; 0.07+/-0.056 W m -2), and surface albedo change (REsac; -0.06+/-0.035 W m -2). REari is similar to other studies' estimations of BrC direct radiative effect, while REaci indicates a global reduction in low clouds due to the BrC semi-direct effect. REsac suggests increased surface albedo with BrC implementation due to modified snowfall, but does not take into account the warming effect of BrC on snow. Lastly, comparisons of BrC implementation approaches find that this implementation may do a better job of estimating BrC radiative effect in the Arctic regions than previous studies with CESM.

  18. Econometric model for age- and population-dependent radiation exposures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandquist, G.M.; Slaughter, D.M.; Rogers, V.C.

    1991-01-01

    The economic impact associated with ionizing radiation exposures in a given human population depends on numerous factors including the individual's mean economic status as a function age, the age distribution of the population, the future life expectancy at each age, and the latency period for the occurrence of radiation-induced health effects. A simple mathematical model has been developed that provides an analytical methodology for estimating the societal econometrics associated with radiation effects are to be assessed and compared for economic evaluation.

  19. Estimating daily global solar radiation by day of the year in Algeria

    NASA Astrophysics Data System (ADS)

    Aoun, Nouar; Bouchouicha, Kada

    2017-05-01

    This study presents six empirical models based on the day-of-the-year number for estimating global solar radiation on a horizontal surface. For this case study, 21 years of experimental data sets for 21 cities over the whole Algerian territory are utilized to develop these models for each city and for all of Algeria. In this study, the territory of Algeria was divided into four different climatic zones, i.e., Arid, Semi-arid, Highlands and Mediterranean. The accuracy of the all-Algeria model was tested for each city and for each climate zone. To evaluate the accuracy of the models, the RMSE, rRMSE, MABE, MAPE, and R, which are the most commonly applied statistical parameters, were utilized. The results show that the six developed models provide excellent predictions for global solar radiation for each city and for all-Algeria. Furthermore, the model showing the greatest accuracy is the sine and cosine wave trigonometric model.

  20. Accuracy assessment of a net radiation and temperature index snowmelt model using ground observations of snow water equivalent in an alpine basin

    NASA Astrophysics Data System (ADS)

    Molotch, N. P.; Painter, T. H.; Bales, R. C.; Dozier, J.

    2003-04-01

    In this study, an accumulated net radiation / accumulated degree-day index snowmelt model was coupled with remotely sensed snow covered area (SCA) data to simulate snow cover depletion and reconstruct maximum snow water equivalent (SWE) in the 19.1-km2 Tokopah Basin of the Sierra Nevada, California. Simple net radiation snowmelt models are attractive for operational snowmelt runoff forecasts as they are computationally inexpensive and have low input requirements relative to physically based energy balance models. The objective of this research was to assess the accuracy of a simple net radiation snowmelt model in a topographically heterogeneous alpine environment. Previous applications of net radiation / temperature index snowmelt models have not been evaluated in alpine terrain with intensive field observations of SWE. Solar radiation data from two meteorological stations were distributed using the topographic radiation model TOPORAD. Relative humidity and temperature data were distributed based on the lapse rate calculated between three meteorological stations within the basin. Fractional SCA data from the Landsat Enhanced Thematic Mapper (5 acquisitions) and the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) (2 acquisitions) were used to derive daily SCA using a linear regression between acquisition dates. Grain size data from AVIRIS (4 acquisitions) were used to infer snow surface albedo and interpolated linearly with time to derive daily albedo values. Modeled daily snowmelt rates for each 30-m pixel were scaled by the SCA and integrated over the snowmelt season to obtain estimates of maximum SWE accumulation. Snow surveys consisting of an average of 335 depth measurements and 53 density measurements during April, May and June, 1997 were interpolated using a regression tree / co-krig model, with independent variables of average incoming solar radiation, elevation, slope and maximum upwind slope. The basin was clustered into 7 elevation / average-solar-radiation zones for SWE accuracy assessment. Model simulations did a poor job at estimating the spatial distribution of SWE. Basin clusters where the solar radiative flux dominated the melt flux were simulated more accurately than those dominated by the turbulent fluxes or the longwave radiative flux.

  1. A radiation briefer's guide to the PIKE Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steadman, Jr, C R

    1990-03-01

    Gamma-radiation-exposure estimates to populations living immediately downwind from the Nevada Test Site have been required for many years by the US Department of Energy (DOE) before each containment-designed nuclear detonation. A highly unlikely worst-case'' scenario is utilized which assumes that there will be an accidental massive venting of radioactive debris into the atmosphere shortly after detonation. The Weather Service Nuclear Support Office (WSNSO) has supplied DOE with such estimates for the last 25 years using the WSNSO Fallout Scaling Technique (FOST), which employs a worst-case analog event that actually occurred in the past. The PIKE Model'' is the application ofmore » the FOST using the PIKE nuclear event as the analog. This report, which is primarily intended for WSNSO meteorologists who derive radiation estimates, gives a brief history of the model,'' presents the mathematical, radiological, and meteorological concepts upon which it is based, states its limitations, explains it apparent advantages over more sophisticated models, and details how it is used operationally. 10 refs., 31 figs., 7 tabs.« less

  2. Estimating scattered and absorbed radiation in plant canopies by remote sensing

    NASA Technical Reports Server (NTRS)

    Daughtry, G. S. T.; Ranson, K. J.

    1987-01-01

    Several research avenues are summarized. The relationships of canopy characteristics to multispectral reflectance factors of vegetation are reviewed. Several alternative approaches for incorporating spectrally derived information into plant models are discussed, using corn as the main example. A method is described and evaluated whereby a leaf area index is estimated from measurements of radiation transmitted through plant canopies, using soybeans as an example. Albedo of a big bluestem grass canopy is estimated from 60 directional reflectance factor measurements. Effects of estimating albedo with substantially smaller subsets of data are evaluated.

  3. Spatial Representativeness Error in the Ground-Level Observation Networks for Black Carbon Radiation Absorption

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Andrews, Elisabeth; Balkanski, Yves; Boucher, Olivier; Myhre, Gunnar; Samset, Bjørn Hallvard; Schulz, Michael; Schuster, Gregory L.; Valari, Myrto; Tao, Shu

    2018-02-01

    There is high uncertainty in the direct radiative forcing of black carbon (BC), an aerosol that strongly absorbs solar radiation. The observation-constrained estimate, which is several times larger than the bottom-up estimate, is influenced by the spatial representativeness error due to the mesoscale inhomogeneity of the aerosol fields and the relatively low resolution of global chemistry-transport models. Here we evaluated the spatial representativeness error for two widely used observational networks (AErosol RObotic NETwork and Global Atmosphere Watch) by downscaling the geospatial grid in a global model of BC aerosol absorption optical depth to 0.1° × 0.1°. Comparing the models at a spatial resolution of 2° × 2° with BC aerosol absorption at AErosol RObotic NETwork sites (which are commonly located near emission hot spots) tends to cause a global spatial representativeness error of 30%, as a positive bias for the current top-down estimate of global BC direct radiative forcing. By contrast, the global spatial representativeness error will be 7% for the Global Atmosphere Watch network, because the sites are located in such a way that there are almost an equal number of sites with positive or negative representativeness error.

  4. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study

    NASA Astrophysics Data System (ADS)

    Stier, P.; Schutgens, N. A. J.; Bellouin, N.; Bian, H.; Boucher, O.; Chin, M.; Ghan, S.; Huneeus, N.; Kinne, S.; Lin, G.; Ma, X.; Myhre, G.; Penner, J. E.; Randles, C. A.; Samset, B.; Schulz, M.; Takemura, T.; Yu, F.; Yu, H.; Zhou, C.

    2013-03-01

    Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.47 Wm-2 and the inter-model standard deviation is 0.55 Wm-2, corresponding to a relative standard deviation of 12%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04 Wm-2, and the standard deviation increases to 1.01 W-2, corresponding to a significant relative standard deviation of 97%. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption) is low, with absolute (relative) standard deviations of 0.45 Wm-2 (8%) clear-sky and 0.62 Wm-2 (11%) all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11 Wm-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention.

  5. Retrieving air humidity, global solar radiation, and reference evapotranspiration from daily temperatures: development and validation of new methods for Mexico. Part III: reference evapotranspiration

    NASA Astrophysics Data System (ADS)

    Lobit, P.; Gómez Tagle, A.; Bautista, F.; Lhomme, J. P.

    2017-07-01

    We evaluated two methods to estimate evapotranspiration (ETo) from minimal weather records (daily maximum and minimum temperatures) in Mexico: a modified reduced set FAO-Penman-Monteith method (Allen et al. 1998, Rome, Italy) and the Hargreaves and Samani (Appl Eng Agric 1(2): 96-99, 1985) method. In the reduced set method, the FAO-Penman-Monteith equation was applied with vapor pressure and radiation estimated from temperature data using two new models (see first and second articles in this series): mean temperature as the average of maximum and minimum temperature corrected for a constant bias and constant wind speed. The Hargreaves-Samani method combines two empirical relationships: one between diurnal temperature range ΔT and shortwave radiation Rs, and another one between average temperature and the ratio ETo/Rs: both relationships were evaluated and calibrated for Mexico. After performing a sensitivity analysis to evaluate the impact of different approximations on the estimation of Rs and ETo, several model combinations were tested to predict ETo from daily maximum and minimum temperature alone. The quality of fit of these models was evaluated on 786 weather stations covering most of the territory of Mexico. The best method was found to be a combination of the FAO-Penman-Monteith reduced set equation with the new radiation estimation and vapor pressure model. As an alternative, a recalibration of the Hargreaves-Samani equation is proposed.

  6. Measuring and modeling near surface reflected and emitted radiation fluxes at the FIFE site

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Norman, John M.; Walter-Shea, Elizabeth; Starks, Patrick; Vining, Roel; Hays, Cynthia

    1988-01-01

    Research was conducted during the four Intensive Field Campaigns (IFC) of the FIFE project in 1987. The research was done on a tall grass prairie with specific measurement sites on and near the Konza Prairie in Kansas. Measurements were made to help meet the following objectives: determination of the variability in reflected and emitted radiation fluxes in selected spectral wavebands as a function of topography and vegetative community; development of techniques to account for slope and sun angle effects on the radiation fluxes; estimation of shortwave albedo and net radiation fluxes using the reflected and emitted spectral measurements described; estimation of leaf and canopy spectral properties from calculated normalized differences coupled with off-nadir measurements using inversion techniques; estimation of plant water status at several locations with indices utilizing plant temperature and other environmental parameters; and determination of relationships between estimated plant water status and measured soil water content. Results are discussed.

  7. Validation of a Solid Rocket Motor Internal Environment Model

    NASA Technical Reports Server (NTRS)

    Martin, Heath T.

    2017-01-01

    In a prior effort, a thermal/fluid model of the interior of Penn State University's laboratory-scale Insulation Test Motor (ITM) was constructed to predict both the convective and radiative heat transfer to the interior walls of the ITM with a minimum of empiricism. These predictions were then compared to values of total and radiative heat flux measured in a previous series of ITM test firings to assess the capabilities and shortcomings of the chosen modeling approach. Though the calculated fluxes reasonably agreed with those measured during testing, this exercise revealed means of improving the fidelity of the model to, in the case of the thermal radiation, enable direct comparison of the measured and calculated fluxes and, for the total heat flux, compute a value indicative of the average measured condition. By replacing the P1-Approximation with the discrete ordinates (DO) model for the solution of the gray radiative transfer equation, the radiation intensity field in the optically thin region near the radiometer is accurately estimated, allowing the thermal radiation flux to be calculated on the heat-flux sensor itself, which was then compared directly to the measured values. Though the fully coupling the wall thermal response with the flow model was not attempted due to the excessive computational time required, a separate wall thermal response model was used to better estimate the average temperature of the graphite surfaces upstream of the heat flux gauges and improve the accuracy of both the total and radiative heat flux computations. The success of this modeling approach increases confidence in the ability of state-of-the-art thermal and fluid modeling to accurately predict SRM internal environments, offers corrections to older methods, and supplies a tool for further studies of the dynamics of SRM interiors.

  8. Radiation and Smoking Effects on Lung Cancer Incidence by Histological Types Among Atomic Bomb Survivors

    PubMed Central

    Egawa, Hiromi; Furukawa, Kyoji; Preston, Dale; Funamoto, Sachiyo; Yonehara, Shuji; Matsuo, Takeshi; Tokuoka, Shoji; Suyama, Akihiko; Ozasa, Kotaro; Kodama, Kazunori; Mabuchi, Kiyohiko

    2014-01-01

    While the risk of lung cancer associated separately with smoking and radiation exposure has been widely reported, it is not clear how smoking and radiation together contribute to the risk of specific lung cancer histological types. With individual smoking histories and radiation dose estimates, we characterized the joint effects of radiation and smoking on type-specific lung cancer rates among the Life Span Study cohort of Japanese atomic bomb survivors. Among 105,404 cohort subjects followed between 1958 and 1999, 1,803 first primary lung cancer incident cases were diagnosed and classified by histological type. Poisson regression methods were used to estimate excess relative risks under several interaction models. Adenocarcinoma (636 cases), squamous-cell carcinoma (330) and small-cell carcinoma (194) made up 90% of the cases with known histology. Both smoking and radiation exposure significantly increased the risk of each major lung cancer histological type. Smoking-associated excess relative risks were significantly larger for small-cell and squamous-cell carcinomas than for adenocarcinoma. The gender-averaged excess relative risks per 1 Gy of radiation (for never-smokers at age 70 after radiation exposure at age 30) were estimated as 1.49 (95% confidence interval 0.1–4.6) for small-cell carcinoma, 0.75 (0.3–1.3) for adenocarcinoma, and 0.27 (0–1.5) for squamous-cell carcinoma. Under a model allowing radiation effects to vary with levels of smoking, the nature of the joint effect of smoking and radiation showed a similar pattern for different histological types in which the radiation-associated excess relative risk tended to be larger for moderate smokers than for heavy smokers. However, in contrast to analyses of all lung cancers as a group, such complicated interactions did not describe the data significantly better than either simple additive or multiplicative interaction models for any of the type-specific analyses. PMID:22862780

  9. Probability of Causation for Space Radiation Carcinogenesis Following International Space Station, Near Earth Asteroid, and Mars Missions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Chappell, Lori J.

    2012-01-01

    Cancer risk is an important concern for International Space Station (ISS) missions and future exploration missions. An important question concerns the likelihood of a causal association between a crew members radiation exposure and the occurrence of cancer. The probability of causation (PC), also denoted as attributable risk, is used to make such an estimate. This report summarizes the NASA model of space radiation cancer risks and uncertainties, including improvements to represent uncertainties in tissue-specific cancer incidence models for never-smokers and the U.S. average population. We report on tissue-specific cancer incidence estimates and PC for different post-mission times for ISS and exploration missions. An important conclusion from our analysis is that the NASA policy to limit the risk of exposure-induced death to 3% at the 95% confidence level largely ensures that estimates of the PC for most cancer types would not reach a level of significance. Reducing uncertainties through radiobiological research remains the most efficient method to extend mission length and establish effective mitigators for cancer risks. Efforts to establish biomarkers of space radiation-induced tumors and to estimate PC for rarer tumor types are briefly discussed.

  10. A hybrid SVM-FFA method for prediction of monthly mean global solar radiation

    NASA Astrophysics Data System (ADS)

    Shamshirband, Shahaboddin; Mohammadi, Kasra; Tong, Chong Wen; Zamani, Mazdak; Motamedi, Shervin; Ch, Sudheer

    2016-07-01

    In this study, a hybrid support vector machine-firefly optimization algorithm (SVM-FFA) model is proposed to estimate monthly mean horizontal global solar radiation (HGSR). The merit of SVM-FFA is assessed statistically by comparing its performance with three previously used approaches. Using each approach and long-term measured HGSR, three models are calibrated by considering different sets of meteorological parameters measured for Bandar Abbass situated in Iran. It is found that the model (3) utilizing the combination of relative sunshine duration, difference between maximum and minimum temperatures, relative humidity, water vapor pressure, average temperature, and extraterrestrial solar radiation shows superior performance based upon all approaches. Moreover, the extraterrestrial radiation is introduced as a significant parameter to accurately estimate the global solar radiation. The survey results reveal that the developed SVM-FFA approach is greatly capable to provide favorable predictions with significantly higher precision than other examined techniques. For the SVM-FFA (3), the statistical indicators of mean absolute percentage error (MAPE), root mean square error (RMSE), relative root mean square error (RRMSE), and coefficient of determination ( R 2) are 3.3252 %, 0.1859 kWh/m2, 3.7350 %, and 0.9737, respectively which according to the RRMSE has an excellent performance. As a more evaluation of SVM-FFA (3), the ratio of estimated to measured values is computed and found that 47 out of 48 months considered as testing data fall between 0.90 and 1.10. Also, by performing a further verification, it is concluded that SVM-FFA (3) offers absolute superiority over the empirical models using relatively similar input parameters. In a nutshell, the hybrid SVM-FFA approach would be considered highly efficient to estimate the HGSR.

  11. Evaluating accuracy of DSSAT model for soybean yield estimation using satellite weather data

    NASA Astrophysics Data System (ADS)

    Ovando, Gustavo; Sayago, Silvina; Bocco, Mónica

    2018-04-01

    Crop models allow simulating the development and yield of the crops, to represent and to evaluate the influence of multiple factors. The DSSAT cropping system model is one of the most widely used and contains CROPGRO module for soybean. This crop has a great importance for many southern countries of Latin America and for Argentina. Solar radiation and rainfall are necessary variables as inputs for crop models; however these data are not as readily available. The satellital products from Clouds and Earth's Radiant Energy System (CERES) and Tropic Rainfall Measurement Mission (TRMM) provide continuous spatial and temporal information of solar radiation and precipitation, respectively. This study evaluates and quantifies the uncertainty in estimating soybean yield using a DSSAT model, when recorded weather data are replaced with CERES and TRMM ones. Different percentages of data replacements, soybean maturity groups and planting dates are considered, for 2006-2016 period in Oliveros (Argentina). Results show that CERES and TRMM products can be used for soybean yield estimation with DSSAT considering that: percentage of data replacement, campaign, planting date and maturity group, determine the amounts and trends of yield errors. Replacements with CERES data up to 30% result in %RMSE lower than 10% in 87% of the cases; while the replacement with TRMM data presents the best statisticals in campaigns with high yields. Simulations based entirely on CERES solar radiation give better results than those with TRMM. In general, similar percentages of replacement show better performance in the estimation of soybean yield for solar radiation than the replacement of precipitation values.

  12. Analysis of space radiation exposure levels at different shielding configurations by ray-tracing dose estimation method

    NASA Astrophysics Data System (ADS)

    Kartashov, Dmitry; Shurshakov, Vyacheslav

    2018-03-01

    A ray-tracing method to calculate radiation exposure levels of astronauts at different spacecraft shielding configurations has been developed. The method uses simplified shielding geometry models of the spacecraft compartments together with depth-dose curves. The depth-dose curves can be obtained with different space radiation environment models and radiation transport codes. The spacecraft shielding configurations are described by a set of geometry objects. To calculate the shielding probability functions for each object its surface is composed from a set of the disjoint adjacent triangles that fully cover the surface. Such description can be applied for any complex shape objects. The method is applied to the space experiment MATROSHKA-R modeling conditions. The experiment has been carried out onboard the ISS from 2004 to 2016. Dose measurements were realized in the ISS compartments with anthropomorphic and spherical phantoms, and the protective curtain facility that provides an additional shielding on the crew cabin wall. The space ionizing radiation dose distributions in tissue-equivalent spherical and anthropomorphic phantoms and for an additional shielding installed in the compartment are calculated. There is agreement within accuracy of about 15% between the data obtained in the experiment and calculated ones. Thus the calculation method used has been successfully verified with the MATROSHKA-R experiment data. The ray-tracing radiation dose calculation method can be recommended for estimation of dose distribution in astronaut body in different space station compartments and for estimation of the additional shielding efficiency, especially when exact compartment shielding geometry and the radiation environment for the planned mission are not known.

  13. Estimation of Effective Doses for Radiation Cancer Risks on ISS, Lunar, and Mars Missions with Space Radiation Measurement

    NASA Technical Reports Server (NTRS)

    Kim, M.Y.; Cucinotta, F.A.

    2005-01-01

    Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. The Phantom Torso Experiment (PTE) of NASA s Operational Radiation Protection Program has provided the actual flight measurements of active and passive dosimeters which were placed throughout the phantom on STS-91 mission for 10 days and on ISS Increment 2 mission. For the PTE, the variation in organ doses, which is resulted by the absorption and the changes in radiation quality with tissue shielding, was considered by measuring doses at many tissue sites and at several critical body organs including brain, colon, heart, stomach, thyroid, and skins. These measurements have been compared with the organ dose calculations obtained from the transport models. Active TEPC measurements of lineal energy spectra at the surface of the PTE also provided the direct comparison of galactic cosmic ray (GCR) or trapped proton dose and dose equivalent. It is shown that orienting the phantom body as actual in ISS is needed for the direct comparison of the transport models to the ISS data. One of the most important observations for organ dose equivalent of effective dose estimates on ISS is the fractional contribution from trapped protons and GCR. We show that for most organs over 80% is from GCR. The improved estimation of effective doses for radiation cancer risks will be made with the resultant tissue weighting factors and the modified codes.

  14. Generation of common coefficients to estimate global solar radiation over different locations of India

    NASA Astrophysics Data System (ADS)

    Samanta, Suman; Patra, Pulak Kumar; Banerjee, Saon; Narsimhaiah, Lakshmi; Sarath Chandran, M. A.; Vijaya Kumar, P.; Bandyopadhyay, Sanjib

    2018-06-01

    In developing countries like India, global solar radiation (GSR) is measured at very few locations due to non-availability of radiation measuring instruments. To overcome the inadequacy of GSR measurements, scientists developed many empirical models to estimate location-wise GSR. In the present study, three simple forms of Angstrom equation [Angstrom-Prescott (A-P), Ogelman, and Bahel] were used to estimate GSR at six geographically and climatologically different locations across India with an objective to find out a set of common constants usable for whole country. Results showed that GSR values varied from 9.86 to 24.85 MJ m-2 day-1 for different stations. It was also observed that A-P model showed smaller errors than Ogelman and Bahel models. All the models well estimated GSR, as the 1:1 line between measured and estimated values showed Nash-Sutcliffe efficiency (NSE) values ≥ 0.81 for all locations. Measured data of GSR pooled over six selected locations was analyzed to obtain a new set of constants for A-P equation which can be applicable throughout the country. The set of constants (a = 0.29 and b = 0.40) was named as "One India One Constant (OIOC)," and the model was named as "MOIOC." Furthermore, the developed constants are validated statistically for another six locations of India and produce close estimation. High R 2 values (≥ 76%) along with low mean bias error (MBE) ranging from - 0.64 to 0.05 MJ m-2 day-1 revealed that the new constants are able to predict GSR with lesser percentage of error.

  15. Temperature-based estimation of global solar radiation using soft computing methodologies

    NASA Astrophysics Data System (ADS)

    Mohammadi, Kasra; Shamshirband, Shahaboddin; Danesh, Amir Seyed; Abdullah, Mohd Shahidan; Zamani, Mazdak

    2016-07-01

    Precise knowledge of solar radiation is indeed essential in different technological and scientific applications of solar energy. Temperature-based estimation of global solar radiation would be appealing owing to broad availability of measured air temperatures. In this study, the potentials of soft computing techniques are evaluated to estimate daily horizontal global solar radiation (DHGSR) from measured maximum, minimum, and average air temperatures ( T max, T min, and T avg) in an Iranian city. For this purpose, a comparative evaluation between three methodologies of adaptive neuro-fuzzy inference system (ANFIS), radial basis function support vector regression (SVR-rbf), and polynomial basis function support vector regression (SVR-poly) is performed. Five combinations of T max, T min, and T avg are served as inputs to develop ANFIS, SVR-rbf, and SVR-poly models. The attained results show that all ANFIS, SVR-rbf, and SVR-poly models provide favorable accuracy. Based upon all techniques, the higher accuracies are achieved by models (5) using T max- T min and T max as inputs. According to the statistical results, SVR-rbf outperforms SVR-poly and ANFIS. For SVR-rbf (5), the mean absolute bias error, root mean square error, and correlation coefficient are 1.1931 MJ/m2, 2.0716 MJ/m2, and 0.9380, respectively. The survey results approve that SVR-rbf can be used efficiently to estimate DHGSR from air temperatures.

  16. Space Radiation Organ Doses for Astronauts on Past and Future Missions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2007-01-01

    We review methods and data used for determining astronaut organ dose equivalents on past space missions including Apollo, Skylab, Space Shuttle, NASA-Mir, and International Space Station (ISS). Expectations for future lunar missions are also described. Physical measurements of space radiation include the absorbed dose, dose equivalent, and linear energy transfer (LET) spectra, or a related quantity, the lineal energy (y) spectra that is measured by a tissue equivalent proportional counter (TEPC). These data are used in conjunction with space radiation transport models to project organ specific doses used in cancer and other risk projection models. Biodosimetry data from Mir, STS, and ISS missions provide an alternative estimate of organ dose equivalents based on chromosome aberrations. The physical environments inside spacecraft are currently well understood with errors in organ dose projections estimated as less than plus or minus 15%, however understanding the biological risks from space radiation remains a difficult problem because of the many radiation types including protons, heavy ions, and secondary neutrons for which there are no human data to estimate risks. The accuracy of projections of organ dose equivalents described here must be supplemented with research on the health risks of space exposure to properly assess crew safety for exploration missions.

  17. Evidence supporting radiation hormesis in atomic bomb survivor cancer mortality data.

    PubMed

    Doss, Mohan

    2012-12-01

    A recent update on the atomic bomb survivor cancer mortality data has concluded that excess relative risk (ERR) for solid cancers increases linearly with dose and that zero dose is the best estimate for the threshold, apparently validating the present use of the linear no threshold (LNT) model for estimating the cancer risk from low dose radiation. A major flaw in the standard ERR formalism for estimating cancer risk from radiation (and other carcinogens) is that it ignores the potential for a large systematic bias in the measured baseline cancer mortality rate, which can have a major effect on the ERR values. Cancer rates are highly variable from year to year and between adjacent regions and so the likelihood of such a bias is high. Calculations show that a correction for such a bias can lower the ERRs in the atomic bomb survivor data to negative values for intermediate doses. This is consistent with the phenomenon of radiation hormesis, providing a rational explanation for the decreased risk of cancer observed at intermediate doses for which there is no explanation based on the LNT model. The recent atomic bomb survivor data provides additional evidence for radiation hormesis in humans.

  18. Mind the Gap: Exploring the Underground of the NASA Space Cancer Risk Model

    NASA Technical Reports Server (NTRS)

    Chappell, L. J.; Elgart, S. R.; Milder, C. M.; Shavers, M. R.; Semones, E. J.; Huff, J. L.

    2017-01-01

    The REID quantifies the lifetime risk of death from radiation-induced cancer in an exposed astronaut. The NASA Space Cancer Risk (NSCR) 2012 mode incorporates elements from physics, biology, epidemiology, and statistics to generate the REID distribution. The current model quantifies the space radiation environment, radiation quality, and dose-rate effects to estimate a NASA-weighted dose. This weighted dose is mapped to the excess risk of radiation-induced cancer mortality from acute exposures to gamma rays and then transferred to an astronaut population. Finally, the REID is determined by integrating this risk over the individual's lifetime. The calculated upper 95% confidence limit of the REID is used to restrict an astronaut's permissible mission duration (PMD) for a proposed mission. As a statistical quantity characterized by broad, subjective uncertainties, REID estimates for space missions result in wide distributions. Currently, the upper 95% confidence level is over 350% larger than the mean REID value, which can severely limit an astronaut's PMD. The model incorporates inputs from multiple scientific disciplines in the risk estimation process. Physics and particle transport models calculate how radiation moves through space, penetrates spacecraft, and makes its way to the human beings onboard. Epidemiological studies of exposures from atomic bombings, medical treatments, and power plants are used to quantify health risks from acute and chronic low linear energy transfer (LET) ionizing radiation. Biological studies in cellular and animal models using radiation at various LETs and energies inform quality metrics for ions present in space radiation. Statistical methodologies unite these elements, controlling for mathematical and scientific uncertainty and variability. Despite current progress, these research platforms contain knowledge gaps contributing to the large uncertainties still present in the model. The NASA Space Radiation Program Element (SRPE) defines the knowledge gaps that impact our understanding of the cancer risks. These gaps are outlined in NASA's Human Research Roadmap [4], which identifies the research questions and actions recommended for reducing the uncertainty in the current NSCR model and for formulation of future models. The greatest contributors to uncertainty in the current model include radiation quality, dose rate effects, and the transfer of exposure-based risk from other populations to an astronaut population. Future formulations of the risk model may benefit from including other potential sources of uncertainty such as space dosimetry, errors in human epidemiology data, and the impact of microgravity and other spaceflight stressors. Here, we discuss the current capabilities of the NSCR-2012 model and several immediate research needs, highlighting areas expected to have an operational impact on the current model schema. The following subway-style route map outlines the NSCR-2012 model (Green Line), emphasizing the research gaps in the Human Research Roadmap for risk of radiation-induced carcinogenesis (Stops on Dashed Lines). The map diagrams how these research gaps feed specific portions of the model.

  19. Patients with Testicular Cancer Undergoing CT Surveillance Demonstrate a Pitfall of Radiation-induced Cancer Risk Estimates: The Timing Paradox

    PubMed Central

    Eisenberg, Jonathan D.; Lee, Richard J.; Gilmore, Michael E.; Turan, Ekin A.; Singh, Sarabjeet; Kalra, Mannudeep K.; Liu, Bob; Kong, Chung Yin; Gazelle, G. Scott

    2013-01-01

    Purpose: To demonstrate a limitation of lifetime radiation-induced cancer risk metrics in the setting of testicular cancer surveillance—in particular, their failure to capture the delayed timing of radiation-induced cancers over the course of a patient’s lifetime. Materials and Methods: Institutional review board approval was obtained for the use of computed tomographic (CT) dosimetry data in this study. Informed consent was waived. This study was HIPAA compliant. A Markov model was developed to project outcomes in patients with testicular cancer who were undergoing CT surveillance in the decade after orchiectomy. To quantify effects of early versus delayed risks, life expectancy losses and lifetime mortality risks due to testicular cancer were compared with life expectancy losses and lifetime mortality risks due to radiation-induced cancers from CT. Projections of life expectancy loss, unlike lifetime risk estimates, account for the timing of risks over the course of a lifetime, which enabled evaluation of the described limitation of lifetime risk estimates. Markov chain Monte Carlo methods were used to estimate the uncertainty of the results. Results: As an example of evidence yielded, 33-year-old men with stage I seminoma who were undergoing CT surveillance were projected to incur a slightly higher lifetime mortality risk from testicular cancer (598 per 100 000; 95% uncertainty interval [UI]: 302, 894) than from radiation-induced cancers (505 per 100 000; 95% UI: 280, 730). However, life expectancy loss attributable to testicular cancer (83 days; 95% UI: 42, 124) was more than three times greater than life expectancy loss attributable to radiation-induced cancers (24 days; 95% UI: 13, 35). Trends were consistent across modeled scenarios. Conclusion: Lifetime radiation risk estimates, when used for decision making, may overemphasize radiation-induced cancer risks relative to short-term health risks. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12121015/-/DC1 PMID:23249573

  20. Impacts of Aerosol Direct Effects on the South Asian climate: Assessment of Radiative Feedback Processes Using Model Simulations and Satellite/surface Measurements

    NASA Astrophysics Data System (ADS)

    Wang, S.; Gautam, R.; Lau, W. K.; Tsay, S.; Sun, W.; Kim, K.; Chern, J.; Colarco, P. R.; Hsu, N. C.; Lin, N.

    2011-12-01

    Current assessment of aerosol radiative effect is hindered by our incomplete knowledge of aerosol optical properties, especially absorption, and our current inability to quantify physical and microphysical processes. In this research, we investigate direct aerosol radiative effect over heavy aerosol loading areas (e.g., Indo-Gangetic Plains, South/East Asia) and its feedbacks on the South Asian climate during the pre-monsoon season (March-June) using the Purdue Regional Climate Model (PRCM) with prescribed aerosol data derived by the NASA Goddard Earth Observing System Model (GEOS-5). Our modeling domain covers South and East Asia (60-140E and 0-50N) with spatial resolutions of 45 km in horizontal and 28 layers in vertical. The model is integrated from 15 February to 30 June 2008 continuously without nudging (i.e., only forced by initial/boundary conditions). Two numerical experiments are conducted with and without the aerosol-radiation effects. Both simulations are successful in reproducing the synoptic patterns on seasonal-to-interannual time scales and capturing a pre-monsoon feature of the northward rainfall propagation over Indian region in early June which shown in Tropical Rainfall Measuring Mission (TRMM) observation. Preliminary result suggests aerosol-radiation interactions mainly alter surface-atmosphere energetics and further result in an adjustment of the vertical temperature distribution in lower atmosphere (below 700 hPa). The modifications of temperature and associated rainfall and circulation feedbacks on the regional climate will be discussed in the presentation. In addition to modeling study, we will also present the most recent results on aerosol properties, regional aerosol absorption, and radiative forcing estimation based on NASA's operational satellite and ground-based remote sensing. Observational results show spatial gradients in aerosol loading and solar absorption accounting over Indo-Gangetic Plains during the pre-monsoon season. The direct radiative forcing of aerosols at surface to be -19-23 Wm-2 (12-15 % of the surface solar insolation) over NW India is estimated using an observational approach. A comparison of aerosol radiative forcing between numerical simulation and observational estimate will be presented. Overall, this work will demonstrate the aerosol direct effects from both modeling and observation perspectives, and further to assess the physical processes underlying the aerosol radiative feedbacks and possible impacts on the large-scale South Asian monsoon system.

  1. Comparison and Analysis of Energy Performance of Baseline and Enhanced Temporary Army Shelters

    DTIC Science & Technology

    2015-09-01

    modeling .................................................................................................... 37 4.4 Predicted vs. field- measured data...with remote access capability ......................... 35 4-2 Direct normal solar radiation measured at weather station and estimated with the... Measured global horizontal radiation and EnergyPlus calculated incident solar radiation on a horizontal surface

  2. Mapping apparent stress and energy radiation over fault zones of major earthquakes

    USGS Publications Warehouse

    McGarr, A.; Fletcher, Joe B.

    2002-01-01

    Using published slip models for five major earthquakes, 1979 Imperial Valley, 1989 Loma Prieta, 1992 Landers, 1994 Northridge, and 1995 Kobe, we produce maps of apparent stress and radiated seismic energy over their fault surfaces. The slip models, obtained by inverting seismic and geodetic data, entail the division of the fault surfaces into many subfaults for which the time histories of seismic slip are determined. To estimate the seismic energy radiated by each subfault, we measure the near-fault seismic-energy flux from the time-dependent slip there and then multiply by a function of rupture velocity to obtain the corresponding energy that propagates into the far-field. This function, the ratio of far-field to near-fault energy, is typically less than 1/3, inasmuch as most of the near-fault energy remains near the fault and is associated with permanent earthquake deformation. Adding the energy contributions from all of the subfaults yields an estimate of the total seismic energy, which can be compared with independent energy estimates based on seismic-energy flux measured in the far-field, often at teleseismic distances. Estimates of seismic energy based on slip models are robust, in that different models, for a given earthquake, yield energy estimates that are in close agreement. Moreover, the slip-model estimates of energy are generally in good accord with independent estimates by others, based on regional or teleseismic data. Apparent stress is estimated for each subfault by dividing the corresponding seismic moment into the radiated energy. Distributions of apparent stress over an earthquake fault zone show considerable heterogeneity, with peak values that are typically about double the whole-earthquake values (based on the ratio of seismic energy to seismic moment). The range of apparent stresses estimated for subfaults of the events studied here is similar to the range of apparent stresses for earthquakes in continental settings, with peak values of about 8 MPa in each case. For earthquakes in compressional tectonic settings, peak apparent stresses at a given depth are substantially greater than corresponding peak values from events in extensional settings; this suggests that crustal strength, inferred from laboratory measurements, may be a limiting factor. Lower bounds on shear stresses inferred from the apparent stress distribution of the 1995 Kobe earthquake are consistent with tectonic-stress estimates reported by Spudich et al. (1998), based partly on slip-vector rake changes.

  3. How Radiation Oncologists Evaluate and Incorporate Life Expectancy Estimates Into the Treatment of Palliative Cancer Patients: A Survey-Based Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, Yolanda D., E-mail: ydtseng@partners.org; Krishnan, Monica S.; Sullivan, Adam J.

    2013-11-01

    Purpose: We surveyed how radiation oncologists think about and incorporate a palliative cancer patient’s life expectancy (LE) into their treatment recommendations. Methods and Materials: A 41-item survey was e-mailed to 113 radiation oncology attending physicians and residents at radiation oncology centers within the Boston area. Physicians estimated how frequently they assessed the LE of their palliative cancer patients and rated the importance of 18 factors in formulating LE estimates. For 3 common palliative case scenarios, physicians estimated LE and reported whether they had an LE threshold below which they would modify their treatment recommendation. LE estimates were considered accurate whenmore » within the 95% confidence interval of median survival estimates from an established prognostic model. Results: Among 92 respondents (81%), the majority were male (62%), from an academic practice (75%), and an attending physician (70%). Physicians reported assessing LE in 91% of their evaluations and most frequently rated performance status (92%), overall metastatic burden (90%), presence of central nervous system metastases (75%), and primary cancer site (73%) as “very important” in assessing LE. Across the 3 cases, most (88%-97%) had LE thresholds that would alter treatment recommendations. Overall, physicians’ LE estimates were 22% accurate with 67% over the range predicted by the prognostic model. Conclusions: Physicians often incorporate LE estimates into palliative cancer care and identify important prognostic factors. Most have LE thresholds that guide their treatment recommendations. However, physicians overestimated patient survival times in most cases. Future studies focused on improving LE assessment are needed.« less

  4. A cloud model-radiative model combination for determining microwave TB-rain rate relations

    NASA Technical Reports Server (NTRS)

    Szejwach, Gerard; Adler, Robert F.; Jobard, Esabelle; Mack, Robert A.

    1986-01-01

    The development of a cloud model-radiative transfer model combination for computing average brightness temperature, T(B), is discussed. The cloud model and radiative transfer model used in this study are described. The relations between rain rate, cloud and rain water, cloud and precipitation ice, and upwelling radiance are investigated. The effects of the rain rate relations on T(B) under different climatological conditions are examined. The model-derived T(B) results are compared to the 92 and 183 GHz aircraft observations of Hakkarinen and Adler (1984, 1986) and the radar-estimated rain rate of Hakkarinen and Adler (1986); good correlation between the data is detected.

  5. Technical Evaluation of the NASA Model for Cancer Risk to Astronauts Due to Space Radiation

    NASA Technical Reports Server (NTRS)

    2012-01-01

    At the request of NASA, the National Research Council's (NRC's) Committee for Evaluation of Space Radiation Cancer Risk Model reviewed a number of changes that NASA proposes to make to its model for estimating the risk of radiation-induced cancer in astronauts. The NASA model in current use was last updated in 2005, and the proposed model would incorporate recent research directed at improving the quantification and understanding of the health risks posed by the space radiation environment. NASA's proposed model is defined by the 2011 NASA report Space Radiation Cancer Risk Projections and Uncertainties 2010 (Cucinotta et al., 2011). The committee's evaluation is based primarily on this source, which is referred to hereafter as the 2011 NASA report, with mention of specific sections or tables cited more formally as Cucinotta et al. (2011). The overall process for estimating cancer risks due to low linear energy transfer (LET) radiation exposure has been fully described in reports by a number of organizations. They include, more recently: (1) The "BEIR VII Phase 2" report from the NRC's Committee on Biological Effects of Ionizing Radiation (BEIR) (NRC, 2006); (2) Studies of Radiation and Cancer from the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2006), (3) The 2007 Recommendations of the International Commission on Radiological Protection (ICRP), ICRP Publication 103 (ICRP, 2007); and (4) The Environmental Protection Agency s (EPA s) report EPA Radiogenic Cancer Risk Models and Projections for the U.S. Population (EPA, 2011). The approaches described in the reports from all of these expert groups are quite similar. NASA's proposed space radiation cancer risk assessment model calculates, as its main output, age- and gender-specific risk of exposure-induced death (REID) for use in the estimation of mission and astronaut-specific cancer risk. The model also calculates the associated uncertainties in REID. The general approach for estimating risk and uncertainty in the proposed model is broadly similar to that used for the current (2005) NASA model and is based on recommendations by the National Council on Radiation Protection and Measurements (NCRP, 2000, 2006). However, NASA's proposed model has significant changes with respect to the following: the integration of new findings and methods into its components by taking into account newer epidemiological data and analyses, new radiobiological data indicating that quality factors differ for leukemia and solid cancers, an improved method for specifying quality factors in terms of radiation track structure concepts as opposed to the previous approach based on linear energy transfer, the development of a new solar particle event (SPE) model, and the updates to galactic cosmic ray (GCR) and shielding transport models. The newer epidemiological information includes updates to the cancer incidence rates from the life span study (LSS) of the Japanese atomic bomb survivors (Preston et al., 2007), transferred to the U.S. population and converted to cancer mortality rates from U.S. population statistics. In addition, the proposed model provides an alternative analysis applicable to lifetime never-smokers (NSs). Details of the uncertainty analysis in the model have also been updated and revised. NASA's proposed model and associated uncertainties are complex in their formulation and as such require a very clear and precise set of descriptions. The committee found the 2011 NASA report challenging to review largely because of the lack of clarity in the model descriptions and derivation of the various parameters used. The committee requested some clarifications from NASA throughout its review and was able to resolve many, but not all, of the ambiguities in the written description.

  6. Estimation of missing values in solar radiation data using piecewise interpolation methods: Case study at Penang city

    NASA Astrophysics Data System (ADS)

    Zainudin, Mohd Lutfi; Saaban, Azizan; Bakar, Mohd Nazari Abu

    2015-12-01

    The solar radiation values have been composed by automatic weather station using the device that namely pyranometer. The device is functions to records all the radiation values that have been dispersed, and these data are very useful for it experimental works and solar device's development. In addition, for modeling and designing on solar radiation system application is needed for complete data observation. Unfortunately, lack for obtained the complete solar radiation data frequently occur due to several technical problems, which mainly contributed by monitoring device. Into encountering this matter, estimation missing values in an effort to substitute absent values with imputed data. This paper aimed to evaluate several piecewise interpolation techniques likes linear, splines, cubic, and nearest neighbor into dealing missing values in hourly solar radiation data. Then, proposed an extendable work into investigating the potential used of cubic Bezier technique and cubic Said-ball method as estimator tools. As result, methods for cubic Bezier and Said-ball perform the best compare to another piecewise imputation technique.

  7. Estimation of daily flow rate of photovoltaic water pumping systems using solar radiation data

    NASA Astrophysics Data System (ADS)

    Benghanem, M.; Daffallah, K. O.; Almohammedi, A.

    2018-03-01

    This paper presents a simple model which allows us to contribute in the studies of photovoltaic (PV) water pumping systems sizing. The nonlinear relation between water flow rate and solar power has been obtained experimentally in a first step and then used for performance prediction. The model proposed enables us to simulate the water flow rate using solar radiation data for different heads (50 m, 60 m, 70 m and 80 m) and for 8S × 3P PV array configuration. The experimental data are obtained with our pumping test facility located at Madinah site (Saudi Arabia). The performances are calculated using the measured solar radiation data of different locations in Saudi Arabia. Knowing the solar radiation data, we have estimated with a good precision the water flow rate Q in five locations (Al-Jouf, Solar Village, AL-Ahsa, Madinah and Gizan) in Saudi Arabia. The flow rate Q increases with the increase of pump power for different heads following the nonlinear model proposed.

  8. aerosol radiative effects and forcing: spatial and temporal distributions

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan

    2014-05-01

    A monthly climatology for aerosol optical properties based on a synthesis from global modeling and observational data has been applied to illustrate spatial distributions and global averages of aerosol radiative impacts. With the help of a pre-industrial reference for aerosol optical properties from global modeling, also the aerosol direct forcing (ca -0.35W/m2 globally and annual averaged) and their spatial and seasonal distributions and contributions by individual aerosol components are estimated. Finally, CCN and IN concentrations associated with this climatology are applied to estimate aerosol indirect effects and forcing.

  9. Improved estimations of gross primary production using satellite-derived photosynthetically active radiation

    NASA Astrophysics Data System (ADS)

    Cai, Wenwen; Yuan, Wenping; Liang, Shunlin; Zhang, Xiaotong; Dong, Wenjie; Xia, Jiangzhou; Fu, Yang; Chen, Yang; Liu, Dan; Zhang, Qiang

    2014-01-01

    Terrestrial vegetation gross primary production (GPP) is an important variable in determining the global carbon cycle as well as the interannual variability of the atmospheric CO2 concentration. The accuracy of GPP simulation is substantially affected by several critical model drivers, one of the most important of which is photosynthetically active radiation (PAR) which directly determines the photosynthesis processes of plants. In this study, we examined the impacts of uncertainties in radiation products on GPP estimates in China. Two satellite-based radiation products (GLASS and ISCCP), three reanalysis products (MERRA, ECMWF, and NCEP), and a blended product of reanalysis and observations (Princeton) were evaluated based on observations at hundreds of sites. The results revealed the highest accuracy for two satellite-based products over various temporal and spatial scales. The three reanalysis products and the Princeton product tended to overestimate radiation. The GPP simulation driven by the GLASS product exhibited the highest consistency with those derived from site observations. Model validation at 11 eddy covariance sites suggested the highest model performance when utilizing the GLASS product. Annual GPP in China driven by GLASS was 5.55 Pg C yr-1, which was 68.85%-94.87% of those derived from the other products. The results implied that the high spatial resolution, satellite-derived GLASS PAR significantly decreased the uncertainty of the GPP estimates at the regional scale.

  10. Estimation of global snow cover using passive microwave data

    NASA Astrophysics Data System (ADS)

    Chang, Alfred T. C.; Kelly, Richard E.; Foster, James L.; Hall, Dorothy K.

    2003-04-01

    This paper describes an approach to estimate global snow cover using satellite passive microwave data. Snow cover is detected using the high frequency scattering signal from natural microwave radiation, which is observed by passive microwave instruments. Developed for the retrieval of global snow depth and snow water equivalent using Advanced Microwave Scanning Radiometer EOS (AMSR-E), the algorithm uses passive microwave radiation along with a microwave emission model and a snow grain growth model to estimate snow depth. The microwave emission model is based on the Dense Media Radiative Transfer (DMRT) model that uses the quasi-crystalline approach and sticky particle theory to predict the brightness temperature from a single layered snowpack. The grain growth model is a generic single layer model based on an empirical approach to predict snow grain size evolution with time. Gridding to the 25 km EASE-grid projection, a daily record of Special Sensor Microwave Imager (SSM/I) snow depth estimates was generated for December 2000 to March 2001. The estimates are tested using ground measurements from two continental-scale river catchments (Nelson River and the Ob River in Russia). This regional-scale testing of the algorithm shows that for passive microwave estimates, the average daily snow depth retrieval standard error between estimated and measured snow depths ranges from 0 cm to 40 cm of point observations. Bias characteristics are different for each basin. A fraction of the error is related to uncertainties about the grain growth initialization states and uncertainties about grain size changes through the winter season that directly affect the parameterization of the snow depth estimation in the DMRT model. Also, the algorithm does not include a correction for forest cover and this effect is clearly observed in the retrieval. Finally, error is also related to scale differences between in situ ground measurements and area-integrated satellite estimates. With AMSR-E data, improvements to snow depth and water equivalent estimates are expected since AMSR-E will have twice the spatial resolution of the SSM/I and will be able to characterize better the subnivean snow environment from an expanded range of microwave frequencies.

  11. Predicted Risk of Radiation-Induced Cancers After Involved Field and Involved Node Radiotherapy With or Without Intensity Modulation for Early-Stage Hodgkin Lymphoma in Female Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Damien C., E-mail: damien.weber@unige.ch; Johanson, Safora; Peguret, Nicolas

    2011-10-01

    Purpose: To assess the excess relative risk (ERR) of radiation-induced cancers (RIC) in female patients with Hodgkin lymphoma (HL) female patients treated with conformal (3DCRT), intensity modulated (IMRT), or volumetric modulated arc (RA) radiation therapy. Methods and Materials: Plans for 10 early-stage HL female patients were computed for 3DCRT, IMRT, and RA with involved field RT (IFRT) and involvednode RT (INRT) radiation fields. Organs at risk dose--volume histograms were computed and inter-compared for IFRT vs. INRT and 3DCRT vs. IMRT/RA, respectively. The ERR for cancer induction in breasts, lungs, and thyroid was estimated using both linear and nonlinear models. Results:more » The mean estimated ERR for breast, lung, and thyroid were significantly lower (p < 0.01) with INRT than with IFRT planning, regardless of the radiation delivery technique used, assuming a linear dose-risk relationship. We found that using the nonlinear model, the mean ERR values were significantly (p < 0.01) increased with IMRT or RA compared to those with 3DCRT planning for the breast, lung, and thyroid, using an IFRT paradigm. After INRT planning, IMRT or RA increased the risk of RIC for lung and thyroid only. Conclusions: In this comparative planning study, using a nonlinear dose--risk model, IMRT or RA increased the estimated risk of RIC for breast, lung, and thyroid for HL female patients. This study also suggests that INRT planning, compared to IFRT planning, may reduce the ERR of RIC when risk is predicted using a linear model. Observing the opposite effect, with a nonlinear model, however, questions the validity of these biologically parameterized models.« less

  12. Impact Analysis of Age on Fallout Fatality Estimations for IND Scenarios

    DTIC Science & Technology

    2017-11-30

    management of the acute radiation syndrome : recommendations of the Strategic National Stockpile Radiation Working Group. Ann Intern Med 140: 1037-51...dependent radiation dose response for acute effects was evaluated in detail. The analysis included data from animal studies, radiation oncology, and other...probability of 60-day mortality (assuming no treatment) for acute radiation exposure. This model has been adapted to account for protracted fallout

  13. Comparison of Five Modeling Approaches to Quantify and Estimate the Effect of Clouds on the Radiation Amplification Factor (RAF) for Solar Ultraviolet Radiation

    EPA Science Inventory

    A generally accepted value for the Radiation Amplification Factor (RAF), with respect to the erythemal action spectrum for sunburn of human skin, is −1.1, indicating that a 1.0% increase in stratospheric ozone leads to a 1.1% decrease in the biologically damaging UV radiation in ...

  14. Amazon Deforestation Fires Increase Plant Productivity through Changes in Diffuse Radiation

    NASA Astrophysics Data System (ADS)

    Rap, A.; Reddington, C.; Spracklen, D. V.; Mercado, L.; Haywood, J. M.; Bonal, D.; Butt, N.; Phillips, O.

    2013-12-01

    Over the past few decades a large increase in carbon storage has been observed in undisturbed forests across Amazonia. The reason for such a sink is unclear, although many possible mechanisms have been suggested, including changes in temperature, carbon dioxide, precipitation, clouds, and solar radiation. In this work we focus on one such mechanism, namely the increase in plant photosynthesis due to changes in diffuse radiation caused by atmospheric aerosols from large-scale deforestation fires that now occur throughout the Amazon region. We estimate that this mechanism has increased dry season (August-September) net primary productivity (NPP) by up to 30% across wide regions of the Amazon. We conclude that aerosol from deforestation fires may be responsible for a substantial fraction of the Amazon carbon sink that has been observed. Our approach is based on the combined use of three models: (i) the Global Model of Aerosol Processes (GLOMAP), (ii) the Edwards-Slingo radiation model, and (iii) the UK Met Office JULES land-surface scheme, constrained against in-situ aerosol and radiation observation datasets from several Amazonian sites. A 10 year (1999-2008) GLOMAP simulation using GFED3 biomass burning emissions is first evaluated against aerosol observations, indicating that the model is able to capture the Amazon aerosol seasonality, with enhanced concentrations during the dry season driven by biomass burning. The radiation scheme is then shown to be in good agreement with total and diffuse radiation in-situ observations, the model being able to capture the high total and low diffuse radiation flux in the dry season, as well as the low total and high diffuse radiation flux in the wet season. We then use our modelling framework to quantify the contribution of deforestation fires to diffuse/direct radiation fraction and forest productivity. We calculate that deforestation fires increase dry season diffuse radiation by up to 60% or 30 Wm-2. Finally, we use the JULES model to show that this increase in diffuse radiation is responsible for a substantial growth in gross primary productivity (GPP), enhancing Amazon-wide dry-season GPP by 5% with local increases of up to 15%. Most of this GPP response results in an increase in NPP, estimated in the dry season at 10% across the Amazon with local increases as large as 30%. This substantial NPP enhancement spatially matches observed increases in forest biomass storage across the Amazon. We thus suggest that deforestation fires have an important impact on the Amazon carbon budget and attempt to estimate the fraction of the observed forest carbon sink that can be attributed to this mechanism. Change [%] in diffuse radiation due to deforestation

  15. Estimating Fallout Building Attributes from Architectural Features and Global Earthquake Model (GEM) Building Descriptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillon, Michael B.; Kane, Staci R.

    A nuclear explosion has the potential to injure or kill tens to hundreds of thousands (or more) of people through exposure to fallout (external gamma) radiation. Existing buildings can protect their occupants (reducing fallout radiation exposures) by placing material and distance between fallout particles and individuals indoors. Prior efforts have determined an initial set of building attributes suitable to reasonably assess a given building’s protection against fallout radiation. The current work provides methods to determine the quantitative values for these attributes from (a) common architectural features and data and (b) buildings described using the Global Earthquake Model (GEM) taxonomy. Thesemore » methods will be used to improve estimates of fallout protection for operational US Department of Defense (DoD) and US Department of Energy (DOE) consequence assessment models.« less

  16. Simple model to estimate the contribution of atmospheric CO2 to the Earth's greenhouse effect

    NASA Astrophysics Data System (ADS)

    Wilson, Derrek J.; Gea-Banacloche, Julio

    2012-04-01

    We show how the CO2 contribution to the Earth's greenhouse effect can be estimated from relatively simple physical considerations and readily available spectroscopic data. In particular, we present a calculation of the "climate sensitivity" (that is, the increase in temperature caused by a doubling of the concentration of CO2) in the absence of feedbacks. Our treatment highlights the important role played by the frequency dependence of the CO2 absorption spectrum. For pedagogical purposes, we provide two simple models to visualize different ways in which the atmosphere might return infrared radiation back to the Earth. The more physically realistic model, based on the Schwarzschild radiative transfer equations, uses as input an approximate form of the atmosphere's temperature profile, and thus includes implicitly the effect of heat transfer mechanisms other than radiation.

  17. Simulation of Radioactive Corrosion Product in Primary Cooling System of Japanese Sodium-Cooled Fast Breeder Reactor

    NASA Astrophysics Data System (ADS)

    Matuo, Youichirou; Miyahara, Shinya; Izumi, Yoshinobu

    Radioactive Corrosion Product (CP) is a main cause of personal radiation exposure during maintenance with no breached fuel in fast breeder reactor (FBR) plants. The most important CP is 54Mn and 60Co. In order to establish techniques of radiation dose estimation for radiation workers in radiation-controlled areas of the FBR, the PSYCHE (Program SYstem for Corrosion Hazard Evaluation) code was developed. We add the Particle Model to the conventional PSYCHE analytical model. In this paper, we performed calculation of CP transfer in JOYO using an improved calculation code in which the Particle Model was added to the PSYCHE. The C/E (calculated / experimentally observed) value for CP deposition was improved through use of this improved PSYCHE incorporating the Particle Model. Moreover, among the percentage of total radioactive deposition accounted for by CP in particle form, 54Mn was estimated to constitute approximately 20 % and 60Co approximately 40 % in the cold-leg region. These calculation results are consistent with the measured results for the actual cold-leg piping in the JOYO.

  18. Computing the scatter component of mammographic images.

    PubMed

    Highnam, R P; Brady, J M; Shepstone, B J

    1994-01-01

    The authors build upon a technical report (Tech. Report OUEL 2009/93, Engng. Sci., Oxford Uni., Oxford, UK, 1993) in which they proposed a model of the mammographic imaging process for which scattered radiation is a key degrading factor. Here, the authors propose a way of estimating the scatter component of the signal at any pixel within a mammographic image, and they use this estimate for model-based image enhancement. The first step is to extend the authors' previous model to divide breast tissue into "interesting" (fibrous/glandular/cancerous) tissue and fat. The scatter model is then based on the idea that the amount of scattered radiation reaching a point is related to the energy imparted to the surrounding neighbourhood. This complex relationship is approximated using published empirical data, and it varies with the size of the breast being imaged. The approximation is further complicated by needing to take account of extra-focal radiation and breast edge effects. The approximation takes the form of a weighting mask which is convolved with the total signal (primary and scatter) to give a value which is input to a "scatter function", approximated using three reference cases, and which returns a scatter estimate. Given a scatter estimate, the more important primary component can be calculated and used to create an image recognizable by a radiologist. The images resulting from this process are clearly enhanced, and model verification tests based on an estimate of the thickness of interesting tissue present proved to be very successful. A good scatter model opens the was for further processing to remove the effects of other degrading factors, such as beam hardening.

  19. Spacecraft Thermal and Optical Modeling Impacts on Estimation of the GRAIL Lunar Gravity Field

    NASA Technical Reports Server (NTRS)

    Fahnestock, Eugene G.; Park, Ryan S.; Yuan, Dah-Ning; Konopliv, Alex S.

    2012-01-01

    We summarize work performed involving thermo-optical modeling of the two Gravity Recovery And Interior Laboratory (GRAIL) spacecraft. We derived several reconciled spacecraft thermo-optical models having varying detail. We used the simplest in calculating SRP acceleration, and used the most detailed to calculate acceleration due to thermal re-radiation. For the latter, we used both the output of pre-launch finite-element-based thermal simulations and downlinked temperature sensor telemetry. The estimation process to recover the lunar gravity field utilizes both a nominal thermal re-radiation accleration history and an apriori error model derived from that plus an off-nominal history, which bounds parameter uncertainties as informed by sensitivity studies.

  20. Estimation Of Organ Doses From Solar Particle Events For Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Cucinotta, Francis A.

    2006-01-01

    Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major organ sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of the effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. If sufficient protection is not provided near solar maximum, the radiation risk can be significant due to exposure to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR) on future exploratory-class and long-duration missions. For accurate estimates of overall fatal cancer risks from SPEs, the specific doses at various blood forming organs (BFOs) were considered, because proton fluences and doses vary considerably across marrow regions. Previous estimates of BFO doses from SPEs have used an average body-shielding distribution for the bone marrow based on the computerized anatomical man model (CAM). With the development of an 82-point body-shielding distribution at BFOs, the mean and variance of SPE doses in the major active marrow regions (head and neck, chest, abdomen, pelvis and thighs) will be presented. Consideration of the detailed distribution of bone marrow sites is one of many requirements to improve the estimation of effective doses for radiation cancer risks.

  1. Estimation of Asian Dust Aerosol Effect on Cloud Radiation Forcing Using Fu-Liou Radiative Model and CERES Measurements

    NASA Technical Reports Server (NTRS)

    Su, Jing; Huang, Jianping; Fu, Qiang; Minnis, Patrick; Ge, Jinming; Bi, Jianrong

    2008-01-01

    The impact of Asian dust on cloud radiative forcing during 2003-2006 is studied by using the Earth's Radiant Energy Budget Scanner (CERES) data and the Fu-Liou radiative transfer model. Analysis of satellite data shows that the dust aerosol significantly reduced the cloud cooling effect at TOA. In dust contaminated cloudy regions, the 4-year mean values of the instantaneous shortwave, longwave and net cloud radiative forcing are -138.9, 69.1, and -69.7 Wm(sup -2), which are 57.0, 74.2, and 46.3%, respectively, of the corresponding values in more pristine cloudy regions. The satellite-retrieved cloud properties are significantly different in the dusty regions and can influence the radiative forcing indirectly. The contributions to the cloud radiation forcing by the dust direct, indirect and semi-direct effects are estimated using combined satellite observations and Fu-Liou model simulation. The 4-year mean value of combination of indirect and semi-direct shortwave radiative forcing (SWRF) is 82.2 Wm(sup -2), which is 78.4% of the total dust effect. The direct effect is only 22.7 Wm(sup -2), which is 21.6% of the total effect. Because both first and second indirect effects enhance cloud cooling, the aerosol-induced cloud warming is mainly the result of the semi-direct effect of dust.

  2. Mapping high-resolution incident photosynthetically active radiation over land surfaces from MODIS and GOES satellite data

    NASA Astrophysics Data System (ADS)

    Liang, S.; Wang, K.; Wang, D.; Townshend, J.; Running, S.; Tsay, S.

    2008-05-01

    Incident photosynthetically active radiation (PAR) is a key variable required by almost all terrestrial ecosystem models. Many radiation efficiency models are linearly related canopy productivity to the absorbed PAR. Unfortunately, the current incident PAR products estimated from remotely sensed data or calculated by radiation models at spatial and temporal resolutions are not sufficient for carbon cycle modeling and various applications. In this study, we aim to develop incident PAR products at one kilometer scale from multiple satellite sensors, such as Moderate Resolution Imaging Spectrometer (MODIS) and Geostationary Operational Environmental Satellite (GOES) sensor. We first developed a look-up table approach to estimate instantanerous incident PAR product from MODIS (Liang et al., 2006). The temporal observations of each pixel are used to estimate land surface reflectance and look-up tables of both aerosol and cloud are searched, based on the top-of-atmosphere reflectance and surface reflectance for determining incident PAR. The incident PAR product includes both the direct and diffuse components. The calculation of a daily integrated PAR using two different methods has also been developed (Wang, et al., 2008a). The similar algorithm has been further extended to GOES data (Wang, et al., 2008b, Zheng, et al., 2008). Extensive validation activities are conducted to evaluate the algorithms and products using the ground measurements from FLUXNET and other networks. They are also compared with other satellite products. The results indicate that our approaches can produce reasonable PAR product at 1km resolution. We have generated 1km incident PAR products over North America for several years, which are freely available to the science community. Liang, S., T. Zheng, R. Liu, H. Fang, S. C. Tsay, S. Running, (2006), Estimation of incident Photosynthetically Active Radiation from MODIS Data, Journal of Geophysical Research ¡§CAtmosphere. 111, D15208,doi:10.1029/2005JD006730. Wang, D., S. Liang, and Zheng, T., (2008a), Integrated daily PAR from MODIS. International Journal of Remote Sensing, revised. Wang, K., S. Liang, T. Zheng and D. Wang, (2008b), Simultaneous estimation of surface photosynthetically active radiation and albedo from GOES, Remote Sensing of Environment, revised. Zheng, T., S. Liang, K. Wang, (2008), Estimation of incident PAR from GOES imagery, Journal of Applied Meteorology and Climatology. in press.

  3. Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B.; Huttunen, J.; Ma, Y.; Pinker, R. T.; Mayer, B.; Neubauer, D.; Hitzenberger, R.; Oreopoulos, L.; Lee, D.; Pitari, G.; Di Genova, G.; Quaas, J.; Rose, Fred G.; Kato, S.; Rumbold, S. T.; Vardavas, I.; Hatzianastassiou, N.; Matsoukas, C.; Yu, H.; Zhang, F.; Zhang, H.; Lu, P.

    2012-12-01

    In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly -10 to 20%, with over- and underestimates of radiative cooling at higher and lower sun elevation, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as sun elevation increases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.

  4. Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B.; Huttunen, J.; Ma, Y.; Pinker, R. T.; Mayer, B.; Neubauer, D.; Hitzenberger, R.; Oreopoulos, L.; Lee, D.; Pitari, G.; Di Genova, G.; Quaas, J.; Rose, F. G.; Kato, S.; Rumbold, S. T.; Vardavas, I.; Hatzianastassiou, N.; Matsoukas, C.; Yu, H.; Zhang, F.; Zhang, H.; Lu, P.

    2013-03-01

    In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly -10 to 20%, with over- and underestimates of radiative cooling at lower and higher solar zenith angle, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as solar zenith angle decreases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.

  5. Support vector regression methodology for estimating global solar radiation in Algeria

    NASA Astrophysics Data System (ADS)

    Guermoui, Mawloud; Rabehi, Abdelaziz; Gairaa, Kacem; Benkaciali, Said

    2018-01-01

    Accurate estimation of Daily Global Solar Radiation (DGSR) has been a major goal for solar energy applications. In this paper we show the possibility of developing a simple model based on the Support Vector Regression (SVM-R), which could be used to estimate DGSR on the horizontal surface in Algeria based only on sunshine ratio as input. The SVM model has been developed and tested using a data set recorded over three years (2005-2007). The data was collected at the Applied Research Unit for Renewable Energies (URAER) in Ghardaïa city. The data collected between 2005-2006 are used to train the model while the 2007 data are used to test the performance of the selected model. The measured and the estimated values of DGSR were compared during the testing phase statistically using the Root Mean Square Error (RMSE), Relative Square Error (rRMSE), and correlation coefficient (r2), which amount to 1.59(MJ/m2), 8.46 and 97,4%, respectively. The obtained results show that the SVM-R is highly qualified for DGSR estimation using only sunshine ratio.

  6. ARM-Led Improvements Aerosols in Climate and Climate Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghan, Steven J.; Penner, Joyce E.

    2016-07-25

    The DOE ARM program has played a foundational role in efforts to quantify aerosol effects on climate, beginning with the early back-of-the-envelope estimates of direct radiative forcing by anthropogenic sulfate and biomass burning aerosol (Penner et al., 1994). In this chapter we review the role that ARM has played in subsequent detailed estimates based on physically-based representations of aerosols in climate models. The focus is on quantifying the direct and indirect effects of anthropogenic aerosol on the planetary energy balance. Only recently have other DOE programs applied the aerosol modeling capability to simulate the climate response to the radiative forcing.

  7. Satellite Estimates of Surface Short-wave Fluxes: Issues of Implementation

    NASA Technical Reports Server (NTRS)

    Wang, H.; Pinker, Rachel; Minnis, Patrick

    2006-01-01

    Surface solar radiation reaching the Earth's surface is the primary forcing function of the land surface energy and water cycle. Therefore, there is a need for information on this parameter, preferably, at global scale. Satellite based estimates are now available at accuracies that meet the demands of many scientific objectives. Selection of an approach to estimate such fluxes requires consideration of trade-offs between the use of multi-spectral observations of cloud optical properties that are more difficult to implement at large scales, and methods that are simplified but easier to implement. In this study, an evaluation of such trade-offs will be performed. The University of Maryland Surface Radiation Model (UMD/SRB) has been used to reprocess five years of GOES-8 satellite observations over the United States to ensure updated calibration and improved cloud detection over snow. The UMD/SRB model was subsequently modified to allow input of information on aerosol and cloud optical depth with information from independent satellite sources. Specifically, the cloud properties from the Atmospheric Radiation Measurement (ARM) Satellite Data Analysis Program (Minnis et al., 1995) are used to drive the modified version of the model to estimate surface short-wave fluxes over the Southern Great Plain ARM sites for a twelve month period. The auxiliary data needed as model inputs such as aerosol optical depth, spectral surface albedo, water vapor and total column ozone amount were kept the same for both versions of the model. The estimated shortwave fluxes are evaluated against ground observations at the ARM Central Facility and four satellite ARM sites. During summer, the estimated fluxes based on cloud properties derived from the multi-spectral approach were in better agreement with ground measurements than those derived from the UMD/SRB model. However, in winter, the fluxes derived with the UMD/SRB model were in better agreement with ground observations than those estimated from cloud properties provided by the ARM Satellite Data Analysis Program. During the transition periods, the results were comparable.

  8. Host Model Uncertainty in Aerosol Radiative Effects: the AeroCom Prescribed Experiment and Beyond

    NASA Astrophysics Data System (ADS)

    Stier, Philip; Schutgens, Nick; Bian, Huisheng; Boucher, Olivier; Chin, Mian; Ghan, Steven; Huneeus, Nicolas; Kinne, Stefan; Lin, Guangxing; Myhre, Gunnar; Penner, Joyce; Randles, Cynthia; Samset, Bjorn; Schulz, Michael; Yu, Hongbin; Zhou, Cheng; Bellouin, Nicolas; Ma, Xiaoyan; Yu, Fangqun; Takemura, Toshihiko

    2013-04-01

    Anthropogenic and natural aerosol radiative effects are recognized to affect global and regional climate. Multi-model "diversity" in estimates of the aerosol radiative effect is often perceived as a measure of the uncertainty in modelling aerosol itself. However, current aerosol models vary considerably in model components relevant for the calculation of aerosol radiative forcings and feedbacks and the associated "host-model uncertainties" are generally convoluted with the actual uncertainty in aerosol modelling. In the AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in eleven participating models. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention. However, uncertainties in aerosol radiative effects also include short-term and long-term feedback processes that will be systematically explored in future intercomparison studies. Here we will present an overview of the proposals for discussion and results from early scoping studies.

  9. Astrometric and Photometric Data Fusion for Mass and Surface Material Estimation using Refined Bidirectional Reflectance Distribution Functions-Solar Radiation Pressure Model

    DTIC Science & Technology

    2013-09-01

    model and the BRDF in the SRP model are not consistent with each other, then the resulting estimated albedo-areas and mass are inaccurate and biased...This work studies the use of physically consistent BRDF -SRP models for mass estimation. Simulation studies are used to provide an indication of the...benefits of using these new models . An unscented Kalman filter approach that includes BRDF and mass parameters in the state vector is used. The

  10. Radiative and Thermal Impacts of Smoke Aerosol Longwave Absorption during Fires in the Moscow Region in Summer 2010

    NASA Astrophysics Data System (ADS)

    Gorchakova, I. A.; Mokhov, I. I.; Anikin, P. P.; Emilenko, A. S.

    2018-03-01

    The aerosol longwave radiative forcing of the atmosphere and heating rate of the near-surface aerosol layer are estimated for the extreme smoke conditions in the Moscow region in summer 2010. Thermal radiation fluxes in the atmosphere are determined using the integral transmission function and semiempirical aerosol model developed on the basis of standard aerosol models and measurements at the Zvenigorod Scientific Station, Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. The aerosol radiative forcing reached 33 W/m2 at the lower atmospheric boundary and ranged between-1.0 and 1.0 W/m2 at the upper atmospheric boundary. The heating rate of the 10-m atmospheric layer near surface was up to 0.2 K/h during the maximum smoke conditions on August 7-9. The sensitivity of the aerosol longwave radiative forcing to the changes in the aerosol absorption coefficient and aerosol optical thickness are estimated.

  11. Estimation of effective day length at any light intensity using solar radiation data.

    PubMed

    Yokoya, Masana; Shimizu, Hideyasu

    2011-11-01

    The influence of day length on living creatures differs with the photosensitivity of the creature; however, the possible sunshine duration (N(0)) might be an inadequate index of the photoperiod for creatures with low light sensitivity. To address this issue, the authors tried to estimate the effective day length, i.e., the duration of the photoperiod that exceeds a certain threshold of light intensity. Continual global solar radiation observation data were gathered from the baseline surface radiation network (BSRN) of 18 sites from 2004 to 2007 and were converted to illuminance data using a luminous efficiency model. The monthly average of daily photoperiods exceeding each defined intensity (1 lx, 300 lx, … 20,000 lx) were calculated [defined as Ne(() (lux) ())]. The relationships between the monthly average of global solar radiation (Rs), N(0), and Ne(() (lux) ()) were investigated. At low light intensity (<500 lx), Ne(() (lux) ()) were almost the same as N(0). At high light intensity (>10,000 lx), Ne(() (lux) ()) and Rs showed a logarithmic relationship. Using these relationships, empirical models were derived to estimate the effective day length at different light intensities. According to the validation of the model, the effective day length for any light intensity could be estimated with an accuracy of less than 11% of the mean absolute percentage error (MAPE) in the estimation of the monthly base photoperiod. Recently, a number of studies have provided support for a link between day length and some diseases. Our results will be useful in further assessing the relationships between day length and these diseases.

  12. On the Development of a Deterministic Three-Dimensional Radiation Transport Code

    NASA Technical Reports Server (NTRS)

    Rockell, Candice; Tweed, John

    2011-01-01

    Since astronauts on future deep space missions will be exposed to dangerous radiations, there is a need to accurately model the transport of radiation through shielding materials and to estimate the received radiation dose. In response to this need a three dimensional deterministic code for space radiation transport is now under development. The new code GRNTRN is based on a Green's function solution of the Boltzmann transport equation that is constructed in the form of a Neumann series. Analytical approximations will be obtained for the first three terms of the Neumann series and the remainder will be estimated by a non-perturbative technique . This work discusses progress made to date and exhibits some computations based on the first two Neumann series terms.

  13. Calibration and evaluation of the FAO56-Penman-Monteith, FAO24-radiation, and Priestly-Taylor reference evapotranspiration models using the spatially measured solar radiation across a large arid and semi-arid area in southern Iran

    NASA Astrophysics Data System (ADS)

    Didari, Shohreh; Ahmadi, Seyed Hamid

    2018-05-01

    Crop evapotranspiration (ET) is one of the main components in calculating the water balance in agricultural, hydrological, environmental, and climatological studies. Solar radiation (Rs) supplies the available energy for ET, and therefore, precise measurement of Rs is required for accurate ET estimation. However, measured Rs and ET and are not available in many areas and they should be estimated indirectly by the empirical methods. The Angström-Prescott (AP) is the most popular method for estimating Rs in areas where there are no measured data. In addition, the locally calibrated coefficients of AP are not yet available in many locations, and instead, the default coefficients are used. In this study, we investigated different approaches for Rs and ET calculations. The daily measured Rs values in 14 stations across arid and semi-arid areas of Fars province in south of Iran were used for calibrating the coefficients of the AP model. Results revealed that the calibrated AP coefficients were very different and higher than the default values. In addition, the reference ET (ET o ) was estimated by the FAO56 Penman-Monteith (FAO56 PM) and FAO24-radiation methods by using the measured Rs and were then compared with the measured pan evaporation as an indication of the potential atmospheric demand. Interestingly and unlike many previous studies, which have suggested the FAO56 PM as the standard method in calculation of ET o , the FAO24-radiation with the measured Rs showed better agreement with the mean pan evaporation. Therefore, the FAO24-radiation with the measured Rs was used as the reference method for the study area, which was also confirmed by the previous studies based on the lysimeter data. Moreover, the accuracy of calibrated Rs in the estimation of ET o by the FAO56 PM and FAO24-radiation was investigated. Results showed that the calibrated Rs improved the accuracy of the estimated ET o by the FAO24-radiation compared with the FAO24-radiation using the measured Rs as the reference method, whereas there was no improvement in the estimation of ET o by the FAO56 PM method compared with the FAO24-radiation using the measured Rs. Moreover, the empirical coefficient (α) of the Priestley and Taylor (PT) ET o estimation method was calibrated against the reference method and results indicated ca. 2 or higher α values than the recommended α = 1.26 in all stations. An empirical equation was suggested based on yearly mean relative humidity for estimation of α in the study area. Overall, this study showed that (1) the FAO24-radiation method with the either measured or calibrated Rs is more accurate than the FAO56 PM, (2) the spatially calibrated AP coefficients are very different from each other over an arid and semi-arid area and are higher than those proposed by the FAO56, (3) the original PT model is not applicable in arid and semi-arid area and substantially underestimates the ET o , and (4) the coefficient of the PT should be locally calibrated for each station over an arid and semi-arid area.

  14. Differences in Water Vapor Radiative Transfer among 1D Models Can Significantly Affect the Inner Edge of the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Leconte, Jérémy; Wolf, Eric T.; Goldblatt, Colin; Feldl, Nicole; Merlis, Timothy; Wang, Yuwei; Koll, Daniel D. B.; Ding, Feng; Forget, François; Abbot, Dorian S.

    2016-08-01

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4_Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μm) and in the region between 0.2 and 1.5 μm. Differences in outgoing longwave radiation increase with surface temperature and reach 10-20 W m-2 differences in shortwave reach up to 60 W m-2, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (I.e., ≈34 W m-2 in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.

  15. DIFFERENCES IN WATER VAPOR RADIATIVE TRANSFER AMONG 1D MODELS CAN SIGNIFICANTLY AFFECT THE INNER EDGE OF THE HABITABLE ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jun; Wang, Yuwei; Leconte, Jérémy

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4-Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find thatmore » divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μ m) and in the region between 0.2 and 1.5 μ m. Differences in outgoing longwave radiation increase with surface temperature and reach 10–20 W m{sup 2}; differences in shortwave reach up to 60 W m{sup 2}, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m{sup 2} in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.« less

  16. Observational estimation of radiative feedback to surface air temperature over Northern High Latitudes

    NASA Astrophysics Data System (ADS)

    Hwang, Jiwon; Choi, Yong-Sang; Kim, WonMoo; Su, Hui; Jiang, Jonathan H.

    2018-01-01

    The high-latitude climate system contains complicated, but largely veiled physical feedback processes. Climate predictions remain uncertain, especially for the Northern High Latitudes (NHL; north of 60°N), and observational constraint on climate modeling is vital. This study estimates local radiative feedbacks for NHL based on the CERES/Terra satellite observations during March 2000-November 2014. The local shortwave (SW) and longwave (LW) radiative feedback parameters are calculated from linear regression of radiative fluxes at the top of the atmosphere on surface air temperatures. These parameters are estimated by the de-seasonalization and 12-month moving average of the radiative fluxes over NHL. The estimated magnitudes of the SW and the LW radiative feedbacks in NHL are 1.88 ± 0.73 and 2.38 ± 0.59 W m-2 K-1, respectively. The parameters are further decomposed into individual feedback components associated with surface albedo, water vapor, lapse rate, and clouds, as a product of the change in climate variables from ERA-Interim reanalysis estimates and their pre-calculated radiative kernels. The results reveal the significant role of clouds in reducing the surface albedo feedback (1.13 ± 0.44 W m-2 K-1 in the cloud-free condition, and 0.49 ± 0.30 W m-2 K-1 in the all-sky condition), while the lapse rate feedback is predominant in LW radiation (1.33 ± 0.18 W m-2 K-1). However, a large portion of the local SW and LW radiative feedbacks were not simply explained by the sum of these individual feedbacks.

  17. Enhancements in biologically effective ultraviolet radiation following volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Vogelmann, A. M.; Ackerman, T. P.; Turco, R. P.

    1992-01-01

    A radiative transfer model is used to estimate the changes in biologically effective radiation (UV-BE) at the earth's surface produced by the El Chichon (1982) and Mount Pinatubo (1991) eruptions. It is found that in both cases surface intensity can increase because the effect of ozone depletion outweighs the increased scattering.

  18. Scoping estimates of the LDEF satellite induced radioactivity

    NASA Technical Reports Server (NTRS)

    Armstrong, Tony W.; Colborn, B. L.

    1990-01-01

    The Long Duration Exposure Facility (LDEF) satellite was recovered after almost six years in space. It was well-instrumented with ionizing radiation dosimeters, including thermoluminescent dosimeters, plastic nuclear track detectors, and a variety of metal foil samples for measuring nuclear activation products. The extensive LDEF radiation measurements provide the type of radiation environments and effects data needed to evaluate and help resolve uncertainties in present radiation models and calculational methods. A calculational program was established to aid in LDEF data interpretation and to utilize LDEF data for assessing the accuracy of current models. A summary of the calculational approach is presented. The purpose of the reported calculations is to obtain a general indication of: (1) the importance of different space radiation sources (trapped, galactic, and albedo protons, and albedo neutrons); (2) the importance of secondary particles; and (3) the spatial dependence of the radiation environments and effects expected within the spacecraft. The calculational method uses the High Energy Transport Code (HETC) to estimate the importance of different sources and secondary particles in terms of fluence, absorbed dose in tissue and silicon, and induced radioactivity as a function of depth in aluminum.

  19. Statistical analysis of the calibration procedure for personnel radiation measurement instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, W.J.; Bengston, S.J.; Kalbeitzer, F.L.

    1980-11-01

    Thermoluminescent analyzer (TLA) calibration procedures were used to estimate personnel radiation exposure levels at the Idaho National Engineering Laboratory (INEL). A statistical analysis is presented herein based on data collected over a six month period in 1979 on four TLA's located in the Department of Energy (DOE) Radiological and Environmental Sciences Laboratory at the INEL. The data were collected according to the day-to-day procedure in effect at that time. Both gamma and beta radiation models are developed. Observed TLA readings of thermoluminescent dosimeters are correlated with known radiation levels. This correlation is then used to predict unknown radiation doses frommore » future analyzer readings of personnel thermoluminescent dosimeters. The statistical techniques applied in this analysis include weighted linear regression, estimation of systematic and random error variances, prediction interval estimation using Scheffe's theory of calibration, the estimation of the ratio of the means of two normal bivariate distributed random variables and their corresponding confidence limits according to Kendall and Stuart, tests of normality, experimental design, a comparison between instruments, and quality control.« less

  20. Visual assessment of the radiation distribution in the ISS Lab module: visualization in the human body

    NASA Technical Reports Server (NTRS)

    Saganti, P. B.; Zapp, E. N.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    The US Lab module of the International Space Station (ISS) is a primary working area where the crewmembers are expected to spend majority of their time. Because of the directionality of radiation fields caused by the Earth shadow, trapped radiation pitch angle distribution, and inherent variations in the ISS shielding, a model is needed to account for these local variations in the radiation distribution. We present the calculated radiation dose (rem/yr) values for over 3,000 different points in the working area of the Lab module and estimated radiation dose values for over 25,000 different points in the human body for a given ambient radiation environment. These estimated radiation dose values are presented in a three dimensional animated interactive visualization format. Such interactive animated visualization of the radiation distribution can be generated in near real-time to track changes in the radiation environment during the orbit precession of the ISS.

  1. A 3-dimensional DTI MRI-based model of GBM growth and response to radiation therapy.

    PubMed

    Hathout, Leith; Patel, Vishal; Wen, Patrick

    2016-09-01

    Glioblastoma (GBM) is both the most common and the most aggressive intra-axial brain tumor, with a notoriously poor prognosis. To improve this prognosis, it is necessary to understand the dynamics of GBM growth, response to treatment and recurrence. The present study presents a mathematical diffusion-proliferation model of GBM growth and response to radiation therapy based on diffusion tensor (DTI) MRI imaging. This represents an important advance because it allows 3-dimensional tumor modeling in the anatomical context of the brain. Specifically, tumor infiltration is guided by the direction of the white matter tracts along which glioma cells infiltrate. This provides the potential to model different tumor growth patterns based on location within the brain, and to simulate the tumor's response to different radiation therapy regimens. Tumor infiltration across the corpus callosum is simulated in biologically accurate time frames. The response to radiation therapy, including changes in cell density gradients and how these compare across different radiation fractionation protocols, can be rendered. Also, the model can estimate the amount of subthreshold tumor which has extended beyond the visible MR imaging margins. When combined with the ability of being able to estimate the biological parameters of invasiveness and proliferation of a particular GBM from serial MRI scans, it is shown that the model has potential to simulate realistic tumor growth, response and recurrence patterns in individual patients. To the best of our knowledge, this is the first presentation of a DTI-based GBM growth and radiation therapy treatment model.

  2. Observed and modelled solar radiation components in sugarcane crop grown under tropical conditions

    NASA Astrophysics Data System (ADS)

    Santos, Marcos A. dos; Souza, José L. de; Lyra, Gustavo B.; Teodoro, Iêdo; Ferreira, Ricardo A.; Santos Almeida, Alexsandro C. dos; Lyra, Guilherme B.; Souza, Renan C. de; Lemes, Marco A. Maringolo

    2017-04-01

    The net radiation over vegetated surfaces is one of the major input variables in many models of soil evaporation, evapotranspiration as well as leaf wetness duration. In the literature there are relatively few studies on net radiation over sugarcane crop in tropical climates. The main objective of the present study was to assess the solar radiation components measured and modelled for two crop stages of a sugarcane crop in the region of Rio Largo, Alagoas, North-eastern Brazil. The measurements of the radiation components were made with a net radiometer during the dry and rainy seasons and two models were used to estimate net radiation: the Ortega-Farias model and the Monteith and Unsworth model. The highest values of net radiation were observed at the crop development stage, due mainly to the high indices of incoming solar radiation. The daily average albedos of sugarcane at the crop development and mid-season stages were 0.16 and 0.20, respectively. Both models showed a better fit for the crop development stage than for the mid-season stage. When they were inter-compared, Monteith and Unsworth model was more efficient than Ortega-Farias model, despite the dispersion of their simulated radiation components which was similar.

  3. Improving root-zone soil moisture estimations using dynamic root growth and crop phenology

    USDA-ARS?s Scientific Manuscript database

    Water Energy Balance (WEB) Soil Vegetation Atmosphere Transfer (SVAT) modelling can be used to estimate soil moisture by forcing the model with observed data such as precipitation and solar radiation. Recently, an innovative approach that assimilates remotely sensed thermal infrared (TIR) observatio...

  4. LDEF Satellite Radiation Analyses

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1996-01-01

    Model calculations and analyses have been carried out to compare with several sets of data (dose, induced radioactivity in various experiment samples and spacecraft components, fission foil measurements, and LET spectra) from passive radiation dosimetry on the Long Duration Exposure Facility (LDEF) satellite, which was recovered after almost six years in space. The calculations and data comparisons are used to estimate the accuracy of current models and methods for predicting the ionizing radiation environment in low earth orbit. The emphasis is on checking the accuracy of trapped proton flux and anisotropy models.

  5. How Consistent are Recent Variations in the Tropical Energy and Water Cycle Resolved by Satellite Measurements?

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Lu, H.-I.

    2004-01-01

    One notable aspect of Earth's climate is that although the planet appears to be very close to radiative balance at top-of-atmosphere (TOA), the atmosphere itself and underlying surface are not. Profound exchanges of energy between the atmosphere and oceans, land and cryosphere occur over a range of time scales. Recent evidence from broadband satellite measurements suggests that even these TOA fluxes contain some detectable variations. Our ability to measure and reconstruct radiative fluxes at the surface and at the top of atmosphere is improving rapidly. One question is 'How consistent, physically, are these diverse remotely-sensed data sets'? The answer is of crucial importance to understanding climate processes, improving physical models, and improving remote sensing algorithms. In this work we will evaluate two recently released estimates of radiative fluxes, focusing primarily on surface estimates. The International Satellite Cloud Climatology Project 'FD' radiative flux profiles are available from mid-1983 to near present and have been constructed by driving the radiative transfer physics from the Goddard Institute for Space Studies (GISS) global model with ISCCP clouds and TOVS (TIROS Operational Vertical Sounder)thermodynamic profiles. Full and clear sky SW and LW fluxes are produced. A similar product from the NASA/GEWEX Surface Radiation Budget Project using different radiative flux codes and thermodynamics from the NASA/Goddard Earth Observing System (GEOS-1) assimilation model makes a similar calculation of surface fluxes. However this data set currently extends only through 1995. We also employ precipitation measurements from the Global Precipitation Climatology Project (GPCP) and the Tropical Rainfall Measuring Mission (TRMM). Finally, ocean evaporation estimates from the Special Sensor Microwave Imager (SSM/I) are considered as well as derived evaporation from the NCAR/NCEP Reanalysis. Additional information is included in the original extended abstract.

  6. Model improvements and validation of TerraSAR-X precise orbit determination

    NASA Astrophysics Data System (ADS)

    Hackel, S.; Montenbruck, O.; Steigenberger, P.; Balss, U.; Gisinger, C.; Eineder, M.

    2017-05-01

    The radar imaging satellite mission TerraSAR-X requires precisely determined satellite orbits for validating geodetic remote sensing techniques. Since the achieved quality of the operationally derived, reduced-dynamic (RD) orbit solutions limits the capabilities of the synthetic aperture radar (SAR) validation, an effort is made to improve the estimated orbit solutions. This paper discusses the benefits of refined dynamical models on orbit accuracy as well as estimated empirical accelerations and compares different dynamic models in a RD orbit determination. Modeling aspects discussed in the paper include the use of a macro-model for drag and radiation pressure computation, the use of high-quality atmospheric density and wind models as well as the benefit of high-fidelity gravity and ocean tide models. The Sun-synchronous dusk-dawn orbit geometry of TerraSAR-X results in a particular high correlation of solar radiation pressure modeling and estimated normal-direction positions. Furthermore, this mission offers a unique suite of independent sensors for orbit validation. Several parameters serve as quality indicators for the estimated satellite orbit solutions. These include the magnitude of the estimated empirical accelerations, satellite laser ranging (SLR) residuals, and SLR-based orbit corrections. Moreover, the radargrammetric distance measurements of the SAR instrument are selected for assessing the quality of the orbit solutions and compared to the SLR analysis. The use of high-fidelity satellite dynamics models in the RD approach is shown to clearly improve the orbit quality compared to simplified models and loosely constrained empirical accelerations. The estimated empirical accelerations are substantially reduced by 30% in tangential direction when working with the refined dynamical models. Likewise the SLR residuals are reduced from -3 ± 17 to 2 ± 13 mm, and the SLR-derived normal-direction position corrections are reduced from 15 to 6 mm, obtained from the 2012-2014 period. The radar range bias is reduced from -10.3 to -6.1 mm with the updated orbit solutions, which coincides with the reduced standard deviation of the SLR residuals. The improvements are mainly driven by the satellite macro-model for the purpose of solar radiation pressure modeling, improved atmospheric density models, and the use of state-of-the-art gravity field models.

  7. Galactic and solar radiation exposure to aircrew during a solar cycle.

    PubMed

    Lewis, B J; Bennett, L G I; Green, A R; McCall, M J; Ellaschuk, B; Butler, A; Pierre, M

    2002-01-01

    An on-going investigation using a tissue-equivalent proportional counter (TEPC) has been carried out to measure the ambient dose equivalent rate of the cosmic radiation exposure of aircrew during a solar cycle. A semi-empirical model has been derived from these data to allow for the interpolation of the dose rate for any global position. The model has been extended to an altitude of up to 32 km with further measurements made on board aircraft and several balloon flights. The effects of changing solar modulation during the solar cycle are characterised by correlating the dose rate data to different solar potential models. Through integration of the dose-rate function over a great circle flight path or between given waypoints, a Predictive Code for Aircrew Radiation Exposure (PCAIRE) has been further developed for estimation of the route dose from galactic cosmic radiation exposure. This estimate is provided in units of ambient dose equivalent as well as effective dose, based on E/H x (10) scaling functions as determined from transport code calculations with LUIN and FLUKA. This experimentally based treatment has also been compared with the CARI-6 and EPCARD codes that are derived solely from theoretical transport calculations. Using TEPC measurements taken aboard the International Space Station, ground based neutron monitoring, GOES satellite data and transport code analysis, an empirical model has been further proposed for estimation of aircrew exposure during solar particle events. This model has been compared to results obtained during recent solar flare events.

  8. Nonconservative force model parameter estimation strategy for TOPEX/Poseidon precision orbit determination

    NASA Technical Reports Server (NTRS)

    Luthcke, S. B.; Marshall, J. A.

    1992-01-01

    The TOPEX/Poseidon spacecraft was launched on August 10, 1992 to study the Earth's oceans. To achieve maximum benefit from the altimetric data it is to collect, mission requirements dictate that TOPEX/Poseidon's orbit must be computed at an unprecedented level of accuracy. To reach our pre-launch radial orbit accuracy goals, the mismodeling of the radiative nonconservative forces of solar radiation, Earth albedo an infrared re-radiation, and spacecraft thermal imbalances cannot produce in combination more than a 6 cm rms error over a 10 day period. Similarly, the 10-day drag modeling error cannot exceed 3 cm rms. In order to satisfy these requirements, a 'box-wing' representation of the satellite has been developed in which, the satellite is modelled as the combination of flat plates arranged in the shape of a box and a connected solar array. The radiative/thermal nonconservative forces acting on each of the eight surfaces are computed independently, yielding vector accelerations which are summed to compute the total aggregate effect on the satellite center-of-mass. Select parameters associated with the flat plates are adjusted to obtain a better representation of the satellite acceleration history. This study analyzes the estimation of these parameters from simulated TOPEX/Poseidon laser data in the presence of both nonconservative and gravity model errors. A 'best choice' of estimated parameters is derived and the ability to meet mission requirements with the 'box-wing' model evaluated.

  9. Spatial Representativeness Error in the Ground‐Level Observation Networks for Black Carbon Radiation Absorption

    PubMed Central

    Andrews, Elisabeth; Balkanski, Yves; Boucher, Olivier; Myhre, Gunnar; Samset, Bjørn Hallvard; Schulz, Michael; Schuster, Gregory L.; Valari, Myrto; Tao, Shu

    2018-01-01

    Abstract There is high uncertainty in the direct radiative forcing of black carbon (BC), an aerosol that strongly absorbs solar radiation. The observation‐constrained estimate, which is several times larger than the bottom‐up estimate, is influenced by the spatial representativeness error due to the mesoscale inhomogeneity of the aerosol fields and the relatively low resolution of global chemistry‐transport models. Here we evaluated the spatial representativeness error for two widely used observational networks (AErosol RObotic NETwork and Global Atmosphere Watch) by downscaling the geospatial grid in a global model of BC aerosol absorption optical depth to 0.1° × 0.1°. Comparing the models at a spatial resolution of 2° × 2° with BC aerosol absorption at AErosol RObotic NETwork sites (which are commonly located near emission hot spots) tends to cause a global spatial representativeness error of 30%, as a positive bias for the current top‐down estimate of global BC direct radiative forcing. By contrast, the global spatial representativeness error will be 7% for the Global Atmosphere Watch network, because the sites are located in such a way that there are almost an equal number of sites with positive or negative representativeness error. PMID:29937603

  10. The Role of Light in the Emergence of Weeds: Using Camelina microcarpa as an Example.

    PubMed

    Royo-Esnal, Aritz; Gesch, Russell W; Forcella, Frank; Torra, Joel; Recasens, Jordi; Necajeva, Jevgenija

    2015-01-01

    When modelling the emergence of weeds, two main factors are considered that condition this process: temperature and soil moisture. Optimum temperature is necessary for metabolic processes that generate energy for growth, while turgor pressure is necessary for root and shoot elongation which eventually leads to seedling emergence from the soil. Most emergence models do not usually consider light as a residual factor, but it could have an important role as it can alter directly or indirectly the dormancy and germination of seeds. In this paper, inclusion of light as an additional factor to photoperiod and radiation in emergence models is explored and compared with the classical hydrothermal time (HTT) model using Camelina microcarpa as an example. HTT based on hourly estimates is also compared with that based on daily estimates. Results suggest that, although HTT based models are accurate enough for local applications, the precision of these models is improved when HTT is estimated hourly and solar radiation is included as a factor.

  11. Estimates of cloud radiative forcing in contrail clusters using GOES imagery

    NASA Astrophysics Data System (ADS)

    Duda, David P.; Minnis, Patrick; Nguyen, Louis

    2001-03-01

    Using data from the Geostationary Operational Environmental Satellite (GOES), the evolution of solar and longwave radiative forcing in contrail clusters is presented in several case studies. The first study examines contrails developing over the midwestern United States in a region of upper tropospheric moisture enhanced by the remnants of Hurricane Nora on September 26, 1997. Two other cases involve contrail clusters that formed over the Chesapeake Bay and the Atlantic Ocean on February 11 and March 5, 1999, respectively. The last study includes contrails forming over the tropical Pacific near Hawaii. Observations of tropical contrails near Hawaii show that the contrail optical properties are similar to those measured from satellite in the midlatitudes, with visible optical depths between 0.3 and 0.5 and particle sizes between 30 and 60 μm as the contrails mature into diffuse cloudiness. Radiative transfer model simulations of the tropical contrail case suggest that ice crystal shape may have an important effect on radiative forcing in contrails. The magnitudes of the observed solar and longwave radiative forcings were 5.6 and 3.2 W m-2 less than those from the corresponding model simulations, and these differences are attributed to the subpixel scale low clouds and uncertainties in the anisotropic reflectance and limb-darkening models used to estimate the observed forcing. Since the broadband radiative forcing in contrails often changes rapidly, contrail forcing estimates based only on the polar orbiting advanced very high resolution radiometer (AVHRR) data could be inaccurate due to the lack of sufficient temporal sampling.

  12. Intensity-Modulated Radiotherapy Might Increase Pneumonitis Risk Relative to Three-Dimensional Conformal Radiotherapy in Patients Receiving Combined Chemotherapy and Radiotherapy: A Modeling Study of Dose Dumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogelius, Ivan S.; Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI; Department of Radiation Oncology, Rigshospitalet

    2011-07-01

    Purpose: To model the possible interaction between cytotoxic chemotherapy and the radiation dose distribution with respect to the risk of radiation pneumonitis. Methods and Materials: A total of 18 non-small-cell lung cancer patients previously treated with helical tomotherapy at the University of Wisconsin were selected for the present modeling study. Three treatment plans were considered: the delivered tomotherapy plans; a three-dimensional conformal radiotherapy (3D-CRT) plan; and a fixed-field intensity-modulated radiotherapy (IMRT) plan. The IMRT and 3D-CRT plans were generated specifically for the present study. The plans were optimized without adjusting for the chemotherapy effect. The effect of chemotherapy was modeledmore » as an independent cell killing process by considering a uniform chemotherapy equivalent radiation dose added to all voxels of the organ at risk. The risk of radiation pneumonitis was estimated for all plans using the Lyman and the critical volume models. Results: For radiotherapy alone, the critical volume model predicts that the two IMRT plans are associated with a lower risk of radiation pneumonitis than the 3D-CRT plan. However, when the chemotherapy equivalent radiation dose exceeds a certain threshold, the radiation pneumonitis risk after IMRT is greater than after 3D-CRT. This threshold dose is in the range estimated from clinical chemoradiotherapy data sets. Conclusions: Cytotoxic chemotherapy might affect the relative merit of competing radiotherapy plans. More work is needed to improve our understanding of the interaction between chemotherapy and the radiation dose distribution in clinical settings.« less

  13. Sea ice - atmosphere interaction: Application of multispectral satellite data in polar surface energy flux estimates

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Schweiger, A.; Maslanik, J.; Key, J.; Haefliger, M.; Weaver, R.

    1991-01-01

    In the past six months, work has continued on energy flux sensitivity studies, ice surface temperature retrievals, corrections to Advanced Very High Resolution Radiometer (AVHRR) thermal infrared data, modelling of cloud fraction retrievals, and radiation climatologies. We tentatively conclude that the SSM/I may not provide accurate enough estimates of ice concentration and type to improve our shorter term energy flux estimates. SSM/I derived parameters may still be applicable in longer term climatological flux characterizations. We hold promise for a system coupling observation to a ice deformation model. Such a model may provide information on ice distribution which can be used in energy flux calculations. Considerable variation was found in modelled energy flux estimates when bulk transfer coefficients are modulated by lead fetch. It is still unclear what the optimum formulation is and this will be the subject of further work. Data sets for ice surface temperature retrievals were assembled and preliminary data analysis was started. Finally, construction of a conceptual framework for further modelling of the Arctic radiation flux climatology was started.

  14. [Comparison of three daily global solar radiation models].

    PubMed

    Yang, Jin-Ming; Fan, Wen-Yi; Zhao, Ying-Hui

    2014-08-01

    Three daily global solar radiation estimation models ( Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al.) were analyzed and compared using data of 13 weather stations from 1982 to 2012 from three northeastern provinces and eastern Inner Mongolia. After cross-validation analysis, the result showed that mean absolute error (MAE) for each model was 1.71, 2.83 and 1.68 MJ x m(-2) x d(-1) respectively, showing that Å-P model and model provided by Liu Ke-qun et al. which used percentage of sunshine had an advantage over Thornton-Running model which didn't use percentage of sunshine. Model provided by Liu Ke-qun et al. played a good effect on the situation of non-sunshine, and its MAE and bias percentage were 18.5% and 33.8% smaller than those of Å-P model, respectively. High precision results could be obtained by using the simple linear model of Å-P. Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al. overvalued daily global solar radiation by 12.2%, 19.2% and 9.9% respectively. MAE for each station varied little with the spatial change of location, and annual MAE decreased with the advance of years. The reason for this might be that the change of observation accuracy caused by the replacement of radiation instrument in 1993. MAEs for rainy days, non-sunshine days and warm seasons of the three models were greater than those for days without rain, sunshine days and cold seasons respectively, showing that different methods should be used for different weather conditions on estimating solar radiation with meteorological elements.

  15. Nonequilibrium Stagnation-Line Radiative Heating for Fire II

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Hollis, Brian R.; Sutton, Kenneth

    2007-01-01

    This paper presents a detailed analysis of the shock-layer radiative heating to the Fire II vehicle using a new air radiation model and a viscous shock-layer flowfield model. This new air radiation model contains the most up-to-date properties for modeling the atomic-line, atomic photoionization, molecular band, and non-Boltzmann processes. The applied viscous shock-layer flowfield analysis contains the same thermophysical properties and nonequilibrium models as the LAURA Navier-Stokes code. Radiation-flowfield coupling, or radiation cooling, is accounted for in detail in this study. It is shown to reduce the radiative heating by about 30% for the peak radiative heating points, while reducing the convective heating only slightly. A detailed review of past Fire II radiative heating studies is presented. It is observed that the scatter in the radiation predicted by these past studies is mostly a result of the different flowfield chemistry models and the treatment of the electronic state populations. The present predictions provide, on average throughout the trajectory, a better comparison with Fire II flight data than any previous study. The magnitude of the vacuum ultraviolet (VUV) contribution to the radiative flux is estimated from the calorimeter measurements. This is achieved using the radiometer measurements and the predicted convective heating. The VUV radiation predicted by the present model agrees well with the VUV contribution inferred from the Fire II calorimeter measurement, although only when radiation-flowfield coupling is accounted for. This agreement provides evidence that the present model accurately models the VUV radiation, which is shown to contribute significantly to the Fire II radiative heating.

  16. The Martian surface radiation environment - a comparison of models and MSL/RAD measurements

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Ehresmann, Bent; Lohf, Henning; Köhler, Jan; Zeitlin, Cary; Appel, Jan; Sato, Tatsuhiko; Slaba, Tony; Martin, Cesar; Berger, Thomas; Boehm, Eckart; Boettcher, Stephan; Brinza, David E.; Burmeister, Soenke; Guo, Jingnan; Hassler, Donald M.; Posner, Arik; Rafkin, Scot C. R.; Reitz, Günther; Wilson, John W.; Wimmer-Schweingruber, Robert F.

    2016-03-01

    Context: The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) has been measuring the radiation environment on the surface of Mars since August 6th 2012. MSL-RAD is the first instrument to provide detailed information about charged and neutral particle spectra and dose rates on the Martian surface, and one of the primary objectives of the RAD investigation is to help improve and validate current radiation transport models. Aims: Applying different numerical transport models with boundary conditions derived from the MSL-RAD environment the goal of this work was to both provide predictions for the particle spectra and the radiation exposure on the Martian surface complementing the RAD sensitive range and, at the same time, validate the results with the experimental data, where applicable. Such validated models can be used to predict dose rates for future manned missions as well as for performing shield optimization studies. Methods: Several particle transport models (GEANT4, PHITS, HZETRN/OLTARIS) were used to predict the particle flux and the corresponding radiation environment caused by galactic cosmic radiation on Mars. From the calculated particle spectra the dose rates on the surface are estimated. Results: Calculations of particle spectra and dose rates induced by galactic cosmic radiation on the Martian surface are presented. Although good agreement is found in many cases for the different transport codes, GEANT4, PHITS, and HZETRN/OLTARIS, some models still show large, sometimes order of magnitude discrepancies in certain particle spectra. We have found that RAD data is helping to make better choices of input parameters and physical models. Elements of these validated models can be applied to more detailed studies on how the radiation environment is influenced by solar modulation, Martian atmosphere and soil, and changes due to the Martian seasonal pressure cycle. By extending the range of the calculated particle spectra with respect to the experimental data additional information about the radiation environment is gained, and the contribution of different particle species to the dose is estimated.

  17. Towards High Spa-Temporal Resolution Estimates of Surface Radiative Fluxes from Geostationary Satellite Observations for the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Niu, X.; Yang, K.; Tang, W.; Qin, J.

    2014-12-01

    Surface Solar Radiation (SSR) plays an important role of the hydrological and land process modeling, which particularly contributes more than 90% to the total melt energy for the Tibetan Plateau (TP) ice melting. Neither surface measurement nor existing remote sensing products can meet that requirement in TP. The well-known satellite products (i.e. ISCCP-FD and GEWEX-SRB) are in relatively low spatial resolution (0.5º-2.5º) and temporal resolution (3-hourly, daily, or monthly). The objective of this study is to develop capabilities to improved estimates of SSR in TP based on geostationary satellite observations from the Multi-functional Transport Satellite (MTSAT) with high spatial (0.05º) and temporal (hourly) resolution. An existing physical model, the UMD-SRB (University of Maryland Surface Radiation Budget) which is the basis of the GEWEX-SRB model, is re-visited to improve SSR estimates in TP. The UMD-SRB algorithm transforms TOA radiances into broadband albedos in order to infer atmospheric transmissivity which finally determines the SSR. Specifically, main updates introduced in this study are: implementation at 0.05º spatial resolution at hourly intervals integrated to daily and monthly time scales; and improvement of surface albedo model by introducing the most recently developed Global Land Surface Broadband Albedo Product (GLASS) based on MODIS data. This updated inference scheme will be evaluated against ground observations from China Meteorological Administration (CMA) radiation stations and three TP radiation stations contributed from the Institute of Tibetan Plateau Research.

  18. Modeling potential structure ignitions from flame radiation exposure with implications for wildland/urban interface fire management

    Treesearch

    Jack D. Cohen; Bret W. Butler

    1998-01-01

    Residential losses associated with wildland fires have become a serious international fire protection problem. The radiant heat flux from burning vegetation adjacent to a structure is a principal ignition factor. A thermal radiation and ignition model estimated structure ignition potential using designated flame characteristics (inferred from various types and...

  19. New method for estimating daily global solar radiation over sloped topography in China

    NASA Astrophysics Data System (ADS)

    Shi, Guoping; Qiu, Xinfa; Zeng, Yan

    2018-03-01

    A new scheme for the estimation of daily global solar radiation over sloped topography in China is developed based on the Iqbal model C and MODIS cloud fraction. The effects of topography are determined using a digital elevation model. The scheme is tested using observations of solar radiation at 98 stations in China, and the results show that the mean absolute bias error is 1.51 MJ m-2 d-1 and the mean relative absolute bias error is 10.57%. Based on calculations using this scheme, the distribution of daily global solar radiation over slopes in China on four days in the middle of each season (15 January, 15 April, 15 July and 15 October 2003) at a spatial resolution of 1 km × 1 km are analyzed. To investigate the effects of topography on global solar radiation, the results determined in four mountains areas (Tianshan, Kunlun Mountains, Qinling, and Nanling) are discussed, and the typical characteristics of solar radiation over sloped surfaces revealed. In general, the new scheme can produce reasonable characteristics of solar radiation distribution at a high spatial resolution in mountain areas, which will be useful in analyses of mountain climate and planning for agricultural production.

  20. Simulating intrafraction prostate motion with a random walk model.

    PubMed

    Pommer, Tobias; Oh, Jung Hun; Munck Af Rosenschöld, Per; Deasy, Joseph O

    2017-01-01

    Prostate motion during radiation therapy (ie, intrafraction motion) can cause unwanted loss of radiation dose to the prostate and increased dose to the surrounding organs at risk. A compact but general statistical description of this motion could be useful for simulation of radiation therapy delivery or margin calculations. We investigated whether prostate motion could be modeled with a random walk model. Prostate motion recorded during 548 radiation therapy fractions in 17 patients was analyzed and used for input in a random walk prostate motion model. The recorded motion was categorized on the basis of whether any transient excursions (ie, rapid prostate motion in the anterior and superior direction followed by a return) occurred in the trace and transient motion. This was separately modeled as a large step in the anterior/superior direction followed by a returning large step. Random walk simulations were conducted with and without added artificial transient motion using either motion data from all observed traces or only traces without transient excursions as model input, respectively. A general estimate of motion was derived with reasonable agreement between simulated and observed traces, especially during the first 5 minutes of the excursion-free simulations. Simulated and observed diffusion coefficients agreed within 0.03, 0.2 and 0.3 mm 2 /min in the left/right, superior/inferior, and anterior/posterior directions, respectively. A rapid increase in variance at the start of observed traces was difficult to reproduce and seemed to represent the patient's need to adjust before treatment. This could be estimated somewhat using artificial transient motion. Random walk modeling is feasible and recreated the characteristics of the observed prostate motion. Introducing artificial transient motion did not improve the overall agreement, although the first 30 seconds of the traces were better reproduced. The model provides a simple estimate of prostate motion during delivery of radiation therapy.

  1. Chromosome Aberrations in Astronauts

    NASA Technical Reports Server (NTRS)

    George, Kerry A.; Durante, M.; Cucinotta, Francis A.

    2007-01-01

    A review of currently available data on in vivo induced chromosome damage in the blood lymphocytes of astronauts proves that, after protracted exposure of a few months or more to space radiation, cytogenetic biodosimetry analyses of blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk. Recent studies indicate that biodosimetry estimates from single spaceflights lie within the range expected from physical dosimetry and biophysical models, but very large uncertainties are associated with single individual measurements and the total sample population remains low. Retrospective doses may be more difficult to estimate because of the fairly rapid time-dependent loss of "stable" aberrations in blood lymphocytes. Also, biodosimetry estimates from individuals who participate in multiple missions, or very long (interplanetary) missions, may be complicated by an adaptive response to space radiation and/or changes in lymphocyte survival and repopulation. A discussion of published data is presented and specific issues related to space radiation biodosimetry protocols are discussed.

  2. Rare event simulation in radiation transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollman, Craig

    1993-10-01

    This dissertation studies methods for estimating extremely small probabilities by Monte Carlo simulation. Problems in radiation transport typically involve estimating very rare events or the expected value of a random variable which is with overwhelming probability equal to zero. These problems often have high dimensional state spaces and irregular geometries so that analytic solutions are not possible. Monte Carlo simulation must be used to estimate the radiation dosage being transported to a particular location. If the area is well shielded the probability of any one particular particle getting through is very small. Because of the large number of particles involved,more » even a tiny fraction penetrating the shield may represent an unacceptable level of radiation. It therefore becomes critical to be able to accurately estimate this extremely small probability. Importance sampling is a well known technique for improving the efficiency of rare event calculations. Here, a new set of probabilities is used in the simulation runs. The results are multiple by the likelihood ratio between the true and simulated probabilities so as to keep the estimator unbiased. The variance of the resulting estimator is very sensitive to which new set of transition probabilities are chosen. It is shown that a zero variance estimator does exist, but that its computation requires exact knowledge of the solution. A simple random walk with an associated killing model for the scatter of neutrons is introduced. Large deviation results for optimal importance sampling in random walks are extended to the case where killing is present. An adaptive ``learning`` algorithm for implementing importance sampling is given for more general Markov chain models of neutron scatter. For finite state spaces this algorithm is shown to give with probability one, a sequence of estimates converging exponentially fast to the true solution.« less

  3. The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies.

    PubMed

    van Leeuwen, C M; Oei, A L; Crezee, J; Bel, A; Franken, N A P; Stalpers, L J A; Kok, H P

    2018-05-16

    Prediction of radiobiological response is a major challenge in radiotherapy. Of several radiobiological models, the linear-quadratic (LQ) model has been best validated by experimental and clinical data. Clinically, the LQ model is mainly used to estimate equivalent radiotherapy schedules (e.g. calculate the equivalent dose in 2 Gy fractions, EQD 2 ), but increasingly also to predict tumour control probability (TCP) and normal tissue complication probability (NTCP) using logistic models. The selection of accurate LQ parameters α, β and α/β is pivotal for a reliable estimate of radiation response. The aim of this review is to provide an overview of published values for the LQ parameters of human tumours as a guideline for radiation oncologists and radiation researchers to select appropriate radiobiological parameter values for LQ modelling in clinical radiotherapy. We performed a systematic literature search and found sixty-four clinical studies reporting α, β and α/β for tumours. Tumour site, histology, stage, number of patients, type of LQ model, radiation type, TCP model, clinical endpoint and radiobiological parameter estimates were extracted. Next, we stratified by tumour site and by tumour histology. Study heterogeneity was expressed by the I 2 statistic, i.e. the percentage of variance in reported values not explained by chance. A large heterogeneity in LQ parameters was found within and between studies (I 2  > 75%). For the same tumour site, differences in histology partially explain differences in the LQ parameters: epithelial tumours have higher α/β values than adenocarcinomas. For tumour sites with different histologies, such as in oesophageal cancer, the α/β estimates correlate well with histology. However, many other factors contribute to the study heterogeneity of LQ parameters, e.g. tumour stage, type of LQ model, TCP model and clinical endpoint (i.e. survival, tumour control and biochemical control). The value of LQ parameters for tumours as published in clinical radiotherapy studies depends on many clinical and methodological factors. Therefore, for clinical use of the LQ model, LQ parameters for tumour should be selected carefully, based on tumour site, histology and the applied LQ model. To account for uncertainties in LQ parameter estimates, exploring a range of values is recommended.

  4. Extended Kalman filter for attitude estimation of the earth radiation budget satellite

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack Y.

    1989-01-01

    The design and testing of an Extended Kalman Filter (EKF) for ground attitude determination, misalignment estimation and sensor calibration of the Earth Radiation Budget Satellite (ERBS) are described. Attitude is represented by the quaternion of rotation and the attitude estimation error is defined as an additive error. Quaternion normalization is used for increasing the convergence rate and for minimizing the need for filter tuning. The development of the filter dynamic model, the gyro error model and the measurement models of the Sun sensors, the IR horizon scanner and the magnetometers which are used to generate vector measurements are also presented. The filter is applied to real data transmitted by ERBS sensors. Results are presented and analyzed and the EKF advantages as well as sensitivities are discussed. On the whole the filter meets the expected synergism, accuracy and robustness.

  5. [Medium-term forecast of solar cosmic rays radiation risk during a manned Mars mission].

    PubMed

    Petrov, V M; Vlasov, A G

    2006-01-01

    Medium-term forecasting radiation hazard from solar cosmic rays will be vital in a manned Mars mission. Modern methods of space physics lack acceptable reliability in medium-term forecasting the SCR onset and parameters. The proposed estimation of average radiation risk from SCR during the manned Mars mission is made with the use of existing SCR fluence and spectrum models and correlation of solar particle event frequency with predicted Wolf number. Radiation risk is considered an additional death probability from acute radiation reactions (ergonomic component) or acute radial disease in flight. The algorithm for radiation risk calculation is described and resulted risk levels for various periods of the 23-th solar cycle are presented. Applicability of this method to advance forecasting and possible improvements are being investigated. Recommendations to the crew based on risk estimation are exemplified.

  6. High fidelity chemistry and radiation modeling for oxy -- combustion scenarios

    NASA Astrophysics Data System (ADS)

    Abdul Sater, Hassan A.

    To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy Dissipation Concept (EDC) employing a 41-step detailed chemistry mechanism, the non-adiabatic extension of the equilibrium Probability Density Function (PDF) based mixture-fraction model and a two-step global finite rate chemistry model with modified rate constants proposed to work well in oxy-methane flames. Based on the results from this section, the equilibrium PDF model in conjunction with a high-fidelity non-gray model for the radiative properties of the gas-phase may be deemed as accurate to capture the major gas species concentrations, temperatures and flame lengths in oxy-methane flames. The third section examines the variations in radiative transfer predictions due to the choice of chemistry and gas-phase radiative property models. The radiative properties were estimated employing four weighted-sum-of-gray-gases models (WSGGM) that were formulated employing different spectroscopic/model databases. An average variation of 14 -- 17% in the wall incident radiative fluxes was observed between the EDC and equilibrium mixture fraction chemistry models, due to differences in their temperature predictions within the flame. One-dimensional, line-of-sight radiation calculations showed a 15 -- 25 % reduction in the directional radiative fluxes at lower axial locations as a result of ignoring radiation from CO and CH4. Under the constraints of fixed temperature and species distributions, the flame radiant power estimates and average wall incident radiative fluxes varied by nearly 60% and 11% respectively among the different WSGG models.

  7. Incorporation of Three-dimensional Radiative Transfer into a Very High Resolution Simulation of Horizontally Inhomogeneous Clouds

    NASA Astrophysics Data System (ADS)

    Ishida, H.; Ota, Y.; Sekiguchi, M.; Sato, Y.

    2016-12-01

    A three-dimensional (3D) radiative transfer calculation scheme is developed to estimate horizontal transport of radiation energy in a very high resolution (with the order of 10 m in spatial grid) simulation of cloud evolution, especially for horizontally inhomogeneous clouds such as shallow cumulus and stratocumulus. Horizontal radiative transfer due to inhomogeneous clouds seems to cause local heating/cooling in an atmosphere with a fine spatial scale. It is, however, usually difficult to estimate the 3D effects, because the 3D radiative transfer often needs a large resource for computation compared to a plane-parallel approximation. This study attempts to incorporate a solution scheme that explicitly solves the 3D radiative transfer equation into a numerical simulation, because this scheme has an advantage in calculation for a sequence of time evolution (i.e., the scene at a time is little different from that at the previous time step). This scheme is also appropriate to calculation of radiation with strong absorption, such as the infrared regions. For efficient computation, this scheme utilizes several techniques, e.g., the multigrid method for iteration solution, and a correlated-k distribution method refined for efficient approximation of the wavelength integration. For a case study, the scheme is applied to an infrared broadband radiation calculation in a broken cloud field generated with a large eddy simulation model. The horizontal transport of infrared radiation, which cannot be estimated by the plane-parallel approximation, and its variation in time can be retrieved. The calculation result elucidates that the horizontal divergences and convergences of infrared radiation flux are not negligible, especially at the boundaries of clouds and within optically thin clouds, and the radiative cooling at lateral boundaries of clouds may reduce infrared radiative heating in clouds. In a future work, the 3D effects on radiative heating/cooling will be able to be included into atmospheric numerical models.

  8. Evaluation of leaf wetness duration models for operational use in strawberry disease-warning systems in four US states.

    PubMed

    Montone, Verona O; Fraisse, Clyde W; Peres, Natalia A; Sentelhas, Paulo C; Gleason, Mark; Ellis, Michael; Schnabel, Guido

    2016-11-01

    Leaf wetness duration (LWD) plays a key role in disease development and is often used as an input in disease-warning systems. LWD is often estimated using mathematical models, since measurement by sensors is rarely available and/or reliable. A strawberry disease-warning system called "Strawberry Advisory System" (SAS) is used by growers in Florida, USA, in deciding when to spray their strawberry fields to control anthracnose and Botrytis fruit rot. Currently, SAS is implemented at six locations, where reliable LWD sensors are deployed. A robust LWD model would facilitate SAS expansion from Florida to other regions where reliable LW sensors are not available. The objective of this study was to evaluate the use of mathematical models to estimate LWD and time of spray recommendations in comparison to on site LWD measurements. Specific objectives were to (i) compare model estimated and observed LWD and resulting differences in timing and number of fungicide spray recommendations, (ii) evaluate the effects of weather station sensors precision on LWD models performance, and (iii) compare LWD models performance across four states in the USA. The LWD models evaluated were the classification and regression tree (CART), dew point depression (DPD), number of hours with relative humidity equal or greater than 90 % (NHRH ≥90 %), and Penman-Monteith (P-M). P-M model was expected to have the lowest errors, since it is a physically based and thus portable model. Indeed, the P-M model estimated LWD most accurately (MAE <2 h) at a weather station with high precision sensors but was the least accurate when lower precision sensors of relative humidity and estimated net radiation (based on solar radiation and temperature) were used (MAE = 3.7 h). The CART model was the most robust for estimating LWD and for advising growers on fungicide-spray timing for anthracnose and Botrytis fruit rot control and is therefore the model we recommend for expanding the strawberry disease warning beyond Florida, to other locations where weather stations may be deployed with lower precision sensors, and net radiation observations are not available.

  9. Evaluation of leaf wetness duration models for operational use in strawberry disease-warning systems in four US states

    NASA Astrophysics Data System (ADS)

    Montone, Verona O.; Fraisse, Clyde W.; Peres, Natalia A.; Sentelhas, Paulo C.; Gleason, Mark; Ellis, Michael; Schnabel, Guido

    2016-11-01

    Leaf wetness duration (LWD) plays a key role in disease development and is often used as an input in disease-warning systems. LWD is often estimated using mathematical models, since measurement by sensors is rarely available and/or reliable. A strawberry disease-warning system called "Strawberry Advisory System" (SAS) is used by growers in Florida, USA, in deciding when to spray their strawberry fields to control anthracnose and Botrytis fruit rot. Currently, SAS is implemented at six locations, where reliable LWD sensors are deployed. A robust LWD model would facilitate SAS expansion from Florida to other regions where reliable LW sensors are not available. The objective of this study was to evaluate the use of mathematical models to estimate LWD and time of spray recommendations in comparison to on site LWD measurements. Specific objectives were to (i) compare model estimated and observed LWD and resulting differences in timing and number of fungicide spray recommendations, (ii) evaluate the effects of weather station sensors precision on LWD models performance, and (iii) compare LWD models performance across four states in the USA. The LWD models evaluated were the classification and regression tree (CART), dew point depression (DPD), number of hours with relative humidity equal or greater than 90 % (NHRH ≥90 %), and Penman-Monteith (P-M). P-M model was expected to have the lowest errors, since it is a physically based and thus portable model. Indeed, the P-M model estimated LWD most accurately (MAE <2 h) at a weather station with high precision sensors but was the least accurate when lower precision sensors of relative humidity and estimated net radiation (based on solar radiation and temperature) were used (MAE = 3.7 h). The CART model was the most robust for estimating LWD and for advising growers on fungicide-spray timing for anthracnose and Botrytis fruit rot control and is therefore the model we recommend for expanding the strawberry disease warning beyond Florida, to other locations where weather stations may be deployed with lower precision sensors, and net radiation observations are not available.

  10. Skin cancer incidence among atomic bomb survivors from 1958 to 1996.

    PubMed

    Sugiyama, Hiromi; Misumi, Munechika; Kishikawa, Masao; Iseki, Masachika; Yonehara, Shuji; Hayashi, Tomayoshi; Soda, Midori; Tokuoka, Shoji; Shimizu, Yukiko; Sakata, Ritsu; Grant, Eric J; Kasagi, Fumiyoshi; Mabuchi, Kiyohiko; Suyama, Akihiko; Ozasa, Kotaro

    2014-05-01

    The radiation risk of skin cancer by histological types has been evaluated in the atomic bomb survivors. We examined 80,158 of the 120,321 cohort members who had their radiation dose estimated by the latest dosimetry system (DS02). Potential skin tumors diagnosed from 1958 to 1996 were reviewed by a panel of pathologists, and radiation risk of the first primary skin cancer was analyzed by histological types using a Poisson regression model. A significant excess relative risk (ERR) of basal cell carcinoma (BCC) (n = 123) was estimated at 1 Gy (0.74, 95% confidence interval (CI): 0.26, 1.6) for those age 30 at exposure and age 70 at observation based on a linear-threshold model with a threshold dose of 0.63 Gy (95% CI: 0.32, 0.89) and a slope of 2.0 (95% CI: 0.69, 4.3). The estimated risks were 15, 5.7, 1.3 and 0.9 for age at exposure of 0-9, 10-19, 20-39, over 40 years, respectively, and the risk increased 11% with each one-year decrease in age at exposure. The ERR for squamous cell carcinoma (SCC) in situ (n = 64) using a linear model was estimated as 0.71 (95% CI: 0.063, 1.9). However, there were no significant dose responses for malignant melanoma (n = 10), SCC (n = 114), Paget disease (n = 10) or other skin cancers (n = 15). The significant linear radiation risk for BCC with a threshold at 0.63 Gy suggested that the basal cells of the epidermis had a threshold sensitivity to ionizing radiation, especially for young persons at the time of exposure.

  11. On the additional information content of hyperspectral remote sensing data for estimating ecosystem carbon dioxde and energy exchange

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, Georg; Hammerle, Albin; Tomelleri, Enrico

    2015-04-01

    Radiation reflected back from an ecosystem carries a spectral signature resulting from the interaction of radiation with the vegetation canopy and the underlying soil and thus allows drawing conclusions about the structure and functioning of an ecosystem. When this information is linked to a model of the leaf CO2 exchange, the ecosystem-scale CO2 exchange can be simulated. A well-known and very simplistic example for this approach is the light-use efficiency (LUE) model proposed by Monteith which links the flux of absorbed photosynthetically active radiation times a LUE parameter, both of which may be estimated based on remote sensing data, to predict the ecosystem gross photosynthesis. Here we explore the ability of a more elaborate approach by using near-surface remote sensing of hyperspectral reflected radiation, eddy covariance CO2 and energy flux measurements and a coupled radiative transfer and soil-vegetation-atmosphere-transfer (SVAT) model. Our main objective is to understand to what degree the joint assimilation of hyperspectral reflected radiation and eddy covariance flux measurements into the model helps to better constrain model parameters. To this end we use the SCOPE model, a combination of the well-known PROSAIL model and a SVAT model, and the Bayesian inversion algorithm DREAM. In order to explicitly link reflectance in the visible light and the leaf CO2 exchange, a novel parameterisation of the maximum carboxylation capacity parameter (Vcmax) on the leaf a+b chlorophyll content parameter of PROSAIL is introduced. Results are discussed with respect to the additional information content the hyperspectral data yield for simulating canopy photosynthesis.

  12. Comparison of organ dose and dose equivalent using ray tracing of male and female Voxel phantoms to space flight phantom torso data

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee; Qualls, Garry; Slaba, Tony; Cucinotta, Francis A.

    Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.

  13. Comparison of Organ Dose and Dose Equivalent Using Ray Tracing of Male and Female Voxel Phantoms to Space Flight Phantom Torso Data

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Qualls, Garry D.; Cucinotta, Francis A.

    2008-01-01

    Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.

  14. Modeling photosynthetically active radiation in water of Tampa Bay, Florida, with emphasis on the geometry of incident irradiance

    USGS Publications Warehouse

    Miller, R.L.; McPherson, B.F.

    1995-01-01

    A model is developed that uses a simplified geometric description of incident direct solar beam and diffuse skylight. The model incorporates effects of solar elevation angle and cloudiness on the amount of in-air photosynthetically active radiation (PAR) that passes through the air-water interface and on K0 in waters of relatively low turbidity. The value of K0 was estimated to vary as much as 41% on a clear summer day due to changes in solar elevation angle. The model was used to make estimates of the depth to which sea-grasses might receive adequate light for survival for a range of values of K0. -from Authors

  15. How Well are Recent Climate Variability Signals Resolved by Satellite Radiative Flux Estimates?

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Lu, H.-L.

    2004-01-01

    One notable aspect of Earth s climate is that although the planet appears to be very close to radiative balance at top-of-atmosphere (TOA), the atmosphere itself and underlying surface are not. Profound exchanges of energy between the atmosphere and oceans, land and cryosphere occur over a range of time scales. Recent evidence from broadband satellite measurements suggests that even these TOA fluxes contain some detectable variations. Our ability to measure and reconstruct radiative fluxes at the surface and at the top of atmosphere is improving rapidly. Understanding the character of radiative flux estimates and relating them to variations in other energy fluxes and climate state variables is key to improving our understanding of climate. In this work we will evaluate several recently released estimates of radiative fluxes, focusing primarily on surface estimates. The International Satellite Cloud Climatology Project FD radiative flux profiles are available from rnid-1983 to near present and have been constructed by driving the radiative transfer physics from the Goddard Institute for Space Studies (GISS) global model with ISCCP clouds and HlRS operational soundings profiles. Full and clear sky SW and LW fluxes are produced. A similar product from the NASA/GEWEX Surface Radiation Budget Project using different radiative flux codes and thermodynamics from the NASA/Goddard Earth Observing System assimilation model makes a similar calculation of surface fluxes. However this data set currently extends only through 1995. Several estimates of downward LW flux at the surface inferred from microwave data are also examined. Since these products have been evaluated with Baseline Surface Radiation Network data over land we focus over ocean regions and use the DOE/NOAA/NASA Shipboard Ocean Atmospheric Radiation (SOAR) surface flux measurements to characterize performance of these data sets under both clear and cloudy conditions. Some aspects of performance are stratified according to SST and vertical motion regimes. Comparisons to the TRMM/CERES SRB data in 1998 are also interpreted. These radiative fluxes are then analyzed to determine how surface (and TOA) radiative exchanges respond to interannual signals of ENS0 warm and cold events. Our analysis includes regional changes as well as integrated signals over land, ocean and various latitude bands. Changes in water vapor and cloud forcing signatures are prominent on interannual time scales. Prominent signals are also found in the SW fluxes for the Pinatubo volcanic event. These systematic changes in fluxes are related to changes in large-scale circulations and energy transport in the atmosphere and ocean. Some estimates of signal-to-noise and reliability are discussed to place our results in context.

  16. Algorithms for radiative transfer simulations for aerosol retrieval

    NASA Astrophysics Data System (ADS)

    Mukai, Sonoyo; Sano, Itaru; Nakata, Makiko

    2012-11-01

    Aerosol retrieval work from satellite data, i.e. aerosol remote sensing, is divided into three parts as: satellite data analysis, aerosol modeling and multiple light scattering calculation in the atmosphere model which is called radiative transfer simulation. The aerosol model is compiled from the accumulated measurements during more than ten years provided with the world wide aerosol monitoring network (AERONET). The radiative transfer simulations take Rayleigh scattering by molecules and Mie scattering by aerosols in the atmosphere, and reflection by the Earth surface into account. Thus the aerosol properties are estimated by comparing satellite measurements with the numerical values of radiation simulations in the Earth-atmosphere-surface model. It is reasonable to consider that the precise simulation of multiple light-scattering processes is necessary, and needs a long computational time especially in an optically thick atmosphere model. Therefore efficient algorithms for radiative transfer problems are indispensable to retrieve aerosols from space.

  17. Remote sensing of agricultural crops and soils

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator)

    1983-01-01

    Research in the correlative and noncorrelative approaches to image registration and the spectral estimation of corn canopy phytomass and water content is reported. Scene radiation research results discussed include: corn and soybean LANDSAT MSS classification performance as a function of scene characteristics; estimating crop development stages from MSS data; the interception of photosynthetically active radiation in corn and soybean canopies; costs of measuring leaf area index of corn; LANDSAT spectral inputs to crop models including the use of the greenness index to assess crop stress and the evaluation of MSS data for estimating corn and soybean development stages; field research experiment design data acquisition and preprocessing; and Sun-view angles studies of corn and soybean canopies in support of vegetation canopy reflection modeling.

  18. Altitude, radiation, and mortality from cancer and heart disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberg, C.R.; Brown, K.G.; Hoel, D.G.

    The variation in background radiation levels is an important source of information for estimating human risks associated with low-level exposure to ionizing radiation. Several studies conducted in the United States, correlating mortality rates for cancer with estimated background radiation levels, found an unexpected inverse relationship. Such results have been interpreted as suggesting that low levels of ionizing radiation may actually confer some benefit. An environmental factor strongly correlated with background radiation is altitude. Since there are important physiological adaptations associated with breathing thinner air, such changes may themselves influence risk. We therefore fit models that simultaneously incorporated altitude and backgroundmore » radiation as predictors of mortality. The negative correlations with background radiation seen for mortality from arteriosclerotic heart disease and cancers of the lung, the intestine, and the breast disappeared or became positive once altitude was included in the models. By contrast, the significant negative correlations with altitude persisted with adjustment for radiation. Interpretation of these results is problematic, but recent evidence implicating reactive forms of oxygen in carcinogenesis and atherosclerosis may be relevant. We conclude that the cancer correlational studies carried out in the United States using vital statistics data do not in themselves demonstrate a lack of carcinogenic effect of low radiation levels, and that reduced oxygen pressure of inspired air may be protective against certain causes of death.« less

  19. Predictive analysis of optical ablation in several dermatological tumoral tissues

    NASA Astrophysics Data System (ADS)

    Fanjul-Vélez, F.; Blanco-Gutiérrez, A.; Salas-García, I.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2013-06-01

    Optical techniques for treatment and characterization of biological tissues are revolutionizing several branches of medical praxis, for example in ophthalmology or dermatology. The non-invasive, non-contact and non-ionizing character of optical radiation makes it specially suitable for these applications. Optical radiation can be employed in medical ablation applications, either for tissue resection or surgery. Optical ablation may provide a controlled and clean cut on a biological tissue. This is particularly relevant in tumoral tissue resection, where a small amount of cancerous cells could make the tumor appear again. A very important aspect of tissue optical ablation is then the estimation of the affected volume. In this work we propose a complete predictive model of tissue ablation that provides an estimation of the resected volume. The model is based on a Monte Carlo approach for the optical propagation of radiation inside the tissue, and a blow-off model for tissue ablation. This model is applied to several types of dermatological tumoral tissues, specifically squamous cells, basocellular and infiltrative carcinomas. The parameters of the optical source are varied and the estimated resected volume is calculated. The results for the different tumor types are presented and compared. This model can be used for surgical planning, in order to assure the complete resection of the tumoral tissue.

  20. Validation of solar radiation surfaces from MODIS and reanalysis data over topographically complex terrain

    Treesearch

    Todd A. Schroeder; Robbie Hember; Nicholas C. Coops; Shunlin Liang

    2009-01-01

    The magnitude and distribution of incoming shortwave solar radiation (SW) has significant influence on the productive capacity of forest vegetation. Models that estimate forest productivity require accurate and spatially explicit radiation surfaces that resolve both long- and short-term temporal climatic patterns and that account for topographic variability of the land...

  1. Clouds and more: ARM climate modeling best estimate data: A new data product for climate studies

    DOE PAGES

    Xie, Shaocheng; McCoy, Renata B.; Klein, Stephen A.; ...

    2010-01-01

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program (www.arm.gov) was created in 1989 to address scientific uncertainties related to global climate change, with a focus on the crucial role of clouds and their influence on the transfer of radiation atmosphere. Here, a central activity is the acquisition of detailed observations of clouds and radiation, as well as related atmospheric variables for climate model evaluation and improvement.

  2. Progress Report for Annex II--Assessment of Solar Radiation Resources in Saudi Arabia 1993-1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Amoudi, Anmed; Alawaji, Saleh H.; Cornwall, Chris

    1999-08-20

    In 1987, the United States Department of Energy (DOE) and the King Abdulaziz City for Science and Technology (KACST) signed a five-year Agreement for Cooperation in the Field of Renewable Energy Research and Development (R and D), which has been extended to 2000. Tasks include: (1) upgrade solar radiation measurements in Saudi Arabia; (2) assemble a database of concurrent solar radiation, satellite (METEOSAT), and meteorological data; (3) adapt NREL models and other software for Saudi Arabia; (4) develop procedures, algorithms, and software to estimate solar irradiance; and (5) prepare a grid of solar radiation data for preparing maps and atlasesmore » and estimating solar radiation resources and solar energy system performances at locations in Saudi Arabia.« less

  3. Uncertainties in estimating health risks associated with exposure to ionising radiation.

    PubMed

    Preston, R Julian; Boice, John D; Brill, A Bertrand; Chakraborty, Ranajit; Conolly, Rory; Hoffman, F Owen; Hornung, Richard W; Kocher, David C; Land, Charles E; Shore, Roy E; Woloschak, Gayle E

    2013-09-01

    The information for the present discussion on the uncertainties associated with estimation of radiation risks and probability of disease causation was assembled for the recently published NCRP Report No. 171 on this topic. This memorandum provides a timely overview of the topic, given that quantitative uncertainty analysis is the state of the art in health risk assessment and given its potential importance to developments in radiation protection. Over the past decade the increasing volume of epidemiology data and the supporting radiobiology findings have aided in the reduction of uncertainty in the risk estimates derived. However, it is equally apparent that there remain significant uncertainties related to dose assessment, low dose and low dose-rate extrapolation approaches (e.g. the selection of an appropriate dose and dose-rate effectiveness factor), the biological effectiveness where considerations of the health effects of high-LET and lower-energy low-LET radiations are required and the transfer of risks from a population for which health effects data are available to one for which such data are not available. The impact of radiation on human health has focused in recent years on cancer, although there has been a decided increase in the data for noncancer effects together with more reliable estimates of the risk following radiation exposure, even at relatively low doses (notably for cataracts and cardiovascular disease). New approaches for the estimation of hereditary risk have been developed with the use of human data whenever feasible, although the current estimates of heritable radiation effects still are based on mouse data because of an absence of effects in human studies. Uncertainties associated with estimation of these different types of health effects are discussed in a qualitative and semi-quantitative manner as appropriate. The way forward would seem to require additional epidemiological studies, especially studies of low dose and low dose-rate occupational and perhaps environmental exposures and for exposures to x rays and high-LET radiations used in medicine. The development of models for more reliably combining the epidemiology data with experimental laboratory animal and cellular data can enhance the overall risk assessment approach by providing biologically refined data to strengthen the estimation of effects at low doses as opposed to the sole use of mathematical models of epidemiological data that are primarily driven by medium/high doses. NASA's approach to radiation protection for astronauts, although a unique occupational group, indicates the possible applicability of estimates of risk and their uncertainty in a broader context for developing recommendations on: (1) dose limits for occupational exposure and exposure of members of the public; (2) criteria to limit exposures of workers and members of the public to radon and its short-lived decay products; and (3) the dosimetric quantity (effective dose) used in radiation protection.

  4. Spatio-Temporal Convergence of Maximum Daily Light-Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Xiao, Xiangming; Wolf, Sebastian; Wu, Jin; Wu, Xiaocui; Gioli, Beniamino; Wohlfahrt, Georg; Cescatti, Alessandro; van der Tol, Christiaan; Zhou, Sha; Gough, Christopher M.; Gentine, Pierre; Zhang, Yongguang; Steinbrecher, Rainer; Ardö, Jonas

    2018-04-01

    Light-use efficiency (LUE), which quantifies the plants' efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production estimation. Here we use satellite-based solar-induced chlorophyll fluorescence as a proxy for photosynthetically active radiation absorbed by chlorophyll (APARchl) and derive an estimation of the fraction of APARchl (fPARchl) from four remotely sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (ɛmaxchl), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPARchl, suggesting the corresponding ɛmaxchl to have less seasonal variation. This spatio-temporal convergence of LUE derived from fPARchl can be used to build simple but robust gross primary production models and to better constrain process-based models.

  5. Estimation of incident solar radiation on the roof of the cultural and sports university centre of the Foundation University Los Libertadores

    NASA Astrophysics Data System (ADS)

    Jiménez, S. A.; Carrillo, V. M.; Rátiva, L. C.

    2016-02-01

    This document shows the estimate of the total solar irradiance incident for the set of solar collectors to be located on the roof of cultural and sports university centre (CSUC) of the Foundation University Los Libertadores (FULL) in Bogotá, Colombia, and they will be part of the climate control system of the pool built inside. The calculation was based on experimental data of global solar radiation on the horizontal surface on March, July, October, November and December, through the three most commonly models used to determine the total solar radiation on tilted surfaces: isotropic sky, HDKR and Perez. The results show differences of less than 5% between the values calculated by the three models for December, the month with lower irradiance. For this month, reductions up to 15% and 19% were observed in the estimated irradiance, relative to those obtained on a horizontal surface on a surface under ideal orientation and inclination, respectively.

  6. Real Time Radiation Monitoring Using Nanotechnology

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor); Hanratty, James J. (Inventor); Wilkins, Richard T. (Inventor); Lu, Yijiang (Inventor)

    2016-01-01

    System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.

  7. Evaluating Surface Radiation Fluxes Observed From Satellites in the Southeastern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Pinker, R. T.; Zhang, B.; Weller, R. A.; Chen, W.

    2018-03-01

    This study is focused on evaluation of current satellite and reanalysis estimates of surface radiative fluxes in a climatically important region. It uses unique observations from the STRATUS Ocean Reference Station buoy in a region of persistent marine stratus clouds 1,500 km off northern Chile during 2000-2012. The study shows that current satellite estimates are in better agreement with buoy observations than model outputs at a daily time scale and that satellite data depict well the observed annual cycle in both shortwave and longwave surface radiative fluxes. Also, buoy and satellite estimates do not show any significant trend over the period of overlap or any interannual variability. This verifies the stability and reliability of the satellite data and should make them useful to examine El Niño-Southern Oscillation variability influences on surface radiative fluxes at the STRATUS site for longer periods for which satellite record is available.

  8. Range estimation of passive infrared targets through the atmosphere

    NASA Astrophysics Data System (ADS)

    Cho, Hoonkyung; Chun, Joohwan; Seo, Doochun; Choi, Seokweon

    2013-04-01

    Target range estimation is traditionally based on radar and active sonar systems in modern combat systems. However, jamming signals tremendously degrade the performance of such active sensor devices. We introduce a simple target range estimation method and the fundamental limits of the proposed method based on the atmosphere propagation model. Since passive infrared (IR) sensors measure IR signals radiating from objects in different wavelengths, this method has robustness against electromagnetic jamming. The measured target radiance of each wavelength at the IR sensor depends on the emissive properties of target material and various attenuation factors (i.e., the distance between sensor and target and atmosphere environment parameters). MODTRAN is a tool that models atmospheric propagation of electromagnetic radiation. Based on the results from MODTRAN and atmosphere propagation-based modeling, the target range can be estimated. To analyze the proposed method's performance statistically, we use maximum likelihood estimation (MLE) and evaluate the Cramer-Rao lower bound (CRLB) via the probability density function of measured radiance. We also compare CRLB and the variance of MLE using Monte-Carlo simulation.

  9. Evapotranspiration Calculations for an Alpine Marsh Meadow Site in Three-river Headwater Region

    NASA Astrophysics Data System (ADS)

    Zhou, B.; Xiao, H.

    2016-12-01

    Daily radiation and meteorological data were collected at an alpine marsh meadow site in the Three-river Headwater Region(THR). Use them to assess radiation models determined after comparing the performance between Zuo model and the model recommend by FAO56P-M.Four methods, FAO56P-M, Priestley-Taylor, Hargreaves, and Makkink methods were applied to determine daily reference evapotranspiration( ETr) for the growing season and built the empirical models for estimating daily actual evapotranspiration ETa between ETr derived from the four methods and evapotranspiration derived from Bowen Ratio method on alpine marsh meadow in this region. After comparing the performance of four empirical models by RMSE, MAE and AI, it showed these models all can get the better estimated daily ETaon alpine marsh meadow in this region, and the best performance of the FAO56 P-M, Makkink empirical model were better than Priestley-Taylor and Hargreaves model.

  10. Radiative forcing over the conterminous United States due to contemporary land cover land use change and sensitivity to snow and interannual albedo variability

    USGS Publications Warehouse

    Barnes, Christopher A.; Roy, David P.

    2010-01-01

    Satellite-derived land cover land use (LCLU), snow and albedo data, and incoming surface solar radiation reanalysis data were used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing for 58 ecoregions covering 69% of the conterminous United States. A net positive surface radiative forcing (i.e., warming) of 0.029 Wm−2 due to LCLU albedo change from 1973 to 2000 was estimated. The forcings for individual ecoregions were similar in magnitude to current global forcing estimates, with the most negative forcing (as low as −0.367 Wm−2) due to the transition to forest and the most positive forcing (up to 0.337 Wm−2) due to the conversion to grass/shrub. Snow exacerbated both negative and positive forcing for LCLU transitions between snow-hiding and snow-revealing LCLU classes. The surface radiative forcing estimates were highly sensitive to snow-free interannual albedo variability that had a percent average monthly variation from 1.6% to 4.3% across the ecoregions. The results described in this paper enhance our understanding of contemporary LCLU change on surface radiative forcing and suggest that future forcing estimates should model snow and interannual albedo variation.

  11. A Comparison of Satellite Based, Modeled Derived Daily Solar Radiation Data with Observed Data for the Continental US

    NASA Technical Reports Server (NTRS)

    White, Jeffrey W.; Hoogenboom, Gerrit; Wilkens, Paul W.; Stackhouse, Paul W., Jr.; Hoell, James M.

    2010-01-01

    Many applications of simulation models and related decision support tools for agriculture and natural resource management require daily meteorological data as inputs. Availability and quality of such data, however, often constrain research and decision support activities that require use of these tools. Daily solar radiation (SRAD) data are especially problematic because the instruments require electronic integrators, accurate sensors are expensive, and calibration standards are seldom available. The Prediction Of Worldwide Energy Resources (NASA/POWER; power.larc.nasa.gov) project at the NASA Langley Research Center estimates daily solar radiation based on data that are derived from satellite observations of outgoing visible radiances and atmospheric parameters based upon satellite observations and assimilation models. The solar data are available for a global 1 degree x 1 degree coordinate grid. SRAD can also be estimated based on attenuation of extraterrestrial radiation (Q0) using daily temperature and rainfall data to estimate the optical thickness of the atmosphere. This study compares daily solar radiation data from NASA/POWER (SRADNP) with instrument readings from 295 stations (SRADOB), as well as with values that were estimated with the WGENR solar generator. WGENR was used both with daily temperature and precipitation records from the stations reporting solar data and records from the NOAA Cooperative Observer Program (COOP), thus providing two additional sources of solar data, SRADWG and SRADCO. Values of SRADNP for different grid cells consistently showed higher correlations (typically 0.85 to 0.95) with SRADOB data than did SRADWG or SRADCO for sites within the corresponding cells. Mean values of SRADOB, SRADWG and SRADNP for sites within a grid cell usually were within 1 MJm-2d-1 of each other, but NASA/POWER values averaged 1.1 MJm-2d-1 lower than SRADOB. The magnitude of this bias was greater at lower latitudes and during summer months and may be at least partially explained by assumptions in ambient aerosol properties. Overall, the NASA/POWER solar radiation data are a promising resource for regional modeling studies where realistic accounting of historic variation is required.

  12. Hydrodynamic Modeling of Diego Garcia Lagoon

    DTIC Science & Technology

    2014-08-01

    relative humidity, rainfall rate (m/s), evapotranspiration rate (m/s), net solar shortwave radiation (J/m2/s), cloud cover, wind speed (m/s), and... Evapotranspiration estimates were made using a version of the Modified Penman Equation (CIMIS, 2014). Solar radiation measurements were obtained from

  13. Space Radiation Heart Disease Risk Estimates for Lunar and Mars Missions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Chappell, Lori; Kim, Myung-Hee

    2010-01-01

    The NASA Space Radiation Program performs research on the risks of late effects from space radiation for cancer, neurological disorders, cataracts, and heart disease. For mortality risks, an aggregate over all risks should be considered as well as projection of the life loss per radiation induced death. We report on a triple detriment life-table approach to combine cancer and heart disease risks. Epidemiology results show extensive heterogeneity between populations for distinct components of the overall heart disease risks including hypertension, ischaemic heart disease, stroke, and cerebrovascular diseases. We report on an update to our previous heart disease estimates for Heart disease (ICD9 390-429) and Stroke (ICD9 430-438), and other sub-groups using recent meta-analysis results for various exposed radiation cohorts to low LET radiation. Results for multiplicative and additive risk transfer models are considered using baseline rates for US males and female. Uncertainty analysis indicated heart mortality risks as low as zero, assuming a threshold dose for deterministic effects, and projections approaching one-third of the overall cancer risk. Medan life-loss per death estimates were significantly less than that of solid cancer and leukemias. Critical research questions to improve risks estimates for heart disease are distinctions in mechanisms at high doses (>2 Gy) and low to moderate doses (<2 Gy), and data and basic understanding of radiation doserate and quality effects, and individual sensitivity.

  14. Radiation doses for pediatric nuclear medicine studies: comparing the North American consensus guidelines and the pediatric dosage card of the European Association of Nuclear Medicine.

    PubMed

    Grant, Frederick D; Gelfand, Michael J; Drubach, Laura A; Treves, S Ted; Fahey, Frederic H

    2015-04-01

    Estimated radiation dose is important for assessing and communicating the risks and benefits of pediatric nuclear medicine studies. Radiation dose depends on the radiopharmaceutical, the administered activity, and patient factors such as age and size. Most radiation dose estimates for pediatric nuclear medicine have not been based on administered activities of radiopharmaceuticals recommended by established practice guidelines. The dosage card of the European Association of Nuclear Medicine (EANM) and the North American consensus guidelines each provide recommendations of administered activities of radiopharmaceuticals in children, but there are substantial differences between these two guidelines. For 12 commonly performed pediatric nuclear medicine studies, two established pediatric radiopharmaceutical administration guidelines were used to calculate updated radiation dose estimates and to compare the radiation exposure resulting from the recommendations of each of the guidelines. Estimated radiation doses were calculated for 12 common procedures in pediatric nuclear medicine using administered activities recommended by the dosage card of the EANM (version 1.5.2008) and the 2010 North American consensus guidelines for radiopharmaceutical administered activities in pediatrics. Based on standard models and nominal age-based weights, radiation dose was estimated for typical patients at ages 1, 5, 10 and 15 years and adult. The resulting effective doses were compared, with differences greater than 20% considered significant. Following either the EANM dosage card or the 2010 North American guidelines, the highest effective doses occur with radiopharmaceuticals labeled with fluorine-18 and iodine-123. In 24% of cases, following the North American consensus guidelines would result in a substantially higher radiation dose. The guidelines of the EANM dosage card would lead to a substantially higher radiation dose in 39% of all cases, and in 62% of cases in which patients were age 5 years or younger. For 12 commonly performed pediatric nuclear medicine studies, updated radiation dose estimates can guide efforts to reduce radiation exposure and provide current information for discussing radiation exposure and risk with referring physicians, patients and families. There can be substantial differences in radiation exposure for the same procedure, depending upon which of these two guidelines is followed. This discordance identifies opportunities for harmonization of the guidelines, which may lead to further reduction in nuclear medicine radiation doses in children.

  15. Multiple indicators, multiple causes measurement error models

    DOE PAGES

    Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; ...

    2014-06-25

    Multiple indicators, multiple causes (MIMIC) models are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times, however, when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this study are as follows: (i) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model; (ii) to develop likelihood-based estimation methodsmore » for the MIMIC ME model; and (iii) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. Finally, as a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure.« less

  16. Multiple Indicators, Multiple Causes Measurement Error Models

    PubMed Central

    Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; Carroll, Raymond J.

    2014-01-01

    Multiple Indicators, Multiple Causes Models (MIMIC) are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times however when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this paper are: (1) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model, (2) to develop likelihood based estimation methods for the MIMIC ME model, (3) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. As a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure. PMID:24962535

  17. Multiple indicators, multiple causes measurement error models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.

    Multiple indicators, multiple causes (MIMIC) models are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times, however, when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this study are as follows: (i) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model; (ii) to develop likelihood-based estimation methodsmore » for the MIMIC ME model; and (iii) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. Finally, as a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure.« less

  18. Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS.

    PubMed

    Sato, Tatsuhiko

    2015-01-01

    By extending our previously established model, here we present a new model called "PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 3.0," which can instantaneously estimate terrestrial cosmic ray fluxes of neutrons, protons, ions with charge up to 28 (Ni), muons, electrons, positrons, and photons nearly anytime and anywhere in the Earth's atmosphere. The model comprises numerous analytical functions with parameters whose numerical values were fitted to reproduce the results of the extensive air shower (EAS) simulation performed by Particle and Heavy Ion Transport code System (PHITS). The accuracy of the EAS simulation was well verified using various experimental data, while that of PARMA3.0 was confirmed by the high R2 values of the fit. The models to be used for estimating radiation doses due to cosmic ray exposure, cosmic ray induced ionization rates, and count rates of neutron monitors were validated by investigating their capability to reproduce those quantities measured under various conditions. PARMA3.0 is available freely and is easy to use, as implemented in an open-access software program EXcel-based Program for Calculating Atmospheric Cosmic ray Spectrum (EXPACS). Because of these features, the new version of PARMA/EXPACS can be an important tool in various research fields such as geosciences, cosmic ray physics, and radiation research.

  19. Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS

    PubMed Central

    Sato, Tatsuhiko

    2015-01-01

    By extending our previously established model, here we present a new model called “PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 3.0,” which can instantaneously estimate terrestrial cosmic ray fluxes of neutrons, protons, ions with charge up to 28 (Ni), muons, electrons, positrons, and photons nearly anytime and anywhere in the Earth’s atmosphere. The model comprises numerous analytical functions with parameters whose numerical values were fitted to reproduce the results of the extensive air shower (EAS) simulation performed by Particle and Heavy Ion Transport code System (PHITS). The accuracy of the EAS simulation was well verified using various experimental data, while that of PARMA3.0 was confirmed by the high R 2 values of the fit. The models to be used for estimating radiation doses due to cosmic ray exposure, cosmic ray induced ionization rates, and count rates of neutron monitors were validated by investigating their capability to reproduce those quantities measured under various conditions. PARMA3.0 is available freely and is easy to use, as implemented in an open-access software program EXcel-based Program for Calculating Atmospheric Cosmic ray Spectrum (EXPACS). Because of these features, the new version of PARMA/EXPACS can be an important tool in various research fields such as geosciences, cosmic ray physics, and radiation research. PMID:26674183

  20. Absorbed radiation dosimetry of the D3-specific PET radioligand [18F]FluorTriopride estimated using rodent and nonhuman primate.

    PubMed

    Laforest, Richard; Karimi, Morvarid; Moerlein, Stephen M; Xu, Jinbin; Flores, Hubert P; Bognar, Christopher; Li, Aixiao; Mach, Robert H; Perlmutter, Joel S; Tu, Zhude

    2016-01-01

    [ 18 F]FluorTriopride ([ 18 F]FTP) is a dopamine D 3 -receptor preferring radioligand with potential for investigation of neuropsychiatric disorders including Parkinson disease, dystonia and schizophrenia. Here we estimate human radiation dosimetry for [ 18 F]FTP based on the ex-vivo biodistribution in rodents and in vivo distribution in nonhuman primates. Biodistribution data were generated using male and female Sprague-Dawley rats injected with ~370 KBq of [ 18 F]FTP and euthanized at 5, 30, 60, 120, and 240 min. Organs of interest were dissected, weighed and assayed for radioactivity content. PET imaging studies were performed in two male and one female macaque fascicularis administered 143-190 MBq of [ 18 F]FTP and scanned whole-body in sequential sections. Organ residence times were calculated based on organ time activity curves (TAC) created from regions of Interest. OLINDA/EXM 1.1 was used to estimate human radiation dosimetry based on scaled organ residence times. In the rodent, the highest absorbed radiation dose was the upper large intestines (0.32-0.49 mGy/MBq), with an effective dose of 0.07 mSv/MBq in males and 0.1 mSv/MBq in females. For the nonhuman primate, however, the gallbladder wall was the critical organ (1.81 mGy/MBq), and the effective dose was 0.02 mSv/MBq. The species discrepancy in dosimetry estimates for [ 18 F]FTP based on rat and primate data can be attributed to the slower transit of tracer through the hepatobiliary track of the primate compared to the rat, which lacks a gallbladder. Out findings demonstrate that the nonhuman primate model is more appropriate model for estimating human absorbed radiation dosimetry when hepatobiliary excretion plays a major role in radiotracer elimination.

  1. Exploring the observational constraints on the simulation of brown carbon

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Heald, Colette L.; Liu, Jiumeng; Weber, Rodney J.; Campuzano-Jost, Pedro; Jimenez, Jose L.; Schwarz, Joshua P.; Perring, Anne E.

    2018-01-01

    Organic aerosols (OA) that strongly absorb solar radiation in the near-UV are referred to as brown carbon (BrC). The sources, evolution, and optical properties of BrC remain highly uncertain and contribute significantly to uncertainty in the estimate of the global direct radiative effect (DRE) of aerosols. Previous modeling studies of BrC optical properties and DRE have been unable to fully evaluate model performance due to the lack of direct measurements of BrC absorption. In this study, we develop a global model simulation (GEOS-Chem) of BrC and test it against BrC absorption measurements from two aircraft campaigns in the continental US (SEAC4RS and DC3). To the best of our knowledge, this is the first study to compare simulated BrC absorption with direct aircraft measurements. We show that BrC absorption properties estimated based on previous laboratory measurements agree with the aircraft measurements of freshly emitted BrC absorption but overestimate aged BrC absorption. In addition, applying a photochemical scheme to simulate bleaching/degradation of BrC improves model skill. The airborne observations are therefore consistent with a mass absorption coefficient (MAC) of freshly emitted biomass burning OA of 1.33 m2 g-1 at 365 nm coupled with a 1-day whitening e-folding time. Using the GEOS-Chem chemical transport model integrated with the RRTMG radiative transfer model, we estimate that the top-of-the-atmosphere all-sky direct radiative effect (DRE) of OA is -0.344 Wm-2, 10 % higher than that without consideration of BrC absorption. Therefore, our best estimate of the absorption DRE of BrC is +0.048 Wm-2. We suggest that the DRE of BrC has been overestimated previously due to the lack of observational constraints from direct measurements and omission of the effects of photochemical whitening.

  2. Effect of respiratory motion on internal radiation dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Tianwu; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch; Geneva Neuroscience Center, Geneva University, Geneva CH-1205

    Purpose: Estimation of the radiation dose to internal organs is essential for the assessment of radiation risks and benefits to patients undergoing diagnostic and therapeutic nuclear medicine procedures including PET. Respiratory motion induces notable internal organ displacement, which influences the absorbed dose for external exposure to radiation. However, to their knowledge, the effect of respiratory motion on internal radiation dosimetry has never been reported before. Methods: Thirteen computational models representing the adult male at different respiratory phases corresponding to the normal respiratory cycle were generated from the 4D dynamic XCAT phantom. Monte Carlo calculations were performed using the MCNP transportmore » code to estimate the specific absorbed fractions (SAFs) of monoenergetic photons/electrons, the S-values of common positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124), and the absorbed dose of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) in 28 target regions for both the static (average of dynamic frames) and dynamic phantoms. Results: The self-absorbed dose for most organs/tissues is only slightly influenced by respiratory motion. However, for the lung, the self-absorbed SAF is about 11.5% higher at the peak exhale phase than the peak inhale phase for photon energies above 50 keV. The cross-absorbed dose is obviously affected by respiratory motion for many combinations of source-target pairs. The cross-absorbed S-values for the heart contents irradiating the lung are about 7.5% higher in the peak exhale phase than the peak inhale phase for different positron-emitting radionuclides. For {sup 18}F-FDG, organ absorbed doses are less influenced by respiratory motion. Conclusions: Respiration-induced volume variations of the lungs and the repositioning of internal organs affect the self-absorbed dose of the lungs and cross-absorbed dose between organs in internal radiation dosimetry. The dynamic anatomical model provides more accurate internal radiation dosimetry estimates for the lungs and abdominal organs based on realistic modeling of respiratory motion. This work also contributes to a better understanding of model-induced uncertainties in internal radiation dosimetry.« less

  3. Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950-2003.

    PubMed

    Shimizu, Yukiko; Kodama, Kazunori; Nishi, Nobuo; Kasagi, Fumiyoshi; Suyama, Akihiko; Soda, Midori; Grant, Eric J; Sugiyama, Hiromi; Sakata, Ritsu; Moriwaki, Hiroko; Hayashi, Mikiko; Konda, Manami; Shore, Roy E

    2010-01-14

    To investigate the degree to which ionising radiation confers risk of mortality from heart disease and stroke. Prospective cohort study with more than 50 years of follow-up. Atomic bomb survivors in Hiroshima and Nagasaki, Japan. 86 611 Life Span Study cohort members with individually estimated radiation doses from 0 to >3 Gy (86% received <0.2 Gy). Mortality from stroke or heart disease as the underlying cause of death and dose-response relations with atomic bomb radiation. About 9600 participants died of stroke and 8400 died of heart disease between 1950 and 2003. For stroke, the estimated excess relative risk per gray was 9% (95% confidence interval 1% to 17%, P=0.02) on the basis of a linear dose-response model, but an indication of possible upward curvature suggested relatively little risk at low doses. For heart disease, the estimated excess relative risk per gray was 14% (6% to 23%, P<0.001); a linear model provided the best fit, suggesting excess risk even at lower doses. However, the dose-response effect over the restricted dose range of 0 to 0.5 Gy was not significant. Prospective data on smoking, alcohol intake, education, occupation, obesity, and diabetes had almost no impact on the radiation risk estimates for either stroke or heart disease, and misdiagnosis of cancers as circulatory diseases could not account for the associations seen. Doses above 0.5 Gy are associated with an elevated risk of both stroke and heart disease, but the degree of risk at lower doses is unclear. Stroke and heart disease together account for about one third as many radiation associated excess deaths as do cancers among atomic bomb survivors.

  4. Radiative Forcings from Albedo and Carbon Dynamics after Disturbance in Massachusetts Forests

    NASA Astrophysics Data System (ADS)

    MacLean, R. G.; Williams, C. A.

    2014-12-01

    Recent efforts have sought to compare and contrast the radiative forcings excited by forest disturbances due to both biogeochemical and biogeophysical mechanisms (Bonan et al., 2008) using either in situ measurements (e.g. Randerson et al., 2005; Randerson et al., 2006) or modeling (e.g. Brovkin et al., 2004). Study of boreal forest disturbances led to the important finding that the albedo increase from snow exposure after a canopy destroying fire offsets the warming from carbon emissions (Randerson et al. 2005). Similar study is lacking for temperate forests, leading to uncertainty about the net effect of albedo and carbon forcings following their disturbance. This work quantifies the gross and net radiative forcings from albedo and carbon mechanisms at two clear cut sites in Harvard Forest, Massachusetts, one a Norway spruce plantation clear cut in 2008 and the other a red pine plantation cleared in 1990. Carbon fluxes are estimated from detailed biomass inventories at both sites, as well as additional measurement with eddy covariance at the 2008 clearing. Associated radiative forcing is estimated with conventional methods estimating the perturbation to CO2 in the atmosphere and its lifetime considering ocean uptake (pulse response) and vegetation regrowth. Albedo change is assessed with Landsat derived albedo for both sites, as well as in situ measurements at the 2008 clearing. Associated radiative forcing is estimated with the model-derived radiative kernels provided by Shell et al (2008). From these extensive records we offer an in depth characterization of albedo and carbon forcings immediately following disturbance through to canopy closure and stem exclusion stages of forest growth in a mid-latitude temperate forest region.

  5. Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data

    NASA Astrophysics Data System (ADS)

    Tang, Wenjun; Qin, Jun; Yang, Kun; Liu, Shaomin; Lu, Ning; Niu, Xiaolei

    2016-03-01

    Cloud parameters (cloud mask, effective particle radius, and liquid/ice water path) are the important inputs in estimating surface solar radiation (SSR). These parameters can be derived from MODIS with high accuracy, but their temporal resolution is too low to obtain high-temporal-resolution SSR retrievals. In order to obtain hourly cloud parameters, an artificial neural network (ANN) is applied in this study to directly construct a functional relationship between MODIS cloud products and Multifunctional Transport Satellite (MTSAT) geostationary satellite signals. In addition, an efficient parameterization model for SSR retrieval is introduced and, when driven with MODIS atmospheric and land products, its root mean square error (RMSE) is about 100 W m-2 for 44 Baseline Surface Radiation Network (BSRN) stations. Once the estimated cloud parameters and other information (such as aerosol, precipitable water, ozone) are input to the model, we can derive SSR at high spatiotemporal resolution. The retrieved SSR is first evaluated against hourly radiation data at three experimental stations in the Haihe River basin of China. The mean bias error (MBE) and RMSE in hourly SSR estimate are 12.0 W m-2 (or 3.5 %) and 98.5 W m-2 (or 28.9 %), respectively. The retrieved SSR is also evaluated against daily radiation data at 90 China Meteorological Administration (CMA) stations. The MBEs are 9.8 W m-2 (or 5.4 %); the RMSEs in daily and monthly mean SSR estimates are 34.2 W m-2 (or 19.1 %) and 22.1 W m-2 (or 12.3 %), respectively. The accuracy is comparable to or even higher than two other radiation products (GLASS and ISCCP-FD), and the present method is more computationally efficient and can produce hourly SSR data at a spatial resolution of 5 km.

  6. Role of Radiation Dose in the Risk of Secondary Leukemia After a Solid Tumor in Childhood Treated Between 1980 and 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allard, Aurore; Haddy, Nadia; Le Deley, Marie-Cecile

    2010-12-01

    Purpose: The purpose of this study was to estimate the risk of secondary leukemia as a function of radiation dose, taking into account heterogeneous radiation dose distribution. Methods and Materials: We analyzed a case-control study that investigated the risk of secondary leukemia and myelodysplasia after a solid tumor in childhood; it included 61 patients with leukemia matched with 196 controls. Complete clinical, chemotherapy, and radiotherapy histories were recorded for each patient in the study. Average radiation dose to each of seven bone marrow components for each patient was incorporated into the models, and corresponding risks were summed up. Conditional maximummore » likelihood methods were used to estimate risk parameters. Results: Whatever the model, we failed to evidence a role for the radiation dose to active bone marrow in the risk of later leukemia, myelodysplasia, or myeloproliferative syndrome, when adjusting for epipodophyllotoxin and anthracycline doses. This result was confirmed when fitting models that included total dose of radiation delivered during radiotherapy, when fitting models taking into account dose per fraction, and when restricting the analysis to acute myeloid leukemia. Conclusions: In contrast to results found in similar studies that included children treated before the use of epipodophyllotoxins, this study failed to show a role for radiotherapy in the risk of secondary leukemia after childhood cancer in children treated between 1980 and 1999. This discrepancy was probably due to a competitive mechanism between these two carcinogens.« less

  7. Controversial issues confronting the BEIR III committee: implications for radiation protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabrikant, J.I.

    1981-05-01

    This paper reviews the state-of-the-art for conducting risk assessment studies, especially known and unknown factors relative to radioinduced cancer or other diseases, sources of scientific and epidemiological data, dose-response models used, and uncertainties which limit precision of estimation of excess radiation risks. These are related to decision making for radiation protection policy. (PSB)

  8. Development and application of a 3-D geometry/mass model for LDEF satellite ionizing radiation assessments

    NASA Technical Reports Server (NTRS)

    Colborn, B. L.; Armstrong, T. W.

    1992-01-01

    A computer model of the three dimensional geometry and material distributions for the LDEF spacecraft, experiment trays, and, for selected trays, the components of experiments within a tray was developed for use in ionizing radiation assessments. The model is being applied to provide 3-D shielding distributions around radiation dosimeters to aid in data interpretation, particularly in assessing the directional properties of the radiation exposure. Also, the model has been interfaced with radiation transport codes for 3-D dosimetry response predictions and for calculations related to determining the accuracy of trapped proton and cosmic ray environment models. The methodology is described used in developing the 3-D LDEF model and the level of detail incorporated. Currently, the trays modeled in detail are F2, F8, and H12 and H3. Applications of the model which are discussed include the 3-D shielding distributions around various dosimeters, the influence of shielding on dosimetry responses, and comparisons of dose predictions based on the present 3-D model vs those from 1-D geometry model approximations used in initial estimates.

  9. Effects of low-level chronic irradiation on the radiosensitivity of mammals: Modeling studies

    NASA Astrophysics Data System (ADS)

    Smirnova, O. A.

    Mathematical models of the major hematopoietic lines are used to study the modifying effects of low-level chronic preirradiation on radiosensitivity of mammals which resulted in their reduced radiosensitivity (acquired radioresistance) and elevated radiosensitivity (hypersensitivity) to the subsequent radiation exposure. These effects of preirradiation manifest themselves, respectively, in decreased and increased mortality of preirradiated experimental animals (mice) after challenge acute exposure in comparison with that for previously nonirradiated ones. Analysis of the modeling results reveals the biological mechanisms of these radioprotection and radiosensitization effects, and enables one to estimate the ranges of dose rate and duration of chronic preirradiation where these effects are realized. Juxtapositions of the modeling predictions with the relevant experimental data show their qualitative agreement. All this testifies to the importance of accounting the nonlinear effect of low-level chronic irradiation on radiosensitivity of the hematopoiesis system and organism as a whole, when the radiation risk for astronauts on long-term space missions is estimated. The developed models of hematopoiesis can be used, after appropriate identification, as a component of the mathematical tools for radiation risk assessment.

  10. Modeling the ratio of photosynthetically active radiation to broadband global solar radiation using ground and satellite-based data in the tropics

    NASA Astrophysics Data System (ADS)

    Janjai, S.; Wattan, R.; Sripradit, A.

    2015-12-01

    Data from four stations in Thailand are used to model the ratio of photosynthetically active radiation (PAR) to broadband global solar radiation. The model expresses the ratio of PAR-to-broadband global solar radiation as a function of cloud index, aerosol optical depth, precipitable water, total ozone column and solar zenith angle. Data from the MTSAT-1R and OMI/AURA satellites are used to estimate the cloud index and total ozone column, respectively at each of the four stations, while aerosol optical depth and precipitable water are retrieved from Aerosol Robotic Network (AERONET) sunphotometer measurements, also available at each station. When tested against hourly measurements, the model exhibits a coefficient of variance (R2) equal to or better than 0.96, and root mean square difference (RMSD) in the range of 7.3-7.9% and mean bias difference (MBD) of -4.5% to 3.5%. The model compares favorably with other existing models.

  11. Using Landsat data to estimate evapotranspiration of winter wheat

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.; Heilman, J. L.; Bagley, J. O.; Powers, W. L.

    1977-01-01

    Results obtained from an evapotranspiration model as applied to Kansas winter wheatfields were compared with results determined by a weighing lysimeter, and the standard deviation was found to be less than 0.5 mm/day (however, the 95% confidence interval was between plus and minus 0.2 mm/day). Model inputs are solar radiation, temperature, precipitation, and leaf area index; an equation was developed to estimate the leaf area index from Landsat data. The model provides estimates of transpiration, evaporation, and soil moisture.

  12. WE-AB-303-04: A Tissue Model of Cherenkov Emission From the Skin Surface During Megavoltage X-Ray Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiles, A. N.; Loyalka, S. K.; Izaguirre, E. W.

    Purpose: To develop a tissue model of Cherenkov radiation emitted from the skin surface during external beam radiotherapy. Imaging Cherenkov radiation emitted from human skin allows visualization of the beam position and potentially surface dose estimates, and our goal is to characterize the optical properties of these emissions. Methods: We developed a Monte Carlo model of Cherenkov radiation generated in a semi-infinite tissue slab by megavoltage x-ray beams with optical transmission properties determined by a two-layered skin model. We separate the skin into a dermal and an epidermal layer in our model, where distinct molecular absorbers modify the Cherenkov intensitymore » spectrum in each layer while we approximate the scattering properties with Mie and Rayleigh scattering from the highly structured molecular organization found in human skin. Results: We report on the estimated distributions of the Cherenkov wavelength spectrum, emission angles, and surface distribution for the modeled irradiated skin surface. The expected intensity distribution of Cherenkov radiation emitted from skin shows a distinct intensity peak around 475 nm, the blue region of the visible spectrum, between a pair of optical absorption bands in hemoglobin and a broad plateau beginning near 600 nm and extending to at least 700 nm where melanin and hemoglobin absorption are both low. We also find that the Cherenkov intensity decreases with increasing angle from the surface normal, the majority being emitted within 20 degrees of the surface normal. Conclusion: Our estimate of the spectral distribution of Cherenkov radiation emitted from skin indicates an advantage to using imaging devices with long wavelength spectral responsivity. We also expect the most efficient imaging to be near the surface normal where the intensity is greatest; although for contoured surfaces, the relative intensity across the surface may appear to vary due to decreasing Cherenkov intensity with increased angle from the skin normal. This research was supported in part by a GAANN Fellowship from the Department of Education.« less

  13. Reconciling Ground-Based and Space-Based Estimates of the Frequency of Occurrence and Radiative Effect of Clouds around Darwin, Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Protat, Alain; Young, Stuart; McFarlane, Sally A.

    2014-02-01

    The objective of this paper is to investigate whether estimates of the cloud frequency of occurrence and associated cloud radiative forcing as derived from ground-based and satellite active remote sensing and radiative transfer calculations can be reconciled over a well instrumented active remote sensing site located in Darwin, Australia, despite the very different viewing geometry and instrument characteristics. It is found that the ground-based radar-lidar combination at Darwin does not detect most of the cirrus clouds above 10 km (due to limited lidar detection capability and signal obscuration by low-level clouds) and that the CloudSat radar - Cloud-Aerosol Lidar withmore » Orthogonal Polarization (CALIOP) combination underreports the hydrometeor frequency of occurrence below 2 km height, due to instrument limitations at these heights. The radiative impact associated with these differences in cloud frequency of occurrence is large on the surface downwelling shortwave fluxes (ground and satellite) and the top-of atmosphere upwelling shortwave and longwave fluxes (ground). Good agreement is found for other radiative fluxes. Large differences in radiative heating rate as derived from ground and satellite radar-lidar instruments and RT calculations are also found above 10 km (up to 0.35 Kday-1 for the shortwave and 0.8 Kday-1 for the longwave). Given that the ground-based and satellite estimates of cloud frequency of occurrence and radiative impact cannot be fully reconciled over Darwin, caution should be exercised when evaluating the representation of clouds and cloud-radiation interactions in large-scale models and limitations of each set of instrumentation should be considered when interpreting model-observations differences.« less

  14. Estimation of UV index in the clear-sky using OMI PROFOZ and AERONET data

    NASA Astrophysics Data System (ADS)

    Lee, H.; Kim, J.; Jeong, U.

    2016-12-01

    Due to a strong influence to the human health and ecosystem environment, continuous monitoring of the surface-level ultraviolet (UV) radiation is important nowadays. UV index (UVI) is a simple parameter to show the strength of surface UV radiation, therefore UVI has been widely utilized for the purpose of UV monitoring. In this work, we also try to develop our own retrieval algorithm for better estimation of UVI. The amount of UVA (320-400 nm) and UVB (290-320 nm) radiation at the Earth surface depends on the extent of Rayleigh scattering by atmospheric gas molecules, the radiative absorption by ozone, radiative scattering by clouds, and both absorption and scattering by airborne aerosols. Thus advanced consideration of these factors is the essential part to establish the process of UVI estimation. In this study, we estimate UV Index (UVI) at Seoul first in a clear-sky atmosphere, and then validate this estimated UVI comparing to UVI from Brewer spectrophotometer measurements located at Yonsei University in Seoul. We use the Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) model version 2.6 for our UVI calculation. To consider the ozone and aerosol influence in a real situation, we input ozone and temperature profiles from the Ozone Monitoring Instrument (OMI) Aura vertical profile ozone (PROFOZ) data, and aerosol properties from the AErosol RObotic NETwork (AERONET) measurements at Seoul into the model. Inter-comparison of UVI is performed for the year 2011, 2012 and 2014, and resulted in a high correlation coefficient (R=0.95) under clear-sky condition. But a slight overestimation of Brewer UVI occurred under high AOD conditions in clear-sky. Because our UVI algorithm does not account for surface absorbing aerosols, it is lead to systematic overestimation of surface UV irradiances. Therefore, we also investigate the effect of absorbing aerosol on the amount of UV irradiance in the clear-sky over East Asia.

  15. A Theoretical Evaluation of Secondary Atomization Effects on Engine Performance for Aluminum Gel Propellants

    NASA Technical Reports Server (NTRS)

    Mueller, D. C.; Turns, S. R.

    1994-01-01

    A one-dimensional model of a gel-fueled rocket combustion chamber has been developed. This model includes the processes of liquid hydrocarbon burnout, secondary atomization. aluminum ignition, and aluminum combustion. Also included is a model of radiative heat transfer from the solid combustion products to the chamber walls. Calculations indicate that only modest secondary atomization is required to significantly reduce propellant burnout distances, aluminum oxide residual size and radiation heat wall losses. Radiation losses equal to approximately 2-13 percent of the energy released during combustion were estimated. A two-dimensional, two-phase nozzle code was employed to estimate radiation and nozzle two-phase flow effects on overall engine performance. Radiation losses yielded a 1 percent decrease in engine I(sub sp). Results also indicate that secondary atomization may have less effect on two-phase losses than it does on propellant burnout distance and no effect if oxide particle coagulation and shear induced droplet breakup govern oxide particle size. Engine I(sub sp) was found to decrease from 337.4 to 293.7 seconds as gel aluminum mass loading was varied from 0-70 wt percent. Engine I(sub sp) efficiencies, accounting for radiation and two-phase flow effects, on the order of 0.946 were calculated for a 60 wt percent gel, assuming a fragmentation ratio of 5.

  16. Radiative transfer to space through a precipitating cloud at multiple microwave frequencies. I - Model description. II - Results and analysis

    NASA Technical Reports Server (NTRS)

    Mugnai, Alberto; Smith, Eric A.

    1988-01-01

    The impact of time-dependent cloud microphysical structure on the transfer to space of passive microwave radiation is studied at several frequencies across the EHF and lower SHF portions of the microwave spectrum. The feasibility of using multichannel passive-microwave retrieval techniques to estimate precipitation from space-based platforms is examined. The model is described, and the results are assessed in conjunction with a Nimbus-7 SMMR case study of precipitation in an intense tropical Pacific storm. It is concluded that the effects of cloud liquid water content must be considered to obtain a realistic estimation and distribution of rainrates.

  17. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    DOE PAGES

    Scanza, Rachel; Mahowald, N.; Ghan, Steven J.; ...

    2015-01-01

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale, using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral componentsmore » in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as + 0.05 Wm⁻² for both CAM4 and CAM5 simulations with mineralogy. We compare this to the radiative forcing from simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 Wm⁻²) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, -0.05 and -0.17 Wm⁻², respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.« less

  18. A semi-empirical model for estimating surface solar radiation from satellite data

    NASA Astrophysics Data System (ADS)

    Janjai, Serm; Pattarapanitchai, Somjet; Wattan, Rungrat; Masiri, Itsara; Buntoung, Sumaman; Promsen, Worrapass; Tohsing, Korntip

    2013-05-01

    This paper presents a semi-empirical model for estimating surface solar radiation from satellite data for a tropical environment. The model expresses solar irradiance as a semi-empirical function of cloud index, aerosol optical depth, precipitable water, total column ozone and air mass. The cloud index data were derived from MTSAT-1R satellite, whereas the aerosol optical depth data were obtained from MODIS/Terra satellite. The total column ozone data were derived from OMI/AURA satellite and the precipitable water data were obtained from NCEP/NCAR. A five year period (2006-2010) of these data and global solar irradiance measured at four sites in Thailand namely, Chiang Mai (18.78 °N, 98.98 °E), Nakhon Pathom (13.82 °N, 100.04 °E), Ubon Ratchathani (15.25 °N, 104.87 °E) and Songkhla (7.20 °N, 100.60 °E), were used to derive the coefficients of the model. To evaluate its performance, the model was used to calculate solar radiation at four sites in Thailand namely, Phisanulok (16.93 °N, 100.24 °E), Kanchanaburi (14.02 °N, 99.54 °E), Nongkhai (17.87 °N, 102.72 °E) and Surat Thani (9.13 °N, 99.15 °E) and the results were compared with solar radiation measured at these sites. It was found that the root mean square difference (RMSD) between measured and calculated values of hourly solar radiation was in the range of 25.5-29.4%. The RMSD is reduced to 10.9-17.0% for the case of monthly average hourly radiation. The proposed model has the advantage in terms of the simplicity for applications and reasonable accuracy of the results.

  19. Solar UV Radiation and the Origin of Life on Earth

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Hubeny, Ivan; Lanz, Thierry; Gaidos, Eric; Kasting, James; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    We have started a comprehensive, interdisciplinary study of the influence of solar ultraviolet radiation on the atmosphere of of the early Earth. We plan to model the chemistry of the Earth atmosphere during its evolution, using observed UV flux distributions of early solar analogs as boundary conditions in photochemical models of the Earth's atmosphere. The study has four distinct but interlinked parts: (1) Establishing the radiation of the early Sun; (2) Determining the photochemistry of the early Earth's atmosphere; (3) Estimating the rates of H2 loss from the atmosphere; and (4) Ascertaining how sensitive is the photochemistry to the metallicity of the Sun. We are currently using STIS and EUVE to obtain high-quality far-UV and extreme-UV observations of three early-solar analogs. We will perform a detailed non-LTE study of each stars, and construct theoretical model photosphere, and an empirical model chromospheres, which can be used to extrapolate the continuum to the Lyman continuum region. Given a realistic flux distribution of the early Sun, we will perform photochemical modeling of weakly reducing primitive atmospheres to determine the lifetime and photochemistry of CH4. In particular, we will make estimates of the amount of CH4 present in the prebiotic atmosphere, and estimate the atmospheric CH4 concentration during the Late Archean (2.5-3.0 b.y. ago) and determine whether it would have been sufficiently abundant to help offset reduced solar luminosity at that time. Having obtained a photochemical model, we will solve for the concentrations of greenhouse gasses and important pre-biotic molecules, and perform a detailed radiative transfer calculations to compute the UV flux reaching the surface.

  20. Comparison of measured and modeled radiation, heat and water vapor fluxes: FIFE pilot study

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Hubbard, Kenneth G.; Verma, Shashi B.; Starks, Patrick; Norman, John M.; Walter-Shea, Elizabeth

    1987-01-01

    The feasibility of using radio frequency receivers to collect data from automated weather stations to model fluxes of latent heat, sensible heat, and radiation using routine weather data collected by automated weather stations was tested and the estimated fluxes were compared with fluxes measured over wheat. The model Cupid was used to model the fluxes. Two or more automated weather stations, interrogated by radio frequency and other means, were utilized to examine some of the climatic variability of the First ISLSCP (International Satellite Land-Surface Climatology Project) Field Experiment (FIFE) site, to measure and model reflected and emitted radiation streams from various locations at the site and to compare modeled latent and sensible heat fluxes with measured values. Some bidirectional reflected and emitted radiation data were collected from 23 locations throughout the FIFE site. Analysis of these data along with analysis of the measured sensible and latent heat fluxes is just beginning.

  1. PARMA: PHITS-based Analytical Radiation Model in the Atmosphere--Verification of Its Accuracy in Estimating Cosmic Radiation Doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira

    Estimation of cosmic-ray spectra in the atmosphere has been an essential issue in the evaluation of the aircrew doses. We therefore developed an analytical model that can predict the terrestrial neutron, proton, He nucleus, muon, electron, positron and photon spectra at altitudes below 20 km, based on the Monte Carlo simulation results of cosmic-ray propagation in the atmosphere performed by the PHITS code. The model was designated PARMA. In order to examine the accuracy of PARMA in terms of the neutron dose estimation, we measured the neutron dose rates at the altitudes between 20 to 10400 m, using our developedmore » dose monitor DARWIN mounted on an aircraft. Excellent agreement was observed between the measured dose rates and the corresponding data calculated by PARMA coupled with the fluence-to-dose conversion coefficients, indicating the applicability of the model to be utilized in the route-dose calculation.« less

  2. Aerosol Radiative Forcing over­­­­­­ North-East India: Synergy of Model simulation and ground based observations

    NASA Astrophysics Data System (ADS)

    Pathak, B.

    2015-12-01

    The diurnal evolution of shortwave solar radiance at the surface has been investigated from Kipp and Zonen CNR4 net radiometer measurements in a humid sub-tropical location Dibrugarh in the North Eastern region of India. Data for a total of 345 clear days within a span of two years during March 2013- January 2015 are analyzed which are further utilized to validate the Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) simulated flux. The diurnal evolution of solar radiation maximizes in its amplitude in monsoon months (JJAS) and is minimum during the winter months (DJF) prescribed by the Northern Hemisphere routine. The net shortwave radiation increases from the minimum value of ~100 Wm-2 at the beginning of the year and attains maximum ~300 Wm-2 during monsoon. Both the measured and model simulated diurnal and seasonal solar flux exhibit similar behaviour at the surface with good correlation with R2~ 0.98-0.99. The present study also focuses on the validation of the surface albedo and the albedo retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) measurements by the CNR4 net Radiometer measurements, which again shows a good agreement. This validation is essential for the reliability of satellite retrieved surface reflectance that are being utilised in the radiative transfer models. In order to study the influence of the aerosols upon the incoming solar irradiances the aerosol radiative forcing (ARF) and aerosol radiative forcing efficiency (ARFE) is estimated. The ARFEsurface during the Winter is the highest (-75.02 ± 8.03 W m-2 τ-1) and minimum during Retreating Monsoon (ON) (-58.40 ±25.03 W m-2 τ-1). For both the modeled and the field based estimation, the aerosol radiative forcing obtained during the study period ranged from -39 ±6 Wm-2 to -10 ±4 Wm-2 at the surface and 10±3 Wm-2 to 28±7 Wm-2 at the atmosphere and -7±4 Wm-2 to -10 ±3 Wm-2 at the TOA. The measured and the model ARF values differ by 5 - 8 % in winter and premonsoon and almost ~6% in monsoon. The average atmospheric heating rate is maximum in pre-monsoon for both the estimations. The observation of ARF is further compared with the ICTP's RegCM4 model in order to acquire the model utility in the location where measurements are not feasible.

  3. Estimation of surface temperature in remote pollution measurement experiments

    NASA Technical Reports Server (NTRS)

    Gupta, S. K.; Tiwari, S. N.

    1978-01-01

    A simple algorithm has been developed for estimating the actual surface temperature by applying corrections to the effective brightness temperature measured by radiometers mounted on remote sensing platforms. Corrections to effective brightness temperature are computed using an accurate radiative transfer model for the 'basic atmosphere' and several modifications of this caused by deviations of the various atmospheric and surface parameters from their base model values. Model calculations are employed to establish simple analytical relations between the deviations of these parameters and the additional temperature corrections required to compensate for them. Effects of simultaneous variation of two parameters are also examined. Use of these analytical relations instead of detailed radiative transfer calculations for routine data analysis results in a severalfold reduction in computation costs.

  4. Variation of normal tissue complication probability (NTCP) estimates of radiation-induced hypothyroidism in relation to changes in delineation of the thyroid gland.

    PubMed

    Rønjom, Marianne F; Brink, Carsten; Lorenzen, Ebbe L; Hegedüs, Laszlo; Johansen, Jørgen

    2015-01-01

    To examine the variations of risk-estimates of radiation-induced hypothyroidism (HT) from our previously developed normal tissue complication probability (NTCP) model in patients with head and neck squamous cell carcinoma (HNSCC) in relation to variability of delineation of the thyroid gland. In a previous study for development of an NTCP model for HT, the thyroid gland was delineated in 246 treatment plans of patients with HNSCC. Fifty of these plans were randomly chosen for re-delineation for a study of the intra- and inter-observer variability of thyroid volume, Dmean and estimated risk of HT. Bland-Altman plots were used for assessment of the systematic (mean) and random [standard deviation (SD)] variability of the three parameters, and a method for displaying the spatial variation in delineation differences was developed. Intra-observer variability resulted in a mean difference in thyroid volume and Dmean of 0.4 cm(3) (SD ± 1.6) and -0.5 Gy (SD ± 1.0), respectively, and 0.3 cm(3) (SD ± 1.8) and 0.0 Gy (SD ± 1.3) for inter-observer variability. The corresponding mean differences of NTCP values for radiation-induced HT due to intra- and inter-observer variations were insignificantly small, -0.4% (SD ± 6.0) and -0.7% (SD ± 4.8), respectively, but as the SDs show, for some patients the difference in estimated NTCP was large. For the entire study population, the variation in predicted risk of radiation-induced HT in head and neck cancer was small and our NTCP model was robust against observer variations in delineation of the thyroid gland. However, for the individual patient, there may be large differences in estimated risk which calls for precise delineation of the thyroid gland to obtain correct dose and NTCP estimates for optimized treatment planning in the individual patient.

  5. Comparison between calculations of shortwave radiation with different aerosol datasets and measured data at the MSU MO (Russia)

    NASA Astrophysics Data System (ADS)

    Poliukhov, Aleksei; Chubarova, Natalia; Kinne, Stephan; Rivin, Gdaliy; Shatunova, Marina; Tarasova, Tatiana

    2017-02-01

    The radiation block of the COSMO non-hydrostatic mesoscale model of the atmosphere and soil active layer was tested against a relatively new effective CLIRAD(FC05)-SW radiation model and radiative measurements at the Moscow State University Meteorological Observatory (MSU MO, 55.7N, 37.5E) using different aerosol datasets in cloudless conditions. We used the data of shortwave radiation components from the Kipp&Zonen net radiometer CNR4. The model simulations were performed with the application of various aerosol climatologies including the new MACv2 climatology and the aerosol and water vapor dataset from CIMEL (AERONET) sun photometer measurements. The application of the new MACv2 climatology in the CLIRAD(FC05)-SW radiation model provides the annual average relative error of the total global radiation of -3% varying from 0.5% in May to -7.7% in December. The uncertainty of radiative calculations in the COSMO model according to preliminary estimates changes from 1.4% to 8.4%. against CLIRAD(FC05)-SW radiation model with the same parameters. We showed that in clear sky conditions the sensitivity of air temperature at 2 meters to shortwave net radiation changes is about 0.7-0.9°C per100 W/m2 due to the application of aerosol climatologies over Moscow.

  6. First Global Estimates of Anthropogenic Shortwave Forcing by Methane

    NASA Astrophysics Data System (ADS)

    Collins, William; Feldman, Daniel; Kuo, Chaincy

    2017-04-01

    Although the primary well-mixed greenhouse gases (WMGHGs) absorb both shortwave and longwave radiation, to date assessments of the effects from human-induced increases in atmospheric concentrations of WMGHGs have focused almost exclusively on quantifying the longwave radiative forcing of these gases. However, earlier studies have shown that the shortwave effects of WMGHGs are comparable to many less important longwave forcing agents routinely in these assessments, for example the effects of aircraft contrails, stratospheric anthropogenic methane, and stratospheric water vapor from the oxidation of this methane. These earlier studies include the Radiative Transfer Model Intercomparison Project (RTMIP; Collins et al. 2006) conducted using line-by-line radiative transfer codes as well as the radiative parameterizations from most of the global climate models (GCMs) assembled for the Coupled Model Intercomparison Project (CMIP-3). In this talk, we discuss the first global estimates of the shortwave radiative forcing by methane due to the anthropogenic increase in CH4 between pre-industrial and present-day conditions. This forcing is a balance between reduced heating due to absorption of downwelling sunlight in the stratosphere and increased heating due to absorption of upwelling sunlight reflected from the surface as well clouds and aerosols in the troposphere. These estimates are produced using the Observing System Simulation Experiment (OSSE) framework we have developed for NASA's upcoming Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. The OSSE is designed to compute the monthly mean shortwave radiative forcing based upon global gridded atmospheric and surface conditions extracted from either the meteorological reanalyses collected for the Analysis for MIPs (Ana4MIPs) or the CMIP-5 multi-GCM archive analyzed in the Fifth Assessment Report (AR-5) of the Intergovernmental Panel on Climate Change (IPCC). The OSSE combines these atmospheric conditions with an observationally derived prescription for the Earth's spectral surface albedo as inputs to the MODerate resolution atmospheric TRANsmission (MODTRAN) code. MODTRAN is designed to model atmospheric propagation of electromagnetic radiation for the 100-50,000 1/cm (0.2 to 100 micrometers) spectral range. This covers the spectrum from middle ultraviolet to visible light to far infrared. The most recently released version of the code, MODTRAN6, provides a spectral resolution of 0.2 1/cm using its 0.1 1/cm band model algorithm.

  7. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 1; Improved Method and Uncertainties

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.; hide

    2006-01-01

    A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5 -resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%-80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5deg resolution is relatively small (less than 6% at 5 mm day.1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%-35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%-15% at 5 mm day.1, with proportionate reductions in latent heating sampling errors.

  8. RAMI4PILPS: An intercomparison of formulations for the partitioning of solar radiation in land surface models

    NASA Astrophysics Data System (ADS)

    Widlowski, J.-L.; Pinty, B.; Clerici, M.; Dai, Y.; de Kauwe, M.; De Ridder, K.; Kallel, A.; Kobayashi, H.; Lavergne, T.; Ni-Meister, W.; Olchev, A.; Quaife, T.; Wang, S.; Yang, W.; Yang, Y.; Yuan, H.

    2011-06-01

    Remotely sensed, multiannual data sets of shortwave radiative surface fluxes are now available for assimilation into land surface schemes (LSSs) of climate and/or numerical weather prediction models. The RAMI4PILPS suite of virtual experiments assesses the accuracy and consistency of the radiative transfer formulations that provide the magnitudes of absorbed, reflected, and transmitted shortwave radiative fluxes in LSSs. RAMI4PILPS evaluates models under perfectly controlled experimental conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical for model comparison with in situ observations. More specifically, the shortwave radiation is separated into a visible and near-infrared spectral region, and the quality of the simulated radiative fluxes is evaluated by direct comparison with a 3-D Monte Carlo reference model identified during the third phase of the Radiation transfer Model Intercomparison (RAMI) exercise. The RAMI4PILPS setup thus allows to focus in particular on the numerical accuracy of shortwave radiative transfer formulations and to pinpoint to areas where future model improvements should concentrate. The impact of increasing degrees of structural and spectral subgrid variability on the simulated fluxes is documented and the relevance of any thus emerging biases with respect to gross primary production estimates and shortwave radiative forcings due to snow and fire events are investigated.

  9. ACUTE AND CHRONIC INTAKES OF FALLOUT RADIONUCLIDES BY MARSHALLESE FROM NUCLEAR WEAPONS TESTING AT BIKINI AND ENEWETAK AND RELATED INTERNAL RADIATION DOSES

    PubMed Central

    Simon, Steven L.; Bouville, André; Melo, Dunstana; Beck, Harold L.; Weinstock, Robert M.

    2014-01-01

    Annual internal radiation doses resulting from both acute and chronic intakes of all important dose-contributing radionuclides occurring in fallout from nuclear weapons testing at Bikini and Enewetak from 1946 through 1958 have been estimated for the residents living on all atolls and separate reef islands of the Marshall Islands. Internal radiation absorbed doses to the tissues most at risk to cancer induction (red bone marrow, thyroid, stomach, and colon) have been estimated for representative persons of all population communities for all birth years from 1929 through 1968, and for all years of exposure from 1948 through 1970. The acute intake estimates rely on a model using, as its basis, historical urine bioassay data, for members of the Rongelap Island and Ailinginae communities as well as for Rongerik residents. The model also utilizes fallout times of arrival and radionuclide deposition densities estimated for all tests and all atolls. Acute intakes of 63 radionuclides were estimated for the populations of the 20 inhabited atolls and for the communities that were relocated during the testing years for reasons of safety and decontamination. The model used for chronic intake estimates is based on reported whole-body, urine, and blood counting data for residents of Utrik and Rongelap. Dose conversion coefficients relating intake to organ absorbed dose were developed using internationally accepted models but specifically tailored for intakes of particulate fallout by consideration of literature-based evidence to choose the most appropriate alimentary tract absorption fraction (f1) values. Dose estimates were much higher for the thyroid gland than for red marrow, stomach wall, or colon. The highest thyroid doses to adults were about 7,600 mGy for the people exposed on Rongelap; thyroid doses to adults were much lower, by a factor of 100 or more, for the people exposed on the populated atolls of Kwajalein and Majuro. The estimates of radionuclide intake and internal radiation dose to the Marshallese that are presented in this paper are the most complete available anywhere and were used to make projections of lifetime cancer risks to the exposed populations, which are presented in a companion paper in this volume. PMID:20622550

  10. Acute and chronic intakes of fallout radionuclides by Marshallese from nuclear weapons testing at Bikini and Enewetak and related internal radiation doses.

    PubMed

    Simon, Steven L; Bouville, André; Melo, Dunstana; Beck, Harold L; Weinstock, Robert M

    2010-08-01

    Annual internal radiation doses resulting from both acute and chronic intakes of all important dose-contributing radionuclides occurring in fallout from nuclear weapons testing at Bikini and Enewetak from 1946 through 1958 have been estimated for the residents living on all atolls and separate reef islands of the Marshall Islands. Internal radiation absorbed doses to the tissues most at risk to cancer induction (red bone marrow, thyroid, stomach, and colon) have been estimated for representative persons of all population communities for all birth years from 1929 through 1968, and for all years of exposure from 1948 through 1970. The acute intake estimates rely on a model using, as its basis, historical urine bioassay data, for members of the Rongelap Island and Ailinginae communities as well as for Rongerik residents. The model also utilizes fallout times of arrival and radionuclide deposition densities estimated for all tests and all atolls. Acute intakes of 63 radionuclides were estimated for the populations of the 20 inhabited atolls and for the communities that were relocated during the testing years for reasons of safety and decontamination. The model used for chronic intake estimates is based on reported whole-body, urine, and blood counting data for residents of Utrik and Rongelap. Dose conversion coefficients relating intake to organ absorbed dose were developed using internationally accepted models but specifically tailored for intakes of particulate fallout by consideration of literature-based evidence to choose the most appropriate alimentary tract absorption fraction (f1) values. Dose estimates were much higher for the thyroid gland than for red marrow, stomach wall, or colon. The highest thyroid doses to adults were about 7,600 mGy for the people exposed on Rongelap; thyroid doses to adults were much lower, by a factor of 100 or more, for the people exposed on the populated atolls of Kwajalein and Majuro. The estimates of radionuclide intake and internal radiation dose to the Marshallese that are presented in this paper are the most complete available anywhere and were used to make projections of lifetime cancer risks to the exposed populations, which are presented in a companion paper in this volume.

  11. Intercepted photosynthetically active radiation in wheat canopies estimated by spectral reflectance. [Phoenix, Arizona

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.; Asrar, G.; Kanemasu, E. T.

    1982-01-01

    The interception of photosynthetically active radiation (PAR) was evaluated relative to greenness and normalized difference (MSS 7-5/7+5) for five planting dates of wheat for 1978-79 and 1979-80 in Phoenix. Intercepted PAR was calculated from a model driven by leaf area index and stage of growth. Linear relationships were found between greenness and normalized difference with a separate model representing growth and senescence of the crop. Normalized difference was a significantly better model and would be easier to apply than the empirically derived greenness parameter. For the leaf area growth portion of the season the model between PAR interception and normalized difference was the same over years, however, for the leaf senescence the models showed more variability due to the lack of data on measured interception in sparse canopies. Normalized difference could be used to estimate PAR interception directly for crop growth models.

  12. Simultaneous Position, Velocity, Attitude, Angular Rates, and Surface Parameter Estimation Using Astrometric and Photometric Observations

    DTIC Science & Technology

    2013-07-01

    Additionally, a physically consistent BRDF and radiation pressure model is utilized thus enabling an accurate physical link between the observed... BRDF and radiation pressure model is utilized thus enabling an accurate physical link between the observed photometric brightness and the attitudinal...source and the observer is ( ) VLVLH ˆˆˆˆˆ ++= (2) with angles α and β from N̂ and is used in many analytic BRDF models . There are many

  13. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion

    PubMed Central

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-01-01

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g., Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep (RFIC) method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with Shearwave Dispersion Ultrasound Vibrometry (SDUV) is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements. PMID:22345425

  14. Building Protection Against External Ionizing Fallout Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillon, Michael B.; Homann, Steven G.

    A nuclear explosion has the potential to injure or kill tens to hundreds of thousands of people through exposure to fallout (external gamma) radiation. Existing buildings can protect their occupants (reducing external radiation exposures) by placing material and distance between fallout particles and indoor individuals. This protection is not well captured in current fallout risk assessment models and so the US Department of Defense is implementing the Regional Shelter Analysis methodology to improve the ability of the Hazard Prediction and Assessment Capability (HPAC) model to account for building protection. This report supports the HPAC improvement effort by identifying a setmore » of building attributes (next page) that, when collectively specified, are sufficient to calculate reasonably accurate, i.e., within a factor of 2, fallout shelter quality estimates for many individual buildings. The set of building attributes were determined by first identifying the key physics controlling building protection from fallout radiation and then assessing which building attributes are relevant to the identified physics. This approach was evaluated by developing a screening model (PFscreen) based on the identified physics and comparing the screening model results against the set of existing independent experimental, theoretical, and modeled building protection estimates. In the interests of transparency, we have developed a benchmark dataset containing (a) most of the relevant primary experimental data published by prior generations of fallout protection scientists as well as (b) the screening model results.« less

  15. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.

    PubMed

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-03-07

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.

  16. Monte Carlo mixture model of lifetime cancer incidence risk from radiation exposure on shuttle and international space station

    NASA Technical Reports Server (NTRS)

    Peterson, L. E.; Cucinotta, F. A.; Wilson, J. W. (Principal Investigator)

    1999-01-01

    Estimating uncertainty in lifetime cancer risk for human exposure to space radiation is a unique challenge. Conventional risk assessment with low-linear-energy-transfer (LET)-based risk from Japanese atomic bomb survivor studies may be inappropriate for relativistic protons and nuclei in space due to track structure effects. This paper develops a Monte Carlo mixture model (MCMM) for transferring additive, National Institutes of Health multiplicative, and multiplicative excess cancer incidence risks based on Japanese atomic bomb survivor data to determine excess incidence risk for various US astronaut exposure profiles. The MCMM serves as an anchor point for future risk projection methods involving biophysical models of DNA damage from space radiation. Lifetime incidence risks of radiation-induced cancer for the MCMM based on low-LET Japanese data for nonleukemia (all cancers except leukemia) were 2.77 (90% confidence limit, 0.75-11.34) for males exposed to 1 Sv at age 45 and 2.20 (90% confidence limit, 0.59-10.12) for males exposed at age 55. For females, mixture model risks for nonleukemia exposed separately to 1 Sv at ages of 45 and 55 were 2.98 (90% confidence limit, 0.90-11.70) and 2.44 (90% confidence limit, 0.70-10.30), respectively. Risks for high-LET 200 MeV protons (LET=0.45 keV/micrometer), 1 MeV alpha-particles (LET=100 keV/micrometer), and 600 MeV iron particles (LET=180 keV/micrometer) were scored on a per particle basis by determining the particle fluence required for an average of one particle per cell nucleus of area 100 micrometer(2). Lifetime risk per proton was 2.68x10(-2)% (90% confidence limit, 0.79x10(-3)%-0. 514x10(-2)%). For alpha-particles, lifetime risk was 14.2% (90% confidence limit, 2.5%-31.2%). Conversely, lifetime risk per iron particle was 23.7% (90% confidence limit, 4.5%-53.0%). Uncertainty in the DDREF for high-LET particles may be less than that for low-LET radiation because typically there is very little dose-rate dependence. Probability density functions for high-LET radiation quality and dose-rate may be preferable to conventional risk assessment approaches. Nuclear reactions and track structure effects in tissue may not be properly estimated by existing data using in vitro models for estimating RBEs. The method used here is being extended to estimate uncertainty in spacecraft shielding effectiveness in various space radiation environments.

  17. Estimating Risk of Hematopoietic Acute Radiation Syndrome in Children.

    PubMed

    Adams, Tim G; Sumner, Louise E; Casagrande, Rocco

    2017-12-01

    Following a radiological terrorist attack or radiation accident, the general public may be exposed to radiation. Historically, modeling efforts have focused on radiation effects on a "reference man"-a 70-kg, 180-cm-tall, 20- to 30-y-old male-which does not adequately reflect radiation hazard to special populations, particularly children. This work examines the radiosensitivity of children with respect to reference man to develop a set of parameters for modeling hematopoetic acute radiation syndrome in children. This analysis was performed using animal studies and the results verified using data from medical studies. Overall, the hematopoietic system in children is much more radiosensitive than that in adults, with the LD50 for children being 56% to 91% of the LD50 of adults, depending on age.

  18. Global Radiative Forcing of Coupled Tropospheric Ozone and Aerosols in a Unified General Circulation Model

    NASA Technical Reports Server (NTRS)

    Liao, Hong; Seinfeld, John H.; Adams, Peter J.; Mickley, Loretta J.

    2008-01-01

    Global simulations of sea salt and mineral dust aerosols are integrated into a previously developed unified general circulation model (GCM), the Goddard Institute for Space Studies (GISS) GCM II', that simulates coupled tropospheric ozone-NOx-hydrocarbon chemistry and sulfate, nitrate, ammonium, black carbon, primary organic carbon, and secondary organic carbon aerosols. The fully coupled gas-aerosol unified GCM allows one to evaluate the extent to which global burdens, radiative forcing, and eventually climate feedbacks of ozone and aerosols are influenced by gas-aerosol chemical interactions. Estimated present-day global burdens of sea salt and mineral dust are 6.93 and 18.1 Tg with lifetimes of 0.4 and 3.9 days, respectively. The GCM is applied to estimate current top of atmosphere (TOA) and surface radiative forcing by tropospheric ozone and all natural and anthropogenic aerosol components. The global annual mean value of the radiative forcing by tropospheric ozone is estimated to be +0.53 W m(sup -2) at TOA and +0.07 W m(sup -2) at the Earth's surface. Global, annual average TOA and surface radiative forcing by all aerosols are estimated as -0.72 and -4.04 W m(sup -2), respectively. While the predicted highest aerosol cooling and heating at TOA are -10 and +12 W m(sup -2) respectively, surface forcing can reach values as high as -30 W m(sup -2), mainly caused by the absorption by black carbon, mineral dust, and OC. We also estimate the effects of chemistry-aerosol coupling on forcing estimates based on currently available understanding of heterogeneous reactions on aerosols. Through altering the burdens of sulfate, nitrate, and ozone, heterogeneous reactions are predicted to change the global mean TOA forcing of aerosols by 17% and influence global mean TOA forcing of tropospheric ozone by 15%.

  19. Functional Data Analysis in NTCP Modeling: A New Method to Explore the Radiation Dose-Volume Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benadjaoud, Mohamed Amine, E-mail: mohamedamine.benadjaoud@gustaveroussy.fr; Université Paris sud, Le Kremlin-Bicêtre; Institut Gustave Roussy, Villejuif

    2014-11-01

    Purpose/Objective(s): To describe a novel method to explore radiation dose-volume effects. Functional data analysis is used to investigate the information contained in differential dose-volume histograms. The method is applied to the normal tissue complication probability modeling of rectal bleeding (RB) for patients irradiated in the prostatic bed by 3-dimensional conformal radiation therapy. Methods and Materials: Kernel density estimation was used to estimate the individual probability density functions from each of the 141 rectum differential dose-volume histograms. Functional principal component analysis was performed on the estimated probability density functions to explore the variation modes in the dose distribution. The functional principalmore » components were then tested for association with RB using logistic regression adapted to functional covariates (FLR). For comparison, 3 other normal tissue complication probability models were considered: the Lyman-Kutcher-Burman model, logistic model based on standard dosimetric parameters (LM), and logistic model based on multivariate principal component analysis (PCA). Results: The incidence rate of grade ≥2 RB was 14%. V{sub 65Gy} was the most predictive factor for the LM (P=.058). The best fit for the Lyman-Kutcher-Burman model was obtained with n=0.12, m = 0.17, and TD50 = 72.6 Gy. In PCA and FLR, the components that describe the interdependence between the relative volumes exposed at intermediate and high doses were the most correlated to the complication. The FLR parameter function leads to a better understanding of the volume effect by including the treatment specificity in the delivered mechanistic information. For RB grade ≥2, patients with advanced age are significantly at risk (odds ratio, 1.123; 95% confidence interval, 1.03-1.22), and the fits of the LM, PCA, and functional principal component analysis models are significantly improved by including this clinical factor. Conclusion: Functional data analysis provides an attractive method for flexibly estimating the dose-volume effect for normal tissues in external radiation therapy.« less

  20. Radiation-Induced Breast Cancer Incidence and Mortality From Digital Mammography Screening: A Modeling Study.

    PubMed

    Miglioretti, Diana L; Lange, Jane; van den Broek, Jeroen J; Lee, Christoph I; van Ravesteyn, Nicolien T; Ritley, Dominique; Kerlikowske, Karla; Fenton, Joshua J; Melnikow, Joy; de Koning, Harry J; Hubbard, Rebecca A

    2016-02-16

    Estimates of risk for radiation-induced breast cancer from mammography screening have not considered variation in dose exposure or diagnostic work-up after abnormal screening results. To estimate distributions of radiation-induced breast cancer incidence and mortality from digital mammography screening while considering exposure from screening and diagnostic mammography and dose variation among women. 2 simulation-modeling approaches. U.S. population. Women aged 40 to 74 years. Annual or biennial digital mammography screening from age 40, 45, or 50 years until age 74 years. Lifetime breast cancer deaths averted (benefits) and radiation-induced breast cancer incidence and mortality (harms) per 100,000 women screened. Annual screening of 100,000 women aged 40 to 74 years was projected to induce 125 breast cancer cases (95% CI, 88 to 178) leading to 16 deaths (CI, 11 to 23), relative to 968 breast cancer deaths averted by early detection from screening. Women exposed at the 95th percentile were projected to develop 246 cases of radiation-induced breast cancer leading to 32 deaths per 100,000 women. Women with large breasts requiring extra views for complete examination (8% of population) were projected to have greater radiation-induced breast cancer risk (266 cancer cases and 35 deaths per 100,000 women) than other women (113 cancer cases and 15 deaths per 100,000 women). Biennial screening starting at age 50 years reduced risk for radiation-induced cancer 5-fold. Life-years lost from radiation-induced breast cancer could not be estimated. Radiation-induced breast cancer incidence and mortality from digital mammography screening are affected by dose variability from screening, resultant diagnostic work-up, initiation age, and screening frequency. Women with large breasts may have a greater risk for radiation-induced breast cancer. Agency for Healthcare Research and Quality, U.S. Preventive Services Task Force, National Cancer Institute.

  1. Nonparametric estimation of the heterogeneity of a random medium using compound Poisson process modeling of wave multiple scattering.

    PubMed

    Le Bihan, Nicolas; Margerin, Ludovic

    2009-07-01

    In this paper, we present a nonparametric method to estimate the heterogeneity of a random medium from the angular distribution of intensity of waves transmitted through a slab of random material. Our approach is based on the modeling of forward multiple scattering using compound Poisson processes on compact Lie groups. The estimation technique is validated through numerical simulations based on radiative transfer theory.

  2. A model relating radiated power and impurity concentrations during Ne, N and Ar injection in Tore Supra

    NASA Astrophysics Data System (ADS)

    Hogan, J.; Demichelis, C.; Monier-Garbet, P.; Guirlet, R.; Hess, W.; Schunke, B.

    2000-10-01

    A model combining the MIST (core symmetric) and BBQ (SOL asymmetric) codes is used to study the relation between impurity density and radiated power for representative cases from Tore Supra experiments on strong radiation regimes using the ergodic divertor. Transport predictions of external radiation are compared with observation to estimate the absolute impurity density. BBQ provides the incoming distribution of recycling impurity charge states for the radial transport calculation. The shots studied use the ergodic divertor and high ICRH power. Power is first applied and then the extrinsic impurity (Ne, N or Ar) is injected. Separate time dependent intrinsic (C and O) impurity transport calculations match radiation levels before and during the high power and impurity injection phases. Empirical diffusivities are sought to reproduce the UV (CV R, I lines), CVI Lya, OVIII Lya, Zeff, and horizontal bolometer data. The model has been used to calculate the relative radiative efficiency (radiated power / extrinsically contributed electron) for the sample database.

  3. Geometrical Model of Solar Radiation Pressure Based on High-Performing Galileo Clocks - First Geometrical Mapping of the Yarkowsky effect

    NASA Astrophysics Data System (ADS)

    Svehla, Drazen; Rothacher, Markus; Hugentobler, Urs; Steigenberger, Peter; Ziebart, Marek

    2014-05-01

    Solar radiation pressure is the main source of errors in the precise orbit determination of GNSS satellites. All deficiencies in the modeling of Solar radiation pressure map into estimated terrestrial reference frame parameters as well as into derived gravity field coefficients and altimetry results when LEO orbits are determined using GPS. Here we introduce a new approach to geometrically map radial orbit perturbations of GNSS satellites using highly-performing clocks on board the first Galileo satellites. Only a linear model (time bias and time drift) needs to be removed from the estimated clock parameters and the remaining clock residuals map all radial orbit perturbations along the orbit. With the independent SLR measurements, we show that a Galileo clock is stable enough to map radial orbit perturbations continuously along the orbit with a negative sign in comparison to SLR residuals. Agreement between the SLR residuals and the clock residuals is at the 1 cm RMS for an orbit arc of 24 h. Looking at the clock parameters determined along one orbit revolution over a period of one year, we show that the so-called SLR bias in Galileo and GPS orbits can be explained by the translation of the determined orbit in the orbital plane towards the Sun. This orbit translation is due to thermal re-radiation and not accounting for the Sun elevation in the parameterization of the estimated Solar radiation pressure parameters. SLR ranging to GNSS satellites takes place typically at night, e.g. between 6 pm and 6 am local time when the Sun is in opposition to the satellite. Therefore, SLR observes only one part of the GNSS orbit with a negative radial orbit error that is mapped as an artificial bias in SLR observables. The Galileo clocks clearly show orbit translation for all Sun elevations: the radial orbit error is positive when the Sun is in conjuction (orbit noon) and negative when the Sun is in opposition (orbit midnight). The magnitude of this artificial negative SLR bias depends on the orbit quality and should rather be called GNSS orbit bias instead of SLR bias. When LEO satellite orbits are estimated using GPS, this GPS orbit bias is mapped into the antenna phase center. All LEO satellites, such as CHAMP, GRACE and JASON-1/2, need an adjustment of the radial antenna phase center offset. GNSS orbit translations towards the Sun in the orbital plane do not only propagate into the estimated LEO orbits, but also into derived gravity field and altimetry products. Geometrical mapping of orbit perturbations using an on board GNSS clock is a new technique to monitor orbit perturbations along the orbit and was successfully applied in the modeling of Solar radiation pressure. We show that CODE Solar radiation pressure parameterization lacks dependency with the Sun's elevation, i.e. elongation angle (rotation of Solar arrays), especially at low Sun elevations (eclipses). Parameterisation with the Sun elongation angle is used in the so-called T30 model (ROCK-model) that includes thermal re-radiation. A preliminary version of Solar radiation pressure for the first five Galileo and the GPS-36 satellite is based on 2×180 days of the MGEX Campaign. We show that Galileo clocks map the Yarkowsky effect along the orbit, i.e. the lag between the Sun's illumination and thermal re-radiation. We present the first geometrical mapping of anisotropic thermal emission of absorbed sunlight of an illuminated satellite. In this way, the effects of Solar radiation pressure can be modelled with only two paramaters for all Sun elevations.

  4. INDOS: conversational computer codes to implement ICRP-10-10A models for estimation of internal radiation dose to man

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Killough, G.G.; Rohwer, P.S.

    1974-03-01

    INDOS1, INDOS2, and INDOS3 (the INDOS codes) are conversational FORTRAN IV programs, implemented for use in time-sharing mode on the ORNL PDP-10 System. These codes use ICRP10-10A models to estimate the radiation dose to an organ of the body of Reference Man resulting from the ingestion or inhalation of any one of various radionuclides. Two patterns of intake are simulated: intakes at discrete times and continuous intake at a constant rate. The IND0S codes provide tabular output of dose rate and dose vs time, graphical output of dose vs time, and punched-card output of organ burden and dose vs time.more » The models of internal dose calculation are discussed and instructions for the use of the INDOS codes are provided. The INDOS codes are available from the Radiation Shielding Information Center, Oak Ridge National Laboratory, P. O. Box X, Oak Ridge, Tennessee 37830. (auth)« less

  5. [The reentrant binomial model of nuclear anomalies growth in rhabdomyosarcoma RA-23 cell populations under increasing doze of rare ionizing radiation].

    PubMed

    Alekseeva, N P; Alekseev, A O; Vakhtin, Iu B; Kravtsov, V Iu; Kuzovatov, S N; Skorikova, T I

    2008-01-01

    Distributions of nuclear morphology anomalies in transplantable rabdomiosarcoma RA-23 cell populations were investigated under effect of ionizing radiation from 0 to 45 Gy. Internuclear bridges, nuclear protrusions and dumbbell-shaped nuclei were accepted for morphological anomalies. Empirical distributions of the number of anomalies per 100 nuclei were used. The adequate model of reentrant binomial distribution has been found. The sum of binomial random variables with binomial number of summands has such distribution. Averages of these random variables were named, accordingly, internal and external average reentrant components. Their maximum likelihood estimations were received. Statistical properties of these estimations were investigated by means of statistical modeling. It has been received that at equally significant correlation between the radiation dose and the average of nuclear anomalies in cell populations after two-three cellular cycles from the moment of irradiation in vivo the irradiation doze significantly correlates with internal average reentrant component, and in remote descendants of cell transplants irradiated in vitro - with external one.

  6. A Battlefield Obscuration Model (Smoke & Dust)

    DTIC Science & Technology

    1979-10-01

    ia £ utace of clouds, izsclacioon (incoming radiation) during :he day ts dependent upon solar ali.::ude, which is a fuc nof time of: d&7 and time of...year. ’Irnn clouds exisc, chai~r cover and :b*ickness decrease incoming and ouzgoingS radiation. Z-a this syscea iasola:ion ts estimated b7 solar ...alzictude and =odi44ed -or existing condi:±ons of total cloud cover and cloud ceiling height. kc zig~ic, estimates of oucgoing radiacion are =ade by

  7. Answering the Call for Model-Relevant Observations of Aerosols and Clouds

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rozenhaimer, M.; LeBlanc, S.; Vaughan, M.; Stier, P.; Schutgens, N.

    2017-01-01

    We describe a technique for combining multiple A-Train aerosol data sets, namely MODIS spectral AOD (aerosol optical depth), OMI AAOD (absorption aerosol optical depth) and CALIOP aerosol backscatter retrievals (hereafter referred to as MOC retrievals) to estimate full spectral sets of aerosol radiative properties, and ultimately to calculate the 3-D distribution of direct aerosol radiative effects (DARE). We present MOC results using almost two years of data collected in 2007 and 2008, and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. We compare the spatio-temporal distribution of the MOC retrievals and MOC-based calculations of seasonal clear-sky DARE to values derived from four models that participated in the Phase II AeroCom model intercomparison initiative. Comparisons of seasonal aerosol property to AeroCom Phase II results show generally good agreement best agreement with forcing results at TOA is found with GMI-MerraV3.We discuss the challenges in making observations that really address deficiencies in models, with some of the more relevant aspects being representativeness of the observations for climatological states, and whether a given model-measurement difference addresses a sampling or a model error.

  8. Radiation detection method and system using the sequential probability ratio test

    DOEpatents

    Nelson, Karl E [Livermore, CA; Valentine, John D [Redwood City, CA; Beauchamp, Brock R [San Ramon, CA

    2007-07-17

    A method and system using the Sequential Probability Ratio Test to enhance the detection of an elevated level of radiation, by determining whether a set of observations are consistent with a specified model within a given bounds of statistical significance. In particular, the SPRT is used in the present invention to maximize the range of detection, by providing processing mechanisms for estimating the dynamic background radiation, adjusting the models to reflect the amount of background knowledge at the current point in time, analyzing the current sample using the models to determine statistical significance, and determining when the sample has returned to the expected background conditions.

  9. Aerosol Direct Radiative Effects Over the Northwest Atlantic, Northwest Pacific, and North Indian Oceans: Estimates Based on In-situ Chemical and Optical Measurements and Chemical Transport Modeling

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J. A.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.

    2005-12-01

    The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions. Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean during INDOEX, the Northwest Pacific Ocean during ACE-Asia, and the Northwest Atlantic Ocean during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth, and direct radiative effect of aerosols (change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Such comparisons with observations and resultant reductions in uncertainties are essential for improving and developing confidence in climate model calculations incorporating aerosol forcing.

  10. Meta-analysis of cranial CT scans in children. A mathematical model to predict radiation-induced tumors.

    PubMed

    Stein, Sherman C; Hurst, Robert W; Sonnad, Seema S

    2008-01-01

    We aimed to estimate the risks of radiation exposure from a single head CT scan to children of different ages. We constructed a multistate time-dependent Markov model to simulate the course of children exposed to a head CT. The relevant literature was reviewed for probabilities, which were used to calculate tumor types, latencies after exposure and outcomes in the model. Where multiple approximations of the same probability had been reported, meta-analytic techniques were employed to compute pooled estimates. The model was then used to calculate the effect of the radiation exposure on life expectancy and quality of life for children following head CT at different ages. The tumors likely to be induced by low-level cranial irradiation include thyroid carcinoma (47%), meningioma (34%) and glioma (19%). According to the model, a single head CT is likely to cause one of these tumors in 0.22% of 1-year-olds, 30% of whom will consequently die. The exposure will shorten the life expectancy of all exposed 1-year-olds by an average of 0.04 years and their expected quality of life by 0.02 quality-adjusted life years. The risks of radiation exposure diminish for older children. The model predicts that the effective radiation dose from a single head CT is capable of inducing a thyroid or brain tumor in an infant or child. These tumors can severely impact both quality of life and life expectancy. Care should be taken before ordering CT scans in children, particularly in infants and toddlers. Copyright 2008 S. Karger AG, Basel.

  11. Clouds-radiation interactions in a general circulation model - Impact upon the planetary radiation balance

    NASA Technical Reports Server (NTRS)

    Smith, Laura D.; Vonder Haar, Thomas H.

    1991-01-01

    Simultaneously conducted observations of the earth radiation budget and the cloud amount estimates, taken during the June 1979 - May 1980 Nimbus 7 mission were used to show interactions between the cloud amount and raidation and to verify a long-term climate simulation obtained with the latest version of the NCAR Community Climate Model (CCM). The parameterization of the radiative, dynamic, and thermodynamic processes produced the mean radiation and cloud quantities that were in reasonable agreement with satellite observations, but at the expense of simulating their short-term fluctuations. The results support the assumption that the inclusion of the cloud liquid water (ice) variable would be the best mean to reduce the blinking of clouds in NCAR CCM.

  12. a Biokinetic Model for CESIUM-137 in the Fetus

    NASA Astrophysics Data System (ADS)

    Jones, Karen Lynn

    1995-01-01

    Previously, there was no method to determine the dose to the embryo, fetus, fetal organs or placenta from radionuclides within the embryo, fetus, or placenta. In the past, the dose to the fetus was assumed to be equivalent to the dose to the uterus. Watson estimated specific absorbed fractions from various maternal organs to the uterine contents which included the fetus, placenta, and amniotic fluid and Sikov estimated the absorbed dose to the embryo/fetus after assuming 1 uCi of radioactivity was made available to the maternal blood.^{1,2} However, this method did not allow for the calculation of a dose to individual fetal organs or the placenta. The radiation dose to the embryo or fetus from Cs-137 in the fetus and placenta due to a chronic ingestion by the mother was determined. The fraction of Cs-137 in the maternal plasma crossing the placenta to the fetal plasma was estimated. The absorbed dose from Cs-137 in each modelled fetal organ was estimated. Since there has been more research regarding potassium in the human body, and particularly in the pregnant woman, a biokinetic model for potassium was developed first and used as a basis and confirmation of the cesium model. Available pertinent information in physiology, embryology, biokinetics, and radiation dosimetry was utilized. Due to the rapid growth of the fetus and placenta, the pregnancy was divided into four gestational periods. The numerous physiological changes that occurred during pregnancy were considered and an appropriate biokinetic model was developed for each of the gestational periods. The amount of cesium in the placenta, embryo, and fetus was estimated for each period. The dose to the fetus from cesium deposited in the embryo or fetus and in the placenta was determined for each period using Medical Internal Radiation Dosimetry (MIRD) methodology. An uncertainty analysis was also performed to account for the variability of the parameters in the biokinetic model based on the experimental data. The uncertainty in the dose estimate was calculated by propagation of errors after determining the uncertainty in the fetal and placenta mass estimates and the effective half-life.

  13. NASA Space Radiation Protection Strategies: Risk Assessment and Permissible Exposure Limits

    NASA Technical Reports Server (NTRS)

    Huff, J. L.; Patel, Z. S.; Simonsen, L. C.

    2017-01-01

    Permissible exposure limits (PELs) for short-term and career astronaut exposures to space radiation have been set and approved by NASA with the goal of protecting astronauts against health risks associated with ionizing radiation exposure. Short term PELs are intended to prevent clinically significant deterministic health effects, including performance decrements, which could threaten astronaut health and jeopardize mission success. Career PELs are implemented to control late occurring health effects, including a 3% risk of exposure induced death (REID) from cancer, and dose limits are used to prevent cardiovascular and central nervous system diseases. For radiation protection, meeting the cancer PEL is currently the design driver for galactic cosmic ray and solar particle event shielding, mission duration, and crew certification (e.g., 1-year ISS missions). The risk of cancer development is the largest known long-term health consequence following radiation exposure, and current estimates for long-term health risks due to cardiovascular diseases are approximately 30% to 40% of the cancer risk for exposures above an estimated threshold (Deep Space one-year and Mars missions). Large uncertainties currently exist in estimating the health risks of space radiation exposure. Improved understanding through radiobiology and physics research allows increased accuracy in risk estimation and is essential for ensuring astronaut health as well as for controlling mission costs, optimization of mission operations, vehicle design, and countermeasure assessment. We will review the Space Radiation Program Element's research strategies to increase accuracy in risk models and to inform development and validation of the permissible exposure limits.

  14. Comparison of CREME (cosmic-ray effects on microelectronics) model LET (linear energy transfer) spaceflight dosimetry data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letaw, J.R.; Adams, J.H.

    The galactic cosmic radiation (GCR) component of space radiation is the dominant cause of single-event phenomena in microelectronic circuits when Earth's magnetic shielding is low. Spaceflights outside the magnetosphere and in high inclination orbits are examples of such circumstances. In high-inclination orbits, low-energy (high LET) particles are transmitted through the field only at extreme latitudes, but can dominate the orbit-averaged dose. GCR is an important part of the radiation dose to astronauts under the same conditions. As a test of the CREME environmental model and particle transport codes used to estimate single event upsets, we have compiled existing measurements ofmore » HZE doses were compiled where GCR is expected to be important: Apollo 16 and 17, Skylab, Apollo Soyuz Test Project, and Kosmos 782. The LET spectra, due to direct ionization from GCR, for each of these missions has been estimated. The resulting comparisons with data validate the CREME model predictions of high-LET galactic cosmic-ray fluxes to within a factor of two. Some systematic differences between the model and data are identified.« less

  15. Estimation of dew yield from radiative condensers by means of an energy balance model

    NASA Astrophysics Data System (ADS)

    Maestre-Valero, J. F.; Ragab, R.; Martínez-Alvarez, V.; Baille, A.

    2012-08-01

    SummaryThis paper presents an energy balance modelling approach to predict the nightly water yield and the surface temperature (Tf) of two passive radiative dew condensers (RDCs) tilted 30° from horizontal. One was fitted with a white hydrophilic polyethylene foil recommended for dew harvest and the other with a black polyethylene foil widely used in horticulture. The model was validated in south-eastern Spain by comparing the simulation outputs with field measurements of Tf and dew yield. The results indicate that the model is robust and accurate in reproducing the behaviour of the two RDCs, especially in what refers to Tf, whose estimates were very close to the observations. The results were somewhat less precise for dew yield, with a larger scatter around the 1:1 relationship. A sensitivity analysis showed that the simulated dew yield was highly sensitive to changes in relative humidity and downward longwave radiation. The proposed approach provides a useful tool to water managers for quantifying the amount of dew that could be harvested as a valuable water resource in arid, semiarid and water stressed regions.

  16. Mapping Global Ocean Surface Albedo from Satellite Observations: Models, Algorithms, and Datasets

    NASA Astrophysics Data System (ADS)

    Li, X.; Fan, X.; Yan, H.; Li, A.; Wang, M.; Qu, Y.

    2018-04-01

    Ocean surface albedo (OSA) is one of the important parameters in surface radiation budget (SRB). It is usually considered as a controlling factor of the heat exchange among the atmosphere and ocean. The temporal and spatial dynamics of OSA determine the energy absorption of upper level ocean water, and have influences on the oceanic currents, atmospheric circulations, and transportation of material and energy of hydrosphere. Therefore, various parameterizations and models have been developed for describing the dynamics of OSA. However, it has been demonstrated that the currently available OSA datasets cannot full fill the requirement of global climate change studies. In this study, we present a literature review on mapping global OSA from satellite observations. The models (parameterizations, the coupled ocean-atmosphere radiative transfer (COART), and the three component ocean water albedo (TCOWA)), algorithms (the estimation method based on reanalysis data, and the direct-estimation algorithm), and datasets (the cloud, albedo and radiation (CLARA) surface albedo product, dataset derived by the TCOWA model, and the global land surface satellite (GLASS) phase-2 surface broadband albedo product) of OSA have been discussed, separately.

  17. Understanding Coupling of Global and Diffuse Solar Radiation with Climatic Variability

    NASA Astrophysics Data System (ADS)

    Hamdan, Lubna

    Global solar radiation data is very important for wide variety of applications and scientific studies. However, this data is not readily available because of the cost of measuring equipment and the tedious maintenance and calibration requirements. Wide variety of models have been introduced by researchers to estimate and/or predict the global solar radiations and its components (direct and diffuse radiation) using other readily obtainable atmospheric parameters. The goal of this research is to understand the coupling of global and diffuse solar radiation with climatic variability, by investigating the relationships between these radiations and atmospheric parameters. For this purpose, we applied multilinear regression analysis on the data of National Solar Radiation Database 1991--2010 Update. The analysis showed that the main atmospheric parameters that affect the amount of global radiation received on earth's surface are cloud cover and relative humidity. Global radiation correlates negatively with both variables. Linear models are excellent approximations for the relationship between atmospheric parameters and global radiation. A linear model with the predictors total cloud cover, relative humidity, and extraterrestrial radiation is able to explain around 98% of the variability in global radiation. For diffuse radiation, the analysis showed that the main atmospheric parameters that affect the amount received on earth's surface are cloud cover and aerosol optical depth. Diffuse radiation correlates positively with both variables. Linear models are very good approximations for the relationship between atmospheric parameters and diffuse radiation. A linear model with the predictors total cloud cover, aerosol optical depth, and extraterrestrial radiation is able to explain around 91% of the variability in diffuse radiation. Prediction analysis showed that the linear models we fitted were able to predict diffuse radiation with efficiency of test adjusted R2 values equal to 0.93, using the data of total cloud cover, aerosol optical depth, relative humidity and extraterrestrial radiation. However, for prediction purposes, using nonlinear terms or nonlinear models might enhance the prediction of diffuse radiation.

  18. NASA Space Radiation Risk Project: Overview and Recent Results

    NASA Technical Reports Server (NTRS)

    Blattnig, Steve R.; Chappell, Lori J.; George, Kerry A.; Hada, Megumi; Hu, Shaowen; Kidane, Yared H.; Kim, Myung-Hee Y.; Kovyrshina, Tatiana; Norman, Ryan B.; Nounu, Hatem N.; hide

    2015-01-01

    The NASA Space Radiation Risk project is responsible for integrating new experimental and computational results into models to predict risk of cancer and acute radiation syndrome (ARS) for use in mission planning and systems design, as well as current space operations. The project has several parallel efforts focused on proving NASA's radiation risk projection capability in both the near and long term. This presentation will give an overview, with select results from these efforts including the following topics: verification, validation, and streamlining the transition of models to use in decision making; relative biological effectiveness and dose rate effect estimation using a combination of stochastic track structure simulations, DNA damage model calculations and experimental data; ARS model improvements; pathway analysis from gene expression data sets; solar particle event probabilistic exposure calculation including correlated uncertainties for use in design optimization.

  19. An implementation of discrete electron transport models for gold in the Geant4 simulation toolkit

    NASA Astrophysics Data System (ADS)

    Sakata, D.; Incerti, S.; Bordage, M. C.; Lampe, N.; Okada, S.; Emfietzoglou, D.; Kyriakou, I.; Murakami, K.; Sasaki, T.; Tran, H.; Guatelli, S.; Ivantchenko, V. N.

    2016-12-01

    Gold nanoparticle (GNP) boosted radiation therapy can enhance the biological effectiveness of radiation treatments by increasing the quantity of direct and indirect radiation-induced cellular damage. As the physical effects of GNP boosted radiotherapy occur across energy scales that descend down to 10 eV, Monte Carlo simulations require discrete physics models down to these very low energies in order to avoid underestimating the absorbed dose and secondary particle generation. Discrete physics models for electron transportation down to 10 eV have been implemented within the Geant4-DNA low energy extension of Geant4. Such models allow the investigation of GNP effects at the nanoscale. At low energies, the new models have better agreement with experimental data on the backscattering coefficient, and they show similar performance for transmission coefficient data as the Livermore and Penelope models already implemented in Geant4. These new models are applicable in simulations focussed towards estimating the relative biological effectiveness of radiation in GNP boosted radiotherapy applications with photon and electron radiation sources.

  20. Radiation effects in interventional radiology using biological and physical dosimetry methods: a case-control study.

    PubMed

    Ramos, Miguel; Montoro, Alegria; Almonacid, Miguel; Ferrer, Silvia; Barquinero, Joan Francesc; Tortosa, Ricardo; Verdú, Gumersindo; Rodríguez, Pilar; Barrios, Lleonard; Villaescusa, Juan Ignacio

    2008-01-01

    Interventional radiologists and staff members are frequently exposed to protracted and fractionated low doses of ionizing radiation, which extend during all their professional activities. These exposures can derive, due to the irradiation of skin tissues and peripheral blood, in deterministic effects (radiodermitis, aged skin, hands depilation) or stochastic ones (skin and non-solid cancers incidence). Epidemiological studies of population exposed to ionizing radiation provide information of radio-induced effects. The radiation risk or radiological detriment has been estimated from a group of six exposed interventionist radiologists of the Hospital La Fe (Valencia, Spain). Dosimetry has been periodically registered from TLDs and wrist dosimeters (physical methods) and estimated through translocations in lymphocytes of peripheral blood (biological methods), by extrapolating the yield of translocations to their respective dose-effect curves. The probability of non-melanoma skin cancer and leukaemia (acute myelogenous, acute lymphocytic and chronic myelogenous leukaemia) incidence has been estimated through the software RADRISK. This software is based on a transport model from epidemiological studies of population exposed to external low-LET ionizing radiation [1]. Other non-solid carcinomas have not been considered due to their low statistical power, such as myeloid and non-Hodgkin lymphomas. The discrepancies observed between the physically recorded doses and biological estimated doses could indicate that exposed workers did not always wear their dosimeters or these dosimeters were not always exposed to the radiation field.

  1. Radiogenic Risk of Malignant Neoplasms for Techa Riverside Residents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akleyev, A. V.; Krestinina, L. Y.; Preston, D. L.

    As a result of releases of liquid radioactive waste into the Techa River from the Mayak PA in the 1950s, residents of the riverside villages were for decades exposed to external and internal radiation resulting from consumption of locally produced food and river water. Presented in the paper is a brief description of the radiation conditions, organization of medical follow-up of the exposed population, principles for dose estimation, epidemiological analyses of cancer mortality and incidence for residents of the Techa RIverside villages. The estimates of excess relative risk of radiation-related leukemia and solid cancer mortality and incidence obtained for membersmore » of the Techa River cohort point to a clear-cut dependence of the rates on radiation exposure. Attributive risk of cancer incidence characterizing the proportion of radiation-related cancer cases among the total cancers was comparable with that for mortality: 3.2% derived for cancer incidence and 2.5% for cancer mortality. Based on the non-CLL leukemia excess relative risk (ERR) estimates calculated using the linear dose-effect model and the nature of the cohort, it was estimated that 31 (60%) out of 49 leukemia death cases (with the exclusion of 12 cases of chronic lymphatic leukemia) can be related to a long-term radiation exposure due to the contamination of the Techa River.« less

  2. Controlled Studies of Whistler Wave Interactions with Energetic Particles in Radiation Belts

    DTIC Science & Technology

    2009-07-01

    the IGRF geomagnetic field and PIM ionosphere /plasmasphere models . Those simulations demonstrate that on this particular evening 28.5 kHz whistler...a simplified slab model of ionospheric plasmas, we can compute the transmission coefficient and, subsequently, estimate that -15% of the incident...with inner radiation belts as well as the ionospheric effects caused by precipitated energetic electrons. The whistler waves used in our experiments

  3. Development and comparison of computational models for estimation of absorbed organ radiation dose in rainbow trout (Oncorhynchus mykiss) from uptake of iodine-131.

    PubMed

    Martinez, N E; Johnson, T E; Capello, K; Pinder, J E

    2014-12-01

    This study develops and compares different, increasingly detailed anatomical phantoms for rainbow trout (Oncorhynchus mykiss) for the purpose of estimating organ absorbed radiation dose and dose rates from (131)I uptake in multiple organs. The models considered are: a simplistic geometry considering a single organ, a more specific geometry employing additional organs with anatomically relevant size and location, and voxel reconstruction of internal anatomy obtained from CT imaging (referred to as CSUTROUT). Dose Conversion Factors (DCFs) for whole body as well as selected organs of O. mykiss were computed using Monte Carlo modeling, and combined with estimated activity concentrations, to approximate dose rates and ultimately determine cumulative radiation dose (μGy) to selected organs after several half-lives of (131)I. The different computational models provided similar results, especially for source organs (less than 30% difference between estimated doses), and whole body DCFs for each model (∼3 × 10(-3) μGy d(-1) per Bq kg(-1)) were comparable to DCFs listed in ICRP 108 for (131)I. The main benefit provided by the computational models developed here is the ability to accurately determine organ dose. A conservative mass-ratio approach may provide reasonable results for sufficiently large organs, but is only applicable to individual source organs. Although CSUTROUT is the more anatomically realistic phantom, it required much more resource dedication to develop and is less flexible than the stylized phantom for similar results. There may be instances where a detailed phantom such as CSUTROUT is appropriate, but generally the stylized phantom appears to be the best choice for an ideal balance between accuracy and resource requirements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Sci—Fri PM: Dosimetry—04: Radiation out-of-field dose in the treatment of pediatric central nervous system malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taddei, P J; Tannous, J; Nabha, R

    Children diagnosed with central nervous system (CNS) malignancies often receive radiotherapy, which can cause radiogenic late effects. In order to identify and reduce the risk of these late effects, we must understand the radiation doses that these children receive. Modern treatment planning systems accurately estimate the absorbed dose within the treatment fields but poorly estimate the dose outside them. The purpose of our study was to measure the out-of-field dose for children receiving localized radiotherapy for CNS cancer and apply an analytical model for estimating dose as a function of distance from the field edge. Radiation fields designed for amore » 12-year-old boy treated in our clinic were applied to an anthropomorphic phantom containing more than 200 thermoluminescent dosimeters. A double-Gaussian function of absorbed dose versus distance from the field edge (i.e., 50% isodose line) was applied, and parameters were allowed to vary and were fit to the model by minimizing the root mean square deviation, RMSD. The fitted model accurately predicted the dose from distances of 4 cm to 50 cm (RMSD = 0.54 cGy/Gy), but the model was not useful in estimating dose for distances less than 4 cm because of wide variation in measured dose, and the double-Gaussian model failed by systematically underestimating the dose beyond 50 cm. In conclusion, the double-Gaussian model may be applicable for points at distances from the field edge between 4 cm and 50 cm, where most children's radiosensitive tissues are located, but for points beyond 50 cm, an improvement should be investigated.« less

  5. 42 CFR 81.11 - Use of uncertainty analysis in NIOSH-IREP.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... uncertainties in estimating: radiation dose incurred by the covered employee; the radiation dose-cancer relationship (statistical uncertainty in the specific cancer risk model); the extrapolation of risk (risk transfer) from the Japanese to the U.S. population; differences in the amount of cancer effect caused by...

  6. Ultraviolet Radiation: Human Exposure and Health Risks.

    ERIC Educational Resources Information Center

    Tenkate, Thomas D.

    1998-01-01

    Provides an overview of human exposure to ultraviolet radiation and associated health effects as well as risk estimates for acute and chronic conditions resulting from such exposure. Demonstrates substantial reductions in health risk that can be achieved through preventive actions. Also includes a risk assessment model for skin cancer. Contains 36…

  7. Methods to Estimate Solar Radiation Dosimetry in Coral Reefs Using Remote Sensed, Modeled, and in Situ Data.

    EPA Science Inventory

    Solar irradiance has been increasingly recognized as an important determinant of bleaching in coral reefs, but measurements of solar radiation exposure within coral reefs have been relatively limited. Solar irradiance and diffuse down welling attenuation coefficients (Kd, m-1) we...

  8. 42 CFR 81.11 - Use of uncertainty analysis in NIOSH-IREP.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... uncertainties in estimating: radiation dose incurred by the covered employee; the radiation dose-cancer relationship (statistical uncertainty in the specific cancer risk model); the extrapolation of risk (risk transfer) from the Japanese to the U.S. population; differences in the amount of cancer effect caused by...

  9. Three-body radiative capture reactions

    NASA Astrophysics Data System (ADS)

    Casal, J.; Rodríguez-Gallardo, M.; Arias, J. M.; Gómez-Camacho, J.

    2018-01-01

    Radiative capture reaction rates for 6He, 9Be and 17Ne formation at astrophysical conditions are studied within a three-body model using the analytical transformed harmonic oscillator method to calculate their states. An alternative procedure to estimate these rates from experimental data on low-energy breakup is also discussed.

  10. 42 CFR 81.11 - Use of uncertainty analysis in NIOSH-IREP.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... uncertainties in estimating: radiation dose incurred by the covered employee; the radiation dose-cancer relationship (statistical uncertainty in the specific cancer risk model); the extrapolation of risk (risk transfer) from the Japanese to the U.S. population; differences in the amount of cancer effect caused by...

  11. 42 CFR 81.11 - Use of uncertainty analysis in NIOSH-IREP.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... uncertainties in estimating: radiation dose incurred by the covered employee; the radiation dose-cancer relationship (statistical uncertainty in the specific cancer risk model); the extrapolation of risk (risk transfer) from the Japanese to the U.S. population; differences in the amount of cancer effect caused by...

  12. 42 CFR 81.11 - Use of uncertainty analysis in NIOSH-IREP.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... uncertainties in estimating: radiation dose incurred by the covered employee; the radiation dose-cancer relationship (statistical uncertainty in the specific cancer risk model); the extrapolation of risk (risk transfer) from the Japanese to the U.S. population; differences in the amount of cancer effect caused by...

  13. Linear No-Threshold Model VS. Radiation Hormesis

    PubMed Central

    Doss, Mohan

    2013-01-01

    The atomic bomb survivor cancer mortality data have been used in the past to justify the use of the linear no-threshold (LNT) model for estimating the carcinogenic effects of low dose radiation. An analysis of the recently updated atomic bomb survivor cancer mortality dose-response data shows that the data no longer support the LNT model but are consistent with a radiation hormesis model when a correction is applied for a likely bias in the baseline cancer mortality rate. If the validity of the phenomenon of radiation hormesis is confirmed in prospective human pilot studies, and is applied to the wider population, it could result in a considerable reduction in cancers. The idea of using radiation hormesis to prevent cancers was proposed more than three decades ago, but was never investigated in humans to determine its validity because of the dominance of the LNT model and the consequent carcinogenic concerns regarding low dose radiation. Since cancer continues to be a major health problem and the age-adjusted cancer mortality rates have declined by only ∼10% in the past 45 years, it may be prudent to investigate radiation hormesis as an alternative approach to reduce cancers. Prompt action is urged. PMID:24298226

  14. Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.

    2006-01-01

    The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001). Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO) during INDOEX, the Northwest Pacific Ocean (NWP) during ACE-Asia, and the Northwest Atlantic Ocean (NWA) during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth (AOD), and direct radiative effect of aerosols (DRE - change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative transfer calculations by observational inputs increases the clear-sky, 24-h averaged AOD (34±8%), top of atmosphere (TOA) DRE (32±12%), and TOA direct climate forcing of aerosols (DCF - change in radiative flux due to anthropogenic aerosols) (37±7%) relative to values obtained with "a priori" parameterizations of aerosol loadings and properties (GFDL RTM). The resulting constrained TOA DCF is -3.3±0.47, -14±2.6, -6.4±2.1 Wm-2 for the NIO, NWP, and NWA, respectively. Constraining the radiative transfer calculations by observational inputs reduces the uncertainty range in the DCF in these regions relative to global IPCC (2001) estimates by a factor of approximately 2. Such comparisons with observations and resultant reductions in uncertainties are essential for improving and developing confidence in climate model calculations incorporating aerosol forcing.

  15. Computational Investigation of Soot and Radiation in Turbulent Reacting Flows

    NASA Astrophysics Data System (ADS)

    Lalit, Harshad

    This study delves into computational modeling of soot and infrared radiation for turbulent reacting flows, detailed understanding of both of which is paramount in the design of cleaner engines and pollution control. In the first part of the study, the concept of Stochastic Time and Space Series Analysis (STASS) as a numerical tool to compute time dependent statistics of radiation intensity is introduced for a turbulent premixed flame. In the absence of high fidelity codes for large eddy simulation or direct numerical simulation of turbulent flames, the utility of STASS for radiation imaging of reacting flows to understand the flame structure is assessed by generating images of infrared radiation in spectral bands dominated by radiation from gas phase carbon dioxide and water vapor using an assumed PDF method. The study elucidates the need for time dependent computation of radiation intensity for validation with experiments and the need for accounting for turbulence radiation interactions for correctly predicting radiation intensity and consequently the flame temperature and NOx in a reacting fluid flow. Comparison of single point statistics of infrared radiation intensity with measurements show that STASS can not only predict the flame structure but also estimate the dynamics of thermochemical scalars in the flame with reasonable accuracy. While a time series is used to generate realizations of thermochemical scalars in the first part of the study, in the second part, instantaneous realizations of resolved scale temperature, CO2 and H2O mole fractions and soot volume fractions are extracted from a large eddy simulation (LES) to carry out quantitative imaging of radiation intensity (QIRI) for a turbulent soot generating ethylene diffusion flame. A primary motivation of the study is to establish QIRI as a computational tool for validation of soot models, especially in the absence of conventional flow field and measured scalar data for sooting flames. Realizations of scalars from the LES are used in conjunction with the radiation heat transfer equation and a narrow band radiation model to compute time dependent and time averaged images of infrared radiation intensity in spectral bands corresponding to molecular radiation from gas phase carbon dioxide and soot particles exclusively. While qualitative and quantitative comparisons with measured images in the CO2 radiation band show that the flame structure is correctly computed, images computed in the soot radiation band illustrate that the soot volume fraction is under predicted by the computations. The effect of the soot model and cause of under prediction is investigated further by correcting the soot volume fraction using an empirical state relationship. By comparing default simulations with computations using the state relation, it is shown that while the soot model under-estimates the soot concentration, it correctly computes the intermittency of soot in the flame. The study of sooting flames is extended further by performing a parametric analysis of physical and numerical parameters that affect soot formation and transport in two laboratory scale turbulent sooting flames, one fueled by natural gas and the other by ethylene. The study is focused on investigating the effect of molecular diffusion of species, dilution of fuel with hydrogen gas and the effect of chemical reaction mechanism on the soot concentration in the flame. The effect of species Lewis numbers on soot evolution and transport is investigated by carrying out simulations, first with the default equal diffusivity (ED) assumption and then by incorporating a differential diffusion (DD) model. Computations using the DD model over-estimate the concentration of the soot precursor and soot oxidizer species, leading to inconsistencies in the estimate of the soot concentration. The linear differential diffusion (LDD) model, reported previously to consistently model differential diffusion effects is implemented to correct the over prediction effect of the DD model. It is shown that the effect of species Lewis number on soot evolution is a secondary phenomenon and that soot is primarily transported by advection of the fluid in a turbulent flame. The effect of hydrogen dilution on the soot formation and transport process is also studied. It is noted that the decay of soot volume fraction and flame length with hydrogen addition follows trends observed in laminar sooting flame measurements. While hydrogen enhances mixing shown by the laminar flamelet solutions, the mixing effect does not significantly contribute to differential molecular diffusion effects in the soot nucleation regions downstream of the flame and has a negligible effect on soot transport. The sensitivity of computations of soot volume fraction towards the chemical reaction mechanism is shown. It is concluded that modeling reaction pathways of C3 and C4 species that lead up to Polycyclic Aromatic Hydrocarbon (PAH) molecule formation is paramount for accurate predictions of soot in the flame. (Abstract shortened by ProQuest.).

  16. Estimating surface longwave radiative fluxes from satellites utilizing artificial neural networks

    NASA Astrophysics Data System (ADS)

    Nussbaumer, Eric A.; Pinker, Rachel T.

    2012-04-01

    A novel approach for calculating downwelling surface longwave (DSLW) radiation under all sky conditions is presented. The DSLW model (hereafter, DSLW/UMD v2) similarly to its predecessor, DSLW/UMD v1, is driven with a combination of Moderate Resolution Imaging Spectroradiometer (MODIS) level-3 cloud parameters and information from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim model. To compute the clear sky component of DSLW a two layer feed-forward artificial neural network with sigmoid hidden neurons and linear output neurons is implemented; it is trained with simulations derived from runs of the Rapid Radiative Transfer Model (RRTM). When computing the cloud contribution to DSLW, the cloud base temperature is estimated by using an independent artificial neural network approach of similar architecture as previously mentioned, and parameterizations. The cloud base temperature neural network is trained using spatially and temporally co-located MODIS and CloudSat Cloud Profiling Radar (CPR) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. Daily average estimates of DSLW from 2003 to 2009 are compared against ground measurements from the Baseline Surface Radiation Network (BSRN) giving an overall correlation coefficient of 0.98, root mean square error (rmse) of 15.84 W m-2, and a bias of -0.39 W m-2. This is an improvement over an earlier version of the model (DSLW/UMD v1) which for the same time period has an overall correlation coefficient 0.97 rmse of 17.27 W m-2, and bias of 0.73 W m-2.

  17. Spatio-temporal Convergence of Maximum Daily Light-Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll

    DOE PAGES

    Zhang, Yao; Xiao, Xiangming; Wolf, Sebastian; ...

    2018-04-03

    Light-use efficiency (LUE), which quantifies the plants’ efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production (GPP) estimation. Here we use satellite-based solar-induced chlorophyll fluorescence (SIF) as a proxy for photosynthetically active radiation absorbed by chlorophyll (APAR chl) and derive an estimation of the fraction of APAR chl (fPAR chl) from four remotely-sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (εmore » $$chl\\atop{max}$$), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPAR chl, suggesting the corresponding (ε$$chl\\atop{max}$$}$) to have less seasonal variation. Finally, this spatio-temporal convergence of LUE derived from fPAR chl can be used to build simple but robust GPP models and to better constrain process-based models.« less

  18. Spatio-temporal Convergence of Maximum Daily Light-Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yao; Xiao, Xiangming; Wolf, Sebastian

    Light-use efficiency (LUE), which quantifies the plants’ efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production (GPP) estimation. Here we use satellite-based solar-induced chlorophyll fluorescence (SIF) as a proxy for photosynthetically active radiation absorbed by chlorophyll (APAR chl) and derive an estimation of the fraction of APAR chl (fPAR chl) from four remotely-sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (εmore » $$chl\\atop{max}$$), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPAR chl, suggesting the corresponding (ε$$chl\\atop{max}$$}$) to have less seasonal variation. Finally, this spatio-temporal convergence of LUE derived from fPAR chl can be used to build simple but robust GPP models and to better constrain process-based models.« less

  19. Estimation of radiative and conductive properties of a semitransparent medium using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Braiek, A.; Adili, A.; Albouchi, F.; Karkri, M.; Ben Nasrallah, S.

    2016-06-01

    The aim of this work is to simultaneously identify the conductive and radiative parameters of a semitransparent sample using a photothermal method associated with an inverse problem. The identification of the conductive and radiative proprieties is performed by the minimization of an objective function that represents the errors between calculated temperature and measured signal. The calculated temperature is obtained from a theoretical model built with the thermal quadrupole formalism. Measurement is obtained in the rear face of the sample whose front face is excited by a crenel of heat flux. For identification procedure, a genetic algorithm is developed and used. The genetic algorithm is a useful tool in the simultaneous estimation of correlated or nearly correlated parameters, which can be a limiting factor for the gradient-based methods. The results of the identification procedure show the efficiency and the stability of the genetic algorithm to simultaneously estimate the conductive and radiative properties of clear glass.

  20. KREAM: Korean Radiation Exposure Assessment Model for Aviation Route Dose

    NASA Astrophysics Data System (ADS)

    Hwang, J.; Dokgo, K.; Choi, E. J.; Kim, K. C.; Kim, H. P.; Cho, K. S. F.

    2014-12-01

    Since Korean Air has begun to use the polar route from Seoul/ICN airport to New York/JFK airport on August 2006, there are explosive needs for the estimation and prediction against cosmic radiation exposure for Korean aircrew and passengers in South Korea from public. To keep pace with those needs of public, Korean government made the law on safety standards and managements of cosmic radiation for the flight attendants and the pilots in 2013. And we have begun to develop our own Korean Radiation Exposure Assessment Model (KREAM) for aviation route dose since last year funded by Korea Meteorological Administration (KMA). GEANT4 model and NRLMSIS 00 model are used for calculation of the energetic particles' transport in the atmosphere and for obtaining the background atmospheric neutral densities depending on altitude. For prediction the radiation exposure in many routes depending on the various space weather effects, we constructed a database from pre-arranged simulations using all possible combinations of R, S, and G, which are the space weather effect scales provided by the National Oceanic and Atmospheric Administration (NOAA). To get the solar energetic particles' spectrum at the 100 km altitude which we set as a top of the atmospheric layers in the KREAM, we use ACE and GOES satellites' proton flux observations. We compare the results between KREAM and the other cosmic radiation estimation programs such as CARI-6M which is provided by the Federal Aviation Agency (FAA). We also validate KREAM's results by comparison with the measurement from Liulin-6K LET spectrometer onboard Korean commercial flights and Korean Air Force reconnaissance flights.

  1. Spatial radiation environment in a heterogeneous oak woodland using a three-dimensional radiative transfer model and multiple constraints from observations

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Ryu, Y.; Ustin, S.; Baldocchi, D. D.

    2009-12-01

    B15: Remote Characterization of Vegetation Structure: Including Research to Inform the Planned NASA DESDynI and ESA BIOMASS Missions Title: Spatial radiation environment in a heterogeneous oak woodland using a three-dimensional radiative transfer model and multiple constraints from observations Hideki Kobayashi, Youngryel Ryu, Susan Ustin, and Dennis Baldocchi Abstract Accurate evaluations of radiation environments of visible, near infrared, and thermal infrared wavebands in forest canopies are important to estimate energy, water, and carbon fluxes. Californian oak woodlands are sparse and highly clumped so that radiation environments are extremely heterogeneous spatially. The heterogeneity of radiation environments also varies with wavebands which depend on scattering and emission properties. So far, most of modeling studies have been performed in one dimensional radiative transfer models with (or without) clumping effect in the forest canopies. While some studies have been performed by using three dimensional radiative transfer models, several issues are still unresolved. For example, some 3D models calculate the radiation field with individual tree basis, and radiation interactions among trees are not considered. This interaction could be important in the highly scattering waveband such as near infrared. The objective of this study is to quantify the radiation field in the oak woodland. We developed a three dimensional radiative transfer model, which includes the thermal waveband. Soil/canopy energy balances and canopy physiology models, CANOAK, are incorporated in the radiative transfer model to simulate the diurnal patterns of thermal radiation fields and canopy physiology. Airborne LiDAR and canopy gap data measured by the several methods (digital photographs and plant canopy analyzer) were used to constrain the forest structures such as tree positions, crown sizes and leaf area density. Modeling results were tested by a traversing radiometer system that measured incoming photosynthetically active radiation and net radiation at forest floor and spatial variations in canopy reflectances taken by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). In this study, we show how the model with available measurements can reproduce the spatially heterogeneous radiation environments in the oak woodland.

  2. Radiation transport simulation of the Martian GCR surface flux and dose estimation using spherical geometry in PHITS compared to MSL-RAD measurements

    NASA Astrophysics Data System (ADS)

    Flores-McLaughlin, John

    2017-08-01

    Planetary bodies and spacecraft are predominantly exposed to isotropic radiation environments that are subject to transport and interaction in various material compositions and geometries. Specifically, the Martian surface radiation environment is composed of galactic cosmic radiation, secondary particles produced by their interaction with the Martian atmosphere, albedo particles from the Martian regolith and occasional solar particle events. Despite this complex physical environment with potentially significant locational and geometric dependencies, computational resources often limit radiation environment calculations to a one-dimensional or slab geometry specification. To better account for Martian geometry, spherical volumes with respective Martian material densities are adopted in this model. This physical description is modeled with the PHITS radiation transport code and compared to a portion of measurements from the Radiation Assessment Detector of the Mars Science Laboratory. Particle spectra measured between 15 November 2015 and 15 January 2016 and PHITS model results calculated for this time period are compared. Results indicate good agreement between simulated dose rates, proton, neutron and gamma spectra. This work was originally presented at the 1st Mars Space Radiation Modeling Workshop held in 2016 in Boulder, CO.

  3. Radiation transport simulation of the Martian GCR surface flux and dose estimation using spherical geometry in PHITS compared to MSL-RAD measurements.

    PubMed

    Flores-McLaughlin, John

    2017-08-01

    Planetary bodies and spacecraft are predominantly exposed to isotropic radiation environments that are subject to transport and interaction in various material compositions and geometries. Specifically, the Martian surface radiation environment is composed of galactic cosmic radiation, secondary particles produced by their interaction with the Martian atmosphere, albedo particles from the Martian regolith and occasional solar particle events. Despite this complex physical environment with potentially significant locational and geometric dependencies, computational resources often limit radiation environment calculations to a one-dimensional or slab geometry specification. To better account for Martian geometry, spherical volumes with respective Martian material densities are adopted in this model. This physical description is modeled with the PHITS radiation transport code and compared to a portion of measurements from the Radiation Assessment Detector of the Mars Science Laboratory. Particle spectra measured between 15 November 2015 and 15 January 2016 and PHITS model results calculated for this time period are compared. Results indicate good agreement between simulated dose rates, proton, neutron and gamma spectra. This work was originally presented at the 1st Mars Space Radiation Modeling Workshop held in 2016 in Boulder, CO. Copyright © 2017. Published by Elsevier Ltd.

  4. Estimation of Radiofrequency Power Leakage from Microwave Ovens for Dosimetric Assessment at Nonionizing Radiation Exposure Levels

    PubMed Central

    Lopez-Iturri, Peio; de Miguel-Bilbao, Silvia; Aguirre, Erik; Azpilicueta, Leire; Falcone, Francisco; Ramos, Victoria

    2015-01-01

    The electromagnetic field leakage levels of nonionizing radiation from a microwave oven have been estimated within a complex indoor scenario. By employing a hybrid simulation technique, based on coupling full wave simulation with an in-house developed deterministic 3D ray launching code, estimations of the observed electric field values can be obtained for the complete indoor scenario. The microwave oven can be modeled as a time- and frequency-dependent radiating source, in which leakage, basically from the microwave oven door, is propagated along the complete indoor scenario interacting with all of the elements present in it. This method can be of aid in order to assess the impact of such devices on expected exposure levels, allowing adequate minimization strategies such as optimal location to be applied. PMID:25705676

  5. Impact of the 1980 BEIR-III report on low-level radiation risk assessment, radiation protection guides, and public health policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabrikant, J.I.

    1981-06-01

    The author deals with the scientific basis for establishing appropriate radiation protection guides, and this effect on evaluation of societal activities concerned with the health effects in human populations exposed to low-level radiation. Methodology is discussed for estimating risks of radio-induced cancer and genetically related ill-health in man, the sources of data, the dose-response models used, and the precision ascribed to the process. (PSB)

  6. Quantification of the Precipitation Loss of Radiation Belt Electrons Observed by SAMPEX (Invited)

    NASA Astrophysics Data System (ADS)

    Tu, W.; Li, X.; Selesnick, R. S.; Looper, M. D.

    2010-12-01

    Based on SAMPEX/PET observations, the fluxes and the spatial and temporal variations of electron loss to the atmosphere in the Earth’s radiation belt were quantified using a drift-diffusion model that includes the effects of azimuthal drift and pitch angle diffusion. The measured electrons by SAMPEX can be distinguished as trapped, quasi-trapped (in the drift loss cone), or precipitating (in the bounce loss cone), and the model simulates the low-altitude electron distribution from SAMPEX. After fitting the model results to the data, the magnitudes and variations of the electron loss rate can be estimated based on the optimum model parameter values. In this presentation we give an overview of our method and published results, followed by some recent improvements we made on the model, including updating the quantified electron lifetimes more frequently (e.g., every two hours instead of half a day) to achieve smoother variations, estimating the adiabatic effects at SAMPEX’s orbit and their influence on our model results, and calculating the error bar associated with each quantified electron lifetime. This method combining a model with low-altitude observations provides direct quantification of the electron loss rate, as required for any accurate modeling of the radiation belt electron dynamics.

  7. Performance assessment of a photonic radiative cooling system for office buildings

    DOE PAGES

    Wang, Weimin; Fernandez, Nick; Katipamula, Srinivas; ...

    2017-11-08

    Recent advances in materials have demonstrated the ability to maintain radiator surfaces at below-ambient temperatures in the presence of intense, direct sunlight. Daytime radiative cooling is promising for building applications. Here, this paper estimates the energy savings from daytime radiative cooling, specifically based on photonic materials. A photonic radiative cooling system was proposed and modeled using the whole energy simulation program EnergyPlus. A typical medium-sized office building was used for the simulation analysis. Several reference systems were established to quantify the potential of energy savings from the photonic radiative cooling system. The reference systems include a variable-air-volume (VAV) system, amore » hydronic radiant system, and a nighttime radiative cooling system. The savings analysis was made for a number of locations with different climates. Simulation results showed that the photonic radiative cooling system saved between 45% and 68% cooling electricity relative to the VAV system and between 9% and 23% relative to the nighttime radiative cooling system featured with the best coating commercially available on market. Finally, a simple economic analysis was also made to estimate the maximum acceptable incremental cost for upgrading from nighttime cooling to photonic radiative cooling.« less

  8. Performance assessment of a photonic radiative cooling system for office buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Weimin; Fernandez, Nick; Katipamula, Srinivas

    Recent advances in materials have demonstrated the ability to maintain radiator surfaces at below-ambient temperatures in the presence of intense, direct sunlight. Daytime radiative cooling is promising for building applications. Here, this paper estimates the energy savings from daytime radiative cooling, specifically based on photonic materials. A photonic radiative cooling system was proposed and modeled using the whole energy simulation program EnergyPlus. A typical medium-sized office building was used for the simulation analysis. Several reference systems were established to quantify the potential of energy savings from the photonic radiative cooling system. The reference systems include a variable-air-volume (VAV) system, amore » hydronic radiant system, and a nighttime radiative cooling system. The savings analysis was made for a number of locations with different climates. Simulation results showed that the photonic radiative cooling system saved between 45% and 68% cooling electricity relative to the VAV system and between 9% and 23% relative to the nighttime radiative cooling system featured with the best coating commercially available on market. Finally, a simple economic analysis was also made to estimate the maximum acceptable incremental cost for upgrading from nighttime cooling to photonic radiative cooling.« less

  9. Modeling apple surface temperature dynamics based on weather data.

    PubMed

    Li, Lei; Peters, Troy; Zhang, Qin; Zhang, Jingjin; Huang, Danfeng

    2014-10-27

    The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST) dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed) was recorded for seven hours between 11:00-18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of "Fuji" apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.

  10. Background stratified Poisson regression analysis of cohort data.

    PubMed

    Richardson, David B; Langholz, Bryan

    2012-03-01

    Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models.

  11. Modeling Apple Surface Temperature Dynamics Based on Weather Data

    PubMed Central

    Li, Lei; Peters, Troy; Zhang, Qin; Zhang, Jingjin; Huang, Danfeng

    2014-01-01

    The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST) dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed) was recorded for seven hours between 11:00–18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of “Fuji” apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management. PMID:25350507

  12. Sensitivity of NTCP parameter values against a change of dose calculation algorithm.

    PubMed

    Brink, Carsten; Berg, Martin; Nielsen, Morten

    2007-09-01

    Optimization of radiation treatment planning requires estimations of the normal tissue complication probability (NTCP). A number of models exist that estimate NTCP from a calculated dose distribution. Since different dose calculation algorithms use different approximations the dose distributions predicted for a given treatment will in general depend on the algorithm. The purpose of this work is to test whether the optimal NTCP parameter values change significantly when the dose calculation algorithm is changed. The treatment plans for 17 breast cancer patients have retrospectively been recalculated with a collapsed cone algorithm (CC) to compare the NTCP estimates for radiation pneumonitis with those obtained from the clinically used pencil beam algorithm (PB). For the PB calculations the NTCP parameters were taken from previously published values for three different models. For the CC calculations the parameters were fitted to give the same NTCP as for the PB calculations. This paper demonstrates that significant shifts of the NTCP parameter values are observed for three models, comparable in magnitude to the uncertainties of the published parameter values. Thus, it is important to quote the applied dose calculation algorithm when reporting estimates of NTCP parameters in order to ensure correct use of the models.

  13. Sensitivity of NTCP parameter values against a change of dose calculation algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brink, Carsten; Berg, Martin; Nielsen, Morten

    2007-09-15

    Optimization of radiation treatment planning requires estimations of the normal tissue complication probability (NTCP). A number of models exist that estimate NTCP from a calculated dose distribution. Since different dose calculation algorithms use different approximations the dose distributions predicted for a given treatment will in general depend on the algorithm. The purpose of this work is to test whether the optimal NTCP parameter values change significantly when the dose calculation algorithm is changed. The treatment plans for 17 breast cancer patients have retrospectively been recalculated with a collapsed cone algorithm (CC) to compare the NTCP estimates for radiation pneumonitis withmore » those obtained from the clinically used pencil beam algorithm (PB). For the PB calculations the NTCP parameters were taken from previously published values for three different models. For the CC calculations the parameters were fitted to give the same NTCP as for the PB calculations. This paper demonstrates that significant shifts of the NTCP parameter values are observed for three models, comparable in magnitude to the uncertainties of the published parameter values. Thus, it is important to quote the applied dose calculation algorithm when reporting estimates of NTCP parameters in order to ensure correct use of the models.« less

  14. Comparison of four different energy balance models for estimating evapotranspiration in the Midwestern United States

    USGS Publications Warehouse

    Singh, Ramesh K.; Senay, Gabriel B.

    2016-01-01

    The development of different energy balance models has allowed users to choose a model based on its suitability in a region. We compared four commonly used models—Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) model, Surface Energy Balance Algorithm for Land (SEBAL) model, Surface Energy Balance System (SEBS) model, and the Operational Simplified Surface Energy Balance (SSEBop) model—using Landsat images to estimate evapotranspiration (ET) in the Midwestern United States. Our models validation using three AmeriFlux cropland sites at Mead, Nebraska, showed that all four models captured the spatial and temporal variation of ET reasonably well with an R2 of more than 0.81. Both the METRIC and SSEBop models showed a low root mean square error (<0.93 mm·day−1) and a high Nash–Sutcliffe coefficient of efficiency (>0.80), whereas the SEBAL and SEBS models resulted in relatively higher bias for estimating daily ET. The empirical equation of daily average net radiation used in the SEBAL and SEBS models for upscaling instantaneous ET to daily ET resulted in underestimation of daily ET, particularly when the daily average net radiation was more than 100 W·m−2. Estimated daily ET for both cropland and grassland had some degree of linearity with METRIC, SEBAL, and SEBS, but linearity was stronger for evaporative fraction. Thus, these ET models have strengths and limitations for applications in water resource management.

  15. Space radiation risk limits and Earth-Moon-Mars environmental models

    NASA Astrophysics Data System (ADS)

    Cucinotta, Francis A.; Hu, Shaowen; Schwadron, Nathan A.; Kozarev, K.; Townsend, Lawrence W.; Kim, Myung-Hee Y.

    2010-12-01

    We review NASA's short-term and career radiation limits for astronauts and methods for their application to future exploration missions outside of low Earth orbit. Career limits are intended to restrict late occurring health effects and include a 3% risk of exposure-induced death from cancer and new limits for central nervous system and heart disease risks. Short-term dose limits are used to prevent in-flight radiation sickness or death through restriction of the doses to the blood forming organs and to prevent clinically significant cataracts or skin damage through lens and skin dose limits, respectively. Large uncertainties exist in estimating the health risks of space radiation, chiefly the understanding of the radiobiology of heavy ions and dose rate and dose protraction effects, and the limitations in human epidemiology data. To protect against these uncertainties NASA estimates the 95% confidence in the cancer risk projection intervals as part of astronaut flight readiness assessments and mission design. Accurate organ dose and particle spectra models are needed to ensure astronauts stay below radiation limits and to support the goal of narrowing the uncertainties in risk projections. Methodologies for evaluation of space environments, radiation quality, and organ doses to evaluate limits are discussed, and current projections for lunar and Mars missions are described.

  16. Aerosol optical properties and radiative effect under different weather conditions in Harbin, China

    NASA Astrophysics Data System (ADS)

    Mao, Qianjun; Huang, Chunlin; Zhang, Hengxing; Chen, Qixiang; Yuan, Yuan

    2018-03-01

    The aerosol optical properties and radiative effect under different weather conditions in Harbin (126.63°E, 45.75°N) were analyzed based on ground-based Sun/Sky radiometric (CE-318) measurements during September 2016-April 2017. The means values of aerosol optical depth (AOD500) and Angstrom exponent (AE440-870) were 0.37 ± 0.27 and 1.08 ± 0.33, respectively. The mean AOD500 under four weather conditions are apparently higher in severe pollution (Se-Po) days (0.80 ± 0.31) and moderate pollution (Mo-Po) days (0.53 ± 0.25) but lower in slight pollution (Sl-Po) days (0.37 ± 0.26) and no pollution (No-Po) days (0.26 ± 0.20), while the mean values of AE440-870 maintain high, varying from 0.98 to 1.25. The higher AE440-870 indicated that the air quality in Harbin is mainly affected by aerosols originated from anthropogenic sources. The daily values of shortwave (0.25-4 μm) direct aerosol radiative forcing (DARF) at top/bottom of atmosphere (TOA/BOA) were estimated through Santa Barbara DISORT Atmosphere Radiative Transfer (SBDART) model. Further, the aerosol radiative forcing efficiency (ARFE), radiation flux (RF) and atmosphere heating rate (HR) in Harbin were also estimated by the SBDART model.

  17. Computing diffuse fraction of global horizontal solar radiation: A model comparison.

    PubMed

    Dervishi, Sokol; Mahdavi, Ardeshir

    2012-06-01

    For simulation-based prediction of buildings' energy use or expected gains from building-integrated solar energy systems, information on both direct and diffuse component of solar radiation is necessary. Available measured data are, however, typically restricted to global horizontal irradiance. There have been thus many efforts in the past to develop algorithms for the derivation of the diffuse fraction of solar irradiance. In this context, the present paper compares eight models for estimating diffuse fraction of irradiance based on a database of measured irradiance from Vienna, Austria. These models generally involve mathematical formulations with multiple coefficients whose values are typically valid for a specific location. Subsequent to a first comparison of these eight models, three better performing models were selected for a more detailed analysis. Thereby, the coefficients of the models were modified to account for Vienna data. The results suggest that some models can provide relatively reliable estimations of the diffuse fractions of the global irradiance. The calibration procedure could only slightly improve the models' performance.

  18. Influence of tropospheric ozone control on exposure to ultraviolet radiation at the surface.

    PubMed

    Madronich, Sasha; Wagner, Mark; Groth, Philip

    2011-08-15

    Improving air quality by reducing ambient ozone (O(3)) will likely lower O(3) concentrations throughout the troposphere and increase the transmission of solar ultraviolet (UV) radiation to the surface. The changes in surface UV radiation between two control scenarios (nominally 84 and 70 ppb O(3) for summer 2020) in the Eastern two-thirds of the contiguous U.S. are estimated, using tropospheric O(3) profiles calculated with a chemistry-transport model (Community Multi-Scale Air Quality, CMAQ) as inputs to a detailed model of the transfer of solar radiation through the atmosphere (tropospheric ultraviolet-visible, TUV) for clear skies, weighed for the wavelengths known to induce sunburn and skin cancer. Because the incremental emission controls differ according to region, strong spatial variability in O(3) reductions and in corresponding UV radiation increments is seen. The geographically averaged UV increase is 0.11 ± 0.03%, whereas the population-weighted increase is larger, 0.19 ± 0.06%, because O(3) reductions are greater in more densely populated regions. These relative increments in exposure are non-negligible given the already high incidence of UV-related health effects, but are lower by an order of magnitude or more than previous estimates.

  19. Modeling human risk: Cell & molecular biology in context

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    It is anticipated that early in the next century manned missions into outer space will occur, with a mission to Mars scheduled between 2015 and 2020. However, before such missions can be undertaken, a realistic estimation of the potential risks to the flight crews is required. One of the uncertainties remaining in this risk estimation is that posed by the effects of exposure to the radiation environment of outer space. Although the composition of this environment is fairly well understood, the biological effects arising from exposure to it are not. The reasons for this are three-fold: (1) A small butmore » highly significant component of the radiation spectrum in outer space consists of highly charged, high energy (HZE) particles which are not routinely experienced on earth, and for which there are insufficient data on biological effects; (2) Most studies on the biological effects of radiation to date have been high-dose, high dose-rate, whereas in space, with the exception of solar particle events, radiation exposures will be low-dose, low dose-rate; (3) Although it has been established that the virtual absence of gravity in space has a profound effect on human physiology, it is not clear whether these effects will act synergistically with those of radiation exposure. A select panel will evaluate the utilizing experiments and models to accurately predict the risks associated with exposure to HZE particles. Topics of research include cellular and tissue response, health effects associated with radiation damage, model animal systems, and critical markers of Radiation response.« less

  20. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  1. Solar irradiance changes and photobiological effects at earth's surface following astrophysical ionizing radiation events.

    PubMed

    Thomas, Brian C; Neale, Patrick J; Snyder, Brock R

    2015-03-01

    Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in surface-level solar ultraviolet radiation. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In this work, we employed the Tropospheric Ultraviolet and Visible (TUV) radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light) for clear-sky conditions and fixed aerosol parameter values. We also considered a wide range of biological effects on organisms ranging from humans to phytoplankton. We found that past work overestimated UVB irradiance but that relative estimates for increase in exposure to DNA-damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in very limited geographical areas; instead we found a net increase for most of the modeled time-space region. This result has implications for proposed climate changes associated with ionizing radiation events.

  2. Inversion of the Earth spherical albedo from radiation-pressure

    NASA Astrophysics Data System (ADS)

    Wilkman, Olli; Herranen, Joonas; Näränen, Jyri; Virtanen, Jenni; Koivula, Hannu; Poutanen, Markku; Penttilä, Antti; Gritsevich, Maria; Muinonen, Karri

    2017-04-01

    We are studying the retrieval of the spherical albedo and net radiation of the Earth from the perturbations caused by the planet's radiation on the dynamics of its satellites. The spherical or Bond albedo gives the ratio of the fluxes incident on and scattered by the planet. The net radiation represents the net heat input into the planet's climate system and drives changes in its atmospheric, surface, and ocean temperatures. The ultimate aim of the study is inverting the problem and estimating the Earth albedo based on observations of satellites, simultaneously improving the space-geodetic positioning accuracy. Here we investigate the effect of the spherical albedo on satellite orbits with the help of a simplified model. We simulate the propagation of satellite orbits using a new simulation software. The simulation contains the main perturbing forces on medium and high Earth orbits, used by, e.g., navigation satellites, including the radiation pressure of reflected sunlight from the Earth. An arbitrary satellite shape model can be used, and the rotation of the satellite is modeled. In this first study, we use a box-wing satellite model with a simple surface BRDF. We also assume a diffusely reflecting Earth with a single global albedo value. We vary the Earth albedo and search for systematic effects on different orbits. Thereafter, we estimate the dependence of the albedo accuracy on the satellite positioning and timing data available. We show that the inversion of the spherical albedo with reasonable accuracy is feasible from the current space-geodetic measurements.

  3. Satellite estimation of surface spectral ultraviolet irradiance using OMI data in East Asia

    NASA Astrophysics Data System (ADS)

    Lee, H.; Kim, J.; Jeong, U.

    2017-12-01

    Due to a strong influence to the human health and ecosystem environment, continuous monitoring of the surface ultraviolet (UV) irradiance is important nowadays. The amount of UVA (320-400 nm) and UVB (290-320 nm) radiation at the Earth surface depends on the extent of Rayleigh scattering by atmospheric gas molecules, the radiative absorption by ozone, radiative scattering by clouds, and both absorption and scattering by airborne aerosols. Thus advanced consideration of these factors is the essential part to establish the process of UV irradiance estimation. Also UV index (UVI) is a simple parameter to show the strength of surface UV irradiance, therefore UVI has been widely utilized for the purpose of UV monitoring. In this study, we estimate surface UV irradiance at East Asia using realistic input based on OMI Total Ozone and reflectivity, and then validate this estimated comparing to UV irradiance from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) data. In this work, we also try to develop our own retrieval algorithm for better estimation of surface irradiance. We use the Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) model version 2.6 for our UV irradiance calculation. The input to the VLIDORT radiative transfer calculations are the total ozone column (TOMS V7 climatology), the surface albedo (Herman and Celarier, 1997) and the cloud optical depth. Based on these, the UV irradiance is calculated based on look-up table (LUT) approach. To correct absorbing aerosol, UV irradiance algorithm added climatological aerosol information (Arola et al., 2009). The further study, we analyze the comprehensive uncertainty analysis based on LUT and all input parameters.

  4. Diversity and disparity through time in the adaptive radiation of Antarctic notothenioid fishes.

    PubMed

    Colombo, M; Damerau, M; Hanel, R; Salzburger, W; Matschiner, M

    2015-02-01

    According to theory, adaptive radiation is triggered by ecological opportunity that can arise through the colonization of new habitats, the extinction of antagonists or the origin of key innovations. In the course of an adaptive radiation, diversification and morphological evolution are expected to slow down after an initial phase of rapid adaptation to vacant ecological niches, followed by speciation. Such 'early bursts' of diversification are thought to occur because niche space becomes increasingly filled over time. The diversification of Antarctic notothenioid fishes into over 120 species has become one of the prime examples of adaptive radiation in the marine realm and has likely been triggered by an evolutionary key innovation in the form of the emergence of antifreeze glycoproteins. Here, we test, using a novel time-calibrated phylogeny of 49 species and five traits that characterize notothenioid body size and shape as well as buoyancy adaptations and habitat preferences, whether the notothenioid adaptive radiation is compatible with an early burst scenario. Extensive Bayesian model comparison shows that phylogenetic age estimates are highly dependent on model choice and that models with unlinked gene trees are generally better supported and result in younger age estimates. We find strong evidence for elevated diversification rates in Antarctic notothenioids compared to outgroups, yet no sign of rate heterogeneity in the course of the radiation, except that the notothenioid family Artedidraconidae appears to show secondarily elevated diversification rates. We further observe an early burst in trophic morphology, suggesting that the notothenioid radiation proceeds in stages similar to other prominent examples of adaptive radiation. © 2014 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  5. THE NuSTAR X-RAY SPECTRUM OF HERCULES X-1: A RADIATION-DOMINATED RADIATIVE SHOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, Michael T.; Wood, Kent S.; Becker, Peter A.

    2016-11-10

    We report on new spectral modeling of the accreting X-ray pulsar Hercules X-1. Our radiation-dominated radiative shock model is an implementation of the analytic work of Becker and Wolff on Comptonized accretion flows onto magnetic neutron stars. We obtain a good fit to the spin-phase-averaged 4–78 keV X-ray spectrum observed by the Nuclear Spectroscopic Telescope Array during a main-on phase of the Her X-1 35 day accretion disk precession period. This model allows us to estimate the accretion rate, the Comptonizing temperature of the radiating plasma, the radius of the magnetic polar cap, and the average scattering opacity parameters inmore » the accretion column. This is in contrast to previous phenomenological models that characterized the shape of the X-ray spectrum, but could not determine the physical parameters of the accretion flow. We describe the spectral fitting details and discuss the interpretation of the accretion flow physical parameters.« less

  6. Understanding cancer development processes after HZE-particle exposure: roles of ROS, DNA damage repair and inflammation.

    PubMed

    Sridharan, D M; Asaithamby, A; Bailey, S M; Costes, S V; Doetsch, P W; Dynan, W S; Kronenberg, A; Rithidech, K N; Saha, J; Snijders, A M; Werner, E; Wiese, C; Cucinotta, F A; Pluth, J M

    2015-01-01

    During space travel astronauts are exposed to a variety of radiations, including galactic cosmic rays composed of high-energy protons and high-energy charged (HZE) nuclei, and solar particle events containing low- to medium-energy protons. Risks from these exposures include carcinogenesis, central nervous system damage and degenerative tissue effects. Currently, career radiation limits are based on estimates of fatal cancer risks calculated using a model that incorporates human epidemiological data from exposed populations, estimates of relative biological effectiveness and dose-response data from relevant mammalian experimental models. A major goal of space radiation risk assessment is to link mechanistic data from biological studies at NASA Space Radiation Laboratory and other particle accelerators with risk models. Early phenotypes of HZE exposure, such as the induction of reactive oxygen species, DNA damage signaling and inflammation, are sensitive to HZE damage complexity. This review summarizes our current understanding of critical areas within the DNA damage and oxidative stress arena and provides insight into their mechanistic interdependence and their usefulness in accurately modeling cancer and other risks in astronauts exposed to space radiation. Our ultimate goals are to examine potential links and crosstalk between early response modules activated by charged particle exposure, to identify critical areas that require further research and to use these data to reduced uncertainties in modeling cancer risk for astronauts. A clearer understanding of the links between early mechanistic aspects of high-LET response and later surrogate cancer end points could reveal key nodes that can be therapeutically targeted to mitigate the health effects from charged particle exposures.

  7. Evaluation of atmospheric aerosol and tropospheric ozone effects on global terrestrial ecosystem carbon dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Min

    The increasing human activities have produced large amounts of air pollutants ejected into the atmosphere, in which atmospheric aerosols and tropospheric ozone are considered to be especially important because of their negative impacts on human health and their impacts on global climate through either their direct radiative effect or indirect effect on land-atmosphere CO2 exchange. This dissertation dedicates to quantifying and evaluating the aerosol and tropospheric ozone effects on global terrestrial ecosystem dynamics using a modeling approach. An ecosystem model, the integrated Terrestrial Ecosystem Model (iTem), is developed to simulate biophysical and biogeochemical processes in terrestrial ecosystems. A two-broad-band atmospheric radiative transfer model together with the Moderate-Resolution Imaging Spectroradiometer (MODIS) measured atmospheric parameters are used to well estimate global downward solar radiation and the direct and diffuse components in comparison with observations. The atmospheric radiative transfer modeling framework were used to quantify the aerosol direct radiative effect, showing that aerosol loadings cause 18.7 and 12.8 W m -2 decrease of direct-beam Photosynthetic Active Radiation (PAR) and Near Infrared Radiation (NIR) respectively, and 5.2 and 4.4 W m -2 increase of diffuse PAR and NIR, respectively, leading to a total 21.9 W m-2 decrease of total downward solar radiation over the global land surface during the period of 2003-2010. The results also suggested that the aerosol effect may be overwhelmed by clouds because of the stronger extinction and scattering ability of clouds. Applications of the iTem with solar radiation data and with or without considering the aerosol loadings shows that aerosol loading enhances the terrestrial productions [Gross Primary Production (GPP), Net Primary Production (NPP) and Net Ecosystem Production (NEP)] and carbon emissions through plant respiration (RA) in global terrestrial ecosystems over the period of 2003-2010. Ecosystem heterotrophic respiration (RH) was negatively affected by the aerosol loading. These results support previous conclusions of the advantage of aerosol light scattering effect on plant productions in other studies but suggest there is strong spatial variation. This study finds indirect aerosol effects on terrestrial ecosystem carbon dynamics through affecting plant phenology, thermal and hydrological environments. All these evidences suggested that the aerosol direct radiative effect on global terrestrial ecosystem carbon dynamics should be considered to better understand the global carbon cycle and climate change. An ozone sub-model is developed in this dissertation and fully coupled with iTem. The coupled model, named iTemO3 considers the processes of ozone stomatal deposition, plant defense to ozone influx, ozone damage and plant repairing mechanism. By using a global atmospheric chemical transport model (GACTM) estimated ground-level ozone concentration data, the model estimated global annual stomatal ozone deposition is 234.0 Tg O3 yr-1 and indicates which regions have high ozone damage risk. Different plant functional types, sunlit and shaded leaves are shown to have different responses to ozone. The model predictions suggest that ozone has caused considerable change on global terrestrial ecosystem carbon storage and carbon exchanges over the study period 2004-2008. The study suggests that uncertainty of the key parameters in iTemO3 could result in large errors in model predictions. Thus more experimental data for better model parameterization is highly needed.

  8. Characterizing the solar reflection from wildfire smoke plumes using airborne multiangle measurements

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; Varnai, T.; Gautam, R.; Poudyal, R.; Singh, M. K.

    2016-12-01

    To help better understand forest fire smoke plumes, this study examines sunlight reflected from plumes that were observed over Canada during the ARCTAS campaign in summer 2008. In particular, the study analyzes multiangle and multispectral measurements of smoke scattering by the airborne Cloud Absorption Radiometer (CAR). In combination with other in-situ and remote sensing information and radiation modeling, CAR data is used for characterizing the radiative properties and radiative impact of smoke particles—which inherently depend on smoke particle properties that influence air quality. In addition to estimating the amount of reflected and absorbed sunlight, the work includes using CAR data to create spectral and broadband top-of-atmosphere angular distribution models (ADMs) of solar radiation reflected by smoke plumes, and examining the sensitivity of such angular models to scene parameters. Overall, the results help better understand the radiative properties and radiative effects of smoke particles, and are anticipated to help better interpret satellite data on smoke plumes.

  9. Development of PARMA: PHITS-based analytical radiation model in the atmosphere.

    PubMed

    Sato, Tatsuhiko; Yasuda, Hiroshi; Niita, Koji; Endo, Akira; Sihver, Lembit

    2008-08-01

    Estimation of cosmic-ray spectra in the atmosphere has been essential for the evaluation of aviation doses. We therefore calculated these spectra by performing Monte Carlo simulation of cosmic-ray propagation in the atmosphere using the PHITS code. The accuracy of the simulation was well verified by experimental data taken under various conditions, even near sea level. Based on a comprehensive analysis of the simulation results, we proposed an analytical model for estimating the cosmic-ray spectra of neutrons, protons, helium ions, muons, electrons, positrons and photons applicable to any location in the atmosphere at altitudes below 20 km. Our model, named PARMA, enables us to calculate the cosmic radiation doses rapidly with a precision equivalent to that of the Monte Carlo simulation, which requires much more computational time. With these properties, PARMA is capable of improving the accuracy and efficiency of the cosmic-ray exposure dose estimations not only for aircrews but also for the public on the ground.

  10. Numerical modeling of solar irradiance on earth's surface

    NASA Astrophysics Data System (ADS)

    Mera, E.; Gutierez, L.; Da Silva, L.; Miranda, E.

    2016-05-01

    Modeling studies and estimation of solar radiation in base area, touch from the problems of estimating equation of time, distance equation solar space, solar declination, calculation of surface irradiance, considering that there are a lot of studies you reported the inability of these theoretical equations to be accurate estimates of radiation, many authors have proceeded to make corrections through calibrations with Pyranometers field (solarimeters) or the use of satellites, this being very poor technique last because there a differentiation between radiation and radiant kinetic effects. Because of the above and considering that there is a weather station properly calibrated ground in the Susques Salar in the Jujuy Province, Republic of Argentina, proceeded to make the following modeling of the variable in question, it proceeded to perform the following process: 1. Theoretical Modeling, 2. graphic study of the theoretical and actual data, 3. Adjust primary calibration data through data segmentation on an hourly basis, through horizontal and adding asymptotic constant, 4. Analysis of scatter plot and contrast series. Based on the above steps, the modeling data obtained: Step One: Theoretical data were generated, Step Two: The theoretical data moved 5 hours, Step Three: an asymptote of all negative emissivity values applied, Solve Excel algorithm was applied to least squares minimization between actual and modeled values, obtaining new values of asymptotes with the corresponding theoretical reformulation of data. Add a constant value by month, over time range set (4:00 pm to 6:00 pm). Step Four: The modeling equation coefficients had monthly correlation between actual and theoretical data ranging from 0.7 to 0.9.

  11. Using Landsat to provide potato production estimates to Columbia Basin farmers and processors

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A summary of project activities relative to the estimation of potato yields in the Columbia Basin is given. Oregon State University is using a two-pronged approach to yield estimation, one using simulation models and the other using purely empirical models. The simulation modeling approach has used satellite observations to determine key dates in the development of the crop for each field identified as potatoes. In particular, these include planting dates, emergence dates, and harvest dates. These critical dates are fed into simulation models of crop growth and development to derive yield forecasts. Two empirical modeling approaches are illustrated. One relates tuber yield to estimates of cumulative intercepted solar radiation; the other relates tuber yield to the integral under the GVI curve.

  12. Radiative Effects of the Diurnal Cycle of Clouds and their Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Yin, J.; Porporato, A. M.

    2017-12-01

    Clouds effectively control the Earth's energy budget by reflecting solar radiation and restricting the terrestrial one. While these dynamics have been regarded as one of vexing problem in understanding the climate system and have thus attracted much attention in the literature, less research has been devoted to the diurnal cycle of clouds (DCC). Here we first quantify the mean, amplitude, and phase of the cloud cycles in current climate models and compare them with satellite observations and reanalysis data. We show that the mean values appear to be reliable but the amplitude and phase of the DCC are less consistent. These inconsistencies are interpreted using a minimalist radiative balance model to demonstrate their impacts on surface temperature. The DCC radiative impacts are then analyzed in terms of phase shift and amplitude modulation of DCC and their so-called cloud radiative effects are estimated directly from climate model outputs. This allows us to show that DCC variations may account for up to 10-20% of the total cloud radiative impacts, calling for increased attention to the temporal evolution of the DCC in climate models.

  13. The Impact of Aerosol Microphysical Representation in Models on the Direct Radiative Effect

    NASA Astrophysics Data System (ADS)

    Ridley, D. A.; Heald, C. L.

    2017-12-01

    Aerosol impacts the radiative balance of the atmosphere both directly and indirectly. There is considerable uncertainty remaining in the aerosol direct radiative effect (DRE), hampering understanding of the present magnitude of anthropogenic aerosol forcing and how future changes in aerosol loading will influence climate. Computationally expensive explicit aerosol microphysics are usually reserved for modelling of the aerosol indirect radiative effects that depend upon aerosol particle number. However, the direct radiative effects of aerosol are also strongly dependent upon the aerosol size distribution, especially particles between 0.2µm - 2µm diameter. In this work, we use a consistent model framework and consistent emissions to explore the impact of prescribed size distributions (bulk scheme) relative to explicit microphysics (sectional scheme) on the aerosol radiative properties. We consider the difference in aerosol burden, water uptake, and extinction efficiency resulting from the two representations, highlighting when and where the bulk and sectional schemes diverge significantly in their estimates of the DRE. Finally, we evaluate the modelled size distributions using in-situ measurements over a range of regimes to provide constraints on both the accumulation and coarse aerosol sizes.

  14. Visible upconversion emission and non-radiative direct Yb 3+ to Er 3+ energy transfer processes in nanocrystalline ZrO 2:Yb 3+,Er 3+

    NASA Astrophysics Data System (ADS)

    Diaz-Torres, L. A.; Meza, O.; Solis, D.; Salas, P.; De la Rosa, E.

    2011-06-01

    Wide band gap Yb 3+ and Er 3+ codoped ZrO 2 nanocrystals have been synthesized by a modified sol-gel method. Under 967 nm excitation strong green and red upconversion emission is observed for several Er 3+ to Yb 3+ ions concentration ratios. A simple microscopic rate equation model is used to study the effects of non-radiative direct Yb 3+ to Er 3+ energy transfer processes on the visible and near infrared fluorescence decay trends of both Er 3+ and Yb 3+ ions. The microscopic rate equation model takes into account the crystalline phase as well as the size of nanocrystals. Nanocrystals phase and size were estimated from XRD patterns. The rate equation model succeeds to fit simultaneously all visible and near infrared fluorescence decay profiles. The dipole-dipole interaction parameters that drive the non-radiative energy transfer processes depend on doping concentration due to crystallite phase changes. In addition the non-radiative relaxation rate ( 4I11/2→ 4I13/2) is found to be greater than that estimated by the Judd-Ofelt parameters due to the action of surface impurities. Results suggest that non-radiative direct Yb 3+ to Er 3+ energy transfer processes in ZrO 2:Yb,Er are extremely efficient.

  15. The Projection of Space Radiation Environments with a Solar Cycle Statistical Model

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Cucinotta, Francis A.; Wilson, John W.

    2006-01-01

    A solar cycle statistical model has been developed to project sunspot numbers which represent the variations in the space radiation environment. The resultant projection of sunspot numbers in near future were coupled to space-related quantities of interest in radiation protection, such as the galactic cosmic radiation (GCR) deceleration potential (f) and the mean occurrence frequency of solar particle event (SPE). Future GCR fluxes have been derived from a predictive model, in which GCR temporal dependence represented by f was derived from GCR flux and ground-based Climax neutron monitor rate measurements over the last four decades. Results showed that the point dose equivalent inside a typical spacecraft in interplanetary radiation fields was influenced by solar modulation up to a factor of three. One important characteristic of sporadic SPEs is their mean frequency of occurrence, which is dependent on solar activity. Projections of future mean frequency of SPE occurrence were estimated from a power law function of sunspot number. Furthermore, the cumulative probabilities of SPE during short-period missions were defined with the continuous database of proton fluences of SPE. The analytic representation of energy spectra of SPE was constructed by the Weibull distribution for different event sizes. The representative exposure level at each event size was estimated for the guideline of protection systems for astronauts during future space exploration missions.

  16. Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.

    2006-05-01

    The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001). Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO) during INDOEX, the Northwest Pacific Ocean (NWP) during ACE-Asia, and the Northwest Atlantic Ocean (NWA) during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth (AOD), and direct radiative effect of aerosols (DRE - change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative transfer calculations by observational inputs increases the clear-sky, 24-h averaged AOD (34±8%), top of atmosphere (TOA) DRE (32±12%), and TOA direct climate forcing of aerosols (DCF - change in radiative flux due to anthropogenic aerosols) (37±7%) relative to values obtained with "a priori" parameterizations of aerosol loadings and properties (GFDL RTM). The resulting constrained clear-sky TOA DCF is -3.3±0.47, -14±2.6, -6.4±2.1 Wm-2 for the NIO, NWP, and NWA, respectively. With the use of constrained quantities (extensive and intensive parameters) the calculated uncertainty in DCF was 25% less than the "structural uncertainties" used in the IPCC-2001 global estimates of direct aerosol climate forcing. Such comparisons with observations and resultant reductions in uncertainties are essential for improving and developing confidence in climate model calculations incorporating aerosol forcing.

  17. Application of Multivariate Modeling for Radiation Injury Assessment: A Proof of Concept (Radiation Injury Algorithms)

    DTIC Science & Technology

    2014-01-01

    accuracy by developing dose estimation formulas derived from hematological indices from Chernobyl accident patients measured from 4 – 8 d post...448-54, 2005. [32] A. E. Baranov, A. K. Guskova, N. M. Nadejina, and V. Yu. Nugis,― Chernobyl experience: biological indicators of exposure to

  18. ZEPrompt: An Algorithm for Rapid Estimation of Building Attenuation for Prompt Radiation from a Nuclear Detonation

    DTIC Science & Technology

    2014-01-01

    and 50 kT, to within 30% of first-principles code ( MCNP ) for complicated cities and 10% for simpler cities. 15. SUBJECT TERMS Radiation Transport...Use of MCNP for Dose Calculations .................................................................... 3 2.3 MCNP Open-Field Absorbed Dose...Calculations .................................................. 4 2.4 The MCNP Urban Model

  19. High harmonic generation at the tunneling ionization of atoms by intense laser radiation near the classical cut-off

    NASA Astrophysics Data System (ADS)

    Gets, A. V.; Krainov, V. P.

    2018-01-01

    The yield of spontaneous photons at the tunneling ionization of atoms by intense low-frequency laser radiation near the classical cut-off is estimated analytically by using the three-step model. The Bell-shaped dependence in the universal photon spectrum is explained qualitatively.

  20. Using Satellite Observations of Cloud Vertical Distribution to Improve Global Model Estimates of Cloud Radiative Effect on Key Tropospheric Oxidants

    NASA Technical Reports Server (NTRS)

    Liu, Hongyu; Crawford, James; Ham, Seung-Hee; Zhang, Bo; Kato, Seiji; Voulgarakis, Apostolos; Chen, Gao; Fairlie, Duncan; Duncan, Bryan; Yantosca, Robert

    2017-01-01

    Clouds directly affect tropospheric photochemistry through modification of solar radiation that determines photolysis frequencies. This effect is an important component of global tropospheric chemistry-climate interaction, and its understanding is thus essential for predicting the feedback of climate change on tropospheric chemistry.

  1. Generation of circular polarization in CMB radiation via nonlinear photon-photon interaction

    NASA Astrophysics Data System (ADS)

    Sadegh, Mahdi; Mohammadi, Rohoollah; Motie, Iman

    2018-01-01

    Standard cosmological models do predict a measurable amount of anisotropies in the intensity and linear polarization of the cosmic microwave background radiation (CMB) via Thomson scattering, even though these theoretical models do not predict circular polarization for CMB radiation. In other hand, the circular polarization of CMB has not been excluded in observational evidences. Here we estimate the circular polarization power spectrum ClV (S ) in CMB radiation due to Compton scattering and nonlinear photon-photon forward scattering via Euler-Heisenberg effective Lagrangian. We have estimated the average value of circular power spectrum is l (l +1 )ClV (S )/(2 π )˜10-4 (μ K) 2 for l ˜300 at present time which is smaller than recently reported data for upper limit of circular polarization (SPIDER collaboration). As a result to test our results, the ability to detect nano-Kelvin level signals of CMB circular polarization requires. We also show that the generation of B-mode polarization for CMB photons in the presence of the primordial scalar perturbation via Euler-Heisenberg interaction is possible however this contribution for B-mode polarization is not remarkable.

  2. Field size dependent mapping of medical linear accelerator radiation leakage

    NASA Astrophysics Data System (ADS)

    Vũ Bezin, Jérémi; Veres, Attila; Lefkopoulos, Dimitri; Chavaudra, Jean; Deutsch, Eric; de Vathaire, Florent; Diallo, Ibrahima

    2015-03-01

    The purpose of this study was to investigate the suitability of a graphics library based model for the assessment of linear accelerator radiation leakage. Transmission through the shielding elements was evaluated using the build-up factor corrected exponential attenuation law and the contribution from the electron guide was estimated using the approximation of a linear isotropic radioactive source. Model parameters were estimated by a fitting series of thermoluminescent dosimeter leakage measurements, achieved up to 100 cm from the beam central axis along three directions. The distribution of leakage data at the patient plane reflected the architecture of the shielding elements. Thus, the maximum leakage dose was found under the collimator when only one jaw shielded the primary beam and was about 0.08% of the dose at isocentre. Overall, we observe that the main contributor to leakage dose according to our model was the electron beam guide. Concerning the discrepancies between the measurements used to calibrate the model and the calculations from the model, the average difference was about 7%. Finally, graphics library modelling is a readily and suitable way to estimate leakage dose distribution on a personal computer. Such data could be useful for dosimetric evaluations in late effect studies.

  3. Predictions of Leukemia Risks to Astronauts from Solar Particle Events

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Atwell, W.; Kim, M. Y.; George, K. A.; Ponomarev, A.; Nikjoo, H.; Wilson, J. W.

    2006-01-01

    Leukemias consisting of acute and chronic myeloid leukemia and acute lymphatic lymphomas represent the earliest cancers that appear after radiation exposure, have a high lethality fraction, and make up a significant fraction of the overall fatal cancer risk from radiation for adults. Several considerations impact the recommendation of a preferred model for the estimation of leukemia risks from solar particle events (SPE's): The BEIR VII report recommends several changes to the method of calculation of leukemia risk compared to the methods recommended by the NCRP Report No. 132 including the preference of a mixture model with additive and multiplicative components in BEIR VII compared to the additive transfer model recommended by NCRP Report No. 132. Proton fluences and doses vary considerably across marrow regions because of the characteristic spectra of primary solar protons making the use of an average dose suspect. Previous estimates of bone marrow doses from SPE's have used an average body-shielding distribution for marrow based on the computerized anatomical man model (CAM). We have developed an 82-point body-shielding distribution that faithfully reproduces the mean and variance of SPE doses in the active marrow regions (head and neck, chest, abdomen, pelvis and thighs) allowing for more accurate estimation of linear- and quadratic-dose components of the marrow response. SPE's have differential dose-rates and a pseudo-quadratic dose response term is possible in the peak-flux period of an event. Also, the mechanistic basis for leukemia risk continues to improve allowing for improved strategies in choosing dose-rate modulation factors and radiation quality descriptors. We make comparisons of the various choices of the components in leukemia risk estimates in formulating our preferred model. A major finding is that leukemia could be the dominant risk to astronauts for a major solar particle event.

  4. Impact of the NTCP modeling on medical decision to select eligible patient for proton therapy: the usefulness of EUD as an indicator to rank modern photon vs proton treatment plans.

    PubMed

    Chaikh, Abdulhamid; Calugaru, Valentin; Bondiau, Pierre-Yves; Thariat, Juliette; Balosso, Jacques

    2018-06-07

    The aim of this study is to evaluate the impact of normal tissue complication probability (NTCP)-based radiobiological models on the estimated risk for late radiation lung damages. The second goal is to propose a medical decision-making approach to select the eligible patient for particle therapy. 14 pediatric patients undergoing cranio-spinal irradiation were evaluated. For each patient, two treatment plans were generated using photon and proton therapy with the same dose prescriptions. Late radiation damage to lung was estimated using three NTCP concepts: the Lyman-Kutcher-Burman, the equivalent uniform dose (EUD) and the mean lung dose according to the quantitative analysis of normal tissue effects in the clinic QUANTEC review. Wilcoxon paired test was used to calculate p-value. Proton therapy achieved lower lung EUD (Gy). The average NTCP values were significantly lower with proton plans, p < 0.05, using the three NTCP concepts. However, applying the same TD 50/5 using radiobiological models to compare NTCP from proton and photon therapy, the ΔNTCP was not a convincing method to measure the potential benefit of proton therapy. Late radiation pneumonitis estimated from the mean lung dose model correlated with QUANTEC data better. treatment effectiveness assessed on NTCP reduction depends on radiobiological predictions and parameters used as inputs for in silico evaluation. Since estimates of absolute NTCP values from LKB and GN models are imprecise due to EUD ≪ TD 50/5 , a reduction of the EUD value with proton plans would better predict a reduction of dose/toxicity. The EUD concept appears as a robust radiobiological surrogate of the dose distribution to select the optimal patient's plan.

  5. Radiation-Induced Breast Cancer Incidence and Mortality from Digital Mammography Screening: A Modeling Study

    PubMed Central

    Miglioretti, Diana L.; Lange, Jane; van den Broek, Jeroen J.; Lee, Christoph I.; van Ravesteyn, Nicolien T.; Ritley, Dominique; Kerlikowske, Karla; Fenton, Joshua J.; Melnikow, Joy; de Koning, Harry J.; Hubbard, Rebecca A.

    2016-01-01

    Background Estimates of radiation-induced breast cancer risk from mammography screening have not previously considered dose exposure variation or diagnostic work-up after abnormal screening. Objective To estimate distributions of radiation-induced breast cancer incidence and mortality from digital mammography screening, considering exposure from screening and diagnostic mammography and dose variation across women. Design Two simulation-modeling approaches using common data on screening mammography from the Breast Cancer Surveillance Consortium and radiation dose from mammography from the Digital Mammographic Imaging Screening Trial. Setting U.S. population. Patients Women aged 40–74 years. Interventions Annual or biennial digital mammography screening from age 40, 45, or 50 until 74. Measurements Lifetime breast cancer deaths averted (benefits) and radiation-induced breast cancer incidence and mortality per 100,000 women screened (harms). Results On average, annual screening of 100,000 women aged 40 to 74 years was projected to induce 125 breast cancers (95% confidence interval [CI]=88–178) leading to 16 deaths (95% CI=11–23) relative to 968 breast cancer deaths averted by early detection from screening. Women exposed at the 95th percentile were projected to develop 246 radiation-induced breast cancers leading to 32 deaths per 100,000 women. Women with large breasts requiring extra views for complete breast examination (8% of population) were projected to have higher radiation-induced breast cancer incidence and mortality (266 cancers, 35 deaths per 100,000 women), compared to women with small or average breasts (113 cancers, 15 deaths per 100,000 women). Biennial screening starting at age 50 reduced risk of radiation-induced cancers 5-fold. Limitations We were unable to estimate years of life lost from radiation-induced breast cancer. Conclusions Radiation-induced breast cancer incidence and mortality from digital mammography screening are impacted by dose variability from screening and resultant diagnostic work-up, initiation age, and screening frequency. Women with large breasts may be at higher risk of radiation-induced breast cancer; however, the benefits of screening outweigh these risks. PMID:26756460

  6. Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quaas, Johannes; Ming, Yi; Menon, Surabi

    2009-04-10

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found thatmore » the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on Nd. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of -1.5+-0.5 Wm-2. An alternative estimate obtained by scaling the simulated clear- and cloudy-sky forcings with estimates of anthropogenic Ta and satellite-retrieved Nd - Ta regression slopes, respectively, yields a global annual mean clear-sky (aerosol direct effect) estimate of -0.4+-0.2 Wm-2 and a cloudy-sky (aerosol indirect effect) estimate of -0.7+-0.5 Wm-2, with a total estimate of -1.2+-0.4 Wm-2.« less

  7. Space Radiation Cancer Risks

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2007-01-01

    Space radiation presents major challenges to astronauts on the International Space Station and for future missions to the Earth s moon or Mars. Methods used to project risks on Earth need to be modified because of the large uncertainties in projecting cancer risks from space radiation, and thus impact safety factors. We describe NASA s unique approach to radiation safety that applies uncertainty based criteria within the occupational health program for astronauts: The two terrestrial criteria of a point estimate of maximum acceptable level of risk and application of the principle of As Low As Reasonably Achievable (ALARA) are supplemented by a third requirement that protects against risk projection uncertainties using the upper 95% confidence level (CL) in the radiation cancer projection model. NASA s acceptable level of risk for ISS and their new lunar program have been set at the point-estimate of a 3-percent risk of exposure induced death (REID). Tissue-averaged organ dose-equivalents are combined with age at exposure and gender-dependent risk coefficients to project the cumulative occupational radiation risks incurred by astronauts. The 95% CL criteria in practice is a stronger criterion than ALARA, but not an absolute cut-off as is applied to a point projection of a 3% REID. We describe the most recent astronaut dose limits, and present a historical review of astronaut organ doses estimates from the Mercury through the current ISS program, and future projections for lunar and Mars missions. NASA s 95% CL criteria is linked to a vibrant ground based radiobiology program investigating the radiobiology of high-energy protons and heavy ions. The near-term goal of research is new knowledge leading to the reduction of uncertainties in projection models. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. The current model for projecting space radiation cancer risk relies on the three assumptions of linearity, additivity, and scaling along with the use of population averages. We describe uncertainty estimates for this model, and new experimental data that sheds light on the accuracy of the underlying assumptions. These methods make it possible to express risk management objectives in terms of quantitative metrics, i.e., the number of days in space without exceeding a given risk level within well defined confidence limits. The resulting methodology is applied to several human space exploration mission scenarios including lunar station, deep space outpost, and a Mars mission. Factors that dominate risk projection uncertainties and application of this approach to assess candidate mitigation approaches are described.

  8. Assessment of 1D and 3D model simulated radiation flux based on surface measurements and estimation of aerosol forcing and their climatological aspects

    NASA Astrophysics Data System (ADS)

    Subba, T.; Gogoi, M. M.; Pathak, B.; Ajay, P.; Bhuyan, P. K.; Solmon, F.

    2018-05-01

    Ground reaching solar radiation flux was simulated using a 1-dimensional radiative transfer (SBDART) and a 3-dimensional regional climate (RegCM 4.4) model and their seasonality against simultaneous surface measurements carried out using a CNR4 net Radiometer over a sub-Himalayan foothill site of south-east Asia was assessed for the period from March 2013-January 2015. The model simulated incoming fluxes showed a very good correlation with the measured values with correlation coefficient R2 0.97. The mean bias errors between these two varied from -40 W m-2 to +7 W m-2 with an overestimation of 2-3% by SBDART and an underestimation of 2-9% by RegCM. Collocated measurements of the optical parameters of aerosols indicated a reduction in atmospheric transmission path by 20% due to aerosol load in the atmosphere when compared with the aerosol free atmospheric condition. Estimation of aerosol radiative forcing efficiency (ARFE) indicated that the presence of black carbon (BC, 10-15%) led to a surface dimming by -26.14 W m-2 τ-1 and a potential atmospheric forcing of +43.04 W m-2 τ-1. BC alone is responsible for >70% influence with a major role in building up of forcing efficiency of +55.69 W m-2 τ-1 (composite) in the atmosphere. On the other hand, the scattering due to aerosols enhance the outgoing radiation at the top of the atmosphere (ARFETOA -12.60 W m-2 ω-1), the absence of which would have resulted in ARFETOA of +16.91 W m-2 τ-1 (due to BC alone). As a result, 3/4 of the radiation absorption in the atmosphere is ascribed to the presence of BC. This translated to an atmospheric heating rate of 1.0 K day-1, with 0.3 K day-1 heating over the elevated regions (2-4 km) of the atmosphere, especially during pre-monsoon season. Comparison of the satellite (MODIS) derived and ground based estimates of surface albedo showed seasonal difference in their magnitudes (R2 0.98 during retreating monsoon and winter; 0.65 during pre-monsoon and monsoon), indicating that the reliability of the satellite data for aerosol radiative forcing estimation is more during the retreating and winter seasons.

  9. Grid2: A Program for Rapid Estimation of the Jovian Radiation Environment

    NASA Technical Reports Server (NTRS)

    Evans, R. W.; Brinza, D. E.

    2014-01-01

    Grid2 is a program that utilizes the Galileo Interim Radiation Electron model 2 (GIRE2) Jovian radiation model to compute fluences and doses for Jupiter missions. (Note: The iterations of these two softwares have been GIRE and GIRE2; likewise Grid and Grid2.) While GIRE2 is an important improvement over the original GIRE radiation model, the GIRE2 model can take as long as a day or more to compute these quantities for a complete mission. Grid2 fits the results of the detailed GIRE2 code with a set of grids in local time and position thereby greatly speeding up the execution of the model-minutes as opposed to days. The Grid2 model covers the time period from 1971 to 2050 and distances of 1.03 to 30 Jovian diameters (Rj). It is available as a direct-access database through a FORTRAN interface program. The new database is only slightly larger than the original grid version: 1.5 gigabytes (GB) versus 1.2 GB.

  10. Patient-specific radiation dose and cancer risk estimation in CT: Part I. Development and validation of a Monte Carlo program

    PubMed Central

    Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P.

    2011-01-01

    Purpose: Radiation-dose awareness and optimization in CT can greatly benefit from a dose-reporting system that provides dose and risk estimates specific to each patient and each CT examination. As the first step toward patient-specific dose and risk estimation, this article aimed to develop a method for accurately assessing radiation dose from CT examinations. Methods: A Monte Carlo program was developed to model a CT system (LightSpeed VCT, GE Healthcare). The geometry of the system, the energy spectra of the x-ray source, the three-dimensional geometry of the bowtie filters, and the trajectories of source motions during axial and helical scans were explicitly modeled. To validate the accuracy of the program, a cylindrical phantom was built to enable dose measurements at seven different radial distances from its central axis. Simulated radial dose distributions in the cylindrical phantom were validated against ion chamber measurements for single axial scans at all combinations of tube potential and bowtie filter settings. The accuracy of the program was further validated using two anthropomorphic phantoms (a pediatric one-year-old phantom and an adult female phantom). Computer models of the two phantoms were created based on their CT data and were voxelized for input into the Monte Carlo program. Simulated dose at various organ locations was compared against measurements made with thermoluminescent dosimetry chips for both single axial and helical scans. Results: For the cylindrical phantom, simulations differed from measurements by −4.8% to 2.2%. For the two anthropomorphic phantoms, the discrepancies between simulations and measurements ranged between (−8.1%, 8.1%) and (−17.2%, 13.0%) for the single axial scans and the helical scans, respectively. Conclusions: The authors developed an accurate Monte Carlo program for assessing radiation dose from CT examinations. When combined with computer models of actual patients, the program can provide accurate dose estimates for specific patients. PMID:21361208

  11. Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing

    DOE PAGES

    Scanza, R. A.; Mahowald, N.; Ghan, S.; ...

    2014-07-02

    The mineralogy of desert dust is important due to its effect on radiation, clouds and biogeochemical cycling of trace nutrients. This study presents the simulation of dust radiative forcing as a function of both mineral composition and size at the global scale using mineral soil maps for estimating emissions. Externally mixed mineral aerosols in the bulk aerosol module in the Community Atmosphere Model version 4 (CAM4) and internally mixed mineral aerosols in the modal aerosol module in the Community Atmosphere Model version 5.1 (CAM5) embedded in the Community Earth System Model version 1.0.5 (CESM) are speciated into common mineral componentsmore » in place of total dust. The simulations with mineralogy are compared to available observations of mineral atmospheric distribution and deposition along with observations of clear-sky radiative forcing efficiency. Based on these simulations, we estimate the all-sky direct radiative forcing at the top of the atmosphere as +0.05 W m −2 for both CAM4 and CAM5 simulations with mineralogy and compare this both with simulations of dust in release versions of CAM4 and CAM5 (+0.08 and +0.17 W m −2) and of dust with optimized optical properties, wet scavenging and particle size distribution in CAM4 and CAM5, −0.05 and −0.17 W m −2, respectively. The ability to correctly include the mineralogy of dust in climate models is hindered by its spatial and temporal variability as well as insufficient global in-situ observations, incomplete and uncertain source mineralogies and the uncertainties associated with data retrieved from remote sensing methods.« less

  12. Radiation risk estimation: Modelling approaches for “targeted” and “non-targeted” effects

    NASA Astrophysics Data System (ADS)

    Ballarini, Francesca; Alloni, Daniele; Facoetti, Angelica; Mairani, Andrea; Nano, Rosanna; Ottolenghi, Andrea

    The estimation of the risks from low doses of ionizing radiation - including heavy ions - is still a debated question. In particular, the action of heavy ions on biological targets needs further investigation. In this framework, we present a mechanistic model and a Monte Carlo simulation code for the induction of different types of chromosome aberrations. The model, previously validated for gamma rays and light ions, has recently started to be extended to heavy ions such as Iron and Carbon, which are of interest both for space radiation protection and for hadrontherapy. Preliminary results were found to be in agreement with experimental dose-response curves for aberration yields observed following heavy-ion irradiation of human lymphocytes treated with the Premature Chromosome Condensation technique. During the last 10 years, the "Linear No Threshold" hypothesis has been challenged by a large number of observations on the so-called "non-targeted effects" including bystander effect, which consists of the induction of cytogenetic damage in cells not directly traversed by radiation, most likely as a response to molecular messengers released by directly irradiated cells. Although it is now clear that cellular communication plays a fundamental role, our knowledge on the mechanisms underlying bystander effects is still poor, and would largely benefit from further investigations including theoretical models and simulation codes. In the present paper we will review different modelling approaches, including one that is being developed at the University of Pavia, focusing on the assumptions adopted by the various authors and on their implications in terms of low-dose radiation risk, as well as on the identification of "critical" parameters that can modulate the model outcomes.

  13. Absorbed radiation dosimetry of the D3-specific PET radioligand [18F]FluorTriopride estimated using rodent and nonhuman primate

    PubMed Central

    Laforest, Richard; Karimi, Morvarid; Moerlein, Stephen M; Xu, Jinbin; Flores, Hubert P; Bognar, Christopher; Li, Aixiao; Mach, Robert H; Perlmutter, Joel S; Tu, Zhude

    2016-01-01

    [18F]FluorTriopride ([18F]FTP) is a dopamine D3-receptor preferring radioligand with potential for investigation of neuropsychiatric disorders including Parkinson disease, dystonia and schizophrenia. Here we estimate human radiation dosimetry for [18F]FTP based on the ex-vivo biodistribution in rodents and in vivo distribution in nonhuman primates. Biodistribution data were generated using male and female Sprague-Dawley rats injected with ~370 KBq of [18F]FTP and euthanized at 5, 30, 60, 120, and 240 min. Organs of interest were dissected, weighed and assayed for radioactivity content. PET imaging studies were performed in two male and one female macaque fascicularis administered 143-190 MBq of [18F]FTP and scanned whole-body in sequential sections. Organ residence times were calculated based on organ time activity curves (TAC) created from regions of Interest. OLINDA/EXM 1.1 was used to estimate human radiation dosimetry based on scaled organ residence times. In the rodent, the highest absorbed radiation dose was the upper large intestines (0.32-0.49 mGy/MBq), with an effective dose of 0.07 mSv/MBq in males and 0.1 mSv/MBq in females. For the nonhuman primate, however, the gallbladder wall was the critical organ (1.81 mGy/MBq), and the effective dose was 0.02 mSv/MBq. The species discrepancy in dosimetry estimates for [18F]FTP based on rat and primate data can be attributed to the slower transit of tracer through the hepatobiliary track of the primate compared to the rat, which lacks a gallbladder. Out findings demonstrate that the nonhuman primate model is more appropriate model for estimating human absorbed radiation dosimetry when hepatobiliary excretion plays a major role in radiotracer elimination. PMID:28078183

  14. Parameterization and analysis of 3-D radiative transfer in clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varnai, Tamas

    2012-03-16

    This report provides a summary of major accomplishments from the project. The project examines the impact of radiative interactions between neighboring atmospheric columns, for example clouds scattering extra sunlight toward nearby clear areas. While most current cloud models don't consider these interactions and instead treat sunlight in each atmospheric column separately, the resulting uncertainties have remained unknown. This project has provided the first estimates on the way average solar heating is affected by interactions between nearby columns. These estimates have been obtained by combining several years of cloud observations at three DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility sitesmore » (in Alaska, Oklahoma, and Papua New Guinea) with simulations of solar radiation around the observed clouds. The importance of radiative interactions between atmospheric columns was evaluated by contrasting simulations that included the interactions with those that did not. This study provides lower-bound estimates for radiative interactions: It cannot consider interactions in cross-wind direction, because it uses two-dimensional vertical cross-sections through clouds that were observed by instruments looking straight up as clouds drifted aloft. Data from new DOE scanning radars will allow future radiative studies to consider the full three-dimensional nature of radiative processes. The results reveal that two-dimensional radiative interactions increase overall day-and-night average solar heating by about 0.3, 1.2, and 4.1 Watts per meter square at the three sites, respectively. This increase grows further if one considers that most large-domain cloud simulations have resolutions that cannot specify small-scale cloud variability. For example, the increases in solar heating mentioned above roughly double for a fairly typical model resolution of 1 km. The study also examined the factors that shape radiative interactions between atmospheric columns and found that local effects were often much larger than the overall values mentioned above, and were especially large for high sun and near convective clouds such as cumulus. The study also found that statistical methods such as neural networks appear promising for enabling cloud models to consider radiative interactions between nearby atmospheric columns. Finally, through collaboration with German scientists, the project found that new methods (especially one called stepwise kriging) show great promise in filling gaps between cloud radar scans. If applied to data from the new DOE scanning cloud radars, these methods can yield large, continuous three-dimensional cloud structures for future radiative simulations.« less

  15. Low dose radiation risks for women surviving the a-bombs in Japan: generalized additive model.

    PubMed

    Dropkin, Greg

    2016-11-24

    Analyses of cancer mortality and incidence in Japanese A-bomb survivors have been used to estimate radiation risks, which are generally higher for women. Relative Risk (RR) is usually modelled as a linear function of dose. Extrapolation from data including high doses predicts small risks at low doses. Generalized Additive Models (GAMs) are flexible methods for modelling non-linear behaviour. GAMs are applied to cancer incidence in female low dose subcohorts, using anonymous public data for the 1958 - 1998 Life Span Study, to test for linearity, explore interactions, adjust for the skewed dose distribution, examine significance below 100 mGy, and estimate risks at 10 mGy. For all solid cancer incidence, RR estimated from 0 - 100 mGy and 0 - 20 mGy subcohorts is significantly raised. The response tapers above 150 mGy. At low doses, RR increases with age-at-exposure and decreases with time-since-exposure, the preferred covariate. Using the empirical cumulative distribution of dose improves model fit, and capacity to detect non-linear responses. RR is elevated over wide ranges of covariate values. Results are stable under simulation, or when removing exceptional data cells, or adjusting neutron RBE. Estimates of Excess RR at 10 mGy using the cumulative dose distribution are 10 - 45 times higher than extrapolations from a linear model fitted to the full cohort. Below 100 mGy, quasipoisson models find significant effects for all solid, squamous, uterus, corpus, and thyroid cancers, and for respiratory cancers when age-at-exposure > 35 yrs. Results for the thyroid are compatible with studies of children treated for tinea capitis, and Chernobyl survivors. Results for the uterus are compatible with studies of UK nuclear workers and the Techa River cohort. Non-linear models find large, significant cancer risks for Japanese women exposed to low dose radiation from the atomic bombings. The risks should be reflected in protection standards.

  16. Fundamental Rotorcraft Acoustic Modeling From Experiments (FRAME)

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric

    2011-01-01

    A new methodology is developed for the construction of helicopter source noise models for use in mission planning tools from experimental measurements of helicopter external noise radiation. The models are constructed by employing a parameter identification method to an assumed analytical model of the rotor harmonic noise sources. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. The method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor harmonic noise, allowing accurate estimates of the dominant rotorcraft noise sources to be made for operating conditions based on a small number of measurements taken at different operating conditions. The ability of this method to estimate changes in noise radiation due to changes in ambient conditions is also demonstrated.

  17. Simple Models of the Spatial Distribution of Cloud Radiative Properties for Remote Sensing Studies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This project aimed to assess the degree to which estimates of three-dimensional cloud structure can be inferred from a time series of profiles obtained at a point. The work was motivated by the desire to understand the extent to which high-frequency profiles of the atmosphere (e.g. ARM data streams) can be used to assess the magnitude of non-plane parallel transfer of radiation in thc atmosphere. We accomplished this by performing an observing system simulation using a large-eddy simulation and a Monte Carlo radiative transfer model. We define the 3D effect as the part of the radiative transfer that isn't captured by one-dimensional radiative transfer calculations. We assess the magnitude of the 3D effect in small cumulus clouds by using a fine-scale cloud model to simulate many hours of cloudiness over a continental site. We then use a Monte Carlo radiative transfer model to compute the broadband shortwave fluxes at the surface twice, once using the complete three-dimensional radiative transfer F(sup 3D), and once using the ICA F (sup ICA); the difference between them is the 3D effect given.

  18. Galactic cosmic ray transport methods and radiation quality issues

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Cucinotta, F. A.; Shinn, J. L.

    1992-01-01

    An overview of galactic cosmic ray (GCR) interaction and transport methods, as implemented in the Langley Research Center GCR transport code, is presented. Representative results for solar minimum, exo-magnetospheric GCR dose equivalents in water are presented on a component by component basis for various thicknesses of aluminum shielding. The impact of proposed changes to the currently used quality factors on exposure estimates and shielding requirements are quantified. Using the cellular track model of Katz, estimates of relative biological effectiveness (RBE) for the mixed GCR radiation fields are also made.

  19. MONTE CARLO SIMULATION OF OUT-OF-FIELD ORGAN DOSES AND CANCER RISK IN TANZANIA FOR RADIATION THERAPY OF UNILATERAL RETINOBLASTOMA USING A 60Co UNIT.

    PubMed

    Suleiman, Suleiman Ameir; Qi, Yaping; Pi, Yifei; George Xu, X

    2018-05-01

    The use of 60Co teletherapy unit for the treatment of unilateral retinoblastoma (Rb) patients is a very common procedure in many developing countries including Tanzania. The aim of this study was to estimate organ-specific absorbed doses from an external beam radiation therapy 60Co unit for unilateral Rb and to assess the risks of the patients developing a secondary primary cancer. The absorbed dose estimations were based on a Monte Carlo method and a set of age-dependent computational male phantoms. The estimated doses were used to calculate the secondary cancer risks in out-of-field organs using the Biological Effects of Ionising Radiation VII risk models. The survival information and baseline cancer risks were based on relevant statistics for the Tanzanian population. The resulting out-of-field organ doses data showed that organs which are close to the target volume, such as the brain, salivary glands and thyroid glands, received the highest absorbed dose from scattered photons during the treatment of Rb. It was also found that the resulting photons dose to specific organs depends on the patient's age. Younger patients are more sensitive to radiation and also received higher dose contributions from the treatment head due to a larger part of the body exposed to the photon radiation. In all sites considered, the overall risks associated with radiation-induced secondary cancer were relatively lower than the baseline risks. Thus, the results in this article can help to provide good estimations of radiation-induced secondary cancer after radiation treatment of unilateral Rb using 60Co teletherapy unit in Tanzania and other developing countries.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sena, Elisa T.; McComiskey, Allison; Feingold, Graham

    Empirical estimates of the microphysical response of cloud droplet size distribution to aerosol perturbations are commonly used to constrain aerosol–cloud interactions in climate models. Instead of empirical microphysical estimates, here macroscopic variables are analyzed to address the influence of aerosol particles and meteorological descriptors on instantaneous cloud albedo and the radiative effect of shallow liquid water clouds. Long-term ground-based measurements from the Atmospheric Radiation Measurement (ARM) program over the Southern Great Plains are used. A broad statistical analysis was performed on 14 years of coincident measurements of low clouds, aerosol, and meteorological properties. Here two cases representing conflicting results regardingmore » the relationship between the aerosol and the cloud radiative effect were selected and studied in greater detail. Microphysical estimates are shown to be very uncertain and to depend strongly on the methodology, retrieval technique and averaging scale. For this continental site, the results indicate that the influence of the aerosol on the shallow cloud radiative effect and albedo is weak and that macroscopic cloud properties and dynamics play a much larger role in determining the instantaneous cloud radiative effect compared to microphysical effects. On a daily basis, aerosol shows no correlation with cloud radiative properties (correlation = -0.01 ± 0.03), whereas the liquid water path shows a clear signal (correlation = 0.56 ± 0.02).« less

  1. Downward longwave surface radiation from sun-synchronous satellite data - Validation of methodology

    NASA Technical Reports Server (NTRS)

    Darnell, W. L.; Gupta, S. K.; Staylor, W. F.

    1986-01-01

    An extensive study has been carried out to validate a satellite technique for estimating downward longwave radiation at the surface. The technique, mostly developed earlier, uses operational sun-synchronous satellite data and a radiative transfer model to provide the surface flux estimates. The satellite-derived fluxes were compared directly with corresponding ground-measured fluxes at four different sites in the United States for a common one-year period. This provided a study of seasonal variations as well as a diversity of meteorological conditions. Dome heating errors in the ground-measured fluxes were also investigated and were corrected prior to the comparisons. Comparison of the monthly averaged fluxes from the satellite and ground sources for all four sites for the entire year showed a correlation coefficient of 0.98 and a standard error of estimate of 10 W/sq m. A brief description of the technique is provided, and the results validating the technique are presented.

  2. Risk of Skin Cancer from Space Radiation. Chapter 11

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; George, Kerry A.; Wu, Hong-Lu

    2003-01-01

    We review the methods for estimating the probability of increased incidence of skin cancers from space radiation exposure, and describe some of the individual factors that may contribute to risk projection models, including skin pigment, and synergistic effects of combined ionizing and UV exposure. The steep dose gradients from trapped electrons, protons, and heavy ions radiation during EVA and limitations in EVA dosimetry are important factors for projecting skin cancer risk of astronauts. We estimate that the probability of increased skin cancer risk varies more than 10-fold for individual astronauts and that the risk of skin cancer could exceed 1 % for future lunar base operations for astronauts with light skin color and hair. Limitations in physical dosimetry in estimating the distribution of dose at the skin suggest that new biodosimetry methods be developed for responding to accidental overexposure of the skin during future space missions.

  3. Measurements and Modeling of Radiation Exposure Due to Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Beck, P.; Conrad Wp6-Sgb Team

    Dose assessment procedures of cosmic radiation to aircraft crew are introduced in most of the European countries according the corresponding European directive and national regulations 96 29 Euratom However the radiation exposure due to solar particle events is still a matter of scientific research Several in-flight measurements were performed during solar storm conditions First models to estimate the exposure due to solar particle events were discussed previously Recently EURADOS European Radiation Dosimetry Group http www eurados org started to coordinate research activities in model improvements for dose assessment of solar particle events The coordinated research is a work package of the European research project CONRAD Coordinated Network for Radiation Dosimetry on complex mixed radiation fields at workplaces Major aim of sub group B of that work package is the validation of models for dose assessment of solar particle events using data from neutron ground level monitors in-flight measurement results obtained during a solar particle event and proton satellite data The paper describes the current status of obtainable solar storm measurements and gives an overview of the existing models for dose assessment of solar particle events in flight altitudes

  4. Aerosol indirect effects - general circulation model intercomparison and evaluation with satellite data

    NASA Astrophysics Data System (ADS)

    Quaas, J.; Ming, Y.; Menon, S.; Takemura, T.; Wang, M.; Penner, J. E.; Gettelman, A.; Lohmann, U.; Bellouin, N.; Boucher, O.; Sayer, A. M.; Thomas, G. E.; McComiskey, A.; Feingold, G.; Hoose, C.; Kristjánsson, J. E.; Liu, X.; Balkanski, Y.; Donner, L. J.; Ginoux, P. A.; Stier, P.; Grandey, B.; Feichter, J.; Sednev, I.; Bauer, S. E.; Koch, D.; Grainger, R. G.; Kirkevåg, A.; Iversen, T.; Seland, Ø.; Easter, R.; Ghan, S. J.; Rasch, P. J.; Morrison, H.; Lamarque, J.-F.; Iacono, M. J.; Kinne, S.; Schulz, M.

    2009-11-01

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (τa) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between τa and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (fcld) and τa as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld-τa relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between τa and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR-τa relationship show a strong positive correlation between τa and fcld. The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of τa, and parameterisation assumptions such as a lower bound on Nd. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of -1.5±0.5 Wm-2. In an alternative approach, the radiative flux perturbation due to anthropogenic aerosols can be broken down into a component over the cloud-free portion of the globe (approximately the aerosol direct effect) and a component over the cloudy portion of the globe (approximately the aerosol indirect effect). An estimate obtained by scaling these simulated clear- and cloudy-sky forcings with estimates of anthropogenic τa and satellite-retrieved Nd-τa regression slopes, respectively, yields a global, annual-mean aerosol direct effect estimate of -0.4±0.2 Wm-2 and a cloudy-sky (aerosol indirect effect) estimate of -0.7±0.5 Wm-2, with a total estimate of -1.2±0.4 Wm-2.

  5. Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quaas, Johannes; Ming, Yi; Menon, Surabi

    2010-03-12

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth ({tau}{sub a}) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is foundmore » that the model-simulated influence of aerosols on cloud droplet number concentration (N{sub d}) compares relatively well to the satellite data at least over the ocean. The relationship between {tau}{sub a} and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (f{sub cld}) and {tau}{sub a} as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong f{sub cld} - {tau}{sub a} relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between {tau}{sub a} and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - {tau}{sub a} relationship show a strong positive correlation between {tau}{sub a} and f{sub cld} The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of {tau}{sub a}, and parameterization assumptions such as a lower bound on N{sub d}. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of -1.5 {+-} 0.5 Wm{sup -2}. In an alternative approach, the radiative flux perturbation due to anthropogenic aerosols can be broken down into a component over the cloud-free portion of the globe (approximately the aerosol direct effect) and a component over the cloudy portion of the globe (approximately the aerosol indirect effect). An estimate obtained by scaling these simulated clear- and cloudy-sky forcings with estimates of anthropogenic {tau}{sub a} and satellite-retrieved Nd - {tau}{sub a} regression slopes, respectively, yields a global, annual-mean aerosol direct effect estimate of -0.4 {+-} 0.2 Wm{sup -2} and a cloudy-sky (aerosol indirect effect) estimate of -0.7 {+-} 0.5 Wm{sup -2}, with a total estimate of -1.2 {+-} 0.4 Wm{sup -2}.« less

  6. Satellite estimation of incident photosynthetically active radiation using ultraviolet reflectance

    NASA Technical Reports Server (NTRS)

    Eck, Thomas F.; Dye, Dennis G.

    1991-01-01

    A new satellite remote sensing method for estimating the amount of photosynthetically active radiation (PAR, 400-700 nm) incident at the earth's surface is described and tested. Potential incident PAR for clear sky conditions is computed from an existing spectral model. A major advantage of the UV approach over existing visible band approaches to estimating insolation is the improved ability to discriminate clouds from high-albedo background surfaces. UV spectral reflectance data from the Total Ozone Mapping Spectrometer (TOMS) were used to test the approach for three climatically distinct, midlatitude locations. Estimates of monthly total incident PAR from the satellite technique differed from values computed from ground-based pyranometer measurements by less than 6 percent. This UV remote sensing method can be applied to estimate PAR insolation over ocean and land surfaces which are free of ice and snow.

  7. Development of computational pregnant female and fetus models and assessment of radiation dose from positron-emitting tracers.

    PubMed

    Xie, Tianwu; Zaidi, Habib

    2016-12-01

    Molecular imaging using PET and hybrid (PET/CT and PET/MR) modalities nowadays plays a pivotal role in the clinical setting for diagnosis and staging, treatment response monitoring, and radiation therapy treatment planning of a wide range of oncologic malignancies. The developing embryo/fetus presents a high sensitivity to ionizing radiation. Therefore, estimation of the radiation dose delivered to the embryo/fetus and pregnant patients from PET examinations to assess potential radiation risks is highly praised. We constructed eight embryo/fetus models at various gestation periods with 25 identified tissues according to reference data recommended by the ICRP publication 89 representing the anatomy of the developing embryo/fetus. The developed embryo/fetus models were integrated into realistic anthropomorphic computational phantoms of the pregnant female and used for estimating, using Monte Carlo calculations, S-values of common positron-emitting radionuclides, organ absorbed dose, and effective dose of a number of positron-emitting labeled radiotracers. The absorbed dose is nonuniformly distributed in the fetus. The absorbed dose of the kidney and liver of the 8-week-old fetus are about 47.45 % and 44.76 % higher than the average absorbed dose of the fetal total body for all investigated radiotracers. For 18 F-FDG, the fetal effective doses are 2.90E-02, 3.09E-02, 1.79E-02, 1.59E-02, 1.47E-02, 1.40E-02, 1.37E-02, and 1.27E-02 mSv/MBq at the 8th, 10th, 15th, 20th, 25th, 30th, 35th, and 38th weeks of gestation, respectively. The developed pregnant female/fetus models matching the ICRP reference data can be exploited by dedicated software packages for internal and external dose calculations. The generated S-values will be useful to produce new standardized dose estimates to pregnant patients and embryo/fetus from a variety of positron-emitting labeled radiotracers.

  8. A long-term study of aerosol–cloud interactions and their radiative effect at the Southern Great Plains using ground-based measurements

    DOE PAGES

    Sena, Elisa T.; McComiskey, Allison; Feingold, Graham

    2016-09-13

    Empirical estimates of the microphysical response of cloud droplet size distribution to aerosol perturbations are commonly used to constrain aerosol–cloud interactions in climate models. Instead of empirical microphysical estimates, here macroscopic variables are analyzed to address the influence of aerosol particles and meteorological descriptors on instantaneous cloud albedo and the radiative effect of shallow liquid water clouds. Long-term ground-based measurements from the Atmospheric Radiation Measurement (ARM) program over the Southern Great Plains are used. A broad statistical analysis was performed on 14 years of coincident measurements of low clouds, aerosol, and meteorological properties. Here two cases representing conflicting results regardingmore » the relationship between the aerosol and the cloud radiative effect were selected and studied in greater detail. Microphysical estimates are shown to be very uncertain and to depend strongly on the methodology, retrieval technique and averaging scale. For this continental site, the results indicate that the influence of the aerosol on the shallow cloud radiative effect and albedo is weak and that macroscopic cloud properties and dynamics play a much larger role in determining the instantaneous cloud radiative effect compared to microphysical effects. On a daily basis, aerosol shows no correlation with cloud radiative properties (correlation = -0.01 ± 0.03), whereas the liquid water path shows a clear signal (correlation = 0.56 ± 0.02).« less

  9. Radiation fluxes at the FIFE site

    NASA Technical Reports Server (NTRS)

    Walter-Shea, Elizabeth A.; Blad, Blaine L.; Zara, Pedro; Vining, Roel; Hays, Cynthia J.; Mesarch, Mark A.

    1993-01-01

    The main objective of the International Satellite Land Surface Climatology Project (ISLSCP) has been stated as 'the development of techniques that may be applied to satellite observations of the radiation reflected and emitted from the Earth to yield quantitative information concerning land surface climatological conditions'. The major field study, FIFE (the First ISLSCP Field Experiment), was conducted in 1987-89 to accomplish this objective. Four intensive field campaigns (IFC's) were carried out in 1987 and one in 1989. Factors contributing to observed reflected radiation from the FIFE site must be understood before the radiation observed by satellites can be used to quantify surface processes. Our last report (Walter-Shea et al., 1992b) focused on slope effects on incoming and outgoing shortwave radiation and net radiation from data collected in 1989. We report here on the final analysis of the slope data as well as results from thermal radiation studies conducted during the FIFE experiment. The specific areas reported are the following: (1) analysis of slope effects on measured reflectance values and estimates of surface albedo; (2) using remotely-measured surface temperatures as a means of estimating sensible heat flux from the Konza Prairie; (3) extracting canopy temperatures from remotely-measured composite surface temperatures; (4) modeling the measured composite temperature of partially vegetated surfaces; and (5) estimating gap distribution in partially vegetated surfaces from reflectance measurements.

  10. Radiation fluxes at the FIFE site. Final report, 1 January 1991-31 July 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter-Shea, E.A.; Blad, B.L.; Zara, P.

    1993-01-01

    The main objective of the International Satellite Land Surface Climatology Project (ISLSCP) has been stated as 'the development of techniques that may be applied to satellite observations of the radiation reflected and emitted from the Earth to yield quantitative information concerning land surface climatological conditions'. The major field study, FIFE (the First ISLSCP Field Experiment), was conducted in 1987-89 to accomplish this objective. Four intensive field campaigns (IFC's) were carried out in 1987 and one in 1989. Factors contributing to observed reflected radiation from the FIFE site must be understood before the radiation observed by satellites can be used tomore » quantify surface processes. Our last report (Walter-Shea et al.) focused on slope effects on incoming and outgoing shortwave radiation and net radiation from data collected in 1989. We report here on the final analysis of the slope data as well as results from thermal radiation studies conducted during the FIFE experiment. The specific areas reported are the following: (1) analysis of slope effects on measured reflectance values and estimates of surface albedo; (2) using remotely-measured surface temperatures as a means of estimating sensible heat flux from the Konza Prairie; (3) extracting canopy temperatures from remotely-measured composite surface temperatures; (4) modeling the measured composite temperature of partially vegetated surfaces; and (5) estimating gap distribution in partially vegetated surfaces from reflectance measurements.« less

  11. HARMONIZATION AND COMMUNICATION OF PBPK MODELS USING THE EXPOSURE RELATED DOSE ESTIMATION MODEL (ERDEM) SYSTEM: TRICHLOROETHYLENE

    EPA Science Inventory

    In support of the trichloroethylene (TCE) risk assessment for the Office of Air and Radiation, Office of Solid Waste and Emergency Response, and Office of Water, NERL and NCEA are developing an updated physiologically-based pharmacokinetic (PBPK) model. The PBPK modeling effort ...

  12. How safe is safe enough? Radiation risk for a human mission to Mars.

    PubMed

    Cucinotta, Francis A; Kim, Myung-Hee Y; Chappell, Lori J; Huff, Janice L

    2013-01-01

    Astronauts on a mission to Mars would be exposed for up to 3 years to galactic cosmic rays (GCR)--made up of high-energy protons and high charge (Z) and energy (E) (HZE) nuclei. GCR exposure rate increases about three times as spacecraft venture out of Earth orbit into deep space where protection of the Earth's magnetosphere and solid body are lost. NASA's radiation standard limits astronaut exposures to a 3% risk of exposure induced death (REID) at the upper 95% confidence interval (CI) of the risk estimate. Fatal cancer risk has been considered the dominant risk for GCR, however recent epidemiological analysis of radiation risks for circulatory diseases allow for predictions of REID for circulatory diseases to be included with cancer risk predictions for space missions. Using NASA's models of risks and uncertainties, we predicted that central estimates for radiation induced mortality and morbidity could exceed 5% and 10% with upper 95% CI near 10% and 20%, respectively for a Mars mission. Additional risks to the central nervous system (CNS) and qualitative differences in the biological effects of GCR compared to terrestrial radiation may significantly increase these estimates, and will require new knowledge to evaluate.

  13. How Safe Is Safe Enough? Radiation Risk for a Human Mission to Mars

    PubMed Central

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Chappell, Lori J.; Huff, Janice L.

    2013-01-01

    Astronauts on a mission to Mars would be exposed for up to 3 years to galactic cosmic rays (GCR) — made up of high-energy protons and high charge (Z) and energy (E) (HZE) nuclei. GCR exposure rate increases about three times as spacecraft venture out of Earth orbit into deep space where protection of the Earth's magnetosphere and solid body are lost. NASA's radiation standard limits astronaut exposures to a 3% risk of exposure induced death (REID) at the upper 95% confidence interval (CI) of the risk estimate. Fatal cancer risk has been considered the dominant risk for GCR, however recent epidemiological analysis of radiation risks for circulatory diseases allow for predictions of REID for circulatory diseases to be included with cancer risk predictions for space missions. Using NASA's models of risks and uncertainties, we predicted that central estimates for radiation induced mortality and morbidity could exceed 5% and 10% with upper 95% CI near 10% and 20%, respectively for a Mars mission. Additional risks to the central nervous system (CNS) and qualitative differences in the biological effects of GCR compared to terrestrial radiation may significantly increase these estimates, and will require new knowledge to evaluate. PMID:24146746

  14. Analysis of erythemally effective UV radiation at the Mendel Station, James Ross Island in the period of 2006-2007

    NASA Astrophysics Data System (ADS)

    Laska, K.; Prosek, P.; Budik, L.; Budikova, M.

    2009-04-01

    The results of global solar and erythemally effective ultraviolet (EUV) radiation measurements are presented. The radiation data were collected within the period of 2006-2007 at the Czech Antarctic station J. G. Mendel, James Ross Island (63°48'S, 57°53'W). Global solar radiation was measured by a Kipp&Zonen CM11 pyranometer. EUV radiation was measured according to the McKinley and Diffey Erythemal Action Spectrum with a Solar Light broadband UV-Biometer Model 501A. The effects of stratospheric ozone concentration and cloudiness (estimated as cloud impact factor from global solar radiation) on the intensity of incident EUV radiation were calculated by a non-linear regression model. The total ozone content (TOC) and cloud/surface reflectivity derived from satellite-based measurements were applied into the model for elimination of the uncertainties in measured ozone values. There were two input data of TOC used in the model. The first were taken from the Dobson spectrophotometer measurements (Argentinean Antarctic station Marambio), the second was acquired for geographical coordinates of the Mendel Station from the EOS Aura Ozone Monitoring Instrument and V8.5 algorithm. Analysis of measured EUV data showed that variable cloudiness affected rather short-term fluctuations of the radiation fluxes, while ozone declines caused long-term UV radiation increase in the second half of the year. The model predicted about 98 % variability of the measured EUV radiation. The residuals between measured and modeled EUV radiation intensities were evaluated separately for the above-specified two TOC datasets, parts of seasons and cloud impact factor (cloudiness). The mean average prediction error was used for model validation according to the cloud impact factor and satellite-based reflectivity data.

  15. Research in the application of spectral data to crop identification and assessment, volume 2

    NASA Technical Reports Server (NTRS)

    Daughtry, C. S. T. (Principal Investigator); Hixson, M. M.; Bauer, M. E.

    1980-01-01

    The development of spectrometry crop development stage models is discussed with emphasis on models for corn and soybeans. One photothermal and four thermal meteorological models are evaluated. Spectral data were investigated as a source of information for crop yield models. Intercepted solar radiation and soil productivity are identified as factors related to yield which can be estimated from spectral data. Several techniques for machine classification of remotely sensed data for crop inventory were evaluated. Early season estimation, training procedures, the relationship of scene characteristics to classification performance, and full frame classification methods were studied. The optimal level for combining area and yield estimates of corn and soybeans is assessed utilizing current technology: digital analysis of LANDSAT MSS data on sample segments to provide area estimates and regression models to provide yield estimates.

  16. A solar energy estimation procedure using remote sensing techniques. [watershed hydrologic models

    NASA Technical Reports Server (NTRS)

    Khorram, S.

    1977-01-01

    The objective of this investigation is to design a remote sensing-aided procedure for daily location-specific estimation of solar radiation components over the watershed(s) of interest. This technique has been tested on the Spanish Creek Watershed, Northern California, with successful results.

  17. Regional Attribution of Ozone Production and Associated Radiative Forcing: a Step to Crediting NOx Emission Reductions

    NASA Astrophysics Data System (ADS)

    Naik, V.; Mauzerall, D. L.; Horowitz, L.; Schwarzkopf, D.; Ramaswamy, V.; Oppenheimer, M.

    2004-12-01

    The global distribution of tropospheric ozone (O3) depends on the location of emissions of its precursors in addition to chemical and dynamical factors. The global picture of O3 forcing is, therefore, a sum of regional forcings arising from emissions of precursors from different sources. The Kyoto Protocol does not include ozone as a greenhouse gas, and emission reductions of ozone precursors made under Kyoto or any similar agreement would presently receive no credit. In this study, we quantitatively estimate the contribution of emissions of nitrogen oxides (NOx), the primary limiting O3 precursor in the non-urban atmosphere, from specific countries and regions of the world to global O3 concentration distributions. We then estimate radiative forcing resulting from the regional perturbations of NOx emissions. This analysis is intended as an early step towards incorporating O3 into the Kyoto Protocol or any successor agreement. Under such a system countries could obtain credit for improvements in local air quality that result in reductions of O3 concentrations because of the associated reductions in radiative forcing. We use the global chemistry transport model, MOZART-2, to simulate the global O3 distribution for base year 1990 and perturbations to this distribution caused by a 10% percent reduction in the base emissions of NOx from the United States, Europe, East Asia, India, South America, and Africa. We calculate the radiative forcing for the simulated base and perturbed O3 distributions using the GFDL radiative transfer model. The difference between the radiative forcing from O3 for the base and perturbed distributions provides an estimate of the marginal radiative forcing from a region's emissions of NOx. We will present a quantitative analysis of the magnitude, spatial, and temporal distribution of radiative forcing resulting from marginal changes in the NOx emissions from each region.

  18. Spatio-temporal distribution of energy radiation from low frequency tremor

    NASA Astrophysics Data System (ADS)

    Maeda, T.; Obara, K.

    2007-12-01

    Recent fine-scale hypocenter locations of low frequency tremors (LFTs) estimated by cross-correlation technique (Shelly et al. 2006; Maeda et al. 2006) and new finding of very low frequency earthquake (Ito et al. 2007) suggest that these slow events occur at the plate boundary associated with slow slip events (Obara and Hirose, 2006). However, the number of tremor detected by above technique is limited since continuous tremor waveforms are too complicated. Although an envelope correlation method (ECM) (Obara, 2002) enables us to locate epicenters of LFT without arrival time picks, however, ECM fails to locate LFTs precisely especially on the most active stage of tremor activity because of the low-correlation of envelope amplitude. To reveal total energy release of LFT, here we propose a new method for estimating the location of LFTs together with radiated energy from the tremor source by using envelope amplitude. The tremor amplitude observed at NIED Hi-net stations in western Shikoku simply decays in proportion to the reciprocal of the source-receiver distance after the correction of site- amplification factor even though the phases of the tremor are very complicated. So, we model the observed mean square envelope amplitude by time-dependent energy radiation with geometrical spreading factor. In the model, we do not have origin time of the tremor since we assume that the source of the tremor continuously radiates the energy. Travel-time differences between stations estimated by the ECM technique also incorporated in our locating algorithm together with the amplitude information. Three-component 1-hour Hi-net velocity continuous waveforms with a pass-band of 2-10 Hz are used for the inversion after the correction of site amplification factors at each station estimated by coda normalization method (Takahashi et al. 2005) applied to normal earthquakes in the region. The source location and energy are estimated by applying least square inversion to the 1-min window iteratively. As a first application of our method, we estimated the spatio-temporal distribution of energy radiation for 2006 May episodic tremor and slip event occurred in western Shikoku, Japan, region. Tremor location and their radiated energy are estimated for every 1 minute. We counted the number of located LFTs and summed up their total energy at each grid having 0.05-degree spacing at each day to figure out the spatio-temporal distribution of energy release of tremors. The resultant spatial distribution of radiated energy is concentrated at a specific region. Additionally, we see the daily change of released energy, both of location and amount, which corresponds to the migration of tremor activity. The spatio-temporal distribution of energy radiation of tremors is in good agreement with a spatio-temporal slip distribution of slow slip event estimated from Hi-net tiltmeter record (Hirose et al. 2007). This suggests that small continuous tremors occur associated with a rupture process of slow slip.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, A.; Sengupta, M.; Wilcox, S.

    Models to compute Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) have been in development over the last 3 decades. These models can be classified as empirical or physical, based on the approach. Empirical models relate ground based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the radiation received from the earth at the satellite and create retrievals to estimate surface radiation. While empirical methods have been traditionally used for computing surface radiation for the solar energy industry the advent of faster computing has made operational physical models viable. The Global Solarmore » Insolation Project (GSIP) is an operational physical model from NOAA that computes GHI using the visible and infrared channel measurements from the GOES satellites. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate surface radiation. NREL, University of Wisconsin and NOAA have recently collaborated to adapt GSIP to create a 4 km GHI and DNI product every 30 minutes. This paper presents an outline of the methodology and a comprehensive validation using high quality ground based solar data from the National Oceanic and Atmospheric Administration (NOAA) Surface Radiation (SURFRAD) (http://www.srrb.noaa.gov/surfrad/sitepage.html) and Integrated Surface Insolation Study (ISIS) http://www.srrb.noaa.gov/isis/isissites.html), the Solar Radiation Research Laboratory (SRRL) at National Renewable Energy Laboratory (NREL), and Sun Spot One (SS1) stations.« less

  20. A framework for estimating radiation-related cancer risks in Japan from the 2011 Fukushima nuclear accident.

    PubMed

    Walsh, L; Zhang, W; Shore, R E; Auvinen, A; Laurier, D; Wakeford, R; Jacob, P; Gent, N; Anspaugh, L R; Schüz, J; Kesminiene, A; van Deventer, E; Tritscher, A; del Rosarion Pérez, M

    2014-11-01

    We present here a methodology for health risk assessment adopted by the World Health Organization that provides a framework for estimating risks from the Fukushima nuclear accident after the March 11, 2011 Japanese major earthquake and tsunami. Substantial attention has been given to the possible health risks associated with human exposure to radiation from damaged reactors at the Fukushima Daiichi nuclear power station. Cumulative doses were estimated and applied for each post-accident year of life, based on a reference level of exposure during the first year after the earthquake. A lifetime cumulative dose of twice the first year dose was estimated for the primary radionuclide contaminants ((134)Cs and (137)Cs) and are based on Chernobyl data, relative abundances of cesium isotopes, and cleanup efforts. Risks for particularly radiosensitive cancer sites (leukemia, thyroid and breast cancer), as well as the combined risk for all solid cancers were considered. The male and female cumulative risks of cancer incidence attributed to radiation doses from the accident, for those exposed at various ages, were estimated in terms of the lifetime attributable risk (LAR). Calculations of LAR were based on recent Japanese population statistics for cancer incidence and current radiation risk models from the Life Span Study of Japanese A-bomb survivors. Cancer risks over an initial period of 15 years after first exposure were also considered. LAR results were also given as a percentage of the lifetime baseline risk (i.e., the cancer risk in the absence of radiation exposure from the accident). The LAR results were based on either a reference first year dose (10 mGy) or a reference lifetime dose (20 mGy) so that risk assessment may be applied for relocated and non-relocated members of the public, as well as for adult male emergency workers. The results show that the major contribution to LAR from the reference lifetime dose comes from the first year dose. For a dose of 10 mGy in the first year and continuing exposure, the lifetime radiation-related cancer risks based on lifetime dose (which are highest for children under 5 years of age at initial exposure), are small, and much smaller than the lifetime baseline cancer risks. For example, after initial exposure at age 1 year, the lifetime excess radiation risk and baseline risk of all solid cancers in females were estimated to be 0.7 · 10(-2) and 29.0 · 10(-2), respectively. The 15 year risks based on the lifetime reference dose are very small. However, for initial exposure in childhood, the 15 year risks based on the lifetime reference dose are up to 33 and 88% as large as the 15 year baseline risks for leukemia and thyroid cancer, respectively. The results may be scaled to particular dose estimates after consideration of caveats. One caveat is related to the lack of epidemiological evidence defining risks at low doses, because the predicted risks come from cancer risk models fitted to a wide dose range (0-4 Gy), which assume that the solid cancer and leukemia lifetime risks for doses less than about 0.5 Gy and 0.2 Gy, respectively, are proportional to organ/tissue doses: this is unlikely to seriously underestimate risks, but may overestimate risks. This WHO-HRA framework may be used to update the risk estimates, when new population health statistics data, dosimetry information and radiation risk models become available.

  1. Observation and estimation of photosynthetically active radiation in Lhasa (Tibetan Plateau)

    NASA Astrophysics Data System (ADS)

    Peng, Simao; Du, Qingyun; Lin, Aiwen; Hu, Bo; Xiao, Ke; Xi, Yuliang

    2015-03-01

    In this study, we measured photosynthetically active radiation (PAR) and global solar radiation (G) in Lhasa, located on the Tibetan Plateau, from 2006 to 2012 to examine the PAR and PAR/G (PAR fraction) seasonal characteristics. The maximum and minimum values of both PAR and the PAR fraction occurred in summer and winter, respectively. Moreover, the PAR and PAR fraction annual averages were 38.64 mol m-2 d-1 and 1.84 mol M J-1, respectively. An efficient all-weather model used for estimating PAR under various sky conditions was developed based on the relationships among PAR, the cosine of the solar zenith angle and the clearness index in Lhasa. The model also produced acceptable estimations of PAR with high accuracy at the Donghu and Sanjiang weather stations. A PAR dataset was reconstructed from G using the newly developed model for the period 1961-2012. The modelled annual mean daily PAR was approximately 37.62 mol m-2 d-1. A significant decreasing trend (-0.61 mol m-2 per decade) over the last 50 years was observed on the Tibetan Plateau; this decrease was largest in autumn (-1.024 mol m-2 per decade), and relatively small decreases were observed in summer. The results also revealed that PAR began increasing at 0.164 mol m-2 per year from 1991 to 2012, which was inconsistent with the variations of G. The proposed all-weather PAR model could be useful for ecological modelling and agricultural processes in the Tibetan Plateau region of China.

  2. IPRT polarized radiative transfer model intercomparison project - Three-dimensional test cases (phase B)

    NASA Astrophysics Data System (ADS)

    Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Wang, Zhen; Labonotte, Laurent C.; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred

    2018-04-01

    Initially unpolarized solar radiation becomes polarized by scattering in the Earth's atmosphere. In particular molecular scattering (Rayleigh scattering) polarizes electromagnetic radiation, but also scattering of radiation at aerosols, cloud droplets (Mie scattering) and ice crystals polarizes. Each atmospheric constituent produces a characteristic polarization signal, thus spectro-polarimetric measurements are frequently employed for remote sensing of aerosol and cloud properties. Retrieval algorithms require efficient radiative transfer models. Usually, these apply the plane-parallel approximation (PPA), assuming that the atmosphere consists of horizontally homogeneous layers. This allows to solve the vector radiative transfer equation (VRTE) efficiently. For remote sensing applications, the radiance is considered constant over the instantaneous field-of-view of the instrument and each sensor element is treated independently in plane-parallel approximation, neglecting horizontal radiation transport between adjacent pixels (Independent Pixel Approximation, IPA). In order to estimate the errors due to the IPA approximation, three-dimensional (3D) vector radiative transfer models are required. So far, only a few such models exist. Therefore, the International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to provide benchmark results for polarized radiative transfer. The group has already performed an intercomparison for one-dimensional (1D) multi-layer test cases [phase A, 1]. This paper presents the continuation of the intercomparison project (phase B) for 2D and 3D test cases: a step cloud, a cubic cloud, and a more realistic scenario including a 3D cloud field generated by a Large Eddy Simulation (LES) model and typical background aerosols. The commonly established benchmark results for 3D polarized radiative transfer are available at the IPRT website (http://www.meteo.physik.uni-muenchen.de/ iprt).

  3. Standard and reduced radiation dose liver CT images: adaptive statistical iterative reconstruction versus model-based iterative reconstruction-comparison of findings and image quality.

    PubMed

    Shuman, William P; Chan, Keith T; Busey, Janet M; Mitsumori, Lee M; Choi, Eunice; Koprowicz, Kent M; Kanal, Kalpana M

    2014-12-01

    To investigate whether reduced radiation dose liver computed tomography (CT) images reconstructed with model-based iterative reconstruction ( MBIR model-based iterative reconstruction ) might compromise depiction of clinically relevant findings or might have decreased image quality when compared with clinical standard radiation dose CT images reconstructed with adaptive statistical iterative reconstruction ( ASIR adaptive statistical iterative reconstruction ). With institutional review board approval, informed consent, and HIPAA compliance, 50 patients (39 men, 11 women) were prospectively included who underwent liver CT. After a portal venous pass with ASIR adaptive statistical iterative reconstruction images, a 60% reduced radiation dose pass was added with MBIR model-based iterative reconstruction images. One reviewer scored ASIR adaptive statistical iterative reconstruction image quality and marked findings. Two additional independent reviewers noted whether marked findings were present on MBIR model-based iterative reconstruction images and assigned scores for relative conspicuity, spatial resolution, image noise, and image quality. Liver and aorta Hounsfield units and image noise were measured. Volume CT dose index and size-specific dose estimate ( SSDE size-specific dose estimate ) were recorded. Qualitative reviewer scores were summarized. Formal statistical inference for signal-to-noise ratio ( SNR signal-to-noise ratio ), contrast-to-noise ratio ( CNR contrast-to-noise ratio ), volume CT dose index, and SSDE size-specific dose estimate was made (paired t tests), with Bonferroni adjustment. Two independent reviewers identified all 136 ASIR adaptive statistical iterative reconstruction image findings (n = 272) on MBIR model-based iterative reconstruction images, scoring them as equal or better for conspicuity, spatial resolution, and image noise in 94.1% (256 of 272), 96.7% (263 of 272), and 99.3% (270 of 272), respectively. In 50 image sets, two reviewers (n = 100) scored overall image quality as sufficient or good with MBIR model-based iterative reconstruction in 99% (99 of 100). Liver SNR signal-to-noise ratio was significantly greater for MBIR model-based iterative reconstruction (10.8 ± 2.5 [standard deviation] vs 7.7 ± 1.4, P < .001); there was no difference for CNR contrast-to-noise ratio (2.5 ± 1.4 vs 2.4 ± 1.4, P = .45). For ASIR adaptive statistical iterative reconstruction and MBIR model-based iterative reconstruction , respectively, volume CT dose index was 15.2 mGy ± 7.6 versus 6.2 mGy ± 3.6; SSDE size-specific dose estimate was 16.4 mGy ± 6.6 versus 6.7 mGy ± 3.1 (P < .001). Liver CT images reconstructed with MBIR model-based iterative reconstruction may allow up to 59% radiation dose reduction compared with the dose with ASIR adaptive statistical iterative reconstruction , without compromising depiction of findings or image quality. © RSNA, 2014.

  4. Estimating regional evapotranspiration from remotely sensed data by surface energy balance models

    NASA Technical Reports Server (NTRS)

    Asrar, Ghassem; Kanemasu, Edward; Myneni, R. B.; Lapitan, R. L.; Harris, T. R.; Killeen, J. M.; Cooper, D. I.; Hwang, C.

    1987-01-01

    Spatial and temporal variations of surface radiative temperatures of the burned and unburned areas of the Konza tallgrass prairie were studied. The role of management practices, topographic conditions and the uncertainties associated with in situ or airborne surface temperature measurements were assessed. Evaluation of diurnal and seasonal spectral characteristics of the burned and unburned areas of the prairie was also made. This was accomplished based on the analysis of measured spectral reflectance of the grass canopies under field conditions, and modelling their spectral behavior using a one dimensional radiative transfer model.

  5. Earth radiation balance as observed and represented in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Folini, Doris; Schär, Christoph; Loeb, Norman; König-Langlo, Gert

    2014-05-01

    The genesis and evolution of Earth's climate is largely regulated by the Earth radiation balance. Despite of its key role in the context of climate change, substantial uncertainties still exist in the quantification of the magnitudes of its different components, and its representation in climate models. While the net radiative energy flows in and out of the climate system at the top of atmosphere are now known with considerable accuracy from new satellite programs such as CERES and SORCE, the energy distribution within the climate system and at the Earth's surface is less well determined. Accordingly, the magnitudes of the components of the surface energy balance have recently been controversially disputed, and potential inconsistencies between the estimated magnitudes of the global energy and water cycle have been emphasized. Here we summarize this discussion as presented in Chapter 2.3 of the 5th IPCC assessment report (AR5). In this context we made an attempt to better constrain the magnitudes of the surface radiative components with largest uncertainties. In addition to satellite observations, we thereby made extensive use of the growing number of surface observations to constrain the radiation balance not only from space, but also from the surface. We combined these observations with the latest modeling efforts performed for AR5 (CMIP5) to infer best estimates for the global mean surface radiative components. Our analyses favor global mean values of downward surface solar and thermal radiation near 185 and 342 Wm-2, respectively, which are most compatible with surface observations (Wild et al. 2013). These estimates are on the order of 10 Wm-2 lower and higher, respectively, than in some of the previous global energy balance assessments, including those presented in previous IPCC reports. It is encouraging that these estimates, which make full use of the information contained in the surface networks, coincide within 2 Wm-2 with the latest satellite-derived estimates (Kato et al. 2013), which are completely independently determined. This enhances confidence in these recent surface flux estimates. IPCC AR5 further presents increasing evidence from direct observations that the surface radiative fluxes undergo significant changes on decadal timescales, not only in their thermal components as expected from the increasing greenhouse effect, but also in the amount of solar radiation that reaches the Earth surface. In the thermal range, surface observations suggest an overall increase of downward thermal radiation in line with latest projections from the CMIP5 models and expectations from an increasing greenhouse effect. On the other hand the strong decadal changes in surface solar radiation seen in the observations ("dimming/brightening") are not fully captured by current climate models. These decadal changes in surface solar radiation may largely affect various aspects of climate change. Selected related references: Hartmann, D.L., A.M.G. Klein Tank, M. Rusticucci, L. Alexander, S. Brönnimann, Y. Charabi, F. Dentener, E. Dlugokencky, D. Easterling, A. Kaplan, B. Soden, P. Thorne, M. Wild and P.M. Zhai, 2013: Observations: Atmosphere and Surface. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Kato, S., Loeb, N.G., Rose, F.G., Doelling, D.R., Rutan, D.A., Caldwell, T.E., Yu, L.S, and Weller, R.A., 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. Journal of Climate 26 (9):2719-2740. doi:Doi 10.1175/Jcli-D-12-00436.1 Wild, M., 2012: New Directions: A facelift for the picture of the global energy balance. Atmospheric Environment, 55, 366-367. Wild, M. 2012: Enlightening Global Dimming and Brightening. Bull. Amer. Meteor. Soc., 93, 27-37, doi:10.1175/BAMS-D-11-00074.1 Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E.G., and König-Langlo, G., 2013: The global energy balance from a surface perspective, Clim. Dyn., 40, 3107-3134, Doi:10.1007/s00382-012-1569-8.

  6. Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data

    NASA Astrophysics Data System (ADS)

    Tang, W.; Qin, J.; Yang, K.; Liu, S.; Lu, N.; Niu, X.

    2015-12-01

    Cloud parameters (cloud mask, effective particle radius and liquid/ice water path) are the important inputs in determining surface solar radiation (SSR). These parameters can be derived from MODIS with high accuracy but their temporal resolution is too low to obtain high temporal resolution SSR retrievals. In order to obtain hourly cloud parameters, the Artificial Neural Network (ANN) is applied in this study to directly construct a functional relationship between MODIS cloud products and Multi-functional Transport Satellite (MTSAT) geostationary satellite signals. Meanwhile, an efficient parameterization model for SSR retrieval is introduced and, when driven with MODIS atmospheric and land products, its root mean square error (RMSE) is about 100 W m-2 for 44 Baseline Surface Radiation Network (BSRN) stations. Once the estimated cloud parameters and other information (such as aerosol, precipitable water, ozone and so on) are input to the model, we can derive SSR at high spatio-temporal resolution. The retrieved SSR is first evaluated against hourly radiation data at three experimental stations in the Haihe River Basin of China. The mean bias error (MBE) and RMSE in hourly SSR estimate are 12.0 W m-2 (or 3.5 %) and 98.5 W m-2 (or 28.9 %), respectively. The retrieved SSR is also evaluated against daily radiation data at 90 China Meteorological Administration (CMA) stations. The MBEs are 9.8 W m-2 (5.4 %); the RMSEs in daily and monthly-mean SSR estimates are 34.2 W m-2 (19.1 %) and 22.1 W m-2 (12.3 %), respectively. The accuracy is comparable or even higher than other two radiation products (GLASS and ISCCP-FD), and the present method is more computationally efficient and can produce hourly SSR data at a spatial resolution of 5 km.

  7. Development of response models for the Earth Radiation Budget Experiment (ERBE) sensors. Part 1: Dynamic models and computer simulations for the ERBE nonscanner, scanner and solar monitor sensors

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Choi, Sang H.; Chrisman, Dan A., Jr.; Samms, Richard W.

    1987-01-01

    Dynamic models and computer simulations were developed for the radiometric sensors utilized in the Earth Radiation Budget Experiment (ERBE). The models were developed to understand performance, improve measurement accuracy by updating model parameters and provide the constants needed for the count conversion algorithms. Model simulations were compared with the sensor's actual responses demonstrated in the ground and inflight calibrations. The models consider thermal and radiative exchange effects, surface specularity, spectral dependence of a filter, radiative interactions among an enclosure's nodes, partial specular and diffuse enclosure surface characteristics and steady-state and transient sensor responses. Relatively few sensor nodes were chosen for the models since there is an accuracy tradeoff between increasing the number of nodes and approximating parameters such as the sensor's size, material properties, geometry, and enclosure surface characteristics. Given that the temperature gradients within a node and between nodes are small enough, approximating with only a few nodes does not jeopardize the accuracy required to perform the parameter estimates and error analyses.

  8. Estimation of land photosynthetically active radiation in clear sky using MODIS atmosphere and land products

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoping; Gao, Wei; Gao, Zhiqiang

    2008-08-01

    Photosynthetically active radiation (PAR) is an essential parameter in vegetation growth model and soil carbon sequestration models. A method is presented with which instantaneous PAR can be calculated with high accuracy from Moderate Resolution Imaging Spectroradiometer (MODIS) atmosphere and land products. The method is based on a simplification of the general radiative transfer equation, which considers five major processes of attenuation of solar radiation: Rayleigh scattering, absorption by ozone and water vapor, aerosol scattering, multiply reflectance between surface and atmosphere. Comparing 108 retrieveled results to filed measured PAR in Yucheng station of Chinese Ecosystem Research Network (CERN) in 2006, and the r-square of 0.855 indicates that the computed results can interpret actual PAR well.

  9. Fate of Earth Microbes on Mars: UV Radiation Effects

    NASA Technical Reports Server (NTRS)

    Cockell, Charles

    2000-01-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment. Biological action spectra for DNA inactivation are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Although the present-day martian UV flux is similar to early earth and thus may not be a limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Here calculations for loss of microbial viability on the Pathfinder and Polar lander spacecraft are presented and the effects of martian dust on loss of viability are discussed. Details of the radiative transfer model are presented.

  10. Fate of Earth Microbes on Mars -- UV Radiation Effects

    NASA Technical Reports Server (NTRS)

    Cockell, Charles

    2000-01-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment. Biological action spectra for DNA inactivation are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Although the present-day martian UV flux is similar to early earth and thus may not be a limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Here calculations for loss of microbial viability on the Pathfinder and Polar lander spacecraft are presented and the effects of martian dust on loss of viability are discussed. Details of the radiative transfer model are presented.

  11. Study of the uncertainty in estimation of the exposure of non-human biota to ionising radiation.

    PubMed

    Avila, R; Beresford, N A; Agüero, A; Broed, R; Brown, J; Iospje, M; Robles, B; Suañez, A

    2004-12-01

    Uncertainty in estimations of the exposure of non-human biota to ionising radiation may arise from a number of sources including values of the model parameters, empirical data, measurement errors and biases in the sampling. The significance of the overall uncertainty of an exposure assessment will depend on how the estimated dose compares with reference doses used for risk characterisation. In this paper, we present the results of a study of the uncertainty in estimation of the exposure of non-human biota using some of the models and parameters recommended in the FASSET methodology. The study was carried out for semi-natural terrestrial, agricultural and marine ecosystems, and for four radionuclides (137Cs, 239Pu, 129I and 237Np). The parameters of the radionuclide transfer models showed the highest sensitivity and contributed the most to the uncertainty in the predictions of doses to biota. The most important ones were related to the bioavailability and mobility of radionuclides in the environment, for example soil-to-plant transfer factors, the bioaccumulation factors for marine biota and the gut uptake fraction for terrestrial mammals. In contrast, the dose conversion coefficients showed low sensitivity and contributed little to the overall uncertainty. Radiobiological effectiveness contributed to the overall uncertainty of the dose estimations for alpha emitters although to a lesser degree than a number of transfer model parameters.

  12. Comparison of different methods of estimating the mean radiant temperature in outdoor thermal comfort studies.

    PubMed

    Krüger, E L; Minella, F O; Matzarakis, A

    2014-10-01

    Correlations between outdoor thermal indices and the calculated or measured mean radiant temperature T(mrt) are in general of high importance because of the combined effect on human energy balance in outdoor spaces. The most accurate way to determine T(mrt) is by means of integral radiation measurements, i.e. measuring the short- and long-wave radiation from six directions using pyranometers and pyrgeometers, an expensive and not always an easily available procedure. Some studies use globe thermometers combined with air temperature and wind speed sensors. An alternative way to determine T(mrt) is based on output from the RayMan model from measured data of incoming global radiation and morphological features of the monitoring site in particular sky view factor (SVF) data. The purpose of this paper is to compare different methods to assess the mean radiant temperature T(mrt) in terms of differences to a reference condition (T(mrt) calculated from field measurements) and to resulting outdoor comfort levels expressed as PET and UTCI values. The T(mrt) obtained from field measurements is a combination of air temperature, wind speed and globe temperature data according to the forced ventilation formula of ISO 7726 for data collected in Glasgow, UK. Four different methods were used in the RayMan model for T(mrt) calculations: input data consisting exclusively of data measured at urban sites; urban data excluding solar radiation, estimated SVF data and solar radiation data measured at a rural site; urban data excluding solar radiation with SVF data for each site; urban data excluding solar radiation and including solar radiation at the rural site taking no account of SVF information. Results show that all methods overestimate T(mrt) when compared to ISO calculations. Correlations were found to be significant for the first method and lower for the other three. Results in terms of comfort (PET, UTCI) suggest that reasonable estimates could be made based on global radiation data measured at the urban site or as a surrogate of missing SR data or globe temperature data recorded at the urban area on global radiation data measured at a rural location.

  13. Integrative Analysis of Desert Dust Size and Abundance Suggests Less Dust Climate Cooling

    NASA Technical Reports Server (NTRS)

    Kok, Jasper F.; Ridley, David A.; Zhou, Qing; Miller, Ron L.; Zhao, Chun; Heald, Colette L.; Ward, Daniel S.; Albani, Samuel; Haustein, Karsten

    2017-01-01

    Desert dust aerosols affect Earths global energy balance through interactions with radiation, clouds, and ecosystems. But the magnitudes of these effects are so uncertain that it remains unclear whether atmospheric dust has a net warming or cooling effect on global climate. Consequently, it is still uncertain whether large changes in atmospheric dust loading over the past century have slowed or accelerated anthropogenic climate change, and the climate impact of possible future alterations in dust loading is similarly disputed. Here we use an integrative analysis of dust aerosol sizes and abundance to constrain the climatic impact of dust through direct interactions with radiation. Using a combination of observational, experimental, and model data, we find that atmospheric dust is substantially coarser than represented in current climate models. Since coarse dust warms global climate, the dust direct radiative effect (DRE) is likely less cooling than the 0.4 W m superscript 2 estimated by models in a current ensemble. We constrain the dust DRE to -0.20 (-0.48 to +0.20) W m superscript 2, which suggests that the dust DRE produces only about half the cooling that current models estimate, and raises the possibility that dust DRE is actually net warming the planet.

  14. Physically-based biodosimetry using in vivo EPR of teeth in patients undergoing total body irradiation

    PubMed Central

    Williams, Benjamin B.; Dong, Ruhong; Nicolalde, Roberto J.; Matthews, Thomas P.; Gladstone, David J.; Demidenko, Eugene; Zaki, Bassem I.; Salikhov, Ildar K.; Lesniewski, Piotr N.; Swartz, Harold M.

    2014-01-01

    Purpose The ability to estimate individual exposures to radiation following a large attack or incident has been identified as a necessity for rational and effective emergency medical response. In vivo electron paramagnetic resonance (EPR) spectroscopy of tooth enamel has been developed to meet this need. Materials and methods A novel transportable EPR spectrometer, developed to facilitate tooth dosimetry in an emergency response setting, was used to measure upper incisors in a model system, in unirradiated subjects, and in patients who had received total body doses of 2 Gy. Results A linear dose response was observed in the model system. A statistically significant increase in the intensity of the radiation-induced EPR signal was observed in irradiated versus unirradiated subjects, with an estimated standard error of dose prediction of 0.9 + 0.3 Gy. Conclusions These results demonstrate the current ability of in vivo EPR tooth dosimetry to distinguish between subjects who have not been irradiated and those who have received exposures that place them at risk for acute radiation syndrome. Procedural and technical developments to further increase the precision of dose estimation and ensure reliable operation in the emergency setting are underway. With these developments EPR tooth dosimetry is likely to be a valuable resource for triage following potential radiation exposure of a large population. PMID:21696339

  15. Direct Radiative Effect of Aerosols Based on PARASOL and OMI Satellite Observations

    NASA Technical Reports Server (NTRS)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-01-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 +/- 1.5 W/sq m for cloud-free and -2.1 +/- 0.7 W/sq m for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  16. Penetration of UV Radiation in the Earth's Oceans

    NASA Technical Reports Server (NTRS)

    Mitchell, B. Greg; Lubin, Dan

    2005-01-01

    This project was a collaboration between SIO/UCSD and NASA/GSFC to develop a global estimation of the penetration of UV light into open ocean waters, and into coastal waters. We determined the ocean UV reflectance spectra seen by satellites above the atmosphere by combining existing sophisticated radiative transfer models with in situ UV Visible data sets to improve coupled radiance estimates both underwater and within the atmosphere. Results included improved estimates of surface spectral irradiance, 0.3-1.0 micron, and estimates of photosynthetic inhibition, DNA mutation, and CO production. Data sets developed under this proposal have been made publicly available via submission to the SeaWiFS Bio-Optical Archive and Storage System. Numerous peer-reviewed publications and conference proceedings and abstracts resulted from the work supported by this research award.

  17. The increase in animal mortality risk following exposure to sparsely ionizing radiation is not linear quadratic with dose

    DOE PAGES

    Haley, Benjamin M.; Paunesku, Tatjana; Grdina, David J.; ...

    2015-12-09

    The US government regulates allowable radiation exposures relying, in large part, on the seventh report from the committee to estimate the Biological Effect of Ionizing Radiation (BEIR VII), which estimated that most contemporary exposures- protracted or low-dose, carry 1.5 fold less risk of carcinogenesis and mortality per Gy than acute exposures of atomic bomb survivors. This correction is known as the dose and dose rate effectiveness factor for the life span study of atomic bomb survivors (DDREF LSS). As a result, it was calculated by applying a linear-quadratic dose response model to data from Japanese atomic bomb survivors and amore » limited number of animal studies.« less

  18. The increase in animal mortality risk following exposure to sparsely ionizing radiation is not linear quadratic with dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haley, Benjamin M.; Paunesku, Tatjana; Grdina, David J.

    The US government regulates allowable radiation exposures relying, in large part, on the seventh report from the committee to estimate the Biological Effect of Ionizing Radiation (BEIR VII), which estimated that most contemporary exposures- protracted or low-dose, carry 1.5 fold less risk of carcinogenesis and mortality per Gy than acute exposures of atomic bomb survivors. This correction is known as the dose and dose rate effectiveness factor for the life span study of atomic bomb survivors (DDREF LSS). As a result, it was calculated by applying a linear-quadratic dose response model to data from Japanese atomic bomb survivors and amore » limited number of animal studies.« less

  19. The global mean energy balance under cloud-free conditions

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Hakuba, Maria; Folini, Dois; Ott, Patricia; Long, Charles

    2017-04-01

    A long standing problem of climate models is their overestimation of surface solar radiation not only under all-sky, but also under clear-sky conditions (Wild et al. 1995, Wild et al. 2006). This overestimation reduced over time in consecutive model generations due to the simulation of stronger atmospheric absorption. Here we analyze the clear sky fluxes of the latest climate model generation from the Coupled Model Intercomparison Project Phase 5 (CMIP5) against an expanded and updated set of direct observations from the Baseline Surface Radiation Network (BSRN). Clear sky climatologies from these sites have been composed based on the Long and Ackermann (2000) clear sky detection algorithm (Hakuba et al. 2017), and sampling issues when comparing with model simulated clear sky fluxes have been analyzed in Ott (2017). Overall, the overestimation of clear sky insolation in the CMIP5 models is now merely 1-2 Wm-2 in the multimodel mean, compared to 4 Wm-2 in CMIP3 and 6 Wm-2 in AMIPII (Wild et al. 2006). Still a considerable spread in the individual model biases is apparent, ranging from -2 Wm-2 to 10 Wm-2 when averaged over 53 globally distributed BSRN sites. This bias structure is used to infer best estimates for present day global mean clear sky insolation, following an approach developped in Wild et al. (2013, 2015, Clim. Dyn.) for all sky fluxes. Thereby the flux biases in the various models are linearly related to their respective global means. A best estimate can then be inferred from the linear regression at the intersect where the bias against the surface observations becomes zero. This way we obtain a best estimate of 247 Wm-2 for the global mean insolation at the Earth surface under cloud free conditions, and a global mean absorbed solar radiation of 214 Wm-2 in the cloud-free atmosphere, assuming a global mean surface albedo of 13.5%. Combined with a best estimate for the net influx of solar radiation at the Top of Atmosphere under cloud free conditions from CERES EBAF of 286 Wm-2, this leaves an amount of 72 Wm-2 absorbed solar radiation in the cloud free atmosphere. The 72 Wm-2 closely match our best estimate for the global mean cloud-free atmospheric absorption in Wild et al. JGR (2006) based on older models and their biases against much fewer direct observation. This indicates that the estimate of global mean solar absorption in the cloud free atmosphere slightly above 70 Wm-2 is fairly robust. In comparison, the global mean solar absorption under all sky conditions was estimated in Wild et al. (2015) at 80 Wm-2 based on the same approach. The difference between the all- and clear-sky absorption represents the cloud radiative effect on the atmospheric absorption, and is thus estimated here to be around 8 Wm-2. This is similar in magnitude to the 11 Wm-2 derived by Hakuba et al. (2017) when averaged over the atmospheric cloud effect determined at 36 BSRN station. We applied the same methodology also for the longwave fluxes. Thereby we obtained a best estimate for the global mean clear sky downward longwave flux at the Earth surface of 214 Wm-2. Together with a surface and TOA upward longwave flux of 398 Wm-2 and 266 Wm-2, respectively, this leaves an atmospheric longwave divergence under clear sky conditions of 182 Wm-2. Selected related references: Hakuba, M. Z., Folini, D., Wild, M., Long, C. N., Schaepman-Strub, G., and Stephens, G.L., 2017: Cloud Effects on Atmospheric Solar Absorption in Light of Most Recent Surface and Satellite Measurements. AIP Conf. Proc. (in press). Ott, P., 2017: Master Thesis at ETH Zurich (in prep.). Wild, M., Ohmura, A., Gilgen, H., and Roeckner, E., 1995: Validation of GCM simulated radiative fluxes using surface observations. J. Climate, 8, 1309-1324. Wild, M., Long, C.N., and Ohmura, A., 2006: Evaluation of clear-sky solar fluxes in GCMs participating in AMIP and IPCC-AR4 from a surface perspective. J. Geophys. Res., 111, D01104, doi:10.1029/2005JD006118. Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E.G., and König-Langlo, G., 2013: The global energy balance from a surface perspective. Climate Dynamics, 40, 3107-3134. Wild, M., Folini, D., Hakuba, M., Schär, C., Seneviratne, S.I., Kato, S., Rutan, D., Ammann, C., Wood, E.F., and König-Langlo, G., 2015: The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models, Climate Dynamics, 3393-3429, 44, DOI 10.1007/s00382-014-2430-z.

  20. Development of a Greek solar map based on solar model estimations

    NASA Astrophysics Data System (ADS)

    Kambezidis, H. D.; Psiloglou, B. E.; Kavadias, K. A.; Paliatsos, A. G.; Bartzokas, A.

    2016-05-01

    The realization of Renewable Energy Sources (RES) for power generation as the only environmentally friendly solution, moved solar systems to the forefront of the energy market in the last decade. The capacity of the solar power doubles almost every two years in many European countries, including Greece. This rise has brought the need for reliable predictions of meteorological data that can easily be utilized for proper RES-site allocation. The absence of solar measurements has, therefore, raised the demand for deploying a suitable model in order to create a solar map. The generation of a solar map for Greece, could provide solid foundations on the prediction of the energy production of a solar power plant that is installed in the area, by providing an estimation of the solar energy acquired at each longitude and latitude of the map. In the present work, the well-known Meteorological Radiation Model (MRM), a broadband solar radiation model, is engaged. This model utilizes common meteorological data, such as air temperature, relative humidity, barometric pressure and sunshine duration, in order to calculate solar radiation through MRM for areas where such data are not available. Hourly values of the above meteorological parameters are acquired from 39 meteorological stations, evenly dispersed around Greece; hourly values of solar radiation are calculated from MRM. Then, by using an integrated spatial interpolation method, a Greek solar energy map is generated, providing annual solar energy values all over Greece.

  1. Comparison of blood flow models and acquisitions for quantitative myocardial perfusion estimation from dynamic CT

    NASA Astrophysics Data System (ADS)

    Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R.; La Riviere, Patrick J.; Alessio, Adam M.

    2014-04-01

    Myocardial blood flow (MBF) can be estimated from dynamic contrast enhanced (DCE) cardiac CT acquisitions, leading to quantitative assessment of regional perfusion. The need for low radiation dose and the lack of consensus on MBF estimation methods motivates this study to refine the selection of acquisition protocols and models for CT-derived MBF. DCE cardiac CT acquisitions were simulated for a range of flow states (MBF = 0.5, 1, 2, 3 ml (min g)-1, cardiac output = 3, 5, 8 L min-1). Patient kinetics were generated by a mathematical model of iodine exchange incorporating numerous physiological features including heterogenenous microvascular flow, permeability and capillary contrast gradients. CT acquisitions were simulated for multiple realizations of realistic x-ray flux levels. CT acquisitions that reduce radiation exposure were implemented by varying both temporal sampling (1, 2, and 3 s sampling intervals) and tube currents (140, 70, and 25 mAs). For all acquisitions, we compared three quantitative MBF estimation methods (two-compartment model, an axially-distributed model, and the adiabatic approximation to the tissue homogeneous model) and a qualitative slope-based method. In total, over 11 000 time attenuation curves were used to evaluate MBF estimation in multiple patient and imaging scenarios. After iodine-based beam hardening correction, the slope method consistently underestimated flow by on average 47.5% and the quantitative models provided estimates with less than 6.5% average bias and increasing variance with increasing dose reductions. The three quantitative models performed equally well, offering estimates with essentially identical root mean squared error (RMSE) for matched acquisitions. MBF estimates using the qualitative slope method were inferior in terms of bias and RMSE compared to the quantitative methods. MBF estimate error was equal at matched dose reductions for all quantitative methods and range of techniques evaluated. This suggests that there is no particular advantage between quantitative estimation methods nor to performing dose reduction via tube current reduction compared to temporal sampling reduction. These data are important for optimizing implementation of cardiac dynamic CT in clinical practice and in prospective CT MBF trials.

  2. Cloud cover models derived from satellite radiation measurements

    NASA Technical Reports Server (NTRS)

    Bean, S. J.; Somerville, P. N.

    1979-01-01

    Using daily measurement of day and night infrared and incoming and absorbed solar radiation obtained from a TIROS satellite over a period of approximately 45 months, and integrated over 2.5 degree latitude-longitude grids, the proportion of cloud cover over each grid each day was derived for the entire period. For each of four three-month periods, estimates a and b of the two parameters of the best-fit beta distribution were obtained for each grid location. The (a,b) plane was divided into a number of regions. All the geographical locations whose (a,b) estimates were in the same region in the (a,b) plane were said to have the same cloud cover type for that season. For each season, the world was thus divided into separate cloud cover types. Using estimates of mean cloud cover for each season, the world was again divided into separate cloud cover types. The process was repeated for standard deviations. Thus for each season, three separate cloud cover models were obtained using the criteria of shape of frequency distribution, mean cloud cover, and variability of cloud cover. The cloud cover statistics were derived from once-a-day, near-local-noon satellite radiation measurements.

  3. Online vegetation parameter estimation using passive microwave remote sensing observations

    USDA-ARS?s Scientific Manuscript database

    In adaptive system identification the Kalman filter can be used to identify the coefficient of the observation operator of a linear system. Here the ensemble Kalman filter is tested for adaptive online estimation of the vegetation opacity parameter of a radiative transfer model. A state augmentatio...

  4. Coupling diffusion and maximum entropy models to estimate thermal inertia

    USDA-ARS?s Scientific Manuscript database

    Thermal inertia is a physical property of soil at the land surface related to water content. We have developed a method for estimating soil thermal inertia using two daily measurements of surface temperature, to capture the diurnal range, and diurnal time series of net radiation and specific humidi...

  5. Potential of Solar Energy in Kota Kinabalu, Sabah: An Estimate Using a Photovoltaic System Model

    NASA Astrophysics Data System (ADS)

    Markos, F. M.; Sentian, J.

    2016-04-01

    Solar energy is becoming popular as an alternative renewable energy to conventional energy source, particularly in the tropics, where duration and intensity of solar radiation are longer. This study is to assess the potential of solar energy generated from solar for Kota Kinabalu, a rapidly developing city in the State of Sabah, Malaysia. A year data of solar radiation was obtained using pyranometer, which was located at Universiti Malaysia Sabah (6.0367° N, 116.1186° E). It was concluded that the annual average solar radiation received in Kota Kinabalu was 182 W/m2. In estimating the potential energy generated from solar for Kota Kinabalu city area, a photovoltaic (PV) system model was used. The results showed that, Kota Kinabalu is estimated to produce 29,794 kWh/m2 of electricity from the solar radiation received in a year. This is equivalent to 0.014 MW of electricity produced just by using one solar panel. Considering the power demand in Sabah by 2020 is 1,331 MW, this model showed that the solar energy can contribute around 4% of energy for power demand, with 1 MW capacity of the PV system. 1 MW of PV system installation will require about 0.0328% from total area of the city. This assessment could suggest that, exploration for solar power energy as an alternative source of renewable energy in the city can be optimised and designed to attain significant higher percentage of contribution to the energy demand in the state.

  6. LETTER TO THE EDITOR: Clinical validation of the LKB model and parameter sets for predicting radiation-induced pneumonitis from breast cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Tsougos, Ioannis; Mavroidis, Panayiotis; Theodorou, Kyriaki; Rajala, J.; Pitkänen, M. A.; Holli, K.; Ojala, A. T.; Hyödynmaa, S.; Järvenpää, Ritva; Lind, Bengt K.; Kappas, Constantin

    2006-02-01

    The choice of the appropriate model and parameter set in determining the relation between the incidence of radiation pneumonitis and dose distribution in the lung is of great importance, especially in the case of breast radiotherapy where the observed incidence is fairly low. From our previous study based on 150 breast cancer patients, where the fits of dose-volume models to clinical data were estimated (Tsougos et al 2005 Evaluation of dose-response models and parameters predicting radiation induced pneumonitis using clinical data from breast cancer radiotherapy Phys. Med. Biol. 50 3535-54), one could get the impression that the relative seriality is significantly better than the LKB NTCP model. However, the estimation of the different NTCP models was based on their goodness-of-fit on clinical data, using various sets of published parameters from other groups, and this fact may provisionally justify the results. Hence, we sought to investigate further the LKB model, by applying different published parameter sets for the very same group of patients, in order to be able to compare the results. It was shown that, depending on the parameter set applied, the LKB model is able to predict the incidence of radiation pneumonitis with acceptable accuracy, especially when implemented on a sub-group of patients (120) receiving \\bar{\\bar{D}}|EUD higher than 8 Gy. In conclusion, the goodness-of-fit of a certain radiobiological model on a given clinical case is closely related to the selection of the proper scoring criteria and parameter set as well as to the compatibility of the clinical case from which the data were derived.

  7. A basin-scale approach to estimating stream temperatures of tributaries to the lower Klamath River, California

    USGS Publications Warehouse

    Flint, L.E.; Flint, A.L.

    2008-01-01

    Stream temperature is an important component of salmonid habitat and is often above levels suitable for fish survival in the Lower Klamath River in northern California. The objective of this study was to provide boundary conditions for models that are assessing stream temperature on the main stem for the purpose of developing strategies to manage stream conditions using Total Maximum Daily Loads. For model input, hourly stream temperatures for 36 tributaries were estimated for 1 Jan. 2001 through 31 Oct. 2004. A basin-scale approach incorporating spatially distributed energy balance data was used to estimate the stream temperatures with measured air temperature and relative humidity data and simulated solar radiation, including topographic shading and corrections for cloudiness. Regression models were developed on the basis of available stream temperature data to predict temperatures for unmeasured periods of time and for unmeasured streams. The most significant factor in matching measured minimum and maximum stream temperatures was the seasonality of the estimate. Adding minimum and maximum air temperature to the regression model improved the estimate, and air temperature data over the region are available and easily distributed spatially. The addition of simulated solar radiation and vapor saturation deficit to the regression model significantly improved predictions of maximum stream temperature but was not required to predict minimum stream temperature. The average SE in estimated maximum daily stream temperature for the individual basins was 0.9 ?? 0.6??C at the 95% confidence interval. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  8. Instrumentation for investigation of the depth-dose distribution by the Liulin-5 instrument of a human phantom on the Russian segment of ISS for estimation of the radiation risk during long term space flights

    NASA Technical Reports Server (NTRS)

    Semkova, J.; Koleva, R.; Todorova, G.; Kanchev, N.; Petrov, V.; Shurshakov, V.; Tchhernykh, I.; Kireeva, S.

    2004-01-01

    Described is the Liulin-5 experiment and instrumentation, developed for investigation of the space radiation doses depth distribution in a human phantom on the Russian Segment of the International Space Station (ISS). Liulin-5 experiment is a part of the international project MATROSHKA-R on ISS. The experiment MATROSHKA-R is aimed to study the depth dose distribution at the sites of critical organs of the human body, using models of human body-anthropomorphic and spherical tissue-equivalent phantoms. The aim of Liulin-5 experiment is long term (4-5 years) investigation of the radiation environment dynamics inside the spherical tissue-equivalent phantom, mounted in different places of the Russian Segment of ISS. Energy deposition spectra, linear energy transfer spectra, flux and dose rates for protons and the biologically-relevant heavy ion components of the galactic cosmic radiation will be measured simultaneously with near real time resolution at different depths of the phantom by a telescope of silicon detectors. Data obtained together with data from other active and passive dosimeters will be used to estimate the radiation risk to the crewmembers, verify the models of radiation environment in low Earth orbit, validate body transport model and correlate organ level dose to skin dose. Presented are the test results of the prototype unit. The spherical phantom will be flown on the ISS in 2004 year and Liulin-5 experiment is planned for 2005 year. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  9. Exposure to indoor background radiation and urinary concentrations of 8-hydroxydeoxyguanosine, a marker of oxidative DNA damage.

    PubMed Central

    Sperati, A; Abeni, D D; Tagesson, C; Forastiere, F; Miceli, M; Axelson, O

    1999-01-01

    We investigated whether exposure to indoor [gamma]-radiation and radon might be associated with enough free radical formation to increase urinary concentrations of 8-hydroxydeoxyguanosine (8-OHdG), a sensitive marker of DNA damage, due to a hydroxyl radical attack at the C8 of guanine. Indoor radon and [gamma]-radiation levels were measured in 32 dwellings for 6 months by solid-state nuclear track detectors and thermoluminescent dosimeters, respectively. Urine samples for 8-OHdG determinations were obtained from 63 healthy adult subjects living in the measured dwellings. An overall tendency toward increasing levels of 8-OHdG with increasing levels of radon and [gamma]-radiation was seen in the females, presumably due to their estimated longer occupancy in the dwellings measured. Different models were considered for females, with the steepest slopes obtained for [gamma]-radiation with a coefficient of 0.500 (log nmol/l of 8-OHdG for each unit increase of [gamma]-radiation on a log scale) (p<0.01), and increasing to 0.632 (p = 0.035), but with larger variance, when radon was included in the model. In conclusion, there seems to be an effect of indoor radioactivity on the urinary excretion of 8-OHdG for females, who are estimated to have a higher occupancy in the dwellings measured than for males, for whom occupational and other agents may also influence 8-OHdG excretion. ree radicals; [gamma]-radiation; radon. PMID:10064551

  10. Probabilistic Assessment of Radiation Risk for Astronauts in Space Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; DeAngelis, Giovanni; Cucinotta, Francis A.

    2009-01-01

    Accurate predictions of the health risks to astronauts from space radiation exposure are necessary for enabling future lunar and Mars missions. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons, (less than 100 MeV); and galactic cosmic rays (GCR), which include protons and heavy ions of higher energies. While the expected frequency of SPEs is strongly influenced by the solar activity cycle, SPE occurrences themselves are random in nature. A solar modulation model has been developed for the temporal characterization of the GCR environment, which is represented by the deceleration potential, phi. The risk of radiation exposure from SPEs during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern for radiation protection, including determining the shielding and operational requirements for astronauts and hardware. To support the probabilistic risk assessment for EVAs, which would be up to 15% of crew time on lunar missions, we estimated the probability of SPE occurrence as a function of time within a solar cycle using a nonhomogeneous Poisson model to fit the historical database of measurements of protons with energy > 30 MeV, (phi)30. The resultant organ doses and dose equivalents, as well as effective whole body doses for acute and cancer risk estimations are analyzed for a conceptual habitat module and a lunar rover during defined space mission periods. This probabilistic approach to radiation risk assessment from SPE and GCR is in support of mission design and operational planning to manage radiation risks for space exploration.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zainudin, Mohd Lutfi, E-mail: mdlutfi07@gmail.com; Institut Matematik Kejuruteraan; Saaban, Azizan, E-mail: azizan.s@uum.edu.my

    The solar radiation values have been composed by automatic weather station using the device that namely pyranometer. The device is functions to records all the radiation values that have been dispersed, and these data are very useful for it experimental works and solar device’s development. In addition, for modeling and designing on solar radiation system application is needed for complete data observation. Unfortunately, lack for obtained the complete solar radiation data frequently occur due to several technical problems, which mainly contributed by monitoring device. Into encountering this matter, estimation missing values in an effort to substitute absent values with imputedmore » data. This paper aimed to evaluate several piecewise interpolation techniques likes linear, splines, cubic, and nearest neighbor into dealing missing values in hourly solar radiation data. Then, proposed an extendable work into investigating the potential used of cubic Bezier technique and cubic Said-ball method as estimator tools. As result, methods for cubic Bezier and Said-ball perform the best compare to another piecewise imputation technique.« less

  12. Re-Evaluation of Dust Radiative Forcing Using Remote Measurements of Dust Absorption

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Karnieli, Arnon; Remer, Lorraine A.

    1998-01-01

    Spectral remote observations of dust properties from space and from the ground creates a powerful tool for determination of dust absorption of solar radiation with an unprecedented accuracy. Absorption is a key component in understanding dust impact on climate. We use Landsat spaceborne measurements at 0.47 to 2.2 microns over Senegal with ground based sunphotometers to find that Saharan dust absorption of solar radiation is two to four times smaller than in models. Though dust absorbs in the blue, almost no absorption was found for wavelengths greater 0.6 microns. The new finding increases by 50% recent estimated solar radiative forcing by dust and decreases the estimated dust heating of the lower troposphere. Dust transported from Asia shows slightly higher absorption probably due to the presence of black carbon from populated regions. Large scale application of this method to satellite data from the Earth Observing System can reduce significantly the uncertainty in the dust radiative effects.

  13. Validating an operational physical method to compute surface radiation from geostationary satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Manajit; Dhere, Neelkanth G.; Wohlgemuth, John H.

    We developed models to compute global horizontal irradiance (GHI) and direct normal irradiance (DNI) over the last three decades. These models can be classified as empirical or physical based on the approach. Empirical models relate ground-based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the physics behind the radiation received at the satellite and create retrievals to estimate surface radiation. Furthermore, while empirical methods have been traditionally used for computing surface radiation for the solar energy industry, the advent of faster computing has made operational physical models viable. The Global Solar Insolation Projectmore » (GSIP) is a physical model that computes DNI and GHI using the visible and infrared channel measurements from a weather satellite. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate GHI and DNI. Developed for polar orbiting satellites, GSIP has been adapted to NOAA's Geostationary Operation Environmental Satellite series and can run operationally at high spatial resolutions. Our method holds the possibility of creating high quality datasets of GHI and DNI for use by the solar energy industry. We present an outline of the methodology and results from running the model as well as a validation study using ground-based instruments.« less

  14. Aerosol Absorption Measurements from LANDSAT and CIMEL

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Tanre, D.; Karnieli, A.; Remer, L.; Holben, B.

    1999-01-01

    Spectral remote observations of dust properties from space and from the ground create a powerful tool for determination of dust absorption of solar radiation with an unprecedented accuracy. Absorption is a key component in understanding dust impact on climate. We use Landsat space-borne measurements at 0.47 to 2.2 micrometer over Senegal with ground-based sunphotometers to find that Saharan dust absorption of solar radiation is two to four times smaller than in models. Though dust absorbs in the blue, almost no absorption was found for wavelengths greater than 0.6 micrometer. The new finding increases by 50% recent estimated solar radiative forcing by dust and decreases the estimated dust heating of the lower troposphere. Dust transported from Asia shows slightly higher absorption probably due to the presence of black carbon from populated regions. Large-scale application of this method to satellite data from the Earth Observing System can reduce significantly the uncertainty in the dust radiative effects.

  15. Semantic modeling and structural synthesis of onboard electronics protection means as open information system

    NASA Astrophysics Data System (ADS)

    Zhevnerchuk, D. V.; Surkova, A. S.; Lomakina, L. S.; Golubev, A. S.

    2018-05-01

    The article describes the component representation approach and semantic models of on-board electronics protection from ionizing radiation of various nature. Semantic models are constructed, the feature of which is the representation of electronic elements, protection modules, sources of impact in the form of blocks with interfaces. The rules of logical inference and algorithms for synthesizing the object properties of the semantic network, imitating the interface between the components of the protection system and the sources of radiation, are developed. The results of the algorithm are considered using the example of radiation-resistant microcircuits 1645RU5U, 1645RT2U and the calculation and experimental method for estimating the durability of on-board electronics.

  16. Leaf optical system modeled as a stochastic process. [solar radiation interaction with terrestrial vegetation

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Garratt, M. W.

    1977-01-01

    A stochastic leaf radiation model based upon physical and physiological properties of dicot leaves has been developed. The model accurately predicts the absorbed, reflected, and transmitted radiation of normal incidence as a function of wavelength resulting from the leaf-irradiance interaction over the spectral interval of 0.40-2.50 micron. The leaf optical system has been represented as Markov process with a unique transition matrix at each 0.01-micron increment between 0.40 micron and 2.50 micron. Probabilities are calculated at every wavelength interval from leaf thickness, structure, pigment composition, and water content. Simulation results indicate that this approach gives accurate estimations of actual measured values for dicot leaf absorption, reflection, and transmission as a function of wavelength.

  17. Three-dimensional aspects of radiative transfer in remote sensing of precipitation: Application to the 1986 COHMEX storm

    NASA Technical Reports Server (NTRS)

    Haferman, J. L.; Krajewski, W. F.; Smith, T. F.

    1994-01-01

    Several multifrequency techniques for passive microwave estimation of precipitation based on the absorption and scattering properties of hydrometers have been proposed in the literature. In the present study, plane-parallel limitations are overcome by using a model based on the discrete-ordinates method to solve the radiative transfer equation in three-dimensional rectangular domains. This effectively accounts for the complexity and variety of radiation problems encountered in the atmosphere. This investigation presents result for plane-parallel and three-dimensional radiative transfer for a precipitating system, discusses differences between these results, and suggests possible explanations for these differences. Microphysical properties were obtained from the Colorado State University Regional Atmospehric Modeling System and represent a hailstorm observed during the 1986 Cooperative Huntsville Meteorological Experiment. These properties are used as input to a three-dimensional radiative transfer model in order to simulate satellite observation of the storm. The model output consists of upwelling brightness temperatures at several of the frequencies on the Special Sensor Microwave/Imager. The radiative transfer model accounts for scattering and emission of atmospheric gases and hydrometers in liquid and ice phases. Brightness temperatures obtained from the three-dimensional model of this investigation indicate that horizontal inhomogeneities give rise to brightness temperature fields that can be quite different from fields obtained using plane-parallel radiative transfer theory. These differences are examined for various resolutions of the satellite sensor field of view. In adddition, the issue of boundary conditions for three-dimensional atmospheric radiative transfer is addressed.

  18. Estimating differences in volumetric flat bone growth in pediatric patients by radiation treatment method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua Chiaho; Shukla, Hemant I.; Merchant, Thomas E.

    2007-02-01

    Purpose: To estimate potential differences in volumetric bone growth in children with sarcoma treated with intensity-modulated (IMRT) and conformal (CRT) radiation therapy using an empiric dose-effect model. Methods and Materials: A random coefficient model was used to estimate potential volumetric bone growth of 36 pelvic bones (ischiopubis and ilium) from 11 patients 4 years after radiotherapy. The model incorporated patient age, pretreatment bone volume, integral dose >35 Gy, and time since completion of radiation therapy. Three dosimetry plans were entered into the model: the actual CRT/IMRT plan, a nontreated comparable IMRT/CRT plan, and an idealized plan in which dose wasmore » delivered only to the planning target volume. The results were compared with modeled normal bone growth. Results: The model predicted that by using the idealized, IMRT, and CRT approaches, patients would maintain 93%, 87%, and 84%, respectively (p = 0.06), of their expected normal growth. Patients older than 10 years would maintain 98% of normal growth, regardless of treatment method. Those younger than 10 years would maintain 87% (idealized), 76% (IMRT), or 70% (CRT) of their expected growth (p = 0.015). Post hoc testing (Tukey) revealed that the CRT and IMRT approaches differed significantly from the idealized one but not from each other. Conclusions: Dose-effect models facilitate the comparison of treatment methods and potential interventions. Although treatment methods do not alter the growth of flat bones in older pediatric patients, they may significantly impact bone growth in children younger than age 10 years, especially as we move toward techniques with high conformity and sharper dose gradient.« less

  19. Estimating on-orbit optical properties for GNSS satellites

    NASA Astrophysics Data System (ADS)

    Rodriguez Solano, M. Sc. Carlos Javier; Hugentobler, Urs; Steigenberger, Peter

    One of the major uncertainty sources affecting GNSS satellite orbits is the direct solar radiation pressure. Other important though smaller effects are caused by deviations of the satellite from nominal attitude, Earth radiation pressure and thermal re-radiation forces. To compensate such effects, the IGS Analysis Centers usually estimate empirical parameters which fit best the tracking data obtained from a global network of GNSS ground stations to compute orbits at an accuracy level of 2.5 cm for GPS and of 5 cm for GLONASS. On the other hand, there are also accurate physical models for the above mentioned non-conservative forces affecting the GNSS satellites such as the ROCK models for GPS satellites. However, current models fail to predict the real orbit behaviour with sufficient accuracy, mainly due to deviations from nominal attitude, from inaccurately known optical properties, or from aging of the satellite surfaces. In this context an analytical box-wing model has been derived based on the physical interaction between the direct solar radiation and a satellite consisting of a bus (box shape) and solar panels. Furthermore some of the parameters of the box-wing model can be adjusted to fit the GNSS tracking data, namely the fraction of reflected photons of the corresponding satellite surfaces. For this study GNSS orbits are generated based on one year of tracking data from the global IGS network and involving the box-wing model implemented into the Bernese GPS Software. The processing scheme was derived from the one used at the Center for Orbit Determination in Europe (CODE). The resulting satellite orbits are compared with CODE Final Orbits and validated using SLR (Satellite Laser Ranging) tracking data. Additionally, in the case of GPS satellites, the box-wing model and the obtained optical properties are compared directly with a priori models (e.g. ROCK), which deal with the direct solar radiation impacting the satellites.

  20. Uncertainty Model for Total Solar Irradiance Estimation on Australian Rooftops

    NASA Astrophysics Data System (ADS)

    Al-Saadi, Hassan; Zivanovic, Rastko; Al-Sarawi, Said

    2017-11-01

    The installations of solar panels on Australian rooftops have been in rise for the last few years, especially in the urban areas. This motivates academic researchers, distribution network operators and engineers to accurately address the level of uncertainty resulting from grid-connected solar panels. The main source of uncertainty is the intermittent nature of radiation, therefore, this paper presents a new model to estimate the total radiation incident on a tilted solar panel. Where a probability distribution factorizes clearness index, the model is driven upon clearness index with special attention being paid for Australia with the utilization of best-fit-correlation for diffuse fraction. The assessment of the model validity is achieved with the adoption of four goodness-of-fit techniques. In addition, the Quasi Monte Carlo and sparse grid methods are used as sampling and uncertainty computation tools, respectively. High resolution data resolution of solar irradiations for Adelaide city were used for this assessment, with an outcome indicating a satisfactory agreement between actual data variation and model.

  1. Uncertainty Analysis in Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high energy and charge (HZE) nuclei, protons, and secondary radiation including neutrons. The uncertainties in estimating the health risks from galactic cosmic rays (GCR) are a major limitation to the length of space missions, the evaluation of potential risk mitigation approaches, and application of the As Low As Reasonably Achievable (ALARA) principle. For long duration space missio ns, risks may approach radiation exposure limits, therefore the uncertainties in risk projections become a major safety concern and methodologies used for ground-based works are not deemed to be sufficient. NASA limits astronaut exposures to a 3% risk of exposure induced death (REID) and protects against uncertainties in risks projections using an assessment of 95% confidence intervals in the projection model. We discuss NASA s approach to space radiation uncertainty assessments and applications for the International Space Station (ISS) program and design studies of future missions to Mars and other destinations. Several features of NASA s approach will be discussed. Radiation quality descriptions are based on the properties of radiation tracks rather than LET with probability distribution functions (PDF) for uncertainties derived from radiobiology experiments at particle accelerators. The application of age and gender specific models for individual astronauts is described. Because more than 90% of astronauts are never-smokers, an alternative risk calculation for never-smokers is used and will be compared to estimates for an average U.S. population. Because of the high energies of the GCR limits the benefits of shielding and the limited role expected for pharmaceutical countermeasures, uncertainty reduction continues to be the optimal approach to improve radiation safety for space missions.

  2. Radiation dose from MDCT using Monte Carlo simulations: estimating fetal dose due to pulmonary embolism scans accounting for overscan

    NASA Astrophysics Data System (ADS)

    Angel, E.; Wellnitz, C.; Goodsitt, M.; DeMarco, J.; Cagnon, C.; Ghatali, M.; Cody, D.; Stevens, D.; McCollough, C.; Primak, A.; McNitt-Gray, M.

    2007-03-01

    Pregnant women with shortness of breath are increasingly referred for CT Angiography to rule out Pulmonary Embolism (PE). While this exam is typically focused on the lungs, extending scan boundaries and overscan can add to the irradiated volume and have implications on fetal dose. The purpose of this work was to estimate radiation dose to the fetus when various levels of overscan were encountered. Two voxelized models of pregnant patients derived from actual patient anatomy were created based on image data. The models represent an early (< 7 weeks) and late term pregnancy (36 weeks). A previously validated Monte Carlo model of an MDCT scanner was used that takes into account physical details of the scanner. Simulated helical scans used 120 kVp, 4x5 mm beam collimation, pitch 1, and varying beam-off locations (edge of the irradiated volume) were used to represent different protocols plus overscan. Normalized dose (mGy/100mAs) was calculated for each fetus. For the early term and the late term pregnancy models, fetal dose estimates for a standard thoracic PE exam were estimated to be 0.05 and 0.3 mGy/100mAs, respectively, increasing to 9 mGy/100mAs when the beam-off location was extended to encompass the fetus. When performing PE exams to rule out PE in pregnant patients, the beam-off location may have a large effect on fetal dose, especially for late term pregnancies. Careful consideration of ending location of the x-ray beam - and not the end of image data - could result in significant reduction in radiation dose to the fetus.

  3. Sea ice algae chlorophyll a concentrations derived from under-ice spectral radiation profiling platforms

    NASA Astrophysics Data System (ADS)

    Lange, Benjamin A.; Katlein, Christian; Nicolaus, Marcel; Peeken, Ilka; Flores, Hauke

    2016-12-01

    Multiscale sea ice algae observations are fundamentally important for projecting changes to sea ice ecosystems, as the physical environment continues to change. In this study, we developed upon previously established methodologies for deriving sea ice-algal chlorophyll a concentrations (chl a) from spectral radiation measurements, and applied these to larger-scale spectral surveys. We conducted four different under-ice spectral measurements: irradiance, radiance, transmittance, and transflectance, and applied three statistical approaches: Empirical Orthogonal Functions (EOF), Normalized Difference Indices (NDI), and multi-NDI. We developed models based on ice core chl a and coincident spectral irradiance/transmittance (N = 49) and radiance/transflectance (N = 50) measurements conducted during two cruises to the central Arctic Ocean in 2011 and 2012. These reference models were ranked based on two criteria: mean robustness R2 and true prediction error estimates. For estimating the biomass of a large-scale data set, the EOF approach performed better than the NDI, due to its ability to account for the high variability of environmental properties experienced over large areas. Based on robustness and true prediction error, the three most reliable models, EOF-transmittance, EOF-transflectance, and NDI-transmittance, were applied to two remotely operated vehicle (ROV) and two Surface and Under-Ice Trawl (SUIT) spectral radiation surveys. In these larger-scale chl a estimates, EOF-transmittance showed the best fit to ice core chl a. Application of our most reliable model, EOF-transmittance, to an 85 m horizontal ROV transect revealed large differences compared to published biomass estimates from the same site with important implications for projections of Arctic-wide ice-algal biomass and primary production.

  4. Measuring and modeling the variation in species-specific transpiration in temperate deciduous hardwoods.

    PubMed

    Bowden, Joseph D; Bauerle, William L

    2008-11-01

    We investigated which parameters required by the MAESTRA model were most important in predicting leaf-area-based transpiration in 5-year-old trees of five deciduous hardwood species-yoshino cherry (Prunus x yedoensis Matsum.), red maple (Acer rubrum L. 'Autumn Flame'), trident maple (Acer buergeranum Miq.), Japanese flowering cherry (Prunus serrulata Lindl. 'Kwanzan') and London plane-tree (Platanus x acerifolia (Ait.) Willd.). Transpiration estimated from sap flow measured by the heat balance method in branches and trunks was compared with estimates predicted by the three-dimensional transpiration, photosynthesis and absorbed radiation model, MAESTRA. MAESTRA predicted species-specific transpiration from the interactions of leaf-level physiology and spatially explicit micro-scale weather patterns in a mixed deciduous hardwood plantation on a 15-min time step. The monthly differences between modeled mean daily transpiration estimates and measured mean daily sap flow ranged from a 35% underestimation for Acer buergeranum in June to a 25% overestimation for A. rubrum in July. The sensitivity of the modeled transpiration estimates was examined across a 30% error range for seven physiological input parameters. The minimum value of stomatal conductance as incident solar radiation tends to zero was determined to be eight times more influential than all other physiological model input parameters. This work quantified the major factors that influence modeled species-specific transpiration and confirmed the ability to scale leaf-level physiological attributes to whole-crown transpiration on a species-specific basis.

  5. "Light sail" acceleration reexamined.

    PubMed

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for "optimal" values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple "light sail" model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  6. Combining model and satellite data to investigate the effect of light absorbing impurities on snow melt and discharge generation

    NASA Astrophysics Data System (ADS)

    Matt, F.; Burkhart, J. F.

    2017-12-01

    Light absorbing impurities in snow and ice (LAISI) originating from atmospheric deposition enhance snow melt by increasing the absorption of solar radiation. The consequences are a shortening of the snow cover duration due to increased snow melt and, with respect to hydrologic processes, a temporal shift in the discharge generation. However, the effects as simulated in numerical models have large uncertainties. These uncertainties originate mainly from uncertainties in the wet and dry deposition of light absorbing aerosols, limitations in the model representation of the snowpack, and the lack of observable variables required to estimate model parameters. This leads to high uncertainties in the additional energy absorbed by the snow due to the presence of LAISI (the so called radiative forcing of LAISI), a key variable in understanding snowpack energy-balance dynamics. In this study, we present an approach combining distributed model simulations on the catchment scale and remotely sensed radiative forcing from LAISI in order to evaluate and improve model predictions. In a case study, we assess the effect of LAISI on snow melt and discharge generation in a high mountain catchment located in the western Himalaya using the distributed hydrologic model, Shyft. The snow albedo is hereby calculated from a radiative transfer model for snow, taking the increased absorption of solar radiation by LAISI into account. LAISI mixing ratios in snow are determined from atmospheric aerosol deposition rates. To asses the quality of our simulations, we model the instantaneous clear sky radiative forcing at MODIS overpass times, and compare it to the MODIS Dust Radiative Forcing in Snow (MODDRFS) satellite product. By scaling the deposition input to the model, we can optimize the simulated radiative forcing towards the satellite observations.

  7. Rare Event Simulation in Radiation Transport

    NASA Astrophysics Data System (ADS)

    Kollman, Craig

    This dissertation studies methods for estimating extremely small probabilities by Monte Carlo simulation. Problems in radiation transport typically involve estimating very rare events or the expected value of a random variable which is with overwhelming probability equal to zero. These problems often have high dimensional state spaces and irregular geometries so that analytic solutions are not possible. Monte Carlo simulation must be used to estimate the radiation dosage being transported to a particular location. If the area is well shielded the probability of any one particular particle getting through is very small. Because of the large number of particles involved, even a tiny fraction penetrating the shield may represent an unacceptable level of radiation. It therefore becomes critical to be able to accurately estimate this extremely small probability. Importance sampling is a well known technique for improving the efficiency of rare event calculations. Here, a new set of probabilities is used in the simulation runs. The results are multiplied by the likelihood ratio between the true and simulated probabilities so as to keep our estimator unbiased. The variance of the resulting estimator is very sensitive to which new set of transition probabilities are chosen. It is shown that a zero variance estimator does exist, but that its computation requires exact knowledge of the solution. A simple random walk with an associated killing model for the scatter of neutrons is introduced. Large deviation results for optimal importance sampling in random walks are extended to the case where killing is present. An adaptive "learning" algorithm for implementing importance sampling is given for more general Markov chain models of neutron scatter. For finite state spaces this algorithm is shown to give, with probability one, a sequence of estimates converging exponentially fast to the true solution. In the final chapter, an attempt to generalize this algorithm to a continuous state space is made. This involves partitioning the space into a finite number of cells. There is a tradeoff between additional computation per iteration and variance reduction per iteration that arises in determining the optimal grid size. All versions of this algorithm can be thought of as a compromise between deterministic and Monte Carlo methods, capturing advantages of both techniques.

  8. Modeling of microclimatic characteristics of highland area

    NASA Astrophysics Data System (ADS)

    Sitdikova, Iuliia; Rusin, Igor

    2013-04-01

    Microclimatic characteristics of highlands may vary considerably over distances of a few meters depending on slope and aspect. There is a problem of estimation of components of surface energy balance based on observation of single stations for description of microclimate highlands. The aim of this paper is to develop a method that would restore microclimatic characteristics of terrain, based on observations of the single station, by physical extrapolation. The input parameters to obtain the microclimatic characteristics are as follows: air temperature, relative humidity, and wind speed on two vertical levels, air pressure, surface temperature, direct and diffused solar radiation and surface albedo. The recent version of the Meteorological Radiation Model (MRM) has been used to calculate a solar radiation over the area and to estimate an influence of cloudiness amounts. The height, slope and aspect were accounted at each point with using a digital elevation model. Have been supposed that air temperature and specific humidity vary with altitude only. Net radiation was calculated at all points of the area. Supposed that the difference between the surface temperature and the air temperature is a linear function of net radiation. The empirical coefficient, which depends on wind speed with adjustment of given area. Latent and sensible fluxes are calculated by using the modified Bowen ratio, which varies on the area. Method was tested on field research in Krasnodar region (RF). The meteorological observations were made every three hour on actinometric and gradient sites. The editional gradient site with different orientation of the slope was organized from 400 meters of the main site. Topographic survey of area was made 1x1,3 km in size for a digital elevation model constructing. At all points of the area of radiation and heat balance were calculated. The results of researches are the maps of surface temperature, net radiation, latent and sensible fluxes. The calculations showed that the average value of components of heat balance by area differ significantly from the data observed on meteorological station.

  9. Quantifying the Combined Effect of Radiation Therapy and Hyperthermia in Terms of Equivalent Dose Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kok, H. Petra, E-mail: H.P.Kok@amc.uva.nl; Crezee, Johannes; Franken, Nicolaas A.P.

    2014-03-01

    Purpose: To develop a method to quantify the therapeutic effect of radiosensitization by hyperthermia; to this end, a numerical method was proposed to convert radiation therapy dose distributions with hyperthermia to equivalent dose distributions without hyperthermia. Methods and Materials: Clinical intensity modulated radiation therapy plans were created for 15 prostate cancer cases. To simulate a clinically relevant heterogeneous temperature distribution, hyperthermia treatment planning was performed for heating with the AMC-8 system. The temperature-dependent parameters α (Gy{sup −1}) and β (Gy{sup −2}) of the linear–quadratic model for prostate cancer were estimated from the literature. No thermal enhancement was assumed for normalmore » tissue. The intensity modulated radiation therapy plans and temperature distributions were exported to our in-house-developed radiation therapy treatment planning system, APlan, and equivalent dose distributions without hyperthermia were calculated voxel by voxel using the linear–quadratic model. Results: The planned average tumor temperatures T90, T50, and T10 in the planning target volume were 40.5°C, 41.6°C, and 42.4°C, respectively. The planned minimum, mean, and maximum radiation therapy doses were 62.9 Gy, 76.0 Gy, and 81.0 Gy, respectively. Adding hyperthermia yielded an equivalent dose distribution with an extended 95% isodose level. The equivalent minimum, mean, and maximum doses reflecting the radiosensitization by hyperthermia were 70.3 Gy, 86.3 Gy, and 93.6 Gy, respectively, for a linear increase of α with temperature. This can be considered similar to a dose escalation with a substantial increase in tumor control probability for high-risk prostate carcinoma. Conclusion: A model to quantify the effect of combined radiation therapy and hyperthermia in terms of equivalent dose distributions was presented. This model is particularly instructive to estimate the potential effects of interaction from different treatment modalities.« less

  10. Monte Carlo role in radiobiological modelling of radiotherapy outcomes

    NASA Astrophysics Data System (ADS)

    El Naqa, Issam; Pater, Piotr; Seuntjens, Jan

    2012-06-01

    Radiobiological models are essential components of modern radiotherapy. They are increasingly applied to optimize and evaluate the quality of different treatment planning modalities. They are frequently used in designing new radiotherapy clinical trials by estimating the expected therapeutic ratio of new protocols. In radiobiology, the therapeutic ratio is estimated from the expected gain in tumour control probability (TCP) to the risk of normal tissue complication probability (NTCP). However, estimates of TCP/NTCP are currently based on the deterministic and simplistic linear-quadratic formalism with limited prediction power when applied prospectively. Given the complex and stochastic nature of the physical, chemical and biological interactions associated with spatial and temporal radiation induced effects in living tissues, it is conjectured that methods based on Monte Carlo (MC) analysis may provide better estimates of TCP/NTCP for radiotherapy treatment planning and trial design. Indeed, over the past few decades, methods based on MC have demonstrated superior performance for accurate simulation of radiation transport, tumour growth and particle track structures; however, successful application of modelling radiobiological response and outcomes in radiotherapy is still hampered with several challenges. In this review, we provide an overview of some of the main techniques used in radiobiological modelling for radiotherapy, with focus on the MC role as a promising computational vehicle. We highlight the current challenges, issues and future potentials of the MC approach towards a comprehensive systems-based framework in radiobiological modelling for radiotherapy.

  11. A 3D Monte Carlo model of radiation affecting cells, and its application to neuronal cells and GCR irradiation

    NASA Astrophysics Data System (ADS)

    Ponomarev, Artem; Sundaresan, Alamelu; Kim, Angela; Vazquez, Marcelo E.; Guida, Peter; Kim, Myung-Hee; Cucinotta, Francis A.

    A 3D Monte Carlo model of radiation transport in matter is applied to study the effect of heavy ion radiation on human neuronal cells. Central nervous system effects, including cognitive impairment, are suspected from the heavy ion component of galactic cosmic radiation (GCR) during space missions. The model can count, for instance, the number of direct hits from ions, which will have the most affect on the cells. For comparison, the remote hits, which are received through δ-rays from the projectile traversing space outside the volume of the cell, are also simulated and their contribution is estimated. To simulate tissue effects from irradiation, cellular matrices of neuronal cells, which were derived from confocal microscopy, were simulated in our model. To produce this realistic model of the brain tissue, image segmentation was used to identify cells in the images of cells cultures. The segmented cells were inserted pixel by pixel into the modeled physical space, which represents a volume of interacting cells with periodic boundary conditions (PBCs). PBCs were used to extrapolate the model results to the macroscopic tissue structures. Specific spatial patterns for cell apoptosis are expected from GCR, as heavy ions produce concentrated damage along their trajectories. The apoptotic cell patterns were modeled based on the action cross sections for apoptosis, which were estimated from the available experimental data. The cell patterns were characterized with an autocorrelation function, which values are higher for non-random cell patterns, and the values of the autocorrelation function were compared for X rays and Fe ion irradiations. The autocorrelation function indicates the directionality effects present in apoptotic neuronal cells from GCR.

  12. Use of MERRA-2 in the National Solar Radiation Database and Beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Manajit; Lopez, Anthony; Habte, Aron

    The National Solar Radiation Database (NSRDB) is a flagship product of NREL that provides solar radiation and ancillary meteorological information through a GIS based portal. This data is provided at a 4kmx4km spatial and 30 minute temporal resolution covering the period between 1998-2015. The gridded data that is distributed by the NSRDB is derived from satellite measurements using the Physical Solar Model (PSM) that contains a 2-stage approach. This 2-stage approach consists of first retrieving cloud properties using measurement from the GOES series of satellites and using that information in a radiative transfer model to estimate solar radiation at themore » surface. In addition to the satellite data the model requires ancillary meteorological information that is provided mainly by NASA's Modern Era Retrospecitve Analysis for Research and Applications (MERRA-2) 2 model output. This presentation provides an insight into how the NSRDB is developed using the PSM and how the various sources of data including the MERRA-2 data is used during the process.« less

  13. Mass spectra and radiative transitions of doubly heavy baryons in a relativized quark model

    NASA Astrophysics Data System (ADS)

    Lü, Qi-Fang; Wang, Kai-Lei; Xiao, Li-Ye; Zhong, Xian-Hui

    2017-12-01

    We study the mass spectra and radiative decays of doubly heavy baryons within the diquark picture in a relativized quark model. The mass of the JP=1 /2+ Ξc c ground state is predicted to be 3606 MeV, which is consistent with the mass of Ξcc ++(3621 ) newly observed by the LHCb Collaboration. The predicted mass gap between two S -wave states, Ξcc * (JP=3 /2+) and Ξc c (JP=1 /2+), is 69 MeV. Furthermore, the radiative transitions of doubly heavy baryons are also estimated by using the realistic wave functions obtained from relativized quark model. The radiative decay widths of Ξcc *++→Ξcc ++γ and Ξcc *+→Ξcc +γ are predicted to be about 7 and 4 keV, respectively. These predictions of doubly heavy baryons can provide helpful information for future experimental searches.

  14. [Medical and biological consequences of nuclear disasters].

    PubMed

    Stalpers, Lukas J A; van Dullemen, Simon; Franken, N A P Klaas

    2012-01-01

    Medical risks of radiation exaggerated; psychological risks underestimated. The discussion about atomic energy has become topical again following the nuclear accident in Fukushima. There is some argument about the gravity of medical and biological consequences of prolonged exposure to radiation. The risk of cancer following a low dose of radiation is usually estimated by linear extrapolation of the incidence of cancer among survivors of the atomic bombs dropped on Hiroshima and Nagasaki in 1945. The radiobiological linear-quadratic model (LQ-model) gives a more accurate description of observed data, is radiobiologically more plausible and is better supported by experimental and clinical data. On the basis of this model there is less risk of cancer being induced following radiation exposure. The gravest consequence of Chernobyl and Fukushima is not the medical and biological damage, but the psychological and economical impact on rescue workers and former inhabitants.

  15. The radiation dosimetry of intrathecally administered radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stabin, M.G.; Evans, J.F.

    The radiation dose to the spine, spinal cord, marrow, and other organs of the body from intrathecal administration of several radiopharmaceuticals was studied. Anatomic models were developed for the spine, spinal cerebrospinal fluid (CSF), spinal cord, spinal skeleton, cranial skeleton, and cranial CSF. A kinetic model for the transport of CSF was used to determine residence times in the CSF; material leaving the CSF was thereafter assumed to enter the bloodstream and follow the kinetics of the radiopharmaceutical as if intravenously administered. The radiation transport codes MCNP and ALGAMP were used to model the electron and photon transport and energymore » deposition. The dosimetry of Tc-99m DTPA and HSA, In-111 DTPA, I-131 HSA, and Yb-169 DTPA was studied. Radiation dose profiles for the spinal cord and marrow in the spine were developed and average doses to all other organs were estimated, including dose distributions within the bone and marrow.« less

  16. Using aircraft measurements to estimate the magnitude and uncertainty of the shortwave direct radiative forcing of southern African biomass burning aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magi, Brian; Fu, Q.; Redemann, Jens

    2008-03-13

    We estimate the shortwave, diurnally-averaged direct radiative forcing (RF) of the biomass burning aerosol characterized by measurements made from the University of Washington (UW) research aircraft during the Southern African Regional Science Initiative in August and September 2000 (SAFARI-2000). We describe the methodology used to arrive at the best estimates of the measurement-based RF and discuss the confidence intervals of the estimates of RF that arise from uncertainties in measurements and assumptions necessary to describe the aerosol optical properties. We apply the methodology to the UW aircraft vertical profiles and estimate that the top of the atmosphere RF (RFtoa) rangesmore » from -1.5±3.2 to -14.4±3.5 W m-2, while the surface RF (RFsfc) ranges from -10.5±2.4 to -81.3±7.5 W m-2. These estimates imply that the aerosol RF of the atmosphere (RFatm) ranges from 5.0±2.3 to 73.3±11.0 W m-2. We compare some of the estimates to RF that we estimate using Aerosol Robotic Network (AERONET) aerosol optical properties, and show that the agreement is 2 of good for RFtoa, but poor for RFsfc. We also show that linear models accurately describe the relationship of RF with the aerosol optical depth at a wavelength of 550 nm (τ550). This relationship is known as the radiative forcing efficiency (RFE) and we find that RFtoa (unlike RFatm and RFsfc) depends not only on variations in τ550, but that the linear model itself is dependent on the magnitude of τ550. We then apply the models for RFE to daily τ550 derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite to estimate the RF over southern Africa from March 2000 to December 2006. Using the combination of UW and MODIS data, we find that the annual RFtoa, RFatm, and RFsfc over the region is -4.7±2.7 W m-2, 11.4±5.7 W m-2, and -18.3±5.8 W m-2, respectively.« less

  17. Multi-scale Drivers of Variations in Atmospheric Evaporative Demand Based on Observations and Physically-based Modeling

    NASA Astrophysics Data System (ADS)

    Peng, L.; Sheffield, J.; Li, D.

    2015-12-01

    Evapotranspiration (ET) is a key link between the availability of water resources and climate change and climate variability. Variability of ET has important environmental and socioeconomic implications for managing hydrological hazards, food and energy production. Although there have been many observational and modeling studies of ET, how ET has varied and the drivers of the variations at different temporal scales remain elusive. Much of the uncertainty comes from the atmospheric evaporative demand (AED), which is the combined effect of radiative and aerodynamic controls. The inconsistencies among modeled AED estimates and the limited observational data may originate from multiple sources including the limited time span and uncertainties in the data. To fully investigate and untangle the intertwined drivers of AED, we present a spectrum analysis to identify key controls of AED across multiple temporal scales. We use long-term records of observed pan evaporation for 1961-2006 from 317 weather stations across China and physically-based model estimates of potential evapotranspiration (PET). The model estimates are based on surface meteorology and radiation derived from reanalysis, satellite retrievals and station data. Our analyses show that temperature plays a dominant role in regulating variability of AED at the inter-annual scale. At the monthly and seasonal scales, the primary control of AED shifts from radiation in humid regions to humidity in dry regions. Unlike many studies focusing on the spatial pattern of ET drivers based on a traditional supply and demand framework, this study underlines the importance of temporal scales when discussing controls of ET variations.

  18. Concepts and challenges in cancer risk prediction for the space radiation environment

    NASA Astrophysics Data System (ADS)

    Barcellos-Hoff, Mary Helen; Blakely, Eleanor A.; Burma, Sandeep; Fornace, Albert J.; Gerson, Stanton; Hlatky, Lynn; Kirsch, David G.; Luderer, Ulrike; Shay, Jerry; Wang, Ya; Weil, Michael M.

    2015-07-01

    Cancer is an important long-term risk for astronauts exposed to protons and high-energy charged particles during travel and residence on asteroids, the moon, and other planets. NASA's Biomedical Critical Path Roadmap defines the carcinogenic risks of radiation exposure as one of four type I risks. A type I risk represents a demonstrated, serious problem with no countermeasure concepts, and may be a potential "show-stopper" for long duration spaceflight. Estimating the carcinogenic risks for humans who will be exposed to heavy ions during deep space exploration has very large uncertainties at present. There are no human data that address risk from extended exposure to complex radiation fields. The overarching goal in this area to improve risk modeling is to provide biological insight and mechanistic analysis of radiation quality effects on carcinogenesis. Understanding mechanisms will provide routes to modeling and predicting risk and designing countermeasures. This white paper reviews broad issues related to experimental models and concepts in space radiation carcinogenesis as well as the current state of the field to place into context recent findings and concepts derived from the NASA Space Radiation Program.

  19. Technical note: Fu-Liou-Gu and Corti-Peter model performance evaluation for radiative retrievals from cirrus clouds

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Campbell, James R.; Lewis, Jasper R.; Gu, Yu; Welton, Ellsworth J.

    2017-06-01

    We compare, for the first time, the performance of a simplified atmospheric radiative transfer algorithm package, the Corti-Peter (CP) model, versus the more complex Fu-Liou-Gu (FLG) model, for resolving top-of-the-atmosphere radiative forcing characteristics from single-layer cirrus clouds obtained from the NASA Micro-Pulse Lidar Network database in 2010 and 2011 at Singapore and in Greenbelt, Maryland, USA, in 2012. Specifically, CP simplifies calculation of both clear-sky longwave and shortwave radiation through regression analysis applied to radiative calculations, which contributes significantly to differences between the two. The results of the intercomparison show that differences in annual net top-of-the-atmosphere (TOA) cloud radiative forcing can reach 65 %. This is particularly true when land surface temperatures are warmer than 288 K, where the CP regression analysis becomes less accurate. CP proves useful for first-order estimates of TOA cirrus cloud forcing, but may not be suitable for quantitative accuracy, including the absolute sign of cirrus cloud daytime TOA forcing that can readily oscillate around zero globally.

  20. Estimation of whole-body radiation exposure from brachytherapy for oral cancer using a Monte Carlo simulation.

    PubMed

    Ozaki, Y; Watanabe, H; Kaida, A; Miura, M; Nakagawa, K; Toda, K; Yoshimura, R; Sumi, Y; Kurabayashi, T

    2017-07-01

    Early stage oral cancer can be cured with oral brachytherapy, but whole-body radiation exposure status has not been previously studied. Recently, the International Commission on Radiological Protection Committee (ICRP) recommended the use of ICRP phantoms to estimate radiation exposure from external and internal radiation sources. In this study, we used a Monte Carlo simulation with ICRP phantoms to estimate whole-body exposure from oral brachytherapy. We used a Particle and Heavy Ion Transport code System (PHITS) to model oral brachytherapy with 192Ir hairpins and 198Au grains and to perform a Monte Carlo simulation on the ICRP adult reference computational phantoms. To confirm the simulations, we also computed local dose distributions from these small sources, and compared them with the results from Oncentra manual Low Dose Rate Treatment Planning (mLDR) software which is used in day-to-day clinical practice. We successfully obtained data on absorbed dose for each organ in males and females. Sex-averaged equivalent doses were 0.547 and 0.710 Sv with 192Ir hairpins and 198Au grains, respectively. Simulation with PHITS was reliable when compared with an alternative computational technique using mLDR software. We concluded that the absorbed dose for each organ and whole-body exposure from oral brachytherapy can be estimated with Monte Carlo simulation using PHITS on ICRP reference phantoms. Effective doses for patients with oral cancer were obtained. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  1. Estimation of Second Primary Cancer Risk After Treatment with Radioactive Iodine for Differentiated Thyroid Carcinoma.

    PubMed

    Corrêa, Nilton Lavatori; de Sá, Lidia Vasconcellos; de Mello, Rossana Corbo Ramalho

    2017-02-01

    An increase in the incidence of second primary cancers is the late effect of greatest concern that could occur in differentiated thyroid carcinoma (DTC) patients treated with radioactive iodine (RAI). The decision to treat a patient with RAI should therefore incorporate a careful risk-benefit analysis. The objective of this work was to adapt the risk-estimation models developed by the Biological Effects of Ionizing Radiation Committee to local epidemiological characteristics in order to assess the carcinogenesis risk from radiation in a population of Brazilian DTC patients treated with RAI. Absorbed radiation doses in critical organs were also estimated to determine whether they exceeded the thresholds for deterministic effects. A total of 416 DTC patients treated with RAI were retrospectively studied. Four organs were selected for absorbed dose estimation and subsequent calculation of carcinogenic risk: the kidney, stomach, salivary glands, and bone marrow. Absorbed doses were calculated by dose factors (absorbed dose per unit activity administered) previously established and based on standard human models. The lifetime attributable risk (LAR) of incidence of cancer as a function of age, sex, and organ-specific dose was estimated, relating it to the activity of RAI administered in the initial treatment. The salivary glands received the greatest absorbed doses of radiation, followed by the stomach, kidney, and bone marrow. None of these, however, surpassed the threshold for deterministic effects for a single administration of RAI. Younger patients received the same level of absorbed dose in the critical organs as older patients did. The lifetime attributable risk for stomach cancer incidence was by far the highest, followed in descending order by salivary-gland cancer, leukemia, and kidney cancer. RAI in a single administration is safe in terms of deterministic effects because even high-administered activities do not result in absorbed doses that exceed the thresholds for significant tissue reactions. The Biological Effects of Ionizing Radiation Committee mathematical models are a practical method of quantifying the risks of a second primary cancer, demonstrating a marked decrease in risk for younger patients with the administration of lower RAI activities and suggesting that only the smallest activities necessary to promote an effective ablation should be administered in low-risk DTC patients.

  2. A new model for biological effects of radiation and the driven force of molecular evolution

    NASA Astrophysics Data System (ADS)

    Wada, Takahiro; Manabe, Yuichiro; Nakajima, Hiroo; Tsunoyama, Yuichi; Bando, Masako

    We proposed a new mathematical model to estimate biological effects of radiation, which we call Whack-A-Mole (WAM) model. A special feature of WAM model is that it involves the dose rate of radiation as a key ingredient. We succeeded to reproduce the experimental data of various species concerning the radiation induced mutation frequencies. From the analysis of the mega-mouse experiments, we obtained the mutation rate per base-pair per year for mice which is consistent with the so-called molecular clock in evolution genetics, 10-9 mutation/base-pair/year. Another important quantity is the equivalent dose rate for the whole spontaneous mutation, deff. The value of deff for mice is 1.1*10-3 Gy/hour which is much larger than the dose rate of natural radiation (10- (6 - 7) Gy/hour) by several orders of magnitude. We also analyzed Drosophila data and obtained essentially the same numbers. This clearly indicates that the natural radiation is not the dominant driving force of the molecular evolution, but we should look for other factors, such as miscopy of DNA in duplication process. We believe this is the first quantitative proof of the small contribution of the natural radiation in the molecular evolution.

  3. Characterization of the particle radiation environment at three potential landing sites on Mars using ESA’s MEREM models

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, S.; Gonçalves, P.; Keating, A.; Morgado, B.; Heynderickx, D.; Nieminen, P.; Santin, G.; Truscott, P.; Lei, F.; Foing, B.; Balaz, J.

    2012-03-01

    The ‘Mars Energetic Radiation Environment Models’ (dMEREM and eMEREM) recently developed for the European Space Agency are herein used to estimate, for the first time, background Galactic Cosmic Ray (GCR) radiation and flare related solar energetic particle (SEP) events at three candidate martian landing sites under conditions where particle arrival occurred at solar minimum (December, 2006) and solar maximum (April, 2002) during Solar Cycle 23. The three landing sites were selected on the basis that they are characterized by significantly different hydrological conditions and soil compositions. Energetic particle data sets recorded on orbit at Mars at the relevant times were incomplete because of gaps in the measurements due to operational constraints. Thus, in the present study, comprehensive near-Earth particle measurements made aboard the GOES spacecraft were used as proxies to estimate the overall particle doses at each perspective landing site, assuming in each case that the fluxes fell off as 1/r2 (where r is the helio-radial distance) and that good magnetic connectivity always prevailed. The results indicate that the particle radiation environment on Mars can vary according to the epoch concerned and the landing site selected. Particle estimations obtained using MEREM are in reasonable agreement, given the inherent differences between the models, with the related NASA Heavy Ion-Nucleon Transport Code for Space Radiation/HZETRN. Both sets of results indicated that, for short (30 days) stays, the atmosphere of Mars, in the cases of the SEPs studied and the then prevailing background galactic cosmic radiation, provided sufficient shielding at the planetary surface to maintain annual skin and blood forming organ/BFO dose levels below currently accepted ionizing radiation exposure limits. The threat of occurrence of a hard spectrum SEP during Cruise-Phase transfers to/from Mars over 400 days, combined with the associated cumulative effect of prolonged GCR exposure, poses an as yet unsolved hazard to prospective onboard personnel.

  4. Interannual Variability in Surface LW Fluxes Over the Tropical Oceans As Seen in ISCCP-FD and GEWEX SRB Data Sets

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Lu, H.-I.

    2005-01-01

    One notable aspect of Earth s climate is that although the planet appears to be very close to radiative balance at top-of-atmosphere (TOA), the atmosphere itself and underlying surface are not. Profound exchanges of energy between the atmosphere and oceans, land and cryosphere occur over a range of time scales. Recent evidence from broadband satellite measurements suggests that even these TOA fluxes contain some detectable variations. Our ability to measure and reconstruct radiative fluxes at the surface and at the top of atmosphere is improving rapidly. In this work we will evaluate two recently released estimates of radiative fluxes, focusing primarily on surface estimates. The International Satellite Cloud Climatology Project FD radiative flux profiles are available from mid-1 983 to near present and have been constructed by driving the radiative transfer physics from the Goddard Institute for Space Studies (GISS) global model with ISCCP clouds and TOVS (TIROS Operational Vertical Sounder)thermodynamic profiles. Fu!l and clear sky SW and LW fluxes are produced. A similar product from the NASA/GEWEX Surface Radiation Budget Project using different radiative flux codes and thermodynamics from the NAS/Goddard Earth Observing System (GEOS-1) assimilation model makes a similar calculation of surface fluxes. However this data set currently extends only through 1995. Significant differences in both interannual variability as well as trends are found between among these data sets. For radiative fluxes these differences are traced to TOVS thermodynamic soundings used to drive the ISCCP-FD calculations. Errors in near surface temperature and precipitable water cascade into ISCCP upward and downward IR flux components, demonstrably affecting interannual variability. Revised estimates of clear-sky fluxes over ocean are made using statistical algorithms and water vapor from the (SSM/I) Special Sensor Microwave Imager. These calculations show strong near-surface water vapor feedback over the tropical oceans in association with SST changes. However, it is also shown that ISCCP longwave cloud forcing, common to both the ISCCP-FD and GEWEX SRB retrievals, is the main driver of a long-term decrease in net LW flux to the surface during the near-20 year period covered by these revised estimates.

  5. Health effects models for nuclear power plant accident consequence analysis: Low LET radiation: Part 2, Scientific bases for health effects models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrahamson, S.; Bender, M.; Book, S.

    1989-05-01

    This report provides dose-response models intended to be used in estimating the radiological health effects of nuclear power plant accidents. Models of early and continuing effects, cancers and thyroid nodules, and genetic effects are provided. Two-parameter Weibull hazard functions are recommended for estimating the risks of early and continuing health effects. Three potentially lethal early effects -- the hematopoietic, pulmonary and gastrointestinal syndromes -- are considered. Linear and linear-quadratic models are recommended for estimating cancer risks. Parameters are given for analyzing the risks of seven types of cancer in adults -- leukemia, bone, lung, breast, gastrointestinal, thyroid and ''other''. Themore » category, ''other'' cancers, is intended to reflect the combined risks of multiple myeloma, lymphoma, and cancers of the bladder, kidney, brain, ovary, uterus and cervix. Models of childhood cancers due to in utero exposure are also provided. For most cancers, both incidence and mortality are addressed. Linear and linear-quadratic models are also recommended for assessing genetic risks. Five classes of genetic disease -- dominant, x-linked, aneuploidy, unbalanced translocation and multifactorial diseases --are considered. In addition, the impact of radiation-induced genetic damage on the incidence of peri-implantation embryo losses is discussed. The uncertainty in modeling radiological health risks is addressed by providing central, upper, and lower estimates of all model parameters. Data are provided which should enable analysts to consider the timing and severity of each type of health risk. 22 refs., 14 figs., 51 tabs.« less

  6. Direct Aerosol Radiative Forcing Based on Combined A-Train Observations: Towards All-sky Estimates and Attribution to Aerosol Type

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.; Burton, S.; Livingston, J.; hide

    2014-01-01

    We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) measurements for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). We discuss some of the challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed. We also discuss a methodology for using the multi-sensor aerosol retrievals for aerosol type classification based on advanced clustering techniques. The combination of research results permits conclusions regarding the attribution of aerosol radiative forcing to aerosol type.

  7. Physical models, cross sections, and numerical approximations used in MCNP and GEANT4 Monte Carlo codes for photon and electron absorbed fraction calculation.

    PubMed

    Yoriyaz, Hélio; Moralles, Maurício; Siqueira, Paulo de Tarso Dalledone; Guimarães, Carla da Costa; Cintra, Felipe Belonsi; dos Santos, Adimir

    2009-11-01

    Radiopharmaceutical applications in nuclear medicine require a detailed dosimetry estimate of the radiation energy delivered to the human tissues. Over the past years, several publications addressed the problem of internal dose estimate in volumes of several sizes considering photon and electron sources. Most of them used Monte Carlo radiation transport codes. Despite the widespread use of these codes due to the variety of resources and potentials they offered to carry out dose calculations, several aspects like physical models, cross sections, and numerical approximations used in the simulations still remain an object of study. Accurate dose estimate depends on the correct selection of a set of simulation options that should be carefully chosen. This article presents an analysis of several simulation options provided by two of the most used codes worldwide: MCNP and GEANT4. For this purpose, comparisons of absorbed fraction estimates obtained with different physical models, cross sections, and numerical approximations are presented for spheres of several sizes and composed as five different biological tissues. Considerable discrepancies have been found in some cases not only between the different codes but also between different cross sections and algorithms in the same code. Maximum differences found between the two codes are 5.0% and 10%, respectively, for photons and electrons. Even for simple problems as spheres and uniform radiation sources, the set of parameters chosen by any Monte Carlo code significantly affects the final results of a simulation, demonstrating the importance of the correct choice of parameters in the simulation.

  8. Integral-equation based methods for parameter estimation in output pulses of radiation detectors: Application in nuclear medicine and spectroscopy

    NASA Astrophysics Data System (ADS)

    Mohammadian-Behbahani, Mohammad-Reza; Saramad, Shahyar

    2018-04-01

    Model based analysis methods are relatively new approaches for processing the output data of radiation detectors in nuclear medicine imaging and spectroscopy. A class of such methods requires fast algorithms for fitting pulse models to experimental data. In order to apply integral-equation based methods for processing the preamplifier output pulses, this article proposes a fast and simple method for estimating the parameters of the well-known bi-exponential pulse model by solving an integral equation. The proposed method needs samples from only three points of the recorded pulse as well as its first and second order integrals. After optimizing the sampling points, the estimation results were calculated and compared with two traditional integration-based methods. Different noise levels (signal-to-noise ratios from 10 to 3000) were simulated for testing the functionality of the proposed method, then it was applied to a set of experimental pulses. Finally, the effect of quantization noise was assessed by studying different sampling rates. Promising results by the proposed method endorse it for future real-time applications.

  9. Electron-hole pairs generation rate estimation irradiated by isotope Nickel-63 in silicone using GEANT4

    NASA Astrophysics Data System (ADS)

    Kovalev, I. V.; Sidorov, V. G.; Zelenkov, P. V.; Khoroshko, A. Y.; Lelekov, A. T.

    2015-10-01

    To optimize parameters of beta-electrical converter of isotope Nickel-63 radiation, model of the distribution of EHP generation rate in semiconductor must be derived. By using Monte-Carlo methods in GEANT4 system with ultra-low energy electron physics models this distribution in silicon calculated and approximated with Gauss function. Maximal efficient isotope layer thickness and maximal energy efficiency of EHP generation were estimated.

  10. Estimating the Longwave Radiation Underneath the Forest Canopy in Snow-dominated Setting

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Kumar, M.; Link, T. E.

    2017-12-01

    Forest canopies alter incoming longwave radiation at the land surface, thus influencing snow cover energetics. The snow surface receives longwave radiation from the sky as well as from surrounding vegetation. The longwave radiation from trees is determined by its skin temperature, which shows significant heterogeneity depending on its position and morphometric attributes. Here our goal is to derive an effective tree temperature that can be used to estimate the longwave radiation received by the land surface pixel. To this end, we implement these three steps: 1) derive a relation between tree trunk surface temperature and the incident longwave radiation, shortwave radiation, and air temperature; 2) develop an inverse model to calculate the effective temperature by establishing a relationship between the effective temperature and the actual tree temperature; and 3) estimate the effective temperature using widely measured variables, such as solar radiation and forest density. Data used to derive aforementioned relations were obtained at the University of Idaho Experimental Forest, in northern Idaho. Tree skin temperature, incoming longwave radiation, solar radiation received by the tree surface, and air temperature were measured at an isolated tree and a tree within a homogeneous forest stand. Longwave radiation received by the land surface and the sky view factors were also measured at the same two locations. The calculated effective temperature was then compared with the measured tree trunk surface temperature. Additional longwave radiation measurements with pyrgeometer arrays were conducted under forests with different densities to evaluate the relationship between effective temperature and forest density. Our preliminary results show that when exposed to direct shortwave radiation, the tree surface temperature shows a significant difference from the air temperature. Under cloudy or shaded conditions, the tree surface temperature closely follows the air temperature. The effective tree temperature follows the air temperature in a dense forest stand, although it is significantly larger than the air temperature near the isolated tree. This discrepancy motivates us to explore ways to represent the effective tree temperature for stands with different densities.

  11. A simple radiative transfer model of the high latitude mesospheric scattering layer

    NASA Technical Reports Server (NTRS)

    Hummel, J. R.

    1974-01-01

    A simple radiative transfer model of the particle layer found at 85 km over the summer poles is presented. The effects of the layer on the global radiative temperature, the polar region temperature, and the greenhouse effect are discussed. The estimated magnitude of the global radiative temperature change is 3.5 x .001 K to 2.2 x .01 K, depending on the value of the imaginary part of the particle index of refraction. The layer is shown to have a possible secondary influence on the temperature of the polar region while the contribution which the layer makes to the greenhouse effect is shown to be negligible. The imaginary part of the particle index of refraction is shown to be important in determining the attenuation properties of the layer.

  12. A method for estimating the incident PAR on inclined surfaces

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoping; Gao, Wei; Gao, Zhiqiang

    2008-08-01

    A new simple model has been developed that incorporates Digital Elevation Model (DEM) and Moderate Resolution Imaging Spectroradiometer (MODIS) products to produce incident photosynthetically active radiation (PAR) for tilted surface. The method is based on a simplification of the general radiative transfer equation, which considers five major processes of attenuation of solar radiation: 1) Rayleigh scattering, 2) absorption by ozone and water vapor, 3) aerosol scattering, 4) multiple reflectance between surface and atmosphere, and 5) three terrain factors: slope and aspect, isotropic sky view factor, and additional radiation by neighbor reflectance. A comparison of the model results with observational data from the Yucheng and Changbai Mountain sites of the Chinese Ecosystem Research Network (CERN) shows the correlation coefficient as 0.929 and 0.904, respectively. A comparison of the model results with the 2006 filed measured PAR in the Yucheng and Changbai sites shows the correlation coefficient as 0.929 and 0.904, respectively, and the average percent error as 10% and 15%, respectively.

  13. Separating intrinsic and scattering attenuation in full waveform sonic logging with radiative transfer theory

    NASA Astrophysics Data System (ADS)

    Durán, Evert L.; van Wijk, Kasper; Adam, Ludmila; Wallis, Irene C.

    2018-05-01

    Fitting the intensity of ensembles of sonic log waveforms with a radiative transfer model allows us to separate scattering from intrinsic attenuation in two wells of the Ngatamariki geothermal field, New Zealand. Independent estimates of scattering and intrinsic attenuation add to the geologic interpretation based on other well log data. Particularly, our estimates of the intrinsic attenuation confirm or refine inferences on fluid mobility in the subsurface. Zones of strong intrinsic attenuation in Well 1 correlate with identified feed zones in three of the six cases, and hint at permeability just above two of the other three zones. In Well 2, intrinsic attenuation estimates help identify all three identified permeable intervals, including a washout.

  14. Ultrasound shear wave simulation based on nonlinear wave propagation and Wigner-Ville Distribution analysis

    NASA Astrophysics Data System (ADS)

    Bidari, Pooya Sobhe; Alirezaie, Javad; Tavakkoli, Jahan

    2017-03-01

    This paper presents a method for modeling and simulation of shear wave generation from a nonlinear Acoustic Radiation Force Impulse (ARFI) that is considered as a distributed force applied at the focal region of a HIFU transducer radiating in nonlinear regime. The shear wave propagation is simulated by solving the Navier's equation from the distributed nonlinear ARFI as the source of the shear wave. Then, the Wigner-Ville Distribution (WVD) as a time-frequency analysis method is used to detect the shear wave at different local points in the region of interest. The WVD results in an estimation of the shear wave time of arrival, its mean frequency and local attenuation which can be utilized to estimate medium's shear modulus and shear viscosity using the Voigt model.

  15. Nanofluid MHD natural convection through a porous complex shaped cavity considering thermal radiation

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, M.; Li, Zhixiong; Shamlooei, M.

    2018-06-01

    Control volume based finite element method (CVFEM) is applied to simulate H2O based nanofluid radiative and convective heat transfer inside a porous medium. Non-Darcy model is employed for porous media. Influences of Hartmann number, nanofluid volume fraction, radiation parameter, Darcy number, number of undulations and Rayleigh number on nanofluid behavior were demonstrated. Thermal conductivity of nanofluid is estimated by means of previous experimental correlation. Results show that Nusselt number enhances with augment of permeability of porous media. Effect of Hartmann number on rate of heat transfer is opposite of radiation parameter.

  16. Volume effects of late term normal tissue toxicity in prostate cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Bonta, Dacian Viorel

    Modeling of volume effects for treatment toxicity is paramount for optimization of radiation therapy. This thesis proposes a new model for calculating volume effects in gastro-intestinal and genito-urinary normal tissue complication probability (NTCP) following radiation therapy for prostate carcinoma. The radiobiological and the pathological basis for this model and its relationship to other models are detailed. A review of the radiobiological experiments and published clinical data identified salient features and specific properties a biologically adequate model has to conform to. The new model was fit to a set of actual clinical data. In order to verify the goodness of fit, two established NTCP models and a non-NTCP measure for complication risk were fitted to the same clinical data. The method of fit for the model parameters was maximum likelihood estimation. Within the framework of the maximum likelihood approach I estimated the parameter uncertainties for each complication prediction model. The quality-of-fit was determined using the Aikaike Information Criterion. Based on the model that provided the best fit, I identified the volume effects for both types of toxicities. Computer-based bootstrap resampling of the original dataset was used to estimate the bias and variance for the fitted parameter values. Computer simulation was also used to estimate the population size that generates a specific uncertainty level (3%) in the value of predicted complication probability. The same method was used to estimate the size of the patient population needed for accurate choice of the model underlying the NTCP. The results indicate that, depending on the number of parameters of a specific NTCP model, 100 (for two parameter models) and 500 patients (for three parameter models) are needed for accurate parameter fit. Correlation of complication occurrence in patients was also investigated. The results suggest that complication outcomes are correlated in a patient, although the correlation coefficient is rather small.

  17. Inhibition by ultraviolet and photosynthetically available radiation lowers model estimates of depth-integrated picophytoplankton photosynthesis: global predictions for Prochlorococcus and Synechococcus.

    PubMed

    Neale, Patrick J; Thomas, Brian C

    2017-01-01

    Phytoplankton photosynthesis is often inhibited by ultraviolet (UV) and intense photosynthetically available radiation (PAR), but the effects on ocean productivity have received little consideration aside from polar areas subject to periodic enhanced UV-B due to depletion of stratospheric ozone. A more comprehensive assessment is important for understanding the contribution of phytoplankton production to the global carbon budget, present and future. Here, we consider responses in the temperate and tropical mid-ocean regions typically dominated by picophytoplankton including the prokaryotic lineages, Prochlorococcus and Synechococcus. Spectral models of photosynthetic response for each lineage were constructed using model strains cultured at different growth irradiances and temperatures. In the model, inhibition becomes more severe once exposure exceeds a threshold (E max ) related to repair capacity. Model parameters are presented for Prochlorococcus adding to those previously presented for Synechococcus. The models were applied to estimate midday, water column photosynthesis based on an atmospheric model of spectral radiation, satellite-derived spectral water transparency and temperature. Based on a global survey of inhibitory exposure severity, a full-latitude section of the mid-Pacific and near-equatorial region of the east Pacific were identified as representative regions for prediction of responses over the entire water column. Comparing predictions integrated over the water column including versus excluding inhibition, production was 7-28% lower due to inhibition depending on strain and site conditions. Inhibition was consistently greater for Prochlorococcus compared to two strains of Synechococcus. Considering only the surface mixed layer, production was inhibited 7-73%. On average, including inhibition lowered estimates of midday productivity around 20% for the modeled region of the Pacific with UV accounting for two-thirds of the reduction. In contrast, most other productivity models either ignore inhibition or only include PAR inhibition. Incorporation of E max model responses into an existing spectral model of depth-integrated, daily production will enable efficient global predictions of picophytoplankton productivity including inhibition. © 2016 John Wiley & Sons Ltd.

  18. Determining the infrared radiative effects of Saharan dust: a radiative transfer modelling study based on vertically resolved measurements at Lampedusa

    NASA Astrophysics Data System (ADS)

    Meloni, Daniela; di Sarra, Alcide; Brogniez, Gérard; Denjean, Cyrielle; De Silvestri, Lorenzo; Di Iorio, Tatiana; Formenti, Paola; Gómez-Amo, José L.; Gröbner, Julian; Kouremeti, Natalia; Liuzzi, Giuliano; Mallet, Marc; Pace, Giandomenico; Sferlazzo, Damiano M.

    2018-03-01

    Detailed measurements of radiation, atmospheric and aerosol properties were carried out in summer 2013 during the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) campaign in the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) experiment. This study focusses on the characterization of infrared (IR) optical properties and direct radiative effects of mineral dust, based on three vertical profiles of atmospheric and aerosol properties and IR broadband and narrowband radiation from airborne measurements, made in conjunction with radiosonde and ground-based observations at Lampedusa, in the central Mediterranean. Satellite IR spectra from the Infrared Atmospheric Sounder Interferometer (IASI) are also included in the analysis. The atmospheric and aerosol properties are used as input to a radiative transfer model, and various IR radiation parameters (upward and downward irradiance, nadir and zenith brightness temperature at different altitudes) are calculated and compared with observations. The model calculations are made for different sets of dust particle size distribution (PSD) and refractive index (RI), derived from observations and from the literature. The main results of the analysis are that the IR dust radiative forcing is non-negligible and strongly depends on PSD and RI. When calculations are made using the in situ measured size distribution, it is possible to identify the refractive index that produces the best match with observed IR irradiances and brightness temperatures (BTs). The most appropriate refractive indices correspond to those determined from independent measurements of mineral dust aerosols from the source regions (Tunisia, Algeria, Morocco) of dust transported over Lampedusa, suggesting that differences in the source properties should be taken into account. With the in situ size distribution and the most appropriate refractive index the estimated dust IR radiative forcing efficiency is +23.7 W m-2 at the surface, -7.9 W m-2 within the atmosphere, and +15.8 W m-2 at the top of the atmosphere. The use of column-integrated dust PSD from AERONET may also produce a good agreement with measured irradiances and BTs, but with significantly different values of the RI. This implies large differences, up to a factor of 2.5 at surface, in the estimated dust radiative forcing, and in the IR heating rate. This study shows that spectrally resolved measurements of BTs are important to better constrain the dust IR optical properties, and to obtain a reliable estimate of its radiative effects. Efforts should be directed at obtaining an improved description of the dust size distribution and its vertical distribution, as well as at including regionally resolved optical properties.

  19. Modeling the Spin Equilibrium of Neutron Stars in LMXBs Without Gravitational Radiation

    NASA Technical Reports Server (NTRS)

    Andersson, N.; Glampedakis, K.; Haskell, B.; Watts, A. L.

    2004-01-01

    In this paper we discuss the spin-equilibrium of accreting neutron stars in LMXBs. We demonstrate that, when combined with a naive spin-up torque, the observed data leads to inferred magnetic fields which are at variance with those of galactic millisecond radiopulsars. This indicates the need for either additional spin-down torques (eg. gravitational radiation) or an improved accretion model. We show that a simple consistent accretion model can be arrived at by accounting for radiation pressure in rapidly accreting systems (above a few percent of the Eddington accretion rate). In our model the inner disk region is thick and significantly sub-Keplerian, and the estimated equilibrium periods are such that the LMXB neutron stars have properties that accord well with the galactic millisecond radiopulsar sample. The implications for future gravitational-wave observations are also discussed briefly.

  20. Estimating mineral abundances of clay and gypsum mixtures using radiative transfer models applied to visible-near infrared reflectance spectra

    NASA Astrophysics Data System (ADS)

    Robertson, K. M.; Milliken, R. E.; Li, S.

    2016-10-01

    Quantitative mineral abundances of lab derived clay-gypsum mixtures were estimated using a revised Hapke VIS-NIR and Shkuratov radiative transfer model. Montmorillonite-gypsum mixtures were used to test the effectiveness of the model in distinguishing between subtle differences in minor absorption features that are diagnostic of mineralogy in the presence of strong H2O absorptions that are not always diagnostic of distinct phases or mineral abundance. The optical constants (k-values) for both endmembers were determined from bi-directional reflectance spectra measured in RELAB as well as on an ASD FieldSpec3 in a controlled laboratory setting. Multiple size fractions were measured in order to derive a single k-value from optimization of the optical path length in the radiative transfer models. It is shown that with careful experimental conditions, optical constants can be accurately determined from powdered samples using a field spectrometer, consistent with previous studies. Variability in the montmorillonite hydration level increased the uncertainties in the derived k-values, but estimated modal abundances for the mixtures were still within 5% of the measured values. Results suggest that the Hapke model works well in distinguishing between hydrated phases that have overlapping H2O absorptions and it is able to detect gypsum and montmorillonite in these simple mixtures where they are present at levels of ∼10%. Care must be taken however to derive k-values from a sample with appropriate H2O content relative to the modeled spectra. These initial results are promising for the potential quantitative analysis of orbital remote sensing data of hydrated minerals, including more complex clay and sulfate assemblages such as mudstones examined by the Curiosity rover in Gale crater.

Top