Some comments on space flight and radiation limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, W E
Setting limits on human exposure to space-related radiation involves two very different processes - the appropriate hard science, and certain emotional aspects and expectations of the groups involved. These groups include the general public and their elected politicians, the astronauts and flight crews, and NASA managers, each group with different expectations and concerns. Public and political views of human space flight and human radiation exposures are often poorly informed and are often based on emotional reactions to current events which may be distorted by {open_quotes}experts{close_quotes} and the media. Career astronauts` and cosmonauts` views are much more realistic about the risksmore » involved and there is a willingness on their part to accept increased necessary risks. However, there is a concern on their part about career-threatening dose limits, the potential for overexposures, and the health effects from all sources of radiation. There is special concern over radiation from medical studies. This last concern continues to raise the question of {open_quotes}voluntary{close_quotes} participation in studies involving radiation exposure. There is greatly diversity in spaceflight crews and their expectations; and {open_quotes}official{close_quotes} Astronaut Office positions will reflect strong management direction. NASA management has its own priorities and concerns and this fact will be reflected in their crucial influence on radiation limits. NASA, and especially spaceflight crews, might be best served by exposure limits which address all sources of spaceflight radiation and all potential effects from such exposure.« less
Arora, Geetanjali; Mishra, Rajesh; Kumar, Praveen; Yadav, Madhav; Ballal, Sanjana; Bal, Chandrasekhar; Damle, Nishikant Avinash
2017-01-01
Purpose of the Study: With rapid development in the field of nuclear medicine therapy, radiation safety of the personnel involved in synthesis of radiopharmaceuticals has become imperative. Few studies have been done on estimating the radiation exposure of personnel involved in the radio labeling of 177Lu-compounds in western countries. However, data from the Indian subcontinent are limited. We have estimated whole body radiation exposure to the radiopharmacist involved in the labeling of: 177Lu-DOTATATE, 177Lu-PSMA-617, and 177Lu-EDTMP. Materials and Methods: Background radiation was measured by keeping a pocket dosimeter around the workbench when no radioactive work was conducted. The same pocket dosimeter was given to the radiopharmacist performing the labeling of 177Lu-compounds. All radiopharmaceuticals were synthesized by the same radiopharmacist with 3, 1 and 3 year experience, respectively, in radiolabeling the above compounds. Results: One Curie (1 Ci) of 177Lu was received fortnightly by our department. Data were collected for 12 syntheses of 177Lu-DOTATATE, 8 syntheses of 177Lu-PSMA-617, and 3 syntheses of 177Lu-EDTMP. Mean time required to complete the synthesis was 0.81, 0.65, and 0.58 h, respectively. Mean whole body radiation exposure was 0.023 ± 0.01 mSv, 0.01 ± 0.002 mSv, and 0.002 ± 0.0006 mSv, respectively. Overall mean radiation dose for all the three 177Lu-compounds was 0.014 mSv. Highest exposure was obtained during the synthesis of 177Lu-DOTATATE. Conclusion: Our data suggest that the manual radiolabeling of 177Lu compounds is safe, and the whole body radiation exposure to the involved personnel is well within prescribed limits. PMID:28533634
Radiation exposure in gastroenterology: improving patient and staff protection.
Ho, Immanuel K H; Cash, Brooks D; Cohen, Henry; Hanauer, Stephen B; Inkster, Michelle; Johnson, David A; Maher, Michael M; Rex, Douglas K; Saad, Abdo; Singh, Ajaypal; Rehani, Madan M; Quigley, Eamonn M
2014-08-01
Medical imaging involving the use of ionizing radiation has brought enormous benefits to society and patients. In the past several decades, exposure to medical radiation has increased markedly, driven primarily by the use of computed tomography. Ionizing radiation has been linked to carcinogenesis. Whether low-dose medical radiation exposure will result in the development of malignancy is uncertain. This paper reviews the current evidence for such risk, and aims to inform the gastroenterologist of dosages of radiation associated with commonly ordered procedures and diagnostic tests in clinical practice. The use of medical radiation must always be justified and must enable patients to be exposed at the lowest reasonable dose. Recommendations provided herein for minimizing radiation exposure are based on currently available evidence and Working Party expert consensus.
Effects of Proton and Combined Proton and (56)Fe Radiation on the Hippocampus.
Raber, Jacob; Allen, Antiño R; Sharma, Sourabh; Allen, Barrett; Rosi, Susanna; Olsen, Reid H J; Davis, Matthew J; Eiwaz, Massarra; Fike, John R; Nelson, Gregory A
2016-01-01
The space radiation environment contains protons and (56)Fe, which could pose a significant hazard to space flight crews during and after missions. The space environment involves complex radiation exposures, thus, the effects of a dose of protons might be modulated by a dose of heavy-ion radiation. The brain, and particularly the hippocampus, may be susceptible to space radiation-induced changes. In this study, we first determined the dose-response effect of proton radiation (150 MeV) on hippocampus-dependent cognition 1 and 3 months after exposure. Based on those results, we subsequently exposed mice to protons alone (150 MeV, 0.1 Gy), (56)Fe alone (600 MeV/n, 0.5 Gy) or combined proton and (56)Fe radiations (protons first) with the two exposures separated by 24 h. At one month postirradiation, all animal groups showed novel object recognition. However, at three months postirradiation, mice exposed to either protons or combined proton and (56)Fe radiations showed impaired novel object recognition, which was not observed in mice irradiated with (56)Fe alone. The mechanisms in these impairments might involve inflammation. In mice irradiated with protons alone or (56)Fe alone three months earlier, there was a negative correlation between a measure of novel object recognition and the number of newly born activated microglia in the dentate gyrus. Next, cytokine and chemokine levels were assessed in the hippocampus. At one month after exposure the levels of IL-12 were higher in mice exposed to combined radiations compared with sham-irradiated mice, while the levels of IFN-γ were lower in mice exposed to (56)Fe radiation alone or combined radiations. In addition, IL-4 levels were lower in (56)Fe-irradiated mice compared with proton-irradiated mice and TNF-α levels were lower in proton-irradiated mice than in mice receiving combined radiations. At three months after exposure, macrophage-derived chemokine (MDC) and eotaxin levels were lower in mice receiving combined radiations. The levels of MDC and eotaxin correlated and the levels of MDC, but not eotaxin, correlated with the percentage of newly born activated microglia in the blades of the dentate gyrus. Finally, hippocampal IL-6 levels were higher in mice receiving combined radiations compared with mice receiving (56)Fe radiation alone. These data demonstrate the sensitivity of novel object recognition for detecting cognitive injury three months after exposure to proton radiation alone, and combined exposure to proton and (56)Fe radiations, and that newly-born activated microglia and inflammation might be involved in this injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
Dr. Earl R. Miller was interviewed by representatives of US DOE Office of Human Radiation Research (OHRE). The interview covers Dr. Miller`s involvement with the Manhattan Engineer District, with total body irradiation, and heavy-ion therapy. Dr. Miller`s remembrances include wartime work on radiation exposure, Joe Hamilton, Neutron Therapy research, means of obtaining isotopes, consent forms, infinite laminograms, invention of a baby holder to alleviate exposure of radiological technicians in diagnostic procedures involving infants, and several personages.
ERIC Educational Resources Information Center
O'TOOLE, THOMAS J.
THE PURPOSE OF THE STUDY WAS TO PROVIDE A FACTUAL BACKGROUND AGAINST WHICH JUDGMENTS CAN BE MADE CONCERNING THE MAGNITUDE OF THE PROBLEM OF INJURY APPEARING SOME TIME AFTER THE EXPOSURE TO IONIZING RADIATION AND DETERMINE WHETHER EXISTING LAWS PERMIT A JUST AND EQUITABLE ADJUDICATION OF RADIATION COMPENSATION CLAIMS. THE STUDY WAS BASED UPON THE…
Weyemi, Urbain; Redon, Christophe E; Aziz, Towqir; Choudhuri, Rohini; Maeda, Daisuke; Parekh, Palak R; Bonner, Michael Y; Arbiser, Jack L; Bonner, William M
2015-03-01
Human exposure to ionizing radiation from medical procedures has increased sharply in the last three decades. Recent epidemiological studies suggest a direct relationship between exposure to ionizing radiation and health problems, including cancer incidence. Therefore, minimizing the impact of radiation exposure in patients has become a priority in the development of future clinical practices. Crucial players in radiation-induced DNA damage include reactive oxygen species (ROS), but the sources of these have remained elusive. To the best of our knowledge, we show here for the first time that two members of the ROS-generating NADPH oxidase family (NOXs), NOX4 and NOX5, are involved in radiation-induced DNA damage. Depleting these two NOXs in human primary fibroblasts resulted in reduced levels of DNA damage as measured by levels of radiation-induced foci, a marker of DNA double-strand breaks (DSBs) and the comet assay coupled with increased cell survival. NOX involvement was substantiated with fulvene-5, a NOXs-specific inhibitor. Moreover, fulvene-5 mitigated radiation-induced DNA damage in human peripheral blood mononuclear cells ex vivo. Our results provide evidence that the inactivation of NOXs protects cells from radiation-induced DNA damage and cell death. These findings suggest that NOXs inhibition may be considered as a future pharmacological target to help minimize the negative effects of radiation exposure for millions of patients each year.
Weyemi, Urbain; Redon, Christophe E.; Aziz, Towqir; Choudhuri, Rohini; Maeda, Daisuke; Parekh, Palak R.; Bonner, Michael Y.; Arbiser, Jack L.; Bonner, William M.
2015-01-01
Human exposure to ionizing radiation from medical procedures has increased sharply in the last three decades. Recent epidemiological studies suggest a direct relationship between exposure to ionizing radiation and health problems, including cancer incidence. Therefore, minimizing the impact of radiation exposure in patients has become a priority in the development of future clinical practices. Crucial players in radiation-induced DNA damage include reactive oxygen species (ROS), but the sources of these have remained elusive. To the best of our knowledge, we show here for the first time that two members of the ROS-generating NADPH oxidase family (NOXs), NOX4 and NOX5, are involved in radiation-induced DNA damage. Depleting these two NOXs in human primary fibroblasts resulted in reduced levels of DNA damage as measured by levels of radiation-induced foci, a marker of DNA double-strand breaks (DSBs) and the comet assay coupled with increased cell survival. NOX involvement was substantiated with fulvene-5, a NOXs-specific inhibitor. Moreover, fulvene-5 mitigated radiation-induced DNA damage in human peripheral blood mononuclear cells ex vivo. Our results provide evidence that the inactivation of NOXs protects cells from radiation-induced DNA damage and cell death. These findings suggest that NOXs inhibition may be considered as a future pharmacological target to help minimize the negative effects of radiation exposure for millions of patients each year. PMID:25706776
A Multigroup Method for the Calculation of Neutron Fluence with a Source Term
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.; Clowdsley, M. S.
1998-01-01
Current research on the Grant involves the development of a multigroup method for the calculation of low energy evaporation neutron fluences associated with the Boltzmann equation. This research will enable one to predict radiation exposure under a variety of circumstances. Knowledge of radiation exposure in a free-space environment is a necessity for space travel, high altitude space planes and satellite design. This is because certain radiation environments can cause damage to biological and electronic systems involving both short term and long term effects. By having apriori knowledge of the environment one can use prediction techniques to estimate radiation damage to such systems. Appropriate shielding can be designed to protect both humans and electronic systems that are exposed to a known radiation environment. This is the goal of the current research efforts involving the multi-group method and the Green's function approach.
The Role of Optical Radiations in Skin Cancer
Palla, Marco; Di Trolio, Rossella; Mozzillo, Nicola; Ascierto, Paolo A.
2013-01-01
Purpose. Electromagnetic radiation with wavelength in the range 100 nm to 1 mm is known as optical radiation and includes ultraviolet radiation, the visible spectrum, and infrared radiation. The deleterious short- and long-term biological effects of ultraviolet radiation, including melanoma and other skin cancers, are well recognized. Infrared radiation may also have damaging biological effects. Methods. The objective of this review was to assess the literature over the last 15 years and to summarize correlations between exposure to optical radiation and the risk of melanoma and other cancers. Results. There is a clear correlation between exposure to UV radiation and the development of skin cancer. Most importantly, a strong association between artificial UV radiation exposure, for example, tanning devices, and the risk of melanoma and squamous cell carcinoma has been clearly demonstrated. There is no clear evidence that exposure to IR and laser radiation may increase the risk of skin cancer, although negative health effects have been observed. Conclusions. Preventative strategies that involve provision of public information highlighting the risks associated with exposure to sunlight remain important. In addition, precautionary measures that discourage exposure to tanning appliances are required, as is legislation to prevent their use during childhood. PMID:23710365
Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles.
Dörr, Harald; Meineke, Viktor
2011-11-25
Fortunately radiation accidents are infrequent occurrences, but since they have the potential of large scale events like the nuclear accidents of Chernobyl and Fukushima, preparatory planning of the medical management of radiation accident victims is very important. Radiation accidents can result in different types of radiation exposure for which the diagnostic and therapeutic measures, as well as the outcomes, differ. The clinical course of acute radiation syndrome depends on the absorbed radiation dose and its distribution. Multi-organ-involvement and multi-organ-failure need be taken into account. The most vulnerable organ system to radiation exposure is the hematopoietic system. In addition to hematopoietic syndrome, radiation induced damage to the skin plays an important role in diagnostics and the treatment of radiation accident victims. The most important therapeutic principles with special reference to hematopoietic syndrome and cutaneous radiation syndrome are reviewed.
DOE 2011 occupational radiation exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2012-12-01
The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2011 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protectionmore » of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past five years.« less
Naoi, Yutaka; Fujikawa, Akira; Kyoto, Yukishige; Kunishima, Naoaki; Ono, Masahiro; Watanabe, Yukie
2013-01-01
When the Great East Japan Earthquake occurred on March 11, 2011, the Ground Self-Defense Force (GSDF) was dispatched nationally to Northeast area in Japan. The highly trained GSDF members were simultaneously assigned to various missions for the Fukushima Nuclear Power Plants disaster. The missions of GSDF terminated on August 31, 2011. Special medical examinations were conducted for the members as they returned to each military unit. GSDF members who were assigned to the nuclear power plant were at risk of radiation exposure; therefore, pocket dosimeters were used to assess external radiation exposure. A few months after the mission was terminated, measurements of internal radiation exposure were performed. This is the first report of the internal exposure of GSDF members who worked in the restricted radiation contamination area. Here, we report the amounts of internal and external exposure of and the equipment used by the GSDF members.
McCunney, Robert J; Li, Jessica
2014-03-01
The National Lung Cancer Screening Trial (NLST) demonstrated that screening with low-dose CT (LDCT) scan reduced lung cancer and overall mortality by 20% and 7%, respectively. The LDCT scanning involves an approximate 2-mSv dose, whereas full-chest CT scanning, the major diagnostic study used to follow up nodules, may involve a dose of 8 mSv. Radiation associated with CT scanning and other diagnostic studies to follow up nodules may present an independent risk of lung cancer. On the basis of the NLST, we estimated the incidence and prevalence of nodules detected in screening programs. We followed the Fleischner guidelines for follow-up of nodules to assess cumulative radiation exposure over 20- and 30-year periods. We then evaluated nuclear worker cohort studies and atomic bomb survivor studies to assess the risk of lung cancer from radiation associated with long-term lung cancer screening programs. The findings indicate that a 55-year-old lung screening participant may experience a cumulative radiation exposure of up to 280 mSv over a 20-year period and 420 mSv over 30 years. These exposures exceed those of nuclear workers and atomic bomb survivors. This assessment suggests that long-term (20-30 years) LDCT screening programs are associated with nontrivial cumulative radiation doses. Current lung cancer screening protocols, if conducted over 20- to 30-year periods, can independently increase the risk of lung cancer beyond cigarette smoking as a result of cumulative radiation exposure. Radiation exposures from LDCT screening and follow-up diagnostic procedures exceed lifetime radiation exposures among nuclear power workers and atomic bomb survivors.
10 CFR 20.1206 - Planned special exposures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Planned special exposures. 20.1206 Section 20.1206 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20... associated potential risks and specific radiation levels or other conditions that might be involved in...
10 CFR 20.1206 - Planned special exposures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Planned special exposures. 20.1206 Section 20.1206 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20... associated potential risks and specific radiation levels or other conditions that might be involved in...
10 CFR 20.1206 - Planned special exposures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Planned special exposures. 20.1206 Section 20.1206 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20... associated potential risks and specific radiation levels or other conditions that might be involved in...
10 CFR 20.1206 - Planned special exposures.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Planned special exposures. 20.1206 Section 20.1206 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20... associated potential risks and specific radiation levels or other conditions that might be involved in...
10 CFR 20.1206 - Planned special exposures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Planned special exposures. 20.1206 Section 20.1206 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20... associated potential risks and specific radiation levels or other conditions that might be involved in...
Mendelsohn, Daniel; Strelzow, Jason; Dea, Nicolas; Ford, Nancy L; Batke, Juliet; Pennington, Andrew; Yang, Kaiyun; Ailon, Tamir; Boyd, Michael; Dvorak, Marcel; Kwon, Brian; Paquette, Scott; Fisher, Charles; Street, John
2016-03-01
Imaging modalities used to visualize spinal anatomy intraoperatively include X-ray studies, fluoroscopy, and computed tomography (CT). All of these emit ionizing radiation. Radiation emitted to the patient and the surgical team when performing surgeries using intraoperative CT-based spine navigation was compared. This is a retrospective cohort case-control study. Seventy-three patients underwent CT-navigated spinal instrumentation and 73 matched controls underwent spinal instrumentation with conventional fluoroscopy. Effective doses of radiation to the patient when the surgical team was inside and outside of the room were analyzed. The number of postoperative imaging investigations between navigated and non-navigated cases was compared. Intraoperative X-ray imaging, fluoroscopy, and CT dosages were recorded and standardized to effective doses. The number of postoperative imaging investigations was compared with the matched cohort of surgical cases. A literature review identified historical radiation exposure values for fluoroscopic-guided spinal instrumentation. The 73 navigated operations involved an average of 5.44 levels of instrumentation. Thoracic and lumbar instrumentations had higher radiation emission from all modalities (CT, X-ray imaging, and fluoroscopy) compared with cervical cases (6.93 millisievert [mSv] vs. 2.34 mSv). Major deformity and degenerative cases involved more radiation emission than trauma or oncology cases (7.05 mSv vs. 4.20 mSv). On average, the total radiation dose to the patient was 8.7 times more than the radiation emitted when the surgical team was inside the operating room. Total radiation exposure to the patient was 2.77 times the values reported in the literature for thoracolumbar instrumentations performed without navigation. In comparison, the radiation emitted to the patient when the surgical team was inside the operating room was 2.50 lower than non-navigated thoracolumbar instrumentations. The average total radiation exposure to the patient was 5.69 mSv, a value less than a single routine lumbar CT scan (7.5 mSv). The average radiation exposure to the patient in the present study was approximately one quarter the recommended annual occupational radiation exposure. Navigation did not reduce the number of postoperative X-rays or CT scans obtained. Intraoperative CT navigation increases the radiation exposure to the patient and reduces the radiation exposure to the surgeon when compared with values reported in the literature. Intraoperative CT navigation improves the accuracy of spine instrumentation with acceptable patient radiation exposure and reduced surgical team exposure. Surgeons should be aware of the implications of radiation exposure to both the patient and the surgical team when using intraoperative CT navigation. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zuclich, Joseph A.
1980-10-01
Ocular effects of ultraviolet radiation, 200-400 nm, are reviewed. Depending upon the exposure parameter involved, UV radiation may be harmful to the cornea, lens and/or retina. Ranges of exposure parameters (wavelength, exposure duration, etc.) for which each of the tissues is susceptible are specified and the nature of the tissue is described. Present understanding of the thermal and photochemical damage mechanism operative for various conditions of exposure are discussed Ocular damage thresholds for wide ranges of exposure parameters are summarized and compared to existing safety standards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
The Office of Analysis within the U.S. Department of Energy (DOE) Office of Environment, Health, Safety and Security (EHSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2013 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies formore » protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past five-year period, the occupational radiation exposure information has been analyzed in terms of aggregate data, dose to individuals, and dose by site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protectionmore » of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site.« less
10 CFR 20.2201 - Reports of theft or loss of licensed material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 20.2201 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports... material involved; and (iv) Exposures of individuals to radiation, circumstances under which the exposures... material. (2) Reports must be made as follows: (i) For holders of an operating license for a nuclear power...
10 CFR 20.2201 - Reports of theft or loss of licensed material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Section 20.2201 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports... material involved; and (iv) Exposures of individuals to radiation, circumstances under which the exposures... material. (2) Reports must be made as follows: (i) For holders of an operating license for a nuclear power...
10 CFR 20.2201 - Reports of theft or loss of licensed material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Section 20.2201 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports... material involved; and (iv) Exposures of individuals to radiation, circumstances under which the exposures... material. (2) Reports must be made as follows: (i) For holders of an operating license for a nuclear power...
10 CFR 20.2201 - Reports of theft or loss of licensed material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Section 20.2201 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports... material involved; and (iv) Exposures of individuals to radiation, circumstances under which the exposures... material. (2) Reports must be made as follows: (i) For holders of an operating license for a nuclear power...
10 CFR 20.2201 - Reports of theft or loss of licensed material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Section 20.2201 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports... material involved; and (iv) Exposures of individuals to radiation, circumstances under which the exposures... material. (2) Reports must be made as follows: (i) For holders of an operating license for a nuclear power...
10 CFR 72.75 - Reporting requirements for specific events and conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... regulatory limits, to prevent exposures to radiation or radioactive materials that could exceed regulatory limits, or to mitigate the consequences of an accident; and (ii) No redundant equipment was available and... waste involved in the event; and (v) Any personnel radiation exposure data. (f) Follow-up notification...
10 CFR 72.75 - Reporting requirements for specific events and conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... regulatory limits, to prevent exposures to radiation or radioactive materials that could exceed regulatory limits, or to mitigate the consequences of an accident; and (ii) No redundant equipment was available and... waste involved in the event; and (v) Any personnel radiation exposure data. (f) Follow-up notification...
10 CFR 72.75 - Reporting requirements for specific events and conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... regulatory limits, to prevent exposures to radiation or radioactive materials that could exceed regulatory limits, or to mitigate the consequences of an accident; and (ii) No redundant equipment was available and... waste involved in the event; and (v) Any personnel radiation exposure data. (f) Follow-up notification...
10 CFR 72.75 - Reporting requirements for specific events and conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... regulatory limits, to prevent exposures to radiation or radioactive materials that could exceed regulatory limits, or to mitigate the consequences of an accident; and (ii) No redundant equipment was available and... waste involved in the event; and (v) Any personnel radiation exposure data. (f) Follow-up notification...
Modenese, Alberto; Gobba, Fabriziomaria
2018-04-16
Cataract is currently the primary cause of blindness worldwide, and one of its main risk factors is solar ultraviolet radiation exposure. According to the localization of lens opacities, three main subtypes of cataract are recognized: nuclear, cortical and posterior subcapsular cataract. One of the main determinants of individual long-term solar radiation exposure is outdoor work. We systematically reviewed scientific literature from the last 20 years to update the recent development of research on the risk of cataract in outdoor workers and on the specific subtypes involved, also investigating the methods applied to evaluate the occupational risk. A total of 15 studies were included in the review, of which 12 showed a positive association. The studies confirm the relationship of long-term occupational solar radiation exposure with cortical cataract and give new support for nuclear cataract, although no substantial new data were available to support a relation with the posterior subcapsular subtype. In most of the studies, the exposure assessment was not adequate to support a representative evaluation of the ocular risk; however, outdoor work is clearly a relevant risk factor for cataract. Further research providing a better evaluation of the relation between solar radiation exposure levels and lens damage in workers is needed and aimed to establish adequate occupational exposure limits and better preventive measures, studying also their effectiveness. © 2018 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Radiation exposure of the anesthesiologist in the neurointerventional suite.
Anastasian, Zirka H; Strozyk, Dorothea; Meyers, Philip M; Wang, Shuang; Berman, Mitchell F
2011-03-01
Scatter radiation during interventional radiology procedures can produce cataracts in participating medical personnel. Standard safety equipment for the radiologist includes eye protection. The typical configuration of fluoroscopy equipment directs radiation scatter away from the radiologist and toward the anesthesiologist. This study analyzed facial radiation exposure of the anesthesiologist during interventional neuroradiology procedures. Radiation exposure to the forehead of the anesthesiologist and radiologist was measured during 31 adult neuroradiologic procedures involving the head or neck. Variables hypothesized to affect anesthesiologist exposure were recorded for each procedure. These included total radiation emitted by fluoroscopic equipment, radiologist exposure, number of pharmacologic interventions performed by the anesthesiologist, and other variables. Radiation exposure to the anesthesiologist's face averaged 6.5 ± 5.4 μSv per interventional procedure. This exposure was more than 6-fold greater (P < 0.0005) than for noninterventional angiographic procedures (1.0 ± 1.0) and averaged more than 3-fold the exposure of the radiologist (ratio, 3.2; 95% CI, 1.8-4.5). Multiple linear regression analysis showed that the exposure of the anesthesiologist was correlated with the number of pharmacologic interventions performed by the anesthesiologist and the total exposure of the radiologist. Current guidelines for occupational radiation exposure to the eye are undergoing review and are likely to be lowered below the current 100-150 mSv/yr limit. Anesthesiologists who spend significant time in neurointerventional radiology suites may have ocular radiation exposure approaching that of a radiologist. To ensure parity with safety standards adopted by radiologists, these anesthesiologists should wear protective eyewear.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suman, Shubhankar; Johnson, Michael D.; Fornace, Albert J.
Purpose: Exposure to ionizing radiation is an established risk factor for breast cancer. Radiation exposure during infancy, childhood, and adolescence confers the highest risk. Although radiation is a proven mammary carcinogen, it remains unclear where it acts in the complex multistage process of breast cancer development. In this study, we investigated the long-term pathophysiologic effects of ionizing radiation at a dose (2 Gy) relevant to fractionated radiotherapy. Methods and Materials: Adolescent (6-8 weeks old; n = 10) female C57BL/6J mice were exposed to 2 Gy total body {gamma}-radiation, the mammary glands were surgically removed, and serum and urine samples weremore » collected 2 and 12 months after exposure. Molecular pathways involving estrogen receptor-{alpha} (ER{alpha}) and phosphatidylinositol-3-OH kinase (PI3K)-Akt signaling were investigated by immunohistochemistry and Western blot. Results: Serum estrogen and urinary levels of the oncogenic estrogen metabolite (16{alpha}OHE1) were significantly increased in irradiated animals. Immunostaining for the cellular proliferative marker Ki-67 and cyclin-D1 showed increased nuclear accumulation in sections of mammary glands from irradiated vs. control mice. Marked increase in p85{alpha}, a regulatory sub-unit of the PI3K was associated with increase in Akt, phospho-Akt, phospho-BAD, phospho-mTOR, and c-Myc in irradiated samples. Persistent increase in nuclear ER{alpha} in mammary tissues 2 and 12 months after radiation exposure was also observed. Conclusions: Taken together, our data not only support epidemiologic observations associating radiation and breast cancer but also, specify molecular events that could be involved in radiation-induced breast cancer.« less
ALARA radiation considerations for the AP600 reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, F.L.
1995-03-01
The radiation design of the AP600 reactor plant is based on an average annual occupational radiation exposure (ORE) of 100 man-rem. As a design goal we have established a lower value of 70 man-rem per year. And, with our current design process, we expect to achieve annual exposures which are well below this goal. To accomplish our goal we have established a process that provides criteria, guidelines and customer involvement to achieve the desired result. The criteria and guidelines provide the shield designer, as well as the systems and plant layout designers with information that will lead to an integratedmore » plant design that minimizes personnel exposure and yet is not burdened with complicated shielding or unnecessary component access limitations. Customer involvement is provided in the form of utility input, design reviews and information exchange. Cooperative programs with utilities in the development of specific systems or processes also provides for an ALARA design. The results are features which include ALARA radiation considerations as an integral part of the plant design and a lower plant ORE. It is anticipated that a further reduction in plant personnel exposures will result through good radiological practices by the plant operators. The information in place to support and direct the plant designers includes the Utility Requirements Document (URD), Federal Regulations, ALARA guidelines, radiation design information and radiation and shielding design criteria. This information, along with the utility input, design reviews and information feedback, will contribute to the reduction of plant radiation exposure levels such that they will be less than the stated goals.« less
Effects of Ionizing Radiation on Cellular Structures, Induced Instability, and Carcinogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resat, Marianne S.; Arthurs, Benjamin J.; Estes, Brian J.
2006-03-01
According to the American Cancer Society, the United States can expect 1,368,030 new cases of cancer in 2004 [1]. Among the many carcinogens Americans are exposed to, ionizing radiation will contribute to this statistic. Humans live in a radiation environment. Ionizing radiation is in the air we breathe, the earth we live on, and the food we eat. Man-made radiation adds to this naturally occurring radiation level thereby increasing the chance for human exposure. For many decades the scientific community, governmental regulatory bodies, and concerned citizens have struggled to estimate health risks associated with radiation exposures, particularly at low doses.more » While cancer induction is the primary concern and the most important somatic effect of exposure to ionizing radiation, potential health risks do not involve neoplastic diseases exclusively but also include somatic mutations that might contribute to birth defects and ocular maladies, and heritable mutations that might impact on disease risks in future generations. Consequently it is important we understand the effect of ionizingradiation on cellular structures and the subsequent long-term health risks associated with exposure to ionizing radiation.« less
Space Radiation Risk Assessment
NASA Astrophysics Data System (ADS)
Blakely, E.
Evaluation of potential health effects from radiation exposure during and after deep space travel is important for the future of manned missions To date manned missions have been limited to near-Earth orbits with the moon our farthest distance from earth Historical space radiation career exposures for astronauts from all NASA Missions show that early missions involved total exposures of less than about 20 mSv With the advent of Skylab and Mir total career exposure levels increased to a maximum of nearly 200 mSv Missions in deep space with the requisite longer duration of the missions planned may pose greater risks due to the increased potential for exposure to complex radiation fields comprised of a broad range of radiation types and energies from cosmic and unpredictable solar sources The first steps in the evaluation of risks are underway with bio- and physical-dosimetric measurements on both commercial flight personnel and international space crews who have experience on near-earth orbits and the necessary theoretical modeling of particle-track traversal per cell including the contributing effects of delta-rays in particle exposures An assumption for biologic effects due to exposure of radiation in deep space is that they differ quantitatively and qualitatively from that on earth The dose deposition and density pattern of heavy charged particles are very different from those of sparsely ionizing radiation The potential risks resulting from exposure to radiation in deep space are cancer non-cancer and genetic effects Radiation from
Talibov, Madar; Salmelin, Raili; Lehtinen-Jacks, Susanna; Auvinen, Anssi
2017-04-01
Job-exposure matrices (JEM) are used for exposure assessment in occupational studies, but they can involve errors. We assessed agreement between the Nordic Occupational Cancer Studies JEM (NOCCA-JEM) and aggregate and individual dose estimates for cosmic radiation exposure among Finnish airline personnel. Cumulative cosmic radiation exposure for 5,022 airline crew members was compared between a JEM and aggregate and individual dose estimates. The NOCCA-JEM underestimated individual doses. Intraclass correlation coefficient was 0.37, proportion of agreement 64%, kappa 0.46 compared with individual doses. Higher agreement was achieved with aggregate dose estimates, that is annual medians of individual doses and estimates adjusted for heliocentric potentials. The substantial disagreement between NOCCA-JEM and individual dose estimates of cosmic radiation may lead to exposure misclassification and biased risk estimates in epidemiological studies. Using aggregate data may provide improved estimates. Am. J. Ind. Med. 60:386-393, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
The Elephant in the Room: Biomedical Challenges for Long Duration Lunar Habitation
NASA Technical Reports Server (NTRS)
Logan, James S.
2009-01-01
This slide presentation reviews 4 biomedical challenges that are involved in long duration lunar habitation: dust, radiation, hypogravity and synergistic effects. The first two of these challenges are reviewed with more in-depth information. The dangers of dust relate to the particle deposition in the lungs. The dangers of radiation are related to the permissible exposure limit (PEL) and the Risk of Exposure Induced Death (REID), a statistical approach pegged to a single radiation effect: Death from cancer directly attributable to the exposure. There has been a realization that radiation is more harmful than predicted. This is demonstrated by showing the change in the recommended career dose limits, have changed between 1989 and 2000.
10 CFR 835.1302 - Emergency exposure situations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Emergency exposure situations. 835.1302 Section 835.1302 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Emergency Exposure Situations § 835.1302 Emergency exposure situations. (a) The risk of injury to those individuals involved in rescue and recovery...
10 CFR 835.1302 - Emergency exposure situations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Emergency exposure situations. 835.1302 Section 835.1302 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Emergency Exposure Situations § 835.1302 Emergency exposure situations. (a) The risk of injury to those individuals involved in rescue and recovery...
10 CFR 835.1302 - Emergency exposure situations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Emergency exposure situations. 835.1302 Section 835.1302 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Emergency Exposure Situations § 835.1302 Emergency exposure situations. (a) The risk of injury to those individuals involved in rescue and recovery...
10 CFR 835.1302 - Emergency exposure situations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Emergency exposure situations. 835.1302 Section 835.1302 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Emergency Exposure Situations § 835.1302 Emergency exposure situations. (a) The risk of injury to those individuals involved in rescue and recovery...
10 CFR 835.1302 - Emergency exposure situations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Emergency exposure situations. 835.1302 Section 835.1302 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Emergency Exposure Situations § 835.1302 Emergency exposure situations. (a) The risk of injury to those individuals involved in rescue and recovery...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobashigawa, Shinko, E-mail: kobashin@nagasaki-u.ac.jp; Suzuki, Keiji; Yamashita, Shunichi
2011-11-04
Highlights: Black-Right-Pointing-Pointer We report first time that ionizing radiation induces mitochondrial dynamic changes. Black-Right-Pointing-Pointer Radiation-induced mitochondrial fission was caused by Drp1 localization. Black-Right-Pointing-Pointer We found that radiation causes delayed ROS from mitochondria. Black-Right-Pointing-Pointer Down regulation of Drp1 rescued mitochondrial dysfunction after radiation exposure. -- Abstract: Ionizing radiation is known to increase intracellular level of reactive oxygen species (ROS) through mitochondrial dysfunction. Although it has been as a basis of radiation-induced genetic instability, the mechanism involving mitochondrial dysfunction remains unclear. Here we studied the dynamics of mitochondrial structure in normal human fibroblast like cells exposed to ionizing radiation. Delayed mitochondrial O{submore » 2}{sup {center_dot}-} production was peaked 3 days after irradiation, which was coupled with accelerated mitochondrial fission. We found that radiation exposure accumulated dynamin-related protein 1 (Drp1) to mitochondria. Knocking down of Drp1 expression prevented radiation induced acceleration of mitochondrial fission. Furthermore, knockdown of Drp1 significantly suppressed delayed production of mitochondrial O{sub 2}{sup {center_dot}-}. Since the loss of mitochondrial membrane potential, which was induced by radiation was prevented in cells knocking down of Drp1 expression, indicating that the excessive mitochondrial fission was involved in delayed mitochondrial dysfunction after irradiation.« less
Medical management of three workers following a radiation exposure incident
DOE Office of Scientific and Technical Information (OSTI.GOV)
House, R.A.; Sax, S.E.; Rumack, E.R.
The medical management of three individuals involved in an exposure incident to whole-body radiation at a nuclear generating plant of a Canadian electrical utility is described. The exposure incident resulted in the two highest whole-body radiation doses ever received in a single event by workers in a Canadian nuclear power plant. The individual whole-body doses (127.4 mSv, 92.0 mSv, 22.4 mSv) were below the threshold for acute radiation sickness but the exposures still presented medical management problems related to assessment and counseling. Serial blood counting and lymphocyte cytogenetic analysis to corroborate the physical dosimetry were performed. All three employees experiencedmore » somatic symptoms due to stress and one employee developed post-traumatic stress disorder. This incident indicates that there is a need in such radiation exposure accidents for early and continued counseling of exposed employees to minimize the risk of development of stress-related symptoms.« less
Radiation exposure from fluoroscopy during orthopedic surgical procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, S.A.
1989-11-01
The use of fluoroscopy has enabled orthopedic surgeons to become technically more proficient. In addition, these surgical procedures tend to have less associated patient morbidity by decreasing operative time and minimizing the area of the operative field. The trade-off, however, may be an increased risk of radiation exposure to the surgeon on an annual or lifetime basis. The current study was designed to determine the amount of radiation received by the primary surgeon and the first assistant during selected surgical procedures involving the use of fluoroscopy. Five body sites exposed to radiation were monitored for dosage. The results of thismore » study indicate that with appropriate usage, (1) radiation exposure from fluoroscopy is relatively low; (2) the surgeon's dominant hand receives the most exposure per case; and (3) proper maintenance and calibration of fluoroscopic machines are important factors in reducing exposure risks. Therefore, with proper precautions, the use of fluoroscopy in orthopedic procedures can remain a safe practice.« less
The risk of radiation exposure to the eyes of the interventional pain physician.
Fish, David E; Kim, Andrew; Ornelas, Christopher; Song, Sungchan; Pangarkar, Sanjog
2011-01-01
It is widely accepted that the use of medical imaging continues to grow across the globe as does the concern for radiation safety. The danger of lens opacities and cataract formation related to radiation exposure is well documented in the medical literature. However, there continues to be controversy regarding actual dose thresholds of radiation exposure and whether these thresholds are still relevant to cataract formation. Eye safety and the risk involved for the interventional pain physician is not entirely clear. Given the available literature on measured radiation exposure to the interventionist, and the controversy regarding dose thresholds, it is our current recommendation that the interventional pain physician use shielded eyewear. As the breadth of interventional procedures continues to grow, so does the radiation risk to the interventional pain physician. In this paper, we attempt to outline the risk of cataract formation in the scope of practice of an interventional pain physician and describe techniques that may help reduce them.
The Risk of Radiation Exposure to the Eyes of the Interventional Pain Physician
Fish, David E.; Kim, Andrew; Ornelas, Christopher; Song, Sungchan; Pangarkar, Sanjog
2011-01-01
It is widely accepted that the use of medical imaging continues to grow across the globe as does the concern for radiation safety. The danger of lens opacities and cataract formation related to radiation exposure is well documented in the medical literature. However, there continues to be controversy regarding actual dose thresholds of radiation exposure and whether these thresholds are still relevant to cataract formation. Eye safety and the risk involved for the interventional pain physician is not entirely clear. Given the available literature on measured radiation exposure to the interventionist, and the controversy regarding dose thresholds, it is our current recommendation that the interventional pain physician use shielded eyewear. As the breadth of interventional procedures continues to grow, so does the radiation risk to the interventional pain physician. In this paper, we attempt to outline the risk of cataract formation in the scope of practice of an interventional pain physician and describe techniques that may help reduce them. PMID:22091381
Zhou, D D; Hao, J L; Guo, K M; Lu, C W; Liu, X D
2016-03-22
Long-term radiation exposure affects human health. Ionizing radiation has long been known to raise the risk of cancer. In addition to high doses of radiation, low-dose ionizing radiation might increase the risk of cardiovascular disease, lens opacity, and some other non-cancerous diseases. Low- and high-dose exposures to ionizing radiation elicit different signaling events at the molecular level, and may involve different response mechanisms. The health risks arising from exposure to low doses of ionizing radiation should be re-evaluated. Health workers exposed to ionizing radiation experience low-dose radiation and have an increased risk of hematological malignancies. Reproductive function is sensitive to changes in the physical environment, including ionizing radiation. However, data is scarce regarding the association between occupational radiation exposure and risk to human fertility. Sperm DNA integrity is a functional parameter of male fertility evaluation. Hence, we aimed to report sperm quality and DNA damage in men from Jilin Province, China, who were occupationally exposed to ionizing radiation. Sperm motility and normal morphology were significantly lower in the exposed compared with the non-exposed men. There was no statistically significant difference in sperm concentration between exposed and non-exposed men. The sperm DNA fragmentation index was significantly higher in the exposed than the non-exposed men. Chronic long-term exposure to low doses of ionizing radiation could affect sperm motility, normal morphology, and the sperm DNA fragmentation index in the Chinese population. Sperm quality and DNA integrity are functional parameters that could be used to evaluate occupational exposure to ionizing radiation.
Role of the area postrema in radiation-induced taste aversion learning and emesis in cats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, B.M.; Hunt, W.A.; Chedester, A.L.
1986-01-01
The role of the area postrema in radiation-induced emesis and taste aversion learning and the relationship between these behaviors were studied in cats. The potential involvement of neural factors which might be independent of the area postrema was minimized by using low levels of ionizing radiation (100 rads at a dose rate of 40 rads/min) to elicit a taste aversion, and by using body-only exposures (4500 and 6000 rads at 450 rads/min) to produce emesis. Lesions of the area postrema disrupted both taste aversion learning and emesis following irradiation. These results, which indicate that the area postrema is involved inmore » the mediation of both radiation-induced emesis and taste aversion learning in cats under these experimental conditions, are interpreted as being consistent with the hypotheses that similar mechanisms mediate both responses to exposure to ionizing radiation, and that the taste aversion learning paradigm can therefore serve as a model system for studying radiation-induced emesis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-08-01
This report is a transcript of an interview with Dr. Helen Vodopick by representatives of the US DOE Office of Human Radiation Experiments. Dr. Vodopick was chosen for this interview because of her involvement with the Oak Ridge Institute of Nuclear Studies (ORINS) and Oak Ridge Associated Universities (ORAU) experimental cancer-therapy program involving total-body irradiation. After a short biographical sketch Dr. Vodopick relates her remembrances of the Medium-Exposure-Rate Total Body Irradiator (METBI), ORINS radioisotope tracer studies, treatment of cancer patients with the METBI, radiation treatment for leukemia patients, bone marrow treatment of leukemia, the Low-Exposure-Rate Total Body Irradiation (LETBI), treatmentmore » of radiation accident victims at ORAU, research with radioactive phosphorus and sulfur, and public opinion issues.« less
Radiation as a Risk Factor for Cardiovascular Disease
Moulder, John E.; Hopewell, John W.
2011-01-01
Abstract Humans are continually exposed to ionizing radiation from terrestrial sources. The two major contributors to radiation exposure of the U.S. population are ubiquitous background radiation and medical exposure of patients. From the early 1980s to 2006, the average dose per individual in the United States for all sources of radiation increased by a factor of 1.7–6.2 mSv, with this increase due to the growth of medical imaging procedures. Radiation can place individuals at an increased risk of developing cardiovascular disease. Excess risk of cardiovascular disease occurs a long time after exposure to lower doses of radiation as demonstrated in Japanese atomic bomb survivors. This review examines sources of radiation (atomic bombs, radiation accidents, radiological terrorism, cancer treatment, space exploration, radiosurgery for cardiac arrhythmia, and computed tomography) and the risk for developing cardiovascular disease. The evidence presented suggests an association between cardiovascular disease and exposure to low-to-moderate levels of radiation, as well as the well-known association at high doses. Studies are needed to define the extent that diagnostic and therapeutic radiation results in increased risk factors for cardiovascular disease, to understand the mechanisms involved, and to develop strategies to mitigate or treat radiation-induced cardiovascular disease. Antioxid. Redox Signal. 15, 1945–1956. PMID:21091078
Occupational radiation procedures and doses in South Korean dentists.
Kim, Yoon-Ji; Cha, Eun Shil; Lee, Won Jin
2016-10-01
Dentistry is among the occupations involving chronic exposure to ionizing radiation. Although several cohort studies on medical radiation workers have been conducted in some countries, only a few epidemiological studies on dentists have been performed to examine occupational radiation exposure worldwide. The aim of this study was to investigate occupational characteristics and radiation exposures in South Korean dentists. A total of 658 dentists were surveyed from April 2012 to May 2013, and survey data were linked with dosimetry data from the National Dose Registry. Multiple linear regression analysis was used to identify the relationship between demographic or occupational factors and individual radiation doses. Of the dentists sampled, 78% were men, 51% were younger than age 40, and 61% began employment after 2000. The most frequent procedures performed by dentists were panoramic radiography, followed by intraoral and portable dental radiography. Male dentists were more frequently involved in radiation procedures, and a higher proportion of male than female dentists wore a lead apron for diagnostic radiology. The average annual effective dose was 0.18 mSv for male and 0.13 mSv for female dentists. Female dentists working in provincial areas had significantly higher average annual and cumulative effective doses than those in metropolitan areas. The cumulative effective doses were significantly greater for older dentists, those who entered the field in the 1990s, and those with longer employment duration. Our findings provided detailed information on work practices, number of procedures performed on a weekly basis, and occupational radiation doses, which enabled in-depth evaluation of occupational radiation exposure and work status among dentists. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The HZE radiation problem. [highly-charged energetic galactic cosmic rays
NASA Technical Reports Server (NTRS)
Schimmerling, Walter
1990-01-01
Radiation-exposure limits have yet to be established for missions envisioned in the framework of the Space Exploration Initiative. The radiation threat outside the earth's magnetosphere encompasses protons from solar particle events and the highly charged energetic particles constituting galactic cosmic rays; radiation biology entails careful consideration of the extremely nonuniform patterns of such particles' energy deposition. The ability to project such biological consequences of exposure to energetic particles as carcinogenicity currently involves great uncertainties from: (1) different regions of space; (2) the effects of spacecraft structures; and (3) the dose-effect relationships of single traversals of energetic particles.
NASA Technical Reports Server (NTRS)
Maes, Olivier C.; Xu, Suying; Hada, Megumi; Wu, Honglu; Wang, Eugenia
2007-01-01
Exposure to ionizing radiation causes DNA damage to cells, and provokes a plethora of cellular responses controlled by unique gene-directed signaling pathways. MicroRNAs (miRNAs) are small (22-nucleotide), non-coding RNAs which functionally silence gene expression by either degrading the messages or inhibiting translation. Here we investigate radiation-dependent changes in these negative regulators by comparing the expression patterns of all 462 known human miRNAs in fibroblasts, after exposure to low (0.1 Gy) or high (2 Gy) doses of X-rays at 30 min, 2, 6 and 24 hrs post-treatment. The expression patterns of microRNAs after low and high doses of radiation show a similar qualitative down-regulation trend at early (0.5 hr) and late (24 hr) time points, with a quantitatively steeper slope following the 2 Gy exposures. Interestingly, an interruption of this downward trend is observed after the 2 Gy exposure, i.e. a significant up-regulation of microRNAs at 2 hrs, then reverting to the downward trend by 6 hrs; this interruption at the intermediate time point was not observed with the 0.1 Gy exposure. At the early time point (0.5 hr), candidate gene targets of selected down-regulated microRNAs, common to both 0.1 and 2 Gy exposures, were those functioning in chromatin remodeling. Candidate target genes of unique up-regulated microRNAs seen at a 2 hr intermediate time point, after the 2 Gy exposure only, are those involved in cell death signaling. Finally, putative target genes of down-regulated microRNAs seen at the late (24 hr) time point after either doses of radiation are those involved in the up-regulation of DNA repair, cell signaling and homeostasis. Thus we hypothesize that after radiation exposure, microRNAs acting as hub negative regulators for unique signaling pathways needed to be down-regulated so as to de-repress their target genes for the proper cellular responses, including DNA repair and cell maintenance. The unique microRNAs up-regulated at 2 hr after 2 Gy suggest the cellular response to functionally suppress the apoptotic death signaling reflex after exposure to high dose radiation. Further analyses with transcriptome and global proteomic profiling will validate the reciprocal expression of signature microRNAs selected in our radiation-exposed cells, and their candidate target gene families, and test our hypothesis that unique radiation-specific microRNAs are keys in governing signaling responses for damage control of this environmental hazard.
Jain, Mohit R; Li, Min; Chen, Wei; Liu, Tong; de Toledo, Sonia M; Pandey, Badri N; Li, Hong; Rabin, Bernard M; Azzam, Edouard I
2011-06-01
The lack of clear knowledge about space radiation-induced biological effects has been singled out as the most important factor limiting the prediction of radiation risk associated with human space exploration. The expression of space radiation-induced non-targeted effects is thought to impact our understanding of the health risks associated with exposure to low fluences of particulate radiation encountered by astronauts during prolonged space travel. Following a brief review of radiation-induced bystander effects and the growing literature for the involvement of oxidative metabolism in their expression, we show novel data on the induction of in vivo non-targeted effects following exposure to 1100 MeV/nucleon titanium ions. Analyses of proteins by two-dimensional gel electrophoresis in non-targeted liver of cranially-irradiated Sprague Dawley rats revealed that the levels of key proteins involved in mitochondrial fatty acid metabolism are decreased. In contrast, those of proteins involved in various cellular defense mechanisms, including antioxidation, were increased. These data contribute to our understanding of the mechanisms underlying the biological responses to space radiation, and support the involvement of mitochondrial processes in the expression of radiation induced non-targeted effects. Significantly, they reveal the cross-talk between propagated stressful effects and induced adaptive responses. Together, with the accumulating data in the field, our results may help reduce the uncertainty in the assessment of the health risks to astronauts. They further demonstrate that 'network analyses' is an effective tool towards characterizing the signaling pathways that mediate the long-term biological effects of space radiation.
Rafnsson, Vilhjalmur; Olafsdottir, Eydis; Hrafnkelsson, Jon; Sasaki, Hiroshi; Arnarsson, Arsaell; Jonasson, Fridbert
2005-08-01
Aviation involves exposure to ionizing radiation of cosmic origin. The association between lesions of the ocular lens and ionizing radiation is well-known. To investigate whether employment as a commercial airline pilot and the resulting exposure to cosmic radiation is associated with lens opacification. This is a population-based case-control study of 445 men. Lens opacification was classified into 4 types using the World Health Organization simplified grading system. These 4 types, serving as cases, included 71 persons with nuclear cataracts, 102 with cortical lens opacification, 69 with central optical zone involvement, and 32 with posterior subcapsular lens opacification. Control subjects are those with a different type of lens opacification or without lens opacification. Exposure was assessed based on employment time as pilots, annual number of hours flown on each aircraft type, time tables, flight profiles, and individual cumulative radiation doses (in millisieverts) calculated by a software program. Odds ratios were calculated using logistic regression. The odds ratio for nuclear cataract risk among cases and controls was 3.02 (95% confidence interval, 1.44-6.35) for pilots compared with nonpilots, adjusted for age, smoking status, and sunbathing habits. The odds ratio for nuclear cataract associated with estimation of cumulative radiation dose (in millisieverts) to the age of 40 years was 1.06 (95% confidence interval, 1.02-1.10), adjusted for age, smoking status, and sunbathing habits. The association between the cosmic radiation exposure of pilots and the risk of nuclear cataracts, adjusted for age, smoking status, and sunbathing habits, indicates that cosmic radiation may be a causative factor in nuclear cataracts among commercial airline pilots.
Bingham, Eula; Ringen, Knut; Dement, John; Cameron, Wilfrid; McGowan, William; Welch, Laura; Quinn, Patricia
2006-09-01
Construction workers were and are considered temporary workers at many construction sites. Since World War II, large numbers of construction workers were employed at U.S. Department of Energy nuclear weapons sites for periods ranging from a few days to over 30 years. These workers performed tasks during new construction and maintenance, repair, renovation, and demolition of existing facilities. Such tasks may involve emergency situations, and may entail opportunities for significant radiation exposures. This paper provides data from interviews with more than 750 construction workers at two gaseous diffusion plants (GDPs) at Paducah, Kentucky, and Portsmouth, Ohio regarding radiation monitoring practices. The aim was to determine the extent to which workers believed they were monitored during tasks involving potential radiation exposures. The adequacy of monitoring practices is important for two reasons: (a) Protecting workers from exposures: Construction workers were employed by sub-contractors, and may frequently been excluded from safety and health programs provided to permanent employees; and (b) Supporting claims for compensation: The Energy Employees Occupational Illness Compensation Program Act (EEOICPA) requires dose reconstruction of radiation exposures for most workers who file a claim regarding cancer. The use of monitoring data for radiation to qualify a worker means that there should be valid and complete monitoring during the work time at the various nuclear plants or workers may be unfairly denied compensation. The worker interviews from Paducah and Portsmouth were considered especially useful because these sites were designated as Special Exposure Cohorts (SECs) and the workers did not have to have a dose reconstruction to qualify for compensation for most cancers. Therefore, their responses were less likely to be affected by compensation concerns. Interview questions included asking for information regarding whether monitoring was performed, how often, and the maintenance (calibration) of monitoring equipment (devices).
Changes in Liver Metabolic Gene Expression from Radiation Exposure
NASA Technical Reports Server (NTRS)
Peters, C. P.; Wotring, Virginia E.
2011-01-01
Radiation exposure is one of the unique physiological challenges of human spaceflight that is not encountered on earth. While radiation exposure is known to impart physiological stresses and alter normal function, it is unclear how it specifically affects drug metabolism. A major concern is that the actions of medications used in spaceflight may deviate from the expectations formed from terrestrial use. This concern was investigated at the molecular level by analyzing how gamma radiation exposure affected gene expression in the livers of mice. Three different doses of radiation were administered and after various intervals of recovery time, gene expression was measured with RT-qPCR screening arrays for drug metabolism and DNA repair. After examining the results of 192 genes total from each of 72 mice, 65 genes were found to be significantly affected by at least one of the doses of radiation. In general, the genes affected are involved in the metabolism of drugs with lipid or steroid hormone-like structures, as well as the maintenance of redox homeostasis and repair of DNA damage.
Biological impact of low dose-rate simulated solar particle event radiation in vivo.
Chang, P Y; Doppalapudi, R; Bakke, J; Wang, A; Menda, S; Davis, Z
2010-08-01
C57Bl6-lacZ animals were exposed to a range of low dose-rate simulated solar particle event (sSPE) radiation at the NASA-sponsored Research Laboratory (NSRL) at Brookhaven National Laboratory (BNL). Peripheral blood was harvested from animals from 1 to 12 days after total body irradiation (TBI) to quantify the level of circulating reticulocytes (RET) and micronucleated reticulocytes (MN-RET) as an early indicator of radiation-induced genotoxicity. Bone marrow lymphocytes and hippocampal tissues from each animal were collected at 12 days and up to two months, to evaluate dose-dependent late effects after sSPE exposure. Early hematopoietic changes show that the % RET was reduced up to 3 days in response to radiation exposure but recovered at 12 days postirradiation. The % MN-RET in peripheral blood was temporally regulated and dependant on the total accumulated dose. Total chromosome aberrations in lymphocytes increased linearly with dose within a week after radiation and remained significantly higher than the control values at 4 weeks after exposure. The level of aberrations in the irradiated animals returned to control levels by 8 weeks postirradiation. Measurements of chromosome 2 and 8 specific aberrations indicate that, consistent with conventional giemsa-staining methods, the level of aberrations is also not significantly higher than in control animals at 8 weeks postirradiation. The hippocampus was surveyed for differential transcriptional regulation of genes known to be associated with neurogenesis. Our results showed differential expression of neurotrophin and their associated receptor genes within 1 week after sSPE exposure. Progressive changes in the profile of expressed genes known to be involved in neurogenic signaling pathways were dependent on the sSPE dose. Our results to date suggest that radiation-induced changes in the hematopoietic system, i.e., chromosome aberrations in lymphocytes, are transient and do not persist past 4 weeks after radiation. On the other hand, alteration in the profile of genes known to be involved in neurotrophic functions in the hippocampal tissue appears to persist for up to 8 weeks after radiation exposure. Such temporal changes confirm that, although cytogenetic changes after a single dose of low-dose and low-dose-rate protons appear to be transient, the impact of this exposure is sufficient to lead to persistent dynamic changes in neuronal tissues long after the initial radiation exposure.
Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J
2009-01-01
Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy and environmental nuclear contamination as well as for Earth-orbit and space missions. Analyses of transcriptome profiles of mouse brain tissue after whole-body irradiation showed that low-dose exposures (10 cGy) induced genes not affected by high-dose radiation (2 Gy) and that low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues and pathways that were specific for brain tissue. Low-dose genes clustered into a saturated network (P < 10(-53)) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified nine neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose irradiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down-regulated in normal human aging and Alzheimer's disease.
[Effects of optical radiation in ocular structures].
Pascu, Ruxandra Angela
2007-01-01
The eye and the skin are organs that are particularly vulnerable to external aggression, such as electromagnetic radiation- meaning ultraviolet radiation, visible radiation (especially blue light) and infrared radiation. The three mechanisms involved are: the photo-thermic mechanism, the photochemical mechanism and the photomechanical mechanism. The effects of such exposures can be either temporary or permanent, if inadequate protection occurs. Today, there are enough data so that special protection measures can be taken concerning the potential damage of optical radiation. Among those, we mention artificial implants or sun glasses containing UV filters or surgical gestures that can be taken to protect the eye against the surgical light. Ultimately, the effects of optical radiation upon the eye are related to being well informed about the risks of uncontrolled exposure and the protection measures against it.
Cytogenetic biodosimetry: what it is and how we do it.
Wong, K F; Siu, Lisa L P; Ainsbury, E; Moquet, J
2013-04-01
Dicentric assay is the international gold standard for cytogenetic biodosimetry after radiation exposure, despite being very labour-intensive, time-consuming, and highly expertise-dependent. It involves the identification of centromeres and structure of solid-stained chromosomes and the enumeration of dicentric chromosomes in a large number of first-division metaphases of cultured T lymphocytes. The dicentric yield is used to estimate the radiation exposure dosage according to a statistically derived and predetermined dose-response curve. It can be used for population triage after large-scale accidental over-exposure to ionising radiation or with a view to making clinical decisions for individual patients receiving substantial radiation. In this report, we describe our experience in the establishment of a cytogenetic biodosimetry laboratory in Queen Elizabeth Hospital, Hong Kong. This was part of the contingency plan for emergency measures against radiation accidents at nuclear power stations.
DNA Topoisomerase IB as a Potential Ionizing Radiation Exposure and Dose Biomarker.
Daudee, Rotem; Gonen, Rafi; German, Uzi; Orion, Itzhak; Alfassi, Zeev B; Priel, Esther
2018-06-01
In radiation exposure scenarios where physical dosimetry is absent or inefficient, dose estimation must rely on biological markers. A reliable biomarker is of utmost importance in correlating biological system changes with radiation exposure. Human DNA topoisomerase ІB (topo І) is a ubiquitous nuclear enzyme, which is involved in essential cellular processes, including transcription, DNA replication and DNA repair, and is the target of anti-cancer drugs. It has been shown that the cellular activity of this enzyme is significantly sensitive to various DNA lesions, including radiation-induced DNA damages. Therefore, we investigated the potential of topo I as a biomarker of radiation exposure and dose. We examined the effect of exposure of different human cells to beta, X-ray and gamma radiation on the cellular catalytic activity of topo I. The results demonstrate a significant reduction in the DNA relaxation activity of topo I after irradiation and the level of the reduction was correlated with radiation dose. In normal human peripheral blood lymphocytes, exposure for 3 h to an integral dose of 0.065 mGy from tritium reduced the enzyme activity to less than 25%. In MG-63 osteoblast-like cells and in human pulmonary fibroblast (HPF) cells exposed to gamma radiation from a 60 Co source (up to 2 Gy) or to X rays (up to 2.8 Gy), a significant decrease in topo I catalytic activity was also observed. We observed that the enzyme-protein level was not altered but was partially posttranslational modified by ADP-ribosylation of the enzyme protein that is known to reduce topo I activity. The results of this study suggest that the decrease in the cellular topo I catalytic activity after low-dose exposure to different radiation types may be considered as a novel biomarker of ionizing radiation exposure and dose. For this purpose, a suitable ELISA-based method for large-scale analysis of radiation-induced topo I modification is under development.
Long-term biological effects induced by ionizing radiation--implications for dose mediated risk.
Miron, S D; Astărăstoae, V
2014-01-01
Ionizing radiations are considered to be risk agents that are responsible for the effects on interaction with living matter. The occurring biological effects are due to various factors such as: dose, type of radiation, exposure time, type of biological tissue, health condition and the age of the person exposed. The mechanisms involved in the direct modifications of nuclear DNA and mitochondrial DNA are reviewed. Classical target theory of energy deposition in the nucleus that causes DNA damages, in particular DNA double-strand breaks and that explanation of the biological consequences of ionizing radiation exposure is a paradigm in radiobiology. Recent experimental evidences have demonstrated the existence of a molecular mechanism that explains the non-targeted effects of ionizing radiation exposure. Among these novel data, genomic instability and a variety of bystander effects are discussed here. Those bystander effects of ionizing radiation are fulfilled by cellular communication systems that give rise to non-targeted effects in the neighboring non irradiated cells. This paper provides also a commentary on the synergistic effects induced by the co-exposures to ionizing radiation and various physical agents such as electromagnetic fields and the co-exposures to ionizing radiation and chemical environmental contaminants such as metals. The biological effects of multiple stressors on genomic instability and bystander effects are also discussed. Moreover, a brief presentation of the methods used to characterize cyto- and genotoxic damages is offered.
NASA Technical Reports Server (NTRS)
Hada, Megumi; Cucinotta, Francis; Wu, Honglu
2009-01-01
The advantage of the multicolor banding in situ hybridization (mBAND) technique is its ability to identify both inter- (translocation to unpainted chromosomes) and intra- (inversions and deletions within a single painted chromosome) chromosome aberrations simultaneously. To study the detailed rearrangement of low- and high-LET radiation induced chromosome aberrations in human epithelial cells (CH184B5F5/M10) in vitro, we performed a series of experiments with Cs-137 gamma rays of both low and high dose rates, neutrons of low dose rate and 600 MeV/u Fe ions of high dose rate, with chromosome 3 painted with multi-binding colors. We also compared the chromosome aberrations in both 2- and 3-dimensional cell cultures. Results of these experiments revealed the highest chromosome aberration frequencies after low dose rate neutron exposures. However, detailed analysis of the radiation induced inversions revealed that all three radiation types induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intra-chromosomal aberrations but few inversions were accompanied by inter-chromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosomal exchanges. The location of the breaks involved in chromosome exchanges was analyzed along the painted chromosome. The breakpoint distribution was found to be randomly localized on chromosome 3 after neutron or Fe ion exposure, whereas non-random distribution with clustering breakpoints was observed after -ray exposure. Our comparison of chromosome aberration yields between 2- and 3-dimensional cell cultures indicated a significant difference for gamma exposures, but not for Fe ion exposures. These experimental results indicated that the track structure of the radiation and the cellular/chromosome structure can both affect radiation-induced chromosome aberrations.
10 CFR 20.2202 - Notification of incidents.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2202 Notification of... licensee shall immediately report any event involving byproduct, source, or special nuclear material... pursuant to this section so that names of individuals who have received exposure to radiation or...
10 CFR 20.2202 - Notification of incidents.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2202 Notification of... licensee shall immediately report any event involving byproduct, source, or special nuclear material... pursuant to this section so that names of individuals who have received exposure to radiation or...
10 CFR 20.2202 - Notification of incidents.
Code of Federal Regulations, 2013 CFR
2013-01-01
... NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2202 Notification of... licensee shall immediately report any event involving byproduct, source, or special nuclear material... pursuant to this section so that names of individuals who have received exposure to radiation or...
10 CFR 20.2202 - Notification of incidents.
Code of Federal Regulations, 2014 CFR
2014-01-01
... NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2202 Notification of... licensee shall immediately report any event involving byproduct, source, or special nuclear material... pursuant to this section so that names of individuals who have received exposure to radiation or...
10 CFR 20.2202 - Notification of incidents.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2202 Notification of... licensee shall immediately report any event involving byproduct, source, or special nuclear material... pursuant to this section so that names of individuals who have received exposure to radiation or...
Rehani, Madan M; Berris, Theocharis
2012-01-01
Objectives To assess the following themes among referring physicians: (A) importance of acquiring information about previous diagnostic exposures; (B) knowledge about radiation doses involved, familiarity with radiation units and, age-related radiosensitivity; (C) opinion on whether patients should be provided information about radiation dose and (D) self-assessment of appropriateness of referrals. Design A prospective survey using a web-based questionnaire. Setting International survey among referring physicians. Participants Referring physicians from 28 countries. Main outcome measures Knowledge, opinion and practice of the four themes of the survey. Results All 728 responses from 28 countries (52.3% from developed and 47.7% from developing countries) indicated that while the vast majority (71.7%) of physicians feel that being aware of history of CT scans would always or mostly lead them to a better decision on referring patients for CT scans, only 43.4% often enquire about it. The majority of referring physicians (60.5%) stated that having a system that provides quick information about patient exposure history would be useful. The knowledge about radiation doses involved is poor, as only one-third (34.7%) of respondents chose the correct option of the number of chest x-rays with equivalence of a CT scan. In total, 70.9% of physicians stated that they do not feel uncomfortable when patients ask about radiation risk from CT scans they prescribe. Most physicians (85.6%) assessed that they have rarely prescribed CT scans of no clinical use in patient management. Conclusions This first ever multinational survey among referring physicians from 28 countries indicates support for a system that provides radiation exposure history of the patient, demonstrates poor knowledge about radiation doses, supports radiation risk communication with patients and mandatory provisions for justification of a CT examination. PMID:22997065
Oxidative stress response in SH-SY5Y cells exposed to short-term 1800 MHz radiofrequency radiation.
Marjanovic Cermak, Ana Marija; Pavicic, Ivan; Trosic, Ivancica
2018-01-28
The exact mechanism that could explain the effects of radiofrequency (RF) radiation exposure at non-thermal level is still unknown. Increasing evidence suggests a possible involvement of reactive oxygen species (ROS) and development of oxidative stress. To test the proposed hypothesis, human neuroblastoma cells (SH-SY5Y) were exposed to 1800 MHz short-term RF exposure for 10, 30 and 60 minutes. Electric field strength within Gigahertz Transverse Electromagnetic cell (GTEM) was 30 V m -1 and specific absorption rate (SAR) was calculated to be 1.6 W kg -1 . Cellular viability was measured by MTT assay and level of ROS was determined by fluorescent probe 2',7'-dichlorofluorescin diacetate. Concentrations of malondialdehyde and protein carbonyls were used to assess lipid and protein oxidative damage and antioxidant activity was evaluated by measuring concentrations of total glutathione (GSH). After radiation exposure, viability of irradiated cells remained within normal physiological values. Significantly higher ROS level was observed for every radiation exposure time. After 60 min of exposure, the applied radiation caused significant lipid and protein damage. The highest GSH concentration was detected after 10 minute-exposure. The results of our study showed enhanced susceptibility of SH-SY5Y cells for development of oxidative stress even after short-term RF exposure.
Impact of ionizing radiation exposure on in vitro differentiation of preosteoblastic cell lines
NASA Astrophysics Data System (ADS)
Hu, Yueyuan; Lau, Patrick; Hellweg, Christine; Baumstark-Khan, Christa; Reitz, Guenther
Bone demineralization of astronauts during residence in microgravity is a well known phe-nomenon during space travel. Besides altered gravity conditions, radiation risk is considered to be one of the major health hazards for astronauts in both orbital and interplanetary space. Un-til know, little is known about the effects of space radiation on the skeletal system especially on the bone forming osteoblasts. Accelerator facilities are used to simulate parts of the radiation environment in space. We examined the effects of heavy ion exposure on osteoblastic differ-entiation of murine preosteoblastic cell lines to gain insight into potential cellular mechanisms involved in bone cellular response after exposure to heavy ions. Therefore, we examined gene expression modulation of bone specific transcription factors, osteoblast specific marker genes as well as genes function as coupling factors that link bone resorption to bone formation. mRNA levels were determined using quantitative real time reverse transcriptase PCR (qRT-PCR). Expression of a target gene was standardized to unregulated reference genes. We investigated the transcriptional regulation of Osteocalcin (OCN) as well as TGF-β1, p21(CDKN1A) and the bone specific transcription factor Runx2 (cbfa1). We investigated gene expression modula-tions after exposure to energetic carbon ions (35 MeV/u, 73 keV/µm), iron ions (1000 MeV/u, 150 keV/µm) and lead ions (29 MeV/u, 9600 keV/µm) versus low LET X-rays. X-irradiation dose-dependently increased the mRNA levels of p21(CDKN1A) and Runx2 (cbfa1) whereas expression of OCN and TGF-β1 were elevated at later time points. Exposure to heavy ions provoked a more pronounced effect on osteoblastic specific gene expression within the dif-ferentiation process. Collectively, our results indicate that heavy ions facilitate osteoblastic differentiation more effectively than X-ray. Using the proposed in vitro model we confirmed that exposure to ionizing radiation significantly modulates gene expression levels of marker genes involved in the differentiation of osteoblasts. The data presented allow us to suggest that exposure to ionizing radiation interferes with bone formation at the level of cell differentiation.
[The new law on radiation protection as a consequence of the EU safety standard of 2013].
Layer, G
2017-07-01
The transformation of a European guideline (2013/59/Euratom) from 2013 into national law requires adaptation of the national statutory regulations. This year, all areas of protection from ionizing radiation will be subject to the new radiation protection law (StrlSchG). Through this, the German X‑ray and Radiation Protection Acts will be combined to form a higher level of authority. The main parts of the StrlSchG will receive a new classification and will be organized according to the exposure scenario: radiation protection in planned exposure scenarios, radiation protection in emergency exposure scenarios, radiation protection in existing exposure scenarios, and the regulation of overall exposure scenarios. The most important or modified regulated points for radiology are concerned with early recognition, where the application of X‑ray or nuclear radiation is permitted in principle under certain conditions; the consultation of medical physics experts in all diagnostic investigative procedures involving radiation and applications for radiological intervention that are linked to high doses in the person under investigation; teleradiology, another special case of the application of X‑rays in humans that requires approval, now with the "required" technical qualification in radiation protection, formerly with the "full" technical qualification, in addition to research, the simplified approval procedure being substituted with a notification procedure.Furthermore, in contrast to previous regulations, those tasked with radiation protection can contact the regulators directly in the case of conflict, which indicates considerable reinforcement of their authority.The only dose limit that will be considerably reduced is the organ-specific equivalent dose of the eye lens, where the highest value will be reduced from 150 to 20 mSv per year in those who are exposed to radiation professionally.
Jung, Kwang-Woo; Yang, Dong-Hoon; Kim, Min-Kyu; Seo, Ho Seong
2016-01-01
ABSTRACT The basidiomycetous fungus Cryptococcus neoformans has been known to be highly radiation resistant and has been found in fatal radioactive environments such as the damaged nuclear reactor at Chernobyl. To elucidate the mechanisms underlying the radiation resistance phenotype of C. neoformans, we identified genes affected by gamma radiation through genome-wide transcriptome analysis and characterized their functions. We found that genes involved in DNA damage repair systems were upregulated in response to gamma radiation. Particularly, deletion of recombinase RAD51 and two DNA-dependent ATPase genes, RAD54 and RDH54, increased cellular susceptibility to both gamma radiation and DNA-damaging agents. A variety of oxidative stress response genes were also upregulated. Among them, sulfiredoxin contributed to gamma radiation resistance in a peroxiredoxin/thioredoxin-independent manner. Furthermore, we found that genes involved in molecular chaperone expression, ubiquitination systems, and autophagy were induced, whereas genes involved in the biosynthesis of proteins and fatty acids/sterols were downregulated. Most importantly, we discovered a number of novel C. neoformans genes, the expression of which was modulated by gamma radiation exposure, and their deletion rendered cells susceptible to gamma radiation exposure, as well as DNA damage insults. Among these genes, we found that a unique transcription factor containing the basic leucine zipper domain, named Bdr1, served as a regulator of the gamma radiation resistance of C. neoformans by controlling expression of DNA repair genes, and its expression was regulated by the evolutionarily conserved DNA damage response protein kinase Rad53. Taken together, the current transcriptome and functional analyses contribute to the understanding of the unique molecular mechanism of the radiation-resistant fungus C. neoformans. PMID:27899501
NASA Technical Reports Server (NTRS)
Dugan, Lawrence C.; Bedford, Joel S.
2003-01-01
Radiation-induced genomic instability has been proposed as a very early, if not an initiating, step in radiation carcinogenesis. Numerous studies have established the occurrence of radiation-induced chromosomal instability in various cells of both human and rodent origin. In many of these studies, however, the cells were not "normal" initially, and in many cases they involved tumor-derived cell lines. The phenomenon clearly would be of even greater interest if it were shown to occur generally in cells that are normal at the outset, rather than cells that may have been "selected" because of a pre-existing susceptibility to induced instability. As a test of the generality of the phenomenon, we studied low-passage normal diploid human fibroblasts (AG1521A) to determine whether they are susceptible to the induction of chromosomal instability in the progeny of surviving cells after exposure in G(0) to low- and high-LET radiation. Cytogenetic assays for instability were performed on both mixed populations of cells and clones of cells surviving exposure. We found no evidence for the induction of such instability as a result of radiation exposure, though we observed a senescence-related chromosomal instability in the progeny of both irradiated and unirradiated cell populations. Copyright 2003 by Radiation Research Society.
Wada, Koji; Yoshikawa, Toru; Murata, Masaru
2012-01-01
This article describes occupational health measures for workers involved in decontamination of radioactive material discharged around Fukushima Dai-ichi Nuclear Power Plant after the explosions in 2011. Decontamination is performed by removing radioactive particles (mainly cesium) from surfaces of soil, grass and trees, and buildings. Measurement of radiation doses is necessary to reduce exposure, and to determine whether workers can work below dose limits. Protective equipment for decontamination is determined based on the concentration of radiation in contaminated soil and the exposure to dust. Health examinations by physicians are mandated for decontamination workers upon hiring and every 6 months. While there is no possibility of acute radiation injury from decontamination, workers may be anxious about the unclear effects of chronic low level radiation exposure on health. Measures to protect the decontamination workers are the top priority.
Impact of Radiation Biology on Fundamental Insights in Biology
DOE R&D Accomplishments Database
Setlow, Richard B.
1982-07-27
Research supported by OHER [Office of Health and Environmental Research] and its predecessors has as one of its major goals an understanding of the effects of radiation at low doses and dose rates on biological systems, so as to predict their effects on humans. It is not possible to measure such effects directly. They must be predicted from basic knowledge on how radiation affects cellular components such as DNA and membranes and how cells react to such changes. What is the probability of radiation producing human mutations and what are the probabilities of radiation producing cancer? The end results of such studies are radiation exposure standards for workers and for the general population. An extension of these goals is setting standards for exposure to chemicals involved in various energy technologies. This latter problem is much more difficult because chemical dosimetry is a primitive state compared to radiation dosimetry.
Nuclear and radiological terrorism: continuing education article.
Anderson, Peter D; Bokor, Gyula
2013-06-01
Terrorism involving radioactive materials includes improvised nuclear devices, radiation exposure devices, contamination of food sources, radiation dispersal devices, or an attack on a nuclear power plant or a facility/vehicle that houses radioactive materials. Ionizing radiation removes electrons from atoms and changes the valence of the electrons enabling chemical reactions with elements that normally do not occur. Ionizing radiation includes alpha rays, beta rays, gamma rays, and neutron radiation. The effects of radiation consist of stochastic and deterministic effects. Cancer is the typical example of a stochastic effect of radiation. Deterministic effects include acute radiation syndrome (ARS). The hallmarks of ARS are damage to the skin, gastrointestinal tract, hematopoietic tissue, and in severe cases the neurovascular structures. Radiation produces psychological effects in addition to physiological effects. Radioisotopes relevant to terrorism include titrium, americium 241, cesium 137, cobalt 60, iodine 131, plutonium 238, califormium 252, iridium 192, uranium 235, and strontium 90. Medications used for treating a radiation exposure include antiemetics, colony-stimulating factors, antibiotics, electrolytes, potassium iodine, and chelating agents.
2009-11-30
generate exposure-rate contours at the fixed time is not an additional source of uncertainty when relative activities of radionuclides on the ground are...deposition or transit and other target organs or tissues, and calculations of radiation transport between a source and target. These uncertainties are...Beck, H., and de Planque, G., 1968. The Radiation Field in Air Due to Distributed Gamma-Ray Sources in the Ground, HASL-195, Health and Safety
Minkov, V; Klammer, H; Brix, G
2017-07-01
In Germany, persons who are to be exposed to radiation for medical research purposes are protected by a licensing requirement. However, there are considerable uncertainties on the part of the applicants as to whether licensing by the competent Federal Office for Radiation Protection is necessary, and regarding the choice of application procedure. The article provides explanatory notes and practical assistance for applicants and an outlook on the forthcoming new regulations concerning the law on radiation protection of persons in the field of medical research. Questions and typical mistakes in the application process were identified and evaluated. The qualified physicians involved in a study are responsible for deciding whether a license is required for the intended application of radiation. The decision can be guided by answering the key question whether the study participants would undergo the same exposures regarding type and extent if they had not taken part in the study. When physicians are still unsure about their decision, they can seek the advisory service provided by the professional medical societies. Certain groups of people are particularly protected through the prohibition or restriction of radiation exposure. A simplified licensing procedure is used for a proportion of diagnostic procedures involving radiation when all related requirements are met; otherwise, the regular licensing procedure should be used. The new radiation protection law, which will enter into force on the 31st of december 2018, provides a notification procedure in addition to deadlines for both the notification and the licensing procedures. In the article, the authors consider how eligible studies involving applications of radiation that are legally not admissible at present may be feasible in the future, while still ensuring a high protection level for study participants.
Protection from radon exposure at home and at work in the directive 2013/59/Euratom.
Bochicchio, F
2014-07-01
In recent years, international organisations involved in radiation protection and public health have produced new guidance, recommendations and requirements aiming better protection from radon exposure. These organisations have often worked in close collaboration in order to facilitate the establishment of harmonised standards. This paper deals with such standards and specifically with the new European Council Directive of 5 December 2013 on basic safety standards for protection against the dangers arising from exposure to ionising radiation (2013/59/Euratom). This new Directive has established a harmonised framework for the protection against ionising radiations, including protection from radon exposure. Requirements for radon in workplace are much more tightening than in previous Directive, and exposures to radon in dwellings are regulated for the first time in a Directive. Radon-related articles of this Directive are presented and discussed in this paper, along with some comparisons with other relevant international standards. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Cancer and non-cancer brain and eye effects of chronic low-dose ionizing radiation exposure
2012-01-01
Background According to a fundamental law of radiobiology (“Law of Bergonié and Tribondeau”, 1906), the brain is a paradigm of a highly differentiated organ with low mitotic activity, and is thus radio-resistant. This assumption has been challenged by recent evidence discussed in the present review. Results Ionizing radiation is an established environmental cause of brain cancer. Although direct evidence is lacking in contemporary fluoroscopy due to obvious sample size limitation, limited follow-up time and lack of focused research, anecdotal reports of clusters have appeared in the literature, raising the suspicion that brain cancer may be a professional disease of interventional cardiologists. In addition, although terminally differentiated neurons have reduced or mild proliferative capacity, and are therefore not regarded as critical radiation targets, adult neurogenesis occurs in the dentate gyrus of the hippocampus and the olfactory bulb, and is important for mood, learning/memory and normal olfactory function, whose impairment is a recognized early biomarker of neurodegenerative diseases. The head doses involved in radiotherapy are high, usually above 2 Sv, whereas the low-dose range of professional exposure typically involves lifetime cumulative whole-body exposure in the low-dose range of < 200 mSv, but with head exposure which may (in absence of protection) arrive at a head equivalent dose of 1 to 3 Sv after a professional lifetime (corresponding to a brain equivalent dose around 500 mSv). Conclusions At this point, a systematic assessment of brain (cancer and non-cancer) effects of chronic low-dose radiation exposure in interventional cardiologists and staff is needed. PMID:22540409
Morota, Koichi; Moritake, Takashi; Sun, Lue; Ishihara, Takahiro; Kuma, Natsuyo; Murata, Satomi; Yamada, Takahiro; Okazaki, Ryuji
2016-01-01
The recent progress in angiography technology bestows benefits on patients for minimally invasive than surgery, while there has been an increase in the number of cases involving stochastic effects, such as radiation dermatitis, resulting from upgrading of the procedure because of an extension of the time for fluoroscopy and the number of shots. Recent CT equipment saves the dose data along with image data about the information management for patient exposure dose, which is used for management of individual cumulative dose and the presumed effective dose, using digital imaging and communication in medicine (DICOM). We extracted detailed information about shooting conditions and dose from the DICOM radiation dose structured report (DICOM RDSR) in the angiography area, and evaluated the trend of patient exposure dose in each procedure. As a result, we found that cases exceeding 3 Gy which needed observation in the head region were 16.7% and in the heart region were 27.3%. We also found that angiography had a higher dose of shooting than did fluoroscopy, and that the diagnosis and treatment with tumor involvement required a exposure dose than did vascular lesion. In this paper, we review the shooting conditions as a root of DICOM RDSR information and consider the possibility of planning for further reduction of the exposure dose.
Romero-Weaver, Ana L; Lin, Liyong; Carabe-Fernandez, Alejandro; Kennedy, Ann R
2014-08-01
Astronauts traveling in space missions outside of low Earth orbit will be exposed for longer times to a microgravity environment. In addition, the increased travel time involved in exploration class missions will result in an increased risk of exposure to significant doses of solar particle event (SPE) radiation. Both conditions could significantly affect the number of circulating blood cells. Therefore, it is critical to determine the combined effects of exposure to both microgravity and SPE radiation. The purpose of the present study was to assess these risks by evaluating the effects of SPE-like proton radiation and/or microgravity, as simulated with the hindlimb unloading (HU) system, on circulating blood cells using mouse as a model system. The results indicate that exposure to HU alone caused minimal or no significant changes in mouse circulating blood cell numbers. The exposure of mice to SPE-like proton radiation with or without HU treatment caused a significant decrease in the number of circulating lymphocytes, granulocytes and platelets. The reduced numbers of circulating lymphocytes, granulocytes, and platelets, resulting from the SPE-like proton radiation exposure, with or without HU treatment, in mice suggest that astronauts participating in exploration class missions may be at greater risk of developing infections and thrombotic diseases; thus, countermeasures may be necessary for these biological endpoints.
Expression of Enzymes that Metabolize Medications
NASA Technical Reports Server (NTRS)
Wotring, V. E.; Peters, C. P.
2011-01-01
INTRODUCTION: Increased exposure to radiation is one physiological stressor associated with spaceflight and it is feasible to conduct ground experiments using known radiation exposures. The health of the liver, especially the activity rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. While radiation is known to alter normal physiological function, how radiation affects liver metabolism of administered medications is unclear. Crew health could be affected if the actions of medications used in spaceflight deviated from expectations formed during terrestrial medication use. This study is an effort to identify liver metabolic enzymes whose expression is altered by spaceflight or by radiation exposures that mimic features of the spaceflight environment. METHODS: Using procedures approved by the Animal Care and Use Committee, mice were exposed to either 137Cs (controls, 50 mGy, 6Gy, or 50 mGy + 6Gy separated by 24 hours) or 13 days of spaceflight on STS 135. Animals were anesthetized and sacrificed at several time points (4 hours, 24 hours or 7 days) after their last radiation exposure, or within 6 hours of return to Earth for the STS 135 animals. Livers were removed immediately and flash-frozen in liquid nitrogen. Tissue was homogenized, RNA extracted, purified and quality-tested. Complementary DNA was prepared from high-quality RNA samples, and used in RT-qPCR experiments to determine relative expression of a wide variety of genes involved in general metabolism and drug metabolism. RESULTS: Results of the ground radiation exposure experiments indicated 65 genes of the 190 tested were significantly affected by at least one of the radiation doses. Many of the affected genes are involved in the metabolism of drugs with hydrophobic or steroid-like structures, maintenance of redox homeostasis and repair of DNA damage. Most affected genes returned to near control expression levels by 7 days post-treatment. Not all recovered completely by the final time point tested: with 6 Gy exposure, metallothionein expression was 132-fold more than control at the 4 hr time point, and fell at each later time point (11-fold at 24 hrs, and 8-fold at 7 days). In contrast, there were other genes whose expression was altered and remained relatively constant through the 7 day period we tested. One examples is Cyp17a1, which showed a 4-fold elevation at 4 hrs after exposure and remained constant for 7 days after the last treatment. Spaceflight samples evaluated with similar methods and comparisons will be made between the radiation-treated groups and the spaceflight samples. CONCLUSION It seems likely that radiation exposure triggers homeostatic mechanisms, which could include alterations of gene expression. Better understanding of these pathways could aid in optimizing medications doses given to crewmembers who require treatment and eventually, to development of new countermeasures to ameliorate or prevent radiation-induced damage to cells and tissues.
Intraluminal radiation for esophageal cancer: a Howard University technique.
Moorthy, C R; Nibhanupudy, J R; Ashayeri, E; Goldson, A L; Espinoza, M C; Nidiry, J J; Warner, O G; Roux, V J
1982-03-01
The objective of radiotherapeutic management in esophageal cancer is to accomplish maximum tumor sterilization with minimal normal tissue damage. This sincere effort is most often countered by the differential in tumor dose response vs normal tissue tolerance. Intraluminal isotope radiation, with its inherent advantage of rapid dose falloff, spares the lungs, the spinal cord, and other vital structures, yet yields adequately high doses to esophageal tumor. Though in existence since the turn of the century, the method of intracavitary radium bougie application dropped out of favor due to technical difficulties imposed by the size of the radium source and radiation exposure to the personnel involved. The authors describe a simple "iridium 192 afterloading intraluminal technique" that eliminates technical problems and reduces radiation exposure considerably.
Antimutagenicity of WR-1065 in L5178Y cells exposed to accelerated (56)Fe ions
NASA Technical Reports Server (NTRS)
Evans, H. H.; Evans, T. E.; Horng, M. F.
2002-01-01
The ability of the aminothiol WR-1065 [N-(2-mercaptoethyl)-1,3-diaminopropane] to protect L5178Y (LY) cells against the cytotoxic and mutagenic effects of exposure to accelerated (56)Fe ions (1.08 GeV/nucleon) was determined. It was found that while WR-1065 reduced the mutagenicity in both cell lines when it was present during the irradiation, the addition of WR-1065 after the exposure had no effect on the mutagenicity of the radiation in either cell line. No marked protection against the cytotoxic effects of exposure to (56)Fe ions was provided by WR-1065 when added either during or after irradiation in either cell line. We reported previously that WR-1065 protected the LY-S1 and LY-SR1 cell lines against both the cytotoxicity and mutagenicity of X radiation when present during exposure, but that its protection when administered after exposure was limited to the mutagenic effects in the radiation-hypersensitive cell line, LY-S1. The results indicate that the mechanisms involved differ in the protection against cytotoxic compared to mutagenic effects and in the protection against damage caused by accelerated (56)Fe ions compared to X radiation.
Hamatani, Kiyohiro; Mukai, Mayumi; Takahashi, Keiko; Hayashi, Yuzo; Nakachi, Kei; Kusunoki, Yoichiro
2012-11-01
We previously noted that among atomic bomb survivors (ABS), the relative frequency of cases of adult papillary thyroid cancer (PTC) with chromosomal rearrangements (mainly RET/PTC) was significantly greater in those with relatively higher radiation exposure than those with lower radiation exposure. In contrast, the frequency of PTC cases with point mutations (mainly BRAF(V600E)) was significantly lower in patients with relatively higher radiation exposure than those with lower radiation exposure. We also found that among ABS, the frequency of PTC cases with no detectable gene alterations in RET, neurotrophic tyrosine kinase receptor 1 (NTRK1), BRAF, or RAS was significantly higher in patients with relatively higher radiation exposure than those with lower radiation exposure. However, in ABS with PTC, the relationship between the presence of the anaplastic lymphoma kinase (ALK) gene fused with other gene partners and radiation exposure has received little study. In this study, we tested the hypothesis that the relative frequency of rearranged ALK in ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, would be greater in those having relatively higher radiation exposures. The 105 subjects in the study were drawn from the Life Span Study cohort of ABS of Hiroshima and Nagasaki who were diagnosed with PTC between 1956 and 1993. Seventy-nine were exposed (>0 mGy), and 26 were not exposed to A-bomb radiation. In the 25 ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, we examined archival, formalin-fixed, paraffin-embedded PTC specimens for rearrangement of ALK using reverse transcription-polymerase chain reaction and 5' rapid amplification of cDNA ends (5' RACE). We found rearranged ALK in 10 of 19 radiation-exposed PTC cases, but none among 6 patients with PTC with no radiation exposure. In addition, solid/trabecular-like architecture in PTC was closely associated with ALK rearrangements, being observed in 6 of 10 PTC cases with ALK rearrangements versus 2 of 15 cases with no ALK rearrangements. The six radiation-exposed cases of PTC harboring both ALK rearrangements and solid/trabecular-like architecture were associated with higher radiation doses and younger ages at the time of the A-bombing and at diagnosis compared to the other 19 PTC with no detectable gene alterations. Our findings suggest that ALK rearrangements are involved in the development of radiation-induced adult-onset PTC.
Mukai, Mayumi; Takahashi, Keiko; Hayashi, Yuzo; Nakachi, Kei; Kusunoki, Yoichiro
2012-01-01
Background We previously noted that among atomic bomb survivors (ABS), the relative frequency of cases of adult papillary thyroid cancer (PTC) with chromosomal rearrangements (mainly RET/PTC) was significantly greater in those with relatively higher radiation exposure than those with lower radiation exposure. In contrast, the frequency of PTC cases with point mutations (mainly BRAFV600E) was significantly lower in patients with relatively higher radiation exposure than those with lower radiation exposure. We also found that among ABS, the frequency of PTC cases with no detectable gene alterations in RET, neurotrophic tyrosine kinase receptor 1 (NTRK1), BRAF, or RAS was significantly higher in patients with relatively higher radiation exposure than those with lower radiation exposure. However, in ABS with PTC, the relationship between the presence of the anaplastic lymphoma kinase (ALK) gene fused with other gene partners and radiation exposure has received little study. In this study, we tested the hypothesis that the relative frequency of rearranged ALK in ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, would be greater in those having relatively higher radiation exposures. Methods The 105 subjects in the study were drawn from the Life Span Study cohort of ABS of Hiroshima and Nagasaki who were diagnosed with PTC between 1956 and 1993. Seventy-nine were exposed (>0 mGy), and 26 were not exposed to A-bomb radiation. In the 25 ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, we examined archival, formalin-fixed, paraffin-embedded PTC specimens for rearrangement of ALK using reverse transcription–polymerase chain reaction and 5′ rapid amplification of cDNA ends (5′ RACE). Results We found rearranged ALK in 10 of 19 radiation-exposed PTC cases, but none among 6 patients with PTC with no radiation exposure. In addition, solid/trabecular-like architecture in PTC was closely associated with ALK rearrangements, being observed in 6 of 10 PTC cases with ALK rearrangements versus 2 of 15 cases with no ALK rearrangements. The six radiation-exposed cases of PTC harboring both ALK rearrangements and solid/trabecular-like architecture were associated with higher radiation doses and younger ages at the time of the A-bombing and at diagnosis compared to the other 19 PTC with no detectable gene alterations. Conclusion Our findings suggest that ALK rearrangements are involved in the development of radiation-induced adult-onset PTC. PMID:23050789
Krukowski, Karen; Feng, Xi; Paladini, Maria Serena; Chou, Austin; Sacramento, Kristen; Grue, Katherine; Riparip, Lara-Kirstie; Jones, Tamako; Campbell-Beachler, Mary; Nelson, Gregory; Rosi, Susanna
2018-05-18
Microglia are the main immune component in the brain that can regulate neuronal health and synapse function. Exposure to cosmic radiation can cause long-term cognitive impairments in rodent models thereby presenting potential obstacles for astronauts engaged in deep space travel. The mechanism/s for how cosmic radiation induces cognitive deficits are currently unknown. We find that temporary microglia depletion, one week after cosmic radiation, prevents the development of long-term memory deficits. Gene array profiling reveals that acute microglia depletion alters the late neuroinflammatory response to cosmic radiation. The repopulated microglia present a modified functional phenotype with reduced expression of scavenger receptors, lysosome membrane protein and complement receptor, all shown to be involved in microglia-synapses interaction. The lower phagocytic activity observed in the repopulated microglia is paralleled by improved synaptic protein expression. Our data provide mechanistic evidence for the role of microglia in the development of cognitive deficits after cosmic radiation exposure.
MO-E-213-02: Medical Physicist Involvement in Implementing Patient Protection Standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seibert, J.
The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks inmore » public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation protection than in past To be aware about possible emergence of medical radiation protection as a specialty and challenges for medical physicists.« less
NASA Astrophysics Data System (ADS)
Mothersill, Carmel; Seymour, Colin
2012-07-01
Our recent data suggest there is a physical component to the bystander signal induced by radiation exposure and that alternative medicine techniques such as Reiki and acupuncture or exposures to weak EM fields alter the response of cells to direct irradiation and either altered bystander signal production or altered the response of cells receiving bystander signals. Our proposed mechanism to explain these findings is that perturbation of electromagnetic (EM) fields is central to the induction of low radiation dose responses especially non-targeted bystander effects. In this presentation we review the alternative medicine data and other data sets from our laboratory which test our hypothesis that perturbation of bio-fields will modulate radiation response in the low dose region. The other data sets include exposure to MRI, shielding using lead and or Faraday cages, the use of physical barriers to bystander signal transmission and the use of membrane channel blockers. The data taken together strongly suggest that EM field perturbation can modulate low dose response and that in fact the EM field rather than the targeted deposition of ionizing energy in the DNA may be the key determinant of dose response in a cell or organism The results also lead us to suspect that at least when chemical transmission is blocked, bystander signals can be transmitted by other means. Our recent experiments suggest light signals and volatiles are not likely. We conclude that alternative medicine and other techniques involving electromagnetic perturbations can modify the response of cells to low doses of ionizing radiation and can induce bystander effects similar to those seen in medium transfer experiments. In addition to the obvious implications for mechanistic studies of low dose effects, this could perhaps provide a novel target to exploit in space radiation protection and in optimizing therapeutic gain during radiotherapy.
UV-Induced cell death in plants.
Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho
2013-01-14
Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).
UV-Induced Cell Death in Plants
Nawkar, Ganesh M.; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho
2013-01-01
Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280–320 nm) and UV-A (320–390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD). PMID:23344059
Farahati, J; Demidchik, E P; Biko, J; Reiners, C
2000-03-15
Increased incidence of childhood thyroid carcinoma, particularly in the youngest children, has been reported from Belarus since the nuclear reactor accident at Chernobyl in 1986. The relation between disease severity and age at the time of the accident, not previously established in this cohort, was analyzed in this study. The authors studied the association between disease severity, expressed by TNM classification, and age at radiation exposure in a cohort of 483 patients younger than 8 years at the time of the Chernobyl accident who have been diagnosed with differentiated thyroid carcinoma since 1986 at the Center for Thyroid Cancer in Minsk. The associations between age at radiation exposure and TNM categories were compared among 4 groups of patients who were ages <2, 2.1-4, 4.1-6, and 6.1-8 years at the time of the accident. Multivariate discriminant analysis was performed to examine the effects of age at the time of the accident, gender, histology, tumor stage, and N classification on the frequency of distant metastasis. Younger age at the time of the Chernobyl accident was associated with greater extrathyroidal tumor extension (P<0.01) and more lymph node involvement (P<0.0001) and tended to be associated with more distant metastases (P = 0.09). Compared with patients who were ages 6.1-8 years at the time of the accident, patients who were younger than 2 years had significantly more extrathyroidal tumor invasion (P = 0.004), lymph node involvement (P = 0.004), and distant metastases (P = 0.05). The age at diagnosis increased with older age at the time of radiation exposure (linear regression analysis; correlation coefficient = 0. 67; P<0.001). Multivariate analysis revealed that younger age at the time of the accident (P = 0.001) and advanced locoregional tumor extension (P<0.001) were the only powerful factors influencing the risk for distant metastasis of this malignancy. The severity of disease was associated inversely with age at the time of radiation exposure in these cases of radiation-induced childhood thyroid carcinoma. Copyright 2000 American Cancer Society.
Jung, Kwang-Woo; Yang, Dong-Hoon; Kim, Min-Kyu; Seo, Ho Seong; Lim, Sangyong; Bahn, Yong-Sun
2016-11-29
The basidiomycetous fungus Cryptococcus neoformans has been known to be highly radiation resistant and has been found in fatal radioactive environments such as the damaged nuclear reactor at Chernobyl. To elucidate the mechanisms underlying the radiation resistance phenotype of C. neoformans, we identified genes affected by gamma radiation through genome-wide transcriptome analysis and characterized their functions. We found that genes involved in DNA damage repair systems were upregulated in response to gamma radiation. Particularly, deletion of recombinase RAD51 and two DNA-dependent ATPase genes, RAD54 and RDH54, increased cellular susceptibility to both gamma radiation and DNA-damaging agents. A variety of oxidative stress response genes were also upregulated. Among them, sulfiredoxin contributed to gamma radiation resistance in a peroxiredoxin/thioredoxin-independent manner. Furthermore, we found that genes involved in molecular chaperone expression, ubiquitination systems, and autophagy were induced, whereas genes involved in the biosynthesis of proteins and fatty acids/sterols were downregulated. Most importantly, we discovered a number of novel C. neoformans genes, the expression of which was modulated by gamma radiation exposure, and their deletion rendered cells susceptible to gamma radiation exposure, as well as DNA damage insults. Among these genes, we found that a unique transcription factor containing the basic leucine zipper domain, named Bdr1, served as a regulator of the gamma radiation resistance of C. neoformans by controlling expression of DNA repair genes, and its expression was regulated by the evolutionarily conserved DNA damage response protein kinase Rad53. Taken together, the current transcriptome and functional analyses contribute to the understanding of the unique molecular mechanism of the radiation-resistant fungus C. neoformans IMPORTANCE: Although there are no natural environments under intense radiation, some living organisms have been found to show high radiation resistance. Organisms harboring the ability of radiation resistance have unique regulatory networks to overcome this stress. Cryptococcus neoformans is one of the radiation-resistant fungi and is found in highly radioactive environments. However, it remains elusive how radiation-resistant eukaryotic microorganisms work differentially from radiation-sensitive ones. Here, we performed transcriptome analysis of C. neoformans to explore gene expression profiles after gamma radiation exposure and functionally characterized some of identified radiation resistance genes. Notably, we identified a novel regulator of radiation resistance, named Bdr1 (a bZIP TF for DNA damage response 1), which is a transcription factor (TF) that is not closely homologous to any known TF and is transcriptionally controlled by the Rad53 kinase. Therefore, our work could shed light on understanding not only the radiation response but also the radiation resistance mechanism of C. neoformans. Copyright © 2016 Jung et al.
Overview of epidemiologic studies of radiation and cancer risk based on medical series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, G.R.
1997-03-01
Epidemiologic studies of individuals exposed to ionizing radiation for medical reasons have made important contributions to understanding of the relationship between such radiation and subsequent cancer risk. In this paper the strengths and limitations of medical studies are considered and their future potential usefulness is discussed. Studies may be broadly classified into two types, namely, those of individuals exposed for therapeutic purposes such as the study of ankylosing spondylytics and those of individuals exposed for diagnostic or examination purposes such as those of tuberculosis patients routinely examined by chest fluoroscopy. In general, studies of therapeutic exposures tend to involve highmore » doses of radiation given at high dose rates and in a relatively small number of fractions, whereas studies of diagnostic exposures tend to involve relatively low doses, low dose rates and many fractions. However, these generalizations are not always true: for example, in the fluoroscopy studies some patients received doses to organs such as breast and lung which were substantially higher than those experienced in the atomic bomb survivors study and in a study of Israeli children treated with radiation for tinea capitis the average thyroid dose was reported to be low, and only about 0.09 gray. These studies illustrate one of the most important advantages of medical series, namely the variety of such studies in terms of the characteristics of the radiation involved (linear energy transfer characteristics, dose range, dose rate, and fractionation), the organs exposed and hence potentially at risk, and the characteristics of those exposed to such radiation.« less
Hair cortisol and cortisone are decreased by natural sunlight.
Wester, Vincent L; van der Wulp, Nils R P; Koper, Jan W; de Rijke, Yolanda B; van Rossum, Elisabeth F C
2016-10-01
Hair glucocorticoids (cortisol and cortisone) are increasingly used as measures of long-term integrated exposure to glucocorticoid hormones. Glucocorticoids gradually disappear from the hair shaft, which may result from exposure to ultraviolet (UV) radiation in natural sunlight. We aimed to study the influence of sun exposure on hair glucocorticoids. Scalp hair samples were obtained from nine volunteers (median age 33 [range 21-81], 7 females), and part of each hair sample was exposed to three experimental conditions: repeated exposure to natural sunlight for 40h (natural UV), exposure to a high amount of artificial UV radiation, and storage in the dark (control). Hair cortisol (HairF) and cortisone (HairE) were quantified by liquid chromatography-tandem mass spectrometry. When compared to control, HairF was decreased in 9 out of 9 hair samples after natural sunlight exposure (median decrease -3.1pg/mg or -54%, P<0.001) and artificial UV radiation (-4.7pg/mg or -75%, P=0.003). HairE decreased in 8 out of 9 samples, both after natural sunlight (-7.6pg/mg or -32%, P=0.012) and artificial UV (-10.7pg/mg or -52%, P=0.026). Exposure to natural sunlight decreases the glucocorticoid content of scalp hair, apparently through UV radiation, and is therefore an important confounder that should be considered in studies involving the measurement of hair glucocorticoids. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Haytham; Department of Medical Physiology and Cell Biology, Qena Faculty of Medicine, South Valley University; Galal, Omima
Highlights: • Nicaraven mitigated the radiation-induced reduction of c-kit{sup +} stem cells. • Nicaraven enhanced the function of hematopoietic stem/progenitor cells. • Complex mechanisms involved in the protection of nicaraven to radiation injury. - Abstract: Nicaraven, a hydroxyl radical-specific scavenger has been demonstrated to attenuate radiation injury in hematopoietic stem cells with 5 Gy γ-ray exposures. We explored the effect and related mechanisms of nicaraven for protecting radiation injury induced by sequential exposures to a relatively lower dose γ-ray. C57BL/6 mice were given nicaraven or placebo within 30 min before exposure to 50 mGy γ-ray daily for 30 days inmore » sequences (cumulative dose of 1.5 Gy). Mice were victimized 24 h after the last radiation exposure, and the number, function and oxidative stress of hematopoietic stem cells were quantitatively estimated. We also compared the gene expression in these purified stem cells from mice received nicaraven and placebo treatment. Nicaraven increased the number of c-kit{sup +} stem/progenitor cells in bone marrow and peripheral blood, with a recovery rate around 60–90% of age-matched non-irradiated healthy mice. The potency of colony forming from hematopoietic stem/progenitor cells as indicator of function was completely protected with nicaraven treatment. Furthermore, nicaraven treatment changed the expression of many genes associated to DNA repair, inflammatory response, and immunomodulation in c-kit{sup +} stem/progenitor cells. Nicaraven effectively protected against damages of hematopoietic stem/progenitor cells induced by sequential exposures to a relatively low dose radiation, via complex mechanisms.« less
A role for bioelectric effects in the induction of bystander signals by ionizing radiation?
Mothersill, C; Moran, G; McNeill, F; Gow, M D; Denbeigh, J; Prestwich, W; Seymour, C B
2007-04-03
The induction of "bystander effects" i.e. effects in cells which have not received an ionizing radiation track, is now accepted but the mechanisms are not completely clear. Bystander effects following high and low LET radiation exposure are accepted but mechanisms are still not understood. There is some evidence for a physical component to the signal. This paper tests the hypothesis that bioelectric or biomagnetic phenomena are involved. Human immortalized skin keratinocytes and primary explants of mouse bladder and fish skin, were exposed directly to ionizing radiation or treated in a variety of bystander protocols. Exposure of cells was conducted by shielding one group of flasks using lead, to reduce the dose below the threshold of 2mGy (60)Cobalt gamma rays established for the bystander effect. The endpoint for the bystander effect in the reporter system used was reduction in cloning efficiency (RCE). The magnitude of the RCE was similar in shielded and unshielded flasks. When cells were placed in a Faraday cage the magnitude of the RCE was less but not eliminated. The results suggest that liquid media or cell-cell contact transmission of bystander factors may be only part of the bystander mechanism. Bioelectric or bio magnetic fields may have a role to play. To test this further, cells were placed in a Magnetic Resonance Imaging (MRI) machine for 10 min using a typical head scan protocol. This treatment also induced a bystander response. Apart from the obvious clinical relevance, the MRI results further suggest that bystander effects may be produced by non-ionizing exposures. It is concluded that bioelectric or magnetic effects may be involved in producing bystander signaling cascades commonly seen following ionizing radiation exposure.
A Role for Bioelectric Effects in the Induction of Bystander Signals by Ionizing Radiation?
Mothersill, C.; Moran, G.; McNeill, F.; Gow, M.D.; Denbeigh, J.; Prestwich, W.; Seymour, C.B.
2007-01-01
The induction of “bystander effects” i.e. effects in cells which have not received an ionizing radiation track, is now accepted but the mechanisms are not completely clear. Bystander effects following high and low LET radiation exposure are accepted but mechanisms are still not understood. There is some evidence for a physical component to the signal. This paper tests the hypothesis that bioelectric or biomagnetic phenomena are involved. Human immortalized skin keratinocytes and primary explants of mouse bladder and fish skin, were exposed directly to ionizing radiation or treated in a variety of bystander protocols. Exposure of cells was conducted by shielding one group of flasks using lead, to reduce the dose below the threshold of 2mGy 60Cobalt gamma rays established for the bystander effect. The endpoint for the bystander effect in the reporter system used was reduction in cloning efficiency (RCE). The magnitude of the RCE was similar in shielded and unshielded flasks. When cells were placed in a Faraday cage the magnitude of the RCE was less but not eliminated. The results suggest that liquid media or cell-cell contact transmission of bystander factors may be only part of the bystander mechanism. Bioelectric or bio magnetic fields may have a role to play. To test this further, cells were placed in a Magnetic Resonance Imaging (MRI) machine for 10min using a typical head scan protocol. This treatment also induced a bystander response. Apart from the obvious clinical relevance, the MRI results further suggest that bystander effects may be produced by non-ionizing exposures. It is concluded that bioelectric or magnetic effects may be involved in producing bystander signaling cascades commonly seen following ionizing radiation exposure. PMID:18648606
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Neubeck, Claere; Geniza, Matthew; Kauer, Paula M.
Outside the protection of earth’s atmosphere, astronauts are exposed to low doses of high linear energy transfer (LET) radiation. Future NASA plans for deep space missions or a permanent settlement on the moon are limited by the health risks associated with space radiation exposures. There is a paucity of direct epidemiological data for low dose exposures to space radiation-relevant high LET ions. Health risk models are used to estimate the risk for such exposures, though these models are based on high dose experiments. There is increasing evidence, however, that low and high dose exposures result in different signaling events atmore » the molecular level, and may involve different response mechanisms. Further, despite their low abundance, high LET particles have been identified as the major contributor to health risk during manned space flight. The human skin is exposed in every external radiation scenario, making it an ideal epithelial tissue model in which to study radiation induced effects. Here, we exposed an in vitro three dimensional (3-D) human organotypic skin tissue model to low doses of high LET oxygen (O), silicon (Si) and iron (Fe) ions. We measured proliferation and differentiation profiles in the skin tissue and examined the integrity of the skin’s barrier function. We discuss the role of secondary particles in changing the proportion of cells receiving a radiation dose, emphasizing the possible impact on radiation-induced health issues in astronauts.« less
Campanella, Francesca; Rossi, Laura; Giroletti, Elio; Micheletti, Piero; Buzzi, Fabio; Villani, Simona
2017-06-14
Radiological practices are the first anthropic sources of ionizing radiation exposure of the population. However, a review of recent publications underlines inadequate doctors' knowledge about doses imparted in medical practices and about patient protection that might explain unnecessary radiological prescriptions. We investigated the knowledge of the physicians of Pavia District (Italy) on the risk of radiation exposure. A cross sectional study was performed involving the Medical Association of Pavia District. Data were collected with a self-administered questionnaire, available on-line with private login and password. Four hundred nineteen physicians fulfilled the questionnaire; 48% of participants reported training about radiation protection. The average percentage of correct answers on the knowledge on ionizing radiation was 62.29%, with a significantly higher result between radiologist. Around 5 and 13% of the responders do not know that, respectively, ultrasonography and magnetic resonance do not expose patients to ionizing radiations. Only 5% of the physicians properly identified the cancer risk rate associated to abdomen computed tomography. The findings show a quite good level of the general knowledge about ionizing radiations, higher that reported in literature. Nevertheless, we believe the usefulness of training on the risk linked to radiation exposure in medicine for physicians employed in every area.
38 CFR 3.311 - Claims based on exposure to ionizing radiation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Department of Defense. (ii) Hiroshima and Nagasaki occupation claims. In all claims based on participation in... requested from the Department of Defense. (iii) Other exposure claims. In all other claims involving... Department of Defense is consistent with the claim that the veteran was present where and when the claimed...
NASA Astrophysics Data System (ADS)
Gois, M. L. C.; Schelin, H. R.; Denyak, V.; Bunick, A. P.; Legnani, A.; Paschuk, S. A.
2017-11-01
The survival of very premature neonates has improved significantly at the last decades owing to the utilization of modern intensive care interventions that usually requires prolonged hospitalisation and are accompanied by frequent radiographic examinations. Their elevated radiosensitivity and numerous examinations combined with their greater remaining lifetime raise the issue of high risk for radiation-induced malignancies. Because it is presently impossible to substitute this type of examinations with others that do not involve radiation exposure, investigations on a hospital's routine practices becomes relevant. In this work, we present the results of an investigation on the radiation exposure of patients with birth weight lower than 1500 g in one paediatric hospital in Brazil. We analyse some important patient characteristics, like weight, gestational age, length of stay, and number of radiographs performed in the neonatal intensive care unit, in connection with the patient dose. The obtained results are compared with the existing information from other studies.
Pietrofesa, Ralph A.; Velalopoulou, Anastasia; Lehman, Stacey L.; Arguiri, Evguenia; Solomides, Pantelis; Koch, Cameron J.; Mishra, Om P.; Koumenis, Constantinos; Goodwin, Thomas J.; Christofidou-Solomidou, Melpo
2016-01-01
Spaceflight occasionally requires multiple extravehicular activities (EVA) that potentially subject astronauts to repeated changes in ambient oxygen superimposed on those of space radiation exposure. We thus developed a novel in vitro model system to test lung cell damage following repeated exposure to radiation and hyperoxia. Non-tumorigenic murine alveolar type II epithelial cells (C10) were exposed to >95% O2 for 8 h only (O2), 0.25 Gy ionizing γ-radiation (IR) only, or a double-hit combination of both challenges (O2 + IR) followed by 16 h of normoxia (ambient air containing 21% O2 and 5% CO2) (1 cycle = 24 h, 2 cycles = 48 h). Cell survival, DNA damage, apoptosis, and indicators of oxidative stress were evaluated after 1 and 2 cycles of exposure. We observed a significant (p < 0.05) decrease in cell survival across all challenge conditions along with an increase in DNA damage, determined by Comet analysis and H2AX phosphorylation, and apoptosis, determined by Annexin-V staining, relative to cells unexposed to hyperoxia or radiation. DNA damage (GADD45α and cleaved-PARP), apoptotic (cleaved caspase-3 and BAX), and antioxidant (HO-1 and Nqo1) proteins were increased following radiation and hyperoxia exposure after 1 and 2 cycles of exposure. Importantly, exposure to combination challenge O2 + IR exacerbated cell death and DNA damage compared to individual exposures O2 or IR alone. Additionally levels of cell cycle proteins phospho-p53 and p21 were significantly increased, while levels of CDK1 and Cyclin B1 were decreased at both time points for all exposure groups. Similarly, proteins involved in cell cycle arrest was more profoundly changed with the combination challenges as compared to each stressor alone. These results correlate with a significant 4- to 6-fold increase in the ratio of cells in G2/G1 after 2 cycles of exposure to hyperoxic conditions. We have characterized a novel in vitro model of double-hit, low-level radiation and hyperoxia exposure that leads to oxidative lung cell injury, DNA damage, apoptosis, and cell cycle arrest. PMID:27322243
Pietrofesa, Ralph A; Velalopoulou, Anastasia; Lehman, Stacey L; Arguiri, Evguenia; Solomides, Pantelis; Koch, Cameron J; Mishra, Om P; Koumenis, Constantinos; Goodwin, Thomas J; Christofidou-Solomidou, Melpo
2016-06-16
Spaceflight occasionally requires multiple extravehicular activities (EVA) that potentially subject astronauts to repeated changes in ambient oxygen superimposed on those of space radiation exposure. We thus developed a novel in vitro model system to test lung cell damage following repeated exposure to radiation and hyperoxia. Non-tumorigenic murine alveolar type II epithelial cells (C10) were exposed to >95% O₂ for 8 h only (O₂), 0.25 Gy ionizing γ-radiation (IR) only, or a double-hit combination of both challenges (O₂ + IR) followed by 16 h of normoxia (ambient air containing 21% O₂ and 5% CO₂) (1 cycle = 24 h, 2 cycles = 48 h). Cell survival, DNA damage, apoptosis, and indicators of oxidative stress were evaluated after 1 and 2 cycles of exposure. We observed a significant (p < 0.05) decrease in cell survival across all challenge conditions along with an increase in DNA damage, determined by Comet analysis and H2AX phosphorylation, and apoptosis, determined by Annexin-V staining, relative to cells unexposed to hyperoxia or radiation. DNA damage (GADD45α and cleaved-PARP), apoptotic (cleaved caspase-3 and BAX), and antioxidant (HO-1 and Nqo1) proteins were increased following radiation and hyperoxia exposure after 1 and 2 cycles of exposure. Importantly, exposure to combination challenge O₂ + IR exacerbated cell death and DNA damage compared to individual exposures O₂ or IR alone. Additionally levels of cell cycle proteins phospho-p53 and p21 were significantly increased, while levels of CDK1 and Cyclin B1 were decreased at both time points for all exposure groups. Similarly, proteins involved in cell cycle arrest was more profoundly changed with the combination challenges as compared to each stressor alone. These results correlate with a significant 4- to 6-fold increase in the ratio of cells in G2/G1 after 2 cycles of exposure to hyperoxic conditions. We have characterized a novel in vitro model of double-hit, low-level radiation and hyperoxia exposure that leads to oxidative lung cell injury, DNA damage, apoptosis, and cell cycle arrest.
Modulation of Radiation-Induced Apoptosis by Thiolamines
NASA Technical Reports Server (NTRS)
Warters, R. L.; Roberts, J. C.; Wilmore, B. H.; Kelley, L. L.
1997-01-01
Exposure to the thiolamine radioprotector N-(2-mercaptoethyl)-1,3-propanediamine (WR-1065) induced apoptosis in the mouse TB8-3 hybridoma after 60-minute (LD(sub50) = 4.5mM) or during a 20-hour (LD(sub50) = 0.15 mM) exposure. In contrast, a 20-hour exposure to 17 mM L-cysteine or 10 mM cysteamine was required to induce 50 percent apoptosis within 20 hours. Apoptosis was not induced by either a 60-minute or 20-hour exposure to 10 mM of the thiazolidime prodrugs ribose-cysteine (RibCys) or ribose-cysteamine (RibCyst). Thiolamine-induced apoptosis appeared to be a p53-independent process since it was induced by WR-1065 exposure in human HL60 cells. Exposure to WR-1065 (4mM for 15 minutes) or cysteine (10mM for 60 minutes) before and during irradiation protected cells against the induction of both DNA double-strand breaks and apoptosis, while exposure to RibCys (10 mM for 3 hours) did not. Treatment with either WR-1065, cysteine, RibCys or RibCyst for 60 minutes beginning 60 minutes after irradiation did not affect the level of radiation-induced apoptosis. In contrast, treatment with either cysteine, cysteamine or RibCys for 20 hours beginning 60 minutes after irradiation enhanced radiation-induced apoptosis. Similar experiments could not be conducted with WR-1065 because of its extreme toxicity. Our results indicate that thiolamine enhancement of radiation-induced apoptosis is not involved in their previously reported capacity to reduce radiation-induced mutations.
Doctrow, Susan R.; Lopez, Argelia; Schock, Ashley M.; Duncan, Nathan E.; Jourdan, Megan M.; Olasz, Edit B.; Moulder, John E.; Fish, Brian L.; Mäder, Marylou; Lazar, Jozef; Lazarova, Zelmira
2012-01-01
In the event of a radionuclear attack or nuclear accident, the skin would be the first barrier exposed to radiation, though skin injury can progress over days to years following exposure. Chronic oxidative stress has been implicated as being a potential contributor to the progression of delayed radiation-induced injury to skin and other organs. To examine the causative role of oxidative stress in delayed radiation-induced skin injury, including impaired wound healing, we tested a synthetic superoxide dismutase (SOD)/catalase mimetic, EUK-207, in a rat model of combined skin irradiation and wound injury. Administered systemically, beginning 48 h after irradiation, EUK-207 mitigated radiation dermatitis, suppressed indicators of tissue oxidative stress, and enhanced wound healing. Evaluation of gene expression in irradiated skin at 30 days after exposure revealed a significant upregulation of several key genes involved in detoxication of reactive oxygen and nitrogen species. This gene expression pattern was primarily reversed by EUK-207 therapy. These results demonstrate that oxidative stress plays a critical role in the progression of radiation-induced skin injury, and that the injury can be mitigated by appropriate antioxidant compounds administered 48 h after exposure. PMID:23190879
Overview of Atmospheric Ionizing Radiation (AIR)
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Maiden, D. L.; Goldhagen, P.; Tai, H.; Shinn, J. L.
2003-01-01
The SuperSonic Transport (SST) development program within the US was based at the Langley Research Center as was the Apollo radiation testing facility (Space Radiation Effects Laboratory) with associated radiation research groups. It was natural for the issues of the SST to be first recognized by this unique combination of research programs. With a re-examination of the technologies for commercial supersonic flight and the possible development of a High Speed Civil Transport (HSCT), the remaining issues of the SST required resolution. It was the progress of SST radiation exposure research program founded by T. Foelsche at the Langley Research Center and the identified remaining issues after that project over twenty-five years ago which became the launch point of the current atmospheric ionizing radiation (AIR) research project. Added emphasis to the need for reassessment of atmospheric radiation resulted from the major lowering of the recommended occupational exposure limits, the inclusion of aircrew as radiation workers, and the recognition of civil aircrew as a major source of occupational exposures. Furthermore, the work of Ferenc Hajnal of the Environmental Measurements Laboratory brought greater focus to the uncertainties in the neutron flux at high altitudes. A re-examination of the issues involved was committed at the Langley Research Center and by the National Council on Radiation Protection (NCRP). As a result of the NCRP review, a new flight package was assembled and flown during solar minimum at which time the galactic cosmic radiation is at a maximum (June 1997). The present workshop is the initial analysis of the new data from that flight. The present paper is an overview of the status of knowledge of atmospheric ionizing radiations. We will re-examine the exposures of the world population and examine the context of aircrew exposures with implications for the results of the present research. A condensed version of this report was given at the 1998 Annual Meeting of the NCRP with proceedings published in the journal of Health Physics.
Radiation in medicine: Origins, risks and aspirations
Donya, Mohamed; Radford, Mark; ElGuindy, Ahmed; Firmin, David; Yacoub, Magdi H.
2014-01-01
The use of radiation in medicine is now pervasive and routine. From their crude beginnings 100 years ago, diagnostic radiology, nuclear medicine and radiation therapy have all evolved into advanced techniques, and are regarded as essential tools across all branches and specialties of medicine. The inherent properties of ionizing radiation provide many benefits, but can also cause potential harm. Its use within medical practice thus involves an informed judgment regarding the risk/benefit ratio. This judgment requires not only medical knowledge, but also an understanding of radiation itself. This work provides a global perspective on radiation risks, exposure and mitigation strategies. PMID:25780797
Radiation in medicine: Origins, risks and aspirations.
Donya, Mohamed; Radford, Mark; ElGuindy, Ahmed; Firmin, David; Yacoub, Magdi H
2014-01-01
The use of radiation in medicine is now pervasive and routine. From their crude beginnings 100 years ago, diagnostic radiology, nuclear medicine and radiation therapy have all evolved into advanced techniques, and are regarded as essential tools across all branches and specialties of medicine. The inherent properties of ionizing radiation provide many benefits, but can also cause potential harm. Its use within medical practice thus involves an informed judgment regarding the risk/benefit ratio. This judgment requires not only medical knowledge, but also an understanding of radiation itself. This work provides a global perspective on radiation risks, exposure and mitigation strategies.
L Band EPR Tooth Dosimetry for Heavy Ion Irradiation
Yamaguchi, Ichiro; Sato, Hitoshi; Kawamura, Hiraku; Hamano, Tsuyoshi; Yoshii, Hiroshi; Suda, Mitsuru; Miyake, Minoru; Kunugita, Naoki
2016-01-01
Electron Paramagnetic Resonance (EPR) tooth dosimetry is being developed as a device to rapidly assess large populations that were potentially exposed to radiation during a major radiation accident or terrorist event. While most exposures are likely to be due to fallout and therefore involve low linear energy transfer (LET) radiation, there is also a potential for exposures to high LET radiation, for which the effect on teeth has been less well characterized by EPR. Therefore, the aim of this paper is to acquire fundamental response curves for high LET radiation in tooth dosimetry using L band EPR. For this purpose, we exposed human teeth to high energy carbon ions using the heavy ion medical accelerator in Chiba at the National Institute of Radiological Sciences. The primary findings were that EPR signals for carbon ion irradiation were about one-tenth the amplitude of the response to the same dose of 150 kVp X-rays. PMID:27542817
Late effect of atomic bomb radiation on myeloid disorders: leukemia and myelodysplastic syndromes.
Tsushima, Hideki; Iwanaga, Masako; Miyazaki, Yasushi
2012-03-01
Leukemia was the first malignancy linked to radiation exposure in atomic bomb survivors. Clear evidence of the dose-dependent excess risk of three major types of leukemia (acute lymphocytic leukemia, acute myeloid leukemia [AML], and chronic myeloid leukemia) was found, especially in people exposed at young ages. Such leukemia risks were at their highest in the late 1950s, and declined gradually thereafter over the past 50 years. Findings from recent risk analyses, however, suggest the persistence of AML risk even after 1990, and evidence of increased risk of myelodysplastic syndromes (MDS) due to atomic bomb radiation has recently been shown. High-risk MDS and forms involving complex chromosomal aberrations were found to be much more frequent in people exposed to higher radiation doses. These lines of epidemiological evidence suggest that the risk of radiation-induced hematological malignancies has persisted for six decades since the initial exposure.
Radiological health risks to astronauts from space activities and medical procedures
NASA Technical Reports Server (NTRS)
Peterson, Leif E.; Nachtwey, D. Stuart
1990-01-01
Radiation protection standards for space activities differ substantially from those applied to terrestrial working situations. The levels of radiation and subsequent hazards to which space workers are exposed are quite unlike anything found on Earth. The new more highly refined system of risk management involves assessing the risk to each space worker from all sources of radiation (occupational and non-occupational) at the organ level. The risk coefficients were applied to previous space and medical exposures (diagnostic x ray and nuclear medicine procedures) in order to estimate the radiation-induced lifetime cancer incidence and mortality risk. At present, the risk from medical procedures when compared to space activities is 14 times higher for cancer incidence and 13 times higher for cancer mortality; however, this will change as the per capita dose during Space Station Freedom and interplanetary missions increases and more is known about the risks from exposure to high-LET radiation.
Bajinskis, Ainars; Lindegren, Heléne; Johansson, Lotta; Harms-Ringdahl, Mats; Forsby, Anna
2011-02-01
The effects of low doses of ionizing radiation on cellular development in the nervous system are presently unclear. The focus of the present study was to examine low-dose γ-radiation-induced effects on the differentiation of neuronal cells and on the development of neural stem cells to glial cells. Human neuroblastoma SH-SY5Y cells were exposed to (137)Cs γ rays at different stages of retinoic acid-induced neuronal differentiation, and neurite formation was determined 6 days after exposure. When SH-SY5Y cells were exposed to low-dose-rate γ rays at the onset of differentiation, the number of neurites formed per cell was significantly less after exposure to either 10, 30 or 100 mGy compared to control cells. Exposure to 10 and 30 mGy attenuated differentiation of immature C17.2 mouse-derived neural stem cells to glial cells, as verified by the diminished expression of glial fibrillary acidic protein. Proteomic analysis of the neuroblastoma cells by 2D-PAGE after 30 mGy irradiation showed that proteins involved in neuronal development were downregulated. Proteins involved in cell cycle and proliferation were altered in both cell lines after exposure to 30 mGy; however, the rate of cell proliferation was not affected in the low-dose range. The radiation-induced attenuation of differentiation and the persistent changes in protein expression is indicative of an epigenetic rather than a cytotoxic mechanism.
Changes in Liver Metabolic Gene Expression from Radiation Exposure
NASA Technical Reports Server (NTRS)
Peters, C. P.; Wotring, V. E.
2012-01-01
Increased exposure to radiation is one physiological stressor associated with spaceflight. While known to alter normal physiological function, how radiation affects metabolism of administered medications is unclear. Crew health could be affected if the actions of medications used in spaceflight deviated from expectations formed during terrestrial medication use. Three different doses of gamma radiation (50 mGy - 6.05 Gy) and a sham were administered to groups of 6 mice each, and after various intervals of recovery time, liver gene expression was measured with RT-qPCR arrays for drug metabolism and DNA repair enzymes. Results indicated approx.65 genes of the 190 tested were significantly affected by at least one of the radiation doses. Many of the affected genes are involved in the metabolism of drugs with hydrophobic or steroid-like structures, maintenance of redox homeostasis and repair of DNA damage. Most affected genes returned to near control expression levels by 7 days post-treatment. With 6 Gy exposure, metallothionein expression was 132-fold more than control at the 4 hr time point, and fell at each later time point (11-fold at 24 hrs, and 8-fold at 7 days). In contrast, Cyp17a1 showed a 4-fold elevation at 4 hrs after exposure and remained constant for 7 days.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Visscher, W.A.
A retrospective cohort study was done which was designed to assess the effects of medical x-ray exposure on cancer incidence among scoliosis patients. Although the primary purpose of the study was to assess cancer incidence, a secondary goal was to investigate whether diagnostic x-ray exposure is related to adverse reproductive events in the female subjects. A series of case-control analyses were done which were designed to assess these effects. Radiation exposure was measured both by total films received and by an estimate of the number of films received and by an estimate of the number of films which involved ovarianmore » irradiation. Radiation appeared to increase a woman's risk of any adverse event in the overall analysis and her risk of a premature or low birth weight infant in the separate analyses. Radiation did not appear to be related to spontaneous abortion, complications of pregnancy or delivery or birth defects, although the results of the pregnancy complications analysis was suggestive.« less
Gamma radiation at a human relevant low dose rate is genotoxic in mice
NASA Astrophysics Data System (ADS)
Graupner, Anne; Eide, Dag M.; Instanes, Christine; Andersen, Jill M.; Brede, Dag A.; Dertinger, Stephen D.; Lind, Ole C.; Brandt-Kjelsen, Anicke; Bjerke, Hans; Salbu, Brit; Oughton, Deborah; Brunborg, Gunnar; Olsen, Ann K.
2016-09-01
Even today, 70 years after Hiroshima and accidents like in Chernobyl and Fukushima, we still have limited knowledge about the health effects of low dose rate (LDR) radiation. Despite their human relevance after occupational and accidental exposure, only few animal studies on the genotoxic effects of chronic LDR radiation have been performed. Selenium (Se) is involved in oxidative stress defence, protecting DNA and other biomolecules from reactive oxygen species (ROS). It is hypothesised that Se deficiency, as it occurs in several parts of the world, may aggravate harmful effects of ROS-inducing stressors such as ionising radiation. We performed a study in the newly established LDR-facility Figaro on the combined effects of Se deprivation and LDR γ exposure in DNA repair knockout mice (Ogg1-/-) and control animals (Ogg1+/-). Genotoxic effects were seen after continuous radiation (1.4 mGy/h) for 45 days. Chromosomal damage (micronucleus), phenotypic mutations (Pig-a gene mutation of RBCCD24-) and DNA lesions (single strand breaks/alkali labile sites) were significantly increased in blood cells of irradiated animals, covering three types of genotoxic activity. This study demonstrates that chronic LDR γ radiation is genotoxic in an exposure scenario realistic for humans, supporting the hypothesis that even LDR γ radiation may induce cancer.
Thyroid Cancer Following Childhood Low-Dose Radiation Exposure: A Pooled Analysis of Nine Cohorts.
Lubin, Jay H; Adams, M Jacob; Shore, Roy; Holmberg, Erik; Schneider, Arthur B; Hawkins, Michael M; Robison, Leslie L; Inskip, Peter D; Lundell, Marie; Johansson, Robert; Kleinerman, Ruth A; de Vathaire, Florent; Damber, Lena; Sadetzki, Siegal; Tucker, Margaret; Sakata, Ritsu; Veiga, Lene H S
2017-07-01
The increased use of diagnostic and therapeutic procedures that involve radiation raises concerns about radiation effects, particularly in children and the radiosensitive thyroid gland. Evaluation of relative risk (RR) trends for thyroid radiation doses <0.2 gray (Gy); evidence of a threshold dose; and possible modifiers of the dose-response, e.g., sex, age at exposure, time since exposure. Pooled data from nine cohort studies of childhood external radiation exposure and thyroid cancer with individualized dose estimates, ≥1000 irradiated subjects or ≥10 thyroid cancer cases, with data limited to individuals receiving doses <0.2 Gy. Cohorts included the following: childhood cancer survivors (n = 2); children treated for benign diseases (n = 6); and children who survived the atomic bombings in Japan (n = 1). There were 252 cases and 2,588,559 person-years in irradiated individuals and 142 cases and 1,865,957 person-years in nonirradiated individuals. There were no interventions. Incident thyroid cancers. For both <0.2 and <0.1 Gy, RRs increased with thyroid dose (P < 0.01), without significant departure from linearity (P = 0.77 and P = 0.66, respectively). Estimates of threshold dose ranged from 0.0 to 0.03 Gy, with an upper 95% confidence bound of 0.04 Gy. The increasing dose-response trend persisted >45 years after exposure, was greater at younger age at exposure and younger attained age, and was similar by sex and number of treatments. Our analyses reaffirmed linearity of the dose response as the most plausible relationship for "as low as reasonably achievable" assessments for pediatric low-dose radiation-associated thyroid cancer risk. Copyright © 2017 Endocrine Society
[Navigated drilling for femoral head necrosis. Experimental and clinical results].
Beckmann, J; Tingart, M; Perlick, L; Lüring, C; Grifka, J; Anders, S
2007-05-01
In the early stages of osteonecrosis of the femoral head, core decompression by exact drilling into the ischemic areas can reduce pain and achieve reperfusion. Using computer aided surgery, the precision of the drilling can be improved while simultaneously lowering radiation exposure time for both staff and patients. We describe the experimental and clinical results of drilling under the guidance of the fluoroscopically-based VectorVision navigation system (BrainLAB, Munich, Germany). A total of 70 sawbones were prepared mimicking an osteonecrosis of the femoral head. In two experimental models, bone only and obesity, as well as in a clinical setting involving ten patients with osteonecrosis of the femoral head, the precision and the duration of radiation exposure were compared between the VectorVision system and conventional drilling. No target was missed. For both models, there was a statistically significant difference in terms of the precision, the number of drilling corrections as well as the radiation exposure time. The average distance to the desired midpoint of the lesion of both models was 0.48 mm for navigated drilling and 1.06 mm for conventional drilling, the average drilling corrections were 0.175 and 2.1, and the radiation exposure time less than 1 s and 3.6 s, respectively. In the clinical setting, the reduction of radiation exposure (below 1 s for navigation compared to 56 s for the conventional technique) as well as of drilling corrections (0.2 compared to 3.4) was also significant. Computer guided drilling using the fluoroscopically based VectorVision navigation system shows a clearly improved precision with a enormous simultaneous reduction in radiation exposure. It is therefore recommended for clinical routine.
The effect of electromagnetic radiation of wireless connections on morphology of amniotic fluid
NASA Astrophysics Data System (ADS)
Novikov, Vsevolod O.; Titova, Natalia; Azarhov, Olexand; Wójcik, Waldemar; GrÄ dz, Å.»aklin; Mussabekova, Assel
2016-09-01
The article considers the effect of wireless networks on the morphology of amniotic fluid (AF) to demonstrate possible risks involving pregnant women. The analysis of AF thesiograms after exposure of the model fluid to Wi-Fi, 3G and β- radiation was chosen as the research method. A comparative analysis of facies structures is carried out, and depth maps of the facies structure are created. This comparative analysis permits an evaluation of the efficiency of morphological changes. It is shown that AF control facies differ in the concentration of areas with a narrow peripheral area and ellipsoidal formations of crystalloids in circumferences center. After exposure of different types of radiation onto AF, the facies structures collapse and form their own conglomerates. The obtained results show that the considered types of radiation have a negative effect on AF.
Whole mouse blood microRNA as biomarkers for exposure to γ-rays and 56Fe ions
Templin, Thomas; Amundson, Sally A.; Brenner, David J.; Smilenov, Lubomir B.
2013-01-01
Purpose Biomarkers of ionising radiation exposure are useful in a variety of scenarios, such as medical diagnostic imaging, occupational exposures, and spaceflight. This study investigates to what extent microRNA (miRNA) expression signatures in mouse peripheral blood can be used as biomarkers for exposures to radiation with low and high linear energy transfers. Materials and methods Mice were irradiated with doses of 0.5, 1.5, or 5.0 Gy γ-rays (dose rate of 0.0136 Gy/s) or with doses of 0.1 or 0.5 Gy 56Fe ions (dose rate of 0.00208 Gy/s). Total RNA was isolated from whole blood at 6 h or 24 h after irradiation. Three animals per irradiation condition were used. Differentially expressed miRNA were determined by means of quantitative real-time polymerase chain reaction. Results miRNA expression signatures were radiation type-specific and dose- and time-dependent. The differentially expressed miRNA were expressed in either one condition (71%) or multiple conditions (29%). Classifiers based on the differentially expressed miRNA predicted radiation type or dose with accuracies between 75% and 100%. Gene-ontology analyses show that miRNA induced by irradiation are involved in the control of several biological processes, such as mRNA transcription regulation, nucleic-acid metabolism, and development. Conclusion miRNA signatures induced by ionising radiation in mouse blood are radiation type- and radiation dose-specific. These findings underline the complexity of the radiation response and the importance of miRNA in it. PMID:21271940
Acquisition of lithium chloride- and radiation-induced taste aversions in hypophysectomized rats.
Rabin, B M; Hunt, W A; Lee, J
1983-03-01
The effects of hypophysectomy on the acquisition of conditioned taste aversions following injection of lithium chloride and following exposure to ionizing radiation were studied using a two-bottle preference test. Hypophysectomy did not disrupt the acquisition of a taste aversion following either treatment. The results are interpreted as: (a) suggesting that pituitary/adrenal hormones do not mediate the acquisition of a conditioned taste aversion following injections of lithium chloride or following exposure to ionizing radiation in a two-bottle preference test, and (b) consistent with other research suggesting that the involvement of pituitary/adrenal hormones in taste aversion learning may be related to the conflict induced by using a one-bottle test and not to the learning itself.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco
Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated networkmore » (p < 10{sup -53}) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease.« less
Exposure assessment of aluminum arc welding radiation.
Peng, Chiung-yu; Lan, Cheng-hang; Juang, Yow-jer; Tsao, Ta-ho; Dai, Yu-tung; Liu, Hung-hsin; Chen, Chiou-jong
2007-10-01
The purpose of this study is to evaluate the non-ionizing radiation (NIR) exposure, especially optical radiation levels, and potential health hazard from aluminum arc welding processes based on the American Conference of Governmental Industrial Hygienists (ACGIH) method. The irradiance from the optical radiation emissions can be calculated with various biological effective parameters [i.e., S(lambda), B(lambda), R(lambda)] for NIR hazard assessments. The aluminum arc welding processing scatters bright light with NIR emission including ultraviolet radiation (UVR), visible, and infrared spectra. The UVR effective irradiance (Eeff) has a mean value of 1,100 microW cm at 100 cm distance from the arc spot. The maximum allowance time (tmax) is 2.79 s according to the ACGIH guideline. Blue-light hazard effective irradiance (EBlue) has a mean value of 1840 microW cm (300-700 nm) at 100 cm with a tmax of 5.45 s exposure allowance. Retinal thermal hazard effective calculation shows mean values of 320 mW cm(-2) sr(-1) and 25.4 mW (cm-2) (380-875 nm) for LRetina (spectral radiance) and ERetina (spectral irradiance), respectively. From this study, the NIR measurement from welding optical radiation emissions has been established to evaluate separate types of hazards to the eye and skin simultaneously. The NIR exposure assessment can be applied to other optical emissions from industrial sources. The data from welding assessment strongly suggest employees involved in aluminum welding processing must be fitted with appropriate personal protection devices such as masks and gloves to prevent serious injuries of the skin and eyes upon intense optical exposure.
Lochard, J; Bogdevitch, I; Gallego, E; Hedemann-Jensen, P; McEwan, A; Nisbet, A; Oudiz, A; Oudiz, T; Strand, P; Janssens, A; Lazo, T; Carr, Z; Sugier, A; Burns, P; Carboneras, P; Cool, D; Cooper, J; Kai, M; Lecomte, J-F; Liu, H; Massera, G; McGarry, A; Mrabit, K; Mrabit, M; Sjöblom, K-L; Tsela, A; Weiss, W
2009-06-01
In this report, the Commission provides guidance for the protection of people living in long-term contaminated areas resulting from either a nuclear accident or a radiation emergency. The report considers the effects of such events on the affected population. This includes the pathways of human exposure, the types of exposed populations, and the characteristics of exposures. Although the focus is on radiation protection considerations, the report also recognises the complexity of post-accident situations, which cannot be managed without addressing all the affected domains of daily life, i.e. environmental, health, economic, social, psychological, cultural, ethical, political, etc. The report explains how the 2007 Recommendations apply to this type of existing exposure situation, including consideration of the justification and optimisation of protection strategies, and the introduction and application of a reference level to drive the optimisation process. The report also considers practical aspects of the implementation of protection strategies, both by authorities and the affected population. It emphasises the effectiveness of directly involving the affected population and local professionals in the management of the situation, and the responsibility of authorities at both national and local levels to create the conditions and provide the means favouring the involvement and empowerment of the population. The role of radiation monitoring, health surveillance, and the management of contaminated foodstuffs and other commodities is described in this perspective. The Annex summarises past experience of longterm contaminated areas resulting from radiation emergencies and nuclear accidents, including radiological criteria followed in carrying out remediation measures.
Psychological symptoms and intermittent hypertension following acute microwave exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forman, S.A.; Holmes, C.K.; McManamon, T.V.
1982-11-01
Two men who were accidently, acutely irradiated with X-band microwave radiation have been followed up clinically for 12 months. Both men developed similar psychological symptoms, which included emotional lability, irritability, headaches, and insomnia. Several months after the incidents, hypertension was diagnosed in both patients. No organic basis for the psychological problems could be found nor could any secondary cause for the hypertension. A similar syndrome following microwave exposure has been described by the East Europeans. The two cases we report, with comparable subjective symptoms and hypertension following a common exposure, provide further strong, circumstantial evidence of cause and effect. Amore » greater knowledge of the mechanisms involved in bioeffects which may be induced by radiofrequency and microwave radiation is definitely needed.« less
NASA Astrophysics Data System (ADS)
Lau, Patrick; Hu, Yueyuan; Hellweg, Christine; Baumstark-Khan, Christa; Reitz, Guenther
Extended exposure to altered gravity conditions like during long-term space flight results in significant bone loss. Exposure to ionizing radiation for cancer therapy causes bone damage and may increase the risk of fractures. Similarly, besides altered gravity conditions, astronauts on exploratory missions beyond low-Earth orbit will be exposed to high-energy heavy ions in addition to proton and photon radiation, although for prolonged periods and at lower doses and dose rates compared with therapy. Space conditions may place astronauts at a greater risk for mission-critical fractures. Until now, little is known about the effects of space radiation on the skeletal system especially on osteoprogenitor cells. Accelerator facilities are used to simulate parts of the radiation environment in space. Heavy ion accelerators therefore could be used to assess radiation risks for astronauts who will be exposed to higher radiation doses e.g. on a Mars mission. The aim of the present study was to determine the biological effects of spaceflight-relevant radiation exposure on the cellular level using murine osteoprogenitor cell lines compared to nonirradiated controls. To gain a deeper understanding of bone cell differenti-ation and mineralization after exposure to heavy ions, we examined gene expression modulation of bone specific transcription factors, osteoblast specific marker genes as well as genes function as coupling factors that link bone resorption to bone formation. We investigated the transcrip-tional modulation of type I collagen (Col I), osteocalcin (Ocn), Transforming growth factor-β1 (TGF-β1), interleukin-6 (IL-6) and the bone specific transcription factor Runx2 (Cbfa1). To gain deeper insight into potential cellular mechanisms involved in cellular response after ex-posure to heavy ions, we investigated gene expression modulations after exposure to energetic carbon ions (35 MeV/u, 73.2 keV/µm), iron ions (1000 MeV/u, 150 keV/µm) and lead ions (29 MeV/u, 9600 keV/µm) versus low LET X-rays. Exposure to X-irradiation dose-dependently increased the mRNA levels of Runx2 (cbfa1) whereas expression values of OCN and TGF-β1 were elevated at later time points. Exposure to heavy ions provoked a more marked effect on bone specific gene expression within the differentiation process. Collectively, our results indi-cate that heavy ions facilitate differentiation more effectively than X-rays as a major response in the progeny of irradiated osteoprogenitor cells. The data presented allow us to suggest that exposure to ionizing radiation interferes with bone formation at the level of cellular differenti-ation. In this regard, further experiments are needed to investigate gene expression patterns in mammalian cells that respond to differentiation after exposure to ionizing radiation.
Ko, Seulki; Chung, Hwan Hoon; Cho, Sung Bum; Jin, Young Woo; Kim, Kwang Pyo; Ha, Mina; Bang, Ye Jin; Ha, Yae Won; Lee, Won Jin
2017-12-15
Although fluoroscopically guided procedures involve a considerably high dose of radiation, few studies have investigated the effects of radiation on medical workers involved in interventional fluoroscopy procedures. Previous research remains in the early stages and has not reached a level comparable with other occupational studies thus far. Furthermore, the study of radiation workers provides an opportunity to estimate health risks at low doses and dose rates of ionising radiation. Therefore, the objectives of this study are (1) to initiate a prospective cohort study by conducting a baseline survey among medical radiation workers who involve interventional fluoroscopy procedures and (2) to assess the effect of occupational radiation exposure and on the overall health status through an in-depth cross-sectional study. Intervention medical workers in Korea will be enrolled by using a self-administered questionnaire survey, and the survey data will be linked with radiation dosimetry data, National Health Insurance claims data, cancer registry and mortality data. After merging these data, the radiation organ dose, lifetime attributable risk due to cancer and the risk per unit dose will be estimated. For the cross-sectional study, approximately 100 intervention radiology department workers will be investigated for blood tests, clinical examinations such as ultrasonography (thyroid and carotid artery scan) and lens opacity, the validation of badge dose and biodosimetry. This study was reviewed and approved by the institutional review board of Korea University (KU-IRB-12-12-A-1). All participants will provide written informed consent prior to enrolment. The findings of the study will be disseminated through peer-reviewed scientific journals, conference presentations, and a report will be submitted to the relevant public health authorities in the Korea Centers for Disease Control and Prevention to help with the development of appropriate research and management policies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Ko, Seulki; Chung, Hwan Hoon; Cho, Sung Bum; Jin, Young Woo; Kim, Kwang Pyo; Ha, Mina; Bang, Ye Jin; Ha, Yae Won; Lee, Won Jin
2017-01-01
Introduction Although fluoroscopically guided procedures involve a considerably high dose of radiation, few studies have investigated the effects of radiation on medical workers involved in interventional fluoroscopy procedures. Previous research remains in the early stages and has not reached a level comparable with other occupational studies thus far. Furthermore, the study of radiation workers provides an opportunity to estimate health risks at low doses and dose rates of ionising radiation. Therefore, the objectives of this study are (1) to initiate a prospective cohort study by conducting a baseline survey among medical radiation workers who involve interventional fluoroscopy procedures and (2) to assess the effect of occupational radiation exposure and on the overall health status through an in-depth cross-sectional study. Methods and analysis Intervention medical workers in Korea will be enrolled by using a self-administered questionnaire survey, and the survey data will be linked with radiation dosimetry data, National Health Insurance claims data, cancer registry and mortality data. After merging these data, the radiation organ dose, lifetime attributable risk due to cancer and the risk per unit dose will be estimated. For the cross-sectional study, approximately 100 intervention radiology department workers will be investigated for blood tests, clinical examinations such as ultrasonography (thyroid and carotid artery scan) and lens opacity, the validation of badge dose and biodosimetry. Ethics and dissemination This study was reviewed and approved by the institutional review board of Korea University (KU-IRB-12-12-A-1). All participants will provide written informed consent prior to enrolment. The findings of the study will be disseminated through peer-reviewed scientific journals, conference presentations, and a report will be submitted to the relevant public health authorities in the Korea Centers for Disease Control and Prevention to help with the development of appropriate research and management policies. PMID:29248885
Kim, Seung-Hyun; Kelly, Peter B; Clifford, Andrew J
2010-04-28
(14)C has long been used as a tracer for quantifying the in vivo human metabolism of food components, biopharmaceuticals, and nutrients. Minute amounts (< or =1 x 10 (-18) mol) of (14)C can be measured with high-throughput (14)C-accelerator mass spectrometry (HT (14)C-AMS) in isolated chemical extracts of biological, biomedical, and environmental samples. Availability of in vivo human data sets using a (14)C tracer would enable current concepts of the metabolic behavior of food components, biopharmaceuticals, or nutrients to be organized into models suitable for quantitative hypothesis testing and determination of metabolic parameters. In vivo models are important for specification of intake levels for food components, biopharmaceuticals, and nutrients. Accurate estimation of the radiation exposure from ingested (14)C is an essential component of the experimental design. Therefore, this paper illustrates the calculation involved in determining the radiation exposure from a minute dose of orally administered (14)C-beta-carotene, (14)C-alpha-tocopherol, (14)C-lutein, and (14)C-folic acid from four prior experiments. The administered doses ranged from 36 to 100 nCi, and radiation exposure ranged from 0.12 to 5.2 microSv to whole body and from 0.2 to 3.4 microSv to liver with consideration of tissue weighting factor and fractional nutrient. In comparison, radiation exposure experienced during a 4 h airline flight across the United States at 37000 ft was 20 microSv.
Olmstead, Craig; Cruz, Kyle; Stodilka, Robert; Zabel, Pamela; Wolfson, Robert
2015-02-01
Radionuclide therapies, including treatment of neuroendocrine tumors with lutetium-177 (Lu-177) octreotate, often involve hospital admission to minimize radiation exposure to the public. Overnight admission due to Lu-177 octreotate therapy incurs additional cost for the hospital and is an inconvenience for the patient. This study endeavors to characterize the potential radiation risk to caregivers and the public should Lu-177 octreotate therapies be performed on an outpatient basis. Dose rate measurements of radiation emanating from 10 patients were taken 30 min, 4, and 20 h after initiation of Lu-177 octreotate therapy. Instadose radiation dose measurement monitors were also placed around the patients' rooms to assess the potential cumulative radiation exposure during the initial 30 min-4 h after treatment (simulating the hospital-based component of the outpatient model) as well as 4-20 h after treatment (simulating the discharged outpatient portion). The mean recorded dose rate at 30 min, 4, and 20 h after therapy was 20.4, 14.0, and 6.6 μSv/h, respectively. The majority of the cumulative dose readings were below the minimum recordable threshold of 0.03 mSv, with a maximum dose recorded of 0.18 mSv. Given the low dose rate and cumulative levels of radiation measured, the results support that an outpatient Lu-177 octreotate treatment protocol would not jeopardize public safety. Nevertheless, the concept of ALARA still requires that detailed radiation safety protocols be developed for Lu-177 octreotate outpatients to minimize radiation exposure to family members, caregivers, and the general public.
Yoshida, Kengo; Misumi, Munechika; Kubo, Yoshiko; Yamaoka, Mika; Kyoizumi, Seishi; Ohishi, Waka; Hayashi, Tomonori; Kusunoki, Yoichiro
2016-10-01
In a series of studies of atomic bomb survivors, radiation-dose-dependent alterations in peripheral T-cell populations have been reported. For example, reduced size in naïve T-cell pools and impaired proliferation ability of T cells were observed. Because these alterations are also generally observed with human aging, we hypothesized that radiation exposure may accelerate the aging process of the T-cell immune system. To further test this hypothesis, we conducted cross-sectional analyses of telomere length, a hallmark of cellular aging, of naïve and memory CD4 T cells and total CD8 T cells in the peripheral blood of 620 atomic bomb survivors as it relates to age and radiation dose, using fluorescence in situ hybridization with flow cytometry. Since telomere shortening has been recently demonstrated in obesity-related metabolic abnormalities and diseases, the modifying effects of metabolic status were also examined. Our results indicated nonlinear relationships between T-cell telomere length and prior radiation exposure, i.e., longer telomeres with lower dose exposure and a decreasing trend of telomere length with individuals exposed to doses higher than 0.5 Gy. There were associations between shorter T-cell telomeres and higher hemoglobin Alc levels or fatty liver development. In naïve and memory CD4 T cells, radiation dose and high-density lipoprotein (HDL) cholesterol were found to positively interact with telomere length, suggesting that the decreasing trend of telomere length from a higher radiation dose was less conspicuous in individuals with a higher HDL cholesterol. It is therefore likely that radiation exposure perturbs T-cell homeostasis involving telomere length maintenance by multiple biological mechanisms, depending on dose, and that long-term-radiation-induced effects on the maintenance of T-cell telomeres may be modified by the subsequent metabolic conditions of individuals.
Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G
2018-01-01
A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR. PMID:29531508
Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G
2018-01-01
A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR.
Blood-Based Detection of Radiation Exposure in Humans Based on Novel Phospho-Smc1 ELISA
Ivey, Richard G.; Moore, Heather D.; Voytovich, Uliana J.; Thienes, Cortlandt P.; Lorentzen, Travis D.; Pogosova-Agadjanyan, Era L.; Frayo, Shani; Izaguirre, Venissa K.; Lundberg, Sally J.; Hedin, Lacey; Badiozamani, Kas Ray; Hoofnagle, Andrew N.; Stirewalt, Derek L.; Wang, Pei; Georges, George E.; Gopal, Ajay K.; Paulovich, Amanda G.
2011-01-01
The structural maintenance of chromosome 1 (Smc1) protein is a member of the highly conserved cohesin complex and is involved in sister chromatid cohesion. In response to ionizing radiation, Smc1 is phosphorylated at two sites, Ser-957 and Ser-966, and these phosphorylation events are dependent on the ATM protein kinase. In this study, we describe the generation of two novel ELISAs for quantifying phospho-Smc1Ser-957 and phospho-Smc1Ser-966. Using these novel assays, we quantify the kinetic and biodosimetric responses of human cells of hematological origin, including immortalized cells, as well as both quiescent and cycling primary human PBMC. Additionally, we demonstrate a robust in vivo response for phospho-Smc1Ser-957 and phospho-Smc1Ser-966 in lymphocytes of human patients after therapeutic exposure to ionizing radiation, including total-body irradiation, partial-body irradiation, and internal exposure to 131I. These assays are useful for quantifying the DNA damage response in experimental systems and potentially for the identification of individuals exposed to radiation after a radiological incident. PMID:21388270
NASA Technical Reports Server (NTRS)
Taylor, Edward W.; Pirich, Ronald G.
2011-01-01
An experiment involving radiation-resistant hydrophobic coatings is planned for space exposure and experimental testing on the International Space Station (ISS) in 2011. The Lotus biocide coatings are designed for supporting space exploration missions. This innovation is an antibacterial, anti-contamination, and self-cleaning coating that uses nano-sized semiconductor semimetal oxides to neutralize biological pathogens and toxic chemicals, as well as to mitigate dust accumulation (see figure). The Lotus biocide coating is thin (approximately microns thick), lightweight, and the biocide properties will not degrade with time or exposure to biological or chemical agents. The biocide is stimulated chemically (stoichiometric reaction) through exposure to light (photocatalysis), or by an applied electric field (electrocatalysis). The hydrophobic coating samples underwent preliminary high-energy proton and alpha-ray (helium ion) irradiations at the Lawrence Berkeley National Laboratory 88" cyclotron and demonstrated excellent radiation resistance for a portion of the Galactic Cosmic Ray (GRC) and Solar Proton spectrum. The samples will undergo additional post-flight studies when returned to Earth to affirm further the radiation resistance properties of the space exposed coatings.
An assessment of nursing staffs' knowledge of radiation protection and practice.
Badawy, Mohamed Khaldoun; Mong, Kam Shan; Paul Lykhun, U; Deb, Pradip
2016-03-01
Although the exposure to nursing staff is generally lower than the allowable radiation worker dose limits, awareness and overcoming fears of radiation exposure is essential in order to perform routine activities in certain departments. Furthermore, the nursing staff, whether they are defined as radiation workers or not, must be able to respond to any radiological emergencies and provide care to any patient affected by radiation. This study aims to gauge the awareness of radiation safety among the nursing staff at a major hospital in different departments and recommend if further radiation safety training is required. A prospective multiple choice questionnaire was distributed to 200 nurses in 9 different departments. The questionnaire tested knowledge that would be taught at a basic radiation safety course. 147 nurses (74%) completed the survey with the average score of 40%. Furthermore, 85% of nurses surveyed felt there was a need for radiation safety training in their respective departments to assist with day to day work in the department. An increase in radiation safety materials that are specific to each department is recommended to assist with daily work involving radiation. Moreover, nursing staff that interact with radiation on a regular basis should undertake radiation safety courses before beginning employment and regular refresher courses should be made available thereafter.
Murphy, John C; Darragh, Karen; Walsh, Simon J; Hanratty, Colm G
2011-11-15
The RADPAD is a lead-free surgical drape containing bismuth and barium that has been demonstrated to reduce scatter radiation exposure to primary operators during fluoroscopic procedures. It is not known to what degree the RADPAD reduces radiation exposure in operators who perform highly complex percutaneous coronary intervention (PCI) requiring prolonged fluoroscopic screening times. Sixty consecutive patients due to undergo elective complex PCI involving rotational atherectomy, multivessel PCI, or chronic total occlusions were randomized in a 1:1 pattern to have their procedures performed with and without the RADPAD drape in situ. Dosimetry was performed on the left arm of the primary operator. There were 40 cases of chronic total occlusion, including 28 with contralateral injections; 15 cases involving rotational atherectomy; and 5 cases of multivessel PCI. There was no significant difference in screening times or dose-area products between the 2 patient groups. Primary operator radiation dose relative to screening time (RADPAD: slope = 1.44, R² = 0.25; no RADPAD: slope = 4.60, R² = 0.26; analysis of covariance F = 4.81, p = 0.032) and dose-area product (RADPAD: slope = 0.003, R² = 0.26; no RADPAD: slope = 0.011, R² = 0.52; analysis of covariance F = 12.54, p = 0.008) was significantly smaller in the RADPAD cohort compared to the no-RADPAD group. In conclusion, the RADPAD significantly reduces radiation exposure to primary operators during prolonged, complex PCI cases. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tilton, Susan C.; Markillie, Lye Meng; Hays, Spencer
Our goal here was to identify dose and temporal dependent radiation responses in a complex tissue, reconstituted human skin. Direct sequencing of RNA (RNA-seq) was used to quantify altered transcripts following exposure to 0.1, 2 and 10 Gy of ionizing radiation at 3 and 8 hours. These doses include a low dose in the range of some medical diagnostic procedures (0.1 Gy), a dose typically received during radiotherapy (2.0 Gy) and a lethal dose (10 Gy). These doses could be received after an intentional or accidental radiation exposure and biomarkers are needed to rapidly and accurately triage exposed individuals. Amore » total of 1701 genes were deemed to be significantly affected by high dose radiation exposure with the majority of genes affected at 10 Gy. A group of 29 genes including GDF15, BBC3, PPM1D, FDXR, GADD45A, MDM2, CDKN1A, TP53INP1, CYCSP27, SESN1, SESN2, PCNA, and AEN were similarly altered at both 2 and 10 Gy, but not 0.1 Gy, at multiple time points. A much larger group of up regulated genes, including those involved in inflammatory responses, was significantly altered only after a 10 Gy exposure. At high doses, down regulated genes were associated with cell cycle regulation and exhibited an apparent linear response between 2 and 10 Gy. While only a handful of genes were significantly affected by 0.1 Gy exposure using stringent statistical filters, groups of related genes regulating cell cycle progression and inflammatory responses consistently exhibited opposite trends in their regulation compared to the high dose exposures. Differential regulation of PLK1 signaling at low and high doses was confirmed using qRT-PCR. These results indicate that some alterations in gene expression are qualitatively different at low and high doses of radiation in this model system.« less
Spruill, M D; Nelson, D O; Ramsey, M J; Nath, J; Tucker, J D
2000-01-01
As the measurement of chromosomal translocations increases in popularity for quantifying prior radiation exposure, information on the possible decline of these "stable" aberrations over time is urgently needed. We report here information about the persistence of radiation-induced chromosome aberrations in vivo over the life span of a rodent. Female C57BL/6 mice were given a single whole-body acute exposure of 0, 1, 2, 3 or 4 Gy (137)Cs gamma rays at 8 weeks of age. Chromosome aberrations were analyzed from peripheral blood samples at various intervals between 1 day and 21 months after exposure. Aberrations were detected by painting chromosomes 2 and 8. Translocations decreased dramatically during the first 3 months after irradiation, beyond which time the frequencies remained relatively constant out to 1 year, when the effects of aging and clonal expansion became significant. Both reciprocal and nonreciprocal translocations increased with age in the unexposed control animals and were involved in clones. As expected of unstable aberrations, dicentrics decreased rapidly after exposure and reached baseline levels within 3 months. These results indicate that the persistence of translocations induced by ionizing radiation is complicated by aging and clonal expansion and that these factors must be considered when quantifying translocations at long times after exposure. These results have implications for biological dosimetry in human populations.
Hoffman, F Owen; Kocher, David C; Apostoaei, A Iulian
2011-11-01
Evaluations of radiation exposures of workers and the public traditionally focus on assessments of radiation dose, especially annual dose, without explicitly evaluating the health risk associated with those exposures, principally the risk of radiation-induced cancer. When dose is the endpoint of an assessment, opportunities to communicate the significance of exposures are limited to comparisons with dose criteria in regulations, doses due to natural background or medical x-rays, and doses above which a statistically significant increase of disease has been observed in epidemiologic studies. Risk assessment generally addresses the chance (probability) that specific diseases might be induced by past, present, or future exposure. The risk of cancer per unit dose will vary depending on gender, age, exposure type (acute or chronic), and radiation type. It is not uncommon to find that two individuals with the same effective dose will have substantially different risks. Risk assessment has shown, for example, that: (a) medical exposures to computed tomography scans have become a leading source of future risk to the general population, and that the risk would be increased above recently published estimates if the incidence of skin cancer and the increased risk from exposure to x-rays compared with high-energy photons were taken into account; (b) indoor radon is a significant contributor to the baseline risk of lung cancer, particularly among people who have never smoked; and (c) members of the public who were exposed in childhood to I in fallout from atmospheric nuclear weapons tests and were diagnosed with thyroid cancer later in life would frequently meet criteria established for federal compensation of cancers experienced by energy workers and military participants at atmospheric weapons tests. Risk estimation also enables comparisons of impacts of exposures to radiation and chemical carcinogens and other hazards to life and health. Communication of risk with uncertainty is essential for reaching informed consent, whether communicating to a larger community debating the tradeoffs of risks and benefits of an action that involves radiation exposure or communicating at the level of a physician and patient.
Setting radon-specific release criteria and demonstrating compliance for land affected by NORM.
García-Talavera, M; Martínez, M; Matarranz, J L M; Ramos, L
2008-11-01
Residues from industrial activities involving naturally occurring radioactive materials (NORMs) may cause radiation exposures to members of the public, particularly when NORM-affected land is brought into residential use. To provide an adequate protection against radiation in such situations, the following limiting criteria are currently required in Spain for releasing NORM-affected land: (i) no more than a 300 microSv yr(-1) increase (excluding radon doses) over the natural background; (ii) (222)Rn concentrations in hypothetical future dwellings lower than 200 Bq m(-3); and (iii) reduction of all radiation exposures to as low as reasonable achievable. This paper addresses some of the problems encountered in translating the (222)Rn criterion into site-specific release limits and in demonstrating compliance with them.
Multiple wavelength photolithography for preparing multilayer microstructures
Dentinger, Paul Michael; Krafcik, Karen Lee
2003-06-24
The invention relates to a multilayer microstructure and a method for preparing thereof. The method involves first applying a first photodefinable composition having a first exposure wavelength on a substrate to form a first polymeric layer. A portion of the first photodefinable composition is then exposed to electromagnetic radiation of the first exposure wavelength to form a first pattern in the first polymeric layer. After exposing the first polymeric layer, a second photodefinable composition having a second exposure wavelength is applied on the first polymeric layer to form a second polymeric layer. A portion of the second photodefinable composition is then exposed to electromagnetic radiation of the second exposure wavelength to form a second pattern in the second polymeric layer. In addition, a portion of each layer is removed according to the patterns to form a multilayer microstructure having a cavity having a shape that corresponds to the portions removed.
Nishimoto, Takuto; Furuta, Masakazu; Kataoka, Michihiko; Kishida, Masao
2015-03-01
Ionizing radiation indirectly causes oxidative stress in cells via reactive oxygen species (ROS), such as hydroxyl radicals (OH(-)) generated by the radiolysis of water. We investigated how the catalase function was affected by ionizing radiation and analyzed the phenotype of mutants with a disrupted catalase gene in Saccharomyces cerevisiae exposed to radiation. The wild-type yeast strain and isogenic mutants with disrupted catalase genes were exposed to various doses of (60)Co gamma-rays. There was no difference between the wild-type strain and the cta1 disruption mutant following exposure to gamma-ray irradiation. In contrast, there was a significant decrease in the ctt1 disruption mutant, suggesting that this strain exhibited decreased survival on gamma-ray exposure compared with other strains. In all three strains, stationary phase cells were more tolerant to the exposure of gamma-rays than exponential phase cells, whereas the catalase activity in the wild-type strain and cta1 disruption mutant was higher in the stationary phase than in the exponential phase. These data suggest a correlation between catalase activity and survival following gamma-ray exposure. However, this correlation was not clear in the ctt1 disruption mutant, suggesting that other factors are involved in the tolerance to ROS induced by irradiation.
What should a radiation regulator do about naturally occurring radioactive material?
Loy, J
2015-06-01
The standard regulatory framework of authorisation, review and assessment, inspection and enforcement, and regulation making is directed principally towards ensuring the regulatory control of planned exposure situations. Some mining and industrial activities involving exposures to naturally occurring radioactive material (NORM), such as uranium mining or the treatment and conditioning of NORM residues, may fit readily within this standard framework. In other cases, such as oil and gas exploration and production, the standard regulatory framework needs to be adjusted. For example, it is not sensible to require that an oil company seek a licence from the radiation regulator before drilling a well. The paper discusses other approaches that a regulator might take to assure protection and safety in such activities involving exposures to NORM, including the use of conditional exemptions from regulatory controls. It also suggests some areas where further guidance from the International Commission on Radiological Protection on application of the system of radiological protection to NORM would assist both regulators and operators. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Epidemiologic Study of One Million U.S. Radiation Workers and Veterans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boice, John D.
The single most important question in radiation epidemiology is determining the level of health risks associated with radiation exposures that occur gradually over time. The study of one million early U.S. radiation workers and veterans has been designed to provide information on risk following chronic exposures by focusing on occupational groups with differing radiation exposure patterns, including intakes of radionuclides. The cost-efficient study builds on the investments made and foundations laid by investigators and government agencies over the past 30-40 years, which have established early worker cohorts that can now provide answers to questions on the lifetime human health risksmore » associated with low-level radiation exposures. Within the overall goal of the epidemiologic study of one million U.S. radiation workers and veterans, this project had a total of nine specific aims which included studies of six populations for multiple endpoints including cancer overall mortality, leukemia and non-cancer mortality. The six populations included: Mound, Ohio, workers exposed to polonium, tritium and plutonium; nuclear power plant workers within the Landauer dosimetry and Nuclear Regulatory Commission data files; industrial radiographers; Mallinckrodt uranium workers; uranium workers who linked with the US Renal Data System; and nuclear weapons test participants. Over 400,000 workers and atomic veterans are included in these populations, with vital status being determined and analyses of all causes of death undertaken. A critical, integral component of the studies has been comprehensive evaluations of dosimetry involving, in many cases, complex dose reconstructions, and assessments of uncertainties. The work has also involved development of state-of-the art statistical approaches and modeling. All nine aims were accomplished successfully, resulting in publication of two NCRP documents, 13 literature papers, numerous Boice Reports in Health Physics News and many presentations of the work at scientific meetings. Furthermore, recommendations have been developed for an approach to integrate epidemiologic observations with radiation biology for risk assessment and biological models of radiation effect. The results of this project, as well as ongoing epidemiology studies of US radiation workers and veterans, are providing much-needed insights into complex issues regarding cancer and non-cancer health risks from low dose irradiation, how to apply a "dose and dose rate effectiveness factor" to scale the risks from the A-bomb survivor data to current occupational and environmental circumstances, and how to evaluate risk following intakes of radioactive substances. In addition to application to radiation workers, the results of the studies can provide guidance as society debates the role of nuclear energy and deals with nuclear waste, threats of terrorist attacks with nuclear/radiological devices, the remarkable increase in medical exposures to CT scans and nuclear imaging, and to NASA as radiation protection for astronauts on long-duration mission beyond low-Earth orbit is planned.« less
Greenwood, Taylor J; Lopez-Costa, Rodrigo I; Rhoades, Patrick D; Ramírez-Giraldo, Juan C; Starr, Matthew; Street, Mandie; Duncan, James; McKinstry, Robert C
2015-01-01
The marked increase in radiation exposure from medical imaging, especially in children, has caused considerable alarm and spurred efforts to preserve the benefits but reduce the risks of imaging. Applying the principles of the Image Gently campaign, data-driven process and quality improvement techniques such as process mapping and flowcharting, cause-and-effect diagrams, Pareto analysis, statistical process control (control charts), failure mode and effects analysis, "lean" or Six Sigma methodology, and closed feedback loops led to a multiyear program that has reduced overall computed tomographic (CT) examination volume by more than fourfold and concurrently decreased radiation exposure per CT study without compromising diagnostic utility. This systematic approach involving education, streamlining access to magnetic resonance imaging and ultrasonography, auditing with comparison with benchmarks, applying modern CT technology, and revising CT protocols has led to a more than twofold reduction in CT radiation exposure between 2005 and 2012 for patients at the authors' institution while maintaining diagnostic utility. (©)RSNA, 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetz, J.; Klemm, J.; Ortlieb, E.
The radiation dose is reconstructed for 3d MCPAEB personnel participating in exercises involving helicopter-lifted assaults in conjunction with Shot Bee of Operation Teapot, Exercise Desert Rock VI. Brigade personnel were exposed to initial radiation while in trenches at the time of the Shot Bee detonation. They were also exposed to residual radiation from an earlier test shot (Shot Turk) during their subsequent maneuvers and to residual radiation from Shot Bee during an inspection of equipment displays. The calculated total gamma doses to the bulk of the participating troops range from about 0.57-0.85 rem.
Radiation Quality Effects on Transcriptome Profiles in 3-d Cultures After Particle Irradiation
NASA Technical Reports Server (NTRS)
Patel, Z. S.; Kidane, Y. H.; Huff, J. L.
2014-01-01
In this work, we evaluate the differential effects of low- and high-LET radiation on 3-D organotypic cultures in order to investigate radiation quality impacts on gene expression and cellular responses. Reducing uncertainties in current risk models requires new knowledge on the fundamental differences in biological responses (the so-called radiation quality effects) triggered by heavy ion particle radiation versus low-LET radiation associated with Earth-based exposures. We are utilizing novel 3-D organotypic human tissue models that provide a format for study of human cells within a realistic tissue framework, thereby bridging the gap between 2-D monolayer culture and animal models for risk extrapolation to humans. To identify biological pathway signatures unique to heavy ion particle exposure, functional gene set enrichment analysis (GSEA) was used with whole transcriptome profiling. GSEA has been used extensively as a method to garner biological information in a variety of model systems but has not been commonly used to analyze radiation effects. It is a powerful approach for assessing the functional significance of radiation quality-dependent changes from datasets where the changes are subtle but broad, and where single gene based analysis using rankings of fold-change may not reveal important biological information. We identified 45 statistically significant gene sets at 0.05 q-value cutoff, including 14 gene sets common to gamma and titanium irradiation, 19 gene sets specific to gamma irradiation, and 12 titanium-specific gene sets. Common gene sets largely align with DNA damage, cell cycle, early immune response, and inflammatory cytokine pathway activation. The top gene set enriched for the gamma- and titanium-irradiated samples involved KRAS pathway activation and genes activated in TNF-treated cells, respectively. Another difference noted for the high-LET samples was an apparent enrichment in gene sets involved in cycle cycle/mitotic control. It is plausible that the enrichment in these particular pathways results from the complex DNA damage resulting from high-LET exposure where repair processes are not completed during the same time scale as the less complex damage resulting from low-LET radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Csako, G.; Elin, R.J.; Hochstein, H.D.
Techniques that reduce the toxicity of bacterial endotoxins are useful for studying the relationship between structure and biological activity. We used ionizing radiation to detoxify a highly refined endotoxin preparation. U.S. standard endotoxin EC. Dose-dependent changes occurred by exposure to /sup 60/Co-radiation in the physical properties and biological activities of the endotoxin. Sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis showed gradual loss of the polysaccharide components (O-side chain and R-core) from the endotoxin molecules. In contrast, although endotoxin revealed a complex absorption pattern in the UV range, radiation treatment failed to modify that pattern. Dose-related destruction of the primary toxic component,more » lipid A, was suggested by the results of activity tests: both the pyrogenicity and limulus reactivity of the endotoxin were destroyed by increasing doses of radiation. The results indicate that the detoxification is probably due to multiple effects of the ionizing radiation on bacterial lipopolysaccharides, and the action involves (i) the destruction of polysaccharide moieties and possibly (ii) the alteration of lipid A component of the endotoxin molecule.« less
Zhang, Junlin; He, Ying; Shen, Xianrong; Jiang, Dingwen; Wang, Qingrong; Liu, Qiong; Fang, Wen
2016-01-01
Risk estimates for low-dose radiation (LDR) remain controversial. The possible involvement of DNA repair-related genes in long-term low-dose-rate neutron-gamma radiation exposure is poorly understood. In this study, 60 rats were divided into control groups and irradiated groups, which were exposed to low-dose-rate n-γ combined radiation (LDCR) for 15, 30, or 60 days. The effects of different cumulative radiation doses on peripheral blood cell (PBC), subsets of T cells of peripheral blood lymphocytes (PBL) and DNA damage repair were investigated. Real-time PCR and immunoblot analyses were used to detect expression of DNA DSB-repair-related genes involved in the NHEJ pathway, such as Ku70 and Ku80, in PBL. The mRNA level of H2AX and the expression level of γ-H2AX were detected by real-time PCR, immunoblot, and flow cytometry. White blood cells (WBC) and platelets (PLT) of all ionizing radiation (IR) groups decreased significantly, while no difference was seen between the 30 day and 60 day exposure groups. The numbers of CD3(+), CD4(+) T cells and CD4(+)/CD8(+) in the PBL of IR groups were lower than in the control group. In the 30 day and 60 day exposure groups, CD8(+) T cells decreased significantly. Real-time PCR and immunoblot results showed no significant difference in the mRNA and protein expression of Ku70 and Ku80 between the control groups and IR groups. However, the mRNA of H2AX increased significantly, and there was a positive correlation with dose. There was no difference in the protein expression of γ-H2AX between 30 day and 60 day groups, which may help to explain the damage to PBL. In conclusion, PBL damage increased with cumulative dose, suggesting that γ-H2AX, but neither Ku70 nor Ku80, plays an important role in PBL impairment induced by LDCR. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Comparison of gene expression response to neutron and x-ray irradiation using mouse blood.
Broustas, Constantinos G; Xu, Yanping; Harken, Andrew D; Garty, Guy; Amundson, Sally A
2017-01-03
In the event of an improvised nuclear device detonation, the prompt radiation exposure would consist of photons plus a neutron component that would contribute to the total dose. As neutrons cause more complex and difficult to repair damage to cells that would result in a more severe health burden to affected individuals, it is paramount to be able to estimate the contribution of neutrons to an estimated dose, to provide information for those making treatment decisions. Mice exposed to either 0.25 or 1 Gy of neutron or 1 or 4 Gy x-ray radiation were sacrificed at 1 or 7 days after exposure. Whole genome microarray analysis identified 7285 and 5045 differentially expressed genes in the blood of mice exposed to neutron or x-ray radiation, respectively. Neutron exposure resulted in mostly downregulated genes, whereas x-rays showed both down- and up-regulated genes. A total of 34 differentially expressed genes were regulated in response to all ≥1 Gy exposures at both times. Of these, 25 genes were consistently downregulated at days 1 and 7, whereas 9 genes, including the transcription factor E2f2, showed bi-directional regulation; being downregulated at day 1, while upregulated at day 7. Gene ontology analysis revealed that genes involved in nucleic acid metabolism processes were persistently downregulated in neutron irradiated mice, whereas genes involved in lipid metabolism were upregulated in x-ray irradiated animals. Most biological processes significantly enriched at both timepoints were consistently represented by either under- or over-expressed genes. In contrast, cell cycle processes were significant among down-regulated genes at day 1, but among up-regulated genes at day 7 after exposure to either neutron or x-rays. Cell cycle genes downregulated at day 1 were mostly distinct from the cell cycle genes upregulated at day 7. However, five cell cycle genes, Fzr1, Ube2c, Ccna2, Nusap1, and Cdc25b, were both downregulated at day 1 and upregulated at day 7. We describe, for the first time, the gene expression profile of mouse blood cells following exposure to neutrons. We have found that neutron radiation results in both distinct and common gene expression patterns compared with x-ray radiation.
MICROWAVES IN ORGANIC SYNTHESIS
The effect of microwaves, a non-ionizing radiation, on organic reactions is described both in polar solvents and under solvent-free conditions. The special applications are highlighted in the context of solventless organic synthesis which involve microwave (MW) exposure of neat r...
Implanted medical devices in the radiation environment of commercial spaceflight.
Reyes, David P; McClure, Steven S; Chancellor, Jeffery C; Blue, Rebecca S; Castleberry, Tarah L; Vanderploeg, James M
2014-11-01
Some commercial spaceflight participants (SFPs) may have medical conditions that require implanted medical devices (IMDs), such as cardiac pacemakers, defibrillators, insulin pumps, or similar electronic devices. The effect of space radiation on the function of IMDs is unknown. This review will identify known effects of terrestrial and aviation electromagnetic interference (EMI) and radiation on IMDs in order to provide insight into the potential effects of radiation exposures in the space environment. A systematic literature review was conducted on available literature on human studies involving the effects of EMI as well as diagnostic and therapeutic radiation on IMDs. The literature review identified potential transient effects from EMI and diagnostic radiation levels as low as 10 mGy on IMDs. High-energy, therapeutic, ionizing radiation can cause more permanent device malfunctions at doses as low as 40 mGy. Radiation doses from suborbital flight altitudes and durations are anticipated to be less than those experienced during an average round-trip, cross-country airline flight and are unlikely to result in significant detriment, though longer, orbital flights may expose SFPs to doses potentially harmful to IMD function. Individuals with IMDs should experience few, if any, radiation-related device malfunctions during suborbital flight, but could have problems with radiation exposures associated with longer, orbital flights.
Do changes in biomarkers from space radiation reflect dose or risk?
NASA Astrophysics Data System (ADS)
Brooks, A.
The space environment is made up of many different kinds of radiation so that the proper use of biomarkers is essential to estimate radiation risk. This presentation will evaluate differences between biomarkers of dose and risk and demonstrate why they should not be confused following radiation exposures in deep space. Dose is a physical quantity, while risk is a biological quantity. Many examples exist w ereh dose or changes in biomarkers of dose are inappropriately used as predictors of risk. Without information on the biology of the system, the biomarkers of dose provide little help in predicting risk in tissues or radiation exposure types where no excess risk can be demonstrated. Many of these biomarkers of dose only reflect changes in radiation dose or exposure. However, these markers are often incorrectly used to predict risk. For example, exposure of the trachea or of the deep lung to high-LET alpha particles results in similar changes in the biomarker chromosome damage in these two tissues. Such an observation would predict that the risk for cancer induction would be similar in these two tissues. It has been noted , however, that there has never been a tracheal tumor observed in rats that inhaled radon, but with the same exposure, large numbers of tumors were produced in the deep lung. The biology of the different tissues is the major determinant of the risk rather than the radiation dose. Recognition of this fact has resulted in the generation of tissue weighting factors for use in radiation protection. When tissue weighting factors are used the values derived are still called "dose". It is important to recognize that tissue specific observations have been corrected to reflect risk, and therefore should no longer be viewed as dose. The relative biological effectiveness (RBE) is also used to estimate radiation risk. The use of biomarkers to derive RBE is a difficult since it involves the use of a biological response to a standard low-LET reference radiation. Following low-LET radiation exposure, the biological response often does not increase as a linear function of dose. Thus, the RBE and the subsequent risk predicted is dependent on the dose where the two radiation types are compared. To avoid this problem the standard procedure is to use the dose and dose-rate response and compare the linear components of the two r diation exposures. Important riska comparisons are often done at very low doses, where the reference radiation may either increase or decrease as a function of dose. Since the low-LET exposure often does not produce a significant change above the background level of damage, the derived RBE factors can become very large.Studies using micronuclei as biomarkers following exposure to mono-energetic neutrons, x-rays and gamma rays delivered at very low doses (up to 0.10 Gy) demonstrated the differences in the shape of each dose-response relationship and the problems associated with the RBE. These studies show that RBE may not accurately reflect the hazards or risk associated with space radiation exposure. As additional measures of biological change are developed, it may become possible to base risk on biological change and not on changes in radiation doses. Research funded through grants # DE-FG03-99ER62787 from DOE Office of Biological and Environmental Research and RO1 CA74053-01 from NIH/NASA to Washington State University Tri-Cities.
Environmental health program activities
NASA Technical Reports Server (NTRS)
Bergtholdt, C. P.
1969-01-01
Activities reported include studies on toxic air contaminants, excessive noise, poor lighting, food sanitation, water pollution, and exposure to nonionizing radiation as health hazards. Formulations for a radiological health manual provide guidance to personnel in the procurement and safe handling of radiation producing equipment and Apollo mission planning. A literature search and development of a water analysis laboratory are outlined to obtain information regarding microbiological problems involving potable water, waste management, and personal hygiene.
Space Radiation Cancer Risks and Uncertainties for Mars Missions
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Schimmerling, W.; Wilson, J. W.; Peterson, L. E.; Badhwar, G. D.; Saganti, P. B.; Dicello, J. F.
2001-01-01
Projecting cancer risks from exposure to space radiation is highly uncertain because of the absence of data for humans and because of the limited radiobiology data available for estimating late effects from the high-energy and charge (HZE) ions present in the galactic cosmic rays (GCR). Cancer risk projections involve many biological and physical factors, each of which has a differential range of uncertainty due to the lack of data and knowledge. We discuss an uncertainty assessment within the linear-additivity model using the approach of Monte Carlo sampling from subjective error distributions that represent the lack of knowledge in each factor to quantify the overall uncertainty in risk projections. Calculations are performed using the space radiation environment and transport codes for several Mars mission scenarios. This approach leads to estimates of the uncertainties in cancer risk projections of 400-600% for a Mars mission. The uncertainties in the quality factors are dominant. Using safety standards developed for low-Earth orbit, long-term space missions (>90 days) outside the Earth's magnetic field are currently unacceptable if the confidence levels in risk projections are considered. Because GCR exposures involve multiple particle or delta-ray tracks per cellular array, our results suggest that the shape of the dose response at low dose rates may be an additional uncertainty for estimating space radiation risks.
Siedlecki, Cédric; Gauthé, Rémi; Gillibert, André; Bellenger, Kevin; Roussignol, Xavier; Ould-Slimane, Mourad
2017-10-01
The use of fluoroscopy is necessary during proximal femoral fracture (PFF) osteosynthesis. The frequency of these procedures justifies a description of radiation exposure and comparisons between different techniques and between the different surgical team members. This observational prospective and comparative study includes a series of 68 patients with PFF receiving osteosynthesis. Radiation exposure was assessed for all members of the operating team. The radiation dose measurements for the different members of the surgical team during PFF osteosynthesis were compared. The factors affecting the radiation dose were investigated. The mean active dosimeter readings for each operation were 7.39 µSv for the primary surgeon, 3.93 µSv for the assistant surgeon, 1.92 µSv for the instrument nurse, 1.25 µSv for the circulating nurse, and 0.64 µSv for the anaesthesiologist, respectively. Doses decreased significantly between these different members of the medical team (all p < 0.001). The dose also varied with patient age and BMI, as well as with fluoroscopy time and operating time, but not with type of fracture or type of osteosynthesis. Medical staff receives significantly different doses depending on their position in relation to the radiation source. Operating time and fluoroscopy time are the modifiable factors that affect the radiation dose. The radiation doses received by the different members of the medical teams involved in proximal femur osteosynthesis procedures all fall below the doses recommended by the International Commission on Radiation Units and Measurements.
Cancer risks after radiation exposure in middle age.
Shuryak, Igor; Sachs, Rainer K; Brenner, David J
2010-11-03
Epidemiological data show that radiation exposure during childhood is associated with larger cancer risks compared with exposure at older ages. For exposures in adulthood, however, the relative risks of radiation-induced cancer in Japanese atomic bomb survivors generally do not decrease monotonically with increasing age of adult exposure. These observations are inconsistent with most standard models of radiation-induced cancer, which predict that relative risks decrease monotonically with increasing age at exposure, at all ages. We analyzed observed cancer risk patterns as a function of age at exposure in Japanese atomic bomb survivors by using a biologically based quantitative model of radiation carcinogenesis that incorporates both radiation induction of premalignant cells (initiation) and radiation-induced promotion of premalignant damage. This approach emphasizes the kinetics of radiation-induced initiation and promotion, and tracks the yields of premalignant cells before, during, shortly after, and long after radiation exposure. Radiation risks after exposure in younger individuals are dominated by initiation processes, whereas radiation risks after exposure at later ages are more influenced by promotion of preexisting premalignant cells. Thus, the cancer site-dependent balance between initiation and promotion determines the dependence of cancer risk on age at radiation exposure. For example, in terms of radiation induction of premalignant cells, a quantitative measure of the relative contribution of initiation vs promotion is 10-fold larger for breast cancer than for lung cancer. Reflecting this difference, radiation-induced breast cancer risks decrease with age at exposure at all ages, whereas radiation-induced lung cancer risks do not. For radiation exposure in middle age, most radiation-induced cancer risks do not, as often assumed, decrease with increasing age at exposure. This observation suggests that promotional processes in radiation carcinogenesis become increasingly important as the age at exposure increases. Radiation-induced cancer risks after exposure in middle age may be up to twice as high as previously estimated, which could have implications for occupational exposure and radiological imaging.
Krigsfeld, Gabriel S.; Sanzari, Jenine K.; Kennedy, Ann R.
2013-01-01
Purpose To determine whether proton radiation affects coagulation. Material and methods Ferrets were exposed to solar particle event-like proton radiation at doses of 0, 25, 100, or 200 centigray (cGy), and dose rates of 50 cGy/minute (high dose rate or HDR) or 50 cGy/hour (low dose rate or LDR). Plasma was isolated from blood collected prior to radiation exposure and at 3–7 h post-radiation. Prothrombin time (PT) assays and activated partial thromboplastin time (aPTT) assays were performed as were mixing studies to determine the coagulation factors involved. Results HDR and LDR exposure led to statistically significant increases in PT values. It was determined that the HDR-induced increase in PT was due to Factor VII, while Factors II, V, and VII contributed to the LDR-induced increase in PT values. Only acute LDR exposure caused an increase in aPTT values, which remained elevated for 48 h post-irradiation (which was the latest time assayed in these studies). Mixing studies revealed that Factor IX contributed to the increased aPTT values. A majority of the animals exposed at the LDR had an International Normalized Ratio approaching or surpassing 2.0. Conclusions PT/aPTT assays resulted in increased clotting times due to different coagulation factors, indicating potential radiation-induced coagulopathy. PMID:22221163
Lorimore, S A; Wright, E G
2003-01-01
To review studies of radiation responses in the haemopoietic system in the context of radiation-induced genomic instability, bystander effects and inflammatory-type processes. There is considerable evidence that cells that themselves are not exposed to ionizing radiation but are the progeny of cells irradiated many cell divisions previously may express a high frequency of gene mutations, chromosomal aberrations and cell death. These effects are collectively known as radiation-induced genomic instability. A second untargeted effect results in non-irradiated cells exhibiting responses typically associated with direct radiation exposure but occurs as a consequence of contact with irradiated cells or by receiving soluble signals from irradiated cells. These effects are collectively known as radiation-induced bystander effects. Reported effects include increases or decreases in damage-inducible and stress-related proteins; increases or decreases in reactive oxygen species, cell death or cell proliferation, and induction of mutations and chromosome aberrations. This array of responses is reminiscent of effects mediated by cytokines and other similar regulatory factors that may involve, but do not necessarily require, gap junction-mediated transfer, have multiple inducers and a variety of context-dependent consequences in different cell systems. That chromosomal instability in haemopoietic cells can be induced by an indirect bystander-type mechanism both in vitro and in vivo provides a potential link between these two untargeted effects and there are radiation responses in vivo consistent with the microenvironment contributing secondary cell damage as a consequence of an inflammatory-type response to radiation-induced injury. Intercellular signalling, production of cytokines and free radicals are features of inflammatory responses that have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. The induction of bystander effects and instabilities may reflect interrelated aspects of a non-specific inflammatory-type response to radiation-induced stress and injury and be involved in a variety of the pathological consequences of radiation exposures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groppi, Flavia; Manenti, Simone; Gini, Luigi
In Italy the 'nuclear issue' was for a long time a taboo. A way to approach this theme to make the public more trusting of nuclear issues is to discuss radioactivity and ionizing radiation starting from young students. An experimental activity that involves secondary school students has been developed. The approach is to have students engaged in activities that will allow them to understand how natural radioactivity is a part of our everyday environment. This would include how radiation enters our lives in different ways, to demonstrate that natural radioactive sources found in soil, water, and air contribute to ourmore » exposure to natural ionizing radiation and how this exposure effects human health. Another objective is to develop a new technique for teaching physics which will enhance scientific interest of students in applications of nuclear physics in both environmental and physical sciences.« less
Colour change evaluation on UV radiation exposure for Păun-Repedea calcareous geomaterial
NASA Astrophysics Data System (ADS)
Pelin, V.; Sandu, I.; Munteanu, M.; Iurcovschi, C. T.; Gurlui, S.; Sandu, AV; Vasilache, V.; Brȃnzilă, M.; Sandu, I. G.
2016-06-01
When talking about the preservation treatments that can be applied to natural stones used in different constructions, the surface hydrophobization plays an important part, especially when referring to porous surfaces like the calcareous oolithic stones specific to Repedea area, Iasi County, Romania. The present paper presents a method that evaluates the hydrophobization efficiency of two types of pellicles, involving UV artificial ageing and colorimetric analysis of the treated surfaces. The evaluation was done through continuous colorimetric monitoring and by comparing the evolution of the chromatic modifications of the two treated surfaces with the original colorimetric values and with the witness area, which was exposed to UV radiations under the same conditions, but left chemical untreated. The techniques used during this experiment were: CIE L*a*b* colorimetry, OM, SEM-EDX, UV radiation exposure and Spectrum Irradiance Measurement.
Investigation of Radiation and Chemical Resistance of Flexible HLW Transfer Hose
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Skidmore; Billings, K.; Hubbard, M.
A chemical transfer hose constructed of an EPDM (ethylene-propylene diene monomer) outer covering with a modified cross-linked polyethylene (XLPE) lining was evaluated for use in high level radioactive waste transfer applications. Laboratory analysis involved characterization of the hose liner after irradiation to doses of 50 to 300 Mrad and subsequent exposure to 25% NaOH solution at 93 C for 30 days, simulating 6 months intermittent service. The XLPE liner mechanical and structural properties were characterized at varying dose levels. Burst testing of irradiated hose assemblies was also performed. Literature review and test results suggest that radiation effects below doses ofmore » 100 kGy are minimal, with acceptable property changes to 500 kGy. Higher doses may be feasible. At a bounding dose of 2.5 MGy, the burst pressure is reduced to the working pressure (1.38 MPa) at room temperature. Radiation exposure slightly reduces liner tensile strength, with more significant decrease in liner elongation. Subsequent exposure to caustic solutions at elevated temperature slightly increases elongation, suggesting an immersion/hydrolytic effect or possible thermal annealing of radiation damage. This paper summarizes the laboratory results and recommendations for field deployment.« less
Gene expression changes in medical workers exposed to radiation.
Morandi, Elena; Severini, Cinzia; Quercioli, Daniele; Perdichizzi, Stefania; Mascolo, Maria Grazia; Horn, Wolfango; Vaccari, Monica; Nucci, Maria Concetta; Lodi, Vittorio; Violante, Francesco Saverio; Bolognesi, Claudia; Grilli, Sandro; Silingardi, Paola; Colacci, Annamaria
2009-10-01
The use of nuclear resources for medical purposes causes considerable concern about occupational exposure. Nevertheless, little information is available regarding the effects of low-dose irradiations protracted over time. We used oligomicroarrays to identify the genes that are transcriptionally regulated by persistent exposure to extremely low doses of ionizing radiation in 28 exposed professionals (mean cumulative effective dose +/- SD, 19 +/- 38 mSv) compared with a matched sample of nonexposed subjects. We identified 256 modulated genes from peripheral blood mononuclear cells profiles, and the main biological processes we found were DNA packaging and mitochondrial electron transport NADH to ubiquinone. Next we investigated whether a different pattern existed when only 22 exposed subjects with accumulated doses >2.5 mSv, a threshold corresponding to the natural background radiation in Italy per year, and mean equal to 25 +/- 41 mSv were used. In addition to DNA packaging and NADH dehydrogenase function, the analysis of the higher-exposed subgroup revealed a significant modulation of ion homeostasis and programmed cell death as well. The changes in gene expression that we found suggest different mechanisms from those involved in high-dose studies that may help to define new biomarkers of radiation exposure for accumulated doses below 25 mSv.
Kumar, Arvind; Singh, Harminder Pal; Batish, Daizy R; Kaur, Shalinder; Kohli, Ravinder Kumar
2016-07-01
The present study investigated the impact of 1800-MHz electromagnetic field radiations (EMF-r), widely used in mobile communication, on the growth and activity of starch-, sucrose-, and phosphate-hydrolyzing enzymes in Zea mays seedlings. We exposed Z. mays to modulated continuous wave homogenous EMF-r at specific absorption rate (SAR) of 1.69±0.0 × 10(-1) W kg(-1) for ½, 1, 2, and 4 h. The analysis of seedlings after 7 days revealed that short-term exposure did not induce any significant change, while longer exposure of 4 h caused significant growth and biochemical alterations. There was a reduction in the root and coleoptile length with more pronounced effect on coleoptile growth (23 % reduction on 4-h exposure). The contents of photosynthetic pigments and total carbohydrates declined by 13 and 18 %, respectively, in 4-h exposure treatments compared to unexposed control. The activity of starch-hydrolyzing enzymes-α- and β-amylases-increased by ∼92 and 94 %, respectively, at an exposure duration of 4 h, over that in the control. In response to 4-h exposure treatment, the activity of sucrolytic enzymes-acid invertases and alkaline invertases-was increased by 88 and 266 %, whereas the specific activities of phosphohydrolytic enzymes (acid phosphatases and alkaline phosphatases) showed initial increase up to ≤2 h duration and then declined at >2 h exposure duration. The study concludes that EMF-r-inhibited seedling growth of Z. mays involves interference with starch and sucrose metabolism.
Guo, Chang-Ying; Luo, Lan; Urata, Yoshishige; Goto, Shinji; Huang, Wen-Jing; Takamura, Syu; Hayashi, Fumiko; Doi, Hanako; Kitajima, Yuriko; Ono, Yusuke; Ogi, Tomoo; Li, Tao-Sheng
2015-01-01
We evaluated the sensitivity and dose dependency of radiation-induced injury in hematopoietic stem/progenitor cells. Adult C57BL/6 mice were daily exposed to 0, 2, 10, 50, and 250 mGy γ-ray for 1 month in succession, respectively. The damage of hematopoietic stem/progenitor cells in bone marrow were investigated within 2 hours (acute phase) or at 3 months (chronic phase) after the last exposure. Daily exposure to over 10 mGy γ-ray significantly decreased the number and colony-forming capacity of hematopoietic stem/progenitor cells at acute phase, and did not completely recover at chronic phase with 250 mGy exposure. Interestingly, the daily exposure to 10 or 50 mGy γ-ray decreased the formation of mixed types of colonies at chronic phase, but the total number of colonies was comparable to control. Immunostaining analysis showed that the formation of 53BP1 foci in c-kit+ stem/progenitor cells was significantly increased with daily exposure to 50 and 250 mGy at acute phase, and 250 mGy at chronic phase. Many genes involved in toxicity responses were up- or down-regulated with the exposures to all doses. Our data have clearly shown the sensitivity and dose dependency of radiation-induced injury in hematopoietic stem/progenitor cells of mice with daily exposures to 2 ~ 250 mGy γ-ray. PMID:25623887
Thermal effusivity: a promising imaging biomarker to predict radiation-induced skin injuries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, J. C. H.; Templeton, A.; Yao, R.
An effective screening technology is needed to triage individuals at the time of radiation incidents involving a large population. Three-dimensional thermal tomography is a relatively new development in active thermal imaging technology that produces cross-sectional images based on the subject's ability to transfer heat thermal effusivity at the voxel level. This noninvasive imaging modality has been used successfully in nondestructive examination of complex materials; also it has been shown to predict the severity of radiation-induced skin injuries several days before the manifestation of severe moist desquamations or blister formation symptoms in mice at 40 Gy. If these results are confirmedmore » at lower dose levels in human subjects, a thermal tomography imaging device may be an ideal screening tool in radiation emergencies. This imaging method is non-invasive, relatively simple, easily adaptable for field use, and when properly deployed, it will enhance public emergency preparedness for incidents involving unexpected radiation exposure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Matthew A.; Ramakrishnan, Narayani
In the event of a radiological accident, the rapid evaluation of the individual absorbed dose is paramount to discriminate those individuals who must receive medical attention. New research with genomic- and proteomic-wide tools is showing that within minutes to hours after exposure to ionizing radiation the cellular machinery is modified. For example: large-scale changes occur in the gene expression profiles involving a broad variety of cellular pathways after a wide range of both low dose (<10 cGy) and high dose (>10 cGy) ionizing radiation exposures. Symposium 12 was organized to address a wide range of biological effects using the latestmore » technologies. To address current models following ionizing radiation exposure, methods in biodosimetry and dose effects the symposia featured a general overview titled “Model Systems and Current Approaches in Biodosimetry” by Matthew A. Coleman, from Lawrence Livermore National Laboratory and a talk entitled “Brief Overview of Biodosimetry Projects in the NIH Rad/Nuc Program” by Dr. Narayani Ramakrishnan, National Institute of Allergy and Infectious Diseases. These two talk set the tone for issues in data and model integration as well as addressing the national need for robust technologies for biological dosimetry. The report continues with more description of the presentations, along with the agenda and abstracts of the papers presented.« less
Mental health consequences of the Chernobyl disaster.
Bromet, Evelyn J
2012-03-01
The psychosocial consequences of disasters have been studied for more than 100 years. The most common mental health consequences are depression, anxiety, post-traumatic stress disorder, medically unexplained somatic symptoms, and stigma. The excess morbidity rate of psychiatric disorders in the first year after a disaster is in the order of 20%. Disasters involving radiation are particularly pernicious because the exposure is invisible and universally dreaded, and can pose a long-term threat to health. After the Chernobyl disaster, studies of clean-up workers (liquidators) and adults from contaminated areas found a two-fold increase in post-traumatic stress and other mood and anxiety disorders and significantly poorer subjective ratings of health. Among liquidators, the most important risk factor was severity of exposure. In general population samples, the major risk factor was perceived exposure to harmful levels of radiation. These findings are consistent with results from A-bomb survivors and populations studied after the Three Mile Island nuclear power plant accident. With regard to children, apart from findings from ecological studies that lack direct data on radiation or other teratologic exposures and local studies in Kiev, the epidemiologic evidence suggests that neither radiation exposure nor the stress of growing up in the shadow of the accident was associated with emotional disorders, cognitive dysfunction, or impaired academic performance. Thus, based on the studies of adults, the Chernobyl Forum concluded that mental health was the largest public health problem unleashed by the accident. Since mental health is a leading cause of disability, physical morbidity, and mortality, health monitoring after radiation accidents like Fukushima should include standard measures of well-being. Moreover, given the comorbidity of mental and physical health, the findings support the value of training non-psychiatrist physicians in recognizing and treating common mental health problems like depression in Fukushima patients.
Micro RNA responses to chronic or acute exposures to low dose ionizing radiation
Chaudhry, M. Ahmad; Omaruddin, Romaica A.; Kreger, Bridget; de Toledo, Sonia M.; Azzam, Edouard I.
2014-01-01
Human health risks of exposure to low dose ionizing radiation remain ambiguous and are the subject of intense debate. A wide variety of biological effects are induced after cellular exposure to ionizing radiation, but the underlying molecular mechanism(s) remain to be completely understood. We hypothesized that low dose c-radiation-induced effects are controlled by the modulation of micro RNA (miRNA) that participate in the control of gene expression at the posttranscriptional level and are involved in many cellular processes. We monitored the expression of several miRNA in human cells exposed to acute or chronic low doses of 10 cGy or a moderate dose of 400 cGy of 137Cs γ-rays. Dose, dose rate and time dependent differences in the relative expression of several miRNA were investigated. The expression patterns of many miRNA differed after exposure to either chronic or acute 10 cGy. The expression of miRNA let-7e, a negative regulator of RAS oncogene, and the c-MYC miRNA cluster were upregulated after 10 cGy chronic dose but were downregulated after 3 h of acute 10 cGy. The miR-21 was upregulated in chronic or acute low dose and moderate dose treated cells and its target genes hPDCD4, hPTEN, hSPRY2, and hTPM1 were found to be downregulated. These findings provide evidence that low dose and dose rate c-irradiation dictate the modulation of miRNA, which can result in a differential cellular response than occurs at high doses. This information will contribute to understanding the risks to human health after exposure to low dose radiation. PMID:22367372
Pezzoni, Magdalena; Tribelli, Paula M; Pizarro, Ramón A; López, Nancy I; Costa, Cristina S
2016-05-01
Solar UVA radiation is one of the main environmental stress factors for Pseudomonas aeruginosa. Exposure to high UVA doses produces lethal effects by the action of the reactive oxygen species (ROS) it generates. P. aeruginosa has several enzymes, including KatA and KatB catalases, which provide detoxification of ROS. We have previously demonstrated that KatA is essential in defending P. aeruginosa against high UVA doses. In order to analyse the mechanisms involved in the adaptation of this micro-organism to UVA, we investigated the effect of exposure to low UVA doses on KatA and KatB activities, and the physiological consequences. Exposure to UVA induced total catalase activity; assays with non-denaturing polyacrylamide gels showed that both KatA and KatB activities were increased by radiation. This regulation occurred at the transcriptional level and depended, at least partly, on the increase in H2O2 levels. We demonstrated that exposure to low UVA produced a protective effect against subsequent lethal doses of UVA, sodium hypochlorite and H2O2. Protection against lethal UVA depends on katA, whilst protection against sodium hypochlorite depends on katB, demonstrating that different mechanisms are involved in the defence against these oxidative agents, although both genes can be involved in the global cellular response. Conversely, protection against lethal doses of H2O2 could depend on induction of both genes and/or (an)other defensive factor(s). A better understanding of the adaptive response of P. aeruginosa to UVA is relevant from an ecological standpoint and for improving disinfection strategies that employ UVA or solar irradiation.
Analytical-HZETRN Model for Rapid Assessment of Active Magnetic Radiation Shielding
NASA Technical Reports Server (NTRS)
Washburn, S. A.; Blattnig, S. R.; Singleterry, R. C.; Westover, S. C.
2014-01-01
The use of active radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs utilizing only passive shielding. Unfortunately, the determination of the radiation exposure inside these shielded environments often involves lengthy and computationally intensive Monte Carlo analysis. In order to evaluate the large trade space of design parameters associated with a magnetic radiation shield design, an analytical model was developed for the determination of flux inside a solenoid magnetic field due to the Galactic Cosmic Radiation (GCR) radiation environment. This analytical model was then coupled with NASA's radiation transport code, HZETRN, to account for the effects of passive/structural shielding mass. The resulting model can rapidly obtain results for a given configuration and can therefore be used to analyze an entire trade space of potential variables in less time than is required for even a single Monte Carlo run. Analyzing this trade space for a solenoid magnetic shield design indicates that active shield bending powers greater than 15 Tm and passive/structural shielding thicknesses greater than 40 g/cm2 have a limited impact on reducing dose equivalent values. Also, it is shown that higher magnetic field strengths are more effective than thicker magnetic fields at reducing dose equivalent.
Linking Doses with Clinical Scores of Hematopoietic Acute Radiation Syndrome.
Hu, Shaowen
2016-10-01
In radiation accidents, determining the radiation dose the victim received is a key step for medical decision making and patient prognosis. To reconstruct and evaluate the absorbed dose, researchers have developed many physical devices and biological techniques during the last decades. However, using the physical parameter "absorbed dose" alone is not sufficient to predict the clinical development of the various organs injured in an individual patient. In operational situations for radiation accidents, medical responders need more urgently to classify the severity of the radiation injury based on the signs and symptoms of the patient. In this work, the author uses a unified hematopoietic model to describe dose-dependent dynamics of granulocytes, lymphocytes, and platelets, and the corresponding clinical grading of hematopoietic acute radiation syndrome. This approach not only visualizes the time course of the patient's probable outcome in the form of graphs but also indirectly gives information of the remaining stem and progenitor cells, which are responsible for the autologous recovery of the hematopoietic system. Because critical information on the patient's clinical evolution can be provided within a short time after exposure and only peripheral cell counts are required for the simulation, these modeling tools will be useful to assess radiation exposure and injury in human-involved radiation accident/incident scenarios.
The interference of medical radionuclides with occupational in vivo gamma spectrometry.
Kol, R; Pelled, O; Canfi, A; Gilad, Y; German, U; Laichter, Y; Lantsberg, S; Fuksbrauner, R; Gold, B
2003-06-01
Radiation workers undergo routine monitoring for the evaluation of external and internal radiation exposures. The monitoring of internal exposures involves gamma spectrometry of the whole body (whole body counting) and measurements of excreta samples. Medical procedures involving internal administration of radioactive radionuclides are widely and commonly used. Medical radionuclides are typically short-lived, but high activities are generally administered, whereas occupational radionuclides are mostly long-lived and, if present, are found generally in relatively smaller quantities. The aim of the present work was to study the interference of some common medical radionuclides (201Tl, 9mTc, 57Co, and 131I) with the detection of internal occupational exposures to natural uranium and to 137Cs. Workers having undergone a medical procedure with one of the radionuclides mentioned above were asked to give frequent urine samples and to undergo whole body and thyroid counting with phoswich detectors operated at the Nuclear Research Center Negev. Urine and whole body counting monitoring were continued as long as radioactivity was detectable by gamma spectrometry. The results indicate that the activity of medical radionuclides may interfere with interpretation of occupational intakes for months after administration.
NASA Technical Reports Server (NTRS)
Wu, Honglu; Furusawa, Yoshiya; George, Kerry; Kawata, Tetsuya; Cucinotta, Francis
2002-01-01
The recently commercialized multiplex fluorescence in situ hybridization (m-FISH) technique, which allows human chromosomes to be painted in 24 different colors, was used to analyze chromosome aberrations in diploid human fibroblast cells after in vitro radiation exposure. Confluent flasks of a normal primary fibroblast cell line (AG 1522) were irradiated at high dose rates with either gamma rays or 200 MeV/nucleon Fe ions (LET = 440 keV/micron), incubated at 37 C for 24 hours after exposure, and subsequently subcultured. A chemically induced premature chromosome condensation technique was used to collect chromosome samples 32 hours after subculture. Results showed that the fraction of exchanges which were identified as complex, i.e. involving misrejoining of three or more DSB, were higher in the Fe-irradiated samples compared with the gamma-irradiated samples, as has been shown previously using FISH with one or two painted chromosomes . The ratios of complex/simple type exchanges were similar for samples irradiated with 0.7 Gy and 3 Gy of Fe ions, although exchanges involving five or more breaks were found only in 3 Gy irradiated samples. The fraction of incomplete exchanges was also higher in Fe- than gamma-irradiated samples. Data on the distribution of individual chromosome involvement in interchromosomal exchanges will be presented.
Radiation exposure from consumer products and miscellaneous sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-01-01
This review of the literature indicates that there is a variety of consumer products and miscellaneous sources of radiation that result in exposure to the U.S. population. A summary of the number of people exposed to each such source, an estimate of the resulting dose equivalents to the exposed population, and an estimate of the average annual population dose equivalent are tabulated. A review of the data in this table shows that the total average annual contribution to the whole-body dose equivalent of the U.S. population from consumer products is less than 5 mrem; about 70 percent of this arisesmore » from the presence of naturally-occurring radionuclides in building materials. Some of the consumer product sources contribute exposure mainly to localized tissues or organs. Such localized estimates include: 0.5 to 1 mrem to the average annual population lung dose equivalent (generalized); 2 rem to the average annual population bronchial epithelial dose equivalent (localized); and 10 to 15 rem to the average annual population basal mucosal dose equivalent (basal mucosa of the gum). Based on these estimates, these sources may be grouped or classified as those that involve many people and the dose equivalent is relative large or those that involve many people but the dose equivalent is relatively small, or the dose equivalent is relatively large but the number of people involved is small.« less
NASA Astrophysics Data System (ADS)
Chen, Zhidan; Coy, Stephen L.; Pannkuk, Evan L.; Laiakis, Evagelia C.; Hall, Adam B.; Fornace, Albert J.; Vouros, Paul
2016-10-01
Radiation exposure is an important public health issue due to a range of accidental and intentional threats. Prompt and effective large-scale screening and appropriate use of medical countermeasures (MCM) to mitigate radiation injury requires rapid methods for determining the radiation dose. In a number of studies, metabolomics has identified small-molecule biomarkers responding to the radiation dose. Differential mobility spectrometry-mass spectrometry (DMS-MS) has been used for similar compounds for high-throughput small-molecule detection and quantitation. In this study, we show that DMS-MS can detect and quantify two radiation biomarkers, trimethyl-L-lysine (TML) and hypoxanthine. Hypoxanthine is a human and nonhuman primate (NHP) radiation biomarker and metabolic intermediate, whereas TML is a radiation biomarker in humans but not in NHP, which is involved in carnitine synthesis. They have been analyzed by DMS-MS from urine samples after a simple strong cation exchange-solid phase extraction (SCX-SPE). The dramatic suppression of background and chemical noise provided by DMS-MS results in an approximately 10-fold reduction in time, including sample pretreatment time, compared with liquid chromatography-mass spectrometry (LC-MS). DMS-MS quantitation accuracy has been verified by validation testing for each biomarker. Human samples are not yet available, but for hypoxanthine, selected NHP urine samples (pre- and 7-d-post 10 Gy exposure) were analyzed, resulting in a mean change in concentration essentially identical to that obtained by LC-MS (fold-change 2.76 versus 2.59). These results confirm the potential of DMS-MS for field or clinical first-level rapid screening for radiation exposure.
Role of the ceramide-signaling pathways in ionizing radiation-induced apoptosis.
Vit, Jean-Philippe; Rosselli, Filippo
2003-11-27
Ionizing radiations (IR) exposure leads to damage on several cellular targets. How signals from different targets are integrated to determine the cell fate remains a controversial issue. Understanding the pathway(s) responsible(s) for the cell killing effect of the IR exposure is of prime importance in light of using radiations as anticancer agent or as diagnostic tool. In this study, we have established that IR-induced cell damage initiates two independent signaling pathways that lead to a biphasic intracellular ceramide increase. A transitory increase of ceramide is observed within minutes after IR exposure as a consequence of DNA damage-independent acid sphingomyelinase activation. Several hours after irradiation, a second wave of ceramide accumulation is observed depending on the DNA damage-dependent activation of ceramide synthase, which requires a signaling pathway involving ATM. Importantly, we have demonstrated that the late ceramide accumulation is also dependent on the first one and is rate limiting for the apoptotic process induced by IR. In conclusion, our observations suggest that ceramide is a major determinant of the IR-induced apoptotic process at the cross-point of different signal transduction pathways.
Occupational external exposure to ionising radiation in France (2005-2011).
Feuardent, J; Scanff, P; Crescini, D; Rannou, A
2013-12-01
The Institute for Radiological Protection and Nuclear Safety (IRSN) produces the French annual report on occupational exposure to ionising radiation, collecting all national data and aggregating the results according to a unique activity classification expected to be shared by all involved in personal dosimetric monitoring (employers, external dosimetry services and IRSN). Nearly 344,000 monitored workers were counted in France in 2011, with a collective dose of 64.24 man.Sv. The average annual dose (as calculated over the number of measurably exposed workers) differed among the main activity fields: 0.54 mSv in medical and veterinary activities, 1.18 mSv in the nuclear field, 1.60 mSv in non-nuclear industry and 0.47 mSv in research activities. Because of improved knowledge about worker activities, the results for year 2011 are detailed per activity sectors in each field. Lasting limitations prevent from having complete and reliable worker activity information. Solutions are considered to reduce the inaccuracy in the annually published statistics. The evolution of occupational external exposure to ionising radiation from 2005 to 2011 in France is then presented for the main activity fields.
NASA Technical Reports Server (NTRS)
Hada, M.; George, Kerry; Cucinotta, Francis A.
2011-01-01
The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivors with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (1-20 cGy) of 170 MeV/u Si-28- ions or 600 MeV/u Fe-56-ions. Chromosomes were analyzed using the whole chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving greater than 2 breaks in 2 or more chromosomes). The curves for doses above 10 cGy were fitted with linear or linear-quadratic functions. For Si-28- ions no dose response was observed in the 2-10 cGy dose range, suggesting a non-target effect in this range.
Kerr, George D; Egbert, Stephen D; Al-Nabulsi, Isaf; Bailiff, Ian K; Beck, Harold L; Belukha, Irina G; Cockayne, John E; Cullings, Harry M; Eckerman, Keith F; Granovskaya, Evgeniya; Grant, Eric J; Hoshi, Masaharu; Kaul, Dean C; Kryuchkov, Victor; Mannis, Daniel; Ohtaki, Megu; Otani, Keiko; Shinkarev, Sergey; Simon, Steven L; Spriggs, Gregory D; Stepanenko, Valeriy F; Stricklin, Daniela; Weiss, Joseph F; Weitz, Ronald L; Woda, Clemens; Worthington, Patricia R; Yamamoto, Keiko; Young, Robert W
2015-12-01
Groups of Japanese and American scientists, supported by international collaborators, have worked for many years to ensure the accuracy of the radiation dosimetry used in studies of health effects in the Japanese atomic bomb survivors. Reliable dosimetric models and systems are especially critical to epidemiologic studies of this population because of their importance in the development of worldwide radiation protection standards. While dosimetry systems, such as Dosimetry System 1986 (DS86) and Dosimetry System 2002 (DS02), have improved, the research groups that developed them were unable to propose or confirm an additional contribution by residual radiation to the survivor's total body dose. In recognition of the need for an up-to-date review of residual radiation exposures in Hiroshima and Nagasaki, a half-day technical session was held for reports on newer studies at the 59 th Annual HPS Meeting in 2014 in Baltimore, MD. A day-and-a-half workshop was also held to provide time for detailed discussion of the newer studies and to evaluate their potential use in clarifying the residual radiation exposure to atomic bomb survivors at Hiroshima and Nagasaki. The process also involved a re-examination of very early surveys of radioisotope emissions from ground surfaces at Hiroshima and Nagasaki and early reports of health effects. New insights were reported on the potential contribution to residual radiation from neutron-activated radionuclides in the airburst's dust stem and pedestal and in unlofted soil, as well as from fission products and weapon debris from the nuclear cloud. However, disparate views remain concerning the actual residual radiation doses received by the atomic bomb survivors at different distances from the hypocenter. The workshop discussion indicated that measurements made using thermal luminescence and optically stimulated luminescence, like earlier measurements, especially in very thin layers of the samples, could be expanded to detect possible radiation exposures to beta particles and to determine their significance plus the extent of the various residual radiation areas at Hiroshima and Nagasaki. Other suggestions for future residual radiation studies are included in this workshop report.
Genome hypermethylation in Pinus silvestris of Chernobyl--a mechanism for radiation adaptation?
Kovalchuk, Olga; Burke, Paula; Arkhipov, Andrey; Kuchma, Nikolaj; James, S Jill; Kovalchuk, Igor; Pogribny, Igor
2003-08-28
Adaptation is a complex process by which populations of organisms respond to long-term environmental stresses by permanent genetic change. Here we present data from the natural "open-field" radiation adaptation experiment after the Chernobyl accident and provide the first evidence of the involvement of epigenetic changes in adaptation of a eukaryote-Scots pine (Pinus silvestris), to chronic radiation exposure. We have evaluated global genome methylation of control and radiation-exposed pine trees using a method based on cleavage by a methylation-sensitive HpaII restriction endonuclease that leaves a 5' guanine overhang and subsequent single nucleotide extension with labeled [3H] dCTP. We have found that genomic DNA of exposed pine trees was considerably hypermethylated. Moreover, hypermethylation appeared to be dependent upon the radiation dose absorbed by the trees. Such hypermethylation may be viewed as a defense strategy of plants that prevents genome instability and reshuffling of the hereditary material, allowing survival in an extreme environment. Further studies are clearly needed to analyze in detail the involvement of DNA methylation and other epigenetic mechanisms in the complex process of radiation stress and adaptive response.
Radon Laboratory: A Proposal for Scientific Culture Dissemination Among Young Students in Italy
NASA Astrophysics Data System (ADS)
Groppi, Flavia; Bazzocchi, Anna; Manenti, Simone; Gini, Luigi; Bonardi, Mauro L.
2009-08-01
In Italy the "nuclear issue" was for a long time a taboo. A way to approach this theme to make the public more trusting of nuclear issues is to discuss radioactivity and ionizing radiation starting from young students. An experimental activity that involves secondary school students has been developed. The approach is to have students engaged in activities that will allow them to understand how natural radioactivity is a part of our everyday environment. This would include how radiation enters our lives in different ways, to demonstrate that natural radioactive sources found in soil, water, and air contribute to our exposure to natural ionizing radiation and how this exposure effects human health. Another objective is to develop a new technique for teaching physics which will enhance scientific interest of students in applications of nuclear physics in both environmental and physical sciences.
Leaf movement in Calathea lutea (Marantaceae).
Herbert, Thomas J; Larsen, Parry B
1985-09-01
Calathea lutea is a broad-leaved, secondary successional plant which shows complex leaf movements involving both elevation and folding of the leaf surface about the pulvinus. In the plants studied, mean leaf elevation increased from approximately 34 degrees in the early morning to 70 degrees at noon while the angle of leaf folding increased from 13 degrees to 50 degrees over the same time period. During the period from early morning to noon, these movements resulted in a significant decrease in the cosine of the angle of incidence, a measure of the direct solar radiation intercepted. The observed changes in elevational angle significantly reduce the cosine of angle of incidence while folding does not significantly reduce the fraction of direct solar radiation intercepted during the period of direct exposure of the leaf surface to the solar beam. Since elevational changes seem to account for the reduction in exposure to direct solar radiation, the role of folding remains unclear.
Fully automatic bone age estimation from left hand MR images.
Stern, Darko; Ebner, Thomas; Bischof, Horst; Grassegger, Sabine; Ehammer, Thomas; Urschler, Martin
2014-01-01
There has recently been an increased demand in bone age estimation (BAE) of living individuals and human remains in legal medicine applications. A severe drawback of established BAE techniques based on X-ray images is radiation exposure, since many countries prohibit scanning involving ionizing radiation without diagnostic reasons. We propose a completely automated method for BAE based on volumetric hand MRI images. On our database of 56 male caucasian subjects between 13 and 19 years, we are able to estimate the subjects age with a mean difference of 0.85 ± 0.58 years compared to the chronological age, which is in line with radiologist results using established radiographic methods. We see this work as a promising first step towards a novel MRI based bone age estimation system, with the key benefits of lacking exposure to ionizing radiation and higher accuracy due to exploitation of volumetric data.
NASA Astrophysics Data System (ADS)
Iles, R. H. A.; Taylor, G. C.; Jones, J. B. L.
January 2000 saw the start of a collaborative study involving the Mullard Space Science Laboratory, Virgin Atlantic Airways, the Civil Aviation Authority and the National Physical Laboratory in a program to investigate the cosmic radiation exposure to aircrew. The study has been undertaken in view of EU Directive 96/291 (May 2000) which requires the assessment of the level of radiation exposure to aircrew. The project's aims include validation of radiation dose models and evaluation of space weather effects on atmospheric cosmic radiation levels, in particular those effects not accounted for by the models. Ground level measurements are often used as a proxy for variations in cosmic radiation dose levels at aircraft altitudes, especially during Forbush Decreases (FDs) and Solar Energetic Particle (SEP) events. Is this estimation realistic and does the ground level data accurately represent what is happening at altitude? We have investigated the effect of a FD during a flight from Hong Kong to London Heathrow on the 15th July 2000 and compared count rate and dose measurements with simultaneous variations measured at ground level. We have also compared the results with model outputs.
Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis
NASA Technical Reports Server (NTRS)
Billi, D.; Friedmann, E. I.; Hofer, K. G.; Caiola, M. G.; Ocampo-Friedmann, R.
2000-01-01
The effect of X-ray irradiation on cell survival, induction, and repair of DNA damage was studied by using 10 Chroococcidiopsis strains isolated from desert and hypersaline environments. After exposure to 2.5 kGy, the percentages of survival for the strains ranged from 80 to 35%. In the four most resistant strains, the levels of survival were reduced by 1 or 2 orders of magnitude after irradiation with 5 kGy; viable cells were recovered after exposure to 15 kGy but not after exposure to 20 kGy. The severe DNA damage evident after exposure to 2.5 kGy was repaired within 3 h, and the severe DNA damage evident after exposure to 5 kGy was repaired within 24 h. The increase in trichloroacetic acid-precipitable radioactivity in the culture supernatant after irradiation with 2.5 kGy might have been due to cell lysis and/or an excision process involved in DNA repair. The radiation resistance of Chroococcidiopsis strains may reflect the ability of these cyanobacteria to survive prolonged desiccation through efficient repair of the DNA damage that accumulates during dehydration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Radiation Exposure Compensation Act... JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part 79—Radiation Exposure Compensation Act Offset Worksheet—On Site Participants Radiation Exposure...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Radiation Exposure Compensation Act... JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part 79—Radiation Exposure Compensation Act Offset Worksheet—On Site Participants Radiation Exposure...
Bystander effects of ionizing radiation can be modulated by signaling amines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poon, R.C.C.; Agnihotri, N.; Seymour, C.
2007-10-15
Actual risk and risk management of exposure to ionizing radiation are among the most controversial areas in environmental health protection. Recent developments in radiobiology especially characterization of bystander effects have called into question established dogmas and are thought to cast doubt on the scientific basis of the risk assessment framework, leading to uncertainty for regulators and concern among affected populations. In this paper we test the hypothesis that small signaling molecules widely used throughout the animal kingdom for signaling stress or environmental change, such as 5-Hydroxytryptamine (5-HT, serotonin), L-DOPA, glycine or nicotine are involved in bystander signaling processes following ionizingmore » radiation exposure. We report data which suggest that nano to micromolar concentrations of these agents can modulate bystander-induced cell death. Depletion of 5-HT present in tissue culture medium, occurred following irradiation of cells. This suggested that 5-HT might be bound by membrane receptors after irradiation. Expression of 5-HT type 3 receptors which are Ca{sup 2+} ion channels was confirmed in the cells using immunocytochemistry and receptor expression could be increased using radiation or 5-HT exposure. Zofran and Kitryl, inhibitors of 5-HT type 3 receptors, and reserpine a generic serotonin antagonist block the bystander effect induced by radiation or by serotonin. The results may be important for the mechanistic understanding of how low doses of radiation interact with cells to produce biological effects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicolay, Nils H., E-mail: n.nicolay@dkfz.de; Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg; Sommer, Eva
2013-12-01
Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IRmore » were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression.« less
NASA Technical Reports Server (NTRS)
Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.
2007-01-01
Most of the reported studies of break point distribution on the damaged chromosomes from radiation exposure were carried out with the G-banding technique or determined based on the relative length of the broken chromosomal fragments. However, these techniques lack the accuracy in comparison with the later developed multicolor banding in situ hybridization (mBAND) technique that is generally used for analysis of intrachromosomal aberrations such as inversions. Using mBAND, we studied chromosome aberrations in human epithelial cells exposed in vitro to both low or high dose rate gamma rays in Houston, low dose rate secondary neutrons at Los Alamos National Laboratory and high dose rate 600 MeV/u Fe ions at NASA Space Radiation Laboratory. Detailed analysis of the inversion type revealed that all of the three radiation types induced a low incidence of simple inversions. Half of the inversions observed after neutron or Fe ion exposure, and the majority of inversions in gamma-irradiated samples were accompanied by other types of intrachromosomal aberrations. In addition, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosome exchanges. We further compared the distribution of break point on chromosome 3 for the three radiation types. The break points were found to be randomly distributed on chromosome 3 after neutrons or Fe ions exposure, whereas non-random distribution with clustering break points was observed for gamma-rays. The break point distribution may serve as a potential fingerprint of high-LET radiation exposure.
Quintens, Roel; Samari, Nada; de Saint-Georges, Louis; van Oostveldt, Patrick; Baatout, Sarah; Benotmane, Mohammed Abderrafi
2016-01-01
During orbital or interplanetary space flights, astronauts are exposed to cosmic radiations and microgravity. However, most earth-based studies on the potential health risks of space conditions have investigated the effects of these two conditions separately. This study aimed at assessing the combined effect of radiation exposure and microgravity on neuronal morphology and survival in vitro. In particular, we investigated the effects of simulated microgravity after acute (X-rays) or during chronic (Californium-252) exposure to ionizing radiation using mouse mature neuron cultures. Acute exposure to low (0.1 Gy) doses of X-rays caused a delay in neurite outgrowth and a reduction in soma size, while only the high dose impaired neuronal survival. Of interest, the strongest effect on neuronal morphology and survival was evident in cells exposed to microgravity and in particular in cells exposed to both microgravity and radiation. Removal of neurons from simulated microgravity for a period of 24 h was not sufficient to recover neurite length, whereas the soma size showed a clear re-adaptation to normal ground conditions. Genome-wide gene expression analysis confirmed a modulation of genes involved in neurite extension, cell survival and synaptic communication, suggesting that these changes might be responsible for the observed morphological effects. In general, the observed synergistic changes in neuronal network integrity and cell survival induced by simulated space conditions might help to better evaluate the astronaut's health risks and underline the importance of investigating the central nervous system and long-term cognition during and after a space flight. PMID:27203085
Survival of Pseudomonas aeruginosa exposed to sunlight resembles the phenom of persistence.
Forte Giacobone, Ana F; Oppezzo, Oscar J
2015-01-01
During exposure of Pseudomonas aeruginosa stationary phase cells to natural solar radiation, a reduction in the rate of loss of bacterial viability was observed when survival fractions were lower than 1/10,000. This reduction was independent of the growth medium used and of the initial bacterial concentration, and was also observed when irradiation was performed with artificial UVA radiation (365nm, 47Wm(-2)). These results indicate the presence of a small bacterial subpopulation with increased tolerance to radiation. Such a tolerance is non-heritable, since survival curves comparable to those of the parental strain were obtained from survivors to long-term exposure to radiation. The radiation response described here resembles the phenomenon called persistence, which consists of the presence of a small subpopulation of slow-growing cells which are able to survive antibiotic treatment within a susceptible bacterial population. The condition of persister cells is acquired via a reversible switch and involves active defense systems towards oxidative stress. Persistence is probably responsible for biphasic responses of bacteria to several stress conditions, one of which may be exposure to sunlight. The models currently used to analyze the lethal action of sunlight overestimate the effect of high-dose irradiation. These models could be improved by including the potential formation of persister cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Exposure to UV radiation and risk of Hodgkin lymphoma: a pooled analysis
Glaser, Sally L.; Schupp, Clayton W.; Ekström Smedby, Karin; de Sanjosé, Silvia; Kane, Eleanor; Melbye, Mads; Forétova, Lenka; Maynadié, Marc; Staines, Anthony; Becker, Nikolaus; Nieters, Alexandra; Brennan, Paul; Boffetta, Paolo; Cocco, Pierluigi; Glimelius, Ingrid; Clavel, Jacqueline; Hjalgrim, Henrik; Chang, Ellen T.
2013-01-01
Ultraviolet radiation (UVR) exposure has been inversely associated with Hodgkin lymphoma (HL) risk, but only inconsistently, only in a few studies, and without attention to HL heterogeneity. We conducted a pooled analysis of HL risk focusing on type and timing of UVR exposure and on disease subtypes by age, histology, and tumor-cell Epstein-Barr virus (EBV) status. Four case-control studies contributed 1320 HL cases and 6381 controls. We estimated lifetime, adulthood, and childhood UVR exposure and history of sunburn and sunlamp use. We used 2-stage estimation with mixed-effects models and weighted pooled effect estimates by inverse marginal variances. We observed statistically significant inverse associations with HL risk for UVR exposures during childhood and adulthood, sunburn history, and sunlamp use, but we found no significant dose-response relationships. Risks were significant only for EBV-positive HL (pooled odds ratio, 0.56; 95% confidence interval, 0.35 to 0.91 for the highest overall UVR exposure category), with a significant linear trend for overall exposure (P = .03). Pooled relative risk estimates were not heterogeneous across studies. Increased UVR exposure may protect against HL, particularly EBV-positive HL. Plausible mechanisms involving UVR induction of regulatory T cells or the cellular DNA damage response suggest opportunities for new prevention targets. PMID:24016459
NASA Space Radiation Program Integrative Risk Model Toolkit
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris
2015-01-01
NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.
Dose-specific transcriptional responses in thyroid tissue in mice after (131)I administration.
Rudqvist, Nils; Schüler, Emil; Parris, Toshima Z; Langen, Britta; Helou, Khalil; Forssell-Aronsson, Eva
2015-03-01
In the present investigation, microarray analysis was used to monitor transcriptional activity in thyroids in mice 24 h after (131)I exposure. The aims of this study were to 1) assess the transcriptional patterns associated with (131)I exposure in normal mouse thyroid tissue and 2) propose biomarkers for (131)I exposure of the thyroid. Adult BALB/c nude mice were i.v. injected with 13, 130 or 260 kBq of (131)I and killed 24h after injection (absorbed dose to thyroid: 0.85, 8.5, or 17 Gy). Mock-treated mice were used as controls. Total RNA was extracted from thyroids and processed using the Illumina platform. In total, 497, 546, and 90 transcripts were regulated (fold change ≥1.5) in the thyroid after 0.85, 8.5, and 17 Gy, respectively. These were involved in several biological functions, e.g. oxygen access, inflammation and immune response, and apoptosis/anti-apoptosis. Approximately 50% of the involved transcripts at each absorbed dose level were dose-specific, and 18 transcripts were commonly detected at all absorbed dose levels. The Agpat9, Plau, Prf1, and S100a8 gene expression displayed a monotone decrease in regulation with absorbed dose, and further studies need to be performed to evaluate if they may be useful as dose-related biomarkers for 131I exposure. Distinct and substantial differences in gene expression and affected biological functions were detected at the different absorbed dose levels. The transcriptional profiles were specific for the different absorbed dose levels. We propose that the Agpat9, Plau, Prf1, and S100a8 genes might be novel potential absorbed dose-related biomarkers to (131)I exposure of thyroid. During the recent years, genomic techniques have been developed; however, they have not been fully utilized in nuclear medicine and radiation biology. We have used RNA microarrays to investigate genome-wide transcriptional regulations in thyroid tissue in mice after low, intermediate, and high absorbed doses from (131)I exposure in vivo. Using this approach, we have identified novel biological responses and potential absorbed dose-related biomarkers to (131)I exposure. Our research shows the importance of embracing technological advances and multi-disciplinary collaboration in order to apply them in radiation therapy, nuclear medicine, and radiation biology. This work may contribute with new knowledge of potential normal tissue effects or complications that may occur after exposure to ionizing radiation in diagnostic and therapeutic nuclear medicine, and due to radioactive fallout or accident with radionuclide spread. Copyright © 2014 Elsevier Inc. All rights reserved.
Mechanisms of Radiation Toxicity in Transformed and Non-Transformed Cells
Panganiban, Ronald-Allan M.; Snow, Andrew L.; Day, Regina M.
2013-01-01
Radiation damage to biological systems is determined by the type of radiation, the total dosage of exposure, the dose rate, and the region of the body exposed. Three modes of cell death—necrosis, apoptosis, and autophagy—as well as accelerated senescence have been demonstrated to occur in vitro and in vivo in response to radiation in cancer cells as well as in normal cells. The basis for cellular selection for each mode depends on various factors including the specific cell type involved, the dose of radiation absorbed by the cell, and whether it is proliferating and/or transformed. Here we review the signaling mechanisms activated by radiation for the induction of toxicity in transformed and normal cells. Understanding the molecular mechanisms of radiation toxicity is critical for the development of radiation countermeasures as well as for the improvement of clinical radiation in cancer treatment. PMID:23912235
(Oncogenic action of ionizing radiation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. The carcinogenicity of energetic electrons was determined for comparison with the neon ion results. As in past reports we will describe progress in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) DNA strand breaks in the epidermis as a function of radiation penetration; (3) oncogene activation in radiation-induced rat skin cancers. 72 refs., 6 tabs.
NASA Astrophysics Data System (ADS)
Sulieman, A.; Elhadi, T.; Babikir, E.; Alkhorayef, M.; Alnaaimi, M.; Alduaij, M.; Bradley, D. A.
2017-11-01
In many countries diagnostic medical exposures typically account for a very large fraction of the collective effective dose that can be assigned to anthropological sources and activities. This in part flags up the question of whether sufficient steps are being taken in regard to potential dose saving from such medical services. As a first step, one needs to survey doses to compare against those of best practice. The present study has sought evaluation of the radiation protection status and patient doses for certain key radiological procedures in four film-based radiology departments within Sudan. The radiation exposure survey, carried out using a survey meter and quality control test tools, involved a total of 299 patients their examinations being carried out at one or other of these four departments. The entrance surface air kerma (ESAK) was determined from exposure settings using DosCal software and an Unfors -Xi-meter. The mean ESAK for x-ray examination of the chest was 0.30±0.1 mGy, for the skull it was 0.96±0.7 mGy, for the abdomen 0.85±0.01 mGy, for spinal procedures 1.30±0.6 mGy and for procedures involving the limbs it was 0.43±0.3 mGy. Ambient dose-rates in the reception area, at the closed door of the x-ray room, recorded instantaneous values of up to 100 μSv/h. In regard to protection, the associated levels were found to be acceptable in three of the four departments, corrective action being required for one department, regular quality control also being recommended.
MO-E-213-03: Newer Radiation Protection Requirements in Last Decade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clements, J.
The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks inmore » public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation protection than in past To be aware about possible emergence of medical radiation protection as a specialty and challenges for medical physicists.« less
MO-E-213-01: Increasing Role of Medical Physicist in Radiation Protection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehani, M.
The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks inmore » public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation protection than in past To be aware about possible emergence of medical radiation protection as a specialty and challenges for medical physicists.« less
MO-E-213-00: What Is Medical Physics Without Radiation Safety?
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks inmore » public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation protection than in past To be aware about possible emergence of medical radiation protection as a specialty and challenges for medical physicists.« less
29 CFR 1915.57 - Uses of fissionable material in ship repairing and shipbuilding.
Code of Federal Regulations, 2010 CFR
2010-07-01
... shipbuilding. 1915.57 Section 1915.57 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR... occupational radiation exposure, shall apply. (b) Any activity which involves the use of radiocative material...
Genetic background modulates lncRNA-coordinated tissue response to low dose ionizing radiation
Tang, Jonathan; Huang, Yurong; Nguyen, David H.; ...
2015-02-04
Long noncoding RNAs (lncRNAs) are emerging as key regulators of diverse cell functions and processes. However, the relevance of lncRNAs in the cell and tissue response to ionizing radiation has not yet been characterized. Here we used microarray profiling to determine lncRNA and mRNA expression in mammary glands of BALB/c and SPRET/EiJ mice after low-dose ionizing radiation (LDIR) exposure. We found that unirradiated mammary tissues of these strains differed significantly in baseline expressions of 290 lncRNAs. LDIR exposure (10 cGy) induced a significant change in the expression of many lncRNAs. The vast majority of lncRNAs identified to be differentially expressed aftermore » LDIR in either BALB/c or SPRET/EiJ had a significantly correlated expression pattern with at least one LDIR responsive mRNA. Functional analysis revealed that the response to LDIR in BALB/c mice is highly dynamic with enrichment for genes involved in tissue injury, inflammatory responses, and mammary gland development at 2, 4, and 8 weeks after LDIR, respectively. Our study demonstrates that genetic background strongly influences the expression of lncRNAs and their response to radiation and that lncRNAs may coordinate the tissue response to LDIR exposure via regulation of coding mRNAs.« less
Genetic background modulates lncRNA-coordinated tissue response to low dose ionizing radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Jonathan; Huang, Yurong; Nguyen, David H.
Long noncoding RNAs (lncRNAs) are emerging as key regulators of diverse cell functions and processes. However, the relevance of lncRNAs in the cell and tissue response to ionizing radiation has not yet been characterized. Here we used microarray profiling to determine lncRNA and mRNA expression in mammary glands of BALB/c and SPRET/EiJ mice after low-dose ionizing radiation (LDIR) exposure. We found that unirradiated mammary tissues of these strains differed significantly in baseline expressions of 290 lncRNAs. LDIR exposure (10 cGy) induced a significant change in the expression of many lncRNAs. The vast majority of lncRNAs identified to be differentially expressed aftermore » LDIR in either BALB/c or SPRET/EiJ had a significantly correlated expression pattern with at least one LDIR responsive mRNA. Functional analysis revealed that the response to LDIR in BALB/c mice is highly dynamic with enrichment for genes involved in tissue injury, inflammatory responses, and mammary gland development at 2, 4, and 8 weeks after LDIR, respectively. Our study demonstrates that genetic background strongly influences the expression of lncRNAs and their response to radiation and that lncRNAs may coordinate the tissue response to LDIR exposure via regulation of coding mRNAs.« less
Take, Toshio; Sato, Kaori; Kiuchi, Katsunori; Nakazawa, Yasuo
2007-11-20
A variety of radiation hazards resulting from interventional radiology (IVR) have been reported in recent years. Particularly affected are the skin and the crystalline lens, with their high radiation sensitivity. During neurological interventions, the radiological technologist should consider decreasing radiation exposure. We found exposure projections where the exposure dose became a radiation hazard for the crystalline lens, and examined an efficient method of cover for the exposure projections used for neurological interventions. The exposure projection for maximum crystalline lens radiation exposure was a lateral projection. In the crystalline lens the maximum exposure to radiation was on the X-ray tube side. The method of defense adopted was that of installing a lead plate of the appropriate shape on the surface of the X-ray tube collimator. In other exposure projections, this cover did not become a redundant shadow. With the cover that was created, the X-ray side crystalline lens lateral projection could be defended effectively.
Verma, Shashwat; Kheruka, Subhash Chand; Maurya, Anil Kumar; Kumar, Narvesh; Gambhir, Sanjay; Kumari, Sarita
2016-01-01
Positron emission tomography has been established as an important imaging modality in the management of patients, especially in oncology. The higher gamma radiation energy of positron-emitting isotopes poses an additional radiation safety problem. Those working with this modality may likely to receive higher whole body doses than those working only in conventional nuclear medicine. The radiation exposure to the personnel occurs in dispensing the dose, administration of activity, patient positioning, and while removing the intravenous (i.v.) cannula. The estimation of radiation dose to Nuclear Medicine Physician (NMP) involved during administration of activity to the patient and technical staff assisting in these procedures in a positron emission tomography/computed tomography (PET/CT) facility was carried out. An i.v access was secured for the patient by putting the cannula and blood sugar was monitored. The activity was then dispensed and measured in the dose calibrator and administered to the patient by NMP. Personnel doses received by NMP and technical staff were measured using electronic pocket dosimeter. The radiation exposure levels at various working locations were assessed with the help of gamma survey meter. The radiation level at working distance while administering the radioactivity was found to be 106-170 μSv/h with a mean value of 126.5 ± 14.88 μSv/h which was reduced to 4.2-14.2 μSv/h with a mean value of 7.16 ± 2.29 μSv/h with introduction of L-bench for administration of radioactivity. This shows a mean exposure level reduction of 94.45 ± 1.03%. The radiation level at working distance, while removing the i.v. cannula postscanning was found to be 25-70 μSv/h with a mean value of 37.4 ± 13.16 μSv/h which was reduced to 1.0-5.0 μSv/h with a mean value of 2.77 ± 1.3 μSv/h with introduction of L-bench for removal of i.v cannula. This shows a mean exposure level reduction of 92.85 ± 1.78%. This study shows that good radiation practices are very helpful in reducing the personnel radiation doses. Use of radiation protection devices such as L-bench reduces exposure significantly. PET/CT staff members must use their personnel monitors diligently and should do so in a consistent manner so that comparisons of their doses are meaningful from one monitoring period to the next.
Sadetzki, Siegal; Chetrit, Angela; Sgan-Cohen, Harold D.; Mann, Jonathan; Amitai, Tova; Even-Nir, Hadas; Vered, Yuval
2015-01-01
Studies among long-term survivors of childhood cancer who had received high-dose irradiation therapy of 4–60 Gy, demonstrated acute and chronic dental effects, including periodontal diseases. However, the possible effects of low to moderate doses of radiation on dental health are sparse. The aim of this study is to investigate the association between childhood exposure to low–moderate doses of ionizing radiation and periodontal health following 50 years since exposure. The study population included 253 irradiated subjects (treated for Tinea capitis in the 1950s) and, 162 non-irradiated subjects. The estimated dose to the teeth was 0.2–0.4 Gy. Dental examination was performed according to the community periodontal index (CPI). Socioeconomic and health behavior variables were obtained through a personal questionnaire. Periodontal disease was operationally defined as “deep periodontal pockets.” A multivariate logistic regression model was used for the association of irradiation status and other independent variables with periodontal status. The results showed that among the irradiated subjects, 23%, (95% CI 18–28%) demonstrated complete edentulousness or insufficient teeth for CPI scoring as compared to 13% (95% CI 8–19%) among the non-irradiated subjects (p = 0.01). Periodontal disease was detected among 54% of the irradiated subjects as compared to 40% of the non-irradiated (p = 0.008). Controlling for education and smoking, the ORs for the association between radiation and periodontal disease were 1.61 (95% CI 1.01–2.57) and 1.95 (95% CI 1.1–3.5) for ever never and per 1 Gy absorbed in the salivary gland, respectively. In line with other studies, a protective effect for periodontal diseases among those with high education and an increased risk for ever smokers were observed. In conclusion, childhood exposure to low-moderate doses of ionizing radiation might be associated with later outcomes of dental health. The results add valuable data on the long-term health effects of exposure to ionizing radiation and support the implementation of the ALARA principle in childhood exposure to diagnostic procedure involving radiation. PMID:26539423
Einstein, Andrew J.; Weiner, Shepard D.; Bernheim, Adam; Kulon, Michal; Bokhari, Sabahat; Johnson, Lynne L.; Moses, Jeffrey W.; Balter, Stephen
2013-01-01
Context Myocardial perfusion imaging (MPI) is the single medical test with the highest radiation burden to the US population. While many patients undergoing MPI receive repeat MPI testing, or additional procedures involving ionizing radiation, no data are available characterizing their total longitudinal radiation burden and relating radiation burden with reasons for testing. Objective To characterize procedure counts, cumulative estimated effective doses of radiation, and clinical indications, for patients undergoing MPI. Design, Setting, Patients Retrospective cohort study evaluating, for 1097 consecutive patients undergoing index MPI during the first 100 days of 2006 at Columbia University Medical Center, all preceding medical imaging procedures involving ionizing radiation undergone beginning October 1988, and all subsequent procedures through June 2008, at that center. Main Outcome Measures Cumulative estimated effective dose of radiation, number of procedures involving radiation, and indications for testing. Results Patients underwent a median (interquartile range, mean) of 15 (6–32, 23.9) procedures involving radiation exposure; 4 (2–8, 6.5) were high-dose (≥3 mSv, i.e. one year's background radiation), including 1 (1–2, 1.8) MPI studies per patient. 31% of patients received cumulative estimated effective dose from all medical sources >100mSv. Multiple MPIs were performed in 39% of patients, for whom cumulative estimated effective dose was 121 (81–189, 149) mSv. Men and whites had higher cumulative estimated effective doses, and there was a trend towards men being more likely to undergo multiple MPIs than women (40.8% vs. 36.6%, Odds ratio 1.29, 95% confidence interval 0.98–1.69). Over 80% of initial and 90% of repeat MPI exams were performed in patients with known cardiac disease or symptoms consistent with it. Conclusion In this institution, multiple testing with MPI was very common, and in many patients associated with very high cumulative estimated doses of radiation. PMID:21078807
Analgesic effect of simultaneous exposure to infrared laser radiation and μT magnetic field in rats
NASA Astrophysics Data System (ADS)
Cieslar, Grzegorz; Mrowiec, Janina; Kasperczyk, Slawomir; Sieron-Stoltny, Karolina; Sieron, Aleksander
2008-03-01
The aim of the experiment was to estimate the effect of repeated simultaneous exposures to infrared laser radiation and μT variable magnetic field used in magnetostimulation on pain perception in rats, as well as the involvement of endogenous opioid system in the mechanism of this effect. In experimental group clean-shaven scull of male Wistar rats placed individually in a specially designed plastic chamber were simultaneously exposed to infrared laser radiation (wavelength - 855 nm, mean power - 4,1 mW, energy density - 30 J/cm2) and variable magnetic field of saw-like shape of impulse, at a frequency of basic impulse 180-195 Hz and mean induction value of 120 μT generated by magneto-laser applicator of device for magnetostimulation Viofor JPS (Med & Life, Poland) 12 minutes daily for 2 periods of 5 consecutive days, with 2 days-lasting break between them, while control animals were sham-exposed. The pain perception was determined by means of "hot plate" test on the basis of calculated analgesic index. As a result of repeated exposures a significant increase in analgesic index persisting also till 14 th day after the end of a cycle of exposures was observed. This analgesic effect was inhibited by prior i.p. injection of opioid antagonist - Naloxone.
Tardigrades as a Potential Model Organism in Space Research
NASA Astrophysics Data System (ADS)
Jönsson, K. Ingemar
2007-10-01
Exposure of living organisms to open space requires a high level of tolerance to desiccation, cold, and radiation. Among animals, only anhydrobiotic species can fulfill these requirements. The invertebrate phylum Tardigrada includes many anhydrobiotic species, which are adapted to survive in very dry or cold environmental conditions. As a likely by-product of the adaptations for desiccation and freezing, tardigrades also show a very high tolerance to a number of other, unnatural conditions, including exposure to ionizing radiation. This makes tardigrades an interesting candidate for experimental exposure to open space. This paper reviews the tolerances that make tardigrades suitable for astrobiological studies and the reported radiation tolerance in other anhydrobiotic animals. Several studies have shown that tardigrades can survive γ-irradiation well above 1 kilogray, and desiccated and hydrated (active) tardigrades respond similarly to irradiation. Thus, tolerance is not restricted to the dry anhydrobiotic state, and I discuss the possible involvement of an efficient, but yet undocumented, mechanism for DNA repair. Other anhydrobiotic animals (Artemia, Polypedium), when dessicated, show a higher tolerance to γ-irradiation than hydrated animals, possibly due to the presence of high levels of the protective disaccharide trehalose in the dry state. Tardigrades and other anhydrobiotic animals provide a unique opportunity to study the effects of space exposure on metabolically inactive but vital metazoans.
Tardigrades as a potential model organism in space research.
Jönsson, K Ingemar
2007-10-01
Exposure of living organisms to open space requires a high level of tolerance to desiccation, cold, and radiation. Among animals, only anhydrobiotic species can fulfill these requirements. The invertebrate phylum Tardigrada includes many anhydrobiotic species, which are adapted to survive in very dry or cold environmental conditions. As a likely by-product of the adaptations for desiccation and freezing, tardigrades also show a very high tolerance to a number of other, unnatural conditions, including exposure to ionizing radiation. This makes tardigrades an interesting candidate for experimental exposure to open space. This paper reviews the tolerances that make tardigrades suitable for astrobiological studies and the reported radiation tolerance in other anhydrobiotic animals. Several studies have shown that tardigrades can survive gamma-irradiation well above 1 kilogray, and desiccated and hydrated (active) tardigrades respond similarly to irradiation. Thus, tolerance is not restricted to the dry anhydrobiotic state, and I discuss the possible involvement of an efficient, but yet undocumented, mechanism for DNA repair. Other anhydrobiotic animals (Artemia, Polypedium), when dessicated, show a higher tolerance to gamma-irradiation than hydrated animals, possibly due to the presence of high levels of the protective disaccharide trehalose in the dry state. Tardigrades and other anhydrobiotic animals provide a unique opportunity to study the effects of space exposure on metabolically inactive but vital metazoans.
Health effects of prenatal radiation exposure.
Williams, Pamela M; Fletcher, Stacy
2010-09-01
Pregnant women are at risk of exposure to nonionizing and ionizing radiation resulting from necessary medical procedures, workplace exposure, and diagnostic or therapeutic interventions before the pregnancy is known. Nonionizing radiation includes microwave, ultrasound, radio frequency, and electromagnetic waves. In utero exposure to nonionizing radiation is not associated with significant risks; therefore, ultrasonography is safe to perform during pregnancy. Ionizing radiation includes particles and electromagnetic radiation (e.g., gamma rays, x-rays). In utero exposure to ionizing radiation can be teratogenic, carcinogenic, or mutagenic. The effects are directly related to the level of exposure and stage of fetal development. The fetus is most susceptible to radiation during organogenesis (two to seven weeks after conception) and in the early fetal period (eight to 15 weeks after conception). Noncancer health effects have not been detected at any stage of gestation after exposure to ionizing radiation of less than 0.05 Gy (5 rad). Spontaneous abortion, growth restriction, and mental retardation may occur at higher exposure levels. The risk of cancer is increased regardless of the dose. When an exposure to ionizing radiation occurs, the total fetal radiation dose should be estimated and the mother counseled about the potential risks so that she can make informed decisions about her pregnancy management.
Repair of DNA damage induced by accelerated heavy ions--a mini review.
Okayasu, Ryuichi
2012-03-01
Increasing use of heavy ions for cancer therapy and concerns from exposure to heavy charged particles in space necessitate the study of the basic biological mechanisms associated with exposure to heavy ions. As the most critical damage induced by ionizing radiation is DNA double strand break (DSB), this review focuses on DSBs induced by heavy ions and their repair processes. Compared with X- or gamma-rays, high-linear energy transfer (LET) heavy ion radiation induces more complex DNA damage, categorized into DSBs and non-DSB oxidative clustered DNA lesions (OCDL). This complexity makes the DNA repair process more difficult, partially due to retarded enzymatic activities, leading to increased chromosome aberrations and cell death. In general, the repair process following heavy ion exposure is LET-dependent, but with nonhomologous end joining defective cells, this trend is less emphasized. The variation in cell survival levels throughout the cell cycle is less prominent in cells exposed to high-LET heavy ions when compared with low LET, but this mechanism has not been well understood until recently. Involvement of several DSB repair proteins is suggested to underlie this interesting phenomenon. Recent improvements in radiation-induced foci studies combined with high-LET heavy ion exposure could provide a useful opportunity for more in depth study of DSB repair processes. Accelerated heavy ions have become valuable tools to investigate the molecular mechanisms underlying repair of DNA DSBs, the most crucial form of DNA damage induced by radiation and various chemotherapeutic agents. Copyright © 2011 UICC.
Method for microbeam radiation therapy
Slatkin, Daniel N.; Dilmanian, F. Avraham; Spanne, Per O.
1994-01-01
A method of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation, in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue.
Method for microbeam radiation therapy
Slatkin, D.N.; Dilmanian, F.A.; Spanne, P.O.
1994-08-16
A method is disclosed of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation. The dose is in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue. No Drawings
Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleiman, Norman Jay
The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiationmore » exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9, influence cataract development and thus radiosensitivity. These observations have direct applicability to various human populations including accidentally exposed individuals, interventional medical workers, astronauts and nuclear plant workers.« less
Sanusi, M S M; Ramli, A T; Hassan, W M S W; Lee, M H; Izham, A; Said, M N; Wagiran, H; Heryanshah, A
2017-07-01
Kuala Lumpur has been undergoing rapid urbanisation process, mainly in infrastructure development. The opening of new township and residential in former tin mining areas, particularly in the heavy mineral- or tin-bearing alluvial soil in Kuala Lumpur, is a contentious subject in land-use regulation. Construction practices, i.e. reclamation and dredging in these areas are potential to enhance the radioactivity levels of soil and subsequently, increase the existing background gamma radiation levels. This situation is worsened with the utilisation of tin tailings as construction materials apart from unavoidable soil pollutions due to naturally occurring radioactive materials in construction materials, e.g. granitic aggregate, cement and red clay brick. This study was conducted to assess the urbanisation impacts on background gamma radiation in Kuala Lumpur. The study found that the mean value of measured dose rate was 251±6nGyh -1 (156-392nGyh -1 ) and 4 times higher than the world average value. High radioactivity levels of 238 U (95±12Bqkg -1 ), 232 Th (191±23Bqkg -1 ,) and 40 K (727±130Bqkg -1 ) in soil were identified as the major source of high radiation exposure. Based on statistical ANOVA, t-test, and analyses of cumulative probability distribution, this study has statistically verified the dose enhancements in the background radiation. The effective dose was estimated to be 0.31±0.01mSvy -1 per man. The recommended ICRP reference level (1-20mSvy -1 ) is applicable to the involved existing exposure situation in this study. The estimated effective dose in this study is lower than the ICRP reference level and too low to cause deterministic radiation effects. Nevertheless based on estimations of lifetime radiation exposure risks, this study found that there was small probability for individual in Kuala Lumpur being diagnosed with cancer and dying of cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.
Minimizing radiation exposure during percutaneous nephrolithotomy.
Chen, T T; Preminger, G M; Lipkin, M E
2015-12-01
Given the recent trends in growing per capita radiation dose from medical sources, there have been increasing concerns over patient radiation exposure. Patients with kidney stones undergoing percutaneous nephrolithotomy (PNL) are at particular risk for high radiation exposure. There exist several risk factors for increased radiation exposure during PNL which include high Body Mass Index, multiple access tracts, and increased stone burden. We herein review recent trends in radiation exposure, radiation exposure during PNL to both patients and urologists, and various approaches to reduce radiation exposure. We discuss incorporating the principles of As Low As reasonably Achievable (ALARA) into clinical practice and review imaging techniques such as ultrasound and air contrast to guide PNL access. Alternative surgical techniques and approaches to reducing radiation exposure, including retrograde intra-renal surgery, retrograde nephrostomy, endoscopic-guided PNL, and minimally invasive PNL, are also highlighted. It is important for urologists to be aware of these concepts and techniques when treating stone patients with PNL. The discussions outlined will assist urologists in providing patient counseling and high quality of care.
Mutation rates at the glycophorin A and HPRT loci in uranium miners exposed to radon progeny.
Shanahan, E M; Peterson, D; Roxby, D; Quintana, J; Morely, A A; Woodward, A
1996-01-01
OBJECTIVES--To find whether a relation exists between estimated levels of exposure to radon and its progeny and mutations in hypoxanthine phosphoribosyl transferase (HPRT) and glycophorin A in a cohort of former uranium miners. METHODS--A cohort study involving a sample of miners from the Radium Hill uranium mine in South Australia, which operated from 1952 to 1961. Radiation exposures underground at Radium Hill were estimated from historical radon gas measures with a job exposure matrix. Workers from the mine who worked exclusively above ground according to mine records were selected as controls. In 1991-2 miners were interviewed and blood taken for measurement of somatic mutations. Mutation rates for HPRT and glycophorin A were estimated with standard assay techniques. RESULTS--Homozygous mutations of glycophorin A were increased in underground miners (P = 0.0027) and the mutation rate tended to rise with increasing exposure with the exception of the highest exposure (> 10 working level months). However, there was no association between place of work and either the hemizygous mutations of glycophorin A or the HPRT mutation. CONCLUSIONS--There may be an association between glycophorin A mutations and previous occupational exposure to ionising radiation. However, not enough is known at present to use these assays as biomarkers for historical exposure in underground mining cohorts. PMID:8704866
Solar UV exposure of primary schoolchildren in Valencia, Spain.
Serrano, María-Antonia; Cañada, Javier; Moreno, Juan Carlos
2011-04-01
To quantify schoolchildren's exposure to ultraviolet erythemal radiation (UVER), personal dosimeters (VioSpor) were used to measure biologically effective ultraviolet (UV) radiation received in the course of their daily school activities. The study took place in two primary schools in Valencia (39°28'N), Spain, for several weeks from March 2008 until May 2009, with two age groups (6-8 years and 10-11 years) and involved about 47 schoolchildren. The median daily UV exposure values for all age groups and solar height intervals considered in the study ranged from 1.31 to 2.11 standard erythemal doses (SEDs). Individual UV exposure was analyzed as a function of age, gender and dosimeter position. Significant statistical differences were found between different age groups, with the younger age group receiving higher statistically significant UVER exposure. It was also found that boys received significantly higher UVER exposure than girls. It was also noted that shoulder dosimeters registered higher readings than wrist dosimeters. Exposure ratio (ER) is defined as the ratio between the personal dose on a selected anatomical site and the corresponding ambient dose on a horizontal plane. The median ER for all age groups and solar height intervals in the study range from 4.5% to 10.7%, with higher values at lower solar heights.
Radiation-induced cardiovascular effects
NASA Astrophysics Data System (ADS)
Tapio, Soile
Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.
Yahyapour, Rasoul; Shabeeb, Dheyauldeen; Cheki, Mohsen; Musa, Ahmed Eleojo; Farhood, Bagher; Rezaeyan, Abolhasan; Amini, Peyman; Fallah, Hengameh; Najafi, Masoud
2018-06-19
Nowadays, ionizing radiations are used for various medical and terroristic aims. These purposes involve exposure to ionizing radiations. Hence, people are at risk for acute or late effects. Annually, millions of cancer patients undergo radiotherapy during their course of treatment. Also, some radiological or nuclear events in recent years pose a threat to people, hence the need for radiation mitigation strategies. Amifostine, the first FDA approved radioprotector, has shown some toxicities that limit its usage and efficiency. Due to these side effects, scientists have researched for other agents with less toxicity for better radioprotection and possible mitigation of the lethal effects of ionizing radiations after an accidental exposure. Flavonoids have shown promising results for radioprotection and can be administered in higher doses with less toxicity. Studies for mitigation of ionizing radiation-induced toxicities has concentrated on natural antioxidants. Detoxification of free radicals, management of inflammatory responses and attenuation of apoptosis signaling pathways in radiosensitive organs are the main mechanisms for radiation protection and mitigation with flavonoids and natural antioxidants. However, several studies have proposed that a combination in the form of some antioxidants may alleviate radiation toxicities more effectively in comparison to a single form of antioxidants. In this review, we focus on recent findings about natural radioprotectors and mitigators which are clinically applicable for radiotherapy patients, as well as injured people in possible radiation accidents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Spraker, Matthew B; Nyflot, Matthew; Hendrickson, Kristi; Ford, Eric; Kane, Gabrielle; Zeng, Jing
The safety and quality of radiation therapy have recently garnered increased attention in radiation oncology (RO). Although patient safety guidelines expect physicians and physicists to lead clinical safety and quality improvement (QI) programs, trainees' level of exposure to patient safety concepts during training is unknown. We surveyed active medical and physics RO residents in North America in February 2016. Survey questions involved demographics and program characteristics, exposure to patient safety topics, and residents' attitude regarding their safety education. Responses were collected from 139 of 690 (20%) medical and 56 of 248 (23%) physics RO residents. More than 60% of residents had no exposure or only informal exposure to incident learning systems (ILS), root cause analysis, failure mode and effects analysis (FMEA), and the concepts of human factors engineering. Medical residents had less exposure to FMEA than physics residents, and fewer medical than physics residents felt confident in leading FMEA in clinic. Only 27% of residents felt that patient safety training was adequate in their program. Experiential learning through practical workshops was the most desired educational modality, preferred over web-based learning. Residents training in departments with ILS had greater exposure to patient safety concepts and felt more confident leading clinical patient safety and QI programs than residents training in departments without an ILS. The survey results show that most residents have no or only informal exposure to important patient safety and QI concepts and do not feel confident leading clinical safety programs. This represents a gaping need in RO resident education. Educational programs such as these can be naturally developed as part of an incident learning program that focuses on near-miss events. Future research should assess the needs of RO program directors to develop effective RO patient safety and QI training programs. Copyright © 2016 American Society of Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Fabricant, Peter D; Berkes, Marschall B; Dy, Christopher J; Bogner, Eric A
2012-05-01
Limiting patients' exposure to ionizing radiation during diagnostic imaging is of concern to patients and clinicians. Large single-dose exposures and cumulative exposures to ionizing radiation have been associated with solid tumors and hematologic malignancy. Although these associations have been a driving force in minimizing patients' exposure, significant risks are found when diagnoses are missed and subsequent treatment is withheld. Therefore, based on epidemiologic data obtained after nuclear and occupational exposures, dose exposure limits have been estimated. A recent collaborative effort between the US Food and Drug Administration and the American College of Radiology has provided information and tools that patients and imaging professionals can use to avoid unnecessary ionizing radiation scans and ensure use of the lowest feasible radiation dose necessary for studies. Further collaboration, research, and development should focus on producing technological advances that minimize individual study exposures and duplicate studies. This article outlines the research used to govern safe radiation doses, defines recent initiatives in decreasing radiation exposure, and provides orthopedic surgeons with techniques that may help decrease radiation exposure in their daily practice. Copyright 2012, SLACK Incorporated.
Shining light on skin pigmentation: the darker and the brighter side of effects of UV radiation.
Maddodi, Nityanand; Jayanthy, Ashika; Setaluri, Vijayasaradhi
2012-01-01
The term barrier function as applied to human skin often connotes the physical properties of this organ that provides protection from its surrounding environment. This term does not generally include skin pigmentation. However, skin pigmentation, which is the result of melanin produced in melanocytes residing in the basal layer of the skin and exported to the keratinocytes in the upper layers, serves equally important protective function. Indeed, changes in skin pigmentation are often the most readily recognized indicators of exposure of skin to damaging agents, especially to natural and artificial radiation in the environment. Several recent studies have shed new light on (1) the mechanisms involved in selective effects of subcomponents of UV radiation on human skin pigmentation and (2) the interactive influences between keratinocytes and melanocytes, acting as "epidermal melanin unit," that manifest as changes in skin pigmentation in response to exposure to various forms of radiation. This article provides a concise review of our current understanding of the effects of the nonionizing solar radiation, at cellular and molecular levels, on human skin pigmentation. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.
NASA Technical Reports Server (NTRS)
Medvedovsky, C.; Worgul, B. V.; Huang, Y.; Brenner, D. J.; Tao, F.; Miller, J.; Zeitlin, C.; Ainsworth, E. J.
1994-01-01
Because activities in space necessarily involve chronic exposure to a heterogeneous charged particle radiation field it is important to assess the influence of dose-rate and the possible modulating role of heavy particle fragmentation on biological systems. Using the well-studied cataract model, mice were exposed to plateau 600 MeV/amu Fe-56 ions either as acute or fractionated exposures at total doses of 5-504 cGy. Additional groups of mice received 20, 360 and 504 cGy behind 50 mm of polyethylene, which simulates body shielding. The reference radiation consisted of Co-60 gamma radiation. The animals were examined by slit lamp biomicroscopy over their three year life spans. In accordance with our previous observations with heavy particles, the cataractogenic potential of the 600 MeV/amu Fe-56 ions was greater than for low-Linear Energy Transfer (LET) radiation and increased with decreasing dose relative to gamma rays. Fractionation of a given dose of Fe-56 ions did not reduce the cataractogenicity of the radiation compared to the acute regimen. Fragmentation of the beam in the polyethylene did not alter the cataractotoxicity of the ions, either when administered singly or in fractions.
NASA Astrophysics Data System (ADS)
Medvedovsky, C.; Worgul, B. V.; Huang, Y.; Brenner, D. J.; Tao, F.; Miller, J.; Zeitlin, C.; Ainsworth, E. J.
1994-10-01
Because activities in space necessarily involve chronic exposure to a heterogeneous charged particle radiation field it is important to assess the influence of dose-rate and the possible modulating role of heavy particle fragmentation on biological systems. Using the well-studied cataract model, mice were exposed to plateau 600 MeV/amu 56Fe ions either as acute or fractionated exposures at total doses of 5 - 504 cGy. Additional groups of mice received 20, 360 and 504 cGy behind 50 mm of polyethylene, which simulates body shielding. The reference radiation consisted of 60Co γ radiation. The animals were examined by slit lamp biomicroscopy over their three year life spans. In accordance with our previous observations with heavy particles, the cataractogenic potential of the 600 MeV/amu 56Fe ions was greater than for low-LET radiation and increased with decreasing dose relative to γ-rays. Fractionation of a given dose of 56Fe ions did not reduce the cataractogenicity of the radiation compared to the acute regimen. Fragmentation of the beam in the polyethylene did not alter the cataractotoxicity of the ions, either when administered singly or in fractions.
Shining Light on Skin Pigmentation: The Darker and the Brighter Side of Effects of UV Radiation†
Maddodi, Nityanand; Jayanthy, Ashika; Setaluri, Vijayasaradhi
2012-01-01
The term barrier function as applied to human skin often connotes the physical properties of this organ that provide protection from its surrounding environment. This term does not generally include skin pigmentation. However, skin pigmentation, which is the result of melanin produced in melanocytes residing the basal layer of the skin and exported to the keratinocytes in the upper layers, serves equally important protective function. Indeed, changes in skin pigmentation are often the most readily recognized indicators of exposure of skin to damaging agents, especially to natural and artificial radiation in the environment. Several recent studies have shed new light on a) the mechanisms of involved in selective effects of subcomponents of UV radiation on human skin pigmentation and b) the interactive influences between keratinocytes and melanocytes, acting as ‘epidermal melanin unit’, that manifest as changes in skin pigmentation in response to exposure to various forms of radiation. This article provides a concise review of our current understanding of the effects of the non-ionizing solar radiation, at cellular and molecular levels, on human skin pigmentation. PMID:22404235
Radiation induces an antitumour immune response to mouse melanoma.
Perez, Carmen A; Fu, Allie; Onishko, Halina; Hallahan, Dennis E; Geng, Ling
2009-12-01
Irradiation of cancer cells can cause immunogenic death. We used mouse models to determine whether irradiation of melanoma can enhance the host antitumour immune response and function as an effective vaccination strategy, and investigated the molecular mechanisms involved in this radiation-induced response. For in vivo studies, C57BL6/J mice and the B16F0 melanoma cell line were used in a lung metastasis model, intratumoural host immune activation assays, and tumour growth delay studies. In vitro studies included a dendritic cell (DC) phagocytosis assay, detection of cell surface exposure of the protein calreticulin (CRT), and small interfering RNA (siRNA)-mediated depletion of CRT cellular levels. Irradiation of cutaneous melanomas prior to their resection resulted in more than 20-fold reduction in lung metastases after systemic challenge with untreated melanoma cells. A syngeneic vaccine derived from irradiated melanoma cells also induced adaptive immune response markers in irradiated melanoma implants. Our data indicate a trend for radiation-induced increase in melanoma cell surface exposure of CRT, which is involved in the enhanced phagocytic activity of DC against irradiated melanoma cells (VIACUC). The present study suggests that neoadjuvant irradiation of cutaneous melanoma tumours prior to surgical resection can stimulate an endogenous anti-melanoma host immune response.
NASA Astrophysics Data System (ADS)
Morton, Daniel R.
Modern image guided radiation therapy involves the use of an isocentrically mounted imaging system to take radiographs of a patient's position before the start of each treatment. Image guidance helps to minimize errors associated with a patients setup, but the radiation dose received by patients from imaging must be managed to ensure no additional risks. The Varian On-Board Imager (OBI) (Varian Medical Systems, Inc., Palo Alto, CA) does not have an automatic exposure control system and therefore requires exposure factors to be manually selected. Without patient specific exposure factors, images may become saturated and require multiple unnecessary exposures. A software based automatic exposure control system has been developed to predict optimal, patient specific exposure factors. The OBI system was modelled in terms of the x-ray tube output and detector response in order to calculate the level of detector saturation for any exposure situation. Digitally reconstructed radiographs are produced via ray-tracing through the patients' volumetric datasets that are acquired for treatment planning. The ray-trace determines the attenuation of the patient and subsequent x-ray spectra incident on the imaging detector. The resulting spectra are used in the detector response model to determine the exposure levels required to minimize detector saturation. Images calculated for various phantoms showed good agreement with the images that were acquired on the OBI. Overall, regions of detector saturation were accurately predicted and the detector response for non-saturated regions in images of an anthropomorphic phantom were calculated to generally be within 5 to 10 % of the measured values. Calculations were performed on patient data and found similar results as the phantom images, with the calculated images being able to determine detector saturation with close agreement to images that were acquired during treatment. Overall, it was shown that the system model and calculation method could potentially be used to predict patients' exposure factors before their treatment begins, thus preventing the need for multiple exposures.
Radiation Protection for Lunar Mission Scenarios
NASA Technical Reports Server (NTRS)
Clowdsley, Martha S.; Nealy, John E.; Wilson, John W.; Anderson, Brooke M.; Anderson, Mark S.; Krizan, Shawn A.
2005-01-01
Preliminary analyses of shielding requirements to protect astronauts from the harmful effects of radiation on both short-term and long-term lunar missions have been performed. Shielding needs for both solar particle events (SPEs) and galactic cosmic ray (GCR) exposure are discussed for transit vehicles and surface habitats. This work was performed under the aegis of two NASA initiatives. The first study was an architecture trade study led by Langley Research Center (LaRC) in which a broad range of vehicle types and mission scenarios were compared. The radiation analysis for this study primarily focused on the additional shielding mass required to protect astronauts from the rare occurrence of a large SPE. The second study, led by Johnson Space Center (JSC), involved the design of lunar habitats. Researchers at LaRC were asked to evaluate the changes to mission architecture that would be needed if the surface stay were lengthened from a shorter mission duration of 30 to 90 days to a longer stay of 500 days. Here, the primary radiation concern was GCR exposure. The methods used for these studies as well as the resulting shielding recommendations are discussed. Recommendations are also made for more detailed analyses to minimize shielding mass, once preliminary vehicle and habitat designs have been completed. Here, methodologies are mapped out and available radiation analysis tools are described. Since, as yet, no dosimetric limits have been adopted for missions beyond low earth orbit (LEO), radiation exposures are compared to LEO limits. Uncertainties associated with the LEO career effective dose limits and the effects of lowering these limits on shielding mass are also discussed.
Predictors of radiation exposure to providers during percutaneous nephrolithotomy
Wenzler, David L.; Abbott, Joel E.; Su, Jeannie J.; Shi, William; Slater, Richard; Miller, Daniel; Siemens, Michelle J.; Sur, Roger L.
2017-01-01
Background: Limited studies have reported on radiation risks of increased ionizing radiation exposure to medical personnel in the urologic community. Fluoroscopy is readily used in many urologic surgical procedures. The aim of this study was to determine radiation exposure to all operating room personnel during percutaneous nephrolithotomy (PNL), commonly performed for large renal or complex stones. Materials and Methods: We prospectively collected personnel exposure data for all PNL cases at two academic institutions. This was collected using the Instadose™ dosimeter and reported both continuously and categorically as high and low dose using a 10 mrem dose threshold, the approximate amount of radiation received from one single chest X-ray. Predictors of increased radiation exposure were determined using multivariate analysis. Results: A total of 91 PNL cases in 66 patients were reviewed. Median surgery duration and fluoroscopy time were 142 (38–368) min and 263 (19–1809) sec, respectively. Median attending urologist, urology resident, anesthesia, and nurse radiation exposure per case was 4 (0–111), 4 (0–21), 0 (0–5), and 0 (0–5) mrem, respectively. On univariate analysis, stone area, partial or staghorn calculi, surgery duration, and fluoroscopy time were associated with high attending urologist and resident radiation exposure. Preexisting access that was utilized was negatively associated with resident radiation exposure. However, on multivariate analysis, only fluoroscopy duration remained significant for attending urologist radiation exposure. Conclusion: Increased stone burden, partial or staghorn calculi, surgery and fluoroscopy duration, and absence of preexisting access were associated with high provider radiation exposure. Radiation safety awareness is essential to minimize exposure and to protect the patient and all providers from potential radiation injury. PMID:28216931
Wakeford, Richard
2009-06-01
Many individuals are, or have been, exposed to ionising radiation in the course of their work and the epidemiological study of occupationally irradiated groups offers an important opportunity to complement the estimates of risks to health resulting from exposure to radiation that are obtained from other populations, such as the Japanese survivors of the atomic bombings of Hiroshima and Nagasaki in 1945. Moreover, workplace exposure to radiation usually involves irradiation conditions that are of direct relevance to the principal concern of radiological protection: protracted exposure to low level radiation. Further, some workers have been exposed to radioactive material that has been inadvertently taken into the body, and the study of these groups leads to risk estimates derived directly from the experience of those irradiated by these 'internal emitters', intakes of alpha-particle-emitters being of particular interest. Workforces that have been the subject of epidemiological study include medical staff, aircrews, radium dial luminisers, underground hard-rock miners, Chernobyl clean-up workers, nuclear weapons test participants and nuclear industry workers. The first solid epidemiological evidence of the stochastic effects of irradiation came from a study of occupational exposure to medical x-rays that was reported in 1944, which demonstrated a large excess risk of leukaemia among US radiologists; but the general lack of dose records for early medical staff who tended to experience the highest exposures hampers the derivation of risks per unit dose received by medical workers. The instrument dial luminisers who inadvertently ingested large amounts of radium-based paint and underground hard-rock miners who inhaled large quantities of radon and its decay products suffered markedly raised excess risks of, respectively, bone and lung cancers; the miner studies have provided standard risk estimates for radon-induced lung cancer. The large numbers of nuclear industry workers around the world present a possibility of deriving risk coefficients of direct relevance to radiological protection, and the recently published study of workers from 15 countries illustrates what can be achieved by international collaboration. However, it would appear that there are some problems with this study that require attention before reliance can be placed upon the results. Early workers from the Mayak plutonium production facility in Russia were heavily exposed to external sources of penetrating radiation and to plutonium, and appreciable effort has been expended in obtaining dependable risk estimates from this scientifically valuable group of workers. Those occupationally exposed to low levels of radiation also present an opportunity of studying possible somatic health effects other than cancer, such as heart disease and eye cataracts, that are the subject of much discussion at present. Overall, studies of exposure to ionising radiation in the workplace provide a valuable support to studies of those groups exposed under other circumstances, and in some instances (such as exposure to plutonium) effectively offer the only direct source of epidemiological evidence on risks.
Kesari, Kavindra Kumar; Meena, Ramovatar; Nirala, Jayprakash; Kumar, Jitender; Verma, H N
2014-03-01
Cell phone radiation exposure and its biological interaction is the present concern of debate. Present study aimed to investigate the effect of 3G cell phone exposure with computer controlled 2-D stepper motor on 45-day-old male Wistar rat brain. Animals were exposed for 2 h a day for 60 days by using mobile phone with angular movement up to zero to 30°. The variation of the motor is restricted to 90° with respect to the horizontal plane, moving at a pre-determined rate of 2° per minute. Immediately after 60 days of exposure, animals were scarified and numbers of parameters (DNA double-strand break, micronuclei, caspase 3, apoptosis, DNA fragmentation, expression of stress-responsive genes) were performed. Result shows that microwave radiation emitted from 3G mobile phone significantly induced DNA strand breaks in brain. Meanwhile a significant increase in micronuclei, caspase 3 and apoptosis were also observed in exposed group (P < 0.05). Western blotting result shows that 3G mobile phone exposure causes a transient increase in phosphorylation of hsp27, hsp70, and p38 mitogen-activated protein kinase (p38MAPK), which leads to mitochondrial dysfunction-mediated cytochrome c release and subsequent activation of caspases, involved in the process of radiation-induced apoptotic cell death. Study shows that the oxidative stress is the main factor which activates a variety of cellular signal transduction pathways, among them the hsp27/p38MAPK is the pathway of principle stress response. Results conclude that 3G mobile phone radiations affect the brain function and cause several neurological disorders.
Radiobiology of the acute radiation syndrome.
Macià I Garau, Miquel; Lucas Calduch, Anna; López, Enric Casanovas
2011-07-06
ACUTE RADIATION SYNDROME OR ACUTE RADIATION SICKNESS IS CLASSICALLY SUBDIVIDED INTO THREE SUBSYNDROMES: the hematopoietic, gastrointestinal and neurovascular syndrome but many other tissues can be damaged. The time course and severity of clinical signs and symptoms are a function of the overall body volume irradiated, the inhomogeneity of dose exposure, the particle type, the absorbed dose and the dose rate. Classical pathophysiology explain the failure of each of these organs and the timing of appearance of their signs and symptoms due to radiation-induced cytocidal effects of a great number of parenchymal cells of hierarchically organized tissues. Contemporaneously, many other radiation-induced effects has been described and all of them may lead to tissue injury with their corresponding signs and symptoms that can be expressed after short or long period of time. Radiation-induced multi-organ involvement is thought to be due to radiation-induced systemic inflammatory response mediated by released pro-inflammatory cytokines.
Rifaximin diminishes neutropenia following potentially lethal whole-body radiation.
Jahraus, Christopher D; Schemera, Bettina; Rynders, Patricia; Ramos, Melissa; Powell, Charles; Faircloth, John; Brawner, William R
2010-07-01
Terrorist attacks involving radiological or nuclear weapons are a substantial geopolitical concern, given that large populations could be exposed to potentially lethal doses of radiation. Because of this, evaluating potential countermeasures against radiation-induced mortality is critical. Gut microflora are the most common source of systemic infection following exposure to lethal doses of whole-body radiation, suggesting that prophylactic antibiotic therapy may reduce mortality after radiation exposure. The chemical stability, easy administration and favorable tolerability profile of the non-systemic antibiotic, rifaximin, make it an ideal potential candidate for use as a countermeasure. This study evaluated the use of rifaximin as a countermeasure against low-to-intermediate-dose whole-body radiation in rodents. Female Wistar rats (8 weeks old) were irradiated with 550 cGy to the whole body and were evaluated for 30 d. Animals received methylcellulose, neomycin (179 mg/kg/d) or variably dosed rifaximin (150-2000 mg/kg/d) one hour after irradiation and daily throughout the study period. Clinical assessments (e.g. body weight) were made daily. On postirradiation day 30, blood samples were collected and a complete blood cell count was performed. Animals receiving high doses of rifaximin (i.e. 1000 or 2000 mg/kg/d) had a greater increase in weight from the day of irradiation to postirradiation day 30 compared with animals that received placebo or neomycin. For animals with an increase in average body weight from irradiation day within 80-110% of the group average, methylcellulose rendered an absolute neutrophil count (ANC) of 211, neomycin rendered an ANC of 334, rifaximin 300 mg/kg/d rendered an ANC of 582 and rifaximin 1000 mg/kg/d rendered an ANC of 854 (P = 0.05 for group comparison). Exposure to rifaximin after near-lethal whole-body radiation resulted in diminished levels of neutropenia.
Yoshida, Kengo; Nakashima, Eiji; Kyoizumi, Seishi; Hakoda, Masayuki; Hayashi, Tomonori; Hida, Ayumi; Ohishi, Waka; Kusunoki, Yoichiro
2016-09-01
Immune system impairments reflected by the composition and function of circulating lymphocytes are still observed in atomic bomb survivors, and metabolic abnormalities including altered blood triglyceride and cholesterol levels have also been detected in such survivors. Based on closely related features of immune and metabolic profiles of individuals, we investigated the hypothesis that long-term effects of radiation exposure on lymphocyte subsets might be modified by metabolic profiles in 3,113 atomic bomb survivors who participated in health examinations at the Radiation Effect Research Foundation, Hiroshima and Nagasaki, in 2000-2002. The lymphocyte subsets analyzed involved T-, B- and NK-cell subsets, and their percentages in the lymphocyte fraction were assessed using flow cytometry. Health examinations included metabolic indicators, body mass index, serum levels of total cholesterol, high-density lipoprotein cholesterol, C-reactive protein and hemoglobin A1c, as well as diabetes and fatty liver diagnoses. Standard regression analyses indicated that several metabolic indicators of obesity/related disease, particularly high-density lipoprotein cholesterol levels, were positively associated with type-1 helper T- and B-cell percentages but were inversely associated with naïve CD4 T and NK cells. A regression analysis adjusted for high-density lipoprotein cholesterol revealed a radiation dose relationship with increasing NK-cell percentage. Additionally, an interaction effect was suggested between radiation dose and C-reactive protein on B-cell percentage with a negative coefficient of the interaction term. Collectively, these findings suggest that radiation exposure and subsequent metabolic profile changes, potentially in relationship to obesity-related inflammation, lead to such long-term alterations in lymphocyte subset composition. Because this study is based on cross-sectional and exploratory analyses, the implications regarding radiation exposure, metabolic profiles and circulating lymphocytes warrant future longitudinal and molecular mechanistic studies.
[Automatic registration of patients in digital radiology facilities: dosimetric record].
Ten Morón, J I; Vañó Carruana, E; Arrazola García, J
2013-12-01
There is a consensus in the international community regarding both the need for and benefits of systematic registration and planning of the dosage indicators in patients exposed to ionizing radiation. The main interest is in the registration and follow-up of the techniques and procedures that can involve the greatest risk from exposure to radiation. This register should be planned to include the structure and tools necessary to take the radiological safety of the patients into account, enabling the physicians requesting the studies to access the most important information in the register so they can appropriately justify the request for additional studies. Likewise, it should be considered a priority to establish diagnostic reference levels for the different magnitudes that are defined in function of the modality and techniques used; this information is useful for the staff involved in procedures that use ionizing radiation. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.
Particle irradiation induces FGF2 expression in normal human lens cells
NASA Technical Reports Server (NTRS)
Chang, P. Y.; Bjornstad K, A.; Chang, E.; McNamara, M.; Barcellos-Hoff, M. H.; Lin, S. P.; Aragon, G.; Polansky, J. R.; Lui, G. M.; Blakely, E. A.
2000-01-01
Particle Irradiation Induces FGF2 Expression in Normal Human Lens Cells. Particle radiations, including both proton and helium-ion beams, have been used to successfully treat choroidal melanoma, but with the complication of radiation-induced cataract. We have investigated a role for radiation-induced changes in the expression of basic fibroblast growth factor (FGF2) gene expression as part of the mechanism(s) underlying lens cell injury associated with cataract. Normal human lens epithelial (HLE) cells were cultured in vitro on extracellular matrix (ECM) originated from bovine corneal endothelial cells. This study reports evidence for rapid but transient induction of FGF2 transcripts, an increase of between 5- and 8-fold, within 0.5 h after exposure to particle radiation, followed by another wave of increased transcription at 2-3 h postirradiation. Immunofluorescence results confirm the enhanced levels of FGF2 protein rapidly after exposure to protons or helium ions, followed by another wave of increased activity unique to helium at 6 h postirradiation. This second wave of increased immunoreactivity was not observed in the proton-irradiated samples. Total FGF2 protein analysis after helium-ion exposures shows induced expression of three FGF2 isoforms, with an increase of up to 2-fold in the 18-kDa low-molecular-weight species. Studies of the effects of protons on individual FGF2 protein isoforms are in progress. Several mechanisms involving a role for FGF2 in radiation-induced cataract are discussed.
NASA Technical Reports Server (NTRS)
Hada, Megumi; George, Kerry A.; Cucinotta, F. A.
2011-01-01
The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivor with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (.01 - 0.2 Gy) of 170 MeV/u Si-28-ions or 600 MeV/u Fe-56-ions. Chromosomes were analyzed using the whole chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). The curves for doses above 0.1 Gy were more than one ion traverses a cell showed linear dose responses. However, for doses less than 0.1 Gy, Si-28-ions showed no dose response, suggesting a non-targeted effect when less than one ion traversal occurs. Additional findings for Fe-56 will be discussed.
Trchunian, A; Ogandzhanian, E; Sarkisian, E; Gonian, S; Oganesian, A; Oganesian, S
2001-01-01
It was found that "sound" electromagnetic radiations of extremely high frequencies (53.5-68 GHz) or millimeter waves (wavelength range of 4.2-5.6 mm) of low intensity (power density 0.01 mW) have a bactericidal effect on Escherichia coli bacteria. It was shown that exposure to irradiation of extremely high frequencies increases the electrokinetic potential and surface change density of bacteria and decreases of membrane potential. The total secretion of hydrogen ions was suppressed, the H+ flux from the cytoplasm to medium decreased, and the flux of N,N'-dicyclohexylcarbodiimide-sensitive potassium ions increased, which was accompanied by changes in the stoichiometry of these fluxes and an increase in the sensitivity of H+ ions to N,N'-dicyclohexylcarbodiimide. The effects depended on duration of exposure: as the time of exposure increased, the bactericidal effect increased, whereas the membranotropic effects decreased. The effects also depended on growth phase of bacteria: the irradiation affected the cells in the stationary but not in the logarithmic phase. It is assumed that the H(+)-ATPase complex F0F1 is involved in membranotropic effects of electromagnetic radiation of extremely high frequencies. Presumably, there are some compensatory mechanisms that eliminate the membranotropic effects.
Radiation safety audit of a high volume Nuclear Medicine Department.
Jha, Ashish Kumar; Singh, Abhijith Mohan; Shetye, Bhakti; Shah, Sneha; Agrawal, Archi; Purandare, Nilendu Chandrakant; Monteiro, Priya; Rangarajan, Venkatesh
2014-10-01
Professional radiation exposure cannot be avoided in nuclear medicine practices. It can only be minimized up to some extent by implementing good work practices. The aim of our study was to audit the professional radiation exposure and exposure rate of radiation worker working in and around Department of nuclear medicine and molecular imaging, Tata Memorial Hospital. We calculated the total number of nuclear medicine and positron emission tomography/computed tomography (PET/CT) procedures performed in our department and the radiation exposure to the radiation professionals from year 2009 to 2012. We performed an average of 6478 PET/CT scans and 3856 nuclear medicine scans/year from January 2009 to December 2012. The average annual whole body radiation exposure to nuclear medicine physician, technologist and nursing staff are 1.74 mSv, 2.93 mSv and 4.03 mSv respectively. Efficient management and deployment of personnel is of utmost importance to optimize radiation exposure in a high volume nuclear medicine setup in order to work without anxiety of high radiation exposure.
Risk Factors for Breast Cancer, Including Occupational Exposures
Meo, Margrethe; Vainio, Harri
2011-01-01
The knowledge on the etiology of breast cancer has advanced substantially in recent years, and several etiological factors are now firmly established. However, very few new discoveries have been made in relation to occupational risk factors. The International Agency for Research on Cancer has evaluated over 900 different exposures or agents to-date to determine whether they are carcinogenic to humans. These evaluations are published as a series of Monographs (www.iarc.fr). For breast cancer the following substances have been classified as "carcinogenic to humans" (Group 1): alcoholic beverages, exposure to diethylstilbestrol, estrogen-progestogen contraceptives, estrogen-progestogen hormone replacement therapy and exposure to X-radiation and gamma-radiation (in special populations such as atomic bomb survivors, medical patients, and in-utero exposure). Ethylene oxide is also classified as a Group 1 carcinogen, although the evidence for carcinogenicity in epidemiologic studies, and specifically for the human breast, is limited. The classification "probably carcinogenic to humans" (Group 2A) includes estrogen hormone replacement therapy, tobacco smoking, and shift work involving circadian disruption, including work as a flight attendant. If the association between shift work and breast cancer, the most common female cancer, is confirmed, shift work could become the leading cause of occupational cancer in women. PMID:22953181
Gies, Peter; Wright, Jill
2003-10-01
The risk to outdoor workers of exposure to solar ultraviolet radiation (UVR) has been known for some time, particularly in the building and construction industry, where workers often use little in the way of protection against solar UVR. In recent years there have been attempts by authorities in Australia and in Queensland in particular, where UVR levels in spring and summer are very high to extreme, to instigate and to encourage the use of personal UVR protection by outdoor workers. To quantify UVR exposure of building and construction industry workers involved in typical outdoor work, a study was conducted using UVR-sensitive polysulphone film badges. The results indicated that the doses were significant, often well in excess of recommended exposure limits. The measured exposures varied between trades. Data on the use of personal UVR-protective equipment and the skin type of workers were also collected. Many of the workers had skin types that were sensitive to UVR and showed signs of sunburn. In summary, the study found that at-risk individuals were exposed to extreme levels of UVR, in most cases without adequate and appropriate sun protection.
Saha, Shreya; Woodbine, Lisa; Haines, Jackie; Coster, Margaret; Ricket, Nicole; Barazzuol, Lara; Ainsbury, Elizabeth; Sienkiewicz, Zenon; Jeggo, Penny
2014-11-06
The use of X-rays for medical diagnosis is enhancing exposure to low radiation doses. Exposure to extremely low-frequency electromagnetic or magnetic fields is also increasing. Epidemiological studies show consistent associations of childhood leukaemia with exposure to magnetic fields but any causal relationship is unclear. A limitation in assessing the consequence of such exposure is the availability of sensitive assays. The embryonic neuronal stem and progenitor cell compartments are radiosensitive tissues. Using sensitive assays, we report a statistically significant increase in DNA double-strand break (DSB) formation and apoptosis in the embryonic neuronal stem cell compartment following in utero exposure to 10-200 mGy X-rays. Both endpoints show a linear response. We also show that DSB repair is delayed following exposure to doses below 50 mGy compared with 100 mGy. Thus, we demonstrate in vivo consequences of low-dose radiation. In contrast to these impacts, we did not observe any significant induction of DSBs or apoptosis following exposure to 50 Hz magnetic fields (100 or 300 µT). We conclude that any DSB induction by treatment with magnetic fields is lower than following exposure to 10 mGy X-rays. For comparison, certain procedures involving computed tomography scanning are equivalent to 1-5 mGy X-rays.
Saha, Shreya; Woodbine, Lisa; Haines, Jackie; Coster, Margaret; Ricket, Nicole; Barazzuol, Lara; Ainsbury, Elizabeth; Sienkiewicz, Zenon; Jeggo, Penny
2014-01-01
The use of X-rays for medical diagnosis is enhancing exposure to low radiation doses. Exposure to extremely low-frequency electromagnetic or magnetic fields is also increasing. Epidemiological studies show consistent associations of childhood leukaemia with exposure to magnetic fields but any causal relationship is unclear. A limitation in assessing the consequence of such exposure is the availability of sensitive assays. The embryonic neuronal stem and progenitor cell compartments are radiosensitive tissues. Using sensitive assays, we report a statistically significant increase in DNA double-strand break (DSB) formation and apoptosis in the embryonic neuronal stem cell compartment following in utero exposure to 10–200 mGy X-rays. Both endpoints show a linear response. We also show that DSB repair is delayed following exposure to doses below 50 mGy compared with 100 mGy. Thus, we demonstrate in vivo consequences of low-dose radiation. In contrast to these impacts, we did not observe any significant induction of DSBs or apoptosis following exposure to 50 Hz magnetic fields (100 or 300 µT). We conclude that any DSB induction by treatment with magnetic fields is lower than following exposure to 10 mGy X-rays. For comparison, certain procedures involving computed tomography scanning are equivalent to 1–5 mGy X-rays. PMID:25209403
Kajimura, Junko; Lynch, Heather E; Geyer, Susan; French, Benjamin; Yamaoka, Mika; Shterev, Ivo D; Sempowski, Gregory D; Kyoizumi, Seishi; Yoshida, Kengo; Misumi, Munechika; Ohishi, Waka; Hayashi, Tomonori; Nakachi, Kei; Kusunoki, Yoichiro
2017-11-30
Previous immunological studies in atomic bomb survivors have suggested that radiation exposure leads to long-lasting changes, similar to immunological aging observed in T-cell-adaptive immunity. However, to our knowledge, late effects of radiation on dendritic cells (DCs), the key coordinators for activation and differentiation of T cells, have not yet been investigated in humans. In the current study, we hypothesized that numerical and functional decreases would be observed in relationship to radiation dose in circulating conventional DCs (cDCs) and plasmacytoid DCs (pDCs) among 229 Japanese A-bomb survivors. Overall, the evidence did not support this hypothesis, with no overall changes in DCs or functional changes observed with radiation dose. Multivariable regression analysis for radiation dose, age and gender effects revealed that total DC counts as well as subpopulation counts decreased in relationship to increasing age. Further analyses revealed that in women, absolute numbers of pDCs showed significant decreases with radiation dose. A hierarchical clustering analysis of gene expression profiles in DCs after Toll-like receptor stimulation in vitro identified two clusters of participants that differed in age-associated expression levels of genes involved in antigen presentation and cytokine/chemokine production in cDCs. These results suggest that DC counts decrease and expression levels of gene clusters change with age. More than 60 years after radiation exposure, we also observed changes in pDC counts associated with radiation, but only among women.
Kajimura, Junko; Lynch, Heather E; Geyer, Susan; French, Benjamin; Yamaoka, Mika; Shterev, Ivo D; Sempowski, Gregory D; Kyoizumi, Seishi; Yoshida, Kengo; Misumi, Munechika; Ohishi, Waka; Hayashi, Tomonori; Nakachi, Kei; Kusunoki, Yoichiro
2018-01-01
Previous immunological studies in atomic bomb survivors have suggested that radiation exposure leads to long-lasting changes, similar to immunological aging observed in T-cell-adaptive immunity. However, to our knowledge, late effects of radiation on dendritic cells (DCs), the key coordinators for activation and differentiation of T cells, have not yet been investigated in humans. In the current study, we hypothesized that numerical and functional decreases would be observed in relationship to radiation dose in circulating conventional DCs (cDCs) and plasmacytoid DCs (pDCs) among 229 Japanese A-bomb survivors. Overall, the evidence did not support this hypothesis, with no overall changes in DCs or functional changes observed with radiation dose. Multivariable regression analysis for radiation dose, age and gender effects revealed that total DC counts as well as subpopulation counts decreased in relationship to increasing age. Further analyses revealed that in women, absolute numbers of pDCs showed significant decreases with radiation dose. A hierarchical clustering analysis of gene expression profiles in DCs after Toll-like receptor stimulation in vitro identified two clusters of participants that differed in age-associated expression levels of genes involved in antigen presentation and cytokine/chemokine production in cDCs. These results suggest that DC counts decrease and expression levels of gene clusters change with age. More than 60 years after radiation exposure, we also observed changes in pDC counts associated with radiation, but only among women.
Top 100 Cited articles on Radiation Exposure in Medical Imaging: A Bibliometric Analysis.
Kinnin, Jason; Hanna, Tarek N; Jutras, Marc; Hasan, Babar; Bhatia, Rick; Khosa, Faisal
2018-03-20
Bibliometric analyses by highest number of citations can help researchers and funding agencies in determining the most influential articles in a field. The main objective of this analysis was to identify the top 100 cited articles addressing radiation exposure from medical imaging and assess their characteristics. Relevant articles were extracted from the Scopus database after a systematic search by researchers using an iteratively defined Boolean search string. Subsequently, exclusion criteria were applied. A list of top 100 articles was prepared, and articles were ranked according to the citations they had received. No time restriction was applied. Descriptive statistics of the data were compiled. The top-cited articles were published from 1970-2013, with the most articles published in 2009 and 2010 (12 articles in each year). The citations ranged from 107-1888 with a median of 272. Manuscripts from our top-cited list originated from 20 different countries, with contributions made by 158 authors and 160 organizations. Eighty-eight percent of studies evaluated patient-related radiation exposure, 7% health care workers, and 5% both or were not specified. Thirty-two percent of studies examined adult populations, 14% pediatric, and 54% included both populations or did not specify. Seventy-two percent of studies were dedicated to Computed Tomography, 8% to radiography/fluoroscopy, 9% to interventional procedures, 4% to nuclear medicine, and 7% to a combination of 2 or more modalities. The top 100 cited articles in medical imaging related to radiation exposure are diverse, originating from many countries with numerous contributing authors. The most common topics covered involve CT and adult patients. The recent peak in the most-highly cited articles (2010) suggests that increased attention has been devoted to this field in recent years. Based on these results, it would appear that research on radiation exposure in medical imaging is poised to continue expanding. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Hu, S.; Kim, M. Y.; McClellan, G. E.; Nikjoo, H.; Cucinotta, F. A.
2007-01-01
In space exploration outside the Earth's geomagnetic field, radiation exposure from solar particle events (SPE) presents a health concern for astronauts, that could impair their performance and result in possibility of failure of the mission. Acute risks are especially of concern during spacewalks on the lunar surface because of the rapid onset of SPE's and science goals that involve long distances to crew habitats. Thus assessing the potential of early radiation effect under such adverse conditions is of prime importance. Here we present a biologic based mathematical model which describes the dose and time-dependent early human responses to ionizing radiation. We examine the possible early effects on crew behind various shielding materials from exposure to some historical large SPEs on the lunar and Mars surfaces. The doses and dose rates were calculated using the BRYNTRN code (Kim, M.Y, Hu, X, and Cucinotta, F.A, Effect of Shielding Materials from SPEs on the Lunar and Mars Surface, AIAA Space 2005, paper number AIAA-2005-6653, Long Beach, CA, August 30-September 1, 2005) and the hazard of the early radiation effects and performance reduction were calculated using the RIPD code (Anno, G.H, McClellan, G.E., Dore, M.A, Protracted Radiation-Induced Performance Decrement, Volume 1 Model Development,1996, Defense Nuclear Agency: Alexandria VA). Based on model assumptions we show that exposure to these historical SPEs do cause early effects to crew members and impair their performance if effective shielding and medical countermeasure tactics are not provided. The calculations show multiple occurrence of large SPEs in a short period of time significantly increase the severity of early illness, however early death from failure of the hematopoietic system is very unlikely because of the dose-rate and dose heterogeneity of SPEs. Results from these types of calculations will be a guide in design of protection systems and medical response strategy for astronauts in case of exposure to high dose irradiation during future space missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, D.R. Jr.; Wondrow, M.A.; Gray, J.E.
1990-01-01
The increased application of therapeutic interventional cardiology procedures is associated with increased radiation exposure to physicians, patients and technical personnel. New advances in imaging techniques have the potential for reducing radiation exposure. A progressive scanning video system with a standard vascular phantom has been shown to decrease entrance radiation exposure. The effect of this system on reducing actual radiation exposure to physicians and technicians was assessed from 1984 through 1987. During this time, progressive fluoroscopy was added sequentially to all four adult catheterization laboratories; no changes in shielding procedures were made. During this time, the case load per physician increasedmore » by 63% and the number of percutaneous transluminal coronary angioplasty procedures (a high radiation procedure) increased by 244%. Despite these increases in both case load and higher radiation procedures, the average radiation exposure per physician declined by 37%. During the same time, the radiation exposure for technicians decreased by 35%. Pulsed progressive fluoroscopy is effective for reducing radiation exposure to catheterization laboratory physicians and technical staff.« less
Occupational radiation Exposure at Agreement State-Licensed Materials Facilities, 1997-2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research
The purpose of this report is to examine occupational radiation exposures received under Agreement State licensees. As such, this report reflects the occupational radiation exposure data contained in the Radiation Exposure Information and Reporting System (REIRS) database, for 1997 through 2010, from Agreement State-licensed materials facilities.
NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies.
Beheshti, Afshin; Miller, Jack; Kidane, Yared; Berrios, Daniel; Gebre, Samrawit G; Costes, Sylvain V
2018-06-01
Accurate assessment of risks of long-term space missions is critical for human space exploration. It is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from galactic cosmic rays (GCR) is a major health risk factor for astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently, there are gaps in our knowledge of the health risks associated with chronic low-dose, low-dose-rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The NASA GeneLab project ( https://genelab.nasa.gov/ ) aims to provide a detailed library of omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information on radiation exposure for ground-based studies, GeneLab is adding detailed, curated dosimetry information for spaceflight experiments. GeneLab is the first comprehensive omics database for space-related research from which an investigator can generate hypotheses to direct future experiments, utilizing both ground and space biological radiation data. The GLDS is continually expanding as omics-related data are generated by the space life sciences community. Here we provide a brief summary of the space radiation-related data available at GeneLab.
Han, Sangwon; Yoo, Seon Hee; Koh, Kyung-Nam; Lee, Jong Jin
2017-04-01
Current recommendations suggest that family members should participate in the care of children receiving in-hospital I metaiodobenzylguanidine (MIBG) therapy for neuroblastoma. The present study aimed to measure the external radiation exposure and estimate the internal radiation exposure of caregivers during the hospital stay for I MIBG therapy. Caregivers received radiation safety instructions and a potassium iodide solution for thyroid blockade before patient admission. External radiation exposure was determined using a personal pocket dosimeter. Serial 24-hour urine samples were collected from caregivers during the hospital stay. Estimated internal radiation exposure was calculated based on the urine activity. Twelve cases (mean age, 6.2 ± 3.5 years; range, 2-13 years) were enrolled. The mean administered activity was 233.3 ± 74.9 (range, 150.0-350.0) mCi. The mean external radiation dose was 5.8 ± 7.2 (range, 0.8-19.9) mSv. Caregivers of children older than 4 years had significantly less external radiation exposure than those of children younger than 4 years (1.9 ± 1.0 vs 16.4 ± 5.0 mSv; P = 0.012). The mean estimated internal radiation dose was 11.3 ± 10.2 (range, 1.0-29.8) μSv. Caregivers receive both external and internal radiation exposure while providing in-hospital care to children receiving I MIBG therapy for neuroblastoma. However, the internal radiation exposure was negligible compared with the external radiation exposure.
[Metabolic changes in cells under electromagnetic radiation of mobile communication systems].
Iakimenko, I L; Sidorik, E P; Tsybulin, A S
2011-01-01
Review is devoted to the analysis of biological effects of microwaves. The results of last years' researches indicated the potential risks of long-term low-level microwaves exposure for human health. The analysis of metabolic changes in living cells under the exposure of microwaves from mobile communication systems indicates that this factor is stressful for cells. Among the reproducible effects of low-level microwave radiation are overexpression of heat shock proteins, an increase of reactive oxygen species level, an increase of intracellular Ca2+, damage of DNA, inhibition of DNA reparation, and induction of apoptosis. Extracellular-signal-regulated kinases ERK and stress-related kinases p38MAPK are involved in metabolic changes. Analysis of current data suggests that the concept of exceptionally thermal mechanism of biological effects of microwaves is not correct. In turn, this raises the question of the need to revaluation of modern electromagnetic standards based on thermal effects of non-ionizing radiation on biological systems.
NASA Astrophysics Data System (ADS)
Martin, Brett D.; Fontana, Jake; Wang, Zheng; Trammell, Scott A.
2015-04-01
Reverse micelles (RMs) containing aqueous solutions of Ag+ ions in their core produce fluorescent Ag nanoclusters (NCs), upon exposure to gamma irradiation. The fluorescence spectra of the NCs evolve over days to weeks after the exposure, and usually show large increases in intensity. Responses of as high as 2.8 × 104 CPS/Gy were reached. A dosage as low as 0.5 Gy (10 % of the lethal dosage for humans) produces NCs having fluorescence intensities higher than background. The RMs can be employed in novel gamma radiation detectors with appearance of fluorescence indicating that radiation was once present. In applications involving detection and tracking of fissile materials, the evolution of the fluorescence spectra over time may provide additional information about the radiation source. A two-phase liquid system is used for RM formation in a simple procedure. It is likely that this synthesis method may be adapted to produce NCs from other metal ions.
Radiation exposure of the US population from consumer products and miscellaneous sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-12-30
The primary goal of the effort that resulted in this report was to update the earlier report issued by the NCRP on this subject (NCRP, 1977). In so doing, the Council has identified additional consumer products that can be sources of ionizing radiation, and has deleted coverage of some products that are either no longer available or whose use has essentially been discontinued. For each source category, a major effort has been made to provide data on the number of products currently in use, the rate at which such usage is changing, and the range of typical dose equivalents beingmore » received from that source by the general public. To the extent possible, an attempt has been made to provide information to assist in making decisions on whether a given application might better be replaced by some other method of accomplishing the same task without involving radiation exposure to the population. 162 refs., 2 figs., 23 tabs.« less
1987-05-01
processes or thermoregulation . Most investigations involving chronic exposures of mammals indicated either that no effects occurred or that reversible...radiofrequency radiation danger "* Fish, reptiles , and amphibians - Few species and fisheries - Avoid streams and wetlands, when possible 3-37 BIRDS "* The
NASA Technical Reports Server (NTRS)
Faust, K. M.; Wotring, V. E.
2014-01-01
Liver function, especially the rate of metabolic enzyme activities, determines the concentration of circulating drugs and the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver. Dietary factors and exposure to radiation are aspects of spaceflight that are potential oxidative stressors and both can be modeled in ground experiments. In this experiment, we examined the effects of high dietary iron and low dose gamma radiation (individually and combined) on the gene expression of enzymes involved in drug metabolism, redox homeostasis, and DNA repair. METHODS All procedures were approved by the JSC Animal Care and Use Committee. Male Sprague-Dawley rats were divided into 4 groups (n=8); control, high Fe diet (650 mg iron/kg), radiation (fractionated 3 Gy exposure from a Cs- 137 source) and combined high Fe diet + radiation exposure. Animals were euthanized 24h after the last treatment of radiation; livers were removed immediately and flash -frozen in liquid nitrogen. Expression of genes thought to be involved in redox homeostasis, drug metabolism and DNA damage repair was measured by RT-qPCR. Where possible, protein expression of the same genes was measured by western blotting. All data are expressed as % change in expression normalized to reference gene expression; comparisons were then made of each treatment group to the sham exposed/ normal diet control group. Data was considered significant at p< 0.5. RESULTS Among the redox homeostasis genes examined, metallothionein showed a significant down regulation in the radiation treated group (-3.85 fold) and a trend toward down regulation in the high Fe + rad group. Metallothionein is involved in the regulation of physiological metals and also has antioxidant activities. Among the drug metabolism genes examined, ATP binding cassette subfamily B (Abcb1b) gene expression increased more than 10-fold in both groups that received radiation treatments. This increased expression was also seen at the protein level. This ABC transporter carries many different compounds across cell membranes, including administered medications. The cytochrome P450 2E1 enzyme, a mixed-function oxidase that deactivates some medications and activates others, showed about a 2-fold increase in gene expression in both radiation-treated groups, with a trend toward increased expression at the protein level. Expression of epoxide hydrolase, which detoxifies polycyclic aromatic hydrocarbons, showed similar 2-fold increases. Among the DNA repair genes examined, expression of RAD51 was significantly down regulated (1.5 fold) in the radiation treated group. RAD51 is involved in repair of double-stranded DNA breaks. CONCLUSION This experiment used 2 different sources of physiological oxidative stress, administered separately and together, and examined their impacts on liver gene and protein expression. It is clear that significant changes occurred in expression of several genes and proteins in the radiation-treated animals. If the results from this ground analog of portions of the spaceflight environment hold true for the spaceflight environment itself, the physiological roles of the affected enzymes (drug transport and metabolism, redox homeostasis) could mean consequences in redox homeostasis or the pharmacokinetics of administered medications
Radiation exposure to sonographers from nuclear medicine patients: A review.
Earl, Victoria Jean; Badawy, Mohamed Khaldoun
2018-06-01
Following nuclear medicine scans a patient can be a source of radiation exposure to the hospital staff, including sonographers. Sonographers are not routinely monitored for occupational radiation exposure as they do not commonly interact with radioactive patients or other sources of ionizing radiation. This review aims to find evidence relating to the risk and amount of radiation the sonographer is exposed to from nuclear medicine patients. It is established in the literature that the radiation exposure to the sonographer following diagnostic nuclear medicine studies is low and consequently the risk is not significant. Nevertheless, it is paramount that basic radiation safety principles are followed to ensure any exposure to ionizing radiation is kept as low as reasonably achievable. Practical recommendations are given to assist the sonographer in radiation protection. Nuclear medicine therapy procedures may place the sonographer at higher risk and as such consultation with a Radiation Safety Officer or Medical Physicist as to the extent of exposure is recommended. © 2018 The Royal Australian and New Zealand College of Radiologists.
Nestle, U; Berlich, J
2006-05-01
In 2001 or 2002, the legislator made substantial alterations to the "Röntgenverordnung" [regulations governing use of roentgen ray radiation] and "Strahlenschutzverordnung" [regulations governing radiation protection]. This was done to bring German law in line with EU Directives 96/29/Euratom (basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation) and 97/43/Euratom (health protection of individuals against the dangers of ionizing radiation in relation to medical exposure). Proper use of radiation in medicine requires that those involved in its application are aware of the biological effects of radiation. When staff and others are protected good organization and appropriate technology at the workplace can achieve a great deal. In the new directives, the radiation protection for the patient is quantified and the responsibility of the physician is clearly pointed out. The most important aim is uniform quality throughout Europe in radiological diagnosis and radiation protection.
Nestle, U; Berlich, J
2006-08-01
In 2001 or 2002, the legislator made substantial alterations to the "Röntgenverordnung" [regulations governing use of roentgen ray radiation] and "Strahlenschutzverordnung" [regulations governing radiation protection]. This was done to bring German law in line with EU Directives 96/29/Euratom (basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation) and 97/43/Euratom (health protection of individuals against the dangers of ionizing radiation in relation to medical exposure). Proper use of radiation in medicine requires that those involved in its application are aware of the biological effect of radiation. When staff and others are protected good organization and appropriate technology at the workplace can achieve a great deal. In the new directives, the radiation protection for the patient is quantified and the responsibility of the physician is clearly pointed out. The most important aim is uniform quality throughout Europe in radiological diagnosis and radiation protection.
NASA Technical Reports Server (NTRS)
Bolch, Wesley E.; Peddicord, K. Lee; Felsher, Harry; Smith, Simon
1994-01-01
This study was conducted to analyze scenarios involving the use of nuclear-power vehicles in the vicinity of a manned Space Station (SS) in low-earth-orbit (LEO) to quantify their radiological impact to the station crew. In limiting the radiant dose to crew members, mission planners may (1) shut the reactor down prior to reentry, (2) position the vehicle at a prescribed parking distance, and (3) deploy radiation shield about the shutdown reactor. The current report focuses on the third option in which point-kernel gamma-ray shielding calculations were performed for a variety of shield configurations for both nuclear electric propulsion (NEP) and nuclear thermal rocket (NTR) vehicles. For a returning NTR vehicle, calculations indicate that a 14.9 MT shield would be needed to limit the integrated crew exposure to no more than 0.05 Sv over a period of six months (25 percent of the allowable exposure to man-made radiation sources). During periods of low vehicular activity in LEO, the shield may be redeployed about the SS habitation module in order to decrease crew exposures to trapped proton radiations by approximately a factor of 10. The corresponding shield mass required for deployment at a returning NEP vehicle is 2.21 MT. Additional scenarios examined include the radioactivation of various metals as might be found in tools used in EVA activities.
Role of Ionizing Radiation in Neurodegenerative Diseases
Sharma, Neel K.; Sharma, Rupali; Mathur, Deepali; Sharad, Shashwat; Minhas, Gillipsie; Bhatia, Kulsajan; Anand, Akshay; Ghosh, Sanchita P.
2018-01-01
Ionizing radiation (IR) from terrestrial sources is continually an unprotected peril to human beings. However, the medical radiation and global radiation background are main contributors to human exposure and causes of radiation sickness. At high-dose exposures acute radiation sickness occurs, whereas chronic effects may persist for a number of years. Radiation can increase many circulatory, age related and neurodegenerative diseases. Neurodegenerative diseases occur a long time after exposure to radiation, as demonstrated in atomic bomb survivors, and are still controversial. This review discuss the role of IR in neurodegenerative diseases and proposes an association between neurodegenerative diseases and exposure to IR. PMID:29867445
Ultrasound: biological effects and industrial hygiene concerns.
Wiernicki, C; Karoly, W J
1985-09-01
Due to the increased use of high intensity ultrasonic devices, there is now a greater risk of worker exposure to ultrasonic radiation than there was in the past. Exposure to high power ultrasound may produce adverse biological effects. High power ultrasound, characterized by high intensity outputs at frequencies of 20-100 kHz, has a wide range of applications throughout industry. Future applications may involve equipment with higher energy outputs. Contact ultrasound, i.e., no airspace between the energy source and the biological tissue, is significantly more hazardous than exposure to airborne ultrasound because air transmits less than one percent of the energy. This paper discusses biological effects associated with overexposure to ultrasound, exposure standards proposed for airborne and contact ultrasound, industrial hygiene controls that can be employed to minimize exposure, and the instrumentation that is required for evaluating exposures.
Impact of Neutron Exposure on Global Gene Expression in a Human Peripheral Blood Model
Broustas, Constantinos G.; Xu, Yanping; Harken, Andrew D.; Chowdhury, Mashkura; Garty, Guy; Amundson, Sally A.
2017-01-01
The detonation of an improvised nuclear device would produce prompt radiation consisting of both photons (gamma rays) and neutrons. While much effort in recent years has gone into the development of radiation biodosimetry methods suitable for mass triage, the possible effect of neutrons on the endpoints studied has remained largely uninvestigated. We have used a novel neutron irradiator with an energy spectrum based on that 1–1.5 km from the epicenter of the Hiroshima blast to begin examining the effect of neutrons on global gene expression, and the impact this may have on the development of gene expression signatures for radiation biodosimetry. We have exposed peripheral blood from healthy human donors to 0.1, 0.3, 0.5 or 1 Gy of neutrons ex vivo using our neutron irradiator, and compared the transcriptomic response 24 h later to that resulting from sham exposure or exposure to 0.1, 0.3, 0.5, 1, 2 or 4 Gy of photons (X rays). We identified 125 genes that responded significantly to both radiation qualities as a function of dose, with the magnitude of response to neutrons generally being greater than that seen after X-ray exposure. Gene ontology analysis suggested broad involvement of the p53 signaling pathway and general DNA damage response functions across all doses of both radiation qualities. Regulation of immune response and chromatin-related functions were implicated only following the highest doses of neutrons, suggesting a physiological impact of greater DNA damage. We also identified several genes that seem to respond primarily as a function of dose, with less effect of radiation quality. We confirmed this pattern of response by quantitative real-time RT-PCR for BAX, TNFRSF10B, ITLN2 and AEN and suggest that gene expression may provide a means to differentiate between total dose and a neutron component. PMID:28140791
Impact of Neutron Exposure on Global Gene Expression in a Human Peripheral Blood Model.
Broustas, Constantinos G; Xu, Yanping; Harken, Andrew D; Chowdhury, Mashkura; Garty, Guy; Amundson, Sally A
2017-04-01
The detonation of an improvised nuclear device would produce prompt radiation consisting of both photons (gamma rays) and neutrons. While much effort in recent years has gone into the development of radiation biodosimetry methods suitable for mass triage, the possible effect of neutrons on the endpoints studied has remained largely uninvestigated. We have used a novel neutron irradiator with an energy spectrum based on that 1-1.5 km from the epicenter of the Hiroshima blast to begin examining the effect of neutrons on global gene expression, and the impact this may have on the development of gene expression signatures for radiation biodosimetry. We have exposed peripheral blood from healthy human donors to 0.1, 0.3, 0.5 or 1 Gy of neutrons ex vivo using our neutron irradiator, and compared the transcriptomic response 24 h later to that resulting from sham exposure or exposure to 0.1, 0.3, 0.5, 1, 2 or 4 Gy of photons (X rays). We identified 125 genes that responded significantly to both radiation qualities as a function of dose, with the magnitude of response to neutrons generally being greater than that seen after X-ray exposure. Gene ontology analysis suggested broad involvement of the p53 signaling pathway and general DNA damage response functions across all doses of both radiation qualities. Regulation of immune response and chromatin-related functions were implicated only following the highest doses of neutrons, suggesting a physiological impact of greater DNA damage. We also identified several genes that seem to respond primarily as a function of dose, with less effect of radiation quality. We confirmed this pattern of response by quantitative real-time RT-PCR for BAX, TNFRSF10B, ITLN2 and AEN and suggest that gene expression may provide a means to differentiate between total dose and a neutron component.
NASA Technical Reports Server (NTRS)
Wu, Honglu
2006-01-01
Astronauts receive the highest occupational radiation exposure. Effective protections are needed to ensure the safety of astronauts on long duration space missions. Increased cancer morbidity or mortality risk in astronauts may be caused by occupational radiation exposure. Acute and late radiation damage to the central nervous system (CNS) may lead to changes in motor function and behavior, or neurological disorders. Radiation exposure may result in degenerative tissue diseases (non-cancer or non-CNS) such as cardiac, circulatory, or digestive diseases, as well as cataracts. Acute radiation syndromes may occur due to occupational radiation exposure.
A decade of changes in radiation protection.
Moulder, J E
1992-04-01
Although radiation protection standards have changed remarkably little over the past decade, there have been changes in our understanding of radiation hazards that may affect the practice of radiation medicine over the next decade. With recognition of indoor radon exposure has come a new focus for public health concerns, because it is now clear that radon rather than medical exposure is the largest controllable source of radiation exposure to the general public. Continued follow-up of irradiated populations has led to an increase in our estimate of the cancer risk for high-dose exposures; this increased risk estimate is, in turn, leading to decreases in radiation exposure limits. Although our concern about the carcinogenic risk for radiation exposure has increased, our concern about genetic consequences has decreased, because no genetic effects have yet been observed in the offspring of atomic bomb survivors. Studies of atomic bomb survivors have also led to a change in the focus of concern over prenatal radiation exposure; the principle risk now appears to be mental retardation rather than childhood cancer.
Behavioral effects of heavy ions and protons and potential countermeasure agents
NASA Astrophysics Data System (ADS)
Vazquez, M.; Gatley, J.; Bruneus, M.; Koslosky, S.; Billups, A.
Space travel beyond the Earth's protective magnetic field (for example, to Mars) will involve exposure of astronauts to irradiation by high-energy nuclei such as 56 Fe, which are a component of galactic cosmic rays. These particles have high linear energy transfer (LET) and are expected to irreversibly damage cells they traverse. Exposure to HZE radiation may therefore cause progressive deterioration of brain function, adding to other inescapable damage involved in normal aging. We propose a study of the hypothesis that long-term behavioral alterations are induced after exposure of the brain to 1 GeV/n iron and silicon particles with fluences of 1 to 8 particles/cell targets. Previous studies support this notion but are not definitive, especially with regard to long-term effects. Our principal goal is to examine the neurological effects of high-LET radiation on C57BL/6 mice using a series of behavioral tests to unveil the temporal expression of altered behaviors in the radiation response, as well as the means, which can modulate these responses. The studies planned in this project are designed to: 1) Characterize the behavioral consequences after exposure to low-fluences of heavy ions and protons on C57BL/6 mice. The main behavioral endpoints to be used in these studies are locomotor activity to evaluate the integrity of striatal dopaminergic pathways, and spatial reference memory to probe hippocampal cholinergic pathways. 2) Characterize the neurochemical and structural changes induced by heavy ions and protons. 3) To develop countermeasures to protect neural cell populations exposed to low fluences of heavy ions and protons. The project will test methods to protect injured neural cells based on their molecular and cellular mechanisms that may regulate neural cell survival in the central nervous system. Among the methods that will be studied is the direct administration of neuroprotective molecules as well as the modulation of apoptotic pathways by pharmacological manipulation. The effects of 3 different neuro/radioprotectors (GM1, melatonin and PTF-) on the levels of radiation induced neurochemical and structural damage will be compared with the level of behavioral alterations to determine a cause/effect relationship
Kubale, Travis L; Daniels, Robert D; Yiin, James H; Couch, James; Schubauer-Berigan, Mary K; Kinnes, Gregory M; Silver, Sharon R; Nowlin, Susan J; Chen, Pi-Hsueh
2005-12-01
A nested case-control study using conditional logistic regression was conducted to evaluate the exposure-response relationship between external ionizing radiation exposure and leukemia mortality among civilian workers at the Portsmouth Naval Shipyard (PNS), Kittery, Maine. The PNS civilian workers received occupational radiation exposure while performing construction, overhaul, repair and refueling activities on nuclear-powered submarines. The study age-matched 115 leukemia deaths with 460 controls selected from a cohort of 37,853 civilian workers employed at PNS between 1952 and 1992. In addition to radiation doses received in the workplace, a secondary analysis incorporating doses from work-related medical X rays and other occupational radiation exposures was conducted. A significant positive association was found between leukemia mortality and external radiation exposure, adjusting for gender, radiation worker status, and solvent exposure duration (OR = 1.08 at 10 mSv of exposure; 95% CI = 1.01, 1.16). Solvent exposure (including benzene and carbon tetrachloride) was also significantly associated with leukemia mortality adjusting for radiation dose, radiation worker status, and gender. Incorporating doses from work-related medical X rays did not change the estimated leukemia risk per unit of dose.
Study of the Genes and Mechanism Involved in the Radioadaptive Response
NASA Technical Reports Server (NTRS)
Dasgupta, Pushan R.
2009-01-01
The radioadaptive response is a phenomenon where exposure to a prior low dose of radiation reduces the level of damage induced by a subsequent high radiation dose. The molecular mechanism behind this is still not well understood. Learning more about the radioadaptive response is critical for long duration spaceflight since astronauts are exposed to low levels of cosmic radiation. The micronucleus assay was used to measure the level of damage caused by radiation. Although cells which were not washed with phosphate buffered saline (PBS) after a low priming dose of 5cGy did not show adaptation to the challenge dose, washing the cells with PBS and giving the cells fresh media after the low dose did allow radioadaptation to occur. This is consistent with the results of a previous publication by another research group. In the present study, genes involved in DNA damage signaling and the oxidative stress response were studied using RT PCR techniques in order to look at changes in expression level after the low dose with or without washing. Our preliminary results indicate that upregulation of oxidative stress response genes ANGPTL7, NCF2, TTN, and SRXN1 may be involved in the radioadaptive response. The low dose of radiation alone was found to activate the oxidative stress response genes GPR156 and MTL5, whereas, washing the cells alone caused relatively robust upregulation of the oxidative stress response genes DUSP1 and PTGS2. Washing after the priming dose showed some changes in the expression level of several DNA damage signaling genes. In addition, we studied whether washing the cells after the priming dose has an effect on the level of nitric oxide in both the media and cells, since nitric oxide levels are known to increase in the media of the cells after a high dose of radiation only if the cells were already exposed to a low priming dose. Based on this preliminary study, we propose that washing the cells after priming exposure actually eliminates some factor secreted by the cells that inhibits radioadaptation leading to the upregulation of some genes which initiates the response.
Monitoring of fetal radiation exposure during pregnancy.
Chandra, Venita; Dorsey, Chelsea; Reed, Amy B; Shaw, Palma; Banghart, Dawn; Zhou, Wei
2013-09-01
One unique concern of vascular surgeons and trainees is radiation exposure associated with increased endovascular practice. The safety of childbearing is a particular worry for current and future women in vascular surgery. Little is known regarding actual fetal radiation exposure. This multi-institutional study aimed to evaluate the radiation dosages recorded on fetal dosimeter badges and compare them to external badges worn by the same cohort of women. All women who declared pregnancy with potential radiation exposure were required to wear two radiation monitors at each institution, one outside and the other inside the lead apron. Maternal (external) and fetal monitor dosimeter readings were analyzed. Maternal radiation exposures prior to, during, and postpregnancy were also assessed to determine any associated behavior modification. Eighty-one women declared pregnancy from 2008 to 2011 and 32 had regular radiation exposure during pregnancy. Maternal whole-body exposures ranged from 21-731 mrem. The average fetal dosimeter recordings for the cohort rounded to zero. Only two women had positive fetal dosimeter recordings; one had a single recording of 3 mrem and the other had a single recording of 7 mrem. There was no significant difference between maternal exposures prior to, during, and postpregnancy. Lack of knowledge of fetal radiation exposure has concerned many vascular surgeons, prompting them to wear double lead aprons during pregnancy, and perhaps prevented numerous other women from entering the field. Our study showed negligible radiation exposure on fetal monitoring suggesting that with the appropriate safety precautions, these concerns may be unwarranted. Published by Mosby, Inc.
Gross, Janine; Wegener, Alfred R; Kronschlaeger, Martin; Holz, Frank G; Schönfeld, Carl-Ludwig; Meyer, Linda M
2018-04-26
The purpose of this study was to investigate the neurokinin receptor-1 (NKR-1) protein expression in ocular tissues before and after supra-cataract threshold ultraviolet radiation (UVR-B peak at 312 nm) exposure in vivo in a mouse model. Six-week-old C57Bl/6 mice were unilaterally exposed to a single (2.9 kJ/m 2 ) and an above 3-fold UVR-B cataract threshold dose (9.4 kJ/m 2 ) of UVR. UVR-exposure (λpeak = 312 nm) was performed in mydriasis using a Bio-Spectra exposure system. After latency periods of 3 and 7 days, eyes were fixed in 4% paraformaldehyde, embedded in paraffin, sectioned and stained with fluorescence coupled antibody for NKR-1 and DAPI for cell nuclei staining. Control animals received only anesthesia but no UVR-exposure. Cataract development was documented with a Leica dark-field microscope and quantified as integrated optical density (IOD). NKR-1 is ubiquitously present in ocular tissues. An above 3-fold cataract threshold dose of UV-radiation induced NKR-1 upregulation after days 3 and 7 in the epithelium and endothelium of the cornea, the endothelial cells of the iris vessels, the pigmented epithelium/stroma of the ciliary body, the lens epithelium, pronounced in the nuclear bow region and the inner plexiform layer of the retina. A significant upregulation of NKR-1 could not be provoked with a single cataract threshold dose (2.9 kJ/m 2 UVR-B) ultraviolet irradiation. All exposed eyes developed anterior subcapsular cataracts. Neurokinin-1 receptor is present ubiquitously in ocular tissues including the lens epithelium and the nuclear bow region of the lens. UV-radiation exposure to an above 3-fold UVR-B cataract threshold dose triggers NKR-1 upregulation in the eye in vivo. The involvement of inflammation in ultraviolet radiation induced cataract and the role of neuroinflammatory peptides such as substance P and its receptor, NKR-1, might have been underestimated to date. Copyright © 2018. Published by Elsevier Ltd.
Rinsky, R A; Melius, J M; Hornung, R W; Zumwalde, R D; Waxweiler, R J; Landrigan, P J; Bierbaum, P J; Murray, W E
1988-01-01
Case-control analysis of deaths due to lung cancer (International Classification of Diseases, Eighth Revision, code 162) among persons who worked at the Portsmouth Naval Shipyard, Kittery, Maine, between 1952 and 1977 found elevated odds ratios for exposures to ionizing radiation, asbestos, and welding byproducts. The radiation-related excess was statistically significant in persons with cumulative lifetime exposures of 1.0-4.999 rem. When asbestos and welding histories were combined into a single risk factor, odds ratios for the combined exposure were significantly elevated for two of three duration-of-exposure categories examined. Further analysis of data on radiation exposure, controlling for exposures to asbestos and welding, found reductions in initial estimates of radiation risk at all levels of radiation exposure. This reduction suggests that radiation workers were more heavily exposed to asbestos and/or welding fumes than were other workers and that those exposures confounded the observed association between radiation and lung cancer. Analysis of mortality by time since first exposure to radiation revealed no pattern of progressive increase as latency increased. By contrast, odds ratios for asbestos/welding increased with latency. Data on cigarette smoking and socioeconomic status were not available. The results of this study do not preclude a possible association between radiation exposure at the Portsmouth Naval Shipyard and excess mortality from lung cancer. However, they provide no evidence in support of such a relation.
Radiation safety audit of a high volume Nuclear Medicine Department
Jha, Ashish Kumar; Singh, Abhijith Mohan; Shetye, Bhakti; Shah, Sneha; Agrawal, Archi; Purandare, Nilendu Chandrakant; Monteiro, Priya; Rangarajan, Venkatesh
2014-01-01
Introduction: Professional radiation exposure cannot be avoided in nuclear medicine practices. It can only be minimized up to some extent by implementing good work practices. Aim and Objectives: The aim of our study was to audit the professional radiation exposure and exposure rate of radiation worker working in and around Department of nuclear medicine and molecular imaging, Tata Memorial Hospital. Materials and Methods: We calculated the total number of nuclear medicine and positron emission tomography/computed tomography (PET/CT) procedures performed in our department and the radiation exposure to the radiation professionals from year 2009 to 2012. Results: We performed an average of 6478 PET/CT scans and 3856 nuclear medicine scans/year from January 2009 to December 2012. The average annual whole body radiation exposure to nuclear medicine physician, technologist and nursing staff are 1.74 mSv, 2.93 mSv and 4.03 mSv respectively. Conclusion: Efficient management and deployment of personnel is of utmost importance to optimize radiation exposure in a high volume nuclear medicine setup in order to work without anxiety of high radiation exposure. PMID:25400361
Müller, M C; Strauss, A; Pflugmacher, R; Nähle, C P; Pennekamp, P H; Burger, C; Wirtz, D C
2014-08-01
There is a positive correlation between operation time and staff exposure to radiation during intraoperative use of C-arm fluoroscopy. Due to harmful effects of exposure to long-term low-dose radiation for both the patient and the operating team it should be kept to a minimum. AIM of this study was to evaluate a novel dosimeter system called Dose Aware® (DA) enabling radiation exposure feedback of the personal in an orthopaedic and trauma operation theatre in real-time. Within a prospective study over a period of four month, DA was applied by the operation team during 104 orthopaedic and trauma operations in which the C-arm fluoroscope was used in 2D-mode. During ten operation techniques, radiation exposure of the surgeon, the first assistant, the theatre nurse and the anaesthesiologist was evaluated. Seventy-three operations were analysed. The surgeon achieved the highest radiation exposure during dorsolumbar spinal osteosynthesis, kyphoplasty and screw fixation of sacral fractures. The first assistant received a higher radiation exposure compared to the surgeon during plate osteosynthesis of distal radius fractures (157 %), intramedullary nailing of pertrochanteric fractures (143 %) and dorsolumbar spinal osteosynthesis (240 %). During external fixation of ankle fractures (68 %) and screw fixation of sacral fractures (66 %) radiation exposure of the theatre nurse exceeded 50 % of the surgeon's radiation exposure. During plate osteosynthesis of distal radius fractures (157 %) and intramedullary splinting of clavicular fractures (115 %), the anaesthesiologist received a higher radiation exposure than the surgeon. The novel dosimeter system DA provides real-time radiation exposure feedback of the personnel in an orthopaedic and trauma operation theatre for the first time. Data of this study demonstrate that radiation exposure of the personnel depends on the operation type. The first assistant, the theatre nurse and the anaesthesiologist might be exposed to higher radiation doses than the surgeon. DA might help to increase awareness concerning irradiation in an orthopaedic and trauma operation theatre and might enhance staff compliance in using radiation protection techniques. Georg Thieme Verlag KG Stuttgart · New York.
Perspectives of Radioactive Contamination in Nuclear War
Waters, W. R.
1967-01-01
The degrees of risk associated with the medical, industrial and military employment of nuclear energy are compared. The nature of radioactive contamination of areas and of persons resulting from the explosion of nuclear weapons, particularly the relationship between the radiation exposure and the amount of physical debris, is examined. Some theoretical examples are compared quantitatively. It is concluded that the amount of radio-activity that may be carried on the contaminated person involves a minor health hazard from gamma radiation, compared to the irradiation arising from contaminated areas. PMID:6015741
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAllister, R.S.
Contents: Visual Acquisition Functions in Operational Environments; Investigation of Causes of Military Aircraft Accidents Involving Pilot Vertigo/Disorientation; Long Term Pulmonary Effects of Repeated Use of 100% Oxygen; Effects of Microwave Radiation on Naval Personnel; Effects of Extremely Low Frequency Radiation on Man; Behavioral Characteristics of Monkeys and Rats Irradiated with Microwaves; Evaluation of the Squirrel Monkey (Saimiri sciureus) as an Experimental Animal Model for Dysbaric Osteonecrosis; Oculovestibular Effects on Visual Performance in Moving Military Systems; Chronic Exposure of Mammals to Non-ionizing Electric and Magnetic Fields--Physiological and Psychophysiological Effects; and Open Literature Publications by Staff Members.
NASA Technical Reports Server (NTRS)
Morgan, William F.
2003-01-01
The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.
The Chernobyl accident and its consequences.
Saenko, V; Ivanov, V; Tsyb, A; Bogdanova, T; Tronko, M; Demidchik, Yu; Yamashita, S
2011-05-01
The accident at the Chernobyl nuclear power plant was the worst industrial accident of the last century that involved radiation. The unprecedented release of multiple different radioisotopes led to radioactive contamination of large areas surrounding the accident site. The exposure of the residents of these areas was varied and therefore the consequences for health and radioecology could not be reliably estimated quickly. Even though some studies have now been ongoing for 25 years and have provided a better understanding of the situation, these are yet neither complete nor comprehensive enough to determine the long-term risk. A true assessment can only be provided after following the observed population for their natural lifespan. Here we review the technical aspects of the accident and provide relevant information on radioactive releases that resulted in exposure of this large population to radiation. A number of different groups of people were exposed to radiation: workers involved in the initial clean-up response, and members of the general population who were either evacuated from the settlements in the Chernobyl nuclear power plant vicinity shortly after the accident, or continued to live in the affected territories of Belarus, Russia and Ukraine. Through domestic efforts and extensive international co-operation, essential information on radiation dose and health status for this population has been collected. This has permitted the identification of high-risk groups and the use of more specialised means of collecting information, diagnosis, treatment and follow-up. Because radiation-associated thyroid cancer is one of the major health consequences of the Chernobyl accident, a particular emphasis is placed on this malignancy. The initial epidemiological studies are reviewed, as are the most significant studies and/or aid programmes in the three affected countries. Copyright © 2011 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Epidemiology of accidental radiation exposures.
Cardis, E
1996-01-01
Much of the information on the health effects of radiation exposure available to date comes from long-term studies of the atomic bombings in Hiroshima and Nagasaki. Accidental exposures, such as those resulting from the Chernobyl and Kyshtym accidents, have as yet provided little information concerning health effects of ionizing radiation. This paper will present the current state of our knowledge concerning radiation effects, review major large-scale accidental radiation exposures, and discuss information that could be obtained from studies of accidental exposures and the types of studies that are needed. PMID:8781398
Manchikanti, Laxmaiah; Cash, Kim A; Moss, Tammy L; Rivera, Jose; Pampati, Vidyasagar
2003-08-06
BACKGROUND: Fluoroscopic guidance is frequently utilized in interventional pain management. The major purpose of fluoroscopy is correct needle placement to ensure target specificity and accurate delivery of the injectate. Radiation exposure may be associated with risks to physician, patient and personnel. While there have been many studies evaluating the risk of radiation exposure and techniques to reduce this risk in the upper part of the body, the literature is scant in evaluating the risk of radiation exposure in the lower part of the body. METHODS: Radiation exposure risk to the physician was evaluated in 1156 patients undergoing interventional procedures under fluoroscopy by 3 physicians. Monitoring of scattered radiation exposure in the upper and lower body, inside and outside the lead apron was carried out. RESULTS: The average exposure per procedure was 12.0 PlusMinus; 9.8 seconds, 9.0 PlusMinus; 0.37 seconds, and 7.5 PlusMinus; 1.27 seconds in Groups I, II, and III respectively. Scatter radiation exposure ranged from a low of 3.7 PlusMinus; 0.29 seconds for caudal/interlaminar epidurals to 61.0 PlusMinus; 9.0 seconds for discography. Inside the apron, over the thyroid collar on the neck, the scatter radiation exposure was 68 mREM in Group I consisting of 201 patients who had a total of 330 procedures with an average of 0.2060 mREM per procedure and 25 mREM in Group II consisting of 446 patients who had a total of 662 procedures with average of 0.0378 mREM per procedure. The scatter radiation exposure was 0 mREM in Group III consisting of 509 patients who had a total 827 procedures. Increased levels of exposures were observed in Groups I and II compared to Group III, and Group I compared to Group II.Groin exposure showed 0 mREM exposure in Groups I and II and 15 mREM in Group III. Scatter radiation exposure for groin outside the apron in Group I was 1260 mREM and per procedure was 3.8182 mREM. In Group II the scatter radiation exposure was 400 mREM and with 0.6042 mREM per procedure. In Group III the scatter radiation exposure was 1152 mREM with 1.3930 mREM per procedure. CONCLUSION: Results of this study showed that scatter radiation exposure to both the upper and lower parts of the physician's body is present. Protection was offered by traditional measures to the upper body only.
Dermatopathology effects of simulated solar particle event radiation exposure in the porcine model.
Sanzari, Jenine K; Diffenderfer, Eric S; Hagan, Sarah; Billings, Paul C; Gridley, Daila S; Seykora, John T; Kennedy, Ann R; Cengel, Keith A
2015-07-01
The space environment exposes astronauts to risks of acute and chronic exposure to ionizing radiation. Of particular concern is possible exposure to ionizing radiation from a solar particle event (SPE). During an SPE, magnetic disturbances in specific regions of the Sun result in the release of intense bursts of ionizing radiation, primarily consisting of protons that have a highly variable energy spectrum. Thus, SPE events can lead to significant total body radiation exposures to astronauts in space vehicles and especially while performing extravehicular activities. Simulated energy profiles suggest that SPE radiation exposures are likely to be highest in the skin. In the current report, we have used our established miniature pig model system to evaluate the skin toxicity of simulated SPE radiation exposures that closely resemble the energy and fluence profile of the September, 1989 SPE using either conventional radiation (electrons) or proton simulated SPE radiation. Exposure of animals to electron or proton radiation led to dose-dependent increases in epidermal pigmentation, the presence of necrotic keratinocytes at the dermal-epidermal boundary and pigment incontinence, manifested by the presence of melanophages in the derm is upon histological examination. We also observed epidermal hyperplasia and a reduction in vascular density at 30 days following exposure to electron or proton simulated SPE radiation. These results suggest that the doses of electron or proton simulated SPE radiation results in significant skin toxicity that is quantitatively and qualitatively similar. Radiation-induced skin damage is often one of the first clinical signs of both acute and non-acute radiation injury where infection may occur, if not treated. In this report, histopathology analyses of acute radiation-induced skin injury are discussed. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Compagnone, Gaetano; Padovani, Renato; D'Avanzo, Maria Antonietta; Grande, Sveva; Campanella, Francesco; Rosi, Antonella
2018-05-01
A Working Group coordinated by the Italian National Institute of Health (Istituto Superiore di Sanità) and the National Workers Compensation Authority (Istituto Nazionale per l'Assicurazione contro gli Infortuni sul Lavoro, INAIL) and consisting of 11 Italian scientific/professional societies involved in the fluoroscopically guided interventional practices has been established to define recommendations for the optimization of patients and staff radiation protection in interventional radiology. A summary of these recommendations is here reported. A multidisciplinary approach was used to establish the Working Group by involving radiologists, interventional radiologists, neuroradiologists, interventional cardiologists, occupational health specialists, medical physicists, radiation protection experts, radiographers and nurses. The Group operated as a "Consensus Conference". Three main topics have been addressed: patient radiation protection (summarized in ten "golden rules"); staff radiation protection (summarized in ten "golden rules"); and education/training of interventional radiology professionals. In the "golden rules", practical and operational recommendations were provided to help the professionals in optimizing dose delivered to patients and reducing their own exposure. Operative indications dealt also with continuing education and training, and recommendations on professional accreditation and certification. The "Consensus Conference" was the methodology adopted for the development of these recommendations. Involvement of all professionals is a winning approach to improve practical implementation of the recommendations, thus getting a real impact on the optimization of the interventional radiology practices.
Kakinuma, Shizuko; Nishimura, Mayumi; Amasaki, Yoshiko; Takada, Mayumi; Yamauchi, Kazumi; Sudo, Satomi; Shang, Yi; Doi, Kazutaka; Yoshinaga, Shinji; Shimada, Yoshiya
2012-09-01
Ionizing radiation is a well-known carcinogen, but its potency may be influenced by other environmental carcinogens, which is of practical importance in the assessment of risk. Data are scarce, however, on the combined effect of radiation with other environmental carcinogens and the underlying mechanisms involved. We studied the mode and mechanism of the carcinogenic effect of radiation in combination with N-ethyl-N-nitrosourea (ENU) using doses approximately equal to the corresponding thresholds. B6C3F1 mice exposed to fractionated X-irradiation (Kaplan's method) followed by ENU developed T-cell lymphomas in a dose-dependent manner. Radiation doses above an apparent threshold acted synergistically with ENU to promote lymphoma development, whereas radiation doses below that threshold antagonized lymphoma development. Ikaros, which regulates the commitment and differentiation of lymphoid lineage cells, is a critical tumor suppressor gene frequently altered in both human and mouse lymphomas and shows distinct mutation spectra between X-ray- and ENU-induced lymphomas. In the synergistically induced lymphomas, we observed a low frequency of LOH and an inordinate increase of Ikaros base substitutions characteristic of ENU-induced point mutations, G:C to A:T at non-CpG, A:T to G:C, G:C to T:A and A:T to T:A. This suggests that radiation doses above an apparent threshold activate the ENU mutagenic pathway. This is the first report on the carcinogenic mechanism elicited by combined exposure to carcinogens below and above threshold doses based on the mutation spectrum of the causative gene. These findings constitute a basis for assessing human cancer risk following exposure to multiple carcinogens. Copyright © 2012 Elsevier B.V. All rights reserved.
1999-01-01
This report provides guidance on the application of the ICRP system of radiological protection to prolonged exposure situations affecting members of the public. It addresses the general application of the Commission's system to the control of prolonged exposures resulting from practices and to the undertaking of interventions in prolonged exposure situations. Additionally, it provides recommendations on generic reference levels for such interventions. The report also considers some specific situations and discusses a number of issues that have been of concern, namely: natural radiation sources that may give rise to high doses; the restoration and rehabilitation of sites where human activities involving radioactive substances have been carried out; the return to 'normality' following an accident that has released radioactive substances to the environment; and the global marketing of commodities for public consumption that contain radioactive substances. Annexes provide some examples of prolonged exposure situations and discuss the radiological protection quantities, radiation-induced health effects and aspects of the Commission's system of radiological protection relevant to prolonged exposure. Quantitative recommendations for prolonged exposures are provided in the report. They must be interpreted with extreme caution; Chapters 4 and 5 stress the upper bound nature of the following values: Generic reference levels for intervention, in terms of existing total annual doses, are given as < approximately 100 mSv, above which intervention is almost always justifiable (situations for which the annual dose threshold for deterministic effects in relevant organs is exceeded will almost always require intervention), and < approximately 10 mSv, below which intervention is not likely to be justifiable (and above which it may be necessary). Intervention exemption levels for commodities, especially building materials, are expressed as an additional annual dose of approximately 1 mSv. The dose limit for exposures of the public from practices is expressed as aggregated (prolonged and transitory) additional annual doses from all relevant practices of 1 mSv. Dose constraints for sources within practices are expressed as an additional annual dose lower than 1 mSv (e.g. of approximately 0.3 mSv), which could be approximately 0.1 mSv for the prolonged exposure component. An exemption level for practices is expressed as an additional annual dose of approximately 0.01 mSv.
The Prospective Role of Plant Products in Radiotherapy of Cancer: A Current Overview
Hazra, Banasri; Ghosh, Subhalakshmi; Kumar, Amit; Pandey, B. N.
2012-01-01
Treatment of cancer often requires exposure to radiation, which has several limitations involving non-specific toxicity toward normal cells, reducing the efficacy of treatment. Efforts are going on to find chemical compounds which would effectively offer protection to the normal tissues after radiation exposure during radiotherapy of cancer. In this regard, plant-derived compounds might serve as “leads” to design ideal radioprotectors/radiosensitizers. This article reviews some of the recent findings on prospective medicinal plants, phytochemicals, and their analogs, based on both in vitro and in vivo tumor models especially focused with relevance to cancer radiotherapy. Also, pertinent discussion has been presented on the molecular mechanism of apoptotic death in relation to the oxidative stress in cancer cells induced by some of these plant samples and their active constituents. PMID:22291649
Durand, Christelle; Pezet, Sophie; Eutamène, Hélène; Demarquay, Christelle; Mathieu, Noëlle; Moussa, Lara; Daudin, Rachel; Holler, Valérie; Sabourin, Jean-Christophe; Milliat, Fabien; François, Agnès; Theodorou, Vassilia; Tamarat, Radia; Benderitter, Marc; Sémont, Alexandra
2015-08-01
Each year, millions of people worldwide are treated for primary or recurrent pelvic malignancies, involving radiotherapy in almost 50% of cases. Delayed development of visceral complications after radiotherapy is recognized in cancer survivors. Therapeutic doses of radiation may lead to the damage of healthy tissue around the tumor and abdominal pain. Because of the lack of experimental models, the underlying mechanisms of radiation-induced long-lasting visceral pain are still unknown. This makes managing radiation-induced pain difficult, and the therapeutic strategies proposed are mostly inefficient. The aim of our study was to develop an animal model of radiation-induced visceral hypersensitivity to (1) analyze some cellular and molecular mechanisms involved and (2) to test a therapeutic strategy using mesenchymal stromal cells (MSCs). Using a single 27-Grays colorectal irradiation in rats, we showed that such exposure induces a persistent visceral allodynia that is associated with an increased spinal sensitization (enhanced p-ERK neurons), colonic neuroplasticity (as increased density of substance P nerve fibers), and colonic mast cell hyperplasia and hypertrophy. Mast cell stabilization by ketotifen provided evidence of their functional involvement in radiation-induced allodynia. Finally, intravenous injection of 1.5 million MSCs, 4 weeks after irradiation, induced a time-dependent reversion of the visceral allodynia and a reduction of the number of anatomical interactions between mast cells and PGP9.5+ nerve fibers. Moreover, unlike ketotifen, MSC treatment has the key advantage to limit radiation-induced colonic ulceration. This work provides new insights into the potential use of MSCs as cellular therapy in the treatment of pelvic radiation disease.
NASA Astrophysics Data System (ADS)
Mertens, Christopher; Blattnig, Steve; Slaba, Tony; Kress, Brian; Wiltberger, Michael; Solomon, Stan
NASA's High Charge and Energy Transport (HZETRN) code is a deterministic model for rapid and accurate calculations of the particle radiation fields in the space environment. HZETRN is used to calculate dosimetric quantities on the International Space Station (ISS) and assess astronaut risk to space radiations, including realistic spacecraft and human geometry for final exposure evaluation. HZETRN is used as an engineering design tool for materials research for radiation shielding protection. Moreover, it is used to calculate HZE propagation through the Earth and Martian atmospheres, and to evaluate radiation exposures for epidemiological studies. A new research project has begun that will use HZETRN as the transport engine for the development of a nowcast prediction of air-crew radiation exposure for both background galactic cosmic ray (GCR) exposure and radiation exposure during solar particle events (SPE) that may accompany solar storms. The new air-crew radiation exposure model is called the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model, which utilizes real-time observations from ground-based, atmospheric, and satellite measurements. In this paper, we compute the global distribution of atmospheric radiation dose for several SPE events during solar cycle 23, with particular emphasis on the high-latitude and polar region. We also characterize the suppression of the geomagnetic cutoff rigidity during these storm periods and their subsequent influence on atmospheric radiation exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilnytskyy, Yaroslav; Zemp, Franz J.; Koturbash, Igor
To investigate involvement of miRNAs in radiation responses we used microRNAome profiling to analyze the sex-specific response of radiation sensitive hematopoietic lymphoid tissues. We show that radiation exposure resulted in a significant and sex-specific deregulation of microRNA expression in murine spleen and thymus tissues. Among the regulated miRNAs, we found that changes in expression of miR-34a and miR-7 may be involved in important protective mechanisms counteracting radiation cytotoxicity. We observed a significant increase in the expression of tumor-suppressor miR-34a, paralleled by a decrease in the expression of its target oncogenes NOTCH1, MYC, E2F3 and cyclin D1. Additionally, we show thatmore » miR-7 targets the lymphoid-specific helicase LSH, a pivotal regulator of DNA methylation and genome stability. While miR-7 was significantly down-regulated LSH was significantly up-regulated. These cellular changes may constitute an attempt to counteract radiation-induced hypomethylation. Tissue specificity of miRNA responses and possible regulation of miRNA expression upon irradiation are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabrikant, J.I.
1979-01-01
The setting of any permissible radiation level or guide remains essentially an arbitrary procedure. Based on the radiation risk estimates derived, any lack of precision does not minimize either the need for setting public health policies nor the conclusion that such risks are extremely small when compared with those avialable of alternative options, and those normally accepted by society as the hazards of everyday life. When compared with the benefits that society has established as goals derived from the necessary activities of medical care and energy production, it is apparent that society must establish appropriate standards and seek appropriate controllingmore » procedures which continue to assure that its needs are being met with the lowest possible risks. This implies continuing decision-making processes in which risk-benefit and cost-effectiveness assessments must be taken into account. Much of the practical information necessary for determination of radiation protection standards for public health policy is still lacking. It is now assumed that any exposure to radiaion at low levels of dose carries some risk of deleterious effects. However, how low this level may be, or the probability, or magnitude of the risk, still are not known. Radiation and the public health becomes a societal and political problem and not solely a scientific one. Our best scientific knowledge and our best scientific advice are essential for the protection of the public health, for the effective application of new technologies in medicine, and for guidance in the production of energy in industry. Unless man wishes to dispense with those activities which inevitably involve exposure to low levels of ionizing radiations, he must recognize that some degree of risk, however small, exists. In the evaluation of such risks from radiation, it is necessary to limit the radiation exposure to a level at which the risk is acceptable both to the individual and to society.« less
Pathology effects at radiation doses below those causing increased mortality
NASA Technical Reports Server (NTRS)
Carnes, Bruce A.; Gavrilova, Natalia; Grahn, Douglas
2002-01-01
Mortality data from experiments conducted at the Argonne National Laboratory (ANL) on the long-term effects of external whole-body irradiation on B6CF(1) mice were used to investigate radiation-induced effects at intermediate doses of (60)Co gamma rays or fission-spectrum neutrons either delivered as a single exposure or protracted over 60 once-weekly exposures. Kaplan-Meier analyses were used to identify the lowest dose in the ANL data (within radiation quality, pattern of exposure, and sex) at which radiation-induced mortality caused by primary tumors could be detected (approximately 1-2 Gy for gamma rays and 10-15 cGy for neutrons). Doses at and below these levels were then examined for radiation-induced shifts in the spectrum of pathology detected at death. To do this, specific pathology events were pooled into larger assemblages based on whether they were cancer, cardiovascular disease or non-neoplastic diseases detected within the lungs and pleura, liver and biliary tract, reproductive organs, or urinary tract. Cancer and cardiovascular disease were further subdivided into categories based on whether they caused death, contributed to death, or were simply observed at death. Counts of how often events falling within each of these combined pathology categories occurred within a mouse were then used as predictor variables in logistic regression to determine whether irradiated mice could be distinguished from control mice. Increased pathology burdens were detected in irradiated mice at doses lower than those causing detectable shifts in mortality-22 cGy for gamma rays and 2 cGy for neutrons. These findings suggest that (1) models based on mortality data alone may underestimate radiation effects, (2) radiation may have adverse health consequences (i.e. elevated health risks) even when mortality risks are not detected, and (3) radiation-induced pathologies other than cancer do occur, and they involve multiple organ systems.
Radiosensitivity of antibody responses and radioresistant secondary tetanus antitoxin responses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoner, R.; Terres, G.; Cottier, H.
1976-01-01
Primary tetanus antitoxin responses were increasingly repressed in mice when gamma radiation doses of 100 to 400 rads were delivered by whole-body exposure prior to immunization with fluid tetanus toxoid (FTT). Nearly normal secondary antitoxin responses were obtained in mice exposed to 600 rads of gamma radiation 4 days after secondary antigenic stimulation with FTT. A rapid transition from radiosensitivity of the antibody-forming system on days 1 to 3 was followed by relative radioresistance on day 4 after the booster injection of toxoid. Studies on lymphoid cellular kinetics in popliteal lymph nodes after injection of $sup 3$H--thymidine ($sup 3$H--TdR) andmore » incorporation of $sup 3$H--L- histidine into circulating antitoxin were carried out. Analysis of tritium radioactivity in antigen--antibody precipitates of serums 2 hr after injection of the labeled amino acid revealed maximum incorporation into antibody around day 7 after the booster in nonirradiated controls and about day 12, i.e., 8 days after irradiation, in experimental mice. The shift from radiosensitivity to relative radioresistance was attributed to a marked peak of plasma-cell proliferation in the medulla of lymph nodes on day 3. Many medullary plasma cells survived and continued to proliferate after exposure to radiation. Germinal centers were destroyed by radiation within 1 day. Since antibody formation continued after exposure to radiation and after the loss of germinal centers, this supports the view that germinal-center cells were involved more in the generation of memory cells than in antibody synthesis. (auth)« less
Mathematical modeling the radiation effects on humoral immunity
NASA Astrophysics Data System (ADS)
Smirnova, O.
One of the biological processes affecting the carcinogenesis is a response of humoral immune system to an antigen of malignant cells. Humoral immunity involves the production of protein molecules, antibodies, which can specifically bind to a certain antigen. This body system is radiosensitive. Therefore when simulating the radiation carcinogenesis, it is important to take into account the radiation effects on humoral immunity. To this end, a model of humoral immune response in irradiated mammals is developed. It is based on conventional theories and experimental facts. The model represents a system of nonlinear differential equations whose variables are the concentrations of antigen-sensitive immuno-competent cells carrying surface receptors and their bone-marrow precursor cells, as well as the concentrations of antibody-producing cells, antibodies, and an antigen. The dose of acute exposure and the dose rate of chronic exposure are the variable parameters in our approach. The model quantitatively reproduces the dynamics of the humoral immune response to the T-independent antigen (capsular antigen of Pasteurella pestis) in nonirradiated mammals (CBA mice). The model simulates the processes of the damage and recovery of the system of humoral immunity after acute exposure and predicts an adaptation of this system to low-level long-term chronic irradiation. These results give evidence that the developed model, after the appropriate identification, can be incorporated into a model of radiation carcinogenesis in humans. Together with a model of cellular immunity, such joined model will give capability to estimate the risk of radiation carcinogenesis for cosmonauts and astronauts on long space missions such as a voyage to Mars or a lunar colony.
2013-12-01
In keeping with its responsibility for the radiation protection of patients undergoing radiological examinations and procedures, as well as of staff who are getting exposed, and with due regard to requirements under European Directives, the European Society of Radiology (ESR) issues this statement. It provides a holistic approach, termed as Globalisation (indicating all the steps and involving all stakeholders), Personalisation (referring to patient-centric) and Safety-thus called GPS. While being conscious that there is need to increase access of radiological imaging, ESR is aware about the increasing inappropriate medical exposures to ionising radiation and wide variation in patient doses for the same examination. The ESR is convinced that the different components of radiation protection are often interrelated and cannot be considered in isolation The ESR's GPS approach stands for: Globalisation (indicating all the steps and involving all stakeholders), Personalisation (referring to patient-centric) and Safety-thus called GPS It can be anticipated that enhanced protection of patients in Europe will result through the GPS approach. Although the focus is on patient safety, staff safety issues will find a place wherever pertinent.
Making it safe, making it legal, and creating peace of mind.
Strom, D J
2001-11-01
The job of a medical or academic radiation safety officer has three parts: keeping it safe, keeping it legal, and helping people feel that they are safe. Absence of peace-of-mind about radiation protection matters can create very real health effects, even when there is little or no radiation exposure involved. Frightened people may make decisions such as changing jobs (and losing health insurance), terminating a pregnancy, or moving, all of which impact health. Furthermore, frightened people who choose to stick with it may suffer from anxiety, stress, insomnia, and weight loss or even weight gain. Genuinely listening to the concerns of those who benefit from radiation safety services can help to provide peace-of-mind and minimize decisions that are risky to health.
Making It Safe, Making It Legal, and Creating Peace of Mind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strom, Daniel J.
2001-11-01
The job of a medical or academic radiation safety officer has three parts: keeping it safe, keeping it legal, and helping people feel that they are safe. Absence of peace-of-mind about radiation protection matters can create very real health effects, even when there is little or no radiation exposure involved. Frightened people may make decisions such as changing jobs (and losing health insurance), terminating a pregnancy, or moving, all of which impact health. Furthermore, frightened people who choose to stick with it may suffer from anxiety, stress, insomnia, and weight loss or even weight gain. Genuinely listening to the concernsmore » of those who benefit from radiation safety services can help to provide peace-of-mind and minimize decisions that are risky to health.« less
van Loon, Judith; Offermann, Claudia; Bosmans, Geert; Wanders, Rinus; Dekker, André; Borger, Jacques; Oellers, Michel; Dingemans, Anne-Marie; van Baardwijk, Angela; Teule, Jaap; Snoep, Gabriel; Hochstenbag, Monique; Houben, Ruud; Lambin, Philippe; De Ruysscher, Dirk
2008-04-01
To investigate the influence of selective irradiation of 18FDG-PET positive mediastinal nodes on radiation fields and normal tissue exposure in limited disease small cell lung cancer (LD-SCLC). Twenty-one patients with LD-SCLC, of whom both CT and PET images were available, were studied. For each patient, two three-dimensional conformal treatment plans were made with selective irradiation of involved lymph nodes, based on CT and on PET, respectively. Changes in treatment plans as well as dosimetric factors associated with lung and esophageal toxicity were analyzed and compared. FDG-PET information changed the treatment field in 5 patients (24%). In 3 patients, this was due to a decrease and in 2 patients to an increase in the number of involved nodal areas. However, there were no significant differences in gross tumor volume (GTV), lung, and esophageal parameters between CT- and PET-based plans. Incorporating FDG-PET information in radiotherapy planning for patients with LD-SCLC changed the treatment plan in 24% of patients compared to CT. Both increases and decreases of the GTV were observed, theoretically leading to the avoidance of geographical miss or a decrease of radiation exposure of normal tissues, respectively. Based on these findings, a phase II trial, evaluating PET-scan based selective nodal irradiation, is ongoing in our department.
Hand and body radiation exposure with the use of mini C-arm fluoroscopy.
Tuohy, Christopher J; Weikert, Douglas R; Watson, Jeffry T; Lee, Donald H
2011-04-01
To determine whole body and hand radiation exposure to the hand surgeon wearing a lead apron during routine intraoperative use of the mini C-arm fluoroscope. Four surgeons (3 hand attending surgeons and 1 hand fellow) monitored their radiation exposure for a total of 200 consecutive cases (50 cases per surgeon) requiring mini C-arm fluoroscopy. Each surgeon measured radiation exposure with a badge dosimeter placed on the outside breast pocket of the lead apron (external whole body exposure), a second badge dosimeter under the lead apron (shielded whole body exposure), and a ring dosimeter (hand exposure). Completed records were noted in 198 cases, with an average fluoroscopy time of 133.52 seconds and average cumulative dose of 19,260 rem-cm(2) per case. The total measured radiation exposures for the (1) external whole body exposure dosimeters were 16 mrem (for shallow depth), 7 mrem (for eye depth), and less than 1 mrem (for deep depth); (2) shielded whole body badge dosimeters recorded less than 1 mrem; and (3) ring dosimeters totaled 170 mrem. The total radial exposure for 4 ring dosimeters that had registered a threshold of 30 mrem or more of radiation exposure was 170 mrem at the skin level, for an average of 42.5 mrem per dosimeter ring or 6.3 mrem per case. This study of whole body and hand radiation exposure from the mini C-arm includes the largest number of surgical cases in the published literature. The measured whole body and hand radiation exposure received by the hand surgeon from the mini C-arm represents a minimal risk of radiation, based on the current National Council on Radiation Protection and Management standards of annual dose limits (5,000 mrem per year for whole body and 50,000 mrem per year to the extremities). Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Impact of climate change on occupational exposure to solar radiation.
Grandi, Carlo; Borra, Massimo; Militello, Andrea; Polichetti, Alessandro
2016-01-01
Occupational exposure to solar radiation may induce both acute and long-term effects on skin and eyes. Personal exposure is very difficult to assess accurately, as it depends on environmental, organisational and individual factors. The ongoing climate change interacting with stratospheric ozone dynamics may affect occupational exposure to solar radiation. In addition, tropospheric levels of environmental pollutants interacting with solar radiation may be altered by climate dynamics, so introducing another variable affecting the overall exposure to solar radiation. Given the uncertainties regarding the direction of changes in exposure to solar radiation due to climate change, compliance of outdoor workers with protective measures and a proper health surveillance are crucial. At the same time, education and training, along with the promotion of healthier lifestyles, are of paramount importance.
C/EBPδ deficiency sensitizes mice to ionizing radiation-induced hematopoietic and intestinal injury.
Pawar, Snehalata A; Shao, Lijian; Chang, Jianhui; Wang, Wenze; Pathak, Rupak; Zhu, Xiaoyan; Wang, Junru; Hendrickson, Howard; Boerma, Marjan; Sterneck, Esta; Zhou, Daohong; Hauer-Jensen, Martin
2014-01-01
Knowledge of the mechanisms involved in the radiation response is critical for developing interventions to mitigate radiation-induced injury to normal tissues. Exposure to radiation leads to increased oxidative stress, DNA-damage, genomic instability and inflammation. The transcription factor CCAAT/enhancer binding protein delta (Cebpd; C/EBPδ is implicated in regulation of these same processes, but its role in radiation response is not known. We investigated the role of C/EBPδ in radiation-induced hematopoietic and intestinal injury using a Cebpd knockout mouse model. Cebpd-/- mice showed increased lethality at 7.4 and 8.5 Gy total-body irradiation (TBI), compared to Cebpd+/+ mice. Two weeks after a 6 Gy dose of TBI, Cebpd-/- mice showed decreased recovery of white blood cells, neutrophils, platelets, myeloid cells and bone marrow mononuclear cells, decreased colony-forming ability of bone marrow progenitor cells, and increased apoptosis of hematopoietic progenitor and stem cells compared to Cebpd+/+ controls. Cebpd-/- mice exhibited a significant dose-dependent decrease in intestinal crypt survival and in plasma citrulline levels compared to Cebpd+/+ mice after exposure to radiation. This was accompanied by significantly decreased expression of γ-H2AX in Cebpd-/- intestinal crypts and villi at 1 h post-TBI, increased mitotic index at 24 h post-TBI, and increase in apoptosis in intestinal crypts and stromal cells of Cebpd-/- compared to Cebpd+/+ mice at 4 h post-irradiation. This study uncovers a novel biological function for C/EBPδ in promoting the response to radiation-induced DNA-damage and in protecting hematopoietic and intestinal tissues from radiation-induced injury.
NASA Astrophysics Data System (ADS)
Poulose, Shibu M.; Rabin, Bernard M.; Bielinski, Donna F.; Kelly, Megan E.; Miller, Marshall G.; Thanthaeng, Nopporn; Shukitt-Hale, Barbara
2017-02-01
The protective effects of anthocyanin-rich blueberries (BB) on brain health are well documented and are particularly important under conditions of high oxidative stress, which can lead to "accelerated aging." One such scenario is exposure to space radiation, consisting of high-energy and -charge particles (HZE), which are known to cause cognitive dysfunction and deleterious neurochemical alterations. We recently tested the behavioral and neurochemical effects of acute exposure to HZE particles such as 56Fe, within 24-48 h after exposure, and found that radiation primarily affects memory and not learning. Importantly, we observed that specific brain regions failed to upregulate antioxidant and anti-inflammatory mechanisms in response to this insult. To further examine these endogenous response mechanisms, we have supplemented young rats with diets rich in BB, which are known to contain high amounts of antioxidant-phytochemicals, prior to irradiation. Exposure to 56Fe caused significant neurochemical changes in hippocampus and frontal cortex, the two critical regions of the brain involved in cognitive function. BB supplementation significantly attenuated protein carbonylation, which was significantly increased by exposure to 56Fe in the hippocampus and frontal cortex. Moreover, BB supplementation significantly reduced radiation-induced elevations in NADPH-oxidoreductase-2 (NOX2) and cyclooxygenase-2 (COX-2), and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) in the hippocampus and frontal cortex. Overall results indicate that 56Fe particles may induce their toxic effects on hippocampus and frontal cortex by reactive oxygen species (ROS) overload, which can cause alterations in the neuronal environment, eventually leading to hippocampal neuronal death and subsequent impairment of cognitive function. Blueberry supplementation provides an effective preventative measure to reduce the ROS load on the CNS in an event of acute HZE exposure.
NASA Astrophysics Data System (ADS)
Yamamoto, Tatsuyuki; Murakami, Naoki; Yoshikiyo, Keisuke; Takahashi, Tetsuya; Yamamoto, Naoyuki
2010-01-01
The Raman scattering and FT-IR spectra of the corneas, transported to the Syowa station in Antarctica and exposed to the solar radiation of the mid-summer for four weeks, were studied to reveal that type IV collagen involved in corneas were fragmented. The amide I and III Raman bands were observed at 1660 and 1245 cm -1, respectively, and the amide I and II infrared bands were observed at 1655 and 1545 cm -1, respectively, for original corneas before exposure. The background of Raman signals prominently increased and the ratio of amide II infrared band versus amide I decreased by the solar radiation in Antarctica. The control experiment using an artificial UV lamp was also performed in laboratory. The decline rate of the amide II/amide I was utilized for estimating the degree of fragmentation of collagen, to reveal that the addition of vitamin C suppressed the reaction while the addition of sugars promoted it. The effect of the solar radiation in Antarctica on the corneas was estimated as the same as the artificial UV lamp of four weeks (Raman) or one week (FT-IR) exposure.
Ionizing radiation exposure as a result of diagnostic imaging in patients with lymphoma.
Crowley, M P; O'Neill, S B; Kevane, B; O'Neill, D C; Eustace, J A; Cahill, M R; Bird, B; Maher, M M; O'Regan, K; O'Shea, D
2016-05-01
Survival rates among patients with lymphoma continue to improve. Strategies aimed at reducing potential treatment-related toxicity are increasingly prioritized. While radiological procedures play an important role, ionizing radiation exposure has been linked to an increased risk of malignancy, particularly among individuals whose cumulative radiation exposure exceeds a specific threshold (75 millisieverts). Within this retrospective study, the cumulative radiation exposure dose was quantified for 486 consecutive patients with lymphoma. The median estimated total cumulative effective dose (CED) of ionizing radiation per subject was 69 mSv (42-118). However, younger patients (under 40 years) had a median CED of 89 mSv (55-124). This study highlights the considerable radiation exposure occurring among patients with lymphoma as a result of diagnostic imaging. To limit the risk of secondary carcinogenesis, consideration should be given to monitoring cumulative radiation exposure in individual patients as well as considering imaging modalities, which do not impart an ionizing radiation dose.
Radiation dose from initial trauma assessment and resuscitation: review of the literature.
Hui, Catherine M; MacGregor, John H; Tien, Homer C; Kortbeek, John B
2009-04-01
Trauma care benefits from the use of imaging technologies. Trauma patients and trauma team members are exposed to radiation during the continuum of care. Knowledge of exposure amounts and effects are important for trauma team members. We performed a review of the published literature; keywords included "trauma," "patients," "trauma team members," "wounds," "injuries," "radiation," "exposure," "dose" and "computed tomography" (CT). We also reviewed the Board on Radiation Effects Research (BEIR VII) report, published in 2005 and 2006. We found no randomized controlled trials or studies. Relevant studies demonstrated that CT accounts for the single largest radiation exposure in trauma patients. Exposure to 100 mSv could result in a solid organ cancer or leukemia in 1 of 100 people. Trauma team members do not exceed the acceptable occupation radiation exposure determined by the National Council of Radiation Protection and Management. Modern imaging technologies such as 16- and 64-slice CT scanners may decrease radiation exposure. Multiple injured trauma patients receive a substantial dose of radiation. Radiation exposure is cumulative. The low individual risk of cancer becomes a greater public health issue when multiplied by a large number of examinations. Though CT scans are an invaluable resource and are becoming more easily accessible, they should not replace careful clinical examination and should be used only in appropriate patients.
Using an Ongoing Study of Terrestrial Plant Response to Ultraviolet Radiation in Project ALERT
NASA Technical Reports Server (NTRS)
Condon, Estelle; Skiles, J. W.; Seitz, Jeffery C.; Dantoni, Hector L.
1998-01-01
The ALERT (Augmented Learning Environment for Renewable Teaching) Project is a cooperative California-based program with two main partners: California State University (CSU) geoscience and education departments and two NASA Centers, the Jet Propulsion Laboratory (JPL) in Pasadena and the Ames Research Center (ARC) in Mountain View. This paper presents an example of how a NASA research effort can be used in the undergraduate classroom. A study, now in the fourth year, subjects test plants to exposures of varying solar ultraviolet (UV) radiation (280 - 340 nm); a full solar UV exposure, a solar UV exposure less about 14% of ambient UV flux, and a UV-blocked regime. This experiment is simple in that only modest amounts of expense are required yet it is elegant since only one variable, UV-flux is involved. The experiment lends itself to teaching several of the Earth Sciences because it uses information from botany, taxonomy, and ecology. Aspects of physics are inherent in the study since portions of the electromagnetic spectrum are studied. Further, since only one of many variables are manipulated, UV flux, the study demonstrates how the scientific method is used in formulating and testing hypotheses. Based on the ALERT experience this summer, this study will be implemented at a CSU campus with the expectation that it will serve as a pedagogical tool and where it will involve students in actual research.
48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.
Code of Federal Regulations, 2014 CFR
2014-10-01
... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. Link to an... execution, or 952.223-72, Radiation protection and nuclear criticality: Preservation of Individual...
Bora, Nilutpal Sharma; Mazumder, Bhaskar; Chattopadhyay, Pronobesh
2018-05-01
Solar ultraviolet (UV) radiation exposure is known to cause inevitable damage to human skin via different mechanisms which include disruption of genetic material and generation of free radicals. In the ever emerging field of photoprotective agents, there have been constant endeavors to uphold the standards for optimum protection from solar UV-induced damages which include alarming conditions ranging from severe keratosis to malignant transformation of skin cells. Out of the various methods available for photoprotection, chemical photoprotective agents are most popular due to its ease of applicability, availability, and efficacy. However, the benevolences of chemophotoprotective agents are not excluded from the fact that all chemical agents are bound to suffer predestined consequences of toxicity and unwanted side effects. The present article focuses on the basic knowledge pertaining to achieve adequate sun protection and also on the beneficial and risk factors of using chemical agents as photoprotective formulations. The article highlights the US Food and Drug Administration (FDA) approved and unapproved UV filters; and also sheds light on the overall measures to protect an individual from UV radiation exposure, dispel misconceptions and present the newer technologies that are available in the market to accomplish ideal sun protection.
Sasatani, Megumi; Xu, Yanbin; Kawai, Hidehiko; Cao, Lili; Tateishi, Satoshi; Shimura, Tsutomu; Li, Jianxiang; Iizuka, Daisuke; Noda, Asao; Hamasaki, Kanya; Kusunoki, Yoichiro; Kamiya, Kenji
2015-01-01
The ubiquitin ligase RAD18 is involved in post replication repair pathways via its recruitment to stalled replication forks, and its role in the ubiquitylation of proliferating cell nuclear antigen (PCNA). Recently, it has been reported that RAD18 is also recruited to DNA double strand break (DSB) sites, where it plays novel functions in the DNA damage response induced by ionizing radiation (IR). This new role is independent of PCNA ubiquitylation, but little is known about how RAD18 functions after IR exposure. Here, we describe a role for RAD18 in the IR-induced DNA damage signaling pathway at G2/M phase in the cell cycle. Depleting cells of RAD18 reduced the recruitment of the DNA damage signaling factors ATM, γH2AX, and 53BP1 to foci in cells at the G2/M phase after IR exposure, and attenuated activation of the G2/M checkpoint. Furthermore, depletion of RAD18 increased micronuclei formation and cell death following IR exposure, both in vitro and in vivo. Our data suggest that RAD18 can function as a mediator for DNA damage response signals to activate the G2/M checkpoint in order to maintain genome integrity and cell survival after IR exposure. PMID:25675240
Environmental exposure to low-doses of ionizing radiation. Effects on early nephrotoxicity in mice.
Bellés, Montserrat; Gonzalo, Sergio; Serra, Noemí; Esplugas, Roser; Arenas, Meritxell; Domingo, José Luis; Linares, Victoria
2017-07-01
Nuclear accidents of tremendous magnitude, such as those of Chernobyl (1986) and Fukushima (2011), mean that individuals living in the contaminated areas are potentially exposed to ionizing radiation (IR). However, the dose-response relationship for effects of low doses of radiation is not still established. The present study was aimed at investigating in mice the early effects of low-dose internal radiation exposure on the kidney. Adult male (C57BL/6J) mice were divided into three groups. Two groups received a single subcutaneous (s.c.) doses of cesium ( 137 Cs) with activities of 4000 and 8000Bq/kg bw. A third group (control group) received a single s.c. injection of 0.9% saline. To evaluate acute and subacute effects, mice (one-half of each group) were euthanized at 72h and 10 days post-exposure to 137 Cs, respectively. Urine samples were collected for biochemical analysis, including the measurement of F2-isoprostane (F2-IsoP) and kidney injury molecule-1 (KIM-1) levels. Moreover, the concentrations of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a sensitive marker of oxidative DNA damage, were measured in renal tissue. Urinary excretion of total protein significantly increased at 72h in mice exposed to Cs4000. Uric acid and lactate dehydrogenase (LDH) decreased significantly at both times post-exposure in animals exposed to Cs8000. After 72h and 10d of exposure to Cs4000, a significant increase in the γ-glutamil transferase (GGT) and N-acetyl-β-D-glucosaminidase (NAG) activities was observed. In turn, F2-IsoP levels increased -mainly in the Cs4000 group- at 72h post-exposure. Following irradiation ( 137 Cs), the highest level of KIM-1 was corresponded to the Cs4000 group at 72h. Likewise, the main DNA damage was detected in mice exposed to Cs4000, mainly at 10d after irradiation. The alterations observed in several biomarkers suggest an immediate renal damage following exposure to low doses of IR (given as 137 Cs). Further investigations are required to clarify the mechanisms involved in the internal IR-induced nephrotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buhl, T.E.; Hansen, W.R.
1984-05-01
Estimators for calculating the risk of cancer and genetic disorders induced by exposure to ionizing radiation have been recommended by the US National Academy of Sciences Committee on the Biological Effects of Ionizing Radiations, the UN Scientific Committee on the Effects of Atomic Radiation, and the International Committee on Radiological Protection. These groups have also considered the risks of somatic effects other than cancer. The US National Council on Radiation Protection and Measurements has discussed risk estimate procedures for radiation-induced health effects. The recommendations of these national and international advisory committees are summarized and compared in this report. Based onmore » this review, two procedures for risk estimation are presented for use in radiological assessments performed by the US Department of Energy under the National Environmental Policy Act of 1969 (NEPA). In the first procedure, age- and sex-averaged risk estimators calculated with US average demographic statistics would be used with estimates of radiation dose to calculate the projected risk of cancer and genetic disorders that would result from the operation being reviewed under NEPA. If more site-specific risk estimators are needed, and the demographic information is available, a second procedure is described that would involve direct calculation of the risk estimators using recommended risk-rate factors. The computer program REPCAL has been written to perform this calculation and is described in this report. 25 references, 16 tables.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jullien, Nicolash; Blirando, Karl; Milliat, Fabien
2009-06-01
Purpose: Rectum radiation damage and fibrosis are often associated with radiation therapy of pelvic tumors. The endothelin (ET) system has been implicated in several fibrotic diseases but never studied in the context of gastrointestinal radiation damage. This study assessed modifications in ET type 1 (ET-1), ET type A receptor (ET{sub A}), and ET type B receptor (ET{sub B}) localization and/or expression in irradiated human rectal tissue and in a rat model of delayed colorectal injury. We also evaluated the therapeutic potential of long-term ET receptor blockade. Methods and Materials: Routine histological studies of sections of healthy and radiation-injured human rectummore » tissue were done; the sections were also immunostained for ET{sub A} and ET{sub B} receptors. The rat model involved the delivery of 27 Gy in a single dose to the colons and rectums of the animals. The ET-1/ET{sub A}/ET{sub B} expression and ET{sub A}/ET{sub B} localization were studied at 10 weeks postexposure. The abilities of bosentan and atrasentan to protect against delayed rectal injury were also investigated. Results: The immunolocalization of ET{sub A} and ET{sub B} in healthy human rectums was similar to that in rat rectums. However, strong ET{sub A} immunostaining was seen in the presence of human radiation proctitis, and increased ET{sub A} mRNA levels were seen in the rat following colorectal irradiation. Immunostaining for ET{sub A} was also strongly positive in rats in areas of radiation-induced mucosal ulceration, atypia, and fibroproliferation. However, neither bosentan nor atrasentan prevented radiation damage to the rectum when given long term. The only effect seen for atrasentan was an increased number of sclerotic vessel sections in injured tissues. Conclusions: As the result of the overexpression of ET{sub A}, radiation exposure deregulates the endothelin system through an 'ET{sub A} profile' in the human and rodent rectum. However, therapeutic interventions involving mixed or specific ET{sub A} receptor blockade do not prevent radiation damage. Further studies are necessary to identify the precise roles of ET in the gastrointestinal response to radiation exposure.« less
Radiation protection aspects of the cosmic radiation exposure of aircraft crew.
Bartlett, D T
2004-01-01
Aircraft crew and frequent flyers are exposed to elevated levels of cosmic radiation of galactic and solar origin and secondary radiation produced in the atmosphere, the aircraft structure and its contents. Following recommendations of the International Commission on Radiological Protection in Publication 60, the European Union introduced a revised Basic Safety Standards Directive, which included exposure to natural sources of ionising radiation, including cosmic radiation, as occupational exposure. The revised Directive has been incorporated into laws and regulations in the European Union Member States. Where the assessment of the occupational exposure of aircraft crew is necessary, the preferred approach to monitoring is by the recording of staff flying times and calculated route doses. Route doses are to be validated by measurements. This paper gives the general background, and considers the radiation protection aspects of the cosmic radiation exposure of aircraft crew, with the focus on the situation in Europe.
Radically Reducing Radiation Exposure during Routine Medical Imaging
Exposure to radiation from medical imaging in the United States has increased dramatically. NCI and several partner organizations sponsored a 2011 summit to promote efforts to reduce radiation exposure from medical imaging.
NASA Astrophysics Data System (ADS)
Chardenet, Kathleen A.
Purpose: A real-time dose management system was used to determine if radiation exposure levels would decrease when providers were privy to their real-time radiation exposure levels. Six aggregate categories of providers were first blinded (phase 1) and subsequently made aware of their radiation exposure levels during electrophysiology procedures (phase 2). Methods: A primary, quantitative crossover study of faculty and staff working in an electrophysiology lab at the University of Michigan Hospitals setting occurred. Participants in the control group was first blinded in phase 1 to their radiation exposure over an 10-week time period. The same group subsequently became the treatment group in phase 2 when over a second 10-week period real-time exposure levels were made available to them. Power analysis, using a 40% decrease in exposure, was calculated using a variance of radiation exposure equal to the mean radiation exposure with 80% power and alpha = .05. Calculations revealed 102 subjects in each treatment and control group were necessary. Results: Using the mixed effect linear model, a significant decrease in radiation levels occurred in phase 2 as compared to phase 1 for the operator role represented by the combined electrophysiologist-fellow role with a P value of .025. Exposure levels in all other provider groups for phase 1 or 2 failed to reach statistical significance. All dose values were low and well below the US maximum allowable yearly dose of 5,000 mrem per year. Conclusion: A real-time radiation dose monitoring system during electrophysiology procedures may significantly lower occupational radiation exposure in health care workers.
Surdu, Simona; Fitzgerald, Edward F.; Bloom, Michael S.; Boscoe, Francis P.; Carpenter, David O.; Haase, Richard F.; Gurzau, Eugen; Rudnai, Peter; Koppova, Kvetoslava; Févotte, Joëlle; Leonardi, Giovanni; Vahter, Marie; Goessler, Walter; Kumar, Rajiv; Fletcher, Tony
2013-01-01
Background Studies suggest that ambient sunlight plays an important role in the pathogenesis of non-melanoma skin cancers (NMSC). However, there is ongoing controversy regarding the relevance of occupational exposure to natural and artificial ultraviolet radiation (UV) radiation. Objectives We investigated potential associations between natural and artificial UV radiation exposure at work with NMSC in a case-control study conducted in Hungary, Romania, and Slovakia. Methods Occupational exposures were classified by expert assessment for 527 controls and 618 NMSC cases (515 basal cell carcinoma, BCC). Covariate information was collected via interview and multiple logistic regression models were used to assess associations between UV exposure and NMSC. Results Lifetime prevalence of occupational exposure in the participants was 13% for natural UV radiation and 7% for artificial UV radiation. Significant negative associations between occupational exposure to natural UV radiation and NMSC were detected for all who had ever been exposed (odds ratio (OR) 0.47, 95% confidence interval (CI) 0.27–0.80); similar results were detected using a semi-quantitative metric of cumulative exposure. The effects were modified by skin complexion, with significantly decreased risks of BCC among participants with light skin complexion. No associations were observed in relation to occupational artificial UV radiation exposure. Conclusions The protective effect of occupational exposure to natural UV radiation was unexpected, but limited to light-skinned people, suggesting adequate sun-protection behaviors. Further investigations focusing on variations in the individual genetic susceptibility and potential interactions with environmental and other relevant factors are planned. PMID:23638051
... Your Health Possible Health Effects Contamination and Exposure Acute Radiation Syndrome (ARS) Cutaneous Radiation Injury (CRI) Cancer and Long- ... Information for Professionals Radiation Thermometer Information for ... Radiation Syndrome: A Fact Sheet for Clinicians Cutaneous Radiation Injury ( ...
48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.
Code of Federal Regulations, 2010 CFR
2010-10-01
... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and nuclear...
48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.
Code of Federal Regulations, 2012 CFR
2012-10-01
... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and nuclear...
48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.
Code of Federal Regulations, 2013 CFR
2013-10-01
... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and nuclear...
48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.
Code of Federal Regulations, 2011 CFR
2011-10-01
... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and nuclear...
Demoury, Claire; Marquant, Fabienne; Ielsch, Géraldine; Goujon, Stéphanie; Debayle, Christophe; Faure, Laure; Coste, Astrid; Laurent, Olivier; Guillevic, Jérôme; Laurier, Dominique; Hémon, Denis; Clavel, Jacqueline
2017-04-01
Exposures to high-dose ionizing radiation and high-dose rate ionizing radiation are established risk factors for childhood acute leukemia (AL). The risk of AL following exposure to lower doses due to natural background radiation (NBR) has yet to be conclusively determined. AL cases diagnosed over 1990-2009 (9,056 cases) were identified and their municipality of residence at diagnosis collected by the National Registry of Childhood Cancers. The Geocap study, which included the 2,763 cases in 2002-2007 and 30,000 population controls, was used for complementary analyses. NBR exposures were modeled on a fine scale (36,326 municipalities) based on measurement campaigns and geological data. The power to detect an association between AL and dose to the red bone marrow (RBM) fitting UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) predictions was 92%, 45% and 99% for exposure to natural gamma radiation, radon and total radiation, respectively. AL risk, irrespective of subtype and age group, was not associated with the exposure of municipalities to radon or gamma radiation in terms of yearly exposure at age reached, cumulative exposure or RBM dose. There was no confounding effect of census-based socio-demographic indicators, or environmental factors (road traffic, high voltage power lines, vicinity of nuclear plants) related to AL in the Geocap study. Our findings do not support the hypothesis that residential exposure to NBR increases the risk of AL, despite the large size of the study, fine scale exposure estimates and wide range of exposures over France. However, our results at the time of diagnosis do not rule out a slight association with gamma radiation at the time of birth, which would be more in line with the recent findings in the UK and Switzerland.
Zaebst, D D; Seel, E A; Yiin, J H; Nowlin, S J; Chen, P
2009-07-01
In support of a nested case-control study at a U.S. naval shipyard, the results of the reconstruction of historical exposures were summarized, and an analysis was undertaken to determine the impact of historical exposures to potential chemical confounders. The nested case-control study (N = 4388) primarily assessed the relationship between lung cancer and external ionizing radiation. Chemical confounders considered important were asbestos and welding fume (as iron oxide fume), and the chromium and nickel content of welding fume. Exposures to the potential confounders were estimated by an expert panel based on a set of quantitatively defined categories of exposure. Distributions of the estimated exposures and trends in exposures over time were examined for the study population. Scatter plots and Spearman rank correlation coefficients were used to assess the degree of association between the estimates of exposure to asbestos, welding fume, and ionizing radiation. Correlation coefficients were calculated separately for 0-, 15-, 20-, and 25-year time-lagged cumulative exposures, total radiation dose (which included medical X-ray dose) and occupational radiation dose. Exposed workers' estimated cumulative exposures to asbestos ranged from 0.01 fiber-days/cm(3) to just under 20,000 fiber-days/cm(3), with a median of 29.0 fiber-days/cm(3). Estimated cumulative exposures to welding fume ranged from 0.16 mg-days/m(3) to just over 30,000 mg-days/m(3), with a median of 603 mg-days/m(3). Spearman correlation coefficients between cumulative radiation dose and cumulative asbestos exposures ranged from 0.09 (occupational dose) to 0.47 (total radiation dose), and those between radiation and welding fume from 0.14 to 0.47. The estimates of relative risk for ionizing radiation and lung cancer were unchanged when lowest and highest estimates of asbestos and welding fume were considered. These results suggest a fairly large proportion of study population workers were exposed to asbestos and welding fume, that the absolute level of confounding exposure did not affect the risk estimates, and that weak relationships existed between monitored lifetime cumulative occupational radiation dose and asbestos or welding fume.
New Approaches to Radiation Protection
Rosen, Eliot M.; Day, Regina; Singh, Vijay K.
2015-01-01
Radioprotectors are compounds that protect against radiation injury when given prior to radiation exposure. Mitigators can protect against radiation injury when given after exposure but before symptoms appear. Radioprotectors and mitigators can potentially improve the outcomes of radiotherapy for cancer treatment by allowing higher doses of radiation and/or reduced damage to normal tissues. Such compounds can also potentially counteract the effects of accidental exposure to radiation or deliberate exposure (e.g., nuclear reactor meltdown, dirty bomb, or nuclear bomb explosion); hence they are called radiation countermeasures. Here, we will review the general principles of radiation injury and protection and describe selected examples of radioprotectors/mitigators ranging from small-molecules to proteins to cell-based treatments. We will emphasize agents that are in more advanced stages of development. PMID:25653923
Molecular and Histopathological Changes in Mouse Intestinal Tissue After Proton Exposure
NASA Technical Reports Server (NTRS)
Purgason, A.; Zhang, Y.; Wu, H.
2010-01-01
Radiation in space, including types from solar particle events (SPE's), poses serious health risks to astronauts and is especially dangerous for long duration missions. Protons are the most abundant particles in deep space and to date there is little known about the details of the negative consequences crew members will face upon exposure to them. This ongoing project involves a mouse model subjected to several minutes of proton radiation at an energy of 250 MeV and doses of 0 Gy, 0.1 Gy, 1 Gy, and 2 Gy. The gastrointestinal tract of each animal was dissected four hours post-irradiation and the small intestine was isolated and flash-frozen. Three specimens per dose were studied. Tissue was homogenized and RNA was isolated in order for cDNA synthesis and real-time PCR to be performed. Gene expression changes are currently being analyzed specific to mouse apoptosis. Immunohistochemistry will be used to confirm any significant changes found in the analyses. Immunohistochemistry is also being used to observe gamma H2AX staining to learn of any DNA damage that occurred as a result of proton exposure. We expect to see increased DNA damage due to proton exposure. Finally, histopathologic observation of the tissue will be completed using standard H&E staining methods to screen for morphologic changes. Increased apoptosis is expected to be seen in the tissues which is typical of radiation damage. Observations will be confirmed by a pathologist.
The promise of molecular epidemiology in defining the association between radiation and cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neta, R.
2000-07-01
Molecular epidemiology involves the inclusion in epidemiologic studies of biologic measurements made at a genetic and molecular level and aims to improve the current knowledge of disease etiology and risk. One of the goals of molecular epidemiology studies of cancer is to determine the role of environmental and genetic factors in initiation and progression of malignancies and to use this knowledge to develop preventive strategies. This approach promises extraordinary opportunities for revolutionizing the practice of medicine and reducing risk. However, this will be accompanied by the need to address and resolve many challenges, such as ensuring the appropriate interpretation ofmore » molecular testing and resolving associated ethical, legal, and social issues. Traditional epidemiologic approaches determined that exposure to ionizing radiation poses significantly increased risk of leukemia and several other types of cancer. Such studies provided the basis for setting exposure standards to protect the public and the workforce from potentially adverse effects of ionizing radiation. These standards were set by using modeling approaches to extrapolate from the biological effects observed in high-dose radiation studies to predicted, but mostly immeasurable, effects at low radiation doses. It is anticipated that the addition of the molecular parameters to the population-based studies will help identify the genes and pathways characteristic of cancers due to radiation exposure of individuals, as well as identify susceptible or resistant subpopulations. In turn, the information about the molecular mechanisms should aid to improve risk assessment. While studies on radiogenic concerns are currently limited to only a few candidate genes, the exponential growth of scientific knowledge and technology promises expansion of knowledge about identity of participating genes and pathways in the future. This article is meant to provide an introductory overview of recent advances in understanding of carcinogenesis at the molecular level, with an emphasis of the aspects that may be of use in establishing the association between radiation and cancer.« less
Device and method for shortening reactor process tubes
Frantz, C.E.; Alexander, W.K.; Lander, W.E.B.
A device and method are described for in situ shortening of nuclear reactor zirconium alloy process tubes which have grown as a result of radiation exposure. An upsetting technique is utilized which involves inductively heating a short band of a process tube with simultaneous application of an axial load sufficient to cause upsetting with an attendant decrease in length of the process tube.
Snijders, Antoine M; Marchetti, Francesco; Bhatnagar, Sandhya; Duru, Nadire; Han, Ju; Hu, Zhi; Mao, Jian-Hua; Gray, Joe W; Wyrobek, Andrew J
2012-01-01
High dose ionizing radiation (IR) is a well-known risk factor for breast cancer but the health effects after low-dose (LD, <10 cGy) exposures remain highly uncertain. We explored a systems approach that compared LD-induced chromosome damage and transcriptional responses in strains of mice with genetic differences in their sensitivity to radiation-induced mammary cancer (BALB/c and C57BL/6) for the purpose of identifying mechanisms of mammary cancer susceptibility. Unirradiated mammary and blood tissues of these strains differed significantly in baseline expressions of DNA repair, tumor suppressor, and stress response genes. LD exposures of 7.5 cGy (weekly for 4 weeks) did not induce detectable genomic instability in either strain. However, the mammary glands of the sensitive strain but not the resistant strain showed early transcriptional responses involving: (a) diminished immune response, (b) increased cellular stress, (c) altered TGFβ-signaling, and (d) inappropriate expression of developmental genes. One month after LD exposure, the two strains showed opposing responses in transcriptional signatures linked to proliferation, senescence, and microenvironment functions. We also discovered a pre-exposure expression signature in both blood and mammary tissues that is predictive for poor survival among human cancer patients (p = 0.0001), and a post-LD-exposure signature also predictive for poor patient survival (p<0.0001). There is concordant direction of expression in the LD-exposed sensitive mouse strain, in biomarkers of human DCIS and in biomarkers of human breast tumors. Our findings support the hypothesis that genetic mechanisms that determine susceptibility to LD radiation induced mammary cancer in mice are similar to the tissue mechanisms that determine poor-survival in breast cancer patients. We observed non-linearity of the LD responses providing molecular evidence against the LNT risk model and obtained new evidence that LD responses are strongly influenced by genotype. Our findings suggest that the biological assumptions concerning the mechanisms by which LD radiation is translated into breast cancer risk should be reexamined and suggest a new strategy to identify genetic features that predispose or protect individuals from LD-induced breast cancer.
Radiation Exposure from Medical Exams and Procedures
Fact Sheet Adopted: January 2010 Health Physics Society Specialists in Radiation Safety Radiation Exposure from Medical Exams and Procedures Ionizing radiation is used daily in hospitals and clinics ...
Cumulative radiation exposure and cancer risk estimation in children with heart disease.
Johnson, Jason N; Hornik, Christoph P; Li, Jennifer S; Benjamin, Daniel K; Yoshizumi, Terry T; Reiman, Robert E; Frush, Donald P; Hill, Kevin D
2014-07-08
Children with heart disease are frequently exposed to imaging examinations that use ionizing radiation. Although radiation exposure is potentially carcinogenic, there are limited data on cumulative exposure and the associated cancer risk. We evaluated the cumulative effective dose of radiation from all radiation examinations to estimate the lifetime attributable risk of cancer in children with heart disease. Children ≤6 years of age who had previously undergone 1 of 7 primary surgical procedures for heart disease at a single institution between 2005 and 2010 were eligible for the study. Exposure to radiation-producing examinations was tabulated, and cumulative effective dose was calculated in millisieverts. These data were used to estimate lifetime attributable risk of cancer above baseline using the approach of the Committee on Biological Effects of Ionizing Radiation VII. The cohort included 337 children exposed to 13 932 radiation examinations. Conventional radiographs represented 92% of examinations, whereas cardiac catheterization and computed tomography accounted for 81% of cumulative exposure. Overall median cumulative effective dose was 2.7 mSv (range, 0.1-76.9 mSv), and the associated lifetime attributable risk of cancer was 0.07% (range, 0.001%-6.5%). Median lifetime attributable risk of cancer ranged widely depending on surgical complexity (0.006%-1.6% for the 7 surgical cohorts) and was twice as high in females per unit exposure (0.04% versus 0.02% per 1-mSv effective dose for females versus males, respectively; P<0.001). Overall radiation exposures in children with heart disease are relatively low; however, select cohorts receive significant exposure. Cancer risk estimation highlights the need to limit radiation dose, particularly for high-exposure modalities. © 2014 American Heart Association, Inc.
Metabolic Phenotyping Reveals a Lipid Mediator Response to Ionizing Radiation
2015-01-01
Exposure to ionizing radiation has dramatically increased in modern society, raising serious health concerns. The molecular response to ionizing radiation, however, is still not completely understood. Here, we screened mouse serum for metabolic alterations following an acute exposure to γ radiation using a multiplatform mass-spectrometry-based strategy. A global, molecular profiling revealed that mouse serum undergoes a series of significant molecular alterations following radiation exposure. We identified and quantified bioactive metabolites belonging to key biochemical pathways and low-abundance, oxygenated, polyunsaturated fatty acids (PUFAs) in the two groups of animals. Exposure to γ radiation induced a significant increase in the serum levels of ether phosphatidylcholines (PCs) while decreasing the levels of diacyl PCs carrying PUFAs. In exposed mice, levels of pro-inflammatory, oxygenated metabolites of arachidonic acid increased, whereas levels of anti-inflammatory metabolites of omega-3 PUFAs decreased. Our results indicate a specific serum lipidomic biosignature that could be utilized as an indicator of radiation exposure and as novel target for therapeutic intervention. Monitoring such a molecular response to radiation exposure might have implications not only for radiation pathology but also for countermeasures and personalized medicine. PMID:25126707
Fan, Guoxin; Wang, Yueye; Guo, Changfeng; Lei, Xuefeng; He, Shisheng
2017-05-01
Knowledge and concern degree about work-related radiation hazards remained unknown among orthopedic surgeons. The aim of the cross-sectional study is to investigate whether the knowledge degree of work-related radiation is associated with psychological distress among orthopedic surgeons. This cross-sectional study sent electronic questionnaire via WeChat to orthopedic surgeons nationwide. Concern and knowing degree over radiation exposure was evaluated by a single self-reported question. Professional evaluation of concern degree was reflected by general psychological distress, which was assessed with the Kessler 10 scale (K10) and depressive symptoms with the Center for Epidemiologic Studies Depression Scale (CES-D). Only 43.23% (115/266) respondents knew well about radiation and a total of 78.20% (208/266) respondents considered radiation exposure as a great concern. Among those who reported concerns about radiation exposure, a total of 57.69% (120/208) respondents reported knowing little about radiation. Respondents who reported concerns over radiation exposure were significantly associated with higher scores on CES-D and K10 (P < .05). Among respondents who reported concerns over radiation exposure, those who have fewer knowledge about radiation, had higher CES-D and K10 scores than those who knew well about radiation (P < .05). Among respondents who reported no concerns over radiation exposure, those who knew little about radiation still had higher CES-D and K10 scores (P < .05). Fewer radiation knowledge tends to induce more radiation concerns associated with higher psychological distress in orthopedic surgeons. Radiation knowledge should be enhanced for surgeons who daily work with radiation-related fluoroscopy.
Fan, Guoxin; Wang, Yueye; Guo, Changfeng; Lei, Xuefeng; He, Shisheng
2017-01-01
Abstract Knowledge and concern degree about work-related radiation hazards remained unknown among orthopedic surgeons. The aim of the cross-sectional study is to investigate whether the knowledge degree of work-related radiation is associated with psychological distress among orthopedic surgeons. This cross-sectional study sent electronic questionnaire via WeChat to orthopedic surgeons nationwide. Concern and knowing degree over radiation exposure was evaluated by a single self-reported question. Professional evaluation of concern degree was reflected by general psychological distress, which was assessed with the Kessler 10 scale (K10) and depressive symptoms with the Center for Epidemiologic Studies Depression Scale (CES-D). Only 43.23% (115/266) respondents knew well about radiation and a total of 78.20% (208/266) respondents considered radiation exposure as a great concern. Among those who reported concerns about radiation exposure, a total of 57.69% (120/208) respondents reported knowing little about radiation. Respondents who reported concerns over radiation exposure were significantly associated with higher scores on CES-D and K10 (P < .05). Among respondents who reported concerns over radiation exposure, those who have fewer knowledge about radiation, had higher CES-D and K10 scores than those who knew well about radiation (P < .05). Among respondents who reported no concerns over radiation exposure, those who knew little about radiation still had higher CES-D and K10 scores (P < .05). Fewer radiation knowledge tends to induce more radiation concerns associated with higher psychological distress in orthopedic surgeons. Radiation knowledge should be enhanced for surgeons who daily work with radiation-related fluoroscopy. PMID:28538368
Zhang, Xinxin; Tang, Xuexi; Wang, Ming; Zhang, Wei; Zhou, Bin; Wang, You
2017-08-01
UV-B ray has been addressed to trigger common metabolic responses on marine microalgae, however, the upstream events responsible for these changes in marine microalgae are poorly understood. In the present study, a species of marine green microalgae Dunaliella salina was exposed to a series of enhanced UV-B radiation ranging from 0.25 to 1.00 KJ·m -2 per day. The role of ROS and calcium signaling in the D. salina responses to UV-B was discussed. Results showed that enhanced UV-B radiation markedly decreased the cell density in a dose-dependent manner, but the contents of protein and glycerol that were essential for cell growth increased. It suggested that it was cell division instead of cell growth that UV-B exerted negative effects on. The subcellular damages on nuclei and plasmalemma further evidenced the hypothesis. The nutrient absorption was affected with UV-B exposure, and the inhibition on PO 4 3- uptake was more serious compared to NO 3 - uptake. UV-B radiation promoted reactive oxygen species (ROS) formation and thiobarbituric acid reactive substances (TBARS) contents, decreased the redox status and altered the antioxidant enzyme activities. The addition of the ROS scavenger and the glutathione biosynthesis precursor N-acetyl-l-cysteine (NAC) alleviated the stress degree, implying ROS-mediated pathway was involved in the stress response to UV-B radiation. Transient increase in Ca 2+ -ATPase was triggered simultaneously with UV-B exposure. Meanwhile, the addition of an intracellular free calcium chelator aggravated the damage of cell division, but exogenous calcium and ion channel blocker applications did not, inferring that endogenously initiated calcium signaling played roles in response to UV-B. Cross-talk analysis showed a relatively clear relationship between ROS inhibition and Ca 2+ -ATPase suppression, and a relation between Ca 2+ inhibition and GPx activity change was also observed. It was thus presumed that ROS-coupled calcium signaling via the glutathione cycle was involved in the response of marine microalgae to UV-B stimuli. Copyright © 2017 Elsevier B.V. All rights reserved.
Calculating excess lifetime risk in relative risk models.
Vaeth, M; Pierce, D A
1990-01-01
When assessing the impact of radiation exposure it is common practice to present the final conclusions in terms of excess lifetime cancer risk in a population exposed to a given dose. The present investigation is mainly a methodological study focusing on some of the major issues and uncertainties involved in calculating such excess lifetime risks and related risk projection methods. The age-constant relative risk model used in the recent analyses of the cancer mortality that was observed in the follow-up of the cohort of A-bomb survivors in Hiroshima and Nagasaki is used to describe the effect of the exposure on the cancer mortality. In this type of model the excess relative risk is constant in age-at-risk, but depends on the age-at-exposure. Calculation of excess lifetime risks usually requires rather complicated life-table computations. In this paper we propose a simple approximation to the excess lifetime risk; the validity of the approximation for low levels of exposure is justified empirically as well as theoretically. This approximation provides important guidance in understanding the influence of the various factors involved in risk projections. Among the further topics considered are the influence of a latent period, the additional problems involved in calculations of site-specific excess lifetime cancer risks, the consequences of a leveling off or a plateau in the excess relative risk, and the uncertainties involved in transferring results from one population to another. The main part of this study relates to the situation with a single, instantaneous exposure, but a brief discussion is also given of the problem with a continuous exposure at a low-dose rate. PMID:2269245
Calculating excess lifetime risk in relative risk models.
Vaeth, M; Pierce, D A
1990-07-01
When assessing the impact of radiation exposure it is common practice to present the final conclusions in terms of excess lifetime cancer risk in a population exposed to a given dose. The present investigation is mainly a methodological study focusing on some of the major issues and uncertainties involved in calculating such excess lifetime risks and related risk projection methods. The age-constant relative risk model used in the recent analyses of the cancer mortality that was observed in the follow-up of the cohort of A-bomb survivors in Hiroshima and Nagasaki is used to describe the effect of the exposure on the cancer mortality. In this type of model the excess relative risk is constant in age-at-risk, but depends on the age-at-exposure. Calculation of excess lifetime risks usually requires rather complicated life-table computations. In this paper we propose a simple approximation to the excess lifetime risk; the validity of the approximation for low levels of exposure is justified empirically as well as theoretically. This approximation provides important guidance in understanding the influence of the various factors involved in risk projections. Among the further topics considered are the influence of a latent period, the additional problems involved in calculations of site-specific excess lifetime cancer risks, the consequences of a leveling off or a plateau in the excess relative risk, and the uncertainties involved in transferring results from one population to another. The main part of this study relates to the situation with a single, instantaneous exposure, but a brief discussion is also given of the problem with a continuous exposure at a low-dose rate.
Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center
NASA Technical Reports Server (NTRS)
Johnson, A. Steve; Badhwar, Gautam D.; Golightly, Michael J.; Hardy, Alva C.; Konradi, Andrei; Yang, Tracy Chui-Hsu
1993-01-01
The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk.
Schroeder, P; Calles, C; Benesova, T; Macaluso, F; Krutmann, J
2010-01-01
Solar radiation is well known to damage human skin, for example by causing premature skin ageing (i.e. photoageing). We have recently learned that this damage does not result from ultraviolet (UV) radiation alone, but also from longer wavelengths, in particular near-infrared radiation (IRA radiation, 760-1,440 nm). IRA radiation accounts for more than one third of the solar energy that reaches human skin. While infrared radiation of longer wavelengths (IRB and IRC) does not penetrate deeply into the skin, more than 65% of the shorter wavelength (IRA) reaches the dermis. IRA radiation has been demonstrated to alter the collagen equilibrium of the dermal extracellular matrix in at least two ways: (a) by leading to an increased expression of the collagen-degrading enzyme matrix metalloproteinase 1, and (b) by decreasing the de novo synthesis of the collagen itself. IRA radiation exposure therefore induces similar biological effects to UV radiation, but the underlying mechanisms are substantially different, specifically, the cellular response to IRA irradiation involves the mitochondrial electron transport chain. Effective sun protection requires specific strategies to prevent IRA radiation-induced skin damage. 2010 S. Karger AG, Basel.
Land, Charles E
2009-11-01
Ionizing radiation is a known and well-quantified human cancer risk factor, based on a remarkably consistent body of information from epidemiological studies of exposed populations. Typical examples of risk estimation include use of Japanese atomic bomb survivor data to estimate future risk from radiation-related cancer among American patients receiving multiple computed tomography scans, persons affected by radioactive fallout, or persons whose livelihoods involve some radiation exposure, such as x-ray technicians, interventional radiologists, or shipyard workers. Our estimates of radiation-related risk are uncertain, reflecting statistical variation and our imperfect understanding of crucial assumptions that must be made if we are to apply existing epidemiological data to particular situations. Fortunately, that uncertainty is also highly quantifiable, and can be presented concisely and transparently. Radiation protection is ultimately a political process that involves consent by stakeholders, a diverse group that includes people who might be expected to be risk-averse and concerned with plausible upper limits on risk (how bad could it be?), cost-averse and concerned with lower limits on risk (can you prove there is a nontrivial risk at current dose levels?), or combining both points of view. How radiation-related risk is viewed by individuals and population subgroups also depends very much on perception of related benefit, which might be (for example) medical, economic, altruistic, or nonexistent. The following presentation follows the lead of National Council on Radiation Protection and Measurements (NCRP) Commentary 14, NCRP Report 126, and later documents in treating radiation protection from the viewpoint of quantitative uncertainty analysis.
Medical Consequences of Chernobyl with Focus on the Endocrine System - Part 2.
Foley, Thomas P; Límanová, Zdeňka; Potluková, Eliška
2015-01-01
In the last 70 years, atomic disasters have occurred several times. The nuclear power plant accident at Chernobyl in 1986 in North-Central Ukraine was a unique experience in population exposures to radiation by all ages, and ongoing studies have brought a large amount of information effects of radiation on human organism. Concerning the deteriorating global security situation and the strong rhetoric of some of the world leaders, the knowledge on the biological effects of ionizing radiation and the preventive measures designed to decrease the detrimental effects of radiation gains a new dimension, and involves all of us. This review focuses on the long-term effects of Chernobyl catastrophe especially on the endocrine system in children and in adults, and includes a summary of preventive measures in case of an atomic disaster.
Medical consequences of Chernobyl with focus on the endocrine system: Part 1.
Foley, Thomas P; Límanová, Zdeňka; Potluková, Eliška
2015-01-01
In the last 70 years, atomic disasters have occurred several times. The nuclear power plant accident at Chernobyl in 1986 in North-Central Ukraine was a unique experience in population exposures to radiation by all ages, and ongoing studies have brought a large amount of information on effects of radiation on human organism. Concerning the deteriorating global security situation and the strong rhetoric of some of the world leaders, the knowledge on the biological effects of ionizing radiation and the preventive measures designed to decrease the detrimental effects of radiation gains a new dimension, and involves all of us. This review focuses on the long-term effects of Chernobyl catastrophe especially on the endocrine system in children and in adults, and includes a summary of preventive measures in case of an atomic disaster.
E2F1 interactions with hHR23A inhibit its degradation and promote DNA repair.
Singh, Randeep K; Dagnino, Lina
2016-05-03
Nucleotide excision repair (NER) is a major mechanism for removal of DNA lesions induced by exposure to UV radiation in the epidermis. Recognition of damaged DNA sites is the initial step in their repair, and requires multiprotein complexes that contain XPC and hHR23 proteins, or their orthologues. A variety of transcription factors are also involved in NER, including E2F1. In epidermal keratinocytes, UV exposure induces E2F1 phosphorylation, which allows it to recruit various NER factors to sites of DNA damage. However, the relationship between E2F1 and hHR23 proteins vis-à-vis NER has remained unexplored. We now show that E2F1 and hHR23 proteins can interact, and this interaction stabilizes E2F1, inhibiting its proteasomal degradation. Reciprocally, E2F1 regulates hHR23A subcellular localization, recruiting it to sites of DNA photodamage. As a result, E2F1 and hHR23A enhance DNA repair following exposure to UV radiation, contributing to genomic stability in the epidermis.
Karam, P Andrew
2003-03-01
Four billion years ago, sea-level UV exposure was more than 400 times as intense as today, the dose from solar cosmic rays was five times present levels, and galactic cosmic rays accounted for only about 10% their current contribution to sea-level radiation doses. Exposure to cosmic radiation accounts for about 10% of natural background radiation exposure today and includes dose from galactic cosmic rays and solar charged particles. There is little exposure to ionizing wavelengths of UV due to absorption by ozone. The sun has evolved significantly over its life; in the past there were higher levels of particulate radiation and lower UV emissions from the sun, and a stronger solar wind reduced radiation dose in the inner solar system from galactic cosmic rays. Finally, since the early atmosphere contained little to no oxygen, surface levels of UV radiation were far higher in the past.
Skinner, Sarah
2013-06-01
Diagnostic radiology procedures, such as computed tomography (CT) and X-ray, are an increasing source of ionising radiation exposure to our community. Exposure to ionising radiation is associated with increased risk of malignancy, proportional to the level of exposure. Every diagnostic test using ionising radiation needs to be justified by clinical need. General practitioners need a working knowledge of radiation safety so they can adequately inform their patients of the risks and benefits of diagnostic imaging procedures.
The role of chemicals and radiation in the etiology of cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huberman, E.; Barr, S.H.
In this volume, investigators consider the mechanisms of oncogenesis, cell transformation, and carcinogen metabolism and present new findings on chemical and radiation carcinogenesis and chemically induced mutagenesis and chromosomal changes. As background to the studies of chemical and radiation carcinogenesis, the book surveys knowledge of cell transformation and carcinogen metabolism. Among the topics reviewed are the transforming genes involved in human malignancy, the genetics and epigenetics of neoplasia, and the single-hit and multi-hit concepts of hepatocarcinogenesis. Also examined are organ, species, and interindividual differences in carcinogen metabolism; chemical and biochemical dosimetry of genotoxic chemical exposure; and the role of pharmacokineticsmore » and DNA dosimetry in relating in vitro to in vivo actions of N-nitroso compounds.« less
Elevated Radiation Exposure Associated With Above Surface Flat Detector Mini C-Arm Use.
Martin, Dennis P; Chapman, Talia; Williamson, Christopher; Tinsley, Brian; Ilyas, Asif M; Wang, Mark L
2017-11-01
This study aims to test the hypothesis that: (1) radiation exposure is increased with the intended use of Flat Surface Image Intensifier (FSII) units above the operative surface compared with the traditional below-table configuration; (2) this differential increases in a dose-dependent manner; and (3) radiation exposure varies with body part and proximity to the radiation source. A surgeon mannequin was seated at a radiolucent hand table, positioned for volar distal radius plating. Thermoluminescent dosimeters measured exposure to the eyes, thyroid, chest, hand, and groin, for 1- and 15-minute trials from a mini C-arm FSII unit positioned above and below the operating surface. Background radiation was measured by control dosimeters placed within the operating theater. At 1-minute of exposure, hand and eye dosages were significantly greater with the flat detector positioned above the table. At 15-minutes of exposure, hand radiation dosage exceeded that of all other anatomic sites with the FSII in both positions. Hand exposure was increased in a dose-dependent manner with the flat detector in either position, whereas groin exposure saw a dose-dependent only with the flat detector beneath the operating table. These findings suggest that the surgeon's hands and eyes may incur greater radiation exposure compared with other body parts, during routine mini C-arm FSII utilization in its intended position above the operating table. The clinical impact of these findings remains unclear, and future long-term radiation safety investigation is warranted. Surgeons should take precautions to protect critical body parts, particularly when using FSII technology above the operating with prolonged exposure time.
Identifying and managing the risks of medical ionizing radiation in endourology.
Yecies, Todd; Averch, Timothy D; Semins, Michelle J
2018-02-01
The risks of exposure to medical ionizing radiation is of increasing concern both among medical professionals and the general public. Patients with nephrolithiasis are exposed to high levels of ionizing radiation through both diagnostic and therapeutic modalities. Endourologists who perform a high-volume of fluoroscopy guided procedures are also exposed to significant quantities of ionizing radiation. The combination of judicious use of radiation-based imaging modalities, application of new imaging techniques such as ultra-low dose computed tomography (CT) scan, and modifying use of current technology such as increasing ultrasound and pulsed fluoroscopy utilization offers the possibility of significantly reducing radiation exposure. We present a review of the literature regarding the risks of medical ionizing radiation to patients and surgeons as it pertains to the field of endourology and interventions that can be performed to limit this exposure. A review of the current state of the literature was performed using MEDLINE and PubMed. Interventions designed to limit patient and surgeon radiation exposure were identified and analyzed. Summaries of the data were compiled and synthesized in the body of the text. While no level 1 evidence exists demonstrating the risk of secondary malignancy with radiation exposure, the preponderance of evidence suggests a dose and age dependent increase in malignancy risk from ionizing radiation. Patients with nephrolithiasis were exposed to an average effective dose of 37mSv over a 2 year period. Multiple evidence-based interventions to limit patient and surgeon radiation exposure and associated risk were identified. Current evidence suggest an age and dose dependent risk of secondary malignancy from ionizing radiation. Urologists must act in accordance with ALARA principles to safely manage nephrolithiasis while minimizing radiation exposure.
Occupational exposure associated with reproductive dysfunction.
Kumar, Sunil
2004-01-01
Evidence suggestive of harmful effects of occupational exposure on the reproductive system and related outcomes has gradually accumulated in recent decades, and is further compounded by persistent environmental endocrine disruptive chemicals. These chemicals have been found to interfere with the function of the endocrine system, which is responsible for growth, sexual development and many other essential physiological functions. A number of occupations are being reported to be associated with reproductive dysfunction in males as well as in females. Generally, occupations involving the manufacture/or application of some of the persistent chemicals that are not easily degradable as well as bio-accumulative chemicals, occupations involving intensive exposure to heat and radiation, occupations involving the use of toxic solvents as well as toxic fumes are reported to be associated with reproductive dysfunction. Occupational exposure of males to various persistent chemicals have been reported to have male mediated adverse reproductive outcomes in the form of abortion, reduction in fertility etc. with inconclusive or limited evidence. Nevertheless, there is a need for more well designed studies in order to implicate any individual chemical having such effects as in most occupations workers are exposed to raw, intermediate and finished products and there are also several confounding factors associated with lifestyles responsible for reproductive dysfunction. There is an urgent need to look at indiscriminate use of persistent chemicals especially pesticides and persistent organic pollutants (POP's) as these chemicals enter the food chain also and could be potential for exposure during the critical period of development. It is also necessary to impart information, and to educate about the safe use of these chemicals, as a very sensitive reproduction issue is involved with exposure to these chemicals. Occupational exposures often are higher than environmental exposures, so that epidemiological studies should be conducted on these chemicals, on a priority basis, which are reported to have adverse effects on reproduction in the experimental system.
38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...
38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...
38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...
38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...
28 CFR 79.44 - Proof of working level month exposure to radiation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... radiation. 79.44 Section 79.44 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.44 Proof of working level month exposure to radiation. (a) If one or more of the sources in § 79.43(a) contain a...
38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...
Developing the radiation protection safety culture in the UK.
Cole, P; Hallard, R; Broughton, J; Coates, R; Croft, J; Davies, K; Devine, I; Lewis, C; Marsden, P; Marsh, A; McGeary, R; Riley, P; Rogers, A; Rycraft, H; Shaw, A
2014-06-01
In the UK, as elsewhere, there is potential to improve how radiological challenges are addressed through improvement in, or development of, a strong radiation protection (RP) safety culture. In preliminary work in the UK, two areas have been identified as having a strong influence on UK society: the healthcare and nuclear industry sectors. Each has specific challenges, but with many overlapping common factors. Other sectors will benefit from further consideration.In order to make meaningful comparisons between these two principal sectors, this paper is primarily concerned with cultural aspects of RP in the working environment and occupational exposures rather than patient doses.The healthcare sector delivers a large collective dose to patients each year, particularly for diagnostic purposes, which continues to increase. Although patient dose is not the focus, it must be recognised that collective patient dose is inevitably linked to collective occupational exposure, especially in interventional procedures.The nuclear industry faces major challenges as work moves from operations to decommissioning on many sites. This involves restarting work in the plants responsible for the much higher radiation doses of the 1960/70s, but also performing tasks that are considerably more difficult and hazardous than those original performed in these plants.Factors which influence RP safety culture in the workplace are examined, and proposals are considered for a series of actions that may lead to an improvement in RP culture with an associated reduction in dose in many work areas. These actions include methods to improve knowledge and awareness of radiation safety, plus ways to influence management and colleagues in the workplace. The exchange of knowledge about safety culture between the nuclear industry and medical areas may act to develop RP culture in both sectors, and have a wider impact in other sectors where exposures to ionising radiations can occur.
Radiation protection and dosimetry issues in the medical applications of ionizing radiation
NASA Astrophysics Data System (ADS)
Vaz, Pedro
2014-11-01
The technological advances that occurred during the last few decades paved the way to the dissemination of CT-based procedures in radiology, to an increasing number of procedures in interventional radiology and cardiology as well as to new techniques and hybrid modalities in nuclear medicine and in radiotherapy. These technological advances encompass the exposure of patients and medical staff to unprecedentedly high dose values that are a cause for concern due to the potential detrimental effects of ionizing radiation to the human health. As a consequence, new issues and challenges in radiological protection and dosimetry in the medical applications of ionizing radiation have emerged. The scientific knowledge of the radiosensitivity of individuals as a function of age, gender and other factors has also contributed to raising the awareness of scientists, medical staff, regulators, decision makers and other stakeholders (including the patients and the public) for the need to correctly and accurately assess the radiation induced long-term health effects after medical exposure. Pediatric exposures and their late effects became a cause of great concern. The scientific communities of experts involved in the study of the biological effects of ionizing radiation have made a strong case about the need to undertake low dose radiation research and the International System of Radiological Protection is being challenged to address and incorporate issues such as the individual sensitivities, the shape of dose-response relationship and tissue sensitivity for cancer and non-cancer effects. Some of the answers to the radiation protection and dosimetry issues and challenges in the medical applications of ionizing radiation lie in computational studies using Monte Carlo or hybrid methods to model and simulate particle transport in the organs and tissues of the human body. The development of sophisticated Monte Carlo computer programs and voxel phantoms paves the way to an accurate dosimetric assessment of the medical applications of ionizing radiation. In this paper, the aforementioned topics will be reviewed. The current status and the future trends in the implementation of the justification and optimization principles, pillars of the International System of Radiological Protection, in the medical applications of ionizing radiation will be discussed. Prospective views will be provided on the future of the system of radiological protection and on dosimetry issues in the medical applications of ionizing radiation.
Lange, S; Viergutz, T; Simkó, M
2004-10-01
Low-frequency electromagnetic fields are suspected of being involved in carcinogenesis, particularly in processes that could be related to cancer promotion. Because development of cancer is associated with deregulated cell growth and we previously observed a magnetic field-induced decrease in DNA synthesis [Lange et al. (2002) Alterations in the cell cycle and in the protein level of cyclin D1p, 21CIP1, and p16INK4a after exposure to 50 HZ. MF in human cells. Radiat. Environ. Biophys.41, 131], this study aims to document the influence of 50 Hz, 1 mT magnetic fields (MF), with or without initial gamma-ionizing radiation (IR), on the following cell proliferation-relevant parameters in human amniotic fluid cells (AFC): cell cycle distribution, expression of the G1 phase-regulating proteins Cdk4, cyclin D1, p21CIP1 and p16INK4a, and Cdk4 activity. While IR induced a G1 delay and a dose-dependent G2 arrest, no discernible changes in cell cycle kinetics were observed due to MF exposure. However, a significant decrease in the protein expression of cyclin D1 and an increase in p21CIP1- and p16INK4a-expression could be detected after exposure to MF alone. IR-exposure caused an augmentation of p21CIP1- and p16INK4a- levels as well, but did not alter cyclin D1 expression. A slight diminution of Cdk4 activity was noticed after MF exposure only, indicating that Cdk4 appears not to act as a mediator of MF- or IR-induced changes in the cell cycle of AFC cells. Co-exposure to MF/IR affected neither cell cycle distribution nor protein expression or kinase activity additionally or synergistically, and therefore MF seems not to modify the mutagenic potency of IR.
Minimally Invasive Radiation Biodosimetry and Evaluation of Organ Responses
2016-10-01
radiation exposure, potentially leading to Acute Radiation Syndromes (ARS) and Delayed Effects of Acute ...underlying conditions and inherent variations. 2. KEYWORDS Radiation Biodosimetry, Radiation Biomarkers, microRNA, Acute Radiation Syndromes ... syndromes and delayed effects of acute radiation exposure. We expect to identify the circulating miRNA biomarkers as early predictors of late effects
Perception of low dose radiation risks among radiation researchers in Korea.
Seong, Ki Moon; Kwon, TaeWoo; Seo, Songwon; Lee, Dalnim; Park, Sunhoo; Jin, Young Woo; Lee, Seung-Sook
2017-01-01
Expert's risk evaluation of radiation exposure strongly influences the public's risk perception. Experts can inform laypersons of significant radiation information including health knowledge based on experimental data. However, some experts' radiation risk perception is often based on non-conclusive scientific evidence (i.e., radiation levels below 100 millisievert), which is currently under debate. Examining perception levels among experts is important for communication with the public since these individual's opinions have often exacerbated the public's confusion. We conducted a survey of Korean radiation researchers to investigate their perceptions of the risks associated with radiation exposure below 100 millisievert. A linear regression analysis revealed that having ≥ 11 years' research experience was a critical factor associated with radiation risk perception, which was inversely correlated with each other. Increased opportunities to understand radiation effects at < 100 millisievert could alter the public's risk perception of radiation exposure. In addition, radiation researchers conceived that more scientific evidence reducing the uncertainty for radiation effects < 100 millisievert is necessary for successful public communication. We concluded that sustained education addressing scientific findings is a critical attribute that will affect the risk perception of radiation exposure.
Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang
2015-12-01
Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (p<0.05). Whereas, levels of reduced glutathione (GSH) and superoxide dismutase (SOD) were found significantly decreased in microwave exposed groups (p<0.05). A significant increase in levels of pro-inflammatory cytokines (IL-2, IL-6, TNF-α, and IFN-γ) was observed in microwave exposed animal (p<0.05). Furthermore, significant DNA damage was also observed in microwave exposed groups as compared to their corresponding values in sham exposed group (p<0.05). In conclusion, the present study suggests that low intensity microwave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect. The study also indicates that increased oxidative stress and inflammatory response might be the factors involved in DNA damage following low intensity microwave exposure. Copyright © 2015 Elsevier Inc. All rights reserved.
Health Risk Evaluations for Ingestion Exposure of Humans to Polonium-210
Scott, Bobby R.
2007-01-01
The incident in London during November 2006 involving a lethal intake by Mr. Alexander Litvinenko of the highly-radioactive, alpha-particles-emitting polonium-210 (Po-210) isotope, presumably via ingestion, sparked renewed interest in the area of Po-210 toxicity to humans. This paper is the result of assembling and interpreting existing Po-210 data within the context of what is considered a reliable risk model (hazard-function [HF] model) for characterizing the risk of death from deterministic effects of high alpha radiation doses and dose rates to body organs. The HF model was developed to address radiation exposure scenarios involving combined exposures to alpha, beta, and gamma radiations and can be used in circumstances where only one type of radiation is involved. Under a plausible but not yet validated set of assumptions and using available megabecquerel (Po-210) to gray dose-conversion factors, acute lethality risk vs. dose curves were developed for circumstances of ingestion exposure to Po-210 by humans. Initial risk calculations were carried out for a reference adult male human (a hypothetical 70-kg person). Results were then modified for application to all ages (except the in utero child) via the use of systemic Po-210 burden. Because of the unavailability of acute lethality data derived from human ingestions of high levels of Po-210, plausibility of risk calculations were evaluated based on data from studies of Po-210 injections in animals. The animal data, although limited, were found to be consistent with the theoretical risk calculations. Key findings are as follows: (1) ingestion (or inhalation) of a few tents of a milligram of Po-210 will likely be fatal to all exposed persons. (2) Lethal intakes are expected to involve fatal damage to the bone marrow which is likely to be compounded by damage caused by higher doses to other organs including the kidneys and liver. (3) Lethal intakes are expected to cause severe damage to the kidney, spleen, stomach, small and large intestines, lymph nodes, skin, and testes (males) in addition to the fatal damage to bone marrow. (4) The time distribution of deaths is expected to depend on the level of radioactivity ingested or inhaled, with deaths occurring within about a month after very high levels of radioactivity intake (e.g., systemic burdens > 1 MBq/kg-body-mass) and occurring over longer periods, possibly up to or exceeding a year for lower but lethal intakes (systemic burdens from 0.1 to 1.0 MBq/kg-body-mass). Below a systemic burden estimate of 0.02 MBq/kg-body-mass, deaths from deterministic effects are not expected to occur but the risk of cancer and for life shortening could be significant. New, funded experimental and modeling/theoretical research is needed to improve on these estimates. PMID:18648599
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Bobby, R., Ph.D.
2003-06-27
OAK - B135 This project final report summarizes modeling research conducted in the U.S. Department of Energy (DOE), Low Dose Radiation Research Program at the Lovelace Respiratory Research Institute from October 1998 through June 2003. The modeling research described involves critically evaluating the validity of the linear nonthreshold (LNT) risk model as it relates to stochastic effects induced in cells by low doses of ionizing radiation and genotoxic chemicals. The LNT model plays a central role in low-dose risk assessment for humans. With the LNT model, any radiation (or genotoxic chemical) exposure is assumed to increase one¡¯s risk of cancer.more » Based on the LNT model, others have predicted tens of thousands of cancer deaths related to environmental exposure to radioactive material from nuclear accidents (e.g., Chernobyl) and fallout from nuclear weapons testing. Our research has focused on developing biologically based models that explain the shape of dose-response curves for low-dose radiation and genotoxic chemical-induced stochastic effects in cells. Understanding the shape of the dose-response curve for radiation and genotoxic chemical-induced stochastic effects in cells helps to better understand the shape of the dose-response curve for cancer induction in humans. We have used a modeling approach that facilitated model revisions over time, allowing for timely incorporation of new knowledge gained related to the biological basis for low-dose-induced stochastic effects in cells. Both deleterious (e.g., genomic instability, mutations, and neoplastic transformation) and protective (e.g., DNA repair and apoptosis) effects have been included in our modeling. Our most advanced model, NEOTRANS2, involves differing levels of genomic instability. Persistent genomic instability is presumed to be associated with nonspecific, nonlethal mutations and to increase both the risk for neoplastic transformation and for cancer occurrence. Our research results, based on applications of NEOTRANS2, indicate that nonlinear threshold-type, dose-response relationships for excess stochastic effects (problematic nonlethal mutations, neoplastic transformation) should be expected after exposure to low linear energy transfer (LET) gamma rays or gamma rays in combination with high-LET alpha radiation. Similar thresholds are expected for low-dose-rate low-LET beta irradiation. We attribute the thresholds to low-dose, low-LET radiation induced protection against spontaneous mutations and neoplastic transformations. The protection is presumed mainly to involve selective elimination of problematic cells via apoptosis. Low-dose, low-LET radiation is presumed to trigger wide-area cell signaling, which in turn leads to problematic bystander cells (e.g., mutants, neoplastically transformed cells) selectively undergoing apoptosis. Thus, this protective bystander effect leads to selective elimination of problematic cells (a tissue cleansing process in vivo). However, this protective bystander effects is a different process from low-dose stimulation of the immune system. Low-dose, low-LET radiation stimulation of the immune system may explain why thresholds for inducing excess cancer appear much larger (possibly more than 100-fold larger) than thresholds for inducing excess mutations and neoplastic transformations, when the dose rate is low. For ionizing radiation, the current risk assessment paradigm is such that the relative risk (RR) is always ¡Ý 1, no matter how small the dose. Our research results indicate that for low-dose or low-dose-rate, low-LET irradiation, RR < 1 may be more the rule than the exception. Directly tied to the current RR paradigm are the billion-dollar cleanup costs for radionuclide-contaminated DOE sites. Our research results suggest that continued use of the current RR paradigm for which RR ¡Ý 1 could cause more harm than benefit to society (e.g., by spreading unwarranted fear about phantom excess risks associated with low-dose low-LET radiation). Such phantom risks also may arise from risk assessments conducted for combined exposure to low- and high-LET radiations when based on the LNT or other models that exclude RR < 1. Our results for high-LET radiation are consistent with the LNT hypothesis but only where there is no additional low-LET contribution (e.g., gamma rays) to the total dose. For high-LET neutron sources, gamma rays arise (especially in vivo) for large mammals such as humans from neutron interactions with tissue. The gamma rays might provide some protection from low-dose-related stochastic effects via inducing the protective bystander apoptosis effect that is considered to contribute to tissue cleansing via removal of problematic cells.« less
Attenuated DNA damage repair by trichostatin A through BRCA1 suppression.
Zhang, Yin; Carr, Theresa; Dimtchev, Alexandre; Zaer, Naghmeh; Dritschilo, Anatoly; Jung, Mira
2007-07-01
Recent studies have demonstrated that some histone deacetylase (HDAC) inhibitors enhance cellular radiation sensitivity. However, the underlying mechanism for such a radiosensitizing effect remains unexplored. Here we show evidence that treatment with the HDAC inhibitor trichostatin A (TSA) impairs radiation-induced repair of DNA damage. The effect of TSA on the kinetics of DNA damage repair was measured by performing the comet assay and gamma-H2AX focus analysis in radioresistant human squamous carcinoma cells (SQ-20B). TSA exposure increased the amount of radiation-induced DNA damage and slowed the repair kinetics. Gene expression profiling also revealed that a majority of the genes that control cell cycle, DNA replication and damage repair processes were down-regulated after TSA exposure, including BRCA1. The involvement of BRCA1 was further demonstrated by expressing ectopic wild-type BRCA1 in a BRCA1 null cell line (HCC-1937). TSA treatment enhanced radiation sensitivity of HCC-1937/wtBRCA1 clonal cells, which restored cellular radiosensitivity (D(0) = 1.63 Gy), to the control level (D(0) = 1.03 Gy). However, TSA had no effect on the level of radiosensitivity of BRCA1 null cells. Our data demonstrate for the first time that TSA treatment modulates the radiation-induced DNA damage repair process, in part by suppressing BRCA1 gene expression, suggesting that BRCA1 is one of molecular targets of TSA.
Study of scattered radiation during fluoroscopy in hip surgery*
Lesyuk, Oksana; Sousa, Patrick Emmanuel; Rodrigues, Sónia Isabel do Espirito Santo; Abrantes, António Fernando; de Almeida, Rui Pedro Pereira; Pinheiro, João Pedro; Azevedo, Kevin Barros; Ribeiro, Luís Pedro Vieira
2016-01-01
Objective To measure the scattered radiation dose at different positions simulating hip surgery. Materials and Methods We simulated fluoroscopy-assisted hip surgery in order to study the distribution of scattered radiation in the operating room. To simulate the patient, we used a anthropomorphic whole-body phantom, and we used an X-ray-specific detector to quantify the radiation. Radiographs were obtained with a mobile C-arm X-ray system in continuous scan mode, with the tube at 0º (configuration 1) or 90º (configuration 2). The operating parameters employed (voltage, current, and exposure time) were determined by a statistical analysis based on the observation of orthopedic surgical procedures involving the hip. Results For all measurements, higher exposures were observed in configuration 2. In the measurements obtained as a function of height, the maximum dose rates observed were 1.167 (± 0.023) µSv/s and 2.278 (± 0.023) µSv/s in configurations 1 and 2, respectively, corresponding to the chest level of health care professionals within the operating room. Proximal to the patient, the maximum values were recorded in the position occupied by the surgeon. Conclusion We can conclude that, in the scenario under study, health care professionals workers are exposed to low levels of radiation, and that those levels can be reduced through the use of personal protective equipment. PMID:27777477
Singh, Vijay K; Wise, Stephen Y; Fatanmi, Oluseyi O; Beattie, Lindsay A; Ducey, Elizabeth J; Seed, Thomas M
2014-01-01
The purpose of this study was to elucidate the role of alpha-tocopherol succinate (TS)- and AMD3100-mobilized progenitors in mitigating combined injury associated with acute radiation exposure in combination with secondary physical wounding. CD2F1 mice were exposed to high doses of cobalt-60 gamma-radiation and then transfused intravenously with 5 million peripheral blood mononuclear cells (PBMCs) from TS- and AMD3100-injected mice after irradiation. Within 1 h after irradiation, mice were exposed to secondary wounding. Mice were observed for 30 d after irradiation and cytokine analysis was conducted by multiplex Luminex assay at various time-points after irradiation and wounding. Our results initially demonstrated that transfusion of TS-mobilized progenitors from normal mice enhanced survival of acutely irradiated mice exposed 24 h prior to transfusion to supralethal doses (11.5-12.5 Gy) of (60)Co gamma-radiation. Subsequently, comparable transfusions of TS-mobilized progenitors were shown to significantly mitigate severe combined injuries in acutely irradiated mice. TS administered 24 h before irradiation was able to protect mice against combined injury as well. Cytokine results demonstrated that wounding modulates irradiation-induced cytokines. This study further supports the conclusion that the infusion of TS-mobilized progenitor-containing PBMCs acts as a bridging therapy in radiation-combined-injury mice. We suggest that this novel bridging therapeutic approach involving the infusion of TS-mobilized hematopoietic progenitors following acute radiation exposure or combined injury might be applicable to humans.
Radiation Exposure and Pregnancy
Fact Sheet Adopted: June 2010 Updated: June 2017 Health Physics Society Specialists in Radiation Safety Radiation Exposure and ... radiation and pregnancy can be found on the Health Physics Society " Ask the Experts" Web site. she should ...
Space radiation and cardiovascular disease risk
Boerma, Marjan; Nelson, Gregory A; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Koturbash, Igor; Hauer-Jensen, Martin
2015-01-01
Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy. PMID:26730293
Space radiation and cardiovascular disease risk.
Boerma, Marjan; Nelson, Gregory A; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Koturbash, Igor; Hauer-Jensen, Martin
2015-12-26
Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy.
Perioperative patient radiation exposure in the endoscopic removal of upper urinary tract calculi.
Jamal, Joseph E; Armenakas, Noel A; Sosa, R Ernest; Fracchia, John A
2011-11-01
The efficacy of computed tomography (CT) in detailing upper urinary tract calculi is well established. There is no established acceptable annual recommended limit for medical exposure, yet the global accepted upper limit for occupational radiation exposure is <50 millisieverts (mSv) in any one year. We sought to appreciate the CT and fluoroscopic radiation exposure to our patients undergoing endoscopic removal of upper tract calculi during the periprocedure period. All patients undergoing upper urinary endoscopic stone removal between 2005 and 2009 were identified. To calculate the cumulative radiation exposure, we included all ionizing radiation imaging performed during a periprocedure period, which we defined as ≤90 days pre- and post-therapeutic procedure. A total of 233 upper urinary tract therapeutic patient stone procedures were identified; 127 patients underwent ureteroscopy (URS) and 106 patients underwent percutaneous nephrolithotomy (PCNL). A mean 1.58 CTs were performed per patient. Ninety (38.6%) patients underwent ≥2 CTs in the periprocedure period, with an average number in this group of 2.49 CT/patient, resulting in approximately 49.8 mSv of CT radiation exposure. Patients who were undergoing URS were significantly more likely to have multiple CTs (P=0.003) than those undergoing PCNL. Median fluoroscopic procedure exposures were 43.3 mGy for patients who were undergoing PCNL and 27.6 mGy for those patients undergoing URS. CT radiation exposure in the periprocedure period for patients who were undergoing endoscopic upper tract stone removal is considerable. Added to this is the procedure-related fluoroscopic radiation exposure. Urologic surgeons should be aware of the cumulative amount of ionizing radiation received by their patients from multiple sources.
NASA Technical Reports Server (NTRS)
Durante, M.; George, K.; Yang, T. C.
1997-01-01
Painting of interphase chromosomes can be useful for biodosimetric purposes in particular cases such as radiation therapy, accidental exposure to very high radiation doses and exposure to densely ionizing radiation, for example during space missions. Biodosimetry of charged-particle radiation is analyzed in the present paper. Target cells were human peripheral blood lymphocytes irradiated in vitro with gamma rays, protons and iron ions. After exposure, lymphocytes were incubated for different times to allow repair of radiation-induced damage and then fused to mitotic hamster cells to promote premature condensation in the interphase chromosomes. Chromosome spreads were then hybridized with whole-chromosome DNA probes labeled with fluorescent stains. Dose-response curves for the induction of chromatin fragments shortly after exposure, as well as the kinetics of rejoining and misrejoining, were not markedly dependent on linear energy transfer. However, after exposure to heavy ions, more aberrations were scored in the interphase cells after incubation for repair than in metaphase samples harvested at the first postirradiation mitosis. On the other hand, no significant differences were observed in the two samples after exposure to sparsely ionizing radiation. These results suggest that interphase chromosome painting can be a useful tool for biodosimetry of particle radiation.
Durante, M; George, K; Yang, T C
1997-11-01
Painting of interphase chromosomes can be useful for biodosimetric purposes in particular cases such as radiation therapy, accidental exposure to very high radiation doses and exposure to densely ionizing radiation, for example during space missions. Biodosimetry of charged-particle radiation is analyzed in the present paper. Target cells were human peripheral blood lymphocytes irradiated in vitro with gamma rays, protons and iron ions. After exposure, lymphocytes were incubated for different times to allow repair of radiation-induced damage and then fused to mitotic hamster cells to promote premature condensation in the interphase chromosomes. Chromosome spreads were then hybridized with whole-chromosome DNA probes labeled with fluorescent stains. Dose-response curves for the induction of chromatin fragments shortly after exposure, as well as the kinetics of rejoining and misrejoining, were not markedly dependent on linear energy transfer. However, after exposure to heavy ions, more aberrations were scored in the interphase cells after incubation for repair than in metaphase samples harvested at the first postirradiation mitosis. On the other hand, no significant differences were observed in the two samples after exposure to sparsely ionizing radiation. These results suggest that interphase chromosome painting can be a useful tool for biodosimetry of particle radiation.
Fluoroscopic exposure in modern spinal surgery.
Fransen, Patrick
2011-06-01
The widespread use of minimally invasive and other spinal procedures raises concern about the peroperative radiation exposure to surgeon and patient. The authors noted the fluoroscopy time and the radiation dose, as read from the image amplifier, in 95 spinal procedures. The results of this prospective study varied widely between different operations. Percutaneous surgery was associated with more exposure than open surgery. For instance, the average radiation dose per pedicle screw was 3.2 times higher with percutaneous insertion than with an open approach. Therefore, efforts to reduce fluoroscopy time and radiation exposure should be made when using minimally invasive percutaneous surgical techniques. Preventive measures for the surgeon, such as lead aprons and gloves, thyroid shields, radioprotective glasses and staying away from the beam are recommended. Still from the surgeon's view-point, source inferior positioning of the image amplifier is indicated for the AP view, as well as monitoring of the radiation exposure. Finally, the difference in fluoroscopy time and radiation exposure between surgeons for the same procedure stresses the fact that peroperative radiation may be reduced by simple awareness and by training.
Mokarram, P; Sheikhi, M; Mortazavi, S M J; Saeb, S; Shokrpour, N
2017-03-01
Over the past several years, the rapidly increasing use of mobile phones has raised global concerns about the biological effects of exposure to radiofrequency (RF) radiation. Numerous studies have shown that exposure to electromagnetic fields (EMFs) can be associated with effects on the nervous, endocrine, immune, cardiovascular, hematopoietic and ocular systems. In spite of genetic diversity, the onset and progression of cancer can be controlled by epigenetic mechanisms such as gene promoter methylation. There are extensive studies on the epigenetic changes of the tumor suppressor genes as well as the identification of methylation biomarkers in colorectal cancer. Some studies have revealed that genetic changes can be induced by exposure to RF radiation. However, whether or not RF radiation is capable of inducing epigenetic alteration has not been clarified yet. To date, no study has been conducted on the effect of radiation on epigenetic alterations in colorectal cancer (CRC). Several studies have also shown that methylation of estrogen receptor α (ERα), MYOD, MGMT, SFRP2 and P16 play an important role in CRC. It can be hypothesized that RF exposure can be a reason for the high incidence of CRC in Iran. This study aimed to investigate whether epigenetic pattern of ERα is susceptible to RF radiation and if RF radiation can induce radioadaptive response as epigenetic changes after receiving the challenge dose (γ-ray). 40 male Sprague-Dawley rats were divided into 4 equal groups (Group I: exposure to RF radiation of a GSM cell phone for 4 hours and sacrificed after 24 hours; Group II: RF exposure for 4 hours, exposure to Co-60 gamma radiation (3 Gy) after 24 hours and sacrificed after 72 hrs; Group III: only 3Gy gamma radiation; Group 4: control group). DNA from colon tissues was extracted to evaluate the methylation status by methylation specific PCR. Our finding showed that exposure to GSM cell phone RF radiation was capable of altering the pattern of ERα gene methylation compared to that of non-exposed controls. Furthermore, no adaptive response phenomenon was induced in the pattern of ERα gene methylation after exposure to the challenging dose of Co-60 γ-rays. It can be concluded that exposure to RF radiation emitted by GSM mobile phones can lead to epigenetic detrimental changes in ERα promoter methylation pattern.
Perisinakis, Kostas; Pouli, Styliani; Tzedakis, Antonis; Spanakis, Kostas; Hatzidakis, Adam; Raissaki, Maria; Damilakis, John
2018-05-01
To assess the underestimation of radiation dose to the thyroid of children undergoing contrast enhanced CT if contrast medium uptake is not taken into account. 161 pediatric head, head & neck and chest CT examinations were retrospectively studied to identify those involving pre- and post-contrast imaging and thyroid inclusion in imaged volume. CT density of thyroid tissue in HU was measured in non-enhanced (NECT) and corresponding contrast-enhanced CT (CECT) images. Resulting CT number increase (ΔHU) was recorded for each patient and corresponded to a % w/w iodine concentration. The relation of %w/w iodine concentration to %dose increase induced by iodinated contrast uptake was derived by Monte Carlo simulation experiments. The thyroid gland was visible in 11 chest and 3 neck CT examinations involving both pre- and post-contrast imaging. The %w/w concentration of iodine in the thyroid tissue at the time of CECT acquisition was found to be 0.13%-0.58% w/w (mean = 0.26%). The %increase of dose to thyroid tissue was found to be linearly correlated to%w/w iodine uptake. The increase in radiation dose to thyroid due to contrast uptake ranged from 12% to 44%, with a mean value of 23%. The radiation dose to the pediatric thyroid from CECT exposure may be underestimated by up to 44% if contrast medium uptake is not taken into account. Meticulous demarcation of imaged volume in pediatric chest CT examinations is imperative to avoid unnecessary direct exposure of thyroid, especially in CT examinations following intravenous administration of contrast medium. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Measurement and standardization of eye safety for optical radiation of LED products
NASA Astrophysics Data System (ADS)
Mou, Tongsheng; Peng, Zhenjian
2013-06-01
The blue light hazard (BLH) to human eye's retina is now a new issue emerging in applications of artificial light sources. Especially for solid state lighting sources based on the blue chip-LED(GaN), the photons with their energy more than 2.4 eV show photochemical effects on the retina significantly, raising damage both in photoreceptors and retinal pigment epithelium. The photobiological safety of artificial light sources emitting optical radiation has gained more and more attention worldwide and addressed by international standards IEC 62471-2006(CIE S009/E: 2002). Meanwhile, it is involved in IEC safety specifications of LED lighting products and covered by European Directive 2006/25/EC on the minimum health and safety requirements regarding the exposure of the workers to artificial optical radiation. In practical applications of the safety standards, the measuring methods of optical radiation from LED products to eyes are important in establishment of executable methods in the industry. In 2011, a new project to develop the international standard of IEC TR62471-4,that is "Measuring methods of optical radiation related to photobiological safety", was approved and are now under way. This paper presents the concerned methods for the assessment of optical radiation hazards in the standards. Furthermore, a retina radiance meter simulating eye's optical geometry is also described, which is a potential tool for blue light hazard assessment of retinal exposure to optical radiation. The spectroradiometric method integrated with charge-coupled device(CCD) imaging system is introduced to provide more reliable results.
Gourmelon, Patrick; Benderitter, Marc; Bertho, Jean Marc; Huet, Christelle; Gorin, Norbert Claude; De Revel, Patrick
2010-06-01
A European consensus concerning the medical management of mass radiation exposure was obtained in 2005 during a conference held by the European Group for Blood and Bone Marrow Transplantation, the Institute of Radioprotection and Nuclear Safety, and the University of Ulm. At the conference, a two-step triage strategy to deal with large masses of radiation-exposed patients was designed. The first step of this strategy concerns the first 48 h and involves scoring the patients exclusively on the basis of their clinical symptoms and biological data. This allows the non-irradiated bystanders and outpatient candidates to be identified. The remaining patients are hospitalized and diagnosis is confirmed after the first 48-h period according to the METREPOL (Medical Treatment Protocols for radiation accident victims) scale. This grades the patients according to the severity of their symptoms. It was also agreed that in the case of acute radiation syndrome (ARS), emergency hematopoietic stem cell (HSC) transplantation is not necessary. Instead, cytokines that promote hematological reconstruction should be administered as early as possible for 14-21 d. Crucial tests for determining whether the patient has residual hematopoiesis are physical dose reconstructions combined with daily blood count analyses. It was agreed that HSC transplantation should only be considered if severe aplasia persists after cytokine treatment. Two recent cases of accidental radiation exposure that were managed successfully by following the European consensus with modification are reviewed here. Thus, a European standard for the evaluation and treatment of ARS victims is now available. This standard may be suitable for application around the world.
Fundamentals of health physics for the radiation-protection officer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, B.L.; Traub, R.J.; Gilchrist, R.L.
1983-03-01
The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs. (ACR)
Moores, B. Michael
2016-01-01
In 1973, International Commission on Radiological Protection Publication 22 recommended that the acceptability of radiation exposure levels for a given activity should be determined by a process of cost–benefit analysis. It was felt that this approach could be used to underpin both the principle of ALARA as well for justification purposes. The net benefit, B, of an operation involving irradiation was regarded as equal to the difference between its gross benefit, V, and the sum of three components; the basic production cost associated with the operation, P; the cost of achieving the selected level of protection, X; and the cost Y of the detriment involved in the operation: B=V−(P+X+Y). This article presents a theoretical cost–risk–benefit analysis that is applicable to the diagnostic accuracy (Levels 1 and 2) of the hierarchical efficacy model presented by National Council on Radiation Protection and Measurements in 1992. This enables the costs of an examination to be related to the sensitivity and specificity of an X-ray examination within a defined clinical problem setting and introduces both false-positive/false-negative diagnostic outcomes into the patient radiation protection framework. PMID:26705358
Schneider, Karolin; Bol, Vanesa; Grégoire, Vincent
2017-09-01
Clinical studies indicate that patients with HPV/p16-associated head & neck squamous cell carcinoma (HNSCC) represent a subgroup with a better prognosis and improved response to conventional radiotherapy. Involvement of immune-based factors has been hypothesized. In the present study, we investigated radiation-induced differences in release of damage associated molecular patterns (DAMPs), cytokines and activation of dendritic cells (DCs) in HPV-positive and negative HNSCC cancer cell lines. Calreticulin (CRT) exposure was detected on cancer cell surface. ATP, HMGB1 and cytokines were measured in culture supernatants. Maturation marker CD83 surface exposure was determined on DCs after co-incubation with irradiated tumor cells. There was no increase in DAMPs and cytokine profiles after radiation treatment and no difference between HPV+ and HPV- cell lines. The HPV/p16-positive SCC90 cells showed a trend for increased total CRT, HMGB1, and number of cytokines compared to all other cell lines. None of the irradiated cancer cell lines could affect DC maturation. Radiation treatment did not increase immunogenicity of HNSCC cell lines assessed by membrane CRT, ATP, HMGB1, cytokines production, and by activation of immature DCs. There was no difference between HPV-positive and HPV-negative cell lines. Copyright © 2017 Elsevier B.V. All rights reserved.
Approximating the Probability of Mortality Due to Protracted Radiation Exposures
2016-06-01
syndrome of acute radiation sickness. In the MARCELL model, radiation exposure dynamically depletes the bone marrow cell population, the underpinning of...Protracted Radiation Exposures DTRA-TR-16-054 HDTRA1-14-D-0003; 0005 Prepared by: Applied Research Associates, Inc. 801 N. Quincy Street...Celsius (oC) degree Fahrenheit (oF) [T(oF) + 459.67]/1.8 kelvin (K) Radiation curie (Ci) [activity of radionuclides] 3.7 × 1010 per second (s–1
Monitoring radiation use in cardiac fluoroscopy imaging procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Nathaniel T.; Steiner, Stefan H.; Smith, Ian R.
2011-01-15
Purpose: Timely identification of systematic changes in radiation delivery of an imaging system can lead to a reduction in risk for the patients involved. However, existing quality assurance programs involving the routine testing of equipment performance using phantoms are limited in their ability to effectively carry out this task. To address this issue, the authors propose the implementation of an ongoing monitoring process that utilizes procedural data to identify unexpected large or small radiation exposures for individual patients, as well as to detect persistent changes in the radiation output of imaging platforms. Methods: Data used in this study were obtainedmore » from records routinely collected during procedures performed in the cardiac catheterization imaging facility at St. Andrew's War Memorial Hospital, Brisbane, Australia, over the period January 2008-March 2010. A two stage monitoring process employing individual and exponentially weighted moving average (EWMA) control charts was developed and used to identify unexpectedly high or low radiation exposure levels for individual patients, as well as detect persistent changes in the radiation output delivered by the imaging systems. To increase sensitivity of the charts, we account for variation in dose area product (DAP) values due to other measured factors (patient weight, fluoroscopy time, and digital acquisition frame count) using multiple linear regression. Control charts are then constructed using the residual values from this linear regression. The proposed monitoring process was evaluated using simulation to model the performance of the process under known conditions. Results: Retrospective application of this technique to actual clinical data identified a number of cases in which the DAP result could be considered unexpected. Most of these, upon review, were attributed to data entry errors. The charts monitoring the overall system radiation output trends demonstrated changes in equipment performance associated with relocation of the equipment to a new department. When tested under simulated conditions, the EWMA chart was capable of detecting a sustained 15% increase in average radiation output within 60 cases (<1 month of operation), while a 33% increase would be signaled within 20 cases. Conclusions: This technique offers a valuable enhancement to existing quality assurance programs in radiology that rely upon the testing of equipment radiation output at discrete time frames to ensure performance security.« less
NASA Technical Reports Server (NTRS)
Morgan, Jennifer L. L.; Theriot, Corey A.; Wu, Honglu; Smith, Scott M.; Zwart, Sara R.
2012-01-01
Radiation exposure and increased iron (Fe) status independently cause oxidative damage that can result in protein, lipid, and DNA oxidation. During space flight astronauts are exposed to both increased radiation and increased Fe stores. Increased body Fe results from a decrease in red blood cell mass and the typically high Fe content of the food system. In this study we investigated the combined effects of radiation exposure (0.375 Gy of Cs-137 every other day for 16 days for a total of 3 Gy) and high dietary Fe (650 mg Fe/kg diet compared to 45 mg Fe/kg for controls) in Sprague-Dawley rats (n=8/group). Liver and serum Fe were significantly increased in the high dietary Fe groups. Likewise, radiation treatment increased serum ferritin and Fe concentrations. These data indicate that total body Fe stores increase with both radiation exposure and excess dietary Fe. Hematocrit decreased in the group exposed to radiation, providing a possible mechanism for the shift in Fe indices after radiation exposure. Markers of oxidative stress were also affected by both radiation and high dietary Fe, evidenced by increased liver glutathione peroxidase (GPX) and serum catalase as well as decreased serum GPX. We thus found preliminary indications of synergistic effects of radiation exposure and increased dietary Fe, warranting further study. This study was funded by the NASA Human Research Project.
Managing Space Radiation Risks on Lunar and Mars Missions: Risk Assessment and Mitigation
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; George, K.; Hu, X.; Kim, M. H.; Nikjoo, H.
2006-01-01
Radiation-induced health risks are a primary concern for human exploration outside the Earth's magnetosphere, and require improved approaches to risk estimation and tools for mitigation including shielding and biological countermeasures. Solar proton events are the major concern for short-term lunar missions (<60 d), and for long-term missions (>60 d) such as Mars exploration, the exposures to the high energy and charge (HZE) ions that make-up the galactic cosmic rays are the major concern. Health risks from radiation exposure are chronic risks including carcinogenesis and degenerative tissue risks, central nervous system effects, and acute risk such as radiation sickness or early lethality. The current estimate is that a more than four-fold uncertainty exists in the projection of lifetime mortality risk from cosmic rays, which severely limits analysis of possible benefits of shielding or biological countermeasure designs. Uncertainties in risk projections are largely due to insufficient knowledge of HZE ion radiobiology, which has led NASA to develop a unique probabilistic approach to radiation protection. We review NASA's approach to radiation risk assessment including its impact on astronaut dose limits and application of the ALARA (As Low as Reasonably Achievable) principle. The recently opened NASA Space Radiation Laboratory (NSRL) provides the capability to simulate the cosmic rays in controlled ground-based experiments with biological and shielding models. We discuss how research at NSRL will lead to reductions in the uncertainties in risk projection models. In developing mission designs, the reduction of health risks and mission constraints including costs are competing concerns that need to be addressed through optimization procedures. Mitigating the risks from space radiation is a multi-factorial problem involving individual factors (age, gender, genetic makeup, and exposure history), operational factors (planetary destination, mission length, and period in the solar cycle), and shielding characteristics (materials, mass, and topology). We review optimization metrics for radiation protection including scenarios that integrate biophysics models of radiation risks, operational variables, and shielding design tools needed to assess exploration mission designs. We discuss the application of a crosscutting metric, based on probabilistic risk assessment, to lunar and Mars mission trade studies including the assessment of multi-factorial problems and the potential benefits of new radiation health research strategies or mitigation technologies.
Managing Space Radiation Risks On Lunar and Mars Missions: Risk Assessment and Mitigation
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; George, K.; Hu, X.; Kim, M. H.; Nikjoo, H.
2005-01-01
Radiation-induced health risks are a primary concern for human exploration outside the Earth's magnetosphere, and require improved approaches to risk estimation and tools for mitigation including shielding and biological countermeasures. Solar proton events are the major concern for short-term lunar missions (<60 d), and for long-term missions (>60 d) such as Mars exploration, the exposures to the high energy and charge (HZE) ions that make-up the galactic cosmic rays are the major concern. Health risks from radiation exposure are chronic risks including carcinogenesis and degenerative tissue risks, central nervous system effects, and acute risk such as radiation sickness or early lethality. The current estimate is that a more than four-fold uncertainty exists in the projection of lifetime mortality risk from cosmic rays, which severely limits analysis of possible benefits of shielding or biological countermeasure designs. Uncertainties in risk projections are largely due to insufficient knowledge of HZE ion radiobiology, which has led NASA to develop a unique probabilistic approach to radiation protection. We review NASA's approach to radiation risk assessment including its impact on astronaut dose limits and application of the ALARA (As Low as Reasonably Achievable) principle. The recently opened NASA Space Radiation Laboratory (NSRL) provides the capability to simulate the cosmic rays in controlled ground-based experiments with biological and shielding models. We discuss how research at NSRL will lead to reductions in the uncertainties in risk projection models. In developing mission designs, the reduction of health risks and mission constraints including costs are competing concerns that need to be addressed through optimization procedures. Mitigating the risks from space radiation is a multi-factorial problem involving individual factors (age, gender, genetic makeup, and exposure history), operational factors (planetary destination, mission length, and period in the solar cycle), and shielding characteristics (materials, mass, and topology). We review optimization metrics for radiation protection including scenarios that integrate biophysics models of radiation risks, operational variables, and shielding design tools needed to assess exploration mission designs. We discuss the application of a crosscutting metric, based on probabilistic risk assessment, to lunar and Mars mission trade studies including the assessment of multi-factorial problems and the potential benefits of new radiation health research strategies or mitigation technologies.
Managing Space Radiation Risks on Lunar and Mars Missions: Risk Assessment and Mitigation
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; George, K.; Hu, X.; Kim, M. H.; Nikjoo, H.; Ponomarev, A.; Ren, L.; Shavers, M. R.; Wu, H.
2005-01-01
Radiation-induced health risks are a primary concern for human exploration outside the Earth's magnetosphere, and require improved approaches to risk estimation and tools for mitigation including shielding and biological countermeasures. Solar proton events are the major concern for short-term lunar missions (<60 d), and for long-term missions (>60 d) such as Mars exploration, the exposures to the high energy and charge (HZE) ions that make-up the galactic cosmic rays are the major concern. Health risks from radiation exposure are chronic risks including carcinogenesis and degenerative tissue risks, central nervous system effects, and acute risk such as radiation sickness or early lethality. The current estimate is that a more than four-fold uncertainty exists in the projection of lifetime mortality risk from cosmic rays, which severely limits analysis of possible benefits of shielding or biological countermeasure designs. Uncertainties in risk projections are largely due to insufficient knowledge of HZE ion radiobiology, which has led NASA to develop a unique probabilistic approach to radiation protection. We review NASA's approach to radiation risk assessment including its impact on astronaut dose limits and application of the ALARA (As Low as Reasonably Achievable) principle. The recently opened NASA Space Radiation Laboratory (NSRL) provides the capability to simulate the cosmic rays in controlled ground-based experiments with biological and shielding models. We discuss how research at NSRL will lead to reductions in the uncertainties in risk projection models. In developing mission designs, the reduction of health risks and mission constraints including costs are competing concerns that need to be addressed through optimization procedures. Mitigating the risks from space radiation is a multi-factorial problem involving individual factors (age, gender, genetic makeup, and exposure history), operational factors (planetary destination, mission length, and period in the solar cycle), and shielding characteristics (materials, mass, and topology). We review optimization metrics for radiation protection including scenarios that integrate biophysics models of radiation risks, operational variables, and shielding design tools needed to assess exploration mission designs. We discuss the application of a crosscutting metric, based on probabilistic risk assessment, to lunar and Mars mission trade studies including the assessment of multi-factorial problems and the potential benefits of new radiation health research strategies or mitigation technologies.
Device and method for shortening reactor process tubes
Frantz, Charles E.; Alexander, William K.; Lander, Walter E. B.
1980-01-01
This disclosure describes a device and method for in situ shortening of nuclear reactor zirconium alloy process tubes which have grown as a result of radiation exposure. An upsetting technique is utilized which involves inductively heating a short band of a process tube with simultaneous application of an axial load sufficient to cause upsetting with an attendant decrease in length of the process tube.
Reeves, Ryan R; Ang, Lawrence; Bahadorani, John; Naghi, Jesse; Dominguez, Arturo; Palakodeti, Vachaspathi; Tsimikas, Sotirios; Patel, Mitul P; Mahmud, Ehtisham
2015-08-17
This study sought to determine radiation exposure across the cranium of cardiologists and the protective ability of a nonlead, XPF (barium sulfate/bismuth oxide) layered cap (BLOXR, Salt Lake City, Utah) during fluoroscopically guided, invasive cardiovascular (CV) procedures. Cranial radiation exposure and potential for protection during contemporary invasive CV procedures is unclear. Invasive cardiologists wore an XPF cap with radiation attenuation ability. Six dosimeters were fixed across the outside and inside of the cap (left, center, and right), and 3 dosimeters were placed outside the catheterization lab to measure ambient exposure. Seven cardiology fellows and 4 attending physicians (38.4 ± 7.2 years of age; all male) performed diagnostic and interventional CV procedures (n = 66.2 ± 27 cases/operator; fluoroscopy time: 14.9 ± 5.0 min). There was significantly greater total radiation exposure at the outside left and outside center (106.1 ± 33.6 mrad and 83.1 ± 18.9 mrad) versus outside right (50.2 ± 16.2 mrad; p < 0.001 for both) locations of the cranium. The XPF cap attenuated radiation exposure (42.3 ± 3.5 mrad, 42.0 ± 3.0 mrad, and 41.8 ± 2.9 mrad at the inside left, inside center, and inside right locations, respectively) to a level slightly higher than that of the ambient control (38.3 ± 1.2 mrad, p = 0.046). After subtracting ambient radiation, exposure at the outside left was 16 times higher than the inside left (p < 0.001) and 4.7 times higher than the outside right (p < 0.001). Exposure at the outside center location was 11 times higher than the inside center (p < 0.001), whereas no difference was observed on the right side. Radiation exposure to invasive cardiologists is significantly higher on the left and center compared with the right side of the cranium. Exposure may be reduced similar to an ambient control level by wearing a nonlead XPF cap. (Brain Radiation Exposure and Attenuation During Invasive Cardiology Procedures [BRAIN]; NCT01910272). Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Regier, Nicole; Beauvais-Flück, Rebecca; Slaveykova, Vera I; Cosio, Claudia
2016-11-01
The hypothesis that increased UV radiation result in co-tolerance to Hg toxicity in aquatic plants was studied at the physiological and transcriptomic level in Elodea nuttallii. At the transcriptomic level, combined exposure to UV+Hg enhanced the stress response in comparison with single treatments, affecting the expression level of transcripts involved in energy metabolism, lipid metabolism, nutrition, and redox homeostasis. Single and combined UV and Hg treatments dysregulated different genes but with similar functions, suggesting a fine regulation of the plant to stresses triggered by Hg, UV and their combination but lack of co-tolerance. At the physiological level, UV+Hg treatment reduced chlorophyll content and depleted antioxidative compounds such as anthocyanin and GSH/GSSG in E. nuttallii. Nonetheless, combined exposure to UV+Hg resulted in about 30% reduction of Hg accumulation into shoots vs exposure to Hg alone, which was congruent with the level of expression of several transporter genes, as well as the UV effect on Hg bioavailability in water. The findings of the present work underlined the importance of performing experimentation under environmentally realistic conditions and to consider the interplay between contaminants and environmental variables such as light that might have confounding effects to better understand and anticipate the effects of multiple stressors in aquatic environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Gapeyev, A B; Mikhailik, E N; Chemeris, N K
2008-04-01
Using a model of acute zymosan-induced footpad edema in NMRI mice, the frequency and power dependence of anti-inflammatory effect of low-intensity extremely high-frequency electromagnetic radiation (EHF EMR) was found. Single whole-body exposure of animals to EHF EMR at the intensity of 0.1 mW/cm(2) for 20 min at 1 h after zymosan injection reduced both the footpad edema and local hyperthermia on average by 20% at the frequencies of 42.2, 51.8, and 65 GHz. Some other frequencies from the frequency range of 37.5-70 GHz were less effective or not effective at all. At fixed frequency of 42.2 GHz and intensity of 0.1 mW/cm(2), the effect had bell-shaped dependence on exposure duration with a maximum at 20-40 min. Reduction of intensity to 0.01 mW/cm(2) resulted in a change of the effect dependence on exposure duration to a linear one. Combined action of cyclooxygenase inhibitor sodium diclofenac and EHF EMR exposure caused a partial additive effect of decrease in footpad edema. Combined action of antihistamine clemastine and EHF EMR exposure caused a dose-dependent abolishment of the anti-inflammatory effect of EHF EMR. The results obtained suggest that arachidonic acid metabolites and histamine are involved in realization of anti-inflammatory effects of low-intensity EHF EMR. (c) 2007 Wiley-Liss, Inc.
Yasui, Shojiro
2014-01-01
The accident at the Fukushima Daiichi Atomic Power Plant that accompanied the Great East Japan Earthquake on March 11, 2011 released a large amount of radioactive material. To rehabilitate the contaminated areas, the government of Japan decided to carry out decontamination work. In April 2012, the Nuclear Emergency Response Headquarters (NERH) started dividing the restricted areas into three sub-areas based on the ambient dose rate. In accordance with the rearrangement of the restricted area, NERH decided to allow resumption of business activities, including manufacturing and farming, as well as operation of hospitals, welfare facilities, and shops and related subordinate tasks, such as maintenance, repair, and transportation. As a result, the government needed regulations for radiation protection for workers engaged in those activities. The issues that arose in the deliberation of the regulations were distilled into two points: 1) whether radiation protection systems established for a planned exposure situation should apply to construction and agricultural work activities in an existing exposure situation, and 2) how to simplify the regulation in accordance with the nature of the work activities. Further research and development concerning the following issues are warranted: a) the relationship between the radioactive concentrations of materials handled and the risk of internal exposure, and b) the relationship between the radioactive concentration of the soil and the surface contamination level.
Operational Prototype Development of a Global Aircraft Radiation Exposure Nowcast
NASA Astrophysics Data System (ADS)
Mertens, Christopher; Kress, Brian; Wiltberger, Michael; Tobiska, W. Kent; Bouwer, Dave
Galactic cosmic rays (GCR) and solar energetic particles (SEP) are the primary sources of human exposure to high linear energy transfer (LET) radiation in the atmosphere. High-LET radiation is effective at directly breaking DNA strands in biological tissue, or producing chemically active radicals in tissue that alter the cell function, both of which can lead to cancer or other adverse health effects. A prototype operational nowcast model of air-crew radiation exposure is currently under development and funded by NASA. The model predicts air-crew radiation exposure levels from both GCR and SEP that may accompany solar storms. The new air-crew radiation exposure model is called the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model. NAIRAS will provide global, data-driven, real-time exposure predictions of biologically harmful radiation at aviation altitudes. Observations are utilized from the ground (neutron monitors), from the atmosphere (the NCEP Global Forecast System), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations characterize the overhead mass shielding and the ground-and space-based observations provide boundary conditions on the incident GCR and SEP particle flux distributions for transport and dosimetry calculations. Radiation exposure rates are calculated using the NASA physics-based HZETRN (High Charge (Z) and Energy TRaNsport) code. An overview of the NAIRAS model is given: the concept, design, prototype implementation status, data access, and example results. Issues encountered thus far and known and/or anticipated hurdles to research to operations transition are also discussed.
The effects of proton exposure on neurochemistry and behavior
NASA Technical Reports Server (NTRS)
Shukitt-Hale, B.; Szprengiel, A.; Pluhar, J.; Rabin, B. M.; Joseph, J. A.
2004-01-01
Future space missions will involve long-term travel beyond the magnetic field of the Earth, where astronauts will be exposed to radiation hazards such as those that arise from galactic cosmic rays. Galactic cosmic rays are composed of protons, alpha particles, and particles of high energy and charge (HZE particles). Research by our group has shown that exposure to HZE particles, primarily 600 MeV/n and 1 GeV/n 56Fe, can produce significant alterations in brain neurochemistry and behavior. However, given that protons can make up a significant portion of the radiation spectrum, it is important to study their effects on neural functioning and on related performance. Therefore, these studies examined the effects of exposure to proton irradiation on neurochemical and behavioral endpoints, including dopaminergic functioning, amphetamine-induced conditioned taste aversion learning, and spatial learning and memory as measured by the Morris water maze. Male Sprague-Dawley rats received a dose of 0, 1.5, 3.0 or 4.0 Gy of 250 MeV protons at Loma Linda University and were tested in the different behavioral tests at various times following exposure. Results showed that there was no effect of proton irradiation at any dose on any of the endpoints measured. Therefore, there is a contrast between the insignificant effects of high dose proton exposure and the dramatic effectiveness of low dose (<0.1 Gy) exposures to 56Fe particles on both neurochemical and behavioral endpoints. Published by Elsevier Ltd on behalf of COSPAR.
Time- and dose-dependent changes in neuronal activity produced by X radiation in brain slices.
Pellmar, T C; Schauer, D A; Zeman, G H
1990-05-01
A new method of exposing tissues to X rays in a lead Faraday cage has made it possible to examine directly radiation damage to isolated neuronal tissue. Thin slices of hippocampus from brains of euthanized guinea pigs were exposed to 17.4 ke V X radiation. Electrophysiological recordings were made before, during, and after exposure to doses between 5 and 65 Gy at a dose rate of 1.54 Gy/min. Following exposure to doses of 40 Gy and greater, the synaptic potential was enhanced, reaching a steady level soon after exposure. The ability of the synaptic potential to generate a spike was reduced and damage progressed after termination of the radiation exposure. Recovery was not observed following termination of exposure. These results demonstrate that an isolated neuronal network can show complex changes in electrophysiological properties following moderate doses of ionizing radiation. An investigation of radiation damage directly to neurons in vitro will contribute to the understanding of the underlying mechanisms of radiation-induced nervous system dysfunction.
Tawn, E Janet; Janet, E; Whitehouse, Caroline A; Holdsworth, Duncan; De Ruyck, Kim; Vandenbulcke, Katia; Thierens, Hubert
2008-06-01
To investigate the profiles of chromosome damage induced in vitro by exposure to alpha-particles and gamma-rays. Human peripheral blood lymphocytes were exposed to three dose regimes: alpha-particle doses of 0.2 and 0.5 Gy and a gamma-ray dose of 1.5 Gy. After culturing for 47 hours, chromosome aberrations involving the number 5 chromosomes were identified using a multi-coloured banding (mBAND) technique. Analysis of the frequencies of chromosome 5 breaks within aberrant cells and within aberrant number 5 chromosomes demonstrated that alpha-particle irradiation is more likely to result in multiple breaks in a chromosome than gamma-irradiation. Additionally, overdispersion was observed for all doses for the distribution of breaks amongst all cells analysed and breaks amongst total number 5 chromosomes, with this being greatest for the 0.2 Gy alpha-particle dose. The ratio of interchanges to intrachanges (F ratio) was 1.4 and 2.4 for 0.2 and 0.5 Gy alpha-particles respectively and 5.5 for 1.5 Gy gamma-rays. Evaluation of simple versus complex exchanges indicated ratios of 1.9 and 2.7 for 0.2 and 0.5 Gy alpha-particles respectively and 10.6 for 1.5 Gy gamma-rays. The majority of the intrachanges involving chromosomes 5 induced by alpha-particle radiation were associated with more complex exchanges. This study has confirmed that exchanges induced by exposure to high linear energy transfer (LET) alpha-particle radiation comprise a greater proportion of intrachanges than those induced by exposure to low LET gamma-rays. However, since the majority of these are associated with complex rearrangements and likely to be non-transmissible, this limits their applicability as a marker of past in vivo exposure.
A study of smart card for radiation exposure history of patient.
Rehani, Madan M; Kushi, Joseph F
2013-04-01
The purpose of this article is to undertake a study on developing a prototype of a smart card that, when swiped in a system with access to the radiation exposure monitoring server, will locate the patient's radiation exposure history from that institution or set of associated institutions to which it has database access. Like the ATM or credit card, the card acts as a secure unique "token" rather than having cash, credit, or dose data on the card. The system provides the requested radiation history report, which then can be printed or sent by e-mail to the patient. The prototype system is capable of extending outreach to wherever the radiation exposure monitoring server extends, at county, state, or national levels. It is anticipated that the prototype shall pave the way for quick availability of patient exposure history for use in clinical practice for strengthening radiation protection of patients.
Low-dose radiation: a cause of breast cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Land, C.E.
1980-08-15
It is likely that the breast is the organ most sensitive to radiation carcinogenesis in postpubertal women. Studies of different exposed populations have yielded remarkably consistent results, in spite of wide differences in underlying breast cancer rates and conditions of exposure. Excess risk is approximately proportional to dose, and is relatively independent of ionization density and fractionization of dose. This implies that the risk associated with low-dose exposures to ionizing radiation can be estimated with some confidence from higher-dose data. Excess risk is heavily dependent on age at exposure but relatively independent of population differences in normal risk. The temporalmore » patterns after exposure of both radiation-induced and naturally occurring breast cancer are similar, suggesting a strong influence of factors other than radiation on radiation-induced breast cancer. Uncertainties remain about risks from exposures before puberty and after menopause.« less
Berg, Nora G; Nolan, Michael W; Paskova, Tania; Ivanisevic, Albena
2014-12-30
An aqueous surface modification of gallium nitride was employed to attach biomolecules to the surface. The modification was a simple two-step process using a single linker molecule and mild temperatures. The presence of the peptide on the surface was confirmed with X-ray photoelectron spectroscopy. Subsequently, the samples were placed in water baths and exposed to ionizing radiation to examine the effects of the radiation on the material in an environment similar to the body. Surface analysis confirmed degradation of the surface of GaN after radiation exposure in water; however, the peptide molecules successfully remained on the surface following exposure to ionizing radiation. We hypothesize that during radiation exposure of the samples, the radiolysis of water produces peroxide and other reactive species on the sample surface. Peroxide exposure promotes the formation of a more stable layer of gallium oxyhydroxide which passivates the surface better than other oxide species.
Patel, Akash R; Ganley, Jamie; Zhu, Xiaowei; Rome, Jonathan J; Shah, Maully; Glatz, Andrew C
2014-10-01
Radiation exposure during pediatric catheterization is significant. We sought to describe radiation exposure and the effectiveness of radiation safety protocols in reducing exposure during catheter ablations with electrophysiology studies in children and patients with congenital heart disease. We additionally sought to identify at-risk patients. We retrospectively reviewed all interventional electrophysiology procedures performed from April 2009 to September 2011 (6 months preceding intervention, 12 months following implementation of initial radiation safety protocol, and 8 months following implementation of modified protocol). The protocols consisted of low pulse rate fluoroscopy settings, operator notification of skin entrance dose every 1,000 mGy, adjusting cameras by >5 at every 1,000 mGy, and appropriate collimation. The cohort consisted of 291 patients (70 pre-intervention, 137 after initial protocol implementation, 84 after modified protocol implementation) at a median age of 14.9 years with congenital heart disease present in 11 %. Diagnoses included atrioventricular nodal reentrant tachycardia (25 %), atrioventricular reentrant tachycardia (61 %), atrial tachycardias (12 %), and ventricular tachycardia (2 %). There were no differences between groups based on patient, arrhythmia, and procedural characteristics. Following implementation of the protocols, there were significant reductions in all measures of radiation exposure: fluoroscopy time (17.8 %), dose area product (80.2 %), skin entry dose (81.0 %), and effective dose (76.9 %), p = 0.0001. Independent predictors of increased radiation exposure included larger patient weight, longer fluoroscopy time, and lack of radiation safety protocol. Implementation of a radiation safety protocol for pediatric and congenital catheter ablations can drastically reduce radiation exposure to patients without affecting procedural success.
2014-01-01
Although exposure to electromagnetic radiation in radiofrequency range has caused a great deal of concern globally, radiofrequency radiation has many critical applications in both telecommunication and non-communication fields. The induction of adaptive response phenomena by exposure to radiofrequency radiation as either increased resistance to a subsequent dose of ionizing radiation or resistance to a bacterial infection has been reported recently. Interestingly, the potential beneficial effects of mobile phone radiofrequency radiation are not only limited to the induction of adaptive phenomena. It has previously been indicated that the visual reaction time of university students significantly decreased after a 10 min exposure to radiofrequency radiation emitted by a mobile phone. Furthermore, it has been revealed that occupational exposures to radar radiations decreased the reaction time in radar workers. Based on these findings, it can be hypothesized that in special circumstances, these exposures might lead to a better response of humans to different hazards. Other investigators have also provided evidence that confirms the induction of RF-induced cognitive benefits. Furthermore, some recent reports have indicated that RF radiation may play a role in protecting against cognitive impairment in Alzheimer’s disease. In this light, a challenging issue will arise if there are other RF-induced stimulating effects. It is also challenging to explore the potential applications of these effects. Further research may shed light on dark areas of the health effects of short and long-term human exposure to radiofrequency radiation. PMID:24843789
Mortazavi, Seyed Ali Reza; Tavakkoli-Golpayegani, Ali; Haghani, Masoud; Mortazavi, Seyed Mohammad Javad
2014-01-01
Although exposure to electromagnetic radiation in radiofrequency range has caused a great deal of concern globally, radiofrequency radiation has many critical applications in both telecommunication and non-communication fields. The induction of adaptive response phenomena by exposure to radiofrequency radiation as either increased resistance to a subsequent dose of ionizing radiation or resistance to a bacterial infection has been reported recently. Interestingly, the potential beneficial effects of mobile phone radiofrequency radiation are not only limited to the induction of adaptive phenomena. It has previously been indicated that the visual reaction time of university students significantly decreased after a 10 min exposure to radiofrequency radiation emitted by a mobile phone. Furthermore, it has been revealed that occupational exposures to radar radiations decreased the reaction time in radar workers. Based on these findings, it can be hypothesized that in special circumstances, these exposures might lead to a better response of humans to different hazards. Other investigators have also provided evidence that confirms the induction of RF-induced cognitive benefits. Furthermore, some recent reports have indicated that RF radiation may play a role in protecting against cognitive impairment in Alzheimer's disease. In this light, a challenging issue will arise if there are other RF-induced stimulating effects. It is also challenging to explore the potential applications of these effects. Further research may shed light on dark areas of the health effects of short and long-term human exposure to radiofrequency radiation.
Exposure of luminous marine bacteria to low-dose gamma-radiation.
Kudryasheva, N S; Petrova, A S; Dementyev, D V; Bondar, A A
2017-04-01
The study addresses biological effects of low-dose gamma-radiation. Radioactive 137 Cs-containing particles were used as model sources of gamma-radiation. Luminous marine bacterium Photobacterium phosphoreum was used as a bioassay with the bioluminescent intensity as the physiological parameter tested. To investigate the sensitivity of the bacteria to the low-dose gamma-radiation exposure (≤250 mGy), the irradiation conditions were varied as follows: bioluminescence intensity was measured at 5, 10, and 20°С for 175, 100, and 47 h, respectively, at different dose rates (up to 4100 μGy/h). There was no noticeable effect of gamma-radiation at 5 and 10°С, while the 20°С exposure revealed authentic bioluminescence inhibition. The 20°С results of gamma-radiation exposure were compared to those for low-dose alpha- and beta-radiation exposures studied previously under comparable experimental conditions. In contrast to ionizing radiation of alpha and beta types, gamma-emission did not initiate bacterial bioluminescence activation (adaptive response). As with alpha- and beta-radiation, gamma-emission did not demonstrate monotonic dose-effect dependencies; the bioluminescence inhibition efficiency was found to be related to the exposure time, while no dose rate dependence was found. The sequence analysis of 16S ribosomal RNA gene did not reveal a mutagenic effect of low-dose gamma radiation. The exposure time that caused 50% bioluminescence inhibition was suggested as a test parameter for radiotoxicity evaluation under conditions of chronic low-dose gamma irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.
2014-01-01
Purpose: Uncontrolled radiation exposure due to radiological terrorism, industrial accidents or military circumstances is a continuing threat for the civilian population. Age plays a major role in the susceptibility to radiation; younger children are at higher risk of developing cognitive deterioration when compared to adults. Our objective was to determine if an exposure to radiation affected the vulnerability of the juvenile hippocampus to a subsequent moderate traumatic injury. Materials and methods: Three-week-old (juvenile) and eight-week-old young adult C57BL/J6 male mice received whole body cesium-137 (137Cs) irradiation with 4 gray (Gy). One month later, unilateral traumatic brain injury was induced using a controlled cortical impact system. Two months post-irradiation, animals were tested for hippocampus-dependent cognitive performance in the Morris water-maze. After cognitive testing, animals were euthanized and their brains frozen for immunohistochemical assessment of activated microglia and neurogenesis in the hippocampal dentate gyrus. Results: All animals were able to learn the water maze task; however, treatment effects were seen when spatial memory retention was assessed. Animals that received irradiation as juveniles followed by a moderate traumatic brain injury one month later did not show spatial memory retention, i.e., were cognitively impaired. In contrast, all groups of animals that were treated as adults showed spatial memory retention in the probe trials. Conclusion: Although the mechanisms involved are not clear, our results suggest that irradiation enhanced a young animal's vulnerability to develop cognitive injury following a subsequent traumatic injury. PMID:24164494
Guidelines for exposure assessment in health risk studies following a nuclear reactor accident.
Bouville, André; Linet, Martha S; Hatch, Maureen; Mabuchi, Kiyohiko; Simon, Steven L
2014-01-01
Worldwide concerns regarding health effects after the Chernobyl and Fukushima nuclear power plant accidents indicate a clear need to identify short- and long-term health impacts that might result from accidents in the future. Fundamental to addressing this problem are reliable and accurate radiation dose estimates for the affected populations. The available guidance for activities following nuclear accidents is limited with regard to strategies for dose assessment in health risk studies. Here we propose a comprehensive systematic approach to estimating radiation doses for the evaluation of health risks resulting from a nuclear power plant accident, reflected in a set of seven guidelines. Four major nuclear reactor accidents have occurred during the history of nuclear power production. The circumstances leading to these accidents were varied, as were the magnitude of the releases of radioactive materials, the pathways by which persons were exposed, the data collected afterward, and the lifestyle factors and dietary consumption that played an important role in the associated radiation exposure of the affected populations. Accidents involving nuclear reactors may occur in the future under a variety of conditions. The guidelines we recommend here are intended to facilitate obtaining reliable dose estimations for a range of different exposure conditions. We recognize that full implementation of the proposed approach may not always be feasible because of other priorities during the nuclear accident emergency and because of limited resources in manpower and equipment. The proposed approach can serve as a basis to optimize the value of radiation dose reconstruction following a nuclear reactor accident.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The DOE Occupational Radiation Exposure Report, 1992-1994 reports occupational radiation exposures incurred by individuals at US Department of Energy (DOE) facilities from 1992 through 1994. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. This information is analyzed and trended over time to provide a measure of the DOE`s performance in protecting its workers from radiation. Occupational radiation exposure at DOE has been decreasing over the past 5 years. In particular, doses in the higher dose ranges are decreasing, including the number of doses in excess of the DOE limits and doses in excessmore » of the 2 rem Administrative Control Level (ACL). This is an indication of greater attention being given to protecting these individuals from radiation in the workplace.« less
NASA Astrophysics Data System (ADS)
Popov, Dmitri; Maliev, Slava; Jones, Jeffrey
Countermeasures against nuclear terrorism to prevent or limit the number of irradiated human population or radiation intoxications include early identification of the nuclear terrorism event and all persons which exposed by radiation, decontamination program and procedures, radiation control, and medical countermeasures which include medical diagnosis,differential diagnosis of Acute Radiation Syndromes by Immune Enzyme Assay , pre-exposure vaccination with Human Antiradiation Vaccine, post-exposure specific treatment - de-intoxication with Radiation Antidote IgG (blocking Antiradiation Antibodies). Our Advanced Medical Technology elaborated as a part of effective countermeasure include Plan of Action.Countermeasures against nuclear terrorism to prevent or limit the number of high level of lethality and severe forms of radiation illness or intoxications include A.early identification of the nuclear terrorism event and persons exposed,b. appropriate decontamination, c. radiation control, and d.medical countermeasures and medical management of ARS. Medical countermeasures, which include medical interventions such as active immuneprophylaxis with Human Antiradiation Vaccine , passive immune-prophylaxis with Antiradiation Antitoxins immune-globulins IgG , and chemoprophylaxis - post-exposure antioxidants prophylaxis and antibioticprophylaxis. Medical countermeasures with Antiradiation Vaccine should be initiated before an exposure (if individuals are identified as being at high risk for exposure)but after a confirmed exposure event Antiradiation Vaccine not effective and Antiradiation Antidot IgG must be applyed for treatment of Acute Radiation Syndromes.
Calvente, I; Fernandez, M F; Villalba, J; Olea, N; Nuñez, M I
2010-07-15
Childhood exposure to physical contamination, including non-ionizing radiation, has been implicated in numerous diseases, raising concerns about the widespread and increasing sources of exposure to this type of radiation. The primary objective of this review was to analyze the current state of knowledge on the association between environmental exposure to non-ionizing radiation and the risk of childhood leukemia. Scientific publications between 1979 and 2008 that include examination of this association have been reviewed using the MEDLINE/PubMed database. Studies to date have not convincingly confirmed or ruled out an association between non-ionizing radiation and the risk of childhood leukemia. Discrepancies among the conclusions of the studies may also be influenced by confounding factors, selection bias, and misclassification. Childhood defects can result from genetic or epigenetic damage and from effects on the embryo or fetus, which may both be related to environmental exposure of the parent before conception or during the pregnancy. It is therefore critical for researchers to define a priori the type and "window" of exposure to be assessed. Methodological problems to be solved include the proper diagnostic classification of individuals and the estimated exposure to non-ionizing radiation, which may act through various mechanisms of action. There appears to be an urgent need to reconsider exposure limits for low frequency and static magnetic fields, based on combined experimental and epidemiological research into the relationship between exposure to non-ionizing radiation and adverse human health effects.
NASA Space Radiation Protection Strategies: Risk Assessment and Permissible Exposure Limits
NASA Technical Reports Server (NTRS)
Huff, J. L.; Patel, Z. S.; Simonsen, L. C.
2017-01-01
Permissible exposure limits (PELs) for short-term and career astronaut exposures to space radiation have been set and approved by NASA with the goal of protecting astronauts against health risks associated with ionizing radiation exposure. Short term PELs are intended to prevent clinically significant deterministic health effects, including performance decrements, which could threaten astronaut health and jeopardize mission success. Career PELs are implemented to control late occurring health effects, including a 3% risk of exposure induced death (REID) from cancer, and dose limits are used to prevent cardiovascular and central nervous system diseases. For radiation protection, meeting the cancer PEL is currently the design driver for galactic cosmic ray and solar particle event shielding, mission duration, and crew certification (e.g., 1-year ISS missions). The risk of cancer development is the largest known long-term health consequence following radiation exposure, and current estimates for long-term health risks due to cardiovascular diseases are approximately 30% to 40% of the cancer risk for exposures above an estimated threshold (Deep Space one-year and Mars missions). Large uncertainties currently exist in estimating the health risks of space radiation exposure. Improved understanding through radiobiology and physics research allows increased accuracy in risk estimation and is essential for ensuring astronaut health as well as for controlling mission costs, optimization of mission operations, vehicle design, and countermeasure assessment. We will review the Space Radiation Program Element's research strategies to increase accuracy in risk models and to inform development and validation of the permissible exposure limits.
Perception of low dose radiation risks among radiation researchers in Korea
Seo, Songwon; Lee, Dalnim; Park, Sunhoo; Jin, Young Woo; Lee, Seung-Sook
2017-01-01
Expert’s risk evaluation of radiation exposure strongly influences the public’s risk perception. Experts can inform laypersons of significant radiation information including health knowledge based on experimental data. However, some experts’ radiation risk perception is often based on non-conclusive scientific evidence (i.e., radiation levels below 100 millisievert), which is currently under debate. Examining perception levels among experts is important for communication with the public since these individual’s opinions have often exacerbated the public’s confusion. We conducted a survey of Korean radiation researchers to investigate their perceptions of the risks associated with radiation exposure below 100 millisievert. A linear regression analysis revealed that having ≥ 11 years’ research experience was a critical factor associated with radiation risk perception, which was inversely correlated with each other. Increased opportunities to understand radiation effects at < 100 millisievert could alter the public’s risk perception of radiation exposure. In addition, radiation researchers conceived that more scientific evidence reducing the uncertainty for radiation effects < 100 millisievert is necessary for successful public communication. We concluded that sustained education addressing scientific findings is a critical attribute that will affect the risk perception of radiation exposure. PMID:28166286
Weil, Brent R; Madenci, Arin L; Liu, Qi; Howell, Rebecca M; Gibson, Todd M; Yasui, Yutaka; Neglia, Joseph P; Leisenring, Wendy M; Smith, Susan A; Tonorezos, Emily S; Friedman, Danielle N; Constine, Louis S; Tinkle, Christopher L; Diller, Lisa R; Armstrong, Gregory T; Oeffinger, Kevin C; Weldon, Christopher B
2018-06-01
Purpose Infection-related outcomes associated with asplenia or impaired splenic function in survivors of childhood cancer remains understudied. Methods Late infection-related mortality was evaluated in 20,026 5-year survivors of childhood cancer (diagnosed < 21 years of age from 1970 to 1999; median age at diagnosis, 7.0 years [range, 0 to 20 years]; median follow-up, 26 years [range, 5 to 44 years]) using cumulative incidence and piecewise-exponential regression models to estimate adjusted relative rates (RRs). Splenic radiation was approximated using average dose (direct and/or indirect) to the left upper quadrant of the abdomen (hereafter, referred to as splenic radiation). Results Within 5 years of diagnosis, 1,354 survivors (6.8%) had a splenectomy and 9,442 (46%) had splenic radiation without splenectomy. With 62 deaths, the cumulative incidence of infection-related late mortality was 1.5% (95% CI, 0.7% to 2.2%) at 35 years after splenectomy and 0.6% (95% CI, 0.4% to 0.8%) after splenic radiation. Splenectomy (RR, 7.7; 95% CI, 3.1 to 19.1) was independently associated with late infection-related mortality. Splenic radiation was associated with increasing risk for late infection-related mortality in a dose-response relationship (0.1 to 9.9 Gy: RR, 2.0; 95% CI, 0.9 to 4.5; 10 to 19.9 Gy: RR, 5.5; 95% CI, 1.9 to 15.4; ≥ 20 Gy: RR, 6.0; 95% CI, 1.8 to 20.2). High-dose alkylator chemotherapy exposure was also independently associated with an increased risk of infection-related mortality (RR, 1.9; 95% CI, 1.1 to 3.4). Conclusion Splenectomy and splenic radiation significantly increase risk for late infection-related mortality. Even low- to intermediate-dose radiation exposure confers increased risk, suggesting that the spleen is highly radiosensitive. These findings should inform long-term follow-up guidelines for survivors of childhood cancer and should lead clinicians to avoid or reduce radiation exposure involving the spleen whenever possible.
NASA Technical Reports Server (NTRS)
Rabin, B. M.; Joseph, J. A.; Erat, S.
1998-01-01
The effects of exposure to ionizing radiation on behavior may result from effects on peripheral or on central systems. For behavioral endpoints that are mediated by peripheral systems (e.g., radiation-induced conditioned taste aversion or vomiting), the behavioral effects of exposure to heavy particles (56Fe, 600 MeV/n) are qualitatively similar to the effects of exposure to gamma radiation (60Co) and to fission spectrum neutrons. For these endpoints, the only differences between the different types of radiation are in terms of relative behavioral effectiveness. For behavioral endpoints that are mediated by central systems (e.g., amphetamine-induced taste aversion learning), the effects of exposure to 56Fe particles are not seen following exposure to lower LET gamma rays or fission spectrum neutrons. These results indicate that the effects of exposure to heavy particles on behavioral endpoints cannot necessarily be extrapolated from studies using gamma rays, but require the use of heavy particles.
Cancer deaths and occupational exposure in a group of plutonium workers.
Fallahian, Naz Afarin; Brey, Richard R; Tivis, Rick D; Piland, Neill F; Simpson, David R
2012-04-01
An exploratory epidemiological study was conducted for 319 deceased nuclear workers who had intakes of transuranic radionuclides and histories of employment during the time period from 1943 to 1995. The workers were employed at various facilities throughout the United States, including the Department of Energy defense facilities and uranium mining and milling sites. The majority of individuals were involved in documented radiological incidents during their careers. All had voluntarily agreed to donate their organs or whole body to the United States Transuranium and Uranium Registries. External and internal dose assessments were performed using occupational exposure histories and postmortem concentrations of transuranic radionuclides in critical organs. Statistical data analyses were performed to investigate the potential relationship between radiation exposure and causes of death within this population due to cancers of the lungs, liver, and all sites combined while controlling for the effects of other confounders. No association was found between radiation exposure and death due to cancer (α = 0.05). However, statistically significant associations were found between death due to any type of cancer and smoking (yes or no) (odds ratio = 5.41; 95% CI: 1.42 to 20.67) and rate of cigarette smoking (packs per day) (odds ratio = 2.70; 95% CI: 1.37 to 5.30).
Cataractogenic potential of ionizing radiations in animal models that simulate man
NASA Technical Reports Server (NTRS)
Lett, J. T.; Cox, A. B.; Lee, A. C.
1986-01-01
Aspects of experiments on radiation-induced lenticular opacification during the life spans of two animal models, the New Zealand white rabbit and the rhesus monkey, are compared and contrasted with published results from a life-span study of another animal model, the beagle dog, and the most recent data from the ongoing study of the survivors from radiation exposure at Hiroshima and Nagasaki. An important connection among the three animal studies is that all the measurements of cataract indices were made by one of the authors (Lee), so variation from personal subjectivity was reduced to a minimum. The primary objective of the rabbit experiments (radiations involved: Fe-56, Ar-40, and Ne-20 ions and Co-60 gamma photons) is an evaluation of hazards to astronauts from Galactic particulate radiations. An analogous evaluation of hazards from solar flares during space flight is being made with monkeys exposed to 32, 55, 138 and 400-MeV protons. Conclusions are drawn about the proper use of animal models to simulate radiation responses in man and the levels of radiation-induced lenticular opacification that pose risks to man in space.
Rout, John; Brown, Jackie
2012-04-01
Legislation governing the use of ionizing radiation in the workplace and in medical treatment first became law in 1985 and 1988, being superseded by the Ionizing Radiations Regulations 1999 (IRR99) and the Ionizing Radiation (Medical Exposure) Regulations 2000, (IR(ME)R 2000), respectively. This legislation ensures a safe environment in which to work and receive treatment and requires that those involved in the radiographic process must be appropriately trained for the type of radiographic practice they perform. A list of the topics required is detailed in Schedule 2 of IR(ME)R 2000 and is paraphrased in Table 1, with the extent and amount of knowledge required depending on the type of radiographic practice undertaken. Virtually all dental practitioners undertake radiography as part of their clinical practice. Legislation requires that users of radiation, including dentists and members of the dental team, understand the basic principles of radiation physics, hazards and protection, and are able to undertake dental radiography safely with the production of high quality, diagnostic images.
Rimawi, Bassam H; Green, Victoria; Lindsay, Michael
2016-06-01
The purpose of this article is to review the fetal and long-term implications of diagnostic radiation exposure during pregnancy. Evidence-based recommendations for radiologic imaging modalities utilizing exposure of diagnostic radiation during pregnancy, including conventional screen-film mammography, digital mammography, tomosynthesis, and contrast-enhanced mammography are described.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
... radiologic technologists or technologists in other specialties as well as physicians in all medical...] Device Improvements to Reduce Unnecessary Radiation Exposure From Medical Imaging; Public Meeting... Improvements to Reduce Unnecessary Radiation Exposure From Medical Imaging.'' The purpose of this meeting is to...
NASA Technical Reports Server (NTRS)
Lushbaugh, C. C.
1974-01-01
The acute radiation syndrome in man is clinically bounded by death at high dose levels and by the prodromal syndrome of untoward physiological effects at minimal levels of clinically effective exposure. As in lower animals, man experiences principally three acute modes of death from radiation exposure (Bond et al., 1965). These are known collectively as the lethal radiation syndromes: central nervous system death, gastrointestinal death, and hematopoietic death. The effect of multiple exposure on lethality, the effect of multiple exposure on hematopoietic recovery, and quantitative aspects of cell and tissue repair are discussed.
Kurokawa, S; Yabe, S; Takamura, A; Ishizaki, H; Aizawa, S
2000-11-30
Two practical protective tools for occupational exposure for neurointerventional radiologists are presented. The first purpose of this study was to investigate the effectiveness of double focus spectacles for the aged with a highly refracted glass lens (special spectacles for the aged) for radiation protection of the crystalline lens of the eye in comparison with other spectacles on the market, based on the measurement of film density which was obtained by exposure of X-ray through those spectacles. As a result of the film densitometry mentioned above, the effectiveness of special spectacles for the aged in radiation protection was nearly equal to the effectiveness of a goggle type shield which is made with a 0.07 mm lead-equivalent plastic lens. The second purpose of this study was to investigate the effectiveness of the protective barrier, which we remodeled for cerebral angiography or neuroendovascular therapy, for radiation exposure, based on the measurement in a simulated study with a head phantom, and on the measurement of radiation exposure in operaters during procedures of clinical cases. In the experimental study radiation exposure in supposed position of the crystalline lens was reduced to about one third and radiation exposure in supposed position of the gonadal glands was reduced to about one seventh, compared to radiation exposure without employing the barrier. The radiation exposure was monitored at the left breast of three radiologists, in 215 cases of cerebral angiography. Employing the barrier in cerebral angiography, average equivalent dose at the left breast measured 1.49mu Sv during 10 min of fluoroscopy. In three kinds of neuroendovascular therapy in 40 cases, radiation exposure in an operator was monitored in the same fashion and the dose was recorded less than the result reported in previous papers in which any protective barrier have not been employed in the procedure (1,2). As a result, the two above mentioned protective tools are considered practical in clinical usage and very effective to reduce radiation exposure in an operator of interventional neuroradiolgy which may sometimes require many hours to complete the therapy under extended fluoroscopic time. 1) The first topic of this report is double focus spectacles for the aged with a highly refracted glass lens (special spectacles for the aged).
RADIATION EFFECTS ON IMMUNE MECHANISMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoner, R.D.; Hale, W.M.
1963-03-01
Experiments were performed on pathogen-free Swiss albino mice to determine the repressive effect of ionizing radiation on immune mechanisms. In animals given sublethal doses of Co/sup 60/ gamma radiation by acute short-term exposure or by chronic long-term exposure at a low dose rate, ability to produce antibody was inhibited or abolished, and natural resistance and active and passive immunity to pneumococcal and Trichinella infections were severely depressed. It appears that the repression resulted from damage to the cellular defensive mechanisms of the host. Active immunity and natural resistance to influenza virus infections were not altered significantly by radiation. Exposure tomore » radiation enhanced the severity of anaphylactic shock markedly in mice previously sensitized to tetanus toxoid and challenged with tetanus toxoid after radiation. Chronic exposure to radiation caused immediate increased sensitivity to fatal anaphylaxis. (auth)« less
Radiation exposure of air carrier crewmembers II.
DOT National Transportation Integrated Search
1992-01-01
The cosmic radiation environment at air carrier flight altitudes is described and estimates given of the amounts of galactic cosmic radiation received on a wide variety of routes to and from, and within the contiguous United States. Radiation exposur...
Radiation exposure from work-related medical X-rays at the Portsmouth Naval Shipyard.
Daniels, Robert D; Kubale, Travis L; Spitz, Henry B
2005-03-01
Previous analyses suggest that worker radiation dose may be significantly increased by routine occupational X-ray examinations. Medical exposures are investigated for 570 civilian workers employed at the Portsmouth Naval Shipyard (PNS) at Kittery, Maine. The research objective was to determine the radiation exposure contribution of work-related chest X-rays (WRX) relative to conventional workplace radiation sources. Methods were developed to estimate absorbed doses to the active (hematopoietic) bone marrow from X-ray examinations and workplace exposures using data extracted from worker dosimetry records (8,468) and health records (2,453). Dose distributions were examined for radiation and non-radiation workers. Photofluorographic chest examinations resulted in 82% of the dose from medical sources. Radiation workers received 26% of their collective dose from WRX and received 66% more WRX exposure than non-radiation workers. WRX can result in a significant fraction of the total dose, especially for radiation workers who were more likely to be subjected to routine medical monitoring. Omission of WRX from the total dose is a likely source of bias that can lead to dose category misclassification and may skew the epidemiologic dose-response assessment for cancers induced by the workplace.
Shorrock, Deborah; Christopoulos, Georgios; Wosik, Jedrek; Kotsia, Anna; Rangan, Bavana; Abdullah, Shuaib; Cipher, Daisha; Banerjee, Subhash; Brilakis, Emmanouil S
2015-07-01
Daily radiation exposure over many years can adversely impact the health of medical professionals. Operator radiation exposure was recorded for 124 percutaneous coronary interventions (PCIs) performed at our institution between August 2011 and May 2013: 69 were chronic total occlusion (CTO)-PCIs and 55 were non-CTO PCIs. A disposable radiation protection sterile drape (Radpad; Worldwide Innovations & Technologies, Inc) was used in all CTO-PCI cases vs none of the non-CTO PCI cases. Operator radiation exposure was compared between CTO and non-CTO PCIs. Mean age was 64.6 ± 6.2 years and 99.2% of the patients were men. Compared with non-CTO PCI, patients undergoing CTO-PCI were more likely to have congestive heart failure, to be current smokers, and to have longer lesions, and less likely to have prior PCI and a saphenous vein graft target lesion. CTO-PCI cases had longer procedural time (median: 123 minutes [IQR, 85-192 minutes] vs 27 minutes [IQR, 20-44 minutes]; P<.001), fluoroscopy time (35 minutes [IQR, 19-54 minutes] vs 8 minutes [IQR, 5-16 minutes]; P<.001), number of stents placed (2.4 ± 1.5 vs 1.7 ± 0.9; P<.001), and patient air kerma radiation exposure (3.92 Gray [IQR, 2.48-5.86 Gray] vs 1.22 Gray [IQR, 0.74-1.90 Gray]; P<.001), as well as dose area product (267 Gray•cm² [IQR, 163-4.25 Gray•cm²] vs 84 Gray•cm² [IQR, 48-138 Gray•cm²]; P<.001). In spite of higher patient radiation exposure, operator radiation exposure was similar between the two groups (20 μSv [IQR, 9.5-31 μSv] vs 15 μSv [IQR, 7-23 μSv]; P=.07). Operator radiation exposure during CTO-PCI can be reduced to levels similar to less complicated cases with the use of a disposable sterile radiation protection shield.
Radiation safety among cardiology fellows.
Kim, Candice; Vasaiwala, Samip; Haque, Faizul; Pratap, Kiran; Vidovich, Mladen I
2010-07-01
Cardiology fellows can be exposed to high radiation levels during procedures. Proper radiation training and implementation of safety procedures is of critical importance in lowering physician health risks associated with radiation exposure. Participants were cardiology fellows in the United States (n = 2,545) who were contacted by e-mail to complete an anonymous survey regarding the knowledge and practice of radiation protection during catheterization laboratory procedures. An on-line survey engine, SurveyMonkey, was used to distribute and collect the results of the 10-question survey. The response rate was 10.5%. Of the 267 respondents, 82% had undergone formal radiation safety training. Only 58% of the fellows were aware of their hospital's pregnancy radiation policy and 60% knew how to contact the hospital's radiation safety officer. Although 52% of the fellows always wore a dosimeter, 81% did not know their level of radiation exposure in the previous year and only 74% of fellows knew the safe levels of radiation exposure. The fellows who had received formal training were more likely to be aware of their pregnancy policy, to know the contact information of their radiation safety officer, to be aware of the safe levels of radiation exposure, to use dosimeters and RadPad consistently, and to know their own level of radiation exposure in the previous year. In conclusion, cardiology fellows have not been adequately educated about radiation safety. A concerted effort directed at physician safety in the workplace from the regulatory committees overseeing cardiology fellowships should be encouraged. Published by Elsevier Inc.
Demoury, Claire; Marquant, Fabienne; Ielsch, Géraldine; Goujon, Stéphanie; Debayle, Christophe; Faure, Laure; Coste, Astrid; Laurent, Olivier; Guillevic, Jérôme; Laurier, Dominique; Hémon, Denis; Clavel, Jacqueline
2016-01-01
Background: Exposures to high-dose ionizing radiation and high-dose rate ionizing radiation are established risk factors for childhood acute leukemia (AL). The risk of AL following exposure to lower doses due to natural background radiation (NBR) has yet to be conclusively determined. Methods: AL cases diagnosed over 1990–2009 (9,056 cases) were identified and their municipality of residence at diagnosis collected by the National Registry of Childhood Cancers. The Geocap study, which included the 2,763 cases in 2002–2007 and 30,000 population controls, was used for complementary analyses. NBR exposures were modeled on a fine scale (36,326 municipalities) based on measurement campaigns and geological data. The power to detect an association between AL and dose to the red bone marrow (RBM) fitting UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) predictions was 92%, 45% and 99% for exposure to natural gamma radiation, radon and total radiation, respectively. Results: AL risk, irrespective of subtype and age group, was not associated with the exposure of municipalities to radon or gamma radiation in terms of yearly exposure at age reached, cumulative exposure or RBM dose. There was no confounding effect of census-based socio-demographic indicators, or environmental factors (road traffic, high voltage power lines, vicinity of nuclear plants) related to AL in the Geocap study. Conclusions: Our findings do not support the hypothesis that residential exposure to NBR increases the risk of AL, despite the large size of the study, fine scale exposure estimates and wide range of exposures over France. However, our results at the time of diagnosis do not rule out a slight association with gamma radiation at the time of birth, which would be more in line with the recent findings in the UK and Switzerland. Citation: Demoury C, Marquant F, Ielsch G, Goujon S, Debayle C, Faure L, Coste A, Laurent O, Guillevic J, Laurier D, Hémon D, Clavel J. 2017. Residential exposure to natural background radiation and risk of childhood acute leukemia in France, 1990–2009. Environ Health Perspect 125:714–720; http://dx.doi.org/10.1289/EHP296 PMID:27483500
Iodine neutron capture therapy
NASA Astrophysics Data System (ADS)
Ahmed, Kazi Fariduddin
A new technique, Iodine Neutron Capture Therapy (INCT) is proposed to treat hyperthyroidism in people. Present thyroid therapies, surgical removal and 131I treatment, result in hypothyroidism and, for 131I, involve protracted treatment times and excessive whole-body radiation doses. The new technique involves using a low energy neutron beam to convert a fraction of the natural iodine stored in the thyroid to radioactive 128I, which has a 24-minute half-life and decays by emitting 2.12-MeV beta particles. The beta particles are absorbed in and damage some thyroid tissue cells and consequently reduce the production and release of thyroid hormones to the blood stream. Treatment times and whole-body radiation doses are thus reduced substantially. This dissertation addresses the first of the several steps needed to obtain medical profession acceptance and regulatory approval to implement this therapy. As with other such programs, initial feasibility is established by performing experiments on suitable small mammals. Laboratory rats were used and their thyroids were exposed to the beta particles coming from small encapsulated amounts of 128I. Masses of 89.0 mg reagent-grade elemental iodine crystals have been activated in the ISU AGN-201 reactor to provide 0.033 mBq of 128I. This activity delivers 0.2 Gy to the thyroid gland of 300-g male rats having fresh thyroid tissue masses of ˜20 mg. Larger iodine masses are used to provide greater doses. The activated iodine is encapsulated to form a thin (0.16 cm 2/mg) patch that is then applied directly to the surgically exposed thyroid of an anesthetized rat. Direct neutron irradiation of a rat's thyroid was not possible due to its small size. Direct in-vivo exposure of the thyroid of the rat to the emitted radiation from 128I is allowed to continue for 2.5 hours (6 half-lives). Pre- and post-exposure blood samples are taken to quantify thyroid hormone levels. The serum T4 concentration is measured by radioimmunoassay at different times after exposure as an indicator of thyroid function. Cell damage is assessed by postmortem histopathologic examination. The intent of this endeavor is to relate radiation dose, T4 concentration in the blood stream and cellular damage. This information will help better understand the dose response relationship of thyroid cells exposed to ionizing radiation.
Heat pipes in space and on earth
NASA Technical Reports Server (NTRS)
Ollendorf, S.
1978-01-01
The performance of heat pipes used in the thermal control system of spacecraft such as OAO-III and ATS-6 is discussed, and applications of heat pipes to permafrost stabilization on the Alaska Pipeline and to heat recovery systems are described. Particular attention is given to the ATS-6, launched in 1974, which employs 55 heat pipes to carry solar and internal power loads to radiator surfaces. In addition, experiments involving radiative cooling based on cryogenic heat pipes have been planned for the Long Duration Exposure Facility spacecraft and for Spacelab. The role of heat pipes in Space Shuttle heat rejection services is also mentioned.
The triterpenoid RTA 408 is a robust mitigator of hematopoietic acute radiation syndrome in mice.
Goldman, Devorah C; Alexeev, Vitali; Lash, Elizabeth; Guha, Chandan; Rodeck, Ulrich; Fleming, William H
2015-03-01
Bone marrow suppression due to exposure to ionizing radiation is a significant clinical problem associated with radiation therapy as well as with nonmedical radiation exposure. Currently, there are no small molecule agents available that can enhance hematopoietic regeneration after radiation exposure. Here, we report on the effective mitigation of acute hematopoietic radiation syndrome in mice by the synthetic triterpenoid, RTA 408. The administration of a brief course of RTA 408 treatment, beginning 24 h after lethal doses of radiation to bone marrow, significantly increased overall survival. Importantly, treatment with RTA 408 led to the full recovery of steady state hematopoiesis with normalization of the frequency of hematopoietic stem and progenitor cells. Moreover, hematopoietic stem cells from RTA 408-mitigated mice showed lineage-balanced, long-term, multilineage potential in serial transplantation assays, indicative of their normal self-renewal activity. The potency of RTA 408 in mitigating radiation-induced bone marrow suppression makes it an attractive candidate for potential clinical use in treating both therapy-related and unanticipated radiation exposure.
STUDIES ON RADIATION-INDUCED TANNING OF SKIN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quevedo, W.C. Jr.; Smith, J.A.
1963-02-15
After repeated exposure to uv, hyperpigmentation developed in the general body skin of hairless mice and in the plantar skin of mice of a number of strains selected on the basis of characteristic differences in coat coloration. The hyperpigmentation was due largely to an increase in melanin synthesis by epidermal melanocytes. The major coat color genes had a profound effect on this process by having an influence on melanocyte distribution and, possibly, proliferation; the numbers of melanocytes activated by uv radiation; the amount of pigment synthesized by melanocytes, either retained by them or transferred to epidermal cells; the color andmore » size of pigment granules elaborated by melandocytes; and the shape of the melanocytes. Possible mechanisms involved in the response of epidermal melanocytes to radiations are discussed. (auth)« less
Radiological Dispersal Devices: Select Issues in Consequence Management
2004-03-10
goals, following which medical treatment of the radiation effects can be provided.10 Post- exposure medical therapy is designed to treat the consequences ...the approach that radiation related health effects can be extrapolated, i.e. the damage caused by radiation exposure CRS-3 8 For example, see Health...effort to determine the validity of these models, the federal government funds research into the health effects of radiation exposure through the
Space activities and radiation protection of crew members
NASA Astrophysics Data System (ADS)
Straube, Ulrich; Berger, Thomas; Reitz, Guenther; Facius, Rainer; Reiter, Thomas; Kehl, Marcel; Damann, M. D. Volker; Tognini, Michel
Personnel working as crew in space-based activities e.g. professional astronauts and cosmo-nauts but also -to a certain extend-space flight participants ("space tourists"), demand health and safety considerations that have to include radiation protection measures. The radiation environment that a crew is exposed to during a space flight, differs significantly to that found on earth including commercial aviation, mainly due to the presence of heavy charged particles with great potential for biological damage. The exposure exceeds those routinely received by terrestrial radiation workers. A sequence of activities has to be conducted targeting to mitigate adverse effects of space radiation. Considerable information is available and applied through the joint efforts of the Space Agencies that are involved in the operations of the International Space Station, ISS. This presentation will give an introduction to the current measures for ra-diation monitoring and protection of astronauts of the European Space Agency (ESA). It will include information: on the radiation protection guidelines that shall ensure the proper imple-mentation and execution of radiation protection measures, the operational hardware used for radiation monitoring and personal dosimetry on ISS, as well as information about operational procedures that are applied.
Effects of IL-10 haplotype and atomic bomb radiation exposure on gastric cancer risk.
Hayashi, Tomonori; Ito, Reiko; Cologne, John; Maki, Mayumi; Morishita, Yukari; Nagamura, Hiroko; Sasaki, Keiko; Hayashi, Ikue; Imai, Kazue; Yoshida, Kengo; Kajimura, Junko; Kyoizumi, Seishi; Kusunoki, Yoichiro; Ohishi, Waka; Fujiwara, Saeko; Akahoshi, Masazumi; Nakachi, Kei
2013-07-01
Gastric cancer (GC) is one of the cancers that reveal increased risk of mortality and incidence in atomic bomb survivors. The incidence of gastric cancer in the Life Span Study cohort of the Radiation Effects Research Foundation (RERF) increased with radiation dose (gender-averaged excess relative risk per Gy = 0.28) and remains high more than 65 years after exposure. To assess a possible role of gene-environment interaction, we examined the dose response for gastric cancer incidence based on immunosuppression-related IL-10 genotype, in a cohort study with 200 cancer cases (93 intestinal, 96 diffuse and 11 other types) among 4,690 atomic bomb survivors participating in an immunological substudy. Using a single haplotype block composed of four haplotype-tagging SNPs (comprising the major haplotype allele IL-10-ATTA and the minor haplotype allele IL-10-GGCG, which are categorized by IL-10 polymorphisms at -819A>G and -592T>G, +1177T>C and +1589A>G), multiplicative and additive models for joint effects of radiation and this IL-10 haplotyping were examined. The IL-10 minor haplotype allele(s) was a risk factor for intestinal type gastric cancer but not for diffuse type gastric cancer. Radiation was not associated with intestinal type gastric cancer. In diffuse type gastric cancer, the haplotype-specific excess relative risk (ERR) for radiation was statistically significant only in the major homozygote category of IL-10 (ERR = 0.46/Gy, P = 0.037), whereas estimated ERR for radiation with the minor IL-10 homozygotes was close to 0 and nonsignificant. Thus, the minor IL-10 haplotype might act to reduce the radiation related risk of diffuse-type gastric cancer. The results suggest that this IL-10 haplotyping might be involved in development of radiation-associated gastric cancer of the diffuse type, and that IL-10 haplotypes may explain individual differences in the radiation-related risk of gastric cancer. © 2013 by Radiation Research Society
Zöller, G; Figel, M; Denk, J; Schulz, K; Sabo, A
2016-03-01
Eye lens radiation exposure during radiologically-guided endoscopic procedures may result in radiation-induced cataracts; therefore, we investigated the ocular radiation exposure during ureteroscopy on a phantom model. Using an Alderson phantom model and eye lens dosimeters, we measured the ocular radiation exposure depending on the number of X-ray images and on the duration of fluoroscopic imaging. The measurements were done with and without using a face protection shield. We could demonstrate that a significant ocular radiation exposure can occur, depending on the number of X-ray images and on the duration time of fluoroscopy. Eye lens doses up to 0.025 mSv were recorded even using modern digital X-ray systems. Using face protection shields this ocular radiation exposure can be reduced to a minimum. The International Commission on Radiological Protection (ICRP) recommendations of a mean eye lens dosage of 20 mSv/year may be exceeded during repeated ureteroscopy by a high volume surgeon. Using a face protection shield, the eye lens dose during ureteroscopy could be reduced to a minimum in a phantom model. Further investigations will show whether these results can be transferred to real life ureteroscopic procedures.
Radiation exposure and lung disease in today's nuclear world.
Deas, Steven D; Huprikar, Nikhil; Skabelund, Andrew
2017-03-01
Ionizing radiation poses important health risks. The per capita annual dose rate has increased in the United States and there is increasing concern for the risks posed by low-dose occupational exposure among workers in nuclear industries and healthcare. Recent nuclear accidents and concern for terrorism have heightened concern for catastrophic, high-dose ionizing radiation exposure. This review will highlight recent research into the risks to lung health posed by ionizing radiation exposure and into potential treatments. Angiotensin-converting enzyme inhibitors and some antioxidants have shown promise as mitigators, to decrease pneumonitis and fibrosis when given after exposure. Studies of survivors of nuclear catastrophes have shown increased risk for lung cancer, especially in nonsmokers. There is evidence for increased lung cancer risk in industrial radiation workers, especially those who process plutonium and may inhale radioactive particles. There does not seem to be an increased risk of lung cancer in healthcare workers who perform fluoroscopic procedures. High-dose ionizing radiation exposure causes pneumonitis and fibrosis, and more research is needed to develop mitigators to improve outcomes in nuclear catastrophes. Long-term, low-dose occupational radiation may increase lung cancer risk. More research to better define this risk could lead to improved safety protocols and screening programs.
Radiation Hormesis: Historical Perspective and Implications for Low-Dose Cancer Risk Assessment
Vaiserman, Alexander M.
2010-01-01
Current guidelines for limiting exposure of humans to ionizing radiation are based on the linear-no-threshold (LNT) hypothesis for radiation carcinogenesis under which cancer risk increases linearly as the radiation dose increases. With the LNT model even a very small dose could cause cancer and the model is used in establishing guidelines for limiting radiation exposure of humans. A slope change at low doses and dose rates is implemented using an empirical dose and dose rate effectiveness factor (DDREF). This imposes usually unacknowledged nonlinearity but not a threshold in the dose-response curve for cancer induction. In contrast, with the hormetic model, low doses of radiation reduce the cancer incidence while it is elevated after high doses. Based on a review of epidemiological and other data for exposure to low radiation doses and dose rates, it was found that the LNT model fails badly. Cancer risk after ordinarily encountered radiation exposure (medical X-rays, natural background radiation, etc.) is much lower than projections based on the LNT model and is often less than the risk for spontaneous cancer (a hormetic response). Understanding the mechanistic basis for hormetic responses will provide new insights about both risks and benefits from low-dose radiation exposure. PMID:20585444
Pannkuk, Evan L; Fornace, Albert J; Laiakis, Evagelia C
2017-10-01
Exposure of the general population to ionizing radiation has increased in the past decades, primarily due to long distance travel and medical procedures. On the other hand, accidental exposures, nuclear accidents, and elevated threats of terrorism with the potential detonation of a radiological dispersal device or improvised nuclear device in a major city, all have led to increased needs for rapid biodosimetry and assessment of exposure to different radiation qualities and scenarios. Metabolomics, the qualitative and quantitative assessment of small molecules in a given biological specimen, has emerged as a promising technology to allow for rapid determination of an individual's exposure level and metabolic phenotype. Advancements in mass spectrometry techniques have led to untargeted (discovery phase, global assessment) and targeted (quantitative phase) methods not only to identify biomarkers of radiation exposure, but also to assess general perturbations of metabolism with potential long-term consequences, such as cancer, cardiovascular, and pulmonary disease. Metabolomics of radiation exposure has provided a highly informative snapshot of metabolic dysregulation. Biomarkers in easily accessible biofluids and biospecimens (urine, blood, saliva, sebum, fecal material) from mouse, rat, and minipig models, to non-human primates and humans have provided the basis for determination of a radiation signature to assess the need for medical intervention. Here we provide a comprehensive description of the current status of radiation metabolomic studies for the purpose of rapid high-throughput radiation biodosimetry in easily accessible biofluids and discuss future directions of radiation metabolomics research.
Radiation exposure in the moon environment
NASA Astrophysics Data System (ADS)
Reitz, Guenther; Berger, Thomas; Matthiae, Daniel
2012-12-01
During a stay on the moon humans are exposed to elevated radiation levels due to the lack of substantial atmospheric and magnetic shielding compared to the Earth's surface. The absence of magnetic and atmospheric shielding allows cosmic rays of all energies to impinge on the lunar surface. Beside the continuous exposure to galactic cosmic rays (GCR), which increases the risk of cancer mortality, exposure through particles emitted in sudden nonpredictable solar particle events (SPE) may occur. SPEs show an enormous variability in particle flux and energy spectra and have the potential to expose space crew to life threatening doses. On Earth, the contribution to the annual terrestrial dose of natural ionizing radiation of 2.4 mSv by cosmic radiation is about 1/6, whereas the annual exposure caused by GCR on the lunar surface is roughly 380 mSv (solar minimum) and 110 mSv (solar maximum). The analysis of worst case scenarios has indicated that SPE may lead to an exposure of about 1 Sv. The only efficient measure to reduce radiation exposure is the provision of radiation shelters. Measurements on the lunar surface performed during the Apollo missions cover only a small energy band for thermal neutrons and are not sufficient to estimate the exposure. Very recently some data were added by the Radiation Dose Monitoring (RADOM) instrument operated during the Indian Chandrayaan Mission and the Cosmic Ray Telescope (CRaTER) instrument of the NASA LRO (Lunar Reconnaisance Orbiter) mission. These measurements need to be complemented by surface measurements. Models and simulations that exist describe the approximate radiation exposure in space and on the lunar surface. The knowledge on the radiation exposure at the lunar surface is exclusively based on calculations applying radiation transport codes in combination with environmental models. Own calculations are presented using Monte-Carlo simulations to calculate the radiation environment on the moon and organ doses on the surface of the moon for an astronaut in an EVA suit and are compared with measurements. Since it is necessary to verify/validate such calculations with measurement on the lunar surface, a description is given of a radiation detector for future detailed surface measurements. This device is proposed for the ESA Lunar Lander Mission and is capable to characterize the radiation field concerning particle fluencies, dose rates and energy transfer spectra for ionizing particles and to measure the dose contribution of secondary neutrons.
Aziz, Moammir Hassan; Afaq, Farrukh; Ahmad, Nihal
2005-01-01
Nonmelanoma skin cancer is the most frequently diagnosed malignancy in the United States, and multiple exposures to solar ultraviolet (UV) radiation (particularly its UV-B component, 290-320 nm), is its major cause. 'Chemoprevention' by naturally occurring agents is being appreciated as a newer dimension in the management of neoplasia including skin cancer. We recently demonstrated that resveratrol (trans-3, 5, 4-trihydroxystilbene), an antioxidant found in grapes, red wines and a variety of nuts and berries, imparts protection from acute UV-B-mediated cutaneous damages in SKH-1 hairless mice. Understanding the mechanism of resveratrol-mediated protection of UV responses is important. We earlier demonstrated that resveratrol imparts chemopreventive effects against multiple UV-exposure-mediated modulations in (1) cki-cyclin-cdk network, and (2) mitogen activated protein kinase (MAPK)-pathway. This study was conducted to assess the involvement of inhibitor of apoptosis protein family Survivin during resveratrol-mediated protection from multiple exposures of UV-B (180 mJ/cm(2); on alternate days; for a total of seven exposures) radiations in the SKH-1 hairless mouse skin. Our data demonstrated that topical pre-treatment of resveratrol (10 micromol in 200 microl acetone/mouse) resulted in significant inhibition of UV-B exposure-mediated increases in (1) cellular proliferations (Ki-67 immunostaining), (2) protein levels of epidermal cyclooxygenase-2 and ornithine decarboxylase, established markers of tumor promotion, (3) protein and messenger RNA levels of Survivin, and (4) phosphorylation of survivin in the skin of SKH-1 hairless mouse. Resveratrol pretreatment also resulted in (1) reversal of UV-B-mediated decrease of Smac/DIABLO, and (2) enhancement of UV-B-mediated induction of apoptosis, in mouse skin. Taken together, our study suggested that resveratrol imparts chemopreventive effects against UV-B exposure-mediated damages in SKH-1 hairless mouse skin via inhibiting Survivin and the associated events.
Poulose, Shibu M; Rabin, Bernard M; Bielinski, Donna F; Kelly, Megan E; Miller, Marshall G; Thanthaeng, Nopporn; Shukitt-Hale, Barbara
2017-02-01
The protective effects of anthocyanin-rich blueberries (BB) on brain health are well documented and are particularly important under conditions of high oxidative stress, which can lead to "accelerated aging." One such scenario is exposure to space radiation, consisting of high-energy and -charge particles (HZE), which are known to cause cognitive dysfunction and deleterious neurochemical alterations. We recently tested the behavioral and neurochemical effects of acute exposure to HZE particles such as 56 Fe, within 24-48h after exposure, and found that radiation primarily affects memory and not learning. Importantly, we observed that specific brain regions failed to upregulate antioxidant and anti-inflammatory mechanisms in response to this insult. To further examine these endogenous response mechanisms, we have supplemented young rats with diets rich in BB, which are known to contain high amounts of antioxidant-phytochemicals, prior to irradiation. Exposure to 56 Fe caused significant neurochemical changes in hippocampus and frontal cortex, the two critical regions of the brain involved in cognitive function. BB supplementation significantly attenuated protein carbonylation, which was significantly increased by exposure to 56 Fe in the hippocampus and frontal cortex. Moreover, BB supplementation significantly reduced radiation-induced elevations in NADPH-oxidoreductase-2 (NOX2) and cyclooxygenase-2 (COX-2), and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) in the hippocampus and frontal cortex. Overall results indicate that 56 Fe particles may induce their toxic effects on hippocampus and frontal cortex by reactive oxygen species (ROS) overload, which can cause alterations in the neuronal environment, eventually leading to hippocampal neuronal death and subsequent impairment of cognitive function. Blueberry supplementation provides an effective preventative measure to reduce the ROS load on the CNS in an event of acute HZE exposure. Published by Elsevier Ltd.
Mokarram, P.; Sheikhi, M.; Mortazavi, S.M.J.; Saeb, S.; Shokrpour, N.
2017-01-01
Background: Over the past several years, the rapidly increasing use of mobile phones has raised global concerns about the biological effects of exposure to radiofrequency (RF) radiation. Numerous studies have shown that exposure to electromagnetic fields (EMFs) can be associated with effects on the nervous, endocrine, immune, cardiovascular, hematopoietic and ocular systems. In spite of genetic diversity, the onset and progression of cancer can be controlled by epigenetic mechanisms such as gene promoter methylation. There are extensive studies on the epigenetic changes of the tumor suppressor genes as well as the identification of methylation biomarkers in colorectal cancer. Some studies have revealed that genetic changes can be induced by exposure to RF radiation. However, whether or not RF radiation is capable of inducing epigenetic alteration has not been clarified yet. To date, no study has been conducted on the effect of radiation on epigenetic alterations in colorectal cancer (CRC). Several studies have also shown that methylation of estrogen receptor α (ERα), MYOD, MGMT, SFRP2 and P16 play an important role in CRC. It can be hypothesized that RF exposure can be a reason for the high incidence of CRC in Iran. This study aimed to investigate whether epigenetic pattern of ERα is susceptible to RF radiation and if RF radiation can induce radioadaptive response as epigenetic changes after receiving the challenge dose (γ-ray). Material and Method: 40 male Sprague-Dawley rats were divided into 4 equal groups (Group I: exposure to RF radiation of a GSM cell phone for 4 hours and sacrificed after 24 hours; Group II: RF exposure for 4 hours, exposure to Co-60 gamma radiation (3 Gy) after 24 hours and sacrificed after 72 hrs; Group III: only 3Gy gamma radiation; Group 4: control group). DNA from colon tissues was extracted to evaluate the methylation status by methylation specific PCR. Results: Our finding showed that exposure to GSM cell phone RF radiation was capable of altering the pattern of ERα gene methylation compared to that of non-exposed controls. Furthermore, no adaptive response phenomenon was induced in the pattern of ERα gene methylation after exposure to the challenging dose of Co-60 γ-rays. Conclusion: It can be concluded that exposure to RF radiation emitted by GSM mobile phones can lead to epigenetic detrimental changes in ERα promoter methylation pattern. PMID:28451581
Control of excessive lead exposure in radiator repair workers.
1991-03-01
In 1988, 83 automotive repair workers with blood lead levels (BLLs) greater than 25 micrograms/dL were reported to state health departments in the seven states that collaborated with CDC's National Institute for Occupational Safety and Health (NIOSH) in maintaining registries of elevated BLLs in adults. In 18 (22%) of these 83 persons, BLLs were greater than 50 micrograms/dL. Among automotive repair workers for whom a job category was specified, radiator repair work was the principal source of lead exposure. The major sources of exposure for radiator repair workers are lead fumes generated during soldering and lead dust produced during radiator cleaning. This report summarizes current BLL surveillance data for radiator repair workers and describes three control technologies that are effective in reducing lead exposures in radiator repair shops.
Grigor'ev, Iu G; Shafirkin, A V; Nikitina, V N; Vasin, A L
2003-01-01
A variety and rate of non-cancer diseases occurred in humans as a result of chronic exposure to ionizing radiation or to electromagnetic radiation (EMR) of high and superhigh frequency have been compared. The intensity of EMR was slightly higher than a sanitary standard for population. A risk of health impairments in workers having occupational exposure to EMR was assessed on the basis of Selie's concept of development of non-specific reaction of the body to chronic stress factors (general adaptation syndrome), models of changes in the body compensatory reserves and calculations of radiation risk after severe and chronic exposure to ionizing radiation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...
10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...
10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...
10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...
10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...
10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Radiation Exposure Compensation Act Offset Worksheet-On Site Participants C Appendix C to Part 79 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Radiation Exposure Compensation Act Offset Worksheet-On Site Participants C Appendix C to Part 79 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part...
Halgamuge, Malka N; Yak, See Kye; Eberhardt, Jacob L
2015-02-01
The aim of this work was to study possible effects of environmental radiation pollution on plants. The association between cellular telephone (short duration, higher amplitude) and base station (long duration, very low amplitude) radiation exposure and the growth rate of soybean (Glycine max) seedlings was investigated. Soybean seedlings, pre-grown for 4 days, were exposed in a gigahertz transverse electromagnetic cell for 2 h to global system for mobile communication (GSM) mobile phone pulsed radiation or continuous wave (CW) radiation at 900 MHz with amplitudes of 5.7 and 41 V m(-1) , and outgrowth was studied one week after exposure. The exposure to higher amplitude (41 V m(-1)) GSM radiation resulted in diminished outgrowth of the epicotyl. The exposure to lower amplitude (5.7 V m(-1)) GSM radiation did not influence outgrowth of epicotyl, hypocotyls, or roots. The exposure to higher amplitude CW radiation resulted in reduced outgrowth of the roots whereas lower CW exposure resulted in a reduced outgrowth of the hypocotyl. Soybean seedlings were also exposed for 5 days to an extremely low level of radiation (GSM 900 MHz, 0.56 V m(-1)) and outgrowth was studied 2 days later. Growth of epicotyl and hypocotyl was found to be reduced, whereas the outgrowth of roots was stimulated. Our findings indicate that the observed effects were significantly dependent on field strength as well as amplitude modulation of the applied field. © 2015 Wiley Periodicals, Inc.
21 CFR 352.72 - General testing procedures.
Code of Federal Regulations, 2010 CFR
2010-04-01
... administered the doses of UV radiation. After UV radiation exposure from the solar simulator is completed, all... specified dosage of UV radiation, in a series of UV radiation exposures, in which the test site area is... subsites should be exposed to the varying doses of UV radiation in a randomized manner. (f) Waiting period...
Factors modifying the response of large animals to low-intensity radiation exposure
NASA Technical Reports Server (NTRS)
Page, N. P.; Still, E. T.
1972-01-01
In assessing the biological response to space radiation, two of the most important modifying factors are dose protraction and dose distribution to the body. Studies are reported in which sheep and swine were used to compare the hematology and lethality response resulting from radiation exposure encountered in a variety of forms, including acute (high dose-rate), chronic (low dose-rate), combinations of acute and chronic, and whether received as a continuous or as fractionated exposure. While sheep and swine are basically similar in response to acute radiation, their sensitivity to chronic irradiation is markedly different. Sheep remain relatively sensitive as the radiation exposure is protracted while swine are more resistant and capable of surviving extremely large doses of chronic irradiation. This response to chronic irradiation correlated well with changes in radiosensitivity and recovery following an acute, sublethal exposure.
The Effects of Gamma and Proton Radiation Exposure on Hematopoietic Cell Counts in the Ferret Model
Sanzari, Jenine K.; Wan, X. Steven; Krigsfeld, Gabriel S.; Wroe, Andrew J.; Gridley, Daila S.; Kennedy, Ann R.
2014-01-01
Exposure to total-body radiation induces hematological changes, which can detriment one's immune response to wounds and infection. Here, the decreases in blood cell counts after acute radiation doses of γ-ray or proton radiation exposure, at the doses and dose-rates expected during a solar particle event (SPE), are reported in the ferret model system. Following the exposure to γ-ray or proton radiation, the ferret peripheral total white blood cell (WBC) and lymphocyte counts decreased whereas neutrophil count increased within 3 hours. At 48 hours after irradiation, the WBC, neutrophil, and lymphocyte counts decreased in a dose-dependent manner but were not significantly affected by the radiation type (γ-rays verses protons) or dose rate (0.5 Gy/minute verses 0.5 Gy/hour). The loss of these blood cells could accompany and contribute to the physiological symptoms of the acute radiation syndrome (ARS). PMID:25356435
Development and evaluation of a technique for in vivo monitoring of 60Co in human liver
NASA Astrophysics Data System (ADS)
Gomes, GH; Silva, MC; Mello, JQ; Dantas, ALA; Dantas, BM
2018-03-01
60Co is an artificial radioactive metal produced by activation of iron with neutrons. It decays by beta particles and gamma radiation and represents a risk of internal exposure of workers involved in the maintenance of nuclear power reactors. Intakes can be quantified through in vivo monitoring. This work describes the development of a technique for the quantification of 60Co in human liver. The sensitivity of the method is evaluated based on the minimum detectable effective doses. The results allow to state that the technique is suitable either for monitoring of occupational exposures or evaluation of accidental intakes.
Hall, Amy L; Davies, Hugh W; Demers, Paul A; Nicol, Anne-Marie; Peters, Cheryl E
2013-11-01
Although veterinary workers may encounter various occupational health hazards, a national characterization of exposures is lacking in Canada. This study used secondary data sources to identify veterinary exposure prevalence for ionizing radiation and antineoplastic agents, as part of a national surveillance project. For ionizing radiation, data from the Radiation Protection Bureau of Health Canada were used to identify veterinarians and veterinary technicians monitored in 2006. This was combined with Census statistics to estimate a prevalence range and dose levels. For antineoplastic agents, exposure prevalence was estimated using statistics on employment by practice type and antineoplastic agent usage rates, obtained from veterinary licensing bodies and peer-reviewed literature. In 2006, 7,013 (37% of all) Canadian veterinary workers were monitored for ionizing radiation exposure. An estimated 3.3% to 8.2% of all veterinarians and 2.4% to 7.2% of veterinary technicians were exposed to an annual ionizing radiation dose above 0.1 mSv, representing a total of between 536 and 1,450 workers. All monitored doses were below regulatory limits. For antineoplastic agents, exposure was predicted in up to 5,300 (23%) of all veterinary workers, with an estimated prevalence range of 22% to 24% of veterinarians and 20% to 21% of veterinary technicians. This is the first national-level assessment of exposure to ionizing radiation and antineoplastic agents in Canadian veterinary settings. These hazards may pose considerable health risks. Exposures appeared to be low, however our estimates should be validated with comprehensive exposure monitoring and examination of determinants across practice areas, occupations, and tasks.
Campion, Sarah N.; Sandrof, Moses A.; Yamasaki, Hideki; Boekelheide, Kim
2010-01-01
Germ cell apoptosis directly induced by x-radiation (x-ray) exposure is stage specific, with a higher incidence in stage II/III seminiferous tubules. A priming exposure to the Sertoli cell toxicant 2,5-hexanedione (HD) results in a marked reduction in x-ray–induced germ cell apoptosis in these affected stages. Because of the stage specificity of these responses, examination of associated gene expression in whole testis tissue has clear limitations. Laser capture microdissection (LCM) of specific cell populations in the testis is a valuable technique for investigating the responses of different cell types following toxicant exposure. LCM coupled with quantitative real-time PCR was performed to examine the expression of apoptosis-related genes at both early (3 h) and later (12 h) time points after x-ray exposure, with or without the priming exposure to HD. The mRNAs examined include Fas, FasL, caspase 3, bcl-2, p53, PUMA, and AEN, which were identified either by literature searches or microarray analysis. Group 1 seminiferous tubules (stages I–VI) exhibited the greatest changes in gene expression. Further analysis of this stage group (SG) revealed that Fas induction by x-ray is significantly attenuated by HD co-exposure. Selecting only for germ cells from seminiferous tubules of the most sensitive SG has provided further insight into the mechanisms involved in the co-exposure response. It is hypothesized that following co-exposure, germ cells adapt to the lack of Sertoli cell support by reducing the Fas response to normal FasL signals. These findings provide a better understanding and appreciation of the tissue complexity and technical difficulties associated with examining gene expression in the testis. PMID:20616204
Whittaker, Stephen G
2003-07-01
Radiator repair workers in Washington State have the greatest number of very elevated (> or =60 microg/dL) blood lead levels of any other worker population. The goals of this study were to determine the number of radiator repair workers potentially exposed to lead; estimate the extent of blood lead data underreporting to the Occupational Lead Exposure Registry; describe current safety and health practices in radiator repair shops; and determine appropriate intervention strategies to reduce exposure and increase employer and worker awareness. Lead exposure in Washington State's radiator repair workers was assessed by reviewing Registry data and conducting a statewide survey of radiator repair businesses. This study revealed that a total of 226 workers in Washington State (including owner-operators and all employees) conduct repair activities that could potentially result in excessive exposures to lead. Approximately 26% of radiator repair workers with elevated blood lead levels (> or =25 microg/dL) were determined to report to Washington State's Registry. This study also revealed a lack of awareness of lead's health effects, appropriate industrial hygiene controls, and the requirements of the Lead Standard. Survey respondents requested information on a variety of workplace health and safety issues and waste management; 80% requested a confidential, free-of-charge consultation. Combining data derived from an occupational health surveillance system and a statewide mail survey proved effective at characterizing lead exposures and directing public health intervention in Washington State.
Madder, Ryan D; VanOosterhout, Stacie; Mulder, Abbey; Elmore, Matthew; Campbell, Jessica; Borgman, Andrew; Parker, Jessica; Wohns, David
Reports of left-sided brain malignancies among interventional cardiologists have heightened concerns regarding physician radiation exposure. This study evaluated the impact of a suspended lead suit and robotic system on physician radiation exposure during percutaneous coronary intervention (PCI). Real-time radiation exposure data were prospectively collected from dosimeters worn by operating physicians at the head- and chest-level during consecutive PCI cases. Exposures were compared in three study groups: 1) manual PCI performed with traditional lead apparel; 2) manual PCI performed using suspended lead; and 3) robotic PCI performed in combination with suspended lead. Among 336 cases (86.6% manual, 13.4% robotic) performed over 30weeks, use of suspended lead during manual PCI was associated with significantly less radiation exposure to the chest and head of operating physicians than traditional lead apparel (chest: 0.0 [0.1] μSv vs 0.4 [4.0] μSv, p<0.001; head: 0.5 [1.9] μSv vs 14.9 [51.5] μSv, p<0.001). Chest-level radiation exposure during robotic PCI performed in combination with suspended lead was 0.0 [0.0] μSv, which was significantly less chest exposure than manual PCI performed with traditional lead (p<0.001) or suspended lead (p=0.046). In robotic PCI the median head-level exposure was 0.1 [0.2] μSv, which was 99.3% less than manual PCI performed with traditional lead (p<0.001) and 80.0% less than manual PCI performed with suspended lead (p<0.001). Utilization of suspended lead and robotics were observed to result in significantly less radiation exposure to the chest and head of operating physicians during PCI. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittmore, C. H.
1974-03-01
A data recovery problem often occurs in nuclear tests when photographic film used to record CRT traces is unavoidably exposed fo gamma rays before it can be retrieved for developing. Studies made to improve recovery of the CRT data from such film are described. Best results were obtained with a procedure involving reversal processing, silver intensification, dye-coupling development, and duplication. (auth)
Karyotyping of Chromosomes in Human Bronchial Epithelial Cells Transformed by High Energy Fe Ions
NASA Technical Reports Server (NTRS)
Yeshitla, Samrawit; Zhang, Ye; Park, Seongmi; Story, Michael T.; Wilson, Bobby; Wu, Honglu
2014-01-01
Lung cancer induced from exposure to space radiation is believed to be one of the most significant health risks for long-term space travels. In a previous study, normal human bronchial epithelial cells (HBECs), immortalized through the expression of Cdk4 and hTERT, were exposed to gamma rays and high energy Fe ions for the selection of transformed clones induced by low- and high-LET radiation. In this research, we analyzed chromosome aberrations in these selected clones for genomic instability using the multi-color fluorescent in situ hybridization (mFISH), as well as the multi-banding in situ hybridization (mBAND) techniques. In most of the clones, we found chromosomal aberrations involving translocations between different chromosomes, with several of the breaks occurred in the q-arm of chromosome 3. We also identified copy number variations between the transformed clones and the parental HBEC cells regardless of the exposure condition. Our results indicated that the chromosomal aberrations in low- and high radiation-induced transformed clones are inadequately different from spontaneous soft agar growth. Further analysis is underway to reveal the genomic instability in more transformed clones
Garaj-Vrhovac, Vera; Gajski, Goran; Trosić, Ivancica; Pavicić, Ivan
2009-05-17
The aim of this study was to assess whether microwave-induced DNA damage is basal or it is also generated through reactive oxygen species (ROS) formation. After having irradiated Wistar rats with 915MHz microwave radiation, we assessed different DNA alterations in peripheral leukocytes using standard and formamidopyrimidine DNA-glycosylase (Fpg)-modified comet assay. The first is a sensitive tool for detecting primary DNA damage, and the second is much more specific for detecting oxidative damage. The animals were irradiated for 1h a day for 2 weeks at a field power density of 2.4W/m(2), and the whole-body average specific absorption rate (SAR) of 0.6W/kg. Both the standard and the Fpg-modified comet assay detected increased DNA damage in blood leukocytes of the exposed rats. The significant increase in Fpg-detected DNA damage in the exposed rats suggests that oxidative stress is likely to be responsible. DNA damage detected by the standard comet assay indicates that some other mechanisms may also be involved. In addition, both methods served proved sensitive enough to measure basal and oxidative DNA damage after long-term exposure to 915MHz microwave radiation in vivo.
The relationship between ultraviolet radiation exposure and vitamin D status.
Engelsen, Ola
2010-05-01
This paper reviews the main factors influencing the synthesis of vitamin D, with particular focus on ultraviolet radiation exposure. On the global level, the main source of vitamin D is the sun. The effect of solar radiation on vitamin D synthesis depends to some extent on the initial vitamin D levels. At moderate to high latitudes, diet becomes an increasingly important source of vitamin D due to decreased solar intensity and cold temperatures, which discourage skin exposure. During the mid-winter season, these factors result in decreased solar radiation exposure, hindering extensively the synthesis of vitamin D in these populations.
Gausden, Elizabeth B; Christ, Alexander B; Zeldin, Roseann; Lane, Joseph M; McCarthy, Moira M
2017-08-02
The purpose of this study was to determine the amount of cumulative radiation exposure received by orthopaedic surgeons and residents in various subspecialties. We obtained dosimeter measures over 12 months on 24 residents and 16 attending surgeons. Monthly radiation exposure was measured over a 12-month period for 24 orthopaedic residents and 16 orthopaedic attending surgeons. The participants wore a Landauer Luxel dosimeter on the breast pocket of their lead apron. The dosimeters were exchanged every rotation (5 to 7 weeks) for the resident participants and every month for the attending surgeon participants. Radiation exposure was compared by orthopaedic subspecialty, level of training, and type of fluoroscopy used (regular C-arm compared with mini C-arm). Orthopaedic residents participating in this study received monthly mean radiation exposures of 0.2 to 79 mrem/month, lower than the dose limits of 5,000 mrem/year recommended by the United States Nuclear Regulatory Commission (U.S. NRC). Senior residents rotating on trauma were exposed to the highest monthly radiation (79 mrem/month [range, 15 to 243 mrem/month]) compared with all other specialty rotations (p < 0.001). Similarly, attending orthopaedic surgeons who specialize in trauma or deformity surgery received the highest radiation exposure of their peers, and the mean exposure was 53 mrem/month (range, 0 to 355 mrem/month). Residents and attending surgeons performing trauma or deformity surgical procedures are exposed to significantly higher doses of radiation compared with all other subspecialties within orthopaedic surgery, but the doses are still within the recommended limits. The use of ionizing radiation in the operating room has become an indispensable part of orthopaedic surgery. Although all surgeons in our study received lower than the yearly recommended dose limit, it is important to be aware of how much radiation we are exposed to as surgeons and to take measures to further limit that exposure.
Soffritti, Morando; Tibaldi, Eva; Bua, Luciano; Padovani, Michela; Falcioni, Laura; Lauriola, Michelina; Manservigi, Marco; Manservisi, Fabiana; Belpoggi, Fiorella
2015-01-01
Experimental long-term carcinogenicity bioassays conducted on rats and mice proved that ionizing radiation can induce a variety of tumor types. However few studies have been conducted on rats. This report deals with the effects of γ-radiation in groups of 416-1,051 6-weeks old Sprague-Dawley rats exposed to 0, 0.1, 1, or 3 Gy of γ-radiation delivered in a single acute exposure. The experiment lasted for the animals' lifespan and all were necropsied and underwent full histopathological evaluation. The results confirm the dose-related carcinogenic effects of γ-radiation for several organs and tissues. Moreover they indicate that exposure to 0.1 Gy induces a statistically significant increased incidence in Zymbal gland carcinomas and pancreas islet cell carcinomas in females. Our data show that exposure to γ-radiation induces carcinogenic effects at all tested doses. © 2014 Wiley Periodicals, Inc.
Malignant mesothelioma following radiation exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antman, K.H.; Corson, J.M.; Li, F.P.
Mesothelioma developed in proximity to the field of therapeutic radiation administered 10-31 years previously in four patients. In three, mesothelioma arose within the site of prior therapeutic radiation for another cancer. Mesothelioma in the fourth patient developed adjacent to the site of cosmetic radiation to a thyroidectomy scar. None of these four patients recalled an asbestos exposure or had evidence of asbestosis on chest roentgenogram. Lung tissue in one patient was negative for ferruginous bodies, a finding considered to indicate no significant asbestos exposure. Five other patients with radiation-associated mesothelioma have been reported previously, suggesting that radiation is an uncommonmore » cause of human mesothelioma. Problems in the diagnosis of radiation-associated mesotheliomas are considered.« less
TLD assessment of mouse dosimetry during microCT imaging
Figueroa, Said Daibes; Winkelmann, Christopher T.; Miller, William H.; Volkert, Wynn A.; Hoffman, Timothy J.
2008-01-01
Advances in laboratory animal imaging have provided new resources for noninvasive biomedical research. Among these technologies is microcomputed tomography (microCT) which is widely used to obtain high resolution anatomic images of small animals. Because microCT utilizes ionizing radiation for image formation, radiation exposure during imaging is a concern. The objective of this study was to quantify the radiation dose delivered during a standard microCT scan. Radiation dose was measured using thermoluminescent dosimeters (TLDs), which were irradiated employing an 80 kVp x-ray source, with 0.5 mm Al filtration and a total of 54 mA s for a full 360 deg rotation of the unit. The TLD data were validated using a 3.2 cm3 CT ion chamber probe. TLD results showed a single microCT scan air kerma of 78.0±5.0 mGy when using a poly(methylmethacrylate) (PMMA) anesthesia support module and an air kerma of 92.0±6.0 mGy without the use of the anesthesia module. The validation CT ion chamber study provided a measured radiation air kerma of 81.0±4.0 mGy and 97.0±5.0 mGy with and without the PMMA anesthesia module, respectively. Internal TLD analysis demonstrated an average mouse organ radiation absorbed dose of 76.0±5.0 mGy. The author’s results have defined x-ray exposure for a routine microCT study which must be taken into consideration when performing serial molecular imaging studies involving the microCT imaging modality. PMID:18841837
Radiation Monitoring Equipment Dosimeter Experiment
NASA Technical Reports Server (NTRS)
Hardy, Kenneth A.; Golightly, Michael J.; Quam, William
1992-01-01
Spacecraft crews risk exposure to relatively high levels of ionizing radiation. This radiation may come from charged particles trapped in the Earth's magnetic fields, charged particles released by solar flare activity, galactic cosmic radiation, energetic photons and neutrons generated by interaction of these primary radiations with spacecraft and crew, and man-made sources (e.g., nuclear power generators). As missions are directed to higher radiation level orbits, viz., higher altitudes and inclinations, longer durations, and increased flight frequency, radiation exposure could well become a major factor for crew stay time and career lengths. To more accurately define the radiological exposure and risk to the crew, real-time radiation monitoring instrumentation, which is capable of identifying and measuring the various radiation components, must be flown. This presentation describes a radiation dosimeter instrument which was successfully flown on the Space Shuttle, the RME-3.
NASA Technical Reports Server (NTRS)
Elgart, Shona Robin; Shavers, Mark; Huff, Janice; Patel, Zarana; Semones, Edward
2016-01-01
Successfully communicating the complex risks associated with radiation exposure is a difficult undertaking; communicating those risks within the high-risk context of space travel is uniquely challenging. Since the potential risks of space radiation exposure are not expected to be realized until much later in life, it is hard to draw comparisons between other spaceflight risks such as hypoxia and microgravity-induced bone loss. Additionally, unlike other spaceflight risks, there is currently no established mechanism to mitigate the risks of incurred radiation exposure such as carcinogenesis. Despite these challenges, it is the duty of the Space Radiation Analysis Group (SRAG) at NASA's Johnson Space Center to provide astronauts with the appropriate information to effectively convey the risks associated with exposure to the space radiation environment. To this end, astronauts and their flight surgeons are provided with an annual radiation risk report documenting the astronaut's individual radiation exposures from space travel, medical, and internal radiological procedures throughout the astronaut's career. In an effort to improve this communication and education tool, this paper critically reviews the current report style and explores alternative report styles to define best methods to appropriately communicate risk to astronauts, flight surgeons, and management.
Childhood cancer and occupational radiation exposure in parents.
Hicks, N; Zack, M; Caldwell, G G; Fernbach, D J; Falletta, J M
1984-04-15
To test the hypothesis that a parent's job exposure to radiation affects his or her child's risk of cancer, the authors compared this exposure during the year before the child's birth for parents of children with and without cancer. Parents of children with cancer were no more likely to have worked in occupations, industries, or combined occupations and industries with potential ionizing radiation exposure. Bone cancer and Wilms' tumor occurred more frequently among children of fathers in all industries with moderate potential ionizing radiation exposure. Children with cancer more often had fathers who were aircraft mechanics (odds ratio (OR) = infinity, one-sided 95% lower limit = 1.5; P = 0.04). Although four of these six were military aircraft mechanics, only children whose fathers had military jobs with potential ionizing radiation exposure had an increased cancer risk (OR = 2.73; P = 0.01). Four cancer types occurred more often among children of fathers in specific radiation-related occupations: rhabdomyosarcoma among children whose fathers were petroleum industry foremen; retinoblastoma among children whose fathers were radio and television repairmen; central nervous system cancers and other lymphatic cancers among children of Air Force fathers. Because numbers of case fathers are small and confidence limits are broad, the associations identified by this study need to be confirmed in other studies. Better identification and gradation of occupational exposure to radiation would increase the sensitivity to detect associations.
Radiation in dental practice: awareness, protection and recommendations.
Praveen, B N; Shubhasini, A R; Bhanushree, R; Sumsum, P S; Sushma, C N
2013-01-01
Radiation is the transmission of energy through space and matter. There are several forms of radiation, including ionizing and nonionizing. X-rays are the ionizing radiation used extensively in medical and dental practice. Even though they provide useful information and aid in diagnosis, they also have the potential to cause harmful effects. In dentistry, it is mainly used for diagnostic purposes and in a dental set-up usually the practicing dentist exposes, processes and interprets the radiograph. Even though such exposure is less, it is critical to reduce the exposure to the dental personnel and patients in order to prevent the harmful effects of radiation. Several radiation protection measures have been advocated to ameliorate these effects. A survey conducted in the Bengaluru among practicing dentists revealed that radiation protection awareness was very low and the necessary measures taken to reduce the exposure were not adequate. The aim of the article is to review important parameters that must be taken into consideration in the clinical set-up to reduce radiation exposure to patients and dental personnel.
Ormsby, Rebecca J; Lawrence, Mark D; Blyth, Benjamin J; Bexis, Katrina; Bezak, Eva; Murley, Jeffrey S; Grdina, David J; Sykes, Pamela J
2014-02-01
The radioprotective agent amifostine is a free radical scavenger that can protect cells from the damaging effects of ionising radiation when administered prior to radiation exposure. However, amifostine has also been shown to protect cells from chromosomal mutations when administered after radiation exposure. As apoptosis is a common mechanism by which cells with mutations are removed from the cell population, we investigated whether amifostine stimulates apoptosis when administered after radiation exposure. We chose to study a relatively low dose which is the maximum radiation dose for radiation emergency workers (0.25 Gy) and a high dose relevant to radiotherapy exposures (6 Gy). Mice were administered 400 mg/kg amifostine 30 min before, or 3 h after, whole-body irradiation with 0.25 or 6 Gy X-rays and apoptosis was analysed 3 or 7 h later in spleen and bone marrow. We observed a significant increase in radiation-induced apoptosis in the spleen of mice when amifostine was administered before or after 0.25 Gy X-rays. In contrast, when a high dose of radiation was used (6 Gy), amifostine caused a reduction in radiation-induced apoptosis 3 h post-irradiation in spleen and bone marrow similar to previously published studies. This is the first study to investigate the effect of amifostine on radiation-induced apoptosis at a relatively low radiation dose and the first to demonstrate that while amifostine can reduce apoptosis from high doses of radiation, it does not mediate the same effect in response to low-dose exposures. These results suggest that there may be a dose threshold at which amifostine protects from radiation-induced apoptosis and highlight the importance of examining a range of radiation doses and timepoints.
Yashavarddhan, M. H.; Shukla, Sandeep K.; Chaudhary, Pankaj; Srivastava, Nitya N.; Joshi, Jayadev; Suar, Mrutyunjay; Gupta, Manju L.
2017-01-01
Drug discovery field has tremendously progressed during last few decades, however, an effective radiation countermeasure agent for the safe administration to the victims of radiation exposure is still unavailable. This multi-model study is aimed at elucidating the mechanistic aspects of a novel podophyllotoxin and rutin combination (henceforth referred as G-003M) in the hematopoietic radioprotection and its involvement in the DNA damage and repair signaling pathways. Using in silico study, we identified the binding sites and structural components of G-003M and validated in vitro. We further studied various in vivo endpoints related to the DNA repair and cell death pathways in mice pre-administered with G-003M, irradiated and subsequently euthanized to collect blood and bone marrow cells. In silico study showed the binding of podophyllotoxin to β-tubulin and presence of a functional hydroxyl group in the rutin, suggested their involvement in G2/M arrest and the free radical scavenging respectively. This experimentation was further validated through in vitro studies. In vivo mice studies confirmed that G-003M pre-administration attenuated DNA damage and enhanced repair after whole body exposure. We further noticed a decrease in the levels of γH2AX, p53BP1, and ATM kinase and an increase in the levels of DNA pk, Ku 80, Ligase IV, Mre 11, Rad 50 and NBS 1 in the blood and bone marrow cells of the G-003M pre-administered and irradiated mice. We noticed an overall increase in the pro-survival factors in the G-003M pre-treated and irradiated groups establishing the radioprotective efficacy of this formulation. The lead obtained from this study will certainly help in developing this formulation as a safe and effective radioprotector which could be used for humans against any planned or emergency exposure of radiation. PMID:29163150
Tian, Jian; Zhao, WeiLing; Tian, Sisi; Slater, James M; Deng, Zhiyong; Gridley, Daila S
2011-11-01
The goal of this study was to compare the effects of acute 2 Gy irradiation with photons (0.8 Gy/min) or protons (0.9 Gy/min), both with and without pre-exposure to low-dose/low-dose-rate γ rays (0.01 Gy at 0.03 cGy/h), on 84 genes involved in stem cell differentiation or regulation in mouse lungs on days 21 and 56. Genes with a ≥1.5-fold difference in expression and P < 0.05 compared to 0 Gy controls are emphasized. Two proteins specific for lung stem cells/progenitors responsible for local tissue repair were also compared. Overall, striking differences were present between protons and photons in modulating the genes. More genes were affected by protons than by photons (22 compared to 2 and 6 compared to 2 on day 21 and day 56, respectively) compared to 0 Gy. Preirradiation with low-dose-rate γ rays enhanced the acute photon-induced gene modulation on day 21 (11 compared to 2), and all 11 genes were significantly downregulated on day 56. On day 21, seven genes (aldh2, bmp2, cdc2a, col1a1, dll1, foxa2 and notch1) were upregulated in response to most of the radiation regimens. Immunoreactivity of Clara cell secretory protein was enhanced by all radiation regimens. The number of alveolar type 2 cells positive for prosurfactant protein C in irradiated groups was higher on day 56 (12.4-14.6 cells/100) than on day 21 (8.5-11.2 cells/100) (P < 0.05). Taken together, these results showed that acute photons and protons induced different gene expression profiles in the lungs and that pre-exposure to low-dose-rate γ rays sometimes had modulatory effects. In addition, proteins associated with lung-specific stem cells/progenitors were highly sensitive to radiation.
Early effects of 16O radiation on neuronal morphology and cognition in a murine model
NASA Astrophysics Data System (ADS)
Carr, Hannah; Alexander, Tyler C.; Groves, Thomas; Kiffer, Frederico; Wang, Jing; Price, Elvin; Boerma, Marjan; Allen, Antiño R.
2018-05-01
Astronauts exposed to high linear energy transfer radiation may experience cognitive injury. The pathogenesis of this injury is unknown but may involve glutamate receptors or modifications to dendritic structure and/or dendritic spine density and morphology. Glutamate is the major excitatory neurotransmitter in the central nervous system, where it acts on ionotropic and metabotropic glutamate receptors located at the presynaptic terminal and in the postsynaptic membrane at synapses in the hippocampus. Dendritic spines are sites of excitatory synaptic transmission, and changes in spine structure and dendrite morphology are thought to be morphological correlates of altered brain function associated with hippocampal-dependent learning and memory. The aim of the current study is to assess whether behavior, glutamate receptor gene expression, and dendritic structure in the hippocampus are altered in mice after early exposure to 16O radiation in mice. Two weeks post-irradiation, animals were tested for hippocampus-dependent cognitive performance in the Y-maze. During Y-maze testing, mice exposed to 0.1 Gy and 0.25 Gy radiation failed to distinguish the novel arm, spending approximately the same amount of time in all 3 arms during the retention trial. Exposure to 16O significantly reduced the expression of Nr1 and GluR1 in the hippocampus and modulated spine morphology in the dentate gyrus and cornu Ammon 1 within the hippocampus. The present data provide evidence that 16O radiation has early deleterious effects on mature neurons that are associated with hippocampal learning and memory.
Accelerated heavy particles and the lens. VII: The cataractogenic potential of 450 MeV/amu iron ions
NASA Technical Reports Server (NTRS)
Worgul, B. V.; Brenner, D. J.; Medvedovsky, C.; Merriam, G. R. Jr; Huang, Y.
1993-01-01
PURPOSE. To determine the cataractogenic potential dose of high velocity iron ions as a fixation of dose administered singly or fractionated. The dose is critical to risk assessment and to theories of radiation action and cataractogenesis. METHODS. Twenty-eight-day-old rats were examined by slit-lamp biomicroscopy on a weekly-bi-weekly basis for more than 2 yr after radiation exposure. For the acute exposure study doses of 1, 2, 5, 25, and 50 cGy were evaluated. The fractionated regimens involved total doses of 2, 25, and 50 cGy. The reference radiation consisted of 50, 100, 200, or 700 cGy of 250 kilovolt (peak) x-rays. RESULTS. In accordance with previous findings in the rat using 570 MeV/amu 40Ar ions, the relative biologic effectiveness increased rapidly with decreasing dose, reaching values as high as 100. Unlike 40Ar ions, fractionation of the 56Fe doses did not produce a consistent enhancement at any of the doses examined. CONCLUSIONS. The data support the previous findings of a high cataractogenic potential for high linear energy transfer (LET) radiation. The effectiveness for the production of cataracts increases with decreasing dose relative to x-rays and is independent of dose protraction. Although the present study did not reveal a consistent enhancement of effect when the ions were applied in fractions, the results are consistent with at least one theory of the inverse dose-rate effect observed for high-LET radiation.
Romanenko, A.Ye.; Finch, S.; Hatch, M.; Lubin, J.; Bebeshko, V.G.; Bazyka, D.A.; Gudzenko, N.; Dyagil, I.S.; Reiss, R.; Bouville, A.; Chumak, V.V.; Trotsiuk, N.K.; Babkina, N.G.; Belayev, Y.; Masnyk; Ron, E.; Howe, G.R.; Zablotska, L.B.
2010-01-01
Leukemia is one of the cancers most susceptible to induction by ionizing radiation, but the effects of lower doses delivered over time have not been adequately quantified. Following the Chornobyl (Chernobyl) accident in Ukraine in April 1986, several hundred thousand workers who were involved in cleaning up the site and its surroundings received fractionated exposure, primarily from external gamma radiation. To increase our understanding of the role of protracted low-dose radiation exposure in the etiology of leukemia, we conducted a nested case-control study of leukemia in a cohort of cleanup workers identified from the Chornobyl State Registry of Ukraine. The analysis is based on 71 cases of histologically confirmed leukemia diagnosed in 1986–2000 and 501 age- and residence-matched controls selected from the same cohort. Study subjects or their proxies were interviewed about their cleanup activities and other relevant factors. Individual bone marrow radiation doses were estimated by the RADRUE dose reconstruction method (mean dose=76.4 (SD=213.4) milligray (mGy)). We used conditional logistic regression to estimate leukemia risks. The excess relative risk of total leukemia was 3.44 per Gy (95% confidence interval 0.47–9.78, p<0.01). The dose-response was linear and did not significantly differ by calendar period of first work in the 30-km Chornobyl zone, duration or type of work. We found a similar dose-response relationship for chronic and non-chronic lymphocytic leukemia. PMID:19138038
NASA Astrophysics Data System (ADS)
Austin, A.; Ballare, C. L.; Méndez, M. S.
2015-12-01
Plant litter decomposition is an essential process in the first stages of carbon and nutrient turnover in terrestrial ecosystems, and together with soil microbial biomass, provide the principal inputs of carbon for the formation of soil organic matter. Photodegradation, the photochemical mineralization of organic matter, has been recently identified as a mechanism for previously unexplained high rates of litter mass loss in low rainfall ecosystems; however, the generality of this process as a control on carbon cycling in terrestrial ecosystems is not known, and the indirect effects of photodegradation on biotic stimulation of carbon turnover have been debated in recent studies. We demonstrate that in a wide range of plant species, previous exposure to solar radiation, and visible light in particular, enhanced subsequent biotic degradation of leaf litter. Moreover, we demonstrate that the mechanism for this enhancement involves increased accessibility for microbial enzymes to plant litter carbohydrates due to a reduction in lignin content. Photodegradation of plant litter reduces the structural and chemical bottleneck imposed by lignin in secondary cell walls. In litter from woody plant species, specific interactions with ultraviolet radiation obscured facilitative effects of solar radiation on biotic decomposition. The generalized positive effect of solar radiation exposure on subsequent microbial activity is mediated by increased accessibility to cell wall polysaccharides, which suggests that photodegradation is quantitatively important in determining rates of mass loss, nutrient release and the carbon balance in a broad range of terrestrial ecosystems.
Embryogenesis and organogenesis of Carausius morosus under spaceflight conditions.
Bucker, H; Facius, R; Horneck, G; Reitz, G; Graul, E H; Berger, H; Hoffken, H; Ruther, W; Heinrich, W; Beaujean, R; Enge, W
1986-01-01
The influence of cosmic radiation and/or microgravity on insect development was studied during the 7 day German Spacelab Mission D1. Eggs of Carausius morosus of five stages differing in sensitivity to radiation and in capacity to regeneration were allowed to continue their development in the BIORACK 22 degrees C incubator, either at microgravity conditions or on the 1 g reference centrifuge. Using the Biostack concept--eggs in monolayers were sandwiched between visual track detectors--and the 1 g reference centrifuge, we were able to separate radiation effects from microgravity effects and also from combined effects of these two factors in space. After retrieval, hatching rates, growth kinetics and anomaly frequencies were determined in the different test samples. The early stages of development turned out to be highly sensitive to single hits of cosmic ray particles as well as to the temporary exposure to microgravity during their development. In some cases, the combined action of radiation and microgravity even amplified the effects exerted by the single parameters of space. Hits by single HZE particles caused early effects, such as body anomalies, as well as late effects, such as retarded growth after hatching. Microgravity exposure lead to a reduced hatching rate. A synergistic action of HZE particle hits and microgravity was established in the unexpectedly high frequency of anomal larvae. However, it cannot be excluded, that cosmic background radiation or low LET HZE particles are also causally involved in damage observed in the microgravity samples.
Diet-Induced Obesity Modulates Epigenetic Responses to Ionizing Radiation in Mice
Vares, Guillaume; Wang, Bing; Ishii-Ohba, Hiroko; Nenoi, Mitsuru; Nakajima, Tetsuo
2014-01-01
Both exposure to ionizing radiation and obesity have been associated with various pathologies including cancer. There is a crucial need in better understanding the interactions between ionizing radiation effects (especially at low doses) and other risk factors, such as obesity. In order to evaluate radiation responses in obese animals, C3H and C57BL/6J mice fed a control normal fat or a high fat (HF) diet were exposed to fractionated doses of X-rays (0.75 Gy ×4). Bone marrow micronucleus assays did not suggest a modulation of radiation-induced genotoxicity by HF diet. Using MSP, we observed that the promoters of p16 and Dapk genes were methylated in the livers of C57BL/6J mice fed a HF diet (irradiated and non-irradiated); Mgmt promoter was methylated in irradiated and/or HF diet-fed mice. In addition, methylation PCR arrays identified Ep300 and Socs1 (whose promoters exhibited higher methylation levels in non-irradiated HF diet-fed mice) as potential targets for further studies. We then compared microRNA regulations after radiation exposure in the livers of C57BL/6J mice fed a normal or an HF diet, using microRNA arrays. Interestingly, radiation-triggered microRNA regulations observed in normal mice were not observed in obese mice. miR-466e was upregulated in non-irradiated obese mice. In vitro free fatty acid (palmitic acid, oleic acid) administration sensitized AML12 mouse liver cells to ionizing radiation, but the inhibition of miR-466e counteracted this radio-sensitization, suggesting that the modulation of radiation responses by diet-induced obesity might involve miR-466e expression. All together, our results suggested the existence of dietary effects on radiation responses (especially epigenetic regulations) in mice, possibly in relationship with obesity-induced chronic oxidative stress. PMID:25171162
Chromosome aberrations induced by high-LET radiations
NASA Technical Reports Server (NTRS)
Kawata, Tetsuya; Ito, Hisao; George, Kerry; Wu, Honglu; Cucinotta, Francis A.
2004-01-01
Measurements of chromosome aberrations in peripheral blood lymphocytes are currently the most sensitive and reliable indicator of radiation exposure that can be used for biological dosimetry. This technique has been implemented recently to study radiation exposures incurred by astronauts during space flight, where a significant proportion of the dose is delivered by high-LET particle exposure. Traditional methods for the assessing of cytogenetic damage in mitotic cells collected at one time point after exposure may not be suitable for measuring high-LET radiation effects due to the drastic cell cycle perturbations and interphase cell death induced by this type of exposure. In this manuscript we review the recent advances in methodology used to study high-LET induced cytogenetic effects and evaluate the use of chemically-induced Premature Chromosome Condensation (PCC) as an alternative to metaphase analysis. Published data on the cytogenetic effects of in vitro exposures of high-LET radiation is reviewed, along with biodosimetry results from astronauts after short or long space missions.
Goren, Arthur D; Bonvento, Michael J; Fernandez, Thomas J; Abramovitch, Kenneth; Zhang, Wenjian; Roe, Nadine; Seltzer, Jared; Steinberg, Mitchell; Colosi, Dan C
2011-03-01
A pilot study to compare radiation exposure with the Tru-Align rectangular collimation system to round collimation exposures was undertaken. Radiation exposure at various points within the cross sections of the collimators and entrance, intraoral and exit dose measurements were measured using InLight OSL dosimeters. Overall dose reduction with the use of the rectangular collimation system was estimated by taking into account the ratios of collimator openings and the average radiation exposure at the measurement points. Use of the Tru-Align system resulted in an average radiation exposure within the perimeter of the projected outline of the rectangular collimator of 36.1 mR, compared to 148.5 mR with the round collimator. Our calculations indicate a dose reduction by a factor of approximately 3.2 in the case of the Tru-Align system compared to round collimation. The Tru-Align system was easy to use, but in some situations failed to allow Xray coverage of the entire surface of the image receptor, leading to cone cuts.
E2F1 interactions with hHR23A inhibit its degradation and promote DNA repair
Singh, Randeep K.; Dagnino, Lina
2016-01-01
Nucleotide excision repair (NER) is a major mechanism for removal of DNA lesions induced by exposure to UV radiation in the epidermis. Recognition of damaged DNA sites is the initial step in their repair, and requires multiprotein complexes that contain XPC and hHR23 proteins, or their orthologues. A variety of transcription factors are also involved in NER, including E2F1. In epidermal keratinocytes, UV exposure induces E2F1 phosphorylation, which allows it to recruit various NER factors to sites of DNA damage. However, the relationship between E2F1 and hHR23 proteins vis-à-vis NER has remained unexplored. We now show that E2F1 and hHR23 proteins can interact, and this interaction stabilizes E2F1, inhibiting its proteasomal degradation. Reciprocally, E2F1 regulates hHR23A subcellular localization, recruiting it to sites of DNA photodamage. As a result, E2F1 and hHR23A enhance DNA repair following exposure to UV radiation, contributing to genomic stability in the epidermis. PMID:27028861
Medical management of the acute radiation syndrome.
López, Mario; Martín, Margarita
2011-07-13
The acute radiation syndrome (ARS) occurs after whole-body or significant partial-body irradiation (typically at a dose of >1 Gy). ARS can involve the hematopoietic, cutaneous, gastrointestinal and the neurovascular organ systems either individually or in combination. There is a correlation between the severity of clinical signs and symptoms of ARS and radiation dose. Radiation induced multi-organ failure (MOF) describes the progressive dysfunction of two or more organ systems over time. Radiation combined injury (RCI) is defined as radiation injury combined with blunt or penetrating trauma, burns, blast, or infection. The classic syndromes are: hematopoietic (doses >2-3 Gy), gastrointestinal (doses 5-12 Gy) and cerebrovascular syndrome (doses 10-20 Gy). There is no possibility to survive after doses >10-12 Gy. The Phases of ARS are-prodromal: 0-2 days from exposure, latent: 2-20 days, and manifest illness: 21-60 days from exposure. Granulocyte-colony stimulating factor (G-CSF) at a dose of 5 μg/kg body weight per day subcutaneously has been recommended as treatment of neutropenia, and antibiotics, antiviral and antifungal agents for prevention or treatment of infections. If taken within the first hours of contamination, stable iodine in the form of nonradioactive potassium iodide (KI) saturates iodine binding sites within the thyroid and inhibits incorporation of radioiodines into the gland. Finally, if severe aplasia persists under cytokines for more than 14 days, the possibility of a hematopoietic stem cell (HSC) transplantation should be evaluated. This review will focus on the clinical aspects of the ARS, using the European triage system (METREPOL) to evaluate the severity of radiation injury, and scoring groups of patients for the general and specific management of the syndrome.
Clonogenic assay: adherent cells.
Rafehi, Haloom; Orlowski, Christian; Georgiadis, George T; Ververis, Katherine; El-Osta, Assam; Karagiannis, Tom C
2011-03-13
The clonogenic (or colony forming) assay has been established for more than 50 years; the original paper describing the technique was published in 1956. Apart from documenting the method, the initial landmark study generated the first radiation-dose response curve for X-ray irradiated mammalian (HeLa) cells in culture. Basically, the clonogenic assay enables an assessment of the differences in reproductive viability (capacity of cells to produce progeny; i.e. a single cell to form a colony of 50 or more cells) between control untreated cells and cells that have undergone various treatments such as exposure to ionising radiation, various chemical compounds (e.g. cytotoxic agents) or in other cases genetic manipulation. The assay has become the most widely accepted technique in radiation biology and has been widely used for evaluating the radiation sensitivity of different cell lines. Further, the clonogenic assay is commonly used for monitoring the efficacy of radiation modifying compounds and for determining the effects of cytotoxic agents and other anti-cancer therapeutics on colony forming ability, in different cell lines. A typical clonogenic survival experiment using adherent cells lines involves three distinct components, 1) treatment of the cell monolayer in tissue culture flasks, 2) preparation of single cell suspensions and plating an appropriate number of cells in petri dishes and 3) fixing and staining colonies following a relevant incubation period, which could range from 1-3 weeks, depending on the cell line. Here we demonstrate the general procedure for performing the clonogenic assay with adherent cell lines with the use of an immortalized human keratinocyte cell line (FEP-1811). Also, our aims are to describe common features of clonogenic assays including calculation of the plating efficiency and survival fractions after exposure of cells to radiation, and to exemplify modification of radiation-response with the use of a natural antioxidant formulation.
ERIC Educational Resources Information Center
Chardenet, Kathleen A.
2016-01-01
Purpose: A real-time dose management system was used to determine if radiation exposure levels would decrease when providers were privy to their real-time radiation exposure levels. Six aggregate categories of providers were first blinded (phase 1) and subsequently made aware of their radiation exposure levels during electrophysiology procedures…
10 CFR 35.70 - Surveys of ambient radiation exposure rate.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2013-01-01 2013-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...
10 CFR 35.70 - Surveys of ambient radiation exposure rate.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2014-01-01 2014-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...